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Robust and Lightweight Data Aggregation with
Histogram Estimation in Edge-Cloud Systems

Yuan Su, Jiliang Li, Jiahui Li, Zhou Su, Senior Member, IEEE , Weizhi Meng, Senior Member, IEEE , Hao
Yin, and Rongxing Lu, Fellow, IEEE

Abstract—Secure aggregation based on masked encryption is a crucial technique for data collection in the Internet of Things (IoT)
as it employs a lightweight style to enable global data aggregation while protecting individual data. However, network instability makes
the design of such schemes more complex as dropout-resiliency is required, where the overheads substantially increase with growing
dropped users. Moreover, existing methods primarily concentrate on aggregation and fail to support complex data analysis, such as
histogram estimation. This paper proposes a Robust and Lightweight Data Aggregation (RLDA) scheme in edge-cloud systems. RLDA
leverages the offline/online paradigm to achieve robust data aggregation, where edge nodes are introduced to assist verifiable key
generation offline and data aggregation and key recovery online. RLDA decouples keys of dropped and surviving users so that it can
reduce the overhead by always recovering the keys of surviving users rather than reconstructing the keys of growing dropped users. To
achieve secure histogram estimation, we design two recoverable aggregation algorithms that support the transformation between vector
and single value, and additionally support multidimensional data aggregation. We prove the security and dropout-resiliency of RLDA.
The performance shows that RLDA significantly reduces the overhead with growing dropped users.

Index Terms—Robust aggregation, Secure histogram estimation, Multidimensional data aggregation, Edge computing.

✦

1 INTRODUCTION

As the scale of Internet of Things (IoT) devices grows and
expands, the world is becoming increasingly connected, and
users’ lifestyles become more convenient and intelligent
[1, 2]. The ubiquitous IoT devices are able to share a large
amount of collected data with cloud server (CS), which
can conduct data analysis to provide better service through
machine learning [3, 4]. For example, the CS in smart grids
can create a full picture of energy use across areas ranging
from villages to cities by collecting data of smart meters,
thus optimizing energy usage and efficiently distributing
energy relative to load. In the Internet of Vehicles (IoV),
the CS collects and analyzes the traffic data from vehicles
to obtain global traffic information, and thus making an
intelligent route plan for users. The CSs are only interested
in learning aggregate statistics of users’ devices, but often
attempt to collect private data from users. However, the
caches of users’ private data poses severe privacy and
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security risks: private data may be disclosed by motivated
attackers [5], or be misused for profit by cloud servers [6].

To learn aggregate statistics while protecting private data
of users, secure aggregation method allows users to encrypt
data and upload it to CS, where CS can aggregate the
encrypted data, and decrypt it to learn the final aggregated
outcome. In the existing works, homomorphic encryption,
differential privacy, and masked encryption are primarily
leveraged to achieve secure aggregation. The homomor-
phic encryption brings high computational complexity and
heavy overhead of data expansion, which burdens the con-
strained IoT users [7–12]. Differential privacy [13] provides
resilient aggregation, and could moderately sacrifice effi-
ciency and accuracy [14–17]. Different from homomorphic
encryption and differential privacy, masked encryption uses
lightweight symmetric encryption to protect data confiden-
tiality and provide lightweight data aggregation [18–25].
The masked encryption based schemes [18–20] utilize pair-
wise random-seed agreement between IoT users to generate
encryption keys, which are then used to encrypt individual
data using an additive key structure that permits secure
aggregation at the CS by allowing key cancellation. By
grouping users, these schemes [21–25] directly use Shamir
secret sharing [26] to share data with users in the next
group and enable data aggregation of data sharings for each
group. The CS can finally reconstruct the aggregated data
by sufficient data sharings of users in the final group.

However, IoT users could be disconnected in the inter-
mittent and unstable network. In order to guarantee correct
and precise aggregation, the users in the groups and the
CS need to communicate with surviving users in multiple
rounds to recover keys or data sharings of dropped users.
This raises the first issue: the growing number of dropped
users leads to an increased number of reconstructed keys,
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which increases the overhead of reconstruction at the users
and CS. Instead of recovering the keys of dropped users
through multi-rounds communications, we focus on one-
shot key recovery of surviving users. To achieve this goal,
we introduce an edge-cloud framework for data collection,
which can deliver higher performance or lower cost by
processing partial data aggregation at the edge nodes (ENs).
The ENs are responsible for managing a cluster of users
and executing partial aggregation, key preparation, and
recovery procedures with minimal overhead. Thus, one-shot
key recovery can be performed through aggregated sub-
keys of ENs.

Moreover, secure aggregation schemes [18–25] based on
masked encryption are primarily designed to achieve secure
aggregation, and do not support complex data analysis,
such as histogram estimation [27, 28]. As the histogram esti-
mation offers insights into the range, center, dispersion, and
shape of data, as well as the identification of outlier values
or intervals, it is vital for data analysis in transportation
(e.g., traffic estimation of specific area), energy sectors (e.g.,
optimize energy usage), etc. This raises the second issue:
Lack of histogram estimation makes it difficult to analyze
data distribution characteristics effectively. Therefore, it
is imperative to achieve histogram estimation in secure
aggregation for edge-cloud scenarios. This paper extends to
support secure histogram estimation by designing Recover-
able Aggregation (RecAgg) algorithms, which allow users to
submit data vectors securely. By this way, CS can construct
the histogram of a set of values from users but without ever
learning which data a particular user owns.

In this paper, we design a Robust and Lightweight
Data Aggregation (RLDA) scheme with secure histogram
estimation. RLDA provides lightweight aggregation in an
onilne/offline paradigm, where a steady supply of encryp-
tion keys can be generated in a verifiable way to support
key recovery in presence of dropped users during the offline
phase. As a result, one such encryption key is available
to process the request online in an efficient manner when
an encryption request is received. Furthermore, RecAgg
algorithms are designed to support histogram estimation.
Our contributions are summarized as follows.

• We propose a robust and lightweight data aggre-
gation scheme using the online/offline paradigm,
which provides verifiable key generation in the of-
fline phase, and robust data aggregation in the online
phase. By one-shot key recovery, RLDA can effi-
ciently recover the decryption keys for correct and
precise aggregation.

• To achieve efficient histogram estimation, we pro-
pose two RecAgg algorithms, which can aggregate
a vector into a single value, and de-aggregate a
single value to retrieve the original vector, con-
versely. Based on the RLDA and the RecAgg algo-
rithms, the secure histogram estimation is designed
in a lightweight way. Additionally, multidimensional
data aggregation is also supported in our designs.

• We formally prove the correctness and security of our
RLDA scheme, and also prove that RLDA provides
robust and privacy guarantee by analyzing informa-
tion entropy. We implement our RLDA and conduct a

comprehensive performance comparison with exist-
ing schemes. Experimental results demonstrate the
feasibility and efficiency of our RLDA in presence of
growing dropped users.

The remaining sections of this paper are organized as
follows. We provide a comprehensive review of related
works in Section 2, followed by the introduction of the
system model and threat model in Section 3. In Section 4, we
present our proposed RLDA scheme. Section 5 discusses the
construction of secure histogram estimation, along with two
RecAgg schemes. The security is proved in Section 6, and
performance evaluation of our RLDA is shown in Section 7.
Finally, we summarize our work in Section 8.

2 RELATED WORK

Many secure aggregation schemes with various functional-
ity are proposed to adapt to diverse scenarios, such as fed-
erated learning, smart grid, IoT, IoV, etc. The main methods
are divided into the following categories: homomorphic en-
cryption, differential privacy and masked encryption based
aggregation.
Homomorphic encryption. Secure aggregation built on ho-
momorphic encryption can achieve precise aggregation re-
sults and functions, such as arithmetic operations on the
encrypted data [7, 8], robust guarantee [9], multi-types
data aggregation [10], etc. Based on the double trapdoor
cryptosystem, an efficient and privacy-preserving scheme is
proposed to achieve secure aggregation and function query
[7]. To alleviate the burden of the control center, ElGamal-
OU is proposed to improve the efficiency of processing
ciphertexts, and achieves privacy protection and function
query [8]. SEAR employs the trusted execution environment
and public encryption to achieve secure model aggregation
for Byzantine-Robust Federated Learning [9]. Observing
that edge nodes always generate different types of data
that will be further processed in-depth analysis, VPMDA
is proposed to collect multi-type data [10]. Focusing on pro-
tecting edge data in intelligent transportation systems, the
decoding function is constructed by a partially encrypted
secure multi-party broadcast computation algorithm, which
also shares the gradients among the local models with
O(n) time complexity [11]. Unfortunately, homomorphic
encryption based secure aggregation schemes provide reli-
able results and multi-function, but incur heavy overhead
on constrained users’ devices in terms of computational
complexity and data expansion.
Differential privacy. Differential privacy [13] is a noise-
based technique that adds random noise to users’ raw data
to prevent data leakage, while the noise does not have a
significant impact on the aggregated results. The goal of
differential privacy is to provide reasonable data analysis
results while protecting users’ privacy [14–17]. However,
the added random noise may blur some data features,
leading to a decrease in the accuracy of analysis results.
This accuracy loss can be mitigated by increasing the noise
magnitude, but it also strengthens privacy protection and
makes the analysis results more uncertain. Thus, appro-
priate privacy parameters and noise magnitudes need to
be chosen based on specific application scenarios and data
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sensitivity, to meet the balance between privacy protection
needs and data analysis requirements.
Masked encryption. The masked encryption based data ag-
gregation employs the symmetric homomorphic encryption
[29, 30] to achieve secure data aggregation. Based on double-
masking technique, SecAgg designs a secure and dropout-
tolerant aggregation protocol, where the self-mask is gen-
erated by the users and the pairwise-mask is generated
between each pair users [18]. Then each user sends data
encrypted by the masks using an additive structure such
that the summation of additive masks can cancel out when
the encrypted data is aggregated. Based on the framework
of SecAgg, VeriFL is proposed to achieve verifiable aggrega-
tion by linearly homomorphic hash and commitment [19].
TubroAgg specializes in secure aggregation for federated
learning [21]. Through random grouping of users and pair-
wise key agreement with adjacent group users, TubroAgg
reduces communication costs, and also provides robust
guarantee by Lagrange coding [31]. The communication
complexity is reduced from O(n2) to O(nlogn) with only
O(n) rounds by circular communication.

In [22], LightSecAgg is proposed to protect the privacy
of each user’s individual model while supporting global
aggregation. Each EN partitions a key vector of high di-
mension into a key vector of low dimension, and encodes
the low dimension vector by the maximum distance sep-
arable code to prepare least but sufficient key shares for
other users, allowing efficient key recovery in presence
of dropped users. Thus, LightSecAgg provides robustness
against dropped nodes and privacy against colluded nodes.
Based on Shamir’s secret sharing, CodedPaddedFL and
CodedSecAgg provide straggler resiliency and robustness
[23]. SwiftAgg uses group partition to minimize the com-
munication cost in presence of dropped users, and em-
ploys secret sharing to provide data confidentiality [24].
Besides, an information theoretic secure aggregation scheme
is presented in [25], which supports two rounds of secure
aggregation and dropped users.

Although existing masked encryption schemes that
based on secret sharing and coding techniques can achieve
secure data collection, these schemes incur communication
and computation overhead in presence of growing dropped
users, and fail to support histogram estimation. Therefore,
we propose a robust and lightweight aggregation scheme
with secure histogram estimation in edge-cloud systems.

3 PROBLEM STATEMENT

The goal of our RLDA is to enable the CS to gain aggregated
value and histogram estimation of data among all users,
while leaking as little private data of individual user to the
CS as possible. Our proposed RLDA works on a verifiable
online/offline model, and provides strong robust guarantee
and privacy guarantee, i.e., simultaneously achieves robust
guarantee of d = k

2 − 1 and privacy guarantee of t = k
2 .

Some notations are defined in Table 1.

3.1 System Model

As shown in Fig. 1, our RLDA scheme consists of a CS,
a small number of ENs and a large number of users. At

TABLE 1: Notations

Notations Semantics

[1, n] The set {1, 2, · · · , n}
E[ij] The j-th element of i-th row of matrix E
ER The submatrix of the rows i ∈ R of matrix E
m ∈ D Individual private data (|D| = B)
k, n The number of ENs and Us
d, t, e Dropout, collusion and recovery threshold
F Pseudorandom function
α PRF key
a Encryption key
β Unique value of EN
sij , sj ENj ’s shares of key ai, ENj ’s sub-mask
cm,∆ Commitment and commitment set
cj , Cj , C Ciphertexts
U The set of surviving users
R, {bi}ni=1 Auxiliary information
Ti(i ∈ [0, n]) Intermediate parameters

         

  

         

            

Fig. 1: System model.

each time epoch, Ui holds a private data mi in a set of data
values D = {0, · · · , B− 1}, the goal is to allow CS to obtain
the aggregated data of all users (Section 4) and acquire the
histogram estimation of all user’s data (Section 5), in a way
that leaks as little private data of individual user to the CS as
possible. The work mode of entities in our scheme is shown
as follows.

• Users (Us). The proposed scheme involves n dis-
tributed users along with resource-constrained IoT
devices. At every time epoch, users collect or gener-
ate private data, which is then transmitted to ENs for
further aggregation.

• Edge nodes (ENs). The ENs are responsible for
partially aggregating the private data of all users
located in its region, and sending the aggregated
data to the CS for analysis. Suppose there are k ENs
in total, and each user resides in only one region.
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Let RG1, · · · , RGk be k sets of users where RGi is
maintained by ENi, all these k sets are disjoint and
satisfy |RG1|+ · · ·+ |RGk| = n.

• Cloud server (CS). The CS is a cloud server and aims
to acquire data from users for further analysis.

3.2 Threat Model
In the proposed RLDA, authenticated and encrypted point
to point (P2P) channels need to be established for each pair
of users and ENs, and also for each pair of ENs and CS
[6]. In the network, users and ENs may potentially drop
out during the data collection for various reasons such as
having unreliable and unstable communication connections.
Our RLDA considers a threat model where the CS, ENs, and
users are honest but curious [32] meaning that all parties
will faithfully execute the protocol but are curious about
the private information of honest parties. The following
security properties are defined, and then the security model
are formalized.

• Completeness. If all users and ENs honestly follow
the scheme, then the CS can correctly obtain the
aggregated data and histogram estimation.

• Robustness to dropped ENs. In our RLDA scheme,
we assume that there are at most d dropped ENs, and
there are at least k − d surviving ENs after potential
dropouts. Our RLDA scheme guarantees that the
CS can correctly decrypt the aggregated data of all
surviving users, even if up to d dropped ENs. We
have no limit on the number of dropped users, if all
users have dropped in a region, the corresponding
EN just does not send messages to the CS.

• Privacy against colluded users and ENs. Up to t (out
of k) ENs can collude together as well as with the CS
to attempt to infer the individual private data. In the
proposed RLDA scheme, the EN also could collude
with the users in its region. In the worst case, all
users in the region of t ENs could collude together
when these t ENs form a coalition of conspirators.
Our RLDA is required to guarantee that nothing can
be inferred except for the aggregated data, even in
the worst case (up to t ENs collude together where
all users in the region of t ENs also conspire jointly).
Moreover, arbitrary numbers of users in a region
can collude with the corresponding EN to gather the
private data of honest users.

Definition 1. For any pair of robust guarantee d and privacy
guarantee t satisfying d + t < k, the RLDA scheme can
simultaneously achieve robust aggregation against up to any d
dropped ENs and protect privacy against up to any t colluding
ENs.

We first recap the definition of pseudorandom function
[33].

Definition 2 (Pseudorandom Function). Let PRF : K×V →
W be a deterministic polynomial-time algorithm, with key space
K, domain V and range W . For any β ∈ {0, 1}, we define the
experiment INDPRF

β as shown in Fig. 2, where

OPRF (t) =

{
PRF (k, t) if β = 0,

RF (t) if β = 1

with RF (t) denotes a random function.
A pseudorandom function PRF is secure, if for any PPT ad-
versary A, of which the advantage to distinguish the PRF from
random function is negligible, i.e.,

AdvIND
PRF,A(λ) = |Pr[INDPRF

0 (λ,A)]− Pr[INDPRF
1 (λ,A)]|

≤ negl(λ),

where negl(·) is a negligible function.

INDPRF
β (λ,A)

k ← K
b← AOPRF (·)(1λ)

Output : b

Fig. 2: Security game for PRF.

Then, we formalize a security model by a secure game
between a challenger B and an adversary A to demonstrate
that B can break a difficult problem using A as a subroutine
if A can break the RLDA. The game proceeds as follows.

• Setup. The challenger B generates PRF keys {αj}nj=1

for all n users, and sends A the PRF keys of a set
of users S′, which are the corrupted users randomly
selected by the adversary A. The set U consists of all
n users.

• Query. When receiving an encryption query
(j,mj , rj) from Uj , B responds A with ciphertext cj .

• Challenge. A selects a challenged set S where |S| −
|S′| > 0 and two sets of messages M0 = {m0j : Uj ∈
U} and M1 = {m1j : Uj ∈ U}, and sends them
to B. B flips a coin b ∈ {0, 1} to select message set
Mb to be encrypted and aggregated. B then encrypts
mbj with encryption key aj = PRF (αj , rj) where
rj is the randomness for Uj ∈ U , and aggregates
all ciphertexts to obtain the aggregated ciphertext cb.
Finally, B sends (cb, {rj}Uj∈U ) to A.

• Guess. A outputs a bit b′ ∈ {0, 1}. If b′ = b, we say
that A wins this secure game.

Definition 3. For any probabilistic polynomial time (PPT) ad-
versary A, our RLDA scheme is semantic secure if the probability
of A winning the above secure game is negligible.

4 ROBUST AND LIGHTWEIGHT DATA AGGREGA-
TION (RLDA) SCHEME

In this section, we first give an overview of the RLDA
scheme, and then present the concrete construction.

4.1 Overview

In the RLDA, we wish that the CS can obtain the aggregated
data of users without learning individual private data, as
well as being robust to the dropped users and ENs. The
RLDA consists of system setup phase and data collection
phase. In the system setup phase, the CS initiates the data
collection system, and sends some necessary system param-
eters to the ENs and users. The data collection phase is
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Fig. 3: Work flow of RLDA.

divided into the offline phase and online phase, which is
shown in Fig. 3.

During the offline phase, users generate a bunch of en-
cryption keys, and also distribute the key shares to all ENs to
make the RLDA perform robustly in the presence of dropout
users. Moreover, ENs can verify the well-formedness of key
shares to guarantee correct decryption.

In the online phase, users encrypt their data and send
to the corresponding ENs, which then aggregate the cipher-
texts and send to the CS. To learn the aggregated data, the
CS can compute the aggregated masks by requiring ENs to
send the sub-masks to the CS. Even in presence of dropped
ENs, the CS is still able to robustly and correctly obtain the
aggregated results.

4.2 Concrete Construction

In this section, the concrete RLDA scheme is presented.

4.2.1 System Setup Phase

Given a security parameter λ, the CS runs the Setup(1λ)
to initialize a data collection system. Specifically, a mul-
tiplicative cyclic group G with order p is selected and a
generator g is selected from G, where p is a large prime.
A PRF F : Z∗

p × Z∗
p → Z∗

p is used to generate encryption
keys. The dropout threshold d, collusion threshold t, and
recovery threshold e satisfying k − d > e > t ≥ 0 are
selected, where k is the number of ENs. Then, the hyper-
invertible matrix1 Ek×e is constructed with the property that
the e-dimension vector a can be recovered by any e values
of encoded vector (E× a)k×1. Finally, the system parameter
SP is set as SP = {p,G, g, E}.

1. A hyper-invertible matrix is a matrix of which every (non-trivial)
square submatrix is invertible [34].

4.2.2 Data Collection Phase
In the offline phase, users prepare sufficient encryption keys
along with ENs in a verifiable way. In the online phase, users
can use the prepared encryption keys to encrypt their own
data, and send the ciphertexts to the ENs. At the end of each
epoch, ENs aggregate the received ciphertexts and send
them to CS. The CS can decrypt the aggregated ciphertexts
with the assistance of ENs.
Offline phase. In this phase, users generate the encryption
keys and verifiably share them to all ENs, which is illus-
trated as follows. In the proposed scheme, we use the Van-
dermonde matrix as the hyper-invertible matrix (Equation
(1)) [34, 35], assuming that each ENi has a unique value
βi ∈ Z∗

p (i ∈ [1, k]).

Ek×e =


1 β1 · · · βe−1

1

1 β2 · · · βe−1
2

...
...

. . .
...

1 βk · · · βe−1
k

 (1)

• For i ∈ [1, n], each Ui randomly selects αi ∈ Z∗
p as

the key of PRF F . Then, Ui computes the encryption
key ai = F (αi, ri), where ri is randomly selected
from Z∗

p. Ui also additively shares the key ai, i.e.,

ai = ai1 + · · ·+ aie,

where ai1, · · · , aie ∈ (Z∗
p)

e, and let ai =
(ai1, · · · , aie). Next, Ui computes the commitment
cmij = gaij , and the key share sij = E[j] × aTi
(i ∈ [1, k]). Finally, Ui securely sends the key
share sij to ENj , and broadcasts commitment set
∆i = {cmi1, · · · , cmie} to all ENs.

• After receiving ∆i and key share sij from Ui, ENj

can check the correctness of key share as follows,

gsij = gE[j]×aTi = g

e∑
l=1

E[j][l]·aie

=
e∏

l=1

cm
E[jl]
il . (2)
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The ENj secretly stores sij if the verification passes,
and aborts otherwise. Note that if any one of ENs
aborts in this step, then all ENs will abort.

The verification check (Equation (2)) helps ENs to check
that the key shares are indeed encoded by the hyper-
invertible matrix E, which guarantees the correct decryp-
tion. In the offline phase, users can prepare sufficient en-
cryption keys for secure data collection in the online phase.
Thus, it is inefficient to check the key shares individually.
In the following, batch check is supported to improve the
verification efficiency of ENs.

Batch check. Each Ui prepares w keys a
(1)
i , · · · , a(w)

i , and
the corresponding commitment sets ∆

(1)
i , · · · ,∆(w)

i (i ∈
[1, n]). The ENj can check the correctness of all nw key
shares {s(1)ij , · · · , s(w)

ij }ni=1 by Equation (3).

g

w∑
h=1

n∑
i=1

s
(h)
ij

= g

w∑
h=1

n∑
i=1

E[j]×a(h)
i

T

= g

w∑
h=1

n∑
i=1

e∑
l=1

E[j][l]·a(h)
il

= g

e∑
l=1

(
w∑

h=1

n∑
i=1

×a
(h)
il )·E[j][l]

=
e∏

l=1

(
w∏

h=1

n∏
i=1

cm
(h)
il )E[jl]

(3)

Online phase. In this phase, the data collection is divided
into several epoches (e.g., every 15 minutes is an epoch).
During each epoch, each Ui encrypts its data mi ∈ Z∗

p ,
and then sends the ciphertext ci to the corresponding ENj .
At the ending of the epoch, ENj aggregates its received
ciphertexts Cj =

∑
i∈Uj

ci, and sends (Cj ,Uj) to the CS, where

Uj is the surviving set meaning that users in the Uj have sent
the data to the ENj .

• Encryption. The user Ui encrypts data mi as ci =
ai +mi, and sends it to ENj if i ∈ RGj .

• Collection. At the end of the epoch, ENj first identi-
fies the set of surviving users Uj . When obtaining
ciphertexts {ci}i∈Uj from users in its region, ENj

computes Cj =
∑
i∈Uj

ci, and sends (Cj ,Uj) to the CS.

• Read. In this step, the CS first ascertains all surviving
users, and then requires ENs to compute sub-masks
of all surviving users U . If some of ENs fail to transfer
the sub-masks, the CS can use the hyper-invertible
matrix E to recover the mask by a =

∑
i∈U

ai. Finally,

the CS can successfully decrypt the ciphertext by the
mask a. The concrete steps are described as follows.
Step 1. The CS first identifies the surviving users U =⋃k

j=1 Uj , and computes C =
k∑

j=1
Cj .

Step 2. For j ∈ [1, n], ENj is notified to compute the
sub-mask sj =

∑
i∈U

sij , and securely sends sj to the

CS.
Step 3. In Step 2, some ENs may drop out, thus the
CS can only expect to receive sub-masks of part of
ENs. As long as receiving at least e sub-masks, the
CS can recover the mask. When receiving the first e

sub-masks from ENs (denoted as E = {j1, · · · , je}),
the CS can compute

[
∑
i∈U

ai1, · · · ,
∑
i∈U

aie] = E−1
E × [sj1 , · · · , sje ].

Then, the CS can generate the mask a =
e∑

j=1

∑
i∈U

aij ,

and decrypt the ciphertext C by M = C − a.

5 SECURE HISTOGRAM ESTIMATION

In the secure histogram estimation, the CS has a small set
D = {0, · · · , B − 1}, which is known to the users. For each
string, the CS wants to know the number of users who hold
the string without learning anything else about user’s string.
Technique idea. Given a value m ∈ D, m is encoded as a
B-dimension vector (v0, · · · , vB−1) where vi = 1 if i = m
and vi = 0 otherwise. Then, the vector is compressed into
a single value while retaining the homomorphic property
of summing values in each dimension. Finally, the CS can
collect the sum of vis by the RLDA scheme in Section 4.
After the data collection, the CS can recover the aggregate
vector from a single aggregated value. We propose RecAgg
algorithms to compress and recover the vector, which are
presented in Section 5.2. In the following, we first present
the construction of secure histogram estimation scheme,
which integrates the RecAgg algorithms with the RLDA to
achieve secure histogram estimation. Then, the construction
of RecAgg algorithms is proposed.

5.1 Construction of Secure Histogram Estimation
Based on RLDA scheme and RecAgg algorithms, we pro-
pose an efficient and secure histogram estimation scheme.
In the secure histogram estimation scheme, the aux infor-
mation (R or {bi}ni=1) in the RecAgg, which satisfies that
R > n or bi > n (i ∈ [1, n]), is pre-selected and known to
all ENs.

1) U is associated data m ∈ D (|D| = B), and encodes m
as a B-dimension vector (v0, · · · , vB−1) where vi = 1
if i = m and vi = 0 otherwise.

2) Given aux information and vector (v0, · · · , vB−1),
U executes Encode algorithm (either Encode in the
Poly RecAgg or CRT RecAgg) to obtain the aggregated
value m′.

3) With input m′, U proceeds the RLDA scheme to com-
plete the data aggregation.

4) When completing the RLDA scheme, the CS could
obtain an aggregated data M . By the Decode algorithm
of Poly RecAgg or CRT RecAgg, the CS can recover
the vector V = (V0, · · · , VB−1) where Vi is the sum of
vi of all n EN, for every 0 ≤ i ≤ B − 1.

5.2 RecAgg Algorithm
We propose two RecAgg algorithms based on algebra oper-
ations: polynomial based RecAgg called Poly RecAgg and
Chinese Remainder Theorem (CRT) based RecAgg called
CRT RecAgg, is shown as follows.
Poly RecAgg. Given a n dimension vector m =
(m1, · · · ,mn) ∈ Dn where each mi is a positive integer,
m is regarded as the coefficient vector of a polynomial f(x),

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3352734

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 19,2024 at 12:35:28 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Algorithm 1 Poly RecAgg

Encode(m)→ (m, aux) ▷ aggregation
1: Parse m = (m1, · · · , ,mn)
2: Select a large integer R, where R≫Max{m1, · · · ,mn}
3: aux← R

4: m←
n∑

i=1
miR

i

5: return (m, aux)

Decode(m)→ (m) ▷ recovery
1: Compute T0 ← m

R
2: for i = 1 to n do
3: mi ← Ti−1 mod R
4: Ti ← (Ti−1−mi)

R
5: end for
6: return m = {mi}ni=1

where the constant term m0 = 0. Thus, one can easily aggre-
gate the vector m into a positive number f(R) by evaluating
f(x) at the point R. To recover m, one can successfully
obtain m from f(R) by the pre-designed parameter when
the evaluated point R satisfies R > Max{m1, · · · ,mn}.
Therefore, given R and f(R), one can compute m from f(R)
by division and modular operations. For example, if R = 11,
and f(R) = 1028478, one can compute m = (9, 7, 2, 4, 6)

by di = Ti−1 mod R where Ti = Ti−1−di

R and T0 = f(R)
R

(i = 1, · · · , 5). The Poly RecAgg is shown in Algorithm 1.
CRT RecAgg. The CRT RecAgg algorithm is based on the
Chinese Reminder theorem, and can aggregate the n dimen-
sion vector to a single value along with some auxiliary infor-
mation. Specifically, for a vector m = (m1, · · · ,mn) ∈ Dn,
one can construct an equation system (4) by selecting n co-
prime number (b1, · · · , bn). According to the Chinese Re-
minder theorem, equation system (4) has a unique solution

m =
n∑

i=1
miqiSi mod S, where S =

n∏
i=1

bi, Si = S
bi

and

qi = S−1
i mod bi. Besides, vi < bi (i = 1, · · · , n) is restricted

to avoid overflow error. In this way, m can be represented
by m and some auxiliary information (b1, · · · , bn). To obtain
m, one only needs to compute n modular operations, i.e.,
mi = m mod bi (i = 1, · · · , n). The CRT RecAgg is shown
in Algorithm 2. 

m ≡ m1(mod b1)
m ≡ m2(mod b2)

...
m ≡ mn(mod bn)

(4)

Note that the aggregation is the affine operation on a set
of data, and thus the additively homomorphic property is
satisfied given the same auxiliary information aux.
Additive homomorphism: For two aggregated data
(m(1), aux(1)) and (m(2), aux(2)) of two set of data
(m

(1)
1 , · · · ,m(1)

n ) and (m
(2)
1 , · · · ,m(2)

n ) where aux(1) =

aux(2), anyone can create an aggregated data of (m
(1)
1 +

m
(2)
1 , · · · ,m(1)

n +m
(2)
n ) by computing m(1) +m(2).

5.3 Toward Multidimensional Data Aggregation
In practice, heterogeneous and diverse data will be pro-
duced, thus it is essential to support multidimensional data

Algorithm 2 CRT RecAgg

Encode(m)→ (m, aux) ▷ aggregation
1: Parse m = (m1, · · · ,mn)
2: Select n co-prime numbers {b1, · · · , bn}, where bj > dj

(j = 1, · · · , n)
3: aux← {b1, · · · , bn}
4: S ←

n∏
j=1

bi

5: for j = 1 to n do
6: Sj ← S

bj

7: qj ← S−1
j mod bj

8: end for
9: m←

m∑
j=1

mjqjSj mod S

10: return (m, aux)

Decode(m, aux)→ (m) ▷ recovery
1: Parse aux = {s1, · · · , sn}
2: for j = 1 to n do
3: mj ← m mod si
4: end for
5: return m = {mi}ni=1

aggregation. In the following, we show that the proposed
secure histogram estimation scheme can also collect multi-
dimensional data with carefully designed aux.

By carefully choice of aux, the secure histogram estima-
tion scheme can collect multidimensional data. Assuming
that each ENi has a n-dimension data mi = (mi1, · · · ,min),
and the aux can be set as:

R > Max{(mi1, · · · ,min)
n
i=1},

or

bj >
n∑

i=1

mij , j ∈ [1, n].

Then, the CS can obtain the aggregated data of each di-
mension by the secure histogram estimation scheme. At
the deployment, the aux can be set larger according to the
history data to avoid data overflow.

6 SECURITY ANALYSIS

In this section, we prove the security of RLDA scheme. In
the secure histogram estimation scheme, the vector is first
encoded to a single value, and then the value is collected
by the RLDA scheme. The major difference between RLDA
scheme and secure histogram estimation scheme is the
phase of local raw data processing, and this phase does not
induce the secure attacks in our threat model. Thus, only the
security of RLDA scheme is proved in this section.

Theorem 1. The RLDA scheme is semantically secure against
any collusion of at most (n − 1) users under the indistinguisha-
bility of PRF.

Proof. Suppose there exists an adversary A that can break
the semantic security of the RLDA scheme with a non-
negligible advantage, i.e., PrRLDA

A [succ] ≥ ε. Then, we can
construct a challenger B who can break the indistinguisha-
bility of PRF. In the following, B will use A as a sub-routine
to break the indistinguishability of PRF.
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Setup. The adversary A randomly selects n− 1 users as
the corrupted nodes, of which the PRF keys are known to
A. Assume that Un is the uncorrupted user, and {αi}ni=1 are
the PRF keys of all n users.

Query. Given an encryption query (j,mj , rj) from A, B
responds A with cj = F (αi, rj) +mj .

Challenge. The adversaryA selects two sets of messages
M0 = {m01, · · · ,m0n} and M1 = {m11, · · · ,m1n}, and
sends to B. B flips a coin b ∈ {0, 1}, and computes tb =
f(αn, rn) where rn is randomly selected from Z∗

p if b = 0.
Otherwise, B randomly selects tb ∈ Z∗

p. Then, B flips a coin
w ∈ {0, 1}, and responds cw to A, where cw = Yw + tb and

Yb =
n∑

i=1
mwi +

n−1∑
i=1

f(αi, ri).

Guess. The adversary A outputs a bit b′. If b′ = w, B
returns b′′ = 0 and b′′ = 1 otherwise.

Let B(cw) denote the output of B on input cw, the
probability of B breaking the indistinguishability of PRF is

PrPRF
B [succ] = Pr[b′′ = b]

=
1

2
(Pr[b′′ = 0|b = 0] + Pr[b′′ = 1|b = 1])

=
1

4
(Pr[b′′ = 0|b = 0, w = 0] + Pr[b′′ = 0|b = 0, w = 1]+

Pr[b′′ = 1|b = 1, w = 0] + Pr[b′′ = 1|b = 1, w = 1])

=
1

4
(Pr[B(t0 + Y0) = 0] + Pr[B(t0 + Y1) = 1]+

Pr[B(t1 + Y0) = 0] + Pr[B(t1 + Y1) = 1])

=
1

4
(Pr[B(t0 + Y0) = 0] + Pr[B(t0 + Y1) = 1]+

1− Pr[B(t1 + Y0) = 0] + Pr[B(t1 + Y1) = 1]).
(5)

The probability of A to break the semantic security of the
RLDA scheme is

PrRLDA
A [succ] =

1

2
Pr[B(t0+Y0) = 0]+

1

2
Pr[B(t0+Y1) = 1],

where t0 + Y0 and t0 + Y1 are the valid ciphertexts.
Since t1 is randomly selected from Z∗

p, the distribution
of {t1 +Y0} and {t1 +Y1} is identical. Thus, the probability
of A to distinguish {t1 + Y0} and {t1 + Y1} is same, i.e.,
Pr[B(t1 + Y0) = 0] = Pr[B(t1 + Y1) = 1].

Based on the above two observations, we have

PrPRF
B [succ] =

1

2
PrRLDA

A [succ] +
1

4
≥ ε+

1

4
.

The challenger can break the indistinguishability of PRF
with a non-negligible probability ε+ 1

4 , which is a contradic-
tion to indistinguishability of PRF (Definition 2). Therefore,
the RLDA scheme is semantically secure against the collu-
sion of at most (n−1) ENs under the indistinguishability of
PRF.

Theorem 2. For any pair of dropout threshold d and collusion
threshold t satisfying d+ t < k, our RLDA scheme can simulta-
neously achieve robust aggregation against up to any d dropped
ENs and protect privacy against up to any t colluding ENs.

Proof. Robust guarantee. In the RLDA scheme, all users
compute key shares by the hyper-invertible matrix E, and
send to ENs for key recovery during the read step of the
online phase. In the offline phase, each Ui computes key

shares sij = E[j] × aTi for ENj . ENj will aggregate key
shares of all surviving users to obtain sub-mask sj =

∑
i∈U

sij .

In presence of d (k − d > e) dropped ENs, the CS can
compute masks by the hyper-invertible matrix E:

[
∑
i∈U

ai1, · · · ,
∑
i∈U

aie] = E−1
E × [sj1 , · · · , sje ].

Thus, the CS can recover the aggregated data for the surviv-

ing users U by
∑
i∈U

mi = C −
e∑

j=1

∑
i∈U

aij .

Privacy guarantee. The privacy guarantee should be
satisfied even if the messages sent from all surviving and
dropped users and ENs and the message of any set of at
most t colluded ENs are received by the CS. Specifically, the
privacy guarantee is that the CS cannot infer any additional
information about {mi}i∈[1,n] beyond that contained in∑
i∈U

mi and known from the colluding ENs. That is, for any

the set of surviving users U , the set of surviving ENs UEN

and the set of colluding ENs T ,

I({mi}i∈U ; {ci}i∈U , {sj}j∈UEN
|
∑
i∈U

mi, {sij}i∈U,j∈T ) = 0,

where U ⊂ [1, n], UEN ⊂ [1, k], |T | ≤ t, I(X;Y ) denotes
the mutual information, and H(Y ) denotes information
entropy.

I({mi}i∈U ; {ci}i∈U , {sj}j∈UEN
|
∑
i∈U

mi, {sij}i∈U,j∈T ) (6)

= H({ci}i∈U , {sj}j∈UEN
|
∑
i∈U

mi, {sij}i∈U,j∈T ) (7)

−H({ci}i∈U , {sj}j∈UEN
|{mi}i∈U , {sij}i∈U,j∈T )

= H({ci}i∈U , {
∑
i∈U

sij}j∈UEN
|
∑
i∈U

mi, {sij}i∈U,j∈T ) (8)

−H({ci}i∈U , {
∑
i∈U

sij}j∈UEN
|{mi}i∈U , {sij}i∈U,j∈T )

= H({ci}i∈U |
∑
i∈U

mi, {sij}i∈U,j∈T ) (9)

+H({
∑
i∈U

sij}j∈UEN
|
∑
i∈U

mi, {sij}i∈U,j∈T )

−H({ci}i∈U |{mi}i∈U , {sij}i∈U,j∈T )

−H({
∑
i∈U

sij}j∈UEN
|{mi}i∈U , {sij}i∈U,j∈T )

= H({ci}i∈U |
∑
i∈U

mi, {sij}i∈U,j∈T ) (10)

+H({
∑
i∈U

sij}j∈UEN\T |
∑
i∈U

mi)

−H({ci}i∈U |{mi}i∈U , {sij}i∈U,j∈T )

−H({
∑
i∈U

sij}j∈UEN\T |{mi}i∈U )

= 0. (11)

where Equation (8) follows that {sj}j∈UEN
is invertible to

{
∑
i∈U

sij}j∈UEN
. Equation (9) follows from the chain rules.

In Equation (10), the second and the last terms follow from
the independence of sij ’s and mi’s. Equation (11) follows
from that 1) {

∑
i∈U

sij}j∈UEN\T is a function of
∑
i∈U

mi and
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TABLE 2: Functionality comparison

Functionality SecAgg[18] VeriFL[19] LightSecAgg[22] CodedSecAgg[23] TurboAgg[21] SwiftAgg[24] InfoAgg[25] RLDA

Verifiability ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓
Robust guauantee ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Privacy guarantee ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Multidimensional aggregation ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
Histogram estimation ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
User independence ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
Online/offline paradigm ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

TABLE 3: Complexity comparison in the online phase

Schemes U EN CS

TurboAgg SwiftAgg RLDA TurboAgg SwiftAgg RLDA TurboAgg SwiftAgg RLDA
online comm. O(nk ) O(nk ) O(1) − − O(1) O(1) O(1) O(1)

online comp. O(n
2

k ) O(nk t
2
n + n) O(1) − − O(nk ) O(1) O(t2n) O(e2)

{sij}i∈U,j∈T ; 2) sij ’s are independent from mi’s; 3) {ci}i∈U
is a function of {mi}i∈U and {sij}i∈U,j∈T combined with
the non-negativity of mutual information.

7 PERFORMANCE EVALUATION

In this section, we first conduct the functionality comparison
between our RLDA and existing schemes based on masked
encryption. Then the complexity of RLDA is analyzed, and
simulation experiments are conducted to evaluate perfor-
mance.

7.1 Functionality comparison

As shown in Table 2, we comprehensively compare the
functionalities of schemes [18, 19, 21–25], which are masked
encryption data aggregation schemes, from the aspects of
data security (e.g., verifiability, robust guarantee and pri-
vacy guarantee), data analysis functionality (e.g., multi-
dimensional aggregation, histogram estimation), and user
independence. RLDA provides data security properties as
proved in Section 6. Based on the proposed RecAgg algo-
rithms, RLDA supports histogram estimation and multidi-
mensional aggregation. For constrained users, user inde-
pendence means that each user only needs to conduct its
own work, and does not need to assist the key generation,
data transferring, key recovery, etc. In the RLDA, users only
need to submit their own data to the ENs, while in existing
schemes [18, 19, 21–25], the user has to assist other users
to transfer data. Thus, our RLDA scheme provides user
independence, which is vital for resource-constrained IoT
users.

7.2 Complexity analysis

In this section, we evaluate the complexity of TurboAgg [21],
SwiftAgg [24], and our RLDA, where TurboAgg and Swif-
tAgg support group-based aggregation and also provide
robustness in presence of dropped ENs. The storage cost,
communication cost and computation cost are measured in
units of elements |Zp| and |G|, or operation in Z∗

p and G,
which are shown in Table 3 and Table 4.

Offline storage cost. Each Ui independently generates
an encryption key ai for online encryption, which incurs

TABLE 4: Complexity of RLDA in the offline phase

Schemes U EN

offline comm. O(k + e) −
offline comp. O(ke) O(n+ e)
offline storage O(1) O(n)

constant storage cost |Zp|. Additionally, each Ui (i ∈ [n])
computes key shares sij for ENj (j ∈ [k]), allowing key
recovery in presence of dropped ENs. Thus, the total storage
cost at each EN is n|Zp|.

Offline communication and computation cost. During
the offline phase, each user prepares encryption keys and
distributes key shares to ENs. Specifically, each Ui computes
key shares sij by a hyper-invertible matrix with dimen-
sion k × e for every ENj (j ∈ [k]), and also generates
commitments ∆i for share verification. Hence, the offline
communication and computation cost of RLDA at each user
is O(k + e) and O(ke). The offline computation cost at each
EN is O(n+ e), which is to verify key shares.

Online communication and computation cost. The ma-
jor communication cost lies in data encoding for TurboAgg
[21], SwiftAgg [24]. In the TurboAgg, each user in i-th group
has to encode data by Lagrange coding [31] and shares
data with every user in the i + 1-th group by polynomial
evaluation, thus incurring O(nk ) communication cost and
O(2(nk )

2) computation cost. The SwiftAgg divides aggre-
gation into intra-group aggregation and inter-group aggre-
gation. In the intra-group aggregation, each user shares its
data to the remaining users in the current group by secret
sharing. Then each user aggregates all shares and sends the
aggregated shares to intended user in next group. Hence,
the communication cost and computation cost are O(nk )
and O(nk (tn)

2 + n), respectively, where tn is the colluded
threshold. For our RLDA, the user only needs to encrypt
data, and has a constant cost. EN is required to aggregate
data, which causes O(nk ) computation cost.

For overhead at the CS, the major cost is key recovery.
For the TurboAgg, key recovery is completed by users in
the final group, and incurs O(k(nk )

2) computation cost in
the worst case. In the SwiftAgg, the CS can recover data
with O(t2n) computation cost when receiving data from any
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Fig. 4: Computation time of RLDA and comparison with the existing schemes.

tn+1 users in the last group. For our RLDA, the CS recovers
key by the hyper-invertible matrix, which requires O(e2)
computation cost.

7.3 Experiment results

We evaluate the performance of RLDA and compare it with
TurboAgg [21] and SwiftAgg [24]. The experiments were
conducted on a desktop with a 2.90 GHz Intel Core i7-10700
CPU and 4 GB of memory. The operating system used was
Ubuntu 16.04LTS, and the programming language used was
Python with programming done using the GNU Multiple
Precision Arithmetic (GMP) Library2. Each experiment was
repeated 20 times to obtain the average results.

In the offline phase, all users generate keys for online
encryption and distribute key shares to ENs for efficient key
recovery, which also do not require them to be online after
submitting the data. The major computation cost of ENs
is to verify the consistence of key shares, which linearly
increase with the number of users and the number of keys,
as shown in Fig. 4(a). When n = 200 and w = 10, the time
cost of ENs to check shares is 384.51 ms. We also evaluate
the offline computation cost of users, as shown in Fig. 4(b).
With the increase of keys (w ranges from 10 to 100), the
computation cost of each user varies from 3.87 ms to 36.37
ms. Additionally, when fix n = 100, the computation time
of each EN to verify key shares is from 0.1 s to 9 s. All
computation cost is conducted offline to generate sufficient
keys for online encryption.

In the online phase, the major cost lies in data collection
and key recovery. We evaluate the performance of our pro-
posed RLDA, and TurboAgg and SwiftAgg with different
dropout rates. The RLDA provides a privacy guarantee
t = k

2 since only the collusion of ENs could compromise
the privacy of users. Because users take on the relay data
and key recovery in TurboAgg and SwiftAgg, the privacy
guarantee of these two schemes relies on users’ number
and is set as t = n

2 . For the dropped users, qn users or
qk ENs are randomly selected to model the dropped users
or ENs, where q is the dropout rate. Three different dropout
rates are selected, q = 0.1, q = 0.3, q = 0.5, which are
realistic values according to the industrial observation in

2. https://gmplib.org/

real system [36]. We set the number of ENs k = 10, and the
number of users varies from 25 to 200 in increments of 25.
In the RLDA, as the dropped rate increases, the threshold
decreases, which indicates that the number of surviving
ENs also decreases. Since key recovery is completed by sub-
masks of surviving ENs, the computation time gradually
decreases as the dropout rate increases. While in TurboAgg
and SwiftAgg, the keys of dropped users are required to be
recovered, and thus the computation time increases as the
dropout rate increases. The experiment results are shown
in Fig. 4(c). As the RLDA introduces ENs to assist data
collection and key recovery, only a few computation time is
required to recover keys in assistance with surviving ENs.
Thus, the computation time of RLDA is significantly lower
than that of TurboAgg and SwiftAgg.

The proposed secure histogram estimation scheme is
implemented by RLDA scheme and RecAgg algorithms.
The performance of RLDA has been demonstrated in the
above analysis. In the following, we mainly evaluate the
performance of the two RecAgg algorithms: Poly RecAgg
and CRT RecAgg. The set size of S varies from 100 to
1000, and the efficiency of encode and decode algorithms of
Poly RecAgg and CRT RecAgg is shown in Fig. 4(d). From
Fig. 4(d), the computation time of Poly RecAgg is lower
than CRT RecAgg. When B = 500, Poly RecAgg takes
76.04 ms to encode the vector and decodes the vector with
0.68 ms, while CRT RecAgg takes 157.03 ms for encoding
the vector and requires 0.79 ms to decode the vector.

8 CONCLUSION

This paper designed a robust and lightweight data aggre-
gation (RLDA) scheme in edge-cloud systems. RLDA uses
an offline/online paradigm with ENs for verifiable key
generation, data aggregation and key recovery. By recov-
ering the keys of surviving ENs, our RLDA significantly
reduced the overhead of communication and computation.
We also proposed two recoverable aggregation algorithms
to support secure histogram estimation, which achieve the
transformation between vector and single value. The simu-
lation experiments show that our RLDA is computationally
lightweight, especially in the aspect of key recovery. Our
RLDA makes a meaningful attempt to design a practical
data aggregation scheme with privacy preservation, which
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is resilient for IoT users in edge-cloud systems. In the
future work, we will explore the efficient data analysis over
encrypted data and database, such as private heavy hitters
and hidden query.
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