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Abstract

Fuel cell devices are considered as an ideal solution for the transition of a sustainable future,
with their performance significantly influenced by catalysts that reduce the overpotential
of the oxygen reduction reaction (ORR). A prerequisite for optimizing ORR catalysts is
an in-depth understanding towards the reaction mechanisms in an atomistic level, which
is often achieved by density functional theory (DFT) calculations. However, the expensive
computational cost of DFT has significantly limited its length-scale. Machine-learned in-
teratomic potentials (MLIPs) have emerged as powerful tools in the domain of atomistic
simulations due to their exceptional computational efficiency and ab-initio level accuracy.
At the heart of creating superior MLIPs for specific applications lies the imperative for
high-quality data. Yet, acquiring high-quality data for vast chemical spaces remains chal-
lenging, often requiring costly ab-initio simulations. This thesis focuses on creating a
robust framework to accelerate the generation of MLIPs and leverage it to gain insights
into ORR mechanisms on gold surfaces.

Firstly, we designed an autonomous active learning workflow CURATOR for training high-
fidelity graph neural network potentials for atomistic simulations. With the well-designed
batch active learning algorithms, it can efficiently acquires high-quality data for opti-
mizing model improvement during retraining. By integrating advanced neural networks
with reliable uncertainty quantification techniques, CURATOR ensures accurate and efficient
data acquisition, reducing human efforts and computational costs for MLIP construction.
Additionally, it includes trustworthy and efficient uncertainty estimation techniques. By
integrating different key components, this workflow is able to autonomously manage the
complex tasks for generating MLIPs.

Subsequently, we investigated the ORR at confined Au(100)-water interface by using
MLIPs-accelerated metadynamics. Combining MLIPs with enhanced sampling techniques
allowed our simulations to achieve time-scales beyond the reach of conventional DFT.
This framework vividly showcased the full ORR reaction process, pinpointing an associa-
tive ORR mechanism on Au(100) with a low reaction barrier, aligning with experimental
results. This framework shed the light on modeling complex chemical reactions under
complex ambient conditions.
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Having verified the predictive power of the developed framework, we extended our research
systems to other primary facets of gold, using a larger simulation box to better capture the
reaction dynamics. Our simulations simulations revealed the notable presence of *H2O2

on Au(110) and Au(111). This observation is in good agreement with experimental results
and shed the light on optimizing the performance of gold-based ORR catalysts.



Resumé

Brændselscelleenheder betragtes som en ideel løsning for overgangen til en bæredygtig
fremtid, og deres ydeevne påvirkes væsentligt af katalysatorer, der reducerer overpoten-
tialet for iltreduktionsreaktionen (ORR). En forudsætning for at optimere ORR-katalysatorer
er en dybdegående forståelse af reaktionsmekanismerne på et atomistisk niveau, hvilket
ofte opnås ved beregninger baseret på densitetsfunktionsteori (DFT). Dog har DFT’s høje
beregningsomkostninger betydeligt begrænset dens skala. Maskinlærte interatomiske po-
tentialer (MLIP’er) er fremkommet som kraftfulde værktøjer inden for atomistiske simu-
leringer på grund af deres enestående beregningseffektivitet og ab-initio nøjagtighed. Ker-
nen i at skabe overlegne MLIP’er til specifikke anvendelser er behovet for data af høj
kvalitet. Dog forbliver indhentning af data af høj kvalitet for store kemiske rum en udfor-
dring, ofte krævende dyre ab-initio simuleringer. Denne afhandling fokuserer på at skabe
et robust framework for at fremskynde genereringen af MLIP’er og udnytte det til at få
indsigt i ORR-mekanismer på guldoverflader.

Først designede vi en autonom aktiv læringsarbejdsproces CURATOR til træning af højfi-
delitets grafneuralnetværkspotentialer for atomistiske simuleringer. Med de veludformede
batchaktive læringsalgoritmer kan den effektivt indhente data af høj kvalitet for at opti-
mere modelforbedring under genoplæring. Ved at integrere avancerede neurale netværk
med pålidelige usikkerhedskvantificeringsteknikker sikrer CURATOR nøjagtig og effektiv
dataindsamling, hvilket reducerer menneskelige bestræbelser og beregningsomkostninger
for MLIP-konstruktion. Desuden inkluderer den pålidelige og effektive usikkerhedsesti-
matingsteknikker. Ved at integrere forskellige nøglekomponenter kan denne arbejdsproces
autonomt håndtere de komplekse opgaver ved at generere MLIP’er.

Derefter undersøgte vi ORR ved det begrænsede Au(100)-vandinterface ved hjælp af
MLIP’er-accelereret metadynamik. Kombinationen af MLIP’er med forbedrede prøvetagn-
ingsteknikker gjorde, at vores simuleringer kunne opnå tidsskalaer ud over konventionel
DFT’s rækkevidde. Dette framework viste tydeligt den fulde ORR-reaktionsproces, idet
det identificerede en associeret ORR-mekanisme på Au(100) med en lav reaktionsbarriere,
hvilket stemmer overens med eksperimentelle resultater. Dette framework kastede lys over
modellering af komplekse kemiske reaktioner under komplekse omgivelsesbetingelser.



viii Resumé

Efter at have verificeret det udviklede frameworks forudsigelseskraft udvidede vi vores
forskningssystemer til andre primære facetter af guld og brugte en større simuleringsboks
for bedre at fange reaktionsdynamikken. Vores simuleringer afslørede den bemærkelsesværdige
tilstedeværelse af *H2O2 på Au(110) og Au(111). Denne observation stemmer godt ov-
erens med eksperimentelle resultater og kastede lys over optimering af ydeevnen for guld-
baserede ORR-katalysatorer.
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CHAPTER 1
Introduction

As the world is facing the pressing challenges of climate change, overexploiting natural
resources, and growing energy demands, the pursuit of a sustainable future has never
been more paramount. At the heart of this vision is the transition from non-renewable,
pollutant-heavy energy sources to cleaner, more sustainable alternatives. Fuel cell devices
can convert the chemical energy of fuels (typically hydrogen, methanol, etc.) to clean
electrical energy and represent one of the pivotal technologies in the realm of clean energy
solutions.[1, 2] The oxygen reduction reaction (ORR), which takes place at the cathode
of fuel cells, is central to many fuel cell devices and is of significant importance in elec-
trocatalysis.[3, 4, 5] However, the absence of an efficient and economical ORR catalyst
remains a bottleneck in the large-scale commercialization of fuel cells. Consequently, the
pursuit of novel and optimized ORR catalysts has consistently motivated researchers in
academia and industry globally.

1.1 Oxygen reduction reaction at solid-liquid interface

A fundamental step to searching for and optimizing efficient ORR catalysts is an in-depth
understanding of the underlying reaction mechanisms. Here, density functional theory
(DFT) calculations have played a significant role in rationalizing the trends in ORR cat-
alytic activity across various materials.[6, 7, 8, 9] In the ORR process, molecular oxygen
undergoes electrochemical reduction with four protons and electrons to form water, pro-
ducing an electrical potential capable of energizing various electronic devices. Depending
on the chosen catalysts, the oxygen reduction can proceed in both two- and four-electron
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oxygen reduction pathways as demonstrated in eqs. 1.1–1.12.

Two electron : O2 + 2(H+ + e−) → H2O2 (1.1)

O2 +H+ + e− → ∗OOH (1.2)
∗OOH+H+ + e− → H2O2 (1.3)

Four electron : O2 + 4(H+ + e−) → 2H2O (1.4)

Associative : O2 + ∗ → ∗O2 (1.5)

O2 +H+ + e− → ∗OOH (1.6)
∗OOH+H+ + e− → ∗O+H2O (1.7)
∗O+H+ + e− → ∗OH (1.8)
∗OH+H+ + e− → H2O+ ∗ (1.9)

Dissociative : O2 + 2∗ → 2∗O (1.10)

2∗O+ 2H+ + 2e– → 2∗OH (1.11)

2∗OH+ 2H+ + 2e– → 2H2O+ 2∗ (1.12)

The two-electron pathway (eqs. 1.1–1.3) results in a partial reduction, yielding hydrogen
peroxide (H2O2) as the final product, and involving only OOH* as the reaction intermedi-
ate. In contrast, the complete reduction of oxygen to water can typically proceed in either
an associative or dissociative mechanism, depending on whether the O2 molecule splits
before undergoing reduction. The associative mechanism (1.5–1.9) involves three interme-
diates, namely *OOH, *O, and *OH, while the dissociative mechanism involves only *O
and *OH. The reaction activity of ORR can be evaluated by calculating the adsorption
energies of these key reaction intermediates on catalyst surfaces via DFT calculations,
where the effects of pH and electric field are modelled by computational hydrogen elec-
trode method.[8, 9, 10, 7, 3] Moreover, the energetics of key reaction intermediates exhibit
linear scaling relationships, which result in a volcano curve when plotting catalytic activ-
ity against and key adsorption energies as demonstrated in Figure 1.1. These theoretical
approaches have greatly enriched our comprehension of the complex catalytic reaction
mechanisms and aided in the discovery of efficient and cost-effective electrocatalysts.

However, many current studies predominantly relied on these adsorption energy calcula-
tions tend to oversimplify the operating conditions of catalysts and the intricate kinetic
processes involved. For example, the effects of electrolytes are often simplified by mod-
elling liquid water at the electrolyte–electrode interface as static water layers,[11, 12,
13, 14] implicitly representing them via dielectric continuum models,[15, 16, 17, 18] or
even absolutely ignoring the effect of solvents.[19, 20, 21, 22] Furthermore, when calcu-
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Figure 1.1: (a) Scaling relationship between ORR reaction intermediates. (b) Compari-
son of the limiting potential volcano plot (solid line) based on adsorption energetics and
the ORR kinetic volcano (dashed line) based on microkinetic modeling. Figure reprinted
from [3] with permission.

lating charge transfer barriers, traditional simulations are often conducted under constant
charge conditions. This results in notable potential fluctuations throughout the elementary
charge-transfer reaction steps, making it challenging to directly compare with realistic sys-
tems that operate at a consistent potential.[23, 24, 25] The absence of these crucial factors
may lead to inaccurate evaluations of catalyst activity trends as compared to experiments.

A notable case is the oxygen reduction reaction taking place on gold in alkaline elec-
trolytes.[26, 27] Using the computational hydrogen electrode method, the ORR activity
of Au is predicted to be poor with the overpotential of 1.05 V vs. the reversible hydrogen
electrode. This prediction contrasts sharply with the experimentally observed remark-
able ORR activity of Au(100) in alkaline conditions.[27] Moreover, it is widely recognized
that the ORR activity on gold surfaces are facet-dependent. Specifically, in alkaline elec-
trolytes, the ORR on Au(100) proceeds in a full four-electron transfer mechanism. In
contrast, other gold facets, such as Au(111) and Au(110), are governed by the partial
two-electron transfer mechanism.[28, 29, 26] Despite the use of new techniques and per-
sistent efforts devoted by researchers, the reason why ORR activity is exceptional and
facet-dependent on gold remains elusive. The shortcomings observed in traditional DFT
calculations suggest the need for a more refined approach, especially for the explicit mod-
elling of intricate operating conditions of electrocatalysts. Such models would offer deeper
insights into the ORR process on various gold facets, potentially unraveling the mysteries
of their distinct behaviors and enhancing our overall understanding of electrocatalysis.
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1.2 Revolutionizing molecular dynamics with machine
learning potentials

By sampling the mobile solvent molecules at solid-liquid interface, ab-initio molecular
dynamics (AIMD) is capable of providing direct atomistic level insights into the nature
of catalytic sites and the reaction mechanisms. This method has become the gold stan-
dard for simulations of solid-liquid interfaces and has been broadly applied for studying
electrocatalytic reactions.[30, 31, 32, 33, 34] There are some attempts to use AIMD in
studying the ORR at solid-liquid interfaces. Cheng et al. utilized AIMD coupled with
reactive metadynamics simulations to delve into the ORR mechanism on Pt(111), finding
the predicted reaction barrier consistent with experimental results.[35] Similarly, Ikeshoji
et al. incorporated an electric bias potential into constrained AIMD simulations, enabling
a comprehensive analysis of the electrochemical ORR on Pt(111) with the derived reaction
energy profiles and activation energies.[36] Furthermore, Kristoffersen et al. systematically
investigated the liquid water–Pt(111) interface to understand catalytic reactions in fuel
cells, discovering distinct hydroxyl structures and energetics in dynamic liquid environ-
ments.[37] Despite the depth of understanding achieved through these studies, they are to
some extent constrained by the limited equilibration and sampling time scales of AIMD,
often confined to a few to a hundred picoseconds because of its prohibitive computational
cost. Furthermore, the system sizes are typically limited to of a few hundred atoms, given
that the computational cost of DFT scales cubically with the number of electrons. Such
constraints could potentially compromise the reliability of these findings.

In recent years, machine learning interatomic potentials (MLIPs) have emerged as a
promising approach to speed up MD simulations by several orders of magnitude whilst
retaining the accuracy comparable to AIMD, which enables us to considerably extend the
time scale and length scale of MD simulations without compromising accuracy.[39, 38]
Figure 1.2 illustrates the essential components required to create an MLIP for a specific
chemical system. These include a reference database containing structures and their cor-
responding quantum-mechanical data (which the potential will be fitted to), a method to
mathematically depict the atomic structure for the input of ML algorithms, and lastly, the
regression process which can be achieved by neural networks or Gaussin process regression.
MLIPs have been successfully applied for molecular dynamics across diverse chemical sys-
tems, including solid-liquid interfaces,[40, 41, 42, 43] carbon-based materials[44, 45, 46],
and oxides.[47, 48] Yet, these are just glimpses of their potential applicability. In MLIPs,
the total energy of chemical systems are typically decomposed into contributions from indi-
vidual atoms, allowing the computational cost to scale linearly with the number of atoms,
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Figure 1.2: Schematic overview of how ML-based interatomic potentials are constructed.
Figure reprinted from [38] with permission.

thus facilitating large-scale atomistic modeling. For MLIPs to be both data-efficient and
accurate, they must uphold the invariances and equivariances inherent in physical systems,
specifically spatial transformations like rotation, translation, reflection, and permutation
of identical atoms. This desiderata discourages the use of simple atomic coordinates as
a structural representation. Behler and Parrinello pioneered the high-dimensional neural
network potential (NNP) framework,[49, 50] in which local atomic environment are repre-
sented by atom-centered symmetry functions (ACSFs) to fit atomic energies, ensuring the
model remains invariant under translation and rotation. ACSFs laid the foundation for a
range of MLIP designs that use predetermined rules to convert the atomic local environ-
ments into input vectors for regression. This encompasses several variants of the Behler-
Parrinello neural network, including ANI,[51, 52] TensorMol,[53] and SimpleNN,[54] as
well as kernel-based models like sGDML[55] and GAP.[56]

A significant drawback of these MLIPs is their reliance on extensive testing and the exper-
tise of professionals in physics/chemistry for manually crafting features through parameter
selection. The efficiency of these models is significantly determined by the choice of de-
scriptors. Moreover, when characterizing multi-element systems, they often necessitate
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a more extensive descriptor set due to the absence of atomic type specifics. To address
these challenges, end-to-end NNPs have been developed, enabling direct learning of the
relationship between nuclear charges, Cartesian coordinates of atoms, and atomic fea-
tures entirely within the model.[57, 58]. End-to-end NNPs predominantly leveraging the
message passing neural network (MPNN) architecture,[57, 58] where the atomic struc-
tures are viewed as undirected graphs with atoms as nodes and bonds as edges. Through
these MPNNs, geometric information including radial distance and angles is gathered it-
eratively for feature refinement and then channeled into feed-forward neural networks to
predict chemical properties. Examples of this approach include DTNN[59], PhysNet[60],
SchNet[61, 62], and DimeNet[63]. Utilizing scalar representations, these models maintain
invariance to rotations and translations. Nevertheless, some crucial chemical properties
like forces and dipole moments require rotational equivariance, and solely relying on in-
variant features can potentially compromise model accuracy. A promising resolution is
adopting advanced feature representations such as vectors and tensors, combined with
rotationally equivariant message and update functions, to maintain rotational equivari-
ance and prevent the loss of critical directional properties.[64, 65] For instance, Batzer et
al. presented the Nequip architecture, leveraging spherical harmonics for relative position
vector encoding and Clebsch-Gordon coefficients for advanced tensor products[66]. This
method critically boosts model precision and data efficiency. By incorporating more than
just two-body interactions, as evidenced by Batatia et al.[67], model performance can be
further improved.

1.3 Active learning of machine learning interatomic
potential

While the development of state-of-the-art machine learning models has significantly revolu-
tionized molecular dynamics simulations, it is increasingly apparent that the cornerstone of
realistic applications of these methods is high-quality data. However, acquiring data across
expansive chemical spaces remains a complex and often costly process, heavily depending
on expensive ab-initio simulations. Active learning stands out as the ideal solution. As
illustrated in Figure 1.3, it encompasses procedures including efficiently generating high-
quality data by picking representative structures from pool datasets, annotating them
with DFT calculations, and feeding them back for model refinement.

Two major challenges persist in active learning for MLIPs. First, pre-trained MLIPs
might misbehave in undersampled spaces, producing nonphysical structures unsuitable for
labeling. It is imperative that such MLIPs be uncertainty-aware so that they can be able
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Figure 1.3: Schematic diagram of active learning procedures

to halt simulations when predictions lack confidence. Various uncertainty estimation (UE)
methods have been devised to address this issue, with Gaussian process models offering
inherent straightforward uncertainty estimations, and alternatives like deep ensembles
and Monte Carlo dropout frequently employed where multiple predictions are made to
assess model uncertainty. [68, 69, 70, 71, 72, 73, 74, 75, 76] The second challenge is the
strategic selection of structures from MLIP simulations.The prevalent strategy is Query-
by-Committee (QBC), where data points are assigned for labeling based on uncertainty
or model disagreement.[74, 77, 78]. However, while QBC ensures single data points are
valuable, it does not ensure informativeness of the entire batch. Addressing this, numerous
algorithms have been devised for batch active learning that leverage uncertainties and
diversities of pool data sets.[79, 80, 81, 82]

Despite advancements in models, uncertainty measures, and active learning, a seamless
workflow integrating these components is yet to emerge. The data quality often depends on
the efforts of materials scientists and chemists, who might not always have a background
in machine learning. Bridging the expertise gap requires a user-friendly, autonomous
workflow for high-quality MLIPs development. In light of these challenges, our efforts are
targeted at creating an intuitive, autonomous workflow for the development of high-fidelity
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MLIPs. By doing so, we aim to shape the future of MLIPs, guiding them towards a more
robust and autonomous framework.

1.4 Outline of thesis
This thesis include six chapters. The remaining chapters are structured as follows:

• Chapter 2 - Theory and Methods
The computational methods and relating theory used in this thesis are introduced in
this chapter, including density functional theory, machine learning potential, molec-
ular dynamics, and enhanced sampling techniques.

• Chapter 3 - Automated active learning workflow
This chapter provides a detailed overview of the various components within the
active learning workflow. We discuss the features employed to measure similarities
among atomic structures, highlight effective batch active learning algorithms for
accelerating data acquisition, and delve into the uncertainty estimation methods
that ensure the reliability of simulations.

• Chapter 4 - Oxygen reduction at confined Au(100)-water interface
This chapter delves into the ORR on the Au(100)-water interface, explored using
MLIPs-accelerated metadynamics. We provide a detailed analysis of the active learn-
ing processes used for simulating complex reactions, and thoroughly evaluate the
performance of the trained MLIPs.

• Chapter 5 - Facet-dependent ORR on Au surfaces
Based on Chapter 4, we extend our research framework to more complex systems. In
this chapter, we investigated the ORR dynamics on Au(100), Au(110), and Au(111)
surfaces, utilizing larger simulation boxes. We provide a detailed analysis of the
reaction pathways for each system and examine the impact of co-adsorbed species
on the ORR dynamics.

• Chapter 6 - Conclusions and Outlooks
This chapter presents the primary conclusions drawn from this thesis and offers
perspectives on potential extensions and future work building upon this research.



CHAPTER 2
Theory and Methods

This chapter introduces various computational theories and methods in the thesis, in-
cluding density functional theory, molecular dynamics, machine learning potential, and
enhanced sampling techniques.

2.1 Density functional theory
Density Functional Theory (DFT) is a quantum mechanical modeling method used in
physics and chemistry to investigate the electronic structure of many-body systems. It is
based on the principles of quantum mechanics and is used to analyze the properties of elec-
tronic systems. This section predominantly draws upon a selection of distinguished text-
books that provide comprehensive introductions to the fundamental theories and prospec-
tive applications of DFT[83, 84, 85]. These works offer extensive insights and are highly
recommended for readers seeking a deeper understanding and more detailed information
on the theory.

2.1.1 Schrödinger equation

The foundation of DFT is the time-independent Schrödinger equation,[85] which is repre-
sented as:

ĤΨ(r⃗, R⃗) = EΨ(r⃗, R⃗) (2.1)

where Ĥ is the Hamiltonian operator, representing the total energy operator of the system,
Ψ(r⃗, R⃗) is the wavefunction of the system, providing the probabilities of finding particles
in various locations, and E is the total energy eigenvalue of the system, with r⃗ and R⃗

being the sets of electronic and nuclear coordinates, respectively.

The Hamiltonian operator, Ĥ, in the Schrödinger equation is composed of kinetic and
potential energy operators for both the electrons and the nuclei in the system. It can be
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expressed as:

Ĥ =−
N∑
I=1

h̄2

2MI
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h̄2

2me
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+
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ZIZJe
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4πε0|ri − rj |︸ ︷︷ ︸
V̂ee

+−
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2
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(2.2)

In this representation, T̂n and T̂e denote the kinetic energy operators for the nuclei and
the electrons, respectively, serving to quantify the kinetic energies associated with their
respective motions. Similarly, V̂nn andV̂ee are symbolize the potential energy operators
responsible for nuclear-nuclear and electron-electron repulsions, respectively, indicating
the energies due to the interactions between like charges. Lastly, V̂ne represents the po-
tential energy operator for nuclear-electron attraction, quantifying the interaction energy
stemming from the electrostatic attraction between the positively charged nuclei and the
negatively charged electrons within the system.

2.1.2 Born-Oppenheimer approximation
The Schrödinger equation, in its full form, describes the behavior of both electrons and
nuclei in a molecule. However, due to the vast difference in their masses, electrons move
much more rapidly than nuclei. The Born-Oppenheimer approximation emphasizes on this
disparity by treating the nuclei as essentially stationary during electronic motion.[86] This
simplification allows for the separation of the total molecular wavefunction into electronic
and nuclear components, making the equation more manageable.

Ψ(r⃗, R⃗) ≈ ψ(r⃗; R⃗)χ(R⃗) (2.3)

where ψ(r⃗; R⃗) is the electronic wavefunction, χ(R⃗) is the nuclear wavefunction, and r⃗ and
R⃗ are the coordinates of electrons and nuclei, respectively. With this decomposition, the
electronic energy for a given nuclear configuration R⃗ can be expressed as:

E(R⃗) = ⟨ψ(r⃗; R⃗)|Ĥ|ψ(r⃗; R⃗)⟩ (2.4)

In essence, the Born-Oppenheimer approximation decouples the electronic and nuclear
degrees of freedom. This separation is pivotal for DFT and the Hohenberg-Kohn theorems,
as it allows for the focus to be primarily on the electronic structure, which predominantly
determines many chemical properties. By reducing the problem to only the electronic
degrees of freedom, the Hohenberg-Kohn theorems can then establish the foundation for
DFT, where the electron density alone is sufficient to determine the properties of chemical
systems.
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2.1.3 Hohenberg-Kohn theorems
The Schrödinger equation becomes a many-body problem when dealing with systems con-
taining more than one particle (e.g., electrons and nuclei in atoms and molecules). The
interactions between every pair of particles need to be considered, leading to a combina-
torial explosion in complexity as the number of particles increases. The Hohenberg-Kohn
theorems lay the theoretical groundwork for reducing the complexity of many-electron
problems.[87] They allows the use of electron density as the basic variable to describe the
many-electron problem, rather than wavefunctions, simplifying the computational effort
needed to solve the Schrödinger equation for many-electron systems. The Hohenberg-Kohn
theorems stated as follows:

Theorem 1: The external potential, and hence the energy, of a system is uniquely deter-
mined by the electron density.

Theorem 2: The exact ground-state density gives the minimum total energy of a system
and can be obtained variationally.

The first Hohenberg-Kohn theorem states that the ground state properties of a many-
electron system are uniquely determined by the ground state electron density, n(r⃗). This
implies that the electron density contains all the information needed to calculate the
ground state properties of the system, including the total energy.

E0 = min
n→Ψ0

{
E[n] +

∫
Vext(r⃗)n(r⃗)dr⃗

}
(2.5)

where E0 is the ground state energy, n(r⃗) is the ground state electron density, and Vext(r⃗)

is the external potential.

The second Hohenberg-Kohn theorem provides the variational principle for the energy
functional, stating that the true ground state electron density minimizes the energy func-
tional, and any other density will lead to a higher energy. Mathematically, if n(r⃗) is the
true ground state density, then for any n′(r⃗) that is different from n(r⃗):

E[n′(r⃗)] > E[n(r⃗)] (2.6)

The simplification in Hohenberg-Kohn Theorems is crucial for making the study of the
electronic structure of complex systems computationally tractable, enabling the practical
application of quantum mechanical principles to study a wide range of materials and
molecules.

2.1.4 Kohn-Sham equations
While the Hohenberg-Kohn theorems lay the theoretical foundation for expressing the
energy of a many-electron system in terms of its electron density, they do not offer a
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practical method to solve for this density. The Kohn-Sham equations address this by
introducing a system of non-interacting electrons that generate the same ground state
electron density as the real interacting system.[88] For a system of non-interacting electrons
with the same ground state electron density as the real system, the Kohn-Sham equations
are given by: [

− h̄2

2me
∇2 + Veff(r⃗)

]
ψi(r⃗) = εiψi(r⃗) (2.7)

where ψi(r⃗) is the Kohn-Sham orbital for the i-th electron, εi is the eigenvalue associated
with the i-th Kohn-Sham orbital, with the highest occupied eigenvalue being the Fermi
energy, and Veff(r⃗) is the effective potential experienced by the electrons.

Initialize electronic density n(r⃗)

Calculate effective potential Veff(r⃗)

Solve Kohn-Sham Equation

Update electronic Density n(r⃗)

Check convergence

Output results:
energy, forces, eigenvalues,...

Yes

No

Figure 2.1: Iterative process for solving Kohn-Sham equations

In the framework of Kohn-Sham equations, the total energy functional can be decomposed
into several terms, kinetic energy of non-interacting electrons, classical electron-electron
interaction energy (Hartree term), external potential energy, and the exchange-correlation
energy, which can be written as follows:

E[n] = Ts[n] + EHartree[n] + Exc[n] + Eext[n] (2.8)

where n is the electronic density. The computation of the total energy functional is
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crucial to construct the effective potential Veff(r⃗) in the Kohn-Sham equations, which can
be expressed as a sum of three potentials:

Veff(r⃗) = Vext(r⃗) + VHartree(r⃗) + Vxc(r⃗)

= Vext(r⃗) +

∫
n(r⃗′)

|r⃗ − r⃗′|
dr⃗′ +

δExc[n]

δn(r⃗)
(2.9)

In this representation, external potential Vext(r⃗) represents the potential due to the ex-
ternal (usually nuclear) charge distribution. It is the classical electrostatic interaction
between the electrons and the nuclei. Hartree potential VHartree(r⃗) represents the classical
electrostatic repulsion between electrons. It is given by the convolution of the electron den-
sity n(r⃗) with the Coulomb kernel. The last part, exchange-correlation potential Vxc(r⃗),
represents the quantum mechanical effects of electron exchange and correlation. It is the
functional derivative of the exchange-correlation energy Exc[n] with respect to the electron
density.

With the constructed Veff(r⃗) and predefined basis sets, we can solve the Kohn-Sham equa-
tions to obtain the Kohn-Sham orbitals. And the electronic density n(r⃗) can be updated
with the occupied Kohn-Sham orbitals, which can be mathematically expressed as:

n(r⃗) =

occ∑
i

|ψi(r⃗)|2 (2.10)

As demonstrated in Figure 2.1, solving the Kohn-Sham equations involves self-consistently
determining the effective potential, the Kohn-Sham orbitals, and the electron density
until convergence is achieved. The converged electronic density, Kohn-Sham orbitals, and
eigenvalues then can then be used to calculate the properties of interest.

2.1.5 Exchange-correlation functionals

The exchange-correlation functional is a pivotal component in DFT, representing the quan-
tum mechanical effects of electron exchange and correlation within the Kohn-Sham frame-
work. It is the only missing map in the Kohn-Sham equations and is crucial for accurately
describing electron-electron interactions. Different approximations to this functional lead
to different levels of accuracy and computational expense.

Local density approximation (LDA) is the simplest approximation and is based on
the uniform electron gas model.[88, 89] It considers only the local electron density at each
point in space, making it computationally efficient but often less accurate for systems
with rapidly varying densities. The exchange-correlation energy functional per particle
εLDA
xc (n) in LDA is solely a function of the local electron density n(r⃗).

ELDA
xc [n] =

∫
n(r⃗)εLDA

xc (n(r⃗))dr⃗ (2.11)
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The exchange energy part in LDA is usually given by:

ELDA
x [n] = −3

4

(
3

π

)1/3 ∫
n(r⃗)4/3dr⃗ (2.12)

While the correlation part ELDA
c can be obtained from parametrization of quantum Monte

Carlo calculations of the uniform electron gas, and it is usually represented in terms of
the electron density n(r⃗) using specific parametric forms or interpolation schemes.

Generalized gradient approximation (GGA) is a more sophisticated approximation
that includes the gradient of the electron density in addition to the local density itself.[90]
This allows GGA to account for spatial variations in the electron density, improving the
accuracy for systems with non-uniform densities. The exchange-correlation energy in
GGA is given by a functional that depends on both the local electron density n(r⃗) and its
gradient ∇n(r⃗).

EGGA
xc [n] =

∫
f(n(r⃗),∇n(r⃗))dr⃗ (2.13)

The choice of the exchange-correlation functional is crucial as it significantly impacts
the accuracy and reliability of DFT calculations. While LDA is computationally less
demanding and suitable for simple systems with uniform electron densities, GGA provides
improved accuracy for a wider range of systems, especially those with varying electron
densities, at the cost of increased computational effort. Classical GGA functionals such as
Perdew-Burke-Ernzerhof (PBE),[90] Becke-Perdew 86 (BP86),[91] Becke-Lee-Yang-Parr
(BLYP),[92, 91] and Perdew-Wang 91 (PW91)[93] are widely recognized and employed
due to their diverse applicability and reliable performance across various systems and
properties. PBE is renowned for its versatility, BP86 is notable for predicting molecular
geometries and thermochemistry, BLYP is favored in molecular system studies, and PW91
is valued for its extensive applicability. The choice of a functional necessitates a balanced
consideration of its accuracy, transferability, computational demand, and its aptness for
the specific research focus, ensuring the relevance and dependability of the DFT studies
conducted.

In the scope of this thesis, all DFT calculations are carried out using the Vienna Ab
initio Simulation Package (VASP)[94, 95, 96, 97] and the Atomic Simulation Environment
(ASE)[98]. The effects of exchange and correlation are approximated by using the PBE
functional with D3 van der Waals correlation.[90, 99] The wave functions are expanded in
a plane waves basis set using the projector augmented wave (PAW) method.[100]
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2.2 Molecular dynamics
Molecular Dynamics (MD) is typically used to study the time-dependent behavior of
atomic and molecular systems. By simulating the motion of atoms and molecules, MD
provides atomistic insights into the dynamic evolution of systems, revealing detailed in-
formation about molecular vibrations, conformational changes, and interactions between
molecules, which are crucial for understanding various physical, chemical, and biological
phenomena.[101]

MD simulations are grounded in classical mechanics, primarily utilizing Newton’s second
law of motion to describe the motion of particles in a system:

mi
d2r⃗i
dt2

= F⃗i (2.14)

where mi is the mass, r⃗i is the atomic position, and F⃗i is the force of ith particle. The
force is derived from the gradient of the potential energy U of the system with respect to
the particle’s position:

F⃗i = −∇iU(r⃗1, r⃗2, ..., r⃗N ) (2.15)

2.2.1 Practical MD simulation: integrator, ensemble, and thermostats

In a practical MD simulation, the system is firstly initialized with a set of atomic coordi-
nates, and assigned initial velocities typically drawn from a Maxwell-Boltzmann distribu-
tion at a specified temperature. Then the forces acting on each atom are computed using
a potential energy function. The equations of motion are integrated over discrete time
steps using a numerical integrator like the Verlet algorithm,[102, 103] where the positions
and velocities of the atoms are updated using the following equation:

r⃗i(t+∆t) = 2r⃗i(t)− r⃗i(t−∆t) +
F⃗i

mi
∆t2 (2.16)

However, the Verlet algorithm typically operates in the Microcanonical (NVE) ensemble,
where the number of particles (N), volume (V), and energy (E) are conserved, leading to
potential fluctuations in temperature. To perform simulations in the Canonical (NVT)
ensemble or the Isothermal–Isobaric (NPT) ensemble, where the temperature or both
temperature and pressure are constrained, thermostats are essential. Thermostats, like
the Langevin and Nosé-Hoover, adjust the velocities of particles to regulate the system’s
temperature, ensuring the kinetic energy corresponds to the desired temperature. The
Langevin thermostat models the interaction of the system with an external heat bath using
a stochastic approach, introducing both damping and random forces, and is particularly
useful for simulating systems in contact with a solvent.[104, 105] In contrast, The Nosé-
Hoover thermostat is deterministic and introduces an additional degree of freedom to the
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system to control the temperature, making it suitable for simulating isolated systems.[106,
107]

2.2.2 Potential energy function

The potential energy is crucial in MD simulations as it defines the interactions between
atoms in the system and solely determines the forces acting on them. The quality of a
MD calculation depends largely on the employed The potential energy function, which
can be derived in multiple ways. In classical MD, empirical or semi-empirical force fields
are typically used to describe the potential energy of the system. A common form of the
potential energy function U quantifies both bonded (e.g., covalent bonds) and non-bonded
(e.g., van der Waals and electrostatic) interactions between atoms. In comparison, in ab-
initio MD (AIMD), the potential energy and the forces are computed by solving Kohn-
Sham equations as illustrated in Figure 2.1.[108] AIMD allows for the study of systems and
phenomena where classical force fields are not applicable or accurate enough, providing
insights into electronic structure and enabling the simulation of chemical reactions with
the ability to account for electronic polarization effect. Although Ab Initio Molecular
Dynamics (AIMD) is precise, its high computational cost limits its application to large-
scale and long-scale simulations. Typically, AIMD studies are restricted to several tens of
picoseconds, often insufficient to equilibrate the system and sample properties accurately,
compromising the ergodicity and reliability of the simulations.

2.3 Machine learning potential

Machine Learning Interatomic Potentials (MLIPs) represent a novel approach in the field
of molecular dynamics, aiming to bridge the accuracy of quantum mechanical calculations
and the efficiency of classical potential models. MLIPs leverage machine learning algo-
rithms to learn the relationship between atomic configurations and their corresponding
potential energy, forces, and other properties directly from quantum chemistry data. This
approach allows for the construction of highly accurate potential energy surfaces, enabling
the simulation of large systems and long timescales with a precision that is comparable to
ab-initio methods but with significantly reduced computational costs. MLIPs have been
increasingly utilized to study a wide range of materials and molecular systems, show-
ing great promise in advancing our understanding of complex molecular phenomena and
material properties.
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Figure 2.2: (a) Architechture of HDNNPs for a ternary system. (b) Radial ACSFs with
varied RS parameters and fixed η as a function of interatomic distance. (c) Angular ACSFs
with λ=1 (blue to black lines) and λ=1 (orange to brown lines) and varied ζ as a function
of θijk. Figure taken from [42, 109] and modified with permission.

2.3.1 Descriptor-based machine learning potentials

In the initial stage, machine learning potentials predominantly relied on the handcrafted
descriptors to characterize atomic environments. Behler and Parrinello[49, 50] firstly intro-
duced the high-dimensional neural network potential (HDNNP) in which the local atomic
environments are described by atom-centered symmetry functions (ACSFs). As illustrated
in Figure 2.2a, the HDNNP architecture takes the geometrical information of individual
atoms within a chemical system and translates it into ACSFs. These ACSFs are subse-
quently processed through a feed-forward neural network to derive atomic energies. ACSFs
typically consist of radial and angular symmetry functions, which can be expressed as:

Grad
i =

∑
j ̸=i

e−η(Rij−Rs)2fc(Rij) (2.17)

Gang
i = 21−ζ

∑
j ̸=i

∑
k ̸=i,j

(1 + λ cos θijk)ζe−η(R2
ij+R2

ik+R2
jk)fc(Rij)fc(Rik)fc(Rjk) (2.18)

where j and k are the neighboring atoms of the central atom i, rij , rik and rjk are the
pairwise interatomic distances, θijk is the angle between atom i,j, and k, and the cutoff
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function fc of pairwise distance is defined as

fc(R) =

 0.5 ·
(
1 + cos

(
π R
Rc

))
if R < Rc

0 if R ≥ Rc

(2.19)

where Rc is the cutoff radius to limit the considered atomic interactions within a certain
distance. The cutoff function should be smooth and differentiable to avoid discontinuities
in the potential energy surface, which is crucial for computing forces. As depicted in
Figure 2.2 b and c, the atomic environments are characterized through a combination of
symmetry function values, determined by the hyperparameters η, λ, ζ, and RS . Selecting
the optimal set of these hyperparameters is often nontrivial; it demands rigorous testing
and deep physical/chemical insights from experts. Their choice is critical to the accuracy
of trained models. Besides, to discern between various bond types within the system,
distinct parameters should be allocated for each bond type. This can necessitate a large
set of descriptors to accurately describe multi-element systems, leading to substantial
computational overhead and compromising the performance of the models for complex
chemical systems.

Despite of these limitations, the innovative methodology developed by Behler and Par-
rinello has paved the way for the development of more sophisticated and generalized ma-
chine learning potentials, lead to the emergence of numerous descriptor-based machine
learning potential designs.

2.3.2 Message-passing neural networks

In the pursuit of overcoming challenges associated with traditional approaches, end-to-
end neural network potentials have come to the forefront. These advanced models are
adept at learning the mapping from nuclear charges and Cartesian coordinates of atomic
structures directly to atomic features, all within the model itself. The inspiration for most
of these end-to-end NNPs can be traced back to the architecture of graph neural networks
(GNN),[57] with a particular emphasis on message-passing neural networks (MPNNs).[58]

In the realm of MPNNs, atomic structures are interpreted as undirected graphs, with atoms
represented as nodes and atomic bonds as the connecting edges between them. The model
operates by gathering geometric information, such as radial distances and angles, from
neighboring nodes within a defined cutoff radius. This information is processed through
a message layer, which computes the features of a specific atom. Subsequently, these
features undergo refinement in an update layer. This iterative message-passing mechanism
continually refines the node features, which are then channeled into a feed-forward neural
network to predict the desired properties of the chemical systems.
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Prominent models utilizing this approach include DTNN,[59] PhysNet,[60] SchNet,[61,
62] and DimeNet,[63] among others. These models operate on interatomic distances and
employ scalar feature representations, ensuring the invariance of model output and atomic
features to rotations and translations. This can be described by the following equation:

f(x) = f(DX [g]x) (2.20)

where DX [g] is the transformation in the input space.[64, 66] In the context of atomistic
simulations, D[g] corresponds to the group of rotations, reflections, and translations in
the 3D space. However, it is crucial to note that many vital chemical properties, such as
forces and dipole moments, are equivariant to rotations of the chemical systems, which
fulfills

DY [g]f(x) = f(DX [g]x) (2.21)

where DY [g] is the transformation operations in the output space. Relying solely on
rotationally-invariant features could lead to the loss of information on these directional
properties, potentially compromising the performance of the model. To mitigate this,
advanced feature representations like vectors and tensors are employed, coupled with ro-
tationally equivariant message and update functions. Among multiple state-of-the-art
equivariant MPNNs, the polarizable atom interaction neural network [110] (PaiNN) archi-
tecture appears to be a suitable model for driving molecular dynamics as it provides out-
standing model accuracy especially on force predictions and exhibits much faster inference
speed in comparison with other GNN models.[67, 66] Figure 2.3 demonstrates the archi-
tecture of PaiNN with the detailed descriptions for message and update function blocks.
The atomic features are comprised of two components: the invariant representation si and
the equivariant representation v⃗i. While the invariant representation ensures rotational
invariance in predictions by emphasizing rotationally invariant inputs, the equivariant rep-
resentation captures essential directional information essential for spatial and relational
precision in predictions.

PaiNN receives nuclear charges Zi ∈ N and positions ri ∈ R3 for each atom i as inputs.
The invariant atom representations are initialized to learned embeddings of the atom
type, denoted as s0i = aZi ∈ RF×1, where F represents the number of features, which is a
predefined hyperparameter and kept constant throughout the network. The equivariant
representations are initially set to v⃗0i = 0⃗ ∈ RF×3, given that there is no directional infor-
mation available initially. The architecture employs a residual structure of interchanging
message and update blocks, which results in coupled scalar and vectorial representations.
For the scalar message function, PaiNN adopts continuous-filter convolutions, represented
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Figure 2.3: (a) The full architecture of PaiNN. (b) The message function block. (c) The
update function block. Figure reprinted from [110] with permission.

as:
∆smi = (ϕs(s) ∗Ws)i =

∑
j

ϕs(sj) ◦Ws(∥r⃗ij∥) (2.22)

Here, φ consists of atomwise layers, and the rotationally-invariant filters Ws are linear
combinations of radial basis functions. The equivariant message function also utilizes
continuous-filter convolutions, formulated as:

∆vmi =
∑
j

vj ◦ ϕvv(sj) ◦Wvv(∥r⃗ij∥) +
∑
j

ϕvs(sj) ◦W ′
vs(∥r⃗ij∥)

r⃗ij
∥r⃗ij∥

(2.23)

After the feature-wise message blocks, the update blocks are applied atomwise across
features. The scalar update function has a residual given by:

∆sui = ass(si, ∥v⃗i∥) + asv(si, ∥v⃗i∥)⟨u⃗i, v⃗i⟩ (2.24)

Here, a scaling function computed by a shared network a(si, ∥ v⃗i ∥) is used as nonlinearity.
The norm of a linear combination of features is also used to obtain the scaling, thus,
coupling the scalar representations with contracted equivariant features. In a second
term, the scalar product of two linear combinations of equivariant features is used. The
residual for the equivariant features is defined as:

∆v⃗ui = avv(si, ∥v⃗i∥)u⃗i (2.25)

This is a nonlinear scaling of linearly combined equivariant features. The rotationally
equivariant message passing and computational efficiency of PaiNN make it a powerful
tool for accurate and fast predictions in MD simulations.
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2.3.3 Training machine learning potentials in practice

In the preceding discussions, we have meticulously introduced the intricate architectures of
multiple MLIPs, albeit without delving deeply into practical training of these MLIPs. The
training of MLIPs typically involves the meticulous crafting of loss functions, the prepara-
tion of dataset, extensive tests of hyperparameters, and comprehensive model evaluation
to ensure the robustness and reliability of the models.

In the sections above, we elucidated how atomic energies within the specified chemical
systems can be derived from diverse designs of MLIPs. Summing up these atomic energies
gives the total energy of a model system, which can be written as:

E =
∑
i∈N

Ei (2.26)

Concurrently, atomic forces are generally derived from the negative gradients of the atomic
energy with respect to atomic coordinates:

F⃗i = −∇iE (2.27)

This methodology adheres to the principle of energy conservation, a pivotal constraint
for enhancing the stability of Molecular Dynamics (MD) simulations.[111] However, some
models opt for a direct approach, predicting forces as part of their outputs instead of
deriving them as gradients of the total potential energy.[112] This implementation could
possibly lead to collapse of MD simulations over long time.

After obtaining the energy and force predictions, the model can be trained using a loss
function based on a weighted sum of energy and a force loss terms:

L =
1− λ

N

N∑
i=1

(Ei − Êi)
2 +

1− λ

NM

N∑
i=1

M∑
j=1

3∑
k=1

(F jk
i − ˆ

F jk
i )2 (2.28)

where λ represents the trade off between force loss and energy loss.

In this thesis, all simulations using MLIPs employed the PaiNN architecture. All the
training and simulations with MLIPs were done using the CURATOR code, developed during
this Ph.D. project. More details about training and evaluation are in the respective
chapters of this thesis.

It is important to note that the foundation for the successful deployment of MLIPs is
laid by high-quality ab-initio datasets. In order to collect high-value atomic structures
for model training in an effective manner, we designed several batch active learning al-
gorithms for atomistic data and built a fully automated workflow to reduce the time and
computational cost for training MLIPs for chemical systems of interest. A more in-depth
exploration of the workflow is available in chapter 3 of this thesis.
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2.4 Enhanced sampling technique

Enhanced sampling methods are advanced simulation techniques designed to explore the
configurational space of molecular systems more efficiently than conventional MD simula-
tions, especially for systems with rugged energy landscapes.[113, 114, 115] It is particularly
useful for studying systems where the timescale of the events of interest is much longer
than what can be feasibly reached with standard MD simulations. These methods are
designed to overcome the limitations of traditional MD by facilitating the system to cross
energy barriers and escape from local minima, enabling the exploration of a wider range
of configurational space and providing insights into rare events and transitions between
metastable states.

2.4.1 Collective variables

Collective variables (CVs) are typically macroscopic observables that describe the relevant
degrees of freedom of the chemical system, which can be represented as functions of the
atomic positions: s = s(r⃗). They are designed to capture the essential features of the
system’s configuration and are used to probe the free energy landscape of molecular sys-
tems. In enhanced sampling methods, CVs are manipulated by adding a bias potential
V (s), to drive the system through different states, enabling the exploration of regions in
configurational space that are not readily accessible by conventional MD simulations. The
potential energy function of the system can then be expressed as:

Ubiased(r⃗) = U(r⃗) + V (s(r⃗)) (2.29)

The choice of CVs is crucial as it determines the efficiency and success of enhanced sampling
simulations. They should be chosen to represent the slow, large-amplitude motions of the
system and to distinguish between different states of interest. Common choices for CVs
include distances between atoms or groups of atoms, angles, dihedrals, and root-mean-
square deviations (RMSD) from a reference structure. The selection often relies on prior
knowledge of the system and the specific reacion process under investigation.

In the scope of this thesis, it suffices to mention that the CVs for modelling oxygen
reduction are selected as path collective variables,[116] which is capable of describe the
progress of a system along a predefined reaction path. Given a reference path defined
by a series of configurations {R0,R1, . . . ,RN},the progress along the path s for a given
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configuration R) is defined as:

s =

N∑
i=1

ie−λd(R,Ri)

N∑
i=1

e−λd(R,Ri)

(2.30)

where d(R,Ri) is a distance metric between the configuration R) and the reference con-
figuration Ri). Various metrics can be employed for this purpose. A common choice is
the root-mean-square deviation (RMSD) between the two configurations. Alternatively,
one can define collective variables (CVs) to characterize the reference structures and then
compute the distance based on the differences in these CV values. Using the primary
path collective variable s alone is not enough to describe a reaction path as it does not
provide information about how far the system deviates from this path in the orthogonal
directions. The complementary variable z fills this gap by quantifying the perpendicular
distance from the current configuration to the reference path, which can be written as:

z = − 1

λ
ln
[

N∑
i=1

e−λd(R,Ri)

]
(2.31)

In this thesis, the distance between configurations are described by the coordination num-
bers CO2−O and CO2−H, which are the number of neighboring oxygen atoms and hydrogen
atoms surrounding the O2 molecules, respectively.

2.4.2 Enhanced sampling methods

Figure 2.4: (a-c) The free energy landscape described by CV s and the metadynamics
bias potential at three different times marked by arrows in (d). (d) The CV s as a function
of time in a metadynamics simulation. Figure reprinted from [115] with permission.
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Several enhanced sampling methods have been developed to address the challenges as-
sociated with sampling in MD simulations. Replica exchange molecular dynamics [117]
(REMD) is a method where multiple replicas of the system are simulated in parallel at
different temperatures, and exchanges between replicas are attempted periodically to en-
hance the sampling of configurational space. One of the primary drawbacks of REMD
is the significant computational cost as running multiple replicas of the system at dif-
ferent temperatures requires substantial computational resources. Moreover, REMD is
primarily effective for systems with well-defined energy landscapes and clear temperature-
dependent behavior. For systems with rugged energy landscapes or those that do not
exhibit significant temperature-dependent variations, REMD may be inferior compared
to other sampling methods. Umbrella Sampling is one such method that uses a biasing
potential to force the system to sample different regions of phase space, and the results
from different simulations are then combined to obtain the overall properties of the sys-
tem.[118, 119] A notable limitation of this approach is the prerequisite to predefine the
bias potential prior to the simulation. This often requires iterative analyses and tests on
the model system to ensure the incorporation of the bias potential is effective.

Metadynamics is another method,[113, 114, 120] which adds a history-dependent biasing
potential to smooth out the free energy landscape, enabling the system to escape from
local minima and explore the configurational space more efficiently. As demonstrated in
Figure 2.4, as the simulation progresses, the biasing potential fills the free energy basins
associated with the CVs, making it easier for the system to cross energy barriers. The
biasing potential V (s, t) is constructed as a sum of Gaussian functions centered at the
values of the CVs visited during the simulation:

V (s, t) =
t∑

τ=∆t

W (τ) exp
(
−||s − s(τ)||2

2δ2

)
(2.32)

where s is the vector of CVs, W (τ) is the height of the Gaussian added at time τ , and δ is
the width of the Gaussian. The sum runs over the simulation time, with Gaussians added
every ∆t time steps.

In the original metadynamics, the height of the Gaussians remains constant, which can
lead to the biasing potential diverging over time. The well-tempered variant introduces a
time-dependent Gaussian height to ensure convergence:

W (τ) =W0 exp
(
−V (s(τ), τ)

kBT∆T

)
(2.33)

where W0 is the initial Gaussian height, kB is the Boltzmann constant, T is the tempera-
ture of the system, and ∆T is a biasing temperature parameter. The free energy A(s) as
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a function of the CVs can be reconstructed from the biasing potential:

A(s) = − lim
t→∞

V (s, t) (2.34)

Metadynamics allows for the efficient exploration of the free energy landscape, especially
for systems with high energy barriers. With the well-tempered variant, the convergence
of the free energy profile can be ensured. However, it should be noted that the success
of metadynamics largely depends on the choice of appropriate CVs that can distinguish
between different states of the system.

In the scope of this thesis, all metadynamics simulations are performed with the well-
tempered variant, and are propagated by Langevin dynamics in ASE.[98] The calculation
of collective variables and bias potential of metadynamics is achieved by PLUMED[121,
122, 117] that interfaced to ASE.
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CHAPTER 3
Automated active learning
workflow

This chapter is based on paper I – ”Batch Active Learning at the Core: Building Robust
ML Potentials for Atomistic Simulations”. The paper is also included in this thesis together
with the corresponding supplementary information in Appendix A.

3.1 Introduction
In this chapter, we introduce CURATOR, an autonomous active learning workflow devised
for the construction of high-fidelity graph neural network potentials. This workflow seam-
lessly integrates cutting-edge equivariant MPNNs—specifically PaiNN,[110] NequIP,[66]
and MACE,[67] targeting accurate predictions for specific properties within chemical sys-
tems. To ensure the robustness of simulations driven by the trained MLIPs, our approach
incorporates a variety of uncertainty quantification techniques. We have incorporated ef-
ficient active learning strategies that can efficiently identify the most informative batches
of structures from production simulations, adaptively enhancing model reliability and ex-
panding their applicability across a broader chemical space. These strategies exploit both
the model uncertainties and diversity of the candidate atomic configurations, improving
the efficiency of batch mode data acquisition. Through rigorous testing across diverse
chemical systems—ranging from simple molecules to intricate periodic molten glass struc-
tures, we demonstrate that the algorithms can remarkably enhance data acquisition effi-
ciency. This, in turn, substantially reduces the time required to train high-quality MLIPs.
In order to further accelerate the simulation speed of these MLIPs, we have developed an
efficient gradient computation method that calculates forces and stress based on the en-
ergy derivative with respect to relative position vectors. Lastly, by integrating the entire
workflow with myqueue,[123] we have achieved full automation in the task scheduling on
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Figure 3.1: Schematic diagram of active learning workflow

modern computer clusters for various job types within the framework.

Figure 3.1 outlines the various procedures for fitting MLIPs. Initially, users must provide
a small dataset comprising atomic configurations derived from DFT calculations. This
dataset could originate from diverse calculations, such as a short MD trajectory, configu-
rations from structural optimizations, or nudged elastic band calculations, among others.
This initial dataset serves as the foundation for training the GNN model. Within this
process, atomic configurations are mapped into graph representations, which are then
modeled using feed-forward neural networks. Training stops when there is no improve-
ment in validation error over a specified number of steps. The resulting models can then
be used to generate data via methods like molecular dynamics, Monte Carlo simulations,
or other user-specified applications. Using our reliable uncertainty toolbox, simulations
are guaranteed to stay within the application domain of the trained models; if not, the
simulations are immediately stopped. The much improved computational efficiency of
MLIPs allows for the fast generation of numerous candidate structures. Batch active
learning algorithms are then used to identify the most informative batches for refining
the model among these candidates. This involves feature engineering for maximizing the
information of individual candidate structures and minimizing the overall memory usage
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for storing the information, and effective algorithms that exploit the model uncertainties
and data diversity. The chosen data points are subsequently labelled via DFT single-point
calculations and incorporated into the initial DFT dataset for model refinement. Such a
process will be iteratively performed until the derived GNN models are reliable, accurate,
and stable enough for designated simulations. In the subsequent sections, we delve into
the specifics of various procedures within the workflow. The remainder of this chapter is
structured as follows:

1. Machine learning interatomic potentials: We present several state-of-the-art
Message Passing Neural Networks (MPNNs) utilized in our workflow, summarizing
the trade-offs between model accuracy and speed. We also introduce an efficient
method for gradient computation.

2. Batch active learning: This section introduces the active learning methods em-
ployed in our workflow, detailing the features and crucial transformations used for
representing atomic structures. The efficacy of various active learning strategies is
demonstrated through several selected benchmark systems.

3. Uncertainty Estimation Methods: We outline the uncertainty estimation meth-
ods integrated within the workflow and assess their performance against several
critical criteria relevant to practical applications.

4. Autonomous workflow: Here, we illustrate how the aforementioned components
are seamlessly incorporated into our active learning workflow.

5. Conclusion: Finally, we conclude with our remarks, summarizing the key findings
and implications of our work.

3.2 Neural network potential library

3.2.1 Model training and evaluation

The workflow integrates a series of cutting-edge equivariant message-passing neural net-
works, specifically PaiNN,[110] NequIP,[66] and MACE.[67] Within these models, each
atom is linked to features that encompass tensors of various orders, ranging from scalars
and vectors to even more complex higher-order tensors. Leveraging these high-order fea-
tures guarantees the rotational equivariance of the model, enhancing the accuracy of
predictions related to directional attributes, such as dipole moments and forces. Adopting
the notations from ref. [66], the feature vectors V (l,p)

acm can be indexed by the rotation
order l and the parity notation p. Here, the term “rotation order” refers to a non-negative
integer l=0,1,2,... and the parity p can either be 1 or -1. Together, they label the O(3)
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irreducible representations of atomic features. Among the discussed models, PaiNN ex-
clusively employs l=1 vectors and ignores parity transformation. This approach simplifies
the dimensionality of the features, enabling PaiNN to achieve faster training and infer-
ence speeds without necessarily compromising on accuracy. In contrast, NequIP typically
utilizes l=2 vectors and takes into account parity transformation. While this improves
model accuracy, it demands greater computational resources. In both architectures, usu-
ally more than three message-passing layers are required to achieve desired accuracy levels.
MACE differentiates itself by incorporating higher body-order interactions in its message
functions, allowing for only two message-passing iterations to attain high accuracy. This
design potentially optimizes computational efficiency while maintaining excellent model
performance. For more detailed information on the models, please refer to the respective
publications.

Figure 3.2 illustrates the trade-off between model accuracy, quantified by the mean abso-
lute error (MAE) of forces, and inference speed. The models are trained using the aspirin
molecule data from the MD17 dataset, comprising 2,000 training, 1,000 validation, and
5,000 independent test data points. More details about the error metrics and inference
speed for each model can be found in Table A.1. The inference time for each model is
evaluated on a diamond structure with 1000 atoms using an NVIDIA V100 GPU. This
structure has an average of 86 neighbors per atom with a cutoff radius of 5.0 Å. It is im-
portant to highlight that the inference time generally remains consistent regardless of the
number of atoms in the system, until all the GPU threads are occupied. As anticipated,
the error diminishes with an increase in the number of message-passing layers and node
feature size. However, beyond a certain threshold, increasing the number of layers and
node feature size yields only marginal improvements in accuracy. It is clearly seen that
both NequIP and MACE have shown outstanding model accuracy, while at a cost of much
heavier computation as shown in Figure 3.2c and d. Therefore, it is recommended to use
cheap PaiNN model for collecting training data points with active learning while to use
more accurate models like MACE or NequIP for final production simulations.

3.2.2 Efficient gradient calculation

In the original implementations of GNN model, the total potential energy of the chemical
system is calculated by aggregating individual atomic energies. Concurrently, atomic
forces are generally derived from the negative gradients of the atomic energy with respect
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Figure 3.2: (a) and (b) Model accuracy (force MAE) of employed models plotted against
the number of message-passing layers and the number of node features, respectively. (c)
and (d) Inference time of employed models plotted against the number of message-passing
layers and the number of node features, respectively.

to atomic coordinates:

E =
∑
i∈N

Ei (3.1)

F⃗i = −∇iE (3.2)

This approach respects the energy conservation constraint, which is important for improv-
ing the stability of simulations such as molecular dynamics.[111] Notice that the models
never directly use the coordinates of atoms r⃗i to determine atomic energies. Instead, they
rely solely on the relative position vector r⃗ij = r⃗j − r⃗i and its length ∥ r⃗ij ∥ in the message
layers, which are typically obtained via neighbor-list algorithms from various codes like
ASE,[98] ASAP3,[124] MatScipy,[125] or NNPOps.[126] Therefore, the atomic energy is
exclusively a function of r⃗ij :

Ei = Ei({r⃗ij}i ̸=j) (3.3)

The automatic differentiation feature in PyTorch,[127] which is typically the backend of
most GNN models, enables the convenient computation of negative gradients of total
potential energy with respect to the model inputs, i.e. relative position vectors. Yet,
the derivative ∂r⃗ij/∂r⃗i remains a missing map for force calculations. For non-periodic
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systems, this derivative is straightforward to compute, whereas periodic systems require
consideration of cell displacements, adding extra computational overhead during data
preprocessing. In contrast, our implementation calculates forces as follows:

F⃗i ≡ −∂E
∂r⃗i

≡ −
∑
i

∂Ei

∂r⃗i

= −
∑
j ̸=i

(
∂Ej

∂r⃗i

)
− ∂Ei

∂r⃗i

= −
∑
j ̸=i

∑
k ̸=j

∂Ej

∂r⃗jk

∂r⃗jk
∂r⃗i

+
∂Ei

∂r⃗ij

∂r⃗ij
∂r⃗i


= −

∑
j ̸=i

(
∂Ei

∂r⃗ij
− ∂Ej

∂r⃗ji

)
(3.4)

In this way, the forces can be computed with only −∂E/∂r⃗ij that can be directly obtained
with automatic differentiation. This bypasses the need to compute cell displacements and
re-calculate relative position vectors, streamlining the process. Additionally, by using the
neighbor list of individual atoms, we can independently determine the total forces for each
atom, which offers significant potential for massively parallel implementation.

Moreover, this method can also notably reduce the effort required to compute the stress of
the chemical system by using an explicit analytical expression for virial tensors. Typically,
the stress tensors of a periodic system can be calculated with the first-order derivative of
the total energy E with respect to small strains.[128] This method requires applying a
symmetrical, infinitesimal strain deformation to the periodic system prior to the model
prediction. Following this, the gradients of the total energy related to the strain tensors
must be calculated. This process doubles the computational burden of gradient calcula-
tions, which represent the most significant computational expense in model prediction. In
our implementation, it is worth noting that the computed force is pairwise and adheres to
Newton’s third law:

F⃗ij = −F⃗ji = −∂Ei

∂r⃗ij
+
∂Ej

∂r⃗ji
(3.5)

where F⃗ij is the force exerted by atom j on atom i. The viral tensors can then be calculated
by:

W =
∑
i

Wi = −1

2

∑
i

∑
j ̸=i

rij ⊗ F⃗ij (3.6)

This method employs an explicit expression for computing the virial stress tensors, elimi-
nating the need for computationally intensive gradient calculations associated with stress
tensors.
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3.3 Batch active learning

Figure 3.3: Schematic illustrations of active learning strategies: (a) naive active learning
and (b) batch active learning methods for selecting data points from an MD simulation
trajectory; (c) naive active learning and (b) batch active learning methods for selections
in a two-dimensional space.

Active learning operates in two primary modes. In naive active learning, the algorithm
continuously selects and labels the single most informative sample, updating the model
after each instance. If utilizing this strategy to select a batch instead of an individual
sample, multiple informative but similar samples could be selected, potentially making
the labeling of these samples redundant. This becomes especially critical in specific simu-
lations. For example, in MLMD simulations, the extrapolative structures selected by naive
active learning often present in a short time interval right before the simulation ends, as
illustrated in Figure 3.3a and c. Even though each of these structures is individually
informative, their similarity can lead to only marginal improvements during subsequent
model retraining due to the overlap in information. On the other hand, batch active learn-
ing is designed to choose and annotate sets of samples simultaneously, prioritizing both
uncertainty and diversity within the batch. Optimal batch active learning methods aim
to choose samples that have high uncertainties while minimizing information redundancy,
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as illustrated in Figure 3.3b and d. Achieving this involves measuring atomic configura-
tion similarities and strategically excluding similar structures from a batch. This process
takes into account the features used to describe atomic structures and efficient selection
algorithms, details of which will be discussed in the subsequent sections.

3.3.1 Feature engineering

Before exploring active learning selection, we must first extract features from our trained
models for the candidate structures. Additionally, it is essential to understand the kernel
matrix used in active learning. The following content is based on the framework from
Ref.[82], where further details are provided. For a sequence of atoms taken from these
structures, represented as X = (x1, ...,xn) ∈ Rn×d, the corresponding feature matrix can
be defined as:

Φ(X )T =


ϕ(x1)

T

...
ϕ(xn)

T

 ∈ Rn×dfeat (3.7)

In this context, ϕ(xi) represents the feature map for an individual atom derived from the
model. The local environments of two atoms i and j then can be compared by using
the similarity kernel k(xi,xj) = ⟨ϕ(xi), ϕ(xj)⟩. Expanding on this, we can compute
the covariance matrix k(X ,X ) = (k(xi,xj))i,j ∈ Rn×n that encompasses all pairwise
similarity within the feature matrix. There are various ways to construct the feature map
and the kernel matrix. Besides, in order to make these kernels being more suitable to be
applied for a selection method, some kernel transformation methods are often needed. In
the following, we will introduce several kernels and transformation methods used in this
study.

GNN kernel: The most intuitive approach for obtaining feature maps is leveraging
the scalar node features derived from the outputs of the message-passing layers within
MPNNs. This corresponds to the feature map ϕgnn and the graph neural network kernel
kgnn. Although evaluating this kernel through model prediction is generally fast and
convenient, it solely contains the information necessary for computing the potential energy
of the chemical system, ignoring the gradients of the systems. This could potentially limit
its ability to accurately describe the atomic environment, consequently compromising the
effectiveness of batch selection methods.

Full gradient kernel: Compared to GNN kernel, the full gradient kernel takes use of all
gradients from the model to construct the feature map, which can be expressed as:

ϕgrad(x) := ∇θfθT (x) (3.8)
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where θT is the parameter vector of the trained model. The intuition of this method is
that the magnitude of the gradients implies the required adjustments of the parameters
in different dimensions, and thus can be used to evaluate the distance between different
samples. Besides, it also indicates the gap between predictions and correct values, enabling
it to be a potential indicator of model uncertainty.[129]

The number of parameters in deep learning models can often be large, therefore it is in-
tractable to get the gradients of all these parameters and to use the ultra-high-dimensional
features for selection. Fortunately, the feature map ϕgrad can be simplified by using the
product structure of NNs, which can significantly reduce the runtime and memory usage
for kernel evaluation.[82]

z
(l+1)
i = W̃ (l+1)x

(l)
i , W̃

(l+1) := (W (l+1) b(l+1)) ∈ Rdl+1×(dl+1), x̃
(l)
i =

x
(l)
i

1

 ∈ Rdl+1

(3.9)

ϕgrad(x
(0)
i ) =

(
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, . . . ,
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)
=

(
dz

(L)
i

dz
(1)
i

(x̃
(0)
i )T , . . . ,

dz
(L)
i
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(L)
i

(x̃
(L−1)
i )T

)
(3.10)

Given that ϕgrad encompasses gradient contributions across different layers, sometimes it
is required to balance the magnitudes of the gradients in different layers via parameter
initialization [130] or normalize the gradients post hoc. While the aforementioned deriva-
tions were initially intended for fully connected neural networks (NNs), they can also be
extended for application to the FFNN component within MPNNs. This adaptation is
precisely how the full gradient kernel was employed in the context of this study.

Last layer kernel: The dimensionality of a full gradient feature map can often be too
large. A simple approximation to this is only using the gradients of parameters in the last
layer of NNs as the feature map ϕll.[131] From equation 3.10, it is evident that ϕll is just
the input of the last layer.

Average transformation: Note that the number of atoms in the pool dataset can be vast,
often ranging from several millions to billions. Direct pairwise comparisons pose significant
challenges in terms of memory consumption and computational efficiency. Thus, merging
the local feature maps of atoms to generate a global similarity measurement for structures
is a more practical approach. When comparing two structures, a straightforward method is
to use the average kernel. It is important to clarify that in this context, the term “average
kernel” is somewhat misleading. It encompasses both the mean feature map of a group of
atoms relative to a structure and the cumulative sum of feature maps. Mathematically,
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this can be represented as:

ϕ(Si) = ϕ→avg(x) =

Natoms∑
n=1

ϕ(xn) (3.11)

where Si denotes a structure and ϕ→avg(x) denotes the transformation for feature maps.
This notation will also be used for other transformations hereafter. Although this method
can lead to some information loss, its small computational cost can greatly accelerate the
selection and minimize memory consumption. More accurate methods like regularized
entropy match (REMatch) can also be used to construct the global similarity kernel.[132]

Diagonal kernels: Diagonal kernels correspond to the metrics that are used for naive
active learning. These metrics can individually indicate the informativeness of selected
samples while capturing no correlation between them. There are multiple ways to select
these metrics. When the labels (i.e., material properties like energy and forces) of samples
are known, the absolute error (AE) between true values and predictions can serve as a
suitable indicator for the informativeness of individual samples. The absolute error of
energy and forces are considered in this study, which can be expressed as:

△E(S) = |Epred − Etrue| (3.12)

△F (S) = 1

3Natoms

Natoms∑
i=1

3∑
j=1

| #«F pred
ij − #«

F true
ij | (3.13)

These two kernels will be referred to as AE(E) and AE(F) hereafter. When the labels of
samples are unknown, we can then use some sampling-based UE methods to evaluate the
disagreements between different predictions that obtained from different models or Monte-
Carlo dropout, thus obtaining the uncertainty. There are multiple ways to calculate the
disagreements, here we simply use the standard deviation of different predictions, which
can be expressed as:

σE(S) =

√√√√Npred∑
n=1

(Epred − Etrue)2 (3.14)

σF (S) =

√√√√√ 1

3NatomsNpred

Npred∑
n=1

Natoms∑
i=1

3∑
j=1

(
#«

F pred
ij − #«

F true
ij )2 (3.15)

These two kernels will be referred to as QBC(E) and QBC(F) hereafter.

Random projections: Although the last-layer kernel can approximate the full gradient
kernel to some extent, the information loss due to the discarded gradients can be large,
undermining its ability to describe atomic environments. Random projections, also known
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as sketching, can be used to approximate a high-dimensional feature by a lower-dimensional
feature.

ϕ→rp(p)(x) :=
1
√
p
Uϕ(x) ∈ Rp (3.16)

where U ∈ Rp×dfeat is a random matrix with entries drawn from a standard normal
distribution. In the case of feature map ϕgrad→avg(x), the following approximations are
employed to simplify the sum and product of feature maps ϕ(x) := (ϕ1(x), ϕ2(x))

T and
ϕ(x) := ϕ(x1)⊗ ϕ(x1):

ϕ→rp(p)(x) := ϕ1→rp(p)(x1) + ϕ2→rp(p)(x1) (3.17)

ϕ→rp(p)(x) := ϕ1→rp(p)(x1)⊗ ϕ2→rp(p)(x1) (3.18)

In this way, the full gradient feature map can be conveniently transformed into features
with p dimensionality.

Gaussian process transformation: Gaussian process posterior transformation is de-
rived from a Bayesian linear regression model with respect to feature ϕ(x), where the
atomwise property yi can be modeled by yi = wTϕ(x) + ε.[133] After observing the
training data Dtrain with inputs Xtrain, it is well known that the posterior covariance
k(x,x∗|Xtrain) can be obtained by:

k(x,x′|Xtrain) = k(x,x′)− k(x,Xtrain)(k(Xtrain,Xtrain) + σ2I)−1k(Xtrain,x
′) (3.19)

= ϕ(x)T (I − Φ(Xtrain)(Φ(Xtrain)
TΦ(Xtrain) + σ2I)−1)ϕ(x′) (3.20)

Using the matrix inversion lemma (also known as the Woodbury matrix identity)[133] we
can get:

k(x,x′|Xtrain) = σ2ϕ(x)T (Φ(Xtrain)
T (Φ(Xtrain) + σ2I)−1ϕ(x′), (3.21)

which leads to an explicit feature map:

ϕ→gp(x) = σ(Φ(Xtrain)
T (Φ(Xtrain) + σ2I)−

1
2ϕ(x). (3.22)

This feature map can then be used for measuring the similarity between structures. The
idea of this transformation can be seen as approximating the feed-forward NN in MPNNs
as a Bayesian NN, providing a fast and robust way to evaluate model uncertainty. We will
demonstrate in the subsequent section that this operation is indeed equivalent to using
Mahalanobis distance for out-of-distribution detection.[134]

On the basis of the above kernels and transformations for atomic features, we come up with
6 different combinations, namely ϕgnn→avg(x), ϕgrad→rp→avg, ϕll→avg, ϕgrad→rp→avg→GP ,
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Figure 3.4: t-SNE plot of the applied kernels and transformations on the features derived
from MD17 dataset.

ϕll→rp→avg, ϕgrad→rp→avg→GP . A suitable tool to evaluate their ability to accurately
represent atomic structures and differentiate similar structures is t-SNE (t-Distributed
Stochastic Neighbor Embedding)[135], which embeds the high-dimensional data points
for visualization in a low-dimensional space by using probability distributions. Figure 3.4
depicts the distribution of various molecules from the MD17 dataset, visualized using t-
SNE and the kernels mentioned above. From Figure 3.4a, it is evident that solely relying
on the GNN kernel ϕgnn→avg(x) is not enough to capture the structural differences between
these molecules. Introducing random projection transformation to the GNN kernel offers a
moderate improvement, as seen in Figure 3.4d, but distinguishing between different struc-
tures remains challenging. In stark contrast, both the full gradient kernel and the last
gradient kernel demonstrate superior capability in capturing the structural characteristics
of these molecules, evidenced by the distinct separations in Figures 3.4b, c, and e. We
also evaluated the impact of Gaussian process transformation, illustrated in Figure 3.4f.
Regrettably, no obvious improvement is observed by using this transformation as it is
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mainly targeted for better uncertainty evaluation.

3.3.2 Batch mode selection

With the defined kernels above, we can then use some selection methods to select data
points from the pool data set. Based on the above results that only ϕgrad→rp→avg and
ϕll→avg well represented the distribution of atomic structures, only these two kernels are
employed for selection. In the following, we will briefly introduce several selection methods
used in this study. ‘[82, 136] Here we use Xpool, Xsel, Xbatch to denote the pool dataset,
selected data points, and the batch to be selected, respectively.

Random: Random selection will serve as a baseline for the selection methods and will be
denoted as Random. The batch data points Xbatch will randomly draw from an uniform
distribution

NextSample(k,Xsel,Xpool) ∼ U(Xpool) (3.23)

The selection continues until Nbatch number of data points have been collected.

Naive active learning: If using k(x,x) as the uncertainty of data point x, naive active
learning can be conceptualized as selecting data points corresponding to the maximum
diagonal elements of k(Xpool,Xpool). This method encompasses all QBC methods that
employ uncertainty as their selection criterion and will be termed as MaxDiag hereafter.
The selection strategy can be expressed as

NextSample(k,Xsel,Xpool) = argmax
x∈Xpool

k(x,x). (3.24)

This method only considered the informativeness of individual data points while ignoring
their similarities, which can lead to similar or even identical data points in Xbatch.

Greedy determinant maximization: Compared to MaxDiag, the determinant maxi-
mization approach, referred to as MaxDet, curates an optimal batch Xbatch by maximizing
the determinant of k(Xsel ∪Xbatch,Xsel ∪Xbatch). This can be formalized as

NextSample(k,Xsel,Xpool) = argmax
x∈Xpool

det(k(Xsel ∪ {x},Xsel ∪ {x}) + σ2I) (3.25)

This method accounts for the correlation among selected points, effectively ensuring un-
certainty and data diversity within the chosen batches. Calculating the determinants
of batches with diverse data points is usually intractable. To alleviate computational
complexity, the greedy algorithm utilizing partial pivoted matrix-free Cholesky decompo-
sition[137] is employed. Notably, this approach aligns with the D-optimal design principles
previously applied in active learning for machine learning interatomic potentials.[138, 139]
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Largest cluster maximum distance: Largest cluster maximum distance (LCMD) is a
clustering method that aims to categorize data points from the pool set Xpool by assigning
them to predefined cluster centers in Xsel. Initially, every point x in Xpool is assigned to
its nearest cluster center from Xsel, with distances typically computed using metrics like
Euclidean:

c(x) := argmax
x̃∈Xsel

dk(x, x̃) (3.26)

The size of these clusters is determined by the sum of the distances of each member to its
cluster center:

s(x̃) :=
∑

c(x)=x̃

dk(x, x̃)
2 (3.27)

Following this, the point in the largest cluster that is at the maximum distance from its
center is chosen as the next cluster center.

NextSample(k,Xsel,Xpool) = argmax
s(c(x))=max s(x̃)

dk(x, c(x)) (3.28)

This iterative process continues until the desired number of cluster centers matches the
batch size. This method emphasizes both the representativeness and diversity of data
points, thus making the batch mode selection effective.

We conducted experiments on multiple datasets to assess the effectiveness of our selection
methods and kernels. These datasets include: AIMD simulations of small molecules from
the MD17 dataset (non-periodic) [111], an AIMD trajectory of bulk lithium thiophosphate,
Li6.75P3S11 (periodic) [140], and an AIMD trajectory of amorphous lithium phosphate,
Li4P2O7 (periodic) [66]. With a wide range of base kernels, kernel transformations, and se-
lection modes available to us, the potential combinations were vast. This would necessitate
an exhaustive number of benchmark tests, making the task unfeasibly complex. To reduce
the complexity of benchmark tests and maintain clarity in our analysis, we strategically
limited our focus on a select few combinations that appeared most promising. we restricted
the kernels to be the full gradient and the last layer gradient, as they demonstrated a supe-
rior capability in accurately representing different structures. Both kernels are transformed
by random projections with a dimensionality of 500, which can be expressed as LL(RP)
and GRAP(RP). Consequently, our tests were streamlined to the following combinations:
Random, MaxDiag+

{
AE(E), AE(F), QBC(F)

}
, MaxDet+

{
LL(RP), GRAD(RP)

}
, and

LCMD+
{
LL(RP), GRAD(RP)

}
. Furthermore, all active learning tests are conducted

with PaiNN model because it demonstrated superior training efficiency without compro-
mising too much accuracy, while we anticipate that other GNN models might yield similar
results.



CHAPTER 3. AUTOMATED ACTIVE LEARNING WORKFLOW 41

MD17 active learning tests: We first tested these batch active learning strategies on
the MD17 dataset, which comprised of MD trajectories of small molecules. The primary
objective is to assess the effectiveness of various batch active learning strategies, utilizing a
minimal number of data points while maximizing accuracy. The MD trajectories contain a
number of frames ranging from approximately 100,000 to 1,000,000. Most of these frames
are similar, making them highly suitable for active learning tests. For each molecule, a
subset of 1,000 samples will be reserved as a validation dataset for early stopping, and an
additional 5,000 samples will be used for an independent test of the model that exhibits
the smallest validation loss in each training. The models are trained on a combined loss
of energies and forces, with the energy and force weights being 0.05 and 0.95 respectively.
The training began with an initial training data set of 100 samples, drawn randomly from
the remaining pool dataset. Throughout each test, the training dataset is increased by a
batch size of 100 until a total of 1,000 samples have been collected. The training stops
when the validation loss does not improve over 150 times of validation checks. Perfor-
mance was measured using multiple error metrics, including energy-based and force-based
metrics like mean absolute error (MAE), root mean square error (RMSE), and maximum
error (MAXE). Particularly, force error metrics were highlighted due to their pivotal role
in atomic simulations such as MD, NEB, and structural optimization, where energy typ-
ically serves merely as an observer. Moreover, it is typically more challenging to achieve
satisfactory force predictions.

The learning curves for the salicylic acid molecule, with a batch size of 100, are illustrated
in Figure 3.5. Observations from other molecules mirrored these findings, as seen in Fig-
ure A.1 through Figure A.8. Notably, the LCMD+GRAD(RP) combination consistently
yielded the smallest force errors, with MAE, RMSE, and MAXE values being 0.182, 0.286,
and 0.868 kcal/mol/Å, respectively. This is in stark contrast to the baseline method Ran-
dom, which exhibited force MAE, RMSE, and MAXE values of 0.289, 0.740, and 2.860
kcal/mol/Å. Remarkably, the LCMD+GRAD(RP) combination achieved similar force ac-
curacy to the Random method but used only half the data points (500 configurations),
recording 0.332, 0.563, and 1.768 kcal/mol/Å for force MAE, RMSE, and MAXE, respec-
tively. As anticipated, some naive active learning strategies, notably MaxDiag+AE(E)
and MaxDiag+AE(F), distinctly underperformed compared to Random, highlighting the
crucial importance of utilizing refined batch active learning methods. It is worth noting
that the force MAXE learning curve of LCMD+GRAD(GP) is notably stable. This metric
is often associated with the stability of MD simulations, as large force errors can lead to
the rapid collapse of a simulation within a short time interval. Consequently, we expect
that this approach will considerably enhance the stability of the simulations. Compared to
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Figure 3.5: Learning curves for the salicylic acid molecule data from MD17. (a) The
mean absolute errors (MAE), (b) root-mean-square errors (RMSE), and (c) maximum er-
rors (MAXE) of atomic forces plotted against the training set size acquired from different
active learning strategies. (d) The MAE, (e) RMSE, and (f) MAXE of total potential
energies plotted against the training set size acquired from different active learning strate-
gies.

the learning curves of force error metrics, those for energy error metrics show significantly
greater fluctuations. We attribute this to the excessively low loss of weight assigned to
energy. We expect that either increasing the loss weight for energy or training energy-only
models could yield learning curves similar to those of force metrics.

LiPS active learning tests: In realistic simulations, chemical systems typically contain
a larger number of atoms than the small molecules in MD17, and many of them are periodic
structures. To evaluate batch active learning strategies in more general and more challeng-
ing contexts, we incorporated two additional datasets with periodic structures. All the
active learning procedures employed remain consistent with the MD17 case. Specifically,
we first employ a dataset for Li6.75P3S11 (LiPS), a crystalline superionic Li conductor with
83 atoms in a 12.38×12.26×12.44× Å triclinic cell.[140] This dataset contains 25,001 MD
frames that are derived from a 50 ps NVT AIMD simulation at 520K with a timestep of
2 ps. From these, 1,000 frames serve as the validation set, 5,000 are designated for inde-
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Figure 3.6: Learning curves for the salicylic acid molecule data from LiPS dataset. (a)
The mean absolute errors (MAE), (b) root-mean-square errors (RMSE), and (c) maxi-
mum errors (MAXE) of atomic forces plotted against the training set size acquired from
different active learning strategies. (d) The MAE, (e) RMSE, and (f) MAXE of total po-
tential energies plotted against the training set size acquired from different active learning
strategies.

pendent testing, and the rest form the pool set for active learning selection. As shown in
Figure 3.6, it is evident that LCMD+GRAP(RP) consistently surpasses other methods in
terms of force MAE and RMSE, with the exception of MaxDiag+QBC(F) in the last iter-
ation. The force MAE However, we point out that the superiority of MaxDiag+QBC(F)
is not because it is a more effective active learning strategy. Instead, its advantage stems
from utilizing an ensemble of five models for predictions. It is widely recognized that em-
ploying an ensemble can yield higher accuracy compared to a single model.[141, 142] We
observed that LCMD+GRAP(RP) showed only a marginal improvement over Random in
comparison to the MD17 cases. Meanwhile, both MaxDiag-AE(E) and MaxDiag-AE(F)
methods lagged notably behind Random. We believe that the limited conformational
space explored by a 50 ps AIMD simulation may be the reason. As a result, a batch size
of 100 appears sufficient for the Random approach to sample a representative number of
informative data points from the pool set. This leads to accuracy levels that are on par
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with LCMD. In contrast, methods based on MaxDiag tend to sample data points over
very short time intervals in this case, which can result in worse learning behaviors. We
expect that batch active learning methods will be more crucial for the pool set with larger
conformational spaces when using larger batch sizes. Additionally, the optimal batch size
may vary depending on the specific chemical system under consideration.

Figure 3.7: Learning curves for the salicylic acid molecule data from LiPO dataset. (a)
The mean absolute errors (MAE), (b) root-mean-square errors (RMSE), and (c) maxi-
mum errors (MAXE) of atomic forces plotted against the training set size acquired from
different active learning strategies. (d) The MAE, (e) RMSE, and (f) MAXE of total po-
tential energies plotted against the training set size acquired from different active learning
strategies.

LiPO active learning tests: We have extended our tests to the more intricate system
of molten glass, Li4P2O7 (LiPO).[66] This system comprises 64 Li, 32 P, and 112 O
atoms within a 10.58×13.96×16.08 cell. The dataset encompasses 25,000 MD frames,
sourced from a 50 ps NVT AIMD simulation at 3000K, using a time step of 2 ps. Despite
LiPO having a greater number of atoms and exhibiting higher levels of disorder compared
to LiPS, we observed a notable similarity in their learning behaviors, both exhibiting
significant gaps between the learning curves of MaxDiag-based methods and Random
with respect to force MAE and RMSE. Consequently, we infer that the effectiveness of



CHAPTER 3. AUTOMATED ACTIVE LEARNING WORKFLOW 45

batch active learning approaches is largely influenced by the conformational space of the
pool set and the selected batch size, rather than the size and complexity of the chemical
systems.

Based on our test results, several key insights emerge. Firstly, for pool sets with limited
conformational space or when large batch sizes are used, we recommend avoiding the use
of MaxDiag-based methods for data point selection. Secondly, the consistently superior
performance of LCMD+GRAP(RP) across various test systems and tasks suggests it is a
reliable choice for all scenarios. Finally, our analyses further reveal that the GRAD(RP)
kernel consistently outperforms LL(RP) during active learning tests, emphasizing the cru-
cial importance of selecting robust features that well represent atomic structures.

3.4 Uncertainty-aware simulation
Although MPNNs have shown outstanding performance in the sampled configurational
space, they tend to perform poorly on out-of-distribution (OOD) data. In this context,
the role of uncertainty estimation (UE) becomes crucial, ensuring the model predictions are
always reliable during active learning iterations or production simulations. Wollschläger
et al.[143] introduced several crucial criteria for the effective application of UE methods:

• Accuracy: Precision in simulations is of utmost importance. An effective UE method
should be able to deliver reliable uncertainty metrics without compromising model
accuracy.

• Speed: Ideally, a UE method should be optimized such that it introduces marginal
computational overhead, especially in some computationally heavy tasks like MD
simulations.

• Confidence–aware: It is crucial that the method can discern and notify when a
particular atomic structure is outside the domain of training.

Ideal UE methods should meet all these criteria to effectively handle the diverse and
intricate tasks presented in atomistic simulations. UE methods can be roughly categorized
into two groups based on how the predictions are made: sampling-based and sampling-free
methods. Sampling-based methods, such as the deep ensemble and Monte Carlo dropout,
rely on the disagreements among multiple predictions to determine uncertainty. A greater
variance in predictions corresponds to increased uncertainty, and vice versa. On the other
hand, sampling-free methods generally utilize a single forward pass to uncertainty through
the analysis of the distributions of learned features. In our workflow, the following UE
methods are available for various atomistic simulations.
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Deep ensemble is considered the gold standard solution for uncertainty estimation.[142]
An ensemble usually comprises diverse models trained with varied architectures or ini-
tializations. When these models generate different predictions, measuring disagreements
such as the standard deviation among them can provide an estimation of uncertainty. In
the context of atomistic simulations, the standard deviation of energies or forces can serve
as an indicator of the uncertainty associated with an atomic structure, as illustrated in
Equation 3.14 and Equation 3.15. Although ensembles often improve Accuracy and fulfill
Confidence–aware,[77, 144] they come at the cost of increased computational complexity,
both in training and inference, thus fail at Speed.

Monte Carlo dropout (MCD) incorporates dropout into deep learning models, enabling
the estimation of model uncertainty during predictions. By performing multiple forward
passes with dropout, we can treat the collection of predictions as samples from a distribu-
tion, which captures the model uncertainty about its prediction for the input. Therefore,
the formulations of energy and force uncertainties align with Equation 3.14 and Equa-
tion 3.15 as seen in the ensemble case. Since MC dropout involves deactivating neurons
within a single model, it necessitates the training of only one model, thereby conserv-
ing substantial effort in the training process. Nevertheless, the random deactivation of
neurons can occasionally undermine the predictive accuracy of the model. Furthermore,
even though training is limited to a single model, inference still requires multiple forward
passes, challenging the Speed criterion.

Mahalanobis distance quantifies the distance between a point and a distribution, taking
into account the correlations of the data set and the scale of the features in different
dimensions. Therefore, this method is very useful for detecting samples that are out of
the distribution of the training data set. Formally, the Mahalanobis distance d(Si, QS)

between a structure Si and a distribution of training set QS with mean µS and covariance
matrix ΣS is defined as:

d(Si, QS) = (Si − µS)
TΣ−1

S (Si − µS) (3.29)

Clearly, the expression is equivalent to Equation 3.21 when a small noise is introduced to
the covariance matrixΣ and the input is normalized to the training dataset. When employ-
ing the GNN base kernel, this approach can be seen as computing kgnn→avg→gp(Si,Si),
which is the diagonal element of kernel matrix kgnn→avg→gp(S,S). Choosing a simple
identity matrix as the covariance matrix translates to computing the Euclidean distance.
We will demonstrate in subsequent tests the importance of the covariance matrix for re-
liable uncertainty estimation by comparing the Mahalanobis and Euclidean distances. It
is worth noting that this method exclusively utilizes the features derived from a singular
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model forward pass and leverages a precomputed covariance matrix to compute Maha-
lanobis distance. As a result, the model accuracy remains consistent with the original
one, with only a marginal computational overhead introduced for evaluating the distance
metrics.

Local Mahalanobis distance is different from Mahalanobis distance by reversing the
order of sum and GP transformation, which can be represented as kgnn→gp→avg(Si,Si).
The corresponding Mahalanobis distance is then given by:

d(Si, Qx) =
∑
xi∈S

(xi − µx)
TΣ−1

x (xi − µx) (3.30)

An immediate advantage of this modification is that the resulting uncertainty scales to the
size of atomic structures. By ensuring that uncertainty is proportional to the structural
size, this method offers a refined uncertainty estimation for structures of varying system
sizes.

We evaluated the accuracy of models on the MD17 dataset and the inference speed of
various UE methods, as presented in Table 3.1 and Table A.2. The ensemble consists of
five individual PaiNN models, each trained using different splits for training and valida-
tion. Both local Mahalanobis and Mahalanobis distance use the original single model for
prediction. For MCD, we tested the results with the dropout ratio 0.01, 0.05, 0.10, and
0.20, here only 0.1 and 0.2 cases are reported in Table 3.1. In all cases, we use randomly
selected 5000 structures for training, 1000 for validation, and 5000 for independent tests.
Among all the UE methods, the ensemble consistently exhibited superior accuracy by
leveraging predictions from various models. However, a notable decline in performance
was observed when MCD was applied to the original model. From these results, we can
find that only MCD fails at the accuracy criterion. Another crucial factor for UE methods
is their speed. Remarkably, Mahalanobis-based UE methods are about five times faster
than both the ensemble and MCD, yet they offer comparable accuracy to the ensemble.
Therefore, This makes them especially suitable for running heavy simulations.

To evaluate the performance of these methods in confidence–aware criteria, we employ
OOD detection based on the area under the receiver operating characteristic (AUC-ROC)
curve. Specifically, we train a model on one molecule in MD17 and examine its ability
to differentiate the remaining molecules using its uncertainty estimates. Ideally, the esti-
mator should produce low uncertainties for the trained molecule and higher ones for the
rest. Such behavior allows users to set a confidence threshold to trust model predictions
when the uncertainty falls below this threshold. For performance evaluation, we calculate
the area under the AUC-ROC curve of the uncertainty scores for both in-distribution (ID)
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Table 3.1: MAE of PaiNN on MD17 with different UE methods (energies in kcal mol−1,
forces in kcal mol−1 Å−1)

Ensemble Mahalanobis MCD (p=0.1) MCD (p=0.2)

aspirin
Energy 0.123 0.129 4.324 9.932
Forces 0.098 0.160 1.385 2.201

azobenzene
Energy 0.137 0.138 5.004 11.470
Forces 0.043 0.063 1.134 1.821

ethanol
Energy 0.051 0.052 0.779 1.498
Forces 0.053 0.088 0.707 1.101

malonaldehyde
Energy 0.074 0.074 0.855 1.749
Forces 0.080 0.134 0.941 1.443

naphthalene
Energy 0.113 0.112 3.354 7.686
Forces 0.032 0.043 1.012 1.603

paracetamol
Energy 0.113 0.118 3.654 8.495
Forces 0.068 0.115 1.232 1.957

salicylic acid
Energy 0.107 0.106 2.938 6.734
Forces 0.055 0.085 1.150 1.812

toluene
Energy 0.092 0.093 2.439 5.554
Forces 0.035 0.050 1.005 1.572

uracil
Energy 0.105 0.103 1.629 3.624
Forces 0.040 0.063 1.039 1.615

and OOD data. A score approaching 1 signifies a better ability to differentiate OOD data
using the specific UE method. Figure 3.8 shows the heatmap of the AUC-ROC score
for each pairwise combination of molecules obtained with different UE methods. The
rows show the molecule that the model is trained on and the off-diagonal columns are
the respective OOD sample. On the diagonal, we expect a score of 0.5 while a score of
1 is optimal on the off-diagonals. We found that the ensemble exhibited perfect separa-
tion between ID and OOD samples. In contrast, another sampling-based method MCD
did not show a satisfactory ability for separating some pairs. Local Mahalanobis dis-
tance has shown comparable performance compared to the ensemble while using much
less computational cost. From Figure 3.8d it is evident that using the local representation
of atomic environments to calculate the covariance matrix can significantly improve the
confidence–aware ability of Mahalanobis distance. The order of GP transformation in
the kernels does matter. We further investigated the influence of using different kernels as
shown in Figure A.9. It is clearly seen that only the GNN kernel exhibited high AUC-ROC
scores on off-diagonals. Although full gradient and last-layer gradient kernels have shown
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exceptional performance in representing atomic structures via t-SNE, they crucially failed
at differentiating the molecules using Mahalanobis distance. (influence of covariance ma-
trix, influence of dropout ratio). If using an identity matrix as the covariance matrix,
this corresponds to Euclidean distance. We demonstrated in Figure A.10 that Euclidean
distance is not able to achieve satisfactory OOD detection performance, without the use
of a covariance matrix.

Our workflow provides all the mentioned UE methods described above, the users can
choose suitable UE methods for their specific applications. For computationally heavy
applications, local Mahalanobis distance is recommended, while for applications that need
more reliable uncertainty estimations, the ensemble is recommended.

Figure 3.8: Heatmap displays the AUC-ROC values from SchNet on MD17. Each row
represents a separate model, trained on the molecule listed to the left, and tested against
all other molecules.



50 3.5. AUTOMATED WORKFLOW

3.5 Automated workflow

Leveraging powerful selection methods and efficient UE techniques, we have established
a comprehensive, automated active learning workflow. It is imperative to note that the
different stages in this workflow necessitate varying resource allocations. For instance,
training and machine learning-driven simulations predominantly utilize GPUs, whereas
the annotation of informative batches often depends on DFT codes optimized for CPUs.
Besides, these tasks are structured in a fixed sequential order. This means that one first
needs to ensure the successful completion of preceding tasks before initiating certain tasks.
Recognizing and adhering to these dependencies is vital to ensure the workflow operates
smoothly and efficiently. To manage job assignments across diverse hardware and inspect
their execution states, we employ myqueue,[123] a cluster job manager, to assign jobs on
different hard devices and to manage these jobs. Furthermore, given the need for specifying
diverse hyperparameters throughout different phases in the workflow, we have adopted
the Hydra[145] configuration framework, which allows the building of hierarchical YAML
configurations. In addition, we have integrated PyTorch Lightning [146] to streamline the
model training process. In the sections that follow, we demonstrate how this workflow can
be adeptly employed to autonomously construct the MLIPs.

Figure 3.9a displays the predefined hierarchical YAML configurations in the code. We
provide a suite of default configurations for various components within the workflow, fa-
cilitating a vast number of combinations and extensive experimental runs via the command
line interface (CLI). These configuration files are organized in an object-oriented manner,
with each subdirectory containing files for different applications. files in an object-oriented
way. Each subdirectory contains some choices for different applications. Situated in the
top-level directory within the configs folder are four principal YAML files: train.yaml,
simulate.yaml, select.yaml, and label.yaml, each corresponding to a respective phase
in the active learning workflow. They define default hyperparameters, but users have the
flexibility to adjust them via the CLI as needed. For instance, to train a model, one might
use:
gnntrain model/representation=nequip data/datapath=water.traj

Additionally, users can craft their configuration files outside the default configs direc-
tory. By specifying cfg=custom.yaml, where custom.yaml is the custom configuration,
one can easily employ it for desired experiments. Integrating the configuration files for
each separate job leads to the overall configuration file workflow.yaml, which encapsu-
lates hyperparameters for all phases in the workflow. Figure 3.9b showcases a user-defined
configuration tailored for running active learning iterations. Parameters from this file will
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1 |-- data
2 | |-- custom.yaml
3 |-- labelling
4 | |-- custom.yaml
5 | |-- gpaw.yaml
6 | |-- qe.yaml
7 | |-- vasp.yaml
8 |-- model
9 | |-- representation

10 | | |-- mace.yaml
11 | | |-- nequip.yaml
12 | | |-- painn.yaml
13 | |-- nnp.yaml
14 |-- selection
15 | |-- default_selection.yaml
16 |-- simulation
17 | |-- custom.yaml
18 | |-- mc.yaml
19 | |-- md.yaml
20 | |-- neb.yaml
21 |-- task
22 | |-- optimizer
23 | | |-- adam.yaml
24 | | |-- adam_amsgrad.yaml
25 | |-- scheduler
26 | | |-- exponential.yaml
27 | | |-- reduce_on_plateau.yaml
28 | |-- default_task.yaml
29 |-- trainer
30 | |-- default_trainer.yaml
31 |-- __init__.py
32 |-- label.yaml
33 |-- select.yaml
34 |-- simulate.yaml
35 |-- train.yaml
36 |-- workflow.yaml
37

38

39

40

41

42

43

44

(a)

1 defaults:
2 - model/representation: painn
3 - task/optimizer: adam
4 - task/scheduler: reduce_on_plateau
5 - simulation: md
6 - labelling: vasp
7

8 data:
9 datapath: ./water_dft.traj

10 cutoff: 5.0
11 batch_size: 16
12 num_train: 2000
13 num_val: 1000
14 atomic_energies: auto
15 atomwise_normalization: True
16

17 model:
18 representation:
19 num_interactions: 3
20 num_features: 64
21

22 task:
23 scheduler_monitor: val_loss
24 optimizer:
25 lr: 0.005
26 scheduler:
27 factor: 0.5
28

29 simulation:
30 uncertainty: local_mahalanobis
31 simulator: md
32 params:
33 load_traj: ./water_dft.traj
34 max_steps: 1000000
35

36 selection:
37 kernel: full-g
38 selection: lcmd_greedy
39 n_random_features: 500
40 batch_size: 200
41

42 labelling:
43 dft_code: vasp
44 num_jobs: 4

(b)

Figure 3.9: Main figure caption for code listings
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override the defaults set in workflow.yaml. This design empowers users to effortlessly
manage and customize their tasks, facilitating the construction of diverse MLIPs. For a
more in-depth exploration and a deeper understanding of our configuration system and its
functionalities, readers are encouraged to visit our codebase. This resource offers compre-
hensive documentation and examples, ensuring clarity and ease of use for both newcomers
and experienced users.

3.6 Conclusions
In this study, we tackled the existing challenges in the development and application of
machine learning interatomic potentials for atomistic simulations. Although the power
of MLIPs has been previously verified, challenges such as efficient data collection, reli-
able tools for model confidence, and intricate procedures persisted. At the forefront of
our contributions is the introduction of CURATOR, a comprehensive workflow that seam-
lessly integrates advanced active learning algorithms and reliable uncertainty estimation
techniques for improving data acquisition efficiency and ensuring reliable production sim-
ulations.

The workflow encompasses state-of-the-art graph neural network models for accurate
atomistic modelling. We re-implemented the gradient calculation and significantly ac-
celerated the speed for stress calculation. We emphasized the importance of batch active
learning in the collection of data sets. We show that our incorporation of batch active
learning strategies effectively enables much-improved data acquisition efficiency. When
evaluated on multiple benchmark datasets, our specific batch active learning strategies
consistently outperformed others across various systems. This highlights their poten-
tial in significantly minimizing human efforts and computational expenses in generating
MLIPs. To ensure the reliable application of trained models, we incorporated several
uncertainty estimation methods into the workflow and compared their performance in
terms of speed, accuracy, and confidence-awareness. The test results demonstrated that
the Mahalanobis distance can serve as a fast and reliable UE method, with only fraction
of the cost of ensembles while demonstrated comparable performance in accuracy and
confidence-awareness.

The workflow has been made fully autonomous by combining the previously mentioned
elements. By merging the Hydra-style configuration framework, Pytorch Lightning, and
the robust task scheduler myqueue, the system is both functional and user-friendly, catering
to both beginners and experts.



CHAPTER 4
Oxygen reduction at confined
Au(100)-water interface

This chapter is based on the case study in paper II – ”Neural network potentials for
accelerated metadynamics of oxygen reduction kinetics at Au–water interfaces”. The paper
is included in this thesis and corresponding supplementary information can be found in
Appendix B.

4.1 Introduction
Over the past several decades, density functional theory (DFT) calculations have been
extensively used for developing novel electrocatalysts towards oxygen reduction reaction
(ORR) by taking advantage of well-developed theoretical methods[8, 9, 10, 7, 3] (e.g.,
free energy diagrams, volcano plots, and d-band theory) for predicting catalytic activities.
Nevertheless, most of these calculations oversimplify the operating conditions of catalysts
by either modelling the liquid waters at the electrolyte-electrode interface as static water
layers,[11, 12, 13, 14] implicitly representing them via dielectric continuum models,[15, 16,
17] or even absolutely ignoring the effect of the solvents.[19, 20, 21, 22] These limitations
may lead to erroneous evaluation of activity trends of catalysts as compared to exper-
iments, for example, the oxygen reduction reaction on gold in alkaline electrolytes.[26,
27] Including solvent molecules for electrolyte-electrode interface simulations and investi-
gating their dynamical effects could offer us a better understanding towards the reaction
mechanisms of ORR and may resolve the conflicts between theoretical calculations and
experiments.

While ab initio molecular dynamics (AIMD) is capable of capturing the dynamics of liquid
water, it is prohibitively expensive for large length-scale and long time-scale simulations.
For instance, the time-averaged metrics (e.g., energy and temperature) of AIMD simu-
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lations can differ significantly if started from different initial configurations, while these
discrepancies could be greatly mitigated if the model system is equilibrated and sampled
from long enough trajectories.[37, 147, 40] The prohibitive computational cost severely
limits the equilibration and sampling time scales of AIMD to only a few ps, which may
significantly impair the reliability of such studies.[37, 148, 149, 150, 151, 152, 36, 35]

Recently, advances in machine learning are making great impacts in aiding the design and
discovery of transitional metal based catalysts.[153, 39] By learning from data, machine
learning tools can make fast predictions to find target catalysts and provide valuable in-
sights into the nature of the reaction, which enable high-throughput screening of catalysts
from a broad chemical space and automated catalyst design.[154, 155, 156] In particular,
neural network potentials (NNP) have shown great promise at fitting the potential energy
surface (PES) of reactive model systems by training on reference configurations that well
describe the representative atomic environments.[157, 158, 159, 160] This approach could
speed up MD simulations by several orders of magnitude whilst retaining the accuracy
comparable to AIMD, which enables us to considerably extend the time scale and length
scale of MD simulations without compromising accuracy. Initially proposed architectures
of neural network potentials learned the force field by leveraging handcrafted features
based on distance and angle information to capture the characteristics of local atomic
environments.[49, 50, 161] Behler-Parrinello neural network potential is the first example
in which the Cartesian coordinates of atoms are transformed to rotational and transla-
tional invariant atomic-centered symmetry functions.[49, 50] Recent advances in graph
neural networks (GNNs) for molecule graphs have made it possible to learn representative
features from the atomic structure via a graph message-passing scheme.[62, 58, 110, 66,
65] State-of-the-art GNN models leverage rotation equivariant representation of node fea-
tures (i.e., features of atomic environments) to provide more accurate force predictions,
which can be essential in MD simulations.[77, 66, 65] In spite of numerous novel machine
learning methods for fitting PES and MD simulations driven by NNPs,[43, 40, 41, 162,
147, 163] there are few studies on simulating nonequilibrium dynamics and reactions. We
have yet to find out any study performing sampling of rare events that govern chemical
reactions with NNPs.[35, 164, 165] Taking ORR as an example, although NNPs can sig-
nificantly accelerate MD simulations, the time scale of reactive simulation of ORR is still
inaccessible, not to mention the complex ambient conditions of the catalysts. Due to the
rapid development of enhanced sampling techniques like metadynamics[113, 166] (MetaD)
high accuracy sampling of PES has been possible for such rare events. We envision that
combining enhanced sampling methods together with high-fidelity NNPs, can enable full
simulation of slow chemical reactions in atomic scale within affordable computational cost.
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In this chapter, we present the full atomic simulation of ORR at Au(100)-water interface
done using metadynamics simulations accelerated by equivariant graph neural network po-
tentials.[110] The gold electrode has been extensively studied as the ORR electrocatalyst,
while its exceptional activity, especially in alkaline media, is still not well-explained.[26, 27,
28, 29] This case could well demonstrate the power of our proposed simulation paradigm
towards modeling of rare chemical reactions at the solid-liquid interfaces. Compared to
non-reactive MD performed with NNPs, a major challenge of simulating rare events like
ORR is to ensure that the machine learning model encompasses the vast configurational
space far away from equilibrium. This requires adaptive sampling of representative refer-
ence structures from MD and MetaD simulations, particularly transition states that are
rarely visited. In addition, quantitatively evaluating the reliability of NNPs for describ-
ing PES in the configurational space of interest is also indispensable. Here we adopt an
active learning approach based on the CUR matrix decomposition[167, 168] to sample rep-
resentative reference structures from MD and MetaD simulations. This method enables
us to representatively sample the vast configurational spaces of ORR at the solid-liquid
interface with minimal human intervention and significantly reduced computational cost.
Our MD and MetaD simulations are uncertainty aware, demonstrating robust and reliable
modeling of full atomic simulation of ORR with NNPs.

4.2 Computational methodology

4.2.1 Active learning framework

Our neural network potentials are constructed based on an active learning framework uti-
lizing CUR decomposition based selective sampling as demonstrated in Figure 4.1. First,
an initial dataset was generated by selectively sampling reference structures from several
AIMD trajectories of Au(100)-water interfaces. Multiple interface structures with differ-
ent numbers of hydroxyl or oxygen molecules are considered to ensure the diversity and
versatility of the training dataset and to further study the impact of adsorbates on the
dynamics of solvents. The initial AIMD trajectories contain several hundreds of thousands
of configurations. Using all of them would make the training of NNPs very slow. Many
structures are similar, thus models do not capture new correlations when all of those are
used simultaneously. Therefore, it is crucial to sample only those structures that are rep-
resentative and informative from these trajectories. We first select structures from AIMD
trajectories one in every 50 MD steps, reducing the number of candidate configurations
to several tens of thousands. Then the CUR matrix decomposition method[168, 167]
is employed to further refine the training dataset without losing too much information.
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Figure 4.1: Active learning procedures used to train the neural network potentials

Given a N ×M data matrix X with its rows corresponding to N atoms and its columns
corresponding to M fingerprints, the objective of CUR is to minimize the information loss
after ruling out some rows and columns, meanwhile minimizing the number of rows and
columns to be selected. We also add an extra term in the objective function to maxi-
mize the euclidean distance between different atomic environments to ensure the diversity
of sampled structures. In this process, the importance of each row and column in the
data matrix can be evaluated, and the representative configurations and fingerprints can
be jointly sampled. Here the fingerprints of atoms in candidate structures are described
by Behler-Parrinello symmetry functions,[49, 50] which have been extensively used for
fitting PES for solid-liquid interface systems.[43, 40, 41, 162, 147, 163] CUR matrix de-
composition also provides an efficient way for automatically selecting symmetry function
parameters that are typically non-trivial.

An ensemble of neural network potentials (NNP) was then trained on the initial dataset
with 5000 reference structures after CUR selection. In order to extend their capability of
exploring larger configurational space, the trained NNPs are updated adaptively by the
following steps: i) propagating MD trajectories with trained NNP ensemble as energy/-
force calculator; ii) selecting representative reference structures from MD trajectories by
using CUR decomposition; iii) calculating these selected new data points with DFT; iv) re-
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training NNPs with the expanded training dataset. Instead of propagating MD using only
one NNP, we choose to combine all the trained NNPs together for the prediction of energy
and forces. This strategy not only improves the predictive accuracy of our model but also
provides a practical way to quantify if the model is still confident enough in the configura-
tional space of interest.The quantification is achieved by evaluating the energy uncertainty
and forces uncertainty for every step via calculating the variance of NNPs during the MD
simulation. Figure B.1 compares the calculated uncertainty and true prediction error,
indicating that uncertainty is an excellent indicator for true model error. Based on query-
by-committee method, which has been widely used in active learning,[169, 77, 170] the
configurations with relatively large uncertainty are collected to reduce the number of can-
didate configurations. Subsequently, the obtained structures are further sub-sampled by
CUR decomposition for DFT evaluation. By adding these carefully chosen new data in
the training set, we constantly improve the model prediction for new configurational space
visited by MD simulations. Combining this strategy and CUR matrix decomposition sig-
nificantly reduces the number of candidate structures and ensure the diversity of structures
in a sampled batch. The simulations are stopped if the uncertainties are too large or too
many structures with large uncertainties are collected. The iterative training of the NNP
ensemble stops once all the MD simulations can be propagated to more than tmin steps,
where tmin is selected as 5 ns to ensure the model systems are properly equilibrated and
all the dynamical events are fully captured.[43, 40, 41] To further investigate the ORR
kinetics at the gold-water interface, the iterative training procedures are repeated in the
case of MetaD simulations. Notably, as the transition states are rarely visited during
MetaD runs, it is critical to include enough such configurations into our training dataset
and validate our MetaD simulations via uncertainty quantification.

4.2.2 Training details

The NNP ensemble we used for production consists of five neural network potentials with
different architectures of polarizable atom interaction neural network (PaiNN) model.[110]
In this model, all the atoms in a given configuration are treated as nodes in a graph and
the information of their connections will be collected and processed by a message function,
which will then be passed to an update function for updating node features. After several
message passing iterations, the node features will be used as the input of a multilayer
perceptron to get its atomic energy or other scalar properties. By summing up the atomic
energies of a given structure, we can get its potential energy and forces by calculating the
negative derivatives of energy to atomic coordinates. The model can automatically learn
the relationship between chemical properties and the positions of atoms by optimizing
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several hundreds of thousands of model parameters in message and update layers. In
contrast, only a few hyperparameters need to be selected (the size of node features, the
number of message passing layers, loss ratio of energy and forces, and the cutoff radius for
collecting distance information of atoms, etc.), avoiding the need to be manually selected
and test of handcrafted features like Behler-Parrinello symmetry functions.[49, 50] Besides,
the model uses both scalar and vector node features to realize rotational equivariance of
directional information (e.g., forces) in the graph, providing better prediction of forces.

Table 4.1: A summary of test error metrics of neural network potentials

Model Node size Layers
Energy error (meV/atom) Forces error (meV/Å)

MAE RMSE l2 MAE l2 RMSE MAE RMSE

NNP1 96 3 0.6 1.3 32.8 46.4 16.3 26.8
NNP2 112 3 0.5 1.3 31.3 45.0 15.5 26.0
NNP3 128 3 0.8 1.4 28.9 43.7 14.3 25.2
NNP4 128 4 0.4 1.2 25.4 39.3 12.6 22.7
NNP5 144 3 0.5 1.2 27.0 40.8 13.4 23.5
Ensemble - - 0.7 1.4 25.3 38.8 12.6 22.4

Table 4.1 reports the architectures of five models constituting our NNP ensemble and
their error metrics after training on the same dataset for up to 1 000 000 steps. These
models use different node feature sizes and the number of message-passing layers to induce
model diversity, while their cutoff radius are all set to 5 Å. Both the model training and
following production MD (MetaD) simulations are conducted on an NVIDIA GeForce RTX
3090 GPU with float32 precision. The weight parameters in these models are randomly
initialized and then optimized on the same data split using stochastic gradient descent to
minimize the mean square error (MSE) loss, which can be expressed as:
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2 +

1− λ

NM

N∑
i=1

M∑
j=1

3∑
k=1

(F jk
i − ˆ

F jk
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where N is the number of configurations, M is the number of atoms in a configuration,
and λ is force weight that controls the relative importance between energy and force loss.
Here the force weight is set to 0.99 as our tests show that using a relatively large force
weight can well improve the forces prediction while only slightly undermines the precision
of energy prediction. Our model parameters are trained by the Adam optimizer[171] as
implemented in PyTorch[172] with an initial learning rate of 0.0001, the default parameters
β1=0.9, β2=0.999, and the batch size of 16. An exponential decay learning rate scheduler
with the coefficient of 0.96 is used to adjust learning rate for every 100 000 learning
steps. The dataset is split into a training set (90%) and a validation set (10%), where
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the validation set is used for early stopping when the error of forces is small enough.
Note that several different error metrics are used to evaluate the performance of trained
model, including mean absolute error (MAE) and root mean squared error (RMSE) for
both energy and force predictions. These error metrics can be expressed as follows:
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4.2.3 AIMD and single point DFT calculations

The Au(100)-water interface is modelled as 30 H2O molecules on top of a (3×3) tetragonal
Au(100) surface with four atomic layers, which will be denoted as Au(100)-30H2O here-
after. A vacuum layer larger than 15 Å is perpendicularly added into the model to elimi-
nate the spurious interaction between periodic images. In order to simulate the interface
with ORR intermediates, we also consider structures with one and two hydroxyls by remov-
ing the hydrogen atoms from water molecules near the slab, and structure with one oxygen
molecule on top of Au(100) slab. These structures are denoted as Au(100)-1OH/29H2O,
Au(100)-2OH/28H2O, and Au(100)-1O2/30H2O, respectively. Constant temperature MD
simulations are then performed in VASP[94, 95, 96, 97] by using these initial configu-
rations with the timestep of 0.5 fs and the temperature is kept around 350K with the
Nosé–Hoover thermostat.[106] The bottom two layers are kept fixed during MD run for
all model systems. 50 ps, 15 ps, 15 ps, and 15 ps MD simulations are conducted for
Au(100)-30H2O, Au(100)-1OH/29H2O, Au(100)-2OH/28H2O, and Au(100)-1O2/30H2O,
respectively. The reason for running shorter MD simulations on the model systems with
adsorbates is that their most local structures are similar to Au(100)-30H2O system. Den-
sity functional calculations are used to calculate the potential energy and the forces for
propagating AIMD and labeling representative configurations sampled by active learning.
We employ an energy cutoff of 350 eV for plane-wave basis expansion and a 2 × 2 × 1

Monkhorst-Pack k-grid for Brillouin zone sampling.[173] The exchange-correlation effects
are approximated by PBE functional combined with the D3 Van der Waals correction.[90,
99]
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4.2.4 Production MD simulations
The production MD simulations driven by the NNP ensemble have been performed us-
ing the MD engine of Atomic Simulation Environment (ASE) python library.[98] The
simulation box in AIMD is too small to accommodate more adsorbates and to simu-
late the full reaction. Furthermore, previous studies also demonstrated that notable
noise in the structural properties of the model systems could be observed when using
small cell sizes.[43, 174] Considering both effects and the increased computational cost
for MD and labelling, we constructed a larger model with 59 H2O molecules on top of
a (4 × 4) tetragonal Au(100) surface with four atomic layers, on which more adsorbates
can be accommodated. With the presence of one to six *OH, corresponding hydrogen
atoms are removed at the interface, producing the interface structures that could be
denoted as Au(100)-1OH/58H2O, Au(100)-2OH/57H2O, Au(100)-3OH/56H2O, Au(100)-
4OH/55H2O, Au(100)-5OH/54H2O, and Au(100)-6OH/53H2O, respectively. In order to
investigate the kinetics of ORR, the initial state structure Au(100)-1O2/57H2O is also
built by removing two H2O molecules and placing a O2 molecule on top of Au(100). The
momenta of model systems is initiated by a Maxwell–Boltzmann distribution with the
temperature set to 350 K. The MD simulations are propagated for 5 ns by Langevin dy-
namics with the target temperature of 350 K, the timestep of 0.25 fs, and the friction
coefficient of 0.02. It is noteworthy that a smaller time step is selected for production
as it can help the MD simulations reach longer time scale with smaller uncertainty. The
uncertainties of frames in MD simulations are quantified as the variance and standard
deviation (SD) of model outputs:
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where N is the number of models in the ensemble, M is the number of atoms in a frame,
Ē and F̄ are the average predicted energy and force, respectively. In order to ensure the
reliability of MD results, the simulations will stop if Fsd is larger than 0.5 eV/Å or more
than 2000 structures with Fsd larger than 0.05 ev/Å are collected.

4.2.5 Metadynamics simulations
Following the method in Ref.[37], we calculated the formation energy of *OH as the in-
ternal energy of the Au(100)-nOHOH/(59-nOH)H2O interface structure, plus the internal
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energy of gas phase nOH/2 H2 molecules, minus the internal energy of the Au(100)-59H2O
interface structure.

∆E =⟨EAu(100)−nOHOH/(59−nOH)H2O⟩t +
nOH
2

(EH2 +
3

2
kBT )

− ⟨EAu(100)−59H2O⟩t
(4.9)

The internal energy of interface structures are calculated as the time averaged potential
energy plus kinetic energy. And the internal energy of H2 gas molecule is calculated as
the potential energy plus 3/2kBT because their center-of-mass motions are not included
in the MD simulations. Likewise, the adsorption energy of O2 are calculated as follows.
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In this chapter, all the enhanced sampling simulations are performed with the well-
tempered version of metadynamics.[175] The production metadynamics simulations are
propagated by Langevin dynamics for 2.5 ns in ASE. The calculation of collective vari-
ables and bias potential of metadynamics is achieved by PLUMED[121, 122, 117] which
is interfaced to ASE. To construct the path CVs as described in the main text, the
Au(100)− 1O2/57H2O and Au(100)− 4OH/55H2O interface structures are selected as
two reference structures. And the coordination numbers CO2−O and CO2−H are used to
define the configurational space of the path. The corresponding equations and parameters
for calculating CO2−O and CO2−H are shown in Table 4.2

Table 4.2: Parameters for calculating coordination numbers of O2

CV Definition Parameters
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∑
i∈O2

1−
(
ri,O − d0

r0

)n

1−
(
ri,O − d0

r0

)m
ri,O: Oi and O distance

r0 = 1.8, d0 = 0, n = 6,m = 12

CO2−H CO2−H =
∑
i∈O2

1−
(
ri,H − d0

r0

)n

1−
(
ri,H − d0

r0

)m
ri,H : Oi and H distance

r0 = 1.5, d0 = 0, n = 8,m = 16

With the defined path, the progress along the path s and the distance from the path z
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can be computed as:
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where N is the number of reference structures, X is the structure described by CO2−O

and CO2−H. The parameter λ is selected as 0.25. The Gaussians adopted have an initial
height of 0.1 eV and the width of 0.05 and 0.1 for s and d collective variables, respectively.
The metadynamics are carried out at 350 K, employing a bias factor of 5 and desposition
rate of 125 fs (every 500 steps). For every metadynamics run (except for O2 migration as
O2 is metastable in bulk water), the system is first equilibrated for 0.5 ns.

4.3 Results and discussions

4.3.1 Validation of models

Following the active learning framework, we have obtained a final dataset with 18731
configurations. Figure B.2 shows the learning curves of our NNPs trained on the final
dataset, and Table B.2 reports the detailed error metrics of best models on the validation
set. It is remarkable that our NNPs exhibit exceptional accuracy towards the prediction
of energy and forces, where the mean absolute errors (MAEs) of energy range between
0.4 and 0.8 meV/atom, and the MAEs of forces between 12.6 and 16.3 meV/Å. To illus-
trate the performance of our models on different interface structures, we also report the
composition of the final dataset and corresponding error metrics for different structures
as shown in Table B.3. The precision of force predictions for each species in our research
system is also shown in Figure 4.2a, indicating a close numerical agreement with DFT
results. All these results suggested that the trained NNPs can provide accurate energy
and force predictions for different structures across the ORR configurational space in the
production MD simulations. Table B.4 exhibits the comparison of model performance in
terms of energy and force predictions between our model and other studies for complex
systems, illustrating that our model outperforms most of these studies, especially force
predictions.[111, 176, 110, 66, 177, 178] The role of accurate force prediction is empha-
sized in our study since that is critical in MD simulations. The performance of the trained
NNP ensemble is further validated in terms of its ability to reproduce structural proper-
ties of AIMD trajectories. Figure 4.2b shows the match of radial distribution functions
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Figure 4.2: (a-c) Comparison between forces derived from DFT calculations and NNPs
predicted forces for H, O, and Au. The RMSE of forces for each element are denoted in-
side. (d-f) Comparison between RDFs of obtained from AIMD simulations and NNPs MD
simulations on Au(100)-water interface structure. The red points denote RDFs generated
by AIMD calculation and the grey solid line denotes RDFs generated by NNPs calculation.

(RDFs) of all involved species in the case of Au(100)-water interface (without hydroxyls or
oxygen molecules). Apparently, the RDFs generated by NNP MD simulations (solid black
line) exhibit an excellent agreement with AIMD results (red points), indicating that the
NNP ensemble captures the structural arrangement of the gold-water interface well. Apart
from validating NNPs with existing dataset, a more important assessment for the quality
of NNPs is their application domain, which can be confirmed by uncertainty measure-
ments. Concretely, the MD runs should be ergodic to ensure the reliability of information
derived from them, which indicates that all energetically relevant states must be sampled
and within the manifold accessible by NNPs. For all MD simulations in this study, we
not only sample the properties of interest along long-time scale MD simulations but also
present the uncertainties of all steps by calculating the variance of NNPs. The low forces
uncertainty of MD simulations for different interface structures verify the robustness and
reliability of the trained NNP ensemble in the given configurational space (the energy and
uncertainty profiles in Figure B.3 to Figure B.10). The agreement of the density profiles
of water between AIMD and NNPs MD with the same box size (3× 3) is reported in
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Figure B.11. It can be observed that the density profile of water in NNPs MD simulation
is more smooth than that in AIMD, and some disagreements are exhibited in the bulk
water area. We ascribe the disagreements and the fluctuation of AIMD density profiles to
the inadequate equilibration of AIMD simulations. Moreover, the average energy profiles
of Au(100)-water with four *OH that started from different points are well converged as
shown in Figure B.12, indicating that our MD simulations are ergodic and the time scale
is long enough.

Figure 4.3: (a) Distribution of reference structures in the configurational space described
by path collective variables s and z, where s represents the progress along the path between
reactants and products and z represents the distance from the path. (b) Evolution of s
and forces standard deviation (SD) along 2.5 ns MetaD simulation.

Except for the validation of model accuracy and reliability, we also evaluated the overall
computational efficiency of the proposed scheme in terms of training the initial model,
model retraining, CUR matrix decomposition, production MD simulations for 5 ns and
DFT labelling as demonstrated in Figure B.13. For the systems in this study, the required
computational time for 1000 AIMD steps is approximately 650 CPU hours, corresponding
to 1543.8 hours in total for generating the initial AIMD dataset if using 80 CPU cores for
each job. Training on the initial dataset takes about 40 hours, while the cost of retraining
the new models can be substantially reduced by loading pretrained model parameters.
The MD simulation driven by NNPs accounts for the highest computational cost in an
active learning iteration, which takes approximately 7 days to run 5 ns simulations on
an NVIDIA RTX3090 GPU. In comparison, AIMD needs more than 7 years to run 5
ns using 80 CPU cores, being about 3-400 times slower than NNP MD. To train the
NNPs for a system to run more than 5 ns MD, 5 to 10 iterations are usually needed,
which corresponds to 1000-2000 labelled structures as indicated in Table B.3. It is worth
noting that the ASE MD engine used in this study is not specialized for GPU computing,
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resulting in high overheads of data transfer between GPU and CPU. It can be expected
that the computational efficiency of NNP MD can be further improved in the future by
using GPU-specialized MD code.

The validation of NNPs via application in MetaD simulations is crucial as the configu-
rational space of the full reactive process can be huge while the transitional states are
rarely visited. As shown in Figure 4.3, our training data points are evenly distributed in
the configurational space described by path collective variables,[116], and the force uncer-
tainties along 2.5 ns MetaD simulations are all considerably small (all smaller than 0.05
eV/Å). Both metrics build confidence that the trained NNPs are reliable to capture the
characteristics of all energetically relevant states, especially transitional states, of ORR.
Furthermore, the trained models have shown excellent transferability when using them
for the inference of Au(110)-water and Au(111)-water interfacial systems as demonstrated
in Figure B.1a. Despite missing structural information for the two similar systems, the
trained models still well predicted the energy and forces with both low errors and uncer-
tainties for all Au(110)-water and Au(111)-water interfacial structures, which indicates
that the proposed scheme and trained models can easily generalize to systems across a
wide range of metals and their different facets.

4.3.2 Full metadynamics simulation of ORR

After systematic validations, the trained NNPs are used to study both adsorption energet-
ics and kinetics of ORR at the gold-water interface. It is well-known that ORR on Au(100)
in alkaline electrolytes proceeds via the complete four-electron transfer mechanism, while
the partial two-electron transfer mechanism dominates on other Au facets, such as Au(111)
and Au(110).[28, 29, 26] Despite the use of new techniques and persistent efforts devoted
by researchers, the reason why ORR activity is exceptional and facet-dependent on gold
remains elusive. There are several assumptions that may provide a clear answer to this
question, including the outer-sphere mechanism of ORR,[26, 179, 180] and the role of
preadsorbed species and solvents.[181, 182] All these assumptions call for a full atomic
simulation that elaborately considers the ambient conditions of Au(100) and models the
reaction without any simplification.

The first step of ORR on Au(100) is the O2 activation, which is also considered a key step
that determines the activity of catalysts that weakly interact with adsorbates. According
to whether O2 closely adsorbs on Au(100), the reaction can be initiated via the inner-sphere
mechanism in which the slab directly transfers electrons to closely adsorbed O2, or the
outer-sphere mechanism in which ORR occurs away from the slab by several solvent layers.
The adsorption energy of *O2 molecule and *OH with different coverage is summarized
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Figure 4.4: (a) Free energy landscape of O2 migration from bulk water to Au(100)
surface. (b) Free energy landscape of *O2 reduction to *OH described by path collective
variables. (c) Snapshots for O2 in bulk water, initial state, transitional state, and final
state.

in Table B.5, suggesting weak interaction between these species and the Au(100) slab. As
demonstrated in Figure B.9, our 5 ns MD simulations at Au(100)-water interface with
one O2 molecule have shown that the O2 molecule will be in close contact with Au(100)
surface, yielding a density peak at 2.1 Å. We further carried out a MetaD simulation that
models the migration of O2 from bulk water to Au(100) surface as shown in Figure 4.4a.
It is found that there is no stable local minima for O2 saturating in bulk water, and the
migration barrier can be easily overcome by the thermal fluctuation of the model system.
As shown in Figure B.14, a simple MD simulation modeling the movements of O2 in the
bulk water part of the interface also proves this conclusion. After 350 ps simulations, the
O2 molecule finally moved from bulk water to Au(100) surface. Based on these results, we
model the reaction process with O2 directly adsorbed on Au(100) and believed that the
bond breaking of O2 molecule could be the rate-determining step of ORR on Au(100).

The full atomic simulation of ORR is then conducted to investigate the bond-breaking
process in O2 molecule and the formation of hydroxyls by using metadynamics simulations.
The reaction coordinates of ORR are described by path collective variables (CVs)[116] with
the initial state (Au(100)-1O2/57H2O) and final state (Au(100)-4OH/55H2O) selected as
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two reference structures. The distance to reference structures is quantified by the number
of oxygen atoms (CO2−O) and hydrogen atoms (CO2−H) around the O2 molecule. As
summarized in Table B.6, these two descriptors can well capture and differentiate the
structural characteristics of different possible intermediate states of ORR, including *O2,
*OOH, *H2O2, *O, and *OH. The well-designed CVs enable us to automatically search the
reaction path without using any prior knowledge about the reaction mechanism. In this
approach, instead of modeling multiple possible reaction pathways and verifying which
one is energetically most favorable, we only need to incrementally extend the explored
PES (with our NNPs) from equilibrium states to non-equilibrium transitional states by
using active learning. Furthermore, this strategy can be easily generalized to simulate
more complex model systems and chemical reactions.

Figure 4.4b shows the obtained free energy landscape of ORR as a function of path CVs,
where s is the progress along the reference path, and z is the distance to the reference
path. The landscape is comprised of two basins which correspond to the initial state
and final state of ORR. Figure 4.3b also shows the time evolution of the s collective
variable. It can be seen that the first basin in the landscape has been completely filled after
approximately 100 ps, which corresponds to the transition from O2 to hydroxyls. Filling
the second basin, which can be regarded as the transition from hydroxyls to O2, becomes
much more difficult than the first one with the employed CVs in this study. However, it
should be pointed out that the depth of the first basin is enough to evaluate the activation
energy of bond breaking in O2. The energy barrier of the transition from O2 to hydroxyls
is estimated to be 0.3 eV, which is in good agreement with experimental findings that
Au(100) displays high ORR activity. It is noteworthy that the simulation box in this
study is small in comparison with the realistic interface structure. The limited cell size
can result in slightly higher formation energies of hydroxyl as demonstrated in Table B.5,
which can be ascribed to the stronger repulsion between hydroxyl in smaller boxes and
the possible lateral correlation of solvation shells. Besides, we also expect that the bond
breaking of the O2 molecule can be more difficult because of the easier recombination of
individual oxygen atoms. Both effects can make the ORR in small cell to be less facile,
while further supporting our conclusion that ORR is facile on Au(100) even modeled with
a limited number of water molecules. The snapshots for O2 in bulk water, initial state,
transition state, and final state are displayed in Figure 4.4c. At first, the O2 molecule is
partially protonated by neighboring water molecules to *OOH, suggesting the associative
reaction pathway proposed by Nørskov et al.[8]. However, the subsequent formation of
*O is not observed in the overall reaction as the remaining oxygen atom is immediately
protonated by reacting with water. Therefore, the reaction pathway observed from our
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simulations can be summarized as follows:

∗O2 +H2O → ∗OOH+ ∗OH
∗OOH+H2O → 3∗OH

The MetaD simulation highlights the role of water molecules as a reactant of ORR, suggest-
ing that the explicit modeling of solvents is indispensable in theoretical electrocatalysis.

4.4 Conclusions
In summary, the reactive process of ORR is investigated by MetaD simulations that are
significantly accelerated by high fidelity NNPs in this study. By using an active learn-
ing strategy underpinned by CUR matrix decomposition, we obtained an NNP ensemble
that exhibits exceptional performance and reliability for the prediction of structural prop-
erties and forces in the configurational space of Au(100)-water interface. By leveraging
well-designed path collective variables, the ORR can be fully and automatically simulated
without the need to elaborately consider multiple reaction pathways. Our MetaD simu-
lations suggest that ORR proceeds in the associative reaction pathway, while the *OOH
reaction intermediate is directly reduced to two *OH with the participation of neighbor-
ing water molecules rather than dissociating into *OH and *O. The low energy barrier of
ORR predicted in this study well explains the outstanding experimental ORR activity.
The longer time-scale simulations enabled by NNPs can give us deeper insight into the
nature of chemical reactions, such as the facet-dependent ORR on different Au facets.
Besides, the effect of cations on the ORR activity of gold is also a meaningful extension of
this work. In perspective, the full atomic simulation conducted here can be conveniently
extended to other model systems and become a valuable tool for investigating complex
chemical reactions in a straightforward manner.



CHAPTER 5
Facet-dependent ORR on Au
surfaces

This chapter is based on the case study in paper III – ”A comprehensive study of facet-
dependent oxygen reduction dynamics on gold surfaces using metadynamics and graph
neural networks”. The paper is also included in this thesis together with the corresponding
supplementary information in Appendix C.

5.1 Introduction
The electrochemical reduction of oxygen is a crucial process in various energy conversion
and storage devices, including fuel cells and metal-air batteries.[7, 4, 3] The efficiency
and selectivity of this reaction are predominantly governed by the nature of the electrode
material. Recognizing this, there is a consistent pursuit of efficient and cost-effective cata-
lysts towards oxygen reduction reaction (ORR) in academia and industry globally. Gold,
traditionally viewed as a noble and therefore catalytically inert metal, has undergone a
renaissance in the realm of catalysis over the past few decades.[28, 183, 184, 185, 186,
187] In particular, gold nanoparticles have demonstrated exceptional catalytic activity for
a range of reactions, from CO oxidation to selective hydrogenations.[186, 188] This unex-
pected catalytic activity of gold is attributed to its unique electronic properties, particle
size effects, and the influence of the support material.[189, 190, 191, 192, 193]

The ORR on gold has been extensively studied in both acidic and alkaline medias.[194] In
acidic solutions, gold predominantly follows a 2-electron (2e-) pathway, producing hydro-
gen peroxide. Intriguingly, the Au(100) surface in alkaline media, not only demonstrated
in a 4-electron (4e-) ORR pathway but even outperforms platinum within specific po-
tential ranges. Additionally, ORR on gold showcases a pH-dependent catalytic behavior,
with Au(100) favoring a complete four-electron transfer, in contrast to the partial two-
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electron transfer observed on other facets like Au(111) and Au(110).[28, 29, 179] While
these experimental observations have been acknowledged for over a decade, an in-depth
atomistic understanding of the reaction mechanisms remains elusive. Density functional
theory (DFT) simulations combined with the computational hydrogen electrode (CHE)
method have been instrumental but show limitations, especially in predicting the ORR
activity of gold and the pH-dependent catalytic behavior. Using DFT calculations, Lu
et al. highlighted the significant role of the interaction between co-adsorbed water and
reaction intermediates in ORR on gold, facilitating O-O bond cleavage and thus promot-
ing 4e- reduction.[181] Duan and Henkelman suggested that the applied potential could
influence the adsorption energies of ORR intermediates, resulting in the pH-dependent
ORR on gold and a reduced theoretical overpotential.[27]

It is noteworthy that many studies have primarily focused on adsorption energetics, of-
ten neglecting the dynamic nature of electrochemical interfaces and its influence on ORR
acativity. In our prior research,[195] we introduced a framework leveraging graph neu-
ral network (GNN) potentials to accelerate metadynamics simulations, shedding light on
dynamic nature of electrochemical interfaces and the ORR kinetics at Au(100)–water inter-
face. It offers direct insights into ORR kinetics, considering explicit solvents and long-scale
molecular dynamics (MD) simulations, with a particular emphasis on the reaction kinetics
of Au(100) surface.

In this extension work, we delve deeper into the ORR on prominent gold surfaces, namely
Au(100), Au(110), and Au(111), incorporating explicit solvents and employing GNN-
accelerated metadynamics for modeling ORR dynamics. Leveraging larger simulation
boxes, we aim to provide a more comprehensive and nuanced understanding of the oxygen
reduction process on gold surfaces. Our systematic exploration of interface dynamics across
varied adsorbates offers an in-depth perspective on the nature of these interfaces. Notably,
our simulations corroborate the facet-dependent behavior of ORR on gold, aligning well
with experimental observations. Besides, our metadynamics investigations revealed the
significant role of co-adsorbed species on ORR reactivity. With this research, we hope
to bridge existing knowledge gaps and pave the way for the design of more efficient and
robust gold-based electrocatalysts for ORR.

5.2 Computational methods

5.2.1 Generation of neural network potentials

Our methodology is built upon the techniques outlined in our previous research.[195] We
utilized pretrained models from this work and derived the final dataset through the active
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learning framework built in it. The composition of various interfacial structures within the
dataset, along with their respective error metrics, is presented in Table C.1. We allocated
90% of the dataset for training and reserved the remaining 10% for validation, where
the latter was employed for early stopping once the force error reached an acceptable
threshold. To assess the performance of the trained model, we utilized multiple error
metrics, including the mean absolute error (MAE) and root mean squared error (RMSE)
for both energy and force predictions.

Our MD and metadynamics simulations utilized an ensemble of six neural network po-
tentials, each based on different architectures of the polarizable atom interaction neural
network (PaiNN) model.[110] The architectures of these models, along with their respec-
tive error metrics trained on the final dataset, are detailed in Table C.2. To introduce
model diversity, we employed different node feature sizes, while maintaining a consistent
cutoff radius of 5 Å for all models.

Both the model training and production simulations were executed on an NVIDIA GeForce
RTX 3090 GPU, utilizing float32 precision. The weight parameters of models were ini-
tialized randomly and subsequently optimized on a consistent data split using stochastic
gradient descent to minimize the mean square error (MSE) loss. We set the force loss
weight and energy loss weight to 0.95 and 0.05, respectively, to ensure a high force pre-
diction accuracy for propagating reliable MD simulations.

The Adam optimizer[171], as implemented in PyTorch[172], was employed to train our
model parameters. We used an initial learning rate of 0.0001, default parameters of β1=0.9
and β2=0.999, and a batch size of 12. An exponential decay learning rate scheduler with
a coefficient of 0.96 was used to adjust the learning rate every 100,000 learning steps.

5.2.2 DFT calculations

Our initial DFT dataset is derived from AIMD trajectories of Au(110)-water and Au(111)-
water interfaces. Utilizing pretrained models eliminated the need for ab-initio reference
structures from the Au(100)-water interface and reduced the number of reference struc-
tures for the Au(110)-water and Au(111)-water interfaces. The Au(110)-water system
comprises 36 H2Omolecules atop a (2×3) tetragonal Au(110) surface (denoted as Au(110)-
36H2O). Similarly, the Au(111)-water system is modelled as 36 H2O molecules on atop of
a (3 × 3) Au(111) surface (denoted as Au(111)-36H2O). MD simulations were conducted
in VASP[94, 95, 96, 97] using these configurations for 10 ps, with a 0.5 fs timestep and
a target temperature of 350K using the Nosé–Hoover thermostat[106]. The bottom two
atomic layers remained fixed during the MD simulations. We adopted a 350 eV energy
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cutoff for plane-wave basis and a Monkhorst-Pack k-grid with the k-point density of 0.5
Å-1[173]. The PBE functional, combined with the D3 Van der Waals correction, was used
to approximate exchange-correlation effects[90, 99]. The same parameters were employed
for single-point DFT calculations during active learning iterations.

5.2.3 Production MD simulation

The production MD simulations driven by the NNP ensemble are conducted using the
MD engine within Atomic Simulation Environment (ASE) python library.[98] We utilized
larger simulation boxes to precisely capture the dynamics at the interface. The Au(100)-
water interface was modeled with 102H2O molecules on a (5×5) Au(100) surface, resulting
in 431 atoms in total. The Au(110)-water interface had 115H2O molecules on a (4 × 5)
Au(110) surface, with 445 atoms. The Au(111)-water interface used a tetragonal (5×3

√
2)

Au(111) slab with 108 water molecules on it, with 474 atoms. The atomic structures for
these interfaces are presented in Figure 5.1.

Building on these foundational interface structures, we incorporated O2 molecules and hy-
droxyl groups to delve deeper into the adsorption energetics of key reaction intermediates
and to set up the initial structures for metadynamics simulations. For every foundational
interface, we considered 2OH, 4OH, 6OH, and 8OH cases by removing corresponding num-
ber of hydrogen atoms in the system. Besides, we also considered the 1O2 and 2O2 cases
by adding corresponding number of oxygen atoms and removing corresponding number of
water molecules. The resulting structures, along with their error metrics, are detailed in
Table C.1. For clarity and convenience, throughout the paper, we will label each system
without showing the number of H2O as the number of water molecules is not important
for discerning different systems and drawing our conclusions. For example, the Au(100)-
2O2/98H2O will be termed as Au(100)-2O2 hereafter. The momentum of the model sys-
tems was initiated using a Maxwell–Boltzmann distribution, with the temperature set at
350 K. For each system, we propagated 1,500 ps MD simualations by Langevin dynamics
with the target temperature of 350 K, the timestep of 0.25 fs, and the friction coefficient
of 0.02. Of the 1500 ps MD trajectory, the initial 500 ps served for equilibration, while the
subsequent 1000 ps was used to sample properties of interest. The uncertainty was quan-
tified by the force standard deviation (SD), with a threshold set at 0.5 eV/Å. Simulations
were halted if the force SD of a configuration exceeded this value. The formation energy
of *OH and the adsorption energy of O2 are calculated based on the method in Ref.[37]
and our prior study.
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Figure 5.1: Side view of (a) Au(100)-102H2O, (b) Au(110)-115H2O, and (c) Au(111)-
108H2O interface structures.

5.2.4 Metadynamics simulation

In this study, all the enhanced sampling simulations are performed with the well-tempered
version of metadynamics[175] The calculation of collective variables and bias potential of
metadynamics is achieved by PLUMED which is interfaced to ASE.[98, 121, 122, 117]
We use the path collective variables and the same parameters in ref.[195] to describe
the reaction. And the coordination numbers CO2−O and CO2−H are used to define the
configurational space of the path.

5.3 Results and discussion

5.3.1 Regular MD simulations

We systematically investigated the dynamics at gold-water interfaces, specifically consid-
ering the presence of adsorbed O2 and *OH. Figure 5.2 presents the density profiles of
water molecules, oxygen atoms, and hydrogen atoms relative to their distance from gold
surfaces. This figure focuses on systems containing pure water, eight hydroxyls, and two
oxygen molecules in the electrolyte. For detailed density profiles, average energy and un-
certainties in other systems, readers are directed to Figure C.1 to Figure C.21. In these
density profiles. Notably, in these density profiles, two pronounced peaks are observed for
all systems within 10 Å, suggesting the presence of two structured water layers near the
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slab. Among the surfaces studied, Au(110) exhibited the closest first peak to the surface at
2.5 Å. In comparison, the peaks for Au(100) and Au(111) are situated slightly farther away
at 2.8 Å and 2.9 Å, respectively. The second layer of ordered water, as indicated by the
second peak, is fairly consistent across the surfaces, positioned at 6.0 Å for both Au(100)
and Au(110), and marginally farther at 6.1 Å for Au(111). Moving beyond 10 Å and up
to 15 Å, the effects of the surface on water structuring become negligible. In this region,
the density distribution of water molecules becomes almost constant and matches that of
bulk water. Beyond 15 Å is the water–vacuum interface, where the densities gradually
decline to zero.

Figure 5.2: Density profiles of O, H, and H2O as a function of the distance from Au
slabs.

Upon introducing 8 *OH groups, there is a noticeable shift in the density profiles as shown
in Figure 5.2b, e, and h. The positions of first peaks in the density profiles are decreased
to 2.5, 2.3, and 2.5 Å for Au(100), Au(110), and Au(111), respectively. Meanwhile the
second peaks consistently locate at 5.8 Å across all surfaces. The presence of hydroxyls
not only modifies the peak positions but also reshapes the overall density distributions
of water molecules. This behavior can be attributed to the stronger chemical adsorption
of hydroxyls compared to water and the hydrogen bond network formed between these
hydroxyls and surrounding water molecules.[196] While *OH forms a direct chemical bond
with gold atoms through chemisorption, water primarily interacts through weaker forces
like van der Waals or hydrogen bonds. The chemisorbed *OH can act as an anchor point,
fixing the surrounding water molecules through hydrogen bonding. This anchoring effect
can reduce the mobility of water molecules and lead to a more tightly packed first layer
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of water molecules that closer to the surface.

In contrast, the inclusion of O2 induces only minor shifts in the density distribution peaks
without altering their overall shape as illustrated in Figure 5.2c, f, and i. The reason is that
O2 is a nonpolar molecule, which interacts weakly with the metal through physisorption
and lacks the ability to form hydrogen bonds with water. Consequently, *OH induces
more pronounced structural changes in the water layer, leading to significant alterations
in the density profiles, while the influence of O2 remains relatively subtle.

Figure 5.3: Evolution of coordination numbers Cads−O and Cads−H throughout MD
simulations. The dashed lines denote the average coordination number.

As illustrated in Figure 5.3, we delved deeper into the evolution of coordination numbers
for adsorbed species to gain insights into their local environments. Here, Cads−O and
Cads−H represent the number of surrounding oxygen and hydrogen atoms for the adsor-
bates, respectively. For systems with eight hydroxyls, as depicted in Figure 5.3a, c, and
e, the average coordination numbers Cads−O for Au(100), Au(110), and Au(111) are 1.34,
1.36, and 1.70, respectively. Meanwhile, their corresponding Cads−H values are 8.34, 8.90,
and 8.94. In systems with two oxygen molecules, the average Cads−O values for Au(100),
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Au(110), and Au(111) are 2.60, 2.54, and 2.91, respectively, with Cads−H values of 0.49,
0.56, and 0.33, respectively. A notable observation is that the fluctuation in Cads−O is
smaller than in Cads−H across all systems. This can be attributed to the dynamic proton
transfer in liquid water, which results in rapid changes in the local environments around
hydroxyls. Conversely, due to the nonpolar nature of O2, it is less inclined to form a
hydrogen bond network with adjacent water molecules. Therefore, the bond breaking of
O2 can be difficult may not be accessible using regular MD simulations.

Table 5.1: Formation energies of *OH and adsorption energies of O2 for different model
systems

System Species θ (Coverage) ∆E/n (eV)

Au(100)

2OH 0.080 1.131
4OH 0.160 1.051
6OH 0.240 1.087
8OH 0.320 1.160
1O2 0.040 -0.657
2O2 0.080 -0.428

Au(110)

2OH 0.100 0.770
4OH 0.200 0.755
6OH 0.300 0.787
8OH 0.400 0.785
1O2 0.050 -0.745
2O2 0.100 -0.736

Au(111)

2OH 0.067 0.880
4OH 0.133 0.977
6OH 0.200 1.055
8OH 0.267 1.149
1O2 0.033 -0.768
2O2 0.067 -0.554

Table 5.1 exhibited the formation energies of *OH and the adsorption energies of O2

molecule for each model system. For all three surfaces, the formation energy of *OH
generally increases with increasing coverage. This suggests that as more *OH groups are
adsorbed, it becomes energetically more favorable for them to form. Notably, Au(110)
consistently exhibits the lowest formation energy for *OH, indicating that *OH adsorp-
tion is most favorable on this surface. Conversely, Au(100) displays the highest formation
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energy, especially with 8 co-adsorbed *OH groups. The adsorption energies of O2 are
negative for all systems, indicating that the adsorption process is exothermic and energet-
ically favorable. Combining the stable evolution observed for Cads−O in Figure 5.3, this
suggests a preference for the inner-sphere mechanism, wherein the ORR predominantly
occurs near the slab.

5.3.2 Metadynamics with single oxygen molecule

With the prepared the initial structures and well-performed MLIPs, now we are able to
investigate the how the reaction happens with metadynamics simulations. We firstly sim-
ulated ORR with the presence of one single oxygen molecule in the liquid water. Previous
studies suggests two plausible mechanisms for ORR: the inner-sphere mechanism, where
O2 is closely adsorbed on the slabs, and the outer-sphere mechanism, wherein ORR takes
place several solvent layers away from the slab.[26, 179, 180] Our regular MD simula-
tion results, in alignment with previous studies,[195] consistently show the O2 molecule
residing in the first water layer. Consequently, our metadynamics simulations were exclu-
sively conducted following the inner-sphere mechanism. To ensure the reliability of the
production metadynamics, it is imperative to sample and include a substantial number
of reference structures into the training dataset, particularly those originating from rare
events on the potential energy surface. This task poses a significant challenge given the
intricate reaction systems explored in this study. Specifically, driving metadynamics to
escape from the final state (4*OH in the liquid) is challenging as it correlates to the oxygen
evolution process, which is inherently difficult to initiate and necessitates a high applied
voltage for activation. Consequently, our metadynamics simulations for each system are
confined to limited length-scales.

As depicted in Figure 5.4b, on the Au(100) slab, the metadynamics simulation stops at
approximately 275 ps due to the emergence of structures with excessive uncertainty (force
standard deviation exceeding 0.5 eV/Å), with the O-O bond breaking being observed at
232 ps. While extending the simulation length-scale is feasible through additional active
learning iterations, we ascertain that the current length-scale of the simulation is sufficient
to encapsulate the overall ORR process. The atomic structures of five representative con-
figurations are illustrated in Figure 5.4a, corresponding to key points along the reaction
pathway, as marked by the white dashed line in the free energy landscape depicted in
Figure 5.4c. The free energy landscape, characterized by the path CVs, manifests three
obvious basins. The initial stable states encompass two different kinds of configurations:
Au(100)-1O2/H2O where the pure O2 molecule is adsorbed onto the slab, and Au(100)-
(1OH+1OOH)/H2O showing the presence of one *OOH and one *OH. This indicates the
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Figure 5.4: (a) Snapshots of representative atomic structures along the reaction trajec-
tory. (b) Evolution of coordination numbers CO2−O and CO2−H throughout metadynamics
simulation. (c) Free energy landscape of ORR on Au(100) with one oxygen molecule de-
scribed by path CVs.

proton transfer from the surrounding water molecules to the adsorbed O2 molecule is
facile with only negligible energy barrier. The third point along the reaction pathway
is characterized by the adsorbed hydrogen peroxide (*H2O2), originating from the previ-
ously formed *OOH that accepted an additional proton from surrounding water molecules.
However, the occurrence of this event is very rare, as illustrated by the sharp decline in
CO2−O values depicted in Figure 5.4b, coupled with the high free energy of approximately
0.57 eV. The O-O and O-H bond lengths in H2O2 are approximately 1.48 Å and 1.03 Å
respectively, with the former aligning with measurements observed in gas-phase H2O2,
while the latter is slightly elongated in comparison to its gas-phase counterpart. The
introduction of hydrogen atoms weakens the O-O bond, breaking it into two hydroxyls.
Interestingly, we identified the presence of an unbonded single oxygen atom at the fourth
point (Au(100)-(1O+2OH)/H2O), corresponding to the short interval in Figure 5.4b where
the CO2−O values fluctuate around 2.75. The single oxygen atom is quickly protonated
by adjacent water molecules, transitioning into a hydroxyl. Our metadynamics simulation
elucidated that ORR on Au(100) proceeds in a four-electron transfer reaction pathway
with a reaction barrier of approximately 0.50 eV.

Transitioning to the Au(110) slab, the metadynamics simulation halts at 228 ps, with the
O-O bond breaking observed at 170 ps as depicted in Figure 5.5b. The reaction pathway, as
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Figure 5.5: (a) Snapshots of representative atomic structures along the reaction trajec-
tory. (b) Evolution of coordination numbers CO2−O and CO2−H throughout metadynamics
simulation. (c) Free energy landscape of ORR on Au(110) with one oxygen molecule de-
scribed by path CVs.

demonstrated in Figure 5.5a, is similar to that of Au(100), albeit without the identification
of the unbonded oxygen atom. The free energy landscape of Au(110) closely mirrors that
of Au(100), yet with only two basins as illustrated in Figure 5.5c. A notably more stable
*H2O2 intermediate emerges in the midway during intra-basin transition. This is further
evidenced by the evolution of CO2−O values within the time interval of 131 ps to 170 ps,
as demonstrated in Figure 5.5b. This observation aligns with experimental findings that
ORR on Au(110) and Au(111) involves the formation of *H2O2 intermediates.[28, 29, 26]
Analogous to the Au(100) case, the O-O bond dissociation emerges as the rate-determining
step, albeit with a slightly lower energy barrier of 0.48 eV.

Moving onto the Au(111) slab, the simulation halts at 350 ps, with the O-O bond breaking
observed at 290 ps, as depicted in Figure 5.6b. Contrary to Au(100) and Au(110) cases,
the first basin exclusively includes configurations with the oxygen molecule with no *OOH
identified, as shown in Figure 5.6c. The adsorbed O2 molecule is fully protonated to *H2O2

in a short time interval. Similarly to the Au(110) case, the existence of *H2O2 is more
stable than in the Au(100) scenario. This is further substantiated by the evolution of
CO2−O values within the time interval of 210 ps to 290 ps, as demonstrated in Figure 5.6b.
The free energy barrier for oxygen reduction is approximately 0.42 eV.
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Figure 5.6: (a) Snapshots of representative atomic structures along the reaction trajec-
tory. (b) Evolution of coordination numbers CO2−O and CO2−H throughout metadynamics
simulation. (c) Free energy landscape of ORR on Au(111) with one oxygen molecule de-
scribed by path CVs.

5.3.3 Metadynamics with two oxygen molecules

While our simulations shed light on the variance in *H2O2 stability across different facets,
they did not accurately predict the true ORR activity trends across these facets. We
hypothesize that the co-adsorbed O2 or hydroxyl groups on the surfaces might also ex-
ert influence on the ORR dynamics. To delve deeper into this aspect, we extended our
metadynamics simulations to systems with two oxygen molecules present in the liquid
water.

Figure 5.7b illustrates a metadynamics simulation conducted at the Au(100)-2O2/H2O
interface over a duration of 1480 ps, within the designated uncertainty threshold. The
dissociation O-O bond of the first O2 molecule occured rapidly at 41 ps. However, the
bond in the second oxygen molecule did not break during the entire simulation. This
indicated the notable impact of co-adsorbed *OH on the ORR dynamics, hindering the
reduction of the remaining O2 molecules.

Figure 5.7c presents the free energy landscape, revealing two major basins and a minor
one. The first major basin corresponds to Au(100)-2O2/H2O, the initial state of the
reaction. As the reaction progresses, overcoming a free energy barrier of 0.24 eV, both O2

molecules are partially protonated to form two *OOH molecules, signified by the minor
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Figure 5.7: (a) Snapshots of representative atomic structures along the reaction trajec-
tory. (b) Evolution of coordination numbers CO2−O and CO2−H throughout metadynamics
simulation. (c) Free energy landscape of ORR on Au(100) with two oxygen molecules de-
scribed by path CVs.

energy basin. Following this, one of the *OOH groups undergoes O-O bond dissociation,
resulting in an *OH group and an unbonded oxygen atom, which quickly accepts a proton
from the surrounding water molecules to form another *OH. This *OH formation state
exhibits substantial stability, persisting through the fourth and fifth points in the reaction
pathway, all encapsulated within the second major energy basin.

In contrast with the Au(100)-1O2/H2O case, the reduction of the first O2 molecule is
considerably more facile. Besides, the presence of *H2O2 is not observed during the
simulation further validating that the reaction mechanism found in this study aligns well
with experimental findings.

Transitioning to the analysis of the Au(110)-2O2/H2O interface, the simulation stoped
at 854 ps, with the O-O bond of the first O2 molecule breaking at 432 ps as illustrated
in Figure 5.8b. Similar to the Au(100)-2O2/H2O case, the second O2 remains intact
during the entire simulation. The free energy landscape at this interface showcased two
major basins, signifying the initial and final states of the reaction. At the second point
of the reaction pathway, the state is Au(110)-(2OOH+2OH)/H2O, exhibiting a similar
adsorption behavior to the Au(100) surface. A notable observation was the presence of
*H2O2 at the third point, which quickly transitioned into 2*OH groups. The second
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Figure 5.8: (a) Snapshots of representative atomic structures along the reaction trajec-
tory. (b) Evolution of coordination numbers CO2−O and CO2−H throughout metadynamics
simulation. (c) Free energy landscape of ORR on Au(110) with two oxygen molecules de-
scribed by path CVs.

energy basin is quite stable, encapsulating both the fourth and fifth points in the reaction
pathway. The reaction barrier for the Au(110)-2O2/H2O interface is slightly higher than
that of Au(100)-2O2/H2O, being 0.32 eV.

Moving onto the Au(111)-2O2/H2O interface, the simulation stoped at 665 ps, demonstrat-
ing the O-O bond dissociation of the first O2 molecule at 46 ps as depicted in Figure 5.9b.
This behavior aligns with the previous observations on the Au(100) and Au(110) inter-
faces, where the dissociation of the second O2 molecule proved to be challenging. As
demonstrated in Figure 5.9c, the free energy landscape showcased two major basins, with
the first corresponding to the initial state Au(111)-2O2/H2O and the second correspond-
ing the final state Au(111)-(1O2+4OH)/H2O. The presence of *H2O2 is more prominent
on Au(111), expanding over a large area from the second point to the third point along
the reaction trajectory. Amongst the interfaces studied, the Au(111)-2O2/H2O interface
exhibited the lowest reaction barrier, recorded at 0.21 eV.

A notable observation across all three interfaces is that the evaluated reaction barriers
are lower in comparison to their counterparts in the single oxygen metadynamics case,
indicating the facilitative role of co-adsorbed O2 for ORR dynamics. Moreover, in each
case, the second major basin, representing the co-adsorption of one oxygen molecule and



CHAPTER 5. FACET-DEPENDENT ORR ON AU SURFACES 83

Figure 5.9: (a) Snapshots of representative atomic structures along the reaction trajec-
tory. (b) Evolution of coordination numbers CO2−O and CO2−H throughout metadynamics
simulation. (c) Free energy landscape of ORR on Au(111) with two oxygen molecules de-
scribed by path CVs.

four hydroxyl groups, was quite deep, demonstrating the remarkable stability of this state.
This suggests that the presence of co-adsorbed hydroxyls can significantly influence the
ORR on gold surfaces, potentially impeding the ORR process.

5.4 Conclusion and outlooks
In this comprehensive study, we have delved into the intricate dynamics of the oxygen
reduction reaction (ORR) on prominent gold surfaces, specifically Au(100), Au(110),
and Au(111). Our approach, which incorporated explicit solvents and utilized GNN-
accelerated metadynamics, has provided a deep insight into the ORR mechanisms on
these gold facets. Our regular MD simulations elucidate the dynamics at the gold-water
interface, with an emphasis on the interactions involving adsorbed O2 and *OH. The role
of adsorbed *OH was found to be significant in influencing the water layer structure. Our
systematic investigations have revealed the facet-dependent behavior of ORR, with par-
ticular emphasis on the stability and behavior of *H2O2 across different gold facets. For
instance, the presence of *H2O2 on Au(111) and Au(110) is prominent, broadly existing in
the reaction trajectory. However, the presence of *H2O2 on Au(100) is merely observed.
This findings align well with experimental observations. Furthermore, our metadynamics
results emphasized the role of co-adsorbed species on the ORR reactivity. The inclusion
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of oxygen molecules can facilitate the reaction kinetics, while the co-adsorbed hydroxyl
groups considerably impede the reaction process. The significant influence of adsorbed
species, especially *OH, on the water layer structure underscores the need for a deeper
understanding of their interactions and effects on other reaction intermediates. Addition-
ally, extending this research to include different electrolytes can offer a broader perspective
on how various solvents and ions modulate the ORR on gold surfaces. With the foun-
dational knowledge established in this study, there lies the potential for the design and
development of optimized gold-based electrocatalysts, paving the way for breakthroughs
in electrocatalysis and related fields.



CHAPTER 6
Conclusions and Outlooks

In this thesis, we demonstrated the exploration and optimization of MLIPs for atomistic
simulations, particularly focusing on the complex dynamics of the ORR on gold surfaces. If
using traditional DFT calculations, the complex solid-liquid interface structures studied in
this project require tremendous computational resources to rigorously and systematically
study their dynamic natures. MLIPs emerged as a promising tool for extending the length-
scale and time-scale of DFT calculations. However, the excellent performance of MLIPs
is not taken for granted; behind this is the high-quality data that need to be collected.
Gathering this data, however, is not cozy like walking in the park. It is often very tedious
and one of my colleagues described this as “a monkey’s job”. Imagine a PhD candidate,
passionate about the potential applications of MLIPs, only to find themselves stuck in
the repetitive task of gathering data, rather than the exhilarating thrill of running and
analyzing groundbreaking simulations.

The aim of the first work in this thesis is to free these smart folks from boring “monkey’s
job” and launch them into the fun world of real science. In this work, we developed an
autonomous active learning workflow that can significantly reduce the human interven-
tion and enhance the efficiency of data collecting. To improve the efficiency for collecting
data, we designed several batch active learning strategies that can efficiently sample rep-
resentative configurations from MLIPs-driven simulations. We demonstrated the power
of different feature maps and selection algorithms on several benchmark datasets. All the
tests illustrated that the LCMD+GRAD strategy exhibited the best performance, even
featuring comparable low errors with half of the datapoints compared random selection.
Additionally, to ensure simulations consistently operate within the application domain
of MLIPs, we offer flexible uncertainty estimation tools. These tools prioritize accuracy,
confidence-awareness and rapid simulation. By integrating these elements with the robust
task scheduler myqueue, we make the automation of efficient MLIP generation possible.
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The first work laid solid foundation for the subsequent two works. In the second work, we
combined high-fidelity MLIPs and enhanced sampling technique together, to investigate
the oxygen reduction dynamics at Au(100)-water interface. This work firstly revealed the
full process of ORR in an atomistic level. We identified the associative mechanism of ORR
on Au(100) and predicted a low free energy barrier of 0.3 eV. Both findings align well with
experimental results. This framework can shed the light on modeling chemical reactions
under complex ambient conditions.

In the third work, the simulations are extended to gold surfaces with enlarged simulation
boxes. We systematically investigated the dynamics of systems across different slabs and
adsorbates. It is demonstrated that the adsorbed hydroxyl groups have significant influ-
ence both on the interfacial structures and the ORR activity. The co-adsorbed hydroxyls
prevented the O2 molecules to be further protonated and reduced. We also found that the
presence of *H2O2 is prominent on Au(110) and Au(111), indicating its indispensable role
in the ORR on these slabs. This finding aligns well with experimental results and further
demonstrated the power of our research framework.

We believe that the tools and methods presented in this thesis will gain broader acceptance
and usage. We also hope our findings can pave the way for optimizing and discovering
new catalysts to address the world’s pressing challenges.
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ing workflow
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Supplementary Tables

Table A.1: Mean absolute errors (MAE), number of parameters, interence time for each
model.

Model Layer Node Inference time
(ms)

#parameters Energy MAE
kcal ·mol−1

Forces MAE
kcal ·mol−1 · Å−1

nequip(l=2)

3 64 37.054 761576 0.149 0.210
4 64 58.620 1208552 0.139 0.166
5 64 80.547 1655528 0.132 0.148
6 64 101.602 2102504 0.129 0.144
4 32 50.176 392824 0.142 0.174
4 64 60.090 1208552 0.139 0.166
4 96 73.762 2465624 0.130 0.135
4 128 91.473 4164040 0.128 0.133

nequip(l=3)

3 64 107.677 1441512 0.141 0.183
4 64 184.664 2306280 0.134 0.148
5 64 262.095 3171048 0.129 0.135
6 64 338.976 4035816 0.128 0.131
4 32 109.880 764536 0.131 0.147
4 64 184.245 2306280 0.134 0.148
4 96 265.594 4643672 0.129 0.123
4 128 343.956 7776712 0.128 0.121

mace(l=2)

3 64 31.100 381480 0.156 0.219
4 64 49.463 555048 0.162 0.187
5 64 60.733 728616 0.144 0.167
6 64 73.655 902184 0.150 0.165
4 32 46.367 212504 0.181 0.240
4 64 46.391 555048 0.162 0.187
4 96 46.843 1062456 0.150 0.164
4 128 50.389 1734728 0.162 0.134

mace(l=3)

3 64 53.003 679656 0.148 0.201
4 64 74.090 1003112 0.152 0.169
5 64 96.710 1326568 0.139 0.155
6 64 120.201 1650024 0.137 0.150
4 32 69.652 386360 0.176 0.213
4 64 73.907 1003112 0.157 0.169
4 96 102.646 1885080 0.147 0.152
4 128 129.537 3032264 0.148 0.149

painn

3 64 7.497 161025 0.150 0.271
4 64 9.864 210753 0.145 0.253
5 64 12.094 260481 0.143 0.253
6 64 14.434 310209 0.144 0.249
4 32 10.068 59297 0.180 0.339
4 64 9.814 210753 0.145 0.253
4 96 9.804 454369 0.140 0.243
4 128 10.331 790145 0.134 0.216
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Table A.2: Inference time for each uncertainty estimation method

Ensemble Mahalanobis MCD

Runtime [ms] 42.5 ± 3.92 8.9 ± 0.86 38.4 ± 3.21
#Trainings 5 1 1
#Predictions 5 1 5

Supplementary Figures

Figure A.1: Learning curves for the aspirin molecule data from MD17 dataset. (a) The
mean absolute errors (MAE), (b) root-mean-square errors (RMSE), and (c) maximum
errors (MAXE) of atomic forces, (d) The MAE, (e) RMSE, and (f) MAXE of total poten-
tial energies plotted against the training set size acquired from different active learning
strategies.
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Figure A.2: Learning curves for the azobenzene molecule data from MD17 dataset.

Figure A.3: Learning curves for the ethanol molecule data from MD17 dataset.
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Figure A.4: Learning curves for the malonaldehyde molecule data from MD17 dataset.

Figure A.5: Learning curves for the naphthalene molecule data from MD17 dataset.
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Figure A.6: Learning curves for the paracetamol molecule data from MD17 dataset.

Figure A.7: Learning curves for the toluene molecule data from MD17 dataset.
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Figure A.8: Learning curves for the uracil molecule data from MD17 dataset.

Figure A.9: Heatmap displays the AUC-ROC values derived with different kernels and
Mahalanobis distance from SchNet on MD17. Each row represents a separate model,
trained on the molecule listed to the left, and tested against all other molecules.
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Figure A.10: Heatmap displays the AUC-ROC values derived with different kernels and
Euclidean distance from SchNet on MD17. Each row represents a separate model, trained
on the molecule listed to the left, and tested against all other molecules.



Appendix B

Supplementary materials for Chapter 4: Oxygen reduction at
confined Au(100)-water interface
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Supplementary Tables

Table B.1: Parameters for calculating coordination numbers of O2

CV Definition Parameters

CO2−O CO2−O =
∑
i∈O2

1−
(
ri,O − d0

r0

)n

1−
(
ri,O − d0

r0

)m
ri,O: distance between Oi and O
r0 = 1.8, d0 = 0, n = 6,m = 12

CO2−H CO2−H =
∑
i∈O2

1−
(
ri,H − d0

r0

)n

1−
(
ri,H − d0

r0

)m
ri,H : distance between Oi and H
r0 = 1.5, d0 = 0, n = 8,m = 16

Table B.2: A summary of test error metrics of neural network potentials

Model Node size Layers
Energy error (meV/atom) Forces error (meV/Å)

MAE RMSE l2 MAE l2 RMSE MAE RMSE

NNP1 96 3 0.6 1.3 32.8 46.4 16.3 26.8
NNP2 112 3 0.5 1.3 31.3 45.0 15.5 26.0
NNP3 128 3 0.8 1.4 28.9 43.7 14.3 25.2
NNP4 128 4 0.4 1.2 25.4 39.3 12.6 22.7
NNP5 144 3 0.5 1.2 27.0 40.8 13.4 23.5
Ensemble - - 0.7 1.4 25.3 38.8 12.6 22.4

Table B.3: A summary of interface structures presented in the final dataset after CUR
selection

Interface structure
Number of atoms Number of configurations EMAE

(meV/atom)
FMAE

(meV/Å)
H O Total Training Validation Total

Au(100)-30H2O 60 30 126 616 70 686 2.3 14.2
Au(100)-1OH/29H2O 59 30 125 1535 172 1707 1.4 12.8
Au(100)-2OH/28H2O 58 30 124 646 74 1694 1.1 14.0
Au(100)-1O2/30H2O 60 32 126 1192 136 1328 1.6 13.8
Au(100)-1OH/58H2O 117 59 240 1458 155 1613 0.7 11.6
Au(100)-2OH/57H2O 116 59 239 1541 153 1694 0.6 11.6
Au(100)-3OH/56H2O 115 59 238 1667 209 1876 0.5 12.1
Au(100)-4OH/55H2O 114 59 237 2188 245 2433 0.3 12.4
Au(100)-5OH/54H2O 113 59 236 2110 232 2342 0.3 12.9
Au(100)-6OH/53H2O 112 59 235 1986 229 2215 0.3 13.8
Au(100)-1O2/57H2O 114 59 237 1826 188 2014 0.4 12.0
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Table B.4: Comparison of model performance between previous studies and this work

Ref. System Method Max.
Natom

Training set Errors

Natarajan et
al.[43]

Cu-H2O BPNNP 463 10293 structures with bulk water/ice, bulk
copper/cuprous oxide and water–copper inter-
face geometries. 10% are used for validation.

ERMSE: 0.9 meV/atom
FRMSE: 125.3 meV/Å

Quaranta et
al.[40]

ZnO-H2O BPNNP 334 15319 structures with bulk water, bulk ZnO,
and ZnO-water interface geometries. 1712
configurations are used for validation.

ERMSE: 1.2 meV/atom
FRMSE: 143.4 meV/Å

Yang et al.[164] Urea-
water

DeepMD 110 14536 structures with 5739 reactant struc-
tures, 5217 product structures, and 3580 tran-
sition state structures.

EMAE: 0.7 meV/atom
FMAE: 38 meV/Å

He et al.[197] SrTiO3 DeepMD 40 2600 structures with 2× 2× 2 and 1× 1× 1
supercells. A test set with 1500 structures of
80 atoms are used for validation.

EMAE: 0.3 meV/atom
FMAE: 19 meV/Å

Liu et al.[198] βGa2O3 GAP 160 801 training structures obtained from MD
simulations at temperatures between 100 K
and 1000 K. 90 structures are used for vali-
dation.

ERMSE: 0.5 meV/atom
FRMSE: 50 meV/Å for Ga
FRMSE: 38 meV/Å for O

Davidson et
al.[199]

αFe−H GAP 128 The training data for the H-Fe interaction
potential comprises snapshots from molecular
dynamics trajectories of 54 and 128 Fe atoms
with either 0, 1, or 2 Fe atoms removed, and
a single H atom added. Altogether, about 400
configurations were used in the fit, comprising
about 28k atoms.

EMAE: 20 meV
FMAE: 10 meV/Å

Hu et al.[178] OC20
dataset[200]

ForceNet 225 OC20 dataset [200] contains 200M+ nonequi-
librium 3D atomic structures with average
atom number of 73.3 from 1M+ atomic re-
laxation trajectories. The model is trained
on 134M structures from S2F task. Four val-
idation datasets are used to test the model
performance: In Domain (ID),Out of Domain
Adsorbate (OOD Adsorbate), OOD Catalyst,
and OOD Both (both the adsorbate and cata-
lyst’s material are not seen in training). Each
split contains 1M examples.

FMAEs

ID: 28.1 meV/Å
OOD Ads.: 32.0 meV/Å
OOD Cat.: 32.7 meV/Å
OOD Both: 41.2 meV/Å
Average: 33.5 meV/Å

Gasteier et
al.[201]

OC20
dataset

GemNet-
OC

225 The model is trained on 1̃34M structures from
S2EF task in OC20 dataset. The same test set
splits are used as above.

Average:
EMAE: 233 meV
FMAE: 20.7 meV/Å

Li et al.[202] Water GAMD 384 7000 periodic configurations of liquid water.
The number of water molecules in the unit
cell ranges from 16 to 128. 723 snapshots are
used for validation.

FMAE: 24.28 ± 16.80 meV/Å
FRMSE: 35.39 ± 23.09 meV/Å

Batzner et
al.[66]

Li4P2O7 Nequip 208 The crystal structure was melted at 3000 K for
50 ps, and quenched at 600 K for another 50
ps, resulting a dataset of 25,000 AIMD frames.
1000 structures from melting phase are used
for training, 100 structures for validation, and
all remaining structures for independent test.

Melt(quench):
EMAE: 0.4(0.5) meV/atom
FMAE: 34.0(21.3) meV/Å
ERMSE: 0.8(0.5) meV/atom
FRMSE: 59.5(34.9) meV/Å

Ours Au-water PaiNN 240 18371 Au(100)-water interface structures with
different number of *OH and O2 presented in
the liquid. The rare event structures in meta-
dynamics are also included.

EMAE: 0.7 meV/atom
FMAE: 12.6 meV/Å
ERMSE: 1.4 meV/atom
FRMSE: 22.4 meV/Å
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Table B.5: Adsorption energies of different species on Au(100) surface

Species Cell size θ (Coverage) ∆E/nOH (eV)

1OH (4×4) 0.063 0.717
2OH (4×4) 0.125 0.795
3OH (4×4) 0.188 0.862
4OH (4×4) 0.250 0.925
5OH (4×4) 0.313 0.958
6OH (4×4) 0.375 0.987
1O2 (4×4) 0.063 -1.008
1OH (3×3) 0.111 0.723
2OH (3×3) 0.222 0.858

Table B.6: Coordination numbers of different possible intermediate structures in ORR

CV *O2 *OOH *O + *OH *O2H2 *OH

CO2−O 1 1 0 1 0
CO2−H 0 0.5 0.5 1 1
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Supplementary Figures

Figure B.1: Comparison between ensemble uncertainties calculated by forces root mean
square deviation (RMSD) and true prediction error calculated by root mean square error
(RMSE) for (a) in-distribution data, and (b) out-of-distribution data.

Figure B.2: Training curves of the final dataset for (a) energy root mean squared error
(RMSE) and (b) forces RMSE
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Figure B.3: (a) Side view and top view of Au(100)-59H2O interface structure. (b)
Evolution of average energy and force standard deviations (SD) of Au(100)-59H2O along
5 ns MD simulations. (c) Density profiles of different species as a function of the distance
from Au(100) surface.

Figure B.4: (a) Side view and top view of Au(100)-1OH/58H2O interface structure. (b)
Evolution of average energy and force standard deviations (SD) of Au(100)-1OH/58H2O
along 5 ns MD simulations. (c) Density profiles of different species as a function of the
distance from Au(100) surface.
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Figure B.5: (a) Side view and top view of Au(100)-2OH/57H2O interface structure. (b)
Evolution of average energy and force standard deviations (SD) of Au(100)-2OH/57H2O
along 5 ns MD simulations. (c) Density profiles of different species as a function of the
distance from Au(100) surface.

Figure B.6: (a) Side view and top view of Au(100)-3OH/56H2O interface structure. (b)
Evolution of average energy and force standard deviations (SD) of Au(100)-3OH/56H2O
along 5 ns MD simulations. (c) Density profiles of different species as a function of the
distance from Au(100) surface.
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Figure B.7: (a) Side view and top view of Au(100)-4OH/55H2O interface structure. (b)
Evolution of average energy and force standard deviations (SD) of Au(100)-4OH/55H2O
along 5 ns MD simulations. (c) Density profiles of different species as a function of the
distance from Au(100) surface.

Figure B.8: (a) Side view and top view of Au(100)-5OH/54H2O interface structure. (b)
Evolution of average energy and force standard deviations (SD) of Au(100)-5OH/54H2O
along 5 ns MD simulations. (c) Density profiles of different species as a function of the
distance from Au(100) surface.
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Figure B.9: (a) Side view and top view of Au(100)-6OH/53H2O interface structure. (b)
Evolution of average energy and force standard deviations (SD) of Au(100)-6OH/53H2O
along 5 ns MD simulations. (c) Density profiles of different species as a function of the
distance from Au(100) surface.

Figure B.10: (a) Side view and top view of Au(100)-1O2/30H2O interface structure. (b)
Evolution of average energy and force standard deviations (SD) of Au(100)-1O2/30H2O
along 5 ns MD simulations. (c) Density profiles of different species as a function of the
distance from Au(100) surface.
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Figure B.11: Density profiles of water as a function of the distance from Au(100) surface
obtained from 50 ps AIMD (blue) and 5 ns NNPs MD (orange).

Figure B.12: Average energy profiles of Au(100)-4OH/55H2O from five different starting
configurations.
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Figure B.13: Computational time for training an initial model, retraining model, 5
ns NNPs MD simulation, and CUR selection. The training time of the initial model
is evaluated on 1000,000 steps for five different models. By loading pretrained model
parameters, retraining takes approximately 100,000 steps on average to early-stopping.
DFT labelling cost is estimated by the time of labelling 100 structures using 40 CPU
cores.

Figure B.14: Evolution of the distance between O2 and Au(100) surface along 2.5 ns
MD simulation
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Appendix C

Supplementarymaterials for Chapter 5: Facet-dependentORR
on Au surfaces
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Supplementary Tables

Table C.1: A summary of interface structures presented in the final dataset

Interface structure
atoms

Configurations
H O Total

Au(100)-67H2O 134 67 265 509
Au(100)-102H2O 204 102 431 525
Au(100)-2OH/1002O 202 102 429 900
Au(100)-4OH/98H2O 200 102 427 832
Au(100)-6OH/96H2O 198 102 425 871
Au(100)-8OH/94H2O 196 102 423 867
Au(100)-1O2/100H2O 200 102 427 578
Au(100)-2O2/98H2O 196 102 423 542
Au(100)-1O2(MetaD) 200 102 427 480
Au(100)-2O2(MetaD) 196 102 423 200

Au(110)-73H2O 146 73 267 835
Au(110)-115H2O 230 115 445 859
Au(110)-2OH/1132O 228 115 443 483
Au(110)-4OH/1112O 226 115 441 664
Au(110)-6OH/1092O 224 115 439 565
Au(110)-8OH/1072O 222 115 437 483
Au(110)-1O2/113H2O 226 115 441 560
Au(110)-2O2/111H2O 222 115 437 453
Au(110)-1O2(MetaD) 226 115 441 400
Au(110)-2O2(MetaD) 222 115 437 500

Au(111)-59H2O 146 73 267 835
Au(111)-108H2O 216 108 474 2128
Au(111)-2OH/1062O 214 108 472 760
Au(111)-4OH/1042O 212 108 470 886
Au(111)-6OH/1022O 210 108 468 923
Au(111)-8OH/1002O 208 108 466 842
Au(111)-1O2/106H2O 212 108 470 1180
Au(111)-2O2/104H2O 208 108 466 740
Au(111)-1O2(MetaD) 212 108 470 600
Au(111)-2O2(MetaD) 208 108 466 600
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Table C.2: A summary of test error metrics of neural network potentials

Model Node size Layers
Energy error (meV) Forces error (meV/Å)

MAE RMSE MAE RMSE

NNP1 112 3 0.64 1.43 25.0 49.2
NNP2 120 3 0.605 1.34 25.4 55.1
NNP3 128 3 0.675 1.17 24.8 57.6
NNP4 136 3 0.525 1.16 23.5 49.4
NNP5 144 3 1.02 1.28 23.7 54.2
NNP6 160 3 0.55 1.14 22.2 41.6

Supplementary Figures

Figure C.1: (a) Evolution of average energy of Au(100)-102H2O along 1500 ps MD
simulation. (b) Density profiles of different species as a function of the distance from
Au(100) surface. (c) Evolution of force standard deviations (SD) of Au(100)-102H2O
along 1500 ps MD simulation
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Figure C.2: (a) Evolution of average energy of Au(110)-115H2O along 1500 ps MD
simulation. (b) Density profiles of different species as a function of the distance from
Au(110) surface. (c) Evolution of force SD along 1500 ps MD simulation.

Figure C.3: (a) Evolution of average energy of Au(111)-108H2O along 1500 ps MD
simulation. (b) Density profiles of different species as a function of the distance from
Au(111) surface. (c) Evolution of force SD along 1500 ps MD simulation
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Figure C.4: (a) Evolution of average energy of Au(100)-2OH/100H2O along 1500 ps
MD simulation. (b) Density profiles of different species as a function of the distance from
Au(100) surface. (c) Evolution of force SD along 1500 ps MD simulation

Figure C.5: (a) Evolution of average energy of Au(100)-4OH/98H2O along 1500 ps MD
simulation. (b) Density profiles of different species as a function of the distance from
Au(100) surface. (c) Evolution of force SD along 1500 ps MD simulation
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Figure C.6: (a) Evolution of average energy of Au(100)-6OH/96H2O along 1500 ps MD
simulation. (b) Density profiles of different species as a function of the distance from
Au(100) surface. (c) Evolution of force SD along 1500 ps MD simulation

Figure C.7: (a) Evolution of average energy of Au(100)-8OH/94H2O along 1500 ps MD
simulation. (b) Density profiles of different species as a function of the distance from
Au(100) surface. (c) Evolution of force SD along 1500 ps MD simulation
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Figure C.8: (a) Evolution of average energy of Au(100)-1O2/100H2O along 1500 ps MD
simulation. (b) Density profiles of different species as a function of the distance from
Au(100) surface. (c) Evolution of force SD along 1500 ps MD simulation

Figure C.9: (a) Evolution of average energy of Au(100)-2O2/98H2O along 1500 ps MD
simulation. (b) Density profiles of different species as a function of the distance from
Au(100) surface. (c) Evolution of force SD along 1500 ps MD simulation
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Figure C.10: (a) Evolution of average energy of Au(110)-2OH/113H2O along 1500 ps
MD simulation. (b) Density profiles of different species as a function of the distance from
Au(110) surface. (c) Evolution of force SD along 1500 ps MD simulation

Figure C.11: (a) Evolution of average energy of Au(110)-4OH/111H2O along 1500 ps
MD simulation. (b) Density profiles of different species as a function of the distance from
Au(110) surface. (c) Evolution of force SD along 1500 ps MD simulation
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Figure C.12: (a) Evolution of average energy of Au(110)-6OH/109H2O along 1500 ps
MD simulation. (b) Density profiles of different species as a function of the distance from
Au(110) surface. (c) Evolution of force SD along 1500 ps MD simulation

Figure C.13: (a) Evolution of average energy of Au(110)-8OH/107H2O along 1500 ps
MD simulation. (b) Density profiles of different species as a function of the distance from
Au(110) surface. (c) Evolution of force SD along 1500 ps MD simulation
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Figure C.14: (a) Evolution of average energy of Au(110)-1O2/113H2O along 1500 ps
MD simulation. (b) Density profiles of different species as a function of the distance from
Au(110) surface. (c) Evolution of force SD along 1500 ps MD simulation

Figure C.15: (a) Evolution of average energy of Au(110)-2O2/111H2O along 1500 ps
MD simulation. (b) Density profiles of different species as a function of the distance from
Au(110) surface. (c) Evolution of force SD along 1500 ps MD simulation
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Figure C.16: (a) Evolution of average energy of Au(111)-2OH/106H2O along 1500 ps
MD simulation. (b) Density profiles of different species as a function of the distance from
Au(111) surface. (c) Evolution of force SD along 1500 ps MD simulation

Figure C.17: (a) Evolution of average energy of Au(111)-4OH/104H2O along 1500 ps
MD simulation. (b) Density profiles of different species as a function of the distance from
Au(111) surface. (c) Evolution of force SD along 1500 ps MD simulation
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Figure C.18: (a) Evolution of average energy of Au(111)-6OH/102H2O along 1500 ps
MD simulation. (b) Density profiles of different species as a function of the distance from
Au(111) surface. (c) Evolution of force SD along 1500 ps MD simulation

Figure C.19: (a) Evolution of average energy of Au(111)-8OH/100H2O along 1500 ps
MD simulation. (b) Density profiles of different species as a function of the distance from
Au(111) surface. (c) Evolution of force SD along 1500 ps MD simulation
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Figure C.20: (a) Evolution of average energy of Au(111)-1O2/106H2O along 1500 ps
MD simulation. (b) Density profiles of different species as a function of the distance from
Au(111) surface. (c) Evolution of force SD along 1500 ps MD simulation

Figure C.21: (a) Evolution of average energy of Au(111)-2O2/104H2O along 1500 ps
MD simulation. (b) Density profiles of different species as a function of the distance from
Au(111) surface. (c) Evolution of force SD along 1500 ps MD simulation
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Abstract

Machine-learned interatomic potentials (MLIPs) have emerged as powerful tools in

the domain of atomistic simulations due to their exceptional computational efficiency

and ab-initio level accuracy. At the heart of creating superior MLIPs for specific ap-

plications lies the imperative for high-quality data. However, obtaining the data for

vast chemical spaces of interest is often an intricate endeavor, frequently necessitating
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expensive ab-initio simulations. Active learning stands out as the ideal solution, en-

abling efficient acquisition of high-quality data, thereby fundamentally enhancing the

robustness and applicability of MLIPs across different chemical systems.

In this light, we introduce CURATOR, a comprehensive autonomous active learning

workflow designated for the construction of high-fidelity graph neural network poten-

tials. This workflow integrates state-of-the-art equivariant message-passing neural net-

works (MPNNs) with fast and reliable uncertainty quantification techniques, pivotal

for driving informative data selections. The essence of CURATOR lies in its effectiveness

at identifying batches of structures that offer maxmimal model improvement during

retraining. This is achieved by thoughtfully considering both model uncertainties and

the inherent diversity of atomic configurations using efficient batch active learning

algorithms. Tested rigorously across several chemical systems, our approach demon-

strates a significant enhancement in data acquisition efficiency, leading to a remarkable

reduction in the training duration and resources required for constructing MLIPs. In

addition, the workflow provides a useful uncertainty toolbox that contains multiple

uncertainty estimation methods that can provide fast and reliable estimation of model

confidence. This ensures that the active learning iteration will not sample unphysical

atomic configurations and that the production simulations powered by MLIPs are al-

ways reliable. We suggest the employment of the local Mahalanobis distance metric as

it offers rapid and trustworthy uncertainty estimation. Moreover, the integration with

the myqueue task scheduler ensures a seamless and automated progression of tasks on

modern computer clusters, enhancing the efficiency of the workflow further.

Introduction

Recently, machine-learned interatomic potentials (MLIPs) have found successful applica-

tions across various domains such as materials science, molecular physics, and chemistry.1

The growing acceptance of MLIPs within the community is primarily due to their com-

putational efficiency, which rivals that of empirical force fields, and their accuracy, which
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matches established ab-initio methods. Typically, a machine learning interatomic potential

learns the relationship between the atomic configurations and the potential energy surface

of the chemical system. For the consideration of data efficiency and accuracy, the mod-

els should be capable of exploiting the invariances/equivariances of the physical systems

upon space transformations including rotation, translation, reflection, and permutation of

the same type of atoms, which excludes the use of simple atom coordinates as the struc-

tural representation. Behler and Parrinello2,3 firstly introduced the high-dimensional neural

network potential (NNP) in which the total energy of a chemical system is decomposed to

individual atomic energies. The atomic energies are predicted by the neural networks that

take the atom-centered symmetry functions (ACSFs)3 as the features to describe the local

atomic environments, which ensures the model can be invariant with respect to translation

and rotation. The advent of ACSFs has led to the emergence of numerous descriptor-based

machine-learning potential designs that use predetermined rules to transform the local en-

vironment of an atom into the input vector for regression. Examples of such models include

various variants of the initial Behler-Parrinello neural network (e.g. ANI,4,5 TensorMol,6

SimpleNN7) and kernel-based models like sGDML8 and GAP.9 A notable limitation of such

MLIPs is the need for extensive testing and physical/chemical insight from experts for pa-

rameter selection to manually create the features. The efficiency of these models is strongly

influenced by the selection of descriptors. Furthermore, to accurately describe multi-element

systems, these models typically require a larger set of descriptors because they omit atomic

type information. This omission can lead to additional computational costs and compromise

the performance of the models for complex chemical systems. To overcome these challenges,

end-to-end NNPs have emerged that are capable of directly learning the mapping from nu-

clear charges and Cartesian coordinates of atomic structures to atomic features, all within

the model itself. Most end-to-end NNPs have been inspired by the graph neural network ar-

chitectures,10 specifically referred to as message-passing neural networks (MPNNs).11 In the

context of MPNNs, atomic structures are conceptualized as undirected graphs, where atoms
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are depicted as nodes and atomic bonds serve as the edges between these nodes. Geometric

information (radial distance and angles) from neighboring nodes within the cutoff radius is

collected through a message layer to compute the features of a specific atom, which is subse-

quently refined by an update layer. Such a message-passing scheme is performed iteratively

to refine the node features, which are finally fed into a simple feed-forward neural net-

work to predict the desired properties of the chemical systems. Prominent examples include

DTNN,12 PhysNet,13 Schnet,14,15 and DimeNet16 etc. By operating on interatomic distances

and using scalar feature representations, these models ensured that the model output and

atomic features were invariant to rotations and translations. However, it is noteworthy that

many essential chemical properties, such as forces and dipole moments, are equivariant to

rotations of the chemical systems. Using rotationally-invariant features might result in the

information loss of these directional properties, compromising model performance. A prac-

tical solution is to use advanced feature representations like vectors and tensors, combined

with rotationally equivariant message and update functions.17,18 For example, Batzer et al.

introduced the NequIP architecture, where model equivariance is realized by encoding rela-

tive position vectors through spherical harmonics and utilizing Clebsch-Gordon coefficients

for a higher-order tensor product.19 This approach significantly enhances model accuracy

and showcases outstanding data efficiency. Additionally, incorporating higher body orders

interactions, instead of limiting to just two-body terms in the message functions, can further

enhance model performance, as evidenced by Batatia et al.20 In addition, although the sim-

ulation speed of MLIPs is significantly faster than ab-initio methods, it is still far away from

satisfaction. There is still room for these MLIPs to be better optimized and accelerated for

realistic long- and large-scale simulations.

For MLIPs to effectively address real-world challenges, datasets derived from ab-initio

calculations must comprehensively encompass the chemical conformational space. Capturing

the vast chemical space requires extended ab-initio simulations, which are often prohibitively

expensive. An economical alternative is to use empirical force fields or pre-trained surrogate
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models, though these often yield redundant configurations. It becomes essential to select

representative structures from these datasets, annotate them using density functional the-

ory (DFT) calculations, and incorporate them into model retraining — a process known as

active learning. Iteratively employing this approach can significantly reduce the time and

computational cost of constructing MLIPs for realistic simulations. There are two major

concerns in this approach. Firstly, when applied to the undersampled configuration space,

the pre-trained MLIPs may exhibit unpredictable behaviors, yielding nonphysical structures

that are not meaningful for labeling. To address this, it is crucial that these MLIPs are

uncertainty-aware, enabling the simulation to cease when the models lack confidence in

their predictions. Moreover, the model uncertainty also serves as a vital metric to ensure

that production simulations using MLIPs remain within their designated application do-

main. There are a variety of uncertainty estimation (UE) methods for chemical systems.21

Gaussian process models are known for their inherent ability of straightforward uncertainty

estimations,22–24 while methods like deep ensembles25–27 and Monte-Carlo dropout28,29 are

commonly employed in neural network models where explicit uncertainty estimations are

not available. Secondly, structures chosen from MLIP simulations should be strategically

selected with effective algorithms to maximize the improvement in the quality of the training

dataset. Query-by-committee (QBC) is the most commonly adopted active learning strategy

where data points are selected for labeling based on the highest uncertainty or disagreement

among a committee of models; in this process, individual data points are iteratively chosen

and labelled for subsequent model training.27,30,31 In the context of constructing MLIPs,

acquiring batches of data points in each active learning iteration is considerably more effi-

cient than labeling individual ones, minimizing the frequency of model retraining. While the

naive QBC strategy for batch active learning ensures individual data points are informative,

it does not guarantee this for the entire batch. To address this challenge, significant efforts

have been dedicated to developing batch active learning algorithms that exploit both the

uncertainties and diversity of the candidate datasets.32–35
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Despite significant advancements in model development, uncertainty quantification, and

active learning algorithms, a comprehensive automated workflow integrating these compo-

nents remains elusive. The generation of high-quality data largely relies on the expertise

of materials scientists and chemists, who may not often be familiar with machine learn-

ing and active learning concepts. A challenging learning curve can deter their vital data

contributions for machine learning potentials. An intuitive, autonomous workflow for de-

veloping high-fidelity MLIPs can help bridge the knowledge gap between MLIP users and

developers. This workflow should include prioritizing model performance, ensuring thorough

validation of production simulations, optimizing data acquisition efficiency, and maintaining

user-friendliness.

In this paper, we introduce CURATOR, an autonomous active learning workflow devised

for the construction of high-fidelity graph neural network potentials. This workflow seam-

lessly integrates cutting-edge equivariant MPNNs—specifically PaiNN,36 NequIP,19 and

MACE,20 targeting accurate predictions for specific properties within chemical systems. To

ensure the robustness of simulations driven by the trained MLIPs, our approach incor-

porates a variety of uncertainty quantification techniques. We have incorporated efficient

active learning strategies that can efficiently identify the most informative batches of struc-

tures from production simulations, adaptively enhancing model reliability and expanding

their applicability across a broader chemical space. These strategies exploit both the model

uncertainties and diversity of the candidate atomic configurations, improving the efficiency

of batch mode data acquisition. Through rigorous testing across diverse chemical systems—

ranging from simple molecules to intricate periodic molten glass structures, we demonstrate

that the algorithms can remarkably enhance data acquisition efficiency. This, in turn, sub-

stantially reduces the time required to train high-quality MLIPs. In order to further acceler-

ate the simulation speed of these MLIPs, we have developed an efficient gradient computation

method that calculates forces and stress based on the energy derivative with respect to rel-

ative position vectors. Lastly, by integrating the entire workflow with myqueue,37 we have
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achieved full automation in the task scheduling on modern computer clusters for various job

types within the framework.

Figure 1: Schematic diagram of active learning workflow

Figure 1 outlines the various procedures for fitting MLIPs. Initially, users must provide a

small dataset comprising atomic configurations derived from DFT calculations. This dataset

could originate from diverse calculations, such as a short MD trajectory, configurations from

structural optimizations, or nudged elastic band calculations, among others. This initial

dataset serves as the foundation for training the GNN model. Within this process, atomic

configurations are mapped into graph representations, which are then modeled using feed-

forward neural networks. Training stops when there is no improvement in validation error

over a specified number of steps. The resulting models can then be used to generate data via

methods like molecular dynamics, Monte Carlo simulations, or other user-specified applica-

tions. Using our reliable uncertainty toolbox, simulations are guaranteed to stay within the
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application domain of the trained models; if not, the simulations are immediately stopped.

The much improved computational efficiency of MLIPs allows for the fast generation of

numerous candidate structures. Batch active learning algorithms are then used to identify

the most informative batches for refining the model among these candidates. This involves

feature engineering for maximizing the information of individual candidate structures and

minimizing the overall memory usage for storing the information, and effective algorithms

that exploit the model uncertainties and data diversity. The chosen data points are sub-

sequently labelled via DFT single-point calculations and incorporated into the initial DFT

dataset for model refinement. Such a process will be iteratively performed until the derived

GNN models are reliable, accurate, and stable enough for designated simulations. In the

subsequent sections, we delve into the specifics of various procedures within the workflow.

The remainder of this paper is structured as follows:

1. Machine learning interatomic potentials: We present several state-of-the-art

Message Passing Neural Networks (MPNNs) utilized in our workflow, summarizing the

trade-offs between model accuracy and speed. We also introduce an efficient method

for gradient computation.

2. Batch active learning: This section introduces the active learning methods employed

in our workflow, detailing the features and crucial transformations used for representing

atomic structures. The efficacy of various active learning strategies is demonstrated

through several selected benchmark systems.

3. Uncertainty Estimation Methods: We outline the uncertainty estimation methods

integrated within the workflow and assess their performance against several critical

criteria relevant to practical applications.

4. Autonomous workflow: Here, we illustrate how the aforementioned components are

seamlessly incorporated into our active learning workflow.

5. Conclusion: Finally, we conclude with our remarks, summarizing the key findings
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and implications of our work.

Machine learning interatomic potentials

Model training and evaluation

The workflow integrates a series of cutting-edge equivariant message-passing neural networks,

specifically PaiNN,36 NequIP,19 and MACE.20 Within these models, each atom is linked

to features that encompass tensors of various orders, ranging from scalars and vectors to

even more complex higher-order tensors. Leveraging these high-order features guarantees

the rotational equivariance of the model, enhancing the accuracy of predictions related to

directional attributes, such as dipole moments and forces. Adopting the notations from ref.,19

the feature vectors V
(l,p)
acm can be indexed by the rotation order l and the parity notation p.

Here, the term “rotation order” refers to a non-negative integer l=0,1,2,... and the parity

p can either be 1 or -1. Together, they label the O(3) irreducible representations of atomic

features. Among the discussed models, PaiNN exclusively employs l=1 vectors and ignores

parity transformation. This approach simplifies the dimensionality of the features, enabling

PaiNN to achieve faster training and inference speeds without necessarily compromising on

accuracy. In contrast, NequIP typically utilizes l=2 vectors and takes into account parity

transformation. While this improves model accuracy, it demands greater computational

resources. In both architectures, usually more than three message-passing layers are required

to achieve desired accuracy levels. MACE differentiates itself by incorporating higher body-

order interactions in its message functions, allowing for only two message-passing iterations

to attain high accuracy. This design potentially optimizes computational efficiency while

maintaining excellent model performance. For more detailed information on the models,

please refer to the respective publications.

Figure 2 illustrates the trade-off between model accuracy, quantified by the mean abso-

lute error (MAE) of forces, and inference speed. The models are trained using the aspirin
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molecule data from the MD17 dataset, comprising 2,000 training, 1,000 validation, and 5,000

independent test data points. More details about the error metrics and inference speed for

each model can be found in Table S1. The inference time for each model is evaluated on

a diamond structure with 1000 atoms using an NVIDIA V100 GPU. This structure has an

average of 86 neighbors per atom with a cutoff radius of 5.0 Å. It is important to highlight

that the inference time generally remains consistent regardless of the number of atoms in

the system, until all the GPU threads are occupied. As anticipated, the error diminishes

with an increase in the number of message-passing layers and node feature size. However,

beyond a certain threshold, increasing the number of layers and node feature size yields only

marginal improvements in accuracy. It is clearly seen that both NequIP and MACE have

shown outstanding model accuracy, while at a cost of much heavier computation as shown

in Figure 2c and d. Therefore, it is recommended to use cheap PaiNN model for collecting

training data points with active learning while to use more accurate models like MACE or

NequIP for final production simulations.

Efficient gradient calculation

In the original implementations of GNN model, the total potential energy of the chemical

system is calculated by aggregating individual atomic energies. Concurrently, atomic forces

are generally derived from the negative gradients of the atomic energy with respect to atomic

coordinates:

E =
∑
i∈N

Ei (1)

F⃗i = −∇iE (2)

This approach respects the energy conservation constraint, which is important for improving

the stability of simulations such as molecular dynamics.38 Notice that the models never

directly use the coordinates of atoms r⃗i to determine atomic energies. Instead, they rely
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Figure 2: (a) and (b) Model accuracy (force MAE) of employed models plotted against the
number of message-passing layers and the number of node features, respectively. (c) and
(d) Inference time of employed models plotted against the number of message-passing layers
and the number of node features, respectively.

solely on the relative position vector r⃗ij = r⃗j − r⃗i and its length ∥ r⃗ij ∥ in the message layers,

which are typically obtained via neighbor-list algorithms from various codes like ASE,39

ASAP3,40 MatScipy,41 or NNPOps.42 Therefore, the atomic energy is exclusively a function

of r⃗ij:

Ei = Ei({r⃗ij}i ̸=j) (3)

The automatic differentiation feature in PyTorch,43 which is typically the backend of most

GNN models, enables the convenient computation of negative gradients of total potential

energy with respect to the model inputs, i.e. relative position vectors. Yet, the derivative

∂r⃗ij/∂r⃗i remains a missing map for force calculations. For non-periodic systems, this deriva-

tive is straightforward to compute, whereas periodic systems require consideration of cell

displacements, adding extra computational overhead during data preprocessing. In contrast,
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our implementation calculates forces as follows:

F⃗i ≡ −∂E

∂r⃗i
≡ −

∑
i

∂Ei

∂r⃗i

= −
∑
j ̸=i

(
∂Ej

∂r⃗i

)
− ∂Ei

∂r⃗i

= −
∑
j ̸=i

(∑
k ̸=j

∂Ej

∂r⃗jk

∂r⃗jk
∂r⃗i

+
∂Ei

∂r⃗ij

∂r⃗ij
∂r⃗i

)

= −
∑
j ̸=i

(
∂Ei

∂r⃗ij
− ∂Ej

∂r⃗ji

)
(4)

In this way, the forces can be computed with only −∂E/∂r⃗ij that can be directly obtained

with automatic differentiation. This bypasses the need to compute cell displacements and

re-calculate relative position vectors, streamlining the process. Additionally, by using the

neighbor list of individual atoms, we can independently determine the total forces for each

atom, which offers significant potential for massively parallel implementation.

Moreover, this method can also notably reduce the effort required to compute the stress

of the chemical system by using an explicit analytical expression for virial tensors. Typically,

the stress tensors of a periodic system can be calculated with the first-order derivative of the

total energy E with respect to small strains.44 This method requires applying a symmetrical,

infinitesimal strain deformation to the periodic system prior to the model prediction. Fol-

lowing this, the gradients of the total energy related to the strain tensors must be calculated.

This process doubles the computational burden of gradient calculations, which represent the

most significant computational expense in model prediction. In our implementation, it is

worth noting that the computed force is pairwise and adheres to Newton’s third law:

F⃗ij = −F⃗ji = −∂Ei

∂r⃗ij
+

∂Ej

∂r⃗ji
(5)

where F⃗ij is the force exerted by atom j on atom i. The viral tensors can then be calculated
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by:

W =
∑
i

Wi = −1

2

∑
i

∑
j ̸=i

rij ⊗ F⃗ij (6)

This method employs an explicit expression for computing the virial stress tensors, elim-

inating the need for computationally intensive gradient calculations associated with stress

tensors.

Batch active learning

Active learning operates in two primary modes. In naive active learning, the algorithm

continuously selects and labels the single most informative sample, updating the model

after each instance. If utilizing this strategy to select a batch instead of an individual

sample, multiple informative but similar samples could be selected, potentially making the

labeling of these samples redundant. This becomes especially critical in specific simulations.

For example, in MLMD simulations, the extrapolative structures selected by naive active

learning often present in a short time interval right before the simulation ends, as illustrated

in Figure 4a and c. Even though each of these structures is individually informative, their

similarity can lead to only marginal improvements during subsequent model retraining due to

the overlap in information. On the other hand, batch active learning is designed to choose

and annotate sets of samples simultaneously, prioritizing both uncertainty and diversity

within the batch. Optimal batch active learning methods aim to choose samples that have

high uncertainties while minimizing information redundancy, as illustrated in Figure 4b

and d. Achieving this involves measuring atomic configuration similarities and strategically

excluding similar structures from a batch. This process takes into account the features

used to describe atomic structures and efficient selection algorithms, details of which will be

discussed in the subsequent sections.
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Figure 3: Schematic illustrations of active learning strategies: (a) naive active learning
and (b) batch active learning methods for selecting data points from an MD simulation
trajectory; (c) naive active learning and (b) batch active learning methods for selections in
a two-dimensional space.

Feature engineering

Before exploring active learning selection, we must first extract features from our trained

models for the candidate structures. Additionally, it is essential to understand the kernel

matrix used in active learning. The following content is based on the framework from Ref.,35

where further details are provided. For a sequence of atoms taken from these structures,
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represented as X = (x1, ...,xn) ∈ Rn×d, the corresponding feature matrix can be defined as:

Φ(X )T =


ϕ(x1)

T

...

ϕ(xn)
T

 ∈ Rn×dfeat (7)

In this context, ϕ(xi) represents the feature map for an individual atom derived from the

model. The local environments of two atoms i and j then can be compared by using the sim-

ilarity kernel k(xi,xj) = ⟨ϕ(xi), ϕ(xj)⟩. Expanding on this, we can compute the covariance

matrix k(X ,X ) = (k(xi,xj))i,j ∈ Rn×n that encompasses all pairwise similarity within the

feature matrix. There are various ways to construct the feature map and the kernel matrix.

Besides, in order to make these kernels being more suitable to be applied for a selection

method, some kernel transformation methods are often needed. In the following, we will

introduce several kernels and transformation methods used in this study.

GNN kernel: The most intuitive approach for obtaining feature maps is leveraging the

scalar node features derived from the outputs of the message-passing layers within MPNNs.

This corresponds to the feature map ϕgnn and the graph neural network kernel kgnn. Al-

though evaluating this kernel through model prediction is generally fast and convenient, it

solely contains the information necessary for computing the potential energy of the chemical

system, ignoring the gradients of the systems. This could potentially limit its ability to

accurately describe the atomic environment, consequently compromising the effectiveness of

batch selection methods.

Full gradient kernel: Compared to GNN kernel, the full gradient kernel takes use of

all gradients from the model to construct the feature map, which can be expressed as:

ϕgrad(x) := ∇θfθT (x) (8)

where θT is the parameter vector of the trained model. The intuition of this method is

15



that the magnitude of the gradients implies the required adjustments of the parameters in

different dimensions, and thus can be used to evaluate the distance between different samples.

Besides, it also indicates the gap between predictions and correct values, enabling it to be a

potential indicator of model uncertainty.45

The number of parameters in deep learning models can often be large, therefore it is

intractable to get the gradients of all these parameters and to use the ultra-high-dimensional

features for selection. Fortunately, the feature map ϕgrad can be simplified by using the

product structure of NNs, which can significantly reduce the runtime and memory usage for

kernel evaluation.35

z
(l+1)
i = W̃ (l+1)x

(l)
i , W̃ (l+1) := (W (l+1) b(l+1)) ∈ Rdl+1×(dl+1), x̃

(l)
i =

x
(l)
i

1

 ∈ Rdl+1 (9)

ϕgrad(x
(0)
i ) =

(
dz(L)

dW̃ (1)
, . . . ,

dz(L)

dW̃ (L)

)
=

(
dz

(L)
i

dz
(1)
i

(x̃
(0)
i )T , . . . ,

dz
(L)
i

dz
(L)
i

(x̃
(L−1)
i )T

)
(10)

Given that ϕgrad encompasses gradient contributions across different layers, sometimes it

is required to balance the magnitudes of the gradients in different layers via parameter

initialization46 or normalize the gradients post hoc. While the aforementioned derivations

were initially intended for fully connected neural networks (NNs), they can also be extended

for application to the FFNN component within MPNNs. This adaptation is precisely how

the full gradient kernel was employed in the context of this study.

Last layer kernel: The dimensionality of a full gradient feature map can often be too

large. A simple approximation to this is only using the gradients of parameters in the last

layer of NNs as the feature map ϕll.47 From equation 10, it is evident that ϕll is just the

input of the last layer.

Average transformation: Note that the number of atoms in the pool dataset can be

vast, often ranging from several millions to billions. Direct pairwise comparisons pose sig-

nificant challenges in terms of memory consumption and computational efficiency. Thus,
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merging the local feature maps of atoms to generate a global similarity measurement for

structures is a more practical approach. When comparing two structures, a straightfor-

ward method is to use the average kernel. It is important to clarify that in this context,

the term “average kernel” is somewhat misleading. It encompasses both the mean feature

map of a group of atoms relative to a structure and the cumulative sum of feature maps.

Mathematically, this can be represented as:

ϕ(Si) = ϕ→avg(x) =
Natoms∑
n=1

ϕ(xn) (11)

where Si denotes a structure and ϕ→avg(x) denotes the transformation for feature maps. This

notation will also be used for other transformations hereafter. Although this method can lead

to some information loss, its small computational cost can greatly accelerate the selection

and minimize memory consumption. More accurate methods like regularized entropy match

(REMatch) can also be used to construct the global similarity kernel.48

Diagonal kernels: Diagonal kernels correspond to the metrics that are used for naive

active learning. These metrics can individually indicate the informativeness of selected sam-

ples while capturing no correlation between them. There are multiple ways to select these

metrics. When the labels (i.e., material properties like energy and forces) of samples are

known, the absolute error (AE) between true values and predictions can serve as a suitable

indicator for the informativeness of individual samples. The absolute error of energy and

forces are considered in this study, which can be expressed as:

△E(S) = |Epred − Etrue| (12)

△F (S) =
1

3Natoms

Natoms∑
i=1

3∑
j=1

| #«F pred
ij − #«

F true
ij | (13)

These two kernels will be referred to as AE(E) and AE(F) hereafter. When the labels of

samples are unknown, we can then use some sampling-based UE methods to evaluate the
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disagreements between different predictions that obtained from different models or Monte-

Carlo dropout, thus obtaining the uncertainty. There are multiple ways to calculate the

disagreements, here we simply use the standard deviation of different predictions, which can

be expressed as:

σE(S) =

√√√√Npred∑
n=1

(Epred − Etrue)2 (14)

σF (S) =

√√√√ 1

3NatomsNpred

Npred∑
n=1

Natoms∑
i=1

3∑
j=1

(
#«

F pred
ij − #«

F true
ij )2 (15)

These two kernels will be referred to as QBC(E) and QBC(F) hereafter.

Random projections: Although the last-layer kernel can approximate the full gradient

kernel to some extent, the information loss due to the discarded gradients can be large,

undermining its ability to describe atomic environments. Random projections, also known

as sketching, can be used to approximate a high-dimensional feature by a lower-dimensional

feature.

ϕ→rp(p)(x) :=
1
√
p
Uϕ(x) ∈ Rp (16)

where U ∈ Rp×dfeat is a random matrix with entries drawn from a standard normal dis-

tribution. In the case of feature map ϕgrad→avg(x), the following approximations are em-

ployed to simplify the sum and product of feature maps ϕ(x) := (ϕ1(x), ϕ2(x))
T and

ϕ(x) := ϕ(x1)⊗ ϕ(x1):

ϕ→rp(p)(x) := ϕ1→rp(p)(x1) + ϕ2→rp(p)(x1) (17)

ϕ→rp(p)(x) := ϕ1→rp(p)(x1)⊗ ϕ2→rp(p)(x1) (18)

In this way, the full gradient feature map can be conveniently transformed into features with

p dimensionality.
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Gaussian process transformation: Gaussian process posterior transformation is de-

rived from a Bayesian linear regression model with respect to feature ϕ(x), where the atom-

wise property yi can be modeled by yi = wTϕ(x) + ε.49 After observing the training data

Dtrain with inputs Xtrain, it is well known that the posterior covariance k(x,x∗|Xtrain) can

be obtained by:

k(x,x′|Xtrain) = k(x,x′)− k(x,Xtrain)(k(Xtrain,Xtrain) + σ2I)−1k(Xtrain,x
′) (19)

= ϕ(x)T (I − Φ(Xtrain)(Φ(Xtrain)
TΦ(Xtrain) + σ2I)−1)ϕ(x′) (20)

Using the matrix inversion lemma (also known as the Woodbury matrix identity)49 we can

get:

k(x,x′|Xtrain) = σ2ϕ(x)T (Φ(Xtrain)
T (Φ(Xtrain) + σ2I)−1ϕ(x′), (21)

which leads to an explicit feature map:

ϕ→gp(x) = σ(Φ(Xtrain)
T (Φ(Xtrain) + σ2I)−

1
2ϕ(x). (22)

This feature map can then be used for measuring the similarity between structures. The

idea of this transformation can be seen as approximating the feed-forward NN in MPNNs

as a Bayesian NN, providing a fast and robust way to evaluate model uncertainty. We

will demonstrate in the subsequent section that this operation is indeed equivalent to using

Mahalanobis distance for out-of-distribution detection.50

On the basis of the above kernels and transformations for atomic features, we come up

with 6 different combinations, namely ϕgnn→avg(x), ϕgrad→rp→avg, ϕll→avg, ϕgrad→rp→avg→GP ,

ϕll→rp→avg, ϕgrad→rp→avg→GP . A suitable tool to evaluate their ability to accurately repre-

sent atomic structures and differentiate similar structures is t-SNE (t-Distributed Stochastic

Neighbor Embedding),51 which embeds the high-dimensional data points for visualization in
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Figure 4: t-SNE plot of the applied kernels and transformations on the features derived from
MD17 dataset.

a low-dimensional space by using probability distributions. Figure 4 depicts the distribution

of various molecules from the MD17 dataset, visualized using t-SNE and the kernels men-

tioned above. From Figure 4a, it is evident that solely relying on the GNN kernel ϕgnn→avg(x)

is not enough to capture the structural differences between these molecules. Introducing ran-

dom projection transformation to the GNN kernel offers a moderate improvement, as seen

in Figure 4d, but distinguishing between different structures remains challenging. In stark

contrast, both the full gradient kernel and the last gradient kernel demonstrate superior capa-

bility in capturing the structural characteristics of these molecules, evidenced by the distinct

separations in Figures 4b, c, and e. We also evaluated the impact of Gaussian process trans-
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formation, illustrated in Figure 4f. Regrettably, no obvious improvement is observed by

using this transformation as it is mainly targeted for better uncertainty evaluation.

Batch mode selection

With the defined kernels above, we can then use some selection methods to select data points

from the pool data set. Based on the above results that only ϕgrad→rp→avg and ϕll→avg well

represented the distribution of atomic structures, only these two kernels are employed for

selection. In the following, we will briefly introduce several selection methods used in this

study. ‘35,52 Here we use Xpool, Xsel, Xbatch to denote the pool dataset, selected data points,

and the batch to be selected, respectively.

Random: Random selection will serve as a baseline for the selection methods and will

be denoted as Random. The batch data points Xbatch will randomly draw from an uniform

distribution

NextSample(k,Xsel,Xpool) ∼ U(Xpool) (23)

The selection continues until Nbatch number of data points have been collected.

Naive active learning: If using k(x,x) as the uncertainty of data point x, naive

active learning can be conceptualized as selecting data points corresponding to the maximum

diagonal elements of k(Xpool,Xpool). This method encompasses all QBC methods that employ

uncertainty as their selection criterion and will be termed as MaxDiag hereafter. The

selection strategy can be expressed as

NextSample(k,Xsel,Xpool) = argmax
x∈Xpool

k(x,x). (24)

This method only considered the informativeness of individual data points while ignoring

their similarities, which can lead to similar or even identical data points in Xbatch.

Greedy determinant maximization: Compared to MaxDiag, the determinant max-
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imization approach, referred to as MaxDet, curates an optimal batch Xbatch by maximizing

the determinant of k(Xsel ∪Xbatch,Xsel ∪Xbatch). This can be formalized as

NextSample(k,Xsel,Xpool) = argmax
x∈Xpool

det(k(Xsel ∪ {x},Xsel ∪ {x}) + σ2I) (25)

This method accounts for the correlation among selected points, effectively ensuring un-

certainty and data diversity within the chosen batches. Calculating the determinants of

batches with diverse data points is usually intractable. To alleviate computational complex-

ity, the greedy algorithm utilizing partial pivoted matrix-free Cholesky decomposition53 is

employed. Notably, this approach aligns with the D-optimal design principles previously

applied in active learning for machine learning interatomic potentials.54,55

Largest cluster maximum distance: Largest cluster maximum distance (LCMD) is

a clustering method that aims to categorize data points from the pool set Xpool by assigning

them to predefined cluster centers in Xsel. Initially, every point x in Xpool is assigned to

its nearest cluster center from Xsel, with distances typically computed using metrics like

Euclidean:

c(x) := argmax
x̃∈Xsel

dk(x, x̃) (26)

The size of these clusters is determined by the sum of the distances of each member to its

cluster center:

s(x̃) :=
∑

c(x)=x̃

dk(x, x̃)
2 (27)

Following this, the point in the largest cluster that is at the maximum distance from its

center is chosen as the next cluster center.

NextSample(k,Xsel,Xpool) = argmax
s(c(x))=max s(x̃)

dk(x, c(x)) (28)

22



This iterative process continues until the desired number of cluster centers matches the batch

size. This method emphasizes both the representativeness and diversity of data points, thus

making the batch mode selection effective.

We conducted experiments on multiple datasets to assess the effectiveness of our selec-

tion methods and kernels. These datasets include: AIMD simulations of small molecules

from the MD17 dataset (non-periodic),38 an AIMD trajectory of bulk lithium thiophos-

phate, Li6.75P3S11 (periodic),56 and an AIMD trajectory of amorphous lithium phosphate,

Li4P2O7 (periodic).19 With a wide range of base kernels, kernel transformations, and selec-

tion modes available to us, the potential combinations were vast. This would necessitate an

exhaustive number of benchmark tests, making the task unfeasibly complex. To reduce the

complexity of benchmark tests and maintain clarity in our analysis, we strategically limited

our focus on a select few combinations that appeared most promising. we restricted the

kernels to be the full gradient and the last layer gradient, as they demonstrated a supe-

rior capability in accurately representing different structures. Both kernels are transformed

by random projections with a dimensionality of 500, which can be expressed as LL(RP)

and GRAP(RP). Consequently, our tests were streamlined to the following combinations:

Random, MaxDiag+
{

AE(E), AE(F), QBC(F)
}

, MaxDet+
{

LL(RP), GRAD(RP)
}

, and

LCMD+
{

LL(RP), GRAD(RP)
}

. Furthermore, all active learning tests are conducted with

PaiNN model because it demonstrated superior training efficiency without compromising

too much accuracy, while we anticipate that other GNN models might yield similar results.

MD17 active learning tests: We first tested these batch active learning strategies on

the MD17 dataset, which comprised of MD trajectories of small molecules. The primary

objective is to assess the effectiveness of various batch active learning strategies, utilizing a

minimal number of data points while maximizing accuracy. The MD trajectories contain a

number of frames ranging from approximately 100,000 to 1,000,000. Most of these frames are

similar, making them highly suitable for active learning tests. For each molecule, a subset of

1,000 samples will be reserved as a validation dataset for early stopping, and an additional
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5,000 samples will be used for an independent test of the model that exhibits the smallest

validation loss in each training. The models are trained on a combined loss of energies and

forces, with the energy and force weights being 0.05 and 0.95 respectively. The training

began with an initial training data set of 100 samples, drawn randomly from the remaining

pool dataset. Throughout each test, the training dataset is increased by a batch size of 100

until a total of 1,000 samples have been collected. The training stops when the validation

loss does not improve over 150 times of validation checks. Performance was measured using

multiple error metrics, including energy-based and force-based metrics like mean absolute

error (MAE), root mean square error (RMSE), and maximum error (MAXE). Particularly,

force error metrics were highlighted due to their pivotal role in atomic simulations such as

MD, NEB, and structural optimization, where energy typically serves merely as an observer.

Moreover, it is typically more challenging to achieve satisfactory force predictions.

The learning curves for the salicylic acid molecule, with a batch size of 100, are illustrated

in Figure 5. Observations from other molecules mirrored these findings, as seen in Figures S1

through S8. Notably, the LCMD+GRAD(RP) combination consistently yielded the smallest

force errors, with MAE, RMSE, and MAXE values being 0.182, 0.286, and 0.868 kcal/mol/Å,

respectively. This is in stark contrast to the baseline method Random, which exhibited force

MAE, RMSE, and MAXE values of 0.289, 0.740, and 2.860 kcal/mol/Å. Remarkably, the

LCMD+GRAD(RP) combination achieved similar force accuracy to the Random method

but used only half the data points (500 configurations), recording 0.332, 0.563, and 1.768

kcal/mol/Å for force MAE, RMSE, and MAXE, respectively. As anticipated, some naive

active learning strategies, notably MaxDiag+AE(E) and MaxDiag+AE(F), distinctly un-

derperformed compared to Random, highlighting the crucial importance of utilizing refined

batch active learning methods. It is worth noting that the force MAXE learning curve of

LCMD+GRAD(GP) is notably stable. This metric is often associated with the stability of

MD simulations, as large force errors can lead to the rapid collapse of a simulation within a

short time interval. Consequently, we expect that this approach will considerably enhance
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Figure 5: Learning curves for the salicylic acid molecule data from MD17. (a) The mean ab-
solute errors (MAE), (b) root-mean-square errors (RMSE), and (c) maximum errors (MAXE)
of atomic forces plotted against the training set size acquired from different active learning
strategies. (d) The MAE, (e) RMSE, and (f) MAXE of total potential energies plotted
against the training set size acquired from different active learning strategies.

the stability of the simulations. Compared to the learning curves of force error metrics,

those for energy error metrics show significantly greater fluctuations. We attribute this to

the excessively low loss of weight assigned to energy. We expect that either increasing the

loss weight for energy or training energy-only models could yield learning curves similar to

those of force metrics.

LiPS active learning tests: In realistic simulations, chemical systems typically contain

a larger number of atoms than the small molecules in MD17, and many of them are periodic

structures. To evaluate batch active learning strategies in more general and more challenging

contexts, we incorporated two additional datasets with periodic structures. All the active

learning procedures employed remain consistent with the MD17 case. Specifically, we first
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Figure 6: Learning curves for the salicylic acid molecule data from LiPS dataset. (a) The
mean absolute errors (MAE), (b) root-mean-square errors (RMSE), and (c) maximum errors
(MAXE) of atomic forces plotted against the training set size acquired from different active
learning strategies. (d) The MAE, (e) RMSE, and (f) MAXE of total potential energies
plotted against the training set size acquired from different active learning strategies.

employ a dataset for Li6.75P3S11 (LiPS), a crystalline superionic Li conductor with 83 atoms

in a 12.38×12.26×12.44× Å triclinic cell.56 This dataset contains 25,001 MD frames that are

derived from a 50 ps NVT AIMD simulation at 520K with a timestep of 2 ps. From these,

1,000 frames serve as the validation set, 5,000 are designated for independent testing, and the

rest form the pool set for active learning selection. As shown in Figure 6, it is evident that

LCMD+GRAP(RP) consistently surpasses other methods in terms of force MAE and RMSE,

with the exception of MaxDiag+QBC(F) in the last iteration. The force MAE However,

we point out that the superiority of MaxDiag+QBC(F) is not because it is a more effective

active learning strategy. Instead, its advantage stems from utilizing an ensemble of five
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models for predictions. It is widely recognized that employing an ensemble can yield higher

accuracy compared to a single model.57,58 We observed that LCMD+GRAP(RP) showed

only a marginal improvement over Random in comparison to the MD17 cases. Meanwhile,

both MaxDiag-AE(E) and MaxDiag-AE(F) methods lagged notably behind Random.

We believe that the limited conformational space explored by a 50 ps AIMD simulation may

be the reason. As a result, a batch size of 100 appears sufficient for the Random approach to

sample a representative number of informative data points from the pool set. This leads to

accuracy levels that are on par with LCMD. In contrast, methods based on MaxDiag tend

to sample data points over very short time intervals in this case, which can result in worse

learning behaviors. We expect that batch active learning methods will be more crucial for the

pool set with larger conformational spaces when using larger batch sizes. Additionally, the

optimal batch size may vary depending on the specific chemical system under consideration.

LiPO active learning tests: We have extended our tests to the more intricate system

of molten glass, Li4P2O7 (LiPO).19 This system comprises 64 Li, 32 P, and 112 O atoms

within a 10.58×13.96×16.08 cell. The dataset encompasses 25,000 MD frames, sourced from

a 50 ps NVT AIMD simulation at 3000K, using a time step of 2 ps. Despite LiPO having

a greater number of atoms and exhibiting higher levels of disorder compared to LiPS, we

observed a notable similarity in their learning behaviors, both exhibiting significant gaps

between the learning curves of MaxDiag-based methods and Random with respect to

force MAE and RMSE. Consequently, we infer that the effectiveness of batch active learning

approaches is largely influenced by the conformational space of the pool set and the selected

batch size, rather than the size and complexity of the chemical systems.

Based on our test results, several key insights emerge. Firstly, for pool sets with limited

conformational space or when large batch sizes are used, we recommend avoiding the use

of MaxDiag-based methods for data point selection. Secondly, the consistently superior

performance of LCMD+GRAP(RP) across various test systems and tasks suggests it is

a reliable choice for all scenarios. Finally, our analyses further reveal that the GRAD(RP)
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kernel consistently outperforms LL(RP) during active learning tests, emphasizing the crucial

importance of selecting robust features that well represent atomic structures.

Figure 7: Learning curves for the salicylic acid molecule data from LiPO dataset. (a) The
mean absolute errors (MAE), (b) root-mean-square errors (RMSE), and (c) maximum errors
(MAXE) of atomic forces plotted against the training set size acquired from different active
learning strategies. (d) The MAE, (e) RMSE, and (f) MAXE of total potential energies
plotted against the training set size acquired from different active learning strategies.

Uncertainty-aware simulation

Although MPNNs have shown outstanding performance in the sampled configurational space,

they tend to perform poorly on out-of-distribution (OOD) data. In this context, the role

of uncertainty estimation (UE) becomes crucial, ensuring the model predictions are always

reliable during active learning iterations or production simulations. Wollschläger et al.59

introduced several crucial criteria for the effective application of UE methods:
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• Accuracy: Precision in simulations is of utmost importance. An effective UE method

should be able to deliver reliable uncertainty metrics without compromising model

accuracy.

• Speed: Ideally, a UE method should be optimized such that it introduces marginal

computational overhead, especially in some computationally heavy tasks like MD sim-

ulations.

• Confidence–aware: It is crucial that the method can discern and notify when a partic-

ular atomic structure is outside the domain of training.

Ideal UE methods should meet all these criteria to effectively handle the diverse and intricate

tasks presented in atomistic simulations. UE methods can be roughly categorized into two

groups based on how the predictions are made: sampling-based and sampling-free methods.

Sampling-based methods, such as the deep ensemble and Monte Carlo dropout, rely on

the disagreements among multiple predictions to determine uncertainty. A greater variance

in predictions corresponds to increased uncertainty, and vice versa. On the other hand,

sampling-free methods generally utilize a single forward pass to uncertainty through the

analysis of the distributions of learned features. In our workflow, the following UE methods

are available for various atomistic simulations.

Deep ensemble is considered the gold standard solution for uncertainty estimation.58

An ensemble usually comprises diverse models trained with varied architectures or initializa-

tions. When these models generate different predictions, measuring disagreements such as

the standard deviation among them can provide an estimation of uncertainty. In the context

of atomistic simulations, the standard deviation of energies or forces can serve as an indi-

cator of the uncertainty associated with an atomic structure, as illustrated in Equation 14

and Equation 15. Although ensembles often improve Accuracy and fulfill Confidence–

aware,30,60 they come at the cost of increased computational complexity, both in training

and inference, thus fail at Speed.

Monte Carlo dropout (MCD) incorporates dropout into deep learning models, en-
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abling the estimation of model uncertainty during predictions. By performing multiple

forward passes with dropout, we can treat the collection of predictions as samples from

a distribution, which captures the model uncertainty about its prediction for the input.

Therefore, the formulations of energy and force uncertainties align with Equation 14 and

Equation 15 as seen in the ensemble case. Since MC dropout involves deactivating neurons

within a single model, it necessitates the training of only one model, thereby conserving

substantial effort in the training process. Nevertheless, the random deactivation of neu-

rons can occasionally undermine the predictive accuracy of the model. Furthermore, even

though training is limited to a single model, inference still requires multiple forward passes,

challenging the Speed criterion.

Mahalanobis distance quantifies the distance between a point and a distribution,

taking into account the correlations of the data set and the scale of the features in different

dimensions. Therefore, this method is very useful for detecting samples that are out of the

distribution of the training data set. Formally, the Mahalanobis distance d(Si, QS) between

a structure Si and a distribution of training set QS with mean µS and covariance matrix ΣS

is defined as:

d(Si, QS) = (Si − µS)
TΣ−1

S (Si − µS) (29)

Clearly, the expression is equivalent to Equation 21 when a small noise is introduced to the

covariance matrix Σ and the input is normalized to the training dataset. When employing

the GNN base kernel, this approach can be seen as computing kgnn→avg→gp(Si,Si), which is

the diagonal element of kernel matrix kgnn→avg→gp(S,S). Choosing a simple identity matrix

as the covariance matrix translates to computing the Euclidean distance. We will demon-

strate in subsequent tests the importance of the covariance matrix for reliable uncertainty

estimation by comparing the Mahalanobis and Euclidean distances. It is worth noting that

this method exclusively utilizes the features derived from a singular model forward pass
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and leverages a precomputed covariance matrix to compute Mahalanobis distance. As a

result, the model accuracy remains consistent with the original one, with only a marginal

computational overhead introduced for evaluating the distance metrics.

Local Mahalanobis distance is different from Mahalanobis distance by reversing the

order of sum and GP transformation, which can be represented as kgnn→gp→avg(Si,Si). The

corresponding Mahalanobis distance is then given by:

d(Si, Qx) =
∑
xi∈S

(xi − µx)
TΣ−1

x (xi − µx) (30)

An immediate advantage of this modification is that the resulting uncertainty scales to the

size of atomic structures. By ensuring that uncertainty is proportional to the structural size,

this method offers a refined uncertainty estimation for structures of varying system sizes.

We evaluated the accuracy of models on the MD17 dataset and the inference speed of

various UE methods, as presented in Tables 1 and S2. The ensemble consists of five individual

PaiNN models, each trained using different splits for training and validation. Both local

Mahalanobis and Mahalanobis distance use the original single model for prediction. For

MCD, we tested the results with the dropout ratio 0.01, 0.05, 0.10, and 0.20, here only 0.1

and 0.2 cases are reported in Table 1. In all cases, we use randomly selected 5000 structures

for training, 1000 for validation, and 5000 for independent tests. Among all the UE methods,

the ensemble consistently exhibited superior accuracy by leveraging predictions from various

models. However, a notable decline in performance was observed when MCD was applied

to the original model. From these results, we can find that only MCD fails at the accuracy

criterion. Another crucial factor for UE methods is their speed. Remarkably, Mahalanobis-

based UE methods are about five times faster than both the ensemble and MCD, yet they

offer comparable accuracy to the ensemble. Therefore, This makes them especially suitable

for running heavy simulations.

To evaluate the performance of these methods in confidence–aware criteria, we employ
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Table 1: MAE of PaiNN on MD17 with different UE methods (energies in kcal mol−1, forces
in kcal mol−1 Å−1)

Ensemble Mahalanobis MCD (p=0.1) MCD (p=0.2)

aspirin Energy 0.123 0.129 4.324 9.932
Forces 0.098 0.160 1.385 2.201

azobenzene Energy 0.137 0.138 5.004 11.470
Forces 0.043 0.063 1.134 1.821

ethanol Energy 0.051 0.052 0.779 1.498
Forces 0.053 0.088 0.707 1.101

malonaldehyde Energy 0.074 0.074 0.855 1.749
Forces 0.080 0.134 0.941 1.443

naphthalene Energy 0.113 0.112 3.354 7.686
Forces 0.032 0.043 1.012 1.603

paracetamol Energy 0.113 0.118 3.654 8.495
Forces 0.068 0.115 1.232 1.957

salicylic acid Energy 0.107 0.106 2.938 6.734
Forces 0.055 0.085 1.150 1.812

toluene Energy 0.092 0.093 2.439 5.554
Forces 0.035 0.050 1.005 1.572

uracil Energy 0.105 0.103 1.629 3.624
Forces 0.040 0.063 1.039 1.615

OOD detection based on the area under the receiver operating characteristic (AUC-ROC)

curve. Specifically, we train a model on one molecule in MD17 and examine its ability to

differentiate the remaining molecules using its uncertainty estimates. Ideally, the estimator

should produce low uncertainties for the trained molecule and higher ones for the rest. Such

behavior allows users to set a confidence threshold to trust model predictions when the

uncertainty falls below this threshold. For performance evaluation, we calculate the area

under the AUC-ROC curve of the uncertainty scores for both in-distribution (ID) and OOD

data. A score approaching 1 signifies a better ability to differentiate OOD data using the

specific UE method. Figure 8 shows the heatmap of the AUC-ROC score for each pairwise

combination of molecules obtained with different UE methods. The rows show the molecule

that the model is trained on and the off-diagonal columns are the respective OOD sample.

On the diagonal, we expect a score of 0.5 while a score of 1 is optimal on the off-diagonals.
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We found that the ensemble exhibited perfect separation between ID and OOD samples.

In contrast, another sampling-based method MCD did not show a satisfactory ability for

separating some pairs. Local Mahalanobis distance has shown comparable performance

compared to the ensemble while using much less computational cost. From Figure 8d it is

evident that using the local representation of atomic environments to calculate the covariance

matrix can significantly improve the confidence–aware ability of Mahalanobis distance. The

order of GP transformation in the kernels does matter. We further investigated the influence

of using different kernels as shown in Figure S9. It is clearly seen that only the GNN kernel

exhibited high AUC-ROC scores on off-diagonals. Although full gradient and last-layer

gradient kernels have shown exceptional performance in representing atomic structures via

t-SNE, they crucially failed at differentiating the molecules using Mahalanobis distance.

(influence of covariance matrix, influence of dropout ratio). If using an identity matrix as

the covariance matrix, this corresponds to Euclidean distance. We demonstrated in Figure

S10 that Euclidean distance is not able to achieve satisfactory OOD detection performance,

without the use of a covariance matrix.

Our workflow provides all the mentioned UE methods described above, the users can

choose suitable UE methods for their specific applications. For computationally heavy ap-

plications, local Mahalanobis distance is recommended, while for applications that need more

reliable uncertainty estimations, the ensemble is recommended.

Automated workflow

Leveraging powerful selection methods and efficient UE techniques, we have established a

comprehensive, automated active learning workflow. It is imperative to note that the differ-

ent stages in this workflow necessitate varying resource allocations. For instance, training

and machine learning-driven simulations predominantly utilize GPUs, whereas the anno-

tation of informative batches often depends on DFT codes optimized for CPUs. Besides,
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Figure 8: Heatmap displays the AUC-ROC values from SchNet on MD17. Each row rep-
resents a separate model, trained on the molecule listed to the left, and tested against all
other molecules.

these tasks are structured in a fixed sequential order. This means that one first needs to

ensure the successful completion of preceding tasks before initiating certain tasks. Recog-

nizing and adhering to these dependencies is vital to ensure the workflow operates smoothly

and efficiently. To manage job assignments across diverse hardware and inspect their exe-

cution states, we employ myqueue,37 a cluster job manager, to assign jobs on different hard

devices and to manage these jobs. Furthermore, given the need for specifying diverse hy-
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perparameters throughout different phases in the workflow, we have adopted the Hydra61

configuration framework, which allows the building of hierarchical YAML configurations. In

addition, we have integrated PyTorch Lightning62 to streamline the model training process.

In the sections that follow, we demonstrate how this workflow can be adeptly employed to

autonomously construct the MLIPs.

1 |-- data
2 | |-- custom.yaml
3 |-- labelling
4 | |-- custom.yaml
5 | |-- gpaw.yaml
6 | |-- qe.yaml
7 | |-- vasp.yaml
8 |-- model
9 | |-- representation

10 | | |-- mace.yaml
11 | | |-- nequip.yaml
12 | | |-- painn.yaml
13 | |-- nnp.yaml
14 |-- selection
15 | |-- default_selection.yaml
16 |-- simulation
17 | |-- custom.yaml
18 | |-- mc.yaml
19 | |-- md.yaml
20 | |-- neb.yaml
21 |-- task
22 | |-- optimizer
23 | | |-- adam.yaml
24 | | |-- adam_amsgrad.yaml
25 | |-- scheduler
26 | | |-- exponential.yaml
27 | | |-- reduce_on_plateau.yaml
28 | |-- default_task.yaml
29 |-- trainer
30 | |-- default_trainer.yaml
31 |-- __init__.py
32 |-- label.yaml
33 |-- select.yaml
34 |-- simulate.yaml
35 |-- train.yaml
36 |-- workflow.yaml
37
38
39
40
41
42
43
44

(a)

1 defaults:
2 - model/representation: painn
3 - task/optimizer: adam
4 - task/scheduler: reduce_on_plateau
5 - simulation: md
6 - labelling: vasp
7
8 data:
9 datapath: ./water_dft.traj

10 cutoff: 5.0
11 batch_size: 16
12 num_train: 2000
13 num_val: 1000
14 atomic_energies: auto
15 atomwise_normalization: True
16
17 model:
18 representation:
19 num_interactions: 3
20 num_features: 64
21
22 task:
23 scheduler_monitor: val_loss
24 optimizer:
25 lr: 0.005
26 scheduler:
27 factor: 0.5
28
29 simulation:
30 uncertainty: local_mahalanobis
31 simulator: md
32 params:
33 load_traj: ./water_dft.traj
34 max_steps: 1000000
35
36 selection:
37 kernel: full-g
38 selection: lcmd_greedy
39 n_random_features: 500
40 batch_size: 200
41
42 labelling:
43 dft_code: vasp
44 num_jobs: 4

(b)

Figure 9: Main figure caption for code listings

Figure 9a displays the predefined hierarchical YAML configurations in the code. We
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provide a suite of default configurations for various components within the workflow, facil-

itating a vast number of combinations and extensive experimental runs via the command

line interface (CLI). These configuration files are organized in an object-oriented manner,

with each subdirectory containing files for different applications. files in an object-oriented

way. Each subdirectory contains some choices for different applications. Situated in the

top-level directory within the configs folder are four principal YAML files: train.yaml,

simulate.yaml, select.yaml, and label.yaml, each corresponding to a respective phase

in the active learning workflow. They define default hyperparameters, but users have the

flexibility to adjust them via the CLI as needed. For instance, to train a model, one might

use:

gnntrain model/representation=nequip data/datapath=water.traj

Additionally, users can craft their configuration files outside the default configs directory.

By specifying cfg=custom.yaml, where custom.yaml is the custom configuration, one can

easily employ it for desired experiments. Integrating the configuration files for each separate

job leads to the overall configuration file workflow.yaml, which encapsulates hyperparame-

ters for all phases in the workflow. Figure 9b showcases a user-defined configuration tailored

for running active learning iterations. Parameters from this file will override the defaults

set in workflow.yaml. This design empowers users to effortlessly manage and customize

their tasks, facilitating the construction of diverse MLIPs. For a more in-depth exploration

and a deeper understanding of our configuration system and its functionalities, readers are

encouraged to visit our codebase. This resource offers comprehensive documentation and

examples, ensuring clarity and ease of use for both newcomers and experienced users.

Conclusions

In this study, we tackled the existing challenges in the development and application of

machine learning interatomic potentials for atomistic simulations. Although the power of
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MLIPs has been previously verified, challenges such as efficient data collection, reliable tools

for model confidence, and intricate procedures persisted. At the forefront of our contribu-

tions is the introduction of CURATOR, a comprehensive workflow that seamlessly integrates

advanced active learning algorithms and reliable uncertainty estimation techniques for im-

proving data acquisition efficiency and ensuring reliable production simulations.

The workflow encompasses state-of-the-art graph neural network models for accurate

atomistic modelling. We re-implemented the gradient calculation and significantly accel-

erated the speed for stress calculation. We emphasized the importance of batch active

learning in the collection of data sets. We show that our incorporation of batch active learn-

ing strategies effectively enables much-improved data acquisition efficiency. When evaluated

on multiple benchmark datasets, our specific batch active learning strategies consistently

outperformed others across various systems. This highlights their potential in significantly

minimizing human efforts and computational expenses in generating MLIPs. To ensure

the reliable application of trained models, we incorporated several uncertainty estimation

methods into the workflow and compared their performance in terms of speed, accuracy,

and confidence-awareness. The test results demonstrated that the Mahalanobis distance can

serve as a fast and reliable UE method, with only fraction of the cost of ensembles while

demonstrated comparable performance in accuracy and confidence-awareness.

The workflow has been made fully autonomous by combining the previously mentioned

elements. By merging the Hydra-style configuration framework, Pytorch Lightning, and the

robust task scheduler myqueue, the system is both functional and user-friendly, catering to

both beginners and experts.
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Neural network potentials for accelerated
metadynamics of oxygen reduction kinetics at Au–
water interfaces†

Xin Yang, Arghya Bhowmik, Tejs Vegge and Heine Anton Hansen *

The application of ab initiomolecular dynamics (AIMD) for the explicit modeling of reactions at solid–liquid

interfaces in electrochemical energy conversion systems like batteries and fuel cells can provide new

understandings towards reaction mechanisms. However, its prohibitive computational cost severely

restricts the time- and length-scales of AIMD. Equivariant graph neural network (GNN) based accurate

surrogate potentials can accelerate the speed of performing molecular dynamics after learning on

representative structures in a data efficient manner. In this study, we combined uncertainty-aware GNN

potentials and enhanced sampling to investigate the reactive process of the oxygen reduction reaction

(ORR) at an Au(100)–water interface. By using a well-established active learning framework based on

CUR matrix decomposition, we can evenly sample equilibrium structures from MD simulations and non-

equilibrium reaction intermediates that are rarely visited during the reaction. The trained GNNs have

shown exceptional performance in terms of force prediction accuracy, the ability to reproduce structural

properties, and low uncertainties when performing MD and metadynamics simulations. Furthermore, the

collective variables employed in this work enabled the automatic search of reaction pathways and

provide a detailed understanding towards the ORR reaction mechanism on Au(100). Our simulations

identified the associative reaction mechanism without the presence of *O and a low reaction barrier of

0.3 eV, which is in agreement with experimental findings. The methodology employed in this study can

pave the way for modeling complex chemical reactions at electrochemical interfaces with an explicit

solvent under ambient conditions.

1 Introduction

Over the past several decades, density functional theory (DFT)
calculations have been extensively used for developing novel
electrocatalysts towards the oxygen reduction reaction (ORR) by
taking advantage of well-developed theoretical methods1–5 (e.g.,
free energy diagrams, volcano plots, and d-band theory) for
predicting catalytic activities. Nevertheless, most of these
calculations oversimplify the operating conditions of catalysts
by either modelling liquid water at the electrolyte–electrode
interface as static water layers,6–9 implicitly representing them
via dielectric continuum models,10–12 or even absolutely
ignoring the effect of solvents.13–16 These limitations may lead to

erroneous evaluation of activity trends of catalysts as compared
to experiments, for example, the oxygen reduction reaction on
gold in alkaline electrolytes.17,18 Including solvent molecules for
electrolyte–electrode interface simulations and investigating
their dynamical effects could offer us a better understanding
towards the reaction mechanisms of the ORR and may resolve
the conicts between theoretical calculations and experiments.

While ab initio molecular dynamics (AIMD) is capable of
capturing the dynamics of liquid water, it is prohibitively
expensive for large length-scale and long time-scale simula-
tions. For instance, the time-averaged metrics (e.g., energy and
temperature) of AIMD simulations can differ signicantly if
started from different initial congurations, while these
discrepancies could be greatly mitigated if the model system is
equilibrated and sampled from long enough trajectories.19–21

The prohibitive computational cost severely limits the equili-
bration and sampling time scales of AIMD to only a few ps,
which may signicantly impair the reliability of such
studies.19,22–28

Recently, advances in machine learning have played great
roles in aiding the design and discovery of transition metal
based catalysts.29,30 By learning from data, machine learning
tools can make fast predictions to nd target catalysts and
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provide valuable insights into the nature of the reaction, which
enable high-throughput screening of catalysts from a broad
chemical space and automated catalyst design.31–33 In partic-
ular, neural network potentials (NNPs) have shown great
promise at tting the potential energy surface (PES) of reactive
model systems by training on reference congurations that well
describe the representative atomic environments.34–37 This
approach could speed up MD simulations by several orders of
magnitude whilst retaining the accuracy comparable to AIMD,
which enables us to considerably extend the time scale and
length scale of MD simulations without compromising accu-
racy. Initially proposed architectures of neural network poten-
tials learned the force eld by leveraging handcraed features
based on distance and angle information to capture the char-
acteristics of local atomic environments.38–40 Behler–Parrinello
neural network potential is the rst example in which the
Cartesian coordinates of atoms are transformed to rotational
and translational invariant atomic-centered symmetry func-
tions.38,39 Recent advances in graph neural networks (GNNs) for
molecule graphs have made it possible to learn representative
features from the atomic structure via a graph message-passing
scheme.41–45 State-of-the-art GNN models leverage the rotation
equivariant representation of node features (i.e., features of
atomic environments) to provide more accurate force predic-
tions, which can be essential in MD simulations.44–46 In spite of
numerous novel machine learning methods for tting PES and
MD simulations driven by NNPs,20,21,47–50 there are few studies
on simulating nonequilibrium dynamics and reactions. We
have yet to nd out any study performing sampling of rare
events that govern chemical reactions with NNPs.28,51,52 Taking
the ORR as an example, although NNPs can signicantly
accelerate MD simulations, the time scale of reactive simulation
of the ORR is still inaccessible, not to mention the complex
ambient conditions of the catalysts. Due to the rapid develop-
ment of enhanced sampling techniques like metadynamics53,54

(MetaD), high accuracy sampling of PES has been possible for
such rare events. We envision that combining enhanced
sampling methods together with high-delity NNPs can enable
full simulation of slow chemical reactions on an atomic scale
within affordable computational cost.

In this paper, we present the full atomic simulation of the
ORR at an Au(100)–water interface done using metadynamics
simulations accelerated by equivariant graph neural network
potentials.43 The gold electrode has been extensively studied as
an ORR electrocatalyst, while its exceptional activity, especially
in alkaline media, is still not well-explained.17,18,55,56 This case
could well demonstrate the power of our proposed simulation
paradigm towards modeling of rare chemical reactions at solid–
liquid interfaces. Compared to non-reactive MD performed with
NNPs, a major challenge of simulating rare events like the ORR
is to ensure that the machine learning model encompasses
a vast congurational space far away from equilibrium. This
requires adaptive sampling of representative reference struc-
tures from MD and MetaD simulations, particularly transition
states that are rarely visited. In addition, quantitatively evalu-
ating the reliability of NNPs for describing the PES in the
congurational space of interest is also indispensable. Here we

adopt an active learning approach based on CUR matrix
decomposition57,58 to sample representative reference struc-
tures fromMD andMetaD simulations. This method enables us
to representatively sample the vast congurational spaces of the
ORR at the solid–liquid interface with minimal human inter-
vention and signicantly reduced computational cost. Our MD
and MetaD simulations are uncertainty aware, demonstrating
robust and reliable modeling of full atomic simulation of the
ORR with NNPs.

2 Computational details
2.1 Active learning framework

Our neural network potentials are constructed based on an
active learning framework utilizing CUR decomposition based
selective sampling as demonstrated in Fig. 1. First, an initial
dataset was generated by selectively sampling reference struc-
tures from several AIMD trajectories of Au(100)–water inter-
faces. Multiple interface structures with different numbers of
hydroxyl or oxygen molecules are considered to ensure the
diversity and versatility of the training dataset and to further
study the impact of adsorbates on the dynamics of solvents. The
initial AIMD trajectories contain several hundreds of thousands
of congurations. Using all of them would make the training of
NNPs very slow. Many structures are similar, and thus models
do not capture new correlations when all of those are used
simultaneously. Therefore, it is crucial to sample only those
structures that are representative and informative from these
trajectories. We rst select structures from AIMD trajectories
one in every 50 MD steps, reducing the number of candidate
congurations to several tens of thousands. Then the CUR
matrix decomposition method57,58 is employed to further rene
the training dataset without losing too much information.
Given an N × M data matrix X with its rows corresponding to N
atoms and its columns corresponding to M ngerprints, the

Fig. 1 Active learning procedures used to train the neural network
potentials.
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objective of CUR is to minimize the information loss aer ruling
out some rows and columns, while minimizing the number of
rows and columns to be selected. We also add an extra term in
the objective function to maximize the Euclidean distance
between different atomic environments to ensure the diversity
of sampled structures. In this process, the importance of each
row and column in the data matrix can be evaluated, and the
representative congurations and ngerprints can be jointly
sampled. Here the ngerprints of atoms in candidate structures
are described by Behler–Parrinello symmetry functions,38,39

which have been extensively used for tting the PES for solid–
liquid interface systems.20,21,47–50 CUR matrix decomposition
also provides an efficient way for automatically selecting
symmetry function parameters that are typically non-trivial.

An ensemble of neural network potentials (NNPs) was then
trained on the initial dataset with 5000 reference structures aer
CUR selection. In order to extend their capability of exploring
larger congurational space, the trained NNPs are updated
adaptively in the following steps: (i) propagating MD trajectories
with the trained NNP ensemble as an energy/force calculator; (ii)
selecting representative reference structures fromMD trajectories
by using CUR decomposition; (iii) calculating these selected new
data points with DFT; (iv) retraining NNPs with the expanded
training dataset. Instead of propagating MD using only one NNP,
we choose to combine all the trained NNPs together for the
prediction of energy and forces. This strategy not only improves
the predictive accuracy of our model but also provides a practical
way to quantify if the model is still condent enough in the
congurational space of interest. The quantication is achieved
by evaluating the energy uncertainty and force uncertainty for
every step via calculating the variance of NNPs during the MD
simulation. Fig. S1† compares the calculated uncertainty and true
prediction error, indicating that uncertainty is an excellent indi-
cator for true model error. Based on the query-by-committee
method, which has been widely used in active learning,46,59,60

the congurations with relatively large uncertainty are collected
to reduce the number of candidate congurations. Subsequently,
the obtained structures are further sub-sampled by CUR decom-
position for DFT evaluation. By adding these carefully chosen new
data in the training set, we constantly improve the model
prediction for new congurational space visited by MD simula-
tions. Combining this strategy and CUR matrix decomposition
signicantly reduces the number of candidate structures and
ensure the diversity of structures in a sampled batch. The simu-
lations are stopped if the uncertainties are too large or too many
structures with large uncertainties are collected. The iterative
training of the NNP ensemble stops once all the MD simulations
can be propagated to more than tmin steps, where tmin is selected
as 5 ns to ensure that themodel systems are properly equilibrated
and all the dynamical events are fully captured.21,47,48 To further
investigate the ORR kinetics at the gold–water interface, the
iterative training procedures are repeated in the case of MetaD
simulations. Notably, as the transition states are rarely visited
during MetaD runs, it is critical to include enough such cong-
urations into our training dataset and validate our MetaD simu-
lations via uncertainty quantication.

2.2 CUR matrix decomposition

Reference structures are adaptively sampled by CUR matrix
decomposition57,58 from MD simulations driven by the NNPs.
CUR matrix decomposition is a low rank approximation to the
input matrix, indicating that the information of the matrix can
be maintained aer discarding some columns and rows. Given
an n × m data matrix X, our objective is to select the least
number of rows and columns from X to construct a subset
matrix ~X while minimizing the information loss. To address
this issue, Li et al. proposed the ALFS algorithm58 to minimize
the following objective function by using an augmented
Lagrange multiplier:

min
W˛ℝm�n

L ¼ kX � XWXkF2 þ akWk2;1 þ bkWTk2;1
þlkT � ðWXÞk1

(1)

where W˛ℝm�n is an auxiliary matrix that determines which
rows and columns should be selected. Minimizing the l2 norm of
its rows and columns corresponds to minimizing the number of
selected columns and rows, respectively. The weight matrix T
that encodes the Euclidean distance between different rows is
used to maximizing the distance between selected rows, which
could effectively increase the diversity of datapoints selected in
an active learning batch. The regularization parameters a, b, and
g are used to determine the priority to minimize the row
numbers, column numbers or row distance, respectively. The l2
norm of rows and columns of optimized W will be regarded as
the importance score of each column and row in the data matrix,
and the importance score of a conguration will be calculated as
the average of the importance score of atoms inside it.

One thing that should be noted is that the overall data matrix
obtained from an MD run can typically contain a few million to
several billion entries with a feature size of more than one
hundred, on which the implementation of CUR decomposition
can be intractable. Instead of using the data matrix as a whole, we
will split the large data matrix into smaller ones by rows, and then
assess the importance of every row and column via CUR decom-
position of the smaller matrices on-the-y. This strategy signi-
cantly improves the efficiency and computational cost of CUR
selection while hasminor impact on the performance of CUR. The
size of dividedmatrices is selected as 1000 entries and 90 features
for each element generated by Behler–Parrinello symmetry func-
tions. The parameters of symmetry function are also selected by
CUR decomposition from a pool of 3000 symmetry functions.

2.3 AIMD and DFT single point calculations

The Au(100)–water interface is modelled as 30 H2O molecules
on top of a (3 × 3) tetragonal Au(100) surface with four atomic
layers, which will be denoted as Au(100)–30H2O hereaer. A
vacuum layer larger than 15 Å is perpendicularly added into the
model to eliminate the spurious interaction between periodic
images. In order to simulate the interface with ORR interme-
diates, we also consider structures with one and two hydroxyls
by removing the hydrogen atoms from water molecules near the
slab, and a structure with one oxygen molecule on top of an
Au(100) slab. These structures are denoted as Au(100)–1OH/
29H2O, Au(100)–2OH/28H2O, and Au(100)–1O2/30H2O,

© 2023 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2023, 14, 3913–3922 | 3915
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respectively. Constant temperature MD simulations are then
performed in VASP61–64 by using these initial congurations with
a timestep of 0.5 fs and the temperature is kept at around 350 K
with a Nosé–Hoover thermostat.65 The bottom two layers are
kept xed during the MD run for all model systems. 50 ps, 15 ps,
15 ps, and 15 ps MD simulations are conducted for Au(100)–
30H2O, Au(100)–1OH/29H2O, Au(100)–2OH/28H2O, and
Au(100)–1O2/30H2O, respectively. The reason for running
shorter MD simulations on the model systems with adsorbates
is that their most local structures are similar to the Au(100)–
30H2O system. Density functional calculations are used to
calculate the potential energy and the forces for propagating
AIMD and labeling representative congurations sampled by
active learning. We employ an energy cutoff of 350 eV for plane-
wave basis expansion and a 2 × 2 × 1 Monkhorst–Pack k-grid
for Brillouin zone sampling.66 The exchange-correlation effects
are approximated by using the PBE functional combined with
D3 van der Waals correction.67,68

2.4 Production molecular dynamics simulations

The production MD simulations driven by the NNP ensemble
have been performed using the MD engine of the Atomic
Simulation Environment (ASE) python library.69 The simulation
box in AIMD is too small to accommodate more adsorbates and
to simulate the full reaction. Furthermore, previous studies also
demonstrated that notable noise in the structural properties of
the model systems could be observed when using small cell
sizes.47,70 Considering both effects and the increased computa-
tional cost for MD and labelling, we constructed a larger model
with 59 H2O molecules on top of a (4 × 4) tetragonal Au(100)
surface with four atomic layers, on which more adsorbates can
be accommodated. With the presence of one to six *OH, the
corresponding hydrogen atoms are removed at the interface,
producing interface structures that could be denoted as
Au(100)–1OH/58H2O, Au(100)–2OH/57H2O, Au(100)-3OH/
56H2O, Au(100)–4OH/55H2O, Au(100)–5OH/54H2O, and
Au(100)–6OH/53H2O, respectively. In order to investigate the
kinetics of the ORR, the initial state structure Au(100)–1O2/
57H2O is also built by removing two H2O molecules and placing
a O2 molecule on top of Au(100). The momentum of model
systems is initiated by a Maxwell–Boltzmann distribution with
the temperature set to 350 K. The MD simulations are propa-
gated for 5 ns by Langevin dynamics with a target temperature
of 350 K, a timestep of 0.25 fs, and a friction coefficient of 0.02.
It is noteworthy that a smaller time step is selected for
production as it can help the MD simulations reach a longer
time scale with smaller uncertainty. The uncertainties of frames
in MD simulations are quantied as the variance and standard
deviation (SD) of model outputs:

Evar ¼ 1

N

XN
i¼1

�
Ei � Ei

�2

(2)

Fvar ¼ 1

3NM

XN
i¼1

XM
j¼1

X3

k¼1

�
F

jk
i � bFi

jk
�2

(3)

Fsd ¼ 1

3M

XM
j¼1

X3

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

�
Fi

jk � bFi

jk
�2

vuut (4)

where N is the number of models in the ensemble, M is the
number of atoms in a frame, and E&x0304; and F&x0304; are
the average predicted energy and force, respectively. In order to
ensure the reliability of MD results, the simulations will stop if
Fsd is larger than 0.5 eV Å−1 or more than 2000 structures with
Fsd larger than 0.05 ev Å−1 are collected.

Following the method in ref. 19, we calculated the formation
energy of *OH as the internal energy of the Au(100)–nOHOH/(59-
nOH)H2O interface structure, plus the internal energy of gas
phase nOH/2H2 molecules, minus the internal energy of the
Au(100)–59H2O interface structure.

DE ¼ �
EAuð100Þ�nOHOH=ð59-nOHÞH2O

�
t
þ nOH

2

�
EH2

þ 3

2
kBT

�
��

EAuð100Þ�59H2O

�
t

(5)

The internal energy of interface structures is calculated as
the time averaged potential energy plus kinetic energy. And the
internal energy of H2 gas molecules is calculated as the poten-
tial energy plus 3/2kBT because their center-of-mass motions are
not included in the MD simulations. Likewise, the adsorption
energy of O2 is calculated as follows.

Eads ¼
�
EAuð100Þ�1O2=57H2O

�
t
þ 1

2

�
EO2

þ 3

2
kBT

�
��

EAuð100Þ�57H2O

�
t

(6)

2.5 Metadynamics simulations

In this study, all the enhanced sampling simulations are per-
formed with a well-tempered version of metadynamics.71 The
production metadynamics simulations are propagated by Lange-
vin dynamics for 2.5 ns in ASE. The calculation of collective
variables and bias potential of metadynamics is achieved by using
PLUMED72–74 which is interfaced to the ASE library. To construct
the path CVs as described in the main text, the Au(100)–1O2/
57H2O and Au(100)–4OH/55H2O interface structures are selected
as two reference structures. And the coordination numbers
(CO2

–O) and (CO2
–H) are used to dene the congurational space of

the path. The corresponding equations and parameters for
calculating (CO2

–O) and (CO2
–H) are shown in Table S1†

With the dened path, the progress along the path s and the
distance from the path z can be computed as:

s ¼

XN
i¼1

ie�lkX�Xik2

XN
i¼1

e�lkX�Xik2
(7)

z ¼ �1

l
ln

"XN
i¼1

e�lkX�Xik2
#

(8)
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where N is the number of reference structures and X is the
structure described by (CO2

–O) and (CO2
–H). The parameter l is

selected as 0.25. The Gaussians adopted have an initial height
of 0.1 eV and a width of 0.05 and 0.1 for s and z collective
variables, respectively. The metadynamics are carried out at 350
K, employing a bias factor of 5 and a deposition rate of 125 fs
(every 500 steps). For every metadynamics run (except for O2

migration as O2 is metastable in bulk water), the system is rst
equilibrated for 0.5 ns.

2.6 Training neural network potentials

The NNP ensemble we used for production consists of ve
neural network potentials with different architectures of the
polarizable atom interaction neural network (PaiNN) model.43

In this model, all the atoms in a given conguration are treated
as nodes in a graph and the information of their connections
will be collected and processed by a message function, which
will then be passed to an update function for updating node
features. Aer several message passing iterations, the node
features will be used as the input of a multilayer perceptron to
get its atomic energy or other scalar properties. By summing up
the atomic energies of a given structure, we can get its potential
energy and forces by calculating the negative derivatives of
energy to atomic coordinates. The model can automatically
learn the relationship between chemical properties and the
positions of atoms by optimizing several hundreds of thou-
sands of model parameters in message and update layers. In
contrast, only a few hyperparameters need to be selected (the
size of node features, the number of message passing layers,
loss ratio of energy and forces, the cutoff radius for collecting
distance information of atoms, etc.), avoiding the need to
manually select and test handcraed features like Behler–Par-
rinello symmetry functions.38,39 Besides, the model uses both
scalar and vector node features to realize rotational equivar-
iance of directional information (e.g., forces) in the graph,
providing better prediction of forces.

Table S2† reports the architectures of ve models constituting
our NNP ensemble and their error metrics aer training on the
same dataset for up to 1 000 000 steps. Thesemodels use different
node feature sizes and the number of message-passing layers to
induce model diversity, while their cutoff radii are all set to 5 Å.
Both themodel training and subsequent productionMD (MetaD)
simulations are conducted on an NVIDIA GeForce RTX 3090 GPU
with oat32 precision. Theweight parameters in thesemodels are
randomly initialized and then optimized on the same data split
using stochastic gradient descent to minimize the mean square
error (MSE) loss, which can be expressed as:

L ¼ 1� l

N

XN
i¼1

�
Ei � Êi

�2

þ 1� l

NM

XN
i¼1

XM
j¼1

X3

k¼1

�
F

jk
i � bFi

jk
�2

(9)

where N is the number of congurations, M is the number of
atoms in a conguration, and l is the force weight that controls
the relative importance between energy and force loss. Here the
force weight is set to 0.99 as our tests show that using

a relatively large force weight can well improve the force
prediction while only slightly undermines the precision of
energy prediction. Our model parameters are trained by the
Adam optimizer75 as implemented in PyTorch76 with an initial
learning rate of 0.0001, the default parameters b1= 0.9 and b2=

0.999, and a batch size of 16. An exponential decay learning rate
scheduler with a coefficient of 0.96 is used to adjust the learning
rate for every 100 000 learning steps. The dataset is split into
a training set (90%) and a validation set (10%), where the vali-
dation set is used for early stopping when the error of forces is
small enough. Note that several different error metrics are used
to evaluate the performance of the trained model, including
mean absolute error (MAE) and root mean squared error
(RMSE) for both energy and force predictions. These error
metrics can be expressed as follows:

EMAE ¼ 1

N

XN
i¼1

		Ei � Êi

		 (10)

ERMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

�
Ei � Êi

�2

vuut (11)

FMAE ¼ 1

3NM

XN
i¼1

XM
j¼1

X3

k¼1

					Fjk
i � bFi

jk

					 (12)

FRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3NM

XN
i¼1

XM
j¼1

X3

k¼1

�
F

jk
i � bFi

jk
�2

vuut (13)

3 Results and discussion
3.1 Validation of models

Following the active learning framework, we have obtained
a nal dataset with 18 731 congurations. Fig. S2† shows the
learning curves of our NNPs trained on the nal dataset, and
Table S2† reports the detailed error metrics of best models on
the validation set. It is remarkable that our NNPs exhibit
exceptional accuracy towards the prediction of energy and
forces, where the mean absolute errors (MAEs) of energy range
between 0.4 and 0.8 meV per atom, and the MAEs of forces
between 12.6 and 16.3 meV Å−1. To illustrate the performance of
our models on different interface structures, we also report the
composition of the nal dataset and corresponding error
metrics for different structures as shown in Table S3.† The
precision of force predictions for each species in our research
system is also shown in Fig. 2a, indicating close numerical
agreement with DFT results. All these results suggested that the
trained NNPs can provide accurate energy and force predictions
for different structures across the ORR congurational space in
the production MD simulations. Table S4† exhibits the
comparison of model performance in terms of energy and force
predictions between our model and other studies for complex
systems, illustrating that our model outperforms most of these
studies, especially force predictions.43,44,77–80 The role of accurate
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force prediction is emphasized in our study since it is critical in
MD simulations. The performance of the trained NNP ensemble
is further validated in terms of its ability to reproduce the
structural properties of AIMD trajectories. Fig. 2b shows the
match of the radial distribution functions (RDFs) of all involved
species in the case of the Au(100)–water interface (without
hydroxyls or oxygen molecules). Apparently, the RDFs generated
by NNP MD simulations (solid black line) exhibit excellent
agreement with AIMD results (red points), indicating that the
NNP ensemble captures the structural arrangement of the gold–
water interface well. Apart from validating NNPs with the
existing dataset, a more important assessment for the quality of
NNPs is their application domain, which can be conrmed by
uncertainty measurements. Concretely, the MD runs should be
ergodic to ensure the reliability of information derived from
them, which indicates that all energetically relevant states must
be sampled and within the manifold accessible by NNPs. For all
MD simulations in this study, we not only sample the properties
of interest along long-time scale MD simulations but also
present the uncertainties of all steps by calculating the variance
of NNPs. The low force uncertainty of MD simulations for
different interface structures veries the robustness and reli-
ability of the trained NNP ensemble in the given congurational
space (the energy and uncertainty proles in Fig. S3 to S10†).
The agreement of the density proles of water between AIMD
and NNP MD with the same box size (3 × 3) is reported in Fig.
S11.† It can be observed that the density prole of water in NNP
MD simulation is more smooth than that in AIMD, and some
disagreements are exhibited in the bulk water area. We ascribe
the disagreements and the uctuation of AIMD density proles
to the inadequate equilibration of AIMD simulations. Moreover,
the average energy proles of Au(100)–water with four *OH that

started from different points are well converged as shown in
Fig. S12,† indicating that our MD simulations are ergodic and
the time scale is long enough.

Except for the validation of model accuracy and reliability,
we also evaluated the overall computational efficiency of the
proposed scheme in terms of training the initial model, model
retraining, CUR matrix decomposition, production MD simu-
lations for 5 ns and DFT labelling as demonstrated in Fig. S13.†
For the systems in this study, the required computational time
for 1000 AIMD steps is approximately 650 CPU hours, corre-
sponding to 1543.8 hours in total for generating the initial
AIMD dataset if using 80 CPU cores for each job. Training on the
initial dataset takes about 40 hours, while the cost of retraining
the new models can be substantially reduced by loading pre-
trained model parameters. The MD simulation driven by NNPs
accounts for the highest computational cost in an active
learning iteration, which takes approximately 7 days to run 5 ns
simulations on an NVIDIA RTX3090 GPU. In comparison, AIMD
needs more than 7 years to run 5 ns using 80 CPU cores, being
about 3–400 times slower than NNP MD. To train the NNPs for
a system to runmore than 5 ns MD, 5 to 10 iterations are usually
needed, which corresponds to 1000–2000 labelled structures as
indicated in Table S3.† It is worth noting that the ASE MD
engine used in this study is not specialized for GPU computing,
resulting in high overheads of data transfer between the GPU
and CPU. It can be expected that the computational efficiency of
NNP MD can be further improved in the future by using a GPU-
specialized MD code.

The validation of NNPs via application in MetaD simulations
is crucial as the congurational space of the full reactive process
can be huge while the transitional states are rarely visited. As
shown in Fig. 3, our training data points are evenly distributed
in the congurational space described by path collective vari-
ables,81 and the force uncertainties along 2.5 ns MetaD simu-
lations are all considerably small (all smaller than 0.05 eV Å−1).
Bothmetrics build condence that the trained NNPs are reliable
to capture the characteristics of all energetically relevant states,
especially transitional states, of the ORR. Furthermore, the
trained models have shown excellent transferability when using
them for the inference of Au(110)–water and Au(111)–water
interfacial systems as demonstrated in Fig. S1a.† Despite
missing structural information for the two similar systems, the
trained models still well predicts the energy and forces with
both low errors and uncertainties for all Au(110)–water and
Au(111)–water interfacial structures, which indicates that the
proposed scheme and trained models can easily generalize to
systems across a wide range of metals and their different facets.

3.2 Full metadynamics simulation of the ORR

Aer systematic validations, the trained NNPs are used to study
both adsorption energetics and kinetics of the ORR at the gold–
water interface. It is well known that the ORR on Au(100) in
alkaline electrolytes proceeds via the complete four-electron
transfer mechanism, while the partial two-electron transfer
mechanism dominates on other Au facets, such as Au(111) and
Au(110).17,55,56 Despite the use of new techniques and persistent

Fig. 2 (a–c) Comparison between forces derived from DFT calcula-
tions and NNP predicted forces for H, O, and Au. The RMSE of forces
for each element are denoted inside. (d–f) Comparison between RDFs
obtained from AIMD simulations and NNP MD simulations on the
Au(100)–water interface structure. The red points denote RDFs
generated by AIMD calculation and the grey solid line denotes RDFs
generated by NNP calculation.
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efforts devoted by researchers, the reason why ORR activity is
exceptional and facet-dependent on gold remains elusive. There
are several assumptions that may provide a clear answer to this
question, including the outer-sphere mechanism of the
ORR,17,82,83 and the role of preadsorbed species and solvents.84,85

All these assumptions call for a full atomic simulation that
elaborately considers the ambient conditions of Au(100) and
models the reaction without any simplication.

The rst step of the ORR on Au(100) is O2 activation, which is
also considered a key step that determines the activity of cata-
lysts that weakly interact with adsorbates. According to whether
O2 closely adsorbs on Au(100), the reaction can be initiated via
the inner-sphere mechanism in which the slab directly transfers
electrons to closely adsorbed O2, or the outer-sphere mecha-
nism in which the ORR occurs away from the slab by several
solvent layers. The adsorption energy of the *O2 molecule and
*OH with different coverage is summarized in Table S5,† sug-
gesting weak interaction between these species and the Au(100)
slab. As demonstrated in Fig. S9,† our 5 ns MD simulations at
the Au(100)–water interface with one O2 molecule have shown
that the O2 molecule will be in close contact with the Au(100)
surface, yielding a density peak at 2.1 Å. We further carried out
a MetaD simulation that models the migration of O2 from bulk
water to the Au(100) surface as shown in Fig. 4a. It is found that
there are no stable local minima for O2 saturating in bulk water,
and the migration barrier can be easily overcome by the thermal
uctuation of the model system. As shown in Fig. S14,† a simple
MD simulation modeling the movements of O2 in the bulk
water part of the interface also proves this conclusion. Aer 350
ps simulations, the O2 molecule nally moved from bulk water
to the Au(100) surface. Based on these results, we model the
reaction process with O2 directly adsorbed on Au(100) and
believed that the bond breaking of the O2 molecule could be the
rate-determining step of the ORR on Au(100).

The full atomic simulation of the ORR is then conducted to
investigate the bond-breaking process in the O2 molecule and
the formation of hydroxyls by using metadynamics simulations.

The reaction coordinates of the ORR are described by path
collective variables (CVs)81 with the initial state (Au(100)–1O2/
57H2O) and nal state (Au(100)–4OH/55H2O) selected as two
reference structures. The distance to reference structures is
quantied by the number of oxygen atoms (CO2

–O) and
hydrogen atoms (CO2

–H) around the O2 molecule. As summa-
rized in Table S6,† these two descriptors can well capture and
differentiate the structural characteristics of different possible
intermediate states of the ORR, including *O2, *OOH, *H2O2,
*O, and *OH. The well-designed CVs enable us to automatically
search the reaction path without using any prior knowledge
about the reaction mechanism. In this approach, instead of
modeling multiple possible reaction pathways and verifying
which one is energetically most favorable, we only need to
incrementally extend the explored PES (with our NNPs) from
equilibrium states to non-equilibrium transitional states by
using active learning. Furthermore, this strategy can be easily
generalized to simulate more complex model systems and
chemical reactions.

Fig. 4b shows the obtained free energy landscape of the ORR
as a function of path CVs, where s is the progress along the
reference path, and z is the distance to the reference path. The
landscape is composed of two basins which correspond to the
initial state and nal state of the ORR. Fig. 3b also shows the
time evolution of the s collective variable. It can be seen that the
rst basin in the landscape has been completely lled aer
approximately 100 ps, which corresponds to the transition from
O2 to hydroxyls. Filling the second basin, which can be regarded
as the transition from hydroxyls to O2, becomes much more
difficult than the rst one with the employed CVs in this study.
However, it should be pointed out that the depth of the rst
basin is enough to evaluate the activation energy of bond
breaking in O2. The energy barrier of the transition from O2 to
hydroxyls is estimated to be 0.3 eV, which is in good agreement
with experimental ndings that Au(100) displays high ORR
activity. It is noteworthy that the simulation box in this study is
small in comparison with the realistic interface structure. The

Fig. 3 (a) Distribution of reference structures in the configurational space described by path collective variables s and z, where s represents the
progress along the path between reactants and products and z represents the distance from the path. (b) Evolution of s and force standard
deviation (SD) along 2.5 ns MetaD simulation.

© 2023 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2023, 14, 3913–3922 | 3919
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limited cell size can result in slightly higher formation energies
of hydroxyl as demonstrated in Table S5,† which can be
ascribed to the stronger repulsion between hydroxyl in smaller
boxes and the possible lateral correlation of solvation shells.
Besides, we also expect that the bond breaking of the O2

molecule can be more difficult because of the easier recombi-
nation of individual oxygen atoms. Both effects can make the
ORR in a small cell less facile, while further supporting our
conclusion that the ORR is facile on Au(100) even when
modeled with a limited number of water molecules. The snap-
shots for O2 in bulk water, the initial state, the transition state,
and the nal state are displayed in Fig. 4c. At rst, the O2

molecule is partially protonated by neighboring water mole-
cules to *OOH, suggesting the associative reaction pathway
proposed by Nørskov et al.1 However, the subsequent formation
of *O is not observed in the overall reaction as the remaining
oxygen atom is immediately protonated by reacting with water.
Therefore, the reaction pathway observed from our simulations
can be summarized as follows:

*O2 + H2O / *OOH + *OH

*OOH + H2O / 3*OH

The MetaD simulation highlights the role of water molecules as
a reactant of the ORR, suggesting that the explicit modeling of
solvents is indispensable in theoretical electrocatalysis.

4 Conclusions

In summary, the reactive process of the ORR is investigated by
MetaD simulations that are signicantly accelerated by high
delity NNPs in this study. By using an active learning strategy
underpinned by CUR matrix decomposition, we obtained an
NNP ensemble that exhibits exceptional performance and reli-
ability for the prediction of structural properties and forces in
the congurational space of an Au(100)–water interface. By
leveraging well-designed path collective variables, the ORR can
be fully and automatically simulated without the need to elab-
orately consider multiple reaction pathways. Our MetaD simu-
lations suggest that the ORR proceeds in the associative
reaction pathway, while the *OOH reaction intermediate is
directly reduced to two *OH with the participation of neigh-
boring water molecules rather than dissociating into *OH and
*O. The low energy barrier of the ORR predicted in this study
well explains the outstanding experimental ORR activity. The
longer time-scale simulations enabled by NNPs can give us
deeper insight into the nature of chemical reactions, such as the
facet-dependent ORR on different Au facets which will be
pursued in our future work. Besides, the effect of cations on the
ORR activity of gold is also a meaningful extension of this work.
The full atomic simulation conducted here can be conveniently
extended to other model systems and become a valuable tool for
investigating complex chemical reactions in a straightforward
manner.

Fig. 4 (a) Free energy landscape of O2 migration from bulk water to the Au(100) surface. (b) Free energy landscape of *O2 reduction to *OH
described by path collective variables. (c) Snapshots for O2 in bulk water, the initial state, the transitional state, and the final state.
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in the following GitHub repository: https://github.com/
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available in the DTU data repository.86
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Abstract

Understanding the complex mechanisms of electrochemical reactions at the atomic

level is at the core of optimizing energy conversion and storage devices. The excep-

tional activity of oxygen reduction reaction (ORR) on gold is broadly recognized while

remains unexplained, especially for its facet-dependent catalytic behaviors. This re-

search offers a deep dive into the facet-dependent dynamics of oxygen reduction on

gold surfaces. Using graph neural networks (GNN) accelerated metadynamics, this

study systematically investigated the ORR dynamics across different primary facets of

gold, capturing the evolution of atomic structures along the reaction trajectory. Our

simulations revealed the distinct formation of *H2O2 intermediate on different surfaces

and the crucial role of co-adsorbed species on the ORR dynamics. These finding can

offer us deeper insights into the ORR reaction mechanism that is not accessible with

traditional density functional theory (DFT) calculations, potentially paving the way

for optimizing the ORR performance of gold-based catalysts.
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Introduction

The electrochemical reduction of oxygen is a crucial process in various energy conversion

and storage devices, including fuel cells and metal-air batteries.1–3 The efficiency and selec-

tivity of this reaction are predominantly governed by the nature of the electrode material.

Recognizing this, there is a consistent pursuit of efficient and cost-effective catalysts towards

oxygen reduction reaction (ORR) in academia and industry globally. Gold, traditionally

viewed as a noble and therefore catalytically inert metal, has undergone a renaissance in the

realm of catalysis over the past few decades.4–9 In particular, gold nanoparticles have demon-

strated exceptional catalytic activity for a range of reactions, from CO oxidation to selective

hydrogenations.8,10 This unexpected catalytic activity of gold is attributed to its unique

electronic properties, particle size effects, and the influence of the support material.11–15

The ORR on gold has been extensively studied in both acidic and alkaline medias.16 In

acidic solutions, gold predominantly follows a 2-electron (2e-) pathway, producing hydro-

gen peroxide. Intriguingly, the Au(100) surface in alkaline media, not only demonstrated

in a 4-electron (4e-) ORR pathway but even outperforms platinum within specific poten-

tial ranges. Additionally, ORR on gold showcases a pH-dependent catalytic behavior, with

Au(100) favoring a complete four-electron transfer, in contrast to the partial two-electron

transfer observed on other facets like Au(111) and Au(110).4,17,18 While these experimental

observations have been acknowledged for over a decade, an in-depth atomistic understanding

of the reaction mechanisms remains elusive. Density functional theory (DFT) simulations

combined with the computational hydrogen electrode (CHE) method have been instrumental

but show limitations, especially in predicting the ORR activity of gold and the pH-dependent

catalytic behavior. Using DFT calculations, Lu et al. highlighted the significant role of the

interaction between co-adsorbed water and reaction intermediates in ORR on gold, facilitat-

ing O-O bond cleavage and thus promoting 4e- reduction.19 Duan and Henkelman suggested

that the applied potential could influence the adsorption energies of ORR intermediates,

resulting in the pH-dependent ORR on gold and a reduced theoretical overpotential.20
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It is noteworthy that many studies have primarily focused on adsorption energetics,

often neglecting the dynamic nature of electrochemical interfaces and its influence on ORR

acativity. In our prior research,21 we introduced a framework leveraging graph neural network

(GNN) potentials to accelerate metadynamics simulations, shedding light on dynamic nature

of electrochemical interfaces and the ORR kinetics at Au(100)–water interface. It offers direct

insights into ORR kinetics, considering explicit solvents and long-scale molecular dynamics

(MD) simulations, with a particular emphasis on the reaction kinetics of Au(100) surface.

In this extension work, we delve deeper into the ORR on prominent gold surfaces,

namely Au(100), Au(110), and Au(111), incorporating explicit solvents and employing GNN-

accelerated metadynamics for modeling ORR dynamics. Leveraging larger simulation boxes,

we aim to provide a more comprehensive and nuanced understanding of the oxygen reduction

process on gold surfaces. Our systematic exploration of interface dynamics across varied

adsorbates offers an in-depth perspective on the nature of these interfaces. Notably, our

simulations corroborate the facet-dependent behavior of ORR on gold, aligning well with ex-

perimental observations. Besides, our metadynamics investigations revealed the significant

role of co-adsorbed species on ORR reactivity. With this research, we hope to bridge exist-

ing knowledge gaps and pave the way for the design of more efficient and robust gold-based

electrocatalysts for ORR.

Computational methods

Generation of neural network potentials

Our methodology is built upon the techniques outlined in our previous research.21 We utilized

pretrained models from this work and derived the final dataset through the active learning

framework built in it. The composition of various interfacial structures within the dataset,

along with their respective error metrics, is presented in Table S1. We allocated 90% of

the dataset for training and reserved the remaining 10% for validation, where the latter
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was employed for early stopping once the force error reached an acceptable threshold. To

assess the performance of the trained model, we utilized multiple error metrics, including

the mean absolute error (MAE) and root mean squared error (RMSE) for both energy and

force predictions.

Our MD and metadynamics simulations utilized an ensemble of six neural network poten-

tials, each based on different architectures of the polarizable atom interaction neural network

(PaiNN) model.22 The architectures of these models, along with their respective error met-

rics trained on the final dataset, are detailed in Table S2. To introduce model diversity, we

employed different node feature sizes, while maintaining a consistent cutoff radius of 5 Å for

all models.

Both the model training and production simulations were executed on an NVIDIA

GeForce RTX 3090 GPU, utilizing float32 precision. The weight parameters of models were

initialized randomly and subsequently optimized on a consistent data split using stochas-

tic gradient descent to minimize the mean square error (MSE) loss. We set the force loss

weight and energy loss weight to 0.95 and 0.05, respectively, to ensure a high force prediction

accuracy for propagating reliable MD simulations.

The Adam optimizer,23 as implemented in PyTorch,24 was employed to train our model

parameters. We used an initial learning rate of 0.0001, default parameters of β1=0.9 and

β2=0.999, and a batch size of 12. An exponential decay learning rate scheduler with a

coefficient of 0.96 was used to adjust the learning rate every 100,000 learning steps.

DFT calculations

Our initial DFT dataset is derived from AIMD trajectories of Au(110)-water and Au(111)-

water interfaces. Utilizing pretrained models eliminated the need for ab-initio reference

structures from the Au(100)-water interface and reduced the number of reference structures

for the Au(110)-water and Au(111)-water interfaces. The Au(110)-water system comprises

36 H2O molecules atop a (2 × 3) tetragonal Au(110) surface (denoted as Au(110)-36H2O).
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Similarly, the Au(111)-water system is modelled as 36 H2O molecules on atop of a (3 × 3)

Au(111) surface (denoted as Au(111)-36H2O). MD simulations were conducted in VASP25–28

using these configurations for 10 ps, with a 0.5 fs timestep and a target temperature of 350K

using the Nosé–Hoover thermostat.29 The bottom two atomic layers remained fixed dur-

ing the MD simulations. We adopted a 350 eV energy cutoff for plane-wave basis and a

Monkhorst-Pack k-grid with the k-point density of 0.5 Å-1.30 The PBE functional, com-

bined with the D3 Van der Waals correction, was used to approximate exchange-correlation

effects.31,32 The same parameters were employed for single-point DFT calculations during

active learning iterations.

Production MD simulation

The production MD simulations driven by the NNP ensemble are conducted using the MD

engine within Atomic Simulation Environment (ASE) python library.33 We utilized larger

simulation boxes to precisely capture the dynamics at the interface. The Au(100)-water

interface was modeled with 102H2O molecules on a (5× 5) Au(100) surface, resulting in 431

atoms in total. The Au(110)-water interface had 115H2O molecules on a (4 × 5) Au(110)

surface, with 445 atoms. The Au(111)-water interface used a tetragonal (5 × 3
√

2) Au(111)

slab with 108 water molecules on it, with 474 atoms. The atomic structures for these

interfaces are presented in Figure 1.

Building on these foundational interface structures, we incorporated O2 molecules and

hydroxyl groups to delve deeper into the adsorption energetics of key reaction intermediates

and to set up the initial structures for metadynamics simulations. For every foundational

interface, we considered 2OH, 4OH, 6OH, and 8OH cases by removing corresponding number

of hydrogen atoms in the system. Besides, we also considered the 1O2 and 2O2 cases by

adding corresponding number of oxygen atoms and removing corresponding number of water

molecules. The resulting structures, along with their error metrics, are detailed in Table

S1. For clarity and convenience, throughout the paper, we will label each system without
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showing the number of H2O as the number of water molecules is not important for discerning

different systems and drawing our conclusions. For example, the Au(100)-2O2/98H2O will be

termed as Au(100)-2O2 hereafter. The momentum of the model systems was initiated using

a Maxwell–Boltzmann distribution, with the temperature set at 350 K. For each system, we

propagated 1,500 ps MD simualations by Langevin dynamics with the target temperature

of 350 K, the timestep of 0.25 fs, and the friction coefficient of 0.02. Of the 1500 ps MD

trajectory, the initial 500 ps served for equilibration, while the subsequent 1000 ps was

used to sample properties of interest. The uncertainty was quantified by the force standard

deviation (SD), with a threshold set at 0.5 eV/Å. Simulations were halted if the force SD

of a configuration exceeded this value. The formation energy of *OH and the adsorption

energy of O2 are calculated based on the method in Ref.34 and our prior study.

Metadynamics simulation

In this study, all the enhanced sampling simulations are performed with the well-tempered

version of metadynamics35 The calculation of collective variables and bias potential of meta-

dynamics is achieved by PLUMED which is interfaced to ASE.33,36–38 We use the path

collective variables and the same parameters in ref.21 to describe the reaction. And the

coordination numbers CO2−O and CO2−H are used to define the configurational space of the

path.

Results and discussion

Regular MD simulations

We systematically investigated the dynamics at gold-water interfaces, specifically consider-

ing the presence of adsorbed O2 and *OH. Figure 2 presents the density profiles of water

molecules, oxygen atoms, and hydrogen atoms relative to their distance from gold surfaces.

This figure focuses on systems containing pure water, eight hydroxyls, and two oxygen
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Figure 1: Side view of (a) Au(100)-102H2O, (b) Au(110)-115H2O, and (c) Au(111)-108H2O
interface structures.

molecules in the electrolyte. For detailed density profiles, average energy and uncertain-

ties in other systems, readers are directed to Figure S1 to S21. In these density profiles.

Notably, in these density profiles, two pronounced peaks are observed for all systems within

10 Å, suggesting the presence of two structured water layers near the slab. Among the

surfaces studied, Au(110) exhibited the closest first peak to the surface at 2.5 Å. In com-

parison, the peaks for Au(100) and Au(111) are situated slightly farther away at 2.8 Å and

2.9 Å, respectively. The second layer of ordered water, as indicated by the second peak, is

fairly consistent across the surfaces, positioned at 6.0 Å for both Au(100) and Au(110), and

marginally farther at 6.1 Å for Au(111). Moving beyond 10 Å and up to 15 Å, the effects of

the surface on water structuring become negligible. In this region, the density distribution

of water molecules becomes almost constant and matches that of bulk water. Beyond 15 Å

is the water–vacuum interface, where the densities gradually decline to zero.

Upon introducing 8 *OH groups, there is a noticeable shift in the density profiles as shown
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Figure 2: Density profiles of O, H, and H2O as a function of the distance from Au slabs.

in Figure 2b, e, and h. The positions of first peaks in the density profiles are decreased

to 2.5, 2.3, and 2.5 Å for Au(100), Au(110), and Au(111), respectively. Meanwhile the

second peaks consistently locate at 5.8 Å across all surfaces. The presence of hydroxyls not

only modifies the peak positions but also reshapes the overall density distributions of water

molecules. This behavior can be attributed to the stronger chemical adsorption of hydroxyls

compared to water and the hydrogen bond network formed between these hydroxyls and

surrounding water molecules.39 While *OH forms a direct chemical bond with gold atoms

through chemisorption, water primarily interacts through weaker forces like van der Waals or

hydrogen bonds. The chemisorbed *OH can act as an anchor point, fixing the surrounding

water molecules through hydrogen bonding. This anchoring effect can reduce the mobility of

water molecules and lead to a more tightly packed first layer of water molecules that closer

to the surface.

In contrast, the inclusion of O2 induces only minor shifts in the density distribution peaks

without altering their overall shape as illustrated in Figure 2c, f, and i. The reason is that

O2 is a nonpolar molecule, which interacts weakly with the metal through physisorption

8



and lacks the ability to form hydrogen bonds with water. Consequently, *OH induces more

pronounced structural changes in the water layer, leading to significant alterations in the

density profiles, while the influence of O2 remains relatively subtle.

Figure 3: Evolution of coordination numbers Cads−O and Cads−H throughout MD simulations.
The dashed lines denote the average coordination number.

As illustrated in Figure 3, we delved deeper into the evolution of coordination numbers

for adsorbed species to gain insights into their local environments. Here, Cads−O and Cads−H

represent the number of surrounding oxygen and hydrogen atoms for the adsorbates, respec-

tively. For systems with eight hydroxyls, as depicted in Figure 3a, c, and e, the average

coordination numbers Cads−O for Au(100), Au(110), and Au(111) are 1.34, 1.36, and 1.70,

respectively. Meanwhile, their corresponding Cads−H values are 8.34, 8.90, and 8.94. In
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systems with two oxygen molecules, the average Cads−O values for Au(100), Au(110), and

Au(111) are 2.60, 2.54, and 2.91, respectively, with Cads−H values of 0.49, 0.56, and 0.33,

respectively. A notable observation is that the fluctuation in Cads−O is smaller than in Cads−H

across all systems. This can be attributed to the dynamic proton transfer in liquid water,

which results in rapid changes in the local environments around hydroxyls. Conversely, due

to the nonpolar nature of O2, it is less inclined to form a hydrogen bond network with

adjacent water molecules. Therefore, the bond breaking of O2 can be difficult may not be

accessible using regular MD simulations.

Table 1: Formation energies of *OH and adsorption energies of O2 for different model systems

System Species θ (Coverage) ∆E/n (eV)

Au(100)

2OH 0.080 1.131
4OH 0.160 1.051
6OH 0.240 1.087
8OH 0.320 1.160
1O2 0.040 -0.657
2O2 0.080 -0.428

Au(110)

2OH 0.100 0.770
4OH 0.200 0.755
6OH 0.300 0.787
8OH 0.400 0.785
1O2 0.050 -0.745
2O2 0.100 -0.736

Au(111)

2OH 0.067 0.880
4OH 0.133 0.977
6OH 0.200 1.055
8OH 0.267 1.149
1O2 0.033 -0.768
2O2 0.067 -0.554

Table 1 exhibited the formation energies of *OH and the adsorption energies of O2

molecule for each model system. For all three surfaces, the formation energy of *OH generally

increases with increasing coverage. This suggests that as more *OH groups are adsorbed,

it becomes energetically more favorable for them to form. Notably, Au(110) consistently

exhibits the lowest formation energy for *OH, indicating that *OH adsorption is most favor-
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able on this surface. Conversely, Au(100) displays the highest formation energy, especially

with 8 co-adsorbed *OH groups. The adsorption energies of O2 are negative for all systems,

indicating that the adsorption process is exothermic and energetically favorable. Combin-

ing the stable evolution observed for Cads−O in Figure 3, this suggests a preference for the

inner-sphere mechanism, wherein the ORR predominantly occurs near the slab.

Metadynamics with single oxygen molecule

With the prepared the initial structures and well-performed MLIPs, now we are able to

investigate the how the reaction happens with metadynamics simulations. We firstly sim-

ulated ORR with the presence of one single oxygen molecule in the liquid water. Previous

studies suggests two plausible mechanisms for ORR: the inner-sphere mechanism, where O2

is closely adsorbed on the slabs, and the outer-sphere mechanism, wherein ORR takes place

several solvent layers away from the slab.18,40,41 Our regular MD simulation results, in align-

ment with previous studies,21 consistently show the O2 molecule residing in the first water

layer. Consequently, our metadynamics simulations were exclusively conducted following

the inner-sphere mechanism. To ensure the reliability of the production metadynamics, it

is imperative to sample and include a substantial number of reference structures into the

training dataset, particularly those originating from rare events on the potential energy sur-

face. This task poses a significant challenge given the intricate reaction systems explored in

this study. Specifically, driving metadynamics to escape from the final state (4*OH in the

liquid) is challenging as it correlates to the oxygen evolution process, which is inherently

difficult to initiate and necessitates a high applied voltage for activation. Consequently, our

metadynamics simulations for each system are confined to limited length-scales.

As depicted in Figure 4b, on the Au(100) slab, the metadynamics simulation stops at

approximately 275 ps due to the emergence of structures with excessive uncertainty (force

standard deviation exceeding 0.5 eV/Å), with the O-O bond breaking being observed at 232

ps. While extending the simulation length-scale is feasible through additional active learning
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Figure 4: (a) Snapshots of representative atomic structures along the reaction trajectory. (b)
Evolution of coordination numbers CO2−O and CO2−H throughout metadynamics simulation.
(c) Free energy landscape of ORR on Au(100) with one oxygen molecule described by path
CVs.

iterations, we ascertain that the current length-scale of the simulation is sufficient to encapsu-

late the overall ORR process. The atomic structures of five representative configurations are

illustrated in Figure 4a, corresponding to key points along the reaction pathway, as marked

by the white dashed line in the free energy landscape depicted in Figure 4c. The free energy

landscape, characterized by the path CVs, manifests three obvious basins. The initial stable

states encompass two different kinds of configurations: Au(100)-1O2/H2O where the pure O2

molecule is adsorbed onto the slab, and Au(100)-(1OH+1OOH)/H2O showing the presence

of one *OOH and one *OH. This indicates the proton transfer from the surrounding water

molecules to the adsorbed O2 molecule is facile with only negligible energy barrier. The

third point along the reaction pathway is characterized by the adsorbed hydrogen peroxide

(*H2O2), originating from the previously formed *OOH that accepted an additional proton

from surrounding water molecules. However, the occurrence of this event is very rare, as

illustrated by the sharp decline in CO2−O values depicted in Figure 4b, coupled with the
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high free energy of approximately 0.57 eV. The O-O and O-H bond lengths in H2O2 are

approximately 1.48 Å and 1.03 Å respectively, with the former aligning with measurements

observed in gas-phase H2O2, while the latter is slightly elongated in comparison to its gas-

phase counterpart. The introduction of hydrogen atoms weakens the O-O bond, breaking it

into two hydroxyls. Interestingly, we identified the presence of an unbonded single oxygen

atom at the fourth point (Au(100)-(1O+2OH)/H2O), corresponding to the short interval in

Figure 4b where the CO2−O values fluctuate around 2.75. The single oxygen atom is quickly

protonated by adjacent water molecules, transitioning into a hydroxyl. Our metadynamics

simulation elucidated that ORR on Au(100) proceeds in a four-electron transfer reaction

pathway with a reaction barrier of approximately 0.50 eV.

Figure 5: (a) Snapshots of representative atomic structures along the reaction trajectory. (b)
Evolution of coordination numbers CO2−O and CO2−H throughout metadynamics simulation.
(c) Free energy landscape of ORR on Au(110) with one oxygen molecule described by path
CVs.

Transitioning to the Au(110) slab, the metadynamics simulation halts at 228 ps, with

the O-O bond breaking observed at 170 ps as depicted in Figure 5b. The reaction pathway,
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as demonstrated in Figure 5a, is similar to that of Au(100), albeit without the identification

of the unbonded oxygen atom. The free energy landscape of Au(110) closely mirrors that

of Au(100), yet with only two basins as illustrated in Figure 5c. A notably more stable

*H2O2 intermediate emerges in the midway during intra-basin transition. This is further

evidenced by the evolution of CO2−O values within the time interval of 131 ps to 170 ps, as

demonstrated in Figure 5b. This observation aligns with experimental findings that ORR

on Au(110) and Au(111) involves the formation of *H2O2 intermediates.4,17,40 Analogous to

the Au(100) case, the O-O bond dissociation emerges as the rate-determining step, albeit

with a slightly lower energy barrier of 0.48 eV.

Figure 6: (a) Snapshots of representative atomic structures along the reaction trajectory. (b)
Evolution of coordination numbers CO2−O and CO2−H throughout metadynamics simulation.
(c) Free energy landscape of ORR on Au(111) with one oxygen molecule described by path
CVs.

Moving onto the Au(111) slab, the simulation halts at 350 ps, with the O-O bond breaking

observed at 290 ps, as depicted in Figure 6b. Contrary to Au(100) and Au(110) cases, the first

basin exclusively includes configurations with the oxygen molecule with no *OOH identified,

as shown in Figure 6c. The adsorbed O2 molecule is fully protonated to *H2O2 in a short
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time interval. Similarly to the Au(110) case, the existence of *H2O2 is more stable than in

the Au(100) scenario. This is further substantiated by the evolution of CO2−O values within

the time interval of 210 ps to 290 ps, as demonstrated in Figure 6b. The free energy barrier

for oxygen reduction is approximately 0.42 eV.

Metadynamics with two oxygen molecules

While our simulations shed light on the variance in *H2O2 stability across different facets,

they did not accurately predict the true ORR activity trends across these facets. We hypoth-

esize that the co-adsorbed O2 or hydroxyl groups on the surfaces might also exert influence

on the ORR dynamics. To delve deeper into this aspect, we extended our metadynamics

simulations to systems with two oxygen molecules present in the liquid water.

Figure 7: (a) Snapshots of representative atomic structures along the reaction trajectory. (b)
Evolution of coordination numbers CO2−O and CO2−H throughout metadynamics simulation.
(c) Free energy landscape of ORR on Au(100) with two oxygen molecules described by path
CVs.

Figure 7b illustrates a metadynamics simulation conducted at the Au(100)-2O2/H2O

interface over a duration of 1480 ps, within the designated uncertainty threshold. The
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dissociation O-O bond of the first O2 molecule occured rapidly at 41 ps. However, the bond

in the second oxygen molecule did not break during the entire simulation. This indicated

the notable impact of co-adsorbed *OH on the ORR dynamics, hindering the reduction of

the remaining O2 molecules.

Figure 7c presents the free energy landscape, revealing two major basins and a minor one.

The first major basin corresponds to Au(100)-2O2/H2O, the initial state of the reaction. As

the reaction progresses, overcoming a free energy barrier of 0.24 eV, both O2 molecules are

partially protonated to form two *OOH molecules, signified by the minor energy basin. Fol-

lowing this, one of the *OOH groups undergoes O-O bond dissociation, resulting in an *OH

group and an unbonded oxygen atom, which quickly accepts a proton from the surrounding

water molecules to form another *OH. This *OH formation state exhibits substantial stabil-

ity, persisting through the fourth and fifth points in the reaction pathway, all encapsulated

within the second major energy basin.

In contrast with the Au(100)-1O2/H2O case, the reduction of the first O2 molecule is

considerably more facile. Besides, the presence of *H2O2 is not observed during the simu-

lation further validating that the reaction mechanism found in this study aligns well with

experimental findings.

Transitioning to the analysis of the Au(110)-2O2/H2O interface, the simulation stoped

at 854 ps, with the O-O bond of the first O2 molecule breaking at 432 ps as illustrated

in Figure 8b. Similar to the Au(100)-2O2/H2O case, the second O2 remains intact during

the entire simulation. The free energy landscape at this interface showcased two major

basins, signifying the initial and final states of the reaction. At the second point of the

reaction pathway, the state is Au(110)-(2OOH+2OH)/H2O, exhibiting a similar adsorption

behavior to the Au(100) surface. A notable observation was the presence of *H2O2 at the

third point, which quickly transitioned into 2*OH groups. The second energy basin is quite

stable, encapsulating both the fourth and fifth points in the reaction pathway. The reaction

barrier for the Au(110)-2O2/H2O interface is slightly higher than that of Au(100)-2O2/H2O,
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Figure 8: (a) Snapshots of representative atomic structures along the reaction trajectory. (b)
Evolution of coordination numbers CO2−O and CO2−H throughout metadynamics simulation.
(c) Free energy landscape of ORR on Au(110) with two oxygen molecules described by path
CVs.

being 0.32 eV.

Moving onto the Au(111)-2O2/H2O interface, the simulation stoped at 665 ps, demon-

strating the O-O bond dissociation of the first O2 molecule at 46 ps as depicted in Figure

9b. This behavior aligns with the previous observations on the Au(100) and Au(110) in-

terfaces, where the dissociation of the second O2 molecule proved to be challenging. As

demonstrated in Figure 9c, the free energy landscape showcased two major basins, with the

first corresponding to the initial state Au(111)-2O2/H2O and the second corresponding the

final state Au(111)-(1O2+4OH)/H2O. The presence of *H2O2 is more prominent on Au(111),

expanding over a large area from the second point to the third point along the reaction tra-

jectory. Amongst the interfaces studied, the Au(111)-2O2/H2O interface exhibited the lowest

reaction barrier, recorded at 0.21 eV.

A notable observation across all three interfaces is that the evaluated reaction barriers are

lower in comparison to their counterparts in the single oxygen metadynamics case, indicating
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Figure 9: (a) Snapshots of representative atomic structures along the reaction trajectory. (b)
Evolution of coordination numbers CO2−O and CO2−H throughout metadynamics simulation.
(c) Free energy landscape of ORR on Au(111) with two oxygen molecules described by path
CVs.

the facilitative role of co-adsorbed O2 for ORR dynamics. Moreover, in each case, the second

major basin, representing the co-adsorption of one oxygen molecule and four hydroxyl groups,

was quite deep, demonstrating the remarkable stability of this state. This suggests that the

presence of co-adsorbed hydroxyls can significantly influence the ORR on gold surfaces,

potentially impeding the ORR process.

Conclusion and outlooks

In this comprehensive study, we have delved into the intricate dynamics of the oxygen reduc-

tion reaction (ORR) on prominent gold surfaces, specifically Au(100), Au(110), and Au(111).

Our approach, which incorporated explicit solvents and utilized GNN-accelerated metady-

namics, has provided a deep insight into the ORR mechanisms on these gold facets. Our

regular MD simulations elucidate the dynamics at the gold-water interface, with an emphasis

on the interactions involving adsorbed O2 and *OH. The role of adsorbed *OH was found
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to be significant in influencing the water layer structure. Our systematic investigations have

revealed the facet-dependent behavior of ORR, with particular emphasis on the stability

and behavior of *H2O2 across different gold facets. For instance, the presence of *H2O2 on

Au(111) and Au(110) is prominent, broadly existing in the reaction trajectory. However, the

presence of *H2O2 on Au(100) is merely observed. This findings align well with experimental

observations. Furthermore, our metadynamics results emphasized the role of co-adsorbed

species on the ORR reactivity. The inclusion of oxygen molecules can facilitate the reaction

kinetics, while the co-adsorbed hydroxyl groups considerably impede the reaction process.

The significant influence of adsorbed species, especially *OH, on the water layer structure

underscores the need for a deeper understanding of their interactions and effects on other

reaction intermediates. Additionally, extending this research to include different electrolytes

can offer a broader perspective on how various solvents and ions modulate the ORR on gold

surfaces. With the foundational knowledge established in this study, there lies the potential

for the design and development of optimized gold-based electrocatalysts, paving the way for

breakthroughs in electrocatalysis and related fields.
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(22) Schütt, K.; Unke, O.; Gastegger, M. Equivariant message passing for the prediction

of tensorial properties and molecular spectra. International Conference on Machine

Learning. 2021; pp 9377–9388.

(23) Kingma, D. P.; Ba, J. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980 2014,

(24) Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.;

Lin, Z.; Gimelshein, N.; Antiga, L.; others Pytorch: An imperative style, high-

performance deep learning library. Advances in neural information processing systems

2019, 32 .

(25) Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Physical review

B 1993, 47, 558.

(26) Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–

amorphous-semiconductor transition in germanium. Physical Review B 1994, 49,

14251.

(27) Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for met-

als and semiconductors using a plane-wave basis set. Computational materials science

1996, 6, 15–50.

(28) Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calcu-

lations using a plane-wave basis set. Physical review B 1996, 54, 11169.
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