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English Abstract 
In the last decade, bifacial photovoltaic (PV) modules have burgeoned from niche to mainstream 

technology, encompassing nearly 40% of global PV module sales in 2021. The main drivers behind the 

increased bifacial PV adoption are twofold: First, the higher energy yields of bifacial systems (5–10% in 

most conditions) are attractive to project developers that try to maximize PV production within 

constricted land areas. Second, the industry has optimized the processing steps required to transform 

the opaque rear surface of a traditional monofacial PV cell and module into a fully transparent one with 

active PV area on the backside, which in turn has significantly reduced the price premium of bifacial PV 

modules.  

Despite recent rapid adoption of bifacial PV modules, the capacity of bifacial systems represents less 

than 10% of global PV installations, most of which were deployed in the last three years. The lack of 

long-term field experience with bifacial systems means that the PV industry is still pressed with open 

questions, some of which have been addressed in this PhD project such as: i) What is the accuracy of 

bifacial PV energy yield simulation models and software; ii) what are the best-practices for operation 

and maintenance of utility scale bifacial PV plants, and iii) what is the optimal use of bifacial modules in 

utility-scale applications. This thesis addresses each of these issues in turn using a combination of 

simulations and extensive laboratory and field testing.   

The higher energy yield of bifacial PV systems is only considered bankable by investors if it can be 

accurately predicted. Therefore, Chapter 2 quantifies the principal uncertainties in bifacial modeling. 

The chapter begins with a study that benchmarked eight bifacial PV performance models against the 

high-quality operational PV data recorded at the Technical University of Denmark’s (DTU) Risø Campus. 

The chapter then presents results from an international PV modeling intercomparison – the results of 

which highlight the substantial variability that even expert users can add to the PV modeling process. 

The chapter ends by quantifying the possible reduction in uncertainty that can be achieved if rear plane-

of-array irradiance modeling is improved, and by providing practical recommendations for harmonizing 

interpretations of the IEC 61853-3 energy rating standard.  

The spatial variation of rear plane-of-array irradiance and the spectral nature of albedo are nuanced 

effects that preclude accurate bifacial PV modeling, if they are not well understood. Chapter 3 therefore 

presents investigations that use theory and experiments to characterize these mechanisms that are 

specific to bifacial PV systems. The first is an investigation of the electrical mismatch induced by non-

uniform illumination on the back of tracked bifacial systems. The second study examines how shifts in 

the spectral distribution of ground reflected light (albedo) alter the photocurrent generated by different 

bifacial cell technologies. Although these two studies were initially intended to support the 

development of more accurate rear irradiance models, it was found that the experimental results could 

also be used to develop best practices for designing bifacial PV monitoring systems.  

Chapter 4 focuses on laboratory PV characterizations and continuous outdoor monitoring strategies. In 

the first part of the chapter, the importance of interlaboratory measurement comparisons to decrease 

uncertainty in PV yield estimates is described. The results of two interlaboratory comparisons (or “round 

robins”) are presented: One that assesses the comparability among European labs in performing I-V 

measurements of bifacial modules per IEC TS 60904-1-2 and a second effort where measurements of 

cell-level incident angle modifier (IAM) response per IEC 61853-2 were compared among labs in Europe 
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and the United States. The chapter ends by presenting a study that suggests improvements in the 

irradiance monitoring of bifacial systems via the reference module approach. It is found that calibrated 

reference modules can be used to reduce the variation in bifacial performance ratio calculations, while 

at the same time simplifying the monitoring system design and offering the ability to estimate cell 

temperature through the open-circuit voltage of the I-V curve. 

Finally, the energy produced by bifacial systems can be improved by simply increasing the albedo of the 

ground below the arrays. However, the amortized value of the energy gain must be greater than the 

upfront and ongoing costs of the albedo enhancement for the solution to be commercially viable. 

Chapter 5 therefore provides a technoeconomic analysis of an actual tarp-based albedo enhancement 

solution that was deployed on 12 kWp tracked and fixed tilt bifacial systems. Although the results of the 

case study show that the tarp-based albedo enhancement results in lower levelized cost of energy 

(LCOE) than bifacial systems without it, it is concluded that the uncertainty in upfront and ongoing costs 

of altering the ground in utility-scale PV parks makes such a solution unadvisable. However, directions 

for future work in albedo enhancements are offered as well as recommendations that could create 

more favorable economics for albedo enhancements in large-scale bifacial systems. 
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Dansk Sammenfatning 
I løbet af det sidste årti har tosidede solcellemoduler udviklet sig fra at være en nicheteknologi til et 

attraktivt produkt, som efterhånden udgør næste 40 % af det samlede globale solcellesalg i 2021. To 

hovedaspekter har drevet udviklingen af dette marked frem: For det første giver det tosidede solpanel en 

højere energiproduktion (typisk 5–10 %) end et tilsvarende én-side solcellepanel af samme størrelse. Det 

er en attraktiv fordel for projektudviklere, der skal optimere energiproduktionen fra et begrænset 

landareal. For det andet har industrien videreudviklet processer, som kan transformere det oprindelige 

koncept med solceller på begge sider af et uigennemsigtigt substrat til et transparent koncept med 

solceller på begge sider. Det sidste koncept har væsentligt reduceret prisen på tosidede solcellemoduler. 

På trods af den hastige adoptering af tosidede solcellemoduler, så udgør de kun knapt 10% af de samlede 

solcelleinstallationer, der globalt er blevet igangsat indenfor de sidste tre år. På grund af den manglende 

lang-tids erfaring med tosidede solcellemoduler i solcelleanlæg, så mangler solcelleindustrien stadig svar 

på en række tekniske spørgsmål, som kan have stor betydning for afkastet af investeringer i denne 

teknologi. Denne afhandling vil adressere en del af disse spørgsmål: i) Hvor præcist kan de gængse 

modeller og simuleringspakker forudsige energiproduktionen fra solcelleanlæg, der er baseret på 

tosidede solcellemoduler, ii) hvorledes udføres drift og vedligehold af tosidede moduler bedst muligt i 

stor-skala solanlæg, og hvorledes optimeres brugen af tosidede solcellemoduler i større anlæg. Denne 

afhandling adresserer hvert af disse spørgsmål ved at kombinere brugen af simuleringer samt 

eksperimenter udført i både laboratorier og på adskillige solcelleanlæg. 

Det højere energiudbytte for tosidede solcellesystemer bliver kun inkluderet i potentielle investorers 

vurderinger, hvis det tilsvarende afkast kan beregnes med stor pålidelighed. Kapitel 2 sætter derfor fokus 

på de væsentligste usikkerheder ved modellering af anlæg baseret på tosidede solcellemoduler. Kapitlet 

begynder med et studie, der sammenligner otte forskellige modeller for tosidede solcellemoduler op mod 

de høj-kvalitetsmålinger, som løbende er blevet foretaget i det solcelleanlæg, som European Energy har 

stillet til rådighed for Danmarks Tekniske Universitet (DTU) Risø Campus. Kapitel 2 præsenterer dernæst 

resultaterne fra en international sammenligning af forskellige solcellemodeller – resultaterne 

demonstrerer den konkrete variation, som selv eksperter kan tillægge modelleringen af de 

solcelleprocesser. Kapitel 2 afsluttes med en kvantificering af den mulige reducering af usikkerhederne, 

som kan opnås med en mere nøjagtig model for indstrålingen på bagsiden af solpanelet, samt ved at følge 

praktiske anbefalinger for at balancere fortolkningen af IEC 61853 standarden for energimærkning. 

Den rumlige variation af belysningen af solpanelernes bagside, samt den spektrale variation af albedo er 

begge nuancerede effekter, der kan forhindre en pålidelig modellering af de tosidede solpaneler, hvis de 

ikke anvendes korrekt. Derfor præsenterer Kapitel 3 både teoretiske og eksperimentelle undersøgelser af 

disse to effekter, som er helt karakteristiske for tosidede solcellesystemer. Den første undersøgelse 

studerer den elektriske ubalance, som forårsages af en ikke-ensartet indstråling på bagsiden af det 

tosidede solcellepanel. I det andet forsøg undersøges det, hvorledes et skifte i den spektrale fordeling af 

lys, der er reflekteret fra underlaget (albedo), ændrer den fotostrøm, som forskellige tosidede 

solcelleteknologier producerer. På trods af at disse studier oprindeligt var tiltænkt til at udvikle en mere 

præcis og pålidelig model, så konkluderes det, at de eksperimentelle resultater på tilsvarende måde kan 

bruges til at anbefale det bedst mulige design af systemer til monitorering af tosidede solcelle systemer. 

Kapitel 4 fokuserer på en karakterisering af solceller i laboratorier samt kontinuerlige 

overvågningsstrategier af udendørssystemer. I første del af kapitlet beskrives vigtigheden af at 
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sammenligne målemetoder for solcelleeffektiviteten på tværs af forskellige laboratorier. Resultatet af to 

sammenligninger foretaget på tværs af forskellige laboratorier præsenteres: En undersøgelse af I-V 

målinger for tosidede solceller (IEC TS 60904-1-2) foretaget af en række europæiske laboratorier samt en 

undersøgelse af effekten af indfaldsvinkel modifikation (IAM) (IEC 61853-2) foretaget af laboratorier i 

både Europa og USA. Kapitlet afsluttes med et studie, som foreslår forbedringer til at overvåge af 

indstråling på det tosidede solcellesystem via en metode, der er baseret på et referencemodul. Det 

konkluderes, at kalibrerede referencemoduler kan bruges til at reducere den usikkerhed, som optræder i 

effektivitetsberegningerne for de tosidede solceller. Samtidigt simplificeres designet af 

overvågningssystemet og muligheden for at estimere temperaturen i den enkelte celle via spændingen 

over det åbne solcellekredsløb (uden belastning). 

Endelig, kan den energi, der produceres af det tosidede solcellesystem øges ved at optimere underlagets 

albedo. Dog skal prisen for både indkøb og vedligeholdelse af et albedo forbedrende underlag holdes op 

imod den tilsvarende energigevinst for, at forbedringen kan blive kommercielt levebar. Kapitel 5 leverer 

derfor en teknologi-økonomisk analyse af en aktuel presenningbaseret albedo forbedrende løsning, som 

blev testet på 12 kWp tosidede solcellesystemer, som enten automatisk fulgte solen eller havde en fast 

vinkel i forhold til samme. Selvom resultatet af dette studie viste, at det presenningbaserede albedo 

forbedrende underlag resulterede i en effektiv lavere energipris (LCOE) end et tilsvarende system uden 

underlag, så konkluderes det, at usikkerheden ved at investere og løbende vedligeholde et ændret 

underlag i et stor-skala solcelleanlæg, gør sådan en løsning ikke-anbefalingsværdig. Til gengæld gives der 

retningslinjer til fremtidigt arbejde, samt anbefalinger som kan danne grundlag for mere attraktive 

albedoforbedringer i stor-skala tosidede solcellesystemer.  
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Chapter 1. Project Background 
This work has been financed by the Innovation Fund Denmark’s (IFD’s) Industrial PhD Program. This 

funding mechanism aims to provide Danish companies a competitive edge by investing in industry-

academic collaborations that can result in patents, licenses, new jobs, and other positive economic 

outcomes. The work presented here was developed in close collaboration with the Danish renewable 

energy project developer European Energy A/S (EE). Although no patents have been acquired during the 

project period, the knowledge collected has informed decisions within various EE departments including 

Innovation, Operations and Maintenance (O&M), Engineering, and Procurement. Specifically, the results 

accumulated in the last three years have provided EE with insights regarding the expected yield of 

different bifacial PV system designs in Denmark, optimal techniques for solar resource monitoring 

(including rear irradiance and albedo) and best practices for modeling PV systems.  

The data analyzed in this thesis were collected primarily at a 420 kWp outdoor test site located within 

the Technical University of Denmark’s (DTU) Risø campus [1]. This test site was constructed in summer 

2018 by EE to measure bifacial energy gains on large-scale fixed tilt and single axis tracker systems. 

Several specialized testbeds were constructed at the facility during this PhD project (2019–2022) thanks 

to funding from the Danish Energy Development and Demonstration Program (EUDP) as well as IFD and 

EE. These well-instrumented testbeds were designed to study several nuanced characteristics of bifacial 

PV performance such as non-uniformity of rear irradiance and the spectral distribution of rear 

irradiance. Some of the experimental systems that formed a basis for the research articles produced 

during this PhD project are shown in Figure 1.1.  

  

  
Figure 1.1: Test beds at DTU’s outdoor PV test facility. Top left) Albedo enhancement under single-axis trackers. 
Top right) irradiance uniformity mapping set up on the back of single-axis tracker. Bottom left) rear plane-of-array 
irradiance monitoring plate including small-area sensors and large-area reference panels. Bottom right) spectral 
albedo test stand above gravel.  
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1.1 Bifacial photovoltaics: Technology and market outlook 
Bifacial photovoltaic (bPV) cells generate charge carriers from photons impinging on the front and rear, 

thereby generating electricity from light shining on both sides. bPV technology is not a new idea. The 

first known bPV solar cell patent was submitted in 1961 by Hiroshi Mori while working at a company 

that later became the Sharp Corporation [2]. Notable bPV developments since then include deployment 

of bPV cells in multiple soviet satellites during the 1970s [3], bPV cell patents submitted by University of 

Madrid in the late 1970s [4], the first commercial production of bPV modules by the company Isofoton 

between 1984 and 1989 [5], the SunPower interdigitated back contact (IBC) bPV cell in 1997 [6], and 

Sanyo’s inherently bifacial heterojunction intrinsic thin-layer (HIT) cells in 2011 [7]. Some of the first bPV 

systems were single modules above whitewashed ground in the 1980s [5], bPV noise barriers in 1998 [8] 

and bPV sun-shade elements in 2003 [9].  Although the bPV concept dates back nearly 60 years, the 

mass production and integration of bPV into utility-scale systems began in earnest roughly a decade ago. 

Chinese manufacturers currently dominate all stages of the solar supply chain by producing roughly 80% 

of the world’s polysilicon, wafers, cells, and modules [10]. 

Starting in 2016, the annual International Technology Roadmap for Photovoltaics (ITRPV) reports have 

included ten-year forecasts for the share of bPV cells in the global PV market. The ITRPV reports, and the 

projections within them, are generated with survey responses from producers within the PV supply 

chain. The ten-year forecasts published between 2016 and 2022 [11] – [17] are shown in Figure 1.2 

where a rapidly growing market share of bPV is seen. Figure 1.2 also shows how the bPV market 

projections have become increasingly ambitious, and how the ITRPV reports largely underestimate the 

actual market share of bPV. Note that the forecasts in Figure 1.2 are for bPV cells, not bPV modules. The 

market share of bPV modules is lower than that of bPV cells because it is possible to encapsulate a bPV 

cell within a monofacial laminate (i.e., a module with opaque backsheet).  

 
Figure 1.2: Forecasts of the bifacial PV cell market share. Data are collected from the ITRPV reports publish in 
2016–2022. 
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The tipping point for widespread bPV adoption was arguably 2017–2018 when multi-megawatt scale 

bPV systems began appearing on a regular basis. For example, the largest known bPV system in 2013 

was the 1.3 MWp Hokuto plant in Japan [18], but by 2018 the largest bPV plant size increased 75-fold 

with the 100 MWp Wuhai City plant in China [19]. At the time of writing, the largest bPV system that the 

we are aware of is the 1.3 gigawatt peak (GWp) Kalyon Karapinar plant in Türkiye [20], which is roughly 

half the size of the current world’s largest monofacial PV system – the 2.7 GWp Bhadla Solar Park in 

India [21]. 

The principal reason for the recent widespread bPV adoption is that system-level bifacial energy gains, 

typically 6–10%, are achievable at reduced costs. The exact price premium of a bPV module over its 

monofacial equivalent is a difficult figure to pinpoint because it is often sensitive information that varies 

with producer as well as a buyer’s relationship with that producer. Published price premiums for bPV 

modules vary from +0.015 USD/W (~4%) [22], to some producers stating no price premium on bPV 

modules [23], and some cell producers claiming that bPV cells are cheaper than monofacial [23].  

Durable and high performance bPV modules require a bill of materials (BoM) that is likely to come with 

some added costs. Firstly, an extra sheet of glass is often used in bPV modules to replace the traditional 

opaque backsheet. Whether a sheet of 2–3 mm thick structured or float glass is more expensive than a 

backsheet is not a clarified matter. Stein and Jordan asked this question to several manufacturers, 

wherein one Chinese manufacturer stated that glass is cheaper, but the survey found the majority 

opinion to be that glass is more expensive than backsheet material [24]. Further complicating the matter 

is that the cost of PV-grade glass is not stable with time: the IEA reported a 50% price surge on PV-grade 

glass in the second half of 2020 due to the increased bPV demand [25]. The price premium on glass 

versus backsheet also depends on how the glass is processed. For example, an added cost of many 

glass/glass bPV modules is a back glass with a white lattice patterned ceramic coating between the cell 

gaps, which boosts frontside power by 2–5% due to internal scattering effects [24], [26], [27]. Bypass 

diodes may be another source of added cost to bPV as they must be rated to pass the higher currents 

produced from the rear irradiance that is absorbed by bPV modules [28]. Finally, ethylene vinyl acetate 

(EVA) has been shown to have high degradation rates when used in a glass/glass package [29] – [31], 

therefore, polyolefin elastomer (POE) is becoming the popular alternative to conventional low-cost EVA 

[17]. 

Nevertheless, the low bPV premiums are an undeniable byproduct of the passivated emitter and rear 

cell (PERC) concept transitioning from laboratory to mass production [32], [33]. The PERC concept was 

proposed in 19891 to overcome two prevalent loss mechanisms found in conventional aluminum back 

surface field (Al-BSF) cells: 1) the recombination of charge carriers near the highly doped rear wafer 

surface, and 2) the absorption of near infrared light by the fully covered rear Al layer [34]. The rear Al 

layer of a PERC cell contacts the p-type bulk locally in areas where the rear passivation has been 

removed (Figure 1.3). This “point” contacting reduces recombination at the metal-semiconductor 

interface, while a high-quality oxide (e.g., SiNx or AlO2) between the semiconductor and Al increases 

reflectivity of infrared light and saturates dangling bonds. The result is that PERC cells have a notably 

 
1 It took 25 years for PERC, an adaptation of conventional Al-BSF cells, to go from a laboratory concept 

to an industrially scaled commercial product. This time horizon is good to consider when reading about 

the commercial promise of next generation high efficiency devices such as Perovskites. 
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higher quantum efficiency in the near infrared (1000–1100 nm) and a higher overall efficiency than Al-

BSF cells. 

To convert a monofacial PERC to a bifacial PERC cell, or so-called PERC+, the Al screen-print must be 

changed from full-area backside coverage (Figure 1.3a) to an H-pattern (Figure 1.3b). This process does 

not require PERC cell producers to invest in additional equipment [35], which is why PERC cells have 

become the workhorse of the present bifacial era. Additional steps can be made to optimize the 

performance of bifacial PERC (e.g., changing the thickness of the rear passivation), but the most critical 

process is the selective screen-printing of Al to permit collection of rear side photogenerated current. An 

H-patterned rear grid has an added economic benefit of significantly reducing Al paste consumption 

[33].   

 

Figure 1.3: Cross-sectional diagrams that highlight the difference between monofacial PERC (a) and bifacial PERC 
(b). The figure is redrawn from [35]. 

It is likely that many bPV module manufacturers will soon switch from PERC cells to higher efficiency cell 

concepts based on n-type substrates such as tunnel oxide passivation (TOPcon), interdigitated back 

contact (IBC), or silicon heterojunction with intrinsic amorphous layer (SHJ). The 2022 ITRPV report 

predicts that the PERC’s current 85% market share will decrease to 45% by 2032 and will be replaced 

largely by n-type cell concepts. This transition will occur primarily because PERC cells with p-type bulk 

are reaching their efficiency limits [36], but other reasons to switch to n-type cell concepts include 

PERC’s low rear side efficiency and PERC’s susceptibility to light induced degradation (LID) when doped 

with Boron. Presently, the highest frontside efficiencies of PERC modules in mass production are 20.9–

21.6%, while the top efficiencies of mass-produced modules with n-type cells (incl. TOPcon, IBC and SHJ) 

are 21.7–22.8% [37]. Cells with n-type substrates have higher efficiencies than those with p-type 

because the Phosphorous doping in n-type bulk creates positively charged minority carriers that have 

higher carrier lifetimes and less susceptibility to metallic impurities (e.g., Iron) than the negatively 

charged minority carriers in p-type substrates [38]. 

Recent years have demonstrated that the economics of bPV, and consequently any individual PV 

technology, can be subject to country-specific trade policies. An example of this is the United States (US) 

Section 201 trade tariffs, which imposed import duties on foreign-made solar cells and modules for a 

four-year period starting in 2018. The tariffs were initially set at 30%, but there was an exemption for 

bPV modules [39], which made bPV the clear technology choice for developers of large-scale PV 

projects. The Trump administration vacillated on the bPV exemption by revoking it [40], reinstating it 
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[41], and revoking it again [42]. The US Solar Energy Industries Association (SEIA) estimated that the 

tariffs on bPV modules resulted in 4 GW fewer utility-scale PV deployments between 2019 and 2021 

[43]. The Biden administration extended the Section 201 tariffs before they expired in 2022, but 

reestablished the bPV exemption when doing so – a decision that was not ideal, but still to the 

satisfaction of downstream PV installers in the US [44].  

The annual growth rate of global PV installations in the last three decades is about 30% per year [45], 

wherein a landmark of 1 terawatt peak (TWp) total capacity was surpassed in 2022 [46]. It is difficult to 

precisely isolate the capacity of bPV installations from this total. The 2021 review paper by Kopecek and 

Libal [36] is helpful in this regard because it includes estimates for how much bPV was installed between 

2016 and 2020. The estimated global bPV capacity from Kopecek and Libal [36] and the total PV capacity 

published by the International Renewable Energy Agency (IRENA) [47] is overlayed in Figure 1.4. An 

exponential curve fit to the Kopecek and Libal data gives 55 GWp of bPV installed in 2021, which is 6.5% 

of the 850 GWp total PV stated by IRENA [47]. A similar estimate of 6.8% bPV share is obtained with 

data from the 2022 ITRPV report that stated 28% of module shipments in 2021 were bPV [17]. Indeed, 

most PV modules and PV systems are still monofacial, yet because bPV is a rapidly growing and 

mainstream technology, comes the likelihood that bPV will be the predominant PV system type within a 

decade.    

 

Figure 1.4: Global Installed capacity of all PV systems with data from [47] (blue curve) and installed capacity of 
bifacial PV systems from [36] (red curve). The red diamond in 2021 is exponentially fit to the data reported in [36] 
and the percentage values above the red points show the ratio of bifacial to monofacial PV system capacity.  

Figure 1.4 shows that the first 1 GW of bPV was installed around 2017. This reveals that there is less 

than a decade of large-scale bPV experience from which the industry can assemble best-practices for 

essential tasks such as laboratory measurement, energy modeling and condition monitoring. Indeed, as 

bPV became mainstream in the last five years came a flurry of research work to update international 
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standards [28] [48] [49], update yield prediction tools [50] [51], investigate new failure modes [52] [53], 

document the variation of terrestrial albedo [54] – [56], and understand the factors that influence rear 

plane of array irradiance (RPOA) and bPV performance [57], [58].  

1.2 Project Formulation  

1.2.1 Photovoltaic simulation models and software 
The process of predicting power output of a PV system first requires location-specific meteorological 

data, which will typically include solar irradiance, ambient temperature, windspeed, and relative 

humidity. From this so-called ‘meteo file’, a PV modeler must then quantify all the dynamic energy 

losses as photons originating from the sun are converted into electrical energy. This process is 

commonly referred to as the ‘PV model chain’ and is summarized in Figure 1.5 for grid-connect systems. 

Figure 1.5 illustrates how PV performance modeling is comprised of several algorithms linked together. 

The PV model chain is often partitioned into optical, thermal, and electrical modeling stages, which are 

highlighted in blue, red, and green, respectively. 

 

Figure 1.5: Flow diagram showing the steps involved to model PV energy yield, also known as the PV model chain. 
The added steps for simulating bifacial PV energy yield are highlighted in orange, and the optical loss factors that 
may be different for front and back sides of PV module are highlighted in dashed blue. The figure is adapted from 
[59]. 

Each block in Figure 1.5 represents an algorithm wherein a PV modeler has a variety of choices as to 

which model should be applied. For example, the literature contains over a dozen models for elevating 

horizontal irradiance to a tilted surface (i.e., the so-called transposition to POA step) [60] [61]. Similarly, 
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the literature contains over a dozen cell temperature models [62] [63], nearly all of which assume 

steady-state weather conditions, but transient thermal models have been developed recently [64] and 

integrated into PV modeling software [65].  

Note that Figure 1.5 describes the conventional PV model chain, which primarily consists of parametric, 

empirical, and some first-principles models. It does not pertain to artificial intelligence (AI) algorithms 

such as artificial neural networks (ANN) that have been applied to PV energy yield and solar forecasting 

problems in the last decades [66] – [68].   

PV simulation software packages such as PVsyst [51], PlantPredict [69], SolarFarmer [70], or SAM [65] 

simplify a PV modeler’s task to some extent because the user interfaces offer limited choices for how 

each sub-step can be modeled. For example, PVsyst users are restricted to either the Perez [71] or Hay 

[72] models for the transposition step. Similarly, PVsyst users’ choices for module temperature models 

are restricted to an adapted form of the Faiman model [73] and the NOCT model [74]. A PV software 

developer’s decision to include certain algorithms and exclude others is not entirely arbitrary – it ideally 

originates from independent validation of the model against field data. For example, the Hay Davies and 

anisotropic Perez models are widely used in PV modeling because several reports have shown low errors 

when these transposition models are compared to measurements at various tilts under all sky 

conditions [75] – [78]. 

Optical Modeling 

In Figure 1.5, the blocks highlighted in black show the steps required by both monofacial PV (mPV) and 

bPV modeling pipelines, while the blocks highlighted in orange show the additional steps required to 

model bPV systems. The key addition to the bPV modeling pipeline is the RPOA estimation step, but 

ultimately, RPOA is adjusted for the bPV module’s backside conversion efficiency, or ‘bifaciality’ factor. 

The measurement of bifaciality will be explained in Section 1.2.3. 

The most common approach to RPOA simulations is the view factor method. View factors (VF), sometimes 

called configuration factors or shape factors, have their origin in radiative heat transfer modeling [79]. A 

VF is a geometric quantity, from zero to one, that describes the fraction of radiation emitted by surface 

1 received by surface 2 (Figure 1.6a). The VF from surface 1 to surface 2 (VF1→2) can also be interpreted 

as the fraction of space that is visible from surface 1 and occupied by surface 2. This interpretation leads 

to the summation rule of VFs, which states that the sum of all VFs from a given surface equals one. 

Another important property of VFs is the reciprocity theorem, which allows one to calculate VF2→1 if one 

already knows VF1→2 and the areas of surfaces 1 and 2 [80].  
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Figure 1.6: (a) view factors of two differential areas [81]. (b) field of view angles for determining VFs for the sky 
diffuse radiation incident on a ground segment [82]. (c) field of view of the ground for a one-degree segment 
depicted by the angles I and i–1 [82]. Figures (b) and (c) are from [82] with permissions from publisher. 

Marion et al. presented one of the first systematic applications of VFs to estimate RPOA in bPV systems 

[82]. Marion et al. did not present the first use of VFs in bPV modeling – credit for the first application of 

VFs in bPV modeling goes to Krenzinger and Lorenzo’s 1986 paper [83] – but the two-dimensional (2D) 

VF model of Marion et al. implements VFs in a relatively straightforward manner, which is why it is used 

here to demonstrate the VF concept. Figure 1.6b shows how the row-to-row (RTR) distance is first 

divided into n segments, typically 100 (Figure 1.6b). Then, the VF of each segment n to the sky dome 

(VFn→sky) is calculated using Equation 1.1, which accounts for masking of sky diffuse irradiance by 

neighboring PV rows.  

𝑉𝐹𝑛→𝑠𝑘𝑦 = 0.5 ∙ (cos 𝜃𝑆1 − cos 𝜃𝑆2) 1.1 

Each segment n is determined to be either shaded by preceding PV rows, or not. Then, the direct 

horizontal irradiance (DrHI) at each segment is calculated according to Equation 1.2. 

𝐷𝑟𝐻𝐼 = {
𝐷𝑁𝐼 ∙ cos(𝜃𝑧)     𝑖𝑓 𝑛 𝑖𝑠 𝑢𝑛𝑠ℎ𝑎𝑑𝑒𝑑 

0                     𝑖𝑓 𝑛 𝑖𝑠 𝑠ℎ𝑎𝑑𝑒𝑑
 

1.2 

Where DNI is the direct normal irradiance, and θZ is the solar zenith angle. Once DrHI is determined, the 

ground reflected irradiance (GRI) at each segment n is calculated with Equation 1.3. 

𝐺𝑅𝐼𝑛 = 𝜌 ∙ [𝐷𝑟𝐻𝐼 + 𝑉𝐹𝑛→𝑠𝑘𝑦 ∙ 𝐷𝑓𝐻𝐼] 1.3 

Where ρ is the albedo and DfHI is the diffuse horizontal irradiance. Note that a deep explanation of 

albedo will be provided in Section 1.2.4. Figure 1.6c shows how the view from the back of the bPV array 

is then divided into 180 segments. The figure shows segmentation performed at roughly 65% of the full 

array height, but in practice the calculation could be done at multiple array heights and doing so would 

illustrate the vertical non-uniformity of RPOA. The VF of each 180 segments on the back of the array is 

calculated with Equation 1.4. 

𝑉𝐹𝑖 = 0.5 ∗ [cos(i − 1) − cos(i)] 1.4 
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VFs near the top and bottom array edges (e.g., where i = 0° or i = 180°) will have smaller values than VFs 

where i equals 90°. This means that irradiance sources originating from oblique angles will contribute 

less to RPOA than light sources normal to the rear module plane. RPOA is finally calculated with Equation 

1.5. 

𝑅𝑃𝑂𝐴 = b ∙ IAM(AOI) + ∑ 𝑉𝐹𝑖 ∙ 𝐼𝐴𝑀𝑖 ∙ 𝐼𝑖

180°

𝑖=1°
 

1.5 

The Ii parameter in Equation 1.5 represents the irradiance source that each VFi is viewing, which could 

be the ground (GRI), the sky (DfHI), or the module row behind (Irefl). The irradiance reflected from the 

front surface of PV modules (Irefl) only considers the diffuse radiation because specular reflection of 

beam irradiance is assumed not to contribute to RPOA in most circumstances. The IAM and AOI are the 

incident angle modifier and angle of incidence, respectively. The IAM describes reflection losses at the 

glass-air interface and will be explained in greater detail in Section 1.2.3. In Equation 1.5, b is a factor 

that has a non-zero value only when the sun is behind the bPV rack and is calculated with Equation 1.6. 

In south-facing fixed-tilt systems, this condition would occur when the solar azimuth is north-east or 

north-west. Such a condition should not occur, in principle, for horizontal single-axis tracking (HSAT) 

systems  

𝑏 = {
𝐷𝑁𝐼 ∙ cos(𝐴𝑂𝐼)     𝑖𝑓 𝑠𝑢𝑛 𝑖𝑠 𝑏𝑒ℎ𝑖𝑛𝑑 𝑃𝑉 

0                           𝑖𝑓 𝑠𝑢𝑛 𝑖𝑠 𝑖𝑛𝑓𝑟𝑜𝑛𝑡  
 

1.6 

The VF method remains the most common approach to calculate RPOA because it is relatively simple to 

implement, and it requires minimal computational power when the meshing is 2D, and the resolution is 

comparable to that shown in the previous example. It is well-known that the disadvantages of the VF 

method include the inability to simulate the complex geometries that are ubiquitous in real PV systems 

(e.g., structural support members), and the assumption that all surfaces are Lambertian (i.e., 100% 

diffuse scatterers). For these reasons, the VF method cannot inherently account for shading induced by 

structural support members, nor can it simulate specular reflections from mirror-like surfaces. 2D VF 

models are also incapable of simulating edge brightening effects, and therefore, can only simulate bPV 

systems with regularly spaced rows that are assumed to be infinitely long. bPV performance software 

that use a VF model for RPOA calculations must apply adjustment factors, or RPOA derates, to account for 

backside structural shading. Ray tracing (RT) simulations are often used to overcome the shortcomings 

of the VF approach [84] – [86], and to estimate the structural shade adjustment factors [87], but 

drawbacks to RT include the significantly increased computational requirements, and the specialized 

expertise that is often required to implement the model.  

In 2019, when this PhD project began, there was already an abundance of bifacial irradiance models 

published in the literature. An incomplete list of models from that period includes the following: Sandia 

National Laboratory’s 3D VF model [88], SunPower’s 2D VF model pvfactors [89], NREL’s SAM that 

implements the Marion 2D VF model [50], ECN’s bigeye software with 3D VF model [90], ISC Konstanz’s 

MoBiDiG software with 2D VF model [91], IMEC’s Energy Yield Simulation Framework with RT model 

[92], PV Lighthouse’s Sunsolve software with RT model [93], EDF’s PVNOV software with reverse RT 

model [94], NREL’s bifacial_radiance software [95] that interfaces with the backwards RT software 

Radiance [96], CEA-INES’s 3D VF model Trifactors, DNVGL’s SolarFarmer software with 2D VF model from 

Mikofski et al. [70], PVsyst’s infinite sheds 2D VF model [51], the 2D VF model of Yusufoglu et al [97], 

Applebaum’s detailed VF formulations [98], and Kreinin’s RT simulations [84]. 
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Of course, bifacial performance models continued to be published post 2019 [e.g., [5], [99] – [106]. This 

abundance of RPOA simulation tools and methodologies indicated that our research efforts were better 

used validating bifacial irradiance models, rather than developing a new bPV model or software. 

Therefore, Chapter 2 of this thesis describes the results of a study that benchmarked the accuracy of 

state-of-the-art RPOA modeling practices against operational data from large-scale bPV systems 

(Publication I and Publication II). This study investigated the accuracy of various bPV modeling software 

to estimate RPOA, and the electrical performance of the PV system, providing an indication for how 

accurate RPOA simulations can be.  

Within the PV model chain (Figure 1.5), there are several steps (or ‘submodels’) wherein appropriate 

coefficient values must be determined. If reliable measurement data are available, then the coefficient 

values can be extracted by fitting the model equation to the data. This process generates a significant 

amount of inter-user variability because the data filtering practices and fitting algorithm influence the 

model parameter values and results that are achieved [107] – [109]. There is also potential for inter-user 

variability when measured data are not available, because in this case, a PV modeler must consider 

coefficient values from various sources, which may include the software provider, external databases 

[e.g., PV-USA] or literature (e.g., [110], [111]).  

Thermal Modeling  

The following example will demonstrate the effect of parameter values at a single modeling step – the 

calculation of cell temperature. Consider the Faiman steady-state temperature model, which is used in 

the IEC 61853-3 energy rating standard (Equation 1.7).  

𝑇𝑀𝑂𝐷 =  𝑇𝐴𝑀𝐵 +
𝐺𝑃𝑂𝐴

𝑈0 +  𝑈1 ∙ 𝑊𝑆
 

1.7 

Where TMOD (°C) is the module temperature2, TAMB (°C) is the ambient temperature, GPOA (W/m2) is the 

in-plane irradiance (adjusted for reflection losses) and WS (m/s) is the windspeed. The two free model 

parameters U0 and U1 represent the effect of shortwave solar radiation and convection, respectively. 

Thermal conduction is ignored because the heat transfer between the module frame and mounting 

structure is negligible, and the model does not consider longwave radiation (i.e., Planck radiation), 

which is a weakness because effects like sky temperature can significantly alter the thermal balance of 

PV systems [112].      

The values of U0 and U1 depend on the module BoM and the mounting design of the PV array. Faiman 

monitored seven c-Si modules mounted on an open rack in Negev, Israel and found U0 values between 

24.0–26.4 W∙m-2∙K-1 and U1 values between 6.3–7.7 W∙m-3∙s∙K-1. Koehl et al. monitored seven c-Si 

modules in the Alps and reported U0 values of 22.4–32.0 W∙m-2∙K-1 and U1 values of 6.0–9.2 W∙m-3∙s∙K-1. 

Bourne and Chaudhari estimated coefficient values for the PVsyst thermal model – a model based on 

Equation 1.7 that modifies the GPOA term by a factor of α∙(1–η) and exchanges the name U0 for UC, and 

the name U1 for UV. 

 
2 It is generally accepted that module temperature (i.e., back-of-module temperature) and cell temperature (i.e., p-
n junction temperature) are not equivalent. For modules mounted on open-air racks, it is common to add an offset 
of 3°C∙(GPOA/1000 W∙m-2) to module temperature to arrive at a modeled cell temperature. The specific offset is 
dependent on the system design (e.g., open-air versus insulated back surface). 
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𝑇𝑀𝑂𝐷 =  𝑇𝐴𝑀𝐵 +
𝐺𝑃𝑂𝐴 ∙ 𝛼 ∙ (1 − 𝜂)

𝑈𝐶 +  𝑈𝑉 ∙ 𝑊𝑆
 

1.8 

In Equation 1.8, α is the PV module absorbance and η is the electrical efficiency. A common assumption 

for α is 0.9. With the α∙(1–η) factor in the numerator of Equation 1.8, it is expected that UC values would 

be lower than U0 values extracted from the same dataset. 

Bourne and Chaudhari [113] used operational PV data from various PV system types across the United 

States to obtain UC and UV values with onsite meteorological data and with satellite weather data. The 

authors found that ground mounted systems had UC values between 25–45 W∙m-2∙K-1 (median of 32.5 

W∙m-2∙K-1) and UV values between 1.9–9.2 W∙m-3∙s∙K-1 (median of 5.9 W∙m-3∙s∙K-1) when onsite 

meteorological data was used. Figure 1.7 shows how annual energy yield calculations differ when the 

two thermal coefficients are swept within the range of values found in the literature and recommended 

by PVsyst [114]. The calculations used to arrive at Figure 1.7 followed the IEC 61853-3 procedures and 

were done for a c-Si module mounted at 20° in a temperate coastal climate (56° N, 4° W) where the 

average annual WS is 3.2 m/s and TAMB is 8.4°.   

 

Figure 1.7: Heat map showing the sensitivity of annual energy yield on the values of thermal coefficients. Values of 
thermal coefficients published in the scientific literature, as well as the recommendations given by the software 
company PVsyst are shown. The meteo file used for this simulation is the temperate coastal climate in IEC 61853-4. 
Note that Faiman [73] and Koehl et al. [111] published U0/U1 values (Equation 1.7) whereas Bourne and Chaudhari 
[113] and PVsyst [114] provide UC/UV values (Equation 1.8). 

Annotated on Figure 1.7 are the range of U0/U1 values for c-Si modules mounted on open fixed-tilt racks 

reported by Faiman and Koehl et al., the UC/UV reported by Bourne and Chaudhari, and the UC/UV values 

recommended by PVsyst. The color scale in Figure 1.7 shows the annual energy yield normalized to the 

yield obtained when the average U0/U1 values in Faiman 2008 are used in the simulation (marked with 

the red ‘x’). Although parameter values for the Faiman and PVsyst thermal models are not directly 

interchangeable, a PV modeler using these models may weigh information from the literature to help 

them choose coefficient values for a given simulation. The color scale in Figure 1.7 shows that use of one 

set of coefficient values over another set leads to a non-negligible influence on the simulated energy 

yield. For example, the median values reported by Bourne and Chaudhari consider that windspeed has a 

stronger effect on TMOD than the recommendations from PVsyst, but use of the Bourne and Chaudhari 
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values result in 3% higher energy yield than the PVsyst recommended values. This represents one 

possible source of uncertainty at a single modeling step. Given that the output of one submodel is the 

input to another submodel, uncertainty at any individual step will propagate into uncertainty in the 

modeled energy.  

Electrical Modeling 

The information on PV module datasheets is presently insufficient to complete the PV modeling process, 

not only because they lack information such as the thermal coefficients shown in the previous example, 

but also because datasheets contain current-voltage (I-V) measurements at just two conditions: 

standard test conditions (STC, 1000 W/m2, 25° C, AM1.5G) and nominal module operating temperature 

(NMOT, 800 W/m2, 20° C ambient, 1 m/s windspeed). I-V measurements at low-irradiance (200 W/m2, 

25° C, AM1.5G) were common on datasheets in years past, but manufacturers have recently stopped 

reporting these data [115]. It is widely accepted that the accuracy of PV energy yield modeling can be 

improved when high-quality I-V measurements recorded over the range of irradiance and temperature 

conditions that modules are exposed to in the field [116] – [118].  

There are numerous models to fit I-V measurements made at multiple irradiance and temperature (G-T) 

conditions, but these approaches can be categorized into one of two general groups: point models or 

equivalent circuit models. Point models only provide information at discrete points on the I-V curve such 

as the short-circuit current (ISC), open-circuit voltage (VOC) and the maximum power point (PMAX). 

Examples of point models include the Sandia Array Performance Model (SAPM) [119], the PVGIS model 

[120], the MotherPV model [121], and the Heydenreich model [122]. Equivalent or ‘lumped’ circuit 

models such as the single diode equation (SDE) [123] – [125] or double-diode model [126] can simulate 

the full I-V curve of a PV device. The five free model parameters in the SDE are the photogenerated 

current IL, the diode quality factor n, the reverse saturation current IO, the series resistance RS, and the 

shunt (or parallel) resistance RSH. Additional parameters to the SDE have been proposed to describe how 

some of the original five parameters change with G-T conditions (e.g., [116], [127]) 

PV Modeling Uncertainty 

Several authors have attempted to answer the question “what is the uncertainty of PV energy 

modeling?” using various approaches and perspectives. The previous example illustrated the sensitivity 

attributable to unknown model parameter values and the absence of experimental data, but additional 

sources of uncertainty exist, and have been analyzed in detail such as: measurement uncertainty of 

irradiance [128] [129], measurement uncertainty of module calibration [130] [131], measurement 

uncertainty of temperature coefficients [132], uncertainty in model equations [133] [134], uncertainty 

due to varied implementation of published algorithms [135], and uncertainty of model parameters 

extracted from regressions on measurements [136]. Meanwhile, some authors analyze the residual 

error between measured energy yield and modeled values to estimate modeling uncertainty. For 

example, Muller et al., compared measured data of 26 PV systems against long-term yield predictions 

and concluded that uncertainty of PV energy modeling is about 8% when using recent solar radiation 

data [137]. Other authors have used the principles within the guide to expression of uncertainty in 

measurement (GUM) to estimate uncertainty in energy yield. For example, Dirnberger et al. estimated 

the expanded uncertainty of DC-side performance ratios are between 3.0–4.4% depending on the PV 

technology and climate [138].  
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User variability is a lesser studied source of uncertainty. Round-robin style modeling intercomparisons 

can help fill this gap because when modelers are provided with the same simulation task, and the same 

starting information, the differences in the modelers’ results reveal a great deal about their assumptions 

as well as highlight the submodeling steps where the PV community needs to improve [1], [139] – [141]. 

Friesen et al. circulated timeseries GPOA and TMOD data to eight European institutions who then simulated 

module-level performance of different PV technologies in various climates [139]. Each participant ran a 

different electrical model, so the exercise revealed differences in the models rather than inconsistencies 

of the modelers themselves, but they found that the group’s modeling accuracy was within ±5%. Stein’s 

2010 blind modeling study provided meteorological data and PV system design information to 20 

participants and found a 20% spread in the annual energy reported by the modelers [140]. This study by 

Stein was one of the first to demonstrate that even the same model run by different users may produce 

different answers. Moser et al. analyzed the long-term yield predictions provided by six expert modelers 

for a PV system in an Italian and an Australian site [141]. These modelers were required to 

independently obtain meteorological data for their simulations which, for the Italian site, lead to 6% 

differences in GHI, 20% differences in GPOA, and ultimately nearly 30% differences in AC energy.  

The second half of Chapter 2 addresses the issue of user-induced variability within the PV modeling 

process. To this end, the results of a round-robin style modeling intercomparisons are presented 

(Publication III). This study tests the ability of nine expert agencies to implement the set of 20 equations 

provided in the IEC 61853-3 standard and derive DC performance ratios in various climates.  

1.2.2 Bifacial-specific loss factors 
Global plane of array irradiance (GPOA) is the most important parameter for PV system performance 

because PV power output is nearly linear with irradiance [142]. The parameter that distinguishes bPV 

systems from mPV counterparts is the rear plane of array irradiance (RPOA), which increases the total 

irradiance received by the system. If RPOA could be modeled as accurately as GPOA, then the accuracy of 

bPV simulations would approximate that of mPV simulations. Therefore, efforts have been made in this 

thesis to characterize nuanced aspects of RPOA with the motivation that a greater understanding of these 

effects could serve as a starting point for improved bPV modeling. 

RPOA consists primarily of scattered light from multiple sources including the ground, sky, and 

neighboring PV rows (Figure 1.8). The intensity of RPOA depends mostly on the albedo beneath the PV 

array and the fraction of diffuse light in the sky hemisphere. Research has shown that RPOA on the back 

of a 37° fixed tilt system above light sandy soil is 130–150 W/m2 when the frontside is illuminated with 

the air mass 1.5 global (AM1.5G) reference spectrum (1000 W/m2) [143] – [145]. Therefore, about 12% 

of the total irradiance received by a bPV system under reference conditions is RPOA, most of which is 

ground-reflected light. Indeed, the frontside of a PV array also receives a portion of ground-reflected 

light, but it is a much smaller fraction than that received by the backside [100].   

GPOA and RPOA are both subject to nonuniformity patterns and to spectral shifts, but the two sides 

experience these phenomena to different extents and for different reasons. For example, nonuniform 

irradiance patterns are created on the backside from scattering of direct beam irradiance near array 

edges and from shading by structural support members. Frontside irradiance is also nonuniform by 

nature, but it is mostly caused by preceding rows that always block part of the sky diffuse light (i.e., 

diffuse masking [146]) and can occasionally obscure the direct beam light. Finally, the spectral 

distribution of irradiance on the backside deviates from the AM 1.5G reference spectrum more than the 
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front side because the spectral albedo of most natural materials is significantly different than the 

distribution of the incident solar spectrum [58], [144], [147].   

 

Figure 1.8: Contributions to illumination of the front and rear of bifacial PV modules including direct, sky diffuse, 
and ground reflected radiation. Original figure from [148] (Copyright © 2021, IEEE). Annotations of irradiance 
components added by author.  

Recall that the optical set of modeling steps shown in Figure 1.5 culminate at the effective irradiance 

step. The effective irradiance is classically defined as the broadband GPOA adjusted for optical effects 

including the spectral distribution of light, transmission loss due to soiling, non-linear shading losses, 

and angular-dependent reflection losses at the glass-air interface [119]. In other words, the effective 

irradiance is the solar energy that a PV system has available for photovoltaic conversion. The same loss 

mechanisms that reduce frontside GPOA into effective irradiance must also be considered for the 

backside (see dashed blue box of Figure 1.5). However, because the nature of these mechanisms differs 

on the front versus backside of a PV array, so too will the magnitude of the derates applied to each side. 

This thesis only investigates backside shading and spectral effects, the topics of backside soiling and 

reflection losses a left for future studies.  

Heterogeneity of rear irradiance 

Nonuniformity of RPOA is a complicated function of ground albedo, array height, tilt angle, and sky 

conditions. Field measurement campaigns of RPOA have been carried out on fixed-tilt systems [143] [149] 

– [151] and several studies examined RPOA nonuniformity via simulation [84], [86], [88], [93], [152]. 

These studies have demonstrated that the nonuniformity of RPOA is caused by brightening at array edges 

(e.g., the east and west edges of an equator facing fixed-tilt system) as well as dimming in areas that are 

shaded by structural support members. Sensitivity studies have shown that the homogeneity of RPOA 

tends to improve with increasing array height and with an increased fraction of sky diffuse irradiance. 

The nonuniformity of RPOA tends be highest for low ground clearance systems above high albedo during 

clear sky conditions.  

RPOA nonuniformity creates current mismatch between cells and thus potential for power loss. For this 

reason, some solar tracker manufacturers have gone to great lengths to develop and advertise structural 

designs that minimize backside shading. However, Compaan and Cormican [153] conducted side-by-side 

tests of five equivalent bPV systems mounted on different racking structures – some of which avoided 
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backside shade while others were legacy mPV substructures that induced considerable backside 

shading. Their results showed that the bPV systems mounted on custom racks with minimal backside 

shading generated 1–1.5% more energy than the bPV systems mounted on standard monofacial racks. 

This modest energy gain indicates that spending additional money on bifacial-enhanced mounting 

systems may not always make financial sense.  

Extensive raytracing simulations by Deline et al. led to correlations of electrical mismatch losses with 

RPOA nonuniformity [57]. Figure 1.9 shows two fit lines, Fit #1 is the correlation proposed by Deline et al., 

and Fit #2 is a correlation proposed by [154]. The correlation proposed by Deline et al., was validated 

with measurements on a tabletop solar simulator and it can be used by PV modelers to estimate 

backside electrical mismatch losses when only RPOA nonuniformity is known.  

 

Figure 1.9: Hourly simulations showing instantaneous electrical mismatch (Equation 1.9) as a function of the spatial 
variation of total irradiance (Equation 1.10). The figure is from [57] with permissions from the publisher. 

The y-axis in Figure 1.9 shows the power loss due to nonuniform RPOA, which is calculated with Equation 

1.9. 

𝑀𝑀 [%] =  (1 −  
𝑃𝐴𝑟𝑟𝑎𝑦

∑ 𝑃𝐶𝑒𝑙𝑙𝑠

) ∙ 100 
1.9 

Where PArray is the maximum power point (PMAX) of the bifacial PV array and PCells is the PMAX of an 

individual bifacial cell within the array. The concept is that PArray incorporates electrical losses due to 

current mismatch between series cells, whereas the summation of isolated cells does not. Indeed, 

derivation of PArray requires an electrical model that incorporates the effect of bypass diodes within the 

array of bPV modules. Possible approaches to do this include SPICE circuit modeling or direct summing 

of calculated I-V curves. In this thesis, PArray and PCells are calculated with the open-source python library 

pvmismatch [155], which uses Bishop’s explicit method to solve the SDE [156].  

The x-axis in Figure 1.9 shows the standard deviation of total irradiance (GTotal) received by each cell i 

within the array, which is calculated with Equation 1.10.  

𝐺𝑇𝑜𝑡𝑎𝑙,𝑖 =  𝐺𝑃𝑂𝐴  +  𝜑 ∙ 𝑅𝑃𝑂𝐴,𝑖  1.10 
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Where GPOA is the frontside irradiance (assumed here to be uniform), RPOA,i is the rear irradiance incident 

at each cell, and 𝜑 is the bifaciality coefficient. The bifaciality coefficient represents the rear to frontside 

efficiency and is typically about 0.7 for PERC technology.  

Field investigations of RPOA nonuniformity have been done for fixed-tilt systems and even vertical E-W 

systems [157]. However, we are not aware of any RPOA non-uniformity investigations of HSAT systems 

with two modules in portrait (2P). Chapter 3 therefore presents a novel measurement system that was 

deployed on a large-scale 2P HSAT to continuously monitor the RPOA nonuniformity. The backside 

electrical mismatch under low and high albedo was then estimated from the high-resolution 

measurements and from optical simulations (Publication IV). This study used procedures comparable to 

those used in Deline et al. [57], which allowed us to compare results between works. It is worth 

mentioning that a similar work to Publication IV was presented by McIntosh et al. [158] during the same 

conference. 

Spectral distribution of rear irradiance 

Flat plate PV modules intended for terrestrial use are calibrated under the global air mass 1.5 (AM1.5G) 

reference spectrum [159]. Since the spectrum of broadband light sources such as Xenon (Xe) lamps does 

not replicate AM1.5G, spectral mismatch (SMM) corrections [160] are necessary to report I-V 

measurements at STC. Furthermore, because AM1.5G is a simulated clear-sky spectrum [161] and rarely 

observed in the field, PV characterizations performed outdoors also require SMM adjustments before 

reporting at STC. The SMM formula comes in two forms, the first of which is shown in Equation 1.11. 

𝑆𝑀𝑀 =  
∫ 𝐺𝑅𝑒𝑓(𝜆) ∗ 𝑆𝑅𝑅𝑒𝑓(𝜆) 𝑑𝜆

∫ 𝐺𝑀𝑒𝑎𝑠(𝜆) ∗ 𝑆𝑅𝑅𝑒𝑓(𝜆)𝑑𝜆
 
∫ 𝐺𝑀𝑒𝑎𝑠(𝜆) ∗ 𝑆𝑅𝐷𝑈𝑇(𝜆)𝑑𝜆

∫ 𝐺𝑅𝑒𝑓(𝜆) ∗ 𝑆𝑅𝐷𝑈𝑇 (𝜆)𝑑𝜆
 

1.11 

Where GRef is the reference AM1.5G spectrum, SRRef is the spectral responsivity of a reference device, 

GMeas is the spectrum of the measured (observed) spectrum and SRDUT is the spectral responsivity of the 

device under test (DUT). The reference device is typically a crystalline-silicon (c-Si) reference cell that 

has a similar external quantum efficiency3 (eQE) as the DUT. When the eQE of the DUT differs 

significantly from the reference device (e.g., thin-film PV), c-Si reference cells with optical filters can be 

used to improve the spectral matching. Reference cells made of thin-film materials (e.g., CdTe or CIGS) 

are not advisable due to the metastable behavior of such devices [162]. 

Equation 1.11 can be viewed as the ratio of photocurrent densities under measured and reference 

conditions. In this sense, the SMM factor describes the performance of a specific PV device under an 

observed spectrum with respect to how the PV device would have performed if illuminated with the 

AM1.5G spectral distribution. For example, SMM greater than one indicates spectrally induced 

photocurrent gains while SMM less than one indicates photocurrent losses.  

When a spectrally flat pyranometer is used as a reference device, Equation 1.11 is simplified to Equation 

1.12. This form of the SMM equation assumes that SRRef of the pyranometer is one at all active 

wavelengths, which is not true in practice because UV light is absorbed by a pyranometer’s glass dome, 

and because thermopile sensitivity is significantly reduced at wavelengths greater than 2800–3000 nm. 

 
3 The external quantum efficiency describes the ratio of charge carriers generated by the PV device versus the 
number of photons incident on the PV device. The internal quantum efficiency adjusts the external quantum 
efficiency for the reflection of photons at the device’s surface.  
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However, pyranometers are essentially spectrally flat within the spectrally active range of c-Si PV (i.e., 

300–1200 nm).   

𝑆𝑀𝑀 =
𝐺𝑅𝑒𝑓 ∙ ∫ 𝑆𝑅𝐷𝑈𝑇(𝜆) ∙ 𝐺𝑀𝑒𝑎𝑠(𝜆) 𝑑𝜆

𝐺𝑀𝑒𝑎𝑠 ∙ ∫ 𝑆𝑅𝐷𝑈𝑇(𝜆) ∙ 𝐺𝑅𝑒𝑓(𝜆) 𝑑𝜆
 

1.12 

Continuous SMM calculations require solar spectral measurements from a spectroradiometer, which is a 

cost-prohibitive instrument for most PV applications except for a few highly instrumented systems 

found at research institutes. Continuously measured solar spectra are therefore uncommon. SMM 

correlations with common variables such as AM and sky diffuse fraction are useful because they permit 

the broader PV community to model spectral effects in the absence of costly spectral data [119], [163] – 

[166]. These spectral models, however, only describe the effect of spectrum on the frontside of PV 

modules and systems. A simplified model that describes spectral effects on the backside of the array 

could improve the accuracy of RPOA modeling.  

Figure 1.10 shows the normalized SR of a pyranometer, compared to that of a typical PERC cell, as well 

as the reference spectrum AM1.5G, and the spectral albedo of three common materials that include 

soil, gravel, and grass. Albedo is a Latin term meaning ‘whiteness’ and it is a measure of how well a 

material reflects incoming light – albedo of zero represents a perfect absorber and albedo of one is a 

perfect reflector. Except for water, snow and ice, the spectral albedo of earthen materials tends to 

increase at wavelengths greater than 700 nm [167]. Figure 1.10 shows the different spectral peaks and 

distributions between common spectral albedos and the AM1.5G calibration spectrum. The AM1.5G 

reference spectrum has a peak wavelength near 500 nm, whereas the albedos have peak wavelengths 

closer to 1000 nm. Since the shifts in peak wavelength and spectral distribution occur within the active 

region of c-Si PV, theory tells us that a c-Si PV device will generate notably different photocurrent 

densities when illuminated with AM1.5G or spectral albedo.   

 

Figure 1.10: Normalized spectral data including the AM1.5G spectrum, three common albedos, the spectral 
response of a bifacial PERC cell and a pyranometer. 

Several researchers have studied spectral albedo on bPV performance [58], [144], [147], [168] – [170]. 

Gostein et al. calculated spectral mismatch factors for Si bPV devices under different spectral albedos 

from the SMARTs database [58], the experimental component of Russel et al. measured Si bPV devices 
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in a flash solar simulator and varied the spectral reflectance received by the backside [169], and 

Blakesley et al. proposed a method to adjust RPOA for spectral effects using MODIS satellite albedo 

products [147]. In all studies, except Blakesley et al., the spectral distribution of RPOA is assumed 

constant with time. Another shortcoming of all the previous spectral albedo studies, except 

Monokroussos et al. [144], is that they use spectral albedo as a proxy for spectral RPOA. This is flawed 

because, by definition, albedo is measured on a horizontal surface while most bPV systems are not at 

static horizontal (0°) tilts. Therefore, the second half of Chapter 3 investigates the temporal nature of 

spectral albedo and RPOA using high-resolution spectral measurements and 2D VF modeling 

(Publication V and Publication VI). In these works, we generated multi-variate correlations of backside 

SMM with sky diffuse fraction and with VFPV Backside→sky for three common albedos. These correlations 

could serve as simplified models for describing spectral effects on the backside of the array.  

1.2.3 Rating of bifacial photovoltaic modules and measurement of rear irradiance  
Internationally recognized procedures for monofacial PV current-voltage (I-V) characterizations at STC 

are described in the first ten parts of the IEC 60904 series. These standards describe requirements and 

protocols for critical elements such as reference cell packages, the reference solar spectrum, cell 

temperature measurements, spectral responsivity measurements, and reference module handling. 

Standardization of bPV characterization was lacking until the technical specification (TS) IEC 60904-1-2 

was published in 2019 [171]. Although a standardized method for bPV cell characterization was 

referenced as early as 2010 [172], earnest work toward the international approval of IEC TS 60904-1-2 

did not begin until around 2015 [173].  

IEC TS 60904-1-2 describes three procedures to measure I-V curves of bPV cells and modules that 

include outdoors in natural sunlight, indoors with simultaneous dual-side illumination, and indoors with 

single-side illumination. It is impractical to perform PV characterizations outdoors in Denmark because 

the solar resource in Denmark is frequently dominated by clouds. Meanwhile, the indoor dual 

illumination method requires specialized upgrades to standard solar simulators such as a second light 

source, either steady state [174] or a synchronized pulse [175], or two vertical mirrors at ±45° from the 

DUT placed between them [176]. Therefore, indoor bPV measurements in this thesis were made with 

the single-side illumination method described in IEC TS 60904-1-2, also known as the equivalent 

irradiance method. Figure 1.11 demonstrates the principle of the single-side illumination approach and 

Figure 1.12 shows how the method is implemented in practice at DTU. 

The non-irradiated module side must receive negligible stray light (< 3 W/m2), which is why IEC TS 

60904-1-2 recommends baffles around the module under test. Additionally, bPV modules have 

transparent or semi-transparent cell gaps, which necessitates a non-reflective background material to 

minimize the influence of light passing through the cell gaps. Liang et al. demonstrated that the distance 

between the DUT and the non-reflective back panel plays a critical role in measurement uncertainty. 

Their analysis showed that uncertainty in PMAX measurements is minimized when the distance is greater 

than 10 cm [177]. DTU’s solar simulator has a 75 cm distance between the DUT and black background. 

Irradiance measurements on the rear plane were less than 1 W/m2 when the frontside was illuminated 

with 1000 W/m2 and baffles were placed around the DUT. 

Figure 1.11 shows that two I-V measurements are required to determine the module’s bifaciality: one I-

V measurement of the module’s frontside at STC and a second of the module’s backside at STC. From 

these measurements, the bifaciality coefficients for ISC, VOC and PMAX are calculated (Equation 1.13–1.15). 
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Depending on the DUT’s frame thickness, the distance between the light source and cells within the DUT 

can change when the DUT is flipped around. This is accounted for in the DTU system by placing 5 mm 

wood risers below the module as needed.  

 𝜑𝐼𝑆𝐶 =
𝐼𝑆𝐶_𝑟𝑒𝑎𝑟

𝐼𝑆𝐶_𝑓𝑟𝑜𝑛𝑡

 
1.13 

𝜑𝑉𝑂𝐶 =
𝑉𝑂𝐶_𝑟𝑒𝑎𝑟

𝑉𝑂𝐶_𝑓𝑟𝑜𝑛𝑡

 
1.14 

𝜑𝑃𝑀𝐴𝑋 =
𝑃𝑀𝐴𝑋_𝑟𝑒𝑎𝑟

𝑃𝑀𝐴𝑋_𝑓𝑟𝑜𝑛𝑡

 
1.15 

Bifaciality coefficients vary with cell technology. For example, the PMAX of bifaciality on cell-level is 

around 0.65–0.75 for PERC, 0.8–0.9 for n-PERT, and 0.9–0.95 for SHJ [35]. PV manufacturers price 

modules according to their frontside power rating, so white ceramic coatings between the cell gaps are 

a common feature. Such white coatings partially shade the backside active area and boost frontside 

power by 2–5% due to internal light scattering – both effects decrease the bifaciality of bPV modules. A 

module’s ISC bifaciality and PMAX bifaciality are typically very similar, except when there is significant rear-

shading (e.g., from a junction box), in which case the ISC bifaciality is usually greater. Bifaciality is 

reported at STC, but bifaciality can change with irradiance [178], especially in bPV devices that have a 

non-linear current-irradiance relationship [176].  

Once the bifaciality at STC is established, the bifacial rating (BiFi) can be determined. The BiFi rating is 

determined by regression of PMAX at multiple equivalent irradiances (GE), wherein Ge is calculated 

according to Equation 1.16. 

𝐺𝐸  =  1000 𝑊𝑚−2  +  𝜑𝐼𝑆𝐶 ∙ 𝑅𝑃𝑂𝐴   1.16 

IEC TS 60904-1-2 recommends that GE be calculated with RPOA levels between 0 W/m2 and 200 W/m2. All 

GE measurements are performed on the module’s frontside. For example, when testing a module with ISC 

bifaciality of 0.7 at RPOA of 100 W/m2, the solar simulator’s light intensity must be set to GE = 1070 W/m2. 

In Section 4.2, we present BiFi ratings for three bPV module types measured at DTU and at five other 

European laboratories as part of an international round robin.  

 

Figure 1.11: Block diagrams of the single side equivalent procedure for the characterization of bifacial PV 

according to IEC TS 60904-1-2. 
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Figure 1.12: Practical implementation of IEC TS 60904-1-2 in the Endeas flash solar simulator at DTU, the graph to 
the right shows the measured spectral reflectance of the black floor.    

Some studies have reported that measurements are not always reproducible across the three 

approaches laid out in IEC TS 60904-1-2 [174], [176], [179] – [181]. Lopez-Garcia et al. recently 

compared the three methods at the European Solar Test Installation (ESTI) and found power 

measurements were within 0.8%, which was below the uncertainty of the reference system [179]. Roest 

et al. compared single-side and dual-side indoor illumination methods and found differences between -

1.2% to +1.8% [174]. This difference was considerably larger than that found by Lopez-Garcia et al. but 

may have been caused by additional reflections from the second light source that were not corrected 

for. Rauer et al. demonstrated that comparability between the two indoor methods depends on the 

DUT’s level of rear-shading (e.g., junction boxes, labels, or frames) wherein differences of more than 2% 

can occur when the DUT has significant rear-shading [176].   

Two extensive interlaboratory comparisons of bPV measurements have been conducted since IEC TS 

60904-9 was published in 2019 [180] [181]. These efforts helped to establish measurement 

comparability between accredited and non-accredited labs and to identify sections of the TS that require 

clarifications. It was important for DTU to participate in these efforts because the measurement system 

shown in Figure 1.12 was modified to accommodate bPV modules in 2020, which created a need to 

establish confidence in our new test procedures. Therefore, the first part of Chapter 4 reports on DTU’s 

results in the bPV round-robin led by the National Physical Laboratory (NPL), which allowed us to 

compare bPV measurements with participating labs such as TUV Rheinland and Fraunhofer ISE. 

Detailed PV Characterizations 

The PV community has long since recognized that ratings at STC provide module buyers with insufficient 

information regarding their expected output under realistic conditions. This is because fielded PV 

systems are exposed to a wide range of solar positions, irradiance, temperature, and windspeed 

conditions beyond those at STC. The IEC 61853 series attempts to fill this gap by providing standardized 

procedures for calculating an energy rating of mPV modules. The 61853 series accomplishes this with PV 

module characterizations that go beyond STC, six diverse meteorological datasets, and a standardized 

set of formulae to derive an annual module-level performance ratio (PR), also known as the climate 

specific energy rating (CSER). Part 1 of the standard describes measurement procedures for I-V 
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measurements at 23 irradiance and cell temperature combinations (100 W/m2 – 1100 W/m2, 15°C – 

75°C), which covers most operating conditions seen in the field; Part 2 of the standard describes 

procedures to measure incident angle modifier (IAM), spectral responsivity (SR), and the U0/U1 thermal 

coefficients of Equation 1.7; Part 3 describes the algorithm; and Part 4 provides the timeseries 

meteorological data.  

Figure 1.13 shows the operating conditions (TMOD and GPOA) calculated for a standard c-Si module in the 

six standard climates provided in IEC 61853-4. The 23 irradiance and temperature conditions measured 

in the laboratory as part of IEC 61853-1 are drawn as black crosses. Curiously, the c-Si module in this 

example rarely operates at the maximum temperature of 75°C required by IEC 61853-1. On the other 

hand, there are a significant number of points where TMOD is lower than the minimum temperature of 

15°C required by IEC 61853-1 – particularly in the high elevation and temperature continental climates.  

It took nearly 20 years to publish the four-part IEC 61853 series [182]. The first committee draft in 2002 

received more than 100 pages of comments, which directed the standard to be split into four parts. The 

first two parts describing the measurement protocols (Part 1 and Part 2) were published in 2011 and 

2016, and the two parts describing the calculations (Part 3 and Part 4) were published in 2018. The IEC 

TC 82 working group 2 (WG2) is currently amending the IEC 61853 series so that it includes procedures 

for bPV modules. Gracia-Amillo et al. suggested that energy rating calculations for bPV modules should 

be made for the same six standard climates, but in three additional configurations: fixed-tilt with 20% 

albedo, fixed-tilt with 60% albedo, and vertical east-west [49]. As far as we are aware, WG2 has not yet 

made their recommended measurement procedures for Part 1 and Part 2 publicly available.  

Of the three characterizations described in IEC 61853-2, the PV laboratories at DTU’s Department of 

Electrical Engineering are only equipped to perform the IAM test [183]. The IAM describes angular-

dependent losses, which are primarily due to reflection at the glass–air interface. The IAM is measured 

taking ISC measurements from 0° to 90° angle of incidence (AOI). 

𝐼𝐴𝑀(𝜃)  =  
𝐼𝑆𝐶(𝜃)

𝐼𝑆𝐶(0°) ∙ 𝑐𝑜𝑠 𝜃
  

1.17 

In Equation 1.17, θ represents the AOI and ISC(0°) represents the ISC measured at normal incidence. In 

essence, the IAM is a measure of how well a PV device follows a cosine response. A hypothetical device 

with an IAM of one from AOI 0° to 90° would be a perfect cosine receiver. Class A pyranometers 

approximate such a response, but the IAM of PV modules decreases rapidly at AOIs greater than 50°.  
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Figure 1.13: Heatmaps showing the density of module temperatures and AOI-corrected plane of array irradiances 
calculated for a standard c-Si module in the six standard climates of IEC 61853-4. The black crosses show the 23 
irradiance and temperature conditions that are required to be measured by IEC 61853-1. The U0/U1 values used in 
the calculation are 26.4 W/m2∙K and 6.3 W∙s/m3∙K. 

Accurate IAM characterizations are important because fixed-tilt PV systems with standard PV glass lose 

3-4% of their annual energy production due to angular-dependent reflections [184], [185]. Anti-

reflective coatings (ARC) reduce such reflection losses to 2-3% and have become standard for frontside 

PV module glasses in recent years [17]. Because backside PV glass rarely has an ARC, the front and 

backside IAM responses of bPV modules will likely be different. The Marion 2D VF model provides an 

example for how IAM losses could be applied to RPOA (Equation 1.5). For IAM measurements to be useful 

in PV systems modeling, the data are commonly first fit to a mathematical model such as that of SAPM 

[119], ASHRAE [186], or Martin and Ruiz [187]; the coefficients extracted from these models are likely to 

be different for the front and backside of a bPV module.    
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A detailed investigation of IAM measurement uncertainty was presented by Plag et al. who used GUM 

principles to propagate uncertainty for a laser based IAM measurement system [188]. Nevertheless, the 

scientific literature lacks an assessment of how IAM measurement uncertainty impacts energy yield 

estimates, which is why in 2018 we initiated the first ever international IAM measurement round-robin 

on PV cells. This effort compared the IAM measurement protocols employed at twelve laboratories and 

used the resulting data to estimate the effect of IAM measurement variability on energy rating 

(Publication VII).  

Irradiance Monitoring in bPV Systems  

The first pyranometers dating back to the early 20th century were designed to measure solar radiation 

on horizontal surfaces (e.g., the Moll-Gorczynski pyranometer sold by Kipp and Zonen in 1927). 

Measurements of global tilted irradiance (GPOA) were not studied extensively until the need to measure 

solar thermal collector performance arose in the early 1980s [189]. Today’s best practice guidelines for 

frontside GPOA measurements have therefore benefited from nearly four decades of collective 

experience across academia and industry [190]. Studies on RPOA measurement approaches have 

appeared only within the last few years [148] [191] – [193], and as such, best practice guidelines for 

irradiance monitoring in bPV systems are still evolving. Much of the PV community’s present knowledge 

surrounding RPOA measurement practices and considerations is codified in the latest revision of IEC 

61724-1 [194]. The key recommendations made by the IEC standard for RPOA measurements include: 

• Sensors should be mounted at the same tilt angle as the modules while minimizing shade on 

the modules. 

• Sensors should be positioned as to avoid end-row brightening effects, localized shading, or 

enhanced illumination phenomena. 

• Multiple sensors should be installed to measure the non-uniform illumination profile 

throughout the day.  

The IEC standard does not recommend a specific number of RPOA sensors per array, but only specifies a 

minimum number of sensors for the entire park depending on the bPV system size. In Class A PV 

monitoring systems, the minimum number of RPOA sensors is three times higher than GPOA. For example, 

12 RPOA sensors are needed for a 200 MWp bPV park. The lack of clear advice for the number of RPOA 

sensors per array is reasonable because RPOA non-uniformity depends on the array’s height, tilt angle, 

and pitch, which makes general recommendations difficult. The IEC standard states that bifacial 

reference cells can be used to determine the effective rear to front irradiance ratio, but it does not 

recommend the use of any specific sensor type for RPOA measurements (i.e., pyranometers vs. reference 

cells). The standard states that spectrally corrected RPOA is optional but does not provide clear guidance 

on how or when to make such a correction.  

In the present era of multi-MW bPV projects, the industry needs more research into RPOA measurement 

practices because any uncertainty in irradiance measurement has direct negative impacts on the 

financials of PV projects. Therefore, the last section of Chapter 4 presents a simplified method for 

conducting RPOA measurements in large bPV plants (Publication VIII). This method inherently accounts 

for the heterogeneity and spectral effects studied in Chapter 3 and could provide guidance for future 

revisions of IEC 61724. 
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1.2.4 Albedo and bifacial energy gain 
Similar to RPOA, in-depth studies on albedo have been published by PV researchers only in recent years. 

Some notable works include that of Tuomiranta et al. who compared 20 different albedo models to 

ground measurements at 26 sites [195], and that of Gueymard et al. who compared albedo from five 

different satellite sources to ground measurements [55]. But unlike RPOA research, there is a plethora of 

albedo studies from other fields (e.g., remote sensing and climate science), which the PV community can 

potentially benefit from. 

As mentioned in Section 1.2.2, albedo describes the fraction of incoming solar radiation that a surface 

reflects. It has historically been measured by two spectrally flat pyranometers, one facing the sky to 

measure GHI and one facing the ground to measure the reflected horizontal irradiance (RHI). The albedo 

ρ is calculated with the ratio of upward and downward fluxes (Equation 1.18). 

𝜌 =  
𝑅𝐻𝐼

𝐺𝐻𝐼
 

1.18 

Marion collected ground-based albedo measurements from nearly 40 locations and created an open 

access dataset that was intended to increase the PV community’s understanding of albedo [56]. DTU 

contributed to this effort with one-year of measurements from the albedometer shown in Figure 1.14, 

and in our report4, we stated the annual average albedo of the grass at the DTU test site is 0.22 with low 

monthly variability (±0.025). After analyzing ground-measured albedo from nearly 40 sites, Marion 

notably found that a default albedo value of 0.2 is reasonable, except when a location experiences 

snow, or is a desert location in which case the albedo is usually greater. Similar findings were obtained 

by Patel et al. who studied the effect of monthly versus annual average albedo values in bPV 

performance simulations [196]. Their results showed minimal difference between the albedo 

assumptions and suggested that a constant albedo approximation is suitable for most bPV simulations, 

except for sites where snow is present.   

  
Figure 1.14: Broadband albedometer at the DTU outdoor test site (left) and albedometer view from cardinal 
directions (right). 

The broadband albedometer installed at DTU is shown in Figure 1.14 to demonstrate how albedo 

measurements can be made in bPV parks. It was installed in April 2020 and consists of two Kipp and 

Zonen SMP10 instruments with a 5° field-of-view limiter on the RHI instrument to prevent direct beam 

 
4 This report was a private correspondence with Bill Marion, but a summary of the DTU albedo measurements is 
provided in his peer reviewed publication https://doi.org/10.1016/j.solener.2020.12.050  

https://doi.org/10.1016/j.solener.2020.12.050
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light from reaching the detector at low sun angles. The images in the righthand side of Figure 1.14 are 

cardinal direction views and reveal the obstructions that could affect measurements – namely the PV 

array to the east. This albedometer was designed to be moveable throughout test facility so spatial 

albedo variations could be captured. As such, it has a 50 m long sensor cable, and the mounting 

structure is affixed to the ground with earth-screws intended to be hand removable. However, the 

albedometer’s position has never once changed because moving it proved to be an inconvenience, and 

interesting spatial variations in the grass field never emerged. The height of the two pyranometers is 

adjustable from 1 to 2m. This was originally set to 1.8 m to match the torque tube height of the trackers, 

but instrument leveling proved difficult at this height, and was reduced to 1.5 m in July 2021. 

Direct beam and diffuse light are scattered differently, which is why computational modeling of albedo 

requires decoupling the albedo in terms of its black-sky (i.e., directional) and white-sky (i.e., isotropic) 

components. As far as we are aware, such approaches to albedo modeling are primarily used in fields of 

study outside PV (e.g., remote sensing). Black-sky albedo describes directional reflections and can be 

approximated from albedo measurements made on clear and cloudy days that are just a few days apart 

[197]. The key to this approximation is that the surface’s reflectance should not change significantly 

between the two days. Figure 1.15 shows an example of black-sky albedo estimation from broadband 

albedo measurements on a cloudy (18/03/2020) and clear day (21/03/2020). Here, the black-sky albedo 

is calculated using albedo measurements from the Figure 1.14 setup and Equation 1.19. Note the 

morning dip in the clear sky albedo measurements is caused by the PV array to the east.  

𝜌𝑏𝑙𝑎𝑐𝑘_𝑠𝑘𝑦 =  
𝑅𝐻𝐼 − 𝜌𝑤ℎ𝑖𝑡𝑒_𝑠𝑘𝑦 ∙ 𝐺𝐻𝐼

𝐷𝑁𝐼 ∙ 𝑐𝑜𝑠 𝜃𝑍

 
1.19 

The white-sky albedo ρwhite_sky is taken from the albedo recorded on the cloudy day, which should in 

theory show no solar angle dependence, but is about 0.20 ±0.02 on the cloudy day shown in Figure 1.15. 

Coakley estimated a ±0.02 uncertainty for albedo measurements [198], which could be the reason for 

the variation in cloud day albedo. The black-sky albedo shown in Figure 1.15 (clear day) has a minimum 

value of 0.03 when the sun is highest in the sky (θZ=55°), and a maximum value of 0.25 when the sun is 

lowest in the sky (θZ=85°). Once the surface’s black-sky and white-sky albedo are known, then the solar 

zenith dependence of albedo can be modeled. For example, a model such as Equation 1.20 can be used 

[198], but there are several other models in the literature [195]. 

𝜌 =  (1 −
𝐷𝑓𝐻𝐼

𝐺𝐻𝐼
) ∙ 𝜌𝑏𝑙𝑎𝑐𝑘_𝑠𝑘𝑦_60° ∙

1 + 𝑑

1 + 2𝑑 𝑐𝑜𝑠 𝜃𝑍

 +  
𝐷𝑓𝐻𝐼

𝐺𝐻𝐼
∙ 𝜌𝑤ℎ𝑖𝑡𝑒_𝑠𝑘𝑦 

1.20 

In Equation 1.20, DfHI is the diffuse irradiance measured on a horizontal plane, 𝜌𝑏𝑙𝑎𝑐𝑘_𝑠𝑘𝑦_60° is the 

black-sky albedo measured at a solar zenith angle of 60°, and d is a fitting coefficient adjusted to give the 

desired angular-dependent albedo behavior (typically 0.1–0.4 depending on the surface and 

wavelength). Equation 1.20 is a simplification because the anisotropy of reflectance is not just a function 

of solar zenith angle, but also the solar azimuth angle and the viewing angle. The bi-directional 

reflectance distribution function (BRDF), defined by Nicodemus in 1965, describes how a surface 

scatters light as a function of incident and viewing angles [199]. BRDF is not studied in this thesis, but it 

is important to note that BRDF measurements integrated over a 2π hemisphere should equal the albedo 

measured by a dual pyranometer albedometer (e.g., that in Figure 1.14). 
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Figure 1.15: Direct normal irradiance (top), broadband albedo (center) and black-sky albedo (bottom) recorded on 
a cloudy and sunny day at the DTU outdoor test site. 

Bifacial Energy Gain 

The bifacial energy gain is defined as the additional energy produced by a bPV system over its 

monofacial equivalent and it is the reason investors pay a premium for bPV modules. If measurements 

from collocated bPV and mPV systems with identical frontside ratings are available, then bifacial gain is 

estimated simply as the ratio of electrical output from the two systems. Normalization for the frontside 

ratings of the two systems must be made if they are not equivalent. If electrical production data 

(measured or modeled) are not available, then a back-of-the-envelope calculation of bifacial energy gain 

(BEG) can be made with Equation 1.21.   

𝐵𝐸𝐺 ≈  𝜌 ∙ 𝜑𝑃𝑀𝐴𝑋 ∙ ∆ 1.21 

Where ρ is the albedo, φPMAX is the module bifaciality, and ∆ is a geometrical factor describing how much 

light the backside can receive. The empirical Kutzer model proposed a complicated algebraic term for ∆ 

that included array height, collector width and pitch [200]. Empirical models have so far proved 

unreliable in their ability to predict bifacial gain [149], which is why VF or raytrace modeling (Section 

1.2.1) are the preferred methods for accurate bPV modeling.   

Asgarzadeh et al. showed that bifacial gain is linear with albedo, but that the slope of bifacial gain versus 

albedo is steeper when bPV modules are installed at greater heights [152]. Many efforts to modify the 

ground below bPV systems have been made to see how bifacial gain can be boosted – examples of such 

trials are shown in Figure 1.16.  
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Figure 1.16: Examples of albedo enhancement in large bifacial plants in (a) Ukraine [201], (b) Oman [202], (c) Chile  
[203], and (d) United Kingdom [204].   

The electrical data from experiments such as those shown in Figure 1.16 are rarely available to the 

public. The 2018 Bifacial Book collected bifacial gain data from 25 systems reported in the literature 

[205]. Four of the systems found in their review had high albedo (0.5–0.8), wherein bifacial gain was 13–

24% for these systems. These data, however, were from small arrays where bifacial gain may have been 

higher than in utility-scale bPV systems. IEA PVPS Task 13 collected bifacial gain data from 27 bPV 

systems, but only one system had albedo greater than 0.5 [1]. Interestingly, this was a dual axis tracker 

bPV system and the bifacial gain was only 6%. Clearly, there is a lack of publicly available bifacial gain 

data from large-scale systems, and information regarding whether such gains make economic sense was 

completely absent before 2020. Chapter 5 therefore contributes a technoeconomic study that assesses 

the value of albedo enhancement in large-scale bPV plants (Publication IX). It is worth noting that two 

useful studies on this topic were contributed by other authors around the same time [206], [207]. 
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1.3 Project Objectives 
i. To identify approaches that can improve the accuracy of PV energy yield modeling, with 

particular emphasis on the optical subset of models, and the best practices for modelers.   

ii. To quantify how the mechanisms that are unique to bifacial PV systems, such as rear irradiance 

nonuniformity and spectral albedo contribution, impact the energy output.  

iii. To develop a method for monitoring irradiance in large bifacial PV plants that incorporates the 

nuanced effects of rear plane-of-array irradiance such as nonuniformity and spectrum.  

iv. To examine strategies that can enhance energy output of bifacial PV systems and provide 

bottom-line recommendations to developers of large bifacial PV plants.  

1.4 Project Limitations 
• The PV simulation software tested in Chapter 2 were benchmarked using operational PV system 

data from the Danish climate. A comprehensive study would have included similar PV systems in 

a dissimilar climate (e.g., equatorial). However, such data were not available.  

• The rear spectral shift correlations presented in Chapter 3 were not incorporated into bPV 

energy yield simulations. Therefore, its potential value to the PV energy modeling chain is not 

directly assessed. However, Chapter 3.4 proposes practical methods to integrate a rear spectral 

shift correlation into the PV modeling process. 

• The electrical mismatch due to nonuniformity of RPOA in Chapter 3 was only estimated for 

trackers. We did not investigate this for other substructure types such as equator facing fixed-

tilt or vertical E-W designs.  

• The IAM round robin presented in Chapter 4 included only samples with standard PV glasses. 

Future works on this topic should include samples with different glasses, including those with 

various structures and coatings.  

• Alternative approaches to the albedo enhancement experiments in Chapter 5 could have 

yielded results with more favorable economics. For example, the use of alternative reflector 

materials and/or alternative positioning of the materials. However, such approaches were not 

examined in detail due to lack of time and resources.   

• The literature suggests that operating temperatures of mPV and bPV devices will vary with 

environmental conditions [208]. However, this thesis does not investigate differences in 

operating temperature between monofacial and bPV modules. Back-of-module temperature 

sensors were installed on mPV and bPV modules at DTU to investigate this effect, but the 

experiment lacked a structured proposal, and the initial data revealed that the thermal contact 

between the sensors and back of modules may have been suboptimal. 

• It is well-known that the module BoM is critical for reliability. And since the BoMs of mass-

produced bPV entered the market only recently, it is necessary to understand if they are 

susceptible to new failure modes. However, this thesis does not investigate any reliability issues 

that may face bPV such as potential induced degradation (PID), light and elevated temperature 

degradation (LeTID), or possible hot spot formation due to partial shading of rear irradiance. 
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1.5 Main Contributions 
The most important contributions that this PhD project offers the field are the following: 

1) A benchmarking study on the accuracy of state-of-the-art bifacial energy yield models 

This study uses high quality data including standard meteorological parameters, plane-of-array 

irradiance, module temperature, electrical power, and laboratory measurements to assess how well 

bifacial yield software can predict electrical power, in-plane irradiance, and module temperature. 

The study compared PV modeling packages that are used across academia and industry. The entire 

data set is open access thereby allowing energy modelers to benchmark the accuracy of their own 

PV simulations.   

2) An in-depth study of spectral albedo and its impact on bifacial PV energy output 

The PV community has an intuitive sense that spectral albedo shifts ought to affect the electrical 

output of bPV systems, but there is very little information about how spectral albedo changes with 

environmental conditions, and how such changes could alter the energy output of different bPV 

system designs. This study changes that by directly monitoring high-resolution spectral albedo of 

four ground surfaces over a 15-month duration and by using the data to simulate the performance 

of three bPV cell concepts on two structure types. The spectral albedo and spectral irradiance 

measurements are open access to foster reproducibility in science and to stimulate further insights 

on the topic. 

3) The most extensive interlaboratory comparison of IAM measurements to date 

The so-called IAM is an important optical loss factor in PV yield modeling. PV energy modelers may 

use default assumptions for IAM, or they may use measured IAM data from a test lab. In the latter 

case, there is not much information to guide modelers on the uncertainty of IAM measurements and 

to help them identify suspicious IAM data. This work circulated encapsulated PV cells to twelve test 

labs (including accredited and non-accredited) for IAM measurements. The data were used in yield 

simulations in which 1.0%–1.5% variations in energy were found due to the IAM curves reported by 

the labs. This work also provided the measurement data in open access form to the PV community.  

4) A simplified method to measure bifacial irradiance 

The complexities of rear irradiance can frustrate designers of bPV monitoring systems. This method 

proposes the use of calibrated bPV and mPV reference modules to monitor rear and total effective 

irradiance. The measurement approach avoids the complexities of identifying representative rear 

irradiance sensor locations and adjusting for spectral effects, thereby offering accurate 

measurements with low effort.  

5) A technoeconomic case study of albedo enhancement in large bPV systems 

Here we monitored the electrical performance of fixed tilt and tracked bPV systems above low and 

high albedo conditions. The electrical production data were coupled with the real-time spot prices 

of the Nordpool power market, which formed the basis of the economic model. The levelized cost of 

energy (LCOE) of bPV systems above natural and reflectivity-enhanced ground surfaces is calculated. 

The study finds that the current uncertainty in upfront (CAPEX) and ongoing (OPEX) expenditures 

makes the albedo enhancement unadvisable.    



30 
 

1.6 Thesis Outline 
This is an article-based PhD thesis in which Chapter 2 through Chapter 5 summarize a previously 

published paper or a collection of papers. Chapter 1 first reviews the present status of the bifacial PV 

market and describes the state-of-the-art in bifacial PV characterization and simulation techniques. This 

review forms the basis for the research questions and problems that the PhD project focuses upon. The 

nine research articles produced during the 3-year PhD project period are then summarized in the 

following four chapters:  

Chapter 2: Evaluation of bifacial photovoltaic models and simulation software gives a high-level 

overview of the capabilities at the outdoor PV testing facility at DTU. Then, we review how these 

capabilities were utilized, with data quality assessment routines, to conduct a benchmarking study of 

eight PV simulation software packages. The data analysis deliberately focuses on rear plane-of-array 

irradiance simulations to quantify how the accuracy of bifacial simulations can be improved. An 

intercomparison of individual PV modelers implementing the IEC 61853-3 energy rating algorithm is also 

presented in this chapter. The chapter summarizes Publications I, II, and III.  

Chapter 3: Analysis and simulation of bifacial-specific performance factors studies the nuanced effects 

of irradiance nonuniformity and spectrum in the backside of bifacial PV arrays. The chapter begins by 

briefly describing two experimental setups that were custom-built to study these performance 

mechanisms. Then, we show how the high spatial resolution irradiance measurements can be used to 

estimate electrical mismatch losses on bifacial tracking systems. The high-resolution spatial irradiance 

measurements are also compared to raytracing simulations. Finally, we use high-resolution spectral 

albedo measurements and two-dimensional view factor modeling to calculate spectral shifts on the 

backside of common bifacial system designs. This chapter summarizes Publications IV, V, and VI  

Chapter 4: Characterization and performance monitoring of bifacial PV modules and systems analyzes 

results from two international laboratory comparisons of PV measurements. The first is a comparison of 

bifacial PV measurements made according to IEC TS 60904-1-2, and the second is a comparison of 

incident angle modifier (IAM) measurements made according to IEC 61853-2. The data from the IAM 

round-robin effort are used in the IEC 61853-3 algorithm to derive energy yield, thereby estimating the 

level of uncertainty that measured IAM data has on the PV model chain. Finally, the IEC TS 60904-1-2 

procedures are used to calibrate bifacial reference panels that can be used in continuous field operation 

for effective irradiance monitoring. This chapter summarizes Publications VII and VIII. 

Chapter 5: Methods for enhancing bifacial energy gain reports on the field trials of testing high 

reflectance materials below the bifacial systems at DTU's outdoor PV test site. The technoeconomic 

analysis in our case study shows that, out of the six PV designs studied, bifacial PV on trackers above 

white ground covers provides the lowest LCOE. However, uncertainties in installation and operations 

costs lead us to discourage modifying the ground of large-scale bifacial plants with albedo 

enhancements. The chapter concludes with proposals for how such albedo enhancements may be 

optimized in large-scale bifacial plants. This chapter summarizes Publication IX. 

Finally, Chapter 6 highlights the most important results from the compendium of research articles.  
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1.8 Related Publications 
The work conducted during the 3-year PhD project period led to two research outputs on solar spectral 

measurements and modeling. Three additional publications were generated with data from the DTU 

Risø bifacial PV test, the most notable of these was the international PV modeling comparison that was 

presented during the plenary session of the 8th WCPEC. However, none of the five publications listed 

below are included in this thesis. 
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Chapter 2. Evaluation of bifacial photovoltaic models and simulation 

software 
 

“All models are wrong, but some are useful.” – George Box 

 

2.1 Introduction 
The first part of this chapter summarizes the results of a PV software benchmarking study with 

particular attention to the RPOA modeling step. Several bPV modeling papers referenced in Section 1.2.1 

contain some form of validation, but this was done mostly on small bPV systems whose performance 

may not be representative of utility-scale bPV systems. In the study presented here, eight PV software 

packages with bifacial simulation capabilities were used to model the large-scale systems installed at 

DTU Risø. The specific system types modeled were monofacial fixed-tilt, monofacial tracked, bifacial 

fixed-tilt and bifacial tracked. The work was presented at the 2020 EU PVSEC conference (Publication I), 

and at other venues such as the COST-PEARL PV WG3 webinar and First Solar’s Plant Predict webinar. A 

detailed manuscript was ultimately published in the journal Applied Sciences (Publication II). The 

analysis in Publication II focuses primarily on rear irradiance simulation accuracy, and it is concluded 

that the state-of-the-art rear irradiance models are reasonably accurate with average absolute errors of 

2–5 W/m2. Errors of such magnitude contribute roughly 0.5% uncertainty to annual energy estimates, 

which is a difficult figure to reduce.  

The second part of this chapter presents results from an international PV modeling intercomparison. 

Publication III is an interlaboratory comparison of energy rating calculations per IEC 61853-3. Nine 

European institutes, including DTU, provided their energy rating calculations to the intercomparison. 

The activity was funded by the European Metrology Program for Innovation and Research (EMPIR) 

within the 19ENG01 Metro-PV project. DTU participated as a collaborator, not as a funded member of 

the project consortium. The results from the participants were collected by Malte Vogt and analyzed in 

detail by Malte Vogt, Ana Gracia-Amillo, Stefan Riechelmann, and Anton Driesse. The nine participants 

received the same module characterization data, meteorological datasets, and were tasked to calculate 

climate specific energy ratios (CSER). The characterization data were measured at TUV Rheinland, which 

included the G-T performance matrix per IEC 61853-1, the IAM per IEC 61853-2 and the spectral 

responsivity per IEC 61853-2. The first blind comparison revealed CSER differences up to 14%. It took 

five rounds of calculations—and discussions among the participants—for the nine participants’ CSER 

calculations to agree within 0.1%. This study ultimately demonstrated how user-induced variability can 

be reduced when modelers are provided with clear procedures for implementing key steps of the PV 

model chain. 

2.2 Input and validation datasets  
The outdoor test facility at DTU consists of eight horizontal single-axis trackers (HSATs), labelled T1–T8 

in Figure 2.1 and eight south-facing static-tilt structures, labelled T9–T16 in the figure. All 16 

substructures (including the south-facing units) are HSATs from the same manufacturer, but T9–T16 

have been oriented southward and programmed for a static-fixed tilt. The tracker articulation limits are 

from -60° (pointing east) to +60° (pointing west). Each PV substructure holds 88 PV modules, either 
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monofacial or bifacial. Please note that the layout shown in Figure 2.1 only applies to the period August 

2018 to November 2020. The outdoor test facility at DTU is continuously modified for experimentation 

of new PV technologies. For example, in November 2020 some of the strings on T7 and T15 were 

swapped for bPV modules with half-cut cells, and in July 2021 all modules on T16 were swapped for a 

string of high-power (600 Wp) bPV modules.  

In Figure 2.1, the cell types within modules are all 156 mm x 156 mm PERC, but some are mPV PERC 

(blue boxes) and some are bPV PERC (green boxes). The 88 modules on each substructure are divided 

into 4 strings, where each string consists of 22 series connected modules. There is one 50 kW dual MPPT 

inverter for every two trackers (i.e., for every 8 strings) and therefore the operating point of the 88 

panels on each substructure is determined by a single MPPT. The DC to AC ratio is 1.07 for the mPV 

systems and 1.04 for the bPV systems, which leads to negligible inverter clipping. As a further 

advantage, all substructures at this site have dimensions analogous to those found in utility-scale PV 

installations.  

 

Figure 2.1: Aerial view of the bifacial test facility at DTU. Annotations show the tracker number, substructure type 
and PV module type. Note that T1–T3 have a 15m pitch, T3–T8 have a 12m pitch, and T9–T16 have a 7.6m pitch.  

Broadband DfHI, DNI, and GHI measurements from spectrally flat class A sensors are made onsite at the 

DTU solar radiation monitoring station located roughly 400 m south of the test site (Figure 2.2a). These 

high-quality irradiance measurements – in conjunction with ambient temperature and wind speed – are 

used to create meteorological files for PV simulations of the test site. The solar radiation data are 

filtered according to the Baseline Surface Radiation Network’s (BSRN’s) recommended quality checks 

before being aggregated into the hourly meteorological file [209]. The two RPOA sensors located on T11 

(Figure 2.2b) are used as a reference when comparing modeled RPOA from the different software. Note 

that T5 has a similar RPOA setup for comparing the HSAT simulations. The two RPOA sensors on T5 and T11 

are mounted ±40% from the center torque tube to sample the nonuniform RPOA gradient, and the 

sensors are located roughly 10 m away from the nearest edge to avoid edge brightening.  

Multi-irradiance I-V measurements were performed on a sample of monofacial and bifacial PV modules 

in the flasher system shown Figure 1.12. These I-V measurements were made before the flasher was 
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upgraded with black baffles and background for optimized bPV testing, and therefore, the backside of 

the bPV modules were covered with a black backsheet material to prevent stray light from reaching the 

panels during testing. The multi-irradiance I-V measurements were used to estimate parameter values 

for the diode models in the various software. Measurements were performed on the panels one year 

later to check for first year degradation, which was found to be approximately 1%.  

 

(a) 

 

(b) 
Figure 2.2: (a) Direct normal, diffuse horizontal, and global horizontal radiation measured at the DTU solar 
radiation monitoring station. (b) Spectrally flat class C pyranometers installed on the backside of fixed array T11. 

2.3 Testing PV models and software 
The objectives of the benchmarking study are to use a consistent set of parameters and meteorological 

data as input to different bifacial PV software, and to analyze the modeled outputs at various steps of 

the PV performance model chain including RPOA, GPOA, TMOD and DC power. The variability that can be 

introduced by different users of the same software will be investigated in Section 2.4. 

The PV modeling software tested fall into the categories of commercially available, freeware and open 

source. A description of each software used in the comparison is provided in Table 2.1. Seven of the 

models use a 2D VF method to calculate RPOA and one model uses a 3D RT based method. We believe 

that the software programs in Table 2.1 are representative of the tools presently used within the 

industry and research communities to simulate bifacial PV performance. The column names in Table 2.1 

represent some of the most important steps of the PV modeling process (see Figure 1.5). There are 

several instances in Table 2.1 where multiple software packages use the same model for a particular 

modeling step. For example, the Perez diffuse model is used in all software packages to transpose 

horizontal solar radiation data to the plane of array (GPOA), and most software use either the PVsyst [51] 

or Faiman [73] cell temperature models. For this reason, the modeled outputs at the GPOA and TMOD steps 

are similar across the software. GPOA and TMOD are the two most important factors that influence PV 

energy yield, which leads to comparable annual energy yield estimates from the different software. 

Specifically, the software in Table 2.1 are within 4–5% of each other for annual energy yield, regardless 

of the modeled PV system type.  
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Table 2.1: Descriptions of the bifacial performance tools compared in the benchmarking study. All tools implement 
the Perez transposition model for calculating GPOA.   

PV Simulation 
Tool 

Sun Position 
Algorithm 

Data used for 
transposition  

RPOA 

Method 
IAM 
Model 

Electrical 
Model 

Thermal 
Model 

bifacialvf  

(0.1.7)  

Michalsky DNI and DfHI 2D VF Physical N.A. N.A. 

MoBiDiG VF 
(0.2.4)  

NREL SPA DNI and DfHI 2D VF Physical 5 param. 

De Soto  

Faiman 

MoBiDiG Hybrid 
(RT) 

Michalsky DNI and DfHI 3D RT N.A. 5 param. 

De Soto  

Faiman 

PlantPredict 
(8.7.0) 

NREL SPA GHI and DfHI 2D VF ASHRAE PVsyst  PVsyst 

pvfactors (1.4.1) NREL SPA DNI and DfHI 2D VF Sandia N.A. N.A. 

PVsyst (7.0.5) US Navy GHI and DfHI 2D VF Physical PVsyst  PVsyst 

NREL SAM 
(2020.2.29) 

Michalsky DNI and DfHI 2D VF Physical 6 param. De 
Soto  

NOCT 

SolarFarmer 
(1.0.187.0) 

NREL SPA GHI and DfHI 2D VF Martin & 
Ruiz  

PVsyst  PVsyst 

 
Figure 2.3 shows hourly timeseries of measured and modeled RPOA on a clear day near the spring 

equinox. The modeled values have not been adjusted for bifaciality or for derates such as nonuniform 

illumination or spectral effects. Reflection losses are applied to the modeled RPOA according to the 

software’s IAM model shown in Table 2.1. The RPOA values modeled by bifacialvf, pvfactors, and MoBiDiG 

are the average of RPOA at five discrete points. The documentation of PlantPredict, PVsyst, SAM and 

SolarFarmer is not clear whether these software segment the rear plane and report an average RPOA, or 

if they simply report RPOA at a single location. The error bars around the RPOA measurements in Figure 2.3 

show the maximum and minimum value recorded by the two sensors mounted on the backside. The 

difference between the two RPOA sensors on the fixed tilt system is significant – about 30 W/m2 midday. 

Although the modeled RPOA of the fixed tilt system is mostly within the boundaries of measured RPOA, the 

accuracy of the validation depends heavily on where the RPOA sensor is mounted on the array’s backside. 

Furthermore, the HSAT results show how the RPOA sensor type can influence the results of the RPOA 

comparison, wherein the midday Si photodiode measured RPOA is about 10 W/m2 higher than the 

pyranometer measured RPOA. Considerations regarding how RPOA location and RPOA sensor type could 

have consequences for capacity testing or performance guarantees will be discussed in Section 4.3. 

Figure 2.4 summarizes the RPOA modeling error in terms of mean absolute error (MAE) and mean bias 

error (MBE). The results show that seven of the eight software cluster together with MAE of 2–5 W/m2 

and MBE of -3–5 W/m2. It will be shown that this error has a small effect on the overall accuracy of 

energy yield simulations. SolarFarmer is an outlier, but its developers have since updated the VF 

algorithm such that the RPOA estimates are more in agreement with other software [210]. 
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Figure 2.3: Timeseries of modeled and measured RPOA on a clear day (26 March 2020). The error bars around the 
RPOA measurements show the max and min values measured by two sensors on the backside of the array. The 
upper plot shows results for the fixed tilt system (T12) and the bottom plot shows results for the tracker (T5). 

 

Figure 2.4: RPOA mean absolute errors versus RPOA mean bias errors for eight software tested. The two marker 
shapes represent the two modeled PV structures of fixed tilt and single axis tracker. 
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Figure 2.5 shows the MBE and 95% confidence interval (CI) of modeled RPOA from the eight software 

packages. The distributions are constructed from the hourly RPOA errors observed between 21 February 

2021 and 31 March 2021 (N = 286). The RPOA results from the software are considered significantly 

different when their CIs do not overlap, which is made evident with the connecting letters shown at the 

bottom of Figure 2.5. When software do not share the same connecting letter, their RPOA error 

distributions are considered significantly different. For example, the fixed tilt bifacialvf error distribution 

has the connecting letter ‘C’, which is therefore statistically similar to MoBiDiG RT and PlantPredict 

because these two software have connecting letter ‘CD’.  

 

Figure 2.5: Comparison of mean RPOA errors for eight different software. The black dots show the mean RPOA error, 
and the error bars show the 95% confidence interval of the mean. RPOA errors are considered significantly different 
when confidence intervals do not overlap and do not share the same connecting letter. 

Figure 2.6 shows correlation matrices of modeled and measured RPOA for two bPV system types. The 

color gradient shows the correlation coefficient between two RPOA sources. In the fixed tilt simulations, 

seven of eight software compare well to each other (r = 0.985–0.999) wherein SolarFarmer is the outlier 

with r < 0.95. The HSAT results reveal lower correlation between modeled and measured RPOA wherein 

the best correlation to measurements is the MoBiDiG raytrace tool (r = 0.98).  It makes sense that the 

HSAT scenario shows poorer RPOA agreement to measurements, and to respective software, because 

tracking introduces additional complexity at two levels. First, the tracker algorithm5 implemented by the 

software is introduced into the comparison and second, the VFs in HSAT simulations are calculated for 

each change in tilt angle whereas the VFs in fixed-tilt simulations are calculated once for the entire 

simulation. Despite the lower correlation in modeled HSAT RPOA, the MAE in modeled RPOA is about 1 

W/m2 different in the HSAT and fixed tilt scenarios. 

 
5 Backtracking is a standard tracker control algorithm used to prevent row to row shading at low solar elevation 
angles. We found that the modeled tracker angles agreed well outside of backtracking periods (< 0.5° max 
difference). However, during backtracking periods, the modeled angles varied by as much as 15°. Data was 
removed from the analysis when solar elevation < 5°, but this data filter did not completely remove backtracking 
periods from the analysis.  
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Figure 2.6: Correlation matrices of modeled and measured RPOA. The color scale is Pearson’s r coefficient. 

Now we show differences of measured and modeled DC-side energy yield for the four system types 

studied. Please see Publication II for GPOA, TMOD and bifacial gain results. Only six of the eight software 

are analyzed here because bifacialvf and pvfactors do not have built in electrical models. In Figure 2.7, 

the monthly and yearly errors in energy predictions across all four PV system types are shown. Note that 

roughly 75% of the total annual energy is produced between April and August. With just 25% of the 

annual energy produced between September and March, errors during these months tend to be larger 

on a percentage scale. On a monthly basis, PlantPredict, PVsyst, SAM, and SolarFarmer fluctuate 

between negative and positive bias relative to the measurements, sometimes with monthly deviations 

greater than 5%. However, on an annual basis, all tools simulate the four PV systems within 3.5% or less 

of measurements, and in some cases, the annual error is less than 1%. This is a positive result 

considering he uncertainty of the solar radiation measurements and the electrical monitoring system. 

 

Figure 2.7: Monthly and annual errors in energy yield predictions from six software and four PV system types.  
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Figure 2.8 shows the MBE and 95% CI of modeled daily energy from the eight software. The distributions 

are constructed from daily errors in DC energy observed during one-year from 01 April 2020 to 31 March 

2021 (N = 323). Like in Figure 2.5, the errors from the various software are considered significantly 

different when CI’s do not overlap, which is indicated by the connecting letters on the x-scale. In the 

monofacial fixed tilt scenario, all six software share the same letter, and therefore, the error 

distributions are not considered significantly different (all p-values > 0.09). Adding complexity in the 

tracking or bifacial simulations leads to only one significant difference between two software, that is 

MoBiDiG VF/RT and PlantPredict.  

 

Figure 2.8: Comparison of daily energy yield errors using six different software to model four PV system types. The 
black dots show the MBE of daily energy prediction, and the error bars show the 95% confidence interval. Energy 
prediction errors between software are significantly different when their confidence intervals do not overlap and 
do not share the same connecting letter. 

SolarFarmer provides an interesting example where energy predictions are accurate despite having large 

RPOA discrepancies. Presumably, this is because SolarFarmer has low errors for the most important 

modeling steps of GPOA and TMOD and because RPOA represents about 10% of the total irradiance.  

Finally, within Publication II a sensitivity of the albedo was performed wherein albedo was varied by 

±3% of the DTU measured average. This resulted in a ±0.5% variation in annual energy yield. 

                            

                                                    

    

 
 
 
 
  

  
  
 
  
 
  
 
 
  
 
  

 
 
  

 
  
 

 

  

 

 

                            

                                                        

    

 
 
 
 
  

  
  
 
  
 
  
 
 
   

  
 
 
  

 
  
 

 
  

 

 

                            

                                                    

 

 
 
 
 
  

  
  
 
  
 
  
 
 
  
 
  

 
 
  

 
  
 

 

  

 

 

                            

                                                    

    

 
 
 
 
  

  
  
 
  
 
  
 
 
  
 
  

 
 
  

 
  
 

 

  

 

 



41 
 

2.4 Testing the users of PV models and software  
The eight software programs benchmarked in the previous section were run by two individuals (Nicholas 

Riedel-Lyngskær and Djaber Berrian) who were in close collaboration to ensure that their assumptions 

were equivalent at each step of the model chain. This section presents the results of a PV modeling 

studies that compared results of individual PV modelers implementing IEC 61853-3. 

The meteorological data collected in Publication II, and details of the four PV system types at DTU Risø, 

were eventually circulated to 29 PV modelers that spanned academia and industry. This blind 

intercomparison activity was led by Marios Theristis of Sandia National Laboratories (SNL). The 29 PV 

modelers were asked to simulate the four operational PV systems at DTU and two operational systems 

at SNL. DTU contributed to this study with high-quality PV measurements as well as with some data 

analysis conducted by Nicholas Riedel-Lyngskær’s during his external research stay at SNL. The 

manuscript of this modeling intercomparison is under preparation and results are not presented here.  

2.4.1 IEC 61853-3 PV module energy rating comparison led by EMPIR Metro-PV consortium 
The ultimate outcome of the four-part IEC 61853 Energy Rating standard is the determination of a PV 

module’s climate specific energy rating (CSER). The CSER is essentially a DC level performance ratio (PR) 

of a single module that describes the annual deviation in energy production in each standard climate, 

relative to what the module could have produced if it were operating at its STC performance. Unlike the 

classic definition of PR, the CSER does not incorporate losses due to soiling, shading, degradation, or any 

inverter specific losses such as efficiency of power conversion, maximum power point tracking efficiency 

or clipping losses. The CSER is calculated per Equation 2.1. 

𝐶𝑆𝐸𝑅 =  
𝐸 ∙ 𝐺𝑆𝑇𝐶

𝑃𝑆𝑇𝐶 ∙ 𝐻
 

2.1 

Where E (Wh) is the annual energy produced by the PV device, GSTC is the reference irradiance of 1000 

W/m2, PSTC is the PV device maximum power at standard conditions, and H (Wh/m2) is the annual in 

plane insolation before correction for angular losses and spectral effects.  

The CSER is intended to provide PV module buyers with an intuitive metric that assesses the relative 

performance of commercial PV technologies across climates. The partners in the IEC 61853-3 

intercomparison wanted to quantify the CSER variations that could arise from different interpretations 

and implementations of the 20 equations within the standard. We found that CSER variations among 

participants could be substantial – up to 14.7%. A CSER difference of this magnitude is, in many cases, 

greater than a CSER difference due to different properties of two PV modules.  

Explanations for the discrepancies among participants fall into two categories. The first category is bugs 

caused by simple mistakes from transcribing the standard’s equations into code. For example, this 

included relatively easy fixes like missing signs or incorrect balancing of parentheses within equations. 

The second category is different interpretations of the standard due to ambiguities in the text. This was 

by far the more difficult category to reconcile. We found that the irradiance-temperature (G-T) 

extrapolation step, and the spectral irradiance correction step had the most room for interpretation.  

The module efficiency data used for the intercomparison is shown in Figure 2.9. The participants were 

only provided with data at the 23 points marked with circles, which were measured by TUV Rheinland. 

For each hour of the year, participants had to interpolate or extrapolate efficiency to numerous G-T 
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conditions that were not measured in the lab. This process could be done with equations 9 – 17 of IEC 

61853-3, but since the standard says these equations “or equivalent” may be used, we learned that 

some participants implemented their own approaches. For example, DTU’s initial model extracted a 

temperature coefficient from the measurements at 1000 W/m2 and used this to fill in many of the 

missing temperature values. Methods to fill in the efficiency values within the 61853 G-T matrix were 

described in detail by [211]. 

 

Figure 2.9: Efficiency versus irradiance for a standard monocrystalline silicon module. The circle markers show the 
23 measured irradiance and temperature conditions per IEC 61853-1. The triangle markers show extrapolated 
points using equations in IEC 61853-3. The measured points were provided by TUV Rheinland within the EMPIR 
funded 19ENG01 Metro-PV project. 

The spectral correction of IEC 61853-3 was the second most challenging step to solve before arriving at 

comparable CSER results. IEC 61853-3 uses Equation 1.12 for the spectral correction formula. IEC 61853-

4 provides hourly spectral irradiance from 306–3991 nm for this purpose, but these data are provided in 

integrated bands whose widths range from 10–760 nm. An example of such binned spectral data (after 

interpolation) is shown in Figure 2.10. The differences in the participants spectral corrections were due 

to different definitions of band edges, different numerical integration approaches, and different values 

of the spectrally integrated reference spectrum (i.e., some participants used 1000 W/m2, while others 

calculated a lower value).  
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Figure 2.10: Example of spectrally binned irradiance provided in IEC 61853-4 for one hour of one standard climate. 
The binned spectral data shown here have been normalized for the bin width and interpolated. The IEC 60904-3 
reference spectrum and spectral responsivity of the PV module used for the study are also shown.  The spectral 
responsivity was provided by TUV Rheinland within the EMPIR funded 19ENG01 Metro-PV project. 

 

 

Figure 2.11: Detailed results of calculated power from the first out of five intercomparisons. Participant F was used 
as a reference here. Deviations to Participant F are shown in the color scale. DTU was designated ‘Participant A’. 
The results here are from the subtropical arid climate, but the error trends were similar for the other five climates.  
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Figure 2.11 compares all nine participants hourly simulated power values in the initial blind round. These 

data and the results from rounds two and three are open access (DOI: 10.5281/zenodo.5750185). The 

color scale shows the deviation of calculated power values relative to Participant F’s results, who was 

chosen as a reference in this case because they were close to the median CSER value. Figure 2.11 shows 

that no two participants had equivalent results across the entire G-T solution space.  

DTU was designated ‘Participant A’ throughout the comparison. DTU’s results in this round showed 

oscillating biases (high-low) relative to the reference. The reason for this peculiar result was an 

inadvertent swapping of two terms in the temperature interpolation formula. Interestingly, DTU’s CSER 

results in this round were still near the middle of the group as shown in Figure 2.12a. It is likely that the 

alternating high-low bias scale canceled out to some extent when integrating hourly power values to 

annual energy.

 

Figure 2.12: (a) CSER comparisons for all participants and climate profiles for the first round of the 
intercomparison. DTU is designated as ‘A1’. (b) The largest relative differences between any two participants in 
each climate. The difference decreases from 14.7% in phase 1 to 0.07% in phase 5. Original figures are from [212]. 

After the initial blind round, the participants began a series of regular group discussions to identify 

reasons for the discrepancies. Errors, bugs, and/or doubts were uncovered at almost every step of the 

IEC 61853-3 equations. Figure 2.12b shows that the issues that contributed most to the CSER 

disagreement were caught after the first round, wherein agreement in round two was reduced to 1–3%. 

Some of the issues uncovered in the discussion rounds included: participants using different fitting 

approaches to model the IAM data, which was remedied by requiring all participants to use the same 

angular loss coefficient; some participants interpreting the solar elevation timeseries as solar zenith, 

which resulted in incorrect projection of direct irradiance; some participants using spectrally corrected 

instead of angularly corrected irradiance for module temperature; participants using the reference 

spectra of IEC 60904-3 or ASTM-G-173, which was remedied with mandatory use of IEC 60904-3; and 

perhaps most importantly, we uncovered that equations in the standard are unclear about how to 
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handle the edge cases of the G-T matrix (e.g, G < 100 W/m2 or G > 1100 W/m2). The point about unclear 

edge cases is demonstrated with Participant C and Participant E’s results shown in Figure 2.11, where 

their agreement to the reference has a distinct shift below 100 W/m2. This led the core project group to 

develop supplemental formulae to handle such edge cases, which were made available in the appendix 

of Publication III [212].  

2.5 Summary and conclusions 
In this chapter, we benchmarked eight software packages for simulating bPV performance. The modeled 

RPOA timeseries from eight software were compared to each other, and to RPOA measurements on fixed-

tilt and HSAT substructures. Except for one outlier model, we found that RPOA modeling errors were 

small across all software with MAE between 2.5 W/m2 and 5.0 W/m2. Irradiance errors of this magnitude 

constitute roughly 0.5% uncertainty in PV energy modeling. This result suggests that simplified 2D VF 

models are a suitable approach for bPV simulations, and that long term energy yield predictions do not 

always necessitate the use of more advanced optical methods like raytracing.  

The six software packages with electrical models were benchmarked against DC power measurements 

from four PV systems that included monofacial fixed-tilt, bifacial fixe-tilt, monofacial HSAT and bifacial 

HSAT. The error distributions of daily energy yield almost always showed overlapping confidence 

intervals, which indicates that the software examined here have minimal differences in accuracy. This 

result makes sense because the software packages often use the same algorithm for the most important 

modeling steps (e.g., GPOA, TMOD, and diode-model). The commercial significance of this result is that PV 

project developers like European Energy A/S need not over rely on a single software such as PVsyst. This 

is important because many PV software packages have at least a feature or two that sets them apart 

from their counterparts. For example, SolarFarmer can model PV plants situated on uneven terrain, SAM 

has a well-documented software development kit, and the MoBiDiG hybrid model can simulate complex 

structural features. The results provided here therefore allow companies like European Energy A/S to 

use the right software for a given simulation task.  

Finally, we presented results from an international round robin on IEC 61853-3 energy rating 

calculations. The initial blind round showed CSER differences up to 14% thereby revealing that the 

energy rating standard is not so straightforward to implement. A series of discussions among the 

participants led to development of supplemental procedures that can aid future users of the IEC 61853-

3 standard transcribe the 20 standard equations into code. When these procedures were followed, the 

CSER calculations of nine participants agreed within 0.1% or better. Such reproducibility in CSER 

calculations will be essential if energy rating labels are ever adopted by solar panel manufacturers or 

accreditation bodies.  
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Chapter 3. Analysis and simulation of bifacial-specific performance 

factors 
 

“The irradiance incident in the plane of the array on the rear side of a bifacial module is determined by a 

series of factors that have little or no impact on the energy yield of monofacial modules.” – Radovan 

Kopecek and Joris Libal in Bifacial Photovoltaics 2021: Status, Opportunities and Challenges 

 

3.1 Introduction 
This chapter summarizes the methods used and the key results obtained in Publications IV, V, and VI. 

These publications investigated the influence of RPOA nonuniformity and RPOA spectral distribution on bPV 

performance. Researchers have begun to examine these factors only in recent years and in the wake of 

ever-growing bPV deployments. At the start of this PhD project in 2019, we hypothesized that the 

accuracy of bPV energy yield modeling could be improved through understanding and parametrization 

of RPOA nonuniformity and RPOA spectral distribution. The works summarized here find that both factors 

have a small, yet non-negligible, influence on total PV energy yield.  

Through measurement and simulation, Publication IV finds that the maximum electrical mismatch 

losses (MML) due to nonuniform RPOA is roughly 0.2% for common two-in-portrait (2P) HSAT designs on 

clear days. Additional raytracing simulations of one-in-portrait (1P) HSATs find that the max MML for 

this design is about 0.4% on clear days. The additional 1P HSAT simulations look at the sensitivity of 

MML due to torque tube (TT) shape, TT color, and TT distance from the bPV array. This sensitivity study 

finds that the MML can be reduced from 0.4% to 0.3% if the TT vertical gap is increased from 7 cm to 15 

cm and the TT shape is changed from square to round. However, the cost of such redesign is likely to 

outweigh the economic value of the extra energy produced. 

In terms of backside POA spectral effects, Publication VI finds that healthy (green) vegetation causes the 

largest backside spectral mismatch factor (SMMBack), producing backside photocurrent gains as high as 

25%. Indeed, the effect of SMMBack is reduced by an order of magnitude when considering the frontside 

irradiance, which contributes roughly 90% of the total irradiance. Nonetheless, this chapter proposes 

the first SMMBack correlations, which are a steppingstone toward a simplified RPOA spectral model. 

Finally, the high-resolution spectral albedo measurements collected in Publication VI are used to 

identify 4-6 ideal wavelengths for monitoring spectral albedo with broadband multi-filter instruments. 

The work was presented at the 2021 International Spectroradiometer Comparison (ISRC) Winter 

Workshop, and at an IEA PVPS Task 16 meeting before it was submitted to a peer reviewed journal.  

The importance of accurate albedo data is seldom discussed in the context of monofacial PV modeling. 

However, quality albedo data is of high importance to bPV. This chapter concludes by summarizing the 

results from a cross comparison of five albedo data sources that was performed in Publication V. These 

albedo sources include timeseries measurements from pyranometers, Si-photodiodes and 

spectroradiometers, as well as a static assumption of 0.2 (constant), and time invariant spectral albedo 

from the ASTER library. We find that bifacial gain differs by as much as 3% using the three albedo 

sensors and can deviate by 7% from the ground truth when an incorrect static spectral albedo 
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assumption is used. Publication V proudly won the Best Student Presentation Award in Area 11 at the 

48th IEEE PVSC.  

3.2 Measurement Systems 

3.2.1 Mini-modules for Estimating Rear Light Intensity Nonuniformity (MERLIN)  
Within the EUDP funded project BiSun Boost, DTU built a custom measurement system to monitor the 

distribution of RPOA on the back of a 2P HSAT. Four minimodules each containing a single column of 10 c-

Si cells were laminated such that the electrical contacts of each cell were accessible. Two panels were 

placed on the south edge, to capture the maximum RPOA, and two panels place in the center, to capture 

the minimum RPOA. This setup was dubbed the mini-modules for estimating rear light intensity 

nonuniformity (MERLIN). As the name suggests, the measurement system permits investigation of edge-

brightening effects, RPOA nonuniformity, and subsequently, MML (Figure 3.1). 

 

Figure 3.1: Left) Two 1x10 cell panels mounted on the east and west edges of the tracker. Right) the same panel 
type in the center of the tracker. The black backsheet makes it difficult to see individual cells within panels. 

All 40 cells in MERLIN are connected to separate 0.1 Ω resistors, which force the cells to operate near ISC. 

Thus, a calibration factor is needed to convert the raw measurements from amps to irradiance (W/m2). 

For this reason, all 40 cells were calibrated with an Oriel Sol2A class ABA light source and a ReRa c-Si 

reference cell. Consistent alignment of the individual cells within the test plane proved to be a tedious 

process (Figure 3.2a) but was critical because of the light source’s nonuniformity. Figure 3.2b shows the 

distribution of ISC values measured on the 40 cells where both the mean and median are 5.37 A at STC. 

This average ISC value was ultimately used to convert the ISC measurements of all 40 cells in MERLIN into 

W/m2.   

An uncertainty model for the calibration was made that included contributions such as cell alignment 

(5.7%, rectangular), displacement between test cells and reference cell (2.5%, normal), reference cell 

uncertainty (2%, rectangular), datalogger uncertainty (0.8%, rectangular), spectral mismatch (0.5%, 

rectangular), and the statistical distribution of the 40 cell measurements (1.1%, normal). The expanded 

uncertainty (k =1.96) was 6.7% using a root sum squared approach.  

22 panel  
(~22m) long 
tracker sub-

array. 

Two edge panels
(20 measurements)

Two center panels
(20 measurements)
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The 40 shunted PV cells in MERLIN are connected to two separate Campbell Scientific AM16/32B 

multiplexers and are measured every minute with a single channel on a Campbell Scientific CR6 

datalogger. 

 
(a) 

 
(b) 

Figure 3.2: (a) Example of single cell calibration in DTU PV labs with room lights on for visual clarity. (b) distribution 
of ISC measurements at STC of the 40 cells within MERLIN (μ = 5.37 A, σ = 0.07 A).  

3.2.2 Albedo test stands 
Ground-based albedo measurements have historically been made with upward and downward facing 

pyranometers (e.g., Figure 1.14). However, when albedo data is used in bPV applications, questions arise 

over whether spectrally selective instruments are appropriate.  

DTU installed three albedometers with pairs of low-cost EKO ML-02 photodiodes, two albedometers 

with spectrally flat pyranometers (one with Class A Kipp & Zonen SMP10s, one with Class C EKO MS40-

Ms), and a single spectral albedometer with a pair of EKO MS-711 spectroradiometers. The introduction 

of Publication VI describes how the spectrometers were calibrated in DTU’s lighting lab before field 

deployment. The Si-photodiodes have a Teflon diffuser that improves the instrument’s directional 

response, which make the angular-dependent response more comparable to a pyranometer’s rather 

than a reference cell with a flat glass cover. Leveling of the Si-Photodiode instrument proved particularly 

challenging due to its integrated cylindrically shaped mounting arm. Six separate albedo test stands 

were curated for 15 months with periodic leveling checks, cleaning, and removal of unwanted weeds. 

Five different albedos were tested during the 15 months including green grass, dry grass, gravel, a white 

tarp, and snow.  

The largest differences between pyranometer and Si-photodiode albedo measurements were observed 

when measuring green grass (Figure 3.3). Green grass albedo was roughly 10% higher when measured 

with Si-photodiodes than when measured with pyranometers. The bottom frames of Figure 3.3 reveal 

that the higher albedo measured by Si-photodiodes is mostly due to measured RHI, wherein the 

downward facing Si-photodiode reports RHI values up to 50 W/m2 higher than the downward facing 

pyranometer. The large discrepancy in RHI values is caused by the spectral reflectance of green grass. 

Specifically, it is the significant redshift in the spectral albedo that causes the Silicon photodetector to 

produce more photocurrent than it would have if illuminated with the AM1.5G calibration spectrum. 

The pyranometer is spectrally flat and does not respond to such spectral effects. However, bPV modules 

based on c-Si would respond to reflectance spectra similarly as the Si-photodiode shown in Figure 3.3. 
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Publication V uses the various albedo datasets collected at DTU to model bifacial gain of the large-scale 

bPV systems installed at the test facility to provide insight regarding the suitability of Si-based 

albedometers in bPV applications.  

 

Figure 3.3: Top) Example of diurnal albedo measurements of green grass using spectrally flat pyranometers and 
spectrally selective Si-photodiodes. Center) Ground reflected irradiance measured by downward facing 
instruments. Bottom) Global horizontal irradiance measured by upward facing instruments.  

3.3 Electrical mismatch induced by nonuniform rear irradiance on trackers 

3.3.1 Two-in-portrait single axis trackers (2P HSAT) 
Publication IV  uses experimental and theoretical approaches to calculate MML due to nonuniform RPOA 

on a 2P HSAT. In the experimental case, the high-resolution RPOA measurements from MERLIN are passed 

to Bishop’s [156] electrical model implemented in the pvmismatch [155] Python library. In the 

theoretical case, high-resolution RPOA measurements are generated using the bifacial_radiance [95] 

Python library and then passed to pvmismatch to calculate MML. Both methods were done for the 

natural albedo of green grass, and for a high albedo (0.6) white tarp that was placed beneath the 2P 

HSAT. The paper also presents comparisons of RPOA measurements from MERLIN and simulated RPOA 

from bifacial_radiance and the bifacialvf  [82] 2D VF model. 

The continuous measurements from the MERLIN setup provide insights regarding the spatial 

nonuniformity of RPOA on 2P HSATs. Figure A.1 and Figure A.2 in the appendix show heatmaps of RPOA 

measured by the center and edge modules on a clear day and cloudy day, respectively. The color legend 

shows how the irradiance of all 40 cells varies relative to the average total irradiance (i.e., relative to the 

sum of the GPOA front and average RPOA). The data reveals several interesting trends, many of which have 

been discussed in the literature. For example, on the clear day (Figure A.1) the reduction in irradiance 

due to the torque tube is most apparent at solar noon when the DNI is highest. Also observable on the 

clear day is that edge modules show lower spatial non-uniformity than inner modules 
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Figure A.2 shows the high-resolution RPOA measurements on a cloudy day. On such days where the 

diffuse fraction (DfHI/GHI) is near 100%, there is little difference in the spatial irradiance measured by 

the edge and inner panels. In other words, the edge brightening effect is not observed on cloudy days. In 

the morning and evening, the panel closest to the sky receives more irradiance than the panel closest to 

the ground, which indicates that bifacial panels mounted on the eastern and western sides should be 

connected in separate strings to prevent additional MML. Finally, the string closest to the sky 

experiences more electrical MML than the side closer to the ground. This is consistent with the findings 

in [158], which was presented at the same conference as Publication IV. 

Figure 3.4 shows MML results under clear and cloudy skies and under low and high albedo conditions. 

The clear sky index (KT) is written on the top of the plots to indicate the sky conditions. The MML shown 

here was calculated with Equation 1.9, which was discussed in Section 1.2.2. The results in Figure 3.4 

illustrate how MML changes with conditions, which means that PV simulation packages that use static 

MML values (e.g., PVsyst) are susceptible to inaccurate effective RPOA modeling. The MML values 

reported here consider the combined effect of rear and frontside irradiance, wherein the frontside 

irradiance is assumed to be homogeneous. The MML calculations used 5-minute averages of RPOA 

measurements, or simulated values from bifacial_radiance with 5-minute resolution. The DfHI and DNI 

measurements used in the bifacial_radiance RT simulation were time-synchronized with the RPOA 

measurements to ensure comparable results between the theoretical and experimental approaches.  
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Figure 3.4: Array-level mismatch losses on a 2P HSAT using measured and simulated rear irradiances. The different 
frames show diurnal mismatch trends under different sky and albedo conditions: a) sunny sky with grass albedo, b) 
cloudy sky with grass albedo, c) sunny sky with white tarp albedo, and d) cloudy sky with white tarp albedo.  

Figure 3.4a shows MML on a clear day with green grass albedo. Here, MML peaks at around 0.25% 

midday, and is comparable whether measured or modeled RPOA is used. Figure 3.4b shows MML on a 

cloudy day and above green grass. Here, the lowest MML of 0.15% occurs midday but increases above 

1% in the morning and afternoon when the GHI is less than 100 W/m2.  

Figure 3.4c and Figure 3.4d show MML during the high albedo test. The simulated albedo in the white 

tarp scenario assumed uniform coverage whereas the measured albedo was a narrow 5 m wide strip of 

material, and for this reason, MML in Figure 3.4c is higher when using RPOA from raytracing simulations. 

The albedo of the white tarp is about three times higher than the albedo of the green grass, but the 

clear sky MML is nearly an order of magnitude higher (i.e., MML is 2–3% depending on RPOA source). This 

occurs because albedo has a nonlinear effect on backside nonuniformity. In Publication IV, we used 

results from the low and high albedo tests to correlated MML and RPOA nonuniformity (Figure 18 and 

19). Our correlations showed better agreement to the model proposed by [57] than to that proposed by 

[154]. 
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Interestingly in Figure 3.4a and Figure 3.4c, the raytracing model shows that the MML of the eastern and 

western arrays peaks midday, but the measurements show that the eastern array MML peaks just 

before solar noon and the western array MML peaks just after solar noon. This phenomenon is most 

apparent in Figure 3.4c, but it is also present in Figure 3.4a. The reason for the discrepancy is still 

unclear. The raw RPOA measurements from the east and west halves of MERLIN show similar 

asymmetrical profiles as the MML Figure 3.4a and Figure 3.4c, thereby suggesting that the actual cell 

locations of MERLIN are not accurately represented within the raytracing model. However, to the best of 

our knowledge, the geometry and coordinate references in the raytracing model are consistent with the 

MERLIN sensor positions.   

Figure 3.5 shows error distributions of raytraced and measured RPOA at 40 cell locations. The MBE for all 

locations is -8.2 W/m2, indicating that the raytracing model consistently underpredicts the 

measurements. The MAE of all locations is 10.4 W/m2. Both the MBE and MAE are approximately double 

the RPOA errors from the software tested in Section 2.3, which were compared to pyranometer data. The 

MoBiDiG RT model also used bifacial_radiance for RPOA estimates and showed MBE and MAE of 

approximately 4.0 W/m2. Two likely reasons for the higher RPOA errors shown in Figure 3.5 are the high 

(±6.7%) uncertainty of the laboratory calibration, and the spectral mismatch factor of the c-Si cells inside 

MERLIN. The spectral mismatch hypothesis is backed up by the findings in Publication VI, which show 

spectral mismatch factors (MMF)6 of 1.25 when c-Si devices (incl. PERC, n-PERT and IBC) are mounted on 

the back of trackers and above grass. We did explore spectral simulations using bifacial_radiance, 

wherein we performed simulations iteratively for a single wavelength7 of light at a time. However, this 

process was time intensive, and we found that spectral simulations with the 2D VF model pvfactors were 

comparable to those from bifacial_radiance with a fraction of the computational requirements.  

 
6 Recall from section 1.2.2 that MMF above 1 indicate spectrally induced gains in photocurrent relative to the 
AM1.5G calibration spectrum. For example, MMF of 1.25 means 25% more photocurrent is produced than if 
illuminated with the AM1.5G spectral distribution.  
7 Radiance allows RGB reflectance values to be defined for the ground. This would lead one to believe that 
simulations could be performed three wavelengths at a time. However, a private correspondence with Silvana 
Oviatt from NREL recommended simulating a single wavelength at time. Furthermore, the Radiance command 
gendaylit only allows for a single DfHI and DNI value to create a description of the sky’s luminance.  
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Figure 3.5: Box plots showing the distribution of errors between modeled and measured RPOA at 40 locations on a 
2P HSAT. The red lines connect the mean error at each cell location within a mini-module. Cell 10 is closest to the 
torque tube, Cell 1 is the farthest from the torque tube.  

3.3.2 One-in-portrait single axis trackers (1P HSAT) 
Here we examine MML due to nonuniform RPOA on 1P HSATs. In these simulations, the geometry of the 

European Energy A/S tracker design was recreated using bifacial_radiance. The stringing architecture of 

the pvmismatch electrical model was updated to simulate a 144-cell module with half-cut cells. Such 

half-cell modules still have three bypass diodes, but the upper and lower module halves are paralleled. 

This design improves partial shade tolerance and makes modules with half-cells ideal for 1P HSAT 

applications where the TT directly shades the center of the module’s backside. The results here are 

purely theoretical because a MERLIN system was never custom-built for 1P HSATs. 

Figure 3.6 shows the midday MML on a 1P HSAT with different TT modifications. The midday MML is 

shown because this is the time at which MML peaks on clear days (e.g., Figure 3.4a and Figure 3.4c). 

European Energy’s standard design has a 12 cm wide square TT with a 7 cm gap between the TT and 

rear module plane. This base case design results in 0.44% MML, which is the highest MML out of all 

cases shown in Figure 3.6. Although this is almost double the midday MML observed on 2P trackers 

above grass, it does not represent a major loss factor.  

The largest decreases in MML are achieved when increasing the TT gap from 7 to 15 cm (~0.07% 

decrease) and when changing the TT shape from square to round or octagonal (~0.05% decrease). 

Painting the galvanized steel TT with high reflectivity (0.9) white paint has a negligible effect on MML 

(~0.01% decrease). These results indicate that redesigning the European Energy tracker with any variant 

shown in Figure 3.6 would not make economic sense in sight of the possible MML reductions. For this 

reason, European Energy still offers the base case 1P tracker design with unpainted, square TT, and 7 cm 

gap.  
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Figure 3.6: Variability of mismatch losses due to torque tube design on 1P trackers. The ‘gap’ refers to the distance 
between the torque tube and the back of the bPV array. 

The performance engineers at European Energy A/S need to simulate the 1P tracker in PVsyst. 

Therefore, annual simulations were run to calculate the backside mismatch loss factor and structural 

shading factors required by PVsyst. The annual results for backside (MMLRear) as a function of frontside 

GPOA in a sunny and temperate climate are shown in Figure 3.7. Additional raytracing simulations 

without the TT were run to estimate the structural shading factor, but these results are not shown here.  

 

Figure 3.7: Hourly backside irradiance mismatch losses over one-year for 1P HSAT (with square torque tube, and 7 
cm module gap). The lefthand plot shows results in Madrid and the righthand plot shows results in Roskilde. The 
dashed lines show the mean shade loss and mean frontside plane of array irradiance. 

The y-axis in Figure 3.7 only considers the electrical losses from backside irradiance, which is why the 

magnitude is higher than previously presented MML results. Figure 3.7 shows that the MML has a strong 

dependency on GPOA and the diffuse fraction. However, PVsyst and other bifacial simulation software 

currently only allow for a single static value. The average MML value may not be representative of 

annual losses because the distribution is skewed as shown by the histograms on the right side of Figure 

3.7. Therefore, the recommended MML value for use in PVsyst is an annual irradiance weighted MML 
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(MMG) shown in Equation 3.1. The irradiance weighted MMG for the Roskilde site is 8.2%, but shows 

some dependency on solar resource with 7.5% in Madrid. 

𝑀𝑀𝐺 =  
∑ 𝑀𝑀𝐿𝑅𝑒𝑎𝑟(𝑖) ∙ 𝐺𝑃𝑂𝐴(𝑖)8760

𝑖=1

∑ 𝐺𝑃𝑂𝐴(𝑖)8760
𝑖=1

 3.1 

 

3.4 The effect of spectral albedo on bifacial PV performance 
The albedo of natural and synthetic materials is known to vary as a function of wavelength, but most PV 

simulation tools to date do not incorporate the spectral properties of albedo into their algorithms. This 

is because ground reflected irradiance constitutes less than 2% of the total frontside GPOA for most 

traditional monofacial installations (i.e., an array tilt angle from horizontal ≤ 30° and albedo ≤ 0.25). In 

contrast, ground reflected irradiance contributes significantly to the energy produced by bPV systems 

because the backside RPOA is comprised primarily of ground reflected light. For example, the RPOA and 

GPOA measurements at DTU showed an average rear-to-frontside irradiance ratio of 8.0% (σ±5.8%) over 

one-year on fixed tilt systems. 

Publication VI uses 15-months of high-resolution spectral albedo measurements to calculate backside 

spectral mismatch (SMMBack) of three bPV cell concepts mounted on HSAT and fixed-tilt systems. High-

resolution spectral data were recorded every 5 minutes and under four albedo scenarios, which 

included green grass, dry grass, gravel, and snow. Multivariate correlations were generated from this 

robust dataset, which allow the estimation of SMMBack as a function of more commonly available 

parameters such as albedo, sky view factor, and sky diffuse fraction.  

Spectrally resolved GHI, RHI, and DNI were measured within a 300–1100 nm spectral range for 15 

months. The availability of spectral GHI and DNI allowed calculating spectral DfHI. Timeseries RPOA 

spectra were then simulated one wavelength at a time using the 2D VF model pvfactors. We selected 

pvfactors as the engine for 2D VF modeling due to its open-source nature and because it showed good 

agreement to broadband RPOA measurements in Publication II. HSAT and fixed-tilt systems were chosen 

for the simulations because they are common among large-scale bPV systems and are the same 

configuration as the bPV systems collocated at the DTU site. 

Figure 3.8 shows daily timeseries of SMMBack calculated with Equation 1.12. The error bars show the 

range of SMMBack calculated for bifacial PERC, n-PERT and IBC cells. The differences in SMMBack between 

the three devices were small (±0.01) because they are all single junction silicon cells with similar 

bandgaps. Recall that SMM values above 1 indicate spectrally induced ISC gains relative to AM1.5G, while 

SMM values below 1 indicate spectrally induced ISC losses. For example, SMMBack peaks midday at about 

1.25 in the HSAT simulations above grass, which means that a bPV’s backside will produce 25% more 

photocurrent in this condition than it would have if illuminated with the calibration spectrum. Curiously, 

the shape and magnitude of the diurnal SMMBack profile for HSAT above green grass shown Figure 3.8, is 

nearly identical the diurnal backside MML profile shown in Figure 3.4a. Such overlap implies that the 

max MML observed midday on clear days is nearly canceled by the midday SMMBack gains.    
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Figure 3.8: Backside spectral mismatch on mostly clear sky days. The error bars around each timeseries show the 
range of spectral mismatch values for three difference bifacial cell concepts.  

Figure 3.9 illustrates the dependency of backside spectral shifts on the view factor from the sky to the 

array’s backside (VFSky→PV,Rear) and on the view factor from the ground to the array’s backside 

(VFGround→PV,Rear). Except for the snow albedo case, the data shown in Figure 3.8 were recorded under 

clear skies. As expected, the lowest SMMBack values on the HSAT occur in the morning and afternoon 

when VFSky→PV,Rear is highest, and the highest SMMBack values occur midday when VFGround→PV,Rear is close to 

one. We expect the HSAT system to show the lowest spectral mismatch at the beginning/end of the day 

when at a 60° tilt because the sky diffuse spectrum is blue shifted on clear days [213]. The daily SMMBack 

values on the static 25° FT system do not change significantly, which follows the expected trend given 

the constant view factors VFSky→PV,Rear and VFGround→PV,Rear. 

As mentioned in Section 1.2.2, the literature contains several spectral models for mPV that are based 

largely on correlations with air mass. However, we found air mass to be a poor indicator of SMMBack. We 

used a bootstrap forest model to identify the most significant predictors of SMMBack from our available 

weather and tracker position data. We found that a simplified predictive model for SMMBack should at 

minimum include the backside array sky view factor (VFSky), the sky diffuse fraction (DF), and a 

classification of the albedo. Figure 3.9 shows such SMMBack multi-variate correlations using results from 

the HSAT simulations. The simulated SMMBack values follow the regression lines with a root mean 

squared error (RMSE) between 0.01 and 0.02. As far as we are aware, this is the first SMMBack model 

based on commonly found ground measurements and PV system geometry. 
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Figure 3.9: Backside spectral mismatch of bifacial PERC versus sky view factor for three measured albedo 
conditions. The tilt angle of the 2P HSAT is shown on the secondary x-axis above. 

The three frames of Figure 3.9 demonstrate how a simplified SMMBack model depends on the ground 

albedo. A more thorough SMMBack model would require correlations of additional materials such as sand 

and snow. However, spectral albedo measurement campaigns such as those done in Publication VI may 

be too resource intensive for this purpose. Instead, derivation of SMMBack at a 0° tilt (e.g., using spectral 

albedo from SMARTS) may be sufficient to simply replace the offset term and use the average 

coefficient values for the VFSky and DF parameters shown in Figure 3.9.  

In any case, hypothetical users of such a SMMBack model would first need to classify the albedo at the 

site in question (e.g., dry, or green grass), and then, they would need to select the appropriate 

correlation for that ground type. More research is needed to develop a method that integrates such a 

model into PV performance software. For example, how should classification of the ground surface be 

performed? The necessary information could potentially be obtained with measurements from a 

multifilter radiometer, or from remote sensing observations (satellite albedo).  

Spectral albedo curves are not highly structured like the sun’s spectrum [197]. The 0.4 nm wavelength 

resolution of the spectroradiometers used Publication VI therefore resulted in oversampling of the 

spectral albedo. The benefit of the high-resolution spectral albedo setup, however, is that down 

sampling can be conducted to identify when spectral mismatch factors show large discrepancies relative 

to those calculated with the high-resolution data. To this end, we truncated the 2048-pixel 

measurements down to 2–8 wavelength channels and repeated the SMMBack calculations. Table 3.1 

shows the different wavelength bands tested. In all these cases, the down sampled albedo spectra use 

the 7 nm full-width half maximum optical resolution of the MS-711 spectroradiometer. The spectral 

albedo between narrow band channels is interpolated with a first order spline fit. Values outside the 

wavelength ranges shown in Table 3.1 are extrapolated, with the condition that 0.001 and 1.0 are the 

minimum and maximum spectral albedo values allowed. See Publication VI for a discussion on how the 

different wavelength channel combinations were selected. 
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Table 3.1: Summary of wavelength channels used in the different down sampling tests of the high-resolution 
spectral albedo measurements. A 7 nm full width half maximum resolution was used in all scenarios.  

N 
Channels 

Center wavelengths (nm) 

2 500, 940 
3 500, 870, 940 
4 415, 615, 870, 940 
5 469, 555, 645, 858, 1050 
6 415, 500, 615, 673, 870, 940 
7 415, 500, 615, 673, 870, 940, 1050 
8 415, 555, 615, 673, 762, 870, 940, 1050 

 

Figure 3.10 shows selected daily timeseries of SMMBack calculated with the seven down sampling cases 

and with the high-resolution spectral albedo measurements. The detailed error summary presented in 

Publication VI indicates that SMMBack can be reasonably approximated using spectral albedo 

measurements with just 4–8 narrow band channels.  

The two and three-channel down sampled cases show notably higher errors, especially in green grass 

and gravel albedo conditions. Given that many PV parks globally are constructed at sites where the 

spectral albedo is comparable to the green grass and gravel albedo conditions measured here, our down 

sampled SMMBack results indicate that four narrow band channels is likely the bare minimum to monitor 

spectral albedo in bifacial PV applications. Multifilter Instruments with the 6–8 wavelengths shown in 

Table 3.1 could be advantageous in agricultural PV applications because they would also sample 

photosynthetically active radiation (PAR).  

 

Figure 3.10: Backside spectral mismatch of the PERC cell calculated with down sampled spectral albedos 

and high-resolution measurements.  
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3.5 How the choice of albedo dataset influences bifacial gain simulations 
Here we analyze the differences in bifacial energy gain that can occur due to different albedo data 

sources. The albedo data sources investigated include: 

1. Measured spectral albedo from spectroradiometers,  

2. Measured broadband albedo from thermopile pyranometers, 

3. Measured broadband albedo from Si photodiodes, 

4. Constant spectral albedo from ASTER data base, and 

5. Constant albedo assumption of 0.2. 

The spectral albedo measurements are from the EKO MS711 setup described previously. The broadband 

albedo measurements are from Class C thermopile pyranometers and Silicon-photodiodes. Each of the 

five albedo data sources is used to generate timeseries RPOA and GPOA spectra using pvfactors. In the case 

of the Si-photodiode and pyranometer measured albedo, the albedo passed to pvfactors is the same at 

all wavelengths, proportional to the measurements at each timestamp (i.e., a ‘flat’ spectral albedo curve 

is produced). In the case of constant spectral albedo data, the data originates from the ASTER library 

[214], which is the source of the spectral albedo files in SMARTS. In all five cases studied, the same 

spectral DNI and spectral DfHI are input to pvfactors. This ensures that differences in modeled POA 

spectra are attributable to the albedo data source. 

The front and back POA spectra are summarized using a spectrally weighted bifacial gain (BEGλ), which is 

calculated with Equation 3.2. 

𝐵𝐸𝐺𝜆 =
∫ 𝑆𝑅𝑅𝑒𝑎𝑟(𝜆) ∙ 𝑅𝑃𝑂𝐴(𝜆) 𝑑𝜆

𝑏

𝑎

∫ 𝑆𝑅𝐹𝑟𝑜𝑛𝑡(𝜆) ∙ 𝐺𝑃𝑂𝐴(𝜆) 𝑑𝜆
𝑏

𝑎

 ∙ 100% 3.2 

Where SRFront and SRRear are the bPV cell’s spectral response of the front and backside, with 

measurements of a bifacial PERC cell used here. The integration limits a to b are 300 to 1200 nm, with 

data from 1050 to 1200 nm filled in by SMARTS. The BEGλ in Equation 3.2 is simply the ratio of short-

circuit current density (JSC) generated by the backside relative to the JSC generated by the frontside. This 

equation does not include adjustments for structural shading on the backside of the array, or any 

possible thermal differences between mPV and bPV cells that could affect voltage. Nonetheless, 

Equation 3.2 is still useful for our objective, which is to understand the differences in bifacial gain that 

can occur due to different albedo data sources.  

Figure 3.11 shows modeled bifacial gains for PERC on fixed-tilt and HSAT systems above green grass. The 

daily bifacial gains of the 50 kWp bPV arrays during the same four-month period is also shown. Please 

see Publication V for results from the other albedo scenarios tested. The green grass albedo scenario is 

shown here because it is the only condition where onsite measurements of large-scale monofacial and 

bifacial PERC systems are available. The diamonds within each box plot show the 95% confidence interval 

of the mean, which are small because of the large number of observations. Recall that the pyranometer, 

Si-photodiode and spectroradiometer albedo data are continuous measurements whereas the constant 

albedo (0.2) and SMARTS spectral albedo do not change with time. 
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Figure 3.11: Variability of simulated bifacial gain during the four-month green grass albedo period using five 
different albedo sources. The ‘bPV Strings’ column shows the distribution of daily bifacial gains measured by 50 
kWp inverters during the same period. The SMARTS spectral file used is ‘GrazingFields.dat’. 

The bifacial gain calculated with Si-photodiode albedo data is about 3% higher than when calculated 

with pyranometer data. This positive bias is consistent with results shown in Figure 3.3 and is again 

explained by the large ‘red shift’ of the grass albedo spectrum relative to AM1.5G. Figure 3.11 shows 

that the five albedo data sources cause the simulated bifacial gain to change by as much as 3%. The 

measurements are shown in Figure 3.11 to help identify which of these albedo sources is most 

representative of bPV performance. However, a fair comparison of the model and measurement requires 

at least two adjustments: 1) the model would need to account for structural shade losses, and 2) the 

spectral responsivity used in the model would need to be of a full-size module (i.e., with junction boxes, 

frame etc.), not an individual cell. If such adjustments were implemented, the bifacial gain in all 

simulations would be reduced. 

Figure 3.12 shows multivariate correlations of simulated BEGλ (Equation 3.2) and measured bifacial gain. 

These plots, along with their associated p-values and confidence intervals, were created to identify which 

albedo data source yields bifacial gain results that best correlate with the measurements. The r values 

shown in the color scales show that simulated bifacial gains correlate well in all cases, irrespective of the 

albedo dataset used. However, the correlation of simulated and measured bifacial gains is significantly 

lower with fixed-tilt r values of roughly 0.65, and HSAT r values of roughly 0.80. The bottom row of Figure 

3.12 shows that no single albedo source results in significantly higher correlation over any other with 

respect to the measured bifacial gain. This leads to an unsettled conclusion regarding our initial question 

whether spectrally selective albedometers are more suitable than broadband albedometers in bPV 

applications.  
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Figure 3.12: Correlation matrices of bifacial energy gain using five different albedo data sources. The bifacial gain 
from inverter-level electrical measurements is shown on the bottom of the graphs. The color scale shows 
Pearson’s r coefficient between two data streams.   

When selecting one albedometer type over the other, the accuracy of the sensors must be considered. Si-

photodiodes tend to have higher measurement uncertainty than thermopile pyranometers because of 

their higher spectral errors during field operation and during laboratory calibration. For example, Reda et 

al. found that typical Si-photodiodes have an expanded uncertainty of about 8% whereas thermopile 

pyranometers have an uncertainty of about 4% [215]. Furthermore, the use of Si-photodiodes in albedo 

monitoring would go against decades of precedent. For example, albedo databases such as the Surface 

Radiation Budget network (SURFRAD) are populated with measurements from thermopile pyranometers. 

Finally, PV simulation software typically expect irradiance measurements (e.g., GHI, DNI) from broadband 

pyranometers, although NREL’s SAM does allow use of GPOA measured by reference cells [216]. These 

considerations lead us to recommend that spectrally flat pyranometers be used for albedometers within 

bPV parks. However, project developers and owners who wish to understand the influence of spectral 

albedo effects are recommended to additionally install a spectrally selective albedometer, such as the Si-

photodiode instruments used in Publication V.  
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3.6 Summary and conclusions 
This chapter presented investigations on how the nonuniformity and spectral distribution of RPOA affects 

bPV performance. In the first section, we showed that nonuniform RPOA leads to modest MML on 

common bPV configurations such as 2P trackers (MML ≈ 0.2% midday) and 1P trackers (MML ≈ 0.4% 

midday). The magnitude of MML shown here is consistent with the theoretical and measured MML 

published by other authors for common bPV system designs (e.g., [151], [217]). Our tests with a high 

reflectance sheet showed that albedo has a nonlinear effect on MML. The high-resolution RPOA 

measurements and simulations performed over various albedo and sky conditions allowed us to create 

MML correlations, which ultimately showed good agreement to the model proposed by [57]. The MML 

model validation presented in Publication IV  is particularly useful if the model proposed in [57] is ever 

implemented within PV simulation software such as NREL’s SAM.  

A sensitivity study was performed on 1P trackers to identify possible design changes that could reduce 

MML. This was a difficult task considering that MML due to nonuniform RPOA is already small in the base 

case design. With raytracing and electrical modeling, we identified that increasing the TT gap from 7 to 

15 cm has the largest potential to decrease MML (~0.07% decrease), and that changing the TT shape 

from square to round or octagonal has similar potential (~0.05% decrease).  

In the second part of this chapter, we used high-resolution spectral albedo measurements and 2D VF 

modeling to calculate SMMBack for the most common bPV cell concepts and mounting configurations. 

This work demonstrated the dynamic nature of SMMBack on daily and seasonal timescales. On clear days, 

it was observed that spectrally induced performance gains peak mid-day wherein backside spectral gains 

were 25%, 15%, and 5% for green grass, dry grass and gravel, respectively. We found that SMMBack tends 

to be lower on tracked versus fixed tilt systems because the backside of trackers see a larger fraction of 

the sky hemisphere and because the blue-shifted nature of the clear sky diffuse spectrum offsets some 

of the red-shifted nature of the spectral albedos studied. The SMMBack values simulated in the various 

albedo cases at 5-minute resolution were used to create reduced order models in the form of 

correlations with sky diffuse fraction and sky view factor. However, additional work is needed to 

develop a procedure to integrate said correlations into bPV performance modeling.  

Finally, we modeled bifacial gain with timeseries albedo measurements from three unique sensor types 

and with static assumptions for spectral and broadband albedo. We found that these five albedo data 

sources caused substantial variability in modeled bifacial gain. Specifically, we found bifacial gain above 

green grass was 3% higher when using Si photodiode measured albedo than when using thermopile 

pyranometer albedo. If frontside irradiance is assumed to be 10-times the backside irradiance, this 3% 

positive bias in bifacial gain corresponds well to the 25% photocurrent gains calculated in Publication VI 

for horizontally mounted c-Si bPV cells above grass. Correlations of modeled and measured bifacial gains 

from collocated bifacial PERC arrays did not reveal a clear answer regarding whether spectrally selective 

albedo measurements are more accurate than broadband albedo measurements in bPV applications. 

Additional considerations for instrument accuracy and historical albedo measurement practices led us to 

the conclusion that spectrally flat pyranometers should form the basis for albedo measurements within 

bPV parks, but spectrally selective albedo measurements remain optional for any stakeholders interested 

in understanding spectral effects. 
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Chapter 4. Characterization and performance monitoring of bifacial PV 

modules and systems 
 

“The interplay of measurements and computational modeling has been important to PV rating from its 

earliest days.” Keith Emery in his 2013 IEEE Cherry Award keynote talk 

 

4.1 Introduction 
This chapter begins with a summary of two interlaboratory comparisons (ILCs) of PV measurements. The 

first is led by the EMPIR PV-Enerate consortium, with DTU as a participant, and is one of the first ever 

ILCs on bPV measurements. DTU’s results within this ILC were never published but are presented here 

with the consortium’s permission. The second ILC presented here is on incident angle modifier (IAM) 

measurements and was orchestrated by DTU (Publication VII). The measurands studied in both ILCs play 

a fundamental role in PV energy yield modeling. In the IAM study, we demonstrate how the state-of-

the-art IAM measurement methods affect energy yield modeling uncertainty. 

The results of the EMPIR led bPV measurement comparison dovetail with Publication VIII, where we 

show how calibrated bPV modules can be used to monitor outdoor bPV performance. Specifically, it is 

shown how bPV modules measured indoors with the IEC TS 60904-1-2 procedures can be used outdoors 

as large-area sensors that measure effective irradiance. The proposed method for RPOA monitoring in 

Publication VIII was conceptualized as a result of studying the bifacial-specific loss factors discussed in 

Chapter 3. The method potentially simplifies the design of bPV monitoring systems because the large-

area reference modules inherently capture backside nonuniformity and spectral effects. Publication VIII 

was presented at the 2022 IEEE PVSC and was an invited contribution to the IEEE Journal of 

Photovoltaics.  

4.2 Interlaboratory comparisons to decrease uncertainty in measurement and 

modeling  
Interlaboratory comparisons (ILCs), sometimes referred to as round-robins, play an essential role in 

establishing confidence in measurements. For example, ISO 17025 accredited laboratories are required 

to participate regularly in ILCs to ensure that their measurements are consistent with other accredited 

laboratories. ILCs can also be used to assess the clarity and accuracy of novel measurement protocols 

and procedures. This later reason was a key motivator for testing the IEC measurement protocols 

examined here.  

The IEC TS 60904-1-2 procedure for rating of bPV modules and cells was published in 2019. Discussions 

are presently being held by TC 82 as to whether this technical specification will become an IEC standard. 

The results of the EMPIR led bPV round-robin, and that presented by [181], will undoubtedly be 

discussed by the TC 82 (WG 2) members during their decision-making process.  

The IEC 61853-2 procedure to measure incident angle effects was published in 2016—two years before 

we started the IAM ILC in 2018 (Publication VII). The NMOT and IAM sections of the IEC 61853-2 

standard are presently being amended, and within this revision effort, a second IAM ILC is already in 

progress. The knowledge obtained in the initial IAM ILC has helped shape the design of the second ILC 
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effort regarding the type of test samples distributed, and the laboratories (i.e., measurement systems) 

included. Furthermore, the results of the initial IAM ILC provide a baseline to which all future ILCs can 

compare and improve upon.  

4.2.1 Bifacial reference module calibration led by EMPIR PV-Enerate consortium 
DTU learned of this ILC effort during the 2021 EUPVSEC, when George Koutsourakis presented the first 

results from Fraunhofer ISE, TUV Reinland, Physikalisch-Technische Bundesantalt (PTB), and University 

of Applied Sciences of Italian Switzerland (SUPSI) [180]. George concluded his talk by mentioning that 

the effort was still on going, so we immediately reached out to him, and the modules were sent to DTU 

for testing. The test modules in the comparison included bifacial PERC, n-PERT and SHJ.  

The ISC and PMAX BiFi curves of each device measured at DTU are shown in Figure 4.1. According to IEC TS 

60904-1-2, the BiFi rating is the linear slope of these regressions and the offset (i.e., RPOA = 0 W/m2) is 

the STC rating. The BiFi rating was intended to provide a standardized and meaningful way for 

manufacturers to report bPV electrical performance, but so far as we are aware, manufacturers are still 

not implementing the BiFi rating on their datasheets. The error bars in Figure 4.1 show the expanded 

measurement uncertainty at 1000 W/m2.  

 

Figure 4.1: BiFi curves of ISC and PMAX measured on three different bPV technology types. The slope is the BiFi rating 
and the offset is the frontside measurement at STC. The error bars show the measurement uncertainty at STC. 

Figure 4.2 shows PMAX results from six participating laboratories wherein DTU’s results are labeled 

‘Partner 6’. The ISC, VOC, bifaciality, and BiFi results are presented in the Appendix (Figure A.3, Figure A.4, 

and Figure A.5). All but three of the 21 frontside PMAX results are within ±1% of the group median, the 

exceptions being DTU’s measurements on module 3/4 and Partner 2’s measurements on module 6. 

Backside measurements are promising, but agreement among the six labs is not as good as for the front. 

Discussions with George Koutsourakis revealed that not all participants applied a backside SMM 

correction, which could cause some of the differences. The backside PMAX agreement was generally 

within ±2% of the group median with few exceptions such as module 1, DTU’s module 3/4 

measurements and Partner 2’s module 5 measurements.  
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Figure 4.2: Front and back PMAX results normalized to the group median. These graphs were prepared by George 
Koutsourakis of NPL within the EMPIR funded PV-Enerate project (https://www.pv-enerate.ptb.de/). DTU is 
partner number six. Modules 1 and 2 are bifacial n-PERT, modules 3 and 4 are bifacial SHJ, and modules 5 and 6 
are bifacial PERC. Module 7 is monofacial PERC.  

DTU’s measurements of the n-PERT (Module 1 and 2) and PERC (Module 5 and 6) modules are within 

±1% of the group median. Our electroluminescence (EL) images of Module 1 showed cell damage upon 

arrival, which is likely why DTU’s backside PMAX measurement on this module is 4% lower than the 

median. DTU’s measurements of the SHJ devices (Module 3 and 4) were about 4% higher than the other 

five labs, but the error bars still overlap with the group median. DTU’s uncertainty model is based on the 

principles laid out in [130]. Within this model, there are uncertainty contributions that are device-

specific, such as the module’s frame thickness and the hysteresis of forward and reverse I-V sweeps. 

Although the uncertainty of SHJ measurements is nearly double that of n-PERT and PERC measurements, 

the measurement uncertainty always overlaps with the group medians. This gives indication that the 

uncertainty model accurately represents how well we know the true measurand.   

The SHJ module was challenging to measure due to the combination of 1) the Endeas solar simulator’s 

short (~4 ms) voltage sweep, and 2) the high minority carrier lifetime of SHJ cells. PV cells with high 

carrier lifetimes are associated with increased VOC and efficiency but are challenging to measure 

accurately with short-pulsed solar simulators [218]. The accumulation of charges in a PV device can be 

represented in the SDE with a capacitor in parallel with the diode. Hence, PV modules with high 

efficiency (carrier lifetime) are often labeled as ‘high capacitance’ devices. PV modules with large 

capacitance can show notable differences between their I-V curves swept in the forward direction (i.e., 

ISC → VOC) and reverse direction (i.e., VOC → ISC). For example, PMAX of the SHJ modules differed by ±5% 

when measured in forward and reverse directions. DTU’s Endeas solar simulator uses a patented 

Capacitance Compensation (CAC) method [219] to reduce transient artefacts generated during the fast 

voltage sweep. When the flash pulse is roughly 5 ms, as is the situation in the DTU system, the CAC 

method length can minimize errors of cells with VOC less than approximately 700 mV. The VOC of cells 

within the SHJ module, however, is roughly 720 mV. According to calculations by [218], a 100 ms pulse 

duration is required to minimize SHJ errors to less than 1% with direct I-V measurements (i.e., no 

capacitance corrections). Despite DTU’s low proficiency in SHJ measurements, the excellent agreement 

of the PERC measurements gives us confidence that this module type can be calibrated using the DTU 

solar simulator.   

https://www.pv-enerate.ptb.de/
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4.2.2 Incident angle modifier (IAM) 
The IAM function plays a fundamental role in estimating the effective irradiance received by a PV 

module or array. The IAM accounts for reflections at the glass-air interface that change with AOI. 

Angular-dependent absorption and spectral effects are also present in PV systems, but reflection is the 

primary optical loss embedded in an IAM function. The IAM function can be measured indoors or 

outdoors, but in either case, care must be taken to suppress, or correct for, diffuse light. This is because 

the AOI term in the IAM formula (Equation 1.17) assumes that all impinging photons come from the 

same direction (i.e., photons are collimated). Accurate measurement of the AOI, and precise alignment 

of the test device within the optical axis of rotation, are additional requisites for accurate IAM 

measurements.  

PV system modelers may choose to use default IAM profiles in their simulations, or they may choose to 

use measured IAM data from a test laboratory. A PV project developer like European Energy A/S faces 

such a question regularly. Figure 4.3 shows IAM profiles extracted from eight test reports that were 

provided to European Energy A/S by three laboratories during 2020. The figure also shows three 

theoretical IAM curves generated with the ASHRAE model [186] and with the Fresnel equations using 

assumptions for non-coated and anti-reflective coated (ARC) glass. Figure 4.3 uses a value of 0.056 for 

the angular loss coefficient bo. PVsyst uses a default value of 0.05 for bo, which would increase the IAM 

shown in Figure 4.3 by 0.01–0.02 (1-2%). The procedure used to calculate IAM with the Fresnel 

equations essentially follows that used by [110].  

The eight laboratory measurements shown in Figure 4.3 were performed on modules produced by Eging 

(N=1), JA Solar (N=1), Longi (N=3), and Risen (N=3). The modules have power class ratings of 380–525W. 

TUV Reinland tested two modules, TUV SUD tested four modules, and Dekra tested two modules, but no 

two labs tested the same module. Details of the modules’ ARC are mostly missing. We reached out to 

Eging about why Dekra’s IAM measurements of the Eging module are so optimistic—well above the 

simplified models for single layer ARC glass. Their response was that the modules they produced for IAM 

testing had a double layer ARC (DLARC). As far as we are aware, DLARC on PV module glass is not yet 

commercially available.   
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Figure 4.3: Incident angle modifier measurements provided by three laboratories on eight separate modules, 
wherein no laboratory measured the same two modules. The solid blue, green and red lines show the mean 
measurement at the test labs. The transparent bands around each solid lines show the range of measurements 
obtained at each lab. Theoretical curves from the ASHRAE model and the Fresnel equations are also shown.  

Although no two labs in Figure 4.3 tested the same PV module, the data lead one to speculate that 

significant IAM discrepancies can be caused by the test methodology used. The concern around 

comparability of methodologies was a key motivator for organizing the extensive IAM ILC that ultimately 

became Publication VII. An additional motivator for DTU was the IAM measurement system had been 

recently developed [220], but was never sanity checked against measurements at other labs. DTU’s 

novel laser driven light source (LDLS) approach to IAM measurements heightened our curiosity 

regarding its comparability to other labs. 

The IAM ILC invited 12 laboratories representing seven countries and two continents. Most importantly, 

the participating laboratories employed various approaches to IAM measurements, which included five 

unique light sources and various types of rotation stages. The light sources used were mostly Xe lamps 

(N=5) and sunlight (N=3), but other light sources were used and included tuneable lasers (N=1), Halogen 

lamps (N=1), modulated LEDs (N=1) and DTU’s LDLS (N=1). The test samples sent to the labs were 

encapsulated in uncoated PV glass. The different cells measured were a mono-Si Al-BSF cell, and two 

multi-Si cells with different surface textures. In the end, only the mono-Si cell and the multi-Si cell with 

reactive ion etching (bSi RIE) were used for analysis due their distinctive IAM profiles. See Table 2 within 

Publication VII for more information on the test samples.  

ILCs require a reference value (XRef), and optionally a reference uncertainty (UCRef), to assess the 

participating labs’ proficiency. These values can come from an accredited or national laboratory, or from 

some predetermined source. In this work, we used a weighted averaging approach to determine both 

XRef and UCRef, in which we weighted the IAM measurements according to the uncertainty reported by 

the participants. Such a weighting approach can bias the proficiency test results if the laboratories have 

uncertainty models that are oversimplified or too conservative. Although we did not review the 
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uncertainty models of participants, their reputations as expert agencies gave us confidence that they 

had thorough uncertainty models. The weighted averaging approach we used to derive the XRef and  

UCRef values essentially follows that used in [131], [221], [222]. The reference values at each AOI were 

then used to derive the so-called En proficiency metric [223], which is commonly used by the metrology 

community to assess how well measurements agree within their stated uncertainty. DTU and five other 

labs with uncertainty models showed |En| ≤ 1 for both test devices at all AOIs. When |En| is less than 

one, it demonstrates that measurements are within the stated uncertainty. See Publication VII for more 

details of the uncertainty models reported by the participants and the En performance statistics. 

The top frame of Figure 4.4 shows the median IAM measurements of the mono-Si and BSi RIE sample 

types. The BSi RIE sample type shows less reflection loss than the mono-Si sample, but the difference 

between the two sample types is always < 0.015. The modest improvement in angular-dependent 

performance could be due to a combination of the BSi nanostructure and the white backsheet. The 

bottom frame of Figure 4.4 shows box plot distributions of the differences between each lab’s IAM 

measurement and the weighted mean (Xref), which is calculated with IAM measurements from seven labs 

that reported uncertainty. 

 

Figure 4.4: Top) Median IAM at each AOI for two sample types. The error bars at each AOI show the interquartile 
range. Bottom) Box plots showing the differences to the weighted mean Xref. The dashed reference lines are ± 2%.  

The IAM measurement agreement is within ±2% until about AOI = 65°, but from 70° to 85° the range—

excluding outliers—increases rapidly from 2.5% to 23%. There are four outliers not shown in Figure 4.4 

that occur at ± 85°. These outliers are between 44% and 24% low to the weighted mean Xref. All four 

extreme outliers at ± 85° were reported by the same lab. Finally, at large AOIs in both the positive and 

negative direction, we observed that the range of IAM measurements is higher for the BSi RIE sample 
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than for the mono-Si sample. This could be due to the nature of the BSi nanostructures, which create a 

graded refractive index at the Si-EVA interface.  

The laboratories’ IAM measurements were then used to simulate energy yield in the six standard 

climates of IEC 61853-4. The code used for this was debugged previously during the early 

intercomparison rounds presented in Section 2.4.1 (Publication III). IEC 61853-3 uses the Martin and 

Ruiz IAM model with its single angular loss coefficient ar, but here we additionally test the ASHRAE 

model with its single angular loss coefficient bo. The participants’ IAM measurements were fit to these 

models to extract the ar and bo values of each IAM profile. Simple multiplication of the IAM model with 

the cosine adjusted DNI allows one to calculate the effective POA beam component. It is more complex 

to derive the reflectance-adjusted diffuse POA component, but this can generally be done in one of two 

ways. The first approach is to integrate the IAM losses over a 2π hemisphere and the second is to use an 

analytical expression that approximates the double integral. Martin and Ruiz derived the closed-form 

expression for their model [184], whereas the closed-form of the ASHRAE model we took from [224]. 

The numerical integration of diffuse IAM losses followed the procedure described by [225]. 

 

Figure 4.5: Annual angular losses of global irradiance using the Martin and Ruiz IAM model (left) and ASHRAE IAM 
model (right). Each circle marker represents a single ar or bo coefficient extracted from a participant’s 
measurement. The dotted lines show the results using the closed-form equation to apply the angular-dependent 
losses and the solid lines show the results using integration to apply the losses.  

Figure 4.5 shows the annual angular losses (AAL) of global irradiance when using the Martin and Ruiz 

and ASHRAE IAM models. The dotted lines show the climate-specific AAL when the closed-form 

approximation and the solid lines show the AAL when the calculation is performed by means of 

numerically integrating the angular-dependent losses across 1° isotropic sky segments. The closed-form 

approximation results in 0.2% to 0.4% higher AAL across all climates, but only when using the Martin 

and Ruiz IAM model.  

When using the ASHRAE IAM model, the two methods of applying diffuse losses cause AAL variations 

below 0.1%. The climate-specific AAL using the ASHRAE model follows the same relative order as that of 

the Martin and Ruiz model, but the magnitude of the losses tends to be slightly higher (< 0.5%) when 

the ASHRAE fitting model is used instead of the Martin and Ruiz model. This could be because the 
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ASHRAE model tends to underpredict the physically measured angular-dependent losses by 2% to 3% 

between 40° and 65° AOI. 

Figure 4.5 shows that more AAL occurs in climates with higher average AOIs (e.g., Temperate Coastal). 

The range of global AAL is highest for the most northern climates with high diffuse ratios and higher 

annual average AOIs, and lowest in southern climates where lower diffuse ratios and lower average AOIs 

are observed. For example, in the case of the Temperate Coastal climate (56°N), global AAL varies from 

3.2% to 6.7%, whereas in the Subtropical Arid climate (33°30’N) global AAL varies from 2.1% to 4.7%.  

We also used the participants IAM measurements to calculate CSER (Equation 2.1). The range of IAM 

measurements reported in the IAM ILC resulted in a 1.0% to 1.8% range in CSER values, depending on 

the climate. This result corresponds well with the rough estimation presented in [138] that the 

uncertainty of AOI measurements will lead to a 1% uncertainty in CSER. Finally, we calculated the 

differences in annual energy yield due to the different IAM profiles and we found a range from 1.0% to 

1.5%, depending on the climate. It should be emphasized that the incident angle test is one of four 

measured characteristics in the IEC 61853 series and the uncertainty of the other three characterizations 

(i.e., performance matrix, spectral responsivity, and thermal behavior) should also be considered when 

considering the overall uncertainty of the energy rating standard. Refer to Publication VII for more 

details on the CSER results. 

We collaborated with the Institute for Solar Energy Research in Hamelin (ISFH) at the end of the IAM ILC. 

We provided them with detailed data regarding the optoelectrical properties of the test samples (e.g., 

glass spectral transmittance, backsheet spectral reflectance, grid finger spacing etc.) and asked them to 

simulate the IAM with their raytracing model [85] [226]. The results obtained using the ISFH ray tracing 

simulations were all within the inner quartile range of IAM measurements. This result suggests that IAM 

profiles need not be measured in the lab. So long as the detailed optoelectrical properties are known, 

the IAM can be simulated with a suitable raytracing framework. Simulations have an advantage over 

measurements, especially at AOI ≥ 85°, because measurements at these oblique angles are subject to 

high uncertainty and poor reproducibility. Pease refer to Publication VII for more details on raytracing 

simulations. 

4.3 Small-area sensors versus large-area reference module for rear irradiance 

monitoring 
The most basic parameters to measure in PV monitoring systems include irradiance (in-plane, and 

horizontal), temperature (back-of-module and ambient), electrical output (DC and AC), and windspeed. 

In-plane irradiance (GPOA) is the most important factor influencing PV output, and for this reason, high-

quality PV monitoring systems require great diligence concerning the GPOA instruments’ alignment, 

soiling mitigation, dew and frost mitigation, and recalibration. Although the backside irradiance RPOA 

represents a fraction of the frontside GPOA, the RPOA must also be considered as a resource worthy of 

continuous monitoring.  

Figure 4.6 shows one-year of back-to-front irradiance ratios (BFIR) for the two bPV system types 

installed at DTU Risø. RPOA in these diagrams is the average of two pyranometers mounted on the back 

of the system (i.e., two on HSAT and two on the fixed tilt). The histogram boarders show the annual 

distributions of BFIR and GPOA for each system type. The color scale shows the density of BFIR and GPOA 

observations clustered into ten quantiles. The mean BFIR of both system types is skewed because of the 
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high BFIRs that can occur at low GPOA. The annual median BFIR is 9.1% and 7.4% for the HSAT and fixed 

tilt systems, respectively. The HSAT has a wider pitch than the fixed tilt system (i.e., 12 m vs. 7.6 m), 

which results in less self-shading and a higher median BFIR. The BFIR is of course dependent on the 

albedo. The broadband albedo at the DTU Risø site is about 0.2, which is comparable to most natural 

ground surfaces. Therefore, the distributions of annual BFIR shown in Figure 4.6 are likely to be similar in 

most utility-scale bPV parks. 

  

Figure 4.6: Rear to frontside irradiance ratio versus frontside irradiance for two system types: trackers (left) and 
25° fixed tilt (right). Measurements shown here are made with thermopile pyranometers. Each plot contains 
roughly one-year of measurements at DTU Risø. 

IEC 61724-1 states that RPOA measurements are not required in Class B rated monitoring of bPV systems. 

Figure 4.6 shows that in Class B monitoring systems, roughly 7–9% of the annual solar resource is simply 

not recorded. In other words, Class B systems only monitor 91–93% of the available resource. The 

distributions of annual BFIR in Figure 4.6 can demonstrate the value of adding RPOA measurements to a 

bPV monitoring system. When RPOA sensors are deployed, the data allows owners and operators to have 

a full picture of the key performance indicators (KPIs) that are frequently used for performance 

guarantees and/or condition monitoring.  

Class A monitoring systems must have RPOA measurements at multiple locations, with the exact number 

of RPOA sensors dependent on the bPV plant’s capacity. IEC 61724-1 provides a bifacial performance ratio 

(PRBIFI) formula, which requires RPOA data. The PRBIFI adjusts the reference yield for RPOA with a bifacial 

irradiance factor (BIF) as shown in Equation 4.1.  

𝑃𝑅𝐵𝐼𝐹𝐼  =  

𝑃𝑜𝑢𝑡
𝑃𝑆𝑇𝐶

⁄

𝐺𝑃𝑂𝐴 ∙ 𝐵𝐼𝐹
1000 𝑊/𝑚2⁄

 4.1 

Where POUT is the power output of the system, PSTC is the rated capacity at standard conditions, GPOA is 

the frontside irradiance, and 1000 W/m2 is the reference irradiance. In practice, PR and PRBIFI are 

typically integrated over some predetermined timescale such as days or months. The BIF term in 

Equation 4.1 adjusts the frontside irradiance for the rear-side irradiance according to Equation 4.2.  
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𝐵𝐼𝐹 =  (1 + 𝜑𝑝𝑚𝑎𝑥 ∙
𝑅𝑃𝑂𝐴

𝐺𝑃𝑂𝐴

) 4.2 

Where 𝜑𝑝𝑚𝑎𝑥 is the bifaciality factor of PMAX and RPOA is the rear-side irradiance. Without the BIF term, 

the PR of bPV systems is frequently above 1. Such a result is peculiar because PR greater than 1 indicates 

no energy losses were incurred during field operation, relative to reference conditions. Although this 

result is easily explained by the bifacial energy gain, PR greater than 1 is nonintuitive for most PV 

professionals. Hence, the advantage of PRBIFI is that bPV system PRs become more comparable to those 

of mPV systems. However, since IEC 61724-1 is unclear regarding how RPOA averaging should be done, a 

potential pitfall of PRBIFI is that it is influenced by RPOA sensor sampling (i.e., RPOA nonuniformity), and the 

type of sensor used (i.e., RPOA spectral effects).  

Publication VIII investigated how bifacial reference panels used as large-area irradiance sensors can 

circumvent the complexities involved in RPOA measurements. The premise is that the reference modules 

have the same irradiance-current response as the power producing modules in the array. Hence, 

monitoring the ISC of a calibrated reference module should capture the heterogeneity and spectral 

albedo effects that were studied in Chapter 3.  

A 14.2 kWp array of recently produced high power (595 Wp) modules was used for testing the bifacial 

reference panel method. Before the modules were deployed in the field, ten panels were randomly 

selected for flash testing at DTU according to the single-side illumination method described in IEC TS 

60904-1-2. Two reference modules were then mounted within the 14.2 kWp string. One of the 

reference modules was made monofacial by applying several spray-on layers of air-dry Plasti Dip® rubber 

to the back glass. The other reference module was not modified and thus had the same properties as 

the bifacial modules in the 14.2 kWp string. The monofacial and bifacial reference panels allowed us to 

decouple the total irradiance into frontside GPOA and rear-side RPOA contributions. A two-channel EKO 

PV-Blocks system measured I-V curves of both reference panels every five minutes and held them at 

PMAX between I-V scans. We also performed continuous inverter-level I-V scans on three select days to 

estimate the effective irradiance received by the 14.2 kWp string. 

An RPOA sensor plate was constructed with an array of Si-photodiodes, Si reference cells, and thermopile 

pyranometers (Figure 1.1). The measurements from these small-area sensors were compared against 

those from the large-area reference modules and the 14.2 kWp string. The naming convention for the 

highest to lowest sensor is A to D. Additionally, we calculated RPOA at these locations using the 2D view 

factor model pvfactors because IEC 61724-1 states that an optical model can be used as an alternative to 

direct RPOA measurement. Finally, effective irradiance (GE) comparisons between the large-area modules 

and small-area sensors were done using a standard formula (Equation 1.16). 

Figure 4.7 shows exemplary RPOA and GE measurements on three mostly sunny days. The diurnal profiles 

in Figure 4.7 were selected to demonstrate results under different solar zenith angles, and to show two 

days when string-level measurements were performed for GE estimation (May 2nd and May 5th). The 

semi-transparent bands around the RPOA timeseries represent the range of values measured at 3–4 

locations. The photodiode measurements show a positive bias relative to other RPOA and GE methods, 

which is due to spectral albedo effects and consistent with the results shown in Sections 3.2 and 3.4. 

There are other reasons for the differences in RPOA measurement that were never quantified including 

the different calibration sources and the nonlinearity of signal-to-irradiance relationships. Finally, the 
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string-level GE measurements show good agreement to reference cells indicating that I-V data from 

inverters could be used for effective irradiance monitoring.  

 

Figure 4.7: Timeseries of effective irradiance (GE) and rear irradiance (RPOA) on three mostly sunny days. The semi-
transparent bands around RPOA timeseries represent the range of values measured at 3-4 sensor positions. The 
reference cells, pyranometers, and photodiodes are sampled every minute. The reference modules are sampled 
every five minutes. The string I-V is performed every 30 minutes on the selected days. 

Figure 4.8 shows the 14.2 kWp system’s PRBIFI calculated over a 5-month period with the five RPOA 

methods and four rear-side locations studied in Publication VIII. Frontside GPOA from the same Class A 

pyranometer is used in all calculations, which means that all variation of PRBIFI in Figure 4.8 is caused by 

the RPOA measurement used. Figure 4.8 shows that PRBIFI differs up to 3% with the RPOA methods 

considered here. The spread of possible PRBIFI values is likely to increase with lower ground clearance 

because nonuniformity of RPOA will be higher.  

 

Figure 4.8: Variability of the bifacial performance ratio calculated according to the IEC 61724-1 using three small-
area sensor types, an optical model, and a reference module pair.  

Figure 4.8 also shows that PRBIFI calculated with reference module RPOA is within 0.1% of PRBIFI calculated 

with the average reference cell RPOA. We believe that PRBIFI calculated with reference module RPOA has 

the advantage in that possible variations caused by spatial sampling errors are avoided. Our results 
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indicate that bifacial reference panels can reduce variations in PRBIFI calculations because they 

circumvent the need to identify representative small-area sensor locations and the need to adjust RPOA 

for spectral effects. At the end of Publication VIII, we use the RPOA and GE data from the different sensor 

types to simulate DC power of the 14.2 kWp array. A residual error analysis between the simulation and 

string-level measurements showed that mean average percentage errors were comparable between 

reference cells, pyranometers, and reference modules (2.9–3.4%). These three sensor types have 

different calibration sources, and measurement principles, but the good agreement among them 

suggests that reference modules are a suitable approach to irradiance measurement in bPV systems.  

Figure 4.9 shows the differences between RPOA measured with the various small-area sensors and RPOA 

measured with the large-area reference modules. Roughly five months of measurement data are shown 

here and the modeled RPOA and the differences between methods are shown as cumulative distribution 

functions (CDFs).  

 

Figure 4.9: Cumulative distribution functions of the RPOA differences between four small-area 
measurement\simulation methods and the reference modules. The thick solid lines show the average of 3–4 
locations within a given method. 

CDF curves with steeper slopes indicate distributions with lower variances. The reference cell group 

shows the steepest slope of all groups with 80% of the measurements agreeing to the reference module 

measurements within ±5 W/m2. The reference cell group also shows the lowest median bias (0.7 W/m2) 

of all small-area methods tested. The good agreement of the reference cell and reference module 

approaches is not surprising given that the two device types share similar—but not identical—spectral, 

directional, thermal, and temporal responsivities. The lowest MAE was achieved when the reference cell 

is placed at location B (+30% from center) or location C (−30% from center). This suggests that a 

reference cell placed at one, or both, locations could serve as a representative location of the effective 

rear-side irradiance – so long as the fixed-tilt substructures are geometrically similar to that used here.  

Please see Publication VIII for a deeper analysis into the differences between reference cell and 

reference module RPOA and GE measurements, and for discussions on how the VOC data from the I-V 

curves can be used to derive module temperature (TMOD) of modules and arrays. 
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4.4 Summary and conclusions 
In this chapter we presented the results of two international round robin campaigns on PV 

measurements. The first effort was conducted with six European participant labs who measured 

electrical performance of bifacial n-PERT, SHJ and PERC modules. The results were encouraging wherein 

most deviations were within their stated uncertainties. DTU demonstrated proficiency in bifacial n-PERT 

and PERC module measurements, which gives us confidence in future measurements of these module 

types. Most importantly, the results gave us confidence that we could reliably calibrate the bifacial PERC 

reference panel concept that was demonstrated at the end of this chapter.   

The second round robin presented here was among twelve laboratories from Europe and the United 

States who measured the IAM response of monofacial PV coupons. The agreement was within ±2% until 

AOI = 65°, but discrepancies rapidly increased with AOI, and at AOI = 85° we observed deviations upward 

of 30%. The results indicated that the PV community should place minimal reliance on AOI 

measurements made at oblique angles until improvements can be demonstrated. The raytracing 

simulations performed by ISFH were always within the inter quartile range of measured IAM values, 

thereby suggesting that laboratory measurements are not the only way to obtain IAM profiles of PV 

devices. We then used the IAM data from the twelve participants and performed energy yield 

assessments in six climates. These results showed that the different IAM profiles cause energy yield 

estimates to vary by 1.0–1.5%, depending on the climate. This uncertainty is remarkably high 

considering that the IAM correction represents just one step in the PV model chain. 

Finally, this chapter demonstrated a novel method for measuring rear and total irradiance, which 

involves taking continuous I-V curves of a calibrated pair of reference panels (monofacial and bifacial). 

We showed how reference modules calibrated per the single-side equivalent irradiance method of IEC 

TS 60904-1-2 can be used as large-area sensors that measure RPOA and GE. We compared the reference 

module measurements to three types of commonly used small-area sensors, and out of all the small-

area sensors tested, we found that reference cell measurements of RPOA and GE had the best agreement 

to those made by reference modules. We found that the choice of small-area sensor type and mounting 

location adds at least ±1.5% uncertainty to bifacial performance ratio calculations. DC yield predictions 

made using GE data from pyranometers, reference cells, and modules were within 2.9%–3.4% of 

measured string-level power, thereby demonstrating the absolute accuracy of the bifacial reference 

module approach.  
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Chapter 5. Methods for enhancing bifacial energy gain 
 

 

 
 
 
 

− Randall Munroe contemplating 
methods for enhancing illumination 
on the Moon in What If? 

 

 

5.1 Introduction 
This final chapter summarizes the methods and results obtained in Publication IX, wherein we studied 

the technoeconomic implications of artificially increasing the ground surface albedo below utility-scale 

bifacial arrays. The method that we used to increase albedo was simple: fasten a white cloth material 

directly below the array. This approach minimizes ecological impacts compared to methods like paving 

the ground and/or painting it white. The white tarp material we used had a hemispherical reflectance of 

75%—roughly triple that of the green grass at the DTU test site. We did not have enough of this material 

to uniformly cover the test site. Instead, we placed a 4 m wide strip directly below the length of select 

fixed tilt and HSAT systems. With this limited coverage, we observed average bifacial energy gains of 

11% for the fixed tilt and 15% for the HSAT, which was roughly double the bifacial gain of systems above 

grass.  

The cash flow in our economic model was calculated with spot prices from the Nordpool power market 

and with electrical production data from six system types, which included a combination of fixed-

tilt/HSAT, mPV/bPV, and white tarp/natural albedo scenarios. The white tarp scenarios increased 

income of the bifacial systems by roughly 4% during 2019–2020. However, the additional operations and 

maintenance (O&M) costs assumed for the white tarp scenarios resulted in a 1.8% lower 30-year 

levelized cost of energy (LCOE), relative to the LCOE of bifacial with natural albedo. This modest 

decrease in LCOE led us to the conservative conclusion that such a white tarp solution is not 

recommendable at utility scale, until the economics surrounding O&M become more favorable. 

However, we do not believe that the results of Publication IX are the final word on albedo 

enhancement. This chapter therefore concludes with recommendations that could have improved the 

economics of our study, which include increased material reflectivity, wider reflector material coverage, 

and/or more strategic placement of the reflector material.   

5.2 Economic indicators and modeling 
The Nordpool power market was established in 2000, and today it includes countries within Scandinavia, 

the Baltics, and others such as France, Germany, the Netherlands, and Poland. Nordpool offers both 

day-ahead and intraday (spot) electricity trading. Nordpool created their spot market due to the growing 

capacity of variable generators such as wind and solar. In our study, we used the hourly Nordpool spot 

price of electricity at the back-feed location (DK2) to determine the economic value generated by the six 

systems.  
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The value of the energy generated by the six systems was not estimated and compared solely based on 

hourly Nordpool spot power market prices and income. We additionally used the value factor as used in 

[227] and [228], which is the ratio of the income generated by a specific PV system relative to the 

average spot price during the period analysed. The value factor would equal one if a PV system 

generated a flat (i.e., time invariant) production curve during the period analyzed. A value factor less 

than one means that the value of electricity produced is less than what a constant production profile 

would earn. When comparing the production curves of two or more generating technologies, increasing 

VF simply indicates that the power production curve is better aligned with high spot prices. 

Additionally, we use the LCOE to compare the different system types in terms of their upfront and 

ongoing (i.e., lifecycle) costs and the electricity generated during a 30-year project period. The LCOE 

model we used is described in Annex 2 of [229], but the basic form of the LCOE calculation is shown in 

Equation 5.1. 

𝐿𝐶𝑂𝐸 =  ∑

𝐶𝑡
(1 + 𝑑)𝑡⁄

𝐸𝑡
(1 + 𝑑)𝑡⁄

𝑁

𝑡=1

 5.1 

 

Where Ct is the total expenditures (capital, operation and maintenance, debt and equity service etc.) in 

year t and Et is the energy generated in year t. All cashflows are discounted by the discount rate d. Many 

input values within the LCOE equation are highly project-specific (e.g., cost of capital and debt, land 

costs, local taxes etc.) and as such, the absolute LCOE values published here will vary for PV projects in 

different regions. However, the LCOE remains a practical and intuitive tool for assessing the costs and 

economic benefits of different energy generation technologies relative to each other.  

5.3 Results of bifacial boost experiments at DTU 
Pictures of the test setups after the white tarp was installed are shown in Figure 5.1a and Figure 5.1b. 

The manufacturer designed the material for use in greenhouses and states that it has a five-year 

outdoor lifetime. This replacement cost was accounted for in the economic model. Figure 5.1c shows 

the white tarp after three years in the field. The material has become less reflective and is covered by 

grass clippings. However, the economic model did not take the loss of reflectivity into account. Our 

albedo measurements showed that the material’s reflectivity reduced by roughly 5% in the first year. If 

we had accounted for this degradation, it would have made the economics of the white tarp scenarios 

less favorable.  

Figure 5.1a and Figure 5.1b show HSAT and fixed tilt bPV systems with two different types of gravel 

below them. The idea behind gravel was that it was sourced locally and would not blow away like sand. 

We did not study the economics of the gravel systems because the broadband albedo was comparable 

to grass, and the installation was labor intensive. The bifacial gains of the gravel systems are published 

in [1]. However, the gravel turned into an ongoing problem because gardeners mowing the grass picked 

up small stones that broke several panels. Finally, we also tested a micro-structured reflector material 

with visual appearance like Mylar. The setup is partially visible in the background of Figure 5.1b and 

hemispherical reflectance measurements in the lab are shown in Figure 5.2. The reflectivity is about 65% 

in the visible light spectrum, about 10% less than the white tarp. The problems with this reflector were 
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that the specular reflectance was concentrated in a local area of the large array resulting in a modest 

bifacial gain of 7%, and the material was easily damaged by strong winds. 

 
(a) 

 
(b) 

 
(c) 

Figure 5.1: a) Recently mounted white tarp under bifacial single axis tracker. b) Recently mounted white 

tarp under bifacial fixed tilt rows. c) white tarp under fixed tilt three years after deployment. Note that 

the white tarp coverage is approximately ±2 m from the torque tube. 

 

 

Figure 5.2: Spectrally resolved hemispherical reflectance of ground covers measured in the lab before field 
deployment.  
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Figure 5.3 shows specific yields of the six PV systems and a statistical display of daily spot prices at the 

test site location. The average production profiles are illustrated for each month. The performance of 

HSAT systems tend to have wider diurnal generation profiles than fixed tilt systems, especially in 

summer months when the sun’s path is higher in the sky and spans a wider range of azimuth angles. The 

HSAT systems show higher generation in the morning/evening, but lower generation during midday 

when the tracker is oriented horizontally, and the sun’s AOI is higher to the HSAT plane than it is to the 

fixed plane.  

The HSAT production profile corresponds well to the typical variation of the power market prices over 

the day – wherein relatively high prices are observed in the morning/evening and relative low prices 

observed during midday. Little difference is observed in fixed versus HSAT production on cloudy days 

when 100 % of the solar irradiance comes from diffuse light. Under such conditions similar income is 

expected among all PV systems. The income from each system is calculated by simply multiplying the 

energy generation (MWh) by the spot price (DKK/MWh) at the time the energy was generated. Please 

see Publication IX for more details on the annual energy yield and income of the six system types. 

 

 
Figure 5.3: Top) Specific yield (kWh/kWp) generated by the six different PV systems during each hour of the test 
period. These plots can be interpreted as the average daily profiles within a given month. Bottom) Hourly Nord 
Pool spot prices within each month where solid line shows the mean, blue bars show one standard deviation, and 
red bands show the range of hourly prices within a given month. 
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Figure 5.4 shows the internal rate of return (IRR) plotted as a function of LCOE. The IRR is shown in 

conjunction with LCOE because the IRR is oftentimes a more meaningful metric for investors while the 

LCOE is mostly used by technical experts to compare different technologies. A clear negative correlation 

is observed, wherein the IRR decreases as the LCOE increases. Notably, whether the value factor or LCOE 

is used as a figure of merit, the relative ranking of the six system types is largely the same.  

In Figure 5.4, the missing energy production data from the fixed tilt bifacial white tarp system have been 

imputed from months with a similar solar resource (e.g., missing April data is filled in with measured 

August data). Cost assumptions for all cases are based on discussions with suppliers. We have multiplied 

the expected capital cost of the white tarp by a factor of four to account for installation costs, which 

makes the white tarp approximately 15% of the total hard capital costs. This capital cost of the white 

tarp recurs every five years to account for replacement. Additional assumptions in the model include: a 

20-year mortgage with 0.5% interest that covers 80% of the total (i.e., soft and hard) capital 

expenditures, spot prices from 2018 as a baseline with inflation of 1.3%/year, linear depreciation over 

30 years, a tax rate of 22%, system degradation of 0.5%/year and unavailability of 0.5%/year. 

 

Figure 5.4: Internal rate of return versus levelized cost of energy calculated for a 30-year period in Denmark. The 
shaded areas around the red regression line show the 95 % confidence interval of the regression line. 

The results show that there are similar decreases in LCOE (and thus increases in IRR) between fixed and 

HSAT systems and between monofacial and bifacial systems (3.5 – 4.0 EUR/MWh). There is a small, but 

notable decrease in LCOE between bifacial above grass and bifacial above white tarp cases. In the FT 

bifacial grass versus FT bifacial white tarp case, there is a 0.6 EUR/MWh LCOE decrease and a 0.4 % IRR 

increase. While the comparison of the HSAT bifacial grass and HSAT bifacial white tarp systems shows a 

smaller difference: a 0.1 EUR/MWh decrease in LCOE and a 0.1 % increase in IRR. The different result 

obtained for fixed and HSAT systems could be due to use of data imputation.  

For both the bifacial FT and bifacial HSAT system, the extra cost of the white tarp is compensated by the 

additional energy production. The LCOE and IRR differences between bifacial grass and bifacial white 

tarp are, however, small. Therefore, the uncertainty in the capital expenditure and O&M parameters 

leads to the prudent conclusion that the white tarp is not advisable until O&M and/or CAPEX of such an 

albedo enhancement solution comes down. For example, an O&M increase of just 10 % in the bifacial 
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white tarp cases increases the LCOE and decreases IRR to levels less favorable than bifacial cases 

without ground albedo enhancement.  

5.4 Alternative approaches to increase bifacial energy gain 
The results of the case study presented in Publication IX ultimately advise against modifying the albedo 

in large-scale bPV parks. However, the last word on the topic is not spoken. Here we discuss the factors 

that may have led to more favorable economic outcomes in our case study.  

We had little experience with installing the white tarp and no experience installing it in a utility-scale 

system. Therefore, we had a conservative assumption that the installation cost was 15% of the total 

system cost. If an automated process for rolling out the white tarp could be devised, it could improve 

the economics. The use of white pavement or asphalt has been proposed for this purpose (e.g., Section 

1.2.4), but we found that such solutions were non-starters for Danish municipalities because of concerns 

surrounding the increased storm water runoff.   

Three additional factors could have been optimized to improve the results obtained in Publication IX: 

1) Use of a material with reflectivity higher than 75%,  

2) Use of a wider strip of material, and  

3) Better placement of the material. 

With respect to 1), a white tarp with 85% reflectivity was provided to us in November 2019. However, 

the hardware we used to affix this role of material to the ground was not as robust as the 20 cm U-bolts 

used to mount the tarps shown in Figure 5.1. Therefore, it quickly blew away in the wind, became 

muddy, and lost its high reflectance.  

With respect to 2), we made a reflection coverage model only after the white tarps shown in Figure 5.1 

were mounted. The model used trigonometry to determine how much light received by a downward 

facing point above a reflecting surface comes from that surface, and how much of the reflected light 

comes from the area beyond the surface.  

Figure 5.5 shows the output of the model for different sensor heights. This model was especially useful 

for designing the spectral albedo test stand used in Publication V and Publication VI. The dashed dotted 

lines in Figure 5.5 are drawn at 2 m material radius (i.e., half the white tarp width) and 2 m sensor height 

(i.e., half the array height). Approximately 54% of the ground reflected light received at this point comes 

from the white tarp, and 46% comes from the grass. However, the parametric study performed by [206] 

found that the first square meter of material below a bPV array has the greatest influence on bifacial 

gain. This makes sense, considering that reflectance from additional material will be reduced by cosine 

of the viewing angle. Similar findings were obtained in the sensitivity analysis of [97], where they 

showed a reflecting material with area 1000-times that of the array, yields only 3% more energy than if 

the reflection material is 10-times the area of the array. Although the literature indicates our results in 

Publication IX may not have been improved with using more white tarp material, without running the 

sensitivity within the Danish context, we cannot be sure that we optimized for this parameter.  

With respect to 3), the parametric study of [206] provides indication that the location of our white tarp 

was poorly selected. The authors of [206] used their raytracing model PVNOV to simulate 52 different 

configurations for an albedo enhancing material which included various, material sizes, heights from 

array, and ground coverages. Figure 5.6 shows the configuration that resulted in the highest bifacial 
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energy gain. In this configuration, the reflector covers 70% of the ground and is placed 3 m (~33%) north 

of the table’s low side, not directly below the table as in Figure 5.1. Placement such as shown in Figure 

5.6 makes sense considering that reflector material in front of the array can scatter direct beam light to 

the back of the array, whereas the material shown in Figure 5.1 scatters more diffuse light.  

 

Figure 5.5: Percentage of total reflectance received by a downward facing sensor relative to the total reflectance 
available within a 180° field-of-view. The color scale shows the calculation at various sensor heights.  

 

 

Figure 5.6: Optimal reflector material coverage and placement as determined by [206] for fixed tilt systems. 
Summary and conclusions 
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5.5 Summary and conclusions 
In this chapter we assessed the energy gains and economic implications of six different PV designs 

installed at the DTU Risø test site. One-year of energy production data showed a 26% difference 

between the system with the lowest output (fixed-tilt monofacial) and the highest output (HSAT bifacial 

with white tarp). Comparisons between fixed tilt and tracker systems allowed us to estimate a tracker 

gain (10.5–12.7%) while comparisons between monofacial and bifacial systems above grass provided 

bifacial gain estimates (7.2–10.5%) for the location. The bifacial energy boost of using the white sheet 

was about 3%, but as we demonstrated in Section 5.4, the 4 m wide strip of material may not have been 

ideally situated. LCOE calculations provided insight to the economic value of the six system types. 

Roughly a 10% reduction in LCOE was found in single-axis tracking designs over fixe-tilt designs, and a 

similar LCOE reduction (~10%) was found in bifacial designs over monofacial counterparts. This made 

bifacial on trackers above the natural ground surface the second most optimized design in terms of 

LCOE. This result is in line with that of Rodriguez-Gallegos et al. who found that bifacial PV on trackers is 

the PV design with the lowest LCOE across 93% of the world’s land surface [104]. Our case study that 

bifacial PV modules on trackers above a highly reflective white tarp has the lowest LCOE of all six designs 

studied. However, the LCOE of bPV on trackers above white tarp was only 0.3% lower than bifacial on 

trackers above the natural ground surface. This marginal difference in LCOE was not enough for us to 

recommend the white tarp solution, at least in the fashion that it was applied in Publication IX. We 

concluded this chapter with suggestions for future work on the topic of albedo enhancements, namely 

the use of higher reflectance material, use of more material, and more strategic placement of material.    
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Chapter 6. Conclusions 
 

6.1 Thesis Summary 
This thesis summarized the main research outputs produced during the PhD project entitled 

“Characterization and Modeling of Bifacial Photovoltaic Modules and Systems.”. The main project 

objectives were to assess the accuracy of bifacial modeling approaches, and to identify possible 

approaches for improvement. Additional objectives were to identify optimal methods for continuous 

irradiance and albedo monitoring in bifacial power plants, and to recommend practical methods for 

boosting bifacial energy gain. All these objectives were approached through a collection of field 

experiments as well as computational modeling. 

In Chapter 2, we demonstrated that rear irradiance modeling in large-scale bifacial systems can be 

accurate within 2–5 W/m2 when 2D view factor and raytracing approaches are used. We concluded that 

this level of error adds an extra 0.5% uncertainty to PV energy modeling. However, as the EMPIR-led 

energy rating model comparison showed, even expert PV modelers can implement the same algorithm 

differently. Therefore, the 2–5 W/m2 mean absolute accuracy figure is likely to vary between PV 

modelers. Our benchmarking study of eight PV simulation software and four large-scale PV systems 

showed that the median accuracy in hourly PV energy modeling is between -3% and -1%, depending on 

the PV system design. Indeed, user-variability may lead to different results, and for this reason, the data 

set used in Publication II has been circulated to 29 modelers as part of a PVPMC-led modeling 

comparison effort. Full results from the PVPMC-led effort will be published in mid-2023. 

In Chapter 3, we examined the subtle properties of the light on the backside of PV arrays. Namely, we 

investigated the spatial nonuniformity and spectral distribution of rear plane-of-array irradiance, but a 

comparison of various albedo data sources was also made at the end of the chapter. We found that, 

under typical albedo scenarios, the electrical mismatch due to nonuniform irradiance is small on 

common single-axis tracker designs. For 1P designs, we showed that mismatch losses peak at 0.4% 

midday on clear-sky days. We simulated design modifications that could reduce this mismatch loss. We 

found the design with largest potential to decrease the losses from 0.4% to 0.32%, is not likely to be 

economically advantageous given the modest nature of the losses in the base case. The spectral albedo 

investigations of five ground materials showed that backside bifacial performance can be improved by 

as much as 20% due to the reflected light’s spectral distribution. The spectral data from the field 

measurements and simulations resulted in multiple linear regressions that can be used as a simplified 

spectral model for rear irradiance. Finally, we performed bifacial energy gain simulations with five 

different albedo sources and compared the results to electrical performance data. We determined that, 

out of the five albedo sources considered, the optimal solution for albedo monitoring in bifacial PV parks 

is a compulsory pair of thermopile pyranometers, and an optional pair of spectrally selective 

radiometers to study spectral effects.  

In Chapter 4, we studied the relationship between laboratory measurements and energy yield modeling. 

Incidence angle modifier (IAM) measurements from 12 state-of-the-art laboratories were found to cause 

a 1.0–1.5% variation in modeled energy yield, depending on the climate. This intercomparison only 

looked at IAM measurements of single-sided monofacial PV cells–IAM measurements of dual-sided 

bifacial devices could result in greater deviations. Therefore, Singapore lab SERIS is leading a second IAM 
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round-robin, in which DTU is participating, that includes two bifacial PV devices. The research conducted 

in Chapter 3 inspired us to test bifacial reference panels as a method to measure rear and total effective 

irradiance. We found that bifacial modules calibrated with the IEC TS 60904-1-2 procedures can be used 

to measure total effective irradiance in large-scale PV parks. Furthermore, a complementary monofacial 

module permits rear irradiance measurements that are comparable in accuracy to those from calibrated 

reference cells. The advantages of the bifacial reference panel approach are: 1) PV system designers 

need not expend great effort identifying suitable locations for small-area sensors, 2) PV analysts need 

not correct for backside spectral effects, 3) variations in bifacial performance ratio calculations are 

reduced when measuring irradiance over a large-area, and 4) the equivalent cell temperature can be 

calculated from open-circuit voltage data.   

Finally, in Chapter 5 we assessed the energy gains and economics of bifacial PV and ground covers with 

white fabric and reflective foil. Our case study that bifacial on trackers above a highly reflective white 

tarp has the lowest levelized cost of energy (LCOE) of all six designs studied. However, the LCOE of 

bifacial on trackers above a white tarp was only 0.3% lower than bifacial on trackers above the natural 

(grass) ground surface. We found that small variations in the capital and/or operations cost of the white 

tarp could easily reverse the financial appeal of this albedo augmentation solution. Therefore, it is our 

recommendation to not advise such ground albedo enhancements until definite cost reductions are 

achieved.  
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Appendix 

    

   

    

Figure A.1: High resolution rear POA measurements on the back of a 2-in-portrait HSAT during a clear-sky day 
(albedo = 0.22). The left column of images show measurements from the edge panels and the right column shows 
measurements from the center panels. The color scale shows the irradiance of each cell location relative to the 
total average irradiance. The dimensions are representative of the tracker position at each timestamp. The array-
level non-uniformity induced electrical mismatch for the eastern and western arrays is displayed in the text boxes.  
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Figure A.2: High resolution rear POA measurements on the back of a 2-in-portrait HSAT during a cloudy day (albedo 
= 0.22). The left column of images show measurements from the edge panels and the right column shows 
measurements from the center panels. The color scale shows the irradiance of each cell location relative to the 
total average irradiance. The dimensions are representative of the tracker position at each timestamp. The array-
level non-uniformity induced electrical mismatch for the eastern and western arrays is displayed in the text boxes. 
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Figure A.3: Front and back ISC results normalized to the group median. These graphs were prepared by George 
Koutsourakis of NPL within the EMPIR funded PV-Enerate project. DTU is partner number six. Modules 1 and 2 are 
bifacial n-PERT, modules 3 and 4 are bifacial SHJ, and modules 5 and 6 are bifacial PERC. 

 

Figure A.4: Front and back VOC results normalized to the group median. These graphs were prepared by George 
Koutsourakis of NPL within the EMPIR funded PV-Enerate project. DTU is partner number six. Modules 1 and 2 are 
bifacial n-PERT, modules 3 and 4 are bifacial SHJ, and modules 5 and 6 are bifacial PERC. 

 

Figure A.5: Bifaciality and BiFi rating results normalized to the group median. These graphs were prepared by 
George Koutsourakis of NPL within the EMPIR funded PV-Enerate project. DTU is partner number six. Modules 1 
and 2 are bifacial n-PERT, modules 3 and 4 are bifacial SHJ, and modules 5 and 6 are bifacial PERC. 
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ABSTRACT — The aim of this work is to provide the photovoltaic (PV) community with a validation study of eight tools 

used to simulate bifacial PV performance. We simulate real 26 kWp bifacial p-PERC arrays located within a 420 kWp site 

located in Northern Europe (55.6°N, 12.1°E). The substructures investigated include horizontal single axis trackers 

(HSATs) and fixed tilt racks that have dimensions analogous to those found in utility-scale PV installations. Each bifacial 

system has a monofacial reference system with similar front side power. We use on-site solar radiation (global, diffuse and 

beam) and albedo measurements from spectrally flat class A sensors as inputs to the simulation tools, and compare modeled 

values to field measurements of string level DC power and rear plane of array irradiance. Our results show that state-of-

the-art bifacial performance models add ~0.5% uncertainty to the PV modeling chain. For the site investigated, 2D view 

factor fixed tilt simulations are within ±1 % of measured monthly bifacial gain. However, simulations of single axis tracker 

systems are less accurate, wherein 2D view factor and 3D ray tracing are within approximately 2% and 1% of measured 

bifacial gain, respectively.  

 

1 INTRODUCTION 

 In this work we compare eight bifacial PV modeling 

tools to 1 year of field measurements (April 2019 to March 

2020) made on kW scale bifacial and monofacial systems 

located in Roskilde, Denmark (55.6°N, 12.1°E) (Figure 1). 

The performance models tested fall into the categories of 

commercially available (licensed), freeware and open 

source - a description of each is provided in Table 1. The 

software often use different models for key steps of the PV 

modeling chain, which means that differences in simulated 

energy – and thus bifacial gain –are to be expected. Seven 

of the software use a 2D view factor (2D VF) method to 

calculate the rear plane of array irradiance (GPOA,Rear) and 

one model uses 3D ray-tracing (3D RT).  

 

 
Figure 1: Aerial view of the 420 kWp test site consisting of 45 
meter long two-in-portrait substructures. The annotations show 

the substructure type, pitch and PV module type. The systems 

where electrical performance and bifacial gain are simulated (T6, 
T7, T12, and T15) are boxed in red with sun symbols in the 

middle.  

 

2 FIELD TEST DETAILS 

 The site includes eight HSATs and eight south facing 

fixed tilt 45 m long substructures as shown in Figure 1. All 

16 substructures (including the south facing units) are 

Soltec SF7 trackers with two modules in portrait (2P). The 

inclination of the south facing units is adjustable from 0° 

to 60°, but the tilt has been programmed to remain at 25° 

during the period studied here. On each substructure there 

are mounted 88 PV modules wired into four parallel 

strings, each containing 22 panels in series. The panels on 

each substructure are either 60 cell monofacial p-PERC, or 

60 cell bifacial p-PERC. The four strings on each 

substructure are kept at their maximum power point (PMP) 

by a single maximum power point tracker (MPPT). The 

DC to AC ratio is 1.04:1, which is substantially lower than 

what is found in typical utility scale PV installations. The 

advantage of a this comparatively low DC:AC ratio is that 

no inverter clipping is observed and that the DC 

performance at full solar irradiance can be studied.  

 We make our results comparable to previous studies 

by including modeled versus measured bifacial energy 

gain per Eq. (1). Where EBF and EMF are the energy 

produced by the bifacial and monofacial systems, 

respectively and PSTC,BF and PSTC,MF are the front side 

power ratings of the bifacial and monofacial systems, 

respectively. The PSTC values are obtained from 

measurements made at DTU using the single lamp front 

and rear measurement method specified in IEC TS 60904-

1-2 [1].  

 

𝐵𝐺 [%] =  (

𝐸𝐵𝐹
𝑃𝑆𝑇𝐶,𝐵𝐹

⁄

𝐸𝑀𝐹
𝑃𝑆𝑇𝐶,𝑀𝐹

⁄
 − 1) ∙ 100  (1) 

  

 Note that bifacialvf and pvfactors (Table 1) do not 

incorporate cell temperature models or electrical models. 

Therefore, we also present bifacial gain in terms of rear to 

frontside irradiance ratios, in order to compare results from 

all software.  

 

𝐵𝐺 [%] =  
𝐺𝑃𝑂𝐴,𝑅𝑒𝑎𝑟

𝐺𝑃𝑂𝐴,𝐹𝑟𝑜𝑛𝑡

∙ 𝐵𝐹 ∙ (1 − 𝐵𝑖𝑓𝑖𝑙𝑜𝑠𝑠) ∙ 100 

 
(2) 

 In Eq. (2), BF is the rear to frontside efficiency at STC 

ηSTC,rear / ηSTC,front)  known as the “bifaciality factor”, 

which is 0.67 according to the DTU measurements. The 

Bifiloss term accounts for the electrical losses induced by 

non-uniform backside illumination and structural shading. 

In a previous work we studied the backside mismatch of 

bifacial PV on single axis trackers [2]. From ray tracing 

and field measurements done in this work, we use 0.025, 

which is the estimated mismatch on a clear-sky day at solar 

noon. The tracker manufacturer Soltec published a white 

paper [3] that recommends 0.007 as a value for structural 

shading, which is used here. The Bifiloss value used in this 

work therefore amounts to 0.032. 
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2.1 Model Input Data  

 Measurements of the broadband diffuse horizontal 

irradiance (DHI), direct normal irradiance (DNI), global 

horizontal irradiance (GHI) and albedo are collected onsite 

with spectrally flat class A sensors. The DHI, DNI, and 

GHI are filtered according to recommendations published 

by the Baseline Surface Radiation Network (BSRN) [4]. 

We have calculated the expanded UC of each sensor 

following the Guide to the Uncertainty in Measurement 

(GUM). Measurement uncertainty (UC) of pyranometers 

and pyrheliometers is not a constant value, but rather 

changes according to the prevailing environmental 

conditions (e.g. diffuse ratio, sun position, solar variability 

index etc.). The UC of the GHI is heavily affected by the 

instrument’s cosine response, but only when direct beam 

light is present. Therefore, the GHI increases with 

decreasing sun elevation angles. We estimate that the 

expanded (k = 2) UC of the hourly averaged GHI is about 

±4.0 % at solar noon on a clear summer solstice, and about 

±7.3 % on a clear winter solstice. The uncertainty of the 

hourly averaged DNI, on the other hand, is significantly 

affected by inter-hour irradiance variability. During hours 

with little to no variability, the uncertainty of hourly 

averaged DNI is as low as ±2.2 %, but under high solar 

variability the uncertainty can be as high as ±10.0 %. Such 

uncertainties of the meteorological data ought to be 

considered when validating PV performance models, 

which will be done in a future work.  

 The seasonal albedo at the site shows little seasonal 

variation, but monthly average albedo is used in the 

simulations nonetheless (min = 0.192, mean = 0.214, max 

= 0.229). Some tools shown in Table 1 are capable of sub-

hourly simulations, whereas others are limited to hourly 

resolution. Hence all simulations shown here are 

performed using hourly averages of the GHI, DHI, DNI, 

ambient temperature and wind speed measured onsite. 

 For the bifacial performance tools that include an 

electrical model, we use the following data and 

assumptions for DC performance, AC performance and 

DC losses. Low irradiance efficiency is determined by the 

1-diode parameters used in each performance tool (fitting 

of I-V data is only at STC). The inverter performance 

behavior is taken from the manufacturer’s datasheet. In 

each simulation, the total DC loss applied is 2.3 %. This 

includes losses from light-induced degradation (LID), 

wiring, and module mismatch. 

 

2.2 Model Validation Data 

  The electrical monitoring system at the test site is 

independent of the inverter measurements. Every minute 

the maximum power current (IMP) and voltage (VMP) of 

each string are measured. Digital filters are applied to the 

data to remove noise. The expanded uncertainty of the PMP 

measurement is 0.5 % of full scale.  

 

3 RESULTS 

 

3.1 Rear Plane of Array Irradiance 

 The fundamental challenge in bifacial – as compared 

to monofacial – PV performance modeling is estimating 

GPOA,Rear. Therefore, the discrepancies in simulated 

bifacial energy production are likely to occur in the 

derivation of GPOA,Rear values. Figure 2 shows one year of 

simulated GPOA,Rear values as a function of the average 

simulated value. The dispersion of simulated values is 

nearly the same for the fixed tilt and HSAT system. The 

range of simulated values among software correlates with 

the frontside irradiance (R2 = 0.81–0.85). The range of 

simulated GPOA,Rear values is approximately 20 W∙m-2 at 

1000 W∙m-2 frontside POA irradiance. In other words, the 

range of GPOA,Rear  is about 2 % of GPOA,Front. SolarFarmer 

is highest in this comparison because its integrated 

approach does not currently consider the obstruction of 

sky diffuse irradiance caused by neighboring PV rows. 

Therefore, the ground reflected irradiance between PV 

rows is over estimated. To our knowledge, this detail is 

currently being revised and is expected to be implemented 

in SolarFarmer versions greater than 1.0.191.2. 

 

 
Figure 2: Simulated rear plane of array irradiance as a function 

of the average of the eight simulation tools. The solid black line 
is unity to the average.  

 

 A comparison of modeled GPOA,Rear during five weeks 

(Feb 21st – Mar 30th, 2020) where measured GPOA,Rear data 

are available on the fixed tilt and HSAT system are shown 

in Figure 3 and Figure 4, respectively. The simulated 

results include reflection losses at the PV glass-air 

interface according to the IAM model implemented in 

each software. The solid black 45° degree lines in  Figure 

3 and Figure 4 represent unity to the measurements. The 

measurements are the average of two EKO MS-40 

pyranometers mounted on the backside of the structure: 

east and west in the case of the HSAT, top and bottom for 

the fixed tilt. Figure 5 shows an image of the pyranometers 

(and Si photodiodes) mounted on the backside of tracker 

T5, twelve panels North of the south edge. Ray trace 

simulations made by [5] have shown that this 12 m 

distance into the 45 m long array should be sufficient to 

TABLE I: Descriptions of the bifacial performance tools compared in this study. All tools implement the Perez transposition model for 

calculating GPOA,Front irradiance, although some use DNI and DHI for the transposition while others use GHI and DHI. Also note that the sun 

position algorithm used among the tools is not always the same. 

Bifacial PV Simulation 

Tool 

Version 

Used 
Accessibility 

 GPOA,Rear 

Method 

IAM  

Model  

Electrical 

Model 

Thermal 

Model 
Ref. 

bifacialvf 0.1.7 Open source 2D VF Physical N.A. N.A. [10] 

MoBiDiG VF  0.2.4 Proprietary 2D VF Physical De Soto 1-diode Faiman [14] 

MoBiDiG Hybrid (RT) 0.2.4 Proprietary 3D RT N.A. De Soto 1-diode Faiman [9] 

PlantPredict 8.7.0 Freeware 2D VF ASHRAE PVsyst 1-diode Faiman [10] 
pvfactors 1.4.1 Open source 2D VF Sandia N.A. N.A. [15] 

PVsyst 7.0.5 Licensed  2D VF Physical PVsyst 1-diode Faiman [12] 

Solar Advisor Model (SAM) 2020.2.129 Freeware 2D VF Physical De Soto 1-diode NOCT [10] [13] 

SolarFarmer 1.0.187.0 Licensed  2D VF Martin/Ruiz  PVsyst 1-diode Faiman [11] 
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remove edge brightening effects and to be representative 

of the semi-infinite assumption that is common among 2D 

VF models. 

 We see that trendlines from seven of the eight software 

agree well to pyranometer measurements. The mean 

absolute error (MAE) of said group is 2.3–5.2 W∙m-2. The 

peak total irradiance (i.e. sum of GPOA,Front and GPOA,Rear) 

measured during this period was approximately 1000 

W∙m-2. When the magnitude of total irradiance is 

considered, the MAE of GPOA,Rear  contributes roughly 0.5 

% uncertainty to the bifacial PV modeling chain.  

 During clear sky (i.e. low diffuse fraction) days, we 

observed that the bottom pyranometer can receive nearly 

twice as much irradiance as the top pyranometer. 

Therefore, the black unity line in Figure 3 – which 

represents the average measurement from two sensors – 

can at times have error bars on the order of ±15 W∙m-2. On 

such clear sky days, seven of the eight software studied 

give GPOA,Rear results that are within that range. In other 

words, when the vertical spatial non-uniformity of 

irradiance is considered, the reduced-order complexity 2D 

VF models perform reasonably well for fixed tilt 

simulations.    

 

 
Figure 3: Simulated rear plane of array irradiance on the fixed tilt 

sytem as a function of measured for a 5-week period. The solid 

black line represents unity to the measurements. The shaded areas 
around each regression line indicate the 95 % confidence 

intervals. The measurements are made 17 m into T11 (Figure 1). 

  

 The simulated GPOA,Rear values on the single axis 

tracker mostly under estimate the pyranometer 

measurements. Additionally, the agreement to 

measurements is not as good as the fixed tilt scenario.  The 

MAE of the 3D RT model and six out of seven 2D VF 

models is between 3.5–6.7 W∙m-2. This result makes sense 

considering that the HSAT system introduces additional 

complexity – and thus additional degrees of freedom for 

error – at two levels. First, the tracker algorithm 

implemented by the software is introduced to the 

comparison and second, the VFs in HSAT simulations are 

calculated for each change in tilt angle whereas the VFs in 

fixed tilt simulations are calculated once for the entire 

simulation. Note that the 3D RT simulation over predicts 

GPOA,Rear in the HSAT scenario, which could be due to the 

fact that this model currently does not incorporate 

backside IAM losses.  

 Our GPOA,Rear  measurements over grass have shown 

that – under most conditions – the tracker side that is 

farthest from the ground receives more irradiance than the 

side closest to the ground. In other words, in the morning 

the western sensor typically reports higher measurements 

than its eastern counterpart, whereas the trend reverses in 

the afternoon. We found that the differences between 

eastern and western GPOA,Rear pyranometer measurements 

on the HSAT system were not as extreme as differences 

between the top and bottom GPOA,Rear  measurements on the 

fixed tilt system. On a clear sky day, we observed 

differences on the order of 10 W∙m-2 between western and 

eastern pyranometers. Although five of eight software 

agree within 5 W∙m-2 of each other, none of the same five 

tools overlap the measurement uncertainty bars. This 

result likely could change if alternative backside 

pyranometer locations were chosen. Therefore, the PV 

industry could benefit from a standardized best-practice 

protocol for mounting rear plane of array irradiance 

sensors in bifacial PV monitoring systems.  

 

 
Figure 4: Simulated rear plane of array irradiance on the HSAT 

as a function of measured for a 5-week period. The solid black 

line represents unity to the measurements. The shaded areas 
around each regression line indicate the 95 % confidence 

intervals. The measurements are made 12 m into T5 (Figure 1). 

 

 
Figure 5: Optical sensors mounted on the backside of T5. The 
Si photodiodes are circled in white and the pyranometers are 

circled in blue. The sensors are located 11 modules North of the 

array’s south edge. Note that sensor placement is similar on the 
fixed tilt system (T11). 

 

3.2 Bifacial Gain 

 Figure 6 shows the monthly bifacial gain from 

software with capability of simulating electrical 

performance. The black lines in each plot show the results 

from the DC string measurements. Recall that the 

measured results are normalized with the I-V 

measurements made at DTU per equation (1). If the 

normalization were instead made using the manufacturer’s 

nameplate rating, the measured bifacial gain according to 

37th European Photovoltaic Solar Energy Conference and Exhibition

1326



Eq. (1) would be 1.5 % higher than what is shown. This 

difference can significantly affect the economics of project 

decisions that are made based on an expected bifacial 

energy gain. 

 The results in Figure 6 (and Figure 7) only include 

datapoints where sun elevation is greater than 15°. This 

filter is why November through February are not shown: 

the sun elevation in Denmark is too low during these 

months. During winter months, there is a significant 

amount of inter-row shading on the fixed tilt system and 

even some shading on the HSAT from surround objects. 

We chose to exclude periods of severe shade-loss because 

during such times, the simulated results become heavily 

affected by the shade-model and by the backtracking 

model used by each software. It was not this work’s 

objective to assess the performance of the shading and 

backtracking models. 

 The measured bifacial gain on the fixed tilt system is 

between 4.5–7.0 %. Meanwhile, the bifacial gain on the 

tracker is consistently higher - between 6.3–8.5 %. This is 

likely due to the wider 12 m spacing between rows on the 

HSAT (GCR = 0.28) versus the narrower 7.6 m spacing on 

the fixed tilt system (GCR = 0.4), which creates more self-

shading within the inner rows of the PV park.  

 The simulated bifacial gain values mostly follow the 

trends of the measurements, except for April when a small 

spike in bifacial gain is observed on both the fixed tilt and 

HSAT system. Since the measured albedo data from April 

2019 were higher than any other month studied here 

(0.229), and since the spike in bifacial gain is observed in 

both systems, it could be that the measurements from the 

onsite albedometer were not representative of the overall 

site during this month. If this is true, then it could mean 

that a best-practice for bifacial PV monitoring systems is 

the implementation of redundant albedometers throughout 

the park – similar to the well-known best practice for 

frontside plane-of-array pyranometers. 

 One notable outcome in Figure 6 is the results from 

SolarFarmer are frequently within 1 % of the measured 

bifacial gain, despite the deviations in GPOA,Rear shown 

previously. This is due to the fact that the rear irradiance 

constitutes 8 % or less of the total irradiance for half of the 

timestamps studied here. Of course, the higher the albedo 

and/or the higher the module bifaciality factor, the larger 

influence modeled GPOA,Rear is expected to contribute to the 

overall model accuracy. 

 The bottom row of Figure 6 shows the simulated 

bifacial gains grouped into which of the two electrical 

models was used and – in the case of the PVsyst 1-diode 

model – which of two parameter sets was used. Recall that 

the parameters used within each electrical model were 

determined by a fit to measured I-V data at STC – i.e. low 

irradiance measurements were not considered. We found 

that the six parameters used in the DeSoto 1-diode model 

 

 

 
Figure 6: Monthly bifacial gain from DC power simulated by six software and from DC string measurements. The left column shows results 

from the fixed tilt system, and the right column shows the single axis tracker results. Each row shows the same data but grouped in different 

ways. The first row shows the results grouped by software (Table 1), the second row is grouped by measurement/simulation, and the third row 

groups results by which 1-diode model and parameter set was used. 
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(used by MoBiDiG and SAM) more accurately predicted 

measured low light performance than did the five 

parameters used in the PVsyst 1-diode mode (used by 

PVsyst, PlantPredict and SolarFarmer). Therefore, we 

believe this is why the software that used the DeSoto 1-

diode model, more accurately predicted the measured 

bifacial gain. Future work should use 1-diode parameters 

that are optimized for a range of irradiance and 

temperature conditions, for example as done in [6].  The 

reason there are two parameter sets used among software 

implementing the PVsyst 1-diode model is that 

PlantPredict sets limits based on what its developers 

consider to be realistic. Specifically, series resistance of 

the module must be ≥ 100 mΩ. Due to this restriction, the 

series resistance used in the PlantPredict bifacial module 

file was ten times higher than the 10 mΩ extracted from 

fitting the I-V data, and used in the PVsyst and 

SolarFarmer models. Therefore, the modeled voltages of 

bifacial systems in PlantPredict were lower than in PVsyst 

and SolarFarmer, which resulted in the lowest simulated 

bifacial gain of all software.  

 Figure 7 shows the simulated bifacial gain according 

to the GPOA,Rear to GPOA,Front ratio (Eq. 2). The modeled 

results show better agreement with each other when the 

bifacial gain is calculated using the optical gain as in Eq. 

(2), as opposed to using the simulated energy as in Eq (1). 

The agreement among software shown in Figure 7 is 

within 2 % or better for both system types. The bottom row 

of Figure 7 shows the results grouped by whether GPOA,Rear  

is calculated using a 2D VF or 3D RT approach. When 

visualized in this manner, it becomes clear that the 3D RT 

approach follows the measured bifacial gain most closely 

for the HSAT simulation - within 0.5 % of measurement 

for most months. The 3D RT model also matches well – 

typically within 0.5 % – to bifacial gain measurements on 

the fixed tilt system. However, 2D VF models such the one 

integrated in SAM compared equally well to field 

measurements. Indeed, the measured bifacial gain shown 

in Figure 7 are influenced by the value of Bifiloss. The static 

Bifiloss values used here, in actuality change dynamically 

over the day with the prevailing conditions [2], [7], [8]. 

However, all the software tested here have the capability 

to use only a single value. This simplification offers room 

to improve the accuracy of the bifacial PV performance 

software used in industry today.  

 

4 SUMMARY 

 We have assessed eight bifacial PV performance tools 

to GPOA,Rear and to DC PMP measurements made at a 420 

kWp test site in Roskilde, Denmark. Our results show that 

state-of-the-art bifacial performance models add ~0.5% 

uncertainty to the PV modeling chain. This finding was 

demonstrated using GPOA,Rear measurements, but in a 

future more detailed report, we will show how the modeled 

and measured DC PMP substantiate this finding.   

 Our results further show that – for the site investigated 

– 2D view factor fixed tilt simulations are within ±1 % of 

measured monthly bifacial gain. Simulations of single axis 

tracker systems are less accurate with 2D view factor 

simulations within approximately 2% and 3D ray tracing 

within approximately 1% of measured bifacial gain, 

respectively. These results are published with the 

motivation that similar studies from other parts of the 

globe are published, and a comprehensive review of those 

studies be made in the near future. 

  

 

 
Figure 7: Monthly bifacial gain from modeled rear to front side irradiance ratios (equation 2) from seven software and from DC string 

measurements. The left column shows results from the fixed tilt system, and the right column shows the single axis tracker results. Both rows 
show the same data but grouped in different ways. The first row shows the results grouped by software (Table 1), the second row is grouped 

by whether a 2D view factor or 3D ray trace approach was used to calculate back side irradiance.  
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Featured Application: This work can assist photovoltaic (PV) project developers and financiers 

with bankability assessments and due diligence of PV simulation software. In addition, the real‐

world bifacial gains presented here can inform PV developers’ expectations in pre‐construction 

phases. 

Abstract:  The  size  and  number  of  utility‐scale  bifacial  photovoltaic  (PV)  installations  has 

proliferated in recent years but concerns over modeling accuracy remain. The aim of this work is to 

provide  the PV  community with  a validation  study  of  eight  tools used  to  simulate bifacial PV 

performance. We simulate real 26 kilowatt‐peak (kWp) bifacial arrays within a 420‐kWp site located 

in northern Europe (55.6° N, 12.1° E). The substructures investigated include horizontal single‐axis 

trackers (HSATs) and fixed tilt racks that have dimensions analogous to those found in utility‐scale 

PV  installations. Each bifacial  system has a monofacial  reference  system with  similar  front  side 

power. We use on‐site solar radiation (global, diffuse, and beam) and albedo measurements from 

spectrally flat class A sensors as inputs to the simulation tools, and compare the modeled values to 

field measurements of  string  level power,  rear and  front plane of array  irradiance, and module 

temperature.  Our  results  show  that  state‐of‐the‐art  bifacial  performance  models  add  ~0.5% 

uncertainty to the PV modeling chain. For the site investigated, 2‐D view factor fixed tilt simulations 

are within ±1% of the measured monthly bifacial gain. However, simulations of single‐axis tracker 

systems are less accurate, wherein 2‐D view factor and 3‐D ray tracing are within approximately 2% 

and 1% of the measured bifacial gain, respectively. 

Keywords: bifacial PV; PV performance; model validation; bifacial gain; single‐axis trackers 

 

1. Introduction 

Bifacial photovoltaics (PV) has entered the mainstream market in recent years due to enhanced 

energy yields, which are enabled by the conversion of light impinging on the module’s backside into 

useable photocurrent. A testament to the widespread adoption of bifacial PV is that multi‐megawatt‐

scale bifacial PV projects are now being deployed  in  latitudes as  far north as Denmark  (56° N)  in 

technology neutral auctions [1]. However, the validation of the modeled bifacial performance to the 

actual performance of fielded systems remains an ongoing task for the PV industry [2–6]. As more 
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bifacial model validation studies are published from sites around the globe, the expectations that PV 

buyers and investors have regarding bifacial field performance will be in better alignment with actual 

field  performance.  If  such  validations  of  bifacial  simulations  are  found  to  be within  acceptable 

agreement, this has the potential to de‐risk bifacial PV investments and thus lower soft costs. A key 

aim of this study is to contribute to this ongoing bifacial performance model validation effort. 

The recent bifacial modeling literature contains several studies that include some form of model 

validation [7–24]. Most bifacial performance model validation to date has been done using small PV 

systems. A shortcoming of studies on small‐scale bifacial systems is that the observed bifacial gains 

are not representative of bifacial gains at the utility scale. This is because the long and repetitive rows 

in utility‐scale systems  lead  to a significant amount of self‐shading, and since utility‐scale strings 

consist of many modules  in  series,  the backside  irradiance enhancement at array edges  increases 

bifacial gain to a much lower extent than on small standalone systems with far less self‐shading. 

Nevertheless,  the bifacial validation results reported  to date mostly show good agreement  to 

field measurements. For example, the authors  in [16] compared the measured  irradiance gain and 

bifacial gain on horizontal single‐axis trackers (HSATs) in Eastern Oregon, USA and Albuquerque, 

USA to view factor (VF) and ray‐trace (RT) simulations. They found that the measurements matched 

their modeled values within the measurement uncertainty. A separate validation study performed 

by [13] looked at the rear plane of array irradiance (GPOA,Rear) from four simulation tools (pvfactors, 

bifacialvf, bifacial_radiance, and PVsyst) and compared them to measurements on a fixed‐tilt system 

in Albuquerque, USA and an HSAT system in Davis, USA. Their results showed that the long‐term 

(3  to  12  months)  irradiance  gain  as  modeled  by  these  four  tools  agreed  within  1%  of  their 

measurements when  the  ground  albedo  varied  from  0.16  to  0.56. The  authors  in  [20]  compared 

modeled and measured daily energy (kWh) of a single panel within a mechanically maneuverable 

12‐panel setup in Switzerland. They reported agreement mostly within ±1% for static tilt angles from 

0°  to  45°. However,  the  authors mention  that  a  short‐coming  of  their  study  is  that  it was  only 

performed over a 3‐day period, and go on to conclude that definitive error correlations could emerge 

if the data were analyzed over longer time scales. The need for bifacial PV model validation on large‐

scale systems and on long timescales is addressed in this paper. 

Our objective was  to use a  consistent  set of parameters and meteorological data as  input  to 

different  bifacial  PV  software  and  to  analyze  the modeled  outputs  at  various  steps  of  the  PV 

performance modeling chain. It was not our intent to analyze the variability that can be introduced 

by different users of  the  same  software, as  this has been  studied by other authors  [25,26]. These 

studies  revealed  that  even  expert  users  can  make  widely  different  assumptions  for  the  same 

parameter or loss factor, and for this reason, we performed a sensitivity analysis on key parameters 

at the end of this paper. Please note that we presented a preliminary version of this work in [27] but 

expand on it here with consideration for the uncertainty of the onsite‐measured solar radiation input 

data and deeper analyses of the modeling sub‐steps and performance metrics. 

2. Materials and Methods 

2.1. PV Simulation Software Tested 

The  performance models  tested  in  this work  fall  into  categories  of  commercially  available 

(licensed),  freeware,  and open  source. A description of  each  software used  in  the  comparison  is 

provided in Table 1. Seven of the models use a 2‐D VF method to calculate GPOA,Rear and one model 

uses a 3‐D RT‐based method. The 3‐D RT method can simulate detailed  features of  the mounting 

structure, such as  the  torque  tube and mounting rails, whereas  the 2‐D VF method simplifies  the 

structural geometry to drastically reduce computation time. The 3‐D RT simulations performed in 

this work  required more  than  12 h  to  complete  a  full‐year  simulation without  a  cumulative  sky 

approach. In contrast, the 2‐D VF simulations required between 10 s and 5 min to complete a full‐

year simulation of one PV system. Specifically, annual simulations were completed in less than 10 

seconds  in  PlantPredict  (First  Solar  Inc.,  Tempe,  Arizona,  USA),  PVsyst  (PVsyst  SA,  Satigny, 

Switzerland,  System  Advisor  Model  (SAM)  (National  Renewable  Energy  Laboratory,  Golden, 
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Colorado, USA), and SolarFarmer (DNV GL, Bristol, UK). Annual simulations in bifacialvf (National 

Renewable Energy Laboratory, Golden, Colorado, USA), pvfactors (SunPower Corporation, San Jose, 

California, USA), and MoBiDiG VF (ISC Konstanz, Konstanz, Germany) were completed in <1, <3, 

and <5 min, respectively. Simulations were performed using a Dell 7400 (Round Rock, Texas, USA) 

laptop with an Intel i7‐8665U processor (Santa Clara, CA, USA) and 16 GB of RAM, or similar. 

We believe that the software shown in Table 1 are representative of the state‐of‐the‐art tools used 

within the industry and research community to simulate bifacial PV performance. We do not report 

on the useability of the different PV software, as this was outside the scope of the present work and 

is currently being assessed by the members of working group 3 (WG3) within the Pearl PV CA16235 

project funded by the European Cooperation in Science and Technology (COST) program. There are 

several instances in Table 1 where multiple software use the same model for a particular modeling 

step. For example, all software use the Perez diffuse model to transpose horizontal solar radiation 

data to the plane of array (GPOA,Front). It has been demonstrated by [28] that the implementation of the 

same model can vary among software, which will be considered in the results section that follows. 

Table 1. Descriptions of the bifacial performance tools compared in this study. All tools implement 

the Perez transposition model for calculating global irradiance on the frontside plane of array. 

PV 

Simulation 

Tool 

Sun 

Position 

Algorithm 

Irradiance 

Input 

GPOA,Rear 

Method 
IAM Model 

1‐Diode 

Electrical 

Model 

Thermal 

Model 
Ref. 

bifacialvf 

(0.1.7) 
Michalsky  DNI, DHI  2‐D VF  Air‐glass 1  N.A.  N.A.  [8] 

MoBiDiG VF 

(0.2.4) 
NREL SPA  DNI, DHI  2‐D VF  Air‐glass 1 

5 param. De 

Soto 
Faiman  [14] 

MoBiDiG 

Hybrid (RT) 
Michalsky  DNI, DHI  3‐D RT  N.A. 

5 param. De 

Soto 
Faiman  [29,30] 

PlantPredict 

(8.7.0) 
NREL SPA  GHI, DHI  2‐D VF  ASHRAE  PVsyst  Faiman  [8,31] 

pvfactors 

(1.4.1) 
NREL SPA  DNI, DHI  2‐D VF  Sandia  N.A.  N.A.  [9] 

PVsyst (7.0.5)  US Navy  GHI, DHI  2‐D VF  Air‐glass 1  PVsyst  Faiman  [32] 

System 

Advisor 

Model 

(2020.2.29) 

Michalsky  DNI, DHI  2‐D VF  Air‐glass 1 
6 param. De 

Soto 
NOCT  [33] 

SolarFarmer 

(1.0.187.0) 
NREL SPA  GHI, DHI  2‐D VF 

Martin & 

Ruiz   
PVsyst  Faiman  [34,35] 

1 IAM losses calculated using a “slab” approach similar or identical to that described in [36]. 
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2.2. PV Test Facility at Technical University of Denmark (DTU) 

We  compared  the  outputs  from  eight  bifacial  PV  modeling  tools  to  12  months  of  field 

measurements (April 2019 to March 2020) made on kilowatt‐scale bifacial and monofacial systems 

located in Roskilde, Denmark (55.6° N, 12.1° E). The site includes eight HSATs and eight south‐facing 

fixed‐tilt 45‐m‐long substructures as shown in Figure 1. 

 

Figure 1. Aerial view of the test facility. There are eight horizontal single‐axis trackers (HSATs) and 

eight fixed‐tilt rows. The bifacial (bi‐fi) and monofacial (mo‐fi) systems investigated in this paper are 

highlighted in white and orange, respectively. 

All 16 substructures (including the south facing units) are SF7s (Soltec, Madrid, Spain) with 2 

modules in portrait. The bifacial substructures feature a torque tube and mounting rails that do not 

directly  cover  the  backside  of  the  PV modules  (Figure  2a).  The  inclination  of  the  south‐facing 

structures is adjustable from 0° to 60°, but the tilt was programmed to remain at 25° during the 12‐

month period studied here. On each substructure, 88 PV modules are mounted, wired into four series 

strings (i.e., 22 panels per string). The panels on each substructure are either 60 cell monofacial with 

a 305‐Wp rating, or 60 cell bifacial with a 295‐Wp front side rating. The cell technology in both module 

types is passivated emitter and rear contact (PERC). The four strings on each substructure are kept at 

their maximum power point  (PMP) by a  single maximum power point  tracker. The  ratio of direct 

current (DC) to alternating current (AC) capacity is 1.04:1, which is substantially lower than what is 

found in typical utility‐scale PV installations. The advantage of this comparatively low DC:AC ratio 

is that no inverter clipping is observed and that the DC performance at full solar irradiance can be 

studied. The ground cover ratio (GCR) is 0.28 for the HSAT field and 0.40 for the field of fixed‐tilt 

field systems, both of which are slightly lower than in typical utility‐scale systems with limited land 

area. The irradiance sensors are cleaned approximately on a weekly basis. Although the PV arrays 

are never cleaned—other than by rainfall events—our soiling measurements made at a 50 MW utility‐

scale PV site in Hanstholm, Denmark show very low (<0.25%) soiling ratios. Therefore, 0.25% soiling 

losses are applied in the simulations. 
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(a)  (b) 

   
(c)  (d) 

Figure 2. (a) Ground‐level view of the bifacial HSAT system; (b) Onsite solar radiation monitoring 

tower where  the broadband global horizontal  (GHI), diffuse horizontal  (DHI),  and direct normal 

irradiance  (DNI) measurements are  recorded.  (c) Onsite albedometer.  (d) Two  rear plane of array 

pyranometers (top and bottom circled in blue) on the fixed‐tilt bifacial system; Sensors are placed 17 

m from the nearest array edge. 

2.3. Input Data for Simulations 

In this section, we describe the methods to compile the input data used in the simulations. The 

values of selected parameters are summarized in Appendix A. 

2.3.1. Electrical Performance and Direct Current (DC) Losses 

For the bifacial performance tools that include an electrical model, we used the following data 

and assumptions  for DC performance, AC performance, and DC  losses. The current‐voltage  (I‐V) 

characteristics of the PERC panels were measured before field deployment  in an QuickSun Xe‐arc 

flasher  (Endeas, Espoo, Finland) using  the  single  lamp  front and  rear  side measurement method 

specified  in  IEC TS  60904‐1‐2  [37]. The modules  are  temperature  stabilized  in  the  flash  chamber 

within ±1 °C of 25 °C, which ensured that the PV cells are close to the ambient room temperature. 

Measurements  of  the  ambient  (i.e.,  room)  temperature  are  then  used  as  a  surrogate  for  cell 

temperature  (i.e.,  cell  temperature  is  not  directly measured).  The  calibration module  is  a  cell‐

technology‐matched PERC module with traceability to Fraunhofer ISE’s CalLab.   

The average front‐side PMP measurements of the samples were roughly 8 W low (−2.7%) to the 

manufacturer’s rating. The literature review presented in [38] shows that such divergence from the 

manufacturer’s  nameplate  rating  is  common  among  external  testing  laboratories.  I–V  curves  at 

multiple irradiances (200–1000 W∙m−2) were also acquired in the DTU flasher system. We used the 

multi‐irradiance  I–V data,  and  a method described by  [39]  implemented  in pvlib python  [40]  to 

extract the 1‐diode model parameters that are used in PlantPredict, PVsyst, and SolarFarmer. The 1‐

diode model parameters used  in SAM and MoBiDiG were extracted using a method described by 

[41] and incorporated into SAM’s user interface [42] (see Table A3). The inverter performance was 

taken from the manufacturer’s datasheet. After 14 months of field exposure, we repeated the indoor 
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flash I‐V tests on a sample of monofacial modules (n = 25). The results from the tests showed PMP 

losses of 1% or less due to first‐year degradation. These losses are most likely due to light‐induced 

degradation (LID) since the electroluminescence images showed no signs of cell cracking or potential‐

induced degradation (PID). In each simulation, the total DC losses applied amount to 2.3% (see Table 

A5). This figure includes losses from LID, wiring, soiling, and module mismatch. 

2.3.2. Solar Radiation Measurements and Uncertainty 

Some modeling tools shown in Table 1 are capable of sub‐hourly simulations, whereas others 

are limited to an hourly resolution. Hence, all simulations shown here were performed using hourly 

averages of the global horizontal irradiance (GHI), diffuse horizontal irradiance (DHI), direct normal 

irradiance (DNI), ambient temperature (TAMB), and wind speed measured onsite. Measurements of 

broadband GHI, DHI, DNI, and albedo were collected onsite with spectrally flat class A sensors, with 

ventilation units underneath the GHI and DHI sensors (Figure 2b,c). The ventilation unit consists of 

a fan below the sensor base, which mitigates the accumulation of dust, snow, and ice on the glass 

dome. The DHI, DNI, and GHI are sampled every 10 s and are filtered according to recommendations 

published by the Baseline Surface Radiation Network (BSRN) before calculating the hourly averages 

that  are  input  to  the  PV  simulation  software.  The  BSRN  data  quality  checks  ensure  that  the 

measurements are within both physical and reasonable limits. In some cases, our implementation is 

more stringent than the BSRN recommendations. For example, in our implementation, the sum of 

DHI and direct horizontal  irradiance must always be within  ±5% of  the GHI whereas  the BSRN 

tolerance is ±8% for most solar zenith angles. For more information on the quality checks, we refer 

the reader to [43]. 

The  literature  shows  that  the  solar  resource  assessment  (e.g., GHI)  and  the  transposition of 

horizontal data to plane‐of‐array  irradiance (GPOA,Front) are the highest sources of uncertainty when 

modeling  PV  energy  yield  [39,44–.  The  present  study  therefore  considers  how  the  expanded 

uncertainty  (UC) of  the onsite GHI, DHI, and DNI  irradiance measurements  impact  the simulated 

energy yield and  thus  the  comparisons  to measured  electrical data. We  calculated  the  expanded 

uncertainty UC of the DHI, GHI, and DNI measurements  following principles  in  the Guide  to  the 

Uncertainty in Measurement and best‐practice guidelines published within the field of solar radiation 

measurements [48,49]. Measurement uncertainty of pyranometers and pyrheliometers is not constant 

but changes according to the prevailing environmental conditions (e.g., diffuse ratio, sun position, 

etc.) [49]. When the solar zenith angle is greater than 70°, the largest source of uncertainty in the GHI 

measurements  is  the  cosine  error.  Since  this  cosine  error  is  considered  systematic,  it  could  be 

significantly reduced by characterizing the angular‐dependent response of the instrument and then 

applying a device‐specific correction to the measurements [47]. However, such corrections were not 

performed here  largely due  to  the complexity of executing such an approach with high accuracy. 

Figure 3 demonstrates how  the UC of  the GHI  is most heavily affected by the  instrument’s cosine 

response when the sky diffuse fraction is low (i.e., cloudless skies), and when the sun is close to the 

horizon (i.e., early morning, late afternoon). We estimate that the expanded (k = 2) UC of the hourly 

averaged GHI  is about ±4% at solar noon on a clear summer solstice, and about ±7.3% on a clear 

winter solstice. The uncertainty of the hourly averaged DNI, on the other hand, is most significantly 

affected by inter‐hour irradiance variability. 

While it is well‐established that the uncertainty of pyrheliometer (DNI) measurements is lower 

than global pyranometer (GHI) measurements due to the non‐ideal cosine response of pyranometers 

[50],  this  is  not  always  the  case  in  the  present work  because  hourly  averages  are  used  for  the 

simulations. During periods of high cloud variability,  the variance of hourly DNI  is significantly 

higher  than  the variance of hourly GHI. The uncertainty due  to  this variation  is  included  in  the 

uncertainty model using the standard error of the hourly averaged value. Figure 3 shows that the 

uncertainty of hourly averaged DNI is as low as ±2.2% during hours with little to no cloud variability, 

but under high solar variability, the uncertainty can exceed ±15%. Please note that the hourly DNI 

tends to be low in absolute (W∙m−2) terms during such times of passing clouds. 
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Cloudless Day  Partially Cloudy Day 

   
(a)  (b) 

         
(c)  (d) 

Figure 3. Uncertainty of the hourly GHI, DHI, and DNI measurements performed onsite from two 

example days  in April 2019. A cloudless day  is shown  in (a) and  (c) and a partially cloudy day  is 

shown in (b) and (d). The top row shows the absolute uncertainty (in W/m2) as shaded bands around 

the measured value. The bottom row shows the uncertainty in percentage. 

As illustrated in Figure 3, the uncertainty of a PV performance simulation is dependent on which 

combination of GHI, DHI, and/or DNI is used as input. Table 1 shows which two components each 

software uses to calculate GPOA,Front and GPOA,Rear—some use GHI and DHI, while others use DHI and 

DNI. When simulations use hourly GHI and DHI, only under clear sky conditions will this simulation 

be associated with higher uncertainty than simulations that use hourly DNI and DHI. Under variably 

cloudy sky conditions, simulations  that use hourly DNI and DHI are  likely  to be associated with 

higher uncertainty. 

2.3.3. Albedo Measurements 

During the 12‐month period shown here, the average annual albedo of the grass is 21.6% (Figure 

4). The average monthly albedo shows little variation at the location where the albedometer is placed 

(Figure 2c). The lowest average monthly albedo (19.3%) occurs in December, which is possibly due 

to the moist ground in winter. Six days with snowfall events were observed during the test period, 

but because Denmark  is  in a  temperate climate,  the  snowfall did not accumulate substantially or 

remain on the ground for more than one day. The average monthly albedo is used in all modeling 

tools except for bifacialvf and pvfactors, which use the annual average albedo. A sensitivity analysis 

on albedo is provided in the discussion section of this paper. Please note that the raw albedo data 

shown here  are openly  available  as part of  the National Renewable Energy Laboratory’s  albedo 

project [51]. 
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(a)  (b) 

Figure 4.  (a) Distribution of albedo measurements made during  the one‐year period;  (b) Box and 

whisker plots of  the monthly albedo,  the  red  line connects  the mean monthly albedo,  the dashed 

reference line shows the annual average of 21.6%. 

2.3.4. Thermal Performance 

A white paper from solar tracker manufacturer Soltec [52] provides recommended values for the 

conductive and convective heat  transfer coefficients  (U0/U1) of bifacial modules mounted on  their 

trackers, which are derived  from  field measurements made  in Livermore, USA.  In  the absence of 

measured  coefficients  for  the modules at  the DTU  site, we used  the manufacturer‐recommended 

values of 31 and 1.6 W∙m−3K∙m−1∙s  in  the simulations here  (Table A1). Similar U0 coefficients were 

determined in [53] for glass‐glass bifacial n‐PERT, which provides  justification for the use of these 

values. However, the use of one set of thermal coefficients for all bifacial module types and all projects 

is likely not ideal given that the climatic region and module‐specific bill of materials are known to 

influence  the value of  the U0/U1 coefficients  [54]. The  thermodynamic behavior of monofacial PV 

modules has been shown to deviate from that of bifacial modules in side‐by‐side tests [53,55] and 

therefore a U0 coefficient of 29.5 W∙m−2∙K−1 was used for these simulations. Finally, as [56] concludes 

in their review paper on bifacial PV simulation, more experimental validation of bifacial PV thermal 

coefficients is needed. Due to the uncertainty of these coefficients for the modules at the DTU site, we 

perform a sensitivity analysis on the results in the discussion section. 

2.4. Analysis of Measured and Simulated Bifacial Energy Gain (BG) 

We make our results comparable to previous studies by including modeled versus measured 

bifacial energy gain per Equation (1, where EBF and EMF are the energy produced by the bifacial and 

monofacial systems, respectively, and PSTC,BF and PSTC,MF are the front side power ratings of the bifacial 

and monofacial systems, respectively. The PSTC values are obtained from I‐V measurements made at 

DTU: 

𝐵𝐺 %  

𝐸
𝑃 ,

𝐸
𝑃 ,

 1 100  (1) 

Note  that  bifacialvf  and  pvfactors  (Table  1)  do  not  incorporate  cell  temperature models  or 

electrical models. Therefore, we also present bifacial gain in terms of the rear to frontside irradiance 

ratios, in order to compare results from all software: 

𝐵𝐺 %   
𝐺 ,

𝐺 ,
𝐵𝐹 1 𝐵𝑖𝑓𝑖 100  (2) 

where, in Equation (2), BF is the bifaciality factor defined as the ratio of rear to frontside efficiency at 

standard test conditions (STC), which is 0.67 according to the DTU indoor flash I‐V measurements. 

The Bifiloss  term here accounts  for  two  separate parameters: The electrical  losses  induced by non‐

uniform backside illumination and the losses due to structural profiles that shade the backside of the 

array. The electrical mismatch caused by non‐uniform backside irradiance is not a constant value but 
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varies  with  the  prevailing  environmental  conditions  [19,57,58].  In  our  previous  work  [19],  we 

determined that on a clear day at solar noon, the irradiance nonuniformity‐induced mismatch for the 

bifacial arrays at our site is roughly 0.025 (without considering the front‐side irradiance contribution), 

and is used to calculate Bifiloss. The aforementioned Soltec white paper [52] that recommends 0.007 as 

a value for structural shading  loss, which  is subsequently used here. The Bifiloss value used  in this 

work therefore amounts to 0.032. Note that the performance models tested here sometimes consider 

additional parameters, such as the transparency of the PV array and the reflectivity of the PV array’s 

back and front side (see Table A4). 

Validation of bifacial performance models  requires measurements of  the  rear plane‐of‐array 

irradiance  (GPOA,Rear).  Figure  2d  shows  a  photograph  of  two  pyranometers  that  are  used  for  this 

purpose. The instruments shown are mounted on the backside of the fixed‐tilt system, 17 panels east 

of the western array edge. The rear facing pyranometers on the HSAT are located 12 panels north of 

the southern array edge. Ray trace simulations made by [17] have shown that this distance into the 

45‐m‐long array should be sufficient to remove edge‐brightening effects and to be representative of 

the semi‐infinite assumption that is common among 2‐D VF models. 

3. Results 

3.1. Rear Plane‐of‐Array Irradiance (GPOA,Rear) 

The fundamental challenge in bifacial—as compared to monofacial—PV performance modeling 

is estimating GPOA,Rear. Therefore, the discrepancies in simulated bifacial energy production are likely 

to occur in the derivation of GPOA,Rear values. Figure 5 shows one year of simulated GPOA,Rear values as a 

function of the average simulated value. The dispersion of simulated values is nearly the same for 

the fixed‐tilt and HSAT system. The range of simulated values among software correlates with the 

front‐side  irradiance  (R2  =  0.81–0.85). The  range of  simulated GPOA,Rear values  is  approximately  20 

W∙m−2 at 1000 W∙m−2 frontside irradiance. In other words, the range of GPOA,Rear is about 2% of GPOA,Front. 

SolarFarmer is highest in this comparison because its integrated approach does not currently consider 

the obstruction of sky diffuse  irradiance caused by neighboring PV  rows. Therefore,  the ground‐

reflected irradiance between PV rows is over estimated. To our knowledge, this detail is currently 

being revised and is expected to be implemented in SolarFarmer versions greater than 1.0.191.2. 

 

Figure 5. Simulated rear plane of array irradiance as a function of the average of the eight simulation 

tools. The solid black line is unity to the average. 

A comparison of the modeled GPOA,Rear during five weeks (21 February–30 March 2020) where 

measured GPOA,Rear data are available on  the fixed‐tilt and HSAT system  is shown  in Figure 6. The 
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simulated results include reflection losses at the PV glass–air interface according to the IAM model 

implemented  in  each  software.  The  solid  black  45°  lines  in  Figure  5  represent  unity  to  the 

measurements. The measurements are the average of two MS‐40 pyranometers (EKO Instruments, 

Tokyo, Japan) mounted on the backside of the structure: east and west in the case of the HSAT, top 

and bottom for the fixed tilt (Figure 2d). 

 

Figure 6. Simulated rear plane of array irradiance on the fixed‐tilt and horizontal single‐axis trackers 

(HSAT)  systems  as  a  function of being measured over  a  5‐week period. The  solid  black  45°  line 

represents  unity  to  the measurements.  The measurements  are  the  average  of  two  pyranometers 

located a minimum of 12 m from the nearest array edge. The shaded areas around each regression 

line indicate the 95% confidence intervals. 

The trendlines from seven of the eight software agree well with the pyranometer measurements. 

The mean absolute error (MAE) of these seven software is 2.3–5.2 W∙m−2 for the fixed‐tilt system and 

slightly higher at 3.5–6.7 W∙m−2 for the HSAT system. We analyzed the model residuals as a function 

of the sun position Gpoa,front and diffuse fraction and found no systematic trends, other than a tendency 

towards higher percentage errors in GPOA,Rear when GPOA,Front is low. 

The  peak  total  irradiance  (i.e.,  sum  of  GPOA,Front  and  GPOA,Rear)  of  both  system  types  was 

approximately 1000 W∙m−2 during the five‐week period shown in Figure 6. When the magnitude of 

total irradiance is considered, the MAE of GPOA,Rear contributes roughly 0.5% uncertainty to the bifacial 

PV modeling chain. The 3‐D MoBiDiG RT simulation over predicts GPOA,Rear in the HSAT scenario, 

which could be due to its use of the Perez all‐weather luminance model [59], which is unique among 

all software tested. The overall poorer model agreement with measurements in the HSAT scenario 

makes  sense  considering  that  tracking  introduces  additional  complexity—and  thus  additional 

degrees of freedom for error—at two levels. First, the tracker algorithm implemented by the software 

is introduced into the comparison and second, the VFs in HSAT simulations are calculated for each 

change  in  tilt  angle whereas  the VFs  in  fixed‐tilt  simulations  are  calculated  once  for  the  entire 

simulation. 

An inclinometer sensor mounted on the back of the tracker continuously recorded the tracker 

roll angle during  the  test period. We  found  that  the modeled  tracker angle was within ±1° of  the 

measured angles 50% of the time, but deviations were as high as 5° during periods of backtracking. 

We used pvfactors to test the effect that this difference  in the roll angle had on simulated GPOA,Rear 

values. When the measured—as opposed to calculated—angular position was used in the simulation, 

we found that the mean bias error (MBE) improved slightly from −1.1 to −0.7 W∙m−2, but the MAE, 

however, changed by less than 0.1 W∙m−2. 
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(a) 

 
(b) 

Figure 7. Timeseries plots of modeled and measured rear plane of array  irradiance  (GPOA,Rear) on a 

cloudless day (23 March 2020). The error bars around the measured values show the maximum and 

minimum  measurements  made  by  two  sensors.  (a)  Fixed‐tilt  system  where  rear‐facing  POA 

pyranometer measurements are made 17 m from the western array edge. (b) HSAT system where 

rear‐facing  silicon photodiode and pyranometer measurements are made 12 m  from  the southern 

array edge. 

The spatial non‐uniformity of irradiance on the backside of a bifacial PV array makes it difficult 

to identify a position for a backward‐facing irradiance sensor that is representative of the entire array. 

Fortunately, research is being conducted on this topic by other authors, although it is still in an early 

stage [60]. During clear sky (i.e., low diffuse fraction) days, we observed that the bottom pyranometer 

can receive nearly twice as much irradiance as the top pyranometer. Therefore, the black unity line 

in Figure 6, which represents the average measurement from two sensors, can at times have error 

bars on  the order of ±15 W∙m−2. On such clear sky days, seven of  the eight software studied give 

GPOA,Rear results that are within this range (Figure 7a). In other words, when the vertical spatial non‐

uniformity  of  irradiance  is  considered,  the  reduced‐order  complexity  2‐D  VF  models  perform 

reasonably well for fixed‐tilt simulations. 

In the HSAT scenario, we do not see the same level of model agreement (Figure 7b). We observed 

that the irradiance sensor closest to the sky (i.e., western sensor in the morning, eastern sensor in the 

afternoon) typically receives more irradiance than the pyranometer closest to the ground, which is 
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consistent with  the  findings of  [22]. We  found  that  the differences between  eastern  and western 

GPOA,Rear measurements on the HSAT system were not as extreme as differences between the top and 

bottom GPOA,Rear measurements on the fixed‐tilt system. On a clear sky day, we observed differences 

on the order of 10 W∙m−2 between western and eastern pyranometers. Although five of eight software 

agree within  5 W∙m−2  of  each  other,  none  of  the  same  five  tools  overlap with  the measurement 

uncertainty bars  in Figure 7b. This  result could  likely change  if alternative backside pyranometer 

locations were chosen. Therefore, the PV  industry could benefit from a standardized best‐practice 

protocol for mounting the rear plane of array irradiance sensors in bifacial PV monitoring systems. 

The  difference  between  Si  photodiode  GPOA,Rear  measurements  and  pyranometer  GPOA,Rear 

measurements is most apparent at midday, when the tracker is at or near a horizontal tilt. This could 

be because the Si photodiodes used in this work are calibrated under the air‐mass 1.5 global reference 

spectrum  (AM1.5G),  but  the  spectral  reflectance  of  grass  deviates  strongly  from  the  spectral 

distribution of AM1.5G  [61]. Particularly, healthy grass has high  reflectance  in  the near‐infrared 

spectrum and very little reflectance in the visible spectrum where the AM1.5G spectrum peaks. It is 

well known that the output of silicon PV devices calibrated under the AM1.5G spectrum will increase 

as the observed spectrum “red shifts” [62,63]. This can explain why the Si photodiode measurements 

are higher than the pyranometer measurements around midday when the tracker is near horizontal, 

and the sensor’s field of view is primarily encompassed by grass, not the sky. However, the spectral 

response of the Si photodiodes is reasonably well matched to that of the bifacial PERC module’s rear 

side, and  for  this  reason,  the  readings  from  this  sensor  type  could be more  representative of  the 

effective irradiance received at the backside of the PV array. Indeed, further research is needed on 

the benefits of silicon radiometers (reference cells) versus pyranometers in bifacial PV monitoring 

applications. 

3.2. DC Power 

Figure 8 shows one year of modeled versus measured DC string power of four PV configurations 

as simulated by six software. Good correlation is observed in all 24 regressions (R2 = 0.99), but residual 

errors can exceed 5 kW (20%) in some cases. When such large errors are observed, the error is similar 

for all  six  software, which  indicates an unidentified  issue with  the meteorological measurements 

and/or the electrical monitoring system. The DC electrical monitoring system measures string‐level 

voltage and current independently of the inverter. The galvanically isolated data acquisition boards 

are a commercially available string.bloxx solution  from Gantner  Instruments  (Rodgau, Germany). 

From the specifications, we determined the uncertainty of the DC power measurements as ±0.5% at 

the full scale. The dashed black lines in Figure 8 are drawn at ±4.5% from the solid black unity line 

and depict the GHI measurement uncertainty on a clear day at solar noon (±4%) and the uncertainty 

of  the  power measurements  (±0.5%). All  24  trend  lines  in  Figure  8  are within  this  boundary  at 

measured power levels greater than 7 kW. 

Figure 9 shows the model errors from Figure 8 in the form of cumulative distribution functions 

(CDFs). The slopes of all 24 CDFs  in Figure 9 are steepest around approximately ±500 W, which 

indicates that the majority of errors are within this range. CDF shifts in the positive X‐axis direction 

indicate that a modeling tool has a tendency toward higher DC power predictions, while shifts in the 

negative x‐axis direction indicate a tendency toward more conservative DC power predictions. With 

this in mind, the bifacial fixed‐tilt and HSAT simulations reveal two groups: PlantPredict, PVsyst, 

and SAM showing nearly identical CDFs; and MoBiDiG RT, MoBiDiG VF, and SolarFarmer showing 

very similar CDFs. The former group has a  tendency  toward negative bias and  the  latter group a 

tendency toward positive bias. In the case of the bifacial HSAT simulation, the reason for this two‐

group split could be attributed to the latter group yielding the highest estimates of GPOA,Rear (Figure 

6). In the case of the bifacial fixed‐tilt simulation—and both monofacial simulations—the explanation 

is not so clear and therefore likely not attributable to a single difference in submodeling steps but 

rather due to the differences accumulated in multiple submodels. We performed regressions of the 

DC power residuals as a function of measured variables, such as diffuse light fraction (DHI/GHI), sun 

position (zenith and azimuth), and GPOA,Front. This exercise revealed no significant correlations (R2 < 
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0.25) or systematic  trends, other  than a  trend of  larger absolute errors during  times of high solar 

irradiance. 

 

Figure 8. Regressions of hourly modeled versus hourly measured DC power of  four  the  four PV 

system types studied. Result from six different software are shown. Data points recorded when the 

sun elevation was less than 5° above the horizon were removed from these plots. 

 

Figure 9. Cumulative distribution  functions of  the modeling error observed  in DC power. Results 

from four system types and six software are shown. These plots are generated using the residuals 

from Figure 8. 
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Figure 10 shows two variability plots that summarize the annual mean absolute errors (MAEs) 

and mean bias errors  (MBEs) of  the  four PV system  types simulated by six software. The dashed 

orange  lines  in  each  variability  plot  represent  the  average  modeling  error  of  the  bifacial  and 

monofacial system types and indicate a 30 W higher MAE in bifacial simulations. The slightly higher 

MAE can be explained simply by the fact that the bifacial arrays produce about 5% more energy on 

an annual basis  than  the monofacial arrays. When  the MAE  is normalized  to  the average power 

produced by each system  type over  the year, we  found  that  the normalized error  is about 0.25% 

higher for bifacial simulations versus monofacial simulations. This difference is likely driven by the 

contribution of GPOA,Rear. In terms of the average MBE, bifacial simulations are about 90 W higher than 

monofacial simulations but closer to zero bias than the monofacial simulations. Within the context of 

the  results  obtained  from  the  site  studied  here,  we  conclude  that  the  accuracy  of  bifacial  PV 

simulations is not significantly different than monofacial PV simulations. 

Figure 10a shows the MAE calculated using two approaches: (1) without error weighting and 

(2) by weighting the error with the inverse uncertainty (1/UC) of the solar radiation measurements 

during each hour of energy production. In approach (2), the errors are weighted by either the GHI 

uncertainty or DNI uncertainty, depending on the data used in the transposition step, and the sum 

of  all  error weights  equals one. The  rationale behind  the  1/UC weighting  in  approach  (2)  is  that 

uncertainty in solar radiation measurements directly impacts simulated PV power, which ought to 

be accounted for in error analyses. As expected, weighting the error by a factor of 1/UC reduces the 

MAE, but the reduction is small at about 20 W, or 0.2%. 

 
 

(a)  (b) 

Figure 10. (a) Variability plot showing the mean absolute error of DC power for the four PV system 

types as simulated by six software. The chart displays unweighted error and error weighted by the 

inverse of the uncertainty of the solar radiation measurements. (b) Variability plot showing the mean 

bias error of DC power. Only the unweighted error is shown in these plots. The dashed orange lines 

show the mean error of the bifacial and monofacial arrays. 

3.3. Bifacial Gain 

Figure 11  shows  the monthly bifacial gain  from  five  software  that are  capable of simulating 

electrical performance. The black  lines  in each plot show  the monthly results  from  the DC string 

measurements.  The  error  bars  show  the  inner  quartile  range  of  daily measured  bifacial  gains 

observed in each month. The daily bifacial gains in winter fluctuate greatly because the daily energy 

production in winter can be an order of magnitude less than in summer months: This variability is 

illustrated with the wider error bars in winter. Recall that the measured results are normalized with 

the I‐V measurements made at DTU per Equation (1). If the normalization was instead made using 

the manufacturer’s nameplate rating, the measured bifacial gain according to Equation (1) would be 

1.5% higher  than what  is  shown. This difference  can  significantly affect  the economics of project 

decisions that are made based on an expected bifacial energy gain. 

The measured monthly bifacial gain on  the  fixed‐tilt system  is between 4.3% and 7.3%  from 

March to October. Meanwhile, the bifacial gain on the tracker is consistently higher, between 6.6% 

and 8.5% during the same months. The higher bifacial gains observed on the HSAT are likely due to 
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the wider 12‐m spacing between rows (GCR = 0.28) versus the narrower 7.6‐m spacing on the fixed‐

tilt system (GCR = 0.4), which creates more self‐shading within the inner rows of the fixed‐tilt field. 

From November  to  February,  the measured  bifacial  gain  on  the  two  system  types  shows 

opposing  trends, wherein  the HSAT  system shows an  increase and  the  fixed‐tilt  system  shows a 

decrease. These months were characterized consistently as cloudy skies with mean monthly diffuse 

fractions between 88% and 94%. The works of other authors have demonstrated that bifacial gain will 

increase as the fraction of diffuse light increases [64], which can explain the higher bifacial gain on 

the HSAT system in winter. It also been shown that bifacial PV systems require higher tilt angles to 

capture  the benefit of such diffuse conditions  [65]. This can explain why  the simulations and  the 

measurements  in winter  show  lower  bifacial  gains  on  the  fixed‐tilt  system  (25°)  than  the HSAT 

system (±60°). 

 
(a) 

 
(b) 

Figure 11. Monthly bifacial gain on  fixed‐tilt and HSAT systems calculated with Equation  (1). All 

plots show bifacial gain as simulated by five software and from DC string measurements. The black 

error bars  show  the  inner quartile  range of daily bifacial gain measurements within each month. 

Datapoints when sun elevation is lower than 5° above the horizon are not included in these plots. (a) 

Results grouped by software (Table 1). (b) Results grouped by which 1‐diode model and parameter 

set was used. PVsyst Parameter Set 1 is based on laboratory I‐V measurements at multiple irradiances 

while PVsyst Parameter Set 2 is based on only STC measurements. 

The simulated bifacial gain values largely follow the trends of the measurements, but the most 

notable exception is the fixed‐tilt system in winter (November through February). This discrepancy 

is likely due to the significant amount of inter‐row shading on the fixed‐tilt system from November 

to February. The fixed‐tilt system has a shade angle (at solar noon) of 16°, but on the winter solstice, 
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the sun elevation peaks at 12°. Therefore,  the  fixed‐tilt rows are partially shaded at practically all 

times  in December and  January.  In  fact, negative bifacial gains were measured  in November and 

December  on  the  fixed‐tilt  systems.  Such  an  incongruous  result  points  toward  issues  in  the 

measurements rather than the shade‐loss models. A visual inspection on a clear winter day near solar 

noon confirmed that there was more inter‐row shading on the bifacial arrays than on the monofacial 

arrays. This is attributed primarily to the torque tube gap on the bifacial arrays, and the lack of such 

a gap on  the monofacial arrays. The  torque  tube gap on  the bifacial arrays  (Figure 2a) places  the 

bifacial modules approximately 5 cm higher than modules on the monofacial arrays that completely 

cover the torque tube (Figure A2). This slight differentiation in structural geometry may not have 

been simulated sufficiently in the software. 

Another notable discrepancy between the model and measurement is seen in April when a small 

spike  in bifacial gain  is observed on both  the  fixed‐tilt and HSAT  system. The  trend  in modeled 

bifacial gains from March to May indicate that the measured bifacial gain in April is overstated by as 

much  as  1.5%. We  believe  the  higher  measured  bifacial  gain  in  April  was  caused  largely  by 

extraordinarily high pollen counts in late April 2019, which caused non‐uniform soiling on the PV 

arrays, and ultimately more power loss in the monofacial than bifacial systems. We observed that the 

daily bifacial gains were between 10% and 20%  from 23–26 April 2019, which corresponds  to  the 

dates of the soiling event (Figure A2). A significant rainfall event occurred on 27 April 2019 at which 

point more modest  and  typical  bifacial  gains  resumed.  This  artifact  highlights  the  challenge  of 

curating high‐quality data acquisition in large‐scale PV test sites. 

Please note that the bifacial gain results from SolarFarmer are not presented in Figure 11 because 

the overestimation of GPOA,Rear shown  in Figure A2 causes a 2–4% upward bias  in bifacial gain as 

compared to the other tools, which use the PVsyst 1‐diode model (i.e., PlantPredict and PVsyst). This 

result conflicts with our previous work [27], which showed SolarFarmer results mostly within 1% of 

the measured bifacial gain, while PlantPredict and PVsyst results were 3–4% low to the measured 

bifacial gain. The reason for this discrepancy is that the present work uses a 1‐diode model parameter 

set based on laboratory measurements made at irradiances from 200–1000 W∙m−2 (noted as ‘Parameter 

Set 1’ in Figure 11b) while our previous work used a parameter set based on measurements made 

only at STC (noted as ‘Parameter Set 2’ in Figure 11b). The improved agreement of ‘Parameter Set 1’ 

shown here is attributed to the fact that this parameter set more accurately predicts performance at 

low‐light conditions (<400 W∙m−2) than does ‘Parameter Set 2’. This finding is in agreement with the 

findings and recommendations of other authors [66,67]. 

Figure 12 shows the simulated bifacial gain according to the GPOA,Rear to GPOA,Front ratio (Equation 

(2)). The agreement among the different software is similar regardless of whether the bifacial gain is 

calculated using the optical gain (Equation (2)) or the electrical performance (Equation (1)), with the 

exception of HSAT results in winter, where better agreement among software is seen using Equation 

(2). The larger discrepancies between HSAT simulations in winter using Equation (1) could be due to 

the different backtracking and shade‐loss algorithms used by the software. Equation (2) results  in 

better agreement with the fixed‐tilt system measurements in winter, which indicates that inaccuracies 

in the shade‐loss models are likely the result of the significant winter deviations shown in Figure 11. 

Figure 12b shows the results grouped by whether GPOA,Rear is calculated using a 2‐D VF or 3‐D RT 

approach. When visualized  in this manner, it becomes clear that the 3‐D RT approach follows the 

measured bifacial gain most closely for the HSAT simulation, within 0.5% of measurement for most 

months outside of winter. The  3‐D RT model  also matches well,  typically within  0.5%, with  the 

bifacial  gain measurements  on  the  fixed‐tilt  system. However,  2‐D VF models,  such  as  the  one 

integrated in SAM, compared equally well to field measurements. Indeed, the measured bifacial gain 

shown in Figure 12 is influenced by the value of Bifiloss. The static Bifiloss values used here, in actuality, 

change  dynamically  over  the  day with  the  prevailing  conditions  [19,57,58]. All  the  commercial 

software tested here has the capability to use only a single value. This simplification offers room to 

improve the accuracy of the bifacial PV performance simulation tools used in industry today. 
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(a) 

 
(b) 

Figure 12. Monthly bifacial gain on  fixed‐tilt and HSAT systems calculated with Equation  (2). All 

plots show bifacial gain as simulated by seven software and from DC string measurements. The black 

error bars  show  the  inner quartile  range of daily bifacial gain measurements within each month. 

Datapoints when sun elevation is lower than 5° above the horizon are not included in these plots. (a) 

Results grouped by software (Table 1). (b) Results grouped by whether a 2‐D view factor or 3‐D ray 

trace approach was used to calculate back side irradiance. 

3.4. Frontside Plane‐of‐Array Irradiance (GPOA,Front) and Module Temperature (TMOD) 

PV  project  developers  and  investors  are  often  interested  in  bottom‐line  figures,  such  as 

performance  ratios,  specific  yields,  and,  in  the  case  of  bifacial  PV,  the  bifacial  gain. However, 

comparing simulations to measurements at such a high level is often not meaningful without first 

analyzing  the performance of key submodeling  steps. This  section builds on  this analysis, which 

started in Section 3.1 with an assessment of GPOA,Rear, and shows how the simulations compare to onsite 

front‐side plane‐of‐array irradiance (GPOA,Front) and back of module temperature (TMOD) measurements. 

Figure 13 shows an overlay of  the simulated and measured GPOA,Front on a cloudless day. The 

trends shown here are representative of the results from clear sky days within the test period. The 

plot is color coated by which the combination of solar radiation measurements is used in the Perez 

transposition model. Lower GPOA,Front estimates (≈40 W∙m−2) are seen at midday when DNI is used in 

the transposition step. On an annual basis, the MBE is between 11 and 13 W∙m−2 when GHI is used in 

transposition, and when DNI is used in the transposition step, the MBE is between −7 and 5 W∙m−2. 

These rather large differences in results using DNI and DHI versus GHI and DHI could be the result 
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of measurement issues with either the GHI pyranometer or DNI pyrheliometer. However, it is worth 

reiterating that weekly maintenance is performed at the weather station, and that the GHI, DHI and 

DNI data passed  the quality checks  recommended by  the BSRN  [46]. Additionally noteworthy  in 

Figure 13 is how there are considerable deviations among the tools that use the same DNI and DHI 

data as input, a result that is similar to that of other authors [28]. 

Since  the  front‐side  irradiance constitutes 92% or more of  the  total  irradiance  for half of  the 

timestamps  in  the  bifacial  simulations,  one would  suppose  that  software  that  uses DNI  in  the 

transposition step would tend to underpredict DC power. However, this turns out to not always be 

the case. For example, MoBiDiG is one such tool that uses DNI, and this tool was shown in the CDF 

plots of Figure 9 to overpredict DC power of all PV system types compared to the other five software. 

SAM is another such tool that uses DNI, but the results in Figures 8 and 9 show that SAM tends to 

predict marginally higher DC power values than the tools that use GHI but only in HSAT simulations. 

The underprediction of GPOA,Front by MoBiDiG and SAM could be compensated by their tendency to 

overpredict electrical performance at irradiance conditions <400 W∙m−2, which is due to their use of 

the  De  Soto  versus  PVsyst  1‐diode  model  (Figure  A1).  This  demonstrates  how  analyzing  the 

accumulated errors at various submodeling stages and their subsequent impact on energy yield is 

not always a straightforward process. 

 

Figure  13. Overlay  of  simulated  and measured  frontside  global POA  irradiance on  fixed‐tilt  and 

HSAT structures. The data shown are from a clear sky day (23 March 2020) and are grouped by which 

solar radiation data were used as input to the simulations. 

Figure 14 shows the difference between module temperature and ambient temperature versus 

GPOA,Front. This difference between module and ambient temperature is known to be essentially linear 

with  respect  to  the  in‐plane  irradiance with  a  slope proportional  to  the U0  coefficient used. The 

variations around are due  to  the assumptions  for convective heat  transfer  in  the U1 coefficient. A 

notable difference in Figure 14 is the module temperature predicted by SAM, which is simply due to 

SAM’s  use  of  the NOCT  versus  Faiman model.  The  TMOD measurement  comes  from  one  4‐wire 

resistance temperature device (RTD) affixed to a single cell on the backsheet of a module within the 

array; no translation from back of module (backsheet) to cell temperature is made in Figure 14. The 

monofacial results of Figure 14 show that the simulations tend to underpredict the measured back of 

module temperature by 2–3 °C, but errors are often greater than 5 °C. Unfortunately, TMOD sensors 

were never installed on the bifacial arrays, and as such, only monofacial temperature measurements 

are available. 

All software studied here implement simplified steady‐state thermal models that assume the PV 

array operates at a homogenous temperature, which can lead to discrepancies with measured values. 

Although  healthy  (i.e.,  non‐damaged)  modules  are  typically  assumed  to  have  homogenous 

temperatures within an array [68], cell temperatures are known to vary within a healthy module [69]. 



Appl. Sci. 2020, 10, 8487  19  of  29 

Therefore,  the  cell  on which  the  RTD  is  placed may  not  be  representative  of  the  average  cell 

temperature within the array, which is a potential source of error when comparing to modeled values. 

 

Figure  14.  Temperature  difference  of  the  PV module  and  ambient  versus  frontside  global  POA 

irradiance on the HSAT system. Back of module temperature measurements are shown in black and 

were only available for the monofacial HSAT system. 

Appropriate values for device‐specific thermal parameters, and the methods to acquire them from 

measurements, have been the subject of discussion and debate in the PV community [70]. Therefore, we 

performed a sensitivity analysis of the U0 and U1 thermal coefficients using the MoBiDiG VF tool. Our 

sensitivity  found  that  the MBE of  simulated monofacial DC power was minimized using U0 and U1 

parameter values of 24 and 1.6 W∙m−3∙K−1∙s, respectively. The sensitivity analysis showed that the best 

agreement between themodeled and measured module temperature would require U0 and U1 values near 

20 and 0 W∙m−3∙K−1∙s, respectively. Since these values are below the lower boundary of published values 

that we are aware of for open‐air mounted PV systems [54,71], it seems that the cell on which the RTD is 

placed is not representative of the average cell temperature within the array. 

3.5. Sensitivity Analysis of the Albedo 

While  the  bifacial  gain  is  known  to  increase  linearly  with  increases  in  albedo  [65,72,73], 

uncertainties in albedo measurements have been shown to have a non‐negligible effect on bifacial 

performance [74]. Therefore, we performed a sensitivity analysis with the MoBiDiG VF tool using 

annual albedo values from 18% to 24% (±3% of measured annual average) in place of the monthly 

measured albedo data that were used in previous sections. The results from this analysis are shown 

in Figure 15, with winter months excluded for clarity. 

Figure 15 shows that differences in simulated bifacial gain are very small (<0.3%) when annual 

average albedo data are used in place of monthly averages. However, during the high solar resource 

months of May through August, using monthly albedo in the simulation tends to match the measured 

bifacial gain more  closely. This demonstrates  that monthly  albedo data  is preferred over  annual 

albedo data, even at sites where the albedo does not vary greatly throughout the year, such as the site 

studied here. 

Figure 15 shows only few instances where the measured bifacial gain is outside the boundaries 

of  the  sensitivity.  One  such  example  occurs  in  April,  where  unusually  high  bifacial  gain  was 

measured. In the case of the HSAT, nearly 30% albedo would be needed to recreate the measured 

bifacial gain  in  that month. Since such uncertainty  in  the measured albedo  is unlikely,  this  lends 

credence to our hypothesis that abnormally high pollen counts (i.e., soiling) in April caused the spikes 

in  bifacial  gain.  Another  instance  where  the  measured  bifacial  gain  is  outside  the  sensitivity 

boundaries occurs in the fixed‐tilt system in March and October. Since the fixed‐tilt array experiences 
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the most shading  in these months,  it  is  likely  that power  losses due to shading are not accurately 

accounted for in the simulation. 

 

Figure 15. Sensitivity of albedo on the monthly bifacial gain (Equation (1)). All simulations here are 

performed with the MoBiDiG VF model. The orange curve shows the base case that uses monthly 

albedo (Figure 11), the green curve shows results using 21% annual average albedo, and the shaded 

green regions show the range of results obtained using annual albedo values of 18% to 0.24%. 

3.6. Monthly and Annual Energy Production 

With  the  results  from  several  key  intermediary modeling  steps presented, we  conclude  the 

results section with a comparison of the modeled and measured monthly DC energy. In Figure 16, 

the monthly and yearly errors in energy predictions across all four PV system types are shown. Please 

note that roughly 75% of the total annual energy is produced between April and August. With just 

25% of the annual energy produced between September and March, errors during these months tend 

to be  larger on  a percentage  scale. An  interesting  result  in Figure  16  is  that on  a monthly basis, 

PlantPredict, PVsyst, SAM, and SolarFarmer fluctuate between negative and positive bias relative to 

the measurements, sometimes with monthly deviations greater  than 5%. However, on an annual 

basis, all tools simulate the four PV systems within 3.5% or less of measurements, and in some cases, 

the annual error is less than 1%. This is a rather positive result considering the uncertainty of the solar 

radiation measurements and the electrical monitoring system. 

The accuracy of annual results from PVsyst and SAM shown in Figure 16 are in fact better than 

those published by  [75], which could be because  the parameters and  loss  factors used here were 

thoroughly calculated rather than using default values. On an annual basis, results from PlantPredict 

match PVsyst within 0.7% to 2.0%, which is a slightly larger deviation than that presented in [31] for 

Cadmium Telluride technology, but the larger differences here could be due to the use of different 

IAM models to describe reflection losses and/or the introduction of GPOA,Rear. The annual MoBiDiG 

results are between 2% and 3% above measurements, which is higher than the ±1% published in [14] 

for most static‐tilt configurations, but agreement could improve if, for example, the DeSoto parameter 

set was modified such that the modeled DC efficiency was lowered at low‐light conditions (Figure 

A1). 
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Figure 16. Monthly and yearly errors in energy yield (MWh) predictions from six software simulating 

four PV system types. 

Finally,  a  word  on  the  accuracy  of  bifacial  versus monofacial  simulations:  The  difference 

between the annual energy yield error in bifacial versus monofacial simulations is 1% or less, for five 

of six software. The outlier is SolarFarmer, which shows larger differences between its bifacial and 

monofacial simulations, but this is simply due to the overestimate of GPOA,Rear mentioned previously. 

The  annual  errors  in  bifacial  and monofacial  simulations  are no more  than  0.5% different when 

performed  in MoBiDiG  VF,  PlantPredict,  and  PVsyst.  This  result  is  in  accord with  the  results 

presented in Section 3.1, which showed a deviation of roughly 0.5% between modeled and measured 

GPOA,Rear values when considering the contribution of GPOA,Front. 

4. Discussion and Conclusions 

We  assessed  eight  bifacial  PV  simulation  software  against GPOA,Rear, GPOA,Front,  TMOD, DC  PMP, 

bifacial gain, and energy measurements made at a 420‐kWp test site in Roskilde, Denmark. Our results 

show that state‐of‐the‐art bifacial performance models add approximately 0.5% uncertainty to the PV 

modeling chain. This finding was demonstrated in the analysis of modeled and measured GPOA,Rear 

and DC PMP values. Although 0.5% may seem small, an uncertainty of 0.5% in a 500‐MW power plant 

translates  into  2.5  MW,  which  translates  into  substantial  risk  in  economic  models.  Therefore, 

continued efforts in reducing error in bifacial PV simulations should continue. One suggestion is the 

implementation of models  that describe how Bifiloss parameters change with prevailing conditions 

rather than the use of static Bifiloss parameters as used in this work. 

Our results further show that, outside of winter months, 2‐D view factor fixed‐tilt simulations 

are within ±1% of the measured monthly bifacial gain. Simulations of single‐axis tracker systems are 

less accurate with 2‐D view factor simulations within approximately 2% and 3‐D ray tracing within 

approximately 1% of the measured bifacial gain, respectively. 

When comparing modeled GPOA,Rear to measurements, the accuracy is highly dependent on the 

location and type of the optical sensor. We therefore recommend future research efforts to develop 

standardization and/or best practice guidelines for the placement of rear POA sensors. We observed 

significant differences between GPOA,Rear measurements made with thermopile pyranometers and Si‐

based sensors. As such, future work should aim to improve the PV community’s understanding of 

how  the  spectral  distribution  of  albedo  impacts  rear‐facing  pyranometer  reference  cell  versus 

measurements, in the framework of bifacial PV performance assessment. 

An objective of this study was to assess the accuracy of reduced‐order bifacial PV simulations, 

and we found good agreement with measurements considering the uncertainty of the solar radiation 
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input data. Because of  this  finding,  and  the  fact  that  the  rear  irradiance  contribution  constitutes 

roughly  8%  of  the  total  irradiance  for  the  site  studied  here, we  suggest  that  the  PV modeling 

community do not forget the importance of improving the accuracy of all parts of the PV modeling 

chain,  including, but not  limited  to, shade  loss models, cell  temperature models, and diffuse  sky 

models. 

A  shortcoming of  this validation  study  is  that  it was performed at one  site, with  its  specific 

conditions and equipment. We  therefore  recommend  that  future work  includes a  comprehensive 

review of all bifacial PV simulation validation studies performed to date. Such a study can inform 

the decisions of PV project developers and investors of bifacial PV assets. 
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Nomenclature 

Term  Description 

BF  Bifaciality factor (%) 

BG  Bifacial gain (%) 

Bifiloss  Loss of effective GPOA,Rear (%) 

BSRN  Baseline Surface Radiation Network 

DHI  Diffuse horizontal irradiance (W∙m−2) 

DNI  Direct normal irradiance (W∙m−2) 

DTU  Technical University of Denmark 

E  Electrical energy (Wh). Subscripts BF or MF indicate bifacial or monofacial PV, respectively 

GCR  Ground cover ratio 

GHI  Global horizontal irradiance (W∙m−2) 

GPOA 
Global irradiance on the PV array (W∙m−2). Subscripts front or rear indicate PV Array frontside or 

backside 

HSAT  Horizontal single axis tracker 

IAM  Incident angle modifier 

LID  Light induced degradation 

MAE  Mean absolute error 

MBE  Mean bias error 

NOCT  Nominal operating cell temperature 

PERC  Passivated emitter and rear contact 

PMP  PV module maximum power (W) 

PSTC  Power at standard test conditions (W) 

POA  Plane of array 

PID  Potential induced degradation 

RT  Ray tracing 

RTD  Resistance temperature device 

TAMB  Ambient temperature (°C) 
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TMOD  PV module temperature (°C)   

U0  Coefficient describing the effect of radiation on module temperature (W∙m−2∙K−1) 

U1  Coefficient describing the effect of wind speed on module temperature (W∙m−3∙K−1∙s) 

UC  Expanded uncertainty 

VF  View factor 

Appendix A. Model Parameters and Supplemental Data 

This section provides the parameter and loss values used for the main modeling steps in the base 
case scenario. 

Table A1. Thermal coefficients used in simulations. The NOCT of 42°C was used because this value 

gave  a  comparable  thermal  response  as  the  selected  U0/U1  coefficients  with  the  1‐year  of 

meteorological data used in this study. 

Parameter  Monofacial  Bifacial  Unit  Model  Source 

U0  29.5  31.0  W∙m−2∙K−1  Faiman  [53] 

U1  1.6  1.6  W∙m−3∙K−1∙s  Faiman  [52,71] 

NOCT  42.0  42.0  °C  NOCT   

NOCT Adjust  0.0  0.0  °C  NOCT   

Table A2. Incident angle modifier coefficients used in simulations. All model coefficients—Except for 

the Physical model—Were extracted using a Gauss‐Newton fitting algorithm and an IAM curve of a 

PV module with anti‐reflective coating. 

Parameter  PV Front Side  Model 

ar  0.155  Martin & Ruiz 

bo  0.056  ASHRAE 

n2  1.290  Air‐glass 

n3  1.526  Air‐glass 

b0  1.029  Sandia 

b1  −9.130 × 10−4  Sandia 

b2  8.507 × 10−6  Sandia 

b3  −8.464 × 10−8  Sandia 

b4  −8.713 × 10−8  Sandia 

b5  −1.711 × 10−9  Sandia 

Table A3. Electrical  parameters  for  the  two different  versions  of  the  1‐diode model  used  in  the 

simulations. Please note that the parameter set used for the DeSoto model was extracted from DTU 

laboratory  I‐V measurements  at  STC  and  that  the parameter  set used  for  the PVsyst model was 

extracted from DTU laboratory measurements at multiple irradiances (200–1000 W∙m−2). 

Parameter  Model  Monofacial  Bifacial  Unit 

ISC,STC 
DeSoto  9.745  9.642  A 

PVsyst  9.573  9.629   

IO 
DeSoto  0.007  0.005  nA 

PVsyst  1.381  5.682   

RSER 
DeSoto  0.304  0.382  Ω 

PVsyst  0.192  0.255   

RSHUNT 
DeSoto  3.539 × 102  1.891 × 103  Ω 

PVsyst  2.035 × 103  3.821 × 103   

a  DeSoto  1.533  1.518   

Adjust  DeSoto  9.010  6.311   

RSHUNT,0  PVsyst  8.856 × 103  2.971 × 104  Ω 

Gamma  PVsyst  1.126  1.21   
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Table A4. Bifacial‐specific coefficients used in the simulations. 

Parameter  Value  Source 

Bifaciality  0.6700  DTU I‐V Measurements 

Transmission fraction  0.0375  DTU Calculations 

Mismatch loss factor 1  0.0025  [19] 

Structure shading factor  0.0070  [52] 

Front PV surface reflectivity  0.0100  [9] 

Rear PV surface reflectivity  0.0300  [9] 

1 Includes front side irradiance contribution. 

Table A5. DC losses used in the simulations. 

Loss Factor  Value  Unit  Source 

Light induced degradation  0.5  %  DTU I‐V Measurements 

Module Mismatch  0.1  %  [76] 

DC wiring (at STC)  1.5  %  Wire‐gauge and length 

Soiling  0.2  %  Danish Field Measurements 

 

Figure A1. Modeled DC efficiency versus total POA irradiance. Note that in the monofacial cases, the 

x‐axis does not include backside irradiance (GPOA,Rear). Data are corrected to 25 °C using the module 

temperature coefficient for PMP. 
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(a) 

 
(b) 

Figure A2. Monofacial HSAT array before and after a rainfall event in late April. The unusually high 

bifacial gains in April are attributed to the soiling present before the rainfall event. (a) Soiling from 

pollen (26 April 2019). (b) Reduced soiling after rainfall event (29 April 2019). 
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Abstract—The IEC 61853 standard series aims to provide a
standardized measure for photovoltaic (PV) module energy rat-
ing, namely the Climate Specific Energy Rating (CSER). For this
purpose, it defines procedures for the experimental determination
of input data and algorithms for calculating the CSER. However,
some steps leave room for interpretation regarding the specific
implementation. To analyze the impact of these ambiguities, the
comparability of results, and the clarity of the algorithm for calcu-
lating the CSER in Part 3 of the standard, an intercomparison is
performed among research organizations with ten different im-
plementations of the algorithm. We share the same input data,
obtained by measurement of a commercial crystalline silicon PV
module, among the participating organizations. Each participant
then uses their individual implementations of the algorithm to
calculate the resulting CSER values. The initial blind comparison
reveals differences of 0.133 (14.7%) in CSER. After several com-
parison phases, a best practice approach is defined, which reduces
the difference by a factor of 210 to below 0.001 (0.1%) in CSER
for two independent PV modules. The best practice presented in
this article establishes clear guidelines for the numerical treatment
of the spectral correction and power matrix extrapolation, where
the methods in the standard are not clearly defined. Additionally,
we provide input data and results for the PV community to test
their implementations of the standard’s algorithm. To identify the
source of the deviations, we introduce a climate data diagnostic set.
Based on our experiences, we give recommendations for the future
development of the standard.

Index Terms—Energy performance, energy rating, energy yield,
photovoltaic (PV) module.

I. INTRODUCTION

THE IEC 61853 standard series “Photovoltaic (PV) module
performance testing and energy rating” was completed in

2018 with the publication of Parts 3 and 4 [1], [2]. This followed
the publication of Part 1 dealing with power rating and Part 2
dealing with incidence angle effects and module operating tem-
perature, in 2011 and 2016, respectively [3], [4]. The series aims
to provide a standardized measure for PV module performance,
namely the Climate Specific Energy Rating (CSER), which is
calculated in Part 3.
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It is important to distinguish between the two related but
different concepts of energy yield prediction and energy rating
since they have two very different objectives. Energy yield pre-
diction is an estimate of the energy produced by a particular PV
system constructed in a particular way in a particular location.
It typically needs at least ten years of location-specific data to
consider site-specific climatic characteristics as well as intra-
and interannual climatological variability. The energy yield es-
timation requires taking into consideration many parameters,
including the specific location and mounting conditions, the
local environment, and climate. Energy rating is a simplified
measure of how a given module type will tend to perform in
different climates. It can be estimated based on one single year
of data and it allows a quantitative comparison between module
types. The energy rating datasets and methods are not intended
to predict energy yield at any particular location.

For the purpose of energy rating, six reference climate datasets
[5] describing the most representative working conditions that
PV installations worldwide are subjected to are specified in
Part 4 of the standard. The CSER relates the module energy
efficiency in the reference climates to the module power effi-
ciency under Standard Testing Conditions (STC: 25°C, 1000
W·m−2, AM1.5G) [6] and thus aims to be a practical measure of
performance in real conditions. The detailed procedure for the
calculation of CSER is contained in Part 3, using input data from
the other three parts. Part 3 contains 20 equations additionally
the user has to derive another 18 equations to cover all extrap-
olation possibilities surrounding the power matrix. Thus, many
calculation steps are required and the specific implementation of
the calculation is left to the user, and some steps in the procedure
may be subject to different interpretations. Both of these factors
mean that there is a risk that different CSER results may be
obtained by different laboratories and institutions. Without a
reference parameter set available to the PV community, it is
impossible to verify the correctness of the implementation of
the CSER calculation.

This article reports comparisons of CSER calculation imple-
mentations at ten different institutions. Different programming
languages were employed including Python, MATLAB, and
JSL. At least one participant provides the code in open source
[7]. Significant differences in results were found in the first inter-
comparison round [8], demonstrating that even for experienced
users, the standard is not straightforward to implement. Five
intercomparison rounds were needed to resolve issues, ranging
from programming bugs to interpretation difficulties. These
intercomparison rounds culminated in a robust implementation
and very close results for all participants, when tested on an inde-
pendent module dataset. It was found that the spectral correction
and extrapolation of module power are the two calculation steps
that cause the most issues with the interpretation of the standard.
The former can be traced back to the standard not defining
the exact procedure and method for numerical integration and
for dealing with different spectral resolutions in the spectral
correction step. The latter can be traced back to the standard
not defining the exact procedure and method for extrapolation
of the module power or rather efficiency table for some cases.

To establish best practice guidelines for the PV community,
the detailed steps and potential pitfalls are described, as well as

the reasoning behind the interpretation considered most appro-
priate where some ambiguity of calculation steps is found.

A reference parameter set is provided, which will allow users
to test their implementation and compare their results with those
of this group. The dataset includes a complete definition of all the
module parameters needed (measured as defined in Parts 1 and 2
of the standard series), as well as the resulting CSER values for
the six climate profiles. To aid debugging of implementations, a
climate data diagnostic set is also provided that contains a small
number of hourly climate data in the format of Part 4 of the
standard series, chosen to highlight specific issues, along with
appropriate intermediate output data.

Finally, the intensive work performing the intercomparisons
involving all four parts of the standard series has enabled iden-
tification of several areas for possible improvements. Some
recommendations are made, which focus on the calculation
steps in Part 3, but since all four parts are closely related, it
is advantageous to ensure that any proposed changes are made
consistently in all four parts.

A. IEC 61853 Standard Series Overview

The IEC 61853 Standard series “Photovoltaic (PV) module
performance testing and energy rating” establishes requirements
for determining PV module performance in terms of power
(watts), specific module energy rating (kWh/kW), and CSER
(dimensionless). The methodology does not take into account
either progressive degradation or transient behavior such as
light-induced changes and/or thermal annealing. The standard
presently applies to monofacial modules only. No other tech-
nologies are explicitly excluded, so it is possible to rate PV
modules with all types of absorber materials and cell architec-
tures. The standard series consists of the following four parts.

IEC 61853 Part 1 “Irradiance and temperature performance
measurements and power rating” [3] describes requirements for
evaluating PV module performance in terms of power (watts)
rating over a range of irradiances from 100 to 1100 W·m−2 and
module temperatures from 15°C to 75°C. This part is used to
determine the so-called power matrix, which is one of the main
input data required in the calculation methods applied in Part 3.

IEC 61853 Part 2 “Spectral responsivity, incidence angle and
module operating temperature measurements” [4] describes test
procedures to obtain the effect of varying angle of incidence
(AOI) between the received irradiance and the module’s surface.
Part 2 also details the impact of irrdiance with wavelengths (i.e.,
spectral responsivity) on the PV module’s effectively absorbed
irradiance. The angular-loss (ar) coefficient is extracted from
the AOI test data, which is based on the Martin and Ruiz
model [9], [10]. The higher the ar coefficient, the greater the
angular-dependent losses. Part 2 also describes the experimental
procedures to obtain the uo and u1 thermal coefficients that
are required to calculate the module temperature Tmod,j from
in-plane irradiance Gcorr,AOI,j , ambient temperature Tamb,j ,
and wind speed vj . The uo and u1 coefficients are taken from
the Faiman model [11], and describe the effect of radiation and
wind cooling on module temperature.

IEC 61853 Part 3 “Energy rating of PV modules” [1] de-
scribes the calculation steps needed for PV module ratings. The
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Fig. 1. Main steps and input parameters for each step of the IEC61853-3
algorithm and the equation number in this article.

input data to these calculations include the measurements and
parameters obtained in Parts 1 and 2 and the meteorological
conditions available in Part 4. The calculation steps are shown
schematically in Fig. 1.

IEC 61853-4 Part 4 “Standard reference climatic profiles”
[2] contains six standard reference climatic profiles describing
the most representative working conditions of PV installations
worldwide. The six standard reference climatic profiles are sub-
tropical arid (sub. ari.), subtropical coastal (sub. cos.), tropical
humid (tro. hum.), temperate continental (tem. con.), temperate
coastal (tem. cos.), and high elevation (hig. ele.). The mounting
condition is defined to be a free standing fixed rack, equator
facing with an inclination angle β, which is fixed at 20˚. Each
dataset contains 8760 hourly values of several climatological
variables over a year, including irradiance, ambient temperature,
and wind speed. Several irradiance parameters are provided:
horizontal, in-plane global, and direct broadband irradiance, as
well as in-plane spectrally resolved global irradiance from 307
to 4606 nm integrated into 29 discrete bands [12].

B. Calculating CSER

For each of the six reference climatic profiles, the calculations
steps in Part 3 are as follows.

The first step of the calculation algorithm is correcting the
in-plane beam Bj and sky diffuse Dj irradiation for angular
losses at the PV module interface due to oblique AOI θj . For
this purpose, the model of Martin and Ruiz [9], [10] is used (1)-
(2), based on the angular loss coefficient ar of the PV module.
Please note that we use the same equation numbers as the 2018
version of the IEC 61853-3 standard to simplify comparison and
add letters to the equation numbers, if we introduce modified
versions.

The second step is spectral correction [4] of the angular
corrected irradiance Gcorr,AOI,j = Bcorr,j +Dcorr,j for the
mismatch between the spectrally resolved global irradiance

given in the climate data set and AM1.5G reference spectrum
[13]. The result is the corrected global irradiance Gcorr,j , for
which we propose (5a).

The third step is the calculation of the module temperature
Tmod,j, for which the Faiman model is used [11] (8).

Bcorr,j = Bj

⎡
⎣1 − exp

(
− cos(θj)

ar

)
1 − exp

(
− 1

ar

)
⎤
⎦ (1)

Dcorr,j = Dj

{
1 − exp

[
− 1
ar

(
4

3π

(
sinβ +

π − β − sinβ

1 + cosβ

)

+ (0.5ar − 0.154)

(
sinβ +

π − β − sinβ

1 + cosβ

)2
)]}

(2)

Tmod,j = Tamb,j +
Gcorr,AOI,j

u0 + u1vj
. (8)

The fourth step is the calculation of the module power out-
put for the given hour. For this purpose, the module power is
measured according to [3] at different module temperatures
(15–75°C) and irradiances (100–1100 W·m−2). These results
form a power matrix consisting of 22 power values, converted
into module efficiency through dividing by irradiance. Two-
dimensional (2-D) bilinear interpolation is then used to deter-
mine the module efficiency at the corrected global irradiance
Gcorr,j and the module temperature Tmod,j values. Afterward,
the obtained module efficiency value is used to calculate power
output Pmod,j for the given hour j and the process (Steps 1–4)
is repeated for every hour of the year. The energy produced by
the module is the sum of the hourly values. The CSER is then
calculated using the following equation (20):

CSER =
Emod,year/Hp,year

Pmax,STC/Gref,STC
(20)

whereEmod,year is the total energy produced, relative to the total
yearly irradiation in the module plane Hp,year and the module’s
maximum power under STC Pmax,STC and the irradiance of the
reference spectrum Gref,STC. The CSER may be interpreted as
the annual energy conversion efficiency in the climate relative
to STC power conversion efficiency, or as a PV module perfor-
mance ratio (MPR) [5], [14]–[17]. A CSER of 1 means that the
PV module operates as efficient in the climate as under STC,
whereas CSER values below 1 indicate lower efficiency in the
reference climate and vice versa.

II. TEST MODULE INPUT DATA

The Module 1 dataset uses the thermal coefficients u0 = 25
W/(m2×K) and u1 = 6.84 W/(m3×s×K) taken from the liter-
ature [11]. All other module parameters are measured at TÜV
Rheinland, and the results are presented in Table I and Fig. 2.
All the module data are available in csv format in Appendix
B–Input data module 1 and Appendix C–Input data module 2 as
well as for download from https://www.metro-pv.ptb.de/home/
(see Supplementary Material). A standard c-Si module with 60
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TABLE I
MODULE POWER [W] FOR MODULE 1 AT THE SPECIFIED TEMPERATURES AND

IRRADIANCES IN IEC 61853-1 MEASURED FOR THIS STUDY

Fig. 2. IAM (top) and spectral responsivity (bottom) of the two modules used
in the intercomparison campaign. Please note that the values for module 1 are
measured, whereas the values for module 2 are obtained via simulation.

TABLE II
MODULE POWER [W] FOR MODULE 2 AT THE SPECIFIED TEMPERATURES AND

IRRADIANCES IN IEC 61853-1 TAKEN FROM [19]

cells is used as the test module 1. A pulsed solar simulator,
class AAA according to IEC 60904-9 [18], is used to measure
the power matrix according to IEC 61853-1 [3]. The results
are shown in Table I, listing the Pmax,STC value as 280.47 W.
The spectral responsivity (as shown in Fig. 2, bottom) is mea-
sured according to IEC 61853-2 using a monochromator system
with bias light source. A pulsed solar simulator, class AAA
according to IEC 60904-9, is used for the incidence angle
modifier (IAM) measurement according to IEC61853-2. The
measured values are the black symbols in Fig. 2 (top). In the first
phase of the intercomparison campaign, participants determined
their own ar angular loss coefficient by fitting the measurement
data themselves using different fitting methods. This lead to
deviations of up to 0.008 in ar. As this study is focused on Part
3 of the series and not Part 2, it was decided to use ar = 0.14571
(black line, Fig. 2 left) for all other phases.

Since no complete set of PV module input parameters for
IEC 61853-3 was available in the literature, input parameters
from different literature sources, all describing c-Si modules,
are combined to form a second data set. This collection of PV
module input parameters will be referred to as “module 2,” to
simplify descriptions. The module 2 dataset uses the thermal
coefficients u0 = 26.4 W/(m2×K) and u1 = 6.25 W/(m3×s×K)
taken from the literature [11]. The module power matrix as
shown in Table II is taken from [19]. The spectral response and
angular behavior of module 2 are simulated using the Daida-
los cloud ray tracer [20], which demonstrated good agreement
with measurements in several studies [21]–[24]. The results are
shown in red in Fig. 2.

III. INTERCOMPARISON RESULTS

In the first phase of the intercomparison [8], each participant
calculated the results for module 1 without knowledge of the
other participants’ results. The results from phase 1 are shown in
Fig. 3 for all six climate profiles. The largest difference between
two participants was 0.133 (14.7%) in the tropical humid profile,
but even the high elevation climate with the lowest difference
of 6.7% still showed a significant deviation. Please note that
result J1 was excluded due to the use of input parameters from
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Fig. 3. CSERs for all participants and climate profiles for the same module in
the initial blind comparison.

Fig. 4. CSERs for all participants and climate profiles for the same module
in the final comparison round. The median of all participants’ values is the
respective number shown for each climate.

a different module and that the star next to participant F in
phase 5 signifies that 2-D inter- and extrapolation functions
build into a python software package are used rather than the
explicit equations given in Appendix A (see Supplementary
Material). Also note that the results including hourly data will be
available for download from https://zenodo.org/record/5750185
and https://www.metro-pv.ptb.de/home/.

The results of the final comparison round (phase 5, Fig. 4)
show a difference of 0.00066 (0.07%) in CSER for the temperate
continental climate and less in all other climate profiles (down

Fig. 5. Largest relative difference between any two participants for module 1
in each climate and phase declines from 14.7% to 0.07%.

to 0.00018 (0.02%) in CSER for the subtropical arid climate
profile).

Fig. 5 shows the development of the largest relative difference
between any two participants for each climate profile through
all five phases. This difference declines from 14.7% in phase 1,
to 3.2% in both phases 2 and 3, to 1.2% in phase 4 and down
to 0.07% in phase 5. This is a reduction by a factor of 210
between of the highest relative difference in phase 1 and 5. The
relative differences shown in Fig. 5 are defined by the two most
disagreeing participants, if we discard the results for the half of
the participants, which are furthest from the median: We would
get a difference of 4.8% in phase 1, to 0.33% in phase 2, to 0.20%
in phase 3, to 0.022% in phase 4 and down to 0.0042% in phase
5. This is an even greater reduction (factor of 1152) for the core
results surrounding the median of each phase. Signifying that
the improvements are achieved by all participants. Please note
that participants B and G stopped contributing results in phases
4 and 5 due to other work priorities; the deviation of their phase
3 results from the final median CSER is 0.21% or less for all
climate profiles.

IV. BEST PRACTICE

During the intercomparison, we identified three main sources
for errors [8], namely the AOI correction based on the determina-
tion ofar values from AOI measurements, the spectral correction
of in-plane irradiance, and the determination of instantaneous
module power through inter- and extrapolation. In the following,
we present additional guidance in interpreting the standard in a
way that will provide consistent results.

A. Recommendations for the AOI Correction Procedure

The correction of AOI effects requires the ar factor that
represents the angular responsivity of the device under test. In
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IEC 61853-2, it is described that this factor has to be determined
by “an appropriate fitting procedure.” We here recommend to
use a least square fit optimization with measurement data and to
limit to the range from 0° to 80° incidence angle. Measurements
of higher incidence angles are increasingly prone to systematic
measurement errors and therefore measurements at 85° should
be rejected [24]. In the CSER calculation, the angular loss
coefficient should be specified with an accuracy of five digits to
prevent the impact of the fitting and rounding on the calculation.

B. Recommendations for the Spectral Correction of In-Plane
Irradiance

The spectral correction is based on spectrally resolved global
irradiance data given in the IEC 61853-4 and is performed by
(5)–(7) of IEC 61853-3. In our analysis of the spectral correction
[8], we noticed that this step is a main source for the deviations.
One of the origin for that is that the spectral correction factor,
defined by (6) of IEC 61853-3, does not give the value of
1, if one corrects with the reference spectrum RSTC. Several
participants rectified this by replacing the 1000 with their value
for

∫ λe

λs
RSTC(λ) · dλ. By substituting (7) into (6), we eliminate

the spectral correction factor and thus a deviation source and
derive:

Gcorr,j = 1000 · ∫λe
λs

S (λ) ·Rcorr,AOI,j (λ) · dλ
∫λe
λs

S (λ) ·RSTC (λ) · dλ . (5a)

Another origin of the spectral deviation is the steps and limits
of the numerical integration. While the standard states that the
integration limits are λs = 300 nm and λe = 4000 nm, the
spectrally resolved global irradiance data in Part 4 is given in 29
so-called Kato bands [12], ranging from 306.8 to 4605.65 nm. In
addition, the spectral responsivityS(λ) and the spectral intensity
of the AM1.5 spectrum have different resolutions compared to
the Kato bands. We suggest to perform the following steps to
harmonize the input data and solve (5a).

1) To getS(λ) to the Kato grid, first use linear interpolation to
add data points to the existing grid at the wavelength edges
of the corresponding Kato band. If, for example, the initial
wavelength grid of your S(λ) is λ = 300, 305, 310, 315,
320, 325, 330, …,1200 nm, then perform a linear interpo-
lation to λ = 306.8, 310, 315, 320, 325, and 327.8 nm.

2) Apply the trapezoidal rule for numerical integration with
the now extended wavelength grid (via the previous step)
to derive an S(λ) value corresponding to the first Kato
waveband.

3) Repeat 1 and 2 until you have values for 28 Kato bands.
Some of these bands will have an value of zero, sinceS(λ)
is typically 0 beyond 1200 nm. Kato band 29 is skipped,
since the last Kato band ranges from 3991 to 4605.65 nm,
where the AM1.5 standard spectrum is not defined.

4) Repeat Steps 1–3 forRSTC(λ). Again, only 28 Kato bands
are calculated.

5) Now,S(λ),RSTC(λ), andRcorr,AOI,j (λ) all have exactly
28 values, corresponding to the Kato bands. Use them as
an input in (5) and calculate the products in the integrals.

6) Now, sum up the values in the integrals and multiply with
1000 to derive Gcorr,j .

C. Recommendations for the Determination of Instantaneous
Module Power

For the determination of instantaneous module power, the
standard recommends converting the power matrix into an effi-
ciency matrix. Calculation of the efficiency at arbitrary irradi-
ance and temperature levels defined by the working conditions
using 2-D bilinear interpolation or equivalent is recommended.
In the round-robin, the focus remained on the bilinear approach
and alternative methods were not investigated. A recent report
on bilinear and alternative methods points out that for a typ-
ical PV efficiency matrix, bilinearly interpolated values will
always be underestimated and extrapolated values will always
be overestimated [25]. Other PV-specific methods are available
that would reproduce the module efficiency characteristics with
greater accuracy, and would also be suitable for the energy rating
task [26]. However, allowing different methods could introduce a
bias in CSER related to the method, therefore it is more important
to agree on a single method even if is perhaps not the best.

Bilinear interpolation is a well-known method whereby an
interpolation in two dimensions is made by performing linear
interpolation along one dimension, followed by a linear inter-
polation along the other dimension. The order in which this
is done does not affect the interpolated value. Extrapolation
is done by changing one or both of the linear interpolation
steps into linear extrapolation from the nearest grid points.
Normally, a bilinear interpolation or extrapolation calculation
requires four distinct known points on the rectangular grid
formed by the two dimensions, in this case, temperature and
irradiance. Unfortunately, around the irregular perimeter of the
power/efficiency matrix, it is not obvious everywhere which
known points (measured temperatures and irradiances) should
be used for the extrapolation. Thus, some additional guidance is
required to avoid inconsistent results.

First, not all extrapolation equations needed for deriving P(G,
T) are formulated explicitly in the standard. A visual overview of
the various interpolation and extrapolation cases occurring when
P(G,T) is derived from the G-T matrix is given in Fig. 6. The stan-
dard provides (9)–(11) for interpolation of P(G,T) values inside
the range of the G-T matrix. For extrapolating P(G,T), (12)–(14)
are given in the standard if 100 W/m2 < G < 1100 W/m2

and T > 75°C. If both G > 1100 W/m2 and T > 75°C, (15)–
(17) of the standard shall be applied. All other extrapolation
equations, e.g., for G < 100 W/m2, have to be derived from
the given equations, which is prone to errors. Therefore, we
added all formulas necessary for extrapolation of irradiance
and temperature to Appendix A (see Supplementary Material).
Note that variations of the standard equations are marked by
an extra letter, e.g., (14a) for extrapolation for P(G,T) with G <
100 W/m2. For easier reading, we use the same equation numbers
(9)–(17) as in the standard.

Second, missing G-T matrix values lead to ambiguous ex-
trapolations. A total of six data points of the G-T matrix are
left blank to reduce measurement effort in IEC 61853-1. In
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Fig. 6. Visualization of all inter- and extrapolation regions of the G-T-matrix
used to derive P(G, T) in the IEC 61853-3 standard. Annotations in the boxes
specify the equations needed for deriving P(G, T) values here. Question marks
signal the possibility of ambiguous solutions.

Fig. 7. Visualization of our approach to derive P(G, T) based on equations of
the IEC 61853-3 standard. Before P(G, T) can be extrapolated, the missing data
values in the G-T matrix are filled up with formula (14) of the standard and its
deviation formula (14a), respectively.

this case, a P(G,T) data point has three known neighbors. It
is not specified which equation is applicable for this case.
Possible options are an extrapolation along the temperature axis
by applying (12)–(14), an extrapolation along the irradiance
axis by applying (12a)–(14a), or a flat plane extrapolation with
(15a)–(17a). Before starting the determination of P(G, T), we
recommend to fill up missing measurements in the matrix. Of the
three possible options, linear extrapolation along the irradiance
axis produced the least plausible efficiency values, whereas
extrapolation along the flat plane formed by the nearest known
grid points produced the most realistic trends. For simplicity,
however, it is recommended to use the third option, which is
linear extrapolation along the temperature axis with (14b) when
T = 15°C and with (14) when T > = 50°C, respectively (see
Fig. 7).

Fig. 8. Median of all participants’ values is the respective number shown
for each climate. The highest difference among all participants for module
2 is 0.00091 (0.095%) in CSER. This verifies, in another blind comparison
round, that the improvements in agreement achieved are reproducible with other
modules.

V. VERIFICATION WITH INDEPENDENT MODULE DATA

To verify that the improved agreement is not only limited to
module 1, another blind comparison round is conducted with a
new module (module 2). As in the initial blind comparison, the
participants calculated the CSER values without the knowledge
of the other participants’ results.

The results are shown in Fig. 8. The highest difference among
all participants for module 2 is 0.00091 (0.095%) in CSER for
the subtropical coastal profile and less in all other climate profiles
down to 0.00044 (0.044%) in CSER for the high elevation
climate profile. In conclusion, a deviation of less than 0.1%
between the different implementations is maintained for all
climate profiles, which is significantly lower than the typical
measurement uncertainty for the input parameters.

VI. CLIMATE DATA DIAGNOSTIC SET

During the intercomparison, we recognized the need to easily
identify the source of differences in the CSER calculation. To
achieve this purpose, the climate data diagnostic set given in
Appendix D (see Supplementary Material) is created. It has the
same format as the climate data given in Part 4 of the standard,
but just 96 rows instead of 8760. Additionally, the climate data
are artificially created for testing the following five different
aspects of the CSER algorithm.

1) The first aspect tested is the treatment of direct and diffuse
irradiation. This is done by the data in Appendix D rows
1–6 (month 1) (see Supplementary Material), where the
direct fraction of the irradiation is increased from 0 to
100%.
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2) The second aspect tested is the treatment of different
incidence angles. This is done by the data in Appendix
D rows 7–16 (month 2) (see Supplementary Material),
where the angles of incidence are increased from 0°
to 90°.

3) The third aspect tested is the treatment of different spectral
bands. This is done by the data in Appendix D rows
17–45 (month 3) (see Supplementary Material), where all
irradiance is concentrated in one band scanning through
all 29 individual bands row by row.

4) The next aspect tested is the temperature behavior. This
is done by the data in Appendix D rows 46–56 (month
4) (see Supplementary Material), where the wind speed is
increased from 0 to 10 m/s.

5) The last aspect tested is the module power with respect
to whole temperature as well as irradiance range. This is
done by the data in Appendix D rows 57–96 (month 5) (see
Supplementary Material). The artificial climate data force
the algorithm to calculate the module power for each field
in Figs. 6 and 7 from top left to bottom right, thus covering
all inter- and extrapolation scenarios. Even some, which
are nonexistent in the climate data of Part 4.

When using the climate data diagnostic set, the best practice
approach with the respective module input data, we calculate a
CSER of 0.86528 for module 1 and 0.86644 for module 2 or
within 0.1% of this value. As discussed in Section III, at least
half of the participants are within 0.005% of these values, thus
we recommend to aim for an agreement in this range. The hourly
results for AOI corrected irradiation, spectral correct irradiation,
module temperature, and power for each hour/row are given in
Appendixes E and F (see Supplementary Material).

VII. SUMMARY AND CONCLUSION

The practical implementation of IEC 61853-3 is more com-
plicated than one might expect as demonstrated by the initial
comparison with differences of 0.133 (14.7%) in CSER. How-
ever, after several comparison phases, a best practice approach
is defined, which reduces the difference in CSER to below 0.001
(0.1%) for two independent modules.

The best practice approach establishes clear guidelines for
the numerical treatment of the spectral correction and power
matrix extrapolation, where the standard is not clearly defined.
According to the best practice approach, the spectral correction
step should use the 28 Kato bands between 306.8 and 3991 nm.
In the spectral correction term, linear interpolation should be
performed to generate points at band edges. Afterward, the
trapezoidal rule should be used for integration. For the power
matrix extrapolation, explicit equations are given in Appendix
A (see Supplementary Material) for all possible combinations
of temperature and irradiance.

The climate data diagnostic set introduced in this article
is created to identify the source of the following deviations:
Differences in the treatment of direct and diffuse irradiation as
well as their angular correction, testing the module temperature
based on wind as well as irradiation changes, comparing the

spectral correction for each Kato band individually, and reveal-
ing differences in the inter- or extrapolation in any of the 40
regions inside as well as surrounding the power matrix points.

For future versions of the IEC 61853-3 standard, we rec-
ommend that all calculation steps are clearly defined by equa-
tions for all cases, integration limits, and numerical methods.
However, from a software development perspective, the use of
build-in software functions for certain tasks such as interpolation
should be allowed. Of course, there is a wide range of software
development packages with built-in functions, thus it should be
tested on a case-by-case basis that the used function is compa-
rable to the explicit equation in the standard. In addition to the
guidelines established in this work for Part 3, the mathematical
fit algorithm for determining the angular loss coefficient should
be defined by future versions of 61853-2. We here recommend
to use a least square fit optimization with measurement data
limited to the incidence angle range from 0° to 80° and that
angular loss coefficient should be specified with an accuracy of
five digits to reduce the impact of the fitting and rounding in
CSER calculation.
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Abstract—This work presents measurements from 40 

individual 125 mm x 125 mm crystalline silicon (c-Si) cells placed 

on the backside of a horizontal single axis tracker (HSAT) located 

in Roskilde, Denmark (55.6°N, 12.1°E). The measurements are 

used to validate a general set of conclusions gathered from recent 

literature, to compare to simulated backside irradiance results 

from view factor and ray-trace based methods, and to estimate the 

electrical losses caused by nonuniform illumination at the module 

and array level. In this work, all simulations are performed using 

the open source tools bifacialvf, bifacial_radiance, and pvmismatch. 

The tracker studied is 45 m long with 60-cell bifacial photovoltaic 

(PV) modules mounted “two-in-portrait” - a configuration 

commonly implemented in utility scale PV parks. Our 

measurements corroborate the conclusions from several 

simulation-based studies made by other authors. The 

measurements and simulations indicate that the irradiation-

nonuniformity-induced electrical mismatch of the bifacial array is 

not higher than 0.25% when mounted above grass (albedo 0.22) 

on a clear sky day. But the array-level mismatch can go up to 3% 

when the PV park is uniformly covered by a white polymeric 

material (albedo 0.60). During a cloudy day, the mismatch of the 

bifacial system over grass is as high as 1%, but is lower than 0.25% 

around solar noon. Above the white ground cover on a cloudy day, 

the mismatch is around 1-2%, even at solar noon.  

Keywords—bifacial, electrical mismatch, single axis tracking 

I. INTRODUCTION 

A well-known challenge in bifacial photovoltaic (PV) 
performance modeling is accounting for the spatial non-
uniformity reaching the backside of the PV array. To this end, 
the recent years have shown several studies where view factor 
(VF) and/or ray-trace (RT) based methods are used to 
understand how the nonuniformity changes with sky conditions 
and with site specific criteria such as module height, tilt angle 
and ground reflectance (albedo) [1] - [5]. Some of these studies 
include model validation and report spatial rear plane of array 
irradiance (GPOA,Rear) measurements, typically on static tilt 
systems using between two and ten irradiance sensors. From 
these papers a few conclusions regarding the spatial distribution 

of irradiance on the backside of bifacial PV arrays can be made:  

1. Edge modules are brighter than inner modules. 

2. Better homogeneity is observed under cloudy (high 

diffuse) than under clear sky conditions. 

3. The closer a cell is to the tracker torque tube, the more 

shade loss it will experience. 

4. Module-level mismatch losses are greatest in the 

middle of the day during a clear day, and constant over 

time when it is cloudy. 

5. Mismatch losses are higher under high albedo than for 

low albedo conditions. 

6. Homogeneity improves as a function of array height 

from the ground. 

 
This work uses detailed GPOA,Rear measurements collected on 

a two-in-portrait (2P) horizontal single axis tracker (HSAT) 
under clear and cloudy sky conditions and under two albedo 
conditions (0.22 and 0.60). With this measurement system, the 
aforementioned conclusions 1 - 5 can be validated in the context 
of Northern Europe using a HSAT configuration. We cannot 
validate conclusion number 6 because the tracker height is not 
adjustable. The movability of the sensors can also support 
answering open questions in the bifacial literature, such as 
where is the ideal location within an array to place a single 
backward-facing reference cell? For example, in the case of 
capacity testing or performance monitoring [6]. 

II. METHODS 

The Technical University of Denmark (DTU) in partnership 

with European Energy A/S operates a 260 kWp bifacial test 

facility in Roskilde, Denmark (55.6°N, 12.1°E) [7]. The facility 

contains various measurement systems that investigate the 

parameters known to influence bifacial gain (e.g. albedo, 

tracker pitch, tilt angle etc.). Of these is a measurement system 

that provides information on the non-homogeneity of light 

reaching the backside of a horizontal single axis tracker 

(HSAT). The first measurement series begins in July 2019 and 

This work was funded by the Danish Energy Technology Development and 

Demonstration Program (EUDP) under project contract 64018-0624.  



is made above the natural grass with an albedo around 0.22. On 

May 9th, 2020, we mounted a white polymer sheet underneath 

the tracker to investigate empirically the effect of albedo on 

electrical mismatch. Our onsite measurements indicate that the 

albedo of this material is approximately 0.60. The second 

measurement series was acquired only from May 10th to May 

25th. The installation of the white sheet was delayed due to the 

pandemic-related situation, and therefore reduced the data 

acquisition period. 

A. Measurement System 

The HSAT studied here is a 45 m long Soltec SF7 with a 2P 
module mounting configuration. The tracker is situated in the 
middle of an eight-tracker field, with a ground cover ratio of 
0.28 (Fig. 1). The tracker has a square shape (15 cm x 15 cm) 
torque tube with 10 cm “z-gap” from the module plane. The 
tracker hub height is 1.95 m. 

 
Fig. 1. Aerial view of the field of HSATs. The tracker under investigation is 
boxed in red. The orange rectangles show the most extreme distances (center 
and edge) tested. Views from the ground are shown in Fig. 2 and Fig. 3. 

On the backside of this tracker we have mounted four 
custom 1x10 cell panels. These panels have been assembled by 
MG Solar using DTU’s PV module prototyping facilities. Each 
panel consists of ten 156.3 cm2 mono-silicon Al-BSF cells 
wherein each cell’s electrical contacts are accessible through 
the polymeric backsheet. The low-iron glass is 3.2 mm thick 
and does not have an anti-reflective (AR) coating. The short 
circuit current (ISC) of each cell within the laminate is monitored 
using shunt resistors with ohmic values sized for the expected 
cell-level current-voltage (I-V) behavior at low light conditions. 
The expanded measurement uncertainty was estimated at 
±9.3% (k = 2). The three principal components driving the 
uncertainty are the lab calibration (light source irradiance), the 
angular response, and spectral mismatch observed in the field. 

The measurement panels and Radiance renderings are 
shown in Fig. 2 and Fig. 3. Note the 0.5 m motor gap adjacent 
to the inner modules has not been replicated in the Radiance 
simulations. The individual cells within the panels are difficult 
to see because the backsheet is black. On May 9th, 2020, a white 
polymer sheet was mounted underneath the studied tracker and 
is pictured in Fig. 4. The white cover is 5 m wide with 2.5 m of 
material on each side of the tracker. A similar scene was 
simulated in bifacial_radiance and is visualized in Fig. 5.  

To make sure that our field experiment is representative of 
a scene where the ground is uniformly covered by an albedo of 
0.60, one additional scene is simulated in bifacial_radiance 

where the ground albedo is set to 0.60 for the entire field 
surface. 

 
Fig. 2. Two 1x10 cell panels mounted on the east and west edges of the tracker 
along with the cell numbering convention. The left image shows the physical 
panels, the right image shows the Radiance rendering with the sensor locations. 

 
Fig. 3. Two 1x10 cell panels mounted on the east and west sides in the center 
of the tracker along with the cell numbering convention. The left image shows 
the physical panels, the right image shows the Radiance rendering. 

 
Fig. 4. Picture of the white sheet mounted under the investigated tracker.  

 
Fig. 5. Radiance rendering of the white polymer sheet mounted under the 
tracker considered from a top-view perspective.  



B. Backside Irradiance and Electrical Mismatch Models 

We simulate the spatial irradiance on the backside of the 
HSAT using two open source tools developed by the U.S. 
National Renewable Energy Laboratory (NREL). The first is 
bifacial_radiance [8], which is based on the Radiance ray-trace 
engine. The second is bifacialvf  [9], which is a 2D VF model 
that implements the logic described by Marion et al [10]. We 
update the meteorological input files with 10-minute averages 
of onsite broadband diffuse horizontal irradiance (DHI), direct 
normal irradiance (DNI), global horizontal irradiance (GHI) 
recorded by spectrally flat class A sensors (per ISO 9060:2018). 
The onsite GHI - which includes all incident light - and ground 
reflected horizontal irradiance (RHI) measurements provide the 
albedo of the natural grass, and white surface. For each 
measurement series, two days are investigated: one clear sky day 
and one overcast day (Fig. 6 and Fig. 7). The daily clearness 
indexes (KT) on the two sunny days are 0.63 and 0.67 for the first 
and second series, respectively. The daily KT on the two cloudy 
days are 0.29 and 0.20, respectively. 

 
Fig. 6. Broadband irradiance (GHI, DHI, and DNI) from a clear sky day 
(08/25/2019) and overcast day (09/08/2019) in the first measurement series. 

 

Fig. 7. Broadband irradiance (GHI, DHI, and DNI) from a clear sky day 
(05/20/2020) and overcast day (05/17/2020) in the second measurement series. 

The electrical mismatch losses resulting from the 
nonuniform illumination are calculated using the open source 
code pvmismatch developed by SunPower [11]. The mismatch 
calculations are performed for conventional 60-cell (1.6 m x 1.0 
m) panels with three bypass diodes per substring. We assume 
that the rear irradiances observed in cell locations 1 through 10 
are constant along the 1.0 m horizontal width of the 60-cell 
panels. We calculate electrical mismatch within the four 
modules (Edge-E, Edge-W, Inner-E, and Inner-W) using two 
different inputs for GPOA,Rear: the measurements from the custom 
panels, and the bifacial_radiance simulations that contain the 40 
“sensors” placed in locations representative of the cells within 
the custom measurement panels. In all cases the electrical 
mismatch at each timestamp is calculated per (1). 

𝑀𝑖𝑠𝑚𝑎𝑡𝑐ℎ [%] =  1 − 
𝑃𝑀𝑜𝑑

∑ 𝑃𝐶𝑒𝑙𝑙𝑠

 (1) 

 Where PMod is the maximum power point (PMP) of the 60-
cell module. This value is affected by electrical mismatch from 
nonuniform rear side illumination. PCell is the PMP of an 
individual cell within the 60-cell module. For each timestamp in 
our pvmismatch model, we apply the total effective irradiance 
(GTotal) for each cell i as shown in (2). The front and rear side 
irradiance rear GPOA,Front and GPOA,Rear,i are calculated using 
either the field measurements or the bifacial_radiance 
simulation outputs, with GPOA,Front assumed to be homogenous 
across the array. The total effective irradiance becomes: 

𝐺𝑇𝑜𝑡𝑎𝑙,𝑖 =  𝐺𝑃𝑂𝐴,𝐹𝑟𝑜𝑛𝑡  +  𝜑 ∙ 𝐺𝑃𝑂𝐴,𝑅𝑒𝑎𝑟,𝑖 (2) 

Where φ is the technology-specific bifaciality factor 
calculated as the ratio of backside efficiency to front side 
efficiency (ηSTC,rear / ηSTC,front). In this work we have used a φ 
value of 0.7, which is representative of contemporary bifacial 
PERC modules on the market.   

We have calculated the array-level mismatch using the 
simplified assumption that the modules in the center of the array 
are illuminated by the average irradiance between the Edge and 
Inner cases, separated by the cell numbers, as shown in Fig. 8.  

Fig. 8. Measured average GTotal,i [W∙m-2] from July to November 2019 for the 
south-western half of an interior row of 44 modules surrounded by 7 HSATs. 
The numbers 1-10 on the y-axis represent cell positions, and the numbers 1-22 
on the x-axis represent module positions. 

III. RESULTS 

A. Rear irradiance spatial distribution over grass surface 

The measured and modeled backside irradiance of the 4 
different modules during the first measurement series is studied 
here. Fig. 9 displays the average measured rear irradiance 
within each module for a sunny and a cloudy day.  

 
Fig. 9. Average rear irradiance of the ten cells measured within a module on a 
sunny (08/25/2019) and an overcast day (09/08/2019) over grass.  

Fig. 9 confirms conclusion 1: especially during the sunny 
day, the edge module rear side is brighter than the inner one. 
On the sunny day, it is easy to see that the cells within the two 



edge panels receive nearly twice as much irradiance as the cells 
within the two inner panels. On the cloudy day, the irradiance 
indeed becomes more uniform and irradiance values observed 
within the array are within 10 W∙m-2. Hence, conclusion 1 and 
2 – that the edge module rear side is brighter than the inner one 
and that homogeneity improves on the cloudy day – are 
validated. 

Fig. 10. Hourly average of measured/ simulated GPOA,Rear on the edge module, 
west side of the HSAT on a sunny and an overcast day over grass. 

Fig. 11. Hourly average of measured/ simulated GPOA,Rear on the inner module, 
west side of the HSAT on a sunny and an overcast day over grass. 

Fig. 10 and Fig. 11 overlay the hourly averaged 
measurements, bifacial_radiance and bifacialvf simulations for 
the west side of the tracker at the inner and edge module 
locations. The bifacialvf results are only shown in the inner 
module plot, since bifacialvf does not consider edge effects. 
Ten data points are shown at each hourly timestamp and group, 
which represent the ten cells measured within the module.  

Color shades have been applied to differentiate between 
cells 1 to 10. The lighter color means cell 10, which is located 
closest to the torque tube. The #10 cells can receive as much as 
20% lower GPOA,Rear values than the #1 cells on the sunny day 
and up to 10% lower on the cloudy day. This validates 
conclusion 3, and conclusion 2 again – that the backside 
irradiance is spread over a larger gradient during sunny days.  

bifacial_radiance simulations reproduce well the measured 
inner and edge module rear irradiances. The poorest agreement 
of measured to modeled values is observed on the sunny day on 
the edge module. In the case of the west module, the model 
tends underestimate the irradiance in the morning, and to 
overestimate it around solar noon. In the morning, the error is 
larger than the estimated measurement uncertainty (±9.3%), but 
around solar noon the error becomes smaller than the 
uncertainty. During the cloudy day, the simulated absolute 
values are within the measurement uncertainty 76% of the time 
- considering all 40 sensors. Also, the model agrees with 
observed measurement trends such as: during the cloudy day, 
the module the closest to the sky receives more irradiance and 

during the sunny day, the inner module the closest to the ground 
receives more irradiance.  

A daily root mean squared error (RMSE) was calculated 
individually for all 40 sensors. The cloudy day RMSE is 
between 1-3 W∙m-2 with no clear trend for higher errors 
occurring at any particular sensor location. The sunny day 
RMSE, however, is between 4-10 W∙m-2 wherein the 20 inner 
panel sensors show a systematic trend of lowest RMSE nearest 
the torque tube (4 W∙m-2) and highest RMSE farthest from the 
torque tube (10 W∙m-2). This could be due to an imprecise 
definition of the tracker motor gap in the Radiance scene. The 
20 sensors on the edge panels all have a sunny day RMSE 
between 8-10 W∙m-2.  

Our bifacialvf simulation results are slightly less accurate 
than bifacial_radiance simulations of the inner modules, which 
makes intuitive sense as it is a reduced order model. The VF 
model tends to underestimate the GPOA,Rear irradiance during the 
sunny day by as much as 20 W∙m-2, but the discretized mean 
bias error (MBE) for the 20 segments is between -6 W∙m-2  and 
-10 W∙m-2 on the clear sky day. The daily RMSE is 3-5 W∙m-2 

on the cloudy day and 8-12 W∙m-2 on the sunny day. Larger 
errors are again observed for cells farthest away from the torque 
tube. The errors could be because the structural elements of the 
tracker are not properly accounted for in the model (e.g. shed 
transparency factor, structure shading factor etc.). The 
bifacialvf model is not used for the remainder of the article 
since it accounts for fewer geometry details and does not 
capture edge effects, a key element for mismatch computations.  

B. Influence of albedo on the backside irradiance 

In this section, the effect of the white ground cover on the 
backside irradiance is studied on a clear and an overcast day. 
The intent is to compare to the results made over low albedo 
grass that were shown in section A. Using bifacial_radiance, 
two different scenes are simulated: one similar to the field 
experiment with a 2.5 m wide white (albedo 0.60) band on 
grass, and one with a uniform 0.60 albedo over the entire 
surroundings.  

Fig. 12. Hourly average of measured/ simulated GPOA,Rear on the edge module, 
west side of the HSAT on a sunny and an overcast day over different 
scenarios of white ground cover.  



Fig. 13. Hourly average of measured/ simulated GPOA,Rear on the inner module, 

west side of the HSAT on a sunny and an overcast day over different types of 

white ground cover. 
The backside irradiance levels of the edge and inner 

modules of the west side are displayed in Fig. 12 and Fig. 13, 
respectively. First, the measurements are used to validate the 
accuracy of bifacial_radiance for the high albedo condition. 
Indeed, the 2.5 m wide band simulation is very close to the 
measurement irradiance values, within 10% precision.  

Now comparing the 2.5 m band case with the uniform 
albedo case, it appears that the band is not wide enough to be 
representative of a uniform 0.60 albedo. In other words, we 
have reason to believe that a large quantity of ground reflected 
light reaching the cells comes from the grass, not the white 
cover. Imagine a scenario early in the morning when the west 
module is far from the ground: At such a moment, VFGND→PV on 
cell 1 on the tracker west side includes a considerable portion 
of the grass area. An additional bifacial_radiance simulation 
showed that a 5 m band (~2.5x torque tube height) on each side 
of the tracker would lead to results similar to a uniform 0.60 
albedo. This much additional white cover material could not be 
provided nor mounted yet due to pandemic-related restrictions.  

The daily RMSE of the bifacial_radiance simulations (2.5 
m band case) are between 5-10 W∙m-2 on the cloudy day and 
between 9-17 W∙m-2 on the sunny day. We again observed that 
the RMSE is lower for cells nearest the torque tube as was the 
case in the low albedo simulations. As the outdoor 
measurements seem to validate bifacial_radiance in simulating 
GPOA,Rear under different albedo conditions, we will compare the 
bifacial gain under both conditions. Here the RT model is used 
for the high albedo case because the bifacial gain observed over 
our white cover in the field is not truly representative of a 
uniformly covered field. Furthermore, the GPOA,Rear levels in 
W∙m-2 are not directly comparable because the daily GHI 
profiles are different between the sunny and cloudy days of the 
two measurement series. The average bifacial irradiance 
(optical) gain is defined in (3) where GPOA,Rear stands for the 
average rear irradiance within a module. 

𝐵𝐺𝑖𝑟𝑟 =  
𝐺𝑃𝑂𝐴,𝑅𝑒𝑎𝑟

𝐺𝑃𝑂𝐴,𝐹𝑟𝑜𝑛𝑡

 (3) 

 

 
Fig. 14. Mean bifacial gain within the edge and inner modules of the west side 
on a sunny and a cloudy day over an albedo of 0.22 (measured, 08/25/2019 and 
09/08/2019) and over albedo of 0.60 (RT model, 05/20/2020 and 05/17/2020). 

The irradiance gains on the edge and the inner modules 

during cloudy and sunny are plotted in Fig. 14. The average 

bifacial irradiance gain is up to 2.5 times higher under an 

albedo of 0.60 than under grass albedo. As a result, the 

bifacial gain varies linearly with the albedo on average. Also 

apparent in Fig. 14 is how the bifacial gain can be 

overestimated by as much as 2x when edge panels - as 

opposed to inner panels - are used for the calculation.  

C. Power mismatch losses over different ground albedos 

The electrical mismatch calculated using inputs from the 
onsite measurements and the bifacial_radiance simulations 
during the first measurement series over grass is shown below. 
Fig. 15 shows electrical mismatch at the module-level and Fig. 
16 at the array-level.  

 
Fig. 15. Module-level mismatch losses of the west side modules using the 
measured and simulated rear irradiance values on a sunny and a cloudy day 
during the first measurement series over grass. 

When used to estimate module-level mismatch losses, the 
RT model agrees very well with the measurements, except late 
in the cloudy day when some direct beam light was observed. 
The large discrepancy late in the day could be due to passing 
clouds and a lagged response from the thermopile 
(pyranometer) sensors - although the sensors implemented here 
do have response times < 5 seconds. During the sunny day, the 
module-level mismatch is lower than 0.2%. And during the 
cloudy day, the module-level mismatch losses are mostly lower 
than 0.2%, except at the beginning and at the end of the day. 
Conclusion 4 is validated here, since the module-level 
mismatch is highest in the middle of the day when it is sunny 
and is quite constant throughout the day if it is cloudy.  

Please note that the results from the Eastern panels are not 
shown here to maintain clarity in the figures. An interesting 
observation we found when comparing East and West sides 
during the sunny day is that the module closest to the ground 



suffers higher mismatch losses than the top module. 

 
Fig. 16. Array-level mismatch losses using the measured and simulated rear 
irradiance values on a sunny and a cloudy day during the first measurement 
series over grass. 

At the array-level now in Fig. 16, the RT model tends to 
overestimate the mismatch but follows the same trends as the 
measurements. During the sunny day, both the simulated and 
measured mismatch are lower than 0.25% and the mismatch 
losses are again highest in the middle of the day. During the 
cloudy day in the middle of the day the mismatch is < 0.15%, 
but in the morning and afternoon the mismatch increases on the 
array the closest to the ground up to 1% for periods with 
meaningful levels of irradiance (GHI > 100 W∙m-2). 

 

Fig. 17. Array-level mismatch losses using the measured and simulated data 
points of the HSAT for a sunny and a cloudy day of the second measurement 
series over an albedo of 0.60. The measurement consists of two 2.5 m bands of 
white cover material and the RT simulations used a uniform 0.60 albedo. 

The electrical mismatch calculated using inputs from the 
second measurement series is studied in Fig. 17. Two different 
conditions are compared. The measurements made over 2.5 m 
wide bands of white material on each side of the tracker, and 
the RT scene with a uniform 0.60 albedo. During the sunny day, 
the modeled mismatch is similar for the east and west arrays, 
with a significantly higher mismatch in the middle of the day. 
In contrast, the measurements show that the array closest to the 
ground experience a higher mismatch, which is likely due to the 
inhomogeneous albedo. For analyzing the effect of albedo on 
the mismatch, the RT model calculations are used instead of the 
measurement, since the comparison should be done over a 
uniform albedo for both the grass and white-cover albedo.  

Fig. 17 validates conclusion 5 – mismatch losses are higher 
under high albedo than for low albedo conditions. Indeed, the 
highest array-level mismatch during the sunny day increases 
from 0.25% over an albedo of 0.22 to 3% over an albedo of 
0.60, i.e. by an order of magnitude.  

The electrical mismatch is now studied as a function of the 
relative standard deviation, also termed the coefficient of 

variation, of the total irradiance as defined in (4) with 𝜇 =
𝑚𝑒𝑎𝑛(𝐺𝑃𝑂𝐴,𝑡𝑜𝑡𝑎𝑙) from (2). A similar study has recently been 

carried out by Deline et al. [12] where RT simulations were 
performed of a 10° fixed tilt system above a high reflective 
surface and ground clearances of 0.15 m to 1.0 m. Their work 
resulted in a simplified model that describes electrical 
mismatch loss as a function of irradiance non-uniformity. 
Janssen et al. proposed a similar model in [13] for a fixed-tilt 
system. The module-level mismatch is shown in this section to 
compare our outcomes to their fitted curves. Indeed, the 
interpolated data used previously to calculate the array-level 
mismatch is not exactly true to reality. We estimate that this 
assumption does not affect mismatch losses much, but can 
significantly affect the array-level standard deviation (non-
uniformity), which thus makes it unsuitable for building 
predictive models based on the standard deviation. Finally, only 
timestamps when GHI > 150 W/m² are considered here.  

𝑠𝑡𝑑𝑟[%] =  
1

𝜇
⋅ √∑

(𝐺𝑇𝑜𝑡𝑎𝑙,𝑖 − 𝜇)
2

𝑁

𝑁

𝑖=1

⋅ 100% (4) 

 
Fig. 18. Module-level electrical mismatch vs. the relative standard deviation. 
Results from the measurements and Radiance simulations are shown for all 4 
modules over grass and compared to the literature [12] [13]. Data points are 
filtered when GHI<150 W/m².  

Module-level mismatch losses vs. relative standard 
deviation over grass is shown in Fig. 18. During the sunny day, 
both the measurements and the RT model fit quite well to the 
exponential curve of Deline et al. in [12] specified in (5). In 
fact, the edge modules are very uniform and correspond to a 
large amount of data points with 𝑠𝑡𝑑𝑟[%] < 0.25%. While the 
data from the inner modules best fits the Deline correlation (5).  

𝑀[%]𝑓𝑖𝑡1 = 𝑒−2 ⋅ 𝑠𝑡𝑑𝑟[%]1.57 (5) [12] 

𝑀[%]𝑓𝑖𝑡2 = 0.33 ⋅ 𝑠𝑡𝑑𝑟[%] + 0.075 ⋅ 𝑠𝑡𝑑𝑟[%]2 (6) [13] 

During the cloudy day, the correlation between mismatch 

and standard deviation is less obvious. Some measured data 

points, and even more RT modeled data points are closer to 



Janssen polynomial curve [13] detailed in (6). This suggests 

that the effect of diffuse light ought to be accounted for when 

modeling mismatch losses in this range. However, one must 

keep in mind that the mismatch values obtained in this study 

are on the very low end of possible values that bifacial PV 

systems - particularly low ground clearance systems - can incur. 

 

Fig. 19 again shows module-level mismatch vs. relative 

standard deviation, but for the second measurement series over 

the white cover of albedo 0.60. As a reminder, the 

measurements were done over a 2.5 m wide tarp under each side 

of the tracker, whereas the RT model considers a uniform 0.60 

albedo for comparison. Both the measurements and the model 

fit well to the exponential curve specified in (5), for both the 

sunny and cloudy day. However, during the cloudy day, most 

of the data points are still gathered in a cluster where the relative 

standard deviation is lower than 1%. The sunny day data points 

follow the exponential curve more evenly, with relative 

deviations up to 3% and module-mismatch losses up to 0.9%.  

 
Fig. 19. Module-level electrical mismatch vs. the relative standard deviation. 
Results from the measurements and Radiance simulations are shown for all 4 
modules over white cover and compared to the literature [12] [13]. Data points 
are filtered when GHI<150 W/m². 

IV. SUMMARY 

 We have presented high resolution irradiance 

measurements on the back of a 2P HSAT, compared them to 

VF and RT simulations and calculated electrical mismatch 

using open source tools. The RT and VF models has been 

validated during a typical sunny and cloudy day over natural 

grass (albedo 0.22) and over a white polymer sheet (albedo 

0.60), but the VF approach is less accurate as one would expect. 

Moreover, the effect of albedo on the backside irradiance, 

bifacial gain and irradiance-nonuniformity-induced power 

mismatch losses have been analyzed. Please note that the 

mismatch results shown here are expected to be different when 

the torque tube shape and module gap differ significantly from 

the tracker studied here.  
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Spectral Albedo in Bifacial Photovoltaic Modeling: 

What can be Learned from Onsite Measurements?  

Nicholas Riedel-Lyngskær1, Martynas Ribaconka1, Mário Pó2, Sune Thorsteinsson1, Anders Thorseth1, 

Carsten Dam-Hansen1, Michael L. Jakobsen1 

1Technical University of Denmark, Department of Photonics Engineering, Roskilde, Denmark 

2 EKO Instruments B.V., The Hague, the Netherlands

Abstract—This contribution reports on a yearlong spectral 

albedo measurement campaign performed in Roskilde, Denmark. 

Four albedo scenarios are monitored using three sensor types. The 

ground surfaces include green grass, dry grass, gravel, and snow 

– all of which have been monitored with albedometers based on 

spectroradiometers, silicon-pyranometers, and thermopile 

pyranometers. Implications of using the various albedo data 

sources/assumptions in bifacial PV modeling are assessed with the 

spectrally weighted bifacial energy gain (BEG). We find that BEG 

differs by as much as 3% with the different albedo sensors and 

BEG can deviate by as much as 7% from the ground truth when 

an incorrect static spectral albedo assumption is used. Finally, the 

spectral mismatch factor (SMM) is calculated to summarize rear 

plane of array (POA) spectral shifts. Our measurements show 

midday backside POA spectral shifts as high as 25% for Silicon 

bifacial PV devices mounted on single axis trackers above grass. 

Keywords—Albedo, Spectrum, Bifacial, Photovoltaic, Tracker 

I. INTRODUCTION 

The albedo of a surface is defined as the percentage of 
incident sunlight that it reflects. The albedo of natural and 
synthetic materials is known to vary as a function of wavelength, 
but most photovoltaic (PV) simulation tools to date do not 
incorporate the spectral properties of albedo into their 
algorithms. This is because ground reflected irradiance 
constitutes less than 2% of the total frontside plane-of-array 
(POA) irradiance for most traditional monofacial installations 
(i.e., an array tilt angle from horizontal ≤ 30° and albedo ≤ 0.25). 
However, ground reflected irradiance contributes significantly 
to the energy produced by bifacial PV systems because the rear 
POA irradiance is comprised primarily of ground reflected light. 
With the rapid increase in bifacial PV module adoption — and 
the forecasted majority market share of bifacial cells by 2023 [1] 
— a better understanding of spectral albedo in bifacial PV 
applications is necessary to improve performance modeling 
accuracy and reduce perceived risk by investors.  

Previous works on spectral albedo in bifacial PV 
applications come to a common conclusion that spectral effects 
must be accounted for in bifacial PV simulation [2] – [5]. A 
shortcoming of these and other works [6] – [8] is that they use a 
single spectral albedo curve (with the exception of  [5]) for 
timeseries simulations when it is well-known that the spectral 
albedo distribution changes with conditions such as solar angle, 

sky diffuse fraction, surface roughness and surface moisture 
content [9]. We use continuous spectral albedo measurements 
and 2D view factor modeling to put the constant spectral albedo 
assumption under a microscope. Additionally, we analyze the 
differences in modeled rear POA irradiance (GPOA,Rear) and 
bifacial gain that can occur due to different albedo data sources, 
which in this work include: 

1. Measured spectral albedo from spectroradiometers,  

2. Measured broadband albedo from pyranometers, 

3. Measured broadband albedo from Si-pyranometers, 

4. Constant spectral albedo from data base, and 

5. Constant albedo assumption of 0.2. 

Our previous work demonstrated that GPOA,Rear modeling 
contributes approximately 0.5% uncertainty to annual energy 
yield estimates when using state-of-the-art bifacial PV 
simulation tools [10]. A motivation of the present work is to 
identify approaches that can reduce this uncertainty. 

II. METHODS 

A. Field Measurements 

Spectral irradiance data in the range of 300 – 1100 nm are 
recorded every five minutes by three EKO MS711 
spectroradiometers. Two MS711s are horizontally mounted: one 
upward facing instrument records the global horizontal spectral 
irradiance GHIλ and one downward facing instrument records 
the ground reflected horizontal spectral irradiance RHIλ (Fig. 1). 
The third MS711 records the direct normal spectral irradiance 
DNIλ. This instrument is installed on a dual-axis tracker and has 
a 5° field-of-view (FOV) collimation tube – as used in [11]. The 
spectral albedo αλ is calculated as the ratio of the downward 
facing RHIλ and upward facing GHIλ measurements: 

𝛼(𝜆) =  
𝑅𝐻𝐼(𝜆)

𝐺𝐻𝐼(𝜆)
 (1) 

The diffuse horizontal spectral irradiance DfHIλ is calculated 
(2) from the difference between the measured GHIλ and the 
measured DNIλ adjusted by Lambert’s cosine law with the 
zenith angle (θZ): 

𝐷𝑓𝐻𝐼(𝜆) =  𝐺𝐻𝐼(𝜆) − 𝐷𝑁𝐼(𝜆) ∙ cos 𝜃𝑍 (2) 

This work was funded by the Danish Energy Technology Development 

and Demonstration Program (EUDP) under project contract 64018-0624. 



The field measurement campaign investigates the diurnal 
and seasonal variations in spectral albedo under four 
surfaces/conditions: green grass (Fig. 1a), dry grass (Fig. 1b), 
gravel (Fig. 1c), and snow (Fig. 1d). Broadband albedo 
measurements from Class C thermopile pyranometers and 
Silicon-photodiode pyranometers are acquired onsite at 1-
minute intervals. The pyranometers albedo stand is located 12 m 
from the spectral albedo setup and the Si-Pyranometer albedo 
stand is located ~100 m away. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 1. Various albedo conditions tested: (a) Healthy grass from Feb – May 
2020, (b) dry grass from Jul – Sep 2020, (c) 5 – 8 mm gravel from Sep 2020 – 

Apr 2021, and (d) snow in Jan 2021.  

B. Laboratory Calibration  and Uncertainty 

Calibration of all three EKO MS711 spectroradiometers was 
performed inhouse at DTU Fotonik’s DOLL laboratories in 
January 2020 just before the field measurement campaign 
began. The calibration setup consists primarily of a NIST 
traceable FEL lamp on an alignment jig 50 cm from the device 
under test with measures to mitigate stray light. A second 
measurement of the FEL reference lamp was performed in May 
2021 immediately after the measurement campaign concluded. 
These final measurements served to check for any calibration 
and/or wavelength drifts that occurred during the field 
measurements. The spectroradiometers used for DNIλ and GHIλ 
measurements deviated by less than 5% relative to the reference 
lamp between 400 and 1050 nm and showed mean bias errors 
(MBE) less than 3%. The spectroradiometer used for RHIλ 
measurements showed deviations as high as 9% at some 
wavelengths, but the MBE was 3%, comparable to the other two 
spectroradiometers. This instrument showed pronounced 
wavelength shifts at 645 and 670 nm, which were not observed 
in the other two instruments.  

The expanded calibration uncertainty is wavelength and 
instrument dependent. Fig. 2 shows the calibration uncertainty 
during the May 2021 calibration event. The uncertainty is 
estimated using uncertainty contributions from: lamp sensor 
distance (0.8%), signal to error estimation (mean 2.2%, max 
8%), lamp current stability (0.1%), lamp drift estimate (0.5%), 
repeatability of measurement (0.5%) and readout noise (max 
2.2%).  

 
Fig. 2. Measurement uncertainty (k=2) of the spectral calibration. The spikes 

are appearing where gradients in the spectral throughput cause responsivity to 

change drastically with wavelength shifts. 

The angular response of the upward and downward facing 
MS711s follow a cosine response within 3% or better when the 
solar zenith angle is greater than 80°. This cosine error will 
primarily affect the upward facing (GHI) instrument at high 
solar zenith angles in direct sunlight.    

C. Handling of Spectral Data 

The upward and downward facing spectroradiometers do not 
acquire measurements in parallel because a single datalogger 
records data from both units. We have observed up to ~15 
second delays between when the first spectroradiometer begins 
its measurement and when the second unit completes its 
measurement. This delay is due to the data processing time in 
the logger and the exposure times in each sensor, which take 10 
to 5000 ms each depending on the light intensity. An irradiance 
stability check is needed because the calculated spectral albedo 
values assume a constant condition during the GHIλ and RHIλ 
measurements. The stability check is performed for each 
measurement using a variability index (VI) [12]. GHI data 
recorded every 10 seconds by a Class A pyranometer are used 
to calculate a VI within a 2-minute period: approximately 1 
minute before and after the measurement. Measurements are 
removed when the VI > 1.1. Data recorded on detector edges (λ 
< 300 nm and λ > 1050 nm) are also removed as they are often 
prone to measurement noise.  

The bifacial cells studied in this work are spectrally sensitive 
to light between 300 and 1200 nm. Since the useful detector 
range is limited to 1050 nm, the spectral irradiance gap (1050 – 
1200 nm) is completed using SMARTS 2.9.5 [13]. We use the 
real-time solar zenith angle (air mass proxy), ambient 
temperature and atmospheric pressure to generate SMARTS 
clear sky spectra that correspond to each spectral measurement. 
The simulated clear sky spectra are scaled using a procedure 
described by [14], which uses the broadband global and diffuse 
fluxes to account for cloud cover. The RHIλ data are extended 
by scaling the SMARTS spectral albedo file that shows the most 
similar relative profile to the measurements. For example, the 
spectral albedo measurements of grass are extended using the 
‘GrazingField.dat’ file. The spectral extension carries minimal 
effect on the results, however, because the spectral responsivity 
is low between 1050 and 1200 nm, and because sunlight can be 

               

                             

 
 
 
 
  
 
  

  
  
 
 
 
  
  
 

  
 

 

 

 

 

 

  

  
          

   

   

   



significantly absorbed by atmospheric water vapor between 
1100 and 1200 nm. 

Handling of continuous solar spectral measurements can be 
challenging owing to the sheer volume of data generated over 
yearly timescales. For example, our three spectroradiometers 
with 2048 pixels each measuring every 5 minutes over 15 
months generated a data frame with over 22 million rows. We 
have found the hierarchical data format (HDF5) to be 
particularly useful in organizing and working with such datasets.  

D. Optical Model 

The measured and calculated spectral irradiance data (αλ, 
GHIλ, DNIλ, and DfHIλ) are passed to the open-source Python-
based 2D view factor model pvfactors [15] running in full 
simulation mode. Two principal assumptions inherent in 2D 
view factor models are that surfaces scatter light isotropically 
(i.e., Lambertian scattering) and that the PV rows are infinitely 
long (i.e., edge brightening effects are ignored). Most natural 
surfaces, however, are non-Lambertian scatterers, at least to 
some extent.  

With pvfactors, we calculate the front and rear POA spectral 
irradiances (GPOA,Front,λ and GPOA,Rear,λ) for 25° fixed-tilt and 
horizontal single-axis tracking (SAT) systems (Table 1), which 
are the two types of large-scale bifacial PV systems collocated 
at the site [10]. In both cases, a five-row system is simulated and 
results from the middle row are reported.  

Table 1. Configuration of the 2-in-portrait bifacial PERC systems installed on 

site and modeled in this work. Systems are installed above grass (see Fig. 1a). 

 Fixed-Tilt  Single Axis 

Tracker 

Tilt Angle 25° ± 60° 

Hub (center) Height (m) 2.3 2.0 

Ground Cover Ratio 0.40 0.28 

 

The spectral irradiance data at each wavelength λ are 
processed in pvfactors using the same approach as if broadband 
irradiance data were used. In other words, instead of passing 
broadband irradiance in W∙m-2, as a pvfactors user would do 
ordinarily, our implementation passes spectral irradiance in 
W∙m-2∙nm-1. The model then accounts for the interreflections 
between scene surfaces using spectrally resolved light for 
wavelengths between 300 and 1200 nm. Front and rear side 
angular reflection losses are accounted for using the Sandia 
incident angle modifier (IAM) model [16].   

E. Analysis  

The spectral POA irradiance GPOA,Front,λ and GPOA,Rear,λ are 
summarized using a spectrally weighted bifacial energy gain 
(BEG), which is calculated as: 

𝐵𝐸𝐺 =
∫ 𝑆𝑅𝑅𝑒𝑎𝑟(𝜆) ∙ 𝐺𝑃𝑂𝐴,𝑅𝑒𝑎𝑟(𝜆) 𝑑𝜆

𝑏

𝑎

∫ 𝑆𝑅𝐹𝑟𝑜𝑛𝑡(𝜆) ∙ 𝐺𝑃𝑂𝐴,𝐹𝑟𝑜𝑛𝑡(𝜆) 𝑑𝜆
𝑏

𝑎

 ∙ 100% (3) 

Where SRFront and SRRear are the PV cell’s spectral response 
of the front and backside. The integration limits a to b are 300 
to 1200 nm. The BEG in (3) is simply the ratio of short-circuit 
current (ISC) generated by the backside relative to the ISC 

generated by the frontside. This equation does not include 
adjustments for structural shading on the backside of the array, 
or any possible thermal differences between monofacial and 
bifacial cells that could affect voltage. Nonetheless, (3) is still 
useful for our objective, which is to understand the differences 
in bifacial gain that can occur due to different albedo data 
sources. In the case of the Si-pyranometer and pyranometer 
measured albedo, the albedo passed to pvfactors is the same at 
all wavelengths, proportional to the measurements at each 
timestamp (i.e., a ‘flat’ spectral albedo curve is produced). In the 
case of constant spectral albedo data, the data originates from 
the ASTER library [17], which is the source of the spectral 
albedo files in SMARTS used here. In all cases, the same DNIλ 

and DfHIλ spectra are input to pvfactors. 

The Results section also reports backside POA spectral 
mismatch (SMM) factors (4). Equation (4) is taken from (7) in 
IEC 60904-7 [18], where GRef is the AM1.5G reference 
spectrum defined in IEC 60904-3 [19]. 

𝑆𝑀𝑀 =
𝐺𝑅𝑒𝑓 ∙ ∫ 𝑆𝑅𝑟𝑒𝑎𝑟(𝜆) ∙ 𝐺𝑃𝑂𝐴,𝑟𝑒𝑎𝑟(𝜆) 𝑑𝜆

𝑏

𝑎

𝐺𝑃𝑂𝐴,𝑟𝑒𝑎𝑟 ∙ ∫ 𝑆𝑅𝑟𝑒𝑎𝑟(𝜆) ∙ 𝐺𝑅𝑒𝑓(𝜆) 𝑑𝜆
𝑏

𝑎

 (4) 

The SMM factor captures spectral shifts relative to the 
AM1.5G rating wherein SMM > 1 indicates spectrally induced 
ISC gains and SMM < 1 indicates spectrally induced ISC losses. 
The backside SMM also serves as a meaningful way to 
summarize the large amount of spectral albedo data recorded. 

The BEG and SMM are calculated for a standard bifacial p-
type passivated emitter and rear contact (PERC) cell. The PERC 
cell was procured from Blue Sun solar and encapsulated in 3 mm 
PV glass and EVA at DTU. Fig. 3 shows the measured spectral 
responsivity on front and backside. The choice to analyze PERC 
was made because this technology is presently the most 
common bifacial cell type deployed in large systems.  

 

III. RESULTS 

A. Diurnal and Seasonal Spectral Albedo 

Fig. 4, Fig. 5, and Fig. 6 show spectral albedo measurements 
recorded on clear sky days above green grass, dry grass, and 
gravel, respectively. Note that the sky conditions in the pictures 

 
Fig. 3. Absolute spectral responsivity of the PERC cell (front and back). 

The cell is encapsulated in standard PV glass and measured using a PV 

Measurements QEXL quantum efficiency measurement system.   

 

               

                                 

 
 
 
 
  
 
  
 
 
  

 
 
  
 
  
 
   

  
     

     



shown in Fig. 1 do not represent those during the measurements 
in Fig. 4 to Fig. 6, but the ground conditions are essentially the 
same. As there were no sunny days when snow cover was 
recorded, a 100% diffuse day is shown for the daily snow 
spectral albedo in Fig. 7. The histogram borders in each plot 
show the daily density of spectral albedo measurements in the 
range of 300 to 1050 nm. The red reference lines within the 
histograms show the daily mean spectral albedo. 

In instances where the spectral albedo curve is smooth (e.g., 
Fig. 6 and Fig. 7), we observe kinks (e.g., at 675 nm) which are 
measurement artifacts that were not present immediately after 
the calibration in January 2020. The fact that these kinks 
occurred after less than 1 year of deployment demonstrates how 
sensitive the alignment of the internal optical bench (i.e., mirrors 
and grating) is to field conditions and highlights the need for 
regular calibration.  

The clear sky measurements demonstrate that there are 
notable shifts in spectral albedo over the course of a day. 
Specifically, there is a minimum spectral albedo around solar 
noon when the sun elevation is at its peak. The color gradient in 
the plots highlights this solar zenith dependency. The clear sky 
solar zenith dependency, with its early morning and late 
afternoon peaks, is of course typical of broadband albedo 
measurements [20]. In the case of spectral albedo 
measurements, however, the solar zenith dependency is not 
equal across all wavelengths.  The tendency is for near infrared 
(NIR) wavelengths to show greater solar zenith dependency than 
visible (VIS) or UV wavelengths. This is because the spectral 
distribution of the sun’s beam component shifts toward NIR 
wavelengths in the morning and afternoon, and because some 
surfaces reflect more NIR light than UV or VIS (e.g., grass).  

A comparison between Fig. 4 and Fig. 5 reveals the seasonal 
spectral albedo variations going from spring into summer, and a 
comparison to Fig. 7 demonstrates the dramatic shifts that can 
occur in winter. If previous works [2] – [5] are correct in that 
spectral albedo ought to be implemented in bifacial PV 
modeling, then the seasonal shifts shown here offer scenarios 
where onsite measurements could advise a performance model 
that uses spectral albedo data.  

One or more spectral albedo curves from SMARTS are 
shown in Fig. 4 to Fig. 7. When spectral albedo is accounted for 
in PV modeling (e.g., [6] – [8], [21], [22]) such static 
assumptions are used, almost exclusively. One unsurprising take 
away from comparing the measurements to static assumptions is 
that the static spectral albedo curves often fail to agree with the 
measured albedo curves’ shape and magnitude across all 
wavelengths. In other words, static spectral albedo assumptions 
are not likely to be physically correct. The SMARTS 
documentation indicates that for all materials except snow, the 
spectral albedo curves were measured at a solar zenith angle of 
about 53°.   

The largest differences between measurements and the 
database assumption occur in the VIS region of Fig. 5. (Dry 
grass). This is likely because the grass at the site retained some 
chlorophyl (visible in the greenness of Fig. 1b), even during the 
driest summer period.  

  

 
  

 
 
 

                         

               

      

         

  

  

  

  

  

  

  

  

  

 
  

 
 
 

                         

               

      

         

  

  

  

  

  

  

  

  

  

 
  

 
 
 

                         

               

      

         

  

  

  

  

  

  

  

  

  

 
  

 
 
 

                         

               

      

         

Fig. 4. One day of clear sky measurements recorded above green grass 
(25.03.2020). Three of the most similar SMARTS albedo curves are shown. 

 
  

 
 
 

                         

               

      

         

  

  

  

  

  

  

  

  

  

 
  

 
 
 

                         

               

      

         

  

  

  

  

  

  

  

  

  
 
  

 
 
 

                         

               

      

         

  

  

  

  

  

  

  

  

  

 
  

 
 
 

                         

               

      

         

Fig. 5. One day of clear sky measurements recorded above dry grass 

(31.08.2020). The most similar SMARTS spectral albedo is also shown. 

 
  

 
 
 

                         

               

      

         

  

  

  

  

  

  

  

  

  

 
  

 
 
 

                         

               

      

         

  

  

  

  

  

  

  

  

  

 
  

 
 
 

                         

               

      

         

  

  

  

  

  

  

  

  

  

 
  

 
 
 

                         

               

      

         

Fig. 6. One day of clear sky measurements recorded above gravel 

(18.09.2020). The most similar SMARTS albedo is also shown. 

 
  

 
 
 

                         

               

      

         

  

  

  

  

  

  

  

  

  

 
  

 
 
 

                         

               

      

         

  

  

  

  

  

  

  

  

  

 
  

 
 
 

                         

               

      

         

  

  

  

  

  

  

  

  

  

 
  

 
 
 

                         

               

      

         

Fig. 7. One day of cloudy sky measurements recorded above snow 

(06.01.2021). The most similar SMARTS is also shown. 



In the gravel albedo case, the spectral albedo from SMARTS 
aligns well to the measurements for all wavelengths except 700 
– 900 nm. The differences in this spectral region are likely 
because the mineral content of the onsite gravel mixture deviates 
from that of the database assumption. For example, iron content 
is known to absorb solar radiation between 900 and 1000 nm 
[23], but the reasons for the discrepancy at 700 – 900 nm remain 
unclear.  

Finally, the measured snow albedo case is shown in Fig. 7. 
The spectral albedo of snow is complex as it not only depends 
on solar zenith angle and diffuse ratio, but it also depends on the 
snow’s freshness (age), grain size (roughness), snow depth, and 
whether the surface below the snow can be seen (coverage) [24]. 
Based on local weather measurements, we estimate that the 
snow depth during the measurements in Fig. 7. was less than 5 
cm, that the snow fell within 24 hours of measurement, and that 
the gravel below was completely covered by snow. A particular 
challenge of snow albedo measurements is that the upward 
facing instrument will become covered in snow without some 
form of sensor heating or ventilation. The spectroradiometers 
used here contain thermoelectric cooling elements to maintain a 
detector temperature of 25°C ±0.5°C, which subsequently melts 
any snow deposited on the instruments. The SMARTS 
documentation indicates the spectral albedo files for snow are 
recorded at a zenith angle of about 20°, but in principle, the solar 
zenith angle should have very little effect on the albedo during 
a 100% diffuse day like the one shown.  

B. Bifacial Gain with Different Albedo Data Sources 

Fig. 8, Fig. 9, Fig. 10 show modeled bifacial gains for PERC 
on fixed tilt and tracked systems above green grass, dry grass, 
and gravel, respectively. Each figure shows the variability of 
modeled bifacial gain using five albedo data sources. The 
diamonds within each box plot show the 95% confidence 
interval of the mean, which are small because of the large 
number of observations. Recall that the pyranometer, Si-
pyranometer and spectroradiometer albedo data are continuous 
measurements whereas the constant albedo (0.2) and SMARTS 
spectral albedo do not change with time. The duration of each 
albedo scenario is two, four and eight months for dry grass, 
green grass, and gravel, respectively.  

 

Fig. 8. Variability of simulated bifacial gain during the four month green grass 
albedo period using five different albedo data sources. The horizontal purple 
lines show the measured bifacial gain on large-scale PERC systems above grass 
during the same period. The SMARTS spectral file used is ‘GrazingFields.dat’. 

 

Fig. 9. Simulated bifacial gain results for the two month dry grass albedo period 
using four different albedo data sources. The Si-Pyranometer results are not 
shown because the ground surface under this sensor was not comparable to the 
others during this time. The SMARTS spectral file used is ‘DryGrass.dat’.  

 

Fig. 10. Simulated bifacial gain results for the five month gravel albedo period 
using five different albedo data sources. The SMARTS spectral file used is 
‘Gravel.dat’. 

In the green grass and gravel albedo cases shown Fig. 8 and 
Fig. 10, we see that the five albedo data sources cause the 
simulated bifacial gain to change by as much as 3%.  In the dry 
grass albedo case shown in Fig. 9, the range of modeled bifacial 
gain values is 10%. The larger range of bifacial gains in the dry 
grass simulations is primarily caused by the SMARTS spectral 
albedo that results in 7% higher bifacial gain than when 
measured spectral albedo are used. Clearly, the SMARTS 
‘drygrass.dat’ file is not a good approximation of the dry grass 
albedo, at this location (see Fig. 5). 

In the green grass and gravel albedo cases, the bifacial gain 
changes by about 1.5%–2.0% if continuous spectral albedo 
measurements or SMARTS spectral albedo are used. Grazing 
Fields SMARTS albedo was used in the grass case because its 
relative shape was a near match to our measurements, thus 
leading us to believe that this vegetation was of a similar or same 
genus and species as the grass onsite. We also ran the 
simulations using the ‘LawnGrass.dat’ and ‘GreenGrass.dat’ 
SMARTS files. We found that bifacial gain was 7% higher and 
1% lower, respectively, than when spectral albedo 
measurements were used.  

                            

 
 
  
 
  

  
 
 
  

  
 
 
  

  
 

 

 

 

  

  

  

  

                            

 
 
  
 
  

  
 
 
  

  
 
 
  

  
 

 

 

 

  

  

  

  

  

  

  

  

                            

 
 
  
 
  

  
 
 
  

  
 
 
  

  
 

 

 

 

  

  

  

  

  

  



Notable in the green grass albedo case of Fig. 8 is the bifacial 
gain calculated with Si-pyranometer albedo data is about 3% 
higher than when calculated with pyranometer data. This 
positive bias can be explained by the large ‘red shift’ of the grass 
albedo spectrum relative to AM1.5G (see Fig. 4). It is well 
known that the output of Silicon devices calibrated under the 
AM1.5G spectrum will increase when exposed to red shifted 
spectra [25]. Hence, the albedo of vegetation will tend to be 
higher when measured by Si-pyranometers or reference cells 
than with pyranometers. Similar results were reported by [26]. 

Green grass albedo (Fig. 8) is the only condition where 
onsite measurements of large-scale monofacial and bifacial 
PERC systems are available. The mean bifacial gain of these 
systems during the four-month period are shown with horizontal 
purple lines. Curiously, the constant albedo assumption of 0.2 
yields the best agreement to the measurements. However, a fair 
comparison of the model and measurement requires at least two 
adjustments: 1) the model would need to account for structural 
shade losses, and 2) the spectral responsivity used in the model 
would need to be of a full-size module (i.e., with junction boxes, 
frame etc.), not an individual cell. If such adjustments were 
implemented, we estimate that the bifacial gain in all 
simulations would be reduced by at least 1%. 

C. Backside Spectral Mismatch 

Fig. 11 shows the backside spectral mismatch (SMM) of the 
PERC device during the four albedo periods studied on two 
structure types. We also calculated backside SMM for bifacial 
n-PERT and IBC cells, but because all devices are single 
junction silicon cells with similar bandgaps, the differences in 
SMM between the three devices were small (±0.01), likely 
within the uncertainty of the SMM calculation itself.  

 

Fig. 11. Box and whisker plots showing spectral mismatch factors for the 
backside of the PERC cell on two structure types: trackers (blue), fixed (red). 
Mismatch is calculated for four albedo periods corresponding to Fig. 1. 

The single axis tracker SMM results show a wider range of 
values than the 25° fixed tilt SMM results. This is explained by 
the tracker’s continuously changing tilt angles, which are 
steepest in the early morning and late afternoon (±60°). The 
steeper the tilt angle, the greater the contribution of sky diffuse 
light to rear POA irradiance. For albedos that increase with 
wavelength (i.e., grass and gravel), backside tracker SMM 
always peaks midday. At midday, the tracker is horizontal, and 
the backside only receives reflected light from the ground. The 

green grass albedo has the largest red shift (i.e., ratio of NIR to 
VIS light) than the other three ground surfaces, which likely 
causes the highest SMM. The grass reflects more VIS light as it 
dries, which decreases the backside SMM by about 0.07 (7%) at 
the end of summer.  

 The median backside SMM of the grass and dry grass 
albedos is between about 1.1 and 1.2. Although these SMM 
factors correspond to ISC gains of 10 to 20% relative to the 
AM1.5G rating, one must remember that frontside irradiance is 
approximately an order of magnitude greater than backside 
irradiance. Thus, performance models of bifacial systems above 
grass could suffer inaccuracies of 1–2% if spectral albedo effects 
are not properly accounted for.  

D. Rear Plane-of-array (POA) Spectra 

Fig. 12 and Fig. 13 show discretized rear POA spectral 
irradiance (GPOA,Rear,λ) on the single axis tracker above green 
grass during the morning and afternoon of a cloudless day 
(25.03.2020).  The GPOA,Rear,λ is simulated at 20 equally spaced 
segments, which correspond to the 20 vertical cell locations on 
the 2-in-portrait tracker. Segment 1 is the western most cell and 
segment 20 is the eastern most cell.  

 

Fig. 12. Simulated rear spectral irradiance of the tracker system on a clear sky 
day in the morning at 20 discrete segments. At this time the tracker is tilted at 
60° from horizontal and facing east (surface azimuth = 90°). 

 

Fig. 13. Simulated rear spectral irradiance on the tracker system on a clear sky 
day in the afternoon at 20 discrete segments. At this time the tracker is tilted at 
60° from horizontal and facing west (surface azimuth = 270°). 

The 20 GPOA,Rear,λ spectra in Fig. 12 (morning) and Fig. 13 
(afternoon) show mirrored trends. In the morning when the 
tracker is pointing east, segment 1 (west) is highest in the sky 
and segment 20 (east) is lowest to the ground. Thus, segment 1 
receives the largest contribution of sky diffuse irradiance and 
segment 20 the largest contribution of ground reflected 

      

       

   

     

      

       

   

     

      

       

   

     

      

       

   

     

                        

 
 
 
 
  
 
  
 

  
 

 
  

 
  

 
 
 
  
 
 

               

                         

 
 
 
  
 
  
  
  

  
  

 
 

 

       

 

 

 

 

 

 

 

 

 

  

  

  

  

  

  

  

  

  

  

  

               

                         

 
 
 
  
 
  
  
  

  
  

 
 

 

       

 

 

 

 

 

 

 

 

 

  

  

  

  

  

  

  

  

  

  

  



irradiance. In the afternoon, the height of the segments is 
reversed with 1 lowest to the ground and 20 highest in the sky.  

Because the clear sky diffuse spectrum is blue shifted (due 
to Rayleigh scattering), and the green grass albedo is heavily red 
shifted (see Fig. 4), the western most and eastern most cells can 
see notably different spectral distributions in the morning and 
afternoon. This can cause the SMM within the array to vary by 
as much as ±0.075 (7.5%). Midday when the tracker is 
horizontal, the spectral distributions at the 20 segments are the 
same, and thus there is no SMM gradient at solar noon. 

Fig. 14 shows GPOA,Rear,λ under the same clear sky and grass 
albedo conditions as in Fig. 13, but for the 25° fixed tilt system. 
The GPOA,Rear,λ is again simulated at 20 cell locations within the 
2-in-portrait array where segment 1 corresponds to the top most 
cell and segment 20 corresponds to the bottom most segment. 

The backside light intensity is greater at the bottom than at 
the top of the fixed tilt system, but the relative spectral 
distribution among the 20 segments varies less than the 20 
segments within the single axis tracker. This is because the top 
segment in the 25° fixed tilt system receives less sky diffuse 
light than an array at 60° as is the case in Fig. 12 and Fig. 13. So 
long as the sun is in front of the array, the backside SMM does 
not vary with solar position. 

 

Fig. 14. Simulated rear spectral irradiance on the 25° south facing fixed tilt 

system on a clear sky day in the afternoon at 20 discrete segments.  

IV. DISCUSSION AND CONCLUSIONS 

Our measurements show that the albedo at bifacial PV sites 
can be highly spectrally dynamic over daily and seasonal 
timescales. The bifacial gains calculated with pyranometer, Si-
pyranometer and spectroradiometer albedo varied by as much as 
3% for the systems and ground surfaces studied.  

If spectral albedo from a database shall be used in a bifacial 
performance model, then detailed information about the 
ground’s type and condition are required. For example, 
SMARTS 2.9.5 contains seven files for grass and the present 
ASTER (ECOSTRESS) library contains at least nine files 
classified as grass. Knowledge that the ground is simply ‘grass’ 
may not be sufficient: Additional information such as genus, 
species, water content and growth state is likely required to 
correctly select spectral albedo from a database. Differences in 
bifacial gain up to 7% were observed when the static spectral 
albedo curve was not representative of actual conditions.  

The large backside spectral mismatch values of 1.1 to 1.2 
lead us to recommend spectral albedo measurements in some 

capacity. The most basic solution to account for spectral albedo 
effects would be a rear POA reference cell, but a more robust 
method would be to sample the albedo at a few carefully selected 
wavelengths. Such down sampled measurements can be made 
without significantly affecting the results shown here because 
spectral albedo is not heavily structured like the sun spectrum.  
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A B S T R A C T   

This paper analyzes 15-months of spectral albedo measurements collected at the Technical University of 
Denmark (55.6◦N, 12.1◦E). High-resolution spectroradiometers are used to monitor four albedo scenarios, which 
include green vegetation, dry vegetation, gravel, and snow. Spectral mismatch and spectral impact are calculated 
for the front and backside of three different bifacial cell concepts mounted on horizontal single axis trackers and 
fixed-tilt substructures. The spectral nature of albedo is shown to have significant influence on bifacial photo-
voltaic performance wherein backside spectral impact as high as 1.20 is observed for fixed-tilt systems above 
green vegetation and as low as 0.98 for systems above snow. The results reveal that spectral impact is always 
lower on tracked than fixed-tilt systems because a greater fraction of sky diffuse light reaches the backside of 
tracked systems. Given the variety of albedos tested here, we find that the normalized difference vegetation index 
is a good predictor of backside spectral effects. When the high-resolution measurements are truncated to 4 to 8 
carefully selected wavelengths, we find that this limited measurement resolution sufficiently captures the sea-
sonal spectral albedo fluctuations that influence bifacial photovoltaic energy production. Finally, to alleviate the 
dearth of spectral datasets presently available to the PV community, the spectral irradiance and albedo mea-
surements are made freely available in open access format (https://doi.org/10.11583/DTU.14695437.v1).   

1. Introduction and literature review 

In the mid-2010s, the photovoltaic (PV) industry began shifting 
crystalline-silicon (c-Si) cell production away from aluminum back 
surface field (Al-BSF) cells toward passivated emitter and rear cell 
(PERC) technology (Dullweber, et al., 2016); (Dullweber and Schmidt, 
2016). The subsequent cost reductions in industrial-scale PERC 
manufacturing processes paved the way for a revival of bifacial PV cells 
and modules. Once viewed as a niche technology used in small-scale 
applications like the sun-shading elements presented in (Hezel, 2003), 
the noise barriers in (Nordmann, et al., 2012), and the collection of 
systems displayed in the introduction of (Ledesma, et al., 2020), bifacial 
PV is now a mainstream technology with over 20 GW deployed world-
wide (Kopecek and Libal, 2021). It has been estimated that 70%–90% of 
PV modules made during the last three decades were produced with Al- 
BSF cells (Green, 2015); (Wilson, et al., 2020), but this market majority 
has been quickly replaced by PERC and bifacial PERC cell technology. 
The 2021 ITRPV report estimates that by 2025 roughly 60% of PV 
modules produced will contain bifacial cells, and that by this time, the 

Al-BSF concept will be phased out (VDMA, 2021). 
Recent research has characterized many of the nuanced performance 

effects present in bifacial PV systems and quantified how bifacial energy 
gains are influenced by installation and environmental conditions. For 
example, the backside edge brightening effect and electrical losses 
induced by nonuniformly distributed irradiance were simulated in detail 
by (Deline, et al., 2020) and (McIntosh, et al., 2019); the susceptibility to 
power loss from tracker torque tube shading was first described by 
Pelaez et al. (2019a) with Radiance based ray trace simulations (Ward, 
1994) using the opensource Python library bifacial_radiance (Deline and 
Pelaez, 2017); other researchers later used bifacial_radiance to investi-
gate similar backside shading effects for system types such as equator- 
facing static tilts (Berrian and Libal, 2020), (Korevaar, et al., 2020), 
and two-in-portrait trackers (Riedel-Lyngskær et al., 2020a); electrical 
mismatch losses induced by nonuniform rear irradiance were investi-
gated experimentally on fixed-tilt systems by (Rossa, et al., 2021) and 
(Zhang, et al., 2020), and on trackers by (McIntosh, et al., 2020) and 
(Riedel-Lyngskær et al., 2020a); the dissimilar thermodynamic behavior 
between monofacial and bifacial PV devices was studied by (Lamers, 
et al., 2018) and (Wang, et al., 2020); and parametric studies that 
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simulated bifacial energy gains due to module orientation, height, row 
spacing and diffuse light content were presented in (Asgharzadeh, et al., 
2018), (Chudinzow, et al., 2020), (Guo, et al., 2013), (Sun, et al., 2018), 
and (Yusufoglu, et al., 2015). 

No less important than these installation and environmental in-
fluences is the ground surface albedo. Defined as the percentage of 
incident sunlight (beam and sky diffuse) that a surface reflects, the al-
bedo determines the amount of ground reflected radiation available for 
PV energy conversion. Ground reflected radiation constitutes less than 
3% of the total effective irradiance for the majority of monofacial sys-
tems and can amount to less than 1% of the total irradiance when the tilt 
angle from horizontal is less than 25◦. In contrast, ground reflected ra-
diation contributes approximately 10% of the effective irradiance 
received by most bifacial systems worldwide (Pelaez et al., 2019a); 
(Rodriguez-Gallegos, et al., 2020) and (Sun, et al., 2018). Indeed, the 
rear irradiance received by bifacial systems is increased to some extent 
by sky diffuse irradiance, and in some conditions, by beam irradiance 
reaching the backside. However, the contributions of sky diffuse and 
beam irradiance to the total rear irradiance are either small or negligible 
compared to ground reflected contributions (Chiodetti, et al., 2016); 
(Chudinzow et al., 2019). 

The albedo of natural and synthetic materials varies with the 
wavelength of incident sunlight, which is a property referred to as 
spectral albedo or spectral reflectance. Some of the earliest spectral al-
bedo measurement campaigns were intended to understand the Earth’s 
energy balance (Krinov, 1953), the spectral properties of plants (Gates 
et al., 1965), water bodies and snow (Kondratiev et al., 1964). Prior to 
2016, spectral albedo was sparsely studied within the context of PV 
applications (Andrews and Pearce, 2013); (Brennan et al., 2014), which 
is likely because ground reflected radiation contributes minimally to 
monofacial PV performance. In the wake of ever-increasing bifacial PV 
deployments, however, there has been a subsequent upswing in the 
spectral albedo investigations conducted by PV researchers (Blakesley 
et al., 2020); (Gostein et al., 2020); (Monokroussos et al., 2020); (Pal 
et al., 2020); (Russel et al., 2017); (Vogt et al., 2018). One common 
conclusion we found among these studies is that spectral albedo effects 
can significantly influence the backside irradiance received by PV 
bifacial systems—up to 30 % in some cases—and that these effects 
should be accounted for in bifacial PV simulations (Blakesley et al., 
2020); (Gostein et al., 2020); (Vogt et al., 2018). Several works have 
accordingly incorporated spectral albedo into bifacial PV performance 
models. All such studies use spectral albedo data from the ASTER 
spectral library (Baldridge et al., 2009) and the implicit assumption that 
the distribution of the spectral albedo does not change with time and 

conditions (Dupre et al., 2020) (McIntosh et al., 2019); (Mekemeche and 
Beghdad, 2020); (Russel et al., 2017); (Tuomiranta et al., 2020); (Ziar 
et al., 2019). 

To our knowledge, the literature is lacking in contributions where 
diurnal and seasonal spectral albedo shifts are analyzed within the 
context of bifacial PV performance. The only work that we are aware of 
covering this topic is (Blakesley et al., 2020), who calculated spectrally 
effective albedo for three bifacial PV device types using satellite and 
ground-based spectral albedo measurements in Namibia and France. 
The present contribution reports on continuous high spectral resolution 
albedo measurements made in Roskilde, Denmark (55.6◦ N, 12.1◦ E) 
over a 15-month period. The objectives are to demonstrate how tem-
poral changes in spectral albedo affect the performance of commercially 
available bifacial PV devices mounted in different orientations, and to 
provide recommendations for how field measurements can be used to 
account for spectral albedo shifts that affect bifacial energy output. 

2. Methodology 

2.1. On site measurements 

Spectral irradiance data in the range of 300 – 1100 nm were recorded 
every 5 min by three EKO MS-711 spectroradiometers. The Si detector 
inside each spectroradiometer contains 2048 pixels, which provides a 
wavelength scale with 0.4 nm sampling interval. The optical resolution 
(full-width half maximum) of the instruments is 7 nm. Two of the 
spectroradiometers have a 180◦ field-of-view (FOV) and were horizon-
tally mounted on a measurement stand 1.5 m above the ground (Fig. 1). 
The upward facing spectroradiometer recorded the global horizontal 
spectral irradiance (GHIλ) and the downward facing instrument recor-
ded the ground reflected horizontal spectral irradiance (RHIλ). The 
spectral albedo αλ was calculated according to Eq. (1). 

α(λ) = RHI(λ)
GHI(λ)

(1) 

The third spectroradiometer has a 5◦ FOV collimation tube and was 
mounted on a dual-axis tracker to measure the direct normal spectral 
irradiance DNIλ. This is the same instrument used in (Riedel et al., 2018) 
and is installed nearby in a 15 m tower where horizon shading is 
negligible. The diffuse horizontal spectral irradiance DfHIλ was calcu-
lated from the difference between the measured GHIλ and the measured 
DNIλ adjusted by the zenith angle (θZ) according to Lambert’s cosine 
law. 

DfHI(λ) = GHI(λ) − DNI(λ)∙cosθZ (2) 

Nomenclature 

α Albedo 
ISC Short-circuit current 
Kd Diffuse to global horizontal irradiance fraction 
ϴZ Solar zenith angle 

Subscripts 
λ Wavelength resolved data 
Back Backside device performance 
Front Front side device performance 

Abbreviations 
Al-BSF Aluminum back surface field 
BEG Bifacial energy gain 
DfHI Diffuse horizontal irradiance 
DNI Direct normal irradiance 
FOV Field of view 

FT Fixed tilt structure 
GHI Global horizontal irradiance 
GPOA Global irradiance in plane-of-array 
HSAT Horizontal single axis tracker 
IBC Interdigitated back contact 
MBE Mean bias error 
MFR Multi-filter radiometer 
NDVI Normalized difference vegetation index 
NIR Near infrared (700 – 1000 nm in this work) 
PERC Passivated emitter and rear cell 
PERT Passivated emitter rear totally diffused 
RHI Reflected horizontal irradiance 
SMM Spectral mismatch factor 
SI Spectral impact 
SR Spectral responsivity 
VIS Visible light (400 – 700 nm in this work)  
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The field measurement campaign investigated the diurnal and sea-
sonal variations in spectral albedo under four surfaces/conditions 
including green grass (Fig. 1a), dry grass (Fig. 1b), gravel (Fig. 1c), and 
snow (Fig. 1d). A timeline is shown in Fig. 1e. The spectral RHIλ, GHIλ 
and DNIλ data, as well as the weather data and broadband albedo data 
recorded during this period are available to the solar energy community 
in an open access format (https://doi.org/10.11583/DTU.14695437.v1 
). 

Healthy green grass was measured for three months from 05.02.2020 
to 06.05.2020. From 07.05.2020 to 27.07.2020 a highly reflective white 
tarp was affixed to the ground with the spectral albedo stand in the 
center. The data recorded during the white tarp period are not reported 
here because the white tarp’s area was not large enough to limit the light 
reflected off the surrounding grass to less than 5% of the total signal 
received by the downward facing spectroradiometer. However, the 
spectral albedo measurements from the white tarp albedo period are 
available in the open access dataset. 

The grass began to dry out shortly after the white tarp was removed 
(Fig. 1b). The period of dry grass albedo measurements spanned from 
28.07.2020 to 07.09.2020. On 08.09.2020, a 12 m by 12 m gravel 
mixture (consisting of 5 – 8 mm diameter stones) was distributed in an 
area covering the majority of the spectroradiometer’s FOV and remained 
in place until the measurement campaign concluded on 29.04.2021 
(Fig. 1c). We estimate that more than 97% of the ground reflected light 
reaching the downward facing instrument originates from the 144 m2 

gravel area. Periodic snowfall occurred in winter 2021 (Fig. 1d) and was 

recorded by a Lufft UMB600 weather sensor. There were five days when 
the daily snowfall was greater than 25 mm. Onsite snow depth data are 
not available, but snowfall hardly accumulates in Denmark’s predomi-
nantly humid continental climate (Köppen climate classification Dfb), 
and the snowfall that we observed melted completely within a day or 
two. 

The albedo measurements reported here are not split into black-sky 
and white-sky albedo components, but the open access data set allows 
users to perform such a decomposition if desired. The black-sky and 
white-sky albedos can be determined with the procedure described by 
(Michalsky and Hodges, 2013). This method requires measurements 
from a clear sky day and a cloudy day with the criterion that ground 
conditions do not change appreciably between the clear sky and cloudy 
period. 

The upward and downward facing spectroradiometers shown in 
Fig. 1 did not acquire measurements simultaneously because a single 
datalogger was used to acquire data from both instruments. We observed 
delays of up to 10–15 s between the time at which the first spectror-
adiometer began its measurement, to when the second unit completed 
its measurement. This delay is due to data processing time in the logger 
and the exposure times in each sensor, which take 10 to 5000 ms each, 
depending on the light intensity. An irradiance stability check was used 
because Eq. (1) assumes a constant condition during the GHIλ and RHIλ 
measurements. Broadband GHI data recorded every 10 s were used to 
calculate a variability index (VI) (Stein et al., 2012) within a 2-minute 
period: approximately 1 min before and after the spectral albedo 

Fig. 1. Spectral albedo measurement stand and the various albedo conditions tested at Technical University of Denmark: (a) Green grass from February to May 2020, 
(b) dry grass from August to September 2020, (c) 5 – 8 mm gravel from September 2020 to April 2021, (d) snow in January 2021, and (e) timeline of the ground 
surfaces tested during the campaign. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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measurement. Measurements were removed from the analysis when the 
VI was greater than 1.1, which served as an irradiance stability filter. 
Data recorded on detector edges (λ less than 300 nm and λ greater than 
1050 nm) were also removed because as these data are prone to mea-
surement noise. 

Typically, the spectral sensitivity of Si spectroradiometers is between 
300 and 1100 nm, which makes analysis of Si PV devices challenging 
because the spectral responsivity of contemporary Si PV (e.g., PERC) is 
between 300 and 1200 nm (Belluardo et al., 2018). Since the useful 
spectral range is 300 to 1050 nm, and the bifacial devices we analyzed 
are spectrally responsive between 300 and 1200 nm (Fig. 3), we used the 
SMARTS model (Gueymard, 1995) to fill the spectral irradiance gap 
between 1050 and 1200 nm. We used the real-time solar zenith angle as 
a proxy for air mass, the ambient temperature, and atmospheric pressure 
to generate a SMARTS clear sky spectrum for each spectral measure-
ment. The simulated clear sky spectra were scaled with the cloud opacity 
factor of (Ernst et al., 2016), which was calculated with broadband 
global and diffuse irradiance from two onsite pyranometers. However, 
we have found that the stochastic nature of cloud cover is nearly 
impossible to account for with a single cloud coverage factor and 
therefore, the simulated spectra from 1050 to 1200 nm were scaled with 
a secondary factor to ensure that the simulated spectra align with the 
measurements at 1050 nm. It is worth noting that under the AM1.5G 
reference spectrum (International Electrotechnical Commision, 2019a), 
the bifacial PV devices we analyzed (Fig. 3) generate approximately 4% 
of their total photocurrent from light between 1050 and 1200 nm. 
Therefore, the extension imposes a small effect on the results reported 
here. 

2.2. Spectroradiometer calibration 

Calibration of all three spectroradiometers was performed inhouse at 
DTU Fotonik’s DOLL laboratories on 22.01.2020, two weeks before the 
field measurement campaign began. The calibration setup consists of a 
NIST traceable Optronics Laboratories FEL-type lamp that is calibrated 
for spectral irradiance and placed on an alignment jig 50 cm from the 
device under test with measures to mitigate stray light. The spectral 
responsivity is calculated as the certified spectral irradiance of the lamp 
divided by the spectral pixel count and multiplied by the integration 
time used during calibration. The expanded uncertainty of the calibra-
tion is approximately 4.5% for wavelengths between 400 and 1050 nm, 
but between 300 and 400 nm, the uncertainty can be as high as 10% 
(Fig. 2a). The primary uncertainty contributions in the setup are the 
lamp drift (4.0%), and the low signal to noise ratios at the extreme ends 
of the spectroradiometer sensitivity. 

A final measurement of the standard lamp was made on 11.05.2021 
to check the spectroradiometers for any drift that occurred during the 
measurement campaign. The lamp is stored and operated in ways that 
minimize changes in output, the electrical power applied to the lamp is 
precisely monitored during calibrations, and the lamp is periodically 
compared to other in-house reference lamps to detect any drift. Fig. 2b 
shows each spectroradiometer’s measured deviations to the standard 
lamp spectrum upon completion of the 15-month measurement 
campaign, and highlights that the magnitude of the measurement drift is 
dependent on the instrument and wavelength. (Dirnberger et al., 2015a) 
showed that a comparable spectroradiometer deployed in Freiburg, 
Germany for two years had less than ± 5% drift between 400 and 1100 
nm – a magnitude that is comparable to the DNI and GHI instrument 
drifts shown in Fig. 2b. 

The spectroradiometer used for RHI measurements showed the 
highest deviations to the reference lamp (mean deviation to reference 
lamp of + 3.3%, 95% of measurements within ± 5.6%) and showed 
pronounced kinks at certain wavelengths (e.g., 645 nm and 670 nm). 
The most pronounced kinks overlap with sharp gradients in the spectral 
responsivity of the instrument. This means that small changes in the 
wavelength response will be amplified near the wavelength where these 

gradients reside. The results from the calibration events on 22.01.2020 
and 11.05.2021 suggest that the spectral responsivity of the RHI in-
strument was affected during the outdoor experiments. In Section 3.3 we 
describe the extent to which the kinks observed in the RHI instrument 
affected spectral mismatch calculations. 

An expanded uncertainty estimation of the continuous outdoor solar 
spectral irradiance measurements would be a complex task in of its own. 
Monte-Carlo approaches are commonly used to account for the corre-
lation between spectroradiometer uncertainty components and wave-
length (Dirnberger et al., 2015a), (Hohl-Ebinger and Warta, 2011), 
(Schinke et al., 2020), but the time-dependency of continuous solar 
spectral measurements introduces additional constraints and complexity 
that can limit the applicability of the Monte Carlo method. Although 
expanded uncertainty has not been made for the continuous outdoor 
measurements performed in this work, the instruments have partici-
pated in international laboratory intercomparisons in 2017 (Pravettoni 
et al., 2018) and 2018 (Galleano et al., 2019) to establish confidence in 
the calibration and measurement accuracy. The angular response of the 
horizontally mounted EKO MS-711 spectroradiometers follow a cosine 
response within 3% or better. This cosine error will primarily affect the 
upward facing (GHI) instrument at high solar zenith angles in direct 
sunlight. Finally, all three spectroradiometers contain thermoelectric 
heating and cooling, which maintained detector temperatures of 25 ◦C 
± 0.5◦ during approximately 98% of the field measurements. 

2.3. Bifacial cell technologies 

Fig. 3 shows the front and backside spectral responsivities of the 
bifacial cells studied. The cell concepts include interdigitated back 
contact (IBC), n-type passivated emitter and rear totally diffused (n- 
PERT), and p-type passivated emitter and rear cell (PERC). These were 
chosen for their varying rear to frontside efficiencies (i.e., bifaciality 
factors) and availability. Under AM1.5G illumination, the bifaciality 
factors of the IBC, n-PERT and PERC cells are 62%, 88% and 75%, 
respectively. Note that bifaciality factors of full-size modules will be 
lower than on a cell-level because the active backside of modules is 
commonly shadowed by junction boxes, labels, frames, and/or a glazing 
printed on the glass between cell spacings. 

Fig. 2. (a) Uncertainty (k = 2) of the calibration check performed on 
11.05.2021, two weeks after completion of the measurement campaign. (b) 
Measured deviations to the FEL-type reference lamp after 15 consecutive 
months of field operation. The averages of ten measurements made with each 
instrument are shown. 
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The spectral responsivity measurements shown in Fig. 3 are of single 
cells laminated inside 20 × 20 cm PV glass. The measurements were 
performed with a PV Measurements QEXL quantum efficiency mea-
surement system. The bifacial IBC device is the ZEBRA cell with front 
surface field (FSF) emitter developed at ISC Konstanz (Kopecek et al., 
2020). The bifacial n-PERT device is the BiSoN (bifacial on n-type) 
concept, also produced by ISC Konstanz (Lossen et al., 2015). The PERC 
cell was procured from Blue Sun Solar. 

2.4. Optical modeling 

Most bifacial PV systems are mounted at non-horizontal tilt angles, 
which allows light from the sky hemisphere to reach the backside. Since 
sky diffuse light can have a markedly different spectral distribution than 
the albedo, a thorough study of spectral effects in bifacial systems re-
quires data in the rear plane-of-array (POA). We used the 2D view factor 
model pvfactors (Anoma et al., 2017) to calculate global frontside and 
rear POA spectral irradiances (GPOA,Front,λ and GPOA,Rear,λ). View factors 
are used in radiative heat transfer theory to describe the fraction of ra-
diation emitted from surface A that strikes surface B, expressed as FA→B. 
We selected pvfactors as the engine for 2D view factor modeling due to 
its open-source nature and because it showed good agreement to 
broadband GPOA,Rear measurements in our previous work (Riedel-Lyng-
skær et al., 2020b). We performed simulations for two orientations: a 
25◦ south facing fixed-tilt (FT) system and a horizontal single-axis 
tracking (HSAT) system. These two system types were chosen because 
they are commonly implemented in large-scale PV systems and are the 
same configuration as the bifacial PERC systems collocated at the 
measurement site. 

Table 1 summarizes the structural details of the FT and HSAT sys-
tems simulated, which correspond to the real 45 m long bifacial PV 
arrays that are installed onsite. Five-rows of FT and HSAT systems are 
simulated, and all results reported here are from the center row. The 2D 
view factor method assumes that rows are infinitely long and thereby 

neglects edge brightening effects, but the works of Berrian (2020) and 
Pelaez et al. (2019b) have shown that the performance of the center 
array within a five-row system, at least 10 m long, is comparable to the 
performance of an array within a semi-infinite field. In other words, five 
rows can accurately represent utility-scale installations. 

The measured (αλ, DNIλ) and calculated (DfHIλ) spectral data were 
passed to the 2D view factor model (pvfactors), one wavelength at a time 
in 1 nm steps from 300 to 1200 nm. The full simulation mode of the 
model was used to calculate the spectral radiosity of all surfaces within 
the modeled scene for each respective wavelength λ. Angular reflection 
losses at the front and rear module surface are accounted for with the 
Sandia incident angle modifier (IAM) model (King et al., 2004). An IAM 
profile for a c-Si module with non-antireflective coated glass was used 
for the rear side. 

2.5. Data analysis 

The large volume of data recorded by high-resolution spectral in-
struments in continuous operation can be challenging to analyze – 
especially over multi-year timescales. Qualitative metrics such as the 
average photon energy parameter (Dirnberger et al., 2015)b, (Nofuentes 
et al., 2017) are useful in this respect because they permit a quick and 
simple analysis of spectral shifts within a vast dataset that potentially 
contains several 100 million records, or more. To this end, we used the 
normalized difference vegetation index (NDVI) to identify significant 
changes in the spectral albedo distribution during the 15-month 
campaign. First proposed by (Rouse et al., 1974), the NDVI is 
commonly used in remote sensing to identify vegetated areas from sat-
ellite images. The NDVI is a dimensionless quantity on a scale of − 1 to +
1 and is calculated according to Eq. (3). 

NDVI =
NIR − VIS
NIR + VIS

(3) 

In this work, the VIS and NIR quantities are the integral of the 
spectral RHI from 400–700 nm and 700–1000 nm, respectively. The 
concept behind NDVI is that healthy green vegetation reflects very little 
visible light (VIS) light but reflects significantly in the near infrared 
(NIR) region. Thus, green vegetation has a large difference between NIR 
and VIS reflectance and has a high positive NDVI value. As vegetation 
goes through drying stages of senescence to death, it continuously loses 
chlorophyll, which results in increased VIS reflection and a smaller 
difference between NIR and VIS. During snow albedo conditions, the 
NDVI is near zero or slightly negative (Dye and Tucker, 2003). 

The spectral POA irradiance GPOA,Front,λ and GPOA,Rear,λ were sum-
marized using the spectral mismatch factor (SMM) per Equation 7 in IEC 
60904–7 (International Electrotechnical Commision, 2019b). We 
introduce subscript j to denote the front or rear side of the PV device and 
POA. 

SMMj = GRef ∙
∫ b

a SRj(λ)∙GPOA,j(λ)dλ
GPOA,j∙

∫ b
a SRj(λ)∙GRef (λ)dλ

(4) 

SRFront and SRBack are the front and backside spectral responsivity, 
and GRef,λ is the AM1.5G reference spectrum defined in IEC 60904–3 
(International Electrotechnical Commision, 2019a). The integration 
limits a to b are 300 to 1200 nm. As pyranometer data in the POA were 
not available for each albedo scenario (Fig. 1), GPOAj is calculated as the 
integral of GPOA,Front,λ or GPOA,rear,λ. and GRef is calculated as the integral 
of GRef,λ over the same integration limits. SMMBack was calculated for the 
three types of bifacial PV cell concepts shown in Fig. 3. 

Eq. (4) is simply the ratio of two ratios. The numerator is the short- 
circuit current (ISC) under the observed spectral condition GPOA,j,λ. 
divided by the broadband irradiance GPOA,rear, and the denominator is 
the ISC under the AM1.5G reference spectrum GRef,λ divided by the 
broadband irradiance GRef. SMM values greater than 1 thus indicate 
spectrally induced gains in ISC relative to AM1.5G, and SMM values less 

Fig. 3. Normalized spectral responsivity of the three bifacial cell types studied. 
The cells are encapsulated in standard PV glass. 

Table 1 
Structural specifications of the two-in-portrait PV systems simulated in this 
work.  

Specification Fixed-Tilt Single Axis Tracker 

Tilt Angle from horizontal (◦) 25 ± 60 
Surface azimuth (◦) 180 90 or 270 
Ground clearance* / Hub height (m) 0.9 2.0 
Ground cover ratio 0.40 0.28 

*Ground clearance corresponds to the fixed-tilt system while hub height corre-
sponds to the tracker. 
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than 1 indicate spectrally induced ISC losses. When analyzing temporal 
spectral shifts over time, it is typical to report the so-called the ‘spectral 
impact’ or ‘spectral effect’, which is the SMM weighted by broadband 
POA irradiance during a given period (Alonso-Abella et al., 2014), 
(Dirnberger et al., 2015b), (Pelland et al., 2020) (Polo et al., 2017). 
Following this practice, spectral impact (SI) was calculated for the front 
and backsides according to Eq. (5). 

SIj =

∑
SMMj∙GPOA,j
∑

GPOA,j
(5)  

3. Results and discussion 

3.1. Diurnal spectral albedo trends 

Albedo measurements on clear days show a strong dependency on 
solar zenith angle (ϴZ), while albedo measurements remain reasonably 
constant on cloudy days without precipitation (Coakley, 2003) (Vignola 
et al., 2017). Fig. 4 shows normalized spectral albedo on selected clear 
and cloudy days at 100 nm resolution. The data are normalized to the 
spectral albedo observed at solar noon (180◦ solar azimuth). These plots 
are intended to reveal some of the nuanced spectral albedo effects that 
are embedded in the SMM summary presented in Section 3.3. 

The daily horizontal diffuse to global fraction (Kd) on the clear days 
was less than 0.40, while on cloudy days Kd was greater than 0.95. Al-
bedo increases with decreases in sun height on clear days, but only down 
to solar elevation angles of about 10◦ at which point the albedo de-
creases (Iqbal, 1983). This phenomenon occurs because the fraction of 
horizontal diffuse to horizontal beam irradiance rapidly increases as the 
solar elevation angle decreases from 10◦ toward the horizon. Therefore, 
we only show measurements when the sun is higher than 10◦ above the 
horizon in Fig. 4a, Fig. 4c, and Fig. 4e. 

Increases in albedo with solar zenith angle are a familiar character-
istic found in broadband albedo observations on clear days (Dittmann 
et al., 2019), (Marion, 2021). In the case of spectral albedo measure-
ments, however, the solar zenith dependency is not equal across all 
wavelengths. The tendency shown here is for near infrared (NIR) 
wavelengths to show greater solar zenith dependency than visible (VIS) 
or UV wavelengths, which is consistent with measurements reported by 

(Kondratyev, 1969), (Michalsky and Hodges, 2013). Fig. 4a, Fig. 4c and 
Fig. 4e show that albedo tends to be higher after solar noon than before 
solar noon. Other authors have reported such asymmetrical daily trends 
for spectral albedo (Kondratyev, 1969), (Michalsky and Hodges, 2013) 
and broadband albedo (Chiodetti et al., 2016) (Minnis et al., 1997) 
(Stueve, 2019). Since instrument leveling checks were regularly per-
formed, we attribute the asymmetry shown here to the mostly western 
grade in the albedo stand vicinity (max 4◦). The slight westerly slope 
results in greater ground illumination—and thus reflectance—in the 
afternoon than in the morning. 

The clear sky green grass albedo data recorded on 21.04.2020 
(Fig. 4a) show a pronounced dip in the early morning that returned to 
expected albedo levels once the sun elevation reached about 20◦. 
Shadows cast from objects in the horizon have been ruled out for several 
reasons: the GHIλ measurements were unaffected during the albedo dip, 
our measured skyline profile indicated that there should be no eastern 
shading when the sun elevation is above 5◦, and the gravel albedo data 
recorded 364 days later—during nearly identical solar angles—showed 
no such morning dip. The cause for the dip is still uncertain but is 
presently attributed to possible morning dew formed on the grass, which 
evaporated as broadband DNI became sufficiently high and relative 
humidity sufficiently low. 

Fig. 4b and Fig. 4f show examples when the cloudy day albedo is not 
constant. In Fig. 4b, a rainfall event caused a small, but noticeable, 
wavelength-dependent decrease in grass albedo. During the cloudy day 
gravel albedo measurements (Fig. 4f), two light snowfall events caused a 
50% increase in albedo (e.g., 0.2 to 0.3 at 950 nm). This is roughly 
consistent with (Marion, 2021) who reported melting snow albedos of 
0.4 or less. Note that the thermoelectric elements inside the spectror-
adiometers maintain the detector temperature at 25 ◦C ± 0.5 ◦C, which 
melts snow deposited on the instruments. However, water droplets from 
rain and melted snow could affect the measurements during 
precipitation. 

3.2. Seasonal spectral albedo trends 

The NDVI is frequently used in remote sensing applications to assess 
the spectral reflectance of Earth’s surface (Huang et al., 2020), but as far 

Fig. 4. Spectral albedo for select wavelengths normalized to the albedo observed at solar noon. Figures in the lefthand column contain data recorded during clear sky 
conditions and figures in the righthand column contain data recorded on cloudy days. The four rows indicate the state of the ground cover during measurement: 
Green grass, dry grass, gravel and snow. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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as we are aware, the NDVI metric has not yet been applied to bifacial PV 
applications. Fig. 5 shows the NDVI values observed during the 8-month 
grass period, excluding the two months when the white tarp was affixed 
to the ground. The results are typical of seasonal vegetation with 
maximum NDVIs of approximately 0.7 (green vegetation) and minimum 
NDVIs of approximately 0.1 (dry vegetation). The NDVI was reasonably 
stable between 0.6 and 0.7 for the first 3.5 months of the measurement 
campaign and a rapid decrease in NDVI occurred in summer 2020 when 
the grass was quickly drying. If the spectral albedo measurements of 
grass had continued for another year or more, we expect that NDVI 
would have recovered to approximately 0.6 and followed a cyclical 
pattern each year, likely with the lowest NDVIs in summer. 

The vertical green line and yellow line in Fig. 5 indicate the highest 
and lowest NDVI values observed on clear days. Fig. 6 displays the al-
bedo measurements on these days and reveals the most extreme seasonal 
variations recorded. The largest differences between the green grass and 
dry grass albedo are in the visible light region (400–700 nm). The 
reflectance and absorption of light in this region is determined by the 
amount of chlorophyll in the grass: The green grass albedo (Fig. 5a) 
shows low reflection and high absorption of visible light, while the dry 
grass albedo (Fig. 5b) shows higher reflection and lower absorption. 

Our previous work (Riedel-Lyngskær et al., 2021) showed that 
spectral albedo curves from databases (e.g., that of (Baldridge et al., 
2009)) often fail to agree with the measured albedo curves’ shape and 
magnitude across all wavelengths and days. This observation suggests 
that information such as genus, species, water content and growth state 
is likely required to select spectral albedo data that is representative of a 
given site. The significant shift toward NIR wavelengths in green grass’s 
albedo (Fig. 6a) presents an important implication for its measurement 
with broadband sensors. Specifically, our previous work (Riedel-Lyng-
skær et al., 2021) showed that bifacial energy gain calculations can be as 
much as 3% higher when albedo measurements of vegetation are made 
with Si devices rather than thermopile pyranometers. Finally, the 
spectral albedo of vegetation (with open access measurements provided 
in this work) have significance for the up-and-coming field of agricul-
tural PV, where installations often feature vertically mounted bifacial 
modules such as those simulated in (Chudinzow et al., 2020) and 
(Robledo et al., 2021). In such vertically mounted PV systems, the 
ground reflected irradiance can represent a significant percentage of the 
total in-plane irradiance. 

Fig. 7 shows the NDVI values observed during the 7-month gravel 
period. The NDVIs recorded during snowfall events are indicated with 

green markers. The NDVI is mostly between − 0.15 and 0.10 when snow 
is not present, but on days when the gravel was fully covered in snow, 
the NDVI was as low as − 0.3. The lowest NDVI values in Fig. 7 corre-
spond well to those reported by (Dye and Tucker, 2003) for fully snow- 
covered areas. 

In Fig. 7, the vertical brown reference line indicates a clear day at the 
beginning of the gravel albedo period, and the blue reference line in-
dicates one of the most severe snowfall days during the test period. Fig. 8 
zooms in to the spectral albedo measurements recorded on these two 
days. Based on local weather measurements, we estimate that the snow 
depth during the measurements in Fig. 8b was less than 5 cm, that the 
snow fell within 24 h of measurement, and that the gravel below was 
completely covered by snow. Although our test site contains various PV 
module designs that include bifacial, monofacial, framed, and frameless 
constructions, we did not receive sufficient snowfall to draw meaningful 
conclusions about their different snow shedding behaviors. But inter-
estingly, recent literature suggests that bifacial modules in certain 
configurations can offer improved snow shedding performance over 
monofacial counter parts. (Burnham et al., 2019) conducted side-by-side 
tests of bifacial and monofacial systems on dual-axis trackers in Bur-
lington, Vermont (44.5◦N) and noted that the bifacial systems tended to 
shed snow faster than monofacial, which they proffered was because the 
GPOA,Rear exposure caused greater heating of the bifacial arrays. (Riley 
et al., 2019) observed that the absence of a module frame tends to 
expedite snow shedding, so long as snow drifts did not accumulate 
below the array. This phenomenon stands to benefit bifacial systems 
because they are typically laminated in glass-glass packages, which 
thereby offers the possibility of frameless construction. 

The gravel and snow spectral albedo curves appear smoother than 
those of vegetation because they do not show the step increase at 700 
nm. The smooth shape of the gravel and snow spectral albedos reveal 
kinks in the measurements (e.g., at 675 nm and 1000 nm) which are 
artifacts that were not present after the initial calibration on 
22.01.2020. A cubic spline fit was applied to obscure the kinks of the 
binned spectral albedo curves in Fig. 6 and Fig. 8. The fact that these 
kinks occurred after less than 1 year of deployment demonstrates how 
sensitive the alignment of the internal optical bench (i.e., mirrors and 
grating) is to field conditions and highlights the need for regular 
calibration. 

3.3. Spectral mismatch and spectral impact 

This section details how the spectral albedo conditions measured at 
the site impact bifacial PV performance. Fig. 9 shows linear regressions 
of the daily backside spectral impact (SIBack) versus the daily average 
NDVI for three bifacial cell concepts and two structures. The datapoints 
are mostly in two clusters: one for the gravel period without snow, and 
one for the green grass period. The lowest and highest NDVI values 
correspond to full snow coverage (-0.3) and green grass (0.7), respec-
tively. The points between the two clusters correspond to the dry grass 
period in summer. 

The shaded areas around the regression lines show the 95% confi-
dence region of the prediction equation, which is about ± 0.04. The 
prediction equations for the three bifacial cells in Fig. 9 show negligible 
differences within the same structure type (e.g., tracking or fixed-tilt). 
The small differences likely arise because all three cell concepts are 
based on Si and have the same bandgap. This suggests that a single 
prediction equation would be suitable for all bifacial cell concepts with 
Si substrates. 

The strong correlation between SMM and NDVI (R2 = 0.90–0.95) 
suggests that by measuring albedo with just two spectrally sensitive 
sensors—one covering the VIS and one covering the NIR—it is possible 
to reasonably quantify seasonal shifts in backside irradiance relative to 
the AM1.5G rating. This correlation is potentially advantageous for 
bifacial system planners because satellite networks make NDVI products 
available with global coverage (European Space Agency, 2021) (NASA, 

Fig. 5. NDVI from February to September 2020 over grass. The black dots show 
NDVI measured every five minutes, and the red line shows the one-day rolling 
average. The vertical green and yellow reference lines indicate the highest and 
lowest NDVI values recorded on clear days. The spectral albedo recorded on 
these two days is shown in Fig. 6. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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2021). Although current results indicate that satellite derived NDVI 
products may be sufficient for estimating seasonal backside POA spec-
tral shifts within about ± 0.04 accuracy, further research is necessary to 
validate this and to better understand the associated uncertainties. 

Table 2 summarizes SIBack on the FT and HSAT systems during the 
four measured albedo periods. The results for the three cell concepts are 

averaged because there is little difference among them. We focus on the 
backside spectral results in this work because spectral shifts of mono-
facial Si have been reported for static tilt systems in several locations 
(Alonso-Abella et al., 2014), (Dirnberger et al., 2015b), (Ishii et al., 
2013), (Jessen et al 2018), (Polo et al. 2017) and recently for HSATs in 
the United States (Ripalda et al., 2020). Nonetheless, a brief statement 
on our observations of SIFront can be made, which is that SIFront is be-
tween 0.983 and 1.017 for the three bifacial cells, two structures, and 
four albedo conditions studied here. These values are consistent with 
those reported by other authors. 

During clear skies, the output of c-Si devices that are calibrated 
under AM1.5G will increase with air mass, or as the sun’s spectral dis-
tribution shifts toward NIR wavelengths (King et al., 2004) (Myers, 
2011). Since the spectral albedos of green grass, dry grass and gravel 
increase with wavelength (Fig. 6 and Fig. 8), it is reasonable to expect 
that the bifacial devices studied here will experience spectrally induced 
gains in ISC when illuminated with these albedo spectra. The results in 
Table 2 confirm this because SIBack is always greater than 1 for green 
grass, dry grass, and gravel albedo. Larger spectral albedo shifts toward 
NIR wavelengths result in greater SIBack values, which is also demon-
strated in the correlations of Fig. 9. 

The 25◦ FT system shows higher SIBack values than the HSAT system 
except during the brief snow albedo period. The differences in SIBack on 
the two structure types are explained by the different amounts of sky 
diffuse and ground reflected light received at the backside POA. The 
backside of the 25◦ FT system has a constant sky view factor (FSky→PV, 

Rear) of 0.03, meaning that regardless of sun position, 3% of the diffuse 

Fig. 6. Spectral albedo measurements on clear days above green grass a) and dry grass b). The solar zenith angle dependency is shown by averaging the spectral 
albedo data within 5◦ solar zenith bins. The gray shaded areas represent the range of spectral albedo measurements made on each day. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. NDVI from September 2020 to May 2021 over gravel. The black dots 
show NDVI at 5-minute resolution and the red line shows the one-day rolling 
average. Green dots indicate the NDVI when snowfall was recorded. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 8. Spectral albedo measurements of gravel on a clear day a) and of snow on a cloudy day b). The solar zenith angle dependency is shown by averaging the 
spectral albedo data within 5◦ solar zenith bins. The gray shaded areas show the range of spectral albedo measurements made on each day. 
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light available from the sky hemisphere reaches the backside. In 
contrast, the sky view factor at the HSAT’s backside POA changes 
continuously with sun position. In the morning and afternoon, the 
backside has a maximum sky view factor of 0.2 when the tilt is 60◦. 
Midday, the sky view factor is reduced to zero when the tilt is horizontal. 
Because the sky diffuse spectrum is blue shifted on clear days (Kirn and 
Topic, 2017), we can expect the HSAT system to show the lowest 
spectral mismatch at the ends of the day when at a 60◦ tilt. 

Fig. 10 shows daily timeseries of SMMBack to illustrate the de-
pendency of backside spectral shifts on the view factor from the sky to 
the array’s backside (FSky→PV,Rear) and on the view factor from the 
ground to the array’s backside (FGround→PV,Rear). Except for the snow 
albedo case, the data shown in Fig. 10 were recorded under clear skies. 
As expected, the lowest SMMBack values on the HSAT occur in the 
morning and afternoon when FSky→PV,Rear is highest, and the highest 
SMMBack values occur midday when FGround→PV,Rear is close to one. The 
daily SMMBack values on the static 25◦ FT system do not change signif-
icantly, which follows the expected trend given the constant view factors 
FSky→PV,Rear and FGround→PV,Rear. 

Fig. 11 shows the density of SMMBack values during the 15-month 

measurement campaign. The wider dispersion of SMMBack in the HSAT 
case is attributed to the constantly changing sky view factors. Fig. 12 
illustrates this relationship between SMMBack and sky view factor on the 
backside of the 2-in-portrait HSAT. Snow albedo is not shown in Fig. 12 
due to a lack of measured data. The results show a strong correlation 
with sky view factor and reveal that the diffuse fraction (Kd) is an 
important secondary effect. Most measurements in Fig. 12 were recor-
ded during very clear days (Kd less than 0.2) or very cloudy days (Kd 
greater than 0.9). This is because the variability index filter removed 
most measurements outside these conditions. 

The literature contains several spectral models for monofacial PV 
that are based largely on correlations with air mass (Huld et al., 2009) 
(King et al., 2004), (Lee and Panchula, 2016), (Pelland et al., 2020). 
However, we found air mass to be a poor indicator of SMMBack. We used 
a bootstrap forest model to identify the most significant predictors of 
SMMBack from our available weather and tracker position data. We 
found that a simplified predictive model for SMMBack should at mini-
mum include the backside array sky view factor, and the sky diffuse 
fraction. The third piece of information needed is a classification of the 
ground surface (e.g., green grass), which could be obtained with mea-
surements from a multifilter radiometer (see Section 3.4) or the NDVI. 
With simple multiple linear regression techniques, we obtained root 
mean squared errors (RMSE) for SMMBack between 0.014 and 0.020, 
depending on the albedo. Although the correlations in Fig. 12 are made 
with results from single axis tracker simulations, the model is likely to 
apply to systems with different azimuth orientations when the diffuse 
light received by the backside is only isotropic diffuse. This would 
include multi-row equator facing FT systems with several rows behind 
the array that block the horizon brightening component. 

Fig. 10, Fig. 11 and Fig. 12 show that the GPOA,rear,λ spectral 

Fig. 9. Correlations of the daily backside spectral impact and normalized dif-
ference vegetation index for three bifacial technologies and two structure types. 
Approximately 15 months of measurements are shown. 

Table 2 
Backside spectral impacts of Si bifacial devices mounted on two structure types above four ground surfaces. The results are the average spectral impacts of bifacial IBC, 
n-PERT and PERC concepts.  

Structure Green Grass Dry Grass Gravel Snow 

SIBack Mean SIBack Range N SIBack Mean SIBack Range N SIBack Mean SIBack Range N SIBack Mean SIBack Range N 

1A Tracker  1.133  0.012 15,648  1.093  0.010 18,792  1.007  0.000 28,698  0.981  0.007 810 
25◦ Fixed  1.196  0.022 15,648  1.155  0.019 18,792  1.046  0.007 28,698  0.980  0.007 810  

Fig. 10. Backside spectral mismatch on select days for the single axis tracker 
(top) and fixed-tilt systems (bottom). The raw spectral albedo recorded these 
days is shown in Fig. 6 and Fig. 8. The error bars around each timeseries show 
the range of spectral mismatch values of three different bifacial cell concepts. 
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distribution deviates significantly from AM1.5G over daily and seasonal 
timescales. Indeed, backside spectral gains as high as 25% occur with 
green grass albedo, but since rear irradiance makes up only 5–15% of 
total irradiance, such backside spectral gains are reduced to approxi-
mately 2% in most conditions. A complementary reference spectrum for 
backside bifacial PV characterization (i.e., an AM1.5R) could conceiv-
ably reduce spectral errors observed in the field. However, (Mono-
kroussos et al., 2020) concluded that the industry-wide complications 
that would occur after introducing a new standardized spectrum are not 
worth the reduced spectral errors that can be achieved. Although this 
reason has not prevented other authors from proposing supplemental 
spectra to counter the shortcomings of AM1.5G (Jessen et al., 2018) 
(Kinsey, 2021) (Looney et al., 2020) (Myers et al., 2004), the AM1.5G 
spectrum is likely to remain the standard for backside bifacial PV 
characterizations in years to come. The question then becomes, what are 
the alternatives to reduce the spectral uncertainties encountered in 
fielded bifacial systems? 

Backside spectral mismatch can be minimized using a rear facing 

reference cell that has a similar spectral responsivity as the backside of 
the bifacial cells within the array. However, the standardization of such 
a cell’s position within the array is still ongoing and no recommendation 
has yet been offered in international standards (Gostein et al., 2021). 
Designers of bifacial PV monitoring systems must presently understand 
many nuanced effects of rear POA irradiance to optimally select the 
number and mounting location of reference cells. The nonuniformity of 
GPOA,rear,λ is one such effect that is infrequently considered, but can be 
significant in some cases, as illustrated in Fig. 13. 

Fig. 13 shows SMMBack of the PERC device discretized in 20 equally 
spaced segments, which correspond roughly to the 20 cell locations on 
the 2-in-portrait HSAT and FT systems. The simulations use spectral data 
from a cloudless day during the green grass albedo period (25.03.2020). 
In the HSAT simulation, segment 1 is the western most cell and segment 
20 is the eastern most cell. In the FT simulation, segment 1 corresponds 
to the topmost cell and segment 20 corresponds to the bottom most cell. 

The results indicate that a single backward facing reference cell is not 
likely to represent the effective rear irradiance on an HSAT system 

Fig. 11. Box and whisker plots of backside spectral mismatch for single axis tracker (top) and fixed-tilt systems (bottom). The x-axis levels are bifacial cell technology 
within albedo. The shaded violin plots show the density of spectral mismatch values. 

Fig. 12. Backside spectral mismatch of PERC versus sky view factor for three measured albedo conditions: green grass (left), dry grass, (center) and gravel (right). 
The tilt angle of the 2-in-portrait tracker system is shown on the secondary x-axis above. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
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because SMMBack within the array varies by as much as ± 0.075 (7.5%) 
in the morning and afternoon. In the morning when the tracker is 
pointing east, segment 1 (west) is highest in the sky and segment 20 
(east) is lowest to the ground. Thus, segment 1 receives the largest 
contribution of sky diffuse irradiance—resulting in the lowest 
SMMBack—and segment 20 has the largest contribution of ground re-
flected irradiance resulting in the largest SMMBack. Midday when the 
tracker is horizontal, the ground view factor of all 20 segments is unity, 
and there is no SMM gradient at solar noon. 

The dispersion of SMMBack within the 2-in-portrait FT array is about 
± 0.03 (3%) throughout the day if the sun is in front of the array. This 
spectral gradient is large enough to advise two backward facing refer-
ence cells – one for the bottom and top halves of the array. The bottom 
cell in the 25◦ FT system shows spectral gains 6% higher than the top 
cell, a difference which is again attributed to the different exposure to 
sky diffuse and ground reflected light. 

We conclude this section with a note on the uncertainty of spectral 
mismatch (SMM) and spectral impact (SI). As mentioned in Section 2.2 
(Fig. 2), the measurement drift of the spectroradiometers used for GHI 
and DNI measurements were mostly within the uncertainty of the cali-
bration, but the instrument used for RHI measurements drifted signifi-
cantly beyond the calibration uncertainty at some wavelengths. To 
understand the implications of these wavelength shifts on the results, we 
compared SMMBack calculations using calibrations from 22.01.2020 
(pre-deployment) and 11.05.2021 (post-deployment). The results 
showed that SMMBack agreed within 0.004 (0.4%) or better 99% of the 
time, given the two sets of calibration coefficients and the albedo and 
sky conditions observed during the test period. The small difference in 
SMMBack is because the wavelength shifts did not significantly affect the 
area under the measured spectral albedo curves. Finally, uncertainty of 
SI can be inferred from the work of (Dirnberger et al., 2015a), who used 
spectroradiometers from the same manufacturer as used in this work 
and concluded that the minimum standard uncertainty is 0.009 (0.9%) 

for monofacial single junction c-Si SI calculations. 

3.4. Impact of wavelength sampling reduction on spectral mismatch 

Spectral albedo curves are not highly structured like the sun’s 
spectrum as was demonstrated in Fig. 6 and Fig. 8, as well as by others 
(Vignola et al., 2017). The 0.4 nm wavelength resolution of the spec-
troradiometers used in this work therefore resulted in oversampling of 
the spectral albedo. The benefit of the high-resolution spectral albedo 
setup, however, is that down sampling can be conducted to identify 
when spectral mismatch, or other spectral factors, show large discrep-
ancies relative to those calculated with the high-resolution data. To this 
end, we truncated the 2048-pixel measurements down to 2–8 wave-
length channels and repeated the SMMBack calculations. Table 3 shows 
the different wavelength bands tested. In all these cases, the down 
sampled albedo spectra use the 7 nm full-width half maximum optical 
resolution of the MS-711 spectroradiometer. The spectral albedo be-
tween narrow band channels is interpolated with a first order spline fit. 
Values outside the wavelength ranges shown in Table 3 are extrapolated, 
with the condition that 0.001 and 1.0 are the minimum and maximum 

Fig. 13. Simulated nonuniformity of backside spectral mismatch of PERC using spectral albedo measurements of green grass on a clear day near the spring equinox. 
The two cases shown are 2-in-portrait tracked (bottom figure) and fixed-tilt systems (center figure). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Table 3 
Summary of wavelength channels used in the different down sampling tests of 
the high-resolution spectral albedo measurements. A 7 nm full width half 
maximum resolution was used in all scenarios.  

N Channels Center wavelengths (nm) 

2 500, 940 
3 500, 870, 940 
4 415, 615, 870, 940 
5 469, 555, 645, 858, 1050 
6 415, 500, 615, 673, 870, 940 
7 415, 500, 615, 673, 870, 940, 1050 
8 415, 555, 615, 673, 762, 870, 940, 1050  
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spectral albedo values allowed. 
The first four wavelength channels in the five-channel scenario (469 

nm, 555 nm, 645 nm, and 858 nm) are the center wavelengths of the first 
four bands of the MODIS satellite (Schaaf and Wang, 2015); because the 
fifth MODIS spectral band (1240 nm) is beyond the spectral responsivity 
of Si, the fifth wavelength channel used here is 1050 nm. The wave-
length channels in all other scenarios are selected for their common use 
in multi-filter radiometer (MFR) applications (Michalsky and Hodges, 
2013) (Vladutescu et al., 2013) and because they are similar to those 
used by (Tatsiankou et al., 2016). The six-channel case uses the same six 
channels as used in the works of (Michalsky and Hodges, 2013) and 
(Vladutescu et al., 2013). To select the wavelengths of the two, three and 
four-channel cases, we down sampled all possible combinations of the 
six-channel case and identified the combination of wavelengths, for each 
case, that resulted in the lowest root mean square error (RMSE) across 
the four measured albedo conditions. The seven-channel case simply 
adds an NIR channel (1050 nm) to the six-channel case, and the eight- 
channel case has additional measurements at 555 nm and 762 nm, 

which are intended to capture the features of green vegetation. Fig. 14 
shows examples of spectral albedo curves down sampled according to 
Table 3 for the four albedo conditions measured onsite. 

Fig. 15 shows selected daily timeseries of SMMBack calculated with 
the seven down sampling cases and with the high-resolution spectral 
albedo measurements. Table 4 summarizes the SMMBack deviations 
across the entire 15-month measurement campaign in terms of the mean 
bias error (MBE) and RMSE. 

The results indicate that SMMBack can be reasonably approximated 
using spectral albedo measurements with just 4–8 narrow band chan-
nels. The two and three-channel down sampled cases show notably 
higher errors, especially in green grass and gravel albedo conditions. 
Given that many PV parks globally are constructed at sites where the 
spectral albedo is comparable to the green grass and gravel albedo 
conditions measured here, our down sampled SMMBack results indicate 
that four narrow band channels is likely the bare minimum to monitor 
spectral albedo in bifacial PV applications. However, it is apparent in the 
four-channel curve of Fig. 14a that the down sampling overestimates the 

Fig. 14. Comparisons of measured and down sampled spectral albedo during the four albedo conditions: (a) green grass, (b) dry grass, (c) gravel and (d) snow. The 
example curves shown here are taken at 12:00 noon on the days shown in Fig. 6 and Fig. 8. The red circles correspond to the channels shown in Table 3. The red 
circles highlight the wavelengths at which the down sampled curves are created from the high-resolution measurements. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

N. Riedel-Lyngskær et al.                                                                                                                                                                                                                      



Solar Energy 231 (2022) 921–935

933

spectral albedo in some areas and underestimates it in others. Because 
the SMM calculation is an integrated quantity, it is possible that in cases 
where the down sampled spectral albedo curves show both high and low 
biases relative to the ground truth, the differences are effectively 
cancelled when assessed via the SMM factor. A more robust solution 
would therefore aim to recreate the spectral albedo curve across the 
various albedo conditions, which the eight-channel scenario (Fig. 14) 
does reasonably well. 

Nearly all scenarios in Table 4 result in negative MBE relative to the 
high-resolution measurements, the exception is gravel albedo for which 
three of the seven scenarios show positive MBE. The RMSE of SMMBack is 
between 0.0033 and 0.0329 with a trend toward higher errors at lower 
spectral resolution. The eight-channel case, however, does not always 
show the lowest RMSE. In fact, the RMSE of the eight-channel case and 
the 3–7 channel cases are within 0.005 of each other in all albedo 
conditions except snow. The two-channel case always shows the highest 
RMSE, with a maximum of 0.0329 (green grass) and a minimum of 
0.0122 (snow). Since the two-channel case contains one measurement in 
the VIS and one in the NIR region, the errors shown in Table 4 coincide 
with those of Section 3.3 where it was shown that the NDVI can be used 
to approximate SMMBack with an accuracy of ± 0.04. 

4. Conclusions 

We have demonstrated that backside spectral mismatch in bifacial 
PV systems is dynamic on daily and seasonal timescales, and we have 
quantified the extent to which it is dependent on the albedo, sky con-
ditions, and mounting structure. On clear sky days, we observed that 
spectrally induced performance gains peak at mid-day wherein the 
backside spectral gains were 25%, 15%, and 5% for green vegetation, 
dry vegetation, and gravel, respectively. Backside spectral effects are 
significantly lower on tracked versus fixed-tilt bifacial systems because 
of the larger sky view factors on the array backside. On clear days, when 
the tracker is tilted at 60◦ from a horizontal, the spectral effects are 
reduced to 5%, 0%, and − 5% for green vegetation, dry vegetation, and 
gravel, respectively. 

With the variety of albedo conditions tested here, we showed that the 
normalized difference vegetation index (NDVI) is a reasonable data 
source to estimate backside spectral effects in bifacial PV systems. 
Specifically, the strong correlation between SMMBack and NDVI suggests 
that satellite derived NDVI products could be a simple method to esti-
mate backside spectral effects. However, the small area of our test site in 
comparison to the pixel resolution of satellite images prevented further 

Fig. 15. Backside spectral mismatch of the PERC cell calculated with down sampled spectral albedos and high-resolution measurements. The down sampled cal-
culations are made with the 2–8 narrow band channels shown in Table 4. Backside spectral mismatch is shown for a single axis tracker (top row) and a fixed-tilt 
system (bottom row). The four measured albedo conditions are displayed column-wise. 

Table 4 
Error Summary for backside spectral mismatch calculations performed using down sampled spectral albedo.  

Structure N Spectral Channels Green Grass Dry Grass Gravel Snow 

MBE RMSE MBE RMSE MBE RMSE MBE RMSE 

1-Axis Tracker 2  − 0.0243  0.0297  − 0.0139  0.0175  − 0.0116  0.0138  − 0.0108  0.0122 
3  − 0.0080  0.0170  − 0.0011  0.0083  − 0.0042  0.0072  − 0.0056  0.0065 
4  − 0.0081  0.0155  − 0.0070  0.0097  0.0020  0.0038  − 0.0012  0.0029 
5  − 0.0056  0.0137  − 0.0059  0.0083  − 0.0004  0.0052  − 0.0104  0.0108 
6  − 0.0086  0.0155  − 0.0098  0.0114  0.0004  0.0033  − 0.0032  0.0042 
7  − 0.0082  0.0153  − 0.0095  0.0111  − 0.0005  0.0035  − 0.0030  0.0041 
8  − 0.0060  0.0146  − 0.0065  0.0098  0.0021  0.0042  − 0.0006  0.0035 

25◦ Fixed Tilt 2  − 0.0310  0.0329  − 0.0199  0.0213  − 0.0138  0.0156  − 0.0114  0.0128 
3  − 0.0124  0.0161  − 0.0048  0.0086  − 0.0049  0.0079  − 0.0059  0.0068 
4  − 0.0097  0.0135  − 0.0094  0.0115  0.0021  0.0042  − 0.0013  0.0030 
5  − 0.0064  0.0108  − 0.0075  0.0097  − 0.0005  0.0058  − 0.0109  0.0113 
6  − 0.0082  0.0125  − 0.0103  0.0123  0.0003  0.0037  − 0.0034  0.0043 
7  − 0.0077  0.0123  − 0.0099  0.0120  − 0.0008  0.0040  − 0.0032  0.0043 
8  − 0.0081  0.0122  − 0.0094  0.0115  0.0022  0.0046  − 0.0007  0.0035  
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examination of this conclusion. 
Our 2D view factor simulations of incident backside spectrum dis-

cretized at the cell-level showed that backside POA spectral gradients 
(up to ± 7.5% in the tracked case) make multiple reference cells in the 
same array advisable, especially in 2-in-portrait configurations. Finally, 
we demonstrated that high-resolution spectral albedo measurements are 
neither practical nor necessary for bifacial PV performance monitoring 
applications. When SMMBack was calculated with 2 to 8 wavelengths 
that were judiciously sampled between 300 and 1100 nm, we demon-
strated that SMMBack values calculated with just 4 wavelength channels 
are comparable to those calculated with the full spectroradiometer 
measurements with RMSE ≤ 0.0155. However, 8 spectral channels are 
recommended for users who are interested in recreating the spectral 
albedo curves as closely as possible. 
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Abstract 

This paper presents the results from an extensive interlaboratory comparison of angular-dependent 
measurements on encapsulated photovoltaic (PV) cells. Twelve international laboratories measure the 
incident angle modifier of two unique PV devices. The absolute measurement agreement is ±2.0% to the 
weighted mean for angles of incidence (AOI) ≤ 65°, but from 70°–85° the range of measurement deviations 
increases rapidly from 2.5%–23%. The proficiency of the measurements is analyzed using the expanded 
uncertainties published by seven of the laboratories, and it is found that most of the angular-dependent 
measurements are reproducible for AOI ≤ 80°. However, at 85° one laboratory’s measurement do not 
agree to the weighted mean within the stated uncertainty, and measurement uncertainty as high as 16% 
is needed for the laboratories without uncertainty to be comparable. The poor agreement obtained at 85° 
indicates that the PV community should place minimal reliance on angular-dependent measurements 
made at this extreme angle until improvements can be demonstrated. The cloud-based Daidalos ray 
tracing model is used to simulate the angular-dependent losses of the mono-Si device and it is found that 
the simulation agrees to the median measurement within 0.6% for AOI ≤ 70° and within 1.4% for AOI ≤ 
80°. Finally, the impact that the angular-dependent measurement deviations have on climate specific 
energy rating (CSER) is evaluated for the six climates described in the IEC 61853-4 standard. When one 
outlier measurement is excluded, the angular-dependent measurements reported in this work cause a 
1.0%–1.8% range in CSER and a 1.0%–1.5% range in annual energy yield, depending on the climate. 

Table 1 Nomenclature 

ϴ Angle of incidence (°)  

STC Standard Test Conditions of 1000 W∙m-2, 25 °C and AM1.5G 

En ISO 17043 proficiency test performance statistic known as the ‘En number’ (dimensionless) 

τ Measured relative light transmittance, also known as the incident angle modifier 
(dimensionless) 

τspec Simulated optical losses relative to the AM1.5G reference spectrum at normal incidence  

ar Angular loss coefficient extracted from Martin and Ruiz model 

bo Angular loss coefficient extracted from ASHRAE model 

FD Correction factor for loss of diffuse irradiance due to reflection (dimensionless) 

DCorr,AOI Plane of array diffuse irradiance corrected for reflection losses (W∙m-2) 

BCorr,AOI Plane of array beam irradiance corrected for reflection losses (W∙m-2) 

GCorr,AOI Plane of array global irradiance corrected for reflection losses (W∙m-2) 

Global AAL Annual angular losses of global irradiance (%) 

1 Introduction 

Angular-dependent losses in photovoltaic (PV) devices are known to increase as function of a light source’s 
angle of incidence (AOI) relative to the normal plane of the PV collector [1] – [3]. For PV modules with 
unsoiled planar glasses, these optical losses typically increase rapidly for AOI > 50°. Such angular-
dependent losses are primarily due to reflection at the glass-air interface, but they also include absorption 
in the front materials and spectral effects [4]. The works of [5] and [6] have shown that annual angular 
losses for c-Si devices with cleaned planar glasses are between approximately 3 – 4 % when the PV module 
is mounted toward the equator with a tilt within 10° of the latitude. Thus, AOI effects represent a major 
loss mechanism for PV devices. 
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Angular-dependent losses are not characterized during measurements at Standard Test Conditions (STC), 
which are performed with the PV device at normal incidence to the light source (AOI = 0°). Unless dual 
axis tracking is used, the direct beam light that impinges on a PV module in the field will be at an AOI ≠ 0° 
for most of year. The IEC 61853 series of standards provide guidance on how to characterize PV devices 
over the breadth of environmental conditions known to influence PV performance, and among these are 
procedures for conducting AOI measurements [7].  

Numerous interlaboratory comparisons have been conducted for PV measurements at STC [8] – [12], but 
the literature is comparatively sparse when it comes to comparisons of angular-dependent 
measurements. Our literature review revealed that the intercomparisons of AOI measurements to date 
have been conducted among few laboratories and have thus compared a limited number of test methods. 
For example, the authors in [13] compared outdoor measurements performed in real-time at Sandia 
National Laboratories (SNL) and CFV Labs, which lay roughly 10 km apart from each other. These two labs 
used unique methods to measure the AOI response of identical 36-cell (0.65 m2) PV modules and found 
an acceptable level of agreement between their measurements. The authors in [14] compared AOI 
measurements — also performed at SNL on full-size (0.72 – 1.6 m2) PV modules — to relative 
transmittance data supplied within the commercially available software PVsyst, or to measurements 
performed at an unnamed third party lab. The authors found that these three sources often had significant 
deviations for the same module type, and up to a 14 % difference in relative transmittance at large AOIs. 
Finally, in a white paper published by PV Evolution Labs (PVEL), a comparison of five laboratories’ angular-
dependent measurements on a commercially available PV module was presented, not of the angular-
dependent measurements themselves, but in the form of utility-scale PV energy simulations [15].  

To the best of our knowledge, the scientific literature presently contains no published works of 
intercomparisons or “round-robin” measurement campaigns of angular-dependent measurements on PV 
devices beyond the aforementioned studies. Therefore, we conclude that an international 
intercomparison of angular-dependent measurements is needed to establish the present-day 
comparability of measurements made using various test methods that conform to the IEC 61853-2 
standard. We presented a preliminary version of this effort in [16]. An overlapping objective in our 
previous paper and this work is to assess how well the measurement differences agree within the 
laboratories’ stated expanded uncertainties. This contribution has two additional objectives: to compare 
the laboratory measurements to simulations performed using the Daidalos ray tracing model [17] [18], 
and to determine the impact the angular measurement discrepancies have on energy rating when 
different fitting models and diffuse models are used. 

2 Methods 

The participating laboratories measure short-circuit current (ISC) on all samples from -85° to 85° AOI, 
except for two labs that only measured ISC in the positive angular direction. A common temperature 
coefficient for ISC was provided to the labs so measurements could be temperature corrected. Since the 
participants were asked to use their standard techniques for AOI measurements, they were afforded 
discretion concerning specific procedures such as measurement correction techniques and the number of 
readings to average at each AOI. For example, two labs determined that temperature corrections of ISC 
had a negligible influence on the overall uncertainty, and therefore chose not to temperature correct their 
ISC measurements. The same type of judgement was given to participants in applying corrections due to 
fluctuations in broadband irradiance. Most labs did apply irradiance stability corrections to ISC using 
readings from a reference device, but in some cases, the correction was not applied because the light 
source was determined to be stable throughout the test and/or a reference device was not used during 
the test. Only one laboratory reported implementing a spectral correction to ISC due to the change in 
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spectrum during the test, which was performed outdoors. The labs were also permitted to decide how 
many ISC measurements at each AOI to average. This varied widely among labs with some labs performing 
as few as one and other labs performing more than one hundred ISC measurements per AOI. We refer the 
reader to Appendix 1, Table 5 for more information about the specific test methods employed by each 
lab.   

In the results that follow the angular-dependent ISC measurements are converted to relative transmittance 
τ(ɵ) (Eq. 1). The relative transmittance describes the photocurrent a PV device generates in the absence 
of diffuse light at a given AOI relative to the photocurrent the device would have generated if it exhibited 
a perfect cosine response (i.e. a Lambertian receiver). In this scheme, τ(ɵ) is a dimensionless quantity 
wherein a value of 1 indicates the relative light transmission to the PV device follows that of a true cosine 
receiver and any values less than 1 indicate additional reflection and/or absorption. In other words, the 
quantity 1 - τ(ɵ) is the amount of sunlight reflected and/or absorbed by the PV device’s front materials, 
normalized to how much light is reflected or absorbed by the front materials at normal incidence. In 
practice the reflectance observed at normal incidence for the samples tested is of approximately 4 %. 
Note that the definition of τ(ɵ) as it is presented here, is equivalent to the definition of the incident angle 
modifier (IAM) as described elsewhere in the literature [14], [19], [20].  

𝜏(𝜃)  =  
𝐼𝑆𝐶(𝜃)

𝐼𝑆𝐶(0°)∙cos 𝜃
     (1) 

2.1 Participating Laboratories and Measurement Systems 

Twelve laboratories from seven countries are involved in the measurement comparison. Descriptions of 

each laboratory, the measurement systems used, and selected methodological details are provided in 

Appendix 1, Table 5. The indoor measurement systems used at CIEMAT, CREST, Fraunhofer ISE, RETC, 

SUPSI and TNO are based on a flash system used for full-sized (roughly 1 x 2 m) modules. However, each 

one of these labs used a different approach to build the rotation stage. The rotation stage at TNO, for 

example is designed to measure small laminates (roughly 20 x 20 cm), while the CREST, Fraunhofer ISE, 

and SUPSI rotation stages can accommodate small laminates up to full-sized modules. The DTU system is 

only capable of testing small laminates and the PTB system can accommodate mini-modules with up to 

four 156 x 156 mm cells. The outdoor two-axis solar trackers at CENER, CFV Labs, and SNL can 

accommodate full-sized modules, and since small single cell laminates were used as the devices under 

test (DUTs) in this intercomparison, they utilized the trackers’ area to perform the test on all DUTs at 

once.   

     

Figure 1: Photos from selected measurement systems. Intercomparison samples mounted on the dual axis tracker at Sandia 
National Laboratories (left) and a mono-Si sample mounted in the flash tunnel at CIEMAT (right).  
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The expanded measurement uncertainty provided from eight of the twelve testing partners is shown in 
Figure 2. Three labs reported expanded uncertainties individually for each of the two DUTs. Figure 2 shows 
a trend of increasing uncertainty with increasing AOI, wherein a range of 0.2 % – 1.1 % at normal incidence 
and a range of 2.5 % – 30.7 % at 85° AOI is observed. The specific reasons for this increasing trend will be 
unique to a given measurement system. Many authors have reported on the challenges and uncertainties 
encountered when directly measuring angular-dependent losses in PV devices [4], [21] – [26]. Some of 
these uncertainties exist in all AOI measurement systems, irrespective of the method. For example, 

common across measurement approaches is the fact that at AOIs approaching  80°, the ISC of the DUT 
can be an order of magnitude lower than at normal incidence. At such extreme angles, the ISC of the DUT 
and the equipment used to measure current can deviate from a linear response and this should be 
accounted for in the uncertainty budget. Additionally, when AOI > 65°, the main contribution to overall 
uncertainty is likely to be the uncertainty from the measured angle (ɵ). Therefore, the wide range of 
reported measurement uncertainties at 85° shown in Figure 2 is likely driven by the varying levels of 
accuracy in the measured angle ϴ. For example, Lab J determined that the error of ϴ in their system at 
the time of measurement was approximately 2.3°, which was thus the major contributor to the total 
measurement uncertainty of nearly 30 % at 85°. In contrast, Lab C, Lab D, Lab F and Lab K — all of which 
reported uncertainty less than 7.0 % at 85° — reported that the error of the measured angle ϴ was 
between < 0.1° and 0.2° in their respective measurement systems.  

Some specific difficulties are 
encountered whether the angular- 
dependent characteristics are 
measured indoors or outdoors. The 
major challenges for indoor 
measurements include suppression of 
diffuse light within the test bed (i.e. 
improving collimation), which can be 
accomplished using baffles such that 
the field of view to the module is 
restricted within 20° to 30° and 
implementing non-reflective surfaces 
that minimize reflections within the test 
bed.  

Further challenges indoors include 
precisely positioning the DUT at the 
center of the rotational axis and 

maintaining low spatial irradiance non-uniformity as the device is rotated toward an increasing AOI. The 
IEC 61853-2:2016 standard specifies that the non-uniformity should remain lower than 5 % throughout 
the test. However, [25] has demonstrated that when there is a 7.2 m distance from the light source to the 
DUT’s optical axis, this non-uniformity requirement cannot be met when measuring commercially 
available PV panels that are 1 m in width. Another challenge is ensuring that the angular range of incident 
light on the DUT does not vary significantly throughout the duration of the test. The current (2016) edition 
of IEC 61853-2 specifies that the variation of AOI shall not vary by more than 1°, which is presently 
understood as the difference in AOIs observed between the two active edges of the DUT that are closest 
and farthest away from the light source. However, [26] has shown that when commercially available solar 
simulators are used, this requirement can only be met for small-area samples, or when a subarea of a full-
size module is investigated either by mechanically isolating a single cell, or by partially shading the cell of 
interest. An intercomparison of AOI measurements on single cell laminates — as carried out in this work 

 

Figure 2: Expanded uncertainty of relative transmission measurements 
reported by eight laboratories as a function of AOI. The three labs with 
DUT-specific uncertainty are noted with range bars (Lab F, I, and J). 
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— should therefore allow participating laboratories to closely comply with the present requirements of 
the standard. Single cell laminates as DUTs also allows more laboratories and measurement systems to 
participate in the intercomparison. Specifically, five measurement systems used in this intercomparison 
are not capable of performing AOI measurements on full-size PV modules. 

The primary challenges of performing angular-dependent PV measurements outdoors include correcting 
for environmental fluctuations during testing and quantifying the diffuse irradiance in the plane of the 
DUT. The plane of array diffuse irradiance (DPOA) contribution can be accounted for indirectly using cosine 
corrected direct beam measurements from a pyrheliometer and global measurements from a reference 
device. Alternatively DPOA can be measured directly if a specialized solar tracker is available as in [13]. 
Additionally, the pyranometers that are most often used as reference devices are not true cosine 
receptors [27]. Therefore, the sensitivity coefficients used should be uniquely calibrated for each value of 
ɵ under which the DUT is tested. Failure to apply such a correction could lead to errors of up to 12 % [22], 
[24].  

2.2 Devices under Test (DUTs) 

Table 2 summarizes the bill of materials and the testing history of all DUTs distributed in this work. All 12 
participating labs received a case of six samples that included three device types (mono-Si, BSi RIE, and 
BSi ADE). There was a duplicate sample of each type so there would be a backup in the case that any one 
sample became damaged during the measurement campaign. Before the intercomparison began, all DUTs 
were light soaked in the open-circuit state to a minimum dose of 10 kWh∙m-2 to remove initial light 
induced degradation (LID). A final stability check of ISC was not performed at the end of the 
intercomparison because the reported quantity τ(ɵ) is calculated using a relative measurement approach. 
In other words, any minor degradation in the ISC during the measurement campaign would not impact the 
τ(ɵ) results because these values are referenced to each individual laboratory’s ISC measurement at normal 
incidence. Therefore, the electroluminescence (EL) imaging performed by each laboratory before the AOI 
tests was considered adequate to detect any changes in cell-level performance that could potentially 
impact the test results.  

The following specifications are common to all DUTs: (i) An active cell area of 156 mm x 156 mm; (ii) full 
area dimensions of 200 mm x 200 mm; (iii) 3.2 mm thickness, low-iron, non-coated, finely textured PV 
glass superstrate; (iv) ethylene-vinyl acetate (EVA) encapsulant; (v) two tabs as metal contacts; and (vi) a 
flat polymeric backsheet with slight curvature around the cell edges. The differences between the samples 
are the cell type, the cell texturing, and the backsheet color. One sample type has a mono-crystalline 
Czochralski grown silicon (mono-Si) cell textured by a conventional random pyramid etch using KOH and 
will be referred to as ‘mono-Si’ hereafter. The second sample type has a multi-crystalline black silicon (BSi) 
cell textured under a mask-less reactive ion etching (RIE) process that results in ~400 nm tall conical-like 
hillocks as described in [28]; this device type will be referred to as ‘BSi RIE’ hereafter. The third sample 
type has a multi-crystalline cell textured by atmospheric dry etching (ADE) resulting in ~450 nm rounded 
cones after a wet-chemical post-etching [29] and is referred to as ‘BSi ADE’ hereafter. The edges of the 
DUTs were covered with non-transparent tape to prevent measurement artifacts at large incident angles. 
All the DUTs have a greater ratio of visible backsheet to active cell area than is typical of commercially 
available PV modules; this is due to the availability of 20 cm x 20 cm glass sheets and conventional 156 
mm x 156 mm PV cells.  
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Table 2: Descriptions of the DUTs distributed to all participants in the intercomparison. When cells in the ‘Testing Outcome and 
Data Usage’ column are highlighted green, this indicates that the angular-dependent measurements of the DUT are reported in 
this manuscript. 

Serial 
Number 

(SN) 
Testing Outcome and Data Usage 

Device 
Type 

(Alias) 

Cell Type1 
and Surface 

Texture 

Glass 
Specifications2 

Encapsulant 
and 

Backsheet 

0008 

Sent to all 12 labs. Results from 10 
of 12 labs presented here. Lab D 

and Lab L measurements not 
presented because they were 
determined as outliers in [16]. 

mono-
Si 

 

mono-Si cell 
with 

Random 
pyramids 
from KOH 

Manufacturer 
A 

 

EVA 
encapsulant 
/ Polymeric 

black 
backsheet 

0010 
Sent to Lab D for retest. Results are 

presented here together with 
‘mono-Si’ test results (SN 0008). 

0015 
Sent to Lab L for retest. Results are 

presented here together with 
‘mono-Si’ test results (SN 0008). 

0020 
Sent to 12 labs. Damaged glass edge 
found during visual inspection. τ(ɵ) 

results not presented. 

0025 

Sent to all 12 labs. Results from 10 
of 12 labs presented here. Lab D 

and Lab L measurements not 
presented because they were 
determined as outliers in [16]. 

BSi   
RIE 

multi-Si cell 
with 

conical-like 
hillocks 

from RIE 

Manufacturer 
B 

 

EVA 
encapsulant 
/ Polymeric 

white 
backsheet 

 

0026 Sent to 12 labs. Duplicate DUT of SN 
0025. τ(ɵ) results not presented. 

0027 

Sent to all 12 labs, but 
measurements not presented due 

to lack of dataset completeness and 
lack of distinctiveness in angular-
dependent response compared to 

mono-Si or BSi RIE devices. 

BSi    
ADE 

 

multi-Si cell 
with 

rounded 
cones from 

ADE 

 0028 
Sent to all 12 labs. Significant cell 
cracks found in EL image. τ(ɵ) results 
not presented here. 

 

                                                           

1 All cells are a 156 mm x 156 mm square (multi-Si) or pseudo square (mono-Si). 

2 The glass specifications are the same for all samples (i.e. 200 mm x 200 mm, 3.2 mm thickness, low-iron, non-
coated, finely textured), but they were procured from two different manufacturers noted here as ‘Manufacturer A’ 
and ‘Manufacturer B’. 
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The convention regarding the axis of rotation was predefined to allow the results from the different 
partners to be directly comparable. The definition for which angular direction was positive and negative 
was made explicitly clear in a memorandum document that all partners received. The document also 
specified the location of the rotational axis and tolerances for the precise location of the front of the PV 
cell surface within the laminate. The samples made for this round-robin have an offset of approximately 

1.5 mm ± 0.5 mm from the rear side (backsheet) to 
the front surface of the PV cell.  

EL images were taken before each laboratory started 
testing to ensure that no damage occurred due to 
transportation or handling. The glass of one mono-Si 
sample (SN 0020) was damaged about halfway 
through the campaign, and one BSi ADE sample (SN 
0028) experienced extreme cell cracking near the end 
of the campaign. These damaged test samples 
highlight the necessity of duplicate samples in round-
robin style measurement campaigns. The labs were 
asked to measure all six samples that they received, 
but unfortunately two labs only measured three 
samples (i.e. they only measured SN 0008, SN 0025, 
SN 0028, and not the duplicate samples). Of these 
three, BSi ADE sample SN 0028 was later found to 
have significant cell damage, which compromised the 
completeness of the measurement results from that 
sample type. Furthermore, the reported angular-
dependent measurements of the three device types 
with different cell textures were consistent with 
previous authors [22] [30] in that they did not  
significantly differ from each other when 

encapsulated with similar or identical glass superstrates. Therefore, the results from the BSi ADE sample 
type are not presented here. Regarding the two sample types that are presented in this work (mono-Si 
and BSi RIE), the EL images taken before the first lab’s measurement and after the final lab’s measurement 
showed that no damage had occurred during the measurement campaign (Figure 3). 

In our previous work [16], we determined that Lab D’s and Lab L’s initial AOI measurements on all samples 
contained outlier measurements at AOIs between 45° and 85°. Therefore, two additional mono-Si samples 
were sent to these labs for retests: One sample (SN 0010) was sent to Lab D, and the other sample (SN 
0015) was sent to Lab L. Sending new samples allowed the intercomparison to continue as planned while 
Lab D and Lab L completed their retests in parallel. In the sections that follow, the results from Lab D and 
Lab L’s retests are shown together with measurements on a separate — but equivalent — mono-Si sample 
(SN 0008). The homogeneity of mono-Si samples SN 0010, SN 0015, SN 0008 was first established given 
that they were produced in the same batch using identical bills of materials from the same manufacturers. 
The equivalence of their angular-dependent responses was established with measurements performed at 
DTU, prior to shipment to Lab D and Lab L. The DTU measurements showed τ(ɵ) deviations less than 0.003 
(0.3 %) for most AOIs and a maximum deviation of 0.0046 (0.46 %) that occurred at 85° AOI. Therefore, 
the results from Lab D and Lab L’s retest measurements on SN 0010 and SN 0015 are included with the 
results from SN 0008; the results from all three samples are reported as the mono-Si device type.  

 

  

  

Figure 3: EL images taken before the intercomparison 
started (left) and EL images of the same devices taken two 
years later upon completion of the measurement 
campaign (right). Top images are the mono-Si sample 
with standard texturing (SN 0008) and bottom images are 
the BSi RIE nanostructured sample (SN 0026). Two BSi RIE 
samples were sent to all 12 labs for characterization, and 
the EL shown here is the highest quality of the two.  
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2.3 Analysis 

This section describes the main methods used to analyze the angular-dependent measurements.  

2.3.1 Statistical Analysis using the En Number Approach 

The expanded uncertainty of each lab’s measurements is critical for establishing comparability through 
the En number calculation (Eq. 2) per ISO 17043 [31]. Therefore, the labs that were not able to provide 
measurement uncertainty are removed from the En number proficiency assessment, and a separate 
analysis is performed. In this separate analysis, we show the lowest measurement uncertainty that is 
needed to be comparable to the labs that did provide uncertainty. We use the well-known Tukey outlier 
box plot to identify outliers in the laboratories’ τ(ɵ) measurements prior to calculation of the consensus 
(i.e. reference) values. This exercise revealed several outliers in the τ(ɵ) values reported by Lab J at AOIs 
between 10° and 85°. Therefore, Lab J’s results were excluded in the derivations of consensus values 
shown in Eq. 3 and Eq. 4. When measurement uncertainty is available, an En number is calculated for each 
sample at each AOI as: 

En= 
xi- Xref,i

√UCi
2+ UCref,i

 2
      (2) 

Wherein xi is the individual laboratory’s measured relative transmittance τ(ɵ) and UCi is the expanded 
uncertainty of the lab’s measurement of τ(ɵ) with a confidence level of approximately 95 %. The reference 
value Xref,i is the weighted mean of seven partner´s measured τ(ɵ) values for a given sample at a given 
angle. Here the measurements are weighted by the uncertainty provided by each partner. Weighting the 
results in this manner has the consequence of shifting the Xref value towards the measured values (xi) of 
the laboratories with lower uncertainty. For every sample and every angle, the Xref,i value is calculated as:    

𝑋𝑟𝑒𝑓,𝑖 =  
∑

𝑥𝑖
  𝜎𝑖

2
𝑁
𝑖=1

∑
1

  𝜎𝑖
2

𝑁
𝑖=1

      (3) 

wherein σi is the standard uncertainty (k = 1) of the lab’s measurement. We assume that the values of σi 
are mutually uncorrelated, and therefore an inverse-variance weighting procedure is used. Finally, UCref,i 
is the expanded combined uncertainty of Xref,i and is calculated as: 

 𝑈𝐶𝑟𝑒𝑓,𝑖 =  
2

√∑
1

  𝜎𝑖
2

𝑁
𝑖=1

      (4) 

Calculating UCref in this way yields a value that is always lower than any of the participating labs’ declared 
uncertainties. For example, the lowest reported measurement uncertainty at 0° AOI is 0.2 % while UCref is 
0.1 %; And at 85° AOI, the lowest reported uncertainty is 2.5 % while UCref is 1.8 %. The relative 
transmittance measurements from each laboratory are said to be in agreement with each other when -1 
≤ En ≤ 1. In other words, the condition -1 ≤ En ≤ 1 is met when the difference between a lab’s measurement 
(xi) and the reference value (Xref,i) is less than or equal to the square root of square sum of the lab’s 
declared uncertainty (UCi) and the reference uncertainty (UCref,i). The sign of En provides a convenient way 
of discerning whether a lab’s measurement is high (En > 0) or low (En < 0) relative to the weighted group 
mean. 

2.3.2 Comparison of Measurements to Simulations 

Given the many challenges with directly measuring the angular-dependent response of PV devices it can 
be of value to have a simulation model for comparisons and additional analysis. Because it is difficult to 
model the sub-wavelength BSi texture [32] and much larger DUT features like glass and metal contacts all 
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in one model, we only use the mono-Si sample for comparison where all features can be modeled 
accurately. We show how the relative transmittance measurements made on the standard mono-Si 
sample compare to simulated values using the cloud-based version of the Daidalos ray tracing framework, 
which is developed by ISFH [33] [34] and accessible to the PV scientific community at no cost [35]. Daidalos 
models the glass cover, the encapsulation, the cell metallization and the cell texture as 3D geometries 
with spectrally resolved complex refractive index values. As output, Daidalos gives spectrally resolved 
absorptance and reflection curves for each component of the PV device. These curves are then multiplied 
with the AM1.5G spectrum in units of photo current and integrated over the wavelength range from 
300 nm to 1200 nm to obtain the PV device short-circuit current. As inputs, the measured spectral 
reflectance of the backsheet before encapsulation, and the measured height and pitch of the silver grid 
fingers from an optical profilometer are used together with spectrally resolved complex refractive index 
values for the other components taken from literature [36]. To verify the spectral behavior of the Daidalos 
model, we use measured external quantum efficiency (eQE) data from PTB’s differential spectral 
responsivity system under 350 W∙m-2 white light bias irradiation without consideration for device non-
linearity. 

An advantage of these ray tracing simulations over measurements is that the amount of lost incoming 
light due to reflection or absorption at specific parts of the PV module can be determined. To investigate 
the angular behavior of these losses, we use a modified version of the relative transmittance τspec, where 
the angle dependent loss current equivalents Ix are used in the numerator and the incoming photo current 
Ispec (0°) is used in the denominator. 

𝜏𝑠𝑝𝑒𝑐(𝜃)  =  
𝐼𝑥(𝜃)

𝐼𝑠𝑝𝑒𝑐(0°)∙cos 𝜃
     (5) 

2.3.3 Fitting Models to Angular-dependent Measurements 

Several authors have described mathematical models for fitting measured angle-dependent 
transmittance curves of PV devices [19] and [37] – [39]. The IEC 61853-2 and IEC 61853-3 standards adopt 
the Martin and Ruiz model, which uses a single parameter ar to describe angular reflection losses [40]. 
This model is shown in Eq. (6) below. 

𝜏(𝜃) =  
1−𝑒𝑥𝑝 (−𝑐𝑜𝑠 𝜃

𝑎𝑟
⁄ )

1−𝑒𝑥𝑝 (−1
𝑎𝑟

⁄ )
      (6) 

In addition to the PV-specific fitting models, a model developed by [39] for solar thermal collectors was 
developed in the 1960’s. This model was adopted by ASHRAE and is still used by PV modelers today [41], 
[42]. Similar to the Martin and Ruiz model, the ASHRAE model uses single parameter b0 to describe angular 
reflection losses as shown below.  

𝜏(𝜃) = 1 − 𝑏0 (
1

𝑐𝑜𝑠 𝜃
 − 1)     (7) 

The current (2016) edition of IEC 61853-2 provides no specific guidance on how to extract the ar coefficient 
from the analytical function (Eq. 6). Since different fitting procedures could lead to disparate coefficients, 
the participating laboratories did not report angular loss coefficients. Instead, we extracted the angular 
loss coefficients ar and bo at the end of the measurement campaign using a common method for all 
participant’s measurement data. The method uses a Gauss-Newton least squares fitting approach that 
minimizes the sum of squared errors (SSE) and weights measurements at all AOIs equally. No significant 
impact was observed on the coefficients or energy rating when using a fitting procedure that weighted 
the measurements according to the reported uncertainty at each AOI. We obtained coefficients from 
measurements made in the negative and positive angular directions and the coefficients reported here 
are the average of the two directions. Once the angular loss coefficients are obtained, the aforementioned 
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formulae can subsequently be used in energy rating and/or energy yield calculations as will be shown 
below.  

2.3.4 Impact of Laboratory Measurement Differences on Energy Rating 

The ultimate outcome of the four part series of IEC 61853 Energy Rating standards is the determination 
of the PV module’s climate specific energy rating (CSER) [43]. The CSER is essentially a DC level 
performance ratio (PR) of a single module that describes the annual deviation in energy production in a 
given climate, relative to what the module could have produced if it were operating at its STC 
performance. Unlike the classic definition of PR, the CSER does not incorporate losses due to soiling, 
shading, degradation, or any inverter specific losses such as efficiency of power conversion, maximum 
power point tracking efficiency or clipping losses. According to [44] the CSER and annual energy yield are 
simply intended for PV module buyers and system developers to assess the relative performance of PV 
technologies across climates. The CSER is calculated per the formula below where E [Wh] is the annual 
energy produced by the PV device, Go is the reference irradiance of 1000 W∙m-2 , PSTC is the PV device 
maximum power at standard conditions, and H [Wh∙m-2] is the annual in plane insolation before correction 
for angular losses and spectral effects.   

𝐶𝑆𝐸𝑅 =
𝐸∙𝐺𝑜

𝑃𝑆𝑇𝐶∙ 𝐻
      (8) 

TÜV Rheinland has provided multi-irradiance and temperature performance data (i.e. the IEC 61853-1 
matrix) and spectral responsivity measurements for a conventional crystalline silicon 60-cell PV panel. We 
use theoretical values for thermal heat transfer coefficients U0 = 25 W∙m-2∙K and U1 = 6.84 W∙m-3∙K∙s, which 
are taken from [45]. With these data, and the relative light transmission data from the participating labs, 
we calculate CSER for the six climate regions described in the IEC 61853-4 standard. The accuracy of our 
program that implements the IEC 61853-3 energy rating algorithm has been established in a parallel 
intercomparison [46]. 

2.4 Annual Angular Losses Calculated with Different Diffuse Models 

As mentioned previously, the IEC 61853 Energy Rating standards use the Martin and Ruiz fitting model.  
We investigate the impact that the choice of fitting model has on the annual angular performance losses 
by repeating the calculations using the ASHRAE fitting model. Furthermore, we investigate how two 
different methods to apply the angular losses to the diffuse radiation component affect the results. These 
two methods include numerical integration and closed-form analytical approximations. The purpose of 
these tests is to explore the range of annual angular losses (AAL) that can be obtained due to differences 
in angular-dependent measurements from the participating labs and due to different approaches used to 
apply angular-dependent losses to diffuse radiation. The authors in [6] showed that the AAL of diffuse 
radiation can change by up to 0.5 % based on the model used to transpose horizontal diffuse radiation to 
a tilted surface. Because this impact is relatively small, we forego investigations into the effect that the 
choice of transposition model has on AAL calculations by using the in plane irradiance provided in the 
standard data sets. A summary of the different methods used to calculate AAL are shown in Table 3.  

The IEC 61853-3 standard specifies that the angular-dependent losses associated with the diffuse 
component shall be calculated using the closed-form analytical approximation as proposed in [2] and 
shown below. The AOI corrected diffuse irradiance in the plane of array Dcorr,AOI is calculated using the 
diffuse angular loss factor (FD). 

𝐹𝐷 =  (1 − 𝑒𝑥𝑝 [−
1

𝑎𝑟
(

4

3𝜋
∙ ∆ + (0.5 ∙ 𝑎𝑟 − 0.154) ∙ ∆2)])       (9) 

∆ =  sin 𝛽 +  
𝜋−𝛽−sin 𝛽

1+ cos 𝛽
    (10) 
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Where β is the PV collector’s tilt angle from a horizontal. In all our calculations, we use β = 20°, according 
to the standard. Once FD is calculated, the diffuse irradiance in the plane of array (DPOA) is corrected for 
reflection losses using Eq. (11). 

𝐷𝑐𝑜𝑟𝑟,𝐴𝑂𝐼 =  𝐷𝑃𝑂𝐴 ∙ 𝐹𝐷     (11) 

Eq. (9) can only be used with the ar coefficient extracted from Eq. (6). Therefore, we calculate Dcorr,AOI using 
the bo coefficient from the ASHRAE model using a closed-form approximation as proposed by [20] and 
shown in Eq. (12) where DHI is the diffuse irradiance on a horizontal plane. 

𝐷𝑐𝑜𝑟𝑟,𝐴𝑂𝐼 =  𝐷𝑃𝑂𝐴 ∙ (1 − 𝑏0 + 2
𝑏0 𝛽

𝜋
)          (12) 

Finally, we calculate 𝐷𝑐𝑜𝑟𝑟,𝐴𝑂𝐼 using the spherical integration method as described in [47]. This method 
permits the calculation of the AOI corrected diffuse radiation using any fitting model, either the Martin 
and Ruiz model, ASHRAE model, or otherwise. In the spherical integration method, the model specific 
relative transmittance τ(ϴ) function is applied at each solid angle viewed by the PV module and weighted 
by cosine of ϴ. Indeed the work of [47] contains a methodology to account for the circumsolar and horizon 
brightening components of diffuse irradiance, and [48] provides a model that describes the spectral and 
directional and properties of diffuse irradiance, but we simplify our calculations by assuming an isotropic 
sky.  

Table 3: List of fitting model and diffuse models used in the calculation of global annual angular losses. All methods assume an 
isotropic sky diffuse component. 

Method 
Data Fitting Model  

Method to Apply Angular-
dependent Losses to DPOA Ref. 

1 Martin & Ruiz (Eq. 6) Closed form approximation (Eq. 9) [2] 

2 Martin & Ruiz (Eq. 6) Numerical integration [49] 

3 ASHRAE (Eq. 7) Closed form approximation (Eq. 12) [20] 

4 ASHRAE (Eq. 7) Numerical integration [49] 

 

In all AAL calculations, we calculate the plane of array beam irradiance corrected for reflection losses via  

𝐵𝑐𝑜𝑟𝑟,𝐴𝑂𝐼 =  𝐵𝑃𝑂𝐴 ∙ 𝜏(𝜃)      (13) 

Wherein 𝐵𝑃𝑂𝐴 is the beam irradiance in the POA and τ(ϴ) is the relative transmittance of the PV device 
using the Martin an Ruiz model (Eq. 6) or ASHRAE model (Eq. 7). AOI corrected global irradiance Gcorr,AOI is 
then calculated by summation of the AOI corrected diffuse and beam components. 

𝐺𝑐𝑜𝑟𝑟,𝐴𝑂𝐼 =  𝐷𝑐𝑜𝑟𝑟,𝐴𝑂𝐼 +  𝐵𝑐𝑜𝑟𝑟,𝐴𝑂𝐼    (14) 

Angular losses from ground reflections are not considered in the IEC 61853 Energy Rating normative nor 
are they considered here. This is because the calculations consider a mono-facial PV module with a static 
tilt angle of 20°. In this scenario, the module’s view factor of the ground is on the order of 3 %, and when 
this view factor is multiplied by the albedo, the contribution of irradiance from ground reflections is 
considered negligible. Finally, the AAL of global irradiance in each climate is calculated by the difference 
of annual hourly GCORR,AOI and GPOA as shown below in Eq. 15. GPOA refers to the global in irradiance before 
reflection losses and GCORR,AOI is the effective irradiance available to the PV cells after angular losses have 
been applied.  
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𝐺𝑙𝑜𝑏𝑎𝑙 𝐴𝐴𝐿 =  
∑ 𝐺𝑐𝑜𝑟𝑟,𝐴𝑂𝐼− ∑ 𝐺𝑃𝑂𝐴

∑ 𝐺𝑃𝑂𝐴
     (15) 

3 Results and Discussion 

3.1 Comparability of Angular-dependent Measurements among Laboratories 

The top frame of Figure 4 shows the median τ(ϴ) measurements of the mono-Si and BSi RIE sample types. 
The BSi RIE sample type shows less reflection loss than the mono-Si sample, but the difference between 
the two sample types is always < 0.015. The modest improvement in angular-dependent performance 
could be due to a combination of the BSi nanostructure and the white backsheet. The bottom frame of 
Figure 4 shows box plot distributions of the differences between each lab’s τ(ϴ) measurement and the 
weighted mean Xref. The y-axis of the bottom graph in Figure 4 shows the numerator of the En calculation 
in Eq. 2, where Xref is calculated based on measurements from only seven of the eight labs that reported 
uncertainty. The overall agreement is within ± 2 % until about AOI = 65°, but from 70° to 85° the range — 
excluding outliers — increases rapidly from 2.5 % to 23 %. There are four outliers not shown in Figure 4 
that occur at ± 85°. These outliers are between 44 % and 24 % low to the weighted mean Xref. All four 
extreme outliers at ± 85° were reported by Lab J. As described in Section 2.2, Lab D and Lab L performed 
retests on two separate mono-Si samples, which were not measured by the other labs, but determined 
as equivalent test devices. The initial measurements from Lab D and Lab L can be found in our previous 
work [16]; the improvements shown here are believed to be from a reduction of stray light within the 
testbed and better alignment of the DUT in the optical axis of rotation. 

At large AOIs in both the positive and negative direction, we observed that the range of τ(ɵ) 
measurements is higher for the BSi RIE sample than for the mono-Si sample. This could be due to the 
nature of the BSi nanostructures, which create a graded refractive index at the Si-EVA interface. The 
graded refractive index principle differs fundamentally to the anti-reflection mechanism of the random 
pyramid structure on the mono-Si sample, where photons are reflected off the pyramid sidewalls and on 
average are absorbed in adjacent pyramids. Furthermore, the variance of the BSi nanostructure topology 
may not be similar to that of the conventional random pyramids over large areas. This means at large AOIs 
the nanostructured surface may still reflect as a graded refractive index, but deviations in collimation and 
topology across the cell may instead result in the response of a planar Si surface. At small AOIs the BSi has 
a graded refractive index, which more effectively suppresses broadband light. These factors can make 
reproducible measurements on BSi challenging, particularly at large AOIs.  
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Figure 4: Results from all laboratories. Top – Median measured relative transmission at each AOI for two sample types. The error 
bars at each AOI show the interquartile range. Bottom - Box plots showing the differences to the weighted mean Xref. The dashed 
reference lines are drawn at ± 2 %. Note that at ± 85° there are 4 outliers ranging from -44 % to -24 %, which are not shown. Xref 

is calculated based on the measurements from seven labs that reported expanded uncertainty.  

Results for the En number proficiency assessment (Eq. 2) are shown in Figure 5. Recall that Lab J has been 
removed from this analysis and their results are instead assessed in Figure 6. The dashed red lines in Figure 
5 indicate the ± 1 conformity boundaries according to ISO 17043. There are only five instances outside 
this boundary — four of which belong to Lab C and one to Lab E — and all of which occur at AOIs ≥ 50°. 
The greatest dispersion in En values is observed at 85°, which indicates that reproducible angular-
dependent measurements at 85° are currently the most challenging to obtain among leading PV 
laboratories. 

The root causes for the measurement discrepancies are difficult to identify because the exact reasons 
could include any combination of the general challenges and uncertainties that were mentioned in Section 
2.1. However, given that the largest discrepancies among labs occur at large AOIs, and that the largest 
single uncertainty component at such steep angles is typically the uncertainty of the measured angle ϴ, a 
major reason is likely due to mounting errors or inaccurate measurement of ϴ. The current (2016) edition 
of IEC 61853-2 specifies that the accuracy of the AOI between DUT and light source must be ± 1° or better 
for indoor measurements, and ± 0.5° or better for outdoor measurements. To the best of our knowledge 
all the participating labs employed rotation stages that meet or go beyond this requirement. This suggests 
that a more stringent requirement for determination of AOI ϴ could be necessary to achieve better 
reproducibility in angular-dependent measurements at 85°.  
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Future interlaboratory comparisons of angular-dependent measurements could employ procedures that 
aim to minimize mounting error. For example, such error could potentially be mitigated by using DUTs 
with a standardized clamping system, or by using DUTs with frames that are already compatible in all 
participating labs’ measurement systems. During our measurement campaign, some labs reported that 
they needed to devise custom solutions to mount the 20 x 20 cm frameless DUTs in their measurement 
systems. Such need for ad hoc solutions should be avoided in future interlaboratory comparisons of 
angular-dependent measurements to allow the labs to adhere to their standard measurement practices 
as closely as possible.  

Additional actions could be taken to remediate the unsatisfactory agreement at large AOIs. The first is 
that the labs not meeting the condition |En| ≤ 1 should adopt a more conservative measurement 
uncertainty. This is particularly true in the case of lab C that reported one of the lowest measurement 
uncertainties out of the eight labs in Figure 2. The second action is that researchers and PV industry 
professionals in general should place minimal confidence on angular-dependent measurements made at 
85° until improved measurement agreement and reduced uncertainty can be demonstrated. A final 
possibility is that future revisions of the IEC 61853-2 standard could specify that measurements at 85° AOI 
are optional. In Section 3.2 we will explore how modeled angular-dependent performance can be used as 
a substitute to measurements, which can be useful when accuracy is compromised by high measurement 
uncertainty.  

 

Figure 5: Proficiency of seven labs that reported measurement uncertainty per the En number statistical approach. The left graph 
shows results of the BSi RIE sample, the right graph shows results of the mono-Si sample.  

Shown in Figure 6 are the minimum uncertainties that the remaining five labs would need at each positive 
AOI to be comparable to the weighted mean Xref,i and weighted uncertainty UCref,i of the seven labs shown 
in Figure 5. The results of this calculation show that at 85°, the measurement uncertainty that Lab J needs 
in order to be considered comparable is between 28 % and 38 %, depending on the DUT. Although this 
uncertainty is nearly within their stated uncertainty at 85° (Figure 2), there are several measurements at 
AOI < 50° that are not within their stated uncertainty. Therefore, it is likely that Lab J’s test procedure 
needs to be reviewed and improved. Since Lab J performed the test outdoors, they should check the AOI 
specific calibration coefficients for the in plane pyranometer, the method for measuring the diffuse 
irradiance in the plane of array in addition to the accuracy of the AOI ϴ measurement. Figure 6 also shows 
the minimum uncertainties that Lab A, B, H and L would need in order to be comparable to the weighted 
mean of the seven labs shown in Figure 5. The most notable trends happen again at 85° where Lab H 
would need a measurement uncertainty as high as 16 % in order to be comparable to the weighted mean. 
This result again confirms that angular-dependent measurements at 85° are challenging and therefore 
our recommendation is that future revisions of IEC 61853-2 state that measurements are optional where 
AOI ≥ 85°.  
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3.2 Comparison of Measured Relative 

Transmittance to Ray Tracing Simulations 

with Daidalos 

In Figure 7 we show how the relative 
transmittance measurements for the mono-
Si sample compare to the curve simulated in 
the Daidalos ray tracing model. The results 
show that the Daidalos model agrees to the 
group median within ± 0.6 % for AOI ≤ 70°, 
within ± 1.4 % for AOI ≤ 80° and at -4.1 % for 
an AOI = 85°. The higher discrepancy at 
higher AOIs is likely driven by the higher 
measurement uncertainty. 

In Figure 8, we show the relative 
transmittance relative to the AM1.5G 
spectrum. At normal incidence, 81.3 % of the 

incoming photo current Ispec is absorbed by the Si cell, while the largest losses are reflection by glass 
surface 4.1 %, reflection by other parts of the module at 5.8 %, absorption in the full area rear 
metallization of the cell 5.4 %, absorption in the EVA 2.2 % and in the glass 0.8 %. There is a gradual change 
to AOI of 60°, where the Si still absorbs 76.9 % of the incoming photo current Ispec, the reflection by the 
glass surface is more than doubled to 9.1 %, while the absorption in the EVA and in the glass increase to 
their maximum of 2.5 % and 1.0 %, respectively. Our simulations show that the absorption maximum for 
both the glass and the EVA is formed by two trends with opposite AOI dependence. On the one hand 
higher AOIs cause longer light path lengths in both materials and on the other hand higher AOIs cause 
higher reflection at the glass surface, reducing the amount of light which enters both materials. For an 
AOI of 85°, the Si cell absorbs 32.8 %, while the glass surface reflects 61.4 % of the incoming light. Please 
recall that the mono-Si sample has no glass anti-reflection coating, which is often used to reduce these 
surface reflection losses. 

 

Figure 7: Comparison of measured relative transmittance to ray trace simulations of the mono-Si test sample. The blue box plots 
show the distribution of twelve laboratories’ measurements on the mono-Si DUT at each AOI. 

 

Figure 6: Minimum expanded uncertainty required for labs without 
measurement uncertainty to obtain |En| ≤ 1. The top and bottom of 
each range bar show the result for the mono-Si or BSi RIE sample. 
Only the positive angular direction is shown.  
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Figure 8: Ray tracing simulation results showing the angular dependence of the optical losses in the mono-Si test sample. 

3.3 Comparison of Measurement Systems: Indoor versus Outdoor 

There has been conjecture in recent years that the technical challenges encountered during outdoor 
testing cannot be overcome with contemporary test methods, which thus leads to speculation that 
angular-dependent measurements performed outdoors are unsuitable for use in PV energy modeling [15] 
[50]. In this section we share the experience from this intercomparison with an assessment of the angular-
dependent measurements from the nine indoor measurement systems and three outdoor systems.  

Figure 9 shows the results from the mono-Si sample when the results are grouped by indoor and outdoor 
measurement systems. The black error bars indicate the full range of measurement differences as 
reported by the nine labs performing the test indoors. At each AOI there are three red markers that 
represent measurements reported by the three labs where the test was performed outdoors.  When all 
the red markers are within the black range bars, this means that indoor measurements showed larger 
deviations to the intercomparison median than did the outdoor measurements.  

One of the three outdoor measurements is lab J (shown in red circles as ‘Outdoor 1’) where many 
instances of non-conformity were observed previously (Figure 5). When lab J’s measurements are 
excluded, we see that the measurements from the other two outdoor tests are either on or within the 
black range bars for most AOIs from 0° to 85°. Specifically, the measurements from ‘Outdoor 2’ are always 
within the black range bars and those from ‘Outdoor 3’ are inside the range bars for 10 of the 17 AOIs 
shown in Figure 9. Although our data set consists mostly of indoor measurements, the results shown here 
indicate that angular-dependent PV measurements performed outdoors are not inherently more error 
prone than those made indoors. It is likely that the discrepancies observed are due to the methodology 
employed, not the specific test location, light source, or equipment used. Figure 9 contains retest 
measurements from Lab D and Lab L where the AOI test was performed indoors; their original 
measurements, which we determined as non-proficient in our previous work [16], are not included in 
Figure 9.  
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3.4 Impact of Angular-dependent 

Measurement Deviations on IEC 61853 

Energy Rating 

Here we follow the procedures stipulated in 
the IEC 61853-3 standard to determine the 
CSER and annual energy yield of the mono-Si 
sample using the ar angular loss coefficients 
extracted from the measured data and from 
the Daidalos simulation. Table 4 shows a 
description of the six climates. Our 
calculations result in 13 CSER values per 
climate region (i.e. one CSER per lab plus the 
Daidalos simulation), where the differences 
in CSER values within each climate are driven 
by the differences in angular-dependent 
measurements from the participating labs.  

 

Table 4: List of standard data sets with summaries of annual insolation, AOI between the sun and a 20° tilted south oriented 
surface, and diffuse ratio. The mean AOI and diffuse ratio are calculated only during hours when the sun is above the horizon. 

Data Set  
Number 

Latitude Climate Type Annual global 
insolation in 
plane (kWh∙m-2) 

Mean 
Annual 
AOI ϴ (°) 

Mean Annual 
Diffuse Ratio  

1 1°S Tropical humid 1677.7 50.4 0.71 

2 33°30’N  Subtropical arid  2295.5 49.2 0.41 

3 33°22’N Subtropical coastal 1496.6 49.1 0.75 

4 56°N Temperate coastal 972.9 56.4 0.77 

5 34°N High elevation 2139.1 49.5 0.51 

6 57°N Temperate continental 1266.0 56.5 0.65 

 

Figure 10 shows that when one outlier is excluded, the range of angular-dependent measurements as 
reported in the intercomparison result in a 1.0 % to 1.8 % range in CSER values, depending on the climate. 
This result corresponds well with the rough estimation presented in [51] that the uncertainty of AOI 
measurements will lead to a 1 % uncertainty in CSER. The results obtained using the Daidalos ray tracing 
simulations are indicated with blue diamond markers and are mostly located at the bottom of the inner 
quartile range. Since it was demonstrated previously that angular-dependent measurements at 85° are 
subject to high uncertainty, Figure 10 also shows the energy rating results obtained when the curve fitting 
(Eq. 6) is done in the limited AOI range of 0° to 80°. The main result from removing measurements at 85° 
is that no outliers are observed in the energy rating outcomes, although the range of outcomes within the 
box plot whiskers remains largely unchanged. 

 

Figure 9: Comparison of indoor versus outdoor measurements made 
on the mono-Si sample. Dashed reference lines are drawn at ±2 %. 
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Figure 10: Results of calculating CSER with 12 participating laboratories’ relative transmittance data (Left) and variability of the 
mean annual energy when using the 12 participating laboratories’ measurements (right). Each plot shows the results when all 
relative transmittance measurements are used in the fitting routine (0-85°) and with 85° removed (0-80°). The blue diamonds near 
the bottom of the inner quartile ranges show the results when CSER and annual energy are calculated using simulated relative 
transmittance data from Daidalos.  

Figure 10 additionally shows the percentage difference to the mean annual energy yield E by climate. 
When the one outlier is excluded, the annual energy difference can range from 1.0 % to 1.5 % depending 
on the climate. The range of CSER and energy yield values is highest for the most northern climates with 
high diffuse ratios and higher average AOIs (e.g. Temperature Coastal), and lowest in southern climates 
where lower diffuse ratios and lower average AOIs are observed (e.g. Subtropical Arid). It should be 
emphasized that the incident angle test is one of four measured characteristics in the IEC 61853 series 
and the uncertainty of the other three characterizations (i.e. performance matrix, spectral responsivity, 
and thermal behavior) should also be considered when considering the overall uncertainty of the energy 
rating standard. 

3.5 Annual Angular Losses Calculated with Different Diffuse Models 

In this section we use the relative transmittance data from the intercomparison to calculate the annual 
angular loss (AAL) of global irradiance in the six standard climates using different approaches for 
calculating the diffuse radiation component (DCorr,AOI). We use the four calculation approaches shown in 
Table 3 to demonstrate the impact that the AOI fitting model and the application of the fitting model to 
the diffuse radiation has on global AAL. Similar to Section 3.4, only results from the mono-Si sample are 
shown.  

Figure 11 shows the results using the Martin and Ruiz fitting model. The dotted lines show the climate-
specific AAL when the closed-form approximation as prescribed in the IEC 61853-3 standard is used to 
apply the angular loss ar coefficient to the diffuse irradiance. The solid lines show the AAL when the 
calculation is performed by means of numerically integrating the angular-dependent losses across 1° 
isotropic sky segments. The closed-form approximation results in 0.2 % to 0.4 % higher AAL across all 
climates.  As expected, more AAL is observed in climates with higher average AOIs (e.g. Temperate 
Coastal). Similar to the results for CSER (Figure 10), the range of global AAL is highest for the most northern 
climates with high diffuse ratios and higher annual average AOIs, and lowest in southern climates where 
lower diffuse ratios and lower average AOIs are observed. For example, in the case of the Temperate 
Coastal climate (56°N), global AAL varies from 3.2 % to 6.7 %, whereas in the Subtropical Arid climate 
(33°30’N) global AAL varies from 2.1 % to 4.7 %.  
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Figure 12 shows the global AAL when the ASHRAE 
fitting model is used to extract the bo angular loss 
coefficient from the participating laboratories’ 
data. The dotted lines show the results when the 
closed-form approximation in Eq. 11 is used to 
apply the angular-dependent losses to the diffuse 
radiation, and the solid lines show the results 
when integration is used to apply the angular-

dependent losses to the diffuse radiation component. The difference in AAL as calculated by these two 
methods is less than 0.1 % across all climates. The climate-specific AAL follow the same relative order as 
shown in Figure 11, but the magnitude of the losses tends to be slightly higher (< 0.5 %) when the ASHRAE 
fitting model is used instead of the Martin and Ruiz model. This could be because the ASHRAE model tends 
to under predict the physically measured angular-dependent losses by 2 % to 3 % between 40° and 65° 
AOI. 

 

 

Figure 11: Annual angular losses of global irradiance using the 
Martin and Ruiz model. Each circle marker represents a single 
ar coefficient extracted from a participant’s measurement. The 
dotted lines show the results using the closed-form equation to 
apply the angular-dependent losses and the solid lines show 
the results using integration to apply the losses. The ar 
coefficient extracted from the Daidalos simulation is 0.17242.  
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In Section 3.1 we determined that Lab J’s results were 
not comparable to the intercomparison weighted mean 
and in Section 3.4 it was shown that Lab J’s results were 
outliers when used to calculate energy rating (Figure 
10). A key driver of these results is that Lab J’s 
measurements yield the highest ar and bo angular loss 
coefficients out of any participant (ar = 0.2209 and bo = 

0.0888 for Lab J’s mono-Si sample measurements). If Lab J’s results are excluded from Figure 11 and 

 

Figure 12, we can conclude that the range of ar and bo angular loss coefficients across the intercomparison 
is 0.1485 to 0.1775 and 0.0516 to 0.0617, respectively. When Lab J’s results are excluded the range of AAL 
across labs is reduced from 3.21 % to 1.46 % (averaged across climates) for the Martin and Ruiz model, 
and for the ASHRAE model the range is reduced from 2.31 % to 0.68 %. Interesting is that the range of 
AAL is lower when using the ASHRAE model instead of the Martin and Ruiz. This indicates that the ASHRAE 
fitting model better masks the deviations in angular-dependent measurements when they are applied to 
PV performance modeling.  

A variance components analysis can show whether the differences in the AAL primarily result from the 
fitting/diffuse model, the standardized climate data set, or the measured relative transmittance τ(ϴ) data 
reported by the participating labs. We performed a variance components analysis in the JMP software 
package that showed that 72 % of the variation in annual diffuse losses is due to the spread of angular 
loss coefficients, 23 % of the variation is due to the climate data set, and approximately 5 % of the variation 
is due to the fitting/diffuse model used. In other words, the variability in angular-dependent 
measurements across laboratories has a far greater impact on PV performance modeling results than the 
choice of fitting model, diffuse model or meteorological data set. This highlights the importance of 
accurate angular-dependent measurements in PV energy modeling as variations in τ(ϴ) can cause 
significant changes in the annual angular losses of global irradiance. Please note that these results hold 
true for the fitting models, diffuse models and data sets tested, but we believe these are representative 
of contemporary modeling practices. 

4 Conclusions 

We have presented results from a twelve laboratory comparison of angular-dependent measurements on 
two encapsulated PV devices that took place from autumn 2017 to spring 2020. The proficiency of the 
measurements was assessed using the En number method prescribed in the ISO 17043 standard, but this 

Figure 12: Annual angular losses of global irradiance using the 
ASHRAE model. Each circle marker represents a single bo 
coefficient extracted from a participant’s measurement. The 
dotted lines show the results using the closed-form equation 
to apply the angular-dependent losses and the solid lines 
show the results using integration to apply the losses. The bo 
coefficient extracted from the Daidalos simulation is 0.06128. 
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analysis was only applied to the measurements of seven laboratories that provided uncertainty and 
showed no outliers in their τ(ɵ) measurements. A separate analysis was conducted for the other five labs 
wherein the minimum measurement uncertainty required to obtain | En | ≤ 1 was demonstrated. The 
agreement of all twelve laboratories’ measurements was analyzed with a simple difference between their 
τ(ɵ) measurements and the weighted mean Xref,i as calculated from seven labs with measurement 
uncertainty. 

The En number analysis revealed five total instances of unsatisfactory τ(ɵ) measurements — with three 
such instances occurring at 85° — which indicates corrective actions should be considered such as revising 
test procedures and uncertainty budgets. One additional suggestion is that measurements at 85° could 
be deemed optional in future revisions of the IEC 61853-2 standard as it was demonstrated that outliers 
in energy rating calculations could be prevented simply by removing angular-dependent measurements 
at 85° from the fitting procedure. The agreement in relative transmittance τ(ɵ) measurements between 
eleven labs is within ± 2.0 % of the weighted mean for AOI ≤ 65°, but from 70° to 85°, the range of 
measurement differences increase rapidly from 2.5 % to 23 %. We identified outlier measurements from 
one lab that performed the characterizations outdoors; in the most extreme case this lab reported 
measurements that were 44 % low to the weighted mean at 85°.  

We grouped the results according to indoor versus outdoor measurement methods. Although this analysis 
was limited in that only three of the twelve participating labs performed the test outdoors, it was shown 
that two of the three labs indeed had measurements that were within the range of the nine indoor 
measurements. Thus indicating that accuracy is not dependent on test location, but rather it is the rigor 
of the methodology that matters. It was shown that the variability in τ(ɵ) measurements on the BSi RIE 
sample are 50 % and 100 % higher than the variability observed for the mono-Si sample at 80° and 85°, 
respectively; the higher variation could be due to the nature of the BSi nanostructures. This work 
employed two test samples with the same glass type, but with unique cell surface textures. We suggest 
that future work on angular-dependent measurement comparisons include test samples with various 
structures on the glass, anti-reflective glass coatings, tandem cell technologies, and full-sized PV panels 
rather than single cell coupons.  

The angular-dependent measurements from the participating laboratories as well as simulations from the 
cloud-based Daidalos ray tracing software were used as input to the IEC 61853-3 standardized procedure 
for calculating energy rating. When one outlier is excluded, it was found that the angular-dependent 
measurements from eleven participating laboratories cause a 1.0 % to 1.8 % range in CSER and a 1.0 % to 
1.5 % range in annual energy yield, depending on the climate. When the CSER and energy yield results 
were viewed as distributions, it was shown that results from the Daidalos ray tracing simulation for all six 
standard climates were either within or bordering on the inner quartile range thereby demonstrating that 
the software is a suitable tool for simulating relative transmission curves of PV devices for use in energy 
rating calculations. The simulations have the benefit of describing the optical losses at each material 
within the PV device, which is not possible with measurements made according to IEC 61853-2. Finally, 
the annual angular losses (AAL) of global irradiance were analyzed using four different approaches used 
to apply angular-dependent losses to the diffuse radiation in six standardized climate data sets. It was 
shown that the measurement variability among the twelve laboratories caused the largest variation (72 
%) in the AAL than did the choice of fitting or diffuse  (23 %), or the meteorological data set used (5 %), 
which highlights the importance of accurate angular-dependent measurements for use in PV performance 
modeling.   
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Appendix I 

Table 5: Participating laboratories and details of their measurement systems used for measuring the angle of incidence response 
in the intercomparison. 

Lab 
Institution 
description 

Rotation 
stage AOI 
range and 

control 

Additional details regarding the measurement system and the 
methodology used 

CENER 

National lab with 
ISO 17025 
accreditation. 
Not accredited to 
do IEC 61853-2 
Incident Angle Test. 

2-axis, 0° to 
90°,  
Automated 

Outdoors in natural sunlight on dual axis tracker. Plane of array 
diffuse calculated from global and beam measurements. 
Reported values are not the result of averaged measurements. 
All ISC measurements are corrected to a common temperature 
using measurements from a thermocouple attached to the back 
of the DUT. 

CFV Labs 

Commercial test lab 
with ISO 17025 
Accredited. Is 
accredited to do 
Incident Angle Test 
(IEC 61853-2). 

2-axis, 0° to 
90°,  
Automated 

Outdoors in natural sunlight on dual axis tracker. Plane of array 
diffuse calculated from global and beam measurements. Global 
pyranometer measurements use individual AOI calibration 
coefficients. DUTs are kept in the open-circuit state between ISC 
measurements. Reference modules used for spectral 
corrections. Tracker dwells for 3 minutes at each AOI to allow 
DUTs and irradiance sensors to stabilize. Reported values are 
based on the average of at least 5 ISC measurements at each AOI. 

CIEMAT 

Public R&D 
company. Not ISO 
17025 accredited. 

1-axis, -90° 
to 90°,  
Automated 

Pasan flasher with broadband Xe arc lamp (class AAA). Lamp 
distance to DUT = 4.5 m. Flash tunnel with large windows acting 
as optical diaphragms. Maximum full-area DUT size for AOI 
measurements = 0.5 x 0.5 m (mounting plane area). Reported 
values are based on the average of 9 ISC measurements. All ISC 
measurements are corrected to 25°C. Irradiance stability 
correction applied to ISC based on reference cell measurements 
at normal incidence. 

CREST 

University with ISO 
17025 
accreditation. Not 
accredited to do IEC 
61853-2 Incident 
Angle Test. 

1-axis, -90° 
to +90°,  
Automated 

Pasan 3b flasher with broadband Xe arc lamp (class AAA). Lamp 
distance to DUT = 7.5 m. To measure the negative direction the 
module was mounted the other way around and then measured 
again. This method reduces the stray light the DUT is exposed 
to. No temperature correction applied as it was considered a 
minor contribution to overall uncertainty. Irradiance stability 
correction applied to ISC based on reference cell measurements 
at normal incidence. Maximum full-area DUT size for AOI 
measurements = 1.7 m x 1.1 m (i.e. mounting table area). When 
the DUT is a PV module, the non-destructive partial shade 
method described in [26] is used to examine a subpart of the 
DUT.  

DTU 

University. Not ISO 
17025 accredited. 

1-axis, -90° 
to +90°, 
Automated 

Energetiq (EQ-99FCX) broadband laser driven light source 
collimated using an off axis parabolic mirror. Active area of test 
samples partially illuminated. All ISC measurements are 
corrected to 25°C. Reported values at each AOI result from the 
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average of 5 ISC measurements and the average of 3 AOI (ϴ) 
measurements. 

Fraunhofer 
ISE 

Research institute 
with ISO 17025 
accreditation. Not 
accredited to do IEC 
61853-2 Incident 
Angle Test. 

1-axis, -90° 
to +90°,  
Manual 

Pasan 3b flasher with broadband Xe arc lamp (class AAA). Lamp 
distance to DUT = 8.0 m.  Measurements made in 10° steps 
between 0° and 50°, and in 5° steps between 50° and 85°. Values 
reported are based on single ISC measurements except at 0° (3 
ISC measurements averaged) and 70° (2 ISC measurements 
averaged) to establish repeatability. All ISC measurements 
acquired with DUT at 25°C ± 1.0°C and normal incidence 
irradiance 1000 W/m2 ± 2 W/m2.  All ISC measurements are 
corrected to 25°C. Irradiance stability correction applied to ISC 
based on WPVS reference cell measurements at normal 
incidence. Geometrical factor correction for the 6 mm out-of-
axis rotation in test set-up. No spectral mismatch corrections 
applied. 

PVEL 

Commercial lab 
with ISO 17025 
accreditation. Not 
accredited to do IEC 
61853-2 Incident 
Angle Test. 

0° to 90°,  
Automated 

Collimated pulsed LED light source with steady-state bias light. 
The distance between the light source and the DUT is 
approximately 18 meters. Lock-in amplifiers used to isolate 
signal from collimated light. ISC at each AOI is measured at 512 
samples/second for 30 seconds. Thus, reported values at each 
AOI are the average of nearly 15,000 data points. Irradiance 
stability correction applied to ISC based on irradiance 
measurements at normal incidence.  

PTB 
 

National lab with 
ISO 17025 
accreditation. Not 
accredited to do IEC 
61853-2 Incident 
Angle Test. 

2-axis, -90° 
to +90°, 
 
Automated
, Azimuthal 
rotation of 
DUT 
possible. 

Angular-dependent measurement of the differential spectral 
responsivity using a tuneable laser system with broadband bias 
lamps. Diffuse light from the ambience has no impact since Lock-
In technique is applied. Reported values at each AOI are the 
average of 25 measurements. Divergence of the light source is < 
5° (uncertainty related to divergence is considered).  

RETC 

Commercial lab 
with ISO 17025 
accreditation. 
Accredited to do 
IEC 61853-2 
Incident Angle Test. 

1-axis, -90° 
to +90°,  
Manual 

Pasan 3b with broadband Xe arc lamp (class AAA). No 
methodological details provided.  

Sandia Labs 

Test lab. Not ISO 
17025 accredited. 

0° to 90°,  
Automated 

Outdoors in natural sunlight on dual axis tracker. Plane of array 
diffuse directly measured using the tracker’s ability to maintain 
constant azimuth with the sun’s position. Values reported were 
based on 3 days of clear sky measurements. Thus, reported 
values at each AOI are the average of approximately 100 
measurements. All ISC measurements are corrected to a 
common temperature using measurements from a resistance 
temperature detector (RTD) attached to the back of the DUT. 
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SUPSI 

Commercial lab 
with ISO 17025 
accreditation. Not 
accredited to do IEC 
61853-2 Incident 
Angle Test. 

1-axis, -90° 
to +90°, 
 Manual 

Pasan flasher with broadband Xe arc lamp (class AAA). Distance 
between the lamp and center of the rotational axis of DUT = 7.2 
m. All ISC measurements acquired with DUT at 25°C ± 0.5°C and 
normal incidence irradiance 1000 W/m2 ± 20 W/m2, thus no 
additional corrections were applied. Reported values at each 
AOI result from the average of 3 ISC measurements.  

TNO 

R&D lab. Not ISO 
17025 accredited.  
 

1-axis, -90° 
to +90°,  
Manual 

Pasan flasher with broadband Xe arc lamp (class AAA). Flash 
tunnel length = 8 m. Suppression of stray light with diaphragms, 
black paint, and black coverings. Maximum DUT size for AOI test 
= 160 x 160 mm. All ISC measurements are corrected to 25°C. 
Irradiance stability correction applied to ISC based on 
measurements at normal incidence. 

 

 

Appendix II: Supplemental Data 

The relative transmittance data reported by the laboratories can be found in DTU’s open access repository 
https://doi.org/10.11583/DTU.12613325.v1. This data set can assist researchers in developing and 
validating new models that describe the angular-dependent behavior of encapsulated PV devices.  
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Measuring Irradiance with Bifacial Reference Panels 

Nicholas Riedel-Lyngskær1, Martin Bartholomäus1, Jan Vedde2, Peter B. Poulsen1 and Sergiu Spataru1 

1Technical University of Denmark, Department of Photonics Engineering, 4000 Roskilde, Denmark 

2European Energy A/S, 2680 Søborg, Denmark

Abstract—The heterogenous nature and spectral 

distribution of rear plane-of-array irradiance RPOA presents 

challenges when measured by small-area sensors such as 

pyranometers. Bifacial reference modules serving as large-

area sensors can simplify irradiance monitoring because 

their electrical response follows that of the power 

generating modules in an array. This article compares RPOA 

and effective irradiance GE measured by calibrated 

reference modules against three commonly used small-area 

sensors including pyranometers, reference cells, and 

photodiodes. A technology-matched monofacial module is 

mounted side-by-side with the bifacial reference to decouple 

effective irradiance measurements into front and backside 

contributions. The results show that RPOA and GE 

measurements made with reference panels have the best 

correlation to reference cells. The mean absolute errors 

between the two measurement approaches are 9% relative, 

4 W/m2 absolute for RPOA and 4% relative, 7 W/m2 absolute 

for GE. When GE measurements from the four sensor types 

are used to predict string-level power, the reference panel 

measurements show a 3.4% prediction error, which is 

comparable to that achieved when using GE measurements 

from pyranometers (3.0%) and reference cells (2.9%) 

thereby suggesting that reference modules can be used to 

accurately measure RPOA and GE in bifacial systems. 

  
Index Terms—Bifacial PV, IEC 60904, rear irradiance, 

performance ratio, measurement. 

I. INTRODUCTION 

The commercial rise of bifacial photovoltaic (PV) modules 
and the growing capacity of bifacial systems [1] has forced the 
PV community to update several international standards that 
were initially written for single sided PV devices [2] – [5]. Of 
interest in this work are the bifacial I-V measurement procedures 
defined in IEC TS 60904-1-2.  Our aim is to assess whether the 
single-side illumination method described in [2] can be used to 
calibrate bifacial reference modules that are deployed in large-
scale bifacial PV parks to measure effective irradiance.  

Accurate bifacial PV modeling can only be achieved when 
the rear, and ultimately total (i.e., combined front and rear) 
irradiance is understood, but the PV community is still 
developing its best-practice guidance on the type, quantity, and 
placement of sensors for the assessment of rear plane-of-array 
irradiance (RPOA). The many challenges that frustrate accurate 
RPOA measurements are discussed systematically in [6]. Rear-
side edge brightening [7], non-uniform irradiance patterns that 

change with conditions [8] [9], structural shading effects [10] 
[11], and in some cases self-shading from a module’s frame 
and/or its conductors make it hardly possible for PV system 
designers to identify a single small-area location that is 
representative of the rear array. Ray-trace simulations can be 
used to determine a suitable small-area sensor location [10], but 
such methods are prohibitive due to computational intensity, 
steep learning-curve, and because the results are unique to a 
given PV substructure design and park layout. Meanwhile, 
spectral albedo effects [12] – [14] make sensor type selection 
non-trivial (e.g., pyranometer, reference cell, or Si photodiode).  

The literature contains comparisons of small-area irradiance 
sensors for RPOA measurements [15] – [18], works that used 
monofacial reference modules for frontside plane-of-array 
irradiance (GPOA) measurements [19] [20], and recently, an 
investigation of bifacial reference panels for effective irradiance 
monitoring [21].  

In this work, we evaluate the potential of bifacial reference 
panels, calibrated indoors per IEC TS 60904-1-2, to measure 
rear and effective irradiance. In section III.A, the rear and 
effective irradiance measurements from reference modules are 
evaluated against measurements from an array of small-area 
sensors that includes pyranometers, reference cells and Si-
photodiodes. We supplement the analysis in III.A by showing 
how effective irradiance derived from string-level I-V 
measurements of a 24-module array compares to the module-
level approach. In section III.B, the measurement differences 
due to spectral albedo effects are estimated using an in-plane 
spectrometer. The open-circuit voltage (VOC) data from the I-V 
curves allowed us to calculate the equivalent cell temperature, 
the results of which are reported on in section III.C. In section 
III.D, we demonstrate how RPOA sensor type and position lead 
to uncertainty of the bifacial performance ratio (PRBIFI). Finally, 
section III.E provides comparisons of yield predictions with 
effective irradiance data from the various sensors against string-
level power of an operational system. 

II. METHODS 

A. Outdoor Measurement Platform 

The testbed shown in Fig. 1(a) is located near Roskilde, 
Denmark (55.6°N, 12.1°E) within the Technical University of 
Denmark’s (DTU) outdoor PV test facility [18] [22]. The 25° 
fixed-tilt 14.2 kWp grid-tied array contains 24 large-area 
bifacial PERC (passivated emitter and rear cell) modules that 
became commercially available in 2021. Each bifacial PERC 
module contains 120 half-cut G12 (210 mm) wafers. The 
modules are framed glass/glass, have a 595 W frontside rating 
at standard test conditions (STC, 1000 W/m2, 25 °C, AM1.5G), 
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and a mean measured PMAX bifaciality coefficient of 0.67 
(±0.02). The market share of such high-power modules based on 
large-format wafers has grown in the last two years because they 
have lower production costs per watt and potentially lower 
balance of system costs [23]. The 2022 ITRPV report states that 
M10 (182 mm) and G12 (210 mm) wafer sizes will have 
majority market share from 2022 onward [24].  

 

(a) 

 

(b) 

Fig. 1. (a) The 14.2 kWp bifacial PERC testbed. The monofacial reference 

panel is highlighted in white, the bifacial reference panel in red, and the rear-

side POA sensor plate in yellow. Panels that are not highlighted are connected 
in series to a grid-tied inverter. (b) Image of the rear POA sensor plate showing 

spectroradiometer, Si-photodiodes, Si reference cells, and pyranometers. The 

annotations A through D indicate the sensor locations.  

Two reference modules are mounted within the 24-module 
string and are highlighted with white and red polygons in Fig. 
1(a). The reference module highlighted in white was made 
monofacial by applying several spray-on layers of air-dry Plasti 
Dip® rubber to the back glass. The reference module highlighted 
in red was not modified and has the same properties as the other 
bifacial modules in the string. The monofacial and bifacial 
reference panels are electrically isolated from the grid-tied 
string. An EKO PV-Blocks system measures I-V curves of the 
reference panels every five minutes and holds them at PMAX 
between I-V scans. 

The grid-tied inverter can measure string-level I-V curves. 
Although most PV inverters have such a hardware capability, 
this inherent feature is often not used because of software 
limitations [25]. We perform continuous inverter-level I-V scans 

on three select days to estimate the effective irradiance received 
by the 24-module string, eight of which were calibrated using 
the IEC TS 60904-1-2 single-side illumination method. 

The RPOA sensor plate shown in Fig. 1(b) is mounted roughly 
eight meters from the nearest array edge. We performed ray-
trace simulations of the structure in bifacial_radiance [26] 
version 0.3.4 [27] and determined that this location avoids edge 
brightening. The naming convention we use for the highest to 
lowest sensor is A to D. The distances between the center beam, 
where the spectrometer is mounted, and the sensor locations A 
to D are as follows: A is 77 cm (70%) above, B is 33 cm (30%) 
above, C is 33 cm (−30%) below, and D is 77 cm (−70%) below. 
Table 1 summarizes the sensor types that are used in this work 
for RPOA measurements. The pyranometers and photodiodes are 
ISO 9060 Class C instruments, while the reference cells meet 
the Class B requirements defined in IEC 61724-1. 

Because IEC 61724-1 states that an optical model can be 
used to estimate RPOA as an alternative to direct RPOA 
measurement, we also present results from a 2D view factor 
model [28] at array locations A to D. The view factor model 
takes as input onsite albedo, direct normal (DNI), and diffuse 
horizontal irradiance (DHI) measurements. 

TABLE 1.  REAR PLANE-OF-ARRAY SENSORS USED 

Instrument # Make Model 

Spectrometer 1 EKO MS-711 
Si Photodiode 4 EKO ML-01 

Reference cell 3 IMT Si-I-420TC-T 

Pyranometer 4 EKO MS-40M 

B. Indoor Calibration of Bifacial Reference Panels 

The reference panels are of the same make, model, and 
batch as the 595 W panels within the 24 panel (14.2 kWp) 
string. Before deployment, a random sample of 10 panels from 
the batch was selected for flash testing at DTU according to the 
single-side illumination method described in IEC TS 60904-1-
2. The DTU flash solar simulator is a large-area Endeas 
QuickSun 540XLi (class AAA), which easily accommodates 
such large (i.e., 1300 mm x 2170 mm) panels. A summary of 
the flash test results is shown in Table 2. The expanded 
measurement uncertainty in Table 2 was derived with the 
methodology proposed by [29]. The uncertainty of backside I-
V measurements is higher than frontside because of the 
increased distance between the reference cell and the cells 
inside the test module. This effect is caused by the module 
frame’s thickness. 

The flasher and measurement method were recently 
evaluated in a round robin campaign [30] wherein bifacial PV 
module measurements per IEC TS 60904-1-2 were compared 
among several accredited European labs. The results showed 
that DTU’s bifacial PERC measurements agreed to the group 
median within uncertainty for all parameters, which gives us 
confidence in the reference panel calibration. 

Two calibration factors, CFRear and CFGe, were derived from 
the single-side illumination measurements performed indoors. 
These calibration factors are used to translate the outdoor short-
circuit current (ISC) measurements to rear irradiance (RPOA) or 
effective irradiance (GE), respectively. CFRear is the linear slope 
(in A/W∙m-2) extracted from the plot of ISC measured at multiple 
RPOA irradiances, with offset forced to the frontside ISC 
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measured at STC. Similarly, the calibration factor CFGe is 
calculated as the linear slope of ISC as a function of single-side 
equivalent irradiances GE, with offset forced to zero (see Fig. 4 
in IEC TS 60904-1-2 [2]).  

TABLE 2. SUMMARY OF I-V MEASUREMENTS MADE ON A SAMPLE OF TEN 

MODULES (N=10) AT STANDARD TEST CONDITIONS. THE TABLE SHOWS THE 

MEAN, STANDARD DEVIATION AND EXPANDED MEASUREMENT UNCERTAINTY. 

I-V Measurement  Mean 

Standard 

Deviation 

Uncertainty 

(%) 

ISC (A) 
Front  17.84 0.03 2.2 

Back  11.92 0.09 4.6 

VOC (V) 
Front  41.05 0.05 0.8 

Back  40.61 0.07 0.9 

PMAX (W) 
Front  585.91 1.61 3.5 

Back  389.99 3.31 5.5 

Fill Factor (%) 
Front    80.02 0.19 - 

Back    80.53 0.73 - 

C. Irradiance Measurements from Reference Modules and 

Small-Area Sensors 

When analyzing the field measurements, the rear POA 
irradiance from the reference modules (RPOA,Module) is 
determined using (1).  

𝑅𝑃𝑂𝐴,𝑀𝑜𝑑𝑢𝑙𝑒 =  (𝐼𝑆𝐶,𝐵𝑖𝑓𝑖 − 𝐼𝐼𝑆𝐶,𝑀𝑜𝑓𝑖)/𝐶𝐹𝑅𝑒𝑎𝑟  (1) 

Where CFRear (A/W∙m-2) is the calibration factor for rear 
irradiance, ISC,Bifi (A) is the ISC of the bifacial reference panel, 
and ISC,Mofi (A) is the ISC of the monofacial reference panel. 
ISC,Bifi and ISC,Mofi are corrected to 25°C with the datasheet ISC 
temperature coefficient and back-of-module temperature 
measurements. The back-of-module temperature sensors are 
class A PT1000s encased in aluminum housing and attached to 
the center of the module’s back glass with adhesive.  

The bifacial reference panel measurements provide a direct 
estimate of effective irradiance with (2).  

𝐺𝐸,𝑀𝑜𝑑𝑢𝑙𝑒 =   𝐼𝑆𝐶,𝐵𝑖𝑓𝑖/𝐶𝐹𝐺𝑒 (2) 

Where GE,Module (W/m2) is the effective irradiance measured 
by a single reference module, or string of modules, CFGe 
(A/W∙m-2) is the calibration factor for total effective irradiance, 
and ISC,Bifi is the ISC of the bifacial reference panel, or string. GE 
comparisons between the large-area modules and small-area 
sensors are possible with (3). 

𝐺𝐸,𝑆𝑒𝑛𝑠𝑜𝑟 =  𝐺𝑃𝑂𝐴 +  𝜑 ∙ 𝑅𝑃𝑂𝐴 (3) 

In (3) GPOA (W/m2) is the frontside POA irradiance, φ is the 
ISC bifaciality coefficient at STC (0.67 ±0.02), and RPOA (W/m2) 
is the average rear-side POA irradiance at locations A to D 
measured by a given small-area sensor type. GE calculated with 
(3) uses a consistent sensor type for GPOA and RPOA. For 
example, when using (3) to calculate GE with reference cells, the 
GPOA data comes from a reference cell mounted on the frontside 
POA that is of the same make and model of those used to 
measure RPOA. In the case of GE with pyranometers, we use 
measurements from a class A pyranometer for GPOA in (3). 

III. RESULTS 

The data presented here were recorded from January 4th to 
May 17th, 2022. Neither the sensors nor the modules were 
cleaned regularly, but frequent rainfall in Denmark’s humid 
continental climate leads to minimal soiling ratios throughout 
the year. This assumption was verified with soiling ratio (SR) 
measurements from a DustIQ optical sensor [31]. The mean SR 
during the test period was 0.997, with a minimum of 0.992.  

We apply two data filters in the analysis. First, data are 
removed when the angle of incidence (AOI) between the array 
and the Sun’s beam component is greater than 80°. Secondly, 
an irradiance stability filter removes data when global 
horizontal irradiance (GHI) measurements sampled at 1 Hz 
vary by more than 15 W/m2 within a ±15 second period around 
each RPOA measurement.  

A. Rear and Effective Irradiance (RPOA and GE)  

Fig. 2 shows exemplary RPOA and GE measurements on 
three mostly sunny days.  The diurnal profiles in Fig. 2 were 
selected to demonstrate results under different solar zenith 

                           

  
  

  
  

  
  

 
 

 

   

   

   

   

    

    

                 

          

           

              

                

      

 

  

  

  

   

   

   

 
 
 

 

Fig. 2. Timeseries of effective irradiance (GE) and rear irradiance (RPOA) on three mostly sunny days. The semi-transparent bands around RPOA timeseries 
represent the range of values measured at the sensor positions shown in Fig. 1(b). The reference cells, pyranometers, and photodiodes are sampled every minute. 

The reference modules are sampled every five minutes. The string I-V is performed every 30 minutes on the selected days.  
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angles, and to show two days when string-level measurements 
were performed for GE estimation (May 2nd and May 5th). The 
solar elevation peaked at 13° on January 14th and at 51° on 
May 5th, which explains why light intensity in May is about 
double what it is in January. The semi-transparent bands 
around the RPOA timeseries represent the range of values 
measured at the 3–4 locations shown in Fig. 1(b).  

The photodiode measurements show a positive bias relative 
to other RPOA and GE methods. In Section III.B, we quantify that 
up to 10% of the bias in RPOA measurement is due to spectral 
albedo effects. There are other reasons for the differences in 
RPOA measurement that we have not quantified including the 
different calibration sources and the nonlinearity of signal-to-
irradiance relationships. The different directional responsivities 
of the sensors are not likely causing significant RPOA 
measurement discrepancies because the sensors on the rear-side 
receive only diffuse light for practically the whole test period. 
The reference cells have embedded temperature sensors, which 
are used to translate their output to 25°. The readings from these 
embedded sensors were between −6 °C and 26 °C. Such a 
temperature range could change the pyranometer readings up to 
3% while causing minimal change to the photodiode outputs, 
according to the instruments’ datasheets. 

Fig. 3 shows the differences between RPOA measured with 
the various small-area sensors and RPOA measured with the 
large-area reference modules. Modeled RPOA at locations A to 
D using the view factor approach are shown for reference. The 
differences between methods are shown as cumulative 
distribution functions (CDFs). CDF curves with steeper slopes 
indicate distributions with lower variances. The reference cell 
group shows the steepest slope of all groups with 80% of the 
measurements agreeing to the reference module measurements 
within ±5 W/m2. The reference cell group also shows the lowest 
median bias (0.7 W/m2) of all small-area methods tested. The 
pyranometer, view factor and photodiode methods show 
median biases of −2.4 W/m2, 5.5 W/m2, and 7.5 W/m2 relative 
to the reference module, respectively. The good agreement of 
the reference cell and reference module approaches is not 
surprising given that the two device types share similar—but 
not identical—spectral, directional, thermal, and temporal 
responsivities.  

The RPOA sensor plate in Fig. 1(b) lacks a reference cell at 
location A. Our ray-trace simulations showed that light 
intensity on the top half of the system (i.e., locations A and B) 
is more homogenous than the bottom half (i.e., locations C and 
D). Therefore, a reference cell placed at location A would likely 
have yielded RPOA results comparable to that of location B. 

Fig. 4 shows how the reference module GE measurements 
compare to three small-area GE measurement approaches and 
to GE simulated with the view factor model. Only four curves 
are displayed in Fig. 4 since RPOA in Equation (3) is the average 
of the 3–4 small-area locations. The reference cell 
measurements again show the best agreement to the module-
based measurements, with 83% of the measurements within 
±10 W/m2. Although the pyranometer and reference cell 
measurements show median biases near zero (i.e., −1.1 W/m2 

and −0.4 W/m2), the pyranometers show about twice the 
dispersion, with 77% of measurements within ±20 W/m2 of the 
reference module GE measurements. 

 

Fig. 3. Cumulative distribution functions of the RPOA differences between four 
small-area measurement\simulation methods and the reference modules. The 

thick solid lines show the average of 3–4 locations within a given method.  

 
Fig. 4. Cumulative distribution functions of GE differences between small-area 

measurement\simulation methods and the reference module. 

Fig. 5 summarizes the differences between the small-area 
methods and the reference module measurements in terms of 
mean bias error (MBE), mean absolute error (MAE), and mean 
absolute percentage error (MAPE). The MBE values are 
comparable to the 50% values of the CDFs in Fig. 3 and Fig. 4, 
but there are small deviations because the distributions are non-
normal.  

Fig. 5 shows that the reference cell approach nearly always 
gives the lowest MBE, MAE and MAPE of all methods, 
regardless of the reference cell’s rear-side location. The lowest 
MAE and MAPE are achieved when the reference cell is placed 
at location B (+30% from center) or location C (−30% from 
center). This suggests that a reference cell placed at one, or 
both, locations could serve as a representative location of the 
effective rear-side irradiance – so long as the fixed-tilt 
substructures are geometrically similar to those used here. This 
result differs from [10] where ray-trace simulations suggested 
that, for single-axis trackers, placing irradiance sensors at 20% 
from the array edges yields the closest value to the average. 
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However, the result in this work is consistent with [32] where 
ray-trace simulations suggested that, for four-in-landscape 
fixed tilt systems, placing rear-side sensors 68% from the lower 
edge is representative of the average irradiance. Location B in 
Fig. 1(b) is 65% from the lower edge. 

A comparison of bifacial modules and pyranometers for GE 
measurements on trackers was recently performed by [21]. 
Their results showed pyranometer GE was on average 3.6% 
higher than reference module GE. The results in Fig. 5 show a 
6.6% MAPE for pyranometer versus reference module GE. 
Adjustments for AOI and spectral dependencies were made to 
the pyranometer GE in [21], but were not done here, which may 
be the cause of discrepancy between the two works.   

 
Fig. 5. Error summaries for RPOA and GE measurements using various methods. 

The mean bias error (MBE), mean absolute error (MAE), and mean absolute 
percentage error (MAPE) for each method and location are relative to the 

reference module results. The solid bars show RPOA and hatched bars show GE.  

Having established that the reference cell and reference 

module measurements show the strongest correlation for RPOA 

and GE, we now provide a deeper look at their relationships. 

Fig. 6 shows the difference between RPOA measured by the 

reference module pair and RPOA measured by the reference cells 

(average of locations B and C). The color scale in Fig. 6 reveals 

that the RPOA residuals have a dependence on the ratio of DHI 

to GHI, also known as the diffuse fraction (FD).   

Fig. 7 shows the difference between GE measured by the 

bifacial reference module and GE from the monofacial reference 

cell measurements calculated with (3). The difference between 

reference module and reference cell GE measurements is less 

than 1% when AOI is less than 30° and the irradiance is 

between 900 and 1100 W/m2. The reference panels have an 

antireflective coating (ARC) on the front glass whereas the 

reference cells do not. This means that the ISC of the two devices 

may not follow the same AOI dependency.  
The green asterisks in Fig.7 show GE results using string-

level ISC measurements on three days. The trend of the string-
level measurements mostly follows that of the module-level 
measurements. However, larger differences sometimes occur, 
which may be attributed to differences in ISC between modules 
within the string, edge brightening effects, and\or time 
synchronization between measurements. 

 

Fig. 6. Difference between RPOA as measured by the large-area reference 
module pair and RPOA measured with small-area reference cells. The x-axis 

shows the average of reference cell RPOA measurements at locations B and C. 

The color scale shows the fraction of diffuse light in the sky hemisphere.    

 

Fig. 7. Difference between GE as measured by the large-area bifacial reference 

module and GE measured with small-area reference cells. The asterisk symbols 
indicate GE calculated from string-level ISC measurements on select days. The 

x-axis shows GE from the reference cell measurements. The error bars at 1000 

W/m2 represent the ±2.2% uncertainty of the laboratory measurement of ISC at 

STC. The color scale shows the fraction of diffuse light in the sky hemisphere. 

B. Spectral Implications 

Here we show how spectral effects can influence the sensor 
outputs. Fig. 8(a) shows typical RPOA spectra recorded during 
green vegetation—the predominant albedo during the 
measurement campaign—and a condition with partial snow 
coverage. Consistent with [12] – [14], the green grass RPOA 
spectrum displays a heavy redshift relative to the AM1.5G 
reference spectrum. Snow spectra such as that shown in Fig. 
8(a) were observed on three days during the test period. Such 
spectra demonstrate how significantly the redshift is reduced 
during snow conditions. Fig. 8(b) shows the spectral 
responsivities (SR) of the various devices used in this work. 
The PERC cell’s backside SR is taken from the PERC 
measurements performed in [14], the photodiode and 
pyranometer SR files were provided by the manufacturer, and 
the reference cell SR was digitized from the datasheet.  
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Fig. 8. (a) normalized rear-side spectral irradiance measured at midday on clear 

days with green grass albedo and when the ground is partially covered in snow. 
The AM1.5G calibration spectrum is shown to illustrate the spectral shifts 

observed in the field. (b) normalized spectral responsivity of a PERC cell’s 

backside, photodiodes, pyranometers and reference cells used in this work.  

With the continuous in-plane spectral measurements and 
equation 7 of IEC 60904-7 [33], we derive spectral mismatch 
(SMM) for the rear-side POA. 

𝑅𝑒𝑎𝑟 𝑆𝑀𝑀 =  
𝐺𝑅𝑒𝑓 ∙ ∫ 𝑆𝑅(𝜆) ∙ 𝑅𝑃𝑂𝐴(𝜆)𝑑𝜆

𝑏

𝑎

𝑅𝑃𝑂𝐴 ∙ ∫ 𝑆𝑅(𝜆) ∙ 𝐺𝑅𝑒𝑓(𝜆)𝑑𝜆
𝑏

𝑎

 (4) 

SR(λ) is the normalized device spectral responsivity, 
RPOA(λ) is the normalized rear-side spectral measurement 
recorded every five minutes, and GRef (λ) is the normalized 
AM1.5G reference spectrum [34]. The 300 nm to 1100 nm 
integration limits are determined by the sensitive range of the 
spectroradiometer. In (4), RPOA is calculated as the integral of 
RPOA(λ) and GRef is calculated as the integral of GRef (λ) over the 
same integration limits. SMM values greater than 1 indicate 
spectrally induced gains in photocurrent relative to AM1.5G, 
and SMM values less than 1 indicate spectrally induced losses. 
If SMM is ignored, the fractional measurement error due to 
spectral shift is 1 – SMM.  

Fig. 9 shows the relationships between the rear-side SMM 
factors of each device type shown in Fig. 8(b). Each data point 
in Fig. 9 is calculated with a single rear-side spectral 
measurement. Fig. 9 therefore contains 2,655 rear-side SMM 
factors, for each device, that collectively represent the actual 
spectral conditions recorded during the four-month test period. 
The contours around regression lines in Fig. 9 highlight 90% of 
the SMM values. When snow conditions were present, the rear-
side SMM of the Silicon-based sensors is less than 1.10. 

The photodiode shows the highest SMM due to its narrow 
SR and weak response in the visible spectrum (400–700 nm). 
Some commercially available photodiode models have a lower 
visible light SR than that shown in Fig. 8(b) [35]. For such 
devices, we calculated SMM as high as 1.5 with our RPOA 
spectra above green grass. The reference cell SMM is 8% to 
11% lower than that of the photodiode. When the reference cell 
and photodiode measurements are adjusted by a factor of 
1/SMM, then the RPOA differences shown in Fig. 2 are reduced 
in half. The remaining differences may be due to different 
calibration sources.  

 
Fig. 9. Bivariate of spectral mismatch (SMM) calculated with the rear-side 

spectral measurements during the 4-month test period. The regression shows 
rear-side SMM of the photodiode, pyranometer, and reference cell versus the 

rear-side SMM of a PERC cell. The black 45° line indicates a spectral match to 

the PERC cell’s rear side. The contour around each regression line indicates 

where 90% of the SMM values are located.  

Fig. 9 shows that the reference cell SMM is 5% to 7% lower 
than PERC cell backside. In other words, the two are not 
spectrally matched and 5% to 7% of the measured differences 
are attributable to spectral effects. Although this result runs 
counter to the common perception that silicon reference devices 
are similar enough to silicon power-generating devices such 
that no spectral corrections are needed [36], RPOA is typically 
an order of magnitude less than GPOA. Therefore, spectral errors 
in RPOA measurements are likely to impact yield predictions of 
bifacial PV systems by less than 1%. 

Equation (4) assumes that the reference device is spectrally 
flat. Apart from some absorption of UV light, the pyranometer 
used in this work has a spectrally flat response and therefore its 
rear-side SMM is always near 1, wherein 90% of values are 
between 1.001 and 1.002. The spectroradiometer’s 300 – 1100 
nm sensitive range presents limitations because the 
pyranometer has a 280 – 3000 nm spectral range. However, 
rear-side SMM calculated over the full 280 – 3000 nm range 
was comparable (1.002) when using AM1.5G multiplied by the 
green grass spectral albedo from SMARTS as RPOA(λ) [37].  

C. Equivalent Cell Temperature (ECT) Results 

Back-of-module temperature (TMOD) measurements 
performed on bifacial modules will inevitably partially-shade 
some active area. The shading induced by a single TMOD sensor 
is not likely to create local hotspots when albedo is low (i.e., < 
0.3). However, bifacial TMOD measurements during high albedo 
conditions such as snow, or during periods when the sun is 
behind the PV structure, may put the partially shaded cell into 
reverse bias. The VOC data from the reference panels and string 
offer an opportunity to avoid rear-side sensor shading by 
calculating TMOD with the equivalent cell temperature (ECT) 
approach [38]. Here we describe our experience applying the 
ECT procedures to the outdoor VOC measurements of a single 
bifacial module, and to a string of 24 bifacial modules with (5). 
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𝐸𝐶𝑇 =  𝑇𝑆𝑇𝐶 +  
1

𝛽
[

𝑉𝑂𝐶

𝑉𝑂𝐶,𝑆𝑇𝐶

− 1 − 𝑎 ∙ ln (
𝐺

𝐺𝑆𝑇𝐶

)] (5) 

According to [38], ECT in (5) represents the average 
temperature (°C) at the p-n junctions within a module or array, 
VOC is the outdoor measured open-circuit voltage (V), β is the 
temperature coefficient of VOC (1/°C), TSTC is 25 °C, VOC,STC is 
the open-circuit voltage measured at STC in the lab (V), GSTC is 
1000 W/m2, G is the irradiance (W/m2), and a is a dimensionless 
parameter that depends on the module’s voltage-irradiance 
response. The value for the a coefficient was determined from 
our laboratory measurements at 200 W/m2 and 800 W/m2. We 
applied a self-referencing approach by substituting G with the 
field measured ISC, and GSTC with the lab measured ISC,STC. We 
looked to recent literature [39] to find a representative β value 
for PERC (−0.31%/°C) as the DTU lab is not equipped to 
measure β of the large-area 595 Wp modules. 

For single panel ECT measurements, the error (ECT − TMOD) 
is calculated with a single PT1000 sensor on the bifacial 
reference panel, while for string-level ECT measurements, the 
error is with the average of four PT1000 measurements across 
the string (Fig. 1a). We adjust the back-of-module surface 
temperature TMOD to cell temperature using the King model [40] 
for glass-glass modules, which adds an offset of 3 °C ∙ (GE/1000 
W/m2) to the measured TMOD. A recent field trial [41] showed 
that this simplistic approximation of cell temperature is 
reasonably accurate. 

Fig. 10 shows the difference between ECT and TMOD when 
GE ≥ 200 W/m2. In this irradiance range, the MAE is 2.5°C and 
2.1°C for the module and string measurements, respectively. 
The MBE is similar at 2.4°C and 2.1°C, respectively. The error 
has a positive correlation with irradiance. 

There are several uncertainty contributions that must be 
considered when evaluating the error, including the ECT model 
parameter values, the temperature non-uniformity of cells within 
a module, the difference between back-of-module surface and p-
n junction temperature, the PT1000 sensor accuracy, and the 
thermal contact between PT1000 sensor and module surface.  

 

 
Fig. 10. Errors between the equivalent cell temperature (ECT) method and back 

of module temperature (TMOD) measurements applied to a bifacial module and 
a bifacial string. The x-axis shows effective irradiance (GE) calculated with 

reference cell measurements. The data shown here includes four months of 

module measurements and three days of string-level measurements.  

We found that the ECT model is most sensitive to the value 

of the VOC,STC and β. For example, the expanded uncertainty of 

the VOC,STC measurements is ±0.8% (i.e., ±0.3 V for a single 

module). Varying VOC,STC within uncertainty results in a ±2.4° 

change in ECT. Meanwhile, the stated accuracy of the class A 

PT1000 sensors used to compare to the ECT method is ±1°C. 

Given, the many uncertainties, our results suggest that the ECT 

method via VOC measurements is a practical approach for 

monitoring bifacial module temperature. Previous works have 

proposed that the ECT method is more accurate than direct TMOD 

measurements of monofacial modules [42], largely because of 

the challenges and uncertainties associated with direct TMOD 

measurements [43]. 

D. Bifacial Performance Ratio (PRBIFI) 

IEC 61724-1 [3] states that the classic performance ratio 
(PR) formula [44] can be transformed to bifacial PR (PRBIFI) if 
an adjustment is made for the rear irradiance. This is done in 
practice by multiplying GPOA by a factor of either BIFsensor or 
BIFmodule. When small-area sensors such as reference cells are 
used to measure RPOA, (6) is used to calculate BIFsensor.   

𝐵𝐼𝐹𝑠𝑒𝑛𝑠𝑜𝑟 = (1 + 𝜑𝑝𝑚𝑎𝑥 ∙ 𝜌𝑖) (6) 

Where bifaciality φpmax is the ratio of rear to frontside PMAX 

at STC and the optical gain ρi is the ratio of RPOA to GPOA. When 
the reference modules are used to derive PRBIFI, BIFmodule is 
calculated with (7). 

𝐵𝐼𝐹𝑚𝑜𝑑𝑢𝑙𝑒 =
𝐼𝑆𝐶,𝐵𝑖𝑓𝑖

𝐼𝑆𝐶,𝑀𝑜𝑓𝑖

 
(7) 

Where ISC,Bifi and ISC.Mofi are the ISC measurements of the 
bifacial and monofacial panels, respectively. Since RPOA from 
small-area sensors is used to calculate PRBIFI with (6), the 
question arises: which RPOA location to use and from which 
sensor type?  

 
Fig. 11. Variability of the bifacial performance ratio PRBIFI calculated according 

to the IEC 61724-1 using three small-area sensor types, an optical model, and 
a reference module pair. All sensors are eight meters from the nearest array 

edge. See Fig. 1(b) for illustration of RPOA sensor locations A to D.  

Fig. 11 shows the 14.2 kWp system’s PRBIFI calculated with 
the five methods and four rear-side locations used in this work. 
Frontside GPOA from the same Class A pyranometer is used in all 
calculations, which means that all variation of PRBIFI in Fig. 11 
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is caused by the RPOA measurement used. Fig. 11 shows that 
PRBIFI differs up to 3% with the RPOA methods considered here. 
The 14.2 kWp system used for study has a 1.7 m ground 
clearance, which is higher than typical utility-scale fixed tilt 
systems. The spread of possible PRBIFI values is likely to 
increase with lower ground clearance because nonuniformity of 
RPOA will be higher [8] [32].  

E. Comparisons of Measured and Modeled DC Power 

Here we compare the measured DC power of the 14.2 kWp 
string to modeled DC power using the various GE measurement 
methods. We model DC power using the PVWatts model [45], 
which calculates DC power with (8). 

𝑃𝐷𝐶 =  
𝐺𝐸

1000 𝑊/𝑚2
∙ 𝑃𝑆𝑇𝐶[1 + 𝛾 ∙ (𝑇𝑀𝑜𝑑 − 25 ℃)] 

(8) 

Where PDC (W) is the modeled string-level DC power, GE 
(W/m2) is the effective irradiance from either the bifacial 
reference module, reference cells, pyranometers, or 
photodiodes, PSTC (W) is the average module power measured 
at STC (Table 2) multiplied by the number of modules in the 
string, γ (%/°C) is the temperature coefficient for power, and 
TMOD (°C) is the module temperature measured at four locations 
on the back of the array.  

Equation (8) does not account for angular-dependent 
reflection losses, spectral shifts, or low-irradiance performance. 
Therefore, the results shown in Fig. 12 only contain data where 
AOI < 45°, optical air mass (AM) is between 1 and 2, and GPOA 
> 700 W/m2. Recall that GE calculations for pyranometers use 
frontside GPOA from a class A device and use the average of 
class C devices for RPOA. 

Table 3 shows the error summary when the various GE data 
sources are used to predict string-level power. The mean 
absolute error (MAE) and mean bias error (MBE) are 
normalized to the 14.2 kWp rating of the modeled array. The 
results show that photodiodes yield the highest MAE, MBE and 
MAPE, which is consistent with the comparisons shown in Fig. 
2 through Fig. 5. The normalized MAE and MAPE are all 
within about 0.5% when the pyranometers, reference cells and 
reference modules are used for GE in the modeling. However, 
the reference cell data provides the lowest bias relative to the 
field measurements.  

 
Fig. 12. Bivariate regressions of modeled DC power using four different 

sources for effective irradiance versus measured DC power. 

TABLE 3. ERROR SUMMARY RESULTING FROM USE OF DIFFERENT GE DATA 

SOURCES WHEN MODELING DC POWER. THE MEAN BIAS ERROR AND MEAN 

ABSOLUTE ERROR ARE NORMALIZED TO THE 14.2KW RATING OF THE ARRAY. 

GE Data Source MBE 
(W/kWp) 

MAE 
(W/kWp) 

MAPE 
(%) 

Photodiodes 46.4 49.1 6.1 

Pyranometers 19.0 23.6 3.0 

Reference cells   1.2 23.3 2.9 

Reference module 13.2 27.0 3.4 

IV. DISCUSSION 

We have compared rear plane-of-array (RPOA) and effective 
irradiance (GE) measurements made with calibrated reference 
modules against measurements from small-area sensors that 
included photodiodes, pyranometers and reference cells. The 
results showed that the reference cell RPOA and GE 

measurements had the strongest correlation to RPOA and GE 
measured with reference modules. The average agreement 
between the two approaches was 9% relative, 4 W/m2 absolute 
for RPOA and 4% relative, 7 W/m2 absolute for GE. We found 
that reference cells located at ±30% from the center of the fixed-
tilt array had the best agreement to the reference module RPOA 
measurements. Thus, a single small-area rear facing reference 
cell can provide comparable results to the large-area reference 
module approach.   

The GE derived from ISC measurements of a 24-module 
string agreed to module-level GE measurements within 2.5% or 
better when GE was near one-sun. Although the string-level I-
V measurements were limited to three clear days, the results are 
encouraging that continuous string-level I-V scans (e.g., made 
by inverters) can be used to estimate GE of healthy bifacial PV 
arrays. We leave deeper investigations of effective irradiance 
modeling via string-level I-V for future work.   

We examined spectral effects in RPOA measurements. 
Although the spectral distribution of RPOA differed significantly 
from the AM1.5G reference, the overall impact of rear spectral 
mismatch is less than 1% when considering that the dominant 
contribution to bifacial performance is frontside irradiance.  

We also evaluated the potential of bifacial reference panels 
to measure cell temperature with VOC measurements. We found 
mean absolute errors of 2.5°C and 2.1°C when performing this 
method with module and string-level bifacial measurements, 
respectively. This level of error translates to approximately 1% 
uncertainty in power measurements of modern Silicon modules. 
Thus, the VOC data can add value to continuous I-V 
measurements by offering a method that avoids the rear-side 
shading created by conventional module temperature sensors.  

It was shown that bifacial performance ratios can vary by 3% 
based on the placement and type of small-area sensor used for 
RPOA measurements. Using bifacial reference panels for 
performance ratio calculations can reduce this variation because 
they circumvent the need to identify representative small-area 
sensor locations.  

Finally, we used the GE data to predict string-level power. 
GE data from pyranometers, reference cells and reference 
modules resulted in 2.9–3.4% average errors relative to 
measured power. The comparable prediction errors between 
traceable small-area irradiance sensors and calibrated modules 
suggests that reference modules are a suitable and accurate 
approach for measuring irradiance in bifacial systems. 
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V. CONCLUSION 

This work investigated the capability of bifacial modules, 
calibrated per the single-side equivalent irradiance method of 
IEC TS 60904-1-2, to be used as large-area sensors that measure 
RPOA and GE. A supplemental monofacial reference module was 
used in the field to decouple the rear irradiance RPOA from the 
effective irradiance GE. We compared the reference module 
measurements to three types of commonly used small-area 
sensors, all with traceable calibrations.  

Out of all the small-area sensors tested, we found that 
reference cell measurements of RPOA and GE had the best 
agreement to those made by reference modules. The array of 3–
4 rear facing sensors showed that a single small-area RPOA sensor 
location can agree to large-area reference module RPOA 

measurements by 4 W/m2 absolute, 9% relative. PVWatts yield 
predictions that used GE data from pyranometers, reference 
cells, and modules were within 2.9%–3.4% of measured string-
level power, thereby demonstrating the absolute accuracy of the 
bifacial reference module approach.  

We found that the choice of small-area sensor type and 
mounting location adds at least ±1.5% uncertainty to bifacial 
performance ratio calculations. Calibrated reference modules 
can be used to reduce said variation in bifacial performance ratio 
calculations, while at the same time simplifying the monitoring 
system design and offering the ability to estimate cell 
temperature through the VOC of the I-V curve. 
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Abstract: The energy produced by bifacial photovoltaic (PV) arrays can be augmented via albedo enhancements. However, the
value of the additional energy must outweigh the costs for such modifications to be economically viable. In this work, the
electrical performance and economic value of six 13 kWp crystalline-silicon (c-Si) PV arrays with distinct configurations are
evaluated. The system designs include horizontal single axis trackers (HSAT) and 25° fixed-tilt structures, monofacial and
bifacial PV panels, and low and high ground albedo. The value of the system designs is assessed using onsite electrical
measurements and spot prices from the Nord Pool electricity market. We find that HSAT systems increase the annual value
factor (VF) by 4% and decrease levelized cost of energy (LCOE) by 3.5 EUR/MWh relative to fixed-tilt systems. The use of
bifacial panels can increase the VF by 1% and decrease LCOE by 4.0 EUR/MWh. However, a negligible VF increase and
modest LCOE decrease was found in systems with bifacial panels and ground albedo enhancements. Although our results
show that albedo enhancements result in lower LCOE than designs without, the uncertainty in upfront and ongoing costs of
altering the ground in utility-scale PV parks makes the solution presently unadvisable.

1 Introduction
Recent years have shown a steady increase in bifacial photovoltaic
(PV) installations because the light that impinges on the backside
of a bifacial PV array can be converted into useable photocurrent.
Historically, PV cells based on crystalline silicon (c-Si) have
featured a rear side electrical contact fully covered in aluminium,
which inhibits rear side light absorption. In contrast, the rear side
of bifacial PV cells is only partially covered with metallisation [1].
When such bifacial cells are assembled into a module with a
transparent rear cover (such as glass or a transparent back sheet)
there is potential for considerable energy gains compared to
monofacial (single-sided) modules that are deployed in the same
conditions. The growth of bifacial PV implementation in large-
scale systems is driven by the continuous reductions in PV module
prices [2, 3] to the extent that the ITRPV forecasts that bifacial PV
cells will account for 70% of the market share by 2030 [4].

The increased energy produced by a bifacial PV system over a
monofacial PV system with equivalent front side power operating
in the same conditions is known as the bifacial energy gain (BEG).
The BEG is attributed to light reaching the backside of a PV
system, which typically consists of diffuse (scattered) light from
the ground, sky, or neighbouring PV rows, but the contributions of
direct beam light are possible when the sun is behind a fixed-tilt
system. In utility-scale PV parks, BEG is typically between 5 and
12%, depending on the configuration and the ground albedo [5–8].
Bifacial PV has potential to reach the lowest levelised cost of
energy (LCOE) of any commercially available PV technology
because such bifacial energy gains are achievable using the same
land area that is used for monofacial PV designs while maintaining
comparable upfront costs [9, 10]. A study by Rodriguez-Gallegos
et al. [11] assessed the economics of different PV designs and
found that bifacial PV on single-axis trackers achieves the lowest
LCOE for >90% of the world's land area.

In 2018 (the time of this work's inception) the state-of-the-art
bifacial PV simulation software lacked wide-scale validation [12],

but according to a 2020 PV technology roadmap, bifacial PV
model validation remains an urgent task [13]. Recent efforts have
been made by the authors in [14–17] to close this gap. Still, bifacial
PV installations do not have the decades of field experience that
conventional monofacial PV technology has [18, 19]. The
uncertainty surrounding bifacial PV performance results in
perceived risk by investors, and consequently, an increase in
project soft costs such as interest rates and cost of capital.
Therefore, in 2018 the Danish-based renewable energy developer
European Energy A/S constructed a 420 kWp pilot project to test
bifacial PV technology against monofacial counterparts on large-
scale fixed tilt (FT) structures and horizontal single-axis trackers
(HSAT) [20]. The site was constructed to observe real-world
bifacial gains under different conditions, to benchmark those gains
against estimates made by reduced-order bifacial PV performance
tools such as PVsyst and SAM, and ultimately to determine the
economic value of bifacial PV on trackers within the Danish
context.

The literature contains several studies that experimentally
demonstrate the annual energy production gain of real HSAT
systems versus equator facing FT systems. For example, a three-
year study performed by Kinsey et al. [21] showed that the utility-
scale HSAT systems in Andhra Pradesh, India produced a 14%
higher yield than the latitude tilted static systems collocated at the
same site. Another field study performed in Boca Raton, Florida
showed that a 7.5 kWp HSAT system produced about 15% more
energy on an annual basis than a latitude tilted static reference
system [22]. Meanwhile, simulations indicate that the advantage of
HSAT over static systems with optimally aligned fixed-tilt
structures is between 10 and 25% depending on the ground cover
ratio (GCR) and site latitude [23, 24]. It has been demonstrated that
the BEG is mostly additive to the tracker gain [25].

Although PV power plants are commonly designed to maximise
annual generation, when the business model is based on power
markets the interesting parameter is not the total production or
even the average cost of the energy, but the market value of the
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electricity PV generated relative to the capital and ongoing costs
within the investment horizon, which is typically 10 years. As
shown in Fig. 1, the hourly power prices of the Nordic Nord Pool
spot market [26] (also known as the ‘day-ahead’ market) are
dynamic on hourly, daily, seasonal and yearly timescales. This
price variability is driven considerably by the intermittent nature of
renewable resources (e.g. hydro, wind and solar). Such price
variability occurs not only in Scandinavia but in all Northern
Europe [27, 28].

The profiles in Fig. 1 consistently show a midday drop in
pricing due to high supply and low demand. This is consequentially
the same time that equator facing fixed-tilt PV systems have their
peak production on clear sky days. Bifacial PV and HSAT
technologies – whether used individually or together – offer the
possibility to shift peak production to match times of peak demand.
Investigations to this end have been conducted for vertically
mounted east-west facing bifacial systems (VBPV), and their
potential to match supply and demand profiles, stabilise the grid
and increase self-consumption [29–31]. Simulations performed by
Van Aken [32] have shown that bifacial on HSATs can generate
more revenue per watt peak than VBPV in climates with both low
and high fractions of diffuse irradiance.

We presented a preliminary version of this work in [33], but
expand on it here by presenting nearly 1 year of energy production
from six different systems installed at the test site. The six systems
include bifacial and monofacial PV arrays mounted on a south-
facing 25° tilt static structures and HSATs wherein the bifacial
systems are above either natural grass or a highly reflective white

tarp. The use of reflective materials to enhance bifacial gain has
been studied by several authors [34–37], but the validation in these
studies has only been made on small systems consisting of an
individual bifacial cell or panel. Furthermore, according to a recent
bifacial PV review paper [38], there is still an open question as to
whether the cost of increasing the albedo is worth the additional
energy yield. The present study investigates the extent to which
largescale bifacial PV on HSATs above highly reflective ground
can optimise not only the annual generation but also the value of
generation compared to monofacial static tilt designs. Additionally,
the paper explores the potential for bifacial PV systems over highly
reflective materials to create value-driven PV designs, wherein the
bifacial boost may be exploited to load shift towards periods of
high grid demand. This is achieved with measurements and
simulations of large-scale bifacial PV systems that have structural
dimensions analogous to those found in utility-scale installations.

2 Methods
2.1 Bifacial test site

Fig. 2 shows an aerial view of the test site and highlights the six
systems investigated in this work. The balance of system (BoS) is
identical in all systems investigated with the exception of the
following differences: the orientation of the PV panels (static or
tracked), the cell type (monofacial or bifacial), and the ground
albedo (low or high). A description of the systems is given in
Table 1. The natural grass vegetation is used to represent a low
albedo (reflectance) scenario and a white polymeric tarp is used to
represent a high albedo scenario. Ground view images of the FT
and the HSAT systems above the white tarp are shown in Fig. 3. 

Fig. 4 summarises the measured albedo of the two ground
surfaces during a nine-month measurement campaign. Both
surfaces exhibit a slight reduction in reflectance during winter,
which is likely due to low sun angles but could also be attributed to
an increase in the dew and moisture on the ground during that
period. Also notable is that the white tarp's reflectance gradually
degrades over time – about 0.07 (0.7%) per month. This
degradation is expected, and the material's integrity is not expected
to last longer than five years. Please note that the white tarps
underneath the PV structures in Fig. 3 only extend about ± 2.0 m
from the torque tube axis and, therefore, are not representative of
uniform ground coverage.

We have used view factor calculations to estimate the effective
reflectance along the vertical chord of the backside array for the
white tarp scenarios. In the case of the FT structure, the percentage
of reflected light originating from the white tarp out of the total
ground reflected light is 65% for the bottom cells in the array. In
other words, 35% of the ground reflected light received by bottom

Fig. 1  Variation of hourly Danish spot price from 2013 to 2020. The lines
represent the mean hourly price within each month. The error bands show
one standard deviation of the mean. Prices are in Danish Kroner (DKK)

 

Fig. 2  Aerial view of the 420 kWp test site. There are eight HSATs on the western side of the park and eight south-facing FT rows on the eastern side. The six
systems studied here are highlighted according to the legend. The peak capacity of each system studied here is about 13 kWp
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cells comes from surfaces other than the white tarp. The percentage
is lower for cells at the top of the FT array: ∼43% of the total
ground reflected light received by these cells originates from the

white tarp. In the case of the HSAT, the calculation is dynamic. At
the extreme angle of 60° we find that for cells at the bottom, ∼96%
of the ground reflected light received originates from the white
tarp, with a reduction to just 35% for cells at the top of the array.
We demonstrated in [39] that the electrical mismatch losses
induced by such gradients amount to <1%. Finally, ray-trace
simulations performed by Rhazi et al. [40] have shown that
increases in the coverage area (m2) of highly reflective materials
below bifacial systems do not correspond with linear increases in
bifacial energy gain. This indicates that adding additional white
material is not likely to improve project economics beyond what is
achievable with the modest amount of white material shown here.

The FT arrays are adjustable but are oriented with a 25° tilt
angle during the period studied here. This tilt angle was chosen to
reduce the mechanical stress on the structure compared to a more
optimal tilt angle of 45°, which in an unshaded installation, could
increase the annual generation by about 3% according to our
PVsyst simulation. The horizontal single-axis tracker (HSAT) is
mounted on a north–south oriented axis, where the rotation is
varied from −60° in the morning (facing east) to +60° in the
evening (facing west) by an algorithm that uses astronomical
equations to track the sun in azimuth. The angular position is
monitored by inclinometer sensors mounted on the back of the
trackers. These data are within 2° of the tracker algorithm
described by Marion and Dobos [41] for 50% of timestamps, and
within 8° for 95% of the timestamps presented here when
backtracking is not active.

Production data are recorded every minute from all installations
on the DC and AC sides independently of their respective inverters.
However, in some cases, there are systems with unique
configurations (e.g. natural grass and white tarp) connected to the
same inverter. Although such systems are connected to dedicated
maximum power point trackers (MPPTs), it is not possible to
distinguish between their performance on the AC side. Therefore,
only maximum power (PMAX) measurements from the DC side are
used in this work and the partial load efficiency curve from the
inverter manufacturer is used to model AC power. The monofacial
and bifacial system have the same cell type (p-PERC) and are from
the same manufacturer, but the front side rating of the bifacial
modules is 10 W lower than the monofacial ones. Therefore, the
AC power is normalised by the ratio of two front side power
ratings to make their performance comparable. The analysis
presented here is limited to the period where the polymeric white
tarps were installed underneath the HSAT and FT systems, which
spans from August 2019 to June 2020 (11 months). Unfortunately,
the inverter connected to the bifacial FT system above the white
tarp experienced a failure during Denmark's COVID-19 lockdown,
which resulted in three months of lost data. Therefore, the results
from this system are excluded from the analysis in some cases.

2.2 Economic analysis

The real-time hourly spot price of electricity at the back-feed
location is used to determine the economic value generated by the
six systems. However, as explained by Hirth [42] it is often more
meaningful to study the relative, rather than the absolute market
value. Therefore, the value of the energy generated by the six
systems is not estimated and compared solely based on hourly
Nord Pool Spot power market prices and income. We additionally

Table 1 Technical descriptions of the six PV systems studied in this work. Note that ground clearance for tracker (HSAT)
systems refers to the torque tube height while for FT systems it refers to the height from the lowest module edge to the ground
System description (structure-PV
array-ground)

PV Array Average ground
Albedo

Row-to-row
pitch, m

GCR Ground clearance,
m

FT-monofacial-grass 44× 305 WP p-PERC (13.4 kWP) 0.22 7.6 0.40 1.56
FT-bifacial-grass 44× 295 WP p-PERC (13.0 kWP) 0.22 7.6 0.40 1.56
FT-bifacial-white tarp 44× 295 WP p-PERC (13.0 kWP) 0.6 7.6 0.40 1.56
HSAT-monofacial-grass 44× 305 WP p-PERC (13.4 kWP) 0.22 12 0.28 2.10
HSAT-bifacial-grass 44× 295 WP p-PERC (13.0 kWP) 0.22 15 0.22 2.10
HSAT-bifacial-white tarp 44× 295 WP p-PERC (13.0 kWP) 0.6 15 0.22 2.10
 

Fig. 3  Ground level views of the test site
(a) South facing FT rows with bifacial PV and white tarp, (b) HSAT with a bifacial
and white tarp. The white tarp coverage in both systems is ∼±2 m from the torque tube

 

Fig. 4  Box plots of monthly albedo measured onsite during a nine-month
campaign. The connecting lines show the monthly means. The white tarp
measurements are made with upward and downward facing EKO ML-02
sensors. The grass measurements are made with upward and downward
facing Kipp & Zonen CMP10 sensors. Both measurements are made in
unshaded areas of the park
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use the value factor (VF) as used in [31, 43], which is the ratio of
the income generated by a specific PV system relative to the
average spot price during the period analysed the following
equation:

VF = P̄PV
P̄

(1)

Derivations of the VF numerator and denominator are shown in (2)
and (3), respectively. In (2), P̄PV is the calculated hourly spot price
(Pt) weighted according to the hourly electricity (Et) generated by a
given PV system. And in (3), P̄  is the base price calculated simply
as the arithmetic mean of all spot prices during the period T. Our
VF calculations only consider times when PV generation is greater
than zero (i.e. night data is excluded).

P̄PV =
∑t = 1

T Et ⋅ Pt

∑t = 1
T Et

(2)

P̄ = 1
T ∑

t = 1

T
Pt (3)

The VF would equal one if a PV system generated a flat (i.e. time-
invariant) production curve during the analysed period. A VF of
less than one means that the value of electricity produced is less
than what a constant production profile would earn. When
comparing the production curves of two or more generating
technologies, increasing VF simply indicates that the power
production curve is better aligned with high spot prices.

Additionally, we use the LCOE to compare the different system
types in terms of their upfront and ongoing (i.e. lifecycle) costs and
the electricity generated during a 30-year project period. The full
LCOE model we use here is described in Annex 2 of [44], but the
basic form of the LCOE calculation is shown in the following
equation:

LCOE = ∑
t = 1

N Ct / 1 + d t

Et / 1 + d t (4)

where Ct is the total expenditures (capital, operation and
maintenance, debt and equity service etc.) in year t and Et is the
energy generated in year t. All cashflows are discounted by the
discount rate d. Many input values within the LCOE equation are
highly project-specific (e.g. cost of capital and debt, land costs,
local taxes etc.) and as such, the absolute LCOE values published
here will vary for PV projects in different regions. However, the
LCOE remains a practical and intuitive tool for assessing the costs
and economic benefits of different energy generation technologies
relative to each other.

2.3 Simulation

Since the specific installation conditions of this test site are not
likely to yield the optimum annual generation, revenue, or value
factor achievable with bifacial PV, we have performed simulations
where the installation parameters known to affect bifacial PV
performance were varied (e.g. row spacing, module height, tilt
angle etc.). These simulations have been performed on an hourly
basis using the System Advisor Model (SAM), free software from
the US National Renewable Energy Laboratory [45]. The model
parameters, coefficients and settings have been estimated in a
parallel work [17], and are also used here. The site-specific
meteorological data have been measured at DTU Fotonik's Solar
Radiation Station located ∼400 m from the PV test field.

3 Results
3.1 Electrical performance and economics

Fig. 5 shows specific yields of the six PV systems and a statistical
display of daily spot prices at the test site location. The average

production profiles are illustrated for each month. Compared to the
FT systems, the performance of HSAT systems generally have
longer generation periods over the day, especially in summer
months when the sun's path is higher in the sky and spans a wider
range of azimuth angles. The HSAT systems show higher
generation in the morning/evening, but lower generation during
midday when the tracker is oriented horizontally, and the sun's
angle of incidence is higher relative to the HSAT plane than it is to
the FT plane. Nevertheless, the HSAT production profile
corresponds well to the typical variation of the power market prices
over the day – wherein relatively high prices are observed in the
morning/evening and relatively low prices observed during
midday. Little difference is observed in FT versus HSAT
production on cloudy days when 100% of the solar irradiance
comes from diffuse light. Under such conditions, similar income is
expected among all PV systems. The income from each system is
calculated by simply multiplying the energy generation (MWh) by
the spot price (DKK/MWh) at the time the energy was generated.
The Danish Kroner is part of the European Exchange Rate
Mechanism, and as such, it is tied to the Euro within ± 2.25%.

As expected, the income from each system shows a strong
correlation with the energy generated (R2 = 0.995). Fig. 6 shows
the total income plotted as a function of the total energy generated
during the entire 11-month test period. The data on the x-axis and
the y-axis are normalised to the maximum energy and income,
which in both cases is the bifacial HSAT system above the high
reflectance white tarp.

Fig. 6 provides a convenient way to compare relative gains
among the systems due to their different configurations. For
example, the tracker gain can be inferred as the difference in
normalised energy between the HSAT and FT systems that use the
same module type. In the case of the monofacial arrays, the tracker
gain is 12.8% and for the bifacial arrays, the tracker gain is 16.0%.
The tracker gain for the bifacial arrays is larger because bifacial
HSAT and monofacial HSAT have a different row to row pitches.
The bifacial HSAT has a 15 m pitch while the monofacial HSAT
has a 12 m pitch; the wider pitch of the bifacial HSAT leads to
fewer hours backtracking from the ideal roll angle.

Similar to the tracker gain, the bifacial gain can be inferred as
the difference between bifacial and monofacial systems mounted
on the same structure type. For example, the bifacial gain on the
FT system is 7.2% and for the HSAT the bifacial gain is 10.5%.
Indoor I–V measurements of the p-PERC panels at DTU have
shown that the rear side is about 67% efficient as the front side.
The bifacial gains above grass therefore are reasonable considering
the albedo of the grass is on average 22%. The reason the bifacial
gain is higher for the HSAT system is most likely because rows
within the FT field are more densely packed than in the HSAT
field. The distance between HSATs is twice as far as the distance
between FT rows. The shorter pitch (i.e. higher GCR) leads to
greater mutual shading by adjacent PV structures, thereby
permitting less light to reach the backside of the array [46, 47]. The
difference in bifacial gains observed between the systems with
differing GCR is consistent with the simulations performed by [7],
which showed about a 3% reduction in bifacial gain when GCR is
increased from 0.25 to 0.5.

The bifacial boost due to use of the high reflectance white tarp
can be inferred from Fig. 6 by the difference between two bifacial
systems on the same structure. In this case, the only comparison on
the HSAT is possible because the FT bifacial system above the
white tarp experienced 3 months of downtime. The bifacial boost
from the white tarp below the HSAT is 2.8%, which is on top of the
bifacial gain on grass (10.5%), and the monofacial tracker gain
(12.8%), resulting in a total energy gain of 26.1% relative to the
monofacial FT system.

The relative income delivered by the different PV systems
mostly corresponds to the relative energy gains previously
mentioned. However, there are deviations from a linear trend.
These differences can be inferred from Fig. 6 by the difference
between that 45° black unity line and the symbols representing the
various systems. The largest differences from unity are on the order
of 4%, which occur for both FT system types. This suggests that
the additional economic value is mostly due to the single-axis
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tracking gain rather than due to the bifacial gains. This will be
discussed further in the Value Factor Analysis section.

Fig. 7 gives insight into the electrical generation and cumulative
income on two select days. In the first case, (Fig. 7a) a clear sky
day near the equinox is shown. This day shows the classic price

profile with morning/afternoon prices that are higher than midday
prices. The measured electrical performance of six PV systems is
shown in the middle of the figure. The benefit of the HSAT's twin-
peak profile is captured in the cumulative income plot shown in the
bottom frame.

Fig. 7b depicts a day with high cloud variability and negative
pricing for most of the day. When the spot price goes below zero,
power producers are charged for electricity they put onto the grid.
On a day such as the one shown here, PV operators would be
penalised most heavily for the production of the bifacial systems.
This is a scenario where bifaciality can indeed harm project
financials unless actions like placing the PV systems in the open-
circuit state are taken. The lowest (i.e. most negative) prices are
observed in the middle of the day and therefore penalise the
bifacial FT systems greatest of all.

3.2 Value factor analysis

Fig. 8 shows value factors (VFs) calculated according to (1). Recall
that systems with a higher VF have a generation profile that is
better aligned with high hourly spot prices than systems with lower
VFs. The historic variability in VF is calculated using the electrical
data measured during the period studied (Fig. 5a) and scaled
according to the solar radiation and temperature measured onsite
between 2015 and 2019. Each box plot is constructed using the
historic hourly Nord Pool prices (Fig. 1) within each respective
period to demonstrate the interannual variability in VF. There is a
downward trend in the last five years, which makes sense because
the market value of electricity from renewables drops with
increasing grid penetration rates [42]. As Denmark's capacity of

Fig. 5  Measured energy production and corresponding electricity spot prices
(a) Specific yield (kWh/kWp) generated by the six different PV systems during each hour of the test period. These plots can be interpreted as the average daily profiles within a given
month. Note that the FT-bifacial-white tarp system was non-operational from April to June 2020, (b) Hourly Nord Pool spot prices within each month where the solid line shows the
mean, blue bars show one standard deviation, and red bands show the range of hourly prices within a given month

 

Fig. 6  Total income as a function of total energy normalised to the
maximum. Data points shown are from August 2019–June 2020, which
excludes the FT bifacial system above white tarp. The 45° black line shows
a 1:1 ratio between income and energy. The shaded areas around the red
regression line show the 95% confidence interval of the regression line
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solar-generated electricity increased from 2% in 2015 to 4% at the
end of 2020 [48], the historical VFs show a corresponding
reduction. In most years, the HSAT systems yield about a 1–2%
higher VF than the FT systems. Interestingly, the largest spread in
VF occurs in the 11-month period of data collection performed in
this work (Aug 2019–Jun 2020). During this period there is about a
4% difference in VF between HSAT and FT systems, wherein
about an additional 1% in VF is observed for bifacial over
monofacial systems. The notable differences in VF during the
period studied here (Aug 2019 – Jun 2020) are likely due to the
occasional – but sometimes significant – negative pricing observed
midday during March to June 2020. Negative midday pricing will
always penalise the economics of the 25° FT system more severely
than HSAT systems due to the higher midday electrical production
at this latitude.

Fig. 9 shows the internal rate of return (IRR) plotted as a
function of LCOE. The IRR is shown in conjunction with LCOE
because the IRR is oftentimes a more meaningful metric for
investors while the LCOE is mostly used by technical experts to
compare different technologies. A clear negative correlation is
observed, wherein the IRR decreases as the LCOE increases.
Notably, whether the VF or LCOE is used as a figure of merit, the
relative ranking of the six system types is largely the same.

In Fig. 9, the missing energy production data from the FT
bifacial white tarp system have been imputed from months with a
similar solar resource (e.g. missing April data is filled in with
measured August data). Cost assumptions for all cases are based on
discussions with suppliers. We have multiplied the expected capital
cost of the white tarp by a factor of four to account for installation
costs, which makes the white tarp ∼15% of the total hard capital
costs. This capital cost of the white tarp recurs every five years to
account for replacement. Additional assumptions in the model
include a 20-year mortgage with 0.5% interest that covers 80% of
the total (i.e. soft and hard) capital expenditures, spot prices from
2018 as a baseline with inflation of 1.3%/year, linear depreciation
over 30 years, a tax rate of 22%, system degradation of 0.5%/year
and unavailability of 0.5%/year.

The results show that there are similar decreases in LCOE (and
thus increases in IRR) between FT and HSAT systems and between
monofacial and bifacial systems (3.5–4.0 EUR/MWh). There is a
small, but a notable decrease in LCOE between bifacial above
grass and bifacial above white tarp cases. In the FT bifacial grass
versus FT bifacial white tarp case, there is a 0.6 EUR/MWh LCOE
decrease and a 0.4% IRR increase. While the comparison of the
HSAT bifacial grass and HSAT bifacial white tarp systems shows a
smaller difference: a 0.1 EUR/MWh decrease in LCOE and a 0.1%
increase in IRR. The larger LCOE and IRR differences in the FT
case could be due to the use of data imputation.

For both the bifacial FT and bifacial HSAT system, the extra
cost of the white tarp does appear to be compensated by the
additional energy production. The LCOE and IRR differences
between bifacial grass and bifacial white tarp are, however, small.
Therefore, the uncertainty in the capital expenditure and O&M
parameters leads to the prudent conclusion that the white tarp is not
advisable until O&M and/or CAPEX of such an albedo
enhancement solution comes down. For example, an O&M
increase of just 10% in the bifacial white tarp cases increases the
LCOE and decreases IRR to levels less favourable than bifacial
cases without ground albedo enhancement.

3.3 Simulations with varying GCR

It is worth repeating that the measurements and simulations of the
FT and HSAT systems presented here have been made for one
specific set of installation conditions (i.e. GCR of the FT = 0.4, and
GCR of the HSAT = 0.28). In practice, the net benefit of HSAT
over FT systems is highly dependent on the GCR [49]. The net
increase both in the energy yield and revenue achieved by HSAT
systems will be higher for low GCR sites (i.e. wide PV row
spacing) than for low GCR sites. This is large because in low GCR
sites, HSAT systems can spend more hours in the early morning
and late evenings oriented at an ideal angle without shading

Fig. 7  Profiles of hourly spot price, measured PV power generation, and
cumulative income on two select days
(a) Clear sky day with typical price profile (25 Mar 2020), (b) Variably cloudy day
with negative pricing (13 Apr 2020)

 

Fig. 8  Value factors calculated for five PV systems according to (1). The
electrical performance measured during the period studied is scaled
according to solar radiation and temperature measured from 2015 to 2019.
The hourly Nord Pool Spot prices from the respective periods are used to
generate the value factors within each box plot. The solid blue line connects
the average value factor within periods
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neighbouring rows. In other words, the trackers must backtrack less
at low GCR sites.

Fig. 10 shows the specific yield (kWh/kWp) results from
simulations where the GCR is varied. The measured yields are
shown as individual markers. The measured and modelled

electrical data have been filtered (i.e. removed) during periods
when maintenance was performed on either the tracker, inverter, or
PV array, or when the data acquisition system was interrupted. The
number of filtered (i.e. removed) simulated and measured data
points due to these instances amounts to 3.5% of the total data set.

The model predicts the specific yield of the fielded HSAT, FT
systems above grass within 30 kWh/kWp, or better (about 3% of
full scale). Simulation error of the white tarp system is higher (40 
kWh/kWp), which is likely because the reduced-order rear plane of
array irradiance model does not account for the fact that the white
tarp only covers a limited area. We have analysed the residual error
as a function of all the meteorological input variables and as a
function of sun height. This error analysis showed that the error is
not due to any systematic pattern in meteorological variables. The
largest deviations occur in the winter months when there is a
significant amount of self-shading from adjacent rows. Modelling
the power loss in such scenarios is complex and thus inaccuracies
in the shading model or any modest misrepresentation of the
physical system geometry in the model are suspected to cause the
larger errors in these months.

Fig. 11 shows the theoretical income of four GCR cases (0.2,
0.4, 0.6 and 0.8) using the Nord Pool market prices from Aug 2019
– Jun 2020. All data points are normalised to the results for the
‘HSAT-Bifacial-White Tarp’ system at 0.2 GCR (i.e. the system
that generates the highest income and energy). These results are
like those shown in Fig. 6 in that income is correlated with energy
for all system types. The deviations from an entirely linear trend
are shown by the difference between the dashed 45° black line and
the symbols that represent the various systems. The largest
differences from unity are on the order of 4%. In all such cases, it
is the FT monofacial systems that show a relative income about 4%
lower than what would be achieved in a 1:1 situation of energy to
income. Since this 4% delta is consistent with findings from the
fielded systems shown in Fig. 6, these results indicate that
modifying the GCR would not change the relative Value Factor
results shown in Fig. 8.

The largest difference in energy gains is observed for the 0.2
GCR case. In this case, there is a 24% energy gain of the ‘HSAT-
Bifacial-White Tarp’ system compared to the ‘Fixed Tilt-
Monofacial-Grass’. As for the 0.8 GCR case, there is only an 8%
energy gain between the same two system types, which suggests
that modifying the ground with high reflectance material has the
greatest benefit for PV installations with a wide row-to-row pitch.

4 Conclusions
We have assessed the relative energy gains and prospective
economic advantages of six different PV array designs installed in
Denmark. The design variations tested were FT versus single-axis
tracker designs, monofacial versus bifacial PV array designs, and
designs that have low versus high ground reflectance. Nearly one
year of measurements showed that the relative energy gains
between the different PV systems are as high as 26.1%.
Specifically, it was found that the tracker gain using monofacial
panels is 12.8%, the bifacial energy gain on grass is 10.5% using
trackers and is 7.2% using FT systems, and finally, the bifacial
boost from using a polymeric white tarp below the tracker is 2.8%.

We have assessed the economic advantage of each system by
analysing VF and LCOE values of the system designs. For the
system designs studied here, we found that the largest economic
advantage due to daily energy generation profiles is obtained with
single-axis tracking designs. Specifically, single-axis tracker
designs can improve the VF by as much as 4% relative to FT
designs. Although the bifacial designs studied did show higher VF
relative to their monofacial counterparts, the increase was lower
than the relative economic benefit achieved by single-axis trackers,
on the order of 1%. We found a negligible increase in VF when a
highly reflective white tarp was mounted below the bifacial PV
arrays. The VF results dovetail with the LCOE findings. The LCOE
of bifacial systems with the white tarp is between 0.1 and 0.4 
EUR/MWh lower than bifacial systems without it. However, we
found that small variations in the capital and/or O&M cost of the
white tarp could easily reverse the financial allure of this albedo

Fig. 9  Internal rate of return versus LCOE calculated for a 30-year period
in Denmark. The shaded areas around the red regression line show the 95%
confidence interval of the regression line

 

Fig. 10  Specific yield as a function of GCR. The simulated values are
shown as lines and the measured values are shown as markers with symbols
that represent five different PV systems

 

Fig. 11  Results from simulations using the System Advisor Model for
energy generation and Nord Pool for income. The plot shows total income
as a function of total energy normalised to the maximum for six different PV
system types and four GCRs. All data are normalised to the results of the
HSAT-bifacial-White Tarp system at a GCR of 0.2. The dashed 45° black
line shows a 1:1 ratio between income and energy
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augmentation solution. Therefore, it is our prudent
recommendation to not recommend such ground albedo
enhancements until definite cost reductions are achieved.
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