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Abstract 

Many microorganisms produce natural products that are frequently used in the de v elopment of medicines and crop protection agents. Genome 
mining has e v olv ed into a prominent method to access this potential. antiSMASH is the most popular tool for this task. Here we present version 
4 of the antiSMASH database, providing biosynthetic gene clusters detected by antiSMASH 7.1 in publicly a v ailable, dereplicated, high-quality 
microbial genomes via an interactive graphical user interface. In version 4, the database contains 231 534 high quality BGC regions from 592 
archaeal, 35 726 bacterial and 236 fungal genomes and is a v ailable at https:// antismash-db.secondarymetabolites.org/ . 
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Introduction 

Secondary metabolites produced by microorganisms are the
main source of bioactive compounds that are in use as antimi-
crobial and anticancer drugs ( 1 ), as well as fungicides, herbi-
cides, pesticides and other crop protection agents ( 2 ). Classi-
cally, these compounds were discovered by making extracts
out of samples from natural sources, followed by chemical
isolation, purification and activity screening. The sequencing
boom of the last decade has made microbial genome data
readily available, making it possible to complement this tra-
ditional approach with genome mining technologies ( 3 ). Soft-
ware tools for natural product genome mining have existed
for over a decade (as discussed in various reviews ( 4–8 )). Only
a few databases made such data available, starting with the
now-defunct ClusterMine360 ( 9 ) in 2013. 
Received: September 15, 2023. Revised: October 13, 2023. Editorial Decision: Oc
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Since its initial release in 2011, antiSMASH ( 10–16 ) has 
become the most widely used tool for genome mining for 
secondary / specialised metabolites and is generally regarded 

as the gold standard. antiSMASH uses a rule-based approach 

to detect genome regions containing biosynthetic gene clusters 
based on conserved biosynthetic enzymes from (currently) 88 

different biosynthetic pathway types. In addition to cluster- 
specific analyses for many of the better-understood path- 
ways, antiSMASH also compares identified regions to the 
MIBiG database ( 17 ) of known BGCs, as well as a dataset 
of antiSMASH results predicted from publicly available 
genomes. 

antiSMASH is a genome mining tool by design, meaning 
that it analyses and annotates individual microbial genomes,
one at a time. To help with research questions that can better 
tober 13, 2023. Accepted: October 17, 2023 
c Acids Research. 
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e answered with cross-genome datasets, we developed the an-
iSMASH database ( 18–20 ). With its easy to use query builder,
t allows researchers to quickly run even complex queries
gainst BGCs identified across tens of thousands of genomes.
dditionally the database is used as the basis for antiSMASH’s
lusterBlast functionality, with ClusterBlast hits linking to the
atabase. antiSMASH results are cross-referenced to similar
esults in the database, as well as to similar clusters from the

IBiG database. 
Here we present the fourth version of this database, cover-

ng 592 archaeal, 35 726 bacterial and 236 fungal genomes. 

aterials and methods 

election of included genomes 

rchaeal, bacterial and fungal genomes were downloaded
rom the NCBI RefSeq database on 4–5 April 2023, using
he ncbi-genome-download tool ( 21 ) using the ‘complete’,
chromosome’ and ‘scaffold’ assembly levels. To avoid issues
ith badly fragmented assemblies negatively affecting BGC
rediction quality, assemblies with > 100 (for archaea and
acteria) / 150 (fungi) contigs were discarded. Redundancy fil-
ering was performed as described previously ( 20 ), with the
xception that Mash ( 22 ) was now used for all taxa, including
ungi. After redundancy filtering, 641 archaeal, 38 991 bacte-
ial and 257 fungal sequences remained. 

ntiSMASH annotations and data import 

n this filtered dataset, we used GNU parallel ( 23 ) to run
ntiSMASH 7 with the options ‘ - - cb-knownclusters - - cb-
ubclusters - - cc-mibig - - clusterhmmer - - tigrfam - - pfam2go
 - rre - - asf - - tfbs’. antiSMASH successfully processed 640 ar-
haeal, 38 940 bacterial and 255 fungal assemblies, the oth-
rs were skipped due to the lack of gene annotations or other
nnotation-related errors. From this first run, we extracted
ll predicted ribosomally synthesised and posttranslationally
odified peptide (RiPP) precursors and regions to build new
ompaRiPPson and ClusterBlast datasets, respectively. Af-

er creating the updated datasets, antiSMASH 7 was re-run
n the first round’s results using the options ‘ - - cb-general
 - reuse’, also updating CompaRiPPson results with the new
ataset. 
The SQL schema for the database ( https://github.com/

ntismash/ db-schema/ ) and importer ( https://github.com/
ntismash/ db-import/ ) were updated to support antiSMASH
 results. During the import process, assemblies without any
ntiSMASH predictions were dropped, resulting in the final
ount of 592 archaeal, 35 726 bacterial and 236 fungal as-
emblies being represented in the database. 

esults and discussion 

he NCBI RefSeq database contains a wealth of microbial
enomes. However, the database does contain a lot of redun-
ancies caused by tens of thousands of sequences of common
athogens like Esc heric hia coli , Salmonella enterica or Staphy-

ococcus aureus . Additionally, many of the genome assemblies
re draft assemblies from short reads that leave the genome in
undreds or even thousands of tiny contigs, which has mas-
ive impacts on the quality of BGC detection ( 24 ). In order
o have a good representation of BGCs across the whole se-
quenced microbial tree of life without overly biassing for the
frequently sequenced species, and to ensure that clusters are as
complete as possible without being spread over many contigs,
the antiSMASH database applies rigorous quality filtering and
sequence-similarity based filtering. After filtering and process-
ing, the fourth version of the antiSMASH database contains
231 534 high-quality BGCs from 592 archaeal, 35 726 bac-
terial and 236 fungal high-quality, representative, genomes.
Annotations were performed using antiSMASH 7.1, which
has additional rules on top of those in the 7.0 release ( 16 ):
isocyanides, NRP-related isocyanides, highly-reducing PKS
type IIs, darobactins, triceptides, archaeal RiPPs and hydro-
gen cyanides. This results in a total of 88 different supported
pathways. 

Version 4 of the database makes all of the antiSMASH
predictions available using its query functionality. The
NRPS / PKS module search has been integrated into the regular
query builder to allow for combined queries like ‘find regions
containing NRPS modules with N -methyltransferase domains
in the genus Streptomyces ’ or any other filters on top of the
module selection. During user testing of the simple text query,
we noticed confusion about which search categories were cov-
ered, as well as frustration about the absence of type comple-
tion hints. As the current version of the database brings the
number of supported search categories up to 39, we decided
to remove the simple text query. This means that all database
queries now run via the query builder interface. 

For users who want to search the database using their own
protein sequence data or known RiPP precursor sequences,
two newly added search features are available. The RiPP pre-
cursor search (Figure 1 A) uses NCBI blast+ blastp ( 25 ) to
compare a user-provided sequence with all predicted RiPP
precursors in the database (Figure 1 B). Similarly, the protein
sequence search (Figure 1 C) uses DIAMOND ( 26 ) to com-
pare user-provided sequences to all protein sequences from
predicted BGCs (Figure 1 D). 

The development work needed to allow running these kinds
of searches in the background has also been used to make CSV
and FASTA downloads more reliable. Previously, queries re-
turning CSV or FASTA results were generally slow and needed
strict pagination to return data before the browser connec-
tion timed out. This in turn made these queries cumbersome
to use, especially from automated scripts. In version 4 of the
database, we instead create background processes to collect
all of the requested data. Once collected, data is available
from the antiSMASH database servers for a week before be-
ing cleaned up automatically. This should make it drastically
easier to download larger slices of the antiSMASH database. 

Additionally, the complete dataset for the whole database is
available for download on our download server in various for-
mats for users wishing to integrate any or all of the data into
their own in-house tools, see the data availability statement
for details. Examples on how to use the antiSMASH database
search and download functions can be found on the database’s
‘Help’ page. 

Compared to version 3 

′ s 25 802 assemblies, version 4 con-
tains 36 554, roughly a 42% increase. At the same time, the
number of high-quality BGCs increased, increasing the num-
ber of BGCs that did not run into a contig edge from 147 517
to 231 534, almost 57%. This increase is likely due to the in-
creased number of BGC types supported by the latest version

https://github.com/antismash/db-schema/
https://github.com/antismash/db-import/
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Figure 1. ( A ) The RiPP precursor search loaded with the lanthipeptide nisin A’s core sequence. ( B ) The CompaRiPPson results for the above search ( C ) 
The protein sequence search using a 3-dehydroquinate synthase. ( D ) The protein sequence search results 
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Conclusions 

Genome mining continues to be an invaluable technique
for assessing microbial biosynthetic potential. Since 2011,
antiSMASH has aided with these efforts. The antiSMASH
database helps to compare identified clusters across genomes
and allows for more complex searches to contextualise and
cross-reference findings via a user-friendly web interface. 

With a selection 231 534 BGC regions from archaea, bacte-
ria and fungi, the antiSMASH database version 4 is a compre-
hensive collection of secondary / specialised metabolite biosyn-
thetic gene clusters with up-to-date, high quality antiSMASH-
based annotations available to the natural product research
community. 

Data availability 

The antiSMASH database is available at https://antismash- 
db.secondarymetabolites.org/. There are no access restric-
tions for academic or commercial use of the web server.
The source code components and SQL schema for the an-
tiSMASH database are available on GitHub ( https://github.
com/antismash ) under an OSI-approved Open Source license.
The complete set of antiSMASH results, the antiSMASH
JSON files, and an SQL dump of the database can be down-
loaded from the antiSMASH download server ( https://dl.
secondarymetabolites.org/ database/ 4.0/ ). 
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