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A Self-Commissioning Edge Computing Method
for Data-Driven Anomaly Detection in Power

Electronic Systems
Pere Izquierdo Gómez , Student Member, IEEE, Miguel E. López Gajardo , Student Member, IEEE,

Nenad Mijatovic , Senior Member, IEEE, and Tomislav Dragičević , Senior Member, IEEE

Abstract—Ensuring the reliability of power electronic
converters is a matter of great importance, and data-driven
condition monitoring techniques are cementing themselves
as an important tool for this purpose. However, translating
methods that work well in controlled lab environments to
field applications presents significant challenges, notably
because of the limited diversity and accuracy of the lab
training data. By enabling the use of field data, online ma-
chine learning can be a powerful tool to overcome this
problem, but it introduces additional challenges in ensuring
the stability and predictability of the training processes.
This work presents an edge computing method that miti-
gates these shortcomings with minimal additional memory
usage, by employing an autonomous algorithm that priori-
tizes the storage of training samples with larger prediction
errors. The method is demonstrated on the use case of
a self-commissioning condition monitoring system, in the
form of a thermal anomaly detection scheme for a variable
frequency motor drive, where the algorithm self-learned to
distinguish normal and anomalous operation with minimal
prior knowledge. The obtained results, based on experi-
mental data, show a significant improvement in prediction
accuracy and training speed, when compared with equiva-
lent models trained online without the proposed data selec-
tion process.

Index Terms—Anomaly detection, machine learning, neu-
ral networks, online learning, thermal modeling.

I. INTRODUCTION

POWER electronic converters play a key role in the elec-
trification of the global energy sector and are therefore

becoming ubiquitous in a wide range of applications. It is
thus fundamental to ensure that power converters can cost
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effectively satisfy reliability requirements over their designed
operating lifetime, especially in safety-critical areas, such as
transportation, water supply, industrial, and power transmission
systems. In less critical environments, maximizing reliability
can also result in significant improvements, by reducing system
downtime and its associated costs.

Increasing the reliability of power converters in the design
phase often involves oversizing their components or introduc-
ing redundancies; but these modifications may not always be
economically viable [1]. An alternative approach to failure
minimization is to employ condition monitoring techniques,
which can inform the scheduling of predictive maintenance by
assessing the health status of the systems under consideration.
Condition monitoring analyzes the changes and trends of a set of
device characteristics in order to identify failure precursors and
thus anticipate the need for maintenance before serious deterio-
ration or breakdown occurs [2]. Successful implementations of
condition monitoring methods for power electronic converters
must overcome significant challenges, which can be broadly
summarized as follows.

1) Condition monitoring methods are typically limited in
scope to a single type of component. However, at the
application level, the interactions between the multiple
components of a converter often invalidate the assumption
that the degradation of each of them can be analyzed
independently [3].

2) In practical applications, it is often challenging to directly
measure device parameters indicative of degradation. For
example, aging failures in power semiconductor devices
typically occur due to wire-bonding contact degradation
and the creeping of the baseplate solder layer [4].
Mechanical stress gauges and localized electrical
resistance measurements within a device or module can
directly monitor these mechanisms. Nonetheless, these
additional sensors increase costs and are challenging
to install and maintain in commercial products, which
makes indicators derived from device or converter-level
measurements more attractive in practical use
cases [5].

3) The degradation dynamics observed under controlled test
conditions often cannot be extrapolated to field operation,
where power converter systems experience substantially
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more diverse stress profiles [6]. The broad variety of
real-world influences, which may range from control
techniques to environmental conditions (e.g., ambient
temperature and humidity), virtually forbids exhaustive
testing within the entirety of the system’s operating space.

There is therefore a need for condition monitoring solutions
that operate at the converter level, require few or no additional
sensors, and are able to achieve precise prognostics and health
management performance under a wide variety of operating
conditions. The present article proposes one such method, em-
ploying a self-commissioning data-driven model trained in an
online manner to detect thermal anomalies in a power converter,
and able to run in its entirety with minimal prior knowledge and
on an edge device.

A. Failure and Degradation in Power Electronic Systems

As a result of the aforementioned limitations, application-
level monitoring techniques often focus on a few dominant fail-
ure and degradation mechanisms [3]. Accordingly, it is funda-
mental to identify these dominant mechanisms and to construct
relevant metrics.

In a 2011 industry-based survey of reliability in power elec-
tronic converters [7], respondents ranked power devices as the
most fragile components, followed by capacitors, gate drives,
and connectors. Failures associated with inductors and resistors
were comparatively rare. The Handbook of Electronic Package
Design [8] instead identifies capacitors as the component most
prone to failure, followed by printed circuit boards (PCBs),
semiconductors, soldering, and connectors.

Field experiences in photovoltaic (PV) systems analyzed
in [9] indicated that inverters are the first cause of service tickets
in plants requiring maintenance, accounting for upto 70% of
requests. At the component level, software errors consistently
ranked first. However, conclusions were not as clear regarding
hardware malfunctions: cards and boards, cooling systems and
fans, ac contactors and circuit breakers, and insulated-gate bipo-
lar transistors (IGBTs) all ranked highly, but none of them stood
out consistently. Another study on PV systems [10] reached
similar conclusions, with cards and boards accounting for 13%
of hardware-related issues, followed by ac contactors with 12%,
fans with 6%, and matrices and IGBTs with 6%. A 2019 study on
the reliability of power converters in wind turbines [11] found
phase modules to form the largest portion of failed converter
components, with a 22% of the total. These were followed by
control boards, cooling systems, and main circuit breakers.

Despite humidity-related degradation mechanisms receiving
increased attention in recent years [11], [12], [13], consensus
in the literature points to thermal stresses as the most dominant
factor in the reliability of power modules [14], [15], [16], [17].
Bond wire lifting is regarded as the main failure mechanism in
IGBT modules, followed by solder joint fatigue. Both mecha-
nisms have been found to be directly tied to thermal cycling.
Pecht [8] identified “Temperature — Steady State and Cyclical”
as the main stress factor in 55% of recorded failures, ahead of
“Vibration/Shock” (20%), “Humidity/Moisture” (19%), and

“Contaminants and Dust” (6%). Temperature swings and steady-
state temperatures both play a crucial role in component degra-
dation, affecting bond wire lifting, and solder lifetime [18], [19],
[20], [21].

Classical condition indicators of power modules are com-
monly based on forward voltage and junction-to-case thermal
impedance [22], [23], [24]. A deviation in on-state voltage or
junction-to-case thermal resistance reflects in an increase in
junction temperature of a few °C [25]. A condition monitoring
technique may exploit this relationship to extract information
on the status of the device; however, changes in junction tem-
perature will typically reflect in even smaller change in case
temperature [26], which may be challenging to measure accu-
rately. Nevertheless, mean junction temperature is an important
factor in determining the lifetime of power modules. According
to Zeng et al. [21], with a power cycling test at50Hz and junction
temperature swings between 23 ◦C and 27 ◦C, a 10 ◦C reduction
in mean junction temperature could result in a tenfold increase
in the lifetime of the IGBT modules under test.

Most other components in power electronic converters, in-
cluding capacitors, integrated circuits, PCBs, and connectors,
also exhibit an inversely proportional relationship between their
average temperature and their expected lifetime [27]. The cool-
ing system of power converters, whether active or passive,
is responsible for maintaining the average temperature of the
components within its designed boundaries. Therefore, ensuring
that it remains in adequate condition throughout the lifetime
of the converter can result in significant improvements in the
reliability of its components.

B. Anomaly Detection

Anomaly detection refers to the process of identifying patterns
in data that do not conform to expected behavior [28]. Most
anomaly detection methods aim to first characterize the healthy
operation of a system, and then to identify instances that do
not conform to it. This can be achieved using model-free or
model-based approaches, both of which have found numerous
applications in power electronics [29].

Model-free anomaly detection typically employs data clus-
tering methods to directly quantify the difference between
anomalous samples and a given healthy data distribution. Some
examples within the field of power electronics include [30],
where the authors employ data-driven graph representations
to detect anomalies in correlated sensors; and [31], which
presents a method for health monitoring of cooling fans using
high-dimensional feature extraction and a Mahalanobis distance
criterion. However, model-free methods may fail to sufficiently
exploit known relevant relationships in the data, e.g., the corre-
lation between a device’s current and its power losses.

Alternatively, model-based anomaly detection commonly re-
lies on a model of the monitored system under healthy condi-
tions, and seeks to identify anomalous behavior by comparing
system measurements with model predictions, thereby analyzing
prediction errors or residuals. The underlying assumption in
model-based methods is that, for a given set of input data, the
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Fig. 1. Simplified circuit diagram of the monitored frequency converter
in the experimental setup, as part of a Danfoss FC 302 variable-
frequency motor drive.

model will make predictions corresponding to the expected oper-
ation. The predictions will then match observations more closely
for healthy operation than for degraded operation, allowing for
the identification of unexpected behavior when prediction resid-
uals increase. Model-based condition monitoring approaches
are particularly suited to converter systems under variable load
and ambient conditions [5], as models can be trained to make
predictions only on relevant input–output relationships and thus
achieve increased robustness. Some examples of model-based
anomaly detection in power electronics include [32], where a
recurrent neural network is trained to identify failures in multi-
level inverters; and [33], in which Gaussian process regression
is employed with a genetic algorithm to identify the status of a
dc–dc converter.

II. SYSTEM DESCRIPTION

The proposed methodology is applied to the detection of
thermal anomalies in a variable-frequency power converter,
subjected to a variety of operating conditions. A dataset is
collected from a low-voltage motor drive test bench, which
consists of two 5.5 kW ABB 3-phase induction machines cou-
pled to the same shaft, and driven by two low-voltage Danfoss
VLT AutomationDrive FC302 variable-frequency converters,
also rated at 5.5 kW. A simplified circuit diagram of the power
electronic converter is shown in Fig. 1, and a photograph of the
experimental test bench is shown in Fig. 2.

A communication card is integrated to each of the two drives,
allowing for data transmission via Profinet. Information is sent
to and from a network gateway, which in turn allows for commu-
nication with a computer. For the anomaly detection process, the
logged variables from the drive include the phase rms currents
ia, ib, ic, and the heat sink temperatureThs. The motor connected
to the monitored converter is speed controlled, while the second
motor is torque controlled, acting as a controllable load. A block
diagram representing the experimental setup is shown in Fig. 3.

The drive reference values for speed ωref and torque τref are
generated by random sampling from the operating range of the
motor setup, as

ωref ∼ U(0, 1465) [r/min], τref ∼ U(0, 28) [N·m] (1)

where U stands for the uniform distribution. After sending the
two references, they are held constant for a total of 10 min, after

Fig. 2. Picture of the motor test bench used to collect experimental
data.

Fig. 3. Block diagram depicting the experimental test bench. Solid
lines represent electrical connections, dotted lines represent drive-
internal measurements and communication, and dashed lines represent
external communication. Motor 1 (M1) is speed controlled, while motor 2
(M2) is torque controlled. The two inverters are connected to a common
dc link.

which there is a 50% chance that a new randomized reference
is sent, and a 50% chance that the drives are stopped, allowing
for the converters to cool down. This process ensures that the
collected data includes diverse heat sink temperature profiles,
resulting from variable loading conditions. The measurements
are downsampled to a constant sampling period of 10 s, with-
out interpolation. The experimental dataset was collected prior
to the training process, allowing for algorithm benchmarking,
cross-validation analysis, and facilitating parameter tuning. The
collected dataset is then streamed to train the selected models in
an online manner.

In order to gather data corresponding to thermal anomalies
in the motor drive, the collection process included periods in
which the air outlet of its cooling system was partially blocked.
Besides failure in the cooling system, other scenarios, such as
loss of phase and large asymmetries may also result in unex-
pected thermal profiles. The complete recorded dataset contains
approximately 26 h of data recorded during normal operation,
and 21 h of data recorded during anomalous operation. The data
corresponding to normal operation are employed in the training
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Fig. 4. Portion of the collected dataset, for normal operation (top) and
anomalous operation (bottom). The output RMS average phase current
iout (blue line, solid) is plotted on the left axes, while the heat sink
temperature Ths (orange line, dashed) is plotted on the right axes.

dataset, while anomalous data are used only for validation. For
illustrative purposes, a graph displaying a portion of the collected
data is shown in Fig. 4.

It is worth noting that the heat sink temperature measure-
ments obtained from the built-in sensor have a resolution of
only 1 ◦C. This would hinder their representation with linear
and autoregressive models, as consecutive measurements often
result in the same temperature value, further motivating the use
of data-driven nonlinear models.

III. PROPOSED METHODOLOGY

The proposed methodology is based on the online training of a
neural network model using streaming data from a motor drive
system, to then employ its predictions for anomaly detection.
With few documented exceptions (e.g., [34] and [35]), anomaly
detection algorithms for electrical systems typically rely on
the collection of static datasets, with model-based approaches
employing these data for offline training. In this manner, the
designer has the opportunity to verify that the trained models
produce accurate predictions on the complete dataset. However,
it can be time consuming and costly to collect sufficiently
representative data in a controlled environment, as the conditions
present in the controlled environment may not accurately mirror
those found in the field.

A. Online Machine Learning

Alternatively, data-driven models may be trained on real-time
streaming data, in a process referred to as online or incremental
machine learning. Data from field operation can be collected
in real time and used to update the model parameters, accu-
rately reflecting the behavior of the system under its current
operating conditions. This process can take place on a cloud
platform or locally, where models are updated directly on the

edge devices. Cloud platforms enable the aggregation of large
datasets, increasing the amount of data available at each train-
ing iteration. However, cloud computation, data storage, and
data transmission can carry significant economic costs, mostly
involving charges from the cloud service provider and from the
telecommunications system provider that maintains a reliable
connection between each edge device and the internet. On the
other hand, model training on the edge devices carries virtually
no additional costs, besides the upfront price of the local edge
device hardware. In addition, it may even entirely remove the
need for a connection to the internet, thereby further reducing
costs and increasing the reliability of the monitoring system.

Despite these advantages, edge devices are much more limited
than cloud platforms in terms of memory and computational
resources. In practice, this often means that the training process
must take place in a continual setting, where only a small subset
of the observed measurements can be held in memory at any
given time, which often leads to instability in the online training
process. For instance, neural network models tend to experience
catastrophic forgetting, where models continuously overfit to
their most recent training data and therefore lose their ability to
generalize to older observations [36]. In the context of online
regression, a neural network model is trained on a fixed-size
data buffer B, which without a sample selection mechanism
contains the |B| most recent input–output pairs. Training until
convergence on B with a mean-squared error (MSE) loss will
result in a model that generates approximately optimal predic-
tions in a least-squares sense. However, this desirable property
only holds for the current time bufferBt, and since the model has
a limited capacity, minimizing the loss inBt will increase the loss
on the previous buffers B0, . . . ,Bt−1, i.e., it will lead to catas-
trophic forgetting. Stopping the training on each buffer before
convergence, e.g., by decreasing the learning rate(s), reducing
the number of training epochs per buffer, or increasing the size of
the model, can alleviate this problem; but it introduces a tradeoff
between the stability and the plasticity of the model, and can
therefore lead to underfitting. Numerous techniques have been
developed to mitigate the effects of catastrophic forgetting in
online learning settings while addressing the stability–plasticity
problem, including the following:

1) memory replay [37];
2) regularization [38], [39], [40];
3) knowledge distillation [41];
4) ensemble methods [42], [43];
5) flexible model architectures [44], [45].

The interested reader may refer to [46] for a comprehensive
review of continual learning methods developed up to 2021.

Much of the existing literature focuses on the study of
classification problems in task-incremental settings, assumes
knowledge on when tasks change, and/or employs additional
or growing models, either to learn new tasks or to generate
artificial samples with deep generative architectures. Many of
these approaches are therefore not directly applicable in com-
putationally resource-constrained industrial environments, and
for regression tasks with minimal previous knowledge.

This article proposes a new algorithm for improved online
training by mitigating catastrophic forgetting, with minimal
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additional computation and memory usage. The method is based
on the following idea: given a buffer of training data in an
online regression setting, the samples with a lower prediction
error contain less relevant information than those with a higher
error, as the model is already able to generate accurate estimates
given the corresponding inputs. During online training, each
new observation is set to replace the element in the buffer with
the lowest prediction error, rather than the oldest element. This
method is closely related to prioritized experience replay [47],
commonly used in the context of deep reinforcement learning. In
prioritized experience replay, errors are stored in the data buffer,
and data points with larger associated errors are sampled more
frequently during training steps. Although prioritized experience
replay has been shown to outperform uniform sampling in terms
of generalization and training speed, it is commonly assumed
that the maximum buffer size is large enough to cover the entire
observation space, and there is therefore little or no need to
overwrite existing data. The results presented in Section IV
suggest that similar improvements can be obtained with the
proposed method, where the buffer size is constant and limited.
The sample selection method in the context of online neural
network training is shown in Algorithm 1.

The proposed online training method is motivated by the
following observations.

1) Efficient learning: It in its simplest form, stochastic gra-
dient descent (SGD) performs updates on a set of model
parameters θ as

θt ← θt−1 − η∇θL (f,Bt, θt−1) (2)

where η > 0 is a learning rate, L is a loss function, f
is a neural network model associated to θ, and B is a
set of input/output pairs. As the gradients are directly
proportional to the loss, ensuring that the buffer contains
samples with larger errors can lead to faster training.
Intuitively, emphasizing the samples with a higher loss
allows the training process to focus on the model’s largest
mispredictions.

2) Data diversity: It a set of streaming measurements, which
is likely to contain highly time-correlated samples, which
may result in consecutive model updates on a very limited
set of information. By retaining samples with a large loss,
if the model overfits to a sequence of strongly correlated
samples, the buffer will be more likely to retain previous,
more diverse samples. In addition, if a rare event occurs,
the sample selection mechanism makes it likely that the
corresponding samples will be kept in the buffer, as the
majority of the buffer will be populated with measure-
ments from a different data distribution.

Three state-of-the-art continual learning algorithms have been
implemented for a comparative analysis of the proposed method,
each of them belonging to a separate family of methods [46]. The
algorithms have been selected due to their widespread use and
the possibility of their implementation with a constant memory
and computation footprint, allowing for a fair comparison with
the proposed method.

1) Incremental Classifier and Representation Learning
(iCaRL): Memory replay [37]. In the context of classification

Algorithm 1: Online Training of a Neural Network With
Buffer Sample Selection.

problems, iCaRL maintains separate data buffers for each target
class. As new data becomes available, these buffers are populated
with exemplars, i.e., the samples closest to the means of each
class. In its application to online regression, a single exemplar
buffer Pt is considered, and the loss function becomes

L = L (Bt ∪ Pt) (3)

whereBt is a standard buffer with a first-in-first-out mechanism.
A single sample p∗ is added to Pt from Bt every |Bt| time steps,
based on

p∗ = arg min
(xi,yi)∈Bt

||xi − x̄||2 (4)

where x̄ is the average feature vector over all samples in Bt. The
proposed error-based selection method shares many similarities
with iCaRL, as both are based on memory replay mechanisms.

2) Online Elastic Weight Consolidation (EWC): Regular-
ization [39]. EWC introduces a quadratic term to the loss func-
tion, which penalizes parameter changes weighted by the sensi-
tivity of the loss to each parameter, as measured by the diagonal
of the Fisher information matrix (in classification). EWC [38]
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requires storing the model parameters θ and sensitivity factor
F for each task, while online EWC [39] only maintains the θ
and F corresponding to the previous task. Interpreting the data
available at each time step as a separate task, the loss function
for online EWC can be expressed as

L = L (Bt) + λEWC

2

|θ|∑
i=1

Ft−1,i · (θt,i − θt−1,i)
2 (5)

where λEWC ≥ 0 is a weighting factor for the penalty term. In
addition, F is computed as a running sum, given by

Ft = γFt−1 + (∇θtLt)
2 (6)

with F0 initialized at zero, and a second hyperparameter 0 ≤
γ ≤ 1 acting as a discount factor for the penalty updates.

3) Learning Without Forgetting (LwF): Distillation [41].
In a task-incremental setting, LWF stores the model parameters
corresponding to each learned task. During training, the loss
function is augmented with a quadratic term penalizing the dis-
tance between the predictions with the current set of parameters
and the predictions with the stored versions of the model, as
obtained with the current set of samples. In application to an
online regression, and to maintain a constant footprint, only
the model corresponding to the previous time step is employed,
resulting in the loss function

L = L (Bt) + λLWF

N

N∑
i=1

||f(xt,i, θt)− f(xt,i, θt−1)||22 (7)

where λLWF ≥ 0 is a weighting factor.

B. Application to the Case Study

The online training methods are applied to a fully-connected
feedforward neural network model, also known as a multilayer
perceptron (MLP). An MLP contains multiple layers, each ap-
plying a linear transformation followed by a nonlinear mapping
commonly called activation function. It can be expressed as

a(l) = g(l)
(
W(l)a(l−1) + b(l)

)
(8)

where a(l) is a vector of unit activations at layer l, W(l) is the
layer’s weight matrix (indexed as w

(l)
j,k), b(l) is its bias vector

(indexed as b
(l)
j ), and g(·) is its activation function. With this

definition, the initial layer activation is equal to the input sample
(a

(0)
i = xi), and similarly, the output layer activation is equal to

the predicted output (a(nl)
i = ŷi).

The employed activation function for the inner layers is the
rectified linear unit (ReLU), defined as

g(x) = max(0, x) =

{
0 if x < 0
x otherwise

(9)

and applied element-wise. As the model is designed for regres-
sion, the output layer activation function g(nl)(·) is the identity
function. The tunable parameters of the model are the bias
matrices and weight vectors of each layer, which are updated
via gradient descent. For this purpose, a commonly used loss

function for regression problems is the MSE. For a single
sample, the MSE loss function is defined as

� (y, ŷ) =
1

no

no∑
j=1

(yj − ŷj)
2 (10)

where no is the number of outputs of the model. In the presented
case study, the regression model is trained to predict a single
heat sink temperature value Ths. The loss function is therefore
reduced to

�
(
Ths, T̂hs

)
=

(
Ths − T̂hs

)2

. (11)

When evaluated on a buffer B containing N training examples,
the MSE becomes

L =
1

N

N∑
i=0

(
Ths,i − T̂hs,i

)2

. (12)

The backpropagation algorithm can then be used to obtain the
gradients of the loss function w.r.t. each parameter of the model.
For the output layer

∂L
∂a(lout)

= −2
(
Ths − a(lout)

)
(13)

as T̂hs = a(lout). Using the chain rule, the gradients of the loss
w.r.t. the activations of each hidden layer can be obtained recur-
sively [48], as

∇z(l)L = W(l+1)�∇z(l+1)L ◦ g(l)′
(
z(l)

)
(14)

where z(l) is the prenonlinearity activation at layer l, i.e., z(l) =
W(l)a(l−1) + b(l) and g′(·) is, in this case, the derivative of
the ReLU function. With the values of ∇z(l)L for every layer,
the computation of the gradients w.r.t. the weights and biases is
simply

∇W(l)L = ∇z(l)L · a(l−1)� (15)

∇b(l)L = ∇z(l)L. (16)

The gradient descent step for the parameters is implemented
with SGD with momentum, i.e.

W
(l)
t = W

(l)
t−1 − η∇W(l)L+ μ

(
W

(l)
t−1 −W

(l)
t−2

)
∀l (17)

b
(l)
t = b

(l)
t−1 − η∇b(l)L+ μ

(
b
(l)
t−1 − b

(l)
t−2

)
∀l (18)

where η is the learning rate and μ is the momentum factor.
Although there exist alternatives to backpropagation for the
training of neural networks, gradient-based models are well
suited to online learning, as the optimizer parameters can be
used to control the model parameter dynamics, thus controlling
the rate of adaptation of the model to incoming data.

C. Anomaly Threshold Design

When used to perform anomaly detection, the MLP regression
model can be employed to obtain a squared error value corre-
sponding to each sample i, as described in (11). In its simplest
form, anomaly detection can then be achieved by comparing
the value of Li to a static threshold value T . With the model
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trained under healthy operation, prediction errors will exceed
the threshold more frequently as degradation occurs. However,
it may be challenging to design a static T ahead of operation, as
its value should be dependent on the performance of the trained
model.

A more scalable approach, presented here, is to estimate T
based on the prediction errors, in an online manner. Rather
than predefining a value for T , the designer can decide on a
critical value for the probability distribution of the residuals,
with the threshold becoming a function of the spread of this
distribution. Under the assumption that the prediction residuals
follow a normal distribution centered at zero, their square will
follow a χ2 distribution with one degree of freedom. Although
this assumption does not hold in general, it is approximately
valid for unbiased neural networks with a linear function as the
output unit activation [48]. Using a desired confidence level α,
the threshold T can then be defined as

T = s2 · χ2
α (k = 1) (19)

where s2 is the unbiased sample variance of the prediction
residuals and χ2

α(k) is the critical value of the χ2 with k degrees
of freedom at the confidence level α. A recursive algorithm can
be employed to obtain s2 without storing additional data. For
example [49]

r̄n = r̄n−1 +
rn − r̄n−1

n
, r̄0 = r0 (20)

Sn = Sn−1 + (rn − r̄n−1) (rn − r̄n) , S0 = 0 (21)

s2n =
Sn

n− 1
(22)

where rn = Ths,n − T̂hs,n denotes the prediction residual at step
n and r̄n is its mean. Although the designer must still select a
value for α, it is not dependent on the residuals, and it has a
clearer interpretation than T , i.e., which proportion of samples
should be classified as healthy during the threshold-fitting pro-
cess. In this manner, the proposed method can be employed to
achieve a self-commissioning anomaly detection system.

IV. EXPERIMENTAL RESULTS

The experimental verification of the proposed method was
carried out on the collected dataset, as detailed in Section II.
The MLP models are trained to predict heat sink temperature
given the last 30 min of rms inverter output current which, when
sampled at a resolution of 10 s, amount to 180 values per input
sample. The rms current values are filtered on the drive side,
reducing the presence of measurement errors. In the use case
presented in this article, where the load under consideration is
inductive, the converter output currents are dominated by their
low-frequency components. Therefore, their rms values act as
an adequate indicator for temperature prediction. For the exper-
imental test bench under study, inverter output current proved
sufficient to obtain accurate heat sink temperature predictions,
since there is a direct relationship between the electrical power
of the motor and its stator currents, which neural network models
can implicitly learn. However, more complex applications with

TABLE I
PARAMETERS OF THE ONLINE TRAINING MODELS

additional interacting variables may greatly benefit from their
inclusion as model inputs.

The length of the input data window is selected to be long
enough to fully represent heating and cooling processes—it is
therefore device-dependent and should be tuned according to
the monitored variables’ time constants. The number of samples
stored in the data buffer (N ) should be tuned according to the
available memory on the computing device. With 180 inputs and
a single output per sample, and a buffer size of 50, the buffer
takes up approximately 0.3 MB of memory. A larger buffer
allows for more information to be employed in every model
update, and can therefore speed up and increase the stability of
the training process. The training speed and stability of the online
training methods are lower than those of the offline methods, as
model update steps can only be informed by a portion of the
dataset, which contains less information than its whole. In this
sense, online training methods under memory constraints can
only aim to approximate the performance of a corresponding
offline approach, where a complete dataset is available during the
entirety of the training process, and where batching and shuffling
methods ensuring that update steps improve the generalization
ability of the model.

The dataset is scaled to a [0, 1] range using min–max nor-
malization, with scaling values based on the training set in each
iteration of cross-validation. Other relevant parameters for the
online learning models are listed in Table I.

Eight models are trained on the collected dataset, with dif-
ferent training methods. These models are referred to as the
following.

1) Offline Classifier: Trained offline on the complete training
dataset augmented with data corresponding to anomalous
operation. Having been exposed to these additional data,
the model expectedly outperforms all regression mod-
els in identifying anomalies. However, the collection of
anomalous data during field operation is often unfeasible,
invalidating this approach. This model is trained with the
Adam optimizer using the default parameters suggested
in [50].

2) Offline Regressor: Trained offline on the complete train-
ing dataset, with shuffling and over 100 epochs. This
model is also trained with the Adam optimizer.

3) Incremental: Trained online in a purely incremental man-
ner, i.e., with no data buffering.

4) Buffer: Trained using a simple data buffer, where N
samples are held in memory and used at every training
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step. Each new sample overwrites the oldest sample held
in the buffer.

5) Selection: Trained using Algorithm 1, where each new
sample instead overwrites the sample with the lowest loss.

6) iCaRL: Based on [37]. In order to enable a fair comparison
with the other methods, each of its two buffers is designed
to contain 25 samples.

7) EWC: Based on the online version introduced in [39].
Its hyperparameters are selected through grid search,
with λEWC = [10, 12.5, 15, 17.5, 20,22.5, 25, 27.5, 30]
and γ = [0.7,0.8, 0.9, 0.95, 0.99].

8) LWF: Based on [41]. Its hyperparameter is selected
through grid search with λLWF = [0.01, 0.05,0.1, 0.25,
0.5, 0.5, 0.75, 1].

The implementation of the models and their training was done
on Python 3.10 and with PyTorch 1.12. The feasibility of the
method on edge platforms was also verified on a Raspberry Pi
4B with an ARM Cortex-A72 processor. On the edge device,
the selection method was implemented with TensorFlow Lite
2.11, with a total execution time of 15.7± (1.3)ms per inference
and training iteration. This measurement is orders of magnitude
below the 10 s base sampling time of the anomaly detection
system, which suggests that the method is suitable for devices
with far more limited computational capabilities, as well as
processes with faster dynamics.

To perform cross-validation, the dataset recorded under nor-
mal operation is split in eight parts. Parts are collected in pairs,
with each run using six parts for training and two parts for testing,
resulting in 28 combinations. During the online training process,
the models are continuously evaluated on the test dataset, which
also includes the recorded anomalous data.

The models are evaluated in terms of their ability to perform
anomaly detection, i.e., to consistently result in higher prediction
errors for anomalous samples. Samples with a squared error
larger than an anomaly threshold parameter T are considered
positive predictions, suggesting anomalous behavior. Fig. 5
shows the heat sink temperature measurements and predictions
at the top, with the corresponding squared errors at the bottom, as
obtained with a model trained with the proposed buffer sample
selection method. The figure also shows the anomaly threshold,
which is fit during the first 4 h of the experiment as described in
Section III, and with a confidence level ofα = 99%. During this
time, the threshold can be observed to increase with sequences
of larger errors, and to decrease with sequences of smaller errors.
The threshold fitting time must be designed to be long enough
to accurately capture the variance of the prediction residuals
during healthy operation. After approximately 8 h, the air outlet
is blocked, resulting in larger prediction errors, which are in
their majority correctly identified as anomalies, as they exceed
the now static threshold value.

The classification performance of the models is analyzed
by means of receiver operating characteristic (ROC) curves,
which represent the true positive rate as a function of the false
positive rate, as T ranges from 0 to ∞. Fig. 6 illustrates an
example set of ROC curves. These curves are obtained by
evaluating the classification performance of the models after
approximately 11 h of training, for each of the five considered

Fig. 5. Experimental results in a test run, using a model trained with
online learning with the proposed sample selection method. In this
example, the false positive rate is 3.7%, and the true positive rate is
85.7%.

Fig. 6. Example receiver operating characteristic (ROC) curve for a
single training experiment, recorded at an equivalent 11 h of training.

methods. ROC curves can be summarized in a single metric,
the area under the ROC curve (AUC), which allows for the
comparison of models using a single metric and independently
of the selection of a threshold parameter. AUC can be calculated
by numerically integrating an ROC curve. The maximum value
of AUC is 1, corresponding to a perfect classifier, while a
random classifier—which predicts the correct class of a given
sample with a 50% probability—achieves an AUC of 0.5. In the
context of this article, the AUC can be understood as a measure
of the probability that a randomly selected anomalous sample
will result in a higher squared prediction error than a randomly
selected healthy sample. The use of AUC enables a more general
analysis than metrics, such as accuracy, precision, or recall,
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Fig. 7. AUC results on the test dataset, for each of the five considered training methods. The results are graphed as mean values and 95%
confidence intervals across the 28 cross-validation runs, as a function of training time.

Fig. 8. Boxplots displaying the average AUC over cross-validation test
runs for each considered training method.

since it quantifies the detection performance independently of
the value of T , which is application dependent. The complete
results, in terms of AUC as a function of time, are presented in
Fig. 7. The results are based on the data collected as explained
in Section II, i.e., under varying torque and speed setpoints and
with anomalous data produced by partially blocking the air outlet
of the drive’s cooling system. The graphs therefore show aggre-
gated results accounting for the variety of operating conditions
under consideration. These results are further summarized in the
boxplots displayed in Fig. 8, which show the distribution of the
mean AUC throughout cross-validation iterations, and include
additional results corresponding to iCaRL, EWC, and LWF.

The results shown in Fig. 8 suggest that online EWC and
LWF are not particularly suitable to the case study under con-
sideration, as they are unable to achieve significantly better
performance than training with a buffer without a sample se-
lection mechanism. Nonetheless, the iCaRL method is able
to achieve similar results to the proposed error-based sample
selection method, with only slightly lower AUC. As the two
methods are closely related, both relying on memory replay with

TABLE II
COMPARATIVE SUMMARY OF ONLINE TRAINING METHODS

a sample selection mechanism, their similarity should not be
surprising. iCaRL appears to be less consistent throughout cross
validation than the proposed selection method, as suggested by
the presence of outliers in its boxplot. Together with its slightly
lower performance, this instability serves as an argument in favor
of the proposed method.

Table II summarizes the computational requirements and
the average performance of each online training algorithm.
Each runtime is measured on a Raspberry Pi 4B and reported
as normalized with respect to the incremental case. Memory
requirements are expressed as the ideal minimum number of
parameters required for implementation. The iCaRL method is
remarkably capable of significantly improving the AUC over the
simple buffer method, without additional memory requirements
and with almost no increase in runtime. The proposed selection
method requires a somewhat longer runtime, as it requires an
additional forward evaluation of the model, but outperforms
every other considered method in terms of AUC.

The results show that, out of the six considered online training
methods, the proposed method is able to achieve the closest
results to the two offline models, with higher values of AUC,
a faster training process, and higher stability across cross-
validation iterations. The model trained purely incrementally,
without buffering, does not obtain a better performance than
a random classifier, which theoretically achieves an AUC of
0.5. Although the training with a simple buffer often achieves
higher values of AUC, they are still significantly lower than
those achieved with the proposed method, and importantly, are
substantially less stable, as shown by the wider bands in the
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corresponding plot of Fig. 8. The iCaRL method, as another
algorithm based on memory replay with a sample selection
mechanism, is able to achieve the closest performance to the pro-
posed selection method and presents a minimal computational
footprint. However, it may require more careful consideration in
its design than the proposed method, as the buffer of exemplars
must be defined and maintained in conjunction with the rolling
window buffer.

V. CONCLUSION

This article presented a new method for the online training
of neural network models that improved on standard buffering
without introducing additional memory requirements. The pro-
posed method was applied to the detection of thermal anomalies
in a frequency converter, as part of a motor drive test bench,
and achieved higher classification accuracy than the considered
online alternatives.

The performance of the different training methods was com-
pared in terms of an AUC, where samples are categorized indi-
vidually, to avoid a loss of generality. However, the prediction
errors were time correlated, and their relationship might be
exploited to further improve anomaly detection accuracy. Final
decisions on whether a series of errors classifies as anomalous
could be achieved by means of normality tests or employing
more advanced techniques, such as the cumulative sum control
chart method. In any case, a threshold or cutoff parameter
would have to be defined for anomaly detection in a production
environment.

In online learning contexts, training machine learning models
with gradient descent offered a clear advantage over direct fitting
methods, as learning rates and other hyperparameters (e.g.,
number of epochs and mini-batch size) allowed for the tuning
of the parameter dynamics of the model. Through this tuning
process, designers could balance the tradeoff between a faster
response, i.e., quicker adaptation to the current data buffer, and
a slower response, i.e., better extrapolation to data in previously
stored buffers.

The modeling of time-series data with incremental ma-
chine learning introduced additional tradeoffs in the design
of the data buffer, which were not directly addressed in the
present study. Consecutive samples could be stored in less
memory than nonconsecutive ones; thus, there existed a trade-
off between storing samples consecutively and ensuring data
diversity. A data buffer containing consecutive data points
will result in an increased probability of training with sim-
ilar samples—and thus increase the model’s proneness to
overfitting.

Achieving powerful, low-footprint, and reliable methods for
online machine learning might reduce the current reliance on
cloud platform services and large-scale data storage, thus en-
abling the use of data-driven modeling in a wide variety of appli-
cations. Self-commissioning condition monitoring algorithms
are a clear example of one such application, as machine learning
models can benefit from online training to adapt to individual
operating conditions, while simultaneously requiring minimal
knowledge of the system and its environment. Other possible

uses of online machine learning in the area of power converters
and drives include adaptive control algorithms, efficiency opti-
mization, and load forecasting, among others. These methods
may be applied to variable frequency drives in systems, such as
motors, pumps, fans, and compressors, as well as other power
converter systems.

Besides application-focused development, future research di-
rections may explore the integration of additional improve-
ments to online training—i.e., regularization, ensemble meth-
ods, and flexible architectures—within resource-constrained en-
vironments.
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