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Abstract: Microring resonators (MRRs) are promising devices for time-delay photonic reservoir
computing, but the impact of the different physical effects taking place in the MRRs on the
reservoir computing performance is yet to be fully understood. We numerically analyze the
impact of linear losses as well as thermo-optic and free-carrier effects relaxation times on the
prediction error of the time-series task NARMA-10. We demonstrate the existence of three
regions, defined by the input power and the frequency detuning between the optical source and
the microring resonance, that reveal the cavity transition from linear to nonlinear regimes. One
of these regions offers very low error in time-series prediction under relatively low input power
and number of nodes while the other regions either lack nonlinearity or become unstable. This
study provides insight into the design of the MRR and the optimization of its physical properties
for improving the prediction performance of time-delay reservoir computing.

Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License.
Further distribution of this work must maintain attribution to the author(s) and the published article’s title,
journal citation, and DOI.

1. Introduction

Neuromorphic computing systems, which try to resemble the working mechanism of the human
brain, are an interesting alternative to traditional Von Neumann architectures. Fundamental
physical boundaries of electronics set some limits in future developments of current architectures
to increase their computing capacity. Hence, neuromorphic computing appears to be a promising
step in the development of novel artificial intelligence processors that can enhance the performance
of current computing architectures and might extend Moore’s law [1]. Over the last decade,
developments in integrated photonics have allowed the exploration of novel computing paradigms.
Additionally, these developments have driven the photonic hardware realization of computing
processing schemes and machine learning algorithms. Lower energy consumption, parallel
computing and faster processing speed are the key potential benefits of photonic computing
architectures that could address the limitations of traditional electronic circuits [2,3]. Photonic
neural networks, all-optical switching, optical spiking neurons and optical activation functions
are some examples of the emergence of the photonic computing field [3].

Reservoir computing (RC) is a relatively recent computing paradigm in the recurrent neural
networks (RNNs) family that offers a lower complexity of the training process with respect
to conventional RNN and other neural network schemes [4,5]. An RC architecture consists
of an input layer, in which the data is assigned random fixed weights before being transferred
to the reservoir layer, where the data is mapped into a higher dimensional space by means of
interconnected nonlinear nodes with random and fixed connections. Using the response of the
reservoir nodes, the weights in the output layer are trained to solve a specific target task, usually
using ridge or linear regression. Based on the trained weights, RC can also make a prediction of
the target task for subsequent input sequences that are unknown to the reservoir. Only the output
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layer is trained in RC, and this key feature considerably decreases the training time of this type of
neural network [5,6]. RC has been shown to have applications in time-series predictions, channel
equalization, speech recognition, medical and financial applications, etc. Further details about
RC architecture are available in comprehensive reviews on the subject [5,6].

Multiple works have demonstrated implementations of photonic RC, where usually the
nonlinear nodes are achieved through the nonlinear behaviour of photonic devices [7–20] or the
dynamics of nonlinear optical phenomena [21–23]. Some of these works consist of blocks of
photonic devices that perform as nonlinear nodes [7,11,12], but this leads to the scalability of RC
being a challenge as well as the footprint of the photonic circuit being considerably increased.
An alternative approach known as time-delay reservoir computing (TDRC) is to multiplex the
nodes in time and use a single physical nonlinear node that typically receives feedback through
a physical loop to boost the connectivity between the virtual nodes and the overall memory of
RC. Several works regarding photonic TDRC can be found in the literature, e.g., using a Mach
Zehnder modulator as the nonlinear node [9,10,14,17,19], semiconductor optical amplifiers [8]
or the nonlinear dynamics of laser devices [13,15]. A TDRC setup based on microring resonators
(MRR), first studied in [18], demonstrated a good performance in time-series prediction tasks.
Nonetheless, there was no clearly established relationship between the performance of RC and
the physical effects that generate the nonlinear dynamics of the microring cavity. In [24] we
reported initial studies on the impact of varying the relaxation times of such physical effects and
numerically showed that it is possible to obtain frequency detuning and power regions with a
prediction error lower than other RC implementations with a similar number of virtual nodes and
input rate.

In this work, we extend our study of the MRR-based TDRC architecture from [24] by
investigating the impact of the cavity waveguide linear loss on the performance of RC. This
study also encompasses an analysis of how the amount of nonlinearity given by the cavity
dynamics influences RC and how the behaviour of such dynamics can be used to improve the
performance of this type of RC implementation. We also explore the impact of the generated
nonlinear oscillations in the time-series prediction and show that it is a non-desirable effect for
solving the discrete-time tenth-order nonlinear auto-regressive moving average (NARMA-10)
task. Additionally, this work deepens the understanding of the performance thresholds and the
fabrication requirements for the microring waveguide in order to achieve lower error prediction
than similar numerical RC schemes. This improvement is shown for the prediction of the
NARMA-10 sequence and can potentially be extended to other RC tasks.

The structure of the paper goes as follows: In section 2 we introduce the model used to
mathematically describe the nonlinear dynamics of the MRR-based TDRC scheme. In this section,
we also detail the major assumptions and values used for the optical parameters. In section 3
we present the details of each of the TDRC layers, including the mathematical description of
the electric field of the processed optical signal at the different stages of our setup. In section
4 we describe the benchmark methodology when solving the NARMA-10 task. In section 5
we present the results of the setup when varying different physical parameters related to the
MRR properties, and define input power vs. frequency detuning regions with different levels of
prediction error. Afterwards, in section 6 we analyze the previous results and relate the region of
low error prediction with the physical properties of the MRR and the dominance of each of the
nonlinear effects. Section 7 summarizes the main conclusions.

2. Free-carrier nonlinearities in silicon MRR

Silicon microring resonators have been extensively studied in the field of photonic computing
as their features have demonstrated applications in a variety of computing processes such as
all-optical switching [25–27], optical logic gates [28], weight banks [29], photonic spiking neural
networks [30], photonic accelerators [31] and photonic RC [16,18]. The study in [18] focuses
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on the dependence of the MRR-based TDRC performance on the feedback intensity and the
phase shift of the external feedback waveguide. This analysis is tested for the NARMA-10 and
Mackey-Glass tasks. The dependence on the input power and detuning of the pump for the Santa
Fe task is also studied. The system investigated in [16] presents a similar scheme but without
external feedback and was tested on analog and binary operations. Furthermore, the impact of
noise on the performance of the previous schemes with or without feedback was analyzed in [32].

To model the dynamics of a silicon MRR, we use the same mathematical model as in our
previous study [24], similar to the one used in [18]. In this model, we introduce in the input port
of the MRR a quasi-monochromatic electric field Ein at an angular frequency ωp close to that
of the resonance frequency of the cold MRR cavity ω0. This field triggers the generation of
excess carriers due to two-photon absorption (TPA). The conversion of the optical mode energy
to heat by the absorption of power results in the increase of the cavity temperature. The generated
free carriers change the refractive index of the cavity waveguide through free-carrier dispersion
(FCD), which in turn results in a blue shift of the resonance frequency. They also become a
source of free-carrier absorption (FCA). FCA contributes to the total rise of heat in the cavity.
The resulting thermo-optic (TO) effect also changes the refractive index of the cavity but in the
opposite direction, causing a red shift of the resonance [33]. All of these effects taking place
inside the MRR cavity can be described by the temporal coupled mode theory (TCMT) through
the following system of coupled differential equations, for an add-drop MRR configuration
[18,33–37]:

da(t)
dt
= [iδω(t) − γtot(t)]a(t) + i

√︃
2
τc

[E in(t) + Eadd(t)] eiωpt, (1)

d∆N(t)
dt

= −
∆N(t)
τFC

+
ΓFCAc2βTPA

2ℏωpV2
FCAn2

Si
|a(t)|4, (2)

d∆T(t)
dt

= −
∆T(t)
τth
+
ΓthPabs(t)

mcp
|a(t)|2, (3)

where a is the modal amplitude within the resonator cavity, ∆N represents the excess free-carrier
density generated via TPA, and ∆T is the temperature difference of the waveguide cavity with
respect to the environment. The variation of a described in Eq. (1) is dependent on both E in and
E add, where the latter denotes the electric field at the add port in an add-drop MRR configuration.
1/τc is the decay rate of the cavity modal energy due to the coupling of each bus waveguide to the
MRR. The terms δω(t) and γ tot(t) represent the total angular frequency detuning and losses rate
in the MRR cavity, respectively. In Eq. (2) and (3), c and ℏ denote the speed of light in vacuum
and the reduced Planck’s constant, respectively. τ FC is the relaxation time of the free carriers,
τ th is the decay time of the TO effect, and m is the mass of the MRR. The terms β TPA, n Si and
c p refer to the TPA coefficient, refractive index and specific heat of silicon, respectively. Γ FCA
and Γ th are the FCA and thermal confinement factors related to the fractional energy overlap
of the mode with the differential temperature and excess of FCD within the silicon microring.
V FCA is the effective volume of the FCA. P abs(t) is the total optical mode energy converted
into absorbed power. The time-dependent terms δω(t), γ tot(t) and P abs(t) have the following
definitions [33,35,36]:

δω(t) = ωp − ω0

[︃
1 −

1
nSi

(︃
∆N(t)

dnSi
dN
+ ∆T(t)

dnSi
dT

)︃]︃
, (4)

γ tot(t) =
cα
n Si
+

2
τc
+ γ TPA + γ FCA =

cα
n Si
+

2
τc
+
β TPAc2

n2
SiV TPA

|a(t)|2 +
Γ FCAσ FCAc

2nSi
· ∆N(t), (5)

P abs(t) =

(︄
cα
n Si
+
β TPAc2

n2
SiV TPA

|a(t)|2 +
Γ FCAσ FCAc

2nSi
· ∆N(t)

)︄
|a(t)|2. (6)



Research Article Vol. 32, No. 2 / 15 Jan 2024 / Optics Express 2042

In Eq. (4), the total angular frequency detuning is a result of the sum of the detuning between
ωp and ω0, which we refer to in this work as ∆ω = ωp − ω0, and the nonlinear detuning due to
TO and FCD effects. dn Si/dT and dn Si/dN represent the TO and FCD coefficients of silicon. In
Eq. (5) and (6), the terms γ TPA and γ FCA denote the losses due to TPA and FCA [33], and α is
the linear attenuation of the waveguide. σ FCA is the total FCA cross-section. The values of the
optical parameters used for the simulation of the photonic RC are listed in Table 1.

Table 1. Optical parameters used in the photonic RC simulations.

Parameter Value Parameter Value

m 1.2 × 10−11 kg β TPA 8.4 × 10−11 m · W−1 [35]

τ c 54.7 ps Γ FCA 0.9996 [35]

n Si 3.485 [33] Γ th 0.9355 [35]

λ0 1553.49 nm dn Si/dT 1.86 × 10−4 K−1 [33]

L 2π · 7.5 µm dn Si/dN −1.73 × 10−27 m−3 [35]

c p 0.7 J · (g · K)−1 [33] σ FCA 1.0 × 10−21 m2 [35]

V FCA 2.36 µm3 [35] V TPA 2.59 µm3 [35]

Our model does not consider the contribution of the frequency detuning due to Kerr effect in
Eq. (1) as the induced refractive index change (of the cavity waveguide) is negligible compared to
the change caused by TO and FCD effects [38] at the simulated input power range. However, it is
important to point out that the Kerr effect becomes more relevant in the case of coupled cavities
and different material platforms, as recently studied in [39]. The model also does not consider
any source of noise, nor does it consider the counterpropagating optical mode as the absence of
backscattering is assumed. This assumption follows the approaches of [34–38]. In order to apply
the model to our RC tasks, we normalize and solve Eq. (1)–(3) using a 4th-order Runge-Kutta
method similar to the solutions of the TCMT equations described in [35,38]. Throughout this
work, we sweep the values of the nonlinear effects lifetimes τ FC, and τ th, as well as the attenuation
value given by α. Then, we evaluate the impact of varying those parameters on RC dynamics and
performance.

3. MRR-based time-delay photonic RC

The photonic TDRC simulated in this work (Fig. 1(a)), consists of an optical pump from a laser
source which is modulated by the masked input data sequence of the RC. The virtual nodes
are multiplexed in time by the masking signal m(n) and a delay waveguide is added in order
to increase the memory to the RC, with a length that matches the added delay. In [16,18], the
authors demonstrated the memory capacity provided by the MRR cavity itself and by the external
waveguide. The response of the RC is obtained through a photodetector connected to the drop
port of the MRR. Afterwards, the training and testing of the output layer are performed using
ridge regression.

The silicon MRR cavity acts as the single physical node of RC when nonlinear behaviour is
induced. Indeed, this behaviour tends to become oscillatory as the FCD and TO effects cause an
increase in cavity losses, which decreases the modal energy |a|2. This reduction of energy in
turn diminishes the nonlinear effects together with their caused losses, and consequently, |a|2
starts to rise again, forming a cyclic nonlinear behaviour known as self-pulsing (SP) [34,37,38].

In RC, the high nonlinearity is correlated with the dimensionality expansion that is required
for computation tasks when their solution is not feasible in low dimensional input space, and
a task-dependent correlation between higher dimensionality and better performance has been
demonstrated [40,41]. However, a higher level of nonlinearity and dimensionality does not always
entail a better performance of RC [42], whereas, in time-series prediction tasks like the one
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Fig. 1. a) Photonic TDRC scheme using a silicon MRR with delayed feedback. b) Data
sequence and masked input of the RC, taken from an individual testing set of the RC
simulations. c) Corresponding electric field envelope of the signal at the input port of the
MRR. The small modulation index approximates a quasi-monochromatic optical signal.

analyzed in this work, it might even be detrimental for the memory capacity of the reservoir [43].
Furthermore, in certain frequency detuning and input power conditions, a perturbation of the
input optical signal can trigger self-pulsing of the cavity energy with ultra-short discontinuities or
spikes, as previously studied on silicon MRR nonlinearities [37,44]. Such fast pulse transitions
can alter the stability of the RC dynamics, as they affect the computational consistency of the
system, as defined in [45]. In [39], it is also pointed out that in the case of coupled cavities under
the influence of FCD effects, there is an optimum input power interval in which the increase of
dimensionality comes before the loss of consistency. As further discussed in section 5, similar
findings are achieved in this work where the RC reaches enough dimensionality to achieve good
performance without exciting SP that could affect its stability. Further details from each of the
layers of the simulated RC scheme are described in the following subsections.

3.1. Input layer

The 1-GBd input symbol sequence, u(n) is multiplied by the mask m(n), whose random values are
generated from a uniform distribution over the interval [0, +1]. The size of m(n) is determined
by the number of nodes N of the RC. Unless another value is specified, this work uses N = 50.
Therefore, every symbol, which has a duration of 1.0 ns, belonging to the sequence u(n), is
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masked into a virtual node over a time interval of θ = 1.0 ns
N = 20 ps, producing X(n) (Fig. 1(b)).

In order to fulfil the requirement of our model of using a quasi-monochromatic input electric
field by using a small modulation index, we add a bias β = 8.0 to X(n) which was optimized
with respect to the performance of the RC (with the rest of the parameters fixed). The resulting
masked input signal, X̂(n), has a modulation index of less than 2%. X̂(n) is transformed into an
electric signal that linearly modulates the optical field from an ideal noiseless continuous-wave
laser source that generates an optical pump at a frequency ωp and with average power P in. We
denote the resulting linearly modulated optical signal power at the input port of the MRR as
X in(n). Consequently, we can mathematically describe the input sequence X̂(n) and the electric
field E in at the input port of the MRR (Fig. 1(c)) corresponding to the input optical signal (square
root of X in(n)), in the following way [18]:

X̂(n) = u(n)m(n) + β = X(n) + β, (7)

E in(n) = [X in(n)](1/2). (8)

3.2. Reservoir layer

The Runge-Kutta solution of Eq. (1)–(3) is obtained with a step η = 2.0 ps. This value was
sufficiently small to obtain an accurate solution for the cavity nonlinearities of the system under
investigation in [24]. There are M = θ

η = 10 solver steps per virtual node (500 per symbol for N
= 50). Hereafter, we sample and hold E in(n) for each kth step of the Runge-Kutta solver over an
interval θ for each jth virtual node to build the input electric field Ê in(k) used in our model solver :

Ê in(k) = E in(n), for (j − 1)θ ≤ (j − 1)θ + kη<jθ, 0 ≤ k<M. (9)

Similar to the mathematical description of the scheme performed in [18], the external waveguide
provides a delay τd to the optical signal that links the through and the add port. Throughout the
simulations of the RC, we use a value of τd = 0.5 ns for the delay waveguide. This value was
optimized as a function of the ratio between τd and the symbol duration (1.0 ns) where a delay of a
duration of half the symbol length was found to be the optimum value. The solver steps equivalent
to the delay time are determined as τ̂d = τd/η = 250. We assume no counterpropagating modes in
the microring cavity. Hence, the electric field samples at the add and drop ports can be expressed
as:

Ê add(k) = κe−iφd

[︃
Ê in(k − τ̂d) +

1
τc

a(k − τ̂d)
]︃

, (10)

Ê drop(k) =
1
τc

a(k)Ê in(k) + Ê add(k), (11)

where κ = 0.95 represents the optimized coupling factor between the delay waveguide and the bus
waveguides of the MRR. As in the case of β, κ was optimized with respect to the performance of
the RC (lowest prediction error). The obtained value of κ is also close to the one used similarly
in [18]. The model takes into account the phase shift ϕd due to propagation through the delay
waveguide for the optical pump with wavelength λp. In [18], an adjustable external phase shift
(∆ϕ) in the delay waveguide was used to improve performance. In this work, ∆ϕ = 0 is used,
for which similar performance is achieved than for other values of ∆ϕ within a limited range of
configurations of the setup. The results obtained in this work could be further improved by a
more systematic optimization of ∆ϕ, which is out of the scope of this work. ϕd is defined as:

ϕd =
2πτdc
λp

. (12)
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3.3. Readout layer

We average the M step values of the Runge-Kutta solution for Ê drop(k) over the duration θ for
each jth virtual node to obtain E drop(n):

E drop(n) =
1
M

jM∑︂
k=(j−1)M+1

Ê drop(k) (13)

Next, we simulate the photodiode response of the RC by calculating the square of E drop(n).

X drop(n) = |E drop(n)|2 (14)

Once the response of the RC is obtained, we calculate the N-size weight vector W for the
output layer of the RC by using ridge regression with an optimized regularization parameter
Λ = 10−9. The impact of varying Λ for different values of the physical parameters considered in
this work is not analyzed and we keep it constant. The n elements of the predicted sequence ŷ(n)
are then determined as follows:

ŷ(n) =
N∑︂

j=1
WjXn,j(n) (15)

4. Benchmark

To investigate the impact of the relaxation times of the studied nonlinear effects and the waveguide
attenuation we test the system when solving a chaotic time-series prediction task like NARMA-10.
This task requires the high dimensionality given by the nonlinearities of the cavity and the
photodiode response, in addition to memory capabilities as it requires a memory of 10 steps in
the past to be solved. The NARMA-10 time-series target equation can be expressed as [46]:

y(n) = 0.3y(n) + 0.05y(n)

[︄ 9∑︂
i=0

y(n − i)

]︄
+ 1.5u(n − 9)u(n) + 0.1 (16)

For this task, the sequence u (n) is taken from a uniform distribution over the interval: [0.0,
0.5]. We use 2000 data points for the training and 2000 new data points for the testing. The
whole data batch is processed into the RC at once. Additional to the 4000 data points, we add
200 warm-up data points at the start of both the training and the testing sets. This allows the
Runge-Kutta solution to settle and eliminates any memory dependency between the sequences.
To measure the performance of the RC, we calculate the normalized mean square error (NMSE)
of the predicted sets. This metric is an estimation of the prediction errors, and so the lower the
error, the higher the performance of the RC. The NMSE between the predicted sequence ŷ(n),
and the target y(n) with a standard deviation σ2

y and length L data, can be expressed as:

NMSE =
1

L data

∑︁
n (ŷ(n) − y(n))2

σ2
y

(17)

5. Results

In the following subsections, all the results are obtained from simulations under a P in range of
-20 to +20 dBm and a ∆ω/2π range of ±300 GHz. For every simulation with the same value of N,
we use the same generated random mask sequence m(n). The calculated NMSE of our simulation
results corresponds to the testing set and it is averaged over 10 different seeds used to generate
u(n) and consequently, the NARMA-10 sequence. As previously mentioned, a normalization
process is carried out when solving Eq. (1)–(3). However, for visualization purposes, we present
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the denormalized quantities of ∆N(t) and ∆T(t) in our results. When not otherwise specified, we
use the following values for the analyzed parameters: τth = 50 ns, τFC = 10 ns, α = 0.2 dB/cm,
N= 50. The value of each parameter analyzed was selected as a middle point within realistic
ranges of previously reported values from studies in the literature that use MRRs for photonic
computing applications [34–38]. First, using the previous parameters as the initial conditions we
obtain the results of subsection 5.1.

5.1. P in vs ∆ω/2π regions of NMSE

We divide the parameter space P in vs ∆ω/2π according to the NMSE performance and identify
three different behaviours. The corresponding regions are labelled A, B, and C, as shown in
Fig. 2. The first region, A, occurs at higher detuning from the (cold) resonance of the MRR in the
heat maps, in which the NMSE gradually approximates a constant value. The region C is located
near the resonance of the MRR (although this is not necessarily the case for other parameter
configurations, as further results demonstrate). It achieves an NMSE > 1.0, which indicates an
inconsistent response of the RC which makes it unable to achieve accurate predictions. The third
region, B is located in the middle of regions A and C at both the red-shift and blue-shift sides of
the spectrum. This region is the one with the best performance of the RC (NMSE<0.2).

-300   -200   -100      0                 100              200             300  

[GHz]

A B C

Fig. 2. The regions A, B, and C in terms of P in vs ∆ω/2π as defined in subsection 5.1
when solving the NARMA-10 task (N = 50, τth = 50 ns, τFC = 10 ns, α = 0.8 dB/cm).

In Fig. 3, we show a slightly different perspective of the previous result by simulating a
frequency sweep for a set of P in values that highlight the transitions between the different
regions. In order to determine the reasoning behind the constant value that region A appears
to approximate when we increase either positive or negative detuning, we determine first the
performance of the RC in the absence of nonlinear dynamics in the MRR. In this scenario, we can
expect the photodiode response at the detection stage of Fig. 1(a) to become the only component
acting as the physical nonlinear node of the RC, with the delay waveguide still present in the
system. Therefore, we simulate our system using a photodiode as the nonlinear node and with
absence of MRR nonlinearities, which we refer to as photodiode-based RC in this work. For
such a setup, we obtain approximately the same NMSE threshold as the one to which region A
converges in Fig. 3 (NMSE ≈ 0.3475). This indicates that the MRR approaches a linear regime
value the further we detune ωp from ω0. The slope of this trend increases in low power levels
and it decreases for 20 dBm, as the high power holds the FCD nonlinearities for a longer ∆ω
range. Later in this work, we also study the characteristic response from each of the regions.
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Fig. 3. NMSE as a function of ∆ω for different levels of Pin (τFC = 10 ns, τth = 50 ns, α =
0.8 dB/cm). We also include the NMSE result obtained when the system uses a photodiode
as single nonlinear element of the TDRC.

5.2. Impact of the thermo-optic decay time

The value of τth is related to the thermal conduction and geometry properties of the microring
silicon waveguide and the cladding. It is possible to tailor τth by altering the thickness of the
cladding or its material. It is also possible to control τth by etching trenches around the microring
[33,38]. In Fig. 4, we vary τth while fixing the values of τfc and α. The NMSE of the testing
set prediction is obtained for the aforementioned ranges of average input power and frequency
detuning. The minimum NMSE obtained for each value of τth is shown in Table 2.

-300   -200   -100      0      100     200    300  -300  -200  -100      0     100     200    300  -300  -200  -100      0      100     200   300  

a) b) c)

d) e) f)

τth = 50 ns τth = 100 ns τth = 150 ns

τth = 200 ns τth = 300 ns τth = 400 ns

Fig. 4. NMSE of the simulated RC for an increasing τth and τFC = 10 ns, α = 0.8 dB/cm.

When increasing τth, the TO effect inside the cavity becomes dominant over the FCD effect.
Hence, as mentioned in section 2, the TO effect causes a red shift of the frequency resonance
of the MRR, which is more evident in moderately higher powers (above 0 dBm) [34]. This red
shift appears to be reflected in the behaviour of region C with respect to ωp. Region C is shifted
to negative detunings (redshift of ωp) also in values of P in above 0 dBm. On the other hand,
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Table 2. Minimum NMSE of testing set prediction for
selected values of τth (τFC = 10 ns, α = 0.8 dB/cm).

NMSE τth [ns] ∆ω/2π [GHz] P in [dBm]

0.0178 ± 0.0018 50 -30 -5.0

0.0283 ± 0.0026 100 -65 -2.5

0.0412 ± 0.0030 150 -95 7.5

0.0611 ± 0.0033 200 -145 15

0.0736 ± 0.0044 300 75 -7.5

0.0748 ± 0.0044 400 80 -7.5

as τth increases, region B gets narrower, and the minimum NMSE obtained is also higher. In
general, increasing τth shows to be detrimental to the performance of the RC, resulting in a limited
tolerance for practical demonstration. The results of Table 2 seem to indicate that the longer
τth the higher the required power to achieve the minimum NMSE of the results of Fig. 4(a-d).
Nevertheless, as region C shifts towards negative detunings, the location of minimum NMSE
shifts to positive detunings where now regions A and B are located.

5.3. Impact of the free-carrier relaxation time

The carrier’s lifetime within the diffusion effective area of a microring cavity is determined by
recombination processes such as the Shockley-Read-Hall (SRH), radiative and Auger recombina-
tions. τFC depends on the density of holes in the valence band and electrons in the conduction
band [47]. In practice, the value of τFC is usually approximated taking into account just the
SRH recombination rate if the deviation of carrier density from thermal equilibrium is much
larger than the density of traps [44]. τFC can also be adjusted by improving the quality of the
silicon-silica interfaces [38]. Using the same methodology as in the previous subsection, we
determine the RC performance when varying τFC while fixing the values of τth and α (Fig. 5).

-300   -200   -100      0      100     200    300  -300  -200  -100      0     100     200    300  -300  -200  -100      0      100     200   300  

a) b) c)

d) e) f)

τFC = 0.01 ns τFC = 0.1 ns τFC = 1.0 ns

τFC = 10 ns τFC = 25 ns τFC = 50 ns

Fig. 5. NMSE of the simulated RC for different values of τFC with τth = 50 ns, α = 0.8
dB/cm.

We vary τFC from the order of picoseconds to the order of tens of nanoseconds, so that we can
analyze the impact of both reducing and increasing τFC to have a deeper understaning of how the
ratio τFC/τth affects the RC. This ratio has a significant influence on the nonlinearities behaviour
as discussed in further details later in this work. The minimum NMSE values obtained under
the previous conditions are shown in Table 3. For a low value of τFC (Fig. 5(a and b)), the TO
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effect is dominant and, similarly to the results obtained in Fig. 4, region C is shifted towards
negative ∆ω. However, the extension over the ∆ω/2π axis seems to be reduced with respect to
Fig. 4(a)) when τFC is reduced. As τFC increases to the order of tens of nanoseconds, the FCD
effect becomes more dominant and region C shifts towards positive ∆ω, which means a blueshift
of ωp. This behaviour of region C is similar to the results of the previous subsection but in the
opposite direction of the spectrum. This is to be expected since TO and FCD effects cause a
detuning of ω0 in opposite directions. Unlike the previous case though, when region C shifts
towards either negative or positive ∆ωs its width gets narrower, which translates into a larger
region B. This is of crucial importance as it opens a significantly larger window of P in vs ∆ω
where RC operates with a very low NMSE and low power (particularly in Fig. 5(e and f)). This
finding is also summarized by the results listed in Table 3.

Table 3. Minimum NMSE of testing set prediction for
selected values of τFC (τth = 50 ns, α = 0.8 dB/cm).

NMSE τFC [ns] ∆ω/2π [GHz] P in [dBm]

0.0184 ± 0.0008 0.01 -25 10.0

0.0192 ± 0.0023 0.1 30 0.0

0.0228 ± 0.0019 1.0 45 -17.5

0.0178 ± 0.0018 10 -30 -5.0

0.0174 ± 0.0024 25 -50 -5.0

0.0151 ± 0.0021 50 -45 -7.5

5.4. Impact of the waveguide linear attenuation

The attenuation of a silicon MRR is directly related to the fabrication quality of the MRR
waveguide and it has been extensively studied as high-quality factor (Q) silicon microring cavities
have been pursued during the last decades [48]. However, it is also important in the context
of this work to consider that modifying τth or τFC could lead to a collateral impact on α, and
therefore, it is important to assess the influence of α on the RC performance in order to fully
grasp the possible performance penalties of altering the dimensions or physical properties of the
MRR when tuning other parameters. Under the same frequency and average power conditions as
before, we increase the value of α while fixing the ones of τth and τFC (Fig. 6). The minimum
NMSE obtained for each increasing value of α is shown in Table 4. Contrary to the previous
results, altering the waveguide attenuation does not have a great impact on the position of region
C when P in increases, although it does have an effect on its extension. A higher attenuation
appears to increase the size of region C and in turn, makes region B narrower. Therefore, a
relatively high-Q MRR (low attenuation) is desirable in terms of performance of the RC.

Table 4. Minimum NMSE of testing set prediction for selected
values of α (τFC = 10 ns, τth = 50 ns).

NMSE α [dB/cm] Q ∆ω/2π [GHz] P in [dBm]

0.0164 ± 0.0020 0.2 3.5×105 -10 -7.5

0.0169 ± 0.0020 0.5 1.4×105 -20 -5.0

0.0178 ± 0.0018 0.8 8.8×104 -30 -5.0

0.0182 ± 0.0022 1.0 7.0×104 -45 -5.0

0.0190 ± 0.0024 1.5 4.7×104 -55 -2.5

0.0215 ± 0.0030 2.0 3.5×104 60 -7.5
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α = 0.2 dB/cm α = 0.5 dB/cm α = 0.8 dB/cm
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Fig. 6. NMSE of the simulated RC for as a function of α, and τth = 50 ns, τFC = 10 ns.

5.5. Decreasing the number of virtual nodes

In order to make a fair comparison with the study on the MRR-based RC with external feedback
done in [18], we decrease the number of virtual nodes to 25 and simulate the RC for a sample set
of configurations from the previous subsections (Fig. 7). This set corresponds to the minimum
and maximum values of τth, τFC and α simulated in the previous subsections. There is a slight
increase in the obtained minimum NMSE as is expected from a neural network with fewer virtual
nodes (Table 5). Likewise, when reducing N to 10 virtual nodes, further slight degradation of the
performance is observed. For this case (Fig. 8), the reduction of the size over the parameter space
of region B is more noticeable than in the case of N = 25. The minimum NMSE for N = 10 is
shown in Table 6.

-300   -200   -100      0      100     200    300  -300  -200  -100      0     100     200    300  -300  -200  -100      0      100     200   300  

a) c)

d) f)d)b)

e)

Fig. 7. NMSE of the simulated RC with N = 25 for: a) τth = 50 ns, b) τth = 400 ns, c) τFC
= 0.01 ns, d) τFC = 50 ns, e) α = 0.2 dB/cm, and f) α = 2.0 dB/cm.

The results indicate that even when the minimum error obtained increases, there is still no
dependence of the defined P in vs ∆ω regions (A, B and C) on N, as the obtained trends are very
similar between the different values of N. It is possible to argue that the gain in terms of minimum
NMSE is relatively small when increasing N up to 50. This indicates that the dimensionality of
the RC is mainly given by the MRR nonlinear dynamics, and, within the considered values, N
does not impact the behaviour of the defined regions as much as τth, τFC and α.
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Fig. 8. NMSE of the simulated RC with N = 10 for: a) τth = 50 ns, b) τth = 400 ns, c) τFC
= 0.01 ns, d) τFC = 50 ns, e) α = 0.2 dB/cm, and f) α = 2.0 dB/cm.

Table 5. Minimum reached NMSE and corresponding parameters for the
testing set prediction with N = 25.

NMSE τFC [ns] τth [ns] α [dB/cm] ∆ω/2π [GHz] P in [dBm]

0.0197 ± 0.0009 0.01 50 0.8 -10 7.5

0.0169 ± 0.0023 50 50 0.8 -45 -5.0

0.0185 ± 0.0021 10 50 0.8 -40 -5.0

0.0758 ± 0.0044 10 400 0.8 80 -7.5

0.0173 ± 0.0025 10 50 0.2 -35 -12.5

0.0250 ± 0.0033 10 50 2.0 60 -7.5

Table 6. Minimum reached NMSE and corresponding parameters for the
testing set prediction with N = 10.

NMSE τFC [ns] τth [ns] α [dB/cm] ∆ω/2π [GHz] P in [dBm]

0.0249 ± 0.0021 0.01 50 0.8 35 2.5

0.0300 ± 0.0018 50 50 0.8 -45 -7.5

0.0224 ± 0.0019 10 50 0.8 50 -7.5

0.0812 ± 0.0038 10 400 0.8 80 -7.5

0.0272 ± 0.0024 10 50 0.2 35 -15.0

0.0385 ± 0.0033 10 50 2.0 70 2.5
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5.6. Characteristic RC response of the P in vs ∆ω/2π regions of NMSE

In Fig. 9(a-f), we display an instance of the waveform of the MRR response at the drop port for
each of the defined regions shown in Fig. 2. To switch between the regions, we fix the value of
P in to 0 dBm, while varying ∆ω/2π. Fig. 9(a-c) correspond to the response of the same 10 bits
(10 ns) of the testing sequence set previously shown in Fig. 1(a) and 1(b). By zooming out this
sequence to capture 1000 bits (1 µs), we obtain Fig. 9(d-f). The response of the RC in Fig. 9(a,d)
(region A) shows a delayed linear transformation of the input in which the signal does not differ
much from the input sequence. Due to the lack of nonlinearity, the prediction fails to resemble
the original NARMA-10 sequence, resulting in a relatively high NMSE = 0.3357 as the system
approaches the response of a photodiode-based RC as explained in subsection 5.1 for region
A. Next, the waveform examples of region B (Fig. 9(b,e)) show a nonlinear transformation of
the input sequence under stable conditions (avoiding SP) which gives enough dimensionality
to the RC to achieve a low error (NMSE = 0.0269). Lastly, Region C, which can be observed
in Fig. 9(c,f) shows SP oscillatory behaviour with various discontinuities or ’spikes’ and fast
transitions to values near zero amplitude (more visible in Fig. 9(f)). This behaviour of the SP
affects the consistency of the RC response as in these time intervals RC is incapable of learning a
consistent response to similar inputs in order to be tested with unknown data sets.
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Fig. 9. a-c) Sampled waveforms at drop port corresponding to 10 bits of each of the
three defined P in vs ∆ω/2π parameter space regions of the simulated RC when solving the
NARMA-10 task with P in = 0 dBm, N = 50, τth = 50 ns, τFC = 10 ns, α = 0.8 dB/cm. a
and d-f) 1.0 µs Extended sampled waveforms under the same conditions. g-i) Samples of
the target (blue) and predicted (orange) testing sets of a NARMA-10 sequence.

5.7. RC linear vs nonlinear regimes

The previous subsections qualitatively indicate the amount of nonlinear transformation the input
goes through in each region. A way to quantitatively evaluate this is by determining the coefficient
of determination, R2, between Edrop and Ein so that we can quantify, on a range [0.0 − 1.0], how
much the response of the RC (before photodetection) can be accounted as a linear transformation
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of the input. In other words, an R2 of 1.0 would indicate that the RC approximates a linear regime.
We show the results for 6 instances of the configurations used in Fig. 2–4 (2 per subsection).
As demonstrated in Fig. 10. Each of the 3 defined regions of the previous subsections matches
specific levels of R2. First, it confirms that the cavity gradually gets close to a linear regime as
the R2 tends to 1.0 as we increase the detuning from ω0 (Region A). Then, the best performance
is obtained in a mixed state between a linear and nonlinear regime where R2 oscillates between
∼0.2 and ∼0.9. The location of this mixed state matches that of region B. Lastly, an R2 of 0 is
obtained in the same area that corresponds to SP (region C), which indicates that there is no direct
relation between the response of the RC and the input. Similar findings regarding the importance
of the transition between linear and nonlinear regimes to enhance TDRC performance were
previously found in [49] for a Mach Zehnder Modulator used as a nonlinear node of photonic
TDRC. However, in their implementation, the TDRC performs a different time-series prediction
task.
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f)
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Fig. 10. R2 between Edrop and Ein for a) τth = 50 ns, b) τth = 400 ns, c) τFC = 0.01 ns, d)
τFC = 50 ns, e) α = 0.2 dB/cm, and f) α = 2.0 dB/cm.

5.8. Dependence of the RC dynamics on ∆T and ∆N

Finally, we also assess the relation between the defined regions (A, B and C) over the P in vs
∆ω/2π parameter space, with ∆T and ∆N. To achieve this, we plot the average of ∆T and ∆N
for the Runge-Kutta solution of Eq. (1)–(3) of the whole testing set. By comparing their P in
vs ∆ω/2π heatmaps with the ones related to the NMSE and R2, as shown in Fig. 11, we can
see a clear relation between the increase in free-carrier concentration and temperature, and the
rise of SP with its previously stated effects on the RC response. Very low average ∆N or ∆T
are not good either for the performance of the RC, as this shows to be highly correlated with
the MRR approximating a linear regime. To achieve optimum performance, relatively small
increases in temperature ∼(2.5 to 15 K) and a ∆N between ∼1018 and ∼1022 appear to be the key
requirements. However, the susceptibility of the MRR cavity to enable SP for a given ∆ω and
P in also depends strongly on the ratio between the relaxation lifetimes of the nonlinear effects as
discussed in section 6.
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Fig. 11. Comparison of the P in vs ∆ω/2π heatmaps for a) NMSE of the testing set. b) R2

between Edrop and Ein c) Average ∆T of the testing set computing. d) Average ∆N of the
testing set computing. τth = 50 ns, τFC = 10 ns, α = 0.8 dB/cm.

6. Discussion

In our study, the free-carrier and TO nonlinearities relaxation times (τFC, τth) and the waveguide
attenuation α have been varied while fixing the other parameters in order to understand the
individual contribution of each of them to the overall performance of the RC. However, in practice,
each of them is highly correlated with the others and the potential changes that can be made to
the MRR to optimize one of them will most probably affect the others. In the case of τFC and τth
it is also essential to consider the ratio between them, τFC/τth. As shown in [37,38], this ratio has
a severe influence on the existence of SP, depending in turn on ∆ω and P in. In [37] the authors
conclude that in order to enhance SP, a short τFC is required with respect to τth, but not too short
(it should be longer than the photon lifetime, i.e., the relaxation time of the resonance τr = n Si

cα ).
This condition is matched in the simulated parameters used to obtain the results of Fig. 4. By
increasing τth, the ratio τFC/τth becomes smaller and since τFC = 10 ns is higher than τr (∼0.14 ns
for α = 0.8 dB/m), conditions are favourable to reinforce SP and extend its region. Due to the
increase of τth, the TO effect is dominant and the SP region is shifted towards negative detuning
(red-shift of the resonance) [38].

Hence, for a given α, one way to diminish SP behaviour is to reduce τFC as much as possible,
so that the requirement τFC<τr is fulfilled. A few attempts to try to reduce τFC to sub-nanosecond
magnitudes are found in the literature: A τFC of 55 ps is achieved in [26] using ion implantation
in a silicon MRR, although the waveguides are penalized with additional 22 dB/cm propagation
losses. Moreover, a τFC of 15 ps is reported in [27] using an oxygen-implanted silicon on insulator
(SOI) MRR for all-optical switching purposes. Lastly, in [50], a p-i-n junction is integrated into
an SOI waveguide to reduce τFC to 12.2 ps with an attenuation loss of 2 dB/cm.

Another way to keep a certain level of nonlinear dynamics without reinforcing SP would be to
increase the ratio τFC/τth [37]. This can be done by decreasing τth so that both relaxation times
are around the same order of magnitude (Fig. 4(a)), but this is more challenging as τth is very
dependent on the quality of the fabrication process and the geometry of the silicon waveguide.
τth is also relatively fixed by the required width of the cladding material. So, the other way to
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increase τFC/τth would be to increase τFC, and with it, the strength of free-carrier nonlinearities.
Our results are coherent with these previous methods as the area of very high error (Region C)
that corresponds to SP is reduced by making τFC either too small in comparison to τth and smaller
than τr (order of picoseconds, Fig. 5(a)) or by making τFC/τth >= 0.5 (Fig. 5(b)). Both scenarios
provide enough nonlinearity to the RC and region B is extended to lower levels of power.

Regarding the linear losses, resonator cavities with a high Q-factor are indispensable to achieve
the necessary nonlinear dynamics for the RC to operate with low NMSE [37]. Higher linear losses
contribute to the increase in heat due to power absorption and in turn, the TO effect becomes
the dominant effect and the region of SP is widened. On the contrary, low linear waveguide
losses (which normally translate into relatively high Q MRRs) allow the dynamics of free-carrier
nonlinearities to become more relevant within the cavity. As FCD becomes more dominant, the
resonance is blue-shifted and the SP region shifts to positive detunings [37]. Our results in Fig. 6
match the previously described physical dynamics.

Following the aforementioned insights from studies about SP in MRR cavities, therefore,
provides a way to enhance the range of P in and∆ω/2π in which region B occurs. These conditions
are consistent with our results. The existence of this interval of low-error prediction (region B in
our case) also fits well with the results of [39], where, as we mentioned before, a power interval is
also found for FCD nonlinearities in which the RC is given enough dimensionality while keeping
consistency using directly coupled cavities.

As a matter of performance comparison, we state previous works about photonic TDRC
schemes solving the NARMA-10 task with the same number of virtual nodes (N = 50) and
similar speed. An optoelectronic scheme using a Mach-Zehnder modulator achieved an NMSE =
0.168 ± 0.015 [10]. Even though, we acknowledge that the results in [10] were obtained both in
simulations and experimentally. Numerically, an NMSE = 0.103 ± 0.018 was obtained in [14].
In order to perform a fair comparison of our results with [18], we simulate the system using the
highest and lowest values of the nonlinear effects lifetimes and waveguide loss considered in this
study, for N = 25 nodes. The minimum NMSE with that number of virtual nodes numerically
obtained in [18] is 0.204 ± 0.026. In our results, we obtain a minimum NMSE of 0.0151 ±

0.0021, which is a considerable improvement over [18] and we could expand the region in which
the RC achieves its best performances in comparison to our previous study [24].

7. Conclusion

Throughout this work, we have investigated the relationship between the performance of an
MRR-based TDRC and the lifetimes of the free-carrier and TO effects as well as the impact of
the waveguide attenuation. We simulate different values for the parameters (τFC, τth and α), and
define three P in vs ∆ω/2π regions in which each of them shows a very different level of error
prediction. We characterize such regions by first showing qualitatively the waveform response
of each region and then we quantify the differences in nonlinearity between such regions using
R2. We show that when the response at the drop port can be potentially represented by a linear
transformation of the input sequence, the nonlinearities of the system are given mostly by the
photodiode response at the detection stage. When the R2 between the output and input of the
RC is very low, the system might run into the risk of obtaining a response too inconsistent
to accurately calculate the weights during the training process due to the discontinuities and
near-to-zero response of the RC caused by SP nonlinearities. There is an interval of average
input power and angular frequency detuning in which enough dimensionality is given to the RC
without becoming unstable due to SP. This work provides a further understanding of the physical
conditions that are optimum to reduce SP while keeping a high dimensionality. In the areas
that fulfil such conditions, our RC achieves low error at low power when solving a time-series
prediction. Our results obtain an NMSE lower than other works that propose a similar N and
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speed. We also show that decreasing N does not have a great impact on the physical dynamics of
this RC setup.
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