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Abstract—Passively cooled base stations (PCBSs) are highly rel-
evant for achieving better efficiency in cost and energy. However,
dealing with the thermal issue via load management, particularly
for outdoor deployment of PCBS, becomes crucial. This is a
challenge because the heat dissipation efficiency is subject to
(uncertain) fluctuation over time. Moreover, load management
is an online decision-making problem by its nature. In this paper,
we demonstrate that a reinforcement learning (RL) approach,
specifically Soft Actor-Critic (SAC), enables to make a PCBS
stay cool. The proposed approach has the capability of adapting
the PCBS load to the time-varying heat dissipation. In addition,
we propose a denial and reward mechanism to mitigate the risk
of overheating from the exploration such that the proposed RL
approach can be implemented directly in a practical environment,
i.e., online RL. Numerical results demonstrate that the learning
approach can achieve as much as 88.6% of the global optimum.
This is impressive, as our approach is used in an online fashion
to perform decision-making without the knowledge of future heat
dissipation efficiency, whereas the global optimum is computed
assuming the presence of oracle that fully eliminates uncertainty.
This paper pioneers the approach to the online PCBSs load
management problem.

Index Terms—Passive cooling, load management, deep rein-
forcement learning.

I. INTRODUCTION

Striving for simpler, cheaper, and more energy-efficient com-
munication solutions. Passively cooled base stations (PCBSs)
are gaining attention [1]. A PCBS typically has three main
parts: a baseband unit (BBU), an active antenna unit (AAU),
and a power module. They can be used to improve the coverage
and throughput of the wireless mobile network. However,
BBU thermal management poses a big challenge. Thermal
management is not only closely tied to the load, notably the
throughput, but also significantly affects the lifespan of the
electronic components of PCBSs.

In traditional base stations, BBU modules are maintained at
optimal temperatures using active cooling systems in machine
cabinets or rooms with air conditioners, such as air-conditioned
rooms. In contrast, PCBSs are commonly situated outdoors
without the benefit of active cooling mechanisms. However,
accurately modeling and predicting heat dissipation for outdoor
passive cooling is complex due to the multitude of influencing
factors, such as ambient temperature, wind speed, humidity,
and solar exposure. With such uncertainties, the issue is best
approached using online decision making.

In this paper, we utilize a reinforcement learning (RL)
approach, specifically Soft Actor-Critic (SAC) [2], to tackle the
challenge. Online problems require adjustments based on real-
time data, making RL a promising choice for these dynamic
situations. It facilitates fast decision-making and continuous
adaptation. Moreover, we target learning from a practical
environment instead of synthetic or pre-collected data, namely
online RL. A notable risk is that the temperature might spike
when the agent (i.e., the PCBS) explores the environment.
This will shorten the lifespan of its electronic components. To
counter this, we design an elaborate denial and reward mecha-
nism, ensuring that the PCBS can explore while safeguarding
against overheating. Our numerical results are promising as
our learning approach reaches up to 88.6% of the global opti-
mum. Note that our method operates online, making decisions
without foreknowledge of future heat dissipation efficiency. In
contrast, the global optimum assumes the existence of an oracle
that completely removes uncertainty.

II. LITERATURE REVIEW

The works in [3]–[5] have studied the passive cooling
techniques for base stations. The research in [3] conducted
thermal simulations to evaluate the cooling performance of
distinct CPU heatsinks. In [4], a novel heat dissipation structure
was designed with antennas and digital beamforming chips on
the opposite sides. The simulation demonstrated superior cool-
ing efficiency compared with the traditional designs. Further,
[5] explored various determinants for efficient PCBS cooling,
encompassing environmental factors, strategic placement, and
innovative material use.

There are some research works on temperature management
in data centers via resource allocation. The study in [6], for
instance, presented an optimal solution for dynamic computing
resource allocation, considering two models of a computing
unit in the BBU. The research in [7] introduced a computation
model for resource efficiency and proposed alterations to the
BBU’s operational parameters to minimize power consump-
tion. Furthermore, [8] presented a comprehensive approach to
simultaneously regulate cooling and computational processes,
aiming for overall energy conservation in data centers.

In addition, both [9] and [10] study load management using
RL. The study in [10] introduces a deep RL framework for
mobility load management in cellular networks, utilizing cell



individual offset adjustments. Depending on network size, it
employs enhanced deep Q-learning or advanced RL methods
like Deep Deterministic Policy Gradient and twin delayed deep
deterministic policy gradient. In [9], the authors introduce a
multi-objective RL framework for load balancing for multi-
band downlink cellular networks. Utilizing meta-RL and policy
distillation techniques, the framework is designed to adapt to
diverse objective trade-offs quickly. Different from our paper,
the works in [9] and [10] do not consider the passively cooling
systems. To the best of our knowledge, no existing study has
addressed load management for PCBS.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a PCBS operating over a time-slotted horizon,
represented by I = {1, 2, .., I}. Let ti denote the BBU
chip temperature at time slot i, with the assumption that
this temperature of updated at the outset of each slot. For
convenience, the term “temperature” refers to the BBU chip
temperature, distinguishing it from the “ambient temperature”.
The ambient temperature for time slot i is represented as tamb

i

(unit: ◦C). We use δ to represent the length of a time slot.
While there is no specific constraint on the magnitude of δ,
for PCBS thermal management, a time span on the order of
seconds is reasonable for δ (unit: second).

The dynamics of temperature are influenced by heat produc-
tion and its dissipation. Let p↑i and p↓i (unit: Watt) respectively
represent heat generation and dissipation for time slot i. Ac-
cording to the principles of heat transfer [11], the relationship
between them is given by

ti+1 = ti + λδ(p↑i − p
↓
i ), (1)

where λ ≥ 0 (unit: ◦C/Joule) defines the reciprocal of the
thermal capacitance of the BBU. Heat generation p↑i correlates
to the power consumption of the BBU’s chip. This consumption
has two parts, i.e., dynamic and static components, represented
by pd

i and ps
i (unit: Watt) respectively [12], i.e.,

p↑i = pd
i + ps

i. (2)

The dynamic power consumption is determined by the amount
of computations, and this is in direct proportion to the data
traffic served by the BBU per unit time [13], i.e., load.
Represented by xi (unit: Mbps) for the load in time slot i,
the relationship is given by

pd
i = µxi, (3)

where µ (unit: Watt/Mbps) denotes a BBU-specific coefficient.
The static power consumption, ps

i, is observed to exhibit
exponential growth relative to the temperature ti [12], [14].
This can be represented as

ps
i = f(ti) = aebti + c, (4)

where a, b, and c being parameters related to the chip’s material
properties. Define σi > 0 as the heat dissipation efficiency in
the time slot i. Heat dissipation is a result of both σi and
the temperature differential between the chip and its ambient

surroundings. In accordance with Newton’s law of cooling [11],
this relationship is expressed as

p↓i = σi(ti − tamb
i ). (5)

A weighted throughput optimization problem in PCBS can
be formulated as

max
x,t

∑
i∈I

wixi (6a)

s.t. ti+1≥ ti+λδ
[
µxi+f(ti)−σi(ti−tamb

i )
]
,∀i ∈ I (6b)

tamp
i ≤ ti ≤ tmax,∀i ∈ I ∪ {I + 1} (6c)
0 ≤ xi ≤ xmax

i ,∀i ∈ I (6d)

where wi > 0 is the weight of load xi. Constraint (6b) is
derived from combining (1)-(5), and it dictates the temporal
evolution of temperature. Constraints (6b) and (6c) are the
bounds on temperature and load, respectively.

Remark 1. We use inequality (6b) instead of equality because
the horizon is slotted in the problem. In such a time-slotted
horizon, the temperature might exceed the ambient temperature
if equality is used, violating constraint (6c). Moreover, it can
be easily proved that at the optimum, either (6b) holds equality
or ti+1 = tamb

i . Hence, no optimality is lost with inequality.

The convex nature of problem (6), as a result of the convex
constraint (6b), permits solutions using tools like CVX. How-
ever, employing convex optimization to address the problem
needs to predict or estimate the future information over all
the time slots, in particular heat dissipation efficiency σi.
Predictions may lack sufficient accuracy, rendering the solution
ineffective. In fact, the problem exhibits online characteristics:
decisions at the beginning of each time slot shall be made
based on existing information. Given this nature, we apply the
RL approach to solve the online version of the problem.

IV. SAC-BASED LOAD MANAGEMENT POLICY

The objective of RL is to provide a load management policy
enabling PCBS to schedule loads effectively across various
states by maximizing the long-term cumulative reward. For this
reason, we model the PCBS as an agent, and the action of the
agent is the variable to be optimized. The weighted throughput
is maximized by finding the highest possible reward. We detail
the fundamental components of this agent as follows.

A. State and Action

Based on (1)-(5), for a given time slot i, the agent needs
access the current system specifics, which encompass:

• Ambient temperature, tamb
i ,

• Chip temperature, ti,
• The weighting factor of the present time slot, wi,
• Optionally, the heat dissipation efficiency, σi.

Note that if a time slot is short, then it is reasonable to assume
that the heat dissipation efficiency of the time slot at the very
beginning of the slot remains for the entire slot; otherwise,
we may not assume the knowledge of heat dissipation for the
current slot. Therefore we consider two scenarios:



1) Informed-Heat-Dissipation (IHD) Scenario: In this case,
PCBS knows the heat dissipation efficiency for the current time
slot. Thus, the state si in the time slot i is expressed by

si =
[
tamb
i , ti, wi, σi

]
. (7)

2) Uninformed-Heat-Dissipation (UHD) Scenario: In con-
trast, the heat dissipation efficiency is not known, so we utilize
s′i to delineate its state as:

s′i =
[
tamb
i , ti, wi

]
. (8)

With state si in time slot i, the agent takes an action in
action space. The action ai is defined as

ai = xi. (9)

B. Denial and Reward Mechanism

We employ SAC to refine policies with the aim of maximiz-
ing rewards in the environment [2]. SAC finds the maximum
of the expected sum of rewards and takes the expected entropy
objective to adopt stochastic policies over πτ (si) into consid-
eration. The maximum entropy objective function is defined
as:

J(π) =

I∑
i=0

E(si,ai)∼ρπ [r(si, ai) + αH(π(·|si))], (10)

where r(si, ai) is the reward function, and α is a factor to
determine the importance of entropy relative to the reward,
and π(·|si) is the probability distribution of subsequent ac-
tions given the state si, typically resorting to a Gaussian
distribution. Additionally, H(π(·|si)) embodies the entropy
component, represented as H(π(·|si)) ≜ Ea[− log(π(a|si))].
It is important to highlight that the agent actively tries various
actions to maximize the target entropy. This strategy improves
the exploratory nature of SAC.

We would like to have SAC to be implemented in a practical
environment instead of a synthetic one. In other words, we want
to train the agent in an online environment, i.e., implementing
online RL, as the synthetic environment might not match the
practical one. However, an action from the action space might
make the chip temperature exceed the safe temperature tmax.
For this reason, we provide the denial and reward mechanism
that confines the temperature below the safe temperature and
at the same time gives the agent correct feedback. We use Π
to represent the zone of policy π, and it is defined as

Π =
{
π|ti + Eσi,xi∼π(·|si)

[
µxi + f(ti)

− σi(ti − tamb
i )

]
≤ tmax,∀i ∈ I

}
. (11)

We define a temperature-safety condition for policy π ∈ Π as

ti + Eσi

[
µxmax + f(ti)− σi(ti − tamb

i )
]
≤ tmax,∀i ∈ I

(12)

Note that the policies not satisfying the condition might lead
the temperature to exceed the safe temperature tmax in the next
time slot if the agent takes full-load action in some earlier time
slot. In our denial and reward mechanism, we operate across

the policies and react with different rewards and decisions.
Namely,

• If it falls outside of zone Π, then the action has to be
denied as it will be overheating. Then we set a negative
reward and also reject the decision.

• If it falls in zone Π but does not satisfy risk condition
(12), then we allow the action while adding a penalty to
the reward.

• If it falls in zone Π satisfying risk condition (12), it
receives full reward.

However, temperature-safety condition (12) is implicit to the
agent when we implement SAC, as computing the expectations
above requires knowing π, and π is not learned yet. We need to
compute an explicit risk temperature. For time slot i, the risk
temperature can be represented using an optimization problem
as follows:

trisk
i = max

π
ti (13a)

s.t. tmax≥ ti+Eσi,xi∼π(·|si)[µxi+f(ti)−σi(ti−t
amb
i )] (13b)

Constraint (13b) states if xi is applied, then the resulting
temperature ti+1 in the next time slot cannot exceed the safe
temperature tmax. Solving the optimization exactly requires
knowledge of the distribution of the heat dissipation efficiency
as well as the learned policy distribution, which are not known
a priori to learning. We can use the following approximation
to solve problem (13):

ti+Eσi,xi∼π(·|si)[µxi+f(ti)−σi(ti−t
amb
i )]

≤ti+Eσi [µxmax+f(ti)−σi(ti−tamb
i )]

≈ti+ µxmax+f(ti)−σ̄i(ti−tamb
i ) (14)

where σ̄i represents the estimated heat dissipation efficiency
for the time slot i. Several methods exist to estimate it. For
instance, one might employ historical average values or resort
to the most conservative estimates, such as the worst recorded
in history.

Hence, problem (13) can be approximated as

trisk
i = max ti (15a)

s.t. tmax≥ ti+µxmax+f(ti)−σ̄i(ti−tamb
i ) (15b)

Note that problem (15) can be efficiently solved using a bi-
section search method. With the trisk

i , we can define the reward
function as

r(si, ai) =


wixi, t̂i+1 < trisk

i

wixi − (t̂i+1 − trisk
i ), trisk

i ≤ t̂i+1 < tmax

− (t̂i+1 − tmax), t̂i+1 ≥ tmax
(16)

where t̂i is an estimated temperature calculated before using
the denial and reward mechanism. The proposed denial and
reward mechanism is shown in Algorithm 1. Note that, for
UHD scenario, we use the estimated value σ̄i as the input of
σi.



Algorithm 1: Denial and Reward Mechanism

Input: wi, xi, tamb
i , σi

Output: xi, ti+1, ri
1 Calculate trisk

i by solving (15)
2 t̂i+1 ← ti + λδ

[
µxi + f(ti)− σi(ti − tamb

i )
]

3 if t̂i+1 > tmax then
4 xi ← 0
5 ti+1 ← ti + λδ

[
f(ti)− σi(ti − tamb

i )
]

6 ri ← −(t̂i+1 − tmax)
7 else if trisk

i ≤ t̂i+1 < tmax then
8 ti+1 ← t̂i+1

9 ri ← wixi − (t̂i+1 − trisk
i )

10 else
11 ti+1 ← t̂i+1

12 ri ← wixi

13 return xi, ti+1, ri

C. Mechanism of Soft Actor-Critic Learning

The state value function Q(si, ai) and the action-state value
function V (si) of the SAC can be defined as follows:

Q(si, ai) = r(si, ai) + γEsi+1∼p(.|si,ai)[V (si+1)], (17)
V (si) = Eai∼π[Q(si, ai)− α log(π(ai|si))]. (18)

We employ function approximators for the policy function, V-
function, and Q-function. Stochastic gradient descent is used
to optimize the networks iteratively. Our approach includes a
tractable policy πϕ(ai|si), a parameterized state value function
Vψ(si), and a soft Q-function Qθ(si, ai). Here, ϕ, ψ, and
θ denote the network parameters. Our algorithm integrates
three distinct DNN types: V-network, policy network, and Q-
network. To mitigate positive bias during policy enhancement,
we employ dual Q-networks. Specifically, parameters θ1 and
θ2 are used to shape two distinct Q-functions. They are trained
individually, optimizing JQ(θ1) and JQ(θ2).

To detail the parameter updates, we first focus on the update
of the soft value that comes from the approximation of the state
value function. The soft value function is trained by minimizing
the squared residual error

JV (ψ) = Esi∼D

ï
1

2

(
(Vψ (si)

− Eai∼πϕ
[Qθ (si, ai)− log πϕ (ai|si)]

)2ò
, (19)

where D is a replay buffer. Then, the gradient of the equation
(19) is estimated using an unbiased estimator

∇̂ψJV (ψ) = ∇ψVψ (si)
[
Vψ (si)

−Qθ (si, ai) + log πϕ (ai|si)
]
, (20)

wherein actions are chosen from the current policy set.

Furthermore, the soft Q-function parameter is trained by

minimizing the following soft Bellman residual:

JQ(θ) = E(si,ai)∼D

ï
1

2

Ä
Qθ (si, ai)− Q̂ (si, ai)

ä2ò
, (21)

with Q̂ (si, ai) = r (si, ai) + γEsi+1∼p
[
Vψ̄ (si+1)

]
. The gra-

dient for (21) is optimized using stochastic gradients:

∇̂θJQ(θ) = ∇θQθ (ai, si) ( Qθ (si, ai)
− r (si, ai)− γVψ̄ (si+1) ) ,

(22)

where a target value network Vψ̄ is used for update. The
parameter ψ̄ is an exponentially moving average of the target
value network weight, given by

ψ̄ ← τψ + (1− τ)ψ̄, (23)

where τ is a target smoothing coefficient to improve stability.
Finally, the policy parameter is learned by minimizing the
expected Kullback-Leibler divergence:

Jπ(ϕ) = Esi∼D

ï
DKL

Å
πϕ (·|si)

∥∥∥∥exp (Qθ (si, ·))Zθ (si)

ãò
. (24)

We use neural network transformation to reparameterize the
policy, i.e.,

ai = gϕ (ϵi; si) , (25)

where ϵi is a noise vector. The objective can be rewritten as

Jπ(ϕ) = Esi∼D,ϵi∼N
[
log πϕ (gϕ (ϵi; si) |si)

−Qθ (si, gϕ (ϵi; si))
]
. (26)

The gradient of (26) can be approximated as

∇̂ϕJπ(ϕ) = ∇ϕ log πϕ (ai|si)
+

(
∇ai log πϕ

(
ai|si

)
−∇aiQ (si, ai)

)
∇ϕgϕ (ϵi; si) . (27)

The unbiased gradient estimator extends the deterministic
policy gradients to stochastic policies. The training algorithm
for SAC-based passive cooling is summarized in Algorithm
2. Upon convergence, we obtain an online load management
policy πϕ(ai|si).

V. SIMULATION RESULTS

In this section, we present simulation results of our proposed
SAC-based load management policy. The hyperparameters of
the proposed SAC scheme and the system model parameters
are summarized in Tables I and II, respectively. We evaluate
the SAC-based load management (SAC-LM) policy under both
IHD and UHD scenarios that are introduced in Section IV-A.
To provide a comprehensive comparison, we consider the
following baselines:

1) Oracle: The states of all the time slots are known, and the
global optimum of (6) is obtained by the CVX tool.

2) PPO-LM: We also obtain the numerical results from the
well-known proximal policy optimization (PPO) algo-
rithm [15], considering both IHD and UHD scenarios. We
call PPO-based load management policy PPO-LM.

To show the learning process, Fig. 1 depicts the average
reward versus learning episodes for both SAC-based and PPO-



Algorithm 2: Training for SAC-based Passive Cooling
Input: θ1, θ2, ψ, ϕ
Output: Trained policy πϕ(ai|si)

1 Initialize θ1, θ2, ψ, ϕ and experience memory D
2 for each episode do
3 ai ∼ πϕ (ai|si)
4 si+1 ∼ p (si+1|si, ai)
5 D ← D ∪ {(si, ai, ri, si+1)}
6 Sample from D and compute ∇JQ(θ1) and

∇JQ(θ2) by (22)
7 Update Q-networks parameters,

θ1 ← θ1 − λQ∇̂θ1JQ (θ1),
θ2 ← θ2 − λQ∇̂θ2JQ (θ2)

8 Sample from the fixed distribution and compute
∇Jπ(ϕ) by (27)

9 Update policy network parameter,
ϕ← ϕ− λπ∇̂ϕJπ(ϕ)

10 Sample from current policy and compute ∇̂ψJV (ψ)
by (20)

11 Update V network parameter,
ψ ← ψ − λV ∇̂ψJV (ψ)

12 ψ̄ ← τψ + (1− τ)ψ̄
13 Update the next state si ← si+1

14 return πϕ(ai|si)

TABLE I
SAC HYPERPARAMETERS

Hyperparameter Value
Layers 2 fully connected layers
Layer hidden units 64
Activation function ReLU
Batch size 256
Replay buffer size 1× 106

Target smoothing coefficient 0.005
Target update interval 1
Discount rate 0.99
Learning iterations per round 1
Learning rate 3× 10−4

Optimizer Adam
Loss Mean squared error
Entropy target factor 0.2

based methods. These results are obtained with an average
ambient temperature of 24◦C and an average heat dissipation
efficiency of 0.75. It is evident that SAC-LM takes a greater
number of episodes to converge than PPO-LM, but SAC-LM
outperforms PPO-LM under both IHD and UHD scenarios.
This is attributed to SAC’s underlying principle of maximum
entropy RL, which emphasizes exploration. Furthermore, both
SAC-LM and PPO-LM show better results under the IHD
scenario. Thus assuming the availability of slightly more
knowledge does help.

Fig. 2 illustrates performance in relation to the average
ambient temperatures. As anticipated, both SAC-LM and PPO-
LM benefit from knowledge of heat dissipation efficiency, as

TABLE II
SYSTEM MODEL PARAMETERS

Parameter Value
Number of time slots I 100
Safe temperature tmax 100◦C
Average ambient temperature tamb

i [16, 32]◦C
Maximum load xmax

i 200 Mbps
Weight factor wi [0, 1]
Average heat dissipation efficiency σ [0.25, 1.25]W/◦C
Reciprocal of thermal capacitance λ 0.007◦C/J [11]
load-to-dynamic-power coefficient µ 0.6 W/Mbps [13]
Duration of a time slot δ 30 seconds
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Fig. 1. Average reward versus episodes when the average ambient temperature
is 20◦C and the average heat dissipation efficiency is 0.75.

seen in the IHD scenario, leading to a more effective policy.
With the knowledge of heat dissipation efficiency, SAC-LM
can achieve as much as 88.6% of the optimal performance
that is only possible with perfect knowledge of future. Even
without this information, SAC-LM still manages an impressive
performance, reaching 83.2% of the optimal level. Moreover,
as the average ambient temperature rises, the weighted sum
throughput declines due to lower heat dissipation.

Fig. 3 depicts the relationship between the weighted sum
throughput and the average heat dissipation efficiency. As the
average heat dissipation efficiency rises, the weighted sum
throughput also increases because PCBS can dissipate more
heat, thereby handling a greater load. In addition, as the
average heat dissipation efficiency decreases, the performance
gap between the SAC-LM and PPO-LM methods becomes
larger. This is because the PPO algorithm might settle into
local optimum, especially in less favorable conditions where
the heat dissipation efficiency is particularly low.

Furthermore, we would like to examine the effectiveness
of the proposed denial and reward mechanism. We evaluate
SAC-LM (i.e., SAC algorithm with the proposed mechanism)
and SAC algorithm with a naive reward function for 20,000
episodes, where the average heat dissipation efficiency is 0.75,
and the average ambient temperature is 20◦C. The naive reward
function r̂(si, ai) is defined as follows.

r̂(si, ai) =

ß
wixi, t̂i+1 < tmax

wixi − (t̂i+1 − tmax), t̂i+1 ≥ tmax
(28)
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We show the results in Table III. Here, the overheating rate
is the ratio of time slots in which the chip temperature
surpasses the threshold tmax over the total number of time slots
across the 20,000 episodes. A clear observation is that when
the proposed denial and reward mechanism is employed, the
temperature hardly exceeds tmax. Conversely, in the absence of
our mechanism, the PCBS is at risk of overheating in numerous
time slots. It means that our proposed approach is suitable for
a practical environment. Furthermore, the performance after
the 20,000 episodes in the table indicates that our proposed
mechanism can effectively guide the agent to find a good load
management policy.

VI. CONCLUSION

To address the real-time load management challenges in
PCBSs, we introduced a policy based on the SAC algorithm.
We have elaborately designed a denial and reward mechanism
that can prevent overheating during exploration within the RL
framework. Simulation results demonstrate that our mechanism
can help the PCBS efficiently find a good load management
policy, and it also mitigates the risk of overheating from the
exploration of the RL approach, paving the way for practical
online RL applications of PCBSs.

TABLE III
RESULTS FOR VERIFYING THE PROPOSED MECHANISM

SAC-LM Naive

IHD UHD IHD UHD

Overheating Rate 0% 0.2% 23.0% 47.5%

Performance (Mbps) 44.2 41.3 32.6 30.5
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