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1 Preface  

The Danish production of protein is limited, causing a need for importing large amounts of plant-based 

proteins. However, farmed insects provide an alternative source of protein in feedstuff for livestock, which 

can help to meet the increasing demands of proteins worldwide and limit the negative impact from import 

of soya. Currently, rearing of insects in EU is constrained by the legislation requirements of using feed-

grade substrates only, but the economic feasibility and not least sustainability could be improved signifi-

cantly by allowing by-products and food residues that for now are considered as waste or unsafe. This 

includes kitchen and food waste, former foodstuff of vegetable origin which is spoiled by e.g., molds 

and/or contains packaging materials as well as former foodstuff with animal content (fish or meat). How-

ever, it is essential that any substrate used for rearing of insects does not pose a risk for the insect them-

selves, animals and humans feeding on insects as well as the environment.  

 The purpose of this literature review is to collect information on the existing knowledge on the safety of 

rearing insects for food and feed if various none-feed-grade organic materials would be applied as sub-

strates for the insects. The review shall help to identify gaps regarding the research needed to document 

that certain none-feed grade by-products and residues can be applied safely as substrate for insects with-

out posing a risk and thereby open for relaxation of the current EU regulations on feed for insects.  

 The hazards addressed in this review are based on the EFSA report from 2015 “Risk profile related to 

production and consumption of insects as food and feed” and a memorandum from the DTU Food Insti-

tute (Fareprofil for substrater til insektopdræt; Danger profile for substrates for insect breeding, 2018, in 

Danish only). The current review is based on recent scientific papers published after the 2018 memoran-

dum, and include papers found in a literature search from 2021 (Jensen et al. 2022) and a new literature 

search made in 2022.  

Based on the literature review, a research plan has been made to pinpoint which knowledge gabs should 

be further addressed, to be able to assess whether it is safe to feed insects with kitchen food waste, for-

mer food, and residual products with packaging residues, including spoiled feed. Even though studies 

have been made on transfer and accumulation of the hazards mentioned in the reviews, more studies 

are needed on several compounds e.g., pesticides, PFAS and compounds in food contact materials. 

Moreover, research is needed on the substrate in relation to applicability (volume and suitability for the 

insect), characterization of the microbiological quality, effect of storage conditions and effect of differ-

ent treatment methods. In addition, more research is needed in relation to the treatment of insects to 

control microbial load.  
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2 Dansk sammendrag 

Insekter som proteinkilde til produktionsdyr ses som et spirende potentielt alternativ til konventionelle 

foderproteiner, som kun produceres i begrænset omfang i Danmark og derfor må importeres i store 

mængder. Øget produktion af insektprotein til foderbrug vil hjælpe med at reducere behovet for impor-

terede planteproteiner, og de deraf følgende negative effekter som fældning af regnskov for at producere 

sojabønner eller overfiskning for at imødekomme behovet for fiskemel. Insekter har desuden en meget 

anderledes biologi end traditionelle produktionsdyr og kan potentielt vokse på organiske materialer der 

ellers anses for at være affald. Ved udnyttelse af sådanne affaldsprodukter vil produktionen af insekter 

kunne foregå uden at konkurrere med fodermidler til andre fødevareproducerende dyr. Betingelsen for 

at kunne opdrætte insekter på sådanne affaldsprodukter vil være, at de ikke vil udgøre en risiko for insek-

terne selv, for de dyr, som fodres med insekter, eller for mennesker, der anvender insekter til fødevarer. 

Foderlovgivningen er ikke skrevet med fokus på fodring af insekter. Med henblik på at understøtte frem-

tidige ændringer af lovgivningen for at sikre større bæredygtighed mht. udnyttelse af restprodukter til 

ressourceeffektiv insektproduktion, er det  relevant at undersøge, om køkken- og madaffald eller andre 

fødevarerester som fx tidligere fødevarer, der ikke kan anvendes lovligt i dag, fx fordi de er fordærvede, 

angrebet af mug, potentielt mikrobielt forurenet eller indeholder emballagerester kan anvendes sikkert 

som foder til insekter, og om insekterne, der er fodret med disse produkter, uden risiko kan anvendes til 

enten foder eller fødevarer. 

Formålet med denne litteraturgennemgang er at undersøge det nuværende forskningsmæssige grund-

lag, og derefter lave en oversigt over den supplerende forskning, der skal til for at vurdere, om man sik-

kert vil kunne lempe EU-lovgivningen og dermed øge ressourceudnyttelsen ved at anvende nye restpro-

dukter som foder til insekter. 

De farer, der er dækket af denne litteraturgennemgang, er baseret på EFSA-rapporten fra 2015 "Risk pro-

file related to production and consumption of insects as food and feed " og et notat fra DTU Fødevarein-

stituttet (Fareprofil for substrater til insekt opdræt, 2018, kun på dansk). Den aktuelle gennemgang er 

hovedsageligt baseret på nyere videnskabelige artikler offentliggjort efter 2018, herunder artikler fundet 

i en litteratursøgning fra 2021 (Jensen et al. 2022) og en ny litteratursøgning foretaget i 2022. 

  

På grundlag af litteraturgennemgangen er der udarbejdet en forskningsplan, der adresserer den viden der 

mangler, for at være i stand til at vurdere, om det er sikkert at give mulighed for at fodre insekter med 

fordærvet og/eller frisk køkken- og madaffald, tidligere fødevarer og restprodukter med emballagerester. 
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Selvom der er lavet studier om overførsel og akkumulering af de komponenter der er nævnt i litteratur-

gennemgangen, er der behov for flere undersøgelser på fx pesticider, PFA'er og forbindelser i fødevare-

kontaktmaterialer. Desuden er der behov for undersøgelse af potentielle restprodukter i forhold til an-

vendelighed (volumen og egnethed for insektet), karakterisering af produkternes mikrobiologiske kvalitet, 

effekt af deres opbevaringsforhold og forskellige behandlingsmetoder. Derudover er der behov for mere 

forskning i efterbehandling af insekter for at kontrollere den mikrobielle belastning. 
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3 Introduction  

3.1 Background and method 

The purpose of this review is to collect information and identify gaps in the existing literature on the 

safety of insects as food and feed if reared on by-products and residues from food production, which are 

currently not allowed according to EU feed law. The by-products of interest as potential substrates for 

rearing of edible insects is 1) Former Foodstuff (FF) as cakes and bread that are spoiled but otherwise 

legal, 2) FF or by-products containing food packaging materials e.g., plastic, paper and cardboard, 3) FF 

with meat and fish (i.e. animal content besides processed eggs, milk and honey) both fresh and spoiled, 

4) Kitchen- and food waste (fresh or spoiled) of vegetable and animal origin e.g., from commercial kitch-

ens and canteens. 

The review focuses on the eight species of insects that are currently allowed for feed and in the form 

they are commonly used; these are larvae of beetles, butterflies, or flies, and the adult individuals of 

grasshoppers and crickets. The eight species allowed for feed are: Black Soldier Fly (Hermetia illucens), 

Common Housefly (Musca domestica), Yellow Mealworm (Tenebrio molitor), Lesser Mealworm 

(Alphitobius diaperinus), House cricket (Acheta domesticus), Banded cricket (Gryllodes sigillatus), Field 

Cricket (Gryllus assimilis) and silkworm (Bombyx mori) (i.e., Regulation (EU) 2021/1925).  

The hazards covered in this review are based on the EFSA report from 2015 “Risk profile related to pro-

duction and consumption of insects as food and feed” and a memorandum from the DTU Food Institute 

(Fareprofil for substrater til insektopdræt; Danger profile for substrates for insect breeding, 2018, in 

Danish only). The memorandum from DTU was based on the EFSA publication but with updated litera-

ture. In 2021, prior to a series of experiments, a literature search was performed to identify available 

literature on hazards related to feed safety on Hermetia illucens larvae (black soldier fly larvae; BSFL) 

and Tenebrio molitor larvae (common or yellow mealworm) (Jensen et al. 2022).  The current review is 

based on recent scientific papers mainly published after the 2018 memorandum, and include papers 

found in a literature search from 2021 (Jensen et al. 2022) and a new literature search made in 2022. 

The search has been made in open literature from 2018 to 2022, both years included, using Scopus and 

supplemented by data from Danish monitoring programs. Based on a comparative search in the data 

bases Scopus, PubMed and Web of Science it has been concluded that the literature for this review can 

be covered by searching in Scopus. Most literature is found on BSFL and yellow mealworm but when rel-

evant, the hazards are described in other of the eight species allowed for feed e.g., the house cricket. 
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3.1.1 Feed legislation 

Feed for farmed animals including insects must comply with the provisions of the EU feed legislation in 

EU, which is made up of a series of regulations and directives. The Marketing and Use of Feed Regulation 

stipulates that feed must be safe and has no direct adverse effect on the environment or animal welfare 

(EU No. 767/2009) and prohibits materials like faeces, urine, sewage sludge and packaging materials. Im-

mediately approved feed of vegetable origin is listed in the Regulation on the Catalogue of feed materials 

(EU No. 68/2013, and amendment EU No. 2017/1017) and supplemented by the EU register of feed addi-

tives (EC No. 1831/2003). Contrary, the usage of products of animal origin as feed is strictly regulated by 

the regulations on Animal By-Products and derived products (EU No. 1069/2009 & implementing regula-

tion EU No, 142/2011). Further, the TSE regulation (transmissible spongiform encephalopathy) (EC No. 

999/2001 and amendments to annex in EU 2017/893 EU 2021/1372), stipulates, which animals can be fed 

with feed of animal origin like insects, and bans specifically the use of these products in feed for ruminants. 

Moreover, it is not allowed to use any products originating from one species as feed for the same species 

(ban of cannibalism).  

The description here on regulations and directives is not exhaustive. For further information regarding 

rules for farmed insects see the overview by the Danish Veterinary and Food Administration (DVFA). 

3.1.1.1 Rules for using animal products as feed  

Products that are not allowed:   

Animal by-products are divided into three categories depending on risks involved, where category 3 ma-

terials constitute the lowest risk and is the only category potentially allowed in feed. Category 1 includes 

materials posing the greatest risk regarding spread of transmissible spongiform encephalopathies (TSE) 

such as mad cow disease (BSE). Category 2-materials include livestock manure, cadavers of animals that 

died by themselves, diseased animals and everything that is neither category 1- or 3-material. A require-

ment for the use of category 3-materials in feed is processing by specifications given in Annex X of the 

Implementing Regulation (EU No 142/2011) resulting in ‘Processed Animal Protein (PAP). However, irre-

spective of processing, category 3-materials like kitchen and catering waste as well as former foodstuffs 

with animal contents are prohibited in feed for food-producing animals incl. insects. Excepted are for-

mer foodstuffs containing milk, egg, honey, fat, collagen, and gelatine, as long as they are processed as 

food while e.g., dough with raw egg is prohibited. 

 Products from animals that are allowed as feed:   
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Animal by-products specified as category-3 materials constitute the lowest risk and are divided into two 

groups based on origin – either from slaughterhouses or of other origin. There are specific requirements 

for processing of different types of category 3-material (Annex X in the Implementing Regulation (EU No. 

142/2011). Sterilization by pressure constitutes the most stringent treatment and by-products from mam-

mals must undergo this treatment, whereas alternative methods may be applied for other products if the 

requirements for the end product are met. These are absence of salmonella in 25 g and Enterobacteria 

levels ≤ 300 CFU/g (and maximum 2 of 5 samples having between 10 and 300 CFU/g). The products of 

animal origin allowed in feed for insects if processed according to the specifications for animal by-products 

entail rendered fat, fish oil, eggs, milk, blood-products of none-ruminants, hydrolysed protein and gelatine 

and collagen of none-ruminants and fishmeal.  
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4 Biological hazards  

The biological hazards included in this review mainly include the zoonotic bacteria and spore forming 

bacteria involved in food poisoning. The severe animal disease viruses, prions and parasites are also 

shortly addressed, but in relation to edible insects, only limited new literature has been published since 

the EFSA risk profile and the DTU memorandum from 2018. The review describes the transfer of micro-

organisms from substrate to the insects and to the degree possible also the fate of microorganisms post-

harvest depending on processing. The review focuses on individual studies and does not cover review 

papers. There are several relevant reviews (Cappelli et al. 2020; Garofalo et al. 2019; van der Fels-Klerx 

et al. 2018; Vandeweyer et al. 2021) focusing on microbiological hazards in edibles insect. 

Zoonotic infectious agents from especially unprocessed food waste or former foodstuff of animal origin 

include human pathogens like Campylobacter, Salmonella, Listeria monocytogenes, Escherichia coli, Yer-

sinia enterocolitica and Staphylococcus aureus (MRSA). Additionally, there exists a range of severe notifi-

able livestock diseases (BEK no 1191, 24/08/2022). However, in Denmark the occurrence of these dis-

eases is very rare as it is the case for e.g., foot-and-mouth disease, African and classical swine fever 

(ASF/CSF), and Aujeszky’s disease. However, in recent years, African swine fever has been occurring in 

several European countries including Germany, while Highly Pathogenic Avian influenza (HPAI) has been 

recurring in Denmark (EFSA 2019; Sauter-Louis et al. 2021). The significance of different indirect trans-

mission routes has been under investigation but is not fully resolved (Fischer et al. 2020; Olesen et. al. 

2020). Long-term survival of ASF virus in various pig tissues implies a risk of contamination from un-

treated meat, while processing like heating may inactivate the virus (Olesen et al. 2020). Although DNA 

of ASF virus was detected in heat-treated field crops (1 h 7°5C), it was not infectious (Fischer et al. 

2020). There are to our knowledge no new studies on these livestock diseases in relation to edible in-

sects as the focus mainly is on the role of insects as vectors for transmission (Bonnet et al. 2020).   

Former foodstuff and food waste may entail an enhanced risk of spoilage of particularly perishable food 

depending on the time and storage conditions along the way from collection until the use as substrate 

for insects. Depending on the composition of the waste in terms of nutrients, available water (water ac-

tivity, aw), pH and salt content, the food waste may support the growth of harmful bacteria and or 

moulds. Certain moulds like Aspergillus, Penicillium and Fusarium can produce different types of myco-

toxins, which are addressed under the chemical hazards.  
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Another issue is the emergence of SARS-CoV-2. However, insects are expected to constitute a very low 

risk as they lack a receptor that can bind SARS-CoV-2, and coronaviruses have never been recorded in 

insect microbiomes (Dicke et al. 2020).  

4.1 Prions 

Prion diseases or TSEs (transmissible spongiform encephalopathy) mainly concern ruminants, and pri-

marily BSE (bovine spongiform encephalopathy) constitutes a risk of transmission between animal spe-

cies as it may lead to the variant Creutzfeldt-Jacob disease (vCDJ) in humans. The main reservoirs of pri-

ons are brain, spinal cord, eyes, tonsils and parts of the intestines and the practice of removing these 

specified risk materials (SRM) reduces the risk of prions to occur substantially. If present, prions are ex-

tremely resistant to standard inactivation methods including the most stringent processing method re-

quired under EU legislation for processed animal proteins (EC no. 142/2011) i.e., 133°C for 20 min at a 

pressure of 3 bar. Preventing introduction of prions via substrate is therefore the key to control, as it 

cannot be excluded entirely that insects can act as passive vectors of prions.   

Although the occurrence of BSE in EU now is rare (EFSA, 2018), the concerns related to the recycling of 

BSE back into the food chain gives rise to similar concerns for rearing insects on animal content if the 

insects are fed to animals of the same species, in the following referred to as a ‘two-species feedback 

loop’. However, the actual risk is very uncertain, and means to deduce the source of animal feed pro-

teins will be necessary in order to assess if the loop has been avoided (Niedzwiecka et al. 2019). In one 

study, bovine DNA in black soldier fly larvae (BSFL) fed with spiked substrate was detected (Belghit et al. 

2021). However, a previous study carried out by the authors of this review, did not find DNA from rumi-

nants or chicken in BSFL fed with spiked substrate (Jensen et al. 2022), but found one sample of BSFL 

with porcine DNA. 

4.2 Parasites 

Intestinal parasites like Cryptosporidium spp., Giardia and Echinococcus excreted by animals may con-

taminate fruit and vegetables via contaminated water, but although the occurrence is unknown, food 

borne infections are rare. Other parasites like Trichinella spp. are related to raw (non-frozen) fish (ani-

sakid nematodes) and raw meat. Danish pigs are free of this parasite, but the risk of Trichinella spiralis is 

however increased when pigs have access to outdoor areas.  
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Another parasite, Toxoplasma gondii causing toxoplasmosis in humans, is transmitted directly via re-

sistant oocysts (eggs) excreted by infested cats or indirectly via oocysts spread in the environment lead-

ing to contamination of e.g., vegetables. Furthermore, tissue cysts can be found in muscle tissue of raw 

pig, lamb, and game meat. Based on antibodies, an apparent seroprevalence of 2% was found in Danish 

indoor-raised finishers, while the prevalence in outdoor-raised finishers was 11% (Anon. 2022). The tis-

sue cysts are destroyed when meat is heated above 67°C, smoked, salted or frozen (-20°C) for at least 3 

days. The oocyst is otherwise resistant (Mirza Alizadeh et al. 2018) and a key to control is via hygienic 

management in rearing of insects (access restriction to cats) (Percipalle et al. 2021). The presence of 

Toxoplasma gondii was investigated in 16 different insect foods and was detected in one consisting of 

dehydrated mealworms (Percipalle et al. 2021).  

Generally, data on occurrence of parasites in food is sparse, including to which degree edible insects will 

take up parasites if present in their substrate. Müller et al. (2019) found that few Eimeria oocysts and 

eggs of Ascaris suum could be found in the intestines of BSFL after 10 days of feeding on contaminated 

substrate (200.000 eggs / g), and the oocyst or egg walls seemed not to be deteriorated by the BSFL.    

4.3 Bacteria:  

4.3.1 Campylobacter  

Campylobacter jejuni is the predominant cause of foodborne infections in humans and is primarily trans-

ferred by fresh and undercooked meat, especially chicken meat. Campylobacter prevalence in poultry 

varies depending on production method and source. The occurrence of Campylobacter in conventional 

vs. organic broiler meat is 22.2% / 36.5% in slaughterhouse samples, 11.9% / 30.4% in Danish retail and 

64.3% / 69.4% in imported meat (Anon. 2022).   

Especially former foodstuff and food waste with meat (particularly poultry) content that has not been 

heat treated or processed to eliminate Campylobacter comprise a risk of transferring Campylobacter. 

Most insect studies focusing on Campylobacter concern the potential of especially flies as transmission 

vectors. Nevertheless, a microbiota composition study in Kenya by Tanga (2021) found a high abun-

dance of Campylobacter spp. in BSFL fed 14 d on food waste, poultry or rabbit manure and even spent 

grains from a brewery. In another BSFL study, the Campylobacter spp. level in BSFL increased with rear-

ing temperature, from 3.2 log CFU/g at 20°C to 4.7 log CFU/g at 33°C, respectively, although no Campyl-

obacter was detected in the vegetable-based substrate (Raimondi et al. 2020). Proliferation of Campylo-
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bacter usually requires a host, which BSFL may have constituted, but in other studies where Campylo-

bacter was ingested by houseflies or larvae, the Campylobacter bacteria seemed to be cleared within 

few days or less depending on dose (Nordentoft et al. 2017; Jensen unpublished; Skovgaard et al. 2011).  

4.3.2 Salmonella  

The prevalence of Salmonella in Danish pork and beef meat samples is generally very low (<1%) and for 

broiler meat there is a zero tolerance for the presence of Salmonella. However, 12-18% of batches of 

Danish pork and imported pork and broiler meat test Salmonella positive (DVFA 2019). Danish eggs are 

very rarely positive and imported eggs are constrained by Salmonella status requirements.   

Especially former foodstuff and food waste with animal content that has not been heat treated or pro-

cessed to eliminate Salmonella comprise a risk of transferring Salmonella, although contamination of 

other foods can occur. Salmonella was detected in BSFL and Acheta domesticus or house cricket reared 

on combinations of brewer’s and kitchen waste in Kenya (Nyangena et al. 2020). Other than that, ab-

sence of Salmonella is mostly reported for reared insects for food and feed except a few cases, probably 

due to the use of feed grade substates (Kashiri et al. 2018; Raimondi et al. 2020). Nonetheless, the study 

by Raimondi et al. (2020) showed that although the substrate was free of Salmonella, BSFL tested posi-

tive and more often when the rearing temperature was 33°C vs. 20 or 27 degrees.   

However, Salmonella may be introduced via contaminated substrate or environment and four studies 

have investigated the fate of introduced Salmonella in spiking studies with Tm and BSFL.   

For BSFL, the effect of exposure dose (3-7 log CFU / g substrate) was assessed, and one study indicated 

an increase in the Salmonella level in the BSFL over the study period of 6 days (De Smet et al. 2018). 

However, a marked difference between replicate experiments and not least detection of Salmonella in 

the controls (non-spiked), which indicate cross-contamination, undermines plausible conclusions. In an-

other study at an initial contamination level of 7 CFU / g in the substrate, the level in BSFL decreased 

from 4.0 log CFU / g at day 3 to 2.0 log CFU / g at day 17  (Grisendi et al. 2022). In the substrate with 

BSFL, the Salmonella level was reduced to 3.7 log CFU / g at end of study and was significantly lower 

than the level in control substrate without larvae except on day 13. This indicated that BSFL exerted 

some sanitizing effect against Salmonella although not eliminated completely, as also previously re-

ported in studies on waste conversion by larvae (Lopes et al. 2020; Zhang et al. 2021). However, the re-

duction capacity seems to depend on the bacteria species as Enterococcus spp. levels were found to in-

crease 1 log (Lopes et al. 2020) and E. coli declined 2-3 log while Listeria monocytogenes levels remained 

constant over 8 days (Swinscoe et al. 2020).   
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For Tenebrio molitor or yellow mealworm, there seems to be a clear relationship between the exposure 

dose in the substrate and the level found in the larvae (Jensen et al. 2020; Wynants et al. 2019a). A con-

tamination level of 2 log CFU / g substrate only resulted in positive larvae shortly after spiking at start of 

the experiment, and the substrate was Salmonella-negative within the first week (Jensen et al. 2020). At 

4 log CFU / g substrate, the Salmonella level in larvae and substrate was low, but both remained culture-

positive following enrichment until the end of study on day 14. Only at the highest contamination level 

of 7 log CFU / g substrate, Salmonella was detectable on day 14 without enrichment in both larvae (1.9 

log CFU / g) and substrate (3.7 log CFU / g). Similarly, Wynants et al (2019a) found 4.1 log CFU / g in lar-

vae on day 7 after contamination with 7 log CFU/g substrate. At a contamination level of 2 log CFU / g 

substrate, 11 of 18 (not disinfected) or 5 of 11 (disinfected) larvae samples were still positive on day 7. 

Generally, over the time course of both studies, the substrate showed higher levels of Salmonella than 

larvae. Further, the ethanol disinfected larvae were less often positive indicating that some Salmonella 

remain on the outside rather than being ingested.   

4.3.3 Listeria  

Listeria monocytogenes (L. m.) is ubiquitous, present in soil, plants, sewage, animal guts, and particularly 

capable of hiding in food production environments and grows at low temperatures (standard refrigera-

tor). The main sources of contamination are meat toppings, cold-smoked fish, ready meals insufficiently 

re-heated, raw cheeses and unpasteurized milk. Generally, L. monocytogenes levels in ready-to-eat 

products should be kept < 100 CFU / g to ensure food safety within the shelf life of products. Food resi-

dues to be allocated into insect substrate are likely to have exceeded their ‘normal’ shelf-life as food and 

since Listeria bacteria at the same time are able to grow even under refrigerater temperature, this may 

infer an increasing Listeria contamination risk over time, if conditions are otherwise favourable (e.g., ap-

propriate water activity (Aw) and salt content).   

Listeria monocytogenes is mostly reported as absent in reared insects for food and feed, but the pres-

ence of unspecified Listeria spp. in BSFL in levels as high as 7.5 and 5.2 log CFU / g was reported by Sauc-

ier et al. (2022) and Larouche et al. (2019), respectively. Raimondi et al. (2020) found that the level of 

Listeria spp. in BSFL was higher when reared at 33°C (5.8 log CFU / g) compared to 20°C (4.8 log CFU / g) 

and higher than the level found in the vegetable-based substrate (2.6 log CFU ±0.4).   

In a BSFL spiking study with seaweed contaminated with 8 log CFU /g L. monocytogenes, the presence of 

L. m. in larvae ranged from 5.5 to 6.5 log CFU / g within the 8 days of study, while no clear decline was 
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seen in the L. m. level in the substrate (Swinscoe et al. 2020). Contrary, Grisendi et al. (2022) found a de-

crease of L.m. in both substrate (from 7.24 to 5.93 log CFU / g) and BSFL (from 6.56. to 4.45 log CFU / g) 

over a period of 17 days. Moreover, the L. m. level in substrate without larvae did not decrease over 

time indicating a sanitizing effect of the larvae.   

In a yellow mealworm spiking study with 1-7 log CFU / g Listeria innocua in the substrate, bacteria level 

in yellow mealworm seemed to range from 3.78 to 6.34 log CFU / g over the 7 days of study irrespective 

of the initial inoculum, indicating that even low contamination levels infer a risk of Listeria positive lar-

vae (Bellegia et al. 2020). In another spiking study with L. monocytogenes (8 log CFU / g), the larvae 

seemed to support a high L. m. in the substrate over the 7 days of study (5.3- 6.6 log CFU /g) opposed to 

substrate without larvae (4.9 log CFU / g on day 7), while an insignificant increase was observed in the 

larvae (from 3.6 to 4.6 log CFU / g) (Mancini et al. 2019b).   

4.3.4 Escherichia coli  

Escherichia coli belongs to the Enterobacteriaceae family and comprises both non-pathogenic and path-

ogenic strains, and generally indicates faecal contamination and the level of hygiene. Microbiological 

criteria are set for the accepted level in different food commodities e.g., maximum 500 CFU / g for 

minced meat and maximum 1000 CFU / g for pre-cut fruit and vegetables (EC No. 2073/2005). For in-

sects it is often just the overall level of Enterobacteriaceae that is reported rather than E. coli specifi-

cally, and for derived products for feed use (EC No. 142/2001) the Enterobacteriaceae limit is 300 CFU 

/g. However, E. coli levels of 4.5 log CFU / g (Bessa et al. 2021) and 7.5 log CFU / g (Saucier et al. 2022) 

have been reported for BSFL. Spiking experiments with high levels (9-10 log CFU /g) of two different 

strains of E. coli resulted in high levels in the BSFL (7-8 log CFU / larvae), which declined 2-3 log over the 

8 days of study. In house crickets, a level of 6.7 log CFU / g E. coli was reported by Fröhling et al. (2020).  

4.3.5 Yersinia entorocolitica   

Yersinia enterocolitica is also entailed in the Enterobacteriaceae family and undercooked pork meat is 

the main infection route although the prevalence in pigs is not routinely monitored. Like other intestinal 

pathogens excreted in faeces, Y. enterocolitica may also contaminate vegetables if they are exposed to 

faeces directly or indirectly via contaminated water. Reports regarding occurrence of Yersinia in edible 

insects seem to be lacking.  

4.3.6 Staphylococcus aureus   
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Staphylococcus aureus can be present on skin and mucuos membranes in both humans and animals in-

cluding methicillin resistant Staphylococcus aureus (MRSA) (animal type), which have been found in pork 

meat (DVFA 2016). However, most cases of S. aureus food poisoning are due to contamination after 

heat treatment of foods followed by insufficient cooling that support growth of S. aureus and then pos-

sible production of toxins. Several studies report findings of coagulase positive staphylococci (CPS) im-

plying the presence of S. aureus but not exclusively (Borremans et al. 2018; Osimani et al., 2018; Bawa 

et al. 2019; Nyangena et al. 2020; Mancini et al. 2019ac, 2022; Li et al. 2020; Raimondi et al. 2020; 

Jucker et al. 2021). The levels seem to vary from below detection level to 8 log CFU / g. A single spiking 

experiment showed that S. aureus in BSFL remained below the detection level (< 2 log CFU /g) for the 6 

days of study even at a contamination level of 7 log CFU / g (Gorrens et al. 2021). Further, the S. aureus 

level in the substrate declined faster when larvae were present indicating a sanitizing effect.  

4.3.7 Spore forming bacteria  

The spore forming bacteria Bacillus cereus and Clostridium perfringens, and more rarely Clostridium bot-

ulinum, can cause food poisoning by production of toxins when present in high numbers. The formation 

of very resistant endospores enables the bacteria to survive during heat treatment that normally elimi-

nate vegetative bacteria.  When growth conditions with respect to level of oxygen, water activity, tem-

perature, pH (>4) and salt content, are favourable, spores return into the vegetative state and produce 

toxins.  

B. cereus is naturally occurring in soil, plants and in water and typically enters the food chain via contam-

inated spices, milk products, eggs, vegetables and starch rich products and ready-to-eat food. B. cereus 

can produce two types of toxins, and noticeably, the emetic toxin type is produced within the food, and 

once produced very resistant to following heat treatments as it can persist about 90 min at 126°C. As it 

usually requires vegetative cell numbers to reach 5-6 log CFU / g before toxin production occurs, growth 

prevention via exposure to unfavourable conditions is a key to avoid the toxins.  

Likewise, C. perfringens occurs in the environment and contaminates foods via direct or indirect contact 

with soil or water. Typical sources are meat or fish and products thereof, fruits, vegetables, honey, and 

spices. Again, high cell levels (> 5 log CFU / g) are required before toxin production occurs.  

For BSFL, endospore levels between 2.2 to 8 log CFU / g have been reported and more often with higher 

levels in the larvae compared with the level in the substrate (Larouche et al. 2019; Wynants et al 2019b; 

Raimondi et al 2020; Osimani et al. 2021). Often the present endospores are not speciated further, how-

ever, Raimondi also reported 2.3 log CFU / g B. cereus in the larvae while the substrate tested negative.   
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In yellow mealworm, the reported endospore levels were from <1 to 4.4 log CFU / g and Fasolato et al. 

(2018) reported levels of <2 to 3 log CFU / g bacteria of the Bacillus cereus group (gr.) in shelf-stable 

food products (aw <0.6). However, the group of B. cereus also comprises harmless species closely related 

to B. cereus.  

In house crickets, the levels of endospores vary considerably from <1 to 8.1 log CFU / g (Fasolato et al. 

2018). Jucker et al. (2021) also found bacteria belonging to the B. cereus gr. (3.2 log CFU / g) in substrate 

for house crickets consisting of ‘laying hen diet’ but without finding B. cereus gr.in house crickets (<1 log 

CFU / g). Other studies found B. cereus gr. in cricket meal and various cricket food products in levels 

ranging from <1 to 5 log CFU / g (Fasolato et al. 2018; Machado et al. 2020; Frentzel et al. 2022;) and 4.2 

log CFU / g in frozen crickets (Bawa et al. 2019).  

In silkworms, the reported levels of B. cereus gr. range from <2 to 6 log CFU / g (Fasolato et al. 2018) and 

C. perfringens at 3.3 log CFU / g (Kurdi et al. 2021).  Generally, there are only few studies on silkworms 

as edible insects, but the microbial load resembles that of other insects. 

4.4 Fate of microorganisms in edible insects depending on treatment   

Edible insects are known to have a naturally high microbial load when harvested, while the reported 

findings of the significance of substrate contaminated with pathogens and the elimination effect of post-

harvest processing methods are more diverse. Besides, several studies address the dynamics of microbi-

ota composition in insects and how it is influenced by type of feeding substrate, and the immune re-

sponse to various pathogens in particularly BSFL and yellow mealworm.   

It seems that BSFL undergoing bacterial challenge elicit immune responses that vary depending on spe-

cies or group of bacteria and further influence the degree and speed of elimination of specific intruding 

bacteria. For example, Gram-positive bacteria persisted longer in the haemolymph of BSFL after injec-

tion than Gram-negative bacteria although both Gram-positive- and Gram-negative bacteria were com-

pletely removed from the insect body within a few hours after injection (Bruno et al. 2021). Production 

of various antimicrobial peptides further helps BSFL to fight off pathogens (Wu et al. 2018; Ho et al. 

2021; van Moll et al. 2022). The gut associated microorganisms of BSFL also seem to support suppres-

sion of pathogens like Salmonella and Staphylococcus in waste substrate (Zhang et al 2022). However, 

this substrate sanitation capacity of BSFL varies for both the type of substrate and the bacteria species 

(Gold et al. 2018; Awasthi et al. 2020; Lopes et al. 2020; Swinscoe et al. 2020).  

Moreover, the type of substrate may induce a shift in gut microbiota of BSFL (Bruno et al. 2019; Calassi 

et al. 2021; Schreven et al. 2022) and especially fungal communities were highly substrate dependent in 
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a Kenyan study (Tanga et al. 2021). A diet consisting of spent grains led for example to a predominance 

of the fungus Pichia kudriazevii, which has a safety perspective as this fungus encodes an antibacterial 

toxin active against human pathogens E. coli, Enterococcus faecalis and Staphylococcus aureus. How-

ever, also BSFL core microorganisms seem to prevail irrespective of the type of substrate, although this 

core may differ regionally (Klammsteiner et al. 2020; Shelomi et al. 2020; Osimani et al. 2021; Gorrens et 

al. 2022).  

Regardless, it is generally agreed that the high intrinsic load of bacteria in edible insects implies a need 

for efficient means to reduce this load, as well as ways to stabilize insect products to prevent prolifera-

tion of undesired bacteria, to ensure the food and feed safety.   

Before harvest of the insects, starving is commonly applied to empty the gut content, but this has gener-

ally minimal or no effect on the microbial load. However, Mancini et al. (2019c) reported fewer Entero-

bacteriaceae, CPS, endospores and yeast and moulds after 24 h fasting, but the effect was not con-

sistent for all types of substrates or species.   

Freezing is a common method applied to kill insects, but it does not seem to reduce the microbial load. 

However, insect samples are often frozen before performance of the microbiological analysis, which 

may affect the numbers recovered of more sensitive species and does not allow a direct comparison of 

the load in fresh vs. frozen insects.   

Heat treatment of edible insects, e.g. blanching in boiling water or lower temperatures, and oven drying 

and/or roasting is applied as single treatment or in various combinations of temperature ranges and du-

ration. The latter makes it difficult to deduce the elimination effect of the individual treatment steps. 

Furthermore, the bacterial species evaluated vary between studies as well as the level of bacteria before 

the heat treatment.   

In some studies, blanching of edible insects 40 to 60 sec in boiling water reduces the bacterial level to 

about 2 log CFU / g (Borremans et al. 2018; Nga’ ang’ a et al. 2021), while another study still found > 6 

log CFU / g total aerobic bacteria (TAC) in BSFL even after 8 min of scalding in boiling water (Saucier et 

al. 2022). The level of endospores was not determined in the later study, but due to their resistance to 

heat, it seems plausible that the TAC consists of such endospores. However, even bacteria like Entero-

bacteriaceae and Listeria spp. were found in levels of > 5 log CFU / g after the 8 minutes of scalding. 

Moreover, despite the expected heat resistance of endospores, one study reported that endospores 

were below the level of detection (< 1 log CFU / g) in yellow mealworm after treatment at 60°C for 5 min 

even though the total aerobic count was still 5.6 log CFU / g (Mancini et al. 2019a).   
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Oven drying treatments at 60°C may reduce the microbial load to some extent depending on the dura-

tion of treatment (Larouche et al. 2019; Nyangena et al 2020; Ng’ang’a et al 2021). For oven treatments 

of yellow mealworm at 150°C for 10 min, both Listeria and endospores were found to decline below the 

detection limit (< 1 log CFU / g) although TAC levels were still 3-4 log CFU /g (Mancini et al. 2019ac, 

2022). In studies where yellow mealworm meal containing 2-2.8 log CFU / g endospores was incorpo-

rated (10% or 30%) into dough and baked for 1 h at 200°C, the level of endospores in the bread was <1 

or 0,58-1.23 log CFU / g (Roncolini et al. 2019, 2020). In another study, where cricket meal containing 

5.5 log CFU / g endospores was baked in bread for 1 h at 200°C, the bread still contained up to 3.7 log 

CFU / g (Osimani et al. 2018).  

Generally, there is a lack of well-evaluated and standardized methods for the gentlest treatment con-

cerning product quality that at the same time ensures a high level of food safety of insect products. The 

various heating methods differ with respect to heat transfer efficiency that further depends on the mor-

phology of the target insect. This implies a need for specific assessments of each method and insect 

product to prove the efficiency of the applied treatment for lowering the microbial load and specific 

pathogens. In relation to the microbiological analyses applied, there is also a lack of standardized meth-

ods for homogenization of the insect sample as it may influence the number of bacteria recovered, 

which impairs comparisons across studies.   

Irrespective of the somewhat variable results regarding the consequence of rearing insects on sub-

strates with a poor hygienic level in terms of resulting contamination in the harvested insects, the sani-

tation capacity of postharvest processing steps will determine the food safety of the final insect product. 

Consequently, microbial contaminants not easily controlled or eliminated from the insect after harvest 

should be avoided or eliminated already in the substrate.   
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5 Chemical hazards  

Chemical hazards included in this review are: metals and other elements, mycotoxins, pesticides, dioxins 

and PCBs, and finally other compounds of interest (minerals, oils, PFAS).   

This literature review is limited to describe transfer of chemical hazards from substrate to insect larvae, 

and bioaccumulation of chemical hazards in larvae. The review does not cover metabolism or possible 

toxic effects of the chemical hazards.   

The review focuses on individual studies and does not cover review papers. There are several relevant 

reviews (Alagappan et al., 2022; Meyer et al, 2021; Lievens et al., 2021; Purnamasari et al., 2022; 

Schrögel and Wätjen, 2019; van der Fels-Klerx et al., 2018) focusing on chemical hazards, rearing of in-

sect, and feed and food safety, which are referred to as a supplement to this review.   

5.1 Metals and other elements  

Several studies have investigated the transfer and bioaccumulation of metals and other elements in in-

sect larvae, mainly in BSFL. Focus has largely been on the heavy metals cadmium (Cd), lead (Pb) and 

mercury (Hg), and the metalloid arsenic (As). Other elements of interest were aluminium (Al), cobalt 

(Co), copper (Cu), chromium (Cr), iron (Fe), magnesium (Mg), molybdenum (Mo), nickel (Ni), selenium 

(Se) and zinc (Zn). Two studies focus on yellow mealworm. In one study, As, Cd and Pb were transferred 

from spiked substrates, but only arsenic bioaccumulated in yellow mealworm (van der Fels-Klerx et al., 

2016). Truzzi and colleagues studied the transfer of As, Cd, Hg, Ni, Pb and Se from substrates containing 

solid residues from the processing of olive fruits. They found that the elements are transferred, but re-

sults suggest that only Hg bioaccumulated in the yellow mealworm (Truzzi et al., 2019). Studies on BSFL 

suggest that elements are transferred from substate (spiked and non-spiked) to BSFL, and that in partic-

ular Cd is bioaccumulated, however, there are differences across the studies (Biancarosa et al., 2018; 

Bohm et al., 2022; Bulak et al., 2018; Diener et al., 2015; Elechi et al., 2021; Gao et al., 2017; Proc et al., 

2020; Purschke et al., 2017; Truzzi et al., 2020; van der Fels-Klerx et al., 2016; van der Fels-Klerx et al., 

2020; Wu et al., 2020). A few of the later studies on BSFL have used non-spiked substrates focusing on 

the use of former foodstuffs or by-products from food production in substrates for larvae. Substrates 

based on by-products from coffee roasting with or without microalgae contained As, Cd, Hg, Ni and Pb; 

the elements were transferred to the BSFL and Cd, Hg and Pb bioaccumulated in the larvae (Truzzi et al. 

2020). Three types of organic waste (brewery water, food waste (mainly rice, beans, plantain, and vege-

tables) and fruit waste) containing varying levels of Cd, Cr, Cu, Pb and Zn were fed to BSFL; the elements 
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were transferred from the substrates to the larvae, and Cd in food waste and fruit waste, but not in the 

brewery waste, bioaccumulated (Elechi et al., 2021). A recent study covered 12 elements and various 

types of substrates, including household food waste (cuts and peels of fruit and vegetables, grounded 

tea, rice, noodles, and eggs shells) (Bohm et al., 2022). The elements Cu, Mg, Mn, Pg, Zn, and in particu-

lar Cd, bioaccumulated in BSFL reared on the food waste substrate (Bohm et al., 2022). Fels-Klerx and 

colleagues (2020) produced substrates mimicking former foodstuffs with or without packaging materi-

als; the four substrates were: meat and paperboard carton, vegetable and paperboard carton, meat and 

plastic, and vegetable and plastic. The levels of As and Hg were very low, often below the limits of quan-

tification (LOQ) in the substrates and BSFL fed on the substrates (van der Fels-Klerx et al., 2020). The 

substrates contained Cd, but the levels of Pb were below the LOQ. Both Cd and Pb were found in the 

BSFL, and for all substrates Cd bioaccumulated (van der Fels-Klerx et al., 2020).  

5.2 Mycotoxins  

Several studies have investigated the transfer and bioaccumulation of mycotoxins in insect larvae, 

mainly in BSFL and yellow mealworm. The studies cover the following mycotoxins: Aflatoxin A, deoxyni-

valenol (DON), zearalenone, ochratoxin A, fumonisin B1 + B2, Sum T-2 and HT-2 toxin. The studies sug-

gest that although some mycotoxins are transferred from the substates (spiked and non-spiked) to the 

larvae, the larvae do not bioaccumulate the mycotoxins (Bosch et al., 2017; Camenzuli et al., 2018; 

Charlton et al., 2015; Gulsunoglu et al., 2019; Leni et al., 2019; Mancini et al., 2020; Meijer et al., 2019; 

Niermans et al., 2019; Piacenza et al., 2021;  Purschke et al., 2017; Sanabria et al., 2019; Van 

Broekhoven et al., 2017). Some of the studies investigated the transfer of mycotoxins from naturally 

contaminated substrates to insect larvae. Grains infected with Fursarium were fermented before being 

fed to BSFL (Gulsunoglu et al., 2019). The substrate contained DON, which was transferred to the BSFL at 

low level, but was not bioaccumulated by the larvae (Gulsunoglu et al., 2019). Leni and colleagues 

(2019) prepared substrates with ingredients naturally contaminated with DON, fumonisin B1, fumonisin 

B2 and/or zearalenone, and reared BSFL or Alphitobius diaperinus (lesser mealworm) on the substrates. 

The mycotoxins were not detected in the BSFL, while DON and fumonisin B1 were detected at low levels 

in lesser mealworm (Leni et al., 2019).  The levels in the lesser mealworm were lower than in the sub-

strates, indicating that DON and fumonisin B1 did not bioaccumulate. The transfer of DON from natu-

rally contaminated substrates to larvae has been studied in yellow mealworm. In one study, yellow 

mealworm was fed a substrate based on naturally contaminated wheat flour, and although DON was 

present in the substrate, it was not detected in the mealworm (Van Broekhoven et al., 2017). However, 
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in a similar study, where yellow mealworm was fed substrates containing wheat contaminated with 

DON, DON was found in low levels in the mealworm (Sanabria et al., 2019).  In a third study on yellow 

mealworm, oat flakes naturally contaminated with T-2 and HT-2 were fed to mealworm, but the two 

mycotoxins were not detected in the mealworm (Piacenza et al., 2021). Similarly, zeralenone was not 

found in yellow mealworm after being reared on a substrate containing naturally contaminated wheat 

flour (Niermans et al., 2019).  

This literature review was limited to describing transfer of mycotoxins from substrate to insect larvae, 

and bioaccumulation of mycotoxins in larvae. Many of the studies mentioned above also looked at me-

tabolism and excretion of mycotoxins by larvae, indicating that insect larvae metabolise and excrete my-

cotoxins. A recent review by Niermans and colleagues (2021) describes the accumulation, metabolism, 

and excretion of mycotoxins in insects.   

5.2.1 Assessment of risks related to mycotoxins and the feeding of insects with spoiled 

former foodstuffs or spoiled food waste. 

Former foodstuffs and food waste, spoiled and non-spoiled, may contain mycotoxins, which may cause 

adverse health effects in animals and humans. This assessment is limited to insects fed substrates with 

spoiled food waste or spiled former foodstuffs. Risks for other farmed animals and humans have been 

thoroughly assessed by EFSA over the years (2004 and onwards). For more information on risks to 

farmed animals (other than insects) and humans, readers are referred to EFSA’s risk assessments of my-

cotoxins in feed and food (www.efsa.eu).  

Former foodstuffs such as cereals, bread, fruit, and cheeses may contain mycotoxins. In food waste pos-

sible sources of mycotoxins are fruit, vegetables, cereals, bread, nuts, seeds, jam, marmalade, cheeses, 

etc. Other types of organic waste, that could potentially be used in insect substrates are downgraded 

grains/cereals, i.e., batches of grain that a downgraded from use in food production due to elevated lev-

els of mycotoxins. 

Niermans and colleagues (2021) conducted a systematic literature review of the accumulation and me-

tabolism of mycotoxins in insects, and of the effects of mycotoxin exposure on growth and survival of 

insects. Some of the major findings of the systematic review were: 1. The accumulation of mycotoxins is 

low in most insects, 2. Mycotoxins are metabolised by insects, and 3. The effects of mycotoxins on 

growth and survival depend on insect species, type of mycotoxin and concentration of the mycotoxin(s), 

as well as life stage of the insect(s). The authors states that “Results of the review support an optimistic 

http://www.efsa.eu)./
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outlook for the use of mycotoxin-contaminated waste streams as substrate for insect rearing” (Nier-

mans et al., 2021).  

Studies in the scientific literature (see 5.2) find that although some mycotoxins are transferred from sub-

strate to insects, the accumulation is low, and the insects do not bioaccumulate the mycotoxins. The ex-

posure to mycotoxins does not seem to affect the insects. In studies where insect larvae were fed sub-

strates with ingredients naturally contaminated with mycotoxins, growth and survival of the insects 

were not affected (Gulsunoglu et al., 2019; Niermans et al., 2019; Piacenza et al., 2021; Sanabria et al., 

2019; Van Broekhoven et al., 2017). When BSFL were fed a substate containing grains infected with 

DON, their weight gain and survival rate did not differ significantly from BSFL fed a control substate with 

non-contaminated grains (Gulsunoglu et al., 2017). Similar observations were seen in studies with yel-

low mealworm; when reared on substrates containing ingredients naturally contaminated with DON or 

T-2 and HT-2, growth and survival of the exposed mealworms were comparable to those reared on con-

trol substates (Piacenza et al., 2021; Sanabria et al., 2019; Van Broekhoven et al., 2017). In one study on 

yellow mealworm, the weight gain of mealworms increased when exposed zeralenone (naturally con-

taminated substrate) compared to control mealworms, while the survival rates were similar (Niermans 

et al., 2019).  

Data on the occurrence of mycotoxins in insects, substrates for insects, former foodstuffs and food 

waste is scarce. There are data available in the literature, and these data were reviewed by Niermans 

and colleagues (2021). They found that, in general, when exposed to mycotoxins, the concentration of 

mycotoxins in insects is below limit of detection or limit of quantification. Even at exposure levels ex-

ceeding current European Union guidance values for mycotoxins in feed (Niermans et al., 2021). In some 

studies mycotoxins accumulate in exposed insects, but the concentrations found are in most cases be-

low European Union maximum limits or guidance values set for insects used as feed or food (Niermans 

et al., 2021). 

5.3 Pesticides  

Only a few studies examine how pesticides in the substrate affect the content of pesticides in BSFL and 

yellow mealworm. Charlton and colleagues (2015) studied the levels of several chemical contaminants, 

including a screening of 393 pesticides, in four species of insects (house fly, blue bottle, blow fly and 

BSFL) reared on substrates of “low or zero value waste materials”. Only two pesticides were detected in 

the samples; chlorpyrifos was detected in one sample of house fly larvae and piperonyl butoxide was 

detected in one sample of blue bottle larvae (Charlton et al., 2015). The transfer of pesticides from 
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spiked substrate to insects has been studied in BSFL and in yellow mealworm. Pesticides are transferred 

from spiked substrates to the BSFL, but there is no bioaccumulation of the pesticides (Lalander et al., 

2016; Meijer et al., 2021; Purschke et al., 2017). In yellow mealworm, pesticides are also transferred 

from spiked substrates to the mealworm, and results indicate that some pesticides may accumulate in 

the mealworm (Houbraken et al., 2016; Dreassi et al., 2020). The studies covered the following pesti-

cides; 1. Azoxystrobin and propiconazole (Lalander et al., 2016), 2. Chlorpyrifos, chlorpyrifos-methyl and 

pirimiphos-methyl (Purschke et al., 2017), 3. Chlorpyrifos, Propoxur, cypermethrin, imidacloprid, spi-

nosad and tebufenoxide (Meijer et al., 2021), 4. 2,4-D, bentazone, bifenthrin, clopyralid, diflufenican, 

fenpropimorph, isoproturon, linuron, mefenoxam, pendimethalin, pyrimethanil, tebuconazole 

(Houbraken et al., 2016) and 5. Deltamethrin, tebuconazole and chlormequat chloride (Dreassi et al., 

2020).   

5.4 Dioxins and PCBs  

Only a few studies have looked at dioxins and PCBs (Polychlorinated Biphenyls). Charlton and colleagues 

(2015) studied the levels of dioxins and PCBS in four species of insects (house fly, blue bottle, blow fly 

and BSFL) reared on substrates of “low or zero value waste materials”. Dioxins and PCBs were found in 

all samples, but at levels below the maximum levels set in the EU feed legislation. BSFL fed on substrates 

mimicking former foodstuffs (former foodstuffs with or without packaging materials; the substrates 

were: meat and paperboard carton, vegetable and paperboard carton, meat and plastic, and vegetable 

and plastic) contain dioxins and PBCs, and the estimated Bioaccumulation factor for the compounds 

were > 1, indicating the BSFL can accumulate dioxins and PCBs (van der Fels-Klerx et al., 2020).   

5.5 Other compounds of interest  

Food waste may contain packaging residues, such as cardboard and paper, which may contain problem-

atic substances, e.g. fluorinated substances used in the coating of food packaging materials. Only two 

studies on this topic were identified. In a study with BSFL reared on substrates mimicking former food-

stuffs including packaging materials (plastic and cardboard/paper), the content of mineral oils was ana-

lyzed in the larvae (van der Fels-Klerx et al., 2020). Mineral oils were detected in the larvae, but do not 

appear to bioaccumulate (van der Fels-Klerx et al., 2020). The transfer of PFAS to insect larvae has been 

studied in BSFL by Li and Bischel (2022). Five compounds (PFBA, PFOA, PFBS, L-PFOS and GenX) spiked to 

the substrate were transferred but not bioaccumulated in the BSFL (Li and Bischel, 2022).   
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5.6 Other hazards  

Food waste, unless sorted, will contain meat. One study has studied the possible transfer of animal DNA 

from substrate to insect larvae; ruminant DNA was detected in BSFL reared on substrates spiked with 

bovine protein (bovine haemoglobin powder), indicating that animal DNA can be transferred from sub-

state to larvae (Belghit et al., 2021). 
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6 Identified areas requiring further research  

The following identification of knowledge gabs requiring further research is mainly based on the topics 

described in the literature review, but also on a general discussion of available substrates and rearing of 

insects for feed and food production.   

The identified research needs are divided in three categories: 1) research related to the substrate, 2) re-

search related to the transfer of relevant hazards from the substrate to the insects, and the bioaccumu-

lation of these hazards in the insects and 3) research related to post harvest treatment of the insects.  

6.1 Research needs related to substrates for rearing of insects.  

• Identification of relevant by-products, food waste and former foodstuff for use as substrate for 

insects, based on availability in terms of accessibility and amounts over seasons as well as ap-

propriateness as feed for the insect of interest in terms of composition and safety.  

• Characterization of selected substrate candidates by:  

o screening for the content of relevant chemical compounds, including regulated com-

pounds and emerging contaminants.  

o screening for the level of bacterial hygiene indicators and presence of pathogens (e.g. 

according to specified requirements for feed)  

o assessing the presence and persistence of viral indicators   

This characterization shall address the impact of seasonal variations and support provi-

sion of data for quantitative risk assessments.   

• Assess the need for sanitizing treatments of substrate in order to prevent reintroduction of haz-

ards back into the food production chain – addressing appropriate treatment methods, consid-

ering the sanitation efficiency and quality of the resulting substrate, as well as the significance of 

timing (i.e. at which stage should a sanitizing step be implemented).  

• Assess the effect of storage conditions e.g. temperature as a means to control microbiological 

hazards such as toxin producing moulds.  

6.2 Research needs related to the transfer of relevant hazards from the substrate 

to the insects.  

• Experimental assessments of the possible transfer and bioaccumulation of relevant chemical 

compounds e.g.  
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o Pesticides, PFAS, or compounds in food contact materials  

o Compounds identified in surveys of food waste (see 1 above)  

• Experimental assessments of the transfer of relevant microbiological hazards, their persistency, 

and the effect of the contamination level in the substrate e.g.  

o Spore forming bacteria and toxin producing bacteria (knowledge on dynamics of toxin 

production)   

o Virus indicators (will they remain infective)  

6.3 Research needs related to the processing of insects.  

• Determine required postharvest treatment methods for each insect of interest for efficient re-

duction of the naturally high microbial load and potential pathogens if present.   

• Elucidate the effect of suggested processing methods on the nutritional quality of insect prod-

uct, including possible formation of process contaminants.  

• Assess if the applied treatment affects the level of chemical compounds, for example mycotox-

ins.  
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