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A B S T R A C T   

Our main contribution is to examine the reliability of confidence intervals using the SAM state-space fish stock 
assessment model used for the assessment of many stocks by the International Council for the Exploration of the 
Seas. We focus on frequentist statistical inferences and more specifically on inference conditioned on specific 
values of the state-space model random effects drawn from their process distribution. This is somewhat 
consistent with simulation self-test procedures that are commonly used to examine the reliability of state-space 
assessment model results. However, recent research has indicated that some estimation bias may be expected in 
the conditional setting. Hence, we also investigate recently proposed bias corrected confidence intervals 
appropriate for the conditional inference setting. The SAM simulation coverage probabilities of 95% confidence 
intervals for SSB and Fbar were usually slightly larger than 95%, but in a small number of years these coverage 
probabilities could be much smaller than 95%. The bias corrected confidence intervals were more reliable. When 
averaged over years, the SAM and bias corrected confidence interval coverage probabilities were similar for the 
Northeast Artic cod and saithe case studies, but the bias corrected confidence intervals performed much better 
overall for the haddock case study.   

1. Introduction 

Fish stock assessment models are expressed naturally as state-space 
models, which are a class of probalistic models designed to describe 
how unobservable (latent) variables influence observed variables. In 
stock assessment models the observations commonly include time series 
of commercial catch estimates and stock size indices derived from sci-
entific surveys. The latent variables are the time series of stock abun-
dance, its age/size structure, and fishing mortality rates. The latent stock 
size is assumed stochastic because it is influenced by many factors in 
addition to fishery catches and assumed natural mortality rates. We 
cannot directly account for all of these other factors in our assessment 
models, and even if we could it would be impossible to predict exactly 
how many fish survive in a given time period. The observations avail-
able to estimate the stochastic stock size process are often indirect and 
always subject to observation/sampling errors. The main difference 
between a standard statistical (full parametric) assessment model and a 
state-space assessment model (SSAM) is that the latter allows for 
quantities which are unobserved to be random variables with a specified 

probability distribution. The aim of a SSAM is to estimate these latent 
time series, facilitate predictions, and reliably quantify the uncertainties 
of these estimates and predictions. SSAMs provide a consistent and 
natural framework for these purposes (e.g., Aeberhard et al., 2018). 
They provide the flexibility to formulate models where time-varying 
latent quantities follow a random walk or an autoregressive (AR) pro-
cess, etc. A practical advantage of SSAMs compared to full parametric 
and deterministic models is that the method to do stochastic predictions 
is a natural part of the SSAM formulation. 

Maximum marginal likelihood estimation (MMLE) is a common 
method to estimate SSAM parameters (e.g., Aeberhard et al., 2018). 
MMLE requires evaluations of high dimensional integrals, which until 
recently was often not feasible for estimation and simulation testing of 
full-scale assessment models. However, with recent advances in algo-
rithms and software (i.e., Kristensen et al., 2016), the run-time to fully 
optimize such models is now often practically feasible. This is the main 
reason why SSAMs that integrate multiple sources of data related to 
stock productivity are increasingly being used to provide fisheries 
managers with advice on sustainable harvest rates and the consequences 
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of future fisheries (e.g., Schnute, 1994; Aanes et al., 2007; Nielsen and 
Berg, 2014; Cadigan, 2015; Aeberhard et al., 2018; Albertsen et al., 
2018; Perreault et al., 2020; Stock and Miller, 2021; Liljestrand et al., 
2023). SSAMs are considered to be an essential part of the next gener-
ation stock assessment package (Punt et al., 2020). Currently the most 
notable example is the SAM stock assessment package (Nielsen and Berg, 
2014; Berg and Nielsen, 2016) used by many working groups of the 
International Council for the Exploration of the Seas (ICES; e.g., ICES, 
2019a,b). 

Recent versions of SAM are implemented in the Template Model 
Builder (TMB, Kristensen et al., 2016) package within R (R Core Team, 
2018), which is a major driver for recent increases in the implementa-
tion of integrated SSAMs. TMB provides built-in and easy-to-use pro-
cedures for implementing nonlinear mixed-effects and state-space 
models. Generic descriptions of nonlinear mixed-effects models are 
available in Skaug and Fournier (2006) and Kristensen et al. (2016). 
However, the underlying statistical theory for standard errors (SEs) 
provided by TMB and SAM are not well described. For these models, 
Zheng and Cadigan (2021) and Zheng and Cadigan (2023) provided 
some statistical theory about the frequentist sampling properties of 
MMLEs of model parameters and empirical bayes predictors (EBPs) of 
random effects (REs), and also functions of both the model parameters 
and REs that are typically of interest from SSAMs. We summarize these 
papers briefly in Appendix A. A key assumption is whether random ef-
fects are truely random or actually high dimensional fixed parameters 
that are modelled as REs for nonparametric smoothing purposes, similar 
to Generalized Additive Models (e.g., Wood, 2020). To help describe 
these concepts, we first briefly review the nonlinear mixed-effects model 
framework Zheng and Cadigan (2021) and Zheng and Cadigan (2023) 
considered, which includes SSAMs. 

Their framework involves random response data collected in a n × 1 
vector D that are assumed to have a multivariate probability density/ 
mass function (pdf/pmf) f(D∣Ψ, θ), given values of the (p × 1) vector of 
fixed-effects parameters θ and a (q × 1) vector of REs Ψ. For the SAM 
stock assessment model, D will typically involve age-based fishery 
catches and survey indices. Ψ will include the natural logarithms of 
stock numbers at age (i.e., logN’s) and fishing mortality rates (i.e., 
logF’s) for all assessment years. The means and covariances of D depend 

on θ and Ψ, possibly via nonlinear functions of θ, Ψ and covariates which 
we do not develop notation for. The pdf of Ψ is f(Ψ∣θ). The marginal 
distribution of D is 

f (D|θ) =
∫

⋅⋅⋅
∫

q
f (D|Ψ, θ)f (Ψ|θ)dΨ1,…, dΨq, (1)  

where Ψ1, …, Ψq are the elements of Ψ. The MMLEs of θ are those values 
θ̂ that maximize f(D∣θ). Throughout this paper we use ̂ to denote esti-
mators. We can “estimate” Ψ as those values Ψ̂ that maximize f(D, Ψ∣θ) 
when θ = θ̂. All mathematical notation and other notations/abbrevia-
tions are defined in Table 1. 

Zheng and Cadigan (2021) developed frequentist variance approxi-
mations for Ψ̂ and smooth user-specified functions of ̂θ and Ψ̂. The latter 
was based on the generalized delta method (e.g., Kristensen et al., 2016). 
Zheng and Cadigan (2021) also clarified the statistical basis for the SEs 
for Ψ̂ provided by TMB. The frequentist variance conceptually refers to 
the variability of Ψ̂ derived from repeated estimation with infinitely 
many data sets randomly drawn from f(D, Ψ∣θ). This will include 
repeated sampling of Ψ from f(Ψ∣θ) and D from f(D∣Ψ, θ). Zheng and 
Cadigan (2021) showed that the TMB SEs were actually estimates of the 
marginal mean squared error (MSE) between Ψ̂ and Ψ, which is a 
commonly used approach to measure the variability of predictors of REs 
(e.g., Kackar and Harville, 1984; Datta and Lahiri, 2000; Das et al., 2004; 
Flores-Agreda and Cantoni, 2019). This is the squared differences be-
tween Ψ̂ and Ψ, when averaged over the joint distribution of the data 
and Ψ. In the SAM assessment model context, standard errors of model 
outputs are based on the MSE when averaged over the distributions of 
the data, the logN’s and logF’s, and other random effects that the SAM 
model includes. The TMB variance is not an approximation of the 
variance of Ψ̂ that occurs because of random sampling of Ψ and the data. 
Zheng and Cadigan (2021) derived an equation that is appropriate for 
that marginal variance. However, the variance will usually not be 
relevant for most objectives of fish stock assessment. While the variance 
of an unbiased estimator is commonly used to construct confidence in-
tervals (CIs) for a fixed parameter, prediction intervals for REs like Ψ, a 
primary focus in fisheries applications, rely on the variances of predic-
tion errors, Var(Ψ̂ − Ψ) (see, e.g., Section 11.6 of McClave and Sincich, 
2017. Zheng and Cadigan (2021) established that this latter variance 
corresponds to the TMB variance. 

A different inferential setting was addressed in Zheng and Cadigan 
(2023), which involved the variability of Ψ̂ based on repeat sampling of 
D only from f(D∣Ψ, θ). Zheng and Cadigan (2023) assumed Ψ was drawn 
once from the process model f(Ψ∣θ) but then fixed at these values during 
repeated data generations from the observation model f(D∣Ψ, θ). They 
referred to this as the Ψ-conditional (or just conditional) variation. Only 
sampling D from f(D

⃒
⃒Ψ̂, θ̂) is a common procedure used when simulation 

testing the efficacy of a fish stock assessment model (e.g., Nielsen and 
Berg, 2014; Cadigan, 2015; Perreault et al., 2020). Simulated data are 
generated only from f(D

⃒
⃒Ψ̂, θ̂) because we are really interested in 

quantifying how much our estimates will vary based on a fixed stock 
development (i.e., logN’s and logF’s) similar to the ones estimated. In 
stock assessment this is referred to as a simulation self-test (Deroba 
et al., 2015). However, the distribution of Ψ̂ can be considerably 
different than the distribution of Ψ (i.e., f(Ψ∣θ)) and an alternative 
procedure is to sample D from f(D

⃒
⃒Ψ̃, θ̂) where Ψ̃ is drawn once from 

f(Ψ
⃒
⃒D, θ̂). We consider this further in the Discussion. 
Zheng and Cadigan (2023, Eqns. 8 and 9) provided conditional 

variance approximations (see Appendix A), which indicated that these 
variances of θ̂ and Ψ̂ are smaller than the marginal variances provided 
by TMB. Zheng and Cadigan (2023) also derived equations for the biases 
of θ̂ and Ψ̂, which indicated that both biases may be non-ignorable. In 

Table 1 
Definitions, notations, and parameters.  

SSAM state-space assessment model 
AR autoregressive 
MMLE Maximum marginal likelihood estimation 
TMB Template Model Builder 
SE standard error 
MSE Mean squared error 
RMSE Root mean squared error 
EBP Empirical bayes predictor 
RE random effect 
pdf probability density function 
pmf probability mass function 
HDP high dimensional parameter vector 
GAM Generalized additive model 
CI Confidence interval 
CP CI coverage probability 
BC Bias corrected 
SSB Spawning stock biomass 
Fbar Average fishing mortality 
D n × 1 vector of data 
θ fixed-effects parameter vector 
Ψ vector of random-effects 
f(Ψ∣θ) pdf of Ψ 
f(D∣θ) marginal pdf/pmf of D 
θ̂ MMLE of θ 

Ψ̂ EBP of Ψ 
F Fishing mortality 
N Stock abundance 
c user specified value for bias correction  
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this case MSE is a more comprehensive measure of variability than the 
variance. The biases are difficult to estimate reliably, especially when 
there is little or no data for some of the REs. Zheng and Cadigan (2023) 
suggested to approximate the bias-squared part of the MSE by averaging 
it over the distribution of REs, which results in the same MSE approxi-
mation as that used in TMB and SAM; that is, in the Ψ-conditional 
inference setting, the TMB variance can be used as the expected MSE, 
with substantial individual deviations anticipated for some data and 
specific values of the Ψ’s (e.g., Ψ̂ or Ψ̃). 

In many cases Ψ is not actually a RE in reality, but Ψ is a high 
dimensional parameter vector (HDP) that is modeled as a RE for 
nonparametric smoothing purposes. In this case the conditional infer-
ence setting is also relevant. There are well-known connections between 
smoothing methods and RE models (e.g., Brown and De Jong, 2001; 
Wand, 2003; Wood et al., 2013). This is the case for some state-space fish 
stock assessment models in which subsets of Ψ will usually be 
time-dependent and could be considered to be complex but smooth 
functions of time. The generalized additive model (GAM) literature for 
non- or semi-parametric smoothing (i.e., Marra and Wood, 2012; Wood, 
2020) suggests their MSE estimates and CIs are accurate only when they 
are averaged over the smoothing covariates, which for stock assessment 
models will usually be years; however, the MSE estimates and CIs may 
not be accurate for specific years, and smoothing bias can be expected. 
In this context, Zheng and Cadigan (2024) proposed a bias correction for 
EBP’s of REs and improved CI methods. Their simulation studies for 
simple random walk models and GAMs, whose Ψ’s are the basis co-
efficients, indicated that their new bias-corrected (BC) EBP of Ψ 

(denoted as Ψ̂BC) and CIs led to substantial improvements in MSE for Ψ 
and improvements in the conditional coverage rate of Ψ CIs compared to 
the marginal inferences provided by TMB. 

In this paper we use conditional self-test simulations based on three 
important Barents Sea SAM assessment models to investigate the accu-
racy of 1) SAM generalized delta-method SEs, 2) those based on the 
conditional variance approximations in Zheng and Cadigan (2023, Eqns. 
8 and 9), and 3) conditional bias corrections in Zheng and Cadigan 
(2024), for spawning stock biomass (SSB) and average fishing mortality 
(Fbar). We also investigate the coverage accuracy of 95% CIs, 
year-by-year and averaged over years, based on marginal and condi-
tional BC SEs. 

2. Methods 

2.1. SAM 

A brief description of SAM is provided in Appendix B. The SAM logN 
and logF REs for the first model year do not have a distribution specified. 
In effect, the logN’s and logF’s in the first year are estimated like fixed- 
effects. The theory in Zheng and Cadigan (2023), but especially Zheng 
and Cadigan (2024), did not cover this situation. Hence, we used a 
slightly modified version of SAM in which these initial logN’s and logF’s 
were treated as parameters and not REs so that the theory in Zheng and 
Cadigan (2024) applied. We verified that this change in the SAM 
formulation, which we call SAM_init, had negligible impacts on model 
results. 

Fig. 1. Simulation results for three Barents Sea stocks (i.e. panels). Grey lines indicate true population values from the model used to generate simulated data, black 
lines are averages from the 2000 simulation SAM estimates, and green lines are simulation bias-corrected averages. The right-hand panels are for SSB and the left- 
hand panels are for average fishing mortality (Fbar). 
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There may be REs in SAM that have little or no information (i.e., 
data) to support their estimation. This could be caused by years with 
missing catch estimates, or REs involved in forecasts. In this case the EBP 
will usually be the marginal RE mean. However, as described in Zheng 
and Cadigan (2024), Ψ̂BC requires information for all Ψ’s. For Ψ’s with 
insufficient information, Zheng and Cadigan (2024) recommended 
marginal inferences be used. They provided a method to identify 
whether REs are supported by data sufficiently and give conditional or 
marginal CIs depending on the amount of information. This involved 
setting a small constant c to determine if there is sufficient information 
about Ψ’s. The choice of c is somewhat subjective. It should be greater 
than zero but less than approximately Y− 1, where Y is the total number 
of model years. We used c = 0.1 but examined robustness using c = 0.05 
and c = 0.2. 

Another problem when applying the results in Zheng and Cadigan 
(2023) and Zheng and Cadigan (2024) involved the complicated joint 
distribution of all the SAM logN’s. The conditional SEs and CIs in Zheng 
and Cadigan (2023) and Zheng and Cadigan (2024) require using the 
marginal means and covariances of the REs, and also a normal distri-
bution assumption. However, these first two statistical moments for 
logN’s are complicated and not easy to derive, and the normal distri-
bution assumption is not correct since logN’s depend on exp(logF) and 
values in previous years. In SAM’s, logN’s are a nonlinear Markov pro-
cess with a complicated marginal distribution. Our solution for this 
problem was to modify SAM again (called SAM_dev), and treat the 
temporal deviations in logF’s and logN’s as REs, which have simple 
multivariate normal joint distributions so that the results of Zheng and 

Cadigan (2023) and Zheng and Cadigan (2024) apply directly. We also 
verified that this modification had negligible impacts on model results. 
A major disadvantage of the SAM_dev formulation is computational 
speed. Hence, we fit the model to simulated data using SAM_init, but 
derived conditional variances and confidence intervals using SAM_dev. 

2.2. Case studies 

The three Northeast Arctic (ICES subareas 1 and 2) case studies are 
based on SAM assessment inputs and model configuration files for cod 
(Gadus morhua), haddock (Melanogrammus aeglefinus), and Saithe (Pol-
lachius virens). The assessment data and model configurations are 
described in Appendix B and more detailed descriptions are provided in 
ICES (2020). These stocks were selected because their SAM assessments 
are considered to be reliable and well-estimated. 

2.3. Simulations 

SAM provides easy to use options to conduct simulations. We used 
the sim.condRE=TRUE option and simstudy() to generate 2000 simu-
lation data sets and fit the SAM’s. The simstudy() procedure supports 
parallel processing which can greatly improve simulation speed. The 
sim.condRE=TRUE option causes simulated observations to be condi-
tional on estimated time-series of fishing mortalities (F’s) and stock 
abundances (N’s). 

The simulation operating models for each case study followed the 
SAM models specified in Appendix B with the exception that the process 
deviations were treated as latent variables instead of the processes 

Fig. 2. Simulation bias results for three Barents Sea stocks (i.e. panels). Black lines are average SAM biases from the 2000 simulation log-estimates, and green lines 
are average biases using the BC estimates. The right-hand panels are for SSB and the left-hand panels are for average fishing mortality (Fbar). Shaded regions indicate 
lower 2.5% and upper 97.5% simulation percentiles. 
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variables (i.e., SAM_dev). For example, ϵ(N)
a,y was treated as the latent 

variable instead of logNa,y. The simulation estimation model was the 
standard version of SAM with the process variables as latent variables. 

We focused our simulation analyses on estimates of SSB and Fbar, 
with the ages for Fbar the same as used in the assessments for each stock 
(see ICES, 2020). We computed CIs by exponentiating log CIs, exp{
log(estimate) ± Z0.975 × SE}, where Z0.975 is the standard normal quantile 
and SE is the marginal value for log(estimate) provided by SAM, or we 
used the CIs described in Zheng and Cadigan (2024). Deriving CIs from 
log-estimates is the default procedure provided by SAM and will tend to 
give more equal-tailed coverage probabilities. We summarize simula-
tions results using the standardized bias (log-estimate bias/SE), SEs, root 
mean squared error (RMSE), and coverage probabilities of CIs (fraction 
of the simulated CIs that contained the population values used to 
generate simulated data). Large standardized biases (e.g., > 0.7 in ab-
solute value) will produce CIs with coverage probabilities more different 
than the nominal value (e.g., < 0.9). 

3. Results 

Average estimates of SSB and Fbar from the 2000 simulations closely 
matched the population generating values (i.e., true values; Fig. 1) for 
most years, but occasionally the biases were large enough to potentially 
be a concern (e.g., Fbar in 2020 for Haddock) for fisheries management. 
Simulation biases of the logs of SSB and Fbar (Fig. 2) demonstrate that 
differences in estimates of log SSB and Fbar and their true values were 
usually close to zero. The averages of the conditional SEs based on Zheng 
and Cadigan (2023) were usually only slightly smaller than the standard 
deviations (SDs) of estimates of SSB and Fbar from the 2000 simulations 

(Fig. 3). The marginal SEs provided by SAM were usually larger but 
coarsely approximated the RMSE’s, and the latter will depend on the 
specific values of Ψ’s used to generate simulation data. Fig. 3 demon-
strates that the asymptotic theory provided by Zheng and Cadigan 
(2023) was reasonably accurate for these case studies. Although the 
conditional SEs were more accurate for the simulation SDs, they pro-
duced poor CIs because they do not account for conditional biases 
(Fig. S1). Zheng and Cadigan (2024) also found that CIs based on con-
ditional SEs were less reliable than CIs based on marginal RMSE or bias 
correction. 

The SAM 95% CIs were usually somewhat conservative with simu-
lated coverage probabilities that were usually greater than 0.95 (Fig. 4). 
The MSE approximation tends to overestimate the true MSE (Fig. 3), 
leading to conservative CIs. When averaged over assessment years, the 
SAM CIs were slightly conservative for our conditional simulations of 
cod and saithe, but not haddock (Table 2). However, in a few years the 
CIs contained the true population values in less than 95% of the simu-
lations, and much less for Haddock. As expected, the years with poorer 
CI coverage were ones in which the standardized biases were large 
(Fig. 5). The BC CIs of Zheng and Cadigan (2024) were more reliable 
overall in that they never produced really unreliable intervals like SAM 
did in a few years, especially for the haddock case study. The BC CIs 
were slightly conservative when averaged over years, similar to the SAM 
CIs (Table 2). The BC standardized biases were never as large as the SAM 
values, but in many years these were slightly larger. The BC biases of the 
logs of SSB and Fbar (Fig. 2) are usually closer to zero in years when SAM 
biases were relatively large. To get an aggregate summary of the CI 
performance, we computed the averaged squared differences from the 
nominal 0.95 values, as well as the annual SD of the CI coverages. These 

Fig. 3. Simulation average conditional standard errors (black) and marginal standard errors (grey) provided by SAM. The standard deviations (SDs; red) and root 
mean squared errors (RMSE; blue) of the 2000 simulation estimates of log Fbar and SSB are also indicated in each panel. 
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results (Fig. 6) show that the BC CIs for Fbar were slightly more accurate 
than the SAM CIs on average (i.e., over years) for cod and saithe, but 
substantially more accurate for haddock. The SSB BC CIs were also 
substantially more accurate for haddock, but slightly less accurate for 
cod and saithe. 

4. Discussion 

We examined the reliability of standard errors (SEs) and confidence 
intervals (CIs) provided by SAM in the simulation self-test frequentist 
inferential setting in which random effects (REs) are fixed at their esti-
mated values and variability is only considered in the distribution of the 
data conditional on the values of the REs. We clarified that SAM SEs are 
estimates of marginal (i.e., not conditioned on REs) root mean squared 
errors (RMSEs) and provide approximate estimates of conditional 
RMSEs. We also examined the reliability of conditional SEs using results 

from Zheng and Cadigan (2023). They provided good estimates of 
simulation self-test standard deviations (SDs) of SSB and average F 
(Fbar). SAM SSB and Fbar CIs had simulation coverage probabilities 
(CPs) that were usually slightly larger than 95%, but in a small number 
of years these CPs could be much smaller than 95%. The BC CIs proposed 
by Zheng and Cadigan (2024) were more reliable because their simu-
lated CPs were never much different than 95%. However, when aver-
aged over years, the SAM and BC CI CPs were similar for the cod and 
saithe case studies, but the BC CIs performed much better overall for 
haddock. CIs based on the conditional SEs in Zheng and Cadigan (2023) 
were not reliable because they do not account for the conditional bias. 

SAM CIs are theoretically based on variability from resampling the 
model REs (including logN’s and logF’s) and the assessment data con-
ditional on the REs. In a sense, the SAM CIs are designed to be accurate 
across different assessments. They are also more accurate when aver-
aged across assessment years. However, for a specific stock and year, the 
SAM CIs can be considerably inaccurate. We caution fisheries managers 
and other users of stock assessment advice that in some years, SAM CIs 
may have simulation CPs substantially less than 95% and it is difficult to 
predict when this problem occurs. We suggest this is not a specific issue 
with SAM, but rather a general issue with state-space fish stock assess-
ment models, mostly caused by the conditional bias. 

Zheng and Cadigan (2023) demonstrated, for a simple random-walk 
state-space model, that the biases in estimates of the random-walk were 
like the smoothing bias that is a common feature of kernel and spline 
smoothers, where the smoothers have some bias attenuation towards the 
mean; that is, there is some under-estimation of the peaks and 
over-estimation of the valleys in the process being smoothed. Zheng and 

Fig. 4. Simulation coverages of 95% confidence intervals (CIs) versus year for Fbar and SSB (columns) and three stocks (rows) based on the bias corrected 
methodology (green lines) and marginal standard errors provided by SAM (black lines). Coverage is based on the fraction of the 2000 simulated CIs that contained the 
population values used to generate simulated data. Dashed lines indicate the nominal 0.95 level. Green and black lines indicate the average CI coverage across years. 

Table 2 
Simulated coverages of SAM and conditional bias-corrected (BC) 95% confi-
dence intervals for the three case studies. Results are averaged over assessment 
model years.   

SSB Fbar  

SAM BC SAM BC 

Cod  0.966  0.965  0.978  0.976 
Haddock  0.937  0.962  0.950  0.973 
Saithe  0.967  0.976  0.979  0.975  
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Cadigan (2023) provided an analytical approximation of the bias (see 
their Equation 13) and showed that this gave a reasonably accurate 
approximation of the simulation bias for their random-walk example. 
However, SAM has two sets of REs, for stock size and for fishing mor-
talities. SAM is also fit to multiple data sets, all of which may conspire to 
produce small biases that are likely different and more complex than 
simple smoother biases. For the haddock case study, the SAM biases for 
Fbar and SSB were large in a few years around 2010, which led to 
substantially inaccurate CIs in those years. We are unsure why the bias 
was so large in these years. There were no unusual patterns in the 
assessment data that would indicate a bias issue. Diagnostics of when 
bias may be a problem is a useful area for future research. Zheng and 
Cadigan (2023) found that simple “plug-in” estimates of the bias did not 
lead to improved statistical inferences. Therefore they approximate the 
bias-squared term in the conditional MSE by averaging over REs, 
whereby the conditional MSE approximation is equal to the marginal 
MSE. Zheng and Cadigan (2024) addressed the bias issue by proposing a 
bias-corrected RE estimator and its corresponding conditional RMSE. 
This approach led to improved CIs compared to the ones currently 
provided by TMB and SAM, which are based on marginal RMSE. 

The equations in Zheng and Cadigan (2023) assume that we are 
conditioning on RE values randomly drawn from their assumed distri-
bution, and this will not be exactly correct for the simulation self-tests. 
Usually the estimated REs used in self-test data generation have less 
variability than the assumed RE distribution on which the marginal MSE 
is based on. An alternative is to sample the REs once from their “pos-
terior” distribution conditional on the data (e.g., Thygesen et al., 2017). 
Although this distribution may still be substantially different than the 

assumed RE distribution, we expect that it can better capture the vari-
ability of the true REs compared to the RE estimators. For example, the 
REs that are not linked to data are estimated using values close to their 
marginal means, resulting in an underestimation of their variability. In 
contrast, REs generated from their posterior distribution reflect the 
variability of true REs and the information available for their inference. 
Improved simulations methods to test state-space model estimation re-
quires further research. 
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