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abstract

Probabilistic unsupervised learning aims to capture the generating
distribution of data. In this setting, learning an interpretable model is
challenging. Many models assume that the generating distribution is
inherently Euclidean. We may achieve more insight by relaxing this
constraint on the generating function. By considering, e.g. Riemani-
ann geometry, we can compute more distance. Our goal is to learn
the geometry of data which allows for computing distances under
Riemannian geometries to achieve more interpretable models.

Topology is the �rst step to capturing the geometry of data, and specif-
ically, we employ symmetries in data as a proxy for topologies. We
develop a simple work�ow for detecting symmetries using tools from
topological data analysis and investigate if the symmetry is preserved
under dimensionality reduction in four models. Our quantitative study
shows that these algorithms frequently break symmetry, highlighting
current visualisation tools’ shortcomings. This is somewhat concern-
ing, but our results indicate that the likelihood is a good indicator for
preserved topology in the Gaussian process latent variable model.

Decoders built on Gaussian processes (GPs) are enticing due to the
marginalisation over the non-linear function space) which further
motivates our work with the Gaussian process latent variable model
(GPLVM). Such models are expensive and, therefore, often scaled with
variational inference and inducing points, but these are challenging to
train. We develop the stochastic active sets approximation, a scalable
and robust training scheme for GPLVMs that leads to interesting latent
representations with more structure than the Bayesian GPLVM and
comparable variational autoencoders.

We attempt to build the geometry into the prior in a GPLVM. We
develop the computational framework for this model, and we consider
the Riemannian Brownian motion as a suitable choice fo prior for this
purpose. We �t this to a GP manifold, and though we have the needed
components, we fail to implement training of the model.

The intention of capturing geometry is to capture the essence of the
generating process of observations. This has the potential to synthesise
patterns in large amounts of data which humans would otherwise be
unable to grasp and provides insights in a humanly interpretable
format. This could enable humans to learn from machine learning.

iii





dansk resumé

Målet med probabilistisk usuperviseret læring er at fange den gener-
erende distribution af data. I denne forbindelse er det en udfordring
at lære en model, som kan fortolkes. Mange modeller antager, at den
genererende distribution i sagens natur er Euklidisk. Vi argumenterer
for, at vi kan opnå mere indsigt ved at lade den genererende function
være ikke-Euklidisk- Ved at overveje f.eks. Riemannsk geometry kan
vi beregne mere meningsfyldte afstande. Vores mål er at lære geome-
trien af data (ved at beregne afstande under Riemannske geometrier)
for at opnå modeller, der i højere grad kan tolkes.

Topology er grundlaget for for geometri of speci�kt anvender vi sym-
metrier i data som en proxy for topologi. Vi udvikler en simpel arbejds-
gang til detektion af symmetrier ved hjælp af værktøjer fra topologisk
dataanalyse og undersøger, om symmetrien er bevaret under dimen-
sionalitetsreduktion i �re modeller. Vores kvantitative undersøgelse
viser, at disse algoritmer ofte bryder symmetri, hvilket understreger
bekymrende mangler ved nuværende visualiseringsværktøjer. Vores
resultater tyder på, at likelihooden er brugbar indikator for hvorvidt
topologi er bevaret i den Gaussiske proces latent variabel model.

Afkodere bygget på Gaussiske processer (GP’er) er tillokkende på
grund af marginaliseringen over det ikke-lineære funktionsrum, hvilket
yderligere motiverer vores videre arbejde med den Gaussiske proces
latent variabel mode (GPLVM). Sådanne modeller er beregningsmæs-
sigt dyre og skaleres derfor ofte med variationsslutning og induc-
erende punkter, men disse er udfordrende at træne. Vi udvikler den
stokastiske approksimation af aktive sæt, som er en skalerbar og ro-
bust træningsalgoritme for GPLVM’er, der fører til interessante la-
tente repræsentationer med mere struktur end både den Bayesianske
GPLVM og sammenlignelige variationelle selvindkodere.

Vi forsøger at bygge geometrien ind i prioren i en GPLVM. Vi udvikler
beregningsrammen for denne model, og vi betragter den Riemannske
Brownske bevægelse som et passende valg af prior til dette formål.
Vi tilpasser dette til en GP mangfoldighed, men på trods af at vi har
de nødvendige komponenter, har vi endnu ikke formået at træne en
model til konvergens.

Hensigten med at studere geometri er at fange essensen af den gener-
erende proces. Dette har potentialet til at syntetisere mønstre i store
mængder data, som mennesker ellers ikke ville være i stand til at forstå
og give indsigt i et format, der kan tolkes af mennesker. Dette kan
muliggøre at mennesker kan blive klogere af maskinlæring.
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None of the work in this thesis has been done in isolation. Supervisors,
colleagues and previous results have naturally all been instrumental
and for this reason, I consistently use the pronoun we throughout the
thesis.

This thesis touches upon a number of subjects and I have had to be
selective in which background material to go through. I would have
liked for this thesis to be self-contained, also the parts that might
be unfamiliar to the reader, but this has not feasible. In particular,
I would have expanded on Gaussian processes, tensor calculus and
Riemannian geometry. I have tried to accommodate this shortcoming
with introductory references where relevant.

For full transparency, I list what I perceive as contributions here and
this should also be clear from the text throughout the thesis. I have
tried to display this visually in the �gure where the red border indicates
contributions. Chapters 2, 4, and 7 contain contributions though the
project in chapter 7 is yet uncompleted. Chapter 2 is based on Feldager,
Hauberg, and Hansen [1] and chapter 4 is based on Moreno-Muñoz,
Feldager, and Hauberg [2].

Chapter 6 contains a correction to the derivation of expected Christof-
fel symbols �rst done by Adams [3] which was joint work with Alison
Pouplin. The rest of chapter 6 is background material and so are
chapters 3 and 5.

Let me end with an anecdote. Just before I started my PhD I explained
that I would be looking at stochastic geometry to a then colleague who
has a PhD in math. "That does not make any sense!" was her prompt
response. To this day, I haven’t decided if she was right or not.

New Orleans, 3rd of December 2022

Cilie W. Feldager
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1I N TRODUCT ION

Figure 1.1: An illustration of
data clustering around a man-
ifold.

Machine learning delegates tedious tasks–often classi�cation and re-
gression problems–to computers that digest vast amounts of poten-
tially high-dimensional data to reveal non-obvious patterns. If humans
should learn from data, these patterns must be extracted as humanly
interpretable insights; hence, machine learning models must be inter-
pretable.

Interpretable models can be particularly challenging in unsupervised
learning where the ground truth is unknown. Unsupervised learning
often relies on the manifold assumption [5]–which, in simple terms,
states that data lie near a manifold–and its goal is often to learn a
representation of data. In this thesis, we aim to capture the underlying
structure in data and learn from it by learning a representation of
data in an unsupervised manner. This goal relies on the manifold
hypothesis, and it assumes that our models can learn the manifold
and that the learnt representation actually captures the generating
process.

Figure 1.2: A meaningful
distance (red) and a Euclidean
distance shown in a two-
dimensional representation of
the globe (top) and a three-
dimensional representation
(bottom). The �gures are made
with Google Maps and Google
Earth, respectively.

In this thesis, we measure distances between points directly on the
manifold and argue that this is more meaningful than using Euclidean
distances in the representation. To motivate our approach, consider a
world map which is a representation of the approximately spherical
Earth. On the �at two-dimensional map, the Euclidean distance (the
black straight line in the top pane of �gure 1.2) seems shorter than
the red path, but this is an artefact of the representation. The same
distances are shown on the globe, where the red curve appears shorter.
In principle, both distances respect the geometry of Earth as they both
follow the surface of the Earth but travelling the Euclidean distance
corresponds to a detour as the red curve is indeed shorter: One would
spend less time and energy to travel this path which–in this case–it
makes it more meaningful.

Many models in machine learning inherently assume a Euclidean ge-
ometry as they rely on the Euclidean distance measure (e.g. variational
autoencoders [6], Isomap [7], Gaussian processes [8] and normalising
�ows [9]) and with good reason as this is fast to compute. Accounting
for non-Euclidean geometries is more challenging and often computa-
tionally taxing. But if the goal is to learn from data, the representation
might bene�t by considering non-Euclidean geometries as the models
get the capacity to capture non-linear geometries, visualisations may
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Chapter 1. Introduction

be more faithful, and a deeper understanding of representations might
lead to new discoveries.

In addition to a geometric approach, we take a probabilistic view
as this allows for estimating the manifold away from data: Models
like isomap and neural networks [4] learn manifolds where there is
support from data, but away from data deterministic models provide
poor estimates of the manifold. The probabilistic approach allows for
well-estimated uncertainty away from data. This uncertainty repels
the distance curves so they follow the manifold [10, 11], which drives
distances to follow the manifold, letting the uncertainty play the role
of topology [12].

The goal of this thesis is to capture meaning from representations
by considering geometry and uncertainty jointly. Before getting to
that and to meaningful distances, we explore whether learnt repre-
sentations recover the topology of data, as topology is a prerequisite
for geometry. We investigate this in four dimensionality reduction
models (chapter 2), including the Gaussian process latent variable
model (GPLVM), which chapter 3 dives deeper into. Next, we develop
a scalable GPLVM that learns interesting representations. Finally, after
introducing elementary geometry (chapter 5), we discuss stochastic
geometries (chapter 6), which enables doing Statistics under Stochastic
Metrics (chapter 7).
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2SYMMETRY BREAK ING IN
V I SUAL I SAT IONS

“ Reality favours symmetry.

—Jorge Luis Borges ”
This chapter is based on the ICANN paper by Feldager, Hauberg, and
Hansen [1]. Results on Mnist and high-dimensional features are left
out.

In our endeavour to �nd a model suited for geometry, we search for a
model that preserves topology, as topology is a prerequisite for geom-
etry. In this chapter, we use a dataset with rotational symmetry and
investigate if di�erent visualisation models can recover the symmetry.
If we can �nd a model that respects topology, the hope of �nding a
model with more meaningful distances persists.

2.1 symmetries in visualisations

Figure 2.1: Four di�erent datasets known as Anscombe’s quartet [13] that have identical linear regressions.

Visualisation is often the �rst step to analysing a new dataset, which
can shape the rest of the data analysis. Data visualisation is an integral
part of the machine learning pipeline: From forming hypotheses [14] to
communicating results [15, 16]. Visualisations are models that reduce
the dimensionality of data to two (or three) dimensions. We cannot
always trust models that reduce data to a few parameters: Anscombe’s
quartet consists of four di�erent datasets with two variables with
identical summary statistics. Fitting a linear model to each of the
datasets yields the same coe�cient and the same R2. This illustrates
that the visualisation of data is paramount.
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Chapter 2. Symmetry Breaking in Visualisations

For example, the visualisation in �gure 2.2 shows a representation of
high-dimensional images of ones and zeros. We would expect the two
zeros to be closer than either of the zeros to the one. The Euclidean
distance suggests that one of the zeros and the one is closer, but this
does not have to be the case under other distance measures [17].

Figure 2.2: A representation of
two classes where two zeros
and one are shown in black.
The Euclidean distance sug-
gests that one of the zeros and
the other are closer than the
two zeros, but this is not the
case. Recreated from Arvani-
tidis, Hansen, and Hauberg [17]

In this chapter, we focus on visualisations (dimensionality reductions)
which rely on the manifold assumption. Testing the manifold assump-
tion is hard, so we focus on datasets with known symmetries and hence
known manifolds to illustrate our point. Mathematically, continuous
symmetries are represented by Lie groups [18]. We consider rotations
in terms of the in�nitesimal generator (an in�nitesimal rotation), and
this is the generating group action. The rotations give rise to a Lie
group, a smooth di�erentiable manifold on which points are connected
through a continuous group operation and its inverse. This means
that we can view symmetries as manifolds and know that the manifold
assumption is true by construction: There exists an underlying mani-
fold that is the data generator. And more, we know which manifold.
This enables the detection in a supervised manner, using standard
visualisation techniques to see if symmetries are preserved. This is
achieved by verifying if the topology of the group remains intact under
visualisations.

This chapter focuses on situations where the governing group is known
and investigates if standard visualisation techniques preserve the
group structure. This is achieved by verifying if the symmetry re-
mains intact under visualisations.

2.2 topological data analysis

This section introduces topological data analysis. Topological data
analysis (TDA) o�ers a range of tools that can be used to study the
breaking of symmetry. TDA extends topology to data. In the next
section, we will use topological data analysis (TDA) to quantify high-
dimensional symmetries. Feel free to skip this section if you are famil-
iar with persistent homology, Betti numbers, the Vietoris-Rips com-
plex, and barcodes. These notions are formalised in algebraic topology
(Hatcher [19] gives a thorough introduction). This introduction follows
Carlsson [20] and [21].

We employ tools from topological data analysis to verify that the
topology of data is preserved under dimensionality reduction. TDA
is an algebraic tool that allows for studying features of point clouds
and their graph structures and provides qualitative information about
data. The goal of homology is to quantify the topological features (e.g.
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2.2. Topological Data Analysis

number of connected components, holes and voids) of point clouds in
a principled manner. First, we introduce a scale-dependent simplicial
complex (the Vietoris-Rips complex) that allows mapping the point
cloud to a set of scalars that summarise the topology (Betti numbers).
Finally, we discuss barcodes which rid us of the scale-dependency.

De�nition 2.1 (Metric Space) Given a distance d : M ×M → R, the
ordered pair (M,d) is a metric space. The distance d is non-negative
d(yi,yj) ≥ 0 for all yi,yj ∈ M and d(yi,yj) = 0 i� yi = yj . The dis-
tance is symmetric, d(yi,yj) = d(yj,yi), and ful�ls the triangle inequal-
ity d(yi,yj) ≤ d(yi,yk) + d(yk,yj).

Consider the point cloud in �gure 2.4 (left), denoted Y ∈ Y where
Y is a metric space. This point cloud is an example of the statistical
circle: A �rst glance suggests that the point are sampled from a circle.
To quantify this, we start with building a graph by connecting the
points closer to a distance ϵ , (�gure 2.4, middle). The resulting graph
(�gure 2.4, right) captures the central hole but also has a number of
smaller loops; topologically, we cannot distinguish one loop from
another.

Figure 2.3: Simplices in zero
(a point), one (a line segment),
two (a triangle) and three di-
mensions (a solid pyramid).

This motivates the need for complices which helps distinguish smaller
loops (noise) from holes that are a topological feature. Complices
address this problem by �lling gaps with simplices (�gure 2.3). E.g.
small loops in �gure 2.4 (right) are �lled with a two-simplex. This
"�lling in" can be done di�erently, but here we present the Vietoris-
Rips complex. Other complices are not in the scope of this thesis;
Ghrist [21] de�nes abstract simplicial complices, and Carlsson [22]
discusses a number of these in detail.

De�nition 2.2 (Vietoris-Rips Complex) For any �nite metric
space (Y,d), and every scale parameter ϵ ≥ 0, let Vϵ (Y ) denote the
simplicial complex with vertex set equal toY , and such that {y0, . . . ,yk}
spans a k-simplex i� d(yi,yj) ≤ ϵ for all 0 ≤ i < j ≤ k .

V I E TOR I S - R I PS COM-
PLEX

In other words, we connect two points with the one-simplex when the
two points are within the distance ϵ , and we connect three points with
the two-simplex when the three points are pairwise within the distance
ϵ and so forth. Given the scale parameter, the simplices compose the
complex,Vϵ (Y ).

Di�erent scale parameters give rise to other topologies. A too-small
ϵ fails to recognise the structure and a too-large ϵ leads to the trivial
complex (i.e. the fully connected complex from which the centre hole
cannot be recovered). We can obtain a quantitive characteristic of the
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Chapter 2. Symmetry Breaking in Visualisations

Figure 2.4: Left: A point cloud referred to as the statistical circle [20]. Middle: Points are connected if they are
within a radius ϵ . Right: The graph Gϵ .

homology of the point cloud using Betti numbers. Betti numbers allow
us to map the topological structure to scalars.

De�nition 2.3 (Betti Number) Given the vector Hk(X , F ) over any
�eld F , we write the kth Betti number as βk(X , F ) with coe�cients in F .
Two homotopy equivalent spaces have equal Betti numbers βk for all k .

Informally, Betti numbers have an intuitive interpretation. The zeroth
Betti number counts the number of connected components, the �rst
Betti number the number of loops in the graph, and the second Betti
number the number of closed spaces (or cavities). For example, a point
has β0 = 1 and βk = 0 for k ≥ 1, a circle has β0 = 1, β1 = 1 and
βk = 0 for k ≥ 2, and a sphere has β0 = 1, β1 = 0 and β2 = 1 and
βk = 0 for k ≥ 3. The Betti numbers describe topological invariants
and generalise to higher dimensions though the interpretation is less
intuitive.

For a given graph, we can compute the Betti numbers. This, however,
depends on the scale parameter from which the graph was constructed.
We are left with how to choose the scale parameter, and persistent
homology answers that. The entire evolution of the Vietoris-Rips
complex can be captured in a barcode11. Edelsbrunner, Letscher, and

Zomorodian [23] and Zomoro-
dian and Carlsson [24] intro-

duces barcodes rigorously

. Here, we detail the barcode
only to the level of our purpose.

Figure 2.5: A barcode for the sta-
tistical circle as a function of the
scale parameter ϵ .

Persistence is the idea that topological features persist over an exten-
sive range of ϵ , and the features that exist only in small ranges can
be considered noise. The holes and voids that persist over a large
range are considered topological features. Cohen-Steiner, Edelsbrun-
ner, and Harer [25] proves that the barcode is robust to noise under
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2.3. Measuring Symmetry

small perturbations to the point cloud. Persistence can be formally
de�ned in terms of inclusion maps, but for our purpose, the barcode
captures the persistence of Betti numbers as a function of the scale
parameter. The example barcode in �gure 2.5 captures the evolution
of the homology as a function of the scale parameter as a vertical slice
corresponds to the scale parameter. For small ϵ , the zeroth Betti num-
ber (β0 = rank(H0)) is large as each point is a connected component.
As ϵ increases, β0 decreases until all points are connected (i.e. the
long bar). For Betti number of order 1, (β1 = rank(H1)), the barcode
captures a hole in some range of ϵ and similarly for β2 = rank(H1) but
notice the length of the bars. In this case, we can interpret β1 = 1 as a
topological feature, but β2 = 1 as noise due to the persistence theorem
[25]. In the range where β1 = 1, the point cloud has the homotopy
type of a circle.

2.3 measuring symmetry

We cannot detect the symmetry directly as this is a continuous object,
but the observations constitute a noisy, discrete instantiation. Knowing
the in�nitesimal generator of the (continuous) symmetry informs a
neighbourhood graph we can compare before and after dimensionality
reduction for visualisation.

Speci�cally, we study rotational symmetry. For instance, we may
connect rotated images in a graph if their rotation angles are sim-
ilar to approximate the generating symmetry. In visualisation, we
obtain a low-dimensional representation by coordinates X = xi ∈ R

2.
We can then determine if a symmetry has been preserved by asking
if the associated graph can be recovered from the low-dimensional
representation.

Figure 2.6: Example of symme-
try breaking

Figure 2.6 shows an example of a visualisation model that fails to
capture a rotation. The wooden toy is rotated, and the model learns
a representation where images of only slight rotations are far apart.
Ideally, all points should have been placed such that the loop had been
closed and not self-intersecting. This work aims to develop a small
experimental test to determine which visualisation models (if any)
capture such rotations.

We consider dimensionality reduction methods, and essentially we
want the rotation in observation space, Y, to be present in the low-
dimensional representation, X. We aim to describe that small changes
in y should lead to small changes in x .
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Chapter 2. Symmetry Breaking in Visualisations

De�nition 2.4 (Lipschitz Continuity) [26] A function f : RD →
RQ is Lipschitz continuous if there exists a constant K such thatf (yi) − f (yj)


2 ≤ K

yi − yj2 (2.1)
for all yi,yj ∈ Y

We assume that the map f from the observation space to the latent rep-
resentation exists22. Though we do not learn it

explicitly
. Assuming no explicit representation but we de�ne

f (yi) = xi and f (yj) = xj , which rephrase the Lipschitz continuityxi − xj2yi − yj2
≤ K (2.2)

L I PSCH I TZ CONT INU I T Y

To our knowledge, there is no principled approach to determining the
Lipschitz continuity constant, K , so we choose to use the median near-
est neighbour distance as a proxy for the scale as it is a robust estimator
[27]. For each set of neighbours, we can determine if the (Euclidean)
distance agrees with the neighbourhood graph. We scale the neigh-
bour distances with their median to compare di�erent visualisation
models.

scale = median
(xi ,x j )∈G

(
xi − xj2) (2.3)

where G is the graph associated with the generating group. We, thus,
measure

Bij =

xi − xj2
scale (2.4)NE IGHBOUR D I STANCE

Scaled

Thresholding this measure Bij > Bt for any pair i, j indicate symmetry
breaking: The symmetry has been broken if this is true and preserved
if this is false. Note that this measure does not distinguish between
one or multiple symmetry breaks.

a

b

c

Figure 2.7: Examples of the im-
posed rotation being recovered
(a) and not recovered (b) in the
GPLVM. The barcode (c) allows
for the inspection of numerous
models simultaneously (stacked
vertically), and Bt = 3 is indi-
cated with a dashed red line.

We draw inspiration from topological data analysis and apply the tools
somewhat di�erently to detect symmetry breaking. We already know
what the graph should look like, so there is no need to detect it. Instead,
we construct the graph (as we know it should be) and evaluate if two
points that are supposed to be neighbours are, in fact, close enough to
be neighbours.

The choice of Bt is somewhat arbitrary. To handle this, we draw
inspiration from topological data analysis and persistent homology
that explicitly avoids choosing a scale parameter. We know what Betti
numbers we should expect for the rotational symmetry that we are
imposing. In particular, it is b1 that reveals whether the symmetry
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2.4. Dimensionality Reductions

has been broken. We need a b1 = 1 for a preserved symmetry, and if
b1 = 0, then the symmetry has been broken. For this reason, we only
focus on b1. It turns out that the Betti number of order 1 is a practical
indicator for symmetry breaking, and we estimate the Betti number
of order one

b1 =

{
1 Bij > Bt

0 Bij ≤ Bt

where b1 = 1 means that the symmetry is recovered and b1 = 0 means
that the symmetry is broken. We assume any cases of b1 > 1 are noise.

The rotations give rise to a topology with Betti number of order one,
β1 = 1. This lets us search directly for topologies of this type rather
than having to construct the Vietoris-Rips complex (section 2.2) and
do persistent homology to identify it because the true graph is known
from the data generation. The links are created based on the scale
parameter, ϵ .

Instead, we know that a symmetry break is de�ned by Bmax > Bt , and
this we can display visually, taking inspiration from the barcode. This
means that the length of the bar (which is essentially a Betti number
of the �rst kind) reduces the Bmax. In �gure 2.7, the length of a bar
represents this distance and stacking such bars yields the barcode [21].
Note that one bar corresponds to one model. This adapted barcode
conveys the robustness of the conclusion qualitatively (break vs not
breaking). This reduction may seem simplistic, but it allows for the
visual comparison of numerous models simultaneously.

To quantify this, we chose a Bt = 3 and used that as a threshold
in all experiments. This threshold is determined based on empirical
evidence, but all results are accompanied by barcodes showing the
sensitivity of our conclusions.

2.4 dimensionality reductions

This section brie�y introduces four models for non-linear dimension-
ality reduction, representing di�erent model classes. We will study
symmetry breaking in detail in these models.
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Chapter 2. Symmetry Breaking in Visualisations

2.4.1 t-distributed Stochastic Neighbourhood Embedding

The method t-distributed Stochastic Neighbourhood Embedding (t-
SNE) [28] is a popular visualisation technique, great for clustering.
t-SNE is based on stochastic neighbourhood embedding (SNE) [29].
SNE matches an exponential distribution over pairwise distances in
the observation space with an exponential distribution over pairwise
distances in the latent space. These are matches by minimising the
KL divergence between these two distributions. t-SNE is similar to
SNE, the only di�erence being that t-SNE employs a t-distribution
over pairwise distances in the latent space. A perplexity parameter
controls the neighbourhood a�nity in the exponential distribution.

2.4.2 TriMap

TriMap was proposed by Amid and Warmuth [30] as a randomised
method which promises to "preserve[...] the global accuracy of the data
better than the other commonly used methods such as t-SNE, LargeVis,
and UMAP". Triplets (three points i, j,k where i and j are closer)
are weighted with their pairwise distance before obtaining the �nal
triplet weight ωijk = ζγ (δ + ω̃/ωmax ) where ζγ (u) = log(1 + γu). The
parameter γ emphasizes preservation of local structure (smaller γ )
or global structure (larger γ ). More details are given by Amid and
Warmuth [30].

2.4.3 Kernel Principal Component Analysis

Kernel principal component analysis (kPCA) [31] extends PCA to a
non-linear regime using the kernel trick. It deterministically maps a
set of points into a higher-dimensional space using a kernel. In the
following, we use the popular Gaussian kernel,

k(xi, xj) = exp
(
−

xi − xj2
2

λ

)
,

which is controlled by the scale parameter λ.

10



2.5. Experimental Results: Symmetry Breaking is Prevalent

2.4.4 Gaussian Process Latent Variable Model

The Gaussian process latent variable model (GPLVM) is a probabilistic
(but deterministic) generative model that uses a Gaussian process prior
on the map from the latent space to the observation space [32].

A kernel decides the Gaussian process covariance. See section 3.3 for
an elaboration of the GPLVM. As for kPCA, we use a Gaussian kernel,

k(xi, xj) = θ exp
(
−

1
2
xi − xj2

2

)
+ σ 2δij,

where xi and xj denote latent points and θ , and σ are the kernel and
noise variances, respectively. The latent inputs are initialised using
isomap [7] (or PCA [33, 34] in sensitivity analyses) and they are learnt
by direct optimisation along with the kernel parameters.

2.5 experimental results: symmetry
breaking is prevalent

Figure 2.8: Preprocessed objects in COIL-20.

We study symmetries in COIL-20 [35]. The COIL-20 dataset is con-
structed with rotational symmetry in the images. The dataset contains
20 objects and 72 images of each object. Figure 2.8 shows �ve of the
objects. Each object is placed on a turntable, and each image corre-
sponds to a �ve-degree turntable rotation. The background in the
images has been removed in the preprocessing.

For each of the four models, we identi�ed the most signi�cant pa-
rameter and studied symmetry breaking as a function of this. We
sampled this parameter in an interval (determined by, e.g. SciKit
Learn documentation for t-SNE or the TriMap paper [30]) and �xed
other parameters at their default values. We emphasise that we did
no parameter tuning. Figure 2.9 summarises our �ndings and shows
the aggregated rates of symmetry breaking in each of the four models

11



Chapter 2. Symmetry Breaking in Visualisations

Figure 2.9: Prevalence of
symmetry breaking in the
four considered models using
the threshold Bt = 3. The
left-hand panel shows rates of
symmetry breaking in COIL-
20 The �gure �rst appeared
in Feldager, Hauberg, and
Hansen [1].

in the two datasets, respectively, using the threshold Bt = 3. For in-
stance, t-SNE broke the symmetry in 73% of the models trained on the
twenty objects in COIL-20. The forest plot displays Bmean (the mean
of Bmax) with its standard deviation. Interestingly, Bmean is well above
our chosen threshold at Bt = 3 for all four models.

2.5.1 t-SNE

For each of the twenty objects in the COIL-20 dataset [36], we �t thirty
t-SNE models using software from SciKit Learn [37]. We sample the
perplexity parameter fromU(5, 50) with the boundaries set according
to SciKit Learn’s documentation for t-SNE. In each of the thirty
models (in each of the twenty objects), we measure Bmax and report
the average in semi-opaque blue (�gure 2.10).

As perplexity increases, Bmax decreases. This is unsurprising as the
perplexity parameter controls the smoothness in t-SNE, and we ex-
pect a smaller rate of symmetry breaking the smoother model. We
observe broken symmetry in 73% of t-SNE models. From the barcodes
(�gure B.1), it is clear that this number is sensitive to the choice of
thresholds.

It seems that t-SNE reinforces noise in data. This means that if the
distance between two points d(xi, xi+1) is larger than other pairwise
distances, this distance is increased in the resulting model, which
breaks the symmetry. We interpret this as t-SNE amplifying a gap in
the underlying data manifold, which causes the manifold to be split
into two or more pieces though the true manifold is whole. Like Amid
and Warmuth [30], we refer to this as spurious clustering. Generally,
random initialisation preserves symmetries better than PCA or isomap
initialisation. Random initialisations require multiple restarts and
picking the representation with the lowest KL divergence. The heavy
tail, which makes t-SNE great for clustering, makes it less than ideal
for non-clustering problems.

12



2.5. Experimental Results: Symmetry Breaking is Prevalent

c d

e

ba

Figure 2.10: a shows the parameter space for t-SNE in the perplexity parameter. The blue lines each represent a
mean of Bmax from more than thirty models trained for each object in COIL-20, and the black line represents
the mean with standard error of the mean (SEM). The dotted red line represents the threshold in a-c. b shows
the distribution of Bmax for all trained models. The barcode in c shows the mean Bmax for each of the objects
in COIL-20 as a function of γ . d and e show two learnt representations in models with perplexities 50 and 5,
respectively. The �gure �rst appeared in Feldager, Hauberg, and Hansen [1].

a b c d

e

Figure 2.11: a shows the parameter space for TriMap in γ which places emphasis on local (small γ )or global
structure (large γ ). The blue lines each represent a mean of Bmax from more than thirty models trained for
each object in COIL-20, and the black line represents the mean with standard error of the mean (SEM). The
dotted red line represents the threshold in a-c. b shows the distribution of Bmax for all trained models. The
barcode in c shows the mean Bmax for each of the objects in COIL-20 as a function of γ . d and e show two
learnt representations in models with γ = 1000 and γ = 0, respectively. The �gure �rst appeared in Feldager,
Hauberg, and Hansen [1].

2.5.2 TriMap

The spurious clustering in t-SNE led Amid and Warmuth [30] to de-
velop TriMap to counter this. For this reason, we expected that TriMap
would capture the symmetry to a large extent, but we found the oppo-
site (�gure 2.11). On average, TriMap breaks the symmetry in 77% of
models across objects. For most objects, the conclusion is relatively
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c d

e

ba

Figure 2.12: a shows the parameter space for kPCA in the scale parameter λ. The blue lines each represent a
mean of Bmax from more than thirty models trained for each object in COIL-20, and the black line represents
the mean with standard error of the mean (SEM). The dotted red line represents the threshold in a-c. b shows
the distribution of Bmax for all trained models. The barcode in c shows the mean Bmax for each of the objects in
COIL-20 as a function of γ . d and e show two learnt representations in models with log λ = 3 and log λ = 6,
respectively. The �gure �rst appeared in Feldager, Hauberg, and Hansen [1].

robust (�gure B.2). It is also somewhat surprising that the representa-
tions seem almost independent of γ , which emphasises local or global
structure. TriMap is initialised with PCA, so we know that it is ini-
tialised without symmetry breaks, yet the overall rate of symmetry
breaking is on par with t-SNE.

2.5.3 kPCA

The scale parameter for kPCA, λ, allows continuously examing symme-
tries from the linear regime (PCA, large λ) into the non-linear regime.
Figure 2.12 summarises our �ndings for kPCA. In total, kPCA breaks
the symmetry in 42% of models. In the non-linear regime (small values
of λ), Bmax seems to diverge. This is caused by clustering, meaning
that Bmedian is small.

In the linear regime (large values of λ), we recover the PCA solution
(�gure 2.12e). Interestingly, some objects break the symmetry in the
linear regime at Bt = 3. These objects correspond to the most symmet-
ric objects (i.e. the object that looks the most like themselves after a π
rotation), namely object 2 (wooden toy), object 16 (round bottle), object
16 (ceramic vase), object 18 (tea cup) and object 20 (round container).
Four of these are rotationally symmetric in the plane of rotation, sup-
porting our hypothesis that additional symmetry can induce symmetry
breaking.

14



2.5. Experimental Results: Symmetry Breaking is Prevalent

2.5.4 GPLVM

a

b

c

d

e f

g

Figure 2.13: a and b show the parameter space for GPLVM of the initial values σ 2
0 (for �xed θ0) and θ0 (for �xed

σ 2
0 ), respectively. The blue lines each represent a mean of Bmax from more than thirty models trained for each

object in COIL-20, and the black line represents the mean with standard error of the mean (SEM). The dotted
red line represents the threshold in a-e. c and d show the distributions of Bmax for all trained models in the
parameter space corresponding. The barcode in e shows the mean Bmax for each of the objects in COIL-20
in a (black) and b (grey). f and g show two learnt representations in models with θ0 = 1.0,σ 2

0 = 0.2 and
θ0 = 0.2,σ 2

0 = 1.0, respectively. The �gure �rst appeared in Feldager, Hauberg, and Hansen [1].

Figure 2.13 summarises our �ndings for GPLVM3 3. With isomap initalisationsin which symmetry
breaking occurred in 65% of models. Like for TriMap, it seems that the
mean Bmax is approximately constant over a large range. We identi�ed
two important parameters for the GPLVM, but this �gure shows the
results of the varying parameter while keeping the other �xed. As
this parameter space here is two-dimensional, we studied it in greater
detail.

Figures B.6 show a two-dimensional parameter space for the GPLVM
and the barcode with the corresponding models. The models in this
�gure use isomap initialisation, and we do not observe any symmetry
breaks for this object within the examined parameter ranges. Inter-
estingly, we observe that regimes lead to seemingly identical latent
representations, but the hyperparameters (green crosses) converge to
the same values.

The GPLVM representation depends heavily on the initialisation [38].
Figures 2.14 and 2.15 compare the initialisations for one object. Each
shows the parameter spaces in the initial parameters with learnt repre-
sentations displayed at the location of the corresponding initialisation.
Figure 2.14 shows no symmetry breaks in the parameters space for the
initial parameters of the GPLVM.

The corresponding parameters space with PCA initialisation (�g-
ure 2.15) almost consistently breaks the symmetry. A small regime
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exists for small θ0 where the symmetry is not broken. Again, we gen-
erally observe that di�erent regimes in initial hyperparameters lead to
other latent representations, but the hyperparameters converge to the
same values. We observe that if the initialisation breaks the symmetry,
then the model cannot recover. On the other hand, if the initialisation
preserves the symmetry, then the trained model can still break the
symmetry. We display parameter space results for another object in
B. The object in question also a�ects representation which �gures B.5
and B.4 show. Like in kPCA, we �nd broken symmetries in the most
symmetric objects.

Figure 2.14: The left-hand side shows a phase space for GPLVMs in the initial values of hyperparameters θ0 and
σ 2

0 using isomap initialisation. Each location in the phase space corresponds to an initialisation of a model. As
the model is trained, it follows the cyan trajectory through phase space until the green cross, which indicates the
model’s state at the end of training. The learnt latent space is shown at the initialisation location to emphasise
what representation a given initialisation results in. The right-hand side shows the barcode for these models,
where each bar corresponds to a model on the axis of thresholds. The red dotted line represented our chosen
threshold for symmetry breaking.
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Figure 2.15: The left-hand side shows a phase space for GPLVMs in the initial values of hyperparameters θ0 and
σ 2

0 using PCA initialisation. Each location in the phase space corresponds to an initialisation of a model. As the
model is trained, it follows the cyan trajectory through phase space until the green cross, which indicates the
model’s state at the end of training. The learnt latent space is shown at the initialisation location to emphasise
what representation a given initialisation results in. The right-hand side shows the barcode for these models,
where each bar corresponds to a model on the axis of thresholds. The red dotted line represented our chosen
threshold for symmetry breaking.

2.6 related work

Data visualisation is a particular case of dimensional reduction to
two (or three) dimensions, making it crucial for working with high-
dimensional data. Data visualisation is also often a vital step in the
machine learning pipeline: From forming hypotheses [14] to commu-
nicating results [15, 16]. Our preliminary �ndings (data not shown)
suggest that symmetry breaking is more prevalent in two dimensions
compared to high dimensions.

Spurious clustering is well-known in t-SNE [39]. It was developed
to capture both local and global structure–and as a solution to the
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crowding problem in SNE [29] (the crowding problem covers visual-
isations without clear separation between clusters). t-SNE employs
a heavy-tailed distribution to solve the crowding problem and clus-
ter. Linderman and Steinerberger [40] proved this and showed that
simple manifolds ripped apart clusters in line with our �ndings. It
was the spurious clustering in t-SNE that motivated the development
of TriMap [30]. Supposedly, TriMap should be able to counter the
over-�tting, but our �ndings suggest otherwise.

Lawrence and Quiñonero-Candela [41] also considered spurious clus-
tering in GPLVM, using an amortised model (i.e. encoding the latent
means with a multi-layer perceptron). They explain that the GPLVM
conserves dissimilarities and the neural network conserves similarities.
More recent work supports this view [42].

More generally, Higgins et al. [43] argues that learning faithful repre-
sentation (i.e. representations that re�ect the underlying data struc-
tures) is an alternative to hard-coding inductive bias into models (e.g.
CNNs are translation invariant).

2.7 discussion

Our experiments show that symmetry breaking is alarmingly prevalent
in four visualisation models in a simple setting, systematically training
more than 85.000 models. Generally, it is possible to manually tweak
the parameter to learn a representation that preserves the symmetry.
On the other hand, this is not feasible when the underlying symmetry is
unknown. When the true manifold is unknown, symmetry breaking is
hard to detect. Multi-starting the visualisation model and selecting the
best model is a potential solution. However, our �ndings suggest that
multi-starting �ve or even ten times might not recover the manifold
due to the high prevalence of symmetry breaking.

Symmetry breaking may be particularly prevalent in visualisation. In
our experiments, we have used a circular graph, a planar graph, i.e. a
graph that can be embedded in R2. While only planar graphs can be
embedded in R2, all graphs can be embedded in R3 [44]. This suggests
visualisation may be more likely to break symmetries by forcing a
two-dimensional view in a general setting.

Dimensionality reduction is a compression and a loss of information,
and intuitively, it makes sense that the Y is a larger space than X. We
expect di�erent observations to be mapped to the same small area in
X but not vice versa. Two close observations getting mapping to two
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distant points in the latent space is a breaking of the symmetry and, by
extension, a violation of the Lipschitz continuity means (�gure 2.16).

Figure 2.16: Two close observa-
tions are mapped distantly in
the latent space, i.e. the blue
distance is mapped from small
to large. This can be considered
a violation of the Lipschitz con-
tinuity.

Lipschitz continuity, the basis of our symmetry measure, is also the
foundation for individual fairness [45]. Individual fairness states that
similar individuals should be treated similarly. A model that breaks
symmetry is a model that violates Lipschitz continuity, and it is unclear
if individual fairness can be ensured in downstream tasks.

As we argue in our paper [1], the driver for this study is the pursuit of
faithful representations. These representations re�ect the underlying
physics of the generating process and allow for explainable models.
This is also the objective of meaningful representation [46]. Symme-
tries (and other inductive biases) are custom-built into models [47, 48],
and Higgins et al. [43] suggest learning a faithful representation as an
alternative to hardwiring inductive biases.

Recovering topology is a crucial �rst step on the path towards a model
for geometry. When the manifold is ripped apart, the true manifold
cannot be recovered. While this is not possible for any of the four mod-
els investigated here, the GPLVM have a few bene�ts: Its likelihood
correlates with how broken the symmetry is, and the transition be-
tween broken and preserved symmetry in the barcode seemed sharper.
We choose to look into the GPLVM is further motivated by Jørgensen
and Hauberg [12] and Hauberg [49] who argue that uncertainty can
play the role of topology. We will get back to this in chapter 6 after
the next part that introduces the GPLVM in more detail.
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3I N TRODUCT ION TO
LEARN ING

“ If you just watch a teenager, you see a lot of uncertainty.

—Jamie Lee Curtis ”
In chapter 1, we discussed our undertaking of �nding a probabilistic
latent variable model that is suitable for learning geometries. This and
the following two chapters encompass our search for such a model.
After some housekeeping (section 3), we explore probabilistic principal
component analysis (PPCA, section 3.1). PPCA is linear, and our ideal
model should be able to capture non-linear manifolds. We look at an
alternative to PPCA called dual PPCA, which is also linear, but non-
linearities can readily be introduced (section 3.2). This leads to the
Gaussian process latent variable model (GPLVM, section 3.3)–a non-
linear, probabilistic latent variable model–and its sparse, variational
extension, the Bayesian GPLVM (section 3.4). This will be a concise
chapter that introduces aspects of GPLVMs as they are relevant to this
thesis, and in particular relevant to chapter 41 1. For an in-depth introduction

to Gaussian processes, we re-
fer to Rasmussen and Williams
[8] and for great introductions
to GPLVM, we suggest tutori-
als from the Gaussian Process
Summer School.

.

Bayes’ theorem is the fundamental principle for Bayesian learning. If
we denote the parameters of a model ω and the observations Y , then
Bayes’ theorem [50, 51] states

p(ω |Y )︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(Y |ω)

prior︷︸︸︷
p(ω)

p(Y )︸︷︷︸
marginal likelihood

. (3.1) BAYES THEOREM

We refer to these distributions using speci�c terms: p(ω |Y ) is the
posterior, p(Y |ω) is the likelihood, p(ω) is the prior, and

p(Y ) =

∫
p(Y |ω)p(ω)dω,

is the marginal likelihood which is often also referred to as the evidence.
In the Bayesian setting, learning is the same as inference: We aim to
estimate the posterior using the marginal likelihood as this generalises
well [52].

In general, fully Bayesian inference is not analytically tractable as
the marginal likelihood requires integration over non-linearities, but
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Chapter 3. Introduction to Learning

several alternative approaches exist; maximum likelihood, maximum
aposteriori estimation, and variational Bayesian inference [53, 54].
Variational Bayesian inference estimates a variational distribution
q(ω) that is an approximation to the true posterior distribution p(ω |Y ).
We get back to variational Bayesian inference in section 3.4 (when
introducing the Bayesian GPLVM) and in chapter 4 that develops
stochastic active sets for Gaussian process decoders.

notation

We denote a set of observations Y = [y1, . . . ,yN ]
> and Y = y1:N with

Y ∈ RN×D . We refer to one D-dimensional observation as yn with
yn ∈ R

D and a subset of the observations as yi:j where i, j indexes
observations (not dimensions) and 1 ≤ i < j ≤ N . Sometimes we have
to index dimensions and use yn,d or y:,d where the colon indicates that
we also index dimensions. This will also be explicit in the text. y∗ is
a test point of dimensionality D so y∗ ∈ RD . Each observation yn has
a corresponding input point xn, and all input points are collected in
the matrix X = [x1, . . . , xN ] and we also use the notation X = x1:N
for all the input variables. The dimensionality of the input space is Q
such that X ∈ RN×Q and xn ∈ R

Q , and we refer to one input (or latent
variable) as xn with xn ∈ R

Q and a subset of the observations as xi:j
where i, j indexes observations (not dimensions) and 1 ≤ i < j ≤ N .
In the following, we will assume that Q � D, i.e., the observation
space, is of much higher dimensionality than the latent space.

3.1 probabilistic principal component
analysis

We consider PPCA as a candidate for manifold learning. Here, we
re-iterate essential aspects of PPCA needed to arrive at the GPLVM: 1)
We introduce PPCA, where the weights are optimised, and the latent
variables are marginalised. 2) We consider dual PPCA where the latent
variables are optimised, and the weights are marginalised, and 3) we
arrive at the GPLVM by introducing a non-linear kernel [32].

Probabilistic PCA was developed independently by Tipping and Bishop
[55] and Roweis [56]22. More details on probabilis-

tic PCA can be found there.
Lawrence [32] and Bishop [51]
also discuss probabilistic PCA.

and lays the ground for a Bayesian approach to
PCA [51] so unlike PCA [33, 34], PPCA is a generative model. PPCA
assumes that one observation from a set of D-dimensional, centred
observations Y = [y1, . . . ,yN ]

> is generated using a linear function of
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3.1. Probabilistic Principal Component Analysis

Figure 3.1: Illustration of
dual probabilistic PCA as a
two-dimensional, probabilistic
plane that is embedded in a
three-dimension space.

the Q-dimensional latent variables X = [x1, . . . , xN ]
> in the following

way

yn = Wxn + ϵn (3.2)

where Q � D and the random noise ϵn ∼ N(0,σ 2) is Gaussian andW
is a linear map,W ∈ RQ×D .

Following the generative model (equation 3.2), we can write the likeli-
hood of Y as

p(Y |X ,W ,σ 2) =
N∏
n=1
N(yn |Wxn,σ

2I). (3.3)

By assuming a unit Gaussian prior on the latent variables,

p(X ) =

Q∏
q=1
N(xn |0, I), (3.4)

the marginal likelihood can be found analytically

p(yn |W ,σ
2) =

∫
p(yn |xn,W ,σ

2)p(x)dx = N(yn |0,WW T + σ 2I). (3.5)

Using Gaussian conditional distributions, we can �nd the posterior of
the latent p(X |Y ), as

p(X |Y ) = N(M−1W TY ,σ 2M−1), (3.6)

with M = W >W + σ 2I. Tipping and Bishop [55] derives analytical
maximum likelihood solutions forW and σ 2.

PPCA extends PCA to the Bayesian domain by marginalising the latent
variables X and optimising the weights,W . The learnt model maps
from a latent space into a principal subspace; see �gure 3.1.
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3.2 dual probabilistic principal component
analysis

Dual PPCA is a linear, probabilistic model similar to PPCA and yields
the same solution as PPCA. Rather than marginalising the latent
variables and optimising the weights (as PPCA does), dual PPCA
marginalises the weights and optimises the latent variables. The prior
distribution of the weights is

p(W ) =
D∏
d=1
N(wd | 0,σ 2IQ ), (3.7)

where wd refers to the dth column ofW andW factorises over output
dimensions. Marginalising the weights gives

p(Y |X ,σ 2) =
D∏
d=1

p(y:,d |X ,σ
2) =

D∏
d=1
N(y:,d |0,XX> + σ 2I), (3.8)

which yields the log marginal likelihood of Y ,

L = logp(Y |X ,σ 2) = −
DN

2 log 2π − D

2 log det(K) − 1
2K
−1YY>, (3.9)

where K = XX> + σ 2IQ . Lawrence [32] provides the maximum likeli-
hood solution for the latent variables.

Lawrence [32] argues that marginalising both the weights and the
latent variables would be ideal, but this is not tractable. He continues
and says that it would be natural to marginalise the latent variables
because X ∈ RN×Q andW ∈ RD×Q and often N � D but the learnt
principle subspace is equivalent in PPCA and dual PPCA.

3.3 gaussian process latent variable model

PPCA and dual PPCA assume linear, independent, and identically
distributed output dimensions. The GPLVM challenges the assumption
of linearity by replacing the linear map with a non-linear function
and placing a Gaussian process prior on this map. Here, we introduce
Gaussian processes kernels and GPLVM.

Figure 3.2: Illustration of a
Gaussian process posterior. The
black dots are the observations.
The dark, red line is the mean
of the Gaussian process, and
the thin, lighter lines are sam-
ples. The shaded light area rep-
resents the covariance of the
Gaussian process.

Gaussian process models are a �exible class of models where the
marginal likelihood can be computed in closed form [8].
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De�nition 3.1 (Gaussian Process) A Gaussian process is an in�nite
collection of random variables, any �nite subset of which is jointly Gaus-
sian distributed.

GAUSS I AN PROCESS

This means that any two observations follow a multivariate Gaussian
distribution jointly. This is nice because the conditional and marginal
distributions are Gaussian distributions and can be found explicitly
[51]. This provides posteriors in closed form.

Intuitively, we can view a Gaussian process as a distribution over func-
tions, f , that maps from an input space to an output space (�gure 3.3).
The Gaussian process is determined by a mean m(x) and a covariance
k(x, x′)

µ(x) = E[f (x)] (3.10)
k(x, x′) = E[(f (x) − µ(x))(f (x′) − µ(x′))], (3.11)

and we write the Gaussian process

f (x) ∼ GP(µ(x),k(x, x′)). (3.12)

When we model with Gaussian processes, we usually make (at least)
two assumptions: We assume that the Gaussian process prior has
a zero-mean, i.e. µ(x) ≡ 0, and we assume that a kernel k(x, x′)
determines the functional form of the covariance.

3.3.1 Kernels

It is standard to use kernels to estimate the covariance for Gaussian
processes [8], and we follow this practice. Bishop [51] and Duvenaud
[57] gives further details on kernels.

We can use kernels as covariance functions because they yield sym-
metric and positive, semi-de�nite matrices with real entries. Kernels
are inner products de�ned in feature space such that

k(x, x′) = ϕ(x)Tϕ(x′), (3.13)

and this allows us to compute pairwise relations in a higher dimen-
sional space. The kernel computes this relation as an inner product in
a high or in�nite dimensional space. It returns the pairwise similarities
directly without explicitly representing the observations in a higher
dimensional space.

25



Chapter 3. Introduction to Learning

Figure 3.3: The Gaussian pro-
cess decoder maps a lower di-
mensional latent space to a
higher dimensional observation
space from a non-linear func-
tion f , which is modelled as a
Gaussian process.

In practice, kernels can be combined–added or multiplied–and still
be valid kernels. We can optimise the kernel hyperparameters. The
exponentiated quadratic (EQ) kernel33. This is also called a radial

basis function kernel, a Gaussian
kernel, a squared exponential
kernel.

is a stationary kernel and one of
the most common. The EQ kernel is given by

k(x, x′) = θ exp
(
−
||x − x′| |2

2l

)
, (3.14)

where we refer to θ ∈ R as the kernel variance and to l ∈ R as length
scale. Alternatively, we can assume di�erent length scales in di�erent
dimensions, leading to automatic relevance determination (ARD) for
the EQ kernel.

k(x, x′) = θ exp
(
−

1
2

Q∑
q=1

| |xq − x
′
q | |

2

l2
q

)
. (3.15)

This is a more �exible kernel that allows us to learn the dimensionality
of the latent space. We will use the shorthand notation k(x, x′) = Kxx ′ .
In this thesis, we use the EQ kernel, a common covariance function
choice. Further, the EQ kernel is C∞ and doing geometry (which we
get to later) requires the kernel to be at least C2. We will discuss this
choice in chapter 7.

We distinguish between the latent variables and the GP parameters. We
refer to the following parameters as the GP parameters: The likelihood
noise σ 2, the kernel length scale l and the kernel variance θ (assuming
an EQ kernel) In the following, we leave out the GP hyperparameters
of the conditioning for clarity.

Figure 3.4: Graphical model for
GPLVM. Y is observed and the
map F and the input X are la-
tent.

The GPLVM can be viewed as non-linear PPCA and the graphical
model is shown in �gure 3.4. Lawrence [32] shows that using a linear
kernel for the GPLVM yields the same solution as PPCA, and using a
non-linear kernel allows for non-linear dimensionality reduction. The
GPLVM (in its original formulation) inherits PPCA’s assumptions of
independent and identically distributed output dimensions.

We can also view the GPLVM as a GP regression problem [8] where
the dimensionality of the input is not the same as the dimensionality
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of the output, and rather than having observed the input, we learn the
input.

Similarly to PPCA, the GPLVM is a generative model that maps a
low-dimensional latent input, xn, to an observation, yn,

yn = f (xn) + ϵ, ϵ ∼ N(0,σ 2
n )

where the �rst term is the model and the second term is a noise
corruption which is also assumed to be normally distributed. The
noise is distributed as ϵn ∼ N(0,σ 2

n ) with ϵ ∈ R. This means that a
latent point xn is mapped to a corresponding observation yn with a
map f and corrupted by some noise ϵ . We assume independent and
identically distributed noise which leads to diagonal noise.

We place a Gaussian process prior on the mapping, fd : RQ → RD .
The map refers to the Gaussian process mapping to the dth output
dimension such that F = [f1(X ), ..., fD(X )].

p(fd |x) = GP(fd |0,k(x, x′))

We assume a zero-mean prior but note that the posterior of the Gaus-
sian process has a non-zero mean m(x). The kernel, k(x, x′), captures
our inductive bias on the data and gives the covariance between any
two points. This means that the output dimensions are independent,
i.e. we assume no covariance between output dimensions. The inputs
are unobserved and therefore assumed to be latent. This scenario
leads to a class of models called GPLVMs, unsupervised learning with
Gaussian processes (section 3.3). We assume a unit Gaussian prior on
the input

p(X ) =
N∏
n=1
N(xn |0, IN )

where the factorisation over latent variables is due the assumption of
independent and identically distributed noise. This assumption also
factorises the likelihood, which is also Gaussian.

p(Y |F ,X ) =
D∏
d=1

p(yd |F ,X ), (3.16)

where yd is a column in Y . The term p(Y | f ) is the likelihood which we
assume to be Gaussian, p(Y |F ) = N(Y |F ,σ 2

n IN ). There are numerous
choices of likelihood, but other types of likelihoods are not in the
scope of this thesis.
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We want to predict the function value at a test point x∗. We name the
predicted function value at the test point f∗ = f (x∗). We can �nd it by
considering the joint distribution,[

Y
f∗

]
∼ N

(
0,

[
k(X ,X ) + σ 2

n I k(X , x∗)
k(x∗,X ) k(x∗, x∗)

] )
. (3.17)

The Gaussian conditionals lead to the predictive distribution in closed-
form

f∗ = k(x∗,X )[k(X ,X ) + σ
2
n I]
−1Y (3.18)

cov(f∗) = K(x∗, x∗) − K(x∗,X )[k(X ,X ) + σ
2
n I]
−1k(X , x∗), (3.19)

This assumes noisy observations; Rasmussen and Williams [8] gives
more details.

3.3.2 Learning GPLVM

Learning a GPLVM amounts to estimating the posterior of mapping
and learning the latent variables,

p(F |Y ,X ) =
p(Y |F )p(F |X )

p(Y )
=

p(Y |F )p(F |X )∫
p(Y |F )p(F |X )dF

. (3.20)

In general, solutions are not available in closed form, so we optimise
both the inputs for the model and kernel hyperparameters. To obtain
an ML estimate, we use the log-likelihood as the objective function,

logp(Y |X ) = −DN2 log 2π − D

2 log |KNN | −
1
2 tr(K−1

NNYY
>). (3.21)

This can be optimised with respect to both latent variables and hy-
perparameters, but the ML approach is prone to over�tting, which
Lawrence [32] pointed out in his seminal paper. He suggested training
with MAP using the prior on the latent variables.

3.3.3 Challenges

The GPLVM is an elegant model which has proved itself in numer-
ous applications, e.g. biological data [58] and missing data [42]. It
is a �exible model that provides a generative, non-linear mapping,
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which proves useful from a manifold learning perspective: Learning
a manifold of fonts [59], path planning in robotics [60], human pose
estimation [10] and in neural data [61]. These characteristics make the
GPLVM a promising candidate for manifold learning, where we need
a generative model to be able to do smooth interpolations.

While the GPLVM is elegant in concept, in practice, it has two main
challenges: It tends to over�t [32], its complexity in time scales as
O(N 3) and its complexity in memory scales as O(N 2) [62]. In his sem-
inal paper, Lawrence [32] acknowledged these issues and suggested
training with MAP using the prior on the latent variables rather than
with MLE. MAP also has drawbacks [63, section 3.2.2]. This motivates
the variational learning of inducing points–the Bayesian GPLVM (sec-
tion 3.4)–which addresses both of these issues. Equation 3.21 shows the
main challenge in scaling up decoder GPs: Inverting KNN is expensive.
The time requirement scales as O(N 3) and the memory requirement
scales as O(N 2) [62]. Lawrence [32] used sparse kernel methods [8,
64] to scale the GPLVM and since numerous works have scaled GPs
in various ways. Much of the e�ort for scaling GPLVM is downstream
from the supervised setting, so it is not clear that these methods also
work for the GPLVM. These are not in the scope of this thesis. Instead,
we focus on active sets, which we revisit with a stochastic perspective
in the next chapter, chapter 4.

Smola and Bartlett [64] introduced active sets to the GP community.
An active set is an informative subset of the observations used for in-
ference. This strategy reduces the time complexity to O(N 2M) where
M is the number of active points. The challenge of �nding an optimal
active set, which represents the entire data, is a combinatorially com-
plex problem. Quiñonero-Candela and Rasmussen [65] summarises
the discussion at the time.

“ Traditionally, sparse models have very often been built
upon a carefully chosen subset of the training inputs [. . . ]
In sparse Gaussian processes it has also been suggested
to select the inducing inputs Xu from among the train-
ing inputs. Since this involves a prohibitive combinatorial
optimisation, greedy optimisation approaches have been
suggested [. . . ]. Recently, Snelson and Ghahramani [66]
have proposed to relax the constraint that the inducing
variables must be a subset of training/test cases, turning
the discrete selection problem into one of continuous opti-
misation.

—Quiñonero-Candela & Rasmussen, 2006 ”
The signi�cant breakthrough by Snelson and Ghahramani [66] was
introducing inducing variables as an additional set of inputs to the
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model. Rather than selecting an optimal set of inducing variables, they
proposed learning them.

3.4 bayesian gaussian process latent
variable models

This section describes the most relevant aspects of the Bayesian GPLVM
[67]. We build a Bayesian GPLVM as a suitable baseline for the
Bayesian SAS decoder, which we cover in the next chapter. The
Bayesian GPLVM is an umbrella term that covers a set of models based
on the GPLVM, as there have been exciting extensions to the model
initially proposed as the Bayesian GPLVM. The Bayesian GPLVM and
some extensions are detailed by Damianou [63].

Snelson and Ghahramani [66] proposed inducing variables as an addi-
tional set of inputs to the model. Rather than selecting an optimal set
of inducing variables, they proposed learning them and led the way for
variational learning of inducing variables which Titsias [62] introduced
in the supervised setting. This became (and remains) the foundational
principle for scaling GPs. The year after, Titsias and Lawrence [67]
extended this approach to GPLVM in which the inducing points are
learnt using variational inference.

Bayesian GPLVM is built on sparse GPs which rely on inducing vari-
ables. Sparse GPs assume that m inducing variables fu (additional
variables evaluated at additional input, xu , such that u = f (xu)) rep-
resent the data well. We assume that fu is a su�cient statistic for f ,
p(xu | fu, f ) = p(xu | fu).

Theorem 3.1 Jensen’s inequality [68] Let x be a random variable and
let f be a convex function, then E[f (x)] ≥ f (E[x]) or∫

f (x)p(x)dx ≥ f

(∫
xp(x)dx

)J ENSEN ’ S INEQUAL I T Y

Variational learning [69] approximates the true posterior with a varia-
tional distribution, q, using the Kullback-Leibler divergence through
Jensen’s inequality,

p(f |y) ∼ q(f ) = GP(µ(·), Σ(·, ·)) (3.22)

The KL divergence is a statistical distance between two distributions
and assesses how close the variational distribution is to the true poste-
rior [51]. Titsias [62] and Damianou [63] both detail this derivation
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and Blei, Kucukelbir, and McAuli�e [69] elaborate variational learning.
Titsias and Lawrence [67] extended this approach for GPLVM to obtain
a lower bound on the marginal likelihood. Titsias [70] proves that the
bound is at least equally tight when adding an inducing point in the
supervised case.
This bound is used with variational inference and does not allow for
stochastic variational inference (SVI) [71]. The bound was extended to
the SVI setting by Hensman, Matthews, and Ghahramani [72], who
also elaborates on latent variable models.
Parametrising the variational distribution as a Gaussian,q(u) = N(u |m, S)
withm and S as variational parameters, Hensman, Fusi, and Lawrence
[73] writes the evidence lower bound (ELBO) as

logp(Y ) = log
∫

p(Y |X )p(X )dX (3.23)

≤

∫
q(X )(L + logp(X ) − logq(X ))dX (3.24)

with

L =

[
N∑
n=1

logp(yn | f (xn))
]
− KL(q(u)| |p(u)) (3.25)

Here,m and S can be evaluated analytically rather than by gradient
optimisation [67], and SVI applies.
The GPLVM in its original form can be viewed as a decoder without
an encoder. Lawrence and Quiñonero-Candela [41] was the �rst to
employ an encoder though the authors termed it a back constraint.
This way bene�cial because, in some sense, the GPLVM is dissimilarity
preserving [41], and by using an encoder, similarity preservation can
be introduced. This is similar to variational autoencoder [6, 9]. Lately,
this is growing more common Bui, Yan, and Turner [74] and Ramchan-
dran, Koskinen, and Lähdesmäki [75] also trained using an encoder
and recently, Lalchand, Ravuri, and Lawrence [42] generalised this to
di�erent types of encoders. Shu et al. [76] showed empirically that
amortisation improved generalisation performance. In the next chap-
ter, we develop a model using an encoder to learn the latent variables.
We refer to this as amortisation.

3.4.1 Challenges

While variational learning of inducing points has immensely pro-
gressed the Gaussian process research, learning inducing points re-
mains challenging.
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First, in the supervised scenario (where the input is �xed), Bauer, van
der Wilk, and Rasmussen [77] notes that inducing points are “not
completely trivial to optimise, and often tricks [...] are required”. This
is further supported by Dutordoir, Durrande, and Hensman [78], who
points out that the inducing points only act locally; hence, a large
number may be required to cover the input space. This e�ect is even
more pronounced in high-dimensional data (e.g. images) due to the
curse of dimensionality. The fundamental assumption for variational
learning of inducing points is that the inducing variables are a su�cient
statistic for the map. Titsias [62] notes that these are di�cult to �nd
in practice.

Second, while lots of e�ort has been made to scale GPs with induc-
ing points, scaling in the unsupervised setting is a side e�ect of the
supervised case, as the GPLVM can be viewed as a regression. The
novel paper introducing the Bayesian GPLVM [67] points out that the
optimisation is challenging and prone to local minima as the induc-
ing points and the latent points are coupled. These reasons motivate
scaling unsupervised Gaussian processes without inducing points. We
suspect this could be because we are learning a second set of free
parameters in addition to the latent variables. This unconstrains the
learning problem, e�ectively making it more challenging.

Third, we want a model that learns structure in the latent space for our
speci�c goal of doing geometry. Often the Bayesian GPLVM learns
approximately spherical latent representations due to the Gaussian
prior on the latent variables. See, for example, Bui, Yan, and Turner
[74]. The hyperparameters in�uence the learnt representation and
estimating hyperparameters properly can also be a challenge in sparse
models. Bauer, van der Wilk, and Rasmussen [77] comments that
though the lower bound can identify good solutions, the variational
learning of inducing points has a tendency to under�t in practice, e.g.
not properly estimating length scales.
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4STOCHAST I C ACT I V E S E TS
FOR GAUSS I AN PROCESS
DECODERS

This chapter is based on the NeurIPS paper "Revisiting Active Sets for
Gaussian Process Decoders" byMoreno-Muñoz*, Feldager* * Equal contribution, andHauberg
[2].

Our overarching quest is for a GPLVM that is suitable for geometry.
Often the GPLVM [32] is used when data is scarce as it scales poorly
and is prone to over�tting (chapter 2). We also reviewed the Bayesian
GPLVM and its extensions (section 3.4) which address some of these
challenges. Though Bayesian GPLVM provides excellent theoretical
guarantees, in practice, it is di�cult to train, and the learnt representa-
tions are often approximately spherical due to the prior on the latent
variables (section 3.4.1). We now set out to �nd a scalable model that
learns structure in the latent space that we can use for geometry.

This chapter introduces stochastic active sets (SAS) for Gaussian pro-
cess decoders [2], which scales training of GPLVMs [32] to many obser-
vations, challenging the view that GPLVMs are only useful for small
datasets. SAS repeatedly samples a subset of the data (the so-called
active set), which is assumed fully correlated, while the remaining data
(the remainder set) are assumed independently conditioned on the ac-
tive set. This means that only the covariance estimated on the active
set has to be inverted, as the covariance estimated on the remainder
set is diagonal. This e�ectively reduces the size of the covariance
matrix to be inverted and enables scaling the model the more observa-
tions. First, we introduce the notation (section 4.1). Then we review
a theoretical link between the marginal likelihood and exhaustive
cross-validation [79] (section 4.2) to derive this for both a GP decoder
(section 4.3) and a Bayesian GP decoder (section 4.4). Finally, we end
this chapter with results (section 4.5) and a discussion of the proposed
models (section 4.6).

4.1 stochastic active sets

This section introduces the notation for stochastic active sets. An
active set is an informative subset of data to be used for inference:
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Figure 4.1: Illustration of SAS notation. The active set (red) is sampled from all observations (teal) at time zero.
The solid red line indicates that a full covariance is estimated, and the teal dashed line indicates a conditional
independence on the active set. The �gure is slightly adapted from Moreno-Muñoz, Feldager, and Hauberg [2].

We split the N observations into two disjoint subsets; the active set
yA and the remainder set yR . Similarly, we split the corresponding
latent variables into two disjoint subsets as well xA ⊂ X and xR ⊂ X
with xA ∪ xR = X . We de�ne A as the number of observations in
the active set A = |yA |, and R as the number of observations in the
remainder set R = |yR |. This gives the relation a N = A + R, which is
true independently of how the observations are split.

There are many ways to split the set of observations. Given A, the
binomial coe�cient gives the number of possible active sets (or per-
mutations), C =

(N
A

)
Note, that C =

(N
A

)
=

(N
R

)
by

symmetry
. An indexing set indexes the active set denoted

Ap where p refers to a speci�c permutation of the indices. The set

A = {A1,A2, . . . ,Ap, . . . ,AC},

collects all the possible active sets. Similarly, we de�ne the correspond-
ing sets for the remainder set: The set

R = {R1,R2, . . . ,Rp, . . . ,RC},

collects all the possible remainder sets.

We adopt a shorthand notation for the kernel evaluation such that the
subscript in the kernel indicates the set. This means that we denote
the kernel evaluated on the active set as k(xA, xA) = KxAxA ≡ KAA and
similarly for the remainder set, i.e. k(xR, xR) ≡ KRR .
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4.2. Marginal Likelihood and Cross-Validation

4.2 marginal likelihood and
cross-validation

The SAS model relies on a theoretical result from Fong and Holmes
[79]. This result relates the marginal likelihoods and Bayesian cross-
validation1 1. In the following, we refer to

the exhaustive, Bayesian cross-
validation when we write cross-
validation.

. This paper argues that if cross-validation and the marginal
likelihood are equivalent, we should use the marginal likelihood for
training. We �ip this argument in the context of GPs: The marginal
likelihood is hard to evaluate, so maybe we can gain something by
formalising leave-p-out cross-validation. Fong and Holmes [79] shows
that the marginal likelihood decomposes into two terms, and our goal
is to relate that to active sets. This section focuses on understanding
their result so we can develop the SAS decoder in the next section. We
adapt the notation slightly to better suit our purpose. They focus on
cross-validation and use the terminology hold-out set and training set.
This is equivalent to active sets and remainder sets (due to symmetry).

De�nition 4.1 (Exhaustive, Bayesian cross-validation) Leave-p-
out Bayesian cross-validation is de�ned as

SCV (y1:n;p) = 1(n
p

) (np)∑
t=1

1
p

p∑
j=1

logp(y(t)j |y
(t)
1:n−p) (4.1)

The superscript t denotes the t th of the n-choose-p possible hold-out sets.
The corresponding training set is y(t)1:n−p such that the hold-out sets and

the training set jointly constitute the entire dataset, y1:n = {y
(t)
1:p,y

(t)
1:n−p}.

We also refer to this as exhaustive cross-validation.

EXHAUST I V E CROSS VA L-
I DAT ION

The cross-validation score SCV is de�ned with the log posterior pre-
dictive probability. The interpretation of SCV is the average predictive
score on one test point.

Theorem 4.1 The Bayesian marginal likelihood is equivalent to the
exhaustive leave-p-out cross-validation score [79]

logp(y1:n) =
n∑

p=1
SCV (y1:n;p) (4.2)

using the log posterior predictive probability.

Theorem 4.1 states that the marginal likelihood is the sum of the cross-
validation score, i.e. the sum of the average predictive score on one
test point. Fong and Holmes [79] split the sum in theorem 4.1 at a
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Chapter 4. Stochastic Active Sets for Gaussian Process Decoders

threshold P (which we will not discuss in further detail here, but Fong
and Holmes [79, section 3.2] does),

logp(y1:n) =
n∑

p=1
SCV (y1:n;p) =

P∑
p=1

SCV (y1:n;p)︸            ︷︷            ︸
SCCV

+

n∑
p=P+1

SCV (y1:n;p)︸               ︷︷               ︸
SPCV

.(4.3)

We refer to SCCV as the cumulative cross-validation score or simply
the cumulative scores; similarly, we refer to SPCV as the preparatory
cross-validation score or the preparatory score.

We can interpret SPCV as the average log marginal likelihood over
all possible training sets. Also, the SPCV de�nition evaluates the log
marginal likelihood on the whole training set. This corresponds pre-
cisely to constructing a full covariance matrix on the active set. We
can interpret SCCV as the cumulative average predictive score on the
hold-out. To see how we need a few more steps.

As SCCV and SPCV each include a sum over p, this sum is determined if
we know the limit P . For this reason, we write the sum given P instead
of lowercase p,

n∑
p=1

SCV (y1:n;p) = SCCV (y1:n; P) + SPCV (y1:n; P). (4.4)

Fong and Holmes [79] proves that SPCV and SCCV can be expressed as

SPCV (y1:n; P) = 1(n
P

) (nP)∑
t=1

logp(y(t)1:n−P ), (4.5)

SCCV (y1:n; P) = 1(n
P

) (nP)∑
t=1

logp(y(t)1:P |y
(t)
1:n−P ), (4.6)

which are related to the original de�nition of exhaustive leave-p-out
cross-validation score and sum to the log marginal likelihood (via
theorem 4.1). This holds for all 1 ≤ P < n.

As mentioned, SCCV can be interpreted as the cumulative average
predictive score on the hold-out set. Still, for our purpose, we �nd
a more convenient formulation by inserting the expression for the
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4.3. Gaussian Process Decoder

cross-validation (equation 4.1) directly.

SCCV (y1:n; P) =
P∑

p=1
SCV (y1:n;p) (4.7)

=

P∑
p=1

1(n
p

) (np)∑
t=1

1
p

p∑
j=1

logp(y(t)j |y
(t)
1:n−p) (4.8)

=

P∑
p=1

1
p
ER

[
p∑
j=1

logp(yj |y1:n−p)

]
(4.9)

Starting from the left, the sum over p is the sum over di�erent sizes of
hold-out sets. In the second equation, the sum over t (with the binomial
coe�cient) is a sum over all permutations of training (or remainder)
sets. The sum over j collects contributions from all observations,
i.e. one term in that sum corresponds to the average log predictive
marginal likelihood for a single observation. More details can be found
in Moreno-Muñoz, Feldager, and Hauberg [2, appendix].

4.3 gaussian process decoder

Based on the insights from section 4.2, we can approximate the log
marginal likelihood in the context of Gaussian processes. We will
show that theorem 4.1 and its decomposition of the cross-validation
can be formulated with active sets.

We can express SPCV and SCCV in the context of Gaussian processes
using exhaustive cross-validation. For the non-Bayesian Gaussian
GPLVM, we consider the marginal likelihood p(y |x). Using the ex-
pression for SPCV in equation 4.10 and putting it into the context of
(non-Bayesian) Gaussian processes, we obtain

SPCV (y1:n |x ; P) = EA
[
logp(yA |xA)

]
(4.10)

By symmetry, the expectation over permutation is equal for active
sets (training sets) and remainder sets (hold-out sets). We replace the
notation y1:n−P with yA, which is the active set.
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Likewise, we can reduce the expression for SCCV (equation 4.9) to

SCCV (y1:n |x ; P) =
P∑

p=1

1
p
EA


∑
i∈Rp

logp(yi |yA, x)
 (4.11)

= E|A|EA


∑
i∈Rp

logp(yi |yA, xA)
 . (4.12)

Here, we have three things. First, we assume that p(yA |x) = p(yA |xA).
We can do this without loss of generality because the generative model
states a one-to-one correspondence between latent variables and obser-
vation. Second, the expectation over permutation was rewritten from
an expectation of permutations of the remainder set to an expectation
permutation over the active set. This is due to symmetry. Finally,
we used the expression we derived for SCCV and SPCV to rewrite the
marginal likelihood.

logp(y |x) = E|A|EA

[∑
n∈R

logp(yn |yA, xA)
]
+ EA [logp(yA |xA)]

(4.13)

This means that we construct a full covariance on the active set, KAA,
(see equations 4.14-4.17). Then each observation in the remainder set
is predicted individually using KAA. Equivalently, the observations
in the remainder set are conditionally independent, given the active
set. The terms in the sum can be evaluated using mini-batching and
Gaussian predictive distributions.

p(yA |xA) = N(yA |0,KAA), (4.14)
p(yR |yA, x) = N(yR |mR,CR), (4.15)

with posterior mean and variance [8]

mR = KT
AR(KAA + σ

2IN )
−1xA (4.16)

CR = KRR + σ
2IN − K

T
AR(KAA + σ

2IA)
−1KAR . (4.17)

4.3.1 Learning the SAS Decoder

In practice, we have not gained much yet: Sampling A is quicker than
inverting the full covariance matrix constantly (i.e. exact GPs), but we
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4.3. Gaussian Process Decoder

Algorithm 1 Adam: Adaptive momentum estimation [80]. Learning
of GP decoders with SAS. The algorithm is adapted from Moreno-
Muñoz, Feldager, and Hauberg [2].

1: Input: Observed data y
2: Parameters: Initialise θ , ϕ // θ , z if non-amortized
3: for e in epochs do
4: for b in batches do
5: Sample ybatch ∼ y
6: Get yR,yA← random_split(ybatch)
7: if amortised then
8: Get {xR, xA} ← д(yR,yA |ϕ)
9: end if

10: Compute K−1
AA // via Cholesky

11: Evaluate logp(yA |xA)
12: Evaluate logp(yn |xA, z), ∀yn ∈ yR
13: L̂approx =

∑
n logp(yn |yA, x) + logp(xA |xA)

14: do Adam(θ,ϕ) step for L̂approx
15: end for
16: end for

would also sample a lot of large values of A, close to the number of
observations. In the limit ofA = N , this corresponds to an exact GP, so
we are not on par with Bayesian GPLVM in terms of speed. To handle
this, we �x |A|, which removes the expectation of |A| and leads to a
biased approximation of the marginal likelihood. We get back to this
in section 4.6. Equation 4.18 states the implemented approximation of
the log marginal likelihood for the GPLVM.

logp(y |x) ≈
∑
n∈R

logp(yn |yA, xA) + logp(yA |xA) ≡ L̂approx (4.18) SAS APPROX IMAT ION
GP Decoder

Notice that the expectation over the set of permutations A is left out.
We sample the active set in each mini-batch during training which
corresponds to this expectation, so we do not have to compute it
explicitly, see �gure 4.1 and algorithm 1. The complexity reduces to
O((N − A)A2), which for small |A| is cheaper than inducing points
methods. This approach is summarised by algorithm 1.

4.3.2 Amortisation of the SAS Decoder

We employ a neural network to amortise or encode the latent variables
discussed in section 3.4. We refer to this as the amortisation network,
д(Y ) : RD → RQ with weights ϕ = {W1,W2,W2}, which encodes the

39



Chapter 4. Stochastic Active Sets for Gaussian Process Decoders

latent variables X using hidden units Z .

Zn = an(WnZn−1 + bn) (4.19)

where the activation functions in the hidden layers are ReLU [81, 82],
the identity in the last, an(y) = y, Zn = X and Z0 = Y . In practice, we
use three layers.

4.4 bayesian gaussian process decoder

The SAS approximation also applies to the Bayesian GPLVM (sec-
tion 3.4). Here, we aim to estimate the posterior p(x |y) using the
marginal likelihood p(y). As Titsias and Lawrence [67] showed, this is
not tractable in closed form because the kernel function is non-linear
in the latent variables. Instead, we aim to derive a lower bound on
the evidence, LELBO by considering the log of the marginal likelihood,
marginalised with respect to the latent variables

logp(y) = log
∫

p(y, x)dx (4.20)

Here, we would like to introduce a variational distribution on the
latent variables, q(x). We do this through Jensen’s inequality (theorem
3.1) which lets us write a bound on the marginal likelihood. This lets
us rewrite the expression for the marginal likelihood to

logp(y) = log
∫

q(x)

q(x)
p(y, x)dx (4.21)

≥

∫
q(x) log p(y, x)

q(x)
dx (4.22)

=

∫
q(x) logp(y |x)dx +

∫
q(x) log p(x)

q(x)
dx (4.23)

= Eq(x)[logp(y |x)] − KL[q(x)| |p(x)] (4.24)
≡ LELBO (4.25)

Generally, this expectation is hard to compute because the integration
over the latent variables is non-linear through the Gaussian likeli-
hood p(y |x), equation 3.9. In equation 4.13, we derived an expression
for logp(y |x), which we can insert in the expectation. Consider the
expectation only
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4.4. Bayesian Gaussian Process Decoder

Eq(x)[logp(y |x)] = Eq(x)

[
E|A|EA

[∑
n∈R

logp(yn |yA, xA)
]
+ EA [logp(yA |xA)]

]
(4.26)

= E|A|EAEq(x)

[∑
n∈R

logp(yn |yA, xA)
]
+ EAEq(x) [logp(yA |xA)] (4.27)

which gives the approximate lower bound under the SAS approxima-
tion

L̂ELBO = E|A|EAEq(x)

[∑
n∈R

logp(yn |yA, xA)
]
+ EAEq(x) [logp(yA |xA)] − KL[q(x)| |p(x)]. (4.28)

The �rst term is the expectation over SCCV with respect to q(x), and the
second term is the expectation over SPCV with respect to q(x). When
the Kullback-Leibler divergence goes to zero, the bound is tight, and
the approximated ELBO reduces to the true ELBO.

4.4.1 Learning the Bayesian SAS Decoder

Like the SAS decoder, not much is gained in practice yet, and like the
SAS decoder, the Bayesian SAS decoder �xes |A|. This is to avoid sam-
pling large values of active set sizes, A ∼ N , where the computational
cost is the same as for the exact GPLVM. This removes the expectation
of |A| and leads to a biased approximation of the ELBO.

L̂ELBO ≈ Eq(x)

[∑
n∈R

logp(yn |yA, xA)
]
+ Eq(x) [logp(yA |xA)] − KL[q(x)| |p(x)] (4.29)

=
∑
n∈Rp

Eq(xn) [logp(yn |yA, x)] + Eq(xA) [logp(yA |xA)] −
N∑
n=1

KL[q(xn)| |p(xn)] (4.30)

Figure 4.2: Illustration of
the marginal likelihood, p(y)
(black), the true bound, LELBO
(red) and the estimated bound,
L̂ELBO (light red).

Again, notice that the expectation over the set of permutations A is
left out. We sample the active set in each mini-batch during training
which corresponds to this expectation, so we do not have to compute it
explicitly, see �gure 4.1 and algorithm 1. We use mean-�eld variational
inference, which allows for mini-batching of the KL term [9], yielding
the SAS approximation of the evidence lower bound, L̂ELBO. The
complexity is the same as for the SAS decoder, O((N −A)A2) and the
approach is summarised by algorithm 2 and �gure 4.2.
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4.4.2 Amortisation of the Bayesian SAS Decoder

As for the non-Bayesian SAS decoder, we amortise the latent means and
variances with two neural networks: A neural network дµ : RD → RQ
encodes the mean of the latent variables, and another neural network
encodes the variance, дσ : RD → RQ in which the last layer in includes
a SoftPlus function given by log(1 + expX ) which ensures is strictly
positive variance.

The amortisation leads this variational distribution on X ,

q(X ) =
N∏
n=1
N(xn;дµ(yn),дσ (yn)). (4.31)

The amortisation is a parametrisation of the mean and covariance of
the variational distribution [41, 74, 83], �rst suggested by Lawrence
and Quiñonero-Candela [41] to learn GP representations that preserve
local structures. The encoder also ensures that close observations are
close in the latent space. The update of the network parameters also
a�ects the other batches, and the network parameters are global [71],
which enables stochastic variational inference [72].

We derived a lower bound on the evidence p(y) that we call LELBO
or the true lower bound. Using the SAS approximation, we derived
an estimator for the true lower bound that we name the estimated
lower bound, L̂ELBO. When training, we search for the parameters
that bring L̂ELBO (and therefore LELBO closer to the marginal likelihood
p(y). Algorithm 2 summarises the SAS approximation for Bayesian GP
decoders. Operationally, this approach is straightforward and scales
similarly to mini-batched inducing points methods [72].
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Algorithm 2 Adam: Adaptive momentum estimation [80]. Learning
of Bayesian GP decoders with SAS. The algorithm is adapted from
Moreno-Muñoz, Feldager, and Hauberg [2].

1: Input: Observed data y
2: Parameters: Initialise θ , ϕ // θ , µ,σ 2 if non-amortized
3: for e in epochs do
4: for b in batches do
5: Sample ybatch ∼ y
6: Get yR,yA← random_split(ybatch)
7: if amortised then
8: Get µx ← дµ(yR,yA |ϕ)
9: Get σx ← дσ (yR,yA |ϕ)

10: end if
11: Sample {xR, xA} ∼ q(µx ,σ 2

x ) // RT
12: Compute K−1

AA // via Cholesky
13: Evaluate L̂ELBO in equation 4.29
14: do Adam(θ,ϕ) step for L̂ELBO
15: end for
16: end for

4.5 results

This section investigates the SAS and the Bayesian SAS decoders
(collectively referred to as the SAS models or the SAS decoders) and
compares them to other models. After some experimental details, we
�rst investigate the e�ect of the active set size on the approximation
and the SAS models for more latent dimensions than two. Second, we
introduce the baselines and look into both runtimes and structure of
the latent space.

4.5.1 Experimental Setup

We evaluate the model shown here on datasets; Mnist[84], Fashion-
Mnist [85], and Cifar-10 [86]. These are three image datasets often
used for supervised learning. Still, all the models in this section are
unsupervised, i.e. they do not have access to the class labels (unless
explicitly stated in the text).

The speci�cs of the SAS models are detailed in sections 4.3.1 and
4.4.1, implemented accordingly in PyTorch [87] and run on CPU. The
experiments used learning rates in the range [10−4, 10−2] and trained
for 300 epochs using the adam optimiser [80] in 64-bit precision. The
SAS models only use batch sizes greater than active set sizes, B > A,
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as the active set is subsampled from the batch. The batch size is 1024
unless otherwise stated.

4.5.2 Evaluation of The SAS Models

As more information is retained, we expect better representation with
increasing active set sizes. Figure 4.3 shows this in terms of the approx-
imated marginal likelihood for the trained model. We also used three
metrics standard for GP regression (which unsupervised GP essentially
is).

Assuming a test sety∗ = {y∗n}
N∗
n=1, we de�ne the root mean square error

(RMSE)

RMSE(y∗) =

√√√
1
N∗

N∗∑
n=1
(yn − µ

∗
n)

2.

We de�ne the mean absolute error (MAE)

MAE(y∗) = 1
N∗

N∗∑
n=1

��y∗n − µ∗n�� .
RSME penalises observations far from mean harder the MAE does.
The negative log predictive distribution (NLPD)

NLPD(y∗) = 1
2 log(2π ) + 1

2N∗

N∗∑
n=1

[
logv∗n +

(y∗n − µ
∗
n)

2

v∗n

]
,

Here, µ∗n and v∗n are the predictive mean and variance for the nth test
point, respectively. The NLPD also accounts for the predictive variance,
unlike RSME and MAE, which only considers the predicted mean.

Table 4.1 provides the metrics for the SAS decoders on Mnist, Fash-
ionMnist, and Cifar-10. For all three metrics, lower is better. For
each model on each dataset, we consider three active set sizes. We
observe smaller metrics with increasing active set sizes. This is consis-
tent with the SAS approximation capturing the covariance structure
with increasing active set sizes.

This behaviour is also evident in �gure 4.3. The SAS decoder (top
row) is consistent in smaller active set sizes converging faster and to
higher values of the bound L̂ELBO. This is harder to tell for Cifar-10,
where learning is more complex, and the training curve for A = 400
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Table 4.1: RMSE: Root mean square. MAE: Mean absolute deviation. NLPD:
Negative log predictive distribution. The table shows three metrics (RMSE,
MAE, and NLPD) for the SAS decoder and the Bayesian SAS decoder, each for
three datasets. For each metric, we trained �ve models to obtain the standard
error of the mean. Lower metrics are better, and the lowest is in bold font.
The batch size is B = 1024. The table is slightly adapted from Moreno-Muñoz,
Feldager, and Hauberg [2].

SAS Bayesian SAS
Model Metric A = 100 A = 200 A = 400 A = 100 A = 200 A = 400
Mnist RMSE 2.55 ± 0.98 2.47 ± 0.98 2.41 ± 0.93 2.16 ± 0.02 2.08 ± 0.02 1.99 ± 0.02

MAE 1.61 ± 0.97 1.55 ± 0.99 1.51 ± 0.96 1.11 ± 0.02 1.04 ± 0.02 0.96 ± 0.01
NLPD 2.99 ± 1.41 2.92 ± 1.38 2.84 ± 1.31 2.33 ± 0.03 2.26 ± 0.02 2.17 ± 0.02

FMnist RMSE 2.37 ± 0.95 2.31 ± 0.94 2.25 ± 0.90 1.99 ± 0.17 1.88 ± 0.20 1.85 ± 0.13
MAE 1.48 ± 0.91 1.42 ± 0.91 1.39 ± 0.89 1.11 ± 0.02 1.02 ± 0.03 0.98 ± 0.02
NLPD 2.76 ± 1.33 2.71 ± 1.31 2.65 ± 1.23 2.16 ± 0.18 2.07 ± 0.19 2.04 ± 0.12

Cifar-10 RMSE 2.66 ± 1.08 2.55 ± 1.06 2.55 ± 1.03 2.74 ± 1.07 2.64 ± 1.08 2.57 ± 1.02
MAE 1.77 ± 1.06 1.69 ± 1.06 1.69 ± 1.02 1.84 ± 1.03 1.76 ± 1.05 1.71 ± 1.03
NLPD 3.20 ± 1.55 3.07 ± 1.44 3.32 ± 1.89 3.24 ± 1.53 3.14 ± 1.53 3.06 ± 1.45

has not converged. For the Bayesian SAS decoder, large active set sizes
converge to better bound for Mnist and FashionMnist. For Cifar-10,
the trend is the opposite.

Higher Latent Dimensionality

To show that our model works for more than two latent dimensions, we
tested three and four latent dimensions for Mnist and FashionMnist.
In all cases, the training curves seem to converge (�gure 4.5), and
we observed a similar performance to the experiments for two latent
dimensions. This implies that the SAS decoders are not restricted to
two latent dimensions.

4.5.3 Representation performance

We consider three baselines: The GPLVM [32] as a baseline for the
SAS decoder, the Bayesian GPLVM [67] as a baseline for the Bayesian
SAS decoder, and �nally, a variational autoencoder (VAE) [6] which is
standard in representation learning. As we described in section 3.4,
numerous extension has been made to the Bayesian GPLVM accord-
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<latexit sha1_base64="ZIWu9DVQrtJwcg6CjJxy+mY/XyU=">AAAB/HicbVDLSsNAFJ3UV62vaJdugkVwVRIRdVkqgouCFewDmhAm00k7dPJg5kYMIf6KGxeKuPVD3Pk3TtsstPXAhcM593LvPV7MmQTT/NZKK6tr6xvlzcrW9s7unr5/0JVRIgjtkIhHou9hSTkLaQcYcNqPBcWBx2nPm1xN/d4DFZJF4T2kMXUCPAqZzwgGJbl61R5jyFq5awN9hOy61bzNXb1m1s0ZjGViFaSGCrRd/cseRiQJaAiEYykHlhmDk2EBjHCaV+xE0hiTCR7RgaIhDqh0stnxuXGslKHhR0JVCMZM/T2R4UDKNPBUZ4BhLBe9qfifN0jAv3QyFsYJ0JDMF/kJNyAypkkYQyYoAZ4qgolg6laDjLHABFReFRWCtfjyMume1q3z+tndWa3RLOIoo0N0hE6QhS5QA92gNuogglL0jF7Rm/akvWjv2se8taQVM1X0B9rnD9qplOk=</latexit> L̂
E
L
B

O

<latexit sha1_base64="ZIWu9DVQrtJwcg6CjJxy+mY/XyU=">AAAB/HicbVDLSsNAFJ3UV62vaJdugkVwVRIRdVkqgouCFewDmhAm00k7dPJg5kYMIf6KGxeKuPVD3Pk3TtsstPXAhcM593LvPV7MmQTT/NZKK6tr6xvlzcrW9s7unr5/0JVRIgjtkIhHou9hSTkLaQcYcNqPBcWBx2nPm1xN/d4DFZJF4T2kMXUCPAqZzwgGJbl61R5jyFq5awN9hOy61bzNXb1m1s0ZjGViFaSGCrRd/cseRiQJaAiEYykHlhmDk2EBjHCaV+xE0hiTCR7RgaIhDqh0stnxuXGslKHhR0JVCMZM/T2R4UDKNPBUZ4BhLBe9qfifN0jAv3QyFsYJ0JDMF/kJNyAypkkYQyYoAZ4qgolg6laDjLHABFReFRWCtfjyMume1q3z+tndWa3RLOIoo0N0hE6QhS5QA92gNuogglL0jF7Rm/akvWjv2se8taQVM1X0B9rnD9qplOk=</latexit> L̂
E
L
B

O

<latexit sha1_base64="ZIWu9DVQrtJwcg6CjJxy+mY/XyU=">AAAB/HicbVDLSsNAFJ3UV62vaJdugkVwVRIRdVkqgouCFewDmhAm00k7dPJg5kYMIf6KGxeKuPVD3Pk3TtsstPXAhcM593LvPV7MmQTT/NZKK6tr6xvlzcrW9s7unr5/0JVRIgjtkIhHou9hSTkLaQcYcNqPBcWBx2nPm1xN/d4DFZJF4T2kMXUCPAqZzwgGJbl61R5jyFq5awN9hOy61bzNXb1m1s0ZjGViFaSGCrRd/cseRiQJaAiEYykHlhmDk2EBjHCaV+xE0hiTCR7RgaIhDqh0stnxuXGslKHhR0JVCMZM/T2R4UDKNPBUZ4BhLBe9qfifN0jAv3QyFsYJ0JDMF/kJNyAypkkYQyYoAZ4qgolg6laDjLHABFReFRWCtfjyMume1q3z+tndWa3RLOIoo0N0hE6QhS5QA92gNuogglL0jF7Rm/akvWjv2se8taQVM1X0B9rnD9qplOk=</latexit> L̂
E
L
B

O

<latexit sha1_base64="w35J0XWBgfKA1IcFkwAVFVn5m/U=">AAACB3icbVDLSgNBEJyNrxhfUY+CDAbBU9iVoB6DXjxGMQ9IljA76SRDZmeXmV4xLLl58Ve8eFDEq7/gzb9x8jhoYkFDUdVNd1cQS2HQdb+dzNLyyupadj23sbm1vZPf3auZKNEcqjySkW4EzIAUCqooUEIj1sDCQEI9GFyN/fo9aCMidYfDGPyQ9ZToCs7QSu38YQvhAdPbRKEIgY5ocyr07QIz8tv5glt0J6CLxJuRApmh0s5/tToRT0JQyCUzpum5Mfop0yi4hFGulRiIGR+wHjQtVSwE46eTP0b02Cod2o20LYV0ov6eSFlozDAMbGfIsG/mvbH4n9dMsHvhp0LFCYLi00XdRFKM6DgU2hEaOMqhJYxrYW+lvM8042ijy9kQvPmXF0nttOidFUs3pUL5chZHlhyQI3JCPHJOyuSaVEiVcPJInskreXOenBfn3fmYtmac2cw++QPn8wceeZof</latexit>

Runtime [hours]
<latexit sha1_base64="w35J0XWBgfKA1IcFkwAVFVn5m/U=">AAACB3icbVDLSgNBEJyNrxhfUY+CDAbBU9iVoB6DXjxGMQ9IljA76SRDZmeXmV4xLLl58Ve8eFDEq7/gzb9x8jhoYkFDUdVNd1cQS2HQdb+dzNLyyupadj23sbm1vZPf3auZKNEcqjySkW4EzIAUCqooUEIj1sDCQEI9GFyN/fo9aCMidYfDGPyQ9ZToCs7QSu38YQvhAdPbRKEIgY5ocyr07QIz8tv5glt0J6CLxJuRApmh0s5/tToRT0JQyCUzpum5Mfop0yi4hFGulRiIGR+wHjQtVSwE46eTP0b02Cod2o20LYV0ov6eSFlozDAMbGfIsG/mvbH4n9dMsHvhp0LFCYLi00XdRFKM6DgU2hEaOMqhJYxrYW+lvM8042ijy9kQvPmXF0nttOidFUs3pUL5chZHlhyQI3JCPHJOyuSaVEiVcPJInskreXOenBfn3fmYtmac2cw++QPn8wceeZof</latexit>

Runtime [hours]
<latexit sha1_base64="w35J0XWBgfKA1IcFkwAVFVn5m/U=">AAACB3icbVDLSgNBEJyNrxhfUY+CDAbBU9iVoB6DXjxGMQ9IljA76SRDZmeXmV4xLLl58Ve8eFDEq7/gzb9x8jhoYkFDUdVNd1cQS2HQdb+dzNLyyupadj23sbm1vZPf3auZKNEcqjySkW4EzIAUCqooUEIj1sDCQEI9GFyN/fo9aCMidYfDGPyQ9ZToCs7QSu38YQvhAdPbRKEIgY5ocyr07QIz8tv5glt0J6CLxJuRApmh0s5/tToRT0JQyCUzpum5Mfop0yi4hFGulRiIGR+wHjQtVSwE46eTP0b02Cod2o20LYV0ov6eSFlozDAMbGfIsG/mvbH4n9dMsHvhp0LFCYLi00XdRFKM6DgU2hEaOMqhJYxrYW+lvM8042ijy9kQvPmXF0nttOidFUs3pUL5chZHlhyQI3JCPHJOyuSaVEiVcPJInskreXOenBfn3fmYtmac2cw++QPn8wceeZof</latexit>

Runtime [hours]

<latexit sha1_base64="SyimsSaP/wye5cPjT4NASAqQq7Q=">AAAB9XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegFy9CBPOAZA2zk0kyZHZ2melVw5L/8OJBEa/+izf/xkmyB00saCiquunuCmIpDLrut5NbWl5ZXcuvFzY2t7Z3irt7dRMlmvEai2SkmwE1XArFayhQ8masOQ0DyRvB8GriNx64NiJSdziKuR/SvhI9wSha6b6N/AkNS2+UXTXuFEtu2Z2CLBIvIyXIUO0Uv9rdiCUhV8gkNabluTH6KdUomOTjQjsxPKZsSPu8ZamiITd+Or16TI6s0iW9SNtSSKbq74mUhsaMwsB2hhQHZt6biP95rQR7F34qVJwgV2y2qJdIghGZREC6QnOGcmQJZVrYWwkbUE0Z2qAKNgRv/uVFUj8pe2fl09vTUuUyiyMPB3AIx+DBOVTgGqpQAwYanuEV3pxH58V5dz5mrTknm9mHP3A+fwBJOJMJ</latexit>

Mnist
<latexit sha1_base64="nT7Pi/GZFucJUkt2kmR/QVEplWE=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJS7AInkoiRT0WBfEiVLAf0Iay2U7bpZtN2J2IJRT8K148KOLV3+HNf+O2zUFbHww83pthZl4QC67Rdb+t3NLyyupafr2wsbm1vWPv7tV1lCgGNRaJSDUDqkFwCTXkKKAZK6BhIKARDK8mfuMBlOaRvMdRDH5I+5L3OKNopI590EZ4RM3Sa6oHRrmVZue4YxfdkjuFs0i8jBRJhmrH/mp3I5aEIJEJqnXLc2P0U6qQMwHjQjvREFM2pH1oGSppCNpPp+ePnWOjdJ1epExJdKbq74mUhlqPwsB0hhQHet6biP95rQR7F37KZZwgSDZb1EuEg5EzycLpcgUMxcgQyhQ3tzpsQBVlaBIrmBC8+ZcXSf205J2VynflYuUyiyNPDskROSEeOScVckOqpEYYSckzeSVv1pP1Yr1bH7PWnJXN7JM/sD5/ACzZlkg=</latexit>

FashionMnist
<latexit sha1_base64="+VC3lgADbDdO0aEfkeBUuq9GnkI=">AAAB+nicbVBNS8NAEN34WetXqkcvwSJ4sSRS1GOxF48V7Ae0pWy2k3bpZhN2J2qJ/SlePCji1V/izX/jts1BWx8MPN6bYWaeHwuu0XW/rZXVtfWNzdxWfntnd2/fLhw0dJQoBnUWiUi1fKpBcAl15CigFSugoS+g6Y+qU795D0rzSN7hOIZuSAeSB5xRNFLPLnQQHlGztMoDqs48d9Kzi27JncFZJl5GiiRDrWd/dfoRS0KQyATVuu25MXZTqpAzAZN8J9EQUzaiA2gbKmkIupvOTp84J0bpO0GkTEl0ZurviZSGWo9D33SGFId60ZuK/3ntBIOrbsplnCBINl8UJMLByJnm4PS5AoZibAhliptbHTakijI0aeVNCN7iy8ukcV7yLkrl23Kxcp3FkSNH5JicEo9ckgq5ITVSJ4w8kGfySt6sJ+vFerc+5q0rVjZzSP7A+vwB3oOTwA==</latexit>

Cifar-10

Figure 4.3: The �gures show the approximated log-likelihood as a function of wall-clock time. We refer to these
curves as training curves. Each plot shows the training curves for di�erent active set sizes (indicated in the
legend). The SAS decoder (top row) and the Bayesian SAS decoder (bottom row) were trained on Mnist (left
column), FashionMnist (centre column), and Cifar-10 (right column). The �gure is slightly adapted from
Moreno-Muñoz, Feldager, and Hauberg [2].

Figure 4.4: Two examples of
learnt representation of Fash-
ionMnist for the SAS decoder
(left) and the Bayesian SAS
decoder (right). The �gure is
slightly adapted from Moreno-
Muñoz, Feldager, and Hauberg
[2].

ingly, and we adapt both the GPLVM and the Bayesian GPLVM to
enable a fairer comparison.

Chapter 2 showed that the initialisation a�ects the learnt representa-
tion for GP models. In amortised models, the initialisation of the latent
variables is subject to the random initialisation. This initialisation is
not directly comparable to either PCA or isomap initialisations. For
this reason, we amortise both the GPLVM and the Bayesian GPLVM.
The neural network encoding the latent variables in the GPLVM has
the same architecture as the one for the SAS decoder(section 4.3.1).
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4.5. Results

<latexit sha1_base64="w35J0XWBgfKA1IcFkwAVFVn5m/U=">AAACB3icbVDLSgNBEJyNrxhfUY+CDAbBU9iVoB6DXjxGMQ9IljA76SRDZmeXmV4xLLl58Ve8eFDEq7/gzb9x8jhoYkFDUdVNd1cQS2HQdb+dzNLyyupadj23sbm1vZPf3auZKNEcqjySkW4EzIAUCqooUEIj1sDCQEI9GFyN/fo9aCMidYfDGPyQ9ZToCs7QSu38YQvhAdPbRKEIgY5ocyr07QIz8tv5glt0J6CLxJuRApmh0s5/tToRT0JQyCUzpum5Mfop0yi4hFGulRiIGR+wHjQtVSwE46eTP0b02Cod2o20LYV0ov6eSFlozDAMbGfIsG/mvbH4n9dMsHvhp0LFCYLi00XdRFKM6DgU2hEaOMqhJYxrYW+lvM8042ijy9kQvPmXF0nttOidFUs3pUL5chZHlhyQI3JCPHJOyuSaVEiVcPJInskreXOenBfn3fmYtmac2cw++QPn8wceeZof</latexit>

Runtime [hours]
<latexit sha1_base64="w35J0XWBgfKA1IcFkwAVFVn5m/U=">AAACB3icbVDLSgNBEJyNrxhfUY+CDAbBU9iVoB6DXjxGMQ9IljA76SRDZmeXmV4xLLl58Ve8eFDEq7/gzb9x8jhoYkFDUdVNd1cQS2HQdb+dzNLyyupadj23sbm1vZPf3auZKNEcqjySkW4EzIAUCqooUEIj1sDCQEI9GFyN/fo9aCMidYfDGPyQ9ZToCs7QSu38YQvhAdPbRKEIgY5ocyr07QIz8tv5glt0J6CLxJuRApmh0s5/tToRT0JQyCUzpum5Mfop0yi4hFGulRiIGR+wHjQtVSwE46eTP0b02Cod2o20LYV0ov6eSFlozDAMbGfIsG/mvbH4n9dMsHvhp0LFCYLi00XdRFKM6DgU2hEaOMqhJYxrYW+lvM8042ijy9kQvPmXF0nttOidFUs3pUL5chZHlhyQI3JCPHJOyuSaVEiVcPJInskreXOenBfn3fmYtmac2cw++QPn8wceeZof</latexit>

Runtime [hours]

<latexit sha1_base64="CmVfRk41dSo3y5OLIgDt6P9Qjv4=">AAACA3icbVBNS8NAEN3Ur1q/ot70slgED1ISKepFKAriRWjBfkAbyma7bZduNmF3IpZQ8OJf8eJBEa/+CW/+G7dtDtr6YODx3gwz8/xIcA2O821lFhaXlleyq7m19Y3NLXt7p6bDWFFWpaEIVcMnmgkuWRU4CNaIFCOBL1jdH1yN/fo9U5qH8g6GEfMC0pO8yykBI7XtvRawB9A0uSa6b5RbaXaOjnHloti2807BmQDPEzcleZSi3La/Wp2QxgGTQAXRuuk6EXgJUcCpYKNcK9YsInRAeqxpqCQB014y+WGED43Swd1QmZKAJ+rviYQEWg8D33QGBPp61huL/3nNGLrnXsJlFAOTdLqoGwsMIR4HgjtcMQpiaAihiptbMe0TRSiY2HImBHf25XlSOym4p4VipZgvXaZxZNE+OkBHyEVnqIRuUBlVEUWP6Bm9ojfryXqx3q2PaWvGSmd20R9Ynz+t05eI</latexit>

FashionMnist, Q = 4

<latexit sha1_base64="L3i0guG+Jga5jffUe/dFzxGocL4=">AAACA3icbVBNS8NAEN34WetX1JteFovgQUqiRb0IRUG8CC3YD2hD2Wy37dLNJuxOxBIKXvwrXjwo4tU/4c1/47bNQVsfDDzem2Fmnh8JrsFxvq25+YXFpeXMSnZ1bX1j097aruowVpRVaChCVfeJZoJLVgEOgtUjxUjgC1bz+1cjv3bPlOahvINBxLyAdCXvcErASC17twnsATRNronuGeVWmp3DI1y+OGnZOSfvjIFniZuSHEpRatlfzXZI44BJoIJo3XCdCLyEKOBUsGG2GWsWEdonXdYwVJKAaS8Z/zDEB0Zp406oTEnAY/X3REICrQeBbzoDAj097Y3E/7xGDJ1zL+EyioFJOlnUiQWGEI8CwW2uGAUxMIRQxc2tmPaIIhRMbFkTgjv98iypHufd03yhXMgVL9M4MmgP7aND5KIzVEQ3qIQqiKJH9Ixe0Zv1ZL1Y79bHpHXOSmd20B9Ynz+sT5eH</latexit>

FashionMnist, Q = 3

<latexit sha1_base64="sV/uPgQXldsDeC19WXMH1C0aTCE=">AAACAXicbVDLSsNAFJ34rPUVdSO4GSyCq5JIUZdFNy5cVLAPaEKYTCft0MmDmRtpCXHjr7hxoYhb/8Kdf+O0zUJbD1w4nHMv997jJ4IrsKxvY2l5ZXVtvbRR3tza3tk19/ZbKk4lZU0ai1h2fKKY4BFrAgfBOolkJPQFa/vD64nffmBS8Ti6h3HC3JD0Ix5wSkBLnnmInQGB7Db3MgfYCDKSJDIe5blnVqyqNQVeJHZBKqhAwzO/nF5M05BFQAVRqmtbCbgZkcCpYHnZSRVLCB2SPutqGpGQKTebfpDjE630cBBLXRHgqfp7IiOhUuPQ150hgYGa9ybif143heDSzXiUpMAiOlsUpAJDjCdx4B6XjIIYa0Ko5PpWTAdEEgo6tLIOwZ5/eZG0zqr2ebV2V6vUr4o4SugIHaNTZKMLVEc3qIGaiKJH9Ixe0ZvxZLwY78bHrHXJKGYO0B8Ynz+el5er</latexit> L̂
a
p
p
ro

x

<latexit sha1_base64="sV/uPgQXldsDeC19WXMH1C0aTCE=">AAACAXicbVDLSsNAFJ34rPUVdSO4GSyCq5JIUZdFNy5cVLAPaEKYTCft0MmDmRtpCXHjr7hxoYhb/8Kdf+O0zUJbD1w4nHMv997jJ4IrsKxvY2l5ZXVtvbRR3tza3tk19/ZbKk4lZU0ai1h2fKKY4BFrAgfBOolkJPQFa/vD64nffmBS8Ti6h3HC3JD0Ix5wSkBLnnmInQGB7Db3MgfYCDKSJDIe5blnVqyqNQVeJHZBKqhAwzO/nF5M05BFQAVRqmtbCbgZkcCpYHnZSRVLCB2SPutqGpGQKTebfpDjE630cBBLXRHgqfp7IiOhUuPQ150hgYGa9ybif143heDSzXiUpMAiOlsUpAJDjCdx4B6XjIIYa0Ko5PpWTAdEEgo6tLIOwZ5/eZG0zqr2ebV2V6vUr4o4SugIHaNTZKMLVEc3qIGaiKJH9Ixe0ZvxZLwY78bHrHXJKGYO0B8Ynz+el5er</latexit> L̂
a
p
p
ro

x

<latexit sha1_base64="sV/uPgQXldsDeC19WXMH1C0aTCE=">AAACAXicbVDLSsNAFJ34rPUVdSO4GSyCq5JIUZdFNy5cVLAPaEKYTCft0MmDmRtpCXHjr7hxoYhb/8Kdf+O0zUJbD1w4nHMv997jJ4IrsKxvY2l5ZXVtvbRR3tza3tk19/ZbKk4lZU0ai1h2fKKY4BFrAgfBOolkJPQFa/vD64nffmBS8Ti6h3HC3JD0Ix5wSkBLnnmInQGB7Db3MgfYCDKSJDIe5blnVqyqNQVeJHZBKqhAwzO/nF5M05BFQAVRqmtbCbgZkcCpYHnZSRVLCB2SPutqGpGQKTebfpDjE630cBBLXRHgqfp7IiOhUuPQ150hgYGa9ybif143heDSzXiUpMAiOlsUpAJDjCdx4B6XjIIYa0Ko5PpWTAdEEgo6tLIOwZ5/eZG0zqr2ebV2V6vUr4o4SugIHaNTZKMLVEc3qIGaiKJH9Ixe0ZvxZLwY78bHrHXJKGYO0B8Ynz+el5er</latexit> L̂
a
p
p
ro

x

<latexit sha1_base64="nrxudSAKXKZTWW9GazdGDWlcKKw=">AAAB/HicbVBNS8NAEN34WetXtEcvi0XwICXRol6EohcvQgv2A9pQNttNu3SzCbsTsYT6V7x4UMSrP8Sb/8Ztm4O2Phh4vDfDzDw/FlyD43xbS8srq2vruY385tb2zq69t9/QUaIoq9NIRKrlE80El6wOHARrxYqR0Bes6Q9vJn7zgSnNI3kPo5h5IelLHnBKwEhdu9AB9giapnfSLBuf4NrVWdcuOiVnCrxI3IwUUYZq1/7q9CKahEwCFUTrtuvE4KVEAaeCjfOdRLOY0CHps7ahkoRMe+n0+DE+MkoPB5EyJQFP1d8TKQm1HoW+6QwJDPS8NxH/89oJBJdeymWcAJN0tihIBIYIT5LAPa4YBTEyhFDFza2YDogiFExeeROCO//yImmcltzzUrlWLlauszhy6AAdomPkogtUQbeoiuqIohF6Rq/ozXqyXqx362PWumRlMwX0B9bnDzIllHk=</latexit>

Mnist, Q = 3

<latexit sha1_base64="RWDBbjmxKW6AiLphT6IBeGBbZVI=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCBymJFPUiFL14EVqwH9CGstlu26WbTdidiCHUv+LFgyJe/SHe/Ddu2xy09cHA470ZZub5keAaHOfbyq2srq1v5DcLW9s7u3v2/kFTh7GirEFDEaq2TzQTXLIGcBCsHSlGAl+wlj++mfqtB6Y0D+U9JBHzAjKUfMApASP17GIX2CNomt5Js2xyiutXlZ5dcsrODHiZuBkpoQy1nv3V7Yc0DpgEKojWHdeJwEuJAk4FmxS6sWYRoWMyZB1DJQmY9tLZ8RN8bJQ+HoTKlAQ8U39PpCTQOgl80xkQGOlFbyr+53ViGFx6KZdRDEzS+aJBLDCEeJoE7nPFKIjEEEIVN7diOiKKUDB5FUwI7uLLy6R5VnbPy5V6pVS9zuLIo0N0hE6Qiy5QFd2iGmogihL0jF7Rm/VkvVjv1se8NWdlM0X0B9bnDzOplHo=</latexit>

Mnist, Q = 4

<latexit sha1_base64="sV/uPgQXldsDeC19WXMH1C0aTCE=">AAACAXicbVDLSsNAFJ34rPUVdSO4GSyCq5JIUZdFNy5cVLAPaEKYTCft0MmDmRtpCXHjr7hxoYhb/8Kdf+O0zUJbD1w4nHMv997jJ4IrsKxvY2l5ZXVtvbRR3tza3tk19/ZbKk4lZU0ai1h2fKKY4BFrAgfBOolkJPQFa/vD64nffmBS8Ti6h3HC3JD0Ix5wSkBLnnmInQGB7Db3MgfYCDKSJDIe5blnVqyqNQVeJHZBKqhAwzO/nF5M05BFQAVRqmtbCbgZkcCpYHnZSRVLCB2SPutqGpGQKTebfpDjE630cBBLXRHgqfp7IiOhUuPQ150hgYGa9ybif143heDSzXiUpMAiOlsUpAJDjCdx4B6XjIIYa0Ko5PpWTAdEEgo6tLIOwZ5/eZG0zqr2ebV2V6vUr4o4SugIHaNTZKMLVEc3qIGaiKJH9Ixe0ZvxZLwY78bHrHXJKGYO0B8Ynz+el5er</latexit> L̂
a
p
p
ro

x

Figure 4.5: Training curves for
di�erent active set sizes A in
three latent dimensions (top
row) and four latent dimensions
(bottom row) for Mnist (�rst
column) and Fashion Mnist
(second column). The �gure is
slightly adapted from Moreno-
Muñoz, Feldager, and Hauberg
[2].

The neural networks encoding the means and variances of the latent
variables in the Bayesian GPLVM have the same architectures as the
encoders for the Bayesian SAS decoder (section 4.4.1). We also use
stochastic variational inference (see section 3.4) and implement these
models in pyro [88].

Finally, the VAE employs the same encoder architectures as the en-
coders for the Bayesian SAS decoder. The decoder is a linear, fully
connected layer with H = 400 hidden units д1 : RQ → RH , a SoftPlus
activation function, another linear, fully connected layerд2 : RH → RD
and then a sigmoid activation.

Generally, for a fair comparison, we make several modelling choices:
All models use Gaussian likelihood (though this is not optimal for
images), and the four GP models all use the EQ kernel (with initial
the initial kernel variance θ = 0.5, initial length scale l = 0.1, and
initial noise variance σ 2

n = 0.5), and we only consider latent spaces
of dimensionality two unless otherwise stated. All �ve models are
optimised with respect to their respective approximation of the log
marginal likelihood.
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Figure 4.6: Learnt Representations for the SAS decoder, the Bayesian SAS decoder, the GPLVM, the Bayesian
GPLVM, and the VAE on Mnist (top row) and FashionMnist (bottom row).

Learnt Representations

Figure 4.7: Test accuracy of
downstream classi�er of SAS
decoder as a function of the ac-
tive set size on FashionMnist.

The SAS models can lead to structured representations (�gure 4.4).
The choice of datasets is convenient because the images are labelled.
Then we can de�ne structure in the latent space as a representation
that clusters images according to the class label. Representative learnt
representations of Mnist and FashionMnist are shown in �gure 4.6.

One method to quantify structure is to de�ne a downstream classi�er,
so we de�ned a nearest neighbour classi�er [51] on the latent variables
from the encoded test set. Figure 4.7 shows the classi�er’s accuracy
on the test data as a function of the active set size; it is monotonic
and �attens, suggesting that approximately |A| ∼ 150 is su�cient for
capturing structure. Table 4.2 shows the accuracies in the Bayesian
SAS decoder, the Bayesian GPLVM and the VAE. The classi�er trained
on the test data encoded using the Bayesian SAS decoder obtained a
higher classi�cation accuracy than the Bayesian GPLVM and the VAE.

Table 4.2: Classi�cation accuracy± standard error of the mean
on the encoded test set. Larger is better. The table is slightly
adapted from Moreno-Muñoz, Feldager, and Hauberg [2].

Dataset
Model Mnist FashionMnist
Bayesian SAS decoder 0.63 ± 0.022 0.63 ± 0.020
Bayesian GPLVM 0.18 ± 0.033 0.24 ± 0.043
VAE 0.54 ± 0.026 0.58 ± 0.008
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Runtimes

The training curves for the Bayesian GPLVM and the Bayesian SAS
decoder for di�erent active sets sizes are shown in �gure 4.8 (�rst
two panes from the left). These show the runtime and convergence of
the SAS approximation for comparable A (in Bayesian SAS decoder)
and several inducing points (in Bayesian GPLVM). Qualitatively, we
observe the same pattern: Smaller A leads (number of inducing points)
to shorter convergence times. All the SAS models in �gure 4.8 converge
within two hours.

The right pane in �gure 4.8 shows a smaller experiment in which SAS
decoders were trained on a subset of Mnist, N = 40, 000 samples. This
enabled evaluating the true marginal likelihood, p(y |z). First, we see
that the SAS decoder indeed seems to be a lower bound, and second,
the SAS model approximates the marginal likelihood well in �gure 4.8.
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Bayesian GPLVM

Figure 4.8: Left: Training curves for the Bayesian SAS decoder with di�erent active sets and batch sizes. Centre:
Training curves for the Bayesian GPLVM with di�erent numbers of inducing points and batch sizes. Right:
Training curves for Bayesian SAS decoder. The exact log-marginal likelihood is shown in black. All models
were trained on 40,000 samples Mnist and repeated �ve times per batch size and active set size/number of
inducing points. The �gure is slightly adapted from Moreno-Muñoz, Feldager, and Hauberg [2].

4.6 discussion

Training GPs with inducing points is not straightforward (section 3.4.1)
and unsupervised training often proves more challenging. We revis-
ited active sets from a stochastic perspective and developed the SAS
decoder and the Bayesian SAS decoder as an alternative to current
methods. Our experiment illustrates the performance of our models
compared to relevant baselines on image data. Here, the SAS models
learn more structured representations (table 4.2) compared to both
inducing points methods and, surprisingly, to a comparable VAE. The
latter is surprising as Gaussian process representation generally cannot
compete with VAEs for large datasets.
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Chapter 4. Stochastic Active Sets for Gaussian Process Decoders

The SAS decoders are scalable training schemes for Gaussian processes
with several bene�ts. First, the convergence of the Bayesian SAS de-
coder is on par or faster than its baseline. Second, the experiments
presented have been done in 64-bit precision to enable a fair compari-
son of runtimes. Still, we observe that the SAS models run stable in
32-bit numerical precision with less jitter, unlike the baseline counter-
parts. Generally, we �nd that training SAS models require surprisingly
few tricks (e.g. less tuning of initialisation and parameters) compared
to other GP models. This robustness is partly due to the amortisation
networks that the SAS models use. Appendix D contains an ablation
study of the SAS models with and without amortisation.

The SAS models do not provide an approximated predictive distribu-
tion. Though SAS speeds up training, prediction is still O(N 3). The
Bayesian GPLVM provides scalable predictive distributions and theo-
retical guarantees (section 3.4) but is hard to train. We consider SAS
a scalable training scheme (due to the lack of predictive distribution)
that might be used for pre-training the Bayesian GPLVM.

Fixing the active set size introduces a bias to the approximation of
the marginal likelihood. Fong and Holmes [79] suggests an unbiased
estimator by sampling A, but this is more expensive, and the batch size
limits the active set size. This bias is not concerning as we observe
the training curves for SAS approximating the lower bound well. In
�gure 4.3 (right pane), the training curves for A ∼ B seem to converge
to the true marginal likelihood, which is consistent with the �ndings
of Chen et al. [89].

This work focuses on the stochastic active sets approximation in the un-
supervised setting, but the idea is easy to generalise to the supervised
setting. Extending to classi�cation might prove more challenging. The
stochastic active sets approximation relies on the Gaussian likelihood.
This limits the type of data the model can use, e.g. it is not suitable for
discrete targets. It would require a new derivation to implement the
same idea.

This ends the discussion of the results from the original paper. In the
next section, we consider SAS from the perspective of geometry.

4.6.1 Symmetry Breaking in the SAS Decoder

We discussed the problem of symmetry breaking in chapter 2 and have
now developed the SAS decoder, which we observe to stabilise training.
An obvious question is whether the amortisation could counter the
symmetry breaking. Interestingly, it does the opposite: It seems that
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the amortisation induces symmetry breaking, and it has not been
possible to �nd a model in which the symmetry is preserved.

This may seem surprising as Lawrence and Quiñonero-Candela [41]
�x breaks in the latent space using a back constraint. The amorti-
sation requires more observations due to the training of the neural
network, and the symmetry measure (equation 2.4) does not account
for varying data points and consequently increases density, so this
may not be surprising. With many observations, the median distance
becomes relatively small; therefore, any more considerable distances
are classi�ed as a symmetry break. Our symmetry estimator did not
account for that, so the result may not be directly comparable.

Figure 4.9: The SAS decoder
consistently captures the re�ec-
tion symmetry in a COIL object.

An alternative explanation is that the SAS decoder discovers the dou-
ble loop, leading to symmetry breaking. Due to the encoder, it is
initialised as noise but quickly recovers the double loop. Once the
double loop is found, the model cannot recover. This is consistent
with what we observed for GPLVM (chapter 2), where we observed a
clear correlation between the prevalence of symmetry breaking and
re�ection symmetries within the COIL object. It remains unclear if
the SAS model captures this additional symmetry or exhibits a strong
tendency to clustering.

We set out to �nd a model that scales and learns structured represen-
tation. To achieve this, we developed the SAS decoders, but the SAS
models lack a scalable predictive distribution. For this reason, we take
the best of both worlds and use SAS as a pre-trained model with which
we can initialise a GPLVM to continue into geometry.
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5R I EMANN I AN GEOMETRY

Figure 5.1: Observations (red)
with a Euclidean (black) and
Riemannian (light red) dis-
tances.

Manifold learning relies on the manifold hypothesis which states that
data live on a noisy, low-dimensional manifold embedded in a high-
dimensional space. There are numerous ways of recovering a manifold,
e.g. the dimensionality reduction models, we considered in chapter 2
but non-probabilistic models like isomap [7] and t-SNE [39] recover
only a representation of observed data, meaning that the manifold is
only well de�ned where there are data. On the other hand, probabilistic
models attempt to recover the distribution of data which is de�ned
away from data. This is one of the arduous tasks in unsupervised
learning [51].

Recovering the generating distribution can have several purposes but
here we aim to learn from the latent space. Assuming that a manifold
actually exists, we should consider what meaningful distances are.
We argue that distances are more meaningful when computed on the
manifold. In this thesis, we assume that the manifolds are Riemannian
and �gure 5.1 shows an example of two distances computed on a dataset
and only one respects the manifold, namely the Riemannian distance.
By tackling distances on Riemannian manifolds, we are moving from
topology (chapter 2) to geometry (this chapter).

Figure 5.2: A torus, a sphere and an arbitrary, smooth surface are examples of Riemannian manifolds. The
parametrisations of the torus and the sphere are known and the latter must be learnt.

Computing distances on a Riemannian manifold requires a Rieman-
nian metric which can either be parametrised or not parametrised.
Figure 5.2 shows three examples of smooth manifolds; the torus, the
sphere and an arbitrary manifold. The �rst two are examples of
parametrised manifolds where the metric is known. The latter is an
example of a manifold where the parametrisation is not known so the
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metric must be learnt. We consider these types of manifolds and this
chapter introduces geometry context of manifold learning.

This chapter is based on a mixture of the works of Schutz [90] who
introduces di�erential geometry for general relativity and Pressley [91]
who introduces classical di�erential geometry in three dimensions and
Pennec [92] who does statistics on Riemannian manifolds. The sources
describe Riemannian geometry which provides tools for describing
curved surfaces using tangent spaces (section 5.2.1), metric tensors
(section 5.2.2), and geodesics (section 5.3), which are based on tensor
calculus (section 5.1). This enables computing geodesic distances on
manifolds.

5.1 tensor calculus

Figure 5.3: Components (red) of
a contravariant vector (black).

At the heart of Riemannian geometry lies tensors. There are multiple
ways of representing tensors: Like matrix notation (which we assume
the reader is familiar with), Einstein notation is a compact way of writ-
ing multiple equations simultaneously and here, we brie�y introduce
Einstein notation [90] using an example.

The vectorV in �gure 5.3 can be expressed in terms of its contravariant
components, V 1 and V 2, and its basis vectors, e1 and e2 as V = V 1e1 +
V 2e2. This is the "usual" description of vectors which is contravariant
because the components ofV transform contrary to the basis, e.g. they
decrease if the lengths of the basis vectors are increased.

Covectors can be thought of as linear maps from a vector space to its
�eld of scalars. This is harder to visualise but we can think of covectors
as a series of surfaces where the density of the surfaces corresponds
to the magnitude of the covector (�gure 5.4 left). The larger spacing,
the smaller magnitude. The gradient of a function is a covector which
means that ∂

∂x i
≡ ∂i . We write covectors with a subscript. The product

of a covector and a vector can be illustrated as the number of surfaces
pierced by the vector (�gure 5.4 middle and right). The smaller the
covector, the smaller product as the vector pierces fewer surfaces.

Einstein notation is a representation of tensors that uses sub- and
superscripts to distinguish algebraic objects, e.g. contravectors (or
simply vectors) and covectors. The contra- and covariant vectors
refer to how the vector transform and it should be clear that V i , Vi ,
generally. These concepts let us de�ne tensors.

De�nition 5.1 (Tensor) An
(M
N

)
tensor,T is a linear function ofM cov-

ectors and N vectors into scalars.
T ENSOR
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Figure 5.4: Left: A covector
illustrated as a density of
surfaces. Middle: The product
of a covector and a vector
illustrated as the number of
surfaces pierced by the vector.
Right: The product of the vec-
tor and a covector is smaller if
the covector is smaller.

A tensor Tp
r is a (p, r ) tensor or a tensor of rank (p, r ) which distin-

guishes between co- and contravariant indices. We can use this to
generalise for tensors of higher rank and de�ne tensors as a collection
of vectors and covectors that combine using a linear map. This de�ni-
tion of tensors is useful when considering the metric (section 5.2.2).

With the de�nition of tensor, we can outline a set of simple rules for
Einstein notation.

1. Free indices (indices that only occur once per term) can take any
value, and each value corresponds to an equation.

2. An index that occurs both as a subscript and as a superscript
within a term implies summation though the sum is not stated
explicitly. In the example above, this means V = V 1e1 +V

2e2 =
V iei .

3. Such a repeated index is also referred to as a dummy index and
can be renamed for convenience. The vector V can be written
as V = V iei = V

jej .

In the following, we switch notation as convenient.

5.2 riemannian manifolds

This section de�nes the tangent space and the metric (so we can de�ne
Riemannian manifolds), the covariant derivative ∇ (which provides
a way of smoothly connecting tangent spaces) and the Christo�el
symbols Γi

jk
(which account for the corresponding change in basis

vectors).
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5.2.1 Tangent Spaces

Tangent spaces are tangent to the manifold and spanned by tangent
vectors.

De�nition 5.2 (Tangent Vector) The tangent space is aD-dimensional,
linear subspace that touches the manifold M tangentially at a point
x ∈ M. The tangent space TxM of the manifoldM at the point x is the
set of all tangent vectors toM at x .

Figure 5.5: Illustration of the
tangent space (grey) as a Eu-
clidean space tangential to the
manifold (red).

Figure 5.5 illustrates a �at tangent space on a two-dimensional manifold
embedded in three dimensions. Notice, the tangent space has the same
dimensionality as the manifold. Tangent spaces provide local Euclidean
representations of curved surfaces where the usual (i.e. Euclidean)
calculus applies and on which we can de�ne a metric. We can obtain
the (covariant) basis vectors of a tangent space at any point x on the
manifold as the derivative of the manifold at x .

5.2.2 The Metric Tensor

Figure 5.6: Illustration of the
Riemannian metric tensor as an
ellipsis that is larger away from
data and smaller closer to data.

The metric tensor is essential in Riemannian geometry as it lets us
de�ne geometric quantities like length, volumes, angles, and curvature.
We can interpret the metric as a collection of basis vectors. These basis
vectors are tangent vectors that span a tangent space and the metric
is the inner product of the tangent vectors in the tangent space.

De�nition 5.3 (Riemannian metric) A Riemannian metric, дij , at a
point x on a smooth manifoldM is a smoothly varying inner product of
two vectors in the tangent space TxM ,

дij = 〈·, ·〉x

where the Riemannian metric, дij , is a symmetric and positive de�nite
(0,2)-tensor. This metric is sometimes called a pull-back metric.

The volume element of the metric,
√

detдi j , can be interpreted as how
much volume a unit sphere corresponds to in the embedding space. It
can be visualised accordingly (�gure 5.6), where the size of the ellipsoid
can be interpreted as the size of the metric tensor.

In Einstein notation, we can use the metric tensor for raising and
lowering indices, дklдlm = δmk , which is called contraction with the
metric. Here, the covariant metricдkl is the inverse of the contravariant
дlm but note, that this does not hold in general, i.e. T −1

ij , T
ij .
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We stress that the metric tensor is the foundation of Riemannian ge-
ometry. One of the reasons for its importance is that it encompasses
the manifold; knowing the metric is knowing the manifold. To high-
light its importance, we take a step back: High-dimensional data is
represented in Euclidean space, RD and the manifold hypothesis states
that there exists a low-dimensional structure that captures data, i.e. a
manifold from which data are assumed sampled. The Euclidean space
is an extrinsic representation in which observations are not inherently
constrained to the manifold. Revisiting the example of Earth from
chapter 1, Earth exists in three spatial dimensions but world maps (its
representations) are generally two-dimensional. Mapping a sphere
to a plane induces an unavoidable distortion but this is due to the
extrinsic description. Instead, to avoid this distortion of e.g. lengths,
we can use the metric which leads to intrinsic representations. Figure 5.7: A manifold (red) de-

scribed both with extrinsic co-
ordinates (y1,y2,y3) and intrin-
sic coordinates x1, x2 at a given
point in terms of basis vectors
e1, e2.

Intrinsic representations are convenient because they give rise to in-
variant quantities or simply invariances (quantities that do not change
under transformation). We de�ne intrinsic quantities as quantities
that can be expressed solely in terms of the metric. This allows for an
invariant characterisation of the manifold independent of the embed-
ding space. In the context of machine learning, intrinsic quantities are
invariant under reparametrisations of the latent space, (see section 5.4.

The arc lengths on manifolds are an example of such an invariant. Later,
we discuss how to compute arc lengths or geodesics (section 5.3) but
�rst, we consider a connection which connects tangent spaces. As the
manifold (often) curves, the tangent plane and the metric tensor vary
smoothly. We have not yet addressed how they change smoothly: The
tangent spaces change via the Levi-Civita connection which connects
the tangent spaces through the covariant derivative.

5.2.3 The Levi-Civita Connection

Figure 5.8: An a�ne connec-
tion can be viewed as a way
of smoothly connecting tangent
spaces.

This section introduces the connection that ensures smoothly varying
tangent spaces (�gure 5.8). The fundamental theorem of Riemannian
Geometry [93] ensures that there exists a unique connection, the Levi-
Civita connection, for which the metric’s torsion is zero. The torsion,
T (X ,Y ), is given by

T (X ,Y ) = ∇XY − ∇YX − [X ,Y ],

where X ,Y are vector �elds and [X ,Y ] is the Lie bracket.

De�nition 5.4 (The Levi-Civita Connection) An a�ne connection
∇ is called a Levi-Civita connection if
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Chapter 5. Riemannian Geometry

• It preserves the metric, i.e. ∇д = 0.
• It is torsion-free, i.e. T (X ,Y ) = 0.

The �rst condition is the metric compatability condition and the second
is called the symmetry condition.

In our case, the Levi-Civita connection is a covariant derivative which
describes the smooth change in tangent spaces. To understand how
this works, we �rst consider the Euclidean setting, where the basis
vectors do not change when di�erentiating and hence we usually do
not write explicitly. This is not true on Riemannian manifolds where
we explicitly have to handle the change in bases. The derivative of V
contains both the derivatives of the components and the derivative of
the basis,

∂V

∂xk
=
∂

∂xk
(V iei) =

∂V i

∂xk
ei +V

i ∂ei

∂xk
. (5.1)

The term covariant derivative is often used for the Levi-Civita connec-
tion. The components of this connection with respect to a system of
local coordinates are called Christo�el symbols. In the local Euclidean
basis, we de�ne the Christo�el symbol as the magnitude of the change
in the basis vector.

∂ei

∂xk
= Γlikel (5.2)CHR I STOF F E L SYMBOLS

Euclidean basis

The Γl
ik

gives the lth component of ∂ēi
∂xk

. i is the index of the basis vector
that is being di�erentiated, k is the coordinate (or latent dimension),
and this derivative gives the lth component of the resulting vector. It
can be shown that if the metric is torsion-free, then the Christo�el
symbols are symmetric in the two lower indices, Γl

ik
= Γl

ki
.

On a technical note, this is the Christo�el symbol of the second kind–
which is not a tensor. The Christo�el symbol of the �rst kind [90]
exists but this is not in the scope of this thesis. In the following,
we refer to the Christo�el symbol of the second kind simply as the
Christo�el symbol.

Revisiting the derivative of the vector, V = V iei ,

∂V

∂xk
=
∂V i

∂xk
ei +V

i ∂ei

∂xk
(5.3)

=
∂V l

∂xk
· el +V

iΓlik · el (5.4)

= (∂kV
l + ΓlikV

i) · el (5.5)
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5.2. Riemannian Manifolds

where the parenthesis is the covariant derivative, ∇, lets us de�ne

∇kV
i =
∂V i

∂xk
+ ΓiklV

l . (5.6)

From this, we see that the covariant derivative consists of the usual
derivative (the �rst term) and a correction term (second term) which
include the Christo�el symbols.

5.2.4 Christo�el symbols

We obtain an intrinsic description of the Christo�el symbols (and there-
fore the covariant derivative) by expressing it in terms of the metric
and its inverse, дil . We de�ned the Christo�el symbols in the Euclidean
basis to motivate the covariant derivative, but we can generalise this
to Riemannian manifolds: By using the fact that the metric is torsion-
free, we can express the Christo�el symbol intrinsically in terms of the
metric [90]. Take the outer product the de�nition of the Christo�el
symbols (equation 6.10) with a basis vector, el ,

Γkijek · el = (∂jei) · el (5.7)

Using the de�nition of the metric, дij = ei · e j , we get

Γkijдkl = ∂j(ei · el ) − (∂jel ) · ei (5.8)
= ∂jдil − Γ

k
l jek · ei (5.9)

= ∂jдil − Γ
k
l jдki (5.10)

After rearranging we are left with

∂jдil = Γkijдkl + Γkl jдki (5.11)

Here, k is a dummy index (it is being summed over) and i, j,k are all
free indices. We could have started with any permutation of the indices
so cyclic permutation of the indices leads to two more equations.

∂lдji = Γkjlдki + Γkilдkj (5.12)

∂iдl j = Γkliдkj + Γkjiдkl (5.13)

We can combine these equations in a convenient way: We add equa-
tion 5.11 and equation 5.13 and subtract equation 5.12.

∂jдil +∂iдl j − ∂lдji (5.14)
= Γkijдkl + Γkl jдki + Γkliдkj + Γkjiдkl − Γ

k
jlдki − Γ

k
ilдkj (5.15)

= 2Γkijдkl (5.16)
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Chapter 5. Riemannian Geometry

In the last step, we have exploited the symmetry in the lower indices
in the Christo�el symbol, Γkij = Γkji , to rearrange the indices, to collect
and cancel terms. To obtain an expression for the Christo�el symbol,
we use the de�nition of the metric дijдjk = δ ik . We get

2Γkijдklдml = дml (∂jдil + ∂iдl j − ∂lдji) (5.17)

Γkijδ
m
k =

1
2д

ml (∂jдil + ∂iдl j − ∂lдji) (5.18)

Γmij =
1
2д

ml (∂jдil + ∂iдl j − ∂lдji) (5.19)

and we arrived at an intrinsic expression for the Christo�el symbols
as they are expressed in terms of the metric tensor and its inverse. We
will use this de�nition of the Christo�el symbol when we derive the
geodesic equation (section 5.3).

5.3 geodesics

Figure 5.9: Illustration of the
tangent space (grey) as a Eu-
clidean space tangential to the
manifold (red) and γ (t) is a
parametrised curve.

We have de�ned Riemannian manifolds and this section introduces
geodesics which allows for computing lengths and energies of curves
and derives the geodesic equation which provides a mapping from the
tangent space to the latent space. A geodesic is the notion of straight
lines generalised to non-Euclidean spaces; the shortest path or the
straightest path, locally.

A distance on a manifold follows a curve. All geodesics are curves but
not all curves are geodesics.

De�nition 5.5 (Curve) A parametrised curve in RD is a map, γ (t) :
R→ RD for some t ∈ [α, β] with α = 0 and β = 1.

In metric spaces, a geodesic is a curve that minimises the length locally.
Computing lengths (or distances) on a manifold requires a distance
measure that takes curvature into account.

De�nition 5.6 (Geodesic) A curveγ (t) on a manifoldM is a geodesic
if Üγ is zero or orthogonal to the tangent space Tγ (t) at the point γ (t) for
all t and dot denotes di�erentiation with respect to t .

Geodesics can be found by solving the geodesic equation,

Üγ + Γijk Ûγ
j Ûγk = 0 (5.20)GEODES I C EQUAT ION

60



5.3. Geodesics

which is a second-order, ordinary di�erential equation. Appendix E
contains a derivation of the geodesic equation from the Euler-Lagrange
equations.

Figure 5.10: Illustration of the
exponential map which corre-
sponds to a shooting geodesic
and of log map which corre-
sponds to a map to tangent
space

With the geodesic equation, we can map from the tangent space to the
manifold. This is an initial value problem which can be solved with
an initial tangent vector (�gure 5.10). This is also called a shooting
geodesic. The logarithmic map is the inverse map and is often de�ned
as that; the inverse.

In the introduction (chapter 1), we motivated meaningful distances
with an example of �ying around the globe. The Earth is approximately
a sphere and on spheres, geodesics are great circles of which there are
in�nitely many on a 2-sphere. The plane follows a great circle and it
follows the great circles that have the shortest length. This makes it a
meaningful distance.

5.3.1 Length of a Curve

The example above links meaningful distances and lengths of geodesics
so we must be able to compute the lengths of geodesics. First, we brie�y
discuss lengths of curves in general and then we relate to manifold
learning.

We motivate the arc length of the curve γ in �gure 5.11 starting at
the point γ (α). The distance between two points, γ (t ′) and γ (t ′ + dt)
is ‖γ (t ′ + δt) − γ (t ′)‖2 and ‖ Ûγ ‖2 for δt → 0. The total length of the
curve is given by the sum of all the length elements,

Length[γ ] =
∫ t1

t0

‖ Ûγ (t)‖2 dt .

As mentioned in the introduction, we choose to measure the dis-
tance between latent points on the manifold embedded in observation
space: We de�ne the meaningful length of a curve Length[γ ] (where
γ lives in the latent space) as the length of γ mapped to the manifold,
Length[f (γ )] where f is the map, f : RQ → RD .

The length of the curve measured in observation space is given by

Length[f (γ )] =
∫ 1

0

∂ f (γ )∂t 
2

dt =
∫ 1

0

J
∂γ

∂t


2

dt (5.21)

assuming that t ∈ [0, 1] and where

J = Jij =
∂ fi
∂xj
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Chapter 5. Riemannian Geometry

Figure 5.11: Illustration of a
discretised curve where the
sum of the discrete, Euclidean
length elements approximates
the total length of the curve.
The arrow indicates the esti-
mated tangent vector at γ (t ′)
which becomes more accurate
as δt → 0.

is the Jacobian of the map, f .

5.3.2 Energy of a Curve

In practice, we are searching for the shortest geodesic and minimising
the length of a curve does not lead to unique geodesics and computa-
tionally, the norm can be challenging to optimise [4]. The energy of a
curve provides an alternative. Similarly to the length of a curve (see
section 5.3.1), the energy of a curve is de�ned as

Energy(f (γ )) =
∫ 1

0

∂ f (γ (t))∂t

2

2
dt =

∫ 1

0

J
∂γ (t)

∂t

2

2
dt (5.22)ENERGY OF A CURVE

Minimizing the length of a curve corresponds to minimizing the energy
of a curve [4] (using the Cauchy-Schwartz inequality).

argmin
γ

∫
‖ Ûγ (t)‖2 dt = argmin

γ

∫
‖ Ûγ (t)‖22 dt

We can now �nd geodesics by minimising the energy of the curve.

5.4 meaningful distances

Finally, we can discuss meaningful distances–or more meaningful
distances to be precise.

Consider a latent variable model, f : X → Y, where f is a non-
linear map from the latent space X to the observation space, Y. The
Euclidean distance between two latent points x1 and x2 is denoted
d(x1, x2). Now, consider a reparametrisation of this model, f̂ : X → Y,
where the latent space is reparametrised as x̂ = f̂ (x) and the mapping
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5.4. Meaningful Distances

as f̂ (x̂) = f (д−1(x̂)). The Euclidean distance in the reparametrised
model between two latent points x̂1 = д(x1) and x̂2 = д(x2) is d(x̂1, x̂2).

In general, these distances are not the same.

d(x1, x2) , d(x̂1, x̂2),

as д can be non-linear. This makes the Euclidean distance arbitrary.

Instead, we propose computing distances on a Riemannian manifold
as a more meaningful measure of distance. The length of a curve on
the manifold in the reparametrisation is

Length[ĉt ] =
∫ ∂t f̂ (ct )

2
dt (5.23)

=

∫ ∂t f (д−1(ĉt ))


2 dt (5.24)

=

∫ ∂t f (д−1(д(ct )))


2 dt (5.25)

=

∫
‖∂t f (ct )‖2 dt (5.26)

= Length[ct ] (5.27)

This shows that the lengths of the reparametrised curve are identical to
the length of the original curve, meaning that the distance is invariant
under reparametrisation of the latent space. For example, two well-
trained models learnt similar, yet di�erent latent representations and
the distances we measure on the manifold will be identical. We argue
that measuring the distance in observation space is more meaningful
as this is invariant to reparametrisations of the latent representation.
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6STOCHAST I C GEOMETRY

“ Geometry is the science of correct reasoning on incorrect
�gures.

—George Polya ”
This chapter contains mainly background on stochastic manifolds in
GPLVMs. We contribute a correction to the derivation of apprximate
Christo�el symbols originally done by Adams [3]. This correction was
done jointly with Alison Pouplin.

Figure 6.1: An illustration of
data distributed around a mean
manifold.

At this point, we have seen that four visualisation models fail to pre-
serve topology at an alarming rate which discouraged learning rep-
resentations that to a greater extent re�ect the geometry of data. We
deep-dived into GPLVM. and developed a candidate model for learn-
ing such representations. As we have already introduced elementary
Riemannian geometry (chapter 5), we are now almost ready to join
geometry and GPLVMs (next chapter) but �rst, we introduce deter-
ministic approximations of stochastic geometric objects that allow
for using Riemannian geometry. This chapter develops the stochastic
concepts needed to build a Riemannian GPLVM.

Figure 6.2: The statistical circle.

To understand why we take a stochastic approach, consider the mani-
fold hypothesis which states that data are sampled from an underlying
manifold. This means that data lie near the manifold as illustrated
by �gure 6.1. This implies that o� the manifold is where there is no
or little data. Topological data analysis (chapter 2) informs how to
learn topological features, e.g. holes in the case of the statistical circle
(�gure 6.2). For a model to respect geometry, distances should be
measured along the circle, and we saw how to do that using geodesics
in chapter 5. So geodesics should stay near the manifold and thus near
data.

As a motivating example, �gure 6.3 shows geodesics in three learnt
manifolds–two deterministic and a probabilistic. Only on the prob-
abilistic manifold do the geodesics stay close to data. Hauberg [11]
argues that it is key to estimate the manifold away from data. Deter-
ministic models generally estimate the manifold well near data but it
is more challenging away from data. This indicates that a probabilistic
model is a good choice because we can explicitly control the behaviour
away from data through the prior. This is one of the main motivations
for considering geometry in probabilistic models: Uncertainty can
play the role of topology [11, 12].
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Chapter 6. Stochastic Geometry

Figure 6.3: The �gure illustrates geodesics on three di�erent learnt manifolds. From the left, the �gure shows a
set of observations in black, geodesics in a Gaussian kernel ridge regression, geodesics in a Gaussian+linear,
and geodesics in Gaussian process regression. The coloured backgrounds show the estimated uncertainty. The
�gure is from the paper Only Bayes should learn a manifold by Hauberg [11], �gure 3.

Tosi et al. [10] were the �rst to consider geometry in the GPLVM (a
probabilistic models). They questioned the Euclidean distance measure
as the natural choice and developed a pull-back metric that re�ects
the data. From a manifold learning perspective, the GPLVM describes
a stochastic manifold: The mean of the GP describes a deterministic
manifold, the covariance provides uncertainty on this, and a single
sample also corresponds to a deterministic manifold.

When the space itself is stochastic, all geometric objects are also
stochastic. E.g., distances are computed between stochastic points
which are also stochastic. In practice, we do not have the mathemat-
ical tools to handle stochastic manifolds but we might exploit the
great tools for deterministic manifolds (chapter 5) by �nding suitable
deterministic approximations of stochastic manifolds.

6.1 stochastic manifolds

This section develops the geometric foundation for treating stochastic
manifolds as Riemannian manifolds. As we saw in the previous chapter,
a Riemannian manifold requires a Riemannian metric de�ned on a
tangent space.

Figure 6.4: Illustration of three
samples of tangent spaces.

This section derives the stochastic tangent space following Tosi et al.
[10]. We consider the Jacobian (which we looked at in the deterministic
setting in section 5.2.1) for GPLVM. In accordance with section 5.2.1,
we de�ne the tangent space as the Jacobian, J , of a Gaussian process,
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6.1. Stochastic Manifolds

f (·) ∼ GP(µ(·),k(·, ·)), with an element of the Jacobian given as

Jij = ∂j fi =
∂ fi
∂x j

where we di�erentiate the ith GP with respect to the jth latent di-
mension. Both f and its derivative are Gaussian processes. The dif-
ferentiability of the GP requires choosing a su�ciently di�erentiable
kernel. The resulting Jacobian J ∈ RQ×D and the columns of J are
independent and normally distributed. The prior distribution on J is
the derivative of the Gaussian process, and we assume it factorises
over the dimensions,

p(J |X , f ,σ ) =
D∏
d=1
N(0, ∂2k(·, ·)). (6.1)

To evaluate the metric at any point on a manifold, we require the
predictive distribution of J . The joint distribution of Y and J[

Y
J

]
|X , x∗ ∼ N

(
0,

[
cov(Y ,Y ) cov(Y , J )
cov(J ,Y ) cov(J , J )

] )
(6.2)

where the Jacobian is evaluated in x∗ which is a point on the manifold,
x∗ ∈ M.

The covariance of the joint distribution consists of four block matrices.
The covariance of training data, cov(Y ,Y ) is by de�nition cov(Y ,Y ) =
k(X ,X )+σ 2IN and we denote isKXX (absorbing the noise inK ). We also
know that cov(Y , J ) = cov(J ,Y )> which means we have to consider
two terms: cov(Y , J ) and cov(J , J ). Recall, the generative model, y =
f (X ) + ϵ , which lets us rewrite,

cov
(
f (X ) + ϵ,

∂ f (X )

∂x

)
= cov

(
f (X ),

∂ f (X )

∂x

)
+ cov

(
ϵ,
∂ f (X )

∂x

)
.

The noise corruption ϵ is a Gaussian, random variable with zero mean
and variances σ 2. The covariance can be computed by expectations,

cov
(
ϵ,
∂ f (X )

∂x

)
= E[ϵ f (X )] − E[ϵ]E[f (X )] = E[ϵ]E[f (X )] = 0

because ϵ should be independent of Y and therefore the term is zero.

The key to the covariance between f (X ) and its derivative is equa-
tion 9.1 in Rasmussen and Williams [8]. It states that

cov
(
fi,
∂ fj

∂xdj

)
=
∂k(xi, xj)

∂xdj
, cov

(
∂ fi
∂xdi
,
∂ fj

∂xej

)
=
∂2k(xi, xj)

∂xdi∂xej
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With the conditional Gaussian identities (chapter C), we obtain the
predictive distribution of the Jacobian from the joint distribution (equa-
tion 6.2),

p(J |Y ,X , x∗) =
D∏
d=1
N(µ Jd ,:, ΣJ ),

where

µ Jd ,: = ∂k
T
x∗K

−1
xxY:,d (6.3)

ΣJ = ∂
2k∗∗ − ∂k

T
x∗K

−1
xx ∂kx∗, (6.4)

The components of the di�erentials are given by

(∂kx∗)nq =
∂k(xn, x∗)

∂xq
, n = 1, . . . ,N and q = 1, . . . ,Q (6.5)

(∂2k∗∗)rq =
∂2k(x∗, x∗)

∂xq∂xr
q, r = 1, . . . ,Q (6.6)

To summarise, the Jacobian gives the tangent space, and a predictive
distribution on the Jacobian leads to stochastic tangent space. It is
straightforward to extend this to the Bayesian GPLVM, which Scannell
[60] does.

6.2 stochastic metrics

Figure 6.5: Illustration of
stochastic metric. The black
ellipsis represents the mean
metric, and the red ellipses are
draws of the metric.

Chapter 5 introduced the metric as a smoothly changing inner product
of basis vectors that is positive and semi-de�nite. Here, the basis is
stochastic and given by J, which gives rise to a natural Riemannian
metric

G = J>J (6.7)

This metric is de�ned in the latent space, i.e. G ∈ RQ×Q , and is also
referred to as a pull-back metric.

The prior on J (equation 6.1) is a Gaussian process, and hence the metric
is a Wishart process [94] as the product of two Gaussian processes is
a Wishart process [95].

G ∼ W(D, ΣJ ,E[J
>]E[J ]) (6.8)STOCHAST I C METR I C

This is a distribution of random positive and semi-de�nite matrices
where D is the degrees of freedom.
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The stochastic metric is not operational, so instead, we search for a
deterministic approximation of the stochastic metric. The expected
metric and the expectation of a Wishart distribution is [10, 95, 96]

E[G] = E[JT J ] = E[J ]TE[J ] + DΣJ , (6.9) THE EXPECTED METR I C

This yields a deterministic Q × Q matrix. With a deterministic ap-
proximation, we are all set, and we can use Riemannian geometry
(chapter 5) directly.

This approximation includes the covariance of J directly, which means
that the expected metric is larger for larger covariances of the Jacobian.
Later, we discuss how this elongates curves in uncertain (high covari-
ance) areas of the manifold and, eventually, how it forces geodesics
to avoid uncertainty (section 6.4). This approximation applies to both
the GPLVM and the Bayesian GPLVM as it only assumes normality of
the Jacobian.

6.3 stochastic christoffel symbols

The Christo�el symbols play a crucial part in Riemannian geometry
(chapter 5), and ideally, we would like a distribution over the Christo�el
symbols. Extending the notation of derivatives ∂дjk

∂x i
= ∂iдjk = дjk,i

gives the Christo�el symbols,

Γijk
1
2 =

1
2д

ml (∂jдil + ∂iдl j − ∂lдji)

=
1
2д

ml (дil,j + дl j,i − дji,l ). (6.10)

The metric дij ∼ W and дml ∼ W−1 [97] so each of the terms is
a product of a Wishart and an inverse Wishart, which is stochastic
and therefore impractical. Instead, we may wish to approximate the
Christo�el symbols using the deterministic approximation of the met-
ric: The expectation of the Christo�el symbol should be easily obtained
by

E[Γijk] =
1
2E[д

ml∂jдil ] + E[д
ml∂iдl j] − E[д

ml∂lдji)]. (6.11)

Each of the terms is E[W−1W], and we are unaware of any analytical
results for its expectation. This means that a deterministic approxima-
tion using the expectation of the Christo�el symbols is currently out
of reach.
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In line with our goal–an implementable expression for the Christo�el
symbols–this section approximates the stochastic Christo�el symbols
deterministically as the Christo�el symbol evaluated in the determinis-
tic approximation of the metric. For now we ignore the inverse of the
metric and focues on the metric derivatives. The expectations of the
components of the metric, G = J>J , follows a Wishart distribution,

E[G]ij = E[J
>J ]ij = [E[J ]

>E[J ]]ij + DΣij (6.12)
= E[J ]miE[J ]mj + DΣij (6.13)
≡ E[дij] (6.14)

where E[J ]ij and Σij are mean and covariance of the predictive Jacobian
(equation 6.3) from section 6.1.

To ease the derivations, we decompose the derivatives of the expected
metrics (equation 6.10) into mean and covariance contributions from
the expected metric,

Γijk

���
E[G]
= Γijk

���
E[J ]>E[J ]

+ Γijk

���
DΣ J
. (6.15)

For convenience, we derive these two terms separately,

Γ̃ijk = Γijk

���
E[J ]>E[J ]

and Γ̂ijk = Γijk

���
DΣ J
, (6.16)

where J ∼ N(µ J , ΣJ ) so E[J ] = µ J where µ J and ΣJ are given by
equation 6.3. We derive them individually and add them to obtain an
expression for the expected Christo�el symbol.

We de�ne the �rst term of the expectation in terms of a mean map, ϕ,

E[J ]>E[J ] =
∂ϕ

∂xi
·
∂ϕ

∂x j
≡ ϕ,i · ϕ,i (6.17)

where the derivative of ϕ is µ J , and the index of the Gaussian process
(the dimensionality) is summed over. Note thatE[дil ] = E[дil ]−1, which
is straightforward to evaluate so we do not touch the inverse of the
metric for now. With this, we consider,

Γ̃ijk =
1
2д

il

(
∂ϕ,l · ϕ,j

∂xk
+
∂ϕ,l · ϕ,k
∂x j

−
∂ϕ,j · ϕ,k

∂xl

)
=

1
2д

il

(
∂ϕ,l

∂xk
· ϕ,j + ϕl ·

∂ϕ,j

∂xk
+
∂ϕ,l
∂x j
· ϕ,k + ϕ,l ·

∂ϕ,k
∂x j
−
∂ϕ,j

∂xl
· ϕ,k − ϕ,j ·

∂ϕ,k

∂xl

)
=

1
2д

il (XXXXϕ,lk · ϕ,j + ϕ,l · ϕ,jk +
XXXXϕ,l j · ϕ,k + ϕ,l · ϕ,kj −

XXXXϕ,jl · ϕ,k −
XXXXϕ,j · ϕ,kl

)
= дil (ϕ,l · ϕ,jk) (6.18)
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where the cancelling happens due to symmetry in the indices; the
order of di�erentiation does not matter.

Similarly, ΣJ is given by equation 6.3 and we de�ne [ΣJ ]ij = σij ,

σij =
∂2k∗∗
∂xi∂x j

−
∂k>∗
∂xi

K−1
XX

∂k∗
∂x j

(6.19)

= ∂2
ijk∗∗ − ∂ik

>
∗ K
−1
XX ∂jk∗ (6.20)

where k∗ = k(x,X ) and X is the training data (i.e. �xed). We can write
the variance contribution of the Christo�el symbols as

Γ̂ijk = Γijk

���
DΣ J

(6.21)

=
D

2 д
il

(
∂σl j

∂xk
+
∂σlk
∂x j
−
∂σjk

∂xl

)
(6.22)

We derive this in small steps, starting with the derivatives of σij ,

∂σij

∂xk
=

∂3k∗∗
∂xk∂xi∂x j

−
∂2k>∗
∂xk∂xi

K−1
XX

∂k∗
∂x j
−
∂k>∗
∂xi

K−1
XX

∂2k∗
∂xk∂x j

(6.23)

σij,k = ∂
3
kijk∗∗ − ∂

2
kik
>
∗ K
−1
XX ∂jk∗ − ∂ik

>
∗ K
−1
XX ∂

2
kjk∗. (6.24)

Before writing up the terms required by equation 6.21, we consider
the last term separately,

∂ik
>
∗ K
−1
XX ∂

2
kjk∗ = (∂ik

>
∗ K
−1
XX ∂

2
kjk∗)

> (6.25)
= (∂2

kjk∗)
>(K−1

XX )
>(∂ik

>
∗ )
> (6.26)

= ∂2
kjk
>
∗ K
−1
XX ∂ik∗, (6.27)

as all terms in equation 6.21 are scalars. This trick reduces the second-
order terms to just one term. Now consider the three terms for the
variance in equation 6.21.

σl j,k = ∂
3
kl jk∗∗ − ∂

2
klk
>
∗ K
−1
XX ∂jk∗ − ∂lk

>
∗ K
−1
XX ∂

2
kjk∗ (6.28)

σlk,j = ∂
3
jklk∗∗ − ∂

2
jlk
>
∗ K
−1
XX ∂kk∗ − ∂lk

>
∗ K
−1
XX ∂

2
jkk∗ (6.29)

σjk,l = ∂
3
l jkk∗∗ − ∂

2
l jk
>
∗ K
−1
XX ∂kk∗ − ∂jk

>
∗ K
−1
XX ∂

2
lkk∗ (6.30)

The variance contribution of the Christo�el symbols is

Γ̂ijk =
D

2 д
il (σl j,k + σlk,j − σjk,l ) (6.31)

=
D

2 д
il

(
∂3
kl jk∗∗ − 2∂2

kjk
>
∗ K
−1
XX ∂lk∗

)
. (6.32)
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Collecting the contributions yields

Γijk

���
E[G]

= дil
(
ϕ,l · ϕ,jk +

D

2 ∂
3
kl jk∗∗ − D∂

2
kjk
>
∗ K
−1
XX ∂lk∗

)
,

(6.33)

where дil is the stochastic inverse metric but this is readily available
with its deterministic approximation. This result holds for a general,
su�ciently di�erential kernel.

The Christo�el symbols are integral to the covariant derivative which
allows for generalising calculus to manifolds. This approach enables
deriving expressions for approximate geometric quantities that rely
on higher-order derivatives, e.g. Riemann curvature tensor–a tensor
�eld capturing the curvature of manifolds.

6.3.1 Approximate Christo�el Symbols for the EQ Kernel

In this thesis, we use the EQ kernel which is C∞ so the derivatives are
de�ned and we can compute them explicitly though they are somewhat
tedious to deal with. The derivatives are derived in appendix E,

k(xa, xb) = α exp
(
−
γ

2 ‖xa − xb ‖
2
)

(6.34)

∂k(xa, xb)

∂x j
= −γ (x ja − x

j
b
)k(xa, xb) (6.35)

∂2k(xa, xb)

∂xi∂x j
= γ

(
γ (xia − x

i
b)(x

j
a − x

j
b
) − δij

)
k(xa, xb) (6.36)

∂3k(xa, xb)

∂xl∂xi∂x j
= γ 2

(
δl j(x

i
a − x

i
b) + δli(x

j
a − x

j
b
)

)
(6.37)

− γ 2
[
γ (x ja − x

j
b
)(xia − x

i
b) − δij

]
(xla − x

l
b)k(xa, xb),

whereγ is the inverse lengthscale of the EQ kernel,γ = l−1 (section 3.3).

This approximation of the Christo�el symbols is not the expected
Christo�el symbols, rather it is evaluated in the expected metric which
ignores the product of the inverse Wishart and Wishart distributions.
It is unclear how good an approximation but has the bene�t of being
quick to evaluate in practice: The derivatives of the kernel can be
computed analytically and the expected metric can be inverted quickly
as it is Q ×Q .

The derivation in the section follows the general idea introduced
by Adams [3] who also provides an expression for the Christo�el
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symbols evaluated in the expected metric. In principle, we could
write our expression explicitly (by inserting the kernel derivatives into
equation 6.33) but we settle for noting that our �nal expression deviates
from that of Adams’ [3] due to di�erences in the kernel derivatives.

6.4 stochastic geodesics

It is not straightforward to de�ne stochastic geodesics and this section
raises more questions than it answers. It was intended as the founda-
tion for computing geodesics on stochastic manifolds; ideally, it would
have answered what a stochastic geodesic is. In the deterministic case,
a geodesic curve minimises the energy, which can be found by solving
the geodesic equation (equation 5.20). In the stochastic case, we can
interpret this in several ways. Here, we discuss a few options with
varying degrees of stochasticity and with implementation in mind.

Li and Mukherjee [98] summarise the discussion of stochastic pro-
cesses on Riemannian manifolds as "there are basically two approaches
to construct or model random processes onmanifolds: one can randomise
paths on the manifold or randomise the geometry that the paths follow."
and they pursue the path of random geometry. They study a random
connection and random covariant derivatives, which lets them de�ne
stochastic geodesics rigorously as stochastic di�erential equations.
This is indeed interesting, but we will not follow this path.

Our goal is to compute distance in the latent space that respects the
geometry of the observation space. On a stochastic manifold, the space
itself is stochastic, which means that all points along the geodesic are
stochastic. The space itself and the mapping to the observation space
contribute to the stochasticity, and ideally, we want to consider both.

In the previous chapter, we derived the geodesic equation which de-
�nes geodesics, i.e. the solution to the second-order ordinary di�er-
ential equation is a geodesic. The most obvious choice is to consider
a stochastic version of the geodesic equation to de�ne a stochastic
geodesic. We will not pursue this direction this would not be compu-
tationally too slow for our purpose.

We could sample the stochastic manifold and compute geodesics as
deterministic curves. The metrics must be sampled jointly to ensure a
smoothly varying manifold. Generally, a distribution can be approx-
imated better than using one single sample. If using a deterministic
approximation of the manifold is desirable, there are other routes to
consider.

One route is sequentially sampling the geodesics. We could assume a
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deterministic point in the latent space (e.g., in the maximum likelihood
GPLVM) and obtain a predictive distribution over the next length
element but this is slow when computing numerous geodesics.

Bewsher et al. [99] provides the distribution of arc lengths in posterior
Gaussian processes by approximating the Nakagami distribution [100],
but this is not su�cient for our purpose. Chapter 5 de�nes geodesics
as length-minimising curves, but under a random metric, this is almost
surely not the case [101]. Instead, we search for a deterministic ap-
proximation, where geodesics are locally length-minimising curves or,
equivalently, energy-minimising curves (section 5.3). Then geodesics
are curves that minimise the expected length. We used the energy
in the deterministic case because the optimum is much easier to �nd
for the energy than for the length and they lead to the same optima.
This is not the case in the stochastic case, where the energy has a
covariance term that contributes to the expectation, so

argminE[
∫
‖ Ûc‖ dt] , argminE[

∫
‖ Ûc‖2 dt]

Here, we assume that the curves that minimise the expected energy
approximate the curves that minimise the expected length well. This
gives a deterministic curve that is stochastic when mapped to obser-
vation space. We will consider this notion of stochastic geodesics in
the next chapter.

Why geodesics avoid uncertainty

At the beginning of this chapter, we stated that topology can play the
role of uncertainty which is a di�erent way of stating that geodesics
avoid uncertainty. This metric gives rise to geodesics that follow high-
density regions in latent space [10], so de�ning stochastic geodesics
as above has the bene�t of incorporating the uncertainty such that
geodesics avoid uncertainty. If the distance between two points is ∆,
the expected squared distance,

E[‖∆‖2] = E[‖∆‖]2 + var[∆].

This indicates that the variance of the length directly contributes to
the expected length. Thus the expected length is shorter where the
uncertainty is smaller which repels the geodesics as they are locally
length-minimising.

We can understand this in a di�erent way: Away from data, the mean
function of the GP falls back to the mean of the prior, which is a con-
stant, but it is the same constant in all points away from data. This
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means that the volume away from data maps to the same point in ob-
servation space, which does not contribute to the geodesic length. This
is what Hauberg [11] refers to as teleports. Accounting for the variance
gives a �nite volume in observation space which does contributes to
the length of the geodesics, e�ectively preventing teleports.
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7L EARN ING A STOCHAST I C
GEOMETRY

“ One geometry cannot be more true than another; it can
only be more convenient.

—Henri Poincaré ”
This chapter contains previously unpublished material.

As we have already introduced elementary Riemannian geometry
(chapter 5) and deterministic approximations of stochastic geometric
objects that allow for using Riemannian geometry (chapter 6), we are
�nally ready to build a Riemannian GPLVM.

In his seminal work, Lawrence [32] comments that the solution for
the latent variables in the GPLVM will naturally not be unique as it is
subject to an arbitrary rotation (chapter 3). We may avoid this with
the Riemannian Brownian motion, which is invariant to reparametri-
sations unlike the usual Gaussian prior. The Brownian motion is a
�exible distribution as it adapts to the data using only two parame-
ters. Adapting the prior to data is somewhat controversial in Bayesian
statistics but not new in the literature [102, 103] and this approach
allows for capturing the prior belief that data is not Euclidean and do
not lie on a speci�c parametrised manifold.

In this section, we introduce a computational framework for working
with random manifolds (section 7.1) which we use for geometry in a
toy dataset (section 7.2) and in the SAS model (section 7.3). This works
surprisingly well, encouraging a model that incorporates geometry
directly rather than being post hoc (after training). We introduce the
Riemannian Brownian motion (section 7.4) with the intent of using this
as a prior in a GPLVM or SAS model (section 7.5), but unfortunately,
we have not yet succeeded.
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Chapter 7. Learning a Stochastic Geometry

7.1 stochman and the buddies

This section describes an operational approach to working with ran-
dom manifolds required to train models that respect the geometry of
data. First, we introduce a framework for working with random mani-
folds directly from data (Stochman – Stochastic Manifolds Made Easy,
section 7.1), and then, we detail additional, custom implementations
(the Buddies) that speed up geodesic computations for the GPLVM
(section 7.1.2).

7.1.1 StochMan: Stochastic Manifolds Made Easy

StochMan11. Code on Github
https://github.com/

MachineLearningLifeScience/
stochman/

[104] is a python package for learning random manifolds
from noisy, �nite data. It employs PyTorch’s automatic di�erentiation
[87] and provides an interface for constructing manifolds, curves and
geodesics. Figure 7.1 shows examples of geodesics computed on a
manifold learnt from MNIST [84].

Figure 7.1: Black dots are la-
tent points, the background is
the log volume element of the
metric (blue is smaller and yel-
low is larger), and the multi-
coloured curves are examples
of geodesics computed on the
manifold with StochMan. This
example appears in the doc-
umentation of StochMan on
Github

.

StochMan achieves this by assuming that a deterministic metric
can approximate the stochastic metrics and that the expected energy-
minimising curve approximates the expected length-minimising curve.
The following paragraphs detail these assumptions.
First, StochMan requires the user to specify a deterministic metric,
assuming that this is a suitable approximation of the stochastic metric.
StochMan requires a deterministic metric as the foundation of its cal-
culations, as the stochastic metric is not operational. For the GPLVM,
StochMan implements the expectation of a Wishart distribution as a
deterministic approximation as suggested in section 6.2.
Second, StochMan assumes that the curve c that minimises expected
energy is also the curve that minimises expected length. In the deter-
ministic case, the length l and energy ε of a curve will be minimised
by the same curve (see section 5.3.1)

argmin
c

l = argmin
c

ε . (7.1)

But this is not true in expectation in the stochastic setting,

argmin
c

E[l] , argmin
c

E[ε]. (7.2)

In this work, we assume the expected energy-minimising curve ap-
proximates the expected length-minimising curve well.

argmin
c

E[l] ≈ argmin
c

E[ε]. (7.3)
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7.1. StochMan and the Buddies

Alternatively, geodesics can be computed straight-forwardly by solv-
ing the second-order ordinary di�erential equation in equation 5.20.
Unfortunately, this is slow, so StochMan de�nes a geodesic as the
curve c that minimises the expected energy

argmin
c

E[ε] (7.4) GEODES I C
StochMan

StochMan uses several types of curves, but geodesics will be cubic
splines for our purpose. These are initialised as Euclidean straight
lines and optimised by minimising the expected energy to learn the
parameters of the cubic spline.

7.1.2 The Buddies: Custom Implementations

Though Stochman provides a foundation for doing geometric compu-
tations, geometry in the GPLVM requires some custom functionalities.
The Buddies include custom implementations of kernel derivatives
to estimate Jacobians. This section also introduces cubic splines as an
approximation to geodesics. This approximation uses the expected
energy of a curve under the GPLVM expected metric. This is slow on
the GPLVM, so the Buddies implements a discrete manifold to speed
up computations.

Kernel Derivatives

In section 6.1, we showed that the predictive distribution of the Jacobian
requires the derivatives of the kernel. We have implemented the
analytic derivatives of the exponentiated quadratic kernel. We have
also implemented the kernel derivatives using PyTorchs’s automatic
di�erentiation. This is slower but handles stationary and su�ciently
di�erentiable kernels.

Expected Curve Energy

Starting from a discrete approximation of the curve energy for a curve
on the Gaussian process manifold, this section details how this approxi-
mation can be implemented as a loss function for geodesic optimisation.
After �nding a discrete approximation of the curve energy, we derive
the expectation and covariance of the line elements.

We introduced the energy of a curve ε in detail in section 5.3.2,
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Figure 7.2: The �gure shows
a curve ct (red) discretised in
N − 1 line elements, ci , shown
in dashed black lines. We refer
to the endpoints of each line el-
ement with a subscript, e.g. ci+1
and ci .

ε =

∫ 1

0
‖∂t f (ct )‖

2
2 dt, (7.5)ENERGY OF CURVE

where t ∈ [0, 1] parametrises the continuous curve, ct , and f is the
map from the latent space to the data space, f : Rq → Rd . Discretising
the energy gives

ε =
N−1∑
i=1
‖ f (ci+1) − f (ci)‖

2
2 (7.6)

where i indexes the discrete curve element. This corresponds to dis-
secting the curve into N segments, computing the energy for each
and summing them. The idea that the di�erential operator reduces
to the di�erence assumes a Euclidean geometry which is a reason-
able assumption in a local region where the space can be assumed
Euclidean.

Taking the expectation of the curve energy, we obtain

E[ε] =
N−1∑
i=1
E

[
‖ f (ci+1) − f (ci)‖

2
2
]

(7.7)

and for brevity, we de�ne ∆i = f (ci+1) − f (ci). The expected energy
is an inner product between two Gaussian random variables x ∈ RD ,
which follows the relation [51],

E[xTx] = E[x]TE[x] + tr(cov[x]). (7.8)

This gives the expected energy of a single line element ∆i so summing
over the N − 1 expected energies gives the total expected energy

E[εc] =
N−1∑
i=1
E[∆i]

TE[∆i] +

N−1∑
i=1

tr(cov[∆i]) (7.9)EXPECTED
CURVE ENERGY

This requires calculating the expectation of ∆i and the covariance of
the inner product of the ∆is.
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The expectation of ∆i is straightforward. The mean of the distribution
of ∆i is given by the di�erence of the means of f (ci+1) and f (ci),

E[∆i] = E[f (ci+1) − f (ci)] (7.10)
= E[f (ci+1)] − E[f (ci)] (7.11)
= µi − µi+1. (7.12)

We consider the joint distribution to �nd the covariance of the two line
segments. Both f (ci) and f (ci+1) will follow a multivariate Gaussian
distribution. In line with the GPLVM, we will assume that there is no
covariance between output dimensions such that the joint distribution
of two adjacent line segments factorises over dimensions.[

f (ci)
f (ci+1)

]
=

D∏
d=1
N

( [
µi
µi+1

]
,

[
σ 2
i σ 2

i,i+1
σ 2
i+1,i σ 2

i+1

] )
(7.13)

Next, we exploit the Gaussian property of a�ne transformations (see
section C) to obtain the distribution for f (ci+1) − f (ci) by de�ning a
transformation A = [−1, 1].

f (ci+1) − f (ci) = A

[
f (ci)
f (ci+1)

]
(7.14)

=

D∏
d=1
N

(
A

[
µi
µi+1

]
,A

[
σ 2
i σ 2

i,i+1
σ 2
i+1,i σ 2

i+1

]
A>

)
(7.15)

So writing up the new covariance is

cov[∆i] = AΣAT =
[
−1 1

] [
σ 2
i,i σ 2

i,i+1
σ 2
i+1,i σ 2

i+1,i+1

] [
−1
1

]
(7.16)

= σ 2
i,i − σ

2
i,i+1 − σ

2
i+1,i + σ

2
i+1,i+1 = 2(σ 2

i,i − σ
2
i,i+1) (7.17)

In the last equality, we used that actually f (ci) and f (ci+1) have the
same variance so σ 2

i,i = σ
2
i+1,i+1 and that the covariance matrix is sym-

metric. The assumption that the variance is the same as assumed in
the original GPLVM paper by Lawrence [32]: The Gaussian processes
have the same covariance in all dimensions but di�erent mean func-
tions. This remains a common assumption in the GPLVM literature to
reduce complexity.
Substituting the mean and covariance of ∆ into equation 7.9 to obtain

E[ε] =
N−1∑
i=1
| |µi+1 − µi | |

2 + 2D(σ 2
i,i + σ

2
i,i+1) (7.18) CURVE ENERGY

StochMan

In the latter term, the trace reduces to the dimensionality of the curve.
The GPLVM uses this expression for the expected energy of a curve.
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Cubic Splines as Approximate Geodesics

Figure 7.3: Illustration of esti-
mated cubic spline (black) from
small line segments (red).

StochMan employs cubic splines [105] to �t geodesics by minimising
the expected energy (equation equation 7.18). This approach changes
the geodesic computation from solving a second-order, ordinary di�er-
ential equation to optimising the parameters of a cubic spline such that
the energy is minimised. This approach allows re-using information
from learnt geodesics for computing new. This section discusses the
details of how cubic splines approximate geodesics.
Generally, splines are functions composed of L polynomials, each
de�ned on a small domain. A cubic spline Ĉ(t) is a piece-wise, third-
order polynomial [105] (spline of order three) and parametrised by t .
We can consider a cubic spline on the interval [a,b]where we segment
the interval as a = t0 < t1 < . . . < tL−1 = b. Then the cubic spline can
be written as

CUB I C SP L INE

Ĉ(t) = Ĉl−1(t) = al−1t
3 + bl−1t

2 + cl−1t + dl−1, tl−1 ≤ t ≤ tl (7.19)

which yields four unknowns for each of the L pieces of the spline.
This can be solved as a tridiagonal system of equations [106] with
parameters we �nd by optimisation.
A general cubic spline has some undesirable characteristics for
geodesics, e.g. a cubic spline is not necessarily continuous, which
is a requirement for a geodesic. To accommodate the geodesic re-
quirement, we impose four constraints: Three are continuity in the
zeroth, �rst, and second order derivatives at the ends of each segment
respectively, (which leads to natural splines), and the fourth constraint
�xes the endpoints of the cubic spline.

NATURAL CUB I C SP L INE

If the endpoints are not �xed, and the coe�cients are learnt using the
expected energy as an objective function, the curve collapse to a point
as a point has zero energy. This is not desirable.

We write the �rst three constraints of the continuity of derivatives as

Ĉ(0)
l−1(tl ) = Ĉ(0)

l
(tl )

Ĉ(1)
l−1(tl ) = Ĉ(1)

l
(tl )

Ĉ(2)ll−1(tl ) = Ĉ(2)
l
l(tl )

Ĉ(0) = p0

Ĉ(1) = p1 (7.20)

where the superscript parentheses denote the order of the derivative.
These constraints describe natural splines, ensuring a "natural" transi-
tion from one piece to the next. The fourth and �fth constraints arise
from �xing the cubic spline to the endpoints.
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This is a set of linear equations that is an underdetermined problem,
so no unique solution exists. StochMan �nds the null space using
singular value decomposition. Here, we also revisit the fourth con-
straint: The endpoints should be �xed to avoid the curve collapsing to
a point, C0(0) = 0 and Cl−1(1) = 1. To ensure that the geodesic starts
and ends in the desired points, p0 and p1, we de�ne the geodesic as a

C(t) = p0t + (1 − t)p1 + Ĉ(t) (7.21)

The �rst two terms correspond to a straight line between p0 and p1.
By constraining the cubic spline to end in zero, we can ensure that the
geodesic curve C(t) starts in p0 and ends in p1. That is C(0) = p0 and
C(1) = p1.

Figure 7.4: Illustration of a
geodesic in StochMan as a
sum of a straight line (light red)
and a natural cubic spline, Ĉ(t)
(red).

In StochMan, we determine the number of segments L , the start
point p0 and the end point, p1, see �gure 7.4. The cubic spline is
initialised as a Euclidean straight line, and the parameters of the cubic
spline are optimised to obtain a geodesic approximation. The resulting
curve is reparametrised to have constant speed (see section 5.3). This
results in local optima of geodesics. To compute multiple geodesics
simultaneously, we batch the cubic splines.
This method conveniently exploits the geodesics computed between
two points in a previous step. Assuming that the endpoints only move
slightly, the previous geodesic is an excellent initialisation for the
current though with updated endpoints. Unfortunately, this scales
poorly as this essentially corresponds to l2 regression problems for
each geodesic.

Approximating Geodesics using a Discretized Manifold

Optimising cubic splines as geodesics, outlined in the previous sec-
tion, is slow. This section contains an alternative that discretises the
manifold and uses Dijkstra’s algorithm [107, 108] to compute shortest
paths [109]. The resulting discrete curves are smoothened by �tting
cubic splines.
Dijkstra’s algorithm This is also the algorithm that

empowers isomap[7]
�nds a shortest path between nodes on a graph.

Unlike the previously described method, Dijkstra’s algorithm �nds a
global shortest path (though the shortest path might not be unique
[110]). We will not go into the details of the algorithm here.
To compute geodesics using Dijkstra’s algorithm, we divide the latent
space into a square grid of su�ciently small resolution (we refer to
this as a discrete manifold). Computing the shortest path requires the
distances between all neighbouring nodes, which requires the metric.
We evaluate the metric at all points at a part of the initialisation of the
discrete manifold.
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Once that is found, we know all the distances, and we can put Dijkstra’s
algorithm to work to �nd discrete geodesics. Then we �t a cubic spline
like previously but with this initialisation from the shortest path found
using Dijkstra’s algorithm. This is quick and leads to globally optimal
geodesics. This approach eliminates the direct dependency on the
number of data points in the metric computations.

Regarding implementation, there are four things to consider: 1) This
procedure has a long initialisation time as the metric has to be eval-
uated at all points. Once the discrete manifold object is initialised,
computing geodesics is fast. 2) The discretised manifold inherits from
the manifold object such that the API is the same. 3) We have imple-
mented boundaries on the DM to mitigate geodesics (or other points)
that are "o�" the manifold to ensure that the discrete manifold is de-
�ned everywhere. We extrapolate the metric on the boundary to a
constant. 4) Practically, the discrete approach can only estimate man-
ifolds up to three dimensions as the discrete lattice grows too large
otherwise.

7.2 geometry in gplvms: the starfish

As an illustrative example, we consider the star�sh toy dataset: A
two-dimensional star�sh embedded in three dimensions with a linear
mapping (appendix E). This simple dataset has the advantages that
it is easy to learn, we know its true generating process, and it has
an interesting shape in the latent space (even with PCA), making it
well-suited for developing familiarity with learning manifolds.

Figure 7.5: A manifold in the
star�sh dataset. The back-
ground is the log volume ele-
ment. Blue indicates a smaller
volume (less uncertainty), and
red indicates a larger volume
(greater uncertainty).

Figure 7.6: A manifold in the
star�sh dataset (black) with es-
timated geodesics (red).

The stochastic manifold is described by the Gaussian process that
should capture the data’s geometric nature. Qualitatively, there are
two ways of verifying this: One way is to check that the volume
element (section 5.2.2) corresponds to the latent representation. We
expect a smaller volume close to data and a larger away from data
[10], and this is also what we observe in �gure 7.5. Alternatively, we
can inspect that the resulting geodesics follow data (�gure 7.6). The
geodesics in red follow the latent variables in black nicely, and if the
observations are removed, the shape of the star�sh would still be
visible from the geodesics.

Next, we want to understand which parameters lead to good geodesics,
see �gure 7.7. This plot allows for qualitative inspection of the geodesics
as a function of the GP parameters. The noise variance is �xed, and
the kernel variance θ and the length scale l are varied across columns
and rows, respectively. For a considerable length scale, seemingly
independent of variance (upper left corner in �gure 7.7), the geodesics
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Figure 7.7: Geodesics in the star�sh manifold as a function of the kernel variance θ (columns) and the length
scale, l (rows) in the GPLVM. The likelihood noise is �xed, σ = 0.05.

do not properly follow the manifold, whereas the geodesics follow
highways on the manifold for small variances and small length scale
(lower right corner in �gure 7.7). A large variance and a small length
(lower left corner in �gure 7.7) lead to poorly estimated geodesics. The
geodesics (a proxy of the manifold) depend on the GP parameters.

In summary, we observe that the hyperparameters of the GP in�uence
the geodesics and to get geodesics that follow the manifold, we must
have the right balance between the GP hyperparameters. This links
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back to the challenge of estimating hyperparameters (brie�y mention
in section 3.4.1); we should have well-estimated hyperparameters to
useful geometry.

7.3 geometry in the sas decoder

We are ready to work on a more complicated model and for this, we
consider the SAS decoders in chapter 4. These models learn structured
latent representation but lack a predictive distribution. To accom-
modate this, we use the trained SAS decoder to initialise a GPLVM
(section 3.3) which we do not train. Speci�cally, the SAS decoder was
trained of FashionMnist (also used in chapter 4), which consists of
60,000 28 × 28 images in ten classes of clothing items. We encode the
1,000 points of the test points to obtain an initialisation of the latent
variables for the GPLVM and use the GP hyperparameters directly
from the SAS model. This yields a GPLVM with a latent representa-
tion, we might learn from and with a predictive distribution which is
required for geometry.

Qualitatively, the SAS decoder captures structure (�gure 7.8): Sandals,
sneakers and ankle boots are similar and the models palce these three
classes close. Trousers and bags are clustered by themselves, both
separate from other categories. The models also seem to capture that
the transitions between e.g. dresses and tops or t-shirts and long
sleeves may be more smooth that suggested by a categorical label. The
�gure also shows Euclidean and Riemannian (geodesic) interpolations.
The latter avoids areas with no data, so it travels through dresses,
pullovers and sneakers to compute the distance between a pair of
trousers and a sandal22. It raises the philosophi-

cal question of whether a
meaningful smooth inter-
pretation between pants

and sneakers actually exists.

.

Figure 7.9 shows the same representation but colour-coded according
to class labels, making it easier to distinguish classes and with the
volume element in the background. It also shows reconstructions along
the interpolations with the Riemannian in the top row of images and
the Euclidean in the bottom. While neither is perfect, the Riemannian
reconstructions are less blurry in this particular example. To show that
the Riemannian approach captures the manifold, the bottom �gure 7.9
shows �ve hundred geodesics in the same representation which all
follow data and avoids uncertainty in the trained model.

Generally, obtaining nice geodesics (e.g. in the star�sh) requires some
tuning but (surprisingly) in this SAS model, it worked right out of the
box without any extra tuning or hacks. Evidently, the model captured
some geometry in this case. Given what we learnt in the previous
section (for the geodesics to follow the manifold, the GP parameters
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Figure 7.8: Latent represen-
tation in a SAS decoder on
FashionMnist shown as an
image manifold. The teal line
is the Euclidean interpolation
and the red is a geodesic.

must balance), �gure 7.9 (bottom) suggests that the hyperparameters
are well-estimated in the trained SAS decoder. This reignites the hope
that we can exploit geometry during training to learn more meaningful
representation.
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Figure 7.9: The top and bottom plots show the latent representation of a SAS decoder on Fash-
ionMnist colour-coded according to class label with the log volume element in the background.
The top plot shows a Riemannian (red) and a Euclidean (black) interpolation and corresponding
reconstructions along the interpolations with the Riemannian in the upper row and the Euclidean in
the bottom row. The bottom plot shows �ve hundred geodesics.
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7.4. Isotropic Brownian Motion

7.4 isotropic brownian motion

The previous section demonstrated that the SAS decoder learns well-
estimated manifolds and it would be interesting to capture this in a
distribution. Such a distribution could be useful for exploration and
visualisation after training, and it might prove useful during3 3. Spoileralert, it does not prove

useful in this thesis as the joint
training does not converge at the
time of writing.

training.

We intend to change the prior on the latent variables to the Rieman-
nian Brownian motion as also considered by Kalatzis et al. [111], see
more in Hsu [112]. This section introduces the Riemannian Brownian
motion, a �exible distribution with only two parameters that can easily
be adapted to respect a Riemannian geometry. We do this by �rst de-
veloping the intuition around Euclidean Brownian motion and second
extending to Riemannian Brownian motion for which we consider an
approximation of the log probability and a sampling scheme.

7.4.1 Euclidean Brownian Motion

Figure 7.10: A one-dimensional
Brownian motion where distri-
bution (red) and the variance
νt change as time passes. Sam-
ples of the Brownian motion are
shown in pink.

Brownian motion is a macroscopic physical phenomenon that occurs
when particles in a medium bump into each other randomly. It is an
ensemble of particle trajectories governed by microscopic dynamics
called random walks. Keeping track of the net forces is tedious so we
adopt a probabilistic view. Figure 7.10 illustrates how the density of a
one-dimensional Brownian motion changes over time and how ran-
dom walks are samples from these distributions–how the macroscopic
behaviour changes as the random walks changes.

The Brownian motion ful�ls the Markov property (that any current
state depends only on the previous), and the di�erences in location
(i.e. the subsequent steps) are normally distributed [113].

To later generalise this to Riemannian manifolds, it is useful to consider
the two-dimensional case (�gure 7.11). Each next step is sampled from
multivariate, Gaussian distribution. Assuming an isotropic heat kernel
leads to a diagonal covariance, and we can construct the full motion as

xt+1 ∼ N

(
xt ,

ν2
t

T
IN

)
(7.22)

where νt is the variance of the Brownian motion at time t ∈ [1, . . . ,T ]
where T is the duration of the Brownian motion.
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Figure 7.11: lllustrations of how Euclidean (top) and Riemannian (bottom) Brownian motions are constructed
iteratively, starting from origo at t = 0. At each step, the next is sampled from a Gaussian distribution.

7.4.2 Riemannian Brownian Motion

The goal of this section is a distribution that incorporates geometry and
the Riemannian Brownian motion integrates well with Riemannian
geometry for several reasons; among these, its inherent construction of
small steps means we can represent the Riemannian manifold as locally
Euclidean. This section introduces Riemannian Brownian motion
(following Hsu [112]), an approximation of its density and a sampling
scheme for our speci�c purpose. In the following, we refer to the
isotropic Riemannian Brownian motion simply as Brownian motion.
When we mean isotropic Euclidean Brownian motion, this will be
clear from the text.

The Brownian motion includes the metric, so di�using particles respect
the geometry and stay on the manifold. Intuitively, the Riemannian
Brownian motion can be constructed the same way as the Euclidean,

xt+1 ∼ N

(
xt ,

ν2
t

T
G−1
xt

)
(7.23)

using a scaled inverse metric as the covariance. Before we motivate
this in section 7.4.4, we consider the implications. The distribution
from which we sample the next step now depends on our location in
space; see �gure 7.11. We consider the distribution in the tangent space
at each step and sample the next step from that. Intuitively, when
a particle reaches the edge of the manifold, the metric increase due
to uncertainty, the covariance decrease and sampled steps become
smaller and smaller until the particle is stuck. This constrains the
random walks to the manifold and is also demonstrated in �gure 7.12,
which compares a Euclidean and a Riemannian random walk; the
Euclidean random walk ignores the geometry, and the Riemannian
random walk respects the geometry by staying on the manifold.
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Figure 7.12: The latent rep-
resentation of the star�sh
manifold with the logarithm
of the volume element in
the background with latent
variables in white dots. The
red curve is a representative
Riemannian random walk and
the black is a representative
Euclidean, of equal duration.

7.4.3 Approximate Isotropic Riemannian Brownian Motion

The Brownian motion density, p(x), may be described as the heat
kernel associated with the Laplace-Beltrami operator (a generalisation
of the Laplace operator to Riemannian manifolds). This gives rise to a
stochastic di�erential equation which is challenging to work with [111,
112]. Instead, Hsu [112] suggests a parametrix expansion and following
Kalatzis et al. [111], we use the zeroth order term as the density for the
Brownian motion (see �gure 7.13),

p(xn) =
1

(2πt)Q/2
H0 exp

(
−
d2(xn, µ)

2t

)
(7.24)

where t ∈ R is the duration of the Brownian motion, Q is the di-
mensionality, xn ∈ RQ and µ is the centre of the Brownian motion
distribution, d(·, ·) is the Riemannian distance (i.e. the geodesic dis-
tance between the mean of the Brownian motion and an input), and
the H0 term is computed as

H0 =

(
detGxn

detGµ

)1/2
(7.25)

which is a ratio of log volume measures under Riemannian metrics
evaluated at a point xn and the mean of the Brownian motion µ.

Figure 7.13: The latent represen-
tation of the star�sh manifold
with the logarithm of the vol-
ume element in the background
with latent variables in white
dots. The black contour lines
show the approximated Brown-
ian motion density.91
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The log probability as

logp(xn) = −
Q

2 log(2πt) + logH0 −
d2(xn, µ)

2t (7.26)

=
1
2

(
−Q log(2πt) + log

detGxn

detGµ
−
d2(xn, µ)

2t

)
(7.27)

where t is the square root of the Brownian motion variance ν .

In practice, the primary computational hurdle is geodesic computa-
tions, which we have already discussed (see section 7.1.2), making this
approximation relatively fast.

7.4.4 Sampling the Riemannian Brownian Motion

The idea with the Riemannian Brownian motion is stepping on the
manifold without evaluating the expensive exponential map (which
involves solving a second-order ordinary di�erential equation). Fol-
lowing Kalatzis et al. [111], we assume an isotropic heat kernel for the
steps

∆ ∼ N(0, ΣM ) (7.28)

with ΣM = ν
2I, and ∆ is the step in the observation space [111]. We

want to know the corresponding step ϵ in the latent space. The Taylor
expansion of the map evaluated in a latent point x + ϵ ,

f (x + ϵ) = f (x) + Jxϵ + O(ϵ
2), (7.29)

with f : RQ → RD and Jx is the Jacobian of f at the point x . Then a
step on the manifold is

∆ = f (x + ϵ) − f (x) = Jxϵ + O(ϵ
2) (7.30)

Truncating at ϵ2, yields ∆ = Jxϵ which implies that ϵ = J+x ∆ where J+x
is the pseudo-inverse,

J+x = (J
>
x Jx )

−1J>x ∈ RN×Q . (7.31)

With this, we can obtain the distribution of steps in the latent space,

ϵ ∼ N(0, J+x ΣM (J
+
x )
>). (7.32)
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With ΣM = ν
2I, we have

J+x ΣM (J
+
x )
> = (J>x Jx )

−1J>x ΣM Jx (J
>
x Jx )

−> (7.33)
= ν2(J>x Jx )

−1J>x Jx (J
>
x Jx )

−> (7.34)
= ν2(J>x Jx )

−> (7.35)
= ν2G−1

x (7.36)

where −> denotes the inverse transposed and Gx is the metric at x .
Then the distribution of steps on the manifold is

ϵ ∼ N(0,ν2G−1
x ) (7.37)

and the Riemannian Brownian motion for t = [0, . . . ,T ] is

xt+1 ∼ N

(
xt ,

ν2
t

T
G−1
xt

)
. (7.38)

This lets us step directly on the manifold using the Brownian motion:
Sampling follows the simple intuition outlined above and requires a
mean, µ, a variance, ν2, and a duration,T , of the Brownian motion, and
a distance function, d (·, ·), which also requires a metric at each point.
Implementing this as a distribution requires a method for computing
the log probability (section 7.4.3) and a method for sampling from
the distribution (this section). As we have both, we implement the
Riemannian Brownian motion as a distribution in StochMan.

7.5 a riemannian gplvm

Finally, we have the components to build a model that incorporates ge-
ometry during training: We employ the Riemannian Brownian motion
as a prior in the GPLVM, and we optimise the hyperparameter.

Similarly to the GPLVM, we assume that data are generated by map-
ping latent variables to observations with a map f : RQ → RD , and we
assume a Gaussian process prior GP(0,k(x, x′)) on the map, where
k(x, x′) is an EQ kernel (see section 3.3.1). Unlike the GPLVM, we
assume an approximate Riemannian Brownian motion as the prior on
the latent variables,

p(xn) =
1

(2πt)Q/2
H0 exp

(
−
d2(xn, µ)

2t

)
, (7.39)

in which the parameters are described in section 7.4.
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Note that there are some challenges in this model: The prior depends
on the metric, and the metric is estimated from data, making the prior
implicitly dependent on data. The objective function for the model
using maximum aposteriori estimation,

logL = logp(Y |X ,ν ) + logp(X ) (7.40)

=

N∑
n=1

logp(Y |X ,ν ) +
N∑
n=1

logp(xn), (7.41)

where the prior factorises due to the assumption of isotropy in the
Brownian motion. This model can then be trained using the sum-
product algorithm [51].

7.6 discussion

Our goal was to develop a Riemannian GPLVM by placing a Rieman-
nian Brownian motion prior on the latent variables. At this point, the
model described above does not learn anything useful, so rather than
presenting results, this section discusses our approach.

The Riemannian GPLVM (section 7.5) requires (at least) three steps: 1)
Deterministic approximations of stochastic geometric quantities that
make geometric computations feasible (chapter 6) and a computational
framework (section 7.1) to compute these. 2) An implementation and
pre-training of the approximated Riemannian Brownian motion (sec-
tion 7.4) and 3) assigning the Riemannian Brownian motion as a prior
in the GPLVM and training the model to convergence (section 7.5). We
have completed steps one and two, but none of our training attempts
has converged, leaving step three uncomplete at this point.

The are many possibilities for faulty steps. We have already discussed
some of the theoretical challenges (chapter 6) and some of the practical
challenges (section 7.1). Here, we focus on the challenges with the
Brownian motion and the combination of the Brownian motion and
the GPLVM.

7.6.1 Brownian Motion Sampling: To Invert or Not to Invert?

Figure 7.14: The latent represen-
tation of the star�sh manifold
with the logarithm of the vol-
ume element in the background
with latent variables in white
dots. The black contour lines
show the approximated Brow-
nian motion density. The blue
contour lines show a kernel den-
sity estimate from 2,500 sam-
ples when inverting the met-
ric (top) and not inverting (bot-
tom).

Assuming suitable GP parameters, we can train isotropic, Riemannian
Brownian motions on manifolds. This allows us to estimate the den-
sity (equation 7.24) under the Riemannian Brownian motion and to
sample random walks. We observe the pre-training of the Riemannian
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Brownian motion is quite noisy and rarely converges. We can also
estimate a density using the samples and kernel density estimate [114]
(�gure 7.13, top).

The resulting density estimate is unexpected as we observe the highest
probability density just o� the manifold where there is no data. This
suggests that there is something we do not understand yet, as this
behaviour is opposite to the theory’s prediction. This is also not the
desired behaviour.

On the other hand, we recover the desired behaviour when using the
metric, Gx , rather than the inverse of the metric, G−1

x , in sampling the
next step,

ϵ ∼ N(0,ν2G), (7.42)

in the covariance. We observe nicely estimated manifolds, and as an
additional bene�t, the training of the Brownian motions converges
consistently. We choose to use the latter as we focus on the desired
behaviour.

7.6.2 Brownian Motion Sampling: To Drift or Not to Drift?

Figure 7.15: Coordinates that in-
troduce a drift in the Brownian
motion even in �at space. The
illustration is recreated from
StackExchange [115].

The Riemannian Brownian motion can be written as a stochastic dif-
ferential equation with a drift term [116],

dXt =
√
д−1dBt −

1
2д

ijΓkijdt . (7.43)

where dbt is a Euclidean Brownian motion. Our approach in section 7.4
is aligned with previous approaches [17, 111], which do not implement
the drift term.

The drift is an artefact of the coordinates, which is relevant in non-�at
bases. This can be understood intuitively by considering a Brownian
motion (without drift) in �at space but curved coordinates (�gure 7.15).
Starting from p, a particle is more likely to end its walk in the red
area than in the light red area but a Brownian motion, dXt =

√
д−1dBt ,

would not re�ect this. The drift compensates for this.

This was the motivation for approximating the Christo�el symbol
in section 6.3, and that approximation should be straightforward to
implement in the sampler.
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7.6.3 Related Works: Geometry in GPLVMs

There are numerous works considering geometry in the GPLVM [3,
10, 58–61, 117–119], so it seemed natural to build the geometry directly
into the model. However, there are a few alternative routes for incor-
porating non-Euclidean geometry when considering GP-based models
which we brie�y review here.

An obvious choice is to use the Riemannian normal distribution as
prior, which is well-studied [92, 120–123], but estimating its normal-
isation constant is computationally expensive. Instead, one might
consider changing the distance function in the EQ kernel, but Fera-
gen, Lauze, and Hauberg [124] proves that it cannot be guaranteed
that Gaussian kernels with Riemannian distances are positive and
semi-de�nite. Jayasumana et al. [125] proof that the EQ kernel can
be generalised to Riemannian manifolds i� they are isometric to the
Euclidean manifolds, which is a too-hard constraint for our purpose.

Developing new kernels that incorporate the geometry is an alterna-
tive approach; Jaquier et al. [126] constructs a kernel on hyperbolic
manifolds and Jensen et al. [61] for tori, spheres, and SO(3). These are
both exciting works, but neither allows for capturing non-parametrised
manifolds as they constrain the manifold by assuming a parametrisa-
tion.

Finally, one might question the choice of the GPLVM over other prob-
abilistic latent variable models (e.g. the variational autoencoder, VAE).
Both models learn probabilistic representation though arguably the
VAE learns better representations. The bene�t of the GPLVM is the
variance estimation away from data, which is not the case for neural
networks which tend to extrapolate poorly [17, 111].

7.6.4 Future Directions

Our goal was to develop a proof of concept for the GPLVM using the
Riemannian Brownian motion as a prior on the latent variables and
succeeded partially. At this point, we have the theory and the compu-
tational framework to train the Riemannian GPLVM but currently, it
does not learn anything useful. Going forward, the �rst step is to get
the model to converge. Later, we would like to implement a mixture
of Brownian motions to capture representations with clusters, e.g �g-
ure 7.8. Once we have a proof of concept, it would be interesting to
extend to the Bayesian GPLVM. With a Riemannian Brownian motion
prior on the latent and potentially with hyperpriors on the Brownian
motion parameters.
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8OUTTRO

This concludes our e�orts in �nding a model in which distances are
computed along the manifold. We started in topology (using symme-
tries as a proxy) and explored four dimensionality reduction models’
ability to preserve the topology in visualisation (chapter 2). All four
turned out to break the symmetry at alarming rates. Our results indi-
cated two bene�ts of the GPLVM; the likelihood of the GPLVM is a
useable measure for distinguishing broken from not broken symme-
tries and clear transitions from preserved to broken in our symmetry
measure.

For these reasons, we explored GPLVMs and their challenges (chap-
ter 3) and addressed some of them with the SAS decoders (chapter 4).
Learnt latent spaces with this approximation tend to capture more
structure in the latent which is suited for our pursued model. This
revives the hope of �nding a model that enables learning from the
representation.

We introduced the foundation of Riemannian geometry (chapter 5)
and stochastic geometry for GPLVM (chapter 6) with the intention
of developing a new model. We do geometry in trained SAS models
and consider Riemannian Brownian motions as priors for the latent
variables in such models (chapter 7). Though we fail to complete
this project, the hope of �nding a model that captures (more of) the
geometry persists.

The intention of capturing geometry is to capture the generating
process of observations. This synthesizes patterns in large amounts of
data that humans would otherwise be unable to grasp and provides
insights in a humanly interpretable format. This is one way humans
can learn from machine learning.
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Abstract. Data visualization tools should create low-dimensional repre-
sentations of data that emphasize structure and suppress noise. However,
such non-linear amplifications of structural differences can have side
effects like spurious clustering in t-SNE (Amid and Warmuth [1]). We
present a more general class of spurious structure, namely broken symme-
try, defined as visualizations that lack symmetry present in the underlying
data. We develop a simple workflow for detection of broken symmetry
and give examples of spontaneous symmetry breaking in t-SNE and other
well-known algorithms such as GPLVM and kPCA. Our extensive, quan-
titative study shows that these algorithms frequently break symmetry,
thereby highlighting new shortcomings of current visualization tools.

1 Motivation

Data visualization is a core tool in the machine learning toolbox. Data sets
are visualized for exploration, to formulate hypotheses and to make modeling
decisions. Visualization is commonly used for interpretation of learned models, e.g.
visualization of latent variables of a generative model to understand representa-
tions. Data visualization is also very useful for debugging. For these applications
faithfulness is a concern — can we trust the structure revealed in a visualization?

Most data of interest is high dimensional, hence can not be directly visualized.
Rather, some form of dimensionality reduction is required, which inevitably will
lead to loss of information. Popular schemes such as t-SNE [27], aim at two or
three-dimensional representations that capture both local and global structure
in data. Fig. 1 shows a two-dimensional t-SNE visualization of images from the
COIL-20 dataset [20]; the given example concerns a wooden object on a turntable
that is viewed from multiple, equidistant angles forming full 360◦ rotation. Such
an incremental physical rotation leads to a set of images with a simple topological
structure which can be quantified by the neighborhood graph. More specifically,
we form a graph with the images as nodes and connect neighboring nodes along
the rotation path to obtain the graph of a circle. The neighborhood graph presents
us with a strong physical symmetry and we naturally expect a visualization of the
data to reveal this pattern by a structure which is topologically equivalent to a
circle. Evidently, this does not happen: The visualization has broken the symmetry
and “invented” a difference between neighboring points that is non-physical.
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Fig. 1. We analyse a set of im-
ages of an object subject to a
360◦ rotation on a turntable. The
nearest neighbor graph forms a
simple circle, however when the
set is visualized using t-SNE the
symmetry is lost.

The significance of transformations and the
ensuing question of symmetry preservation goes
beyond the physical rotations of the COIL data
set. Parameterized transformations are key to
modern data augmentation strategies. The ques-
tion of preservation of symmetries in augmented
data sets is then related to whether given symme-
tries are successfully represented during learning.

Our contribution is to identify a new, gen-
eral class of spurious structures in data visual-
ization, namely spontaneously broken symmetry,
defined as representations that lack symmetry
present in the underlying data. We provide a
topological, quantitative measure to detect bro-
ken symmetry (Sec. 2) allowing for a systematic
study. Our empirical studies (Sec. 3) show that widely used visualization tech-
niques break simple symmetries like rotations, hence, challenging the notion that
they conserve global structure.

2 Symmetries, Graphs, and Persistent Homology

a

b

c

Fig. 2. The latent space of a
model that preserves symmetry
(a) and one that does not (b).
(c) A barcode as a function of
thresholds Bt.

Symmetry groups. We consider symmetries, i.e.
a property of a system that remains unchanged
under a given transformation. The images of the
wooden toy in Fig. 1 are formally equivariant
when the toy is rotated physically on the turn-
table, while the outputs of a deep network for
image based object classification ideally would
be invariant (symmetric) under rotation.

Mathematically, such transformations and
symmetries are described by Lie groups [11]. A
real Lie group is a smooth differentiable manifold
on which points are connected through a group
operation and its inverse. For instance, rotation
matrices form a smooth group with the matrix
multiplication group operation. The unit circle
can then be generated by a single unit vector
and its multiplication with all members of the group of rotation matrices. If the
rotation group governs a physical phenomenon then we expect to observe data
along a path that topologically is a circle, disregarding observation noise.

This paper focus on situations where the governing group is known and
investigate if its structure is preserved by common visualization techniques. This
is achieved by verifying if the group topology remains intact under visualizations.

Discrete approximations. In practice, we only observe a finite number of data
points, rather than the entirety of a group. We can, however, approximate the
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path spanned by the observations with a graph, where points are connected if
their generating group elements are close under the group metric. For instance,
we may connect rotated images in a graph if their rotation angles are similar.

Measuring broken symmetry. For visualization, we map data to a low-dimensional
space (typically R2); we let X = {xi} denote data coordinates in this low-
dimensional space. We can now determine if a symmetry has been preserved
under visualization by asking if the associated graph can be recovered from the
low-dimensional coordinates. As the graph informs as to which points should be
neighbors, we measure for each set of neighbors the radius of the ball needed to
include one in the other’s neighborhood graph. To compare across methods, we
scale all distances by their median

Bmedian = median
(xi,xj)∈G

(‖xi − xj‖), (1)

where G denotes the graph associated with the generating group. We rely on the
median due to its high breakdown point [15]. We, thus, measure

Bij =
‖xi − xj‖
Bmedian

. (2)

We can then threshold this measure such that, we say that a symmetry has
been broken if Bij > Bt for any pair or equivalently, max(Bij) > Bt. We define
Bmax := max(Bij). Note that this measure does not distinguish between one or
multiple instances of broken symmetry.

Persistent homology. The measure above is linked with persistent homology [12].
This is a key mathematical tool in topological data analysis that has been shown
to be robust to perturbations of the input data [6]. Following Carlsson [5], we
place balls on each data point with radius ε and points falling within this ball
defines a neighborhood. This defines a topological space Ωε. By varying ε, we can
create multiple topological spaces and let the Betti numbers bi(Ωε) quantify the
structure of the topological space. The number b0 represents the approximate
number of connected components and b1 the number of circles or holes.

In persistent homology, we study a spectrum of neighborhood sizes. For a
known generating group, we would know its Betti numbers, and may ask which
(if any) ε yield the given Betti numbers in the visualization point set. This allows
us to consider multiple thresholds of our measure (2) of symmetry.

Barcodes. A broken symmetry is defined by the maximum of the normalized
pairwise distances Bmax being greater than a threshold Bt. This we can represent
by a bar ranging from zero to Bmax that visualizes the birth and death of
symmetry. Stacking such bars (as in Fig. 2) yields a barcode. This lets us inspect
the sensitivity of a chosen threshold for multiple models visually as each bar
corresponds to a model [10]. The ‘sharper’ the transition from short bars to long
bars is, the more robust the conclusion is. The barcode in Fig. 2 suggests that a
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Fig. 3. (a) Bmax vs. the perplexity for t-SNE. Each blue line represents the mean over
30 repeats for an object in COIL-20. The dotted, red line marks Bt = 3 and the black
lines represent mean and standard error over all objects. (b) Histogram of models. (c)
Barcode for the mean (black lines in (a) of objects. (d) Latent space in model with
perplexities 50 (Bmax is small). (e) Latent space in model with perplexities 5 (Bmax is
large).

choice of Bt = 3 is robust as any value in Bt ∈ [2, 8] yields the same conclusions.
For quantitative comparisons across experiments we consistently use Bt = 3
though this may be suboptimal for some models.

3 Experiments

We consider four methods representing the spectrum of visualization techniques:
t-SNE matches an exponential distribution of pairwise distances in data

space with a t-distribution of pairwise distances in the latent space [27]. The
visualization is controlled by a perplexity parameter that quantifies the effective
number of neighbors used in the exponential distribution over pairwise distances.
This is a randomized model as implemented in scikit learn [22].

TriMap [2] is a recent method that relies on an elaborate triplet weighting
scheme such that point triplets are weighted with their pairwise distance before
obtaining the final triplet weight ωijk = ζγ (δ + ω̃ijk/ωmax). Here ζγ(u) = log(1 +
γu), where the the locality parameter γ is said to place focus on either local or
global structure. The method is randomized and experiments were performed
using software provided by Amid and Warmuth [2] where the default value is
γ = 500.

Kernel principle component analysis (kPCA) [25] extends classic PCA
through the kernel trick. We use the squared exponential kernel k(xi, xj) =
exp (−||xi − xj ||2/λ), which is controlled by the scale parameter λ. The model is
deterministic and experiments were performed using scikit learn [22].

Gaussian process latent variable model (GPLVM) [17] visualizes data
using a latent representation with a Gaussian process prior with covariance
function kij = θ exp

(
−1/2‖xi − xj‖2

)
+ σ2δij , where xi, xj denote latent points.
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The model is deterministic for a given initial condition of the hyperparameters θ
and σ2, θ0 and σ2

0 . Experiments were performed using Pyro [4].
In all experiments, we vary method parameters over a large range, and

randomized methods are repeated multiple times and reported numbers are
averages. Experimentally, we focus on the most elementary symmetry of interest:
the rotation group. We consider images from (1) COIL-20 where objects are
rotated 360◦ in 72 steps and (2) MNIST where we synthetically rotate images
with up to 360◦ and 5% Gaussian noise is added to the pixel intensities. We
perform a detailed analysis of each model’s behavior, and quantitatively compare
and summarize in Sec. 3.5.

3.1 t-Distributed Stochastic neighborhood Embedding (t-SNE)

To investigate possible symmetry breaking in t-SNE, we fit 30 t-SNE models
to images of each COIL-20 object over a large span of perplexity parameters.
We measure Bmax = maxBij and report averages over the 30 models (the blue
lines in Fig. 3a)1. As perplexity increase, Bmax becomes smaller. This is to be
expected as perplexity controls the smoothness of the t-SNE model. In 73% of all
models, we observe broken symmetry (Bmax > 3). The barcodes reveal that this
percentage is not particular sensitive to the choice of threshold (the red dotted
line correspond to Bt = 3). On MNIST, we observe a similar pattern (omitted
due to space constraints) with 96.5% of all models having a broken symmetry.

In our experience, t-SNE tends to amplify small gaps in the data, leading
to broken symmetry. This is linked to the ‘spurious clustering’ effect observed
by Amid and Warmuth [1]. We generally observe that random initialization of
t-SNE seems to better preserve symmetries than initialization by other methods
such as PCA or Isomap. This former approach requires multiple restarts and
choosing the embedding with lowest KL divergence.

3.2 TriMap

Amid and Warmuth [2] developed TriMap motivated by the spurious clustering
effect in t-SNE, and we hypothesized that TriMap would lead to less symmetry
breaking. However, the evidence in Fig. 4 does not support that conclusion. As
before, each blue line shows the average Bmax for 30 randomly initialized models
for each object in COIL-20 over a wide span of the γ parameter. Here 77% of all
models are estimated to show broken symmetry, which is roughly on par with
t-SNE. The barcode indicates that the choice of threshold is robust, though we
find some inter-object variability (omitted). Our findings for MNIST are similar
with 93.32% estimated symmetry breaking.

3.3 Kernel Principal Component Analysis (kPCA)

In kPCA, we examine symmetries as a function of the kernel scale parameter
λ. The barcode (Fig. 5) shows the robustness of the conclusion of preserved
1 Bmax axis is cut off intentionally as the value for some object diverge
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Fig. 4. (a) Bmax vs. the locality parameter γ for TriMap. Each blue line represents the
mean over 30 repeats for an object in COIL-20. The dotted, red line marks Bt = 3 and
the black lines represent mean and standard error over all objects. (b) Histogram of
models. (c) Barcode for the mean (black lines in (a) of objects. (d) Latent space in
model with γ = 1000. (e) Latent space in model with γ = 0.

symmetry for the mean across COIL-20 objects. For large values of the scale
parameter, the conclusion is robust as Bt can vary, but for smaller values, our
conclusions become sensitive to the specific choice of Bt.

In the non-linear regime (small values of λ), Bmedian (1) is driven to small
values (Fig. 5d) and Bmax diverges. In the linear regime (large values of λ), the
model approaches PCA which explains the flattening (Fig. 5e).

In 42% of models, we observe broken symmetry and note that five objects
in COIL-20 give rise to broken symmetries: Object 2 (wooden toy), object 16
(round bottle), object 16 (ceramic vase), object 18 (tea cup) and object 20 (round
container). Of these, four are rotationally symmetric in the plane of rotation, sup-
porting our hypothesis that additional symmetry can induce symmetry breaking.

On MNIST data, the rate of broken symmetries was 7.23%. One possible
explanation for this reduction, is that if PCA on the MNIST data does not induce
symmetry breaking then fewer models will break the symmetry because kPCA
converges to PCA in the linear regime.

3.4 Gaussian Process Latent Variable Model (GPLVM)

We investigated the GPLVM design space by varying the initial values of the
kernel hyperparameters, θ0 and σ2

0 all with identical initialization of the latent
space (isomap [26]). In Fig 6a, θ0 is fixed and σ2

0 is varying and in Fig 6b, σ2
0

is fixed while θ0 varies. An interesting thing to notice is while we mostly get
consistent results, sometimes a small change in the initial condition induces a
large change in the Bmax leading to somewhat complex behavior.

The loss is often an indicator of broken symmetry as we saw with the KL
divergence for t-SNE. If the parameter space contains symmetry-preserving
models then these generally have lower loss than models that break symmetry.
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Fig. 5. (a) Bmax vs. the scale parameter λ for kPCA. Each blue line represents an
object in COIL-20. The dotted, red line marks Bt = 3 and the black lines represent
mean and standard error over all objects. (b) Histogram of models. (c) Barcode for the
mean of objects (black lines in (a)). (d) Latent space of model with log λ = 3 (Bmax is
large). (e) Latent space of model with log λ = 6 (Bmax is small).

The hyperparameters θ and σ2 converge to the final values independent of the
model preserving the symmetry. This means that the difference in loss between
symmetry-preserving and symmetry-breaking models must be accounted for by
the latent variables. It also means that it is not possible to detect a broken
symmetry from the optimized hyperparameters but rather, one have to consider
the latent variables to detect a broken symmetry.

Like in kPCA, we find broken symmetries in the most symmetric objects.
In the GPLVM, this is linked to the choice of initialization of the latent space.
Overall, we found broken symmetries in 65.48% of the models and similarly in
MNIST (46.32%).

3.5 Summary of experiments

We found broken symmetry in all models with a high prevalence as summarized in
Fig. 7. Note that we did not tune the parameters but varied important parameters
across large ranges and used default parameters for others.

All objects in COIL-20 are indeed symmetric in data space according to
our estimator. One may expect that high-level features may be less susceptible
to broken symmetry than raw data. To investigate we extracted features using
ResNet18 [13] and found no broken symmetries in the extracted features and no
consistent, significant difference when looking at symmetry in the models trained
on extracted features. We noticed that the most symmetric objects generally
experienced more broken symmetry across models.

4 Related Works

Data visualization is important at many steps in the machine learning process.
Visualization is used exploratively to form hypotheses [3], for understanding
latent representations in supervised learning [8] and generative models [9].
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Fig. 6. (a) Bmax vs. the initial value of the noise variance σ2
0 for GPLVM. (b) Bmax

vs. the initial value of the kernel variance θ0 for GPLVM. Each blue line represents an
object in COIL-20. The dotted, red line marks Bt = 3 and the black lines represent
mean and standard error over all objects. (a) Parameter space in σ2

0 with fixed θ0. (b)
Parameter space in θ0 with fixed σ2

0 . (c) Histogram of models in a. (d) Histogram of
models in b. (e) Barcode for the mean of objects (black lines in (a) and (b)). (f ) Latent
space of model with θ0 = 1 and σ2

0 = 0.2. (g) Latent space of model with θ0 = 0.2 and
σ2
0 = 0.2.

The desiderata of visualization are discussed by Kaski et al. [16] and Venna
et al. [28], who argue that visualizations should be trustworthy, meaning that
samples appearing similar (e.g., neighbors) in the visualization should be similar
in a physical sense. Also, they point out that data points close in a physical sense
should be close in visualization. They noted the similarity with the concepts of
precision and recall in information retrieval. Our concept of broken symmetry is
related to the “recall” dimension, i.e., data that are physical neighbors, should
also be visualized as such. The precision and recall criteria together measure the
faithfulness of the visualization, see also Najim [19] for a related quantitative
measure of the preservation of neighborhood relations in visualizations.

The immensely popular visualization scheme t-SNE [27] is constructed with
the aim of representing both global and local structure. The original motivation
for t-SNE included a critique of its predecessor SNE [14] for creating crowded
visualizations, i.e., visualizations that did not show a clear separation of known
clusters. Crowding is closely related to the trustworthiness concept of [16, 28].
By using a long-tailed distribution of the representations, t-SNE aims to fix
the crowding problem. However, this emphasis of local dissimilarity comes at a
price as noted in [18], simple manifolds like lines and sheets are broken apart
in clusters. These clustering problems are examples of broken symmetry in our
definition. Motivated by the problem of over-fitting cluster structure Amid and
Warmuth [2] proposed TriMap. We observed, however, that TriMap cannot heal
the problem of broken symmetry.

For detecting symmetries, we used topological data analysis [5], specifically
persistent homology. Using this, we examined all values of thresholds simulta-
neously rather than study just a single threshold. Conveniently, Cohen-Steiner
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COIL-20, raw data

Bmax

MNIST, raw data

MNIST, extracted featuresCOIL-20, extracted features

Bmax

Bmax

Fig. 7. Each panel shows the rate of broken symmetries in percent at Bt = 3 with the
mean and standard error plotted displayed on the axis for t-SNE, TriMap, kPCA, and
GPLVM. Top, left pane) Summary of results on COIL-20. Top, right pane) Summary
of results on MNIST. Bottom, left pane) Summary of results on features extract from
COIL-20 using ResNet-18. Bottom, right pane) Summary of results on features extracted
from MNIST using ResNet-18.

et al. [6] showed that the persistent homology tool is robust under pertubations
of the data. [23] used persistent homology in its classical form whereas we have
adapted it slightly as we knew which Betti numbers were required to preserve
the symmetry. Our work exploits the coordinate and deformation invariances in
topology and these properties aid in detecting symmetries as various deformations
of the “circle” graph.

5 Discussion

We have investigated to which extend common visualization techniques are able
to preserve simple symmetries, and have largely found the answer to be negative.

5.1 Empirical findings

We have investigated four popular algorithms that also represent different
branches of the literature, namely t-SNE [27], TriMap [2], kPCA [25] and the
GPLVM [17]. We have performed a systematic study of the influence of parameter
choices in these methods by training more than 85.000 models over a wide pa-
rameter span. To quantitatively summarize these models’ performance, we have
introduced a simple scheme for detecting whether known symmetries are broken.
Tools from persistent homology verify that this scheme is generally reliable, with
some deviations for kPCA (see below).

t-SNE was found to be particularly sensitive to local optima and generally we
found a need for multiple restarts. Fortunately, we generally observe that smaller
KL reported values imply less symmetry breaking. Even with such mechanisms
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in place, we still see an overwhelming number of broken symmetries. Symmetry
breaking can, to some extend, be reduced by increasing the perplexity parameter,
but this also limits the flexibility and expressivity of the model.

TriMap, which was developed in part to alleviate problems with t-SNE,
overall had comparable behavior to t-SNE with regards to broken symmetry. The γ
parameter, that controls the trade-off between capturing local or global structure,
was found to have practically no effect with regards to symmetry breaking. We
did not expect this, but have manually verified that broken symmetry is prevalent
across large spans of γ.

kPCA was in a sense the most successful method according to our estimator.
Kernel PCA, however, has a tendency to collapse points on to each other when
mapping only two latent dimensions in the non-linear regime leading to strong
symmetry breaking. On the other hand, kPCA reduces to conventional PCA in
the limit of large kernel length scales, showing less symmetry breaking.

GPLVM was generally found to be sensitive to choice of initial parameters.
While we have found it helpful to consider multiple restarts and choosing the
model with highest likelihood, broken symmetries remain rather prevalent.

High-level features. One could suspect that symmetries are broken more
commonly when working with raw data than with high-level abstract features,
e.g., as those extracted by deep neural networks. We found no broken symmetries
directly in the high-level features though when applying visualization algorithms,
the prevalence was indeed high.

Summary. Our general finding is that symmetries are broken consistently
across the studied methods. It is generally possible to manually tweak parameters
to enforce that a known symmetry remains intact, but such strategies are not
possible when the symmetry is unknown2, e.g. for knowledge discovery. We also
note that default parameters of publicly available implementations of the studied
methods generally perform poorly with regards to broken symmetry.

5.2 Faithful representations

At the heart of our study is the quest for faithful representations, i.e. representa-
tions that reflect the underlying physics of the data generating process. These
have wider applicability than just visualization as studied here. For instance, a
representation that is not faithful will most likely not result in a fair prediction.
A broken symmetry can be viewed as model that violates the Lipschitz continu-
ity condition. Individual fairness [7] can then no longer be ensured as similar
individuals should be treated similarly.

Similar statements can be made for interpretable models, where ‘almost
discontinuous’ models are generally difficult to interpret. From a purely predictive
point of view, it is strictly not required that representations are faithful, though
there is some evidence in that direction [24].

2 It should be emphasized that while we consider known symmetries, we only do so in
order to make quantitative statements.
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Finally, we note that visualization may be particularly sensitive to symmetry
breaking as we tend to embed onto R2. While it is well-known that only few
graphs (namely the planar ones) can be embedded in R2, then all graphs can be
embedded in R3 [21]. This suggests that symmetries are likely to be broken when
data is forced onto a two-dimensional view (as is often the case in visualization),
and indeed our experiments indicate that symmetry breaking is less frequent when
embedding into three or more dimensions (omitted due to space constraints).

5.3 Concluding remarks

We have here pointed to a previously unnoticed problem in visualizations, namely
broken symmetries. Through a systematic study of more than 85.000 trained
models, we have found an alarming rate at which even the most simple symmetries
are spontaneously broken during data visualizations. This suggest a need for
both new methods that can reliably visualize high-dimensional data, but also for
more systematic and quantitative evaluations of visualization techniques.

We have purposefully not investigated more complex symmetries as these
raise complications that are beyond existing techniques; for instance, the two-
dimensional torus is mathematically impossible to embed in R2 without breaking
the underlying symmetry. This calls for visualization techniques that embed onto
curved surfaces in order to preserve symmetries, just as we use a sphere when we
visualize global geoinformatics patterns.
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Abstract

Decoders built on Gaussian processes (GPs) are enticing due to the marginalisation
over the non-linear function space. Such models (also known as GP-LVMs) are
often expensive and notoriously difficult to train in practice, but can be scaled using
variational inference and inducing points. In this paper, we revisit active set approxi-
mations. We develop a new stochastic estimate of the log-marginal likelihood based
on recently discovered links to cross-validation, and we propose a computationally
efficient approximation thereof. We demonstrate that the resulting stochastic active
sets (SAS) approximation significantly improves the robustness of GP decoder
training, while reducing computational cost. The SAS-GP obtains more structure
in the latent space, scales to many datapoints, and learns better representations than
variational autoencoders, which is rarely the case for GP decoders.

1 Introduction

Generative models can be viewed as regression models from unknown inputs. That is, we assume
x = f(z), where f is an unknown mapping from latent variables z to observations x. Given the
inherent difficulty of this task, it is perhaps sensible to marginalize the unknown mapping f to avoid
the brittleness of point estimates. This is the driving idea in the Gaussian process latent variable
(GP-LVM) (Lawrence, 2005), which places a Gaussian process (GP) prior over the unknown mapping
f and marginalizes accordingly. This contrasts contemporary generative models that predominantly
operate with point-estimates of f (Kingma and Welling, 2013; Sohl-Dickstein et al., 2015). While
conceptually elegant, the GP-LVM is, however, notoriously difficult to train and the conceptual
benefits are often not realized in practice.

Exact inference involves computing the marginal likelihood, but (like other GP methods) its cubic
complexity in the number of observations O(N3) limits the scalability of the GP-LVM. However, the
idea of marginalizing the decoder is sufficiently attractive to motivate the development of scalable
and reliable training techniques: Its Bayesian formulation (Titsias and Lawrence, 2010) variationally
integrates out the latent variables z to obtain an evidence lower bound. Using auxiliary inducing
variables, Snelson and Ghahramani (2006) expanded GP regression, which is also applicable in the
unsupervised learning setting (i.e. the GP-LVM).

However, considering inducing variables here involves dangers. First, the convergence of inducing
points is well-studied in the supervised GP scenario, where inputs are fixed, but it differs from the
unsupervised case where the inputs are estimated. Bauer et al. (2016) notes that even in the supervised
setting, inducing points are “not completely trivial to optimise, and often tricks [...] are required”,
and we hypothesize that this is further complicated in the unsupervised setting where we optimize
both latent and inducing variables while they interact.

In this paper, we revisit active sets for scaling GP decoders, a sparse approximation predominantly
used before the seminal work of Snelson and Ghahramani (2006). From a practical viewpoint, active
∗Equal contribution.
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sets are fixed inducing variables that belong to the training dataset. We make links between such
active sets and cross-validation, allowing us to lean on a recent result from Fong and Holmes (2020)
which, in turn, links cross validation and the log-marginal likelihood. We show how these links
allow for a stochastic estimate of the log-marginal likelihood, and that active sets can be seen as a
computationally efficient approximation of this. Practically, this amounts to repeatedly and randomly
sampling active sets rather than trying to find the optimal active set. We denote this framework as
stochastic active sets (SAS). We demonstrate that SAS consistently results in significantly better-fitted
GP decoders over models trained using inducing points.

Historical remarks. Methods based on subsets of data diminish the computational demand and
were first introduced in a GP context in the foundational work on sparse approximations by Smola
and Bartlett (2001). Back then, Quiñonero-Candela and Rasmussen (2005) had already pointed out
the main difficulties behind the optimal selection of subsets:

“Traditionally, sparse models have very often been built upon a carefully chosen
subset of the training inputs. [...] In sparse Gaussian processes it has also been sug-
gested to select the inducing inputs Xu from among the training inputs. Since this
involves a prohibitive combinatorial optimization, greedy optimization approaches
have been suggested [...]. Recently, Snelson and Ghahramani (2006) have proposed
to relax the constraint that the inducing variables must be a subset of training/test
cases, turning the discrete selection problem into one of continuous optimization.”

This explains how inducing variables reshaped the Gaussian process community, effectively banishing
other subset-based methods. Our work builds on the advances made in stochastic optimization in the
time since active sets were left behind. We show a third way over those considered by Quiñonero-
Candela and Rasmussen (2005): instead of optimizing the active set, we average with respect to it.
This simplifies matters notably and makes them more robust.

To justify our approach, we establish a link between active sets and cross validation (CV). The latter
has a long history for model selection in GPs, dating at least to the seminal work of Wahba (1990).
For probabilistic models, Rasmussen and Williams (2006) point to the utility of CV variants within
negative log-probabilities. Building on results from Fong and Holmes (2020) linking CV and log-
marginal likelihoods, we argue that, for GP-LVMs, active sets combine more gracefully with stochastic
optimization. The remainder of this paper elaborates on this viewpoint and demonstrates it empirically.

2 Gaussian Process Decoders

The Gaussian process latent variable model (GP-LVM) (Lawrence, 2005) defines a decoder which is
a non-linear mapping2 x = f(z) from the latent space Z ∈ RQ to observation space X ∈ RD. The
prior on this map is a Gaussian process (GP) so it is drawn like f ∼ GP(0, kθ(·, ·)), where kθ is the
covariance function or kernel andKNN denotes the evaluated kernel function so the i, jth element of
KNN equals kθ(zi, zj). For clarity, we omit the dependence on covariance function parameters, θ.

The original version of the GP-LVM starts from one-dimensional observations x = {xn}Nn=1 and
latent variables z = {zn}Nn=1, and factorises the joint distribution of the model as p(x, f |z) =
p(x|f, z)p(f |z). Here the conditional distributions correspond to the likelihood model and the prior

p(x|f, z) =
N∏

n=1

N (xn|f(zn), σ2), p(f |z) = N (f(z)|0,KNN ). (1)

When the data dimensionality is D>1, the model factorises across dimensions, and we have different
mappings f per dth feature. One of the principal assumptions of the GP-LVM is that the prior
p(f) regularises the smoothness of all mappings equally, so we only consider one kernel. This
assumption can be relaxed if needed, but at increased computational cost and with more learnable
hyperparameters.

2We use {x,z} to denote observations and latent variables respectively, since we do not consider inducing
variables. Notice that Lawrence (2005) use the notation {y,x}.
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Mapping marginalization. A GP prior over the non-linear decoder f allows for marginalisation of
f to obtain a closed-form expression of the marginal likelihood of the GP-LVM

p(x|z) =
∫
p(x|f, z)p(f |z)df = N (x|0,KNN + σ2I).

On a log-scale, this gives the following objective function (Lawrence, 2004), which can be optimized
w.r.t. both hyperparameters θ and latent variables z

L = −DN
2

log 2π − D

2
log |KNN + σ2I| − 1

2
tr(
(
KNN + σ2I

)−1
xx>). (2)

The difficulties of training the GP-LVM using this objective function are evident above, as the
evaluation cost grows cubically with the number of observations N . Furthermore, notice that
observations x are no longer independent (in contrast with Eq. 1) once f is integrated out. The
log-marginal likelihood will be the starting point for our approach in Sec. 3.

Bayesian extension. In the seminal works of Lawrence (2004, 2005), the GP-LVM is first derived as a
non-linear extension of probabilistic principal component analysis (PPCA) (Tipping and Bishop, 1999).
Considering the isotropic prior on the latent variables z, such that p(zn) = N (zn|0, I) ∀zn ∈ z,
the general idea is to optimize them rather than introducing marginalization. From a full probabilistic
perspective, one could also be interested in the posterior distribution over z, which leads to using
Bayesian inference for the GP-LVM approach. This is the driving idea of Titsias and Lawrence (2010),
where variational methods are introduced. In particular, latent variables are not easy to marginalize,
mainly due to their presence in the kernel mappings, so a lower-bound on the log-marginal likelihood
log p(x) = log

∫
p(x|z)p(z)dz of the model is derived.

So far, the Bayesian GP-LVM model (Titsias and Lawrence, 2010) has been considered as the
standard methodology to apply GPs to large unsupervised datasets with 104−106 observations, e.g.
in regression (Bui and Turner, 2015), classification (Gal et al., 2015) and representation learning
(Märtens et al., 2019) tasks.

3 Stochastic Active Sets

Our key objective is a computationally efficient estimate of the log-marginal likelihood in Eq. 2, as
this is known to be a good measure of generalization performance (Rasmussen and Ghahramani,
2000; Germain et al., 2016). Another popular measure of generalization performance is cross
validation (CV) (Geisser and Eddy, 1979; Vehtari and Lampinen, 2002), which is arguably mostly
used outside the realm of Bayesian models. Recently, Fong and Holmes (2020) linked these two
measures, effectively showing that the marginal likelihood is equivalent to the average over exhaustive
leave-R-out CV scores. In particular, the average is w.r.t. the size of the hold-out set. More precisely,
let

SCV(x|R) =
1

C
C∑

p=1

1

R

∑

n∈Rp

log p(xn|xAp , z) =
1

R
EAp


 ∑

n∈Rp

log p(xn|xAp , z)


 , (3)

denote the leave-R-out CV using log-predictive scoring functions log p(xn|xAp , z). HereAp denotes
the active set indices of the training data, such thatAp ⊂ {1, 2, . . . , N} andRp = {1, 2, . . . , N}\Ap
are the remaining hold-out samples. The subscript p ∈ C denotes the permutation, and we average
over all C =

(
N
R

)
possible hold-out sets. We use use R to indicate the size of the hold-out set

Rp (R ≡ |Rp|) and let A ≡ |Ap| = N − R. If we average SCV(x|R) over all possible sizes of
the hold-out set, then Fong and Holmes (2020) has shown that we recover the exact log-marginal
likelihood,

log p(x|z) =
N∑

r=1

SCV(x|r) = SCCV(x|R) + SPCV(x|R). (4)

Here, SPCV(x|R) = EA[log p(xA|zA)] and SCCV(x|R) =
∑R
r=1 SCV(x|r) is the cumulative CV

score, which reduces to a sum of expectations over the predictive factors.3 Further details on SPCV
and SCCV can be found in the Appendix. Fong and Holmes (2020) used Eq. 4 to argue in favor of
using the marginal likelihood over cross-validation for model selection.

3We drop the permutation subscript p in A andR to avoid cluttered notation.
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Figure 1: Schematic graphical model of the correlation structure given different permutations p of the
active set A1,A2, . . . ,AC for five observations {x1, . . . ,x5}. Thick red lines indicate that we build
full covariance densities between observations included in xA. Only-blue variables are considered
conditionally independent among them w.r.t. to the red colored ones. Dashed lines indicate the
conditional probability factors p(xn|xA, z) that we can easily compute.

Stochastic approximation. We take a slightly different view than Fong and Holmes (2020) and
argue that Eq. 4 can be the grounds for an efficient stochastic gradient (Robbins and Monro, 1951)
of the log-marginal likelihood suitable for training. In the context of GPs, we have that conditional
probabilities for SPCV(x|R) and SCCV(x|R) in Eq. 4 are

p(xA|zA) = N (xA|0,KAA + σ2
nI), p(xn|xA, z) = N (xn|mn|A, cn|A), (5)

where we used Eq. 2.22 from Rasmussen and Williams (2006) to obtain

mn|A =KnA(KAA + σ2
nI)−1xA,

cn|A =Knn + σ2
nI−KnA(KAA + σ2

nI)−1K>nA,

andKAA ∈ RA×A has entries k(zi, zj) with zi, zj ∈ zA. The computational cost of SPCV(x|R) is
O(A3), while log p(xn|xA, z) can reuse the matrix inversionK−1AA to only have an additional linear
cost. Clearly, we can obtain an unbiased stochastic estimate of the log-marginal likelihood by first
uniformly sampling R, second making a random split permutation into train and hold-out dataR and
finally by evaluating

log p(x|z) ≈
∑

n∈R
log p(xn|xA, z) + log p(xA|zA), (6)

where we remark that the summation can be mini-batched. This approach is equivalent to the
decomposition log p(x|z) = log p(xR|xA, z) + log p(xA|zA) and it also assumes conditional inde-
pendence among observations xn for n∈R. This is similar to the standard active set approximation
(Seeger et al., 2003) previously discussed, and we may think of A as a stochastic active set (SAS).

However, the estimate of log p(x|z) still has the same computational complexity O(N3) as the
usual deterministic approach, since we may sample A=N in the worst case. Instead, we propose
to make a stochastic approximation where we choose the size of the active set deterministically
through a user-specified parameter, such that the computational cost reduces to O(A3), as in sparse
approximations based on inducing points. This does not need to be unbiased; empirically we find that
most often the approximation behaves as a lower bound to the true marginal likelihood, and that, in
all instances, it is a rather close approximation. We include a longer discussion on this point in the
Appendix and the training methodology using SAS is in Alg. 1.

3.1 Extension for Bayesian GP decoders

We next seek to extend the previous SAS approach to the Bayesian GP-LVM, where we aim to obtain
the posterior distribution p(z|x). From this perspective, we are interested in marginalising latent
variables z to obtain the marginal likelihood p(x) of the model.4 However, this integration is not
possible, as latent variables appear non-linearly in the kernel function (Titsias and Lawrence, 2010).
Alternatively, we consider the variational inference scheme, where an auxiliary distribution q(z) is

4Notice that the probabilistic objective function changes between standard and Bayesian versions of the
GP-LVM. In the former case, we usually look for p(x|z) as the marginal likelihood w.r.t. the mapping f . This is
the one usually considered in supervised GP tasks. In the latter, we refer to p(x) as the marginal likelihood of
the model, since z are also integrated out.
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introduced into the formulation. Therefore, we are able to build the evidence lower bound (ELBO) of
the model using Jensen’s inequality as

log p(x) ≥
∫
q(z) log p(x|z)p(z)dz = Eq(z) [log p(x|z)]− KL [q(z)||p(z)] , (7)

which is equivalent to the one obtained by Titsias and Lawrence (2010, Eq. 8). At this point, the
computational cost isO(N3), since the ELBO requires evaluating log p(x|z), where we invertKNN .
The expectation in Eq. 7 can also benefit from a stochastic SAS approximation, just as with inducing
points (Hensman et al., 2013). Thus, the lower bound can be approximated as

LELBO ≈
∑

n∈R
Eq(zn) [log p(xn|xA, z)] + Eq(zA) [log p(xA|zA)]−

N∑

n=1

KL[q(zn)||p(zn)], (8)

where we consider mean-field VI to factorize the distribution q(z). The Bayesian GP-LVM shares
high-level similarities with other generative models that marginalize the latent variable according to a
simple prior (Rezende and Mohamed, 2015). The proposed SAS approximation (8) scales similarly
to mini-batched inducing point approximations, but we will later see that SAS behaves notably better
in practice. Algorithmically, the approach is simple, and the summary code is provided in Alg. 2.

Algorithm 1 SAS for GP decoders

1: Input: Observed data x
2: Parameters: Initialize θ, φ // θ,z if NA

3: for e in epochs do
4: for b in batches do
5: Sample xbatch ∼ x
6: xR,xA ← random_split(xbatch)
7: if amortized then
8: Get {zR, zA} ← g(xR,xA|φ)
9: end if

10: ComputeK−1AA // via Cholesky
11: Evaluate log p(xA|zA)
12: Evaluate log p(xn|xA, z), ∀xn∈xR
13: Evaluate Eq. 6
14: do Adam(θ,φ) step for L
15: end for
16: end for
NA: Non-amortized.

Algorithm 2 SAS for Bayesian GP decoders

1: Input: Observed data x
2: Parameters: Initialize θ, φ // θ, µ, σ if NA

3: for e in epochs do
4: for b in batches do
5: Sample xbatch ∼ x
6: xR,xA ← random_split(xbatch)
7: if amortized then
8: Get µz ← gµ(xR,xA|φ)
9: Get σz ← gσ(xR,xA|φ)

10: end if
11: Sample {zR, zA} ∼ q(µz, σz) // RT

12: ComputeK−1AA // via Cholesky
13: Evaluate L in Eq. 8
14: do Adam(θ,φ) step for LELBO
15: end for
16: end for
NA: Non-amortized, RT: Reparametrization trick.

3.2 The Role of Amortization

Early after the emergence of the seminal GP-LVM (Lawrence, 2005), the lengthy optimization
required obtaining a result in which all latent representations zn became noticeable. An additional
consideration is that, while most approaches to non-linear low-dimensionality reduction focus on pre-
serving similarities, the GPLVM does the opposite. This property was initially discussed by Lawrence
and Quiñonero-Candela (2006), since in some sense the GP-LVM is dissimilarity preserving, such
that different observations will generally be represented far away from each other. In practice, we are
often more interested in embeddings that reflect the true distance between the observed objects in their
representations, particularly those that are close together. This observation inspired back constraints
for locality preservation (Lawrence and Quiñonero-Candela, 2006), which enforces latent variables
z to be an explicit function of observations z = g(x|φ) parameterized by φ. This is similar to the
stochastic encoder applied in variational autoencoders (Kingma and Welling, 2013; Rezende and
Mohamed, 2015). This idea was also extended to the VI framework in GP-LVMs by Bui and Turner
(2015) using a recognition model, e.g. q(zn)=N (zn|gµ(xn|φ), gσ(xn|φ)) and more recently, to
accelerate hyperparameter learning in GPs with hierarchical attention networks (Liu et al., 2020).

In our context, we assume the mappings to be neural networks (NNs) like Bui and Turner (2015),
referring to them as amortization networks. We find such networks accelerate learning very nicely
when used in conjunction with SAS. It is also worth noting that amortization has been empirically
shown to improve generalization performance (Shu et al., 2018).
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4 Related Work

Marginal likelihood approximations were used in GPs (Smola and Bartlett, 2001; Csató and Opper,
2002) before the apparition of pseudo-inputs (Snelson and Ghahramani, 2006) and the associated
variational inference framework (Titsias, 2009). In the former case, stochastic approximations to the
ELBO were first presented by Hensman et al. (2013, 2015), in line with the Bayesian counterpart
of SAS. In terms of active sets, Seeger et al. (2003) empirically observed that the approximation
was generally stable for optimisation, even if the size of A was a small fraction of the training size
only. However, they also observed that random selection of active sets led to non-smooth fluctuations,
making it difficult to converge through exact gradient ascent. Particularly, the issue with re-selecting
of A motivated Snelson and Ghahramani (2006) as a smoother optimization alternative, and we find
that SAS also circumvents this problem via stochastic estimates as shown in Sec. 5.

The connection between cross-validation and GPs was already described in Rasmussen and Williams
(2006) as an alternative for model selection. However, the equivalence between exhaustive CV and
the log-marginal likelihood provided in Fong and Holmes (2020) provides a novel perspective that
we exploit. Additionally, the notion of back constraints has recently been considered in Lalchand
et al. (2022) for GP-LVMs with inducing points, where a doubly stochastic formulation is used. More
recently, amortization networks have been used to drastically reduce the number of inducing points in
supervised GPs.

5 Experiments

In this section, we evaluate the performance of the SAS approach for stochastic learning of GP
decoders, both the deterministic GP-LVM (Lawrence, 2004) and its Bayesian counterpart (Titsias
and Lawrence, 2010). For this purpose, we consider three different datasets: MNIST (LeCun et al.,
1998), FASHION MNIST (Xiao et al., 2017) and CIFAR-10 (Krizhevsky, 2009). For a fair comparison
of our model with baseline methods, we use the same amortization across models, namely a neural
network (three linear layers ReLU activation functions)5 for all models in all experiments and all
GPs use an quadratic exponentiated kernel. In all experiments, the learning rates are set in the range
[10−4, 10−2], the maximum number of epochs considered is 300 and we use the ADAM optimizer
(Kingma and Ba, 2015). For SAS experiments, we only consider batch sizes greater than the active
set size, as this is a requirement for SAS.

Performance metrics of the SAS-GP decoders are given in terms of the negative log-predictive density
(NLPD), root mean-square error (RMSE) and mean absolute error (MAE). In all cases, we optimize
w.r.t. an approximation to the log-marginal likelihood log p(x|z) in the deterministic scenario or w.r.t.
a lower bound on the log p(x) of the model in the Bayesian cases. We also provide PYTORCH code
that allows for reproducing all experiments and models.6 We monitor the run-time of convergence
as we suspect that rotating active sets (see Fig. 1) across the dataset is a fast way to capture the
correlation structure of the regression problem.

5.1 Representation performance

First, we analysed our SAS approach and the approximate optimization procedure on an unsupervised
version of MNIST, FMNIST and CIFAR-10, where we took the full training corpus for learning two-
dimensional latent representations of images. The approximation curves are included in Fig. 2, where
we observe convergence in less that 2h runtime in CPU for most cases. For all experiments, we can
observe that for larger active set sizes A, the SAS approaches take longer time to complete the 300
epochs, as the computational cost of inversion is higher.

Evaluation with SOTA methods. We also tested the performance of representation learning in the
state-of-the-art methods with and without GPs for unsupervised scenarios. Results are shown in Fig.
4. We include a short description of the models considered:

• SAS-GP DECODER — It uses stochastic active sets to approximate the log-marginal likeli-
hood log p(x|z). The training methodology is described in Alg. 1.

5Please see the supplementary material for more details.
6The code is publicly available in the repository: https://github.com/pmorenoz/SASGP/ including

baselines.
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Figure 2: Approximate log-marginal likelihood (upper row) for SAS and ELBO curves (lower row)
for Bayesian SAS. We fix the batch size in Alg. 1 to be B =1024 and study the convergence for
different active set sizes A. All values in the curves displayed are per-epoch.

°1.0 °0.5 0.0 0.5 1.0
z – First dimension

°2.0

°1.5

°1.0

°0.5

0.0

0.5

1.0

z
–

S
ec

on
d

d
im

en
si

on

SAS – Latent representation of MNIST (Test data)

°2 °1 0 1 2
z – First dimension

°3

°2

°1

0

1

z
–

S
ec

on
d

d
im

en
si

on
SAS Bayesian – FashionMNIST (Test data)

°2.5 °2.0 °1.5 °1.0 °0.5 0.0 0.5 1.0
z – First dimension

°2.0

°1.5

°1.0

°0.5

0.0

0.5

1.0

z
–

S
ec

on
d

d
im

en
si

on

SAS – FashionMNIST (Test data)

<latexit sha1_base64="kO+9lDPZPdbfn8EEXCHV4R1k5Oc=">AAACFnicbVDLTgJBEJzFF+Jr1aOXicTEC2RXjXpEvXjwgEEeCRAyOzQwYfaRmV4jbvgP/Rk9GTXx4NW/cUAOCtZlarqqO13tRVJodJwvKzU3v7C4lF7OrKyurW/Ym1sVHcaKQ5mHMlQ1j2mQIoAyCpRQixQw35NQ9foXI716C0qLMLjBQQRNn3UD0RGcoSm17MMGwh0mpbMSzeXoFUMIkCowM7RhYxMd0oYXyrYe+OZJ7octO+vknTHoLHEnJEsmKLbsj0Y75LFvJnLJtK67ToTNhCkUXMIw04g1RIz3WRfqhgbMB91MxuGGdK8TKoo9oOP/b2/CfD1aynh8hj09rY2K/2n1GDunzUQEUWzicmMxWieWFEM6uhFtCwUc5cAQxpUwW1LeY4pxNJfMmPjudNhZUjnIu8d59/ooWzifHCJNdsgu2ScuOSEFckmKpEw4eSTP5I28Ww/Wk/Vivf5YU9akZ5v8gfX5DZIAn54=</latexit>

SAS – Latent representation z
<latexit sha1_base64="U9viXL+uEdd9doC0R2AQf3SdEbs=">AAAB9nicbZDLTgIxFIY7eEO8oSzdNBITV2TGGHWJuHGJQS4JTEinnIGGziXtGcNkwqvoyqg7H8QX8G0syELBf/X1/H+Tc34vlkKjbX9ZubX1jc2t/HZhZ3dv/6B4eNTSUaI4NHkkI9XxmAYpQmiiQAmdWAELPAltb3w789uPoLSIwgdMY3ADNgyFLzhDM+oXSz2ECWY1loIWLKSNm8a0XyzbFXsuugrOAspkoXq/+NkbRDwJIEQumdZdx47RzZhCwSVMC71EQ8z4mA2hazBkAWg3my8/pad+pCiOgM7fv7MZC7ROA89kAoYjvezNhv953QT9azcTYZwghNxEjOcnkmJEZx3QgVDAUaYGGFfCbEn5iCnG0TRVMOc7y8euQuu84lxWnPuLcrW2KCJPjskJOSMOuSJVckfqpEk4SckzeSPv1sR6sl6s159ozlr8KZE/sj6+AWN2klA=</latexit>

Bayesian SAS
<latexit sha1_base64="tLzf4QXy2VSY26TyKVC/9slK+ic=">AAAB73icbVDLTsMwEHTKq5RXgSMXiwqJU5UgBBwruHAsEn1Ibagcd9NatZNgbxBV1O+AEwJu/As/wN/glhygZU6zO7PanQ0SKQy67pdTWFpeWV0rrpc2Nre2d8q7e00Tp5pDg8cy1u2AGZAiggYKlNBONDAVSGgFo6up3noAbUQc3eI4AV+xQSRCwRna1l0X4RENz1RkV0165YpbdWegi8TLSYXkqPfKn91+zFMFEXLJjOl4boJ+xjQKLmFS6qYGEsZHbAAdSyOmwPjZ7OoJPQpjTXEIdFb/9mZMGTNWgfUohkMzr02b/2mdFMMLPxNRkiJE3FqsFqaSYkyn4WlfaOAox5YwroW9kvIh04yjfVHJxvfmwy6S5knVO6t6N6eV2mX+iCI5IIfkmHjknNTINamTBuFEk2fyRt6de+fJeXFef6wFJ5/ZJ3/gfHwDTEiQuw==</latexit>

mnist
<latexit sha1_base64="q7lwc3TYTwlb1dOXIsCN45KzWl4=">AAAB+XicbVDLTsMwEHTKq5RXAIkLF4sKiVOVIAQcK7hwLBJ9SG1UOe6mseo8ZG8QVejHwAkBN36DH+BvcEsO0DKn8cxYuzt+KoVGx/mySkvLK6tr5fXKxubW9o69u9fSSaY4NHkiE9XxmQYpYmiiQAmdVAGLfAltf3Q99dv3oLRI4jscp+BFbBiLQHCGRurbBz2EB9Q8D5gOjUKj2Ayd9O2qU3NmoIvELUiVFGj07c/eIOFZBDFyybTuuk6KXs4UCi5hUullGlLGR2wIXUNjFoH28tn+E3ocJIpiCHT2/p3NWaT1OPJNJmIY6nlvKv7ndTMMLr1cxGmGEHMTMV6QSYoJndZAB0IBRzk2hHElzJaUh0wxjqasijnfnT92kbROa+55zb09q9aviiLK5JAckRPikgtSJzekQZqEk0fyTN7Iu5VbT9aL9foTLVnFn33yB9bHN6uUlEQ=</latexit>

fashion mnist
<latexit sha1_base64="q7lwc3TYTwlb1dOXIsCN45KzWl4=">AAAB+XicbVDLTsMwEHTKq5RXAIkLF4sKiVOVIAQcK7hwLBJ9SG1UOe6mseo8ZG8QVejHwAkBN36DH+BvcEsO0DKn8cxYuzt+KoVGx/mySkvLK6tr5fXKxubW9o69u9fSSaY4NHkiE9XxmQYpYmiiQAmdVAGLfAltf3Q99dv3oLRI4jscp+BFbBiLQHCGRurbBz2EB9Q8D5gOjUKj2Ayd9O2qU3NmoIvELUiVFGj07c/eIOFZBDFyybTuuk6KXs4UCi5hUullGlLGR2wIXUNjFoH28tn+E3ocJIpiCHT2/p3NWaT1OPJNJmIY6nlvKv7ndTMMLr1cxGmGEHMTMV6QSYoJndZAB0IBRzk2hHElzJaUh0wxjqasijnfnT92kbROa+55zb09q9aviiLK5JAckRPikgtSJzekQZqEk0fyTN7Iu5VbT9aL9foTLVnFn33yB9bHN6uUlEQ=</latexit>

fashion mnist

Figure 3: Latent representation in a 2-dimensional space Z for the 10 MNIST and FMNIST classes
learnt with SAS and Bayesian SAS. Notice that the likelihood model of the GP decoder is controlled
by a vanilla RBF kernel. The examples have been obtained using an active set size A=800.

Figure 4: Illustration of latent space mappings zn ∈ Z on test data for different SAS models and
baselines (rows) and different datasets (columns). The models have been trained on full MNIST and
FMNIST.
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• BAYESIAN SAS-GP DECODER — It uses stochastic active sets to approximate the ELBO in
Eq. (8) on log p(x). See Alg. 2.

• BAYESIAN GP-LVM — It is based on the model in Titsias and Lawrence (2010). Means and
variance parameters are generated by an amortization NN as in Bui and Turner (2015). The
model is trained using stochastic variational inference (Hensman et al., 2013).

• GP-LVM — We used the model proposed by Lawrence (2005) enhanced with an NN
encoding to the latent space. The model is trained using maximum likelihood (ML).

• VARIATIONAL AUTOENCODER (VAE) — (Kingma and Welling, 2013) The NN encoder has
the same architecture as the amortization function used in the SAS-GP models.

For the SAS-GP decoder and GP-LVM, a neural network encodes the latent variables. Likewise,
for the Bayesian SAS-GP decoder and the Bayesian GP-LVM, two neural networks each encode
the latent means and latent variances. We refer to this encoding as amortization. All models use a
Gaussian likelihood7.

Table 1: Comparative metrics for SAS and Bayesian SAS on MNIST, FMNIST and CIFAR-10.
MODEL SAS BAYESIAN SAS

ACTIVE SET SIZE A = 100 A = 200 A = 400 A = 100 A = 200 A = 400

MNIST / RMSE ↓ 2.55± 0.98 2.47± 0.98 2.41± 0.93 2.16± 0.02 2.08± 0.02 1.99± 0.02
MNIST / MAE ↓ 1.61± 0.97 1.55± 0.99 1.51± 0.96 1.11± 0.02 1.04± 0.02 0.96± 0.01
MNIST / NLPD ↓ 2.99± 1.41 2.92± 1.38 2.84± 1.31 2.33± 0.03 2.26± 0.02 2.17± 0.02

FMNIST / RMSE ↓ 2.37± 0.95 2.31± 0.94 2.25± 0.90 1.99± 0.17 1.88± 0.20 1.85± 0.13
FMNIST / MAE ↓ 1.48± 0.91 1.42± 0.91 1.39± 0.89 1.11± 0.02 1.02± 0.03 0.98± 0.02
FMNIST / NLPD ↓ 2.76± 1.33 2.71± 1.31 2.65± 1.23 2.16± 0.18 2.07± 0.19 2.04± 0.12

CIFAR10 / RMSE ↓ 2.66± 1.08 2.55± 1.06 2.55± 1.03 2.74± 1.07 2.64± 1.08 2.57± 1.02
CIFAR10 / MAE ↓ 1.77± 1.06 1.69± 1.06 1.69± 1.02 1.84± 1.03 1.76± 1.05 1.71± 1.03
CIFAR10 / NLPD ↓ 3.20± 1.55 3.07± 1.44 3.32± 1.89 3.24± 1.53 3.14± 1.53 3.06± 1.45

All metrics are (×10−1).

5.2 Evaluation metrics

In this section, we are interested in the evaluation of the GP decoder with the standard error metrics
used for GPs. In Tab. 1 we provide RMSE, MAE and NLPD for the three datasets considered in this
experiment. Interestingly, the performance usually improves with larger active set sizes A, as the SAS
model captures the underlying correlation of datapoints better and this enhances the approximation.
This happens for both deterministic and Bayesian cases. We observe a similar trend for the NLPD
metric which is generally better for larger active set sizes A. This can also be noticed in Fig. 2, where
loss curves have a better convergence for the lowest A.

Classification accuracy. We are interested in evaluating the structure of the representation. For
this purpose, we trained a (one) nearest neighbour classifier on the encoded, two-dimensional latent
variables and we tested the accuracy using encoded test data. Tab. 2 shows the mean and standard
deviations of test the accuracy.

Table 2: Classification accuracy (↑) on 2-dim. latent space Z .
MODEL MNIST FMNIST

BAYESIAN SAS-GP DEC. (ours) 0.63± 0.022 0.63± 0.020
BAYESIAN GP-LVM 0.18± 0.033 0.24± 0.043
VAE 0.54± 0.026 0.58± 0.008

Runtime and convergence of SAS approximation. The loss curves obtained for the (sparse)
Bayesian GP-LVM model and the Bayesian SAS-GP decoder are shown in Fig. 5. We observe
that the two methods scale similarly, but that SAS is faster by a notable constant within stochastic
optimization. Additionally, we observe the performance of the SAS approximation to closely fit the
exact log-marginal likelihood log p(x|z). For the plot in Fig. 5, we computed the exact probability
for a subset of MNIST N=40, 000 samples.

7Pytorch (Paszke et al., 2019) and Pyro (Bingham et al., 2019) are available on public repositories.

8



0 1 2 3 4
Run Time [hours]

°1.25

°1.00

°0.75

°0.50

°0.25

0.00
£106 SAS vs. log p(x|z)

Log-marginal lik.

batch= 64, A = 50

batch= 128, A = 50

batch= 128, A = 100

batch= 248, A = 100

batch= 248, A = 200

batch= 512, A = 200

batch= 512, A = 400

batch= 1024, A = 400

batch= 1024, A = 800

0 1 2 3
Run Time [hours]

°3

°2

°1

0

1

E
L
B

O
£1012

Batchsize Inducing points
200

400

600

800

1000

200

400

600

800

1000

0 10 20 30 40
Run Time [hours]

°1.0

°0.5

0.0

0.5

E
L
B

O

£1015

Batchsize Inducing points
200

400

600

800

1000

200

400

600

800

1000

<latexit sha1_base64="TrhhPtCgRhvi1sFw/aagZxVz/wA=">AAACBHicbVBLTwIxGOz6xPW16tFLlZh4gexyUI+IBzxosgZ5JOyGdMsHNHQfabsmhHDVP6Mno978Bf4B/40FiVFwTtOZafLNBAlnUtn2p7GwuLS8sppZM9c3Nre2rZ3dmoxTQaFKYx6LRkAkcBZBVTHFoZEIIGHAoR70L8Z+/Q6EZHF0qwYJ+CHpRqzDKFFaalkHJTIAyUiEK+eVXNn1PPNHKbu5q9p1y8raeXsCPE+cKcmiKdyW9eG1Y5qGECnKiZRNx06UPyRCMcphZHqphITQPulCU9OIhCD94aTKCB91YoFVD/Dk/Ts7JKGUgzDQmZConpz1xuJ/XjNVnTN/yKIkVRBRHdFeJ+VYxXi8CG4zAVTxgSaECqavxLRHBKFK72bq+s5s2XlSK+Sdk7xzU8gWS9MhMmgfHaJj5KBTVESXyEVVRNEDekKv6M24Nx6NZ+PlO7pgTP/soT8w3r8A80SWRg==</latexit>

Bayesian SAS-GP
Bayesian GP-LVM

<latexit sha1_base64="TrhhPtCgRhvi1sFw/aagZxVz/wA=">AAACBHicbVBLTwIxGOz6xPW16tFLlZh4gexyUI+IBzxosgZ5JOyGdMsHNHQfabsmhHDVP6Mno978Bf4B/40FiVFwTtOZafLNBAlnUtn2p7GwuLS8sppZM9c3Nre2rZ3dmoxTQaFKYx6LRkAkcBZBVTHFoZEIIGHAoR70L8Z+/Q6EZHF0qwYJ+CHpRqzDKFFaalkHJTIAyUiEK+eVXNn1PPNHKbu5q9p1y8raeXsCPE+cKcmiKdyW9eG1Y5qGECnKiZRNx06UPyRCMcphZHqphITQPulCU9OIhCD94aTKCB91YoFVD/Dk/Ts7JKGUgzDQmZConpz1xuJ/XjNVnTN/yKIkVRBRHdFeJ+VYxXi8CG4zAVTxgSaECqavxLRHBKFK72bq+s5s2XlSK+Sdk7xzU8gWS9MhMmgfHaJj5KBTVESXyEVVRNEDekKv6M24Nx6NZ+PlO7pgTP/soT8w3r8A80SWRg==</latexit>

Bayesian SAS-GP
Bayesian GP-LVM

<latexit sha1_base64="V3zRl+208uNrhHF/LOIRPQDCqPI=">AAAB4nicbZDLTgJBEEVr8IX4Ql266UhMXJEZY9Ql6sYlJCIkMCE9TQ106Hmku8aEEH5AV0bd+Un+gH9jg7NQ8K5O172d1K0gVdKQ6345hZXVtfWN4mZpa3tnd6+8f/BgkkwLbIpEJbodcINKxtgkSQrbqUYeBQpbweh25rceURuZxPc0TtGP+CCWoRSc7Khx3StX3Ko7F1sGL4cK5Kr3yp/dfiKyCGMSihvT8dyU/AnXJIXCaambGUy5GPEBdizGPELjT+aLTtlJmGhGQ2Tz9+/shEfGjKPAZiJOQ7PozYb/eZ2Mwit/IuM0I4yFjVgvzBSjhM36sr7UKEiNLXChpd2SiSHXXJC9SsnW9xbLLsPDWdW7qHqN80rtJj9EEY7gGE7Bg0uowR3UoQkCEJ7hDd6dvvPkvDivP9GCk/85hD9yPr4Bix+KYA==</latexit>

A

Figure 5: (Left-center) ELBO curves for Bayesian SAS-GP and Bayesian GPLVM for different
batch-sizes and active set points. (Right) SAS loss function compared with the exact log-marginal
likelihood computed. In all curves, N=40, 000 samples of MNIST were considered and five different
initializations per batch and A setup.

6 Conclusion

State-of-the-art representation learning is generally based on neural networks, as this allows for
scaling to large datasets. However, often we want reliable uncertainty estimates from the model
and we can achieve these with Gaussian process decoders if we can scale them sufficiently. We
have reviewed the main difficulties to obtain decent performances with GP-LVM approaches when
applied to large-scale learning, even with inducing variables. Revisiting active set approximations,
we considered a stochastic viewpoint to approximate the marginal likelihood while simultaneously
keeping the model marginalized. We formulated our stochastic active sets (SAS) approach for both
deterministic and Bayesian versions of GP decoders. We found that our approach works well with
amortization, such that a neural network encoder approximately inverts the GP decoder. While
amortization also helps when using inducing points, we found the combination with SAS to be
particularly efficient and robust.

Empirically, we illustrated the advantage of our method first on image-based observations, where our
approach learns better representations using fewer computational resources compared to inducing
point methods. We further demonstrated that our approach easily scales to nearly 106 observations.
In this experiment, we found that the learnt representations are qualitatively on par with those attained
by a comparable autoencoder. This is an important finding as, beyond small datasets, GP decoders
generally recovers less useful representations compared with models based on neural networks.
From this result, we speculate that improvements in training might be enough to get state-of-the-art
representations with GP decoders.

Additional benefits. Besides the empirical benefits demonstrated by SAS in the previous section,
we have also observed other practical benefits worth reporting. First, we have observed that SAS
easily runs in 32-bit numerical precision, unlike inducing point methods that generally require 64-
bits of precision (when reporting running times we consistently used 64 bits). Similarly, the jitter
usually added to the Cholesky factorization is of less importance in SAS. Second, we note that our
implementation is surprisingly free of additional tricks and no numerical heuristics were needed to
realize a reliable implementation.

Limitations and future work. Stochastic active sets rely on the Gaussian likelihood, and this is
perhaps the strongest limitation. This works well for continuous data, but many data sources are
inherently discrete and this requires a suitable likelihood, e.g. the discretized mixture of logistics
(Salimans et al., 2017). Having more powerful likelihoods would surely improve the GP decoders,
but this requires realization of further developments using SAS.

Future work will focus on applying the SAS approach in the supervised setting as well, and building
SAS-like methods for discrete data. Other possible directions include extending the decoder with
deep kernels (Wilson et al., 2016) to capture more features in the data and applying convolutional
GPs (Van der Wilk et al., 2017) which are more suited to high-dimensional images.
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In this appendix, we provide additional details about stochastic active sets (SAS) as an approximation of the log-
marginal likelihood for GP decoders, widely known as the Gaussian process latent variable model (GP-LVM).
We remark that SAS revisits active sets, a sparse approximation predominantly used before the seminal work of
Snelson and Ghahramani (2006), in combination with stochastic optimization. The code for experiments is also
included, and details on the data and initial setup of hyperparameters are included at the end of this appendix.

A Detailed derivation of Stochastic Active Sets

The construction of SAS approximations for the log-marginal likelihood log p(x|z), builds on the connection
between the evidence and cross-validation (CV) (Fong and Holmes, 2020). The equivalence between leave-R-out
CV and the log-marginal likelihood is established by the use of predictive posterior scores, such that

SCV(x|R) = 1

C
C∑

p=1

1

R

∑

n∈Rp

log p(xn|xAp ,z) =
1

R
EAp


 ∑

n∈Rp

log p(xn|xAp ,z)


 , (9)

where Ap denotes the active set indices of the training data, such that Ap ⊂ {1, 2, . . . , N} and Rp =
{1, 2, . . . , N} \ Ap are the remaining hold-out samples. The subscript p ∈ C denotes the permutation and we
average over all C =

(
N
R

)
possible hold-out sets. We use use R to indicate the size of the hold-out setRp and let

A = |Ap| = N − R. In particular, one might obtain the log-marginal likelihood in a cumulative manner by
summing the scores SCV(x|R) in Eq. (9) over all possible lengths of R,

log p(x|z) =
N∑

r=1

SCV(x|r), (10)

which is the main result presented in Fong and Holmes (2020). Notice that Eq. (10) has a similar computational
cost as the exact calculus of log p(x|z) for GP decoders, since for small values of r, i.e. r = 1, 2, 3 . . . , we
need to invert large covariance matricesKAA, where A→ N . Here, we drop the permutation subscript p in A
to avoid cluttered notation. Alternatively, we use the property that Eq. (10) can be factorised as

log p(x|z) = SCCV(x|R) + SPCV(x|R), (11)
where SCCV(x|R) is the cumulative CV score and SPCV(x|R) is defined as the preparatory CV. Additionally, Eq.
(11) holds for every size of the hold-out data R ∈ [1, 2, · · · , N ]. This factorisation is of interest for us due to

SPCV(x|R) =
N∑

r=R+1

SCV(x|r) = 1

C
C∑

p=1

log p(xAp |zAp), (12)

where the r.h.s. term is equivalent to SPCV(x|R) = EAp [log p(xAp |zAp)]. We remark that the computational
cost of Eq. (12) is cheaper than SCCV(x|R) when the choice of R is sufficiently large. Additionally, the
cumulative CV is defined as

SCCV(x|R) =
R∑

r=1

SCV(x|r) =
R∑

r=1

1

Cr

Cr∑

p=1

1

r

∑

n∈Rp

log p(xn|xAp ,z), (13)

where Cr =
(
N
r

)
are all the possible hold-out set for every value of r considered. We remark the convenience of

Eq. (13) for stochastic optimization as it includes predictive posterior probabilities p(xn|xAp ,z) which emerge
from the factorization of hold-R-out CV. This expression can be also rewritten as

SCCV(x|R) =
R∑

r=1

1

r
EAp


 ∑

n∈Rp

log p(xn|xAp ,z)


 . (14)

The SAS approximation stochastically estimates both SCCV(x|R) and SPCV(x|R), with particular attention to
the CCV score, which for large values of R induces the largest computational cost.

B Experiments, Algorithms and Metrics

The code for the experiments is written in Python 3.7 and uses the Pytorch syntax for the automatic differentiation
of the GP models. It can be found in the repository https://github.com/pmorenoz/SASGP, where we also
use the library Pyro for some baselines. In this section, we provide a detailed description of the experiments
and the data used, the initialization of both latent variables z, the parameters of the amortization network and
hyperparameters θ. The training algorithms are provided in the main manuscript for both the deterministic and
Bayesian approaches to the GP decoder. The performance metrics included in the main manuscript, e.g. the
negative log-predictive density (NLPD), the root mean square error (RMSE) and the mean absolute error (MAE).
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B.1 Detailed description and initialization

All the models have matching encoding network architecture: three linear, fully connected layers with ReLU
activation functions. The first two layers have sizes of 512 and 256 hidden units and the network encodes to
two dimensions. The variances of the latent variables z were encoded in a different way. In the VAE model,
the variance was obtained by inputting the latent means to a soft-plus layer and the Bayesian SAS-GP and the
Bayesian GP-LVM had separate network (with similar architecture) encoding the variance. The decoder in
the VAE was built by a linear, fully connected layer with 400 hidden units, a softplus function and a sigmoid
mapping. The GP-LVM baselines are implemented in Pyro (Bingham et al., 2019). Our implementation of the
variational autoencoder is based on the official Pyro tutorial for VAEs. Importantly, the VAE and the SAS-GP
implementations use standard data loaders whereas the Pyro code must keep all the data in memory. This has
limited the scaling possibilities of experiments with baselines.

In most of our experiments, we use the vanilla RBF kernel, where we initially set the amplitude hyperparameter
to σ2

a = 0.5, the lengthscale to ` = 0.1 and the likelihood noise variance to σ2
n = 0.5. The initial location

of latent variables z is subject to the initialization of the amortization networks, which is set up in a standard
manner using the Pytorch nn module. Learning rates are set in the range [10−4, 10−2] and the maximum number
of epochs considered is 300.

B.2 Datasets

Our experiments make use of three well-known datasets: MNIST (LeCun et al., 1998), FMNIST (Xiao et al., 2017)
and CIFAR10 (Krizhevsky, 2009). All of them are downloaded from the torchvision repository included in
the Pytorch library (https://pytorch.org/vision/stable/datasets.html). These particular datasets
are not subject to use constraints or they include licenses which allow their use for research purposes.

B.3 Error metrics

Having defined the test dataset as x∗ = {xn}N∗n=1, we use the following error metrics to test the performance of
the SAS approximation for GP decoders

RMSE(x∗) =

√√√√ 1

N∗

N∗∑

n=1

(xn − µ∗n)2, (15)

MAE(x∗) =
1

N∗

N∗∑

n=1

|xn − µ∗n| , (16)

NLPD(x∗) =
1

2
log(2π) +

1

2N∗

N∗∑

n=1

[
log v∗n +

(xn − µ∗n)2
v∗n

]
, (17)

where µ∗n and v∗n are the predictive mean and variance per nth test sample, respectively.

B.4 Additional experiment with latent spaces of dimension larger than two

We re-computed the experiments used for Table 2 using latent spaces of dimension three and four. The main
outcome from these experiments is that training is as stable as in the former cases with two dimensions in the
latent space. In general, we observed a similar performance as in the rest of experiments included in the main
manuscript. So we remark that there is no limitation in our framework to accept dim(Z) > 2.

B.5 Ablation study

We did additional experiments as an ablation study based on Eq. 6. In particular, we ran the SAS model for
A = {100, 200, 400} using the MNIST and FMNIST datasets. The first ablation experiment shown in Figure 2
corresponds to using only the second term log p(xA|zA) in Eq. 6. We can observe that the performance is not
as good as in the results illustrated in the main manuscript. Alternatively, we also included another ablation
experiment using the first term of Eq. 6, which is shown in Figure 3. In this last case, the performance is not
good and the structure in the latent space is only provided by the amortization net.
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Figure 6: Training curves for different active set sizes A and dimensionalities of the latent spaces.
Each row contains the results for MNIST and FMNIST, respectively.

Figure 7: Ablation study for Eq. 6. The approximation of the log-marginal likelihood is only
computed with the firm term (factorisation). Curves are computed for A = {100, 200, 400} and rows
indicate the dataset MNIST or FMNIST.

Figure 8: Ablation study for Eq. 6. The approximation of the log-marginal likelihood is only
computed with the second term (full covariance). Curves are computed for A = {100, 200, 400} and
rows indicate the dataset MNIST or FMNIST.
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Figure B.1: Barcodes by object for t-SNE. The x-axis shows Bt and vertically, di�erent TriMap models are
displayed. The dotted, red line indicates Bt = 3. The object number in COIL-20 is listed above the corresponding
barcode. Discussed in section 2.5.1. The �gure �rst appeared in Feldager, Hauberg, and Hansen [1].
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Figure B.2: Barcodes by object for TriMap. The x-axis shows Bt and vertically, di�erent TriMap models are
displayed. The dotted, red line indicates Bt = 3. The object number in COIL-20 is listed above the corresponding
barcode. Discussed in section 2.5.2. The �gure �rst appeared in Feldager, Hauberg, and Hansen [1].
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Figure B.3: Barcodes by object for kPCA. The x-axis shows Bt and vertically, di�erent TriMap models are
displayed. The dotted, red line indicates Bt = 3. The object number in COIL-20 is listed above the corresponding
barcode. Discussed in section 2.5.3. The �gure �rst appeared in Feldager, Hauberg, and Hansen [1].

0

1

2

2 0

Obj 1 Obj 2 Obj 3 Obj 4 Obj 5 Obj 6 Obj 7 Obj 8 Obj 9 Obj 10

0 5 10
Bt

0

1

2

2 0

Obj 11

0 5 10
Bt

Obj 12

0 5 10
Bt

Obj 13

0 5 10
Bt

Obj 14

0 5 10
Bt

Obj 15

0 5 10
Bt

Obj 16

0 5 10
Bt

Obj 17

0 5 10
Bt

Obj 18

0 5 10
Bt

Obj 19

0 5 10
Bt

Obj 20

Figure B.4: Barcode by object for GPLVM with �xed initial values of θ0. The x-axis shows Bt and vertically,
di�erent GPLVM models are displayed which corresponds to di�erent initial values of σ 2

0 . The dotted, red
line indicates Bt = 3. The object number in COIL-20 is listed above the corresponding barcode. Discussed in
section 2.5.4. The �gure �rst appeared in Feldager, Hauberg, and Hansen [1].
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Figure B.5: Barcodes by object for GPLVM with �xed initial values of σ 2
0 . The x-axis shows Bt and vertically,

di�erent GPLVM models are displayed which corresponds to di�erent initial values of θ0. The dotted, red
line indicates Bt = 3. The object number in COIL-20 is listed above the corresponding barcode. Discussed in
section 2.5.4. The �gure �rst appeared in Feldager, Hauberg, and Hansen [1].
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Figure B.6: The left-hand side shows a phase space for GPLVMs in the initial values of hyperparameters θ0
and σ 2

0 using isomap initialisation. Each location in the phase space corresponds to an initialisation of a model.
As the model is trained it follows the cyan trajectory through phase space and until the green cross which
indicates the state of the model at the end of training. The learnt latent space is shown at the location of the
initialisation to emphasise what representation a given initialisation results in. The right-hand side shows the
barcode for these models where each bar corresponds to a model on the axis of thresholds. The red dotted line
represented our chosen threshold for symmetry breaking. Discussed in section 2.5.4.

133



Appendix B. Symmetry Breaking

Figure B.7: The left hand side shows a phase space for GPLVMs in the initial values of hyper parameters θ0 and
σ 2

0 using PCA initialisation. Each location in the phase space corresponds to an initialisation of a model. As the
model is trained it follows the cyan trajectory through phase space and until the green cross which indicates
the state of the model at the end of training. The learnt latent space is shown at the location of the initialisation
to emphasise what representation a given initialisation results in. The right hand side shows the barcode for
these models where each bar corresponds to a model on the axis of thresholds. The red dotted line represented
our chosen threshold for symmetry breaking. Discussed in section 2.5.4.
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CTHE GAUSS I AN
D I STR I BUT ION

For easy reference, we repeat the properties of the multivariate Gaus-
sian distributions [51].

Consider a set of N observations collected in a matrix Y = {yn}Nn=1.
Each observation is of dimensionality D such that Y ∈ RN×D . The
Gaussian distribution, N , is de�ned as

N(y|µ, Σ) =
1√

(2π )k det(Σ)
exp

(
−

1
2 (y − µ)

>Σ−1(y − µ)
)

GAUSS I AN D I STR I BU -
T ION
Multivariate

This gives the probability of observations y under the multivariate
Gaussian distribution of dimensionality k given a mean, µ, and a
covariance, Σ. The distribution of a D-dimensional vector x has a
D-dimensional mean µ and D ×D covariance matrix Σ which must be
symmetric and positive semi-de�nite and is given by

N(x|µ,Σ) =
1

(2π )D/2
1

|Σ|−1/2 exp
(
−

1
2 (x − µ)

>Σ−1(x − µ)
)

with

E[x] = µ (C.1)
cov[x] = Σ (C.2)

The precision matrix is the inverse of the covariance matrix so Λ = Σ−1.

If we have a marginal Gaussian distribution of x p(x),and a conditional
distribution p(y|x) given in the form

p(x) = N(x |µ,Λ−1) (C.3)
p(y |x) = N(y |Ax + b, L−1) (C.4)

then we can obtain the form of the marginal distribution p(y) and the
conditional p(x |y)

p(y) = N(y |Ax + b, L−1 +AΛ−1AT ) (C.5)
p(x |y) = N(x |Σ[ATL(y − b) + Λµ], Σ) (C.6)

Σ = (Λ +ATLA)−1 (C.7)

135



Appendix C. The Gaussian Distribution

Alternatively, if we have a joint Gaussian distribution N(x |µ, Σ) with
Λ ≡ Σ−1 so we can de�ne the following identities

x =

(
xa
xb

)
, µ =

(
µa
µb

)
(C.8)

Σ =

(
Σaa Σab
Σba Σbb

)
, Λ =

(
Λaa Λab

Λba Λbb

)
(C.9)

then the conditional p(x |y) and the marginal p(xa) distributions are
given by

p(xa |xb) = N(x |µa |b,Λ
−1) (C.10)

µa |b = µa − Λ
−1
aaΛab(xb − µb) (C.11)

p(xa) = N(xa |µa, Σaa) (C.12)
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DSTOCHAST I C ACT I V E S E TS

Figure D.1: Ablation study for the approximation of the log-marginal like-
lihood using the full covariance term (second term in equation 4.18). The
training curves haveA = {100, 200, 400} and rows indicate the dataset Mnist
(top) or FashionMnist (bottom).

Figure D.2: Ablation study for the approximation of the log-marginal like-
lihood using the factorised term (�rst term in equation 4.18). The training
curves have A = {100, 200, 400} and rows indicate the dataset Mnist (top) or
FashionMnist (bottom).
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EGEOMETRY

e.1 derivation of the geodesic equation

Geodesics can be found by solving the geodesic equations, a second,
ordinary di�erential equation.

Üγ + Γijk Ûγ
j Ûγk = 0 (E.1) GEODES I C EQUAT ION

In this section, we derive the geodesic equation through the principle
of least action, which leads to the Euler-Lagrange equations,

d
dt
∂L

∂ Ûx︸︷︷︸
Step two︸     ︷︷     ︸

Step three

−
∂L

∂x︸︷︷︸
Step one

= 0,

where the dot denotes di�erentiation with respect to t , we note that
we can employ a change of variables to get dτ = Ldt . The derivation
takes three steps: First, we compute ∂L

∂xγ , then ∂L
∂ Ûxγ and �nally d

dt
∂L
∂ Ûxγ .

Step One

Starting with step one, we insert the expression for the Lagrangian
and use the chain rule.

∂L

∂xγ
=

∂

∂xγ

(√
дαβ Ûxα Ûxβ

)
=

1
2L
∂

∂xγ

(
дαβ Ûx

α Ûxβ
)

(E.2)

Di�erentiating using the product rule yields

∂L

∂xγ
=

1
2L

(
∂дαβ

∂xγ
Ûxα Ûxβ + дαβ

�
�
�∂ Ûxα

∂xγ
Ûxβ + дαβ Ûx

α

�
�
�∂ Ûxβ

∂xγ

)
(E.3)

where we realise some terms are zero.
We note that the dot denotes a derivative with respect to s , so with a
change of variables dτ = Ldt

∂L

∂xγ
=

L

2
∂дαβ

∂xγ
dxα
dt

dxβ
dt (E.4)

we complete step one in the derivation of the geodesic equation.
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Step Two

Step two requires computing the derivative of Lagrangian with respect
to Ûxγ . Again, we insert the expression for the Lagrangian.

∂L

∂ Ûxγ
=

∂

∂ Ûxγ

√
дαβ Ûxα Ûxβ =

1
2L
∂

∂ Ûxγ

(
дαβ Ûx

α Ûxβ
)

(E.5)

(E.6)

We then di�erentiate and realise a term cancels (the metric дα,β does
not depend on the γ th tangent vector), and the derivative further
reduces to kronecker deltas as they are only non-zero when γ is either
α or γ .

∂L

∂ Ûxγ
=

1
2L

(
�
�
�∂дαβ

∂ Ûxγ
Ûxα Ûxβ + дαβ

∂ Ûxα

∂ Ûxγ
Ûxβ + дαβ Ûx

α ∂ Ûx
β

∂ Ûxγ

)
(E.7)

=
1

2L

(
дαβδ

α
γ Ûx

β + дαβ Ûx
αδ

β
γ

)
(E.8)

Due to the δs, the expression reduces and renaming the dummy index
β to α yields

∂L

∂ Ûxγ
=

1
2L

(
дγ β Ûx

β + дαγ Ûx
α
)
=

1
2L

(
дγα Ûx

α + дαγ Ûx
α ) (E.9)

and with a change of variables, we obtain

∂L

∂ Ûxγ
=

1
L
дγα Ûx

α (E.10)

This concludes step two.

Step Three

For step three, we di�erentiate our result in step two with respect to s .

d
ds
∂L

∂ Ûxγ
=

d
ds

(
1
L
дγα Ûx

α

)
= L

d
dt

(
�
�
�1
L
дγα�L

dxα

dt

)
(E.11)

= L

(dдγα
dt

dxα
dt + дγα

d2xα

dt2

)
(E.12)

The �rst term in the parenthesis requires some massaging to get to
the geodesic equation.

dдγα
dt

dxα
dt =

1
2

dдγα
dt

dxα
dt +

1
2

dдγα
dt

dxα
dt (E.13)

=
1
2

dдγα
dt

dxα
dt +

1
2

dдγ β
dt

dxβ
dt (E.14)
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Here, we have split up the term and renamed the dummy index.

dдγα
dt

dxα
dt =

1
2
∂дγα

∂dxν
dxν
dt

dxα
dt +

1
2
∂дγ β

∂dx µ
dx µ
dt

dxβ
dt (E.15)

=
1
2

(
∂дγα

∂dxβ
+
∂дγ β

∂dxα

)
dxα
dt

dxβ
dt (E.16)

Here, we have used the chain rule and then rearranged the terms. This
concludes step three.

Collecting Terms

We can now collect the terms into the Euler-Lagrange equations.

0 = d
dt
∂L

∂ Ûxγ
−
∂L

∂xγ
(E.17)

= �L

[
дγα

d2xα

dt2 +
1
2

(
∂дγα

∂xβ
+
∂дγ β

∂xα

)
dxα
dt

dxβ
dt

]
−
�L

2
∂дαβ

∂xγ
dxα
dt

dxβ
dt

= дγα
d2xα

dt2 +
1
2

[
∂дγα

∂xβ
+
∂дγ β

∂xα
−
∂дαβ

∂xγ

]
dxα
dt

dxβ
dt (E.18)

Here we pause to do a bunch of renaming of dummy indices on the
right-hand side.

0 = дγν
d2xν

dt2 +
1
2

[
∂дγν

∂xβ
+
∂дγ β

∂xν
−
∂дνβ

∂xγ

]
dxν
dt

dxβ
dt (E.19)

Next, we multiply with the inverse metric and use the property that
дµνд

µν = δ
µ
µ = 1.

0 = дγνдγν
d2xν

dt2 +
1
2д

γν

[
∂дγν

∂xβ
+
∂дγ β

∂xν
−
∂дνβ

∂xγ

]
︸                               ︷︷                               ︸

Γαν β

dxν
dt

dxβ
dt (E.20)

Here, we recognise the Christo�el symbol (section 5.2.4) as

Γανβ =
1
2д

γν

[
∂дγν

∂xβ
+
∂дγ β

∂xν
−
∂дνβ

∂xγ

]
(E.21)

we can write the geodesic equation as

0 = d2xα

dt2 + Γανβ
dxν
dt

dxβ
dt (E.22)

0 = Üxα + Γανβ Ûx
ν Ûxβ (E.23)

which is the geodesic equation.
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Figure E.1: This should illus-
trate how an area element dA
in the latent space X in Carte-
sian coordinates gets distorted
when mapped through f to
another space Y.

e.2 visualising the metric tensor

The entire metric tensor can be visualised as an ellipsoid (�gure 5.6)
where the size of the ellipsoid indicates the size of the metric tensor,
corresponding to a unit space.

The metric tensor can be hard to visualise, so we introduce the volume
element of the metric tensor. This scalar summarises the metric as it
re�ects a unit volume on the manifold. The volume measure is given
by

V =
√
|G |

VOLUME MEASURE

Intuitively, we can think about the metric tensor as a transformation
distorting a unit volume and the volume element as the volume of
the unit. Bishop [127] used the volume element in two dimensions to
visualise a distorted space. In two dimensions, the volume element is
often called the magni�cation factor.

We denote the metric tensor as G in matrix notation and дij for the
metric tensor in index notation. Both refer to the entire metric tensor.
We assume the metric space to be complete and the tangent space at
xi to exist for all xi ∈ M.

e.3 kernel derivatives

A kernel k(xa, xb) with input vectors xa, xb ∈ RQ ,

k(xa, xb) = θ exp
(
−
γ

2 ‖xa − xb ‖
2
)

= θ exp
(
−
γ

2

Q∑
k=1
(xka − x

k
b )

2

)
, (E.24)
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E.3. Kernel derivatives

have the �rst derivative,

∂k(xa, xb)

∂x j
= k(xa, xb)

∂

∂x j

∑
k

(xka − x
k
b )

2

= −
γ

2k(xa, xb)
∂

∂x j

∑
k

(xka − x
k
b )

2

= −γk(xa, xb)
∑
k

(xka − x
k
b )δkj

= −γ (x ja − x
j
b
)k(xa, xb), (E.25)

the second derivative,

∂2k(xa, xb)

∂xi∂x j
=
∂

∂xi

[
−γ (x ja − x

j
b
)k(xa, xb)

]
= −γ

[
(
∂

∂xi
(x ja − x

j
b
)k(xa, xb) + ((x

j
a − x

j
b
)
∂k(xa, xb)

∂xi
)

]
= −γ

[
δij − γ (x

j
a − x

j
b
)(xia − x

i
b)

]
k(xa, xb)

= γ
[
γ (x ja − x

j
b
)(xia − x

i
b) − δij

]
k(xa, xb), (E.26)
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and the third derivative,

∂3k(xa, xb)

∂xl∂xi∂x j
=
∂

∂xl

(
γ

[
γ (x ja − x

j
b
)(xia − x

i
b) − δij

]
k(xa, xb)

)
= γ

(
∂

∂xl

[
γ (x ja − x

j
b
)(xia − x

i
b) − δij

]
k(xa, xb) +

[
γ (x ja − x

j
b
)(xia − x

i
b) − δij

] ∂k(xa, xb)
∂xl

)
= γ

( [
γ

(
∂

∂xl
(x ja − x

j
b
)(xia − x

i
b) + (x

j
a − x

j
b
)
∂

∂xl
(xia − x

i
b)

)
−
S
S
S

∂δij

∂xl

]
k(xa, xb)

+
[
γ (x ja − x

j
b
)(xia − x

i
b) − δij

] ∂k(xa, xb)
∂xl

)
= γ 2

( [
δli(x

j
a − x

j
b
) + δl j(x

i
a − x

i
b)

]
−

[
γ (x ja − x

j
b
)(xia − x

i
b) − δij

]
(xla − x

l
b)

)
k(xa, xb)

(E.27)

In the derivatives, we have used the shorthand notation
∑Q

k=1 =
∑

k .
We let γ = l−1 but γ eases the notaiton. We leave the derivation of the
fourth derivative as an exercise for the dedicated reader.

e.4 starfish code

Listing E.1: Two-dimensional Star�sh (pinwheel dataset)
1 def make_pinwheel_data ( r a d i a l _ s t d , t a n g e n t i a l _ s t d , num_c lasses ,

num_per_c lass , r a t e ) :
2 import numpy . random as npr
3 r a d s = np . l i n s p a c e ( 0 , 2 ∗ np . pi , num_c lasses , e n d p o i n t = F a l s e )
4

5 f e a t u r e s = npr . randn ( num_c la s se s ∗ num_per_c lass , 2 ) ∗ np
. a r r a y ( [ r a d i a l _ s t d , t a n g e n t i a l _ s t d ] )

6 f e a t u r e s [ : , 0 ] += 1 .
7 l a b e l s = np . r e p e a t ( np . a range ( num_c la s se s ) , num_per_c la s s )
8

9 a n g l e s = r a d s [ l a b e l s ] + r a t e ∗ np . exp ( f e a t u r e s [ : , 0 ] )
10 r o t a t i o n s = np . s t a c k ( [ np . cos ( a n g l e s ) , −np . s i n ( a n g l e s ) , np . s i n (

a n g l e s ) , np . cos ( a n g l e s ) ] )
11 r o t a t i o n s = np . r e s h a p e ( r o t a t i o n s . T , ( − 1 , 2 , 2 ) )
12

13 return 1 0 ∗ npr . p e r m u t a t i o n ( np . einsum ( ’ t i , t i j −> t j ’ , f e a t u r e s ,
r o t a t i o n s ) )
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E.5. Implementation details for Riemannian Brownian motion

Listing E.2: Three dimensional Star�sh (pinwheel dataset)
1 def m a k e _ s t a r f i s h ( num_c la s se s = 5 , num_per_c la s s =50) :
2

3 v = make_pinwheel_data ( 0 . 7 5 , 0 . 1 5 , num_c lasses , num_per_c lass ,
0 . 0 2 5 )

4 z _ n o i s e = np . random . normal ( 0 , 0 . 1 , s i z e =[ num_c la s se s ∗
num_per_c la s s ] )

5

6 xs = ( v [ : , 0 ] − np . mean ( v [ : , 0 ] ) ) / np . s t d ( v [ : , 0 ] )
7 ys = ( v [ : , 1 ] − np . mean ( v [ : , 1 ] ) ) / np . s t d ( v [ : , 1 ] )
8

9 vec = np . empty ( [ num_c la s se s ∗ num_per_c lass , 3 ] )
10 vec [ : , 0 ] = xs
11 vec [ : , 1 ] = ys
12 vec [ : , 2 ] = z _ n o i s e
13

14 from s c i p y . s p a t i a l . t r a n s f o r m import R o t a t i o n as R
15 r_x = R . f r o m _ e u l e r ( ’ x ’ , 4 5 , d e g r e e s =True )
16 r_y = R . f r o m _ e u l e r ( ’ y ’ , 20 , d e g r e e s =True )
17 r _ z = R . f r o m _ e u l e r ( ’ z ’ , 7 5 , d e g r e e s =True )
18 p = r _ z . apply ( r_y . apply ( r_x . apply ( vec ) ) )
19 return p
20 # r e t u r n t o r c h . t e n s o r ( p , d type = t o r c h . f l o a t 6 4 )

e.5 implementation details for riemannian
brownian motion

We have implemented this as a pyro distribution. It inherits from
TorchDistribution, which allows pyro to name the distribution for
internal tracking–essentially, it is just a simple wrapper. It imple-
ments a KL divergence between two IsotropicBrownianMotion
distributions. The LogProb, Fit, and (r)Sample methods constitute
the core of this distribution. The LogProb evaluation uses StochMan
for computing geometric objects (e.g. metrics and geodesics), which is
described in section 7.4.3 and the underlying machinery in section 7.1.
The Fit method uses the LogProb to learn the mean and variance of
the Riemannian Brownian motion.

The sampler is at the heart of the distribution, elaborated in the al-
gorithm below. It implements a discretised Brownian motion (see
section 7.5). Note that in this algorithm, the metric inverse is left out,
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and we use the metric directly in the covariance of the subsequent
step distribution as this leads to the desired behaviour.

Algorithm 3 The simple algorithm for a single Riemannian random
walk. In practice, this can handle multiple samples in parallel.
Require: S // starting point for the random walk
Require: Metric M at S // positive, semi-de�nite, 2 × 2 matrix
dt = 1.0 / num_steps
t = scale**2
walk = list()
for _ in range(num_steps) do
M = manifold.metric(S)
C = t * dt * M
S = MultivariateNormal(S, C).sample()

end for
return S

See also Arvanitidis, Hansen, and Hauberg [17, algorithm 2]
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