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Highlights 

 

 Segmentation of MRI hyperintensities using an end-to-end trained 3D transformer model 

 Structural information from T1-weighted MRI enable better prediction 

 Performance is competitive even for healthy aging with relatively low lesions loads 

 The performance of the method is comparable to inter-rater agreement 
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Abstract 

Background and Objectives 

Reliable detection of white matter hyperintensities (WMH) is crucial for studying the impact of 

diffuse white-matter pathology on brain health and monitoring changes in WMH load over time. 

However, manual annotation of 3D high-dimensional neuroimages is laborious and can be prone 

to biases and errors in the annotation procedure. In this study, we evaluate the performance of 

deep learning (DL) segmentation tools and propose a novel volumetric segmentation model 

incorporating self-attention via a transformer-based architecture. Ultimately, we aim to evaluate 

diverse factors that influence WMH segmentation, aiming for a comprehensive analysis of the 

state-of-the-art algorithms in a broader context. 

Methods 

We trained state-of-the-art DL algorithms, and incorporated advanced attention mechanisms, 

using structural fluid-attenuated inversion recovery (FLAIR) image acquisitions. The anatomical 

MRI data utilized for model training was obtained from healthy individuals aged 62-70 years in 

the LIve active Successful Aging (LISA) project. Given the potential sparsity of lesion volume 

among healthy aging individuals, we explored the impact of incorporating a weighted loss 

function and ensemble models. To assess the generalizability of the studied DL models, we 

applied the trained algorithm to an independent subset of data sourced from the MICCAI WMH 

challenge (MWSC). Notably, this subset had vastly different acquisition parameters compared to 

the LISA dataset used for training. 

Results 

Consistently, DL approaches exhibited commendable segmentation performance, achieving the 

level of inter-rater agreement comparable to expert performance, ensuring superior quality 

                  



segmentation outcomes. On the out of sample dataset, the ensemble models exhibited the most 

outstanding performance. 

Conclusions 

DL methods generally surpassed conventional approaches in our study. While all DL methods 

performed comparably, incorporating attention mechanisms could prove advantageous in future 

applications with a wider availability of training data. As expected, our experiments indicate that 

the use of ensemble-based models enables the superior generalization in out-of-distribution 

settings. We believe that introducing DL methods in the WHM annotation workflow in heathy 

aging cohorts is promising, not only for reducing the annotation time required, but also for 

eventually improving accuracy and robustness via incorporating the automatic segmentations in 

the evaluation procedure. 

Keywords: Transformer; Segmentation; Attention mechanism; Deep learning; White matter 

hyperintensities 

1. Introduction 

White matter hyperintensities (WMH) are lesions visualized on magnetic resonance imaging 

(MRI) as abnormally high signal intensities in fluid-attenuated inversion recovery (FLAIR) 

sequences [1]. WMHs are typically located around periventricular (PWMH) and deep subcortical 

(DWMH) areas. WMHs are frequently observed in healthy older adults as well as patients with a 

high risk of cardiovascular disease [2]. A high lesion load is associated with an increased risk of 

cognitive impairment, stroke, and death [3]. To mitigate the high risk of cognitive impairments 

caused by WMHs, accurate detection and estimation of their location, shape, and volume have 

high importance through diagnosis and treatment monitoring [4]. 

                  



Advances made in MRI, including improving dimensionality, contribute to an increased 

reliability in detecting and segmenting WMHs. While radiographers have a near-to-optimal 

knowledge of identifying WMH, manual labeling of WMHs in high-resolution images is a 

tedious and time-consuming task that can lead to errors due to fatigue and declining attention [5]. 

Hence, the utilization of autonomous segmentation tools is of great importance for supporting 

radiographers in managing large volumes of data, particularly in longitudinal studies, very large 

datasets, and personalized treatment tracking where the number of scans can escalate 

considerably [6]. 

Among the available tools for WMHs segmentation, the lesion segmentation tool (LST) [7] 

included in SPM and the brain intensity abnormality classification algorithm (BIANCA) [8] 

included in the FMRIB Software Library (FSL) have been widely used in clinical research [9–

11]. Both tools mainly use the abnormal intensity features to create a probability map and apply 

either a global or adaptive region-based threshold to generate the segmentation map. 

Deep learning (DL) algorithms show promising results in extracting informative patterns and 

features within images, including the segmentation of WMHs which has been attempted for 

example using the TrUENet architecture [12]. TrUENet is a modular DL system based on an 

ensemble of three 2D models trained on three orthogonal projections (sagittal, axial, and 

coronal). Although a 3D model increases the computational complexity and introduces additional 

parameters, it can be advantageous due to the enhanced capability of representing volumetric 

texture and context information specific to lesions. This can be of particular advantage when the 

data available for training is plentiful [13]. However, as TrUENet is a modular system, 

postprocessing in the form of combining probability maps and thresholding is needed in this 

architecture. While 2D models are likely better at capturing long-range spatial dependencies in 

                  



the data [14],  the parameters related to the postprocessing of the images can be error-prone and 

may fail to generalize to data from other sites or cohorts. 

Recently, transformer architectures adopted from natural language processing have shown 

promising improvements in grasping long-range dependencies, particularly within 3D modeling 

[15]. Generally, transformer-based models perform better than conventional DL methods, such 

as convolutional neural networks (CNN), since the transformer is able to use multiple layers of 

self-attention blocks to enable modeling of global long-range dependencies within a series of 

patches extracted from the image [16]. 

Recently, other work focused on a 2D transformer encoder-decoder architecture and compares 

the model to a fully CNN-based architecture for WMH segmentation [17]. However, the 2D 

transformer architecture, in comparison to CNN, demonstrated inferior performance. Given the 

data-intensive nature of transformer-based models, the utilization of 2D slices as input in [17] 

may be driven by the need to ensure sufficient training data for these architectures. Moreover, 

transformers are mainly effective at capturing complex dependencies which makes them more 

attractive for encoders than decoders [16]. By utilizing a 3D transformer-based model for 

encoding and a sequence of convolutional (conv) blocks for decoding, the proposed model aims 

to capture long-range dependencies in volumetric data by combining the strengths of both CNNs 

and transformers [18]. 

Besides the architecture, several data characteristics play an important role in training a 

transformer model. For instance, the amount of data used to train the model in [17] appears 

inadequate (n = 60) for training transformer-based models, especially considering the sparse 

distribution of WMHs. In addition, a crucial aspect overlooked in previous WMH segmentation 

techniques is the utilization of datasets containing a high volume of lesion load. In datasets used 

                  



previously, subjects had remarkably high WMHs volume which leads to clearly visible high-

contrast lesions [12,17]. However, it is important to detect WMHs even in early stages before the 

onset of a particular disease in which the contrast of WMHs is lower such as when investigating 

healthy aging cohorts, and particularly with respect to DWMH [19]. 

The objective of this study was to assess the state-of-the-art algorithms for the detection of 

WHM, specifically focusing on early detection where the lesions are notably sparse. In pursuit of 

this goal, we introduced an attention-based DL model, VoSHT (Volumetric Segmentation of 

WMH using Transformer), an end-to-end volumetric segmentation tool with self-attention via a 

transformer model. Our evaluation involved training and comparing state-of-the-art models, as 

well as the proposed attention-based model, using a dataset that incorporates subjects from a 

non-preselected healthy aging cohort, characterized by notably lower lesion ratios, which will 

typically pose a greater challenge for prediction. We assessed various models with respect to 

four criteria: conventional WMH segmentation tools, volumetric DL models with plain loss 

function, volumetric DL models with weighted loss function, and ensemble DL models. These 

evaluations were prompted by the challenge of comprehending the image complexity solely 

based on sparse occurrence of WMHs. Furthermore, we inferenced the generalizability of DL 

models on out-of-distribution test datasets, where the acquisition parameters of the cohort and 

WMH’s volume differ substantially from the training dataset. 

2. Material and Methods 

2.1. Datasets 

Two datasets with different acquisitions (scanner and MRI protocols), different lesion 

characteristics, and different annotators were considered in our investigations.  

2.1.1. LIve active Successful Aging (LISA) 

                  



The LISA study received ethical approval from the Ethical Committees of the Capital Region of 

Denmark (No. H-3-2014-017) and the Danish Data Protection Agency. It complies with the 

declaration of Helsinki and was registered on clinicaltrials.gov (NCT02123641). LISA is a 

cohort of 451 older adults, initiated in 2014-2015. Figures A.4 and A.5 in the Appendix show the 

distribution of lesion volume among LISA training and test sets. Among all the subjects from the 

LISA cohort, 300 participants qualified for MRI, see [20] for details. FLAIR sequences were 

primarily used for the annotation of WMHs. All FLAIR scans were reoriented to MNI space 

before being manually annotated. An expert radiographer manually labeled the lesions over all 

300 subjects. The annotator was instructed to disregard lesions that had fewer than three 

neighboring lesions. T1-weighted and FLAIR sequences were used in this study. The 

characteristics of the LISA dataset are illustrated in Table 1. Furthermore, a random subset of the 

LISA dataset (n = 7), was separately annotated by another expert radiographer to examine how 

well labels generalize across raters and to evaluate how the trained model generalizes to the other 

unseen annotations. 

Table 1. Characteristic explanation of the three datasets used in this paper. Q1 and Q3 are the first and third 

quartiles, respectively. 

Dataset Scanner Subjects 
Age (y) 

avg ± std 

Sex 

(F:M) 

Voxel Size (mm3) 
WMH (mm3)  

[Q1-Q3] 
FLAIR T1-weighted 

LISA 
3T Philips 

Achieva 
300 

66.46 ± 

2.52 
273:178 1.00×1.00×1.00 0.85×0.85×0.8 694 – 4,514 

MWSC 

3T Philips 

Ingenuity 
10 - - 1.04×1.04×0.5 0.87×0.87×1.0 3,547 – 19,130 

1.5T GE 

Signa 
10 - - 1.21×1.21×1.30 0.98×0.98×1.5 942 – 6,710 

2.1.2. MICCAI WMH segmentation challenge (MWSC) 

                  



MWSC is a dataset consisting of 60 subjects for training and 110 subjects for the test set from 

three different sites: UMC Utrecht, NUHS Singapore, and VU Amsterdam. In our experiments, 

we selected the benchmark test set from the VU Amsterdam center that has previously been used 

as an unseen test set in other formal evaluations of model performance [11,16]. The MWSC test 

set includes 20 scans from two different scanners (Table 1). 

2.2. Image Preprocessing 

All images from LISA and MWSC datasets were skull-stripped and bias-corrected using BET 

[20], a tool from the FSL software package. All images were registered to the same space as the 

first session space using the FLAIR sequence as the reference using FSL FLIRT (utilizing a 6-

parameters linear rigid body transformation) [21]. Subsequently, the intensity of all images in 

both datasets was normalized within the intervals of [0, 1]. In addition to the above-mentioned 

steps, a resampling step was considered just for preprocessing of MWSC test sets to ensure the 

same voxel resolution as the LISA dataset. 

2.3. Self-Attention Deep Learning Model 

Figure 1 illustrates the general framework of the proposed system, VoSHT. VoSHT's 

architecture is built upon the self-attention mechanism, which is derived from UNETR, a model 

introduced in [17]. UNETR is inspired by the structure of the UNet architecture [22]. Instead of 

using conv blocks for the encoder path, consecutive self-attention encoders are used which can 

capture spatial dependencies in the data although they are situated at considerable distances. 

First, data augmentation as a key factor in training self-attention blocks is implemented on the 

3D FLAIR images. Here, data augmentation plays a particularly important role in lesion 

segmentation tasks, where the data is limited and classes (lesion and non-lesion) are highly 

imbalanced. A linear projection is applied to convert 3D non-overlapping patches of augmented 

                  



data into 1D embedding represented as a sequence of tokens. To encode the location of the patch, 

a position embedding of the patch is added to the token. The positional embedding is computed 

based on 

 

Fig. 1. Schematic depiction of the VoSHT model. The inner structure of the self-attention encoder is depicted on the 

bottom right. Each self-attention encoder is composed of three attention block layers, where each attention block 

uses 12 layers of multi-head self-attention (MSA). In MSA, MatMul denotes a multiplication operation to find 

similarities between query (Q), key (K), and value (V). Selected features from the T1-weighted sequence are used as 

inputs for the loss function. 

   [  
      

       
  ]      , (1) 

where        
    is a 1D learnable positional embedding with the hidden dimension of   that is 

added to embedded data (tokens) to have a track of the position.   is the total number of tokens 

                  



and {  
                is the flattened vector for the     patch.    is the vector including all the 

embedded patches. 

Afterward, the embedded patches are passed through the self-attention encoders. In each stage, 3 

layers of self-attention blocks are included which each has 12 parallel layers of multi-head self-

attention (MSA) followed by a multi-layer perceptron (MLP) block. MSA layers are initialized 

randomly to ensure diversity in learning representation subspaces. The MSA is computed by 

                
   

√  
  , (2) 

where Q, K, and V are query, key, and value matrices trained based on the sequence of tokens, 

respectively.    is the sequence of tokens from the     layer. The attention weight is calculated 

based on the similarity between the sequence and their respective Q and K representations [21]. 

The calculated similarity is divided by a scaling factor    to keep the computation and the 

number of parameters constant [16]. The output of the self-attention encoder is obtained as 

  
                                   (3) 

     
             

                (4) 

where L is the number of parallel MSA layers considered as 12 depicted in Figure 1, and Norm 

is a normalization operation applied before every block in the self-attention encoder. After each 

MSA block, there is an MLP block with two linear layers and a Gaussian error linear unit 

(GELU) function at the end. The Add block in the self-attention encoder is intended to preserve 

the features extracted from the previous layer. The outputs of all the self-attention layers have the 

same dimensionality as the input embedding size. 

To upsample and preserve the extracted features, a deconvolution (deconv) block is considered at 

the bottleneck. Also, conv and deconv layers are consecutively considered along the decoder 

                  



path in a similar way as the UNet decoder path [22]. There is a batch normalization (BN) layer 

and rectified linear unit (ReLU) followed by conv and deconv blocks in each layer; except for 

the final layer which is a 1×1×1 conv layer used to generate the final semantic segmentation 

map. In the skip connections, the output from self-attention encoders is upsampled and resized 

using consecutive deconv and conv layers. 

2.4. Loss Function 

Two types of loss functions were used in our investigation which both use a combination of 

Cross-Entropy (CE) [23] and Dice (DSC) loss functions. Both loss functions can be expressed as 

              (5) 
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   , (7) 

where I is the number of voxels and J is the number of classes (which is two here: the 

background and lesion).      and      are the probability output and one-hot encoded ground truth 

for class j at voxel i, respectively. In the first loss function,    is set to one. 

In the second loss function we consider, however, that the CE loss is weighted using relevant 

chosen structural features    calculated from T1-weighted images. Since WMHs are mainly 

located in the sub-cortical WM and close to the ventricles, the voxel distances from the ventricles 

and GM were calculated [12] based on the T1-weighted sequence. Consequently, the model will 

penalize neglected DWMH and PWMH strongly. Moreover,    compensates for the sparsity of 

labels by enhancing the model’s comprehension of structural information. This method of 

introducing additional information avoids the large increase in the number of parameters 

incurred by directly incorporating T1-weighted volumes. 

                  



2.5. Implementation Details 

All DL models were trained using PyTorch
1
 library. Models were trained on a 24GB NVIDIA 

(GeForce RTX 3090) GPU. Except for nnUNet where the implementation relied directly on 

PyTorch, other DL models were implemented using the MONAI
2
 framework. UNET- and 

transformer-based models were trained with a batch size of 2 using the AdamW optimizer  [24] 

with an initial learning rate of 0.0001 for 1000 epochs. All the transformer-based models were 

trained using the setups provided in the UNETR article [17]. TrUENet was trained on a batch 

size of 8 using Adam optimizer with an initial learning rate of 0.0001 for 60 epochs. For nnUNet, 

the original setup reported in the original publication [27] was utilized for training. 

All these methods were trained from scratch. LISA dataset was divided into three sets of 

training, test, and validation with a ratio of 0.8:0.1:0.1, respectively. The data were stratified 

based on the total lesion volume. Thus, 30 subjects from the LISA dataset were set aside as a test 

set. Notably, the nnUNet used a slightly different training procedure as the provided code [27] 

required utilizing a 5-fold cross-validation procedure during training, hence this method was able 

to learn the ensemble weighting from the validation set. 

2.6. Performance Evaluation Metrics 

To evaluate and compare the performance of different methods, nine metrics were considered: 

area under the curve for Precision-Recall (AUC-PR), Dice similarity coefficient (DSC), 

Hausdorff distance (HD), Recall, Kappa, cluster-wise false positive rate (FPR), cluster-wise false 

negative rate (FNR), absolute volume difference (AVD), cluster-wise F1-score, and cluster-wise 

true positive rate (TPR). All the above-mentioned metrics measure the agreement between the 

                                                           
1
 http://pytorch.org/  

2
 https://monai.io/  

                  



manual segmentation (G) and the prediction (P). For the cluster-wise metrics, which include 

cluster-wise TPR, F1-score, FPR, and FNR, the comparison is done at the level of entire lesion 

clusters rather than at the voxel level. In contrast to the remaining metrics HD is a measure of the 

distance between the spatial maps of G and P. 

Clusters were defined via a 3D neighborhood of the 26 closest voxels in our calculations. Hence, 

the cluster-wise TPR is the number of true positive lesion clusters predicted divided by the total 

number of true positive lesion clusters. For the cluster-wise F1-score, the definition is 

   
                   

                  
, (8) 

where C presents the cluster-wise measurement, and cluster-wise precision is calculated by 

dividing the number of true positive lesion clusters by the total number of detected lesion 

clusters. In the group-level evaluations, two metrics of FPR and FNR were used to evaluate the 

model performance across subjects. Here, FPR is the ratio of the number of false positives 

divided by false positives plus true positives, whereas FNR is the ratio of false negatives divided 

by false negatives plus true negatives. FPR and FNR are also calculated at cluster-level. 

AUC-PR is a metric for measuring model performance with respect to precision (the fraction of 

positive lesions of P out of manually positive lesions in G) against recall (the fraction of positive 

lesions of P out of manually positive lesions and background in G) evaluated for thresholds 

applied to the predicted map. The higher the area under the PR curve the better the model 

performs. DSC is a metric for measuring the overlap between G and a binary representation of P. 

The R2-Score is utilized to compare the total lesion volumes between G and P. 

In the HD metric, the longest distance between subsets of lesions in G and P is calculated. To 

suppress the outlier effects, the 95th percentile of distance point sets is considered in these 

calculations. 

                  



For estimating the inter-rater reliability, Cohen’s Kappa [25] score is used. The definition of 

Kappa score is 

  
     

    
, (9) 

where    and    are the probability of annotator’s agreement and the probability of random 

agreement, respectively. 

3. Results 

In this section, we first describe and compare the results gained from different models on LISA 

as the in-distribution test set, then we evaluate the performance on MWSC as the out-of-

distribution test set for each model. Here, LST [7], BIANCA [8], 3D UNET [26], UNETR [18], 

TrUENet [12], and nnUnet [27] were used for performance comparisons. Except for the LST, 

which is an unsupervised method, the other models were trained from scratch on the LISA 

training set. BIANCA was additionally post-processed using a locally adaptive thresholding 

approach (LOCATE) [8]. To study the impact of the weighted loss function on UNET 

architecture, we also developed and trained a 3D UNET architecture utilizing the weighted loss 

function, which is shown as UNET
*
. 

Table 2 presents the comparison between the different methods studied. Tables are divided into 

four categories: 1) conventional methods, 2) CNN models, 3) ensemble DL models, and 4) DL 

models utilizing T1-weighted features in the loss function. 

3.1. In-Distribution Evaluation 

To assess the consistency of DL models across various annotators, we compared nnUNet and 

VoSHT with the inter-rater agreement in Table 3. Interestingly, both DL models showed superior 

                  



performance compared to manual raters. We attribute this observation to DL models providing 

more consistent labeling, not affected by attention, fatigue, or total lesion load of the subject. 

Table 2. Comparing existing methods with the UNETR model regarding the training circumstances. Rows represent 

different methods, arranged from top to bottom into 3 categories: intensity-based methods, DL methods trained by 

an unweighted loss function, and DL methods trained using a weighted loss function. Models specified with * were 

trained using the weighted loss function. Abbreviations: unsupervised learning (UL), supervised learning (SL), 

convolutional neural network (CNN), not applicable (N/A). 

Method Type Dimension 
Image 

Modalities 
Parameters 

(M) 
Training 

Time (h) 

1 

LST UL 1D, 3D T1, FLAIR N/A - 

BIANCA SL 1D T1, FLAIR N/A <2 

2 

UNET CNN 3D FLAIR 48 13.3 

UNETR CNN, transformer 3D FLAIR 92.58 19.4 

3 

TrUENet
* CNN 2D, Ensemble T1, FLAIR 77.4 57.8 

nnUNet CNN 2D, 3D, Ensemble FLAIR ≈73 39.4 

4 

UNET
* CNN 3D T1, FLAIR 48 13.3 

VoSHT
* CNN, transformer 3D T1, FLAIR 92.58 19.4 

Table 3. Inter-rater comparison of the model’s performance on a subset of the LISA dataset. The second annotation 

is considered the benchmark. 

Method DSC HD AUC-PR Kappa 

Inter-rater 82.22 7.24 71.62 63.33 ± 0.121 

nnUNet 90.23 4.80 87.40 87.24 ± 0.062 

VoSHT 85.76 13.04 71.85 71.36 ± 0.085 

                  



Table 4. Using the LISA test dataset as a benchmark in terms of average DSC, cluster-wise TPR, cluster-wise F1-

score, FPR, HD, Recall, AUC-PR, and AVD. The background is included in these evaluations. While TPR and F1 

are calculated at the entire lesion level, the other metrics are calculated at the voxel level. Rows represent different 

methods, arranged from top to bottom into 4 categories: conventional methods, standard CNN methods, ensemble 

CNN methods, and CNN methods trained using a weighted loss function. Models specified with * were trained 

using the weighted loss function. 

Method 
DSC 

(%) 
TPR-

cluster (%) 

F1-cluster 

(%) 

FPR 

(%) 

HD 

(mm3) 
Recall 

(%) 
AUC-PR 

(%) 
AVD 

LST 71.71 54.78 37.00 0.0323 22.84 76.61 46.92 1.65 

BIANCA 74.62 83.96 35.17 0.0340 20.53 87.08 57.41 2.06 

UNET 84.25 92.12 57.09 0.0265 12.59 86.62 70.19 0.84 

UNETR 81.88 83.82 63.59 0.0091 15.61 80.83 65.76 0.69 

TrUENet
* 80.94 80.18 70.01 0.0070 13.79 76.63 66.50 0.62 

nnUnet 85.50 76.43 78.23 0.0092 11.61 84.32 73.09 0.66 

UNET
* 85.43 91.95 72.97 0.0132 11.12 87.48 72.41 0.63 

VoSHT
* 85.59 91.63 73.43 0.0135 10.30 87.48 72.67 0.62 

 

Figure 2. Comparison of DSC and HD scores among different methods on the LISA test set. The black vertical line 

in the boxplot shows the median. Each black point represents the relevant subject. The higher the DSC, the better the 

model performs. The lower the Hausdorff distance, the better the model performs. 

                  



As it is shown in Table 4 and Figure 2, DL models achieve considerably better performance 

compared to conventional non-DL methods, LST had the lowest performance. Furthermore, the 

weighted loss function slightly improves the performance of UNET-based models. For the 

quantitative comparison, all models exhibited comparable performance. Among models 

categorized with the weighted loss function, TrUENet had a 4.6% lower DSC score on average 

than the comparable 3D-shaped models. Interestingly, nnUNet achieved the best balance 

between precision and recall (AUC-PR) among all models, which is also represented in cluster-

wise F1 score. 

3.2. Out-of-Distribution Evaluation 

To provide an assessment of the models’ performance for the out-of-distribution test set, we 

tested all DL models, including our model, on the MWSC test set which is commonly used as a 

benchmark in the segmentation of WMHs. In Table 5, the results show that nnUNet 

outperformed other models in all metrics, except FPR and HD which UNETR and UNET
*
 

gained superior performance, respectively. Moreover, Figure 3 demonstrates that nnUNet had 

least variability among all the models in out-of-distribution test set. 

4. Discussion 

The main aim of this study was to train, evaluate, and compare various DL methods, including 

our proposed method, VoSHT, in healthy older participants with relatively sparse WMHs. We 

implemented an end-to-end trained volumetric transformer model and evaluated the performance 

with other state-of-the-art models. To the best of our knowledge, this is the first instance of 

utilizing a transformer-based model trained on a large dataset which is a prerequisite for 

transformer models. While this model performed relatively well, the ensemble-based nnUNet 

still had better performance, particularly on the external validation dataset. 

                  



Table 5. Using the MWSC set as a benchmark in terms of average DSC, cluster-wise TPR, cluster-wise F1-score, 

FPR, HD, Recall, AUC-PR, and AVD. The background is included in these evaluations. The background is also 

included as the second class in the calculations. Rows are categorized based on either the loss function, method, or 

both. Models specified with * were trained using the weighted loss function. 

Metric 
DSC 

(%) 
TPR-cluster 

(%) 

F1-cluster 

(%) 

FPR 

(%) 

HD 

(mm3) 
Recall 

(%) 
AUC-PR 

(%) 
AVD 

UNET 82.12 31.49 44.41 0.0531 16.06 78.98 67.26 0.60 

UNETR 78.81 27.24 34.43 0.0084 13.71 74.49 62.37 0.67 

TrUENet
* 83.45 39.05 44.41 0.0099 15.83 78.89 64.72 0.51 

nnUNet 86.16 46.45 62.28 0.0155 10.69 83.82 74.77 0.47 

UNET
* 85.53 39.71 54.14 0.0143 9.16 83.74 72.38 0.53 

VoSHT
* 84.13 39.97 52.79 0.0127 14.02 81.49 70.20 0.56 

 

Figure 3. Comparison of DSC and HD among all supervised methods tested on the MWSC set. The black vertical 

line in the boxplot represents the median. Each black point is associated with a subject in the test set. The higher the 

DSC and the lower the HD value, the better the model performs. 

In general, the performance of the DL-based models was comparable to the estimated inter-rater 

variability, which suggests that DL models can be used for supporting radiographers in the 

analysis of large high-resolution data. Additionally, we found that incorporating selected features 

into the loss function demonstrated an increase in the performance of certain architecture 

(comparing UNET and UNET
*
 for instance), suggesting a substantial potential benefit of this 

                  



feature engineering approach in situations where lesions are sparse (Table 4). Additionally, we 

demonstrated that models which directly consider a volumetric representation of neuroimages 

achieved slightly higher performance compared to similar 2D-based ensemble models, such as 

TrUENet. Among all DL models, ensemble models demonstrated superior performance in 

generalization using an out-of-distribution test set. 

Explicitly, we trained and compared state-of-the-art DL models and the most popular toolboxes 

used routinely for WMH segmentation: 3D UNETR [18], 3D UNET [22], TrUENet [12], 

nnUNet [27], BIANCA [8], and LST [7]. First, we evaluated human inter-rater performances in a 

subset of the LISA dataset to have a measurement of how closely our model performs with 

respect to different experts' interpretability. Next, we trained and tested our model using the 

LISA dataset as an in-distribution cohort including a wide range of lesion volumes and 

variations. Then, examples of the UNETR model’s performance were compared in terms of the 

total WMH load. Last, models were tested and compared on the MWSC test set to assess 

performance with respect to generalizability in a completely independent dataset with different 

acquisition parameters. 

We assessed the performance of nnUNet and our model concerning inter-rater agreements, as 

presented in Table 3. The results indicate that both models achieved performance superior to the 

human annotations, as evaluated by an independent human rater. Particularly, nnUNet gained a 

considerably high performance in all metrics, which may be an outcome of ensembling all folds 

of validation through the training procedure. Generally, the proposed system shows promising 

potential in accelerating the radiographer workflow when analyzing large datasets or longitudinal 

datasets. 

                  



When evaluating and comparing the performance of different models within the LISA test set, 

nnUNet, UNET
*
, and VoSHT achieved comparable performance (Table 4; Figure 2). Among 

models trained using the weighted loss function, VoSHT and UNET
*
 outperformed TrUENet. 

This observation can be attributed to the importance of utilizing the volumetric analysis in WMH 

segmentation to capture and learn general and complex contexts of neuroimages. In addition to 

volumetric segmentation, UNET achieved the highest performance in terms of cluster-wise TPR. 

However, the considerably lower performance of UNET in terms of cluster-wise F1-score 

indicates that UNET has a general tendency to over-segment lesions. Particularly, DL models 

trained on imbalanced labeled data from scratch have only limited knowledge of the features that 

are important in neuroimaging [28]. While the weighted loss function significantly enhanced 

models’ performance, it's noteworthy that nnUNet, which utilizes an ensemble model, showed 

similar performance even without the weighted loss function. 

To emphasize the importance of which evaluation metrics are used, the correlation between the 

subject lesion load and their corresponding HD values using VoSHT is shown in Figure 4. Here, 

a negative correlation is observed between HD and the number of WMHs. Upon careful 

examination of the samples exhibiting a low lesion load of WMH (Figure 4(a)), it is evident that 

the achieved HD score (32.9mm) is relatively low for this certain case  Although the visual 

performance shows that WMHs were segmented with high accuracy, the HD value is low since 

the total lesion volumes are extremely low. This can be attributed to the fact that the HD metric 

tends to be inflated in cases where there is little or no overlap between the prediction and the 

ground truth [29]. This finding holds true for the cluster-wise metrics, mainly due to the 

significantly imbalanced ratio of WMHs. Consequently, it is crucial to examine segmented maps 

for a more detailed comparison. 

                  



 

Figure 4. Three examples from the LISA test set comparing the manual segmentation with segmentation maps 

estimated via the VoSHT model. WMH volumes are 86, 8085, and 1366 for (a), (b), and (c) respectively. The 

overlap between the manually labeled map and the prediction map is color-coded by red, green, and yellow 

representing FP, FN, and TP, respectively. On the right side, the magnified cropped sections of original and 

segmented images are highlighted. 

FP voxels indicated by red arrows in Figures 4(a) and 4(c) were missed by the radiographer, yet 

the model was able to segment them. Consequently, these dismissed lesions (FP voxels) have a 

                  



great negative impact on the evaluation metrics. To implicitly explore the performance of our 

model in relation to FP and FN voxels, two instances from the LISA test set with high FPR and 

FNR are shown in Figure A.2. Notably, VoSHT provides segmentation of the WMHs that are not 

annotated by the radiographer (also with reference to selection criteria stated in Section 2.1 and 

Figure A.2 panel a). This again emphasizes the importance of using a reliable automated 

segmentation tool to assist radiographers. 

Providing a cohort-level comparison, Figure A.3 in the Appendix shows the accumulated FP and 

FN voxels across test subjects using BIANCA, nnUNet, and VoSHT. Interestingly, nnUNet 

demonstrated no missing lesion clusters (FN) among all test subjects. Although BIANCA has a 

sparse FN map across the LISA test set, the relatively dense FP map reveals that BIANCA has a 

tendency to over-segment lesions. In comparison, the FN map for VoSHT in Figure A.3 shows 

that the model occasionally misses small WMH clusters, especially near the ventricles. 

In the evaluation of the MWSC test set, nnUNet achieved comparably higher performance than 

all the other DL models. In Figure 3, the highest performances were ranked for nnUNet, UNET
*
, 

and VoSHT, respectively. These observations underscore the significance of ensemble models, 

offering a beneficial balance between individual models, each with their distinct advantages. As 

indicated in Table 1, the MWSC has an anisotropic resolution within the FLAIR image. This 

characteristic potentially affects 3D-based methods like UNET* and VoSHT to a greater extent 

compared to 2D-based methods such as TrUENet and nnUNet. On the other hand, volumetric-

based methods achieved a comparable performance to 2D-based methods in Table A.1 and Fig. 

The implementation of the structurally penalized weighted loss function led to notable 

advancements in the performance of VoSHT compared to UNETR (Table 5). Similarly, there 

were significant improvements in the performance of UNET* compared to UNET. Therefore, 

                  



integrating T1-weighted data in this manner enhances the model's performance while 

maintaining a consistent number of parameters It also has the additional advantage that the 

information can readily be replaced by a template if T1-weighted data is unavailable which will 

then effectively act as prior information. In terms of using the attention-based mechanism, 

VoSHT demonstrated a wider variability than UNET-based models among test subjects in Figure 

3. In practice, there is always a tradeoff between the capability of modeling specific aspects of 

the data and overfitting, and we expect the disadvantage of the more complex model to disappear 

with better data availability or transfer learning approaches [30]. 

In Figure 5, the HD score of the VoSHT model is depicted against the WMH volume on the 

MWSC test set to provide insight into the performance of attention-based models in an out-of-

distribution setting. Examining the two instances with different lesion loads from Figure 5, 

VoSHT mainly showed FP disagreements with the manual labels near the borders of lesions. 

This effect can potentially be attributed to the subsampling deployed in the preprocessing of 

MWSC. Additionally, the FP voxels magnified in Figure 5(a) may also be due to the non-

adaptive thresholding deployed after the MWSC resampling. Figure 5(b) highlights instances 

where VoSHT faced challenges in identifying WMHs, denoted by red arrows. The majority of 

FN voxels are observed in the borders of lesions or regions connecting larger lesions. 

To also explore the correlation between DSC obtained from VoSHT and the total lesion load in 

the LISA test set, a scatter plot is shown in Figure 6, where the age of each subject is represented 

by the size of the data point. Aligned with the previous results, a positive correlation was 

observed between the DSC value and total lesion load. This emphasizes the importance of 

attending to multiple aspects of the data when attempting to interpret the results. Particularly, this 

is of importance for the interpretation of subjects with low lesion load where even the 

                  



misprediction of one voxel can have a great impact on the statistical results. In our sample of 

older adults (60 – 72 years), we did not observe any meaningful correlation between age and the 

model performance. 

 

Figure 5. Examples of the MWSC set for comparing the manual segmentation with the VoSHT prediction map. The 

number of WMH voxels is 191 and 28284 for (a) and (b), respectively. FP, FN, and TP voxels are color coded with 

red, green, and yellow respectively. On the right side, the magnified cropped sections of original and segmented 

images are highlighted. 

                  



 

Figure 6. The correlation between total lesion voxels at the subject level and the logarithm of DSC values for 

VoSHT. The DSC score is only calculated for the lesion voxels and the background is excluded in this plot. The size 

of the points indicates the age. 

To further investigate the effects of introducing structural information in the loss function, 

regression plots between the real and predicted lesion load for UNET and UNETR on the LISA 

test set are depicted in Figure 7. The introduction of structural information appears to have less 

impact on the transformer models (UNETR and VoSHT) than the models not utilizing a 

transformer structure (UNET and UNET
*
), we expect that this difference could be caused by the 

transformer models' ability to capture long-range dependencies in the data already without the 

used of additional information. While the UNETR trained with the non-weighted loss function 

has a tendency to under-segment lesions in general, the VoSHT method tends to over-segment. 

Here, we speculate that this behavior might actually be desired in some cases where the human 

annotation may be incomplete. In particular, in settings where the lesion load for a subject is 

high, it is perfectly reasonable for a human annotator to ignore very small lesions, as they will 

have little or no impact on the final classification or scores of the subject. However, from the 

                  



classification models perspective such labels may be very difficult to accurately predict as they 

have no special treatment in the cost function. 

 

Figure 7. Scatter plot of manual WMH volume against predicted WMH volume on the LISA test set for UNET and 

UNETR. Each point on the plot is associated with the total number of lesions voxels at the subject level. The blue 

and orange color codes present the non-weighted and the weighted loss functions, respectively. 

Regarding the weighted loss function, it is important to mention that the specific weighting 

scheme is motivated by prior knowledge about the expected location of WMH, this means that a 

model trained with the weighted loss function will highly penalize non-WM voxels. However, in 

other settings, lesions may be more likely to appear in non-WM tissues. Therefore, we do not 

expect the model to immediately generalize well to such populations. In multiple sclerosis (MS), 

for instance,  the importance of mapping lesions on GM is substantial [31]. Therefore, it is 

important to mention that the utilized weighted loss function should be modified regarding the 

recurring location of lesions in MS or other relevant applications. 

In this study, the following insights were gained: (1) All DL models performed comparably 

among in-distribution test set. (2) In an out-of-distribution test set, nnUNet with incorporation of 

2D and volumetric segmentation gained slightly superior performance. (3) The utilization of T1-

weighted sequences as input leads to a significant increase in the number of parameters, whereas 

                  



the weighted loss function notably enhances performance without relying on T1-weighted input 

directly. (4) Ensemble DL models demonstrate superior performance across both cluster-wise 

and voxel-wise metrics, underscoring their effectiveness in enhancing segmentation accuracy 

and robustness. (5) It is important to mention that the introduction of selected structural features 

here is tailored specifically for WMH, and it might be of interest to investigate other ways to 

introduce structural information in other settings such as the detection of lesions in MS. (6) DL 

models have a promising potential to assist radiographers and minimize the efforts needed for 

segmentation and improving the accuracy by allowing the radiographer to pay more attention to 

specifically difficult cases [33]. 

Based on the insights gained from this study, further investigation of methods that utilize a 

combination of attention mechanisms, anatomical information and ensemble weighting would be 

interesting. Additionally, it would be of interest to explore different methods of generalization, 

such as domain adaptation techniques [32], which may provide advantages when multi-site MR 

imaging data is considered.  Further, exploring the potential of pretraining the model using self-

supervision models [33] to improve its performance is a promising direction for future research. 

Based on the results obtained from the cohort-level study, explainable blocks [34] could also be 

utilized as post-hoc modules to direct the attention of human annotators and thereby enhance the 

prediction, especially FN. Finally, the combination of human expertise and automated models 

has immense potential to create a synergistic effect, improving the identification and achieving 

reliable segmentation tools [5,35]. 

5. Conclusion 

In summary, we trained and evaluated several DL-based segmentation frameworks for WMH 

detection. Generally, all DL models performed at a comparable level when infering lesions in the 

                  



in-distribution test set. Additionally, we found that the nnUNet which relies on an ensemble of 

2D and volumetric models generalized best to the external validation dataset. 
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