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Summary (English)

During recent years, we have seen a growing importance of maritime security
to ensure the safety of maritime traffic, territorial protection, and the protec-
tion of key infrastructure assets. Maritime Surveillance Command and Control
systems offer automated tools for enhancing the situation awareness of surveil-
lance operators to improve their decision-making and detect abnormal illicit
maritime behavior. Most automated tools in use currently scale poorly with
large amounts of data and data sources which raises issues regarding the gener-
alization across space and time and makes detection more prone to errors that
may have fatal consequences. The goal of the thesis is to assess the applicability
of deep learning methodologies to enhance situation awareness of surveillance
operators.

In the first part of the thesis, we present an overview of current methods for
the detection of maritime abnormalities and discuss how they address some of
the issues found in practical application. We then introduce deep learning ar-
chitectures for the analysis of maritime trajectories. These architectures are
based on Recurrent Neural Networks that model trajectories of variable length
sequentially. Abnormal trajectories may be detected based on predictive er-
rors in a Sequence-2-Sequence architecture or reconstructive errors in sequential
Variational AutoEncoders. This results in models that can analyze maritime
trajectories, detect abnormal trajectories, and be trained in a scalable way us-
ing large unlabelled datasets.

In the second part of the thesis, we evaluate how deep learning architectures
may enhance situation awareness of surveillance operators. On the basis of
manually annotated abnormal trajectories related to a recent collision accident,
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we make a quantitative comparison of the automated detection of abnormal
trajectories. Qualitative comparison of flagged trajectories indicates that deep
neural networks of different architectures flag different types of abnormal be-
havior. Therefore, we suggest ensembles of different deep learning architectures
in which each member is designed specifically with the detection of a certain
type of abnormal behavior in mind. We investigate how to extract the learned
normalcy models through interpretable latent variables, but find the encoded
information lacking in describing local behavior and insufficient to be used for
man-in-the-loop style detections. We propose a two-step clustering approach to
describe local behavior and find that this is superior in describing behavioral dif-
ferences along the same maritime route and for discovering abnormal behavior
outside the main maritime routes.



Summary (Danish)

I de senere år er den maritime sikkerhed blevet et vigtigere og vigtigere emne for
at sikre søtrafikken, beskyttelse af territoriale grænser og vigtig infrastruktur.
Maritime Surveillance Command and Control systemer tilbyder automatisere-
de værktøjer til at øge overvågningsoperatørernes situationsbevidsthed for at
forbedre deres beslutningstagen og opdage anormal ulovlig maritim adfærd. De
fleste automatiserede værktøjer i brug i dag skalerer dårligt med store mængder
data og datakilder, hvilket rejser spørgsmål vedrørende generalisering på tværs
af rum og tid, og gør detektionen mere tilbøjelig til fejl, der kan have fatale kon-
sekvenser. Målet med denne afhandling er at vurdere anvendeligheden af deep
learning-metoder for at øge overvågningsoperatørernes situationsbevidsthed.

I den første del af afhandlingen præsenterer vi et overblik over aktuelle me-
toder til detektion af maritime abnormaliteter og diskuterer, hvordan de løser
nogle af de problemstillinger, der findes i praktisk anvendelse. Vi introducerer
derefter deep learning-arkitekturer til analyse af maritime trajektorier. Disse ar-
kitekturer er baseret på Recurrent Neurale Netværk, der sekventielt modellerer
trajektorier med variabel længde. Anormale trajektorier kan detekteres baseret
på prædiktionsfejl i en Sequence-2-Sequence-arkitektur eller rekonstruktive fejl i
sekventielle Variational AutoEncoders. Dette resulterer i modeller, der kan ana-
lysere maritime trajektorier, detektere anormale baner og trænes på en skalerbar
måde ved hjælp af store uannoteret datasæt.

I anden del af afhandlingen evaluerer vi, hvordan deep learning-arkitekturer
kan øge overvågningsoperatørernes situationsbevidsthed. På baggrund af ma-
nuelt annoterede anormale trajektorier relateret til en kollisionsulykke sket for
nyligt, foretager vi en kvantitativ sammenligning af den automatiske detektering
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af unormale trajektorier. Kvalitativ sammenligning af detekteret trajektorier in-
dikerer, at dybe neurale netværk af forskellige arkitekturer detekterer forskellige
typer af anormal maritim adfærd. Derfor foreslår vi ensembler af forskellige de-
ep learning-arkitekturer, hvor hvert medlem er designet specifikt til detektion af
en bestemt type anormal adfærd. Vi undersøger, hvordan man kan ekstrahere
de lærte normalitetsmodeller gennem fortolkbare latente variabler, men finder,
at den kodede information er mangelfuld i beskrivelsen af lokal adfærd og er
utilstrækkelig til at blive brugt til detektioner i en man-in-the-loop stil. Vi fo-
reslår en to-trins cluster-tilgang til at beskrive lokal adfærd og finder, at denne
er overlegen til at beskrive adfærdsforskelle langs den samme maritime rute og
til at opdage anormal adfærd uden for de veldefinerede maritime ruter.
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Chapter 1

Introduction

The aim of this thesis is to progress the research within deep learning for mar-
itime abnormality detection. This thesis develop, discuss, and evaluate methods
from an operational perspective and provides an evaluation framework for prac-
titioners, who are looking to develop automated models for enhancing situation
awareness of maritime surveillance operators

The primary target audience of this thesis is practitioners who are looking to
develop automated models for enhancing situation awareness of surveillance op-
erators, or operators trying to evaluate the potential and limitations of deep
learning models for automated abnormality detection. Basic knowledge of ma-
chine learning and deep learning is recommended, but not required, to under-
stand this thesis.

This chapter provides an overview of the research presented in this thesis. First,
the motivation and background of the study are presented. The research objec-
tives and main research contributions are outlined next. Finally, an outline of
the remainder of the thesis is presented.



2 Introduction

1.1 Motivation and Background

Historically, human civilization and society were often established in close prox-
imity to water. Easy access to water is a requirement for sustained growth
and forms the basis for farming, sanitation, and production. Similarly, water
transport is more efficient, convenient, and cheaper than land travel, so secur-
ing waterways has always been important for the spread of goods and ideas.
To this day, the oceans remain one of the most important ways of connecting
and supporting a growing globalized world. Maritime shipping is the most effi-
cient and cost-effective form of long-distance transportation and is responsible
for 80% of the world’s trade [IMO, 2021]. Recent geopolitical issues in Europe
have shown the vulnerability of our society to sabotage of critical infrastructure
and the necessity of free trade and transportation. The restriction of free trade
and transportation of food, feed materials, fuel, energy, etc. have propelled into
a food- and energy-crisis due to rising commodity costs [World Food Program,
2022]. Most recently, the sabotage of the Nord Stream gas pipelines in the Baltic
Sea [Ljungqvist] has raised the issue of territorial protection and protection of
key infrastructure assets.

These events highlight the need for maritime security and safety to protect the
global supply chain and key societal infrastructure. Maritime Surveillance Com-
mand and Control play a crucial role in ensuring safe navigation, general safety
of marine traffic, and maritime border security. Surveillance operators monitor
large areas of the ocean and predict emerging critical situations from several
threats such as collisions, smuggling, piracy, overfishing, maritime pollution,
territorial incursions, etc. Current operational systems rely strongly on human
experts. Data is collected from a wide range of sensors, like radar, sonar, and
Automatic Identification System (AIS) as well intelligence reports and weather
data. As the number of data sources increases, it becomes increasingly difficult
for operators to process the amount of information due to a number of factors,
such as cognitive overload, time pressure, fatigue, and uncertainty, in addition
to the complex and heterogeneous nature of the data. In order to provide sup-
port for the operators, methods and systems capable of abnormality detection
is one of the most important tasks within the domain of maritime surveillance
and is a very active research area Pallotta et al. [2013a], Nguyen et al. [2021],
Singh et al. [2021].

Human operators rely on their level of situation awareness [Endsley, 1995], devel-
oped from experience, to detect critical situations and initiate the appropriate
response. Situation awareness is the perception of your surrounding environ-
ment and events and how these affect your decision making now and in the
future. However, Endsley [2017] highlight potential issues when human decision
making is based on autonomous systems.
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• The so-called Automation Conundrum describes the degradation of human
situation awareness as automation increases and the observation that hu-
man operators are less likely to be able to take over manual control when
needed.

• Automated support of decision-making has been found to be problematic
due to a decision bias effect, where operators tend to follow the decision
of the automated system.

• Human-autonomy interaction tends to follow a serial model in which oper-
ators use decision support systems as input along with other information
to make a final decision. This has been found to be less reliable than if
operators and automated systems reached a decision separately in parallel,
which is then combined for a final decision.

As a consequence of these issues, Endsley [2017] recommends automation sys-
tems to support situation awareness rather than decision making.

Surveillance operators likely use their situation awareness to mentally construct
a model of the normal maritime picture and base their decision of normality
on comparing observed behavior with the established normal behavior model.
Automatic construction of the normalcy models may support operators in ob-
taining a sufficient level of situation awareness. Currently, the most common
way to construct the normality model is to use clustering on individual AIS
updates Pallotta et al. [2013a], Liu et al. [2015b] or using trajectory similarity
measures Zhao and Shi [2019a], Yang et al. [2022b]. However, real-life maritime
laws and regulations are complex. Ship types, such as cargo and tankers, mainly
follow well-defined shipping lanes with near-constant speeds, whereas other ship
types, such as fishing vessels and sailing ships, have less constrained and more
complex behavior. The exact route of these trajectories is less important than
the local behaviour, i.e. speed and course changes, due to the additional free-
dom of movement. The mixture of densely populated shipping lanes and more
sparse regions with increased behavioural freedom complicates clustering.

During the past decade, research on methods for the detection of maritime
abnormalities has been accelerated by easy access to large amounts of historical
Automatic Identification System (AIS) data. Every day, AIS provides hundreds
of millions of messages on a global scale MarineTraffic [2016], which contain
the identifier of the ships, their coordinates from the Global Positioning System
(GPS), speed, course, etc. In many areas, this data is freely available and may
be collected into large amounts of historical maritime trajectories for maritime
surveillance.

The potential limitations of clustering in constructing sufficient normalcy models
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and the large amount of AIS data available raise the question whether realistic
normalcy models could be learned by deep learning techniques. Deep learning
applies very large neural networks, that were initially designed to resemble hu-
man brain functions, and scales very well with large amounts of training data.
Deep learning methods have been used for representation learning for clustering
tasks later down the pipeline Protopapadakis et al. [2017], Yao et al. [2017],
trajectory prediction Forti et al. [2020], Capobianco et al. [2021b], Spadon et al.
[2022], and automated detection of maritime abnormalities [Nguyen et al., 2021,
Singh et al., 2021]. Thus, the potential of AIS-based deep learning methods to
support surveillance operators is clear. Although automated decision support
may not be warranted in all situations, it represents a clear way to test the
suitability of the estimated normalcy model. Additionally, automated detec-
tion of maritime abnormalities may be used to identify situations which require
additional development of systems for enhancing situation awareness.

1.2 Research Objectives and Contributions

This thesis aims to provide an initial study on the feasibility and evaluation
of deep learning techniques to construct maritime normalcy models and for
automated detection of maritime abnormalities. We study deep learning archi-
tectures from an operational point of view and evaluate them based on how
they tackle known requirements for the practical application of abnormality de-
tection. This will be discussed in more detail in section 1.3. The hypothesis is
that deep learning techniques applied to the analysis of maritime trajectories
can be used to predict future actions, intention, or to detect abnormalities that
indicate dangerous, suspicious, or malicious behavior. In order to evaluate this
hypothesis, the PhD project will cover the following topics:

A) Research, develop, and evaluate deep learning frameworks for describing
normal maritime behavior using historical AIS data to support maritime
situation awareness of surveillance operators.

B) Development of deep learning methods for the automated detection of
maritime abnormalities.

C) Study the generalization of deep learning methods for the automated de-
tection of maritime abnormalities over time and across geographical areas.

D) Methods to describe abnormal local behavior that is not restricted to
major shipping lanes.
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In line with the main topics of the thesis, the research outcomes evaluate deep
learning methods based on historical AIS data to improve maritime security and
safety. Focusing on situation awareness, methods are discussed both from the
perspective of automated detection of maritime abnormalities and the level of
interpretation that models may provide related to the detection of maritime ab-
normalities. The following research contributions are considered to be provided
by the research:

1. Methodology to evaluate deep learning methods for enhancing situation
awareness, including the publication of an annotated data set of maritime
abnormalities.

2. Ensemble methods for automated detection of maritime abnormalities that
detect different types of abnormal behavior and outperform the current
state-of-the-art.

3. Analysis of the interpretability of state-of-the-art deep learning models
and illumination of the limitations of the current state-of-the-art.

4. A multi-step clustering approach to disentangle positional and kinematic
information resulting in a better description of behavioral patterns in a
large ROI.

1.3 Outline of the Thesis

This thesis is separated into two major parts. In Part I, the methodology and
context of the thesis are presented and consists of chapters 2-3 and Part II
presents the research outcomes first as a summary, Chapter 4, and conclusion,
Chapter 5, for those looking for a brief overview and chapters 6-9 corresponds
to the paper contributions prepared during the PhD.

Chapter 2 introduces the concepts of situation awareness in relation to the
detection of maritime abnormalities. We then present a detailed review of sys-
tems and models for automated detection of maritime abnormalities. We argue
that rule-based systems are incapable of sufficiently describing the complexity
of maritime behavior, even though they make up the majority of systems in use
at the moment. Based on previous reviews of the field, we identify five main
issues that data-driven methods for automated maritime abnormality detection
must address. We then discuss the most common methods for expressing the
normalcy picture from the point of how the five main issues are addressed.



6 Introduction

Chapter 3 presents the deep learning models investigated in this thesis. The
basic concepts of AutoEncoders and variational inference are presented, and
we introduce recurrent neural networks (RNNs) for the modeling of sequential
data. These two concepts are first combined into the Recurrent Variational Au-
toEncoder in which an entire trajectory is encoded into a single latent variable
z. We then present the Variational Recurrent Neural Network (VRNN) which
introduces a variational AutoEncoder into every time update in an RNN. The
result is a model in which the dynamic information is modelled using the recur-
rent hidden states, ht, and the random effects of the environment is modelled
by a sequence of stochastic latent variables, zt. Lastly, we discuss how to detect
abnormalities using deep neural networks.

Chapter 4 summarizes the research presented in the papers contained in this
thesis. We discuss how the results relate to the research objectives and contribu-
tions presented above and relate the results to the theory of situation awareness
and how the methods may find use in practice.

Chapter 5 summarizes the main contributions of this thesis, discusses open
questions, and directions for future work.

Chapter 6 contains the paper Olesen et al. [2022c]. This paper presents
a review of deep learning methods for analysis of maritime trajectories and
relates them to the five main issues identified by previous reviews. The paper
provides a comparison of four deep learning architectures for the unsupervised
detection of maritime abnormalities and evaluates their performance on a data
set with annotated abnormalities related to a collision accident. Based on the
review and comparison of deep learning techniques, the paper presents a set
of guidelines for future research on deep learning models for the detection of
maritime abnormalities.

Chapter 7 contains the paper Olesen et al. [2022d] . This paper follows up on
some of the ideas presented in Chapter 6. First, different pre-processing tech-
niques are evaluated for the purpose of abnormality detection. An alternative
temporal training strategy is explored to create models generalizable to differ-
ent resampling periods. Ensembles of different model architectures, objective
functions, and resampling periods are proposed and evaluated. Finally, transfer
learning is explored to transfer learnt normalcy models to different regions of
interest (ROI).
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Chapter 8 contains the paper Olesen et al. [2021]. This paper investigate
the physical interpretability of a state-of-the-art model for automatic detection
of maritime abnormalities. The training objective is modified with a static
consistency loss and an ElasticNet loss to induce information in the stochastic
latent variables. The latent variable are clustered to investigate the physical
information encoded in the latent layer.

Chapter 9 contains the paper Olesen et al. [2022a]. Based on the findings
regarding the information encoded in the latent space of deep AutoEncoders
in Paper III, this paper suggests a two-step clustering method to disentangle
positional and kinematic behavior. Disentanglement of these features allows for
a more detailed normalcy model in terms of local kinematic behavior. Feedback
from surveillance operators highlight local kinematic behavior as indicative of
abnormal behaviour. Trajectories are first clustered on the basis of positional
similarity. Each positional cluster is then further clustered on the basis of kine-
matic similarity.



8 Introduction



Part I

Methodology and Context





Chapter 2
Maritime Abnormality

Detection

In this chapter, we present a description of maritime abnormalities and meth-
ods for detecting them. In the first section, the concept of situation awareness
and the relation to maritime anomaly detection is presented. We then discuss
maritime abnormalities and their detection using rule-based vs. data-driven
methods. Finally, we discuss the most common ways of constructing the normal
maritime picture and how they address the main issues identified with auto-
mated methods for maritime abnormality detection.

2.1 Situation Awareness

The term situation awareness was first coined during World War 1 [Endsley,
1995] where it was recognized as an important tool for military pilots. To this
day, it still remains an important concept of military operations, but has also
found use in several civil domains such as traffic modeling, medical decision
making, operation of heavy machinery, etc. Endsley [1995] provides a general
definition of situation awareness:

"Situation awareness is the perception of the elements in the environment



12 Maritime Abnormality Detection

Figure 2.1 – Model of situation awareness in dynamic decision making. Adapted
from Endsley [1995] by Salerno et al. [2022]

within a volume of time and space, the comprehension of their meaning, and
the projection of their status in the near future"

Situation awareness may be interpreted as the perception and understanding of
your nearby surroundings and prediction of events in the near future. This is
key in dynamical decision making, where accurate predictions of the environ-
ment’s response to your actions are key to fulfilling your goals and objectives.
A diagram of dynamical decision making and the role of situation awareness is
shown in Figure 2.1. The perception and analysis of the environment forms the
basis for decision and action to achieve the objectives of the operator. As such,
only when full situation awareness has been achieved can we make successful de-
cisions and implement the required actions. Thus, situation awareness serves as
the basis for military Command and Control operations and has been equated
with the observe and orient phases of the observe-orient-decide-act (OODA)
loop [Grant and Kooter, 2005].

Endsley [1995] decomposed situation awareness into three levels shown in Figure
2.1.
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1. Perception of the elements in the environment.

2. Comprehension of the current situation.

3. Projection of the future status.

These levels increase in complexity, and each level serves as a requirement for
the following level. The first level of situation awareness is associated with the
perception of the environment, the second level the analysis of the environment
and the third level is the prediction of the future environment. The primary
task of surveillance operators monitoring maritime safety and security is to
detect unexpected deviation from normality, i.e. abnormalities. Since these
abnormalities are discovered in real time, the problem of maritime abnormality
detection can be considered as a contribution to level 2 situation awareness.
In relation to maritime abnormalities, level 3 situation awareness consists of
predicting the impact on maritime safety and security if the abnormality is
ignored and allowed to continue.

Several technologies and products have been develop for level one automation
support within the domain of maritime surveillance. Data on surroundings is
collected from a wide range of sensors like radar, AIS, sonar, weather, tacti-
cal data links, open source intelligence, satellite imagery, and communication
systems. The data is gathered, fused, and presented in a concise and easily
accessible, typical graphically, manner. Recently, computer vision techniques
have been utilized to detect and classify objects, thereby contributing to level 1
situation awareness, Freitas et al. [2019], Chang et al. [2019], Mazur et al. [2017].
However, while much attention has been focused on automation support for level
1 situation awareness, automated systems for maritime abnormality detection
to support level 2 situation awareness remain a challenge. Human surveillance
operators monitor the maritime safety and security of large maritime regions,
including charts of all vessel movements and taking into account a wide range
of sensory input mentioned above. Despite visual aids, human operators can
easily overlook abnormalities due to cognitive overload, time pressure, fatigue,
and uncertainty due to the complex and heterogeneous nature of the data. This
makes automated systems for maritime abnormality detection a key ingredient
to support level 2 situation awareness.

2.2 Maritime Abnormalities

The situation awareness of maritime abnormality detection by experienced hu-
man operators relies heavily on domain knowledge and familiarity with vessels,
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shipping routes, rules and regulations, the weather, ect. As such, a precise defi-
nition of maritime abnormalities is very difficult to make, as this would depend
on deterministic factors such as location, time period, ship types, etc. as well
as random factors such as weather, local traffic picture, and noisy sensory in-
put. Additionally, maritime abnormalities can range from abnormal behavior
due to weather or local traffic to severe accidents or illegal activities that impact
maritime safety and security.

Designing a rule system for maritime abnormality detection capable of encom-
passing all maritime knowledge would be immensely difficult. First, the inclu-
sion of new data sources for level 1 situation awareness requires designing new
rules, which have to be consistent with the predetermined rule base. Secondly,
studies are required to determine the applicability of rule sets in both time and
geographical location. This requires a system to constantly evaluate the applied
rule base to identify rules producing false positives, as well as new potential
rules to include. Additionally, relocation of the system to another geographi-
cal location may require the design of completely new rules. Both of these are
difficult and computationally heavy if the number of data sources increases and
may make a rule system infeasible for general use. Additionally, even if such
comprehensible rule systems could be designed, it would have difficulty dealing
with the uncertainties of the real world.

Alternatively, data-driven approaches derive a model to represent the normal
picture and assess anomalies compared to the normal picture. However, com-
pared to human operators, data-driven approaches may struggle to understand
the context of maritime situations. As such, the best solution seems to be
designing automated data driven systems for detection of maritime abnormali-
ties and to leave the interpretation of the situation and decision regarding the
appropriate operational response largely up to the human operator.

In the work of data-driven automated abnormality detection there are generally
three ways of defining abnormalities for training and evaluating models; Simu-
lated abnormalities, self annotated abnormalities, and unsupervised anomalies.
Self-annotated or simulated data sets may be trained purposefully for abnor-
mality detection of well-defined abnormal behavior using supervised learning.
However, it is important that the models are trained using meaningful abnor-
malities of operational interest and while extreme values or observations with
added noise are outliers compared to the training set they might not define
abnormal trajectories of operational interest to surveillance operators.

In unsupervised models, a normalcy model is learned on the training set. Then
it is assumed that abnormalities are poorly modeled by the normalcy model
and can be detected as outliers using this model. One drawback of unsuper-
vised methods is that they flag statistical outliers as abnormal. This means
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that they can potentially learn to model abnormalities of operational interest
if they occur frequently causing false negatives. Thus, evaluation and compar-
ison of unsupervised methods is an important issue for them to find practical
application. In chapter 6 we discuss evaluation of deep unsupervised methods
in more detail and provide a comparison of models previously suggested in the
literature.

2.3 Maritime Abnormality Detection

The previous research on maritime abnormality detection has been summarised
in several recent reviews; [Riveiro et al., 2018, Yan and Wang, 2019, Sidibé and
Shu, 2017, Zhang et al., 2020a]. They all identify some of the same trends and
future challenges for maritime anomaly detection presented below. As men-
tioned in the previous section, the main approaches to maritime anomaly detec-
tion can be separated into rule based and data-driven approaches. Rule-based
approaches look for predefined patterns in the data source while data driven
approaches derive a model for representing the normal picture and evaluate
anomalies compared to the derived normalcy picture. In the next section, we
shall discuss some of these models in more detail and their relation to the chal-
lenges in the following.

Evaluation:
Most works approach the problem of anomaly detection as an unsupervised
problem. As a result, it is very difficult to compare the performance of various
methods due to a lack of established, publicly available, annotated data sets for
performance evaluation. However, annotated data sets are difficult to obtain
since most surveillance operations are conducted by the military or law enforce-
ment. Therefore, information related to the detection of abnormal behavior is
often classified for security purposes. Additionally, many works limit their data
to either small geographical areas or a few different ship types. As such, the
training data may not be a true representation of the expected real-life data,
and the generalization of any trained model may be questionable.

Incorporation of External Features:
Most works in the literature are centered on historical AIS data, and most
approaches use only kinematic information from AIS messages to build a nor-
malcy model. However, static factors such as ship type, and ship size as well as
contextual factors such as weather, traffic density or regional regulations also
dictate the behaviour of maritime vessels. As such, integrating and combining
multiple sources of data may help improve situation awareness and reduce the
risk of false alarms. Additionally, Riveiro et al. [2008] remark that there is an
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observed lack of studies on feature extraction and finding relevant features in
high-dimensional maritime datasets. However, due to evaluation issues, it is
very difficult to evaluate the impact of additional external features.

Zhang et al. [2020a] and Yan and Wang [2019] also raise an issue regarding
the quality of the AIS data in particular. Several parts of the AIS system
require manual data entry, which may be prone to manual errors, and not all
ships are equipped with or properly operate the AIS system. Additionally,
basing automated abnormality detection models solely on AIS data makes the
detection prone to illicit interference with the AIS signal such as on/off switching
or jamming [Hovgaard, 2022]. Therefore, combining different sources of tracking
such as radar or satellite imagery could help to refine the maritime picture.

Online Detection:
All reviews identify a lack of methods for online detection in real time. Many
works are based on an assumption that the abnormality detection is performed
after the entire trajectory of the vessel has been observed. This is a critical
limitation in any real-life application, as it will delay detection until after the
abnormal event has ended. Thus, in order to enhance situation awareness for
maritime safety and security, the research should focus on methods capable of
performing real time or near real time detection.

Scaleability:
As mentioned many previous works contain only a limited data sets. This is
closely related to the scalability issues of most suggested methods. Typical ap-
proaches such as Kernel Density Estimators (KDE) and clustering methods are
very sensitive to hyper-parameters and require time-consuming tuning of these
hyper-parameters. Furthermore, the time complexity of the clustering methods
increases quadratically with the size of the training data, while KDE increases
with the product of the sizes of the training and evaluation sets. Osekowska
et al. [2017] finds significant levels of seasonality in the maritime traffic patterns
which might require frequent re-training of automated abnormality detection
models. If no data reduction strategy is used, models for automated abnormal-
ity detection may become infeasible due to the size of the training sets.

Interpretation of alarms:
Riveiro et al. [2008] discuss the end-user aspects related to maritime abnormal-
ity detection systems and find that little work has focused on specifying user
requirements for such systems. Riveiro et al. [2008] argue that in order to build
system trust and support user understanding of the system’s inner workings and
limitations, detection systems needs to be transparent and interpretable for op-
erators. In particular, Riveiro et al. [2008] highlight issues such as the insertion
of expert knowledge into the anomaly detection process, the interpretability of
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the anomaly detection process, providing explanations for detections to opera-
tors, finding efficient human–machine collaborations, how to initialize parame-
ters related to the detection process and how operators can update and improve
normalcy models. According to Riveiro et al. [2008] development of abnor-
mality detection systems has focused primarily on technological challenges. In
order to improve abnormality detection performance, Riveiro et al. [2008] sug-
gests greater involvement of end users in system design and a focus on efficient
human-machine collaboration for abnormality detection.

2.3.1 Rule Based Detection Methods

As discussed previously, a comprehensive set of rules for abnormality detection
would be practically impossible to design due to scaling issues as the number of
data sources increases. However, the results are very easy to interpret and ana-
lyze, since rule-based systems may output which rules were broken and clearly
show operators the reason for an alert in real time. This makes the majority of
automated systems for maritime abnormality detection in use today apply rule
based detection on a small scale limiting the ROI and abnormalities detected
[Thomopoulos et al., 2019, Neves et al., 2019].

The OCULUS sea forensics toolbox [Thomopoulos et al., 2019] uses a combi-
nation of rules and fuzzy inference suggested in Rizogiannis and Thomopoulos
[2019] to perform detection of several different forms of anomalies; Gap in report-
ing, speed change, fake MMSI, rendezvous incidents, and collision notification.
To detect reporting gaps, speed changes, and MMSI spoofing, the system mines
all AIS messages in an area every t seconds and sends an alert if it detects
any of the above things based on user-defined thresholds. To perform detection
of rendezvous incidents, and collision notification they utilize a fuzzy inference
system. Positions reported from AIS messages are used to calculate the distance
to closest point of approach, the time to closest point of approach and variation
of compass degree. This information is used together with the current time
of day and geographical position as input to the fuzzy inference system. They
suggest a filtering mechanism to filter out anchored ships and ships too far away
from each other before the fuzzy inference system. The system is designed to
achieve a high degree of interpretability by translating abstract numbers into
easy-to-understand linguistic rules, and almost all parameters are adjustable by
operators. However, the system fails to account for contextual and external
information. The design of fuzzification functions and rules is not discussed,
and as the number of data sources increases, the fuzzification mechanism and
inference rules become increasingly difficult to design.

The MARISA project [Neves et al., 2019] uses similar rules for online detection of
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signal loss detection, abnormal change of direction, or abnormal change of speed
based on AIS messages. They also conduct offline analysis of AIS messages to
verify navigational status, perform rendezvous detection, and verify the reported
position using the previously reported position of the vessel.

Another popular approach to express rules is Markov Logic Networks. Lauro
Snidaro et al. [2012] suggests the use of Markov logic to incorporate contextual
information into detection. Markov Logic Networks consist of a set of rules
explaining the interaction between parameters known as the knowledge base.
Each rule in the knowledge base is assigned a weight, and the probability that
an event x occurs is proportional to the exponential of the sum of the weights
multiplied by the number of times each rule is upheld during the event.

P (X = x) ∝ exp

 |L|∑
i=1

ωini(x)

 (2.1)

where |L| denotes the cardinality of the knowledge base, ωi the weight of the
i-th rule, and ni(x) the number of times the i-th rule is upheld during the
event. The knowledge base can consist of both of observable context and prior
determinable contextual information. Observable context may be knowledge
about heading, route, or intelligence reports. Prior determinable contextual
information is related to knowledge about zoning of waters and shipping lanes
ect. Snidaro et al. [2015] extends the method to handle complex events made
up of multiple simple events through the combination of rules. The knowledge
base for rendezvous detection used by Snidaro et al. [2015] is shown in Table
2.1. The complex event rendezvous depends on the level of suspicion we have
of the participating vessels and the proximity between them. Rule 17 defines
a rendezvous abnormality as two vessels in the same area during overlapping
time intervals. Rule 16 applies further weight to this rendezvous abnormality
if the vessels are flagged as suspicious by operators. Rule 18 specifies that
rendezvous is not possible if either vessel has not stopped. Similarly, rule 19
states that rendezvous has not happened when the two vessels are in the same
area in non-overlapping time intervals. The level of suspicion and proximity we
assign to vessels has their own rules based on simple observational or contextual
knowledge. Snidaro et al. [2015] argues that in chains of rules, the weights acts as
an uncertainty measure. A strength of Markov logic is the ability to be applied
even when data sources are missing and that output probabilities are associated
with understandable events, allowing operators to quickly assess the level of
risk. Another key feature is the possibility to query possibilities for arbitrary
events which allows operator to build on-the-fly queries required by the certain
situations. Like for fuzzy inference the inclusion of many data sources makes
the knowledge base increasingly difficult to design and a potential inconsistent
knowledge base will cause global inconsistencies and affect the inference of the
system.
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# Rule Weight
1 overlaps(v,y) ⇔ overlaps(y,v) ω
2 meets(v,y) ⇔ meets(y,v) ω
3 proximity(v,y) ⇔ proximity(y,v) ω
4 rendezvous(v,y) ⇔ rendezvous(y,v) ω
5 stopped(v) ∧ (isIn(v,openSea) ∨ isIn(v,intWaters)) ⇒ suspicious(v) 4/5 ω
6 stopped(v) ∧ (isIn(v,harbour) ∨ isIn(v,nearCoast)) ⇒ ¬ suspicious(v) 2/5 ω
7 ¬ AIS(v) ⇒ alarm(v) ω
8 ¬ insideCorridor(v) ⇒ suspicious(v) 4/5 ω
9 humint(v,smuggling) ⇒ suspicious(v) 3/5 ω
10 humint(v,clear) ⇒ ¬ suspicious(v) 1/5 ω
11 suspicious(v) ⇒ alarm(v) ω
12 ¬ suspicious(v) ⇒ ¬ alarm(v) 1/5 ω
13 isIn(v,z) ⇒ (z ̸= zp) ∧ ¬ isIn(v,zp) ω
14 isIn(v,z) ∧ isIn(y,zp) ∧ (z ̸= zp) ⇒ ¬ proximity(v,y) ω
15 ¬ proximity(v,y) ⇒ ¬ rendezvous(v,y) ω
16 suspicious(v) ∧ suspicious(y) ∧ (overlaps(v,y) ∨ meets(v,y)) ∧ proximity(v,y) ⇒ rendezvous(v,y) ω
17 (overlaps(v,y) ∨ meets(v,y)) ∧ proximity(v,y) ⇒ rendezvous(v,y) 1/5 ω
18 ¬ stopped(v) ∨ ¬ stopped(y) ⇒ ¬ rendezvous(v,y) 3/5 ω
19 before(v,y) ∧ proximity(v,y) ⇒ ¬ rendezvous(v,y) 4/5 ω

Table 2.1 – Knowledge base suggested by Snidaro et al. [2015] for incorporating
contextual information and uncertainty using Markov Logic Net-
works for rendezvous detection.

2.3.2 Data-driven Detection Methods

Data-driven approaches generally try to construct a model to represent the nor-
mal picture and evaluate anomalies compared to the normal picture in terms
of the trained model. Compressing the normal maritime picture may increase
interpretability, as operators can easier relate to an idea of average behavior
compared to a large ensemble. The most common way to express the normal
maritime picture is by clustering [Pallotta et al., 2013b, Zhao and Shi, 2019b].
Other popular approaches include stochastic processes [D’Afflisio et al., 2018,
Forti et al., 2018, Kowalska and Peel, 2012], graph-based approaches [Venskus
et al., 2019, Osekowska et al., 2017, Varlamis et al., 2019], non-parametric meth-
ods [Laxhammar and Falkman, 2015, Smith et al., 2014a, Anneken et al., 2015],
or predictive/reconstructive models [Nguyen et al., 2021, Singh et al., 2021].
Some skip this step and train a classifier directly on the available data using
supervised learning [Singh and Heymann, 2020a, Sfyridis et al., 2013].

2.3.2.1 Supervised Learning

Supervised models applied directly on raw data points include decision trees
[Bombara et al., 2016], neural networks [Singh and Heymann, 2020a, Liu et al.,
2022a], and Support Vector Machines (SVM) [Handayani et al., 2013, Sfyridis
et al., 2013].
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Bombara et al. [2016] suggests the use of decision trees trained using coordinate
trajectories to classify normal and abnormal behavior. The training data is
simulated to represent two abnormal cases, i.e., smuggling and pirate/terrorist
activity. The simulated trajectories have clear differences between normal and
abnormal behavior, making detection trivial for a human operator. Thus, the
contributions of the system is debatable and the performance when exposed to
real life trajectories and abnormalities remains an open question.

Handayani et al. [2013] and Sfyridis et al. [2013] both train SVMs on data
extracted from historical AIS messages such as speed, location, course, heading
and timestamp. Handayani et al. [2013] use a self-labeled data set and obtain a
91.63% accuracy using the raw AIS data. Sfyridis et al. [2013] focus on migrant
carrying vessels in the Mediterranean. Since only a few vessels have been labeled
as migrant carrying by national coast guards upon inspection, they use a One-
Class SVM. With this algorithm, they identify another 9 vessels which show
similar behavior to the vessels previously found to be smuggling refugees.

Several works have applied shallow or deep neural networks to directly clas-
sify trajectories as normal or abnormal using sequences of location, speed, and
course. Wang [2020] train a feed-forward neural network to predicts the proba-
bility of abnormality directly using simulated labels obtained by adding noise.
Singh and Heymann [2020a] suggests a model for detection of AIS on/off switch-
ing. Incoming AIS messages are re-sampled to every two seconds and missing
data is considered as abnormal cases of on/off switching and trajectories with
continuously missing data are labeled as abnormal. Singh and Heymann [2020b]
finds neural networks outperform traditional machine learning methods such as;
SVMs, K-Nearest neighbors, Decision Trees, etc. on detection of AIS on/off
switching. Liu et al. [2022a] and Hu et al. [2022] self-annotate the dataset based
on extreme position, speed, or course values decided using the COLREGS in-
ternational collision avoidance rules for the area. Zhang et al. [2021b] cluster
the data using density-based clustering and propose a Long-short Term Mem-
ory (LSTM) model to classify abnormal trajectories identified as outliers in the
clustering.

Supervised learning using self-annotated or simulated data sets may be trained
purposefully for abnormality detection of well-defined abnormal behavior, and
evaluation of their performance is trivial. Additionally, depending on the choice
of model (eg. deep sequential neural networks) the may also allow for incorpo-
ration of additional features and online detection of abnormalities. However, as
discussed previously large annotated data sets for training purposes are diffi-
cult to procure. Although extreme values or observations with added noise are
outliers compared to the training set, they may not define abnormal trajecto-
ries of operational interest to surveillance operators. In addition, the process of
manual annotation or the annotation using clustering suffers from scaleability
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issues, negating the potential modeling power of deep neural networks applied
to very large data sets.

2.3.2.2 Stochastic Processes

Several papers treat normal maritime navigation as a stochastic process. Mille-
fiori et al. [2016] and Vivone et al. [2017] argue that vessel dynamics in open
seas is well described by an Ornstein-Uhlenbeck stochastic process. Ornstein-
Uhlenbeck stochastic processes closely resemble constant-velocity processes; how-
ever, in Ornstein-Uhlenbeck processes, the velocity is allowed to drift around a
long-term mean. Ornstein-Uhlenbeck processes have been used for trajectory
forecasting [Pallotta et al., 2014, Uney et al., 2019], route deviations [Forti et al.,
2018, 2019], and detection of AIS on/off switching [D’Afflisio et al., 2018, Braca
et al., 2018]. For route deviations, the switching between normal and abnormal
behavior is modeled as an unknown Bernoulli velocity set that is either empty
under normal behavior or a singleton under abnormal behavior. Using the tra-
jectory extracted from AIS messages or recorded using radar, the probability of
this set being a singleton can be derived and used as the anomaly score.

The parameters of the Ornstein-Uhlenbeck process can be estimated on the fly
for each trajectory, or estimated using historical data. Estimating the param-
eters from using historical data may provide valuable contextual knowledge.
Pallotta et al. [2014], Uney et al. [2019] make a position prediction model based
on vessel kinematics that is described by an Ornstein-Uhlenbeck process. Pal-
lotta et al. [2014] estimate the long-term mean velocity, revert rate, and noise
from historical AIS tracks. Density based clustering [Pallotta et al., 2013b]
is used to extract routes from historical AIS data and the parameters of the
Ornstein-Uhlenbeck process is estimated using the trajectories belonging to the
same route as the current vessel. Having defined the Ornstein-Uhlenbeck pro-
cess, long-term predictions of the position up to seven hours ahead is made.
The prediction model is evaluated on a few test cases of different ship types and
the variance of the prediction error is found to grow linearly with the prediction
horizon. The same principal idea is applied in Uney et al. [2019]. Historical AIS
data is classified into several classes based on the start and ending positions.
For each class the number of changes in the route is determined by a GMM, in
which the number of components equals the number changes along the route.
This also splits the class trajectories into sections in which the vessel kinematics
is modeled by an Ornstein-Uhlenbeck process. The posterior probability density
of the future vessel position is approximated by performing the marginalization
over the kinematic parameters of all classes using the Monte Carlo approxima-
tion. The algorithm is tested on three trajectories initiating from a position
where several different routes converge, and it correctly identifies the split in
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routes observed in the historical data.

D’Afflisio et al. [2018], Braca et al. [2018] suggest a model to detect intentional
AIS on/off switching based on Ornstein-Uhlenbeck processes. D’Afflisio et al.
[2018] derive a test statistic to evaluate whether the vessel kinematics between
two AIS contacts, which might be widely separated both spatially and tem-
porally, can be described as an Ornstein-Uhlenbeck process. The process is
evaluated using a single case from real life and is found to both flag abnormal
behavior when observations are present as well when observations of the ab-
normality are not present. Braca et al. [2018] extends this approach to include
situations in which secondary detections of the vessel are made between the two
points of interest. These secondary detections could stem from radar measure-
ments or reported sightings from human observations of the vessel. The added
value of the extra detections is not investigated in a real world setting, but their
effect on the test statistic is tested on simulated trajectories.

Kowalska and Peel [2012], Smith et al. [2012], and Smith et al. [2014b] suggest
Gaussian Processes to model vessel kinematics. Kowalska and Peel [2012] models
the velocity of ships as function of their physical position. Due to limitations in
the Gaussian Process they only consider velocities where both components are
positive. A model of normal vessel behaviour is created from historical AIS data
and then tested on simulated anomalies by moving an observation to another
position as well as some test cases from the English Channel in which movements
where reenacted to show sign of smuggling and terrorism. The model correctly
classifies the test cases as abnormal, and on the simulated abnormality, they
report a global average accuracy of 80%. However, in regions where normal and
abnormal behavior is present, the accuracy is very poor. They suspect this is
due how the abnormality is simulated. When an observation is moved along the
shipping lane, the velocity may still be normal but is labeled abnormal.

Smith et al. [2012, 2014b] also suggest using Gaussian Process in combination
with extreme value theory to perform sequential anomaly detection. Smith ap-
plies a sequentially updating Gaussian Process in order to predict the distance
of the next track update from the origin based on the sequence of previous dis-
tances. Extreme value theory estimates the distribution of the maximum value
observed in a sequence of stochastic variables and can be used to define a thresh-
old for abnormal observations. If future observations are within the threshold for
the predicted mean determined by extreme value theory it is considered normal
and is included in the next model update. Smith reports an AUC-ROC of 0.8032
using simulated anomalies which could indicate the model struggles with false
positives or there are some anomalies that can not be predicted. The models
are also evaluated on real life test cases. The model correctly identifies a single
abnormal trajectory but also flags all trajectories of sailing vessels as abnormal
since these trajectories do not exhibit common movement characteristics.
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Models based on stochastic process make underlying assumptions regarding nor-
mal vessel dynamics. These assumptions must be reflected by the underlying
stochastic process or in the choice of kernel function for Gaussian Processes.
Stochastic processes may be applied to large data sets, where the parameters
are estimated sequentially for each trajectory. The parameters of the processes
may also be estimated from historical data; however, this often requires some
form of data clustering, which scales poorly with the size of training data. As
seen in Smith et al. [2014b] the underlying assumptions about vessel dynamics
may not hold for all types of vessels, which could cause issues when applied in
a real-life setting. Additionally, the models have generally not been evaluated
on a large noisy data set representative of real-life data.

2.3.2.3 Clustering

The most common way of expressing the normal maritime picture is using clus-
tering. Several different clustering algorithms have been applied for clustering of
trajectories. Methods such as K-means, Klaas et al. and K-medoids, Zhen et al.
[2017] have been suggested in collaboration with similarity measures. However,
density-based clustering techniques have long been the predominant approach
to data mining within maritime trajectory analysis. Most clustering methods
are based on the Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) [Ester et al., 1996]. An important feature of DBSCAN is that it di-
rectly identifies outliers whose local density is lower than a predefined threshold.
This is used in Sun et al. [2016] to identify abnormal AIS updates based on the
reported location. Pallotta et al. [2013b] suggests the widely used Traffic Route
Extraction and Anomaly Detection (TREAD) framework. TREAD first clus-
ters observations to form waypoint objects in the ROI. These waypoint objects
are classified as stationary points, entry points, or exit points within the ROI
boundary box. A route between waypoints is then formed whenever a certain
number of transitions between them have been observed.

The obtain normalcy model may then be used for anomaly detection. In Pallotta
et al. [2013b] the observed trajectory of a vessel is described by a sequence of
state vectors that contain information on position and velocity extracted from
AIS messages.

V = {v1, v2, ..., vT } (2.2)
vt = [xt, yt, ẋt, ẏt] (2.3)

The trajectory of the vessel is associated with a time series of regions denoted
as the corresponding temporal state sequence S = {s1, s2, ..., sT }. These regions
are identified by circles of radius, d, centered in the observed positions [xt, yt],
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and used to describe the local route behavior. It is clear that the radius, d, of
the associated states st is an important hyperparameter. If d is too small, the
behavior of the local route would be based on a reduced number of neighbors,
leading to poor generalization. On the other hand, if d is too large, the behaviour
would be biased by the mixing of different behaviors. The extracted routes and
their sequence of local behaviour can be used for anomaly detection purposes.
Pallotta et al. [2013b] suggest a simple probability threshold detection. The
maximum probability of the observed vessel track and associated temporal state
sequence conditioned on the k-th possible route is used as a test criterion.

argmax
k

P (V, S|Rk)P (Rk)
H0

⋛
H1

Th (2.4)

where V denotes the observed trajectory of the vessel of interest, S the corre-
sponding temporal state sequence, and Rk the k-th possible route. If the test
criteria is greater than a user-defined threshold, the behavior falls under the
established normality model. However, if the value is smaller, the behavior is
flagged as abnormal. Pallotta et al. [2013b] suggest the probability of observ-
ing positional and velocity components (xt, yt, ẋt, ẏt) within the state st, i.e.
P (V, S|Rk) is estimated using non-parametric methods such as the Kernel Den-
sity Estimator. The anomaly detection is not evaluated, but the usability is
shown through a real-life example of a double u-turn in the shipping lane.

Several extensions of the TREAD framework have been suggested. Pallotta
and Jousselme [2015] associate several features to the routes extracted using
TREAD. Each route is associate with an average route computed as a sequence
of waypoints (xWPt

, yWPt
, ẋWPt

, ẏWPt
), where xWPt

and yWPt
, are related to

the coordinates of an ideal vessel moving along the “average route” and passing
by that specific waypoint. The velocity components ẋWPt

, ẏWPt
are derived by

combining the median speed over ground and the course over ground of the
waypoint. Pallotta and Jousselme [2015] proceed to perform anomaly detection
in a hierarchical manner. First, the positional distance between tracks and the
discovered average routes are computed. Tracks are then either flag as being
off-course abnormalities or assigned to a single route. The kinematic distance
between the course over ground and speed over ground features and the kine-
matic values of the average route is then calculated and large distances flagged
as abnormal. Finally, the transition probability between route waypoints is
modeled to detect abnormal transitions. The proposed hierarchical detection is
evaluated using simulated abnormalities and has a precision of 87.3% for abnor-
mal trajectories. In Jousselme and Pallotta [2015] different distances or relation
measures between tracks and routes are studies in terms of their uncertainty
representation capabilities. A similar approach is suggested in Arguedas et al.
[2015], Varlamis et al. [2019]. To build a maritime traffic network, each average
route is divided into segments according to the detected break points or turns as
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described in Arguedas et al. [2014]. Abnormalities are then detected using the
distance between the reported vessel position and the declared route Arguedas
et al. [2015], transition probabilities, or behavioral statistics of the subsegment
between two waypoints Varlamis et al. [2019]. Singh et al. [2021] suggest the
generation of a graph network based on waypoint discovery using DBSCAN.
Each trajectory update is assigned to an edge in the derived network, and this
assignment is provided to a LSTM model as a contextual input.

The TREAD method and its derivatives are all based on a clustering of individ-
ual AIS updates not accounting for the temporal relation between them until
the abnormality detection phase. The DBSCAN algorithm has also been used
for the clustering of complete trajectories by computing trajectory similarities
Yang et al. [2022b], Wang et al. [2021], Zhao and Shi [2019a]. First, the tra-
jectories are simplified using the Douglas-Peucker (DP) algorithm Douglas and
Peucker [2011]. The similarities are then computed using the Hausdorff dis-
tance or Dynamic Time Warping (DTW) before being clustered by DBSCAN.
Wang et al. [2021] considers a hierarchical search over the hyperparameters of
DBSCAN, which allows for groups with different densities, and helps to find
clusters in sparsely populated geographical regions.

Recently, deep neural networks have been used for feature extraction to cluster
trajectories [Yao et al., 2017, Murray and Perera, 2021, Protopapadakis et al.,
2017]. Yao et al. [2017] and Murray and Perera [2021] use auto-encoders based
on a recurrent neural network (RNN) to compress trajectories to a fixed dimen-
sion. Encodings in the latent space are clustered using k-medoids and hierarchi-
cal DBSCAN respectively and clusters are found to corresponds to the major
shipping lanes in the ROI. Murray and Perera [2021] further use the discovered
clusters to train neural networks for predicting the future position.

Protopapadakis et al. [2017] use stacked AutoEncoders in combination with
density-based clustering (OPTICS [Ankerst et al., 1999]) to detect abnormali-
ties in tracks from Over-The-Horizon radar measurements. At each time step,
all tracked ships are projected into the new latent space using AutoEncoders
and clustered using the OPTICS algorithm. Abnormalities are then detected as
outliers flagged by the OPTICS algorithm. The proposed feature extraction is
evaluated against raw data points or Principal Component Analysis using the
Calinski–Harabasz Index, Davies–Bouldin Index and Silhouette values of the cal-
culated clusters. AutoEncoder feature extraction is found to give more coherent
and densely packed clusters. This causes outliers to be more well determined,
and thus makes it easier to find abnormalities. Additionally, more outliers can
be found when using AutoEncoders with around 2-3 outliers detected at each
time step.

The clustering methods mentioned above only consider the positional input,
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yielding clusters that mostly correspond to the primary shipping lanes. As dis-
cussed, Pallotta and Jousselme [2015] consider the speed and course separately
in the abnormality detection stage, however, this information may also be in-
corporated into the clustering. Zhen et al. [2017] introduce the difference of the
average course in their similarity measure and Liu et al. [2015b] extends the
DBSCAN clustering models to consider not only the geographical distance of
the coordinates, but also the difference in speed and course. This allows them
to distinguish between shipping lanes in opposite directions and find speed dif-
ferences within the main shipping lanes. However, the work is limited to small
geographical areas and a limited number of ship types.

Previously, we argued that models should encourage human-machine interac-
tion and that the interpretation of the situation and the decision regarding the
appropriate operational response should be largely left to the human operator.
This approach is studied in Radon et al. [2015]. Firstly, extraction of the nor-
mal movement patterns is done using a clustering of trajectory segments using
the OPTICS algorithm. Any outliers flagged in this clustering is considered a
potential abnormality. For all potential abnormalities Radon et al. [2015] then
consider the direction of the wind, the speed of the wind, the speed of wind
gusts, and the height of the waves at the location and time that the abnormal
behavior was detected. A rule-based approach to explain abnormal behavior
using the contextual features is then suggested. The proposed approach is ver-
ified using recorded AIS data from the entry of Vancouver bay. The data is
split into 6 groups based on the total duration and each trajectory segment
is labeled by a subject matter expert. The proposed contextual verification is
found to significantly reduce the number of false alarms and increase precision
in all groups.

Clustering approaches may be used to detect abnormalities in different ways.
Density based clustering methods may directly flag trajectories found to be out-
liers [Radon et al., 2015, Wang et al., 2021] or clustering can be used to extract
a sequence of state vectors representing the average cluster behaviour [Pallotta
et al., 2013b, Liu et al., 2015b]. As discussed before, it is very difficult to com-
pare these methods as they mostly only report a few qualitative examples or
performance on simulated abnormalities. However, an important factor in the
comparison is the issue of online detection. Methods based on trajectory sim-
ilarities are often restricted to offline detection, whereas point-based methods
allow for real-time detection. Pallotta et al. [2013b] use a sliding window that
captures only the most recent points of the partially observed track to per-
form online detection. Clustering methods may provide more interpretability
for operators as clusters of trajectories a generally easy to visualize and compre-
hend. However, as the time complexity of density-based clustering algorithm is
squared w.r.t. the size of the training set, they are not applicable for large-scale
use. Similarly, the inclusion of additional data sources in the clustering may
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negatively affect the clustering performance due to sparsely populated clusters.
However, as illustrated in Radon et al. [2015] a human contextual verification
step can reduce the number of false alarms.

In Chapter 9 we propose a two-step clustering procedure that can disentangle
positional and kinematic features. This method is intended to increase the user
interpretability through a proposed man-in-the-loop detection scheme.

2.3.2.4 Graph-Based Approaches

As discussed previously, the waypoints discovered using density-based clustering
may be extended to form a graph representation of the normal maritime picture
Arguedas et al. [2015], Varlamis et al. [2019], Singh et al. [2021].

Another common way to represent the normal picture is by using a fixed grid
representation. Lei [2016] suggests a grid-based clustering algorithm. The ROI
is partitioned into grid cells of equal size and the number of trajectory segments
passing through each cell is calculated. A cell is identified as a frequent region if
the number of trajectory segments passing through exceeds a predefined thresh-
old. After extracting the frequent regions, each raw trajectory is transformed
into a sequence of frequent regions. Based on these sequences the transition
probability and average kinematics behaviour for each transition is computed.
Abnormality detection is then based on three metrics; spatial outlying score,
sequential outlying score, and behavioral outlying score. The spatial outlying
score is calculated using the probability of a vessel passing through the current
frequent region, the sequential outlying score is calculated using the transition
probabilities, and the behavioral outlying score by comparing the kinematic be-
haviour of the vessel to the typical kinematic behaviour using Gaussian Mixture
Models. These three scores are combined into a single anomaly score that is
used for detection.

Other grid-based clustering approaches have been suggested in Venskus et al.
[2015, 2017, 2019], and Osekowska et al. [2014], Osekowska and Carlsson. Os-
ekowska et al. applies a fixed geographical grid over the ROI while Venskus
et al. learns the grid by training a self-organizing map. Both methods take
inspiration from nature to perform outlier detection; Venskus et al. from ant
pheromone navigation and Osekowska et al. from potential fields, respectively.
Both methods assign a value to each node in the grid which increases whenever
a vessel transitions to the node, but then slowly evaporates or decays over time.
Venskus et al. [2015] flags abnormalities whenever an update is assigned to a
node in which the pheromone level is less than a defined threshold, while Os-
ekowska et al. [2014] computes a continuous potential as a weighted average of
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the charge of all nodes.

Graphs have also been used to represent the relationship between different tra-
jectories. Hu et al. [2022] suggest a graph variational AutoEncoder in which
each node corresponds to a ship in the ROI and the adjacency matrix is calcu-
lated using trajectory similarity measures. A similar approach is suggested in
Liu et al. [2022d] for the problem of trajectory prediction. Adjacency matrices
are calculated based on the geographical distance, time to closest point of ap-
proach, and vessel size differences. A graph convolution network is then trained
to predict the future position based on these adjacency matrices. Instead of
modelling individual trajectories. Eljabu et al. [2021] detects abnormalities in
traffic patterns on longer time scales of weeks or months. They propose a graph
neural network where semantic stopping points in the ROI, e.g. ports, form
nodes in a graph. The number of transitions between these nodes over a long
period of time is then embedded using graph convolutions. The embeddings
are assumed to be normally distributed, and outliers in this distribution are
declared abnormal transition patterns.

Like with most other suggested models, evaluation of the abnormality detection
performance of graph-based approaches is difficult and is often only evaluated
using qualitative examples or simulated abnormalities. Venskus et al. [2017]
evaluate the proposed method using expert-labeled information; however, the
model is only tested on data from small harbor areas. Thus, it may not gener-
alize well to larger areas with less restricted traffic.

Graph-based preprocessing may provide a similar level of intuitive detection as
clustering methods due to the semantic interpretation of nodes in most graph ap-
proches. However, this intuition may begin to break down as additional features
are added, as inVenskus et al. [2017, 2019]. As nodes become high dimensional,
they will start to overlap in dense regions of the input space and only differ
slightly for a few input features. Contrarily, nodes in sparse regions will have
large differences in multiple input features and contain less graniulity compared
to dense regions. Thus, we may see a trade-off between the interpretability of
the graph and the number of features. Similarly, construction of the graph from
data must be scaleable to large amounts of training data. Expensive similarity
measures or clustering methods might not be useful for large amounts of training
data.

Detection of abnormalities in most graph-based methods is based on transition
probabilities Venskus et al. [2019], Varlamis et al. [2019] or behavioural statistics
of the transition Lei [2016], Varlamis et al. [2019]. Both methods require a full
trajectory sub-segment between nodes, which may delay detection in sparse
areas where nodes are far between. Thus, to be useful in large ROIs, detection
based on transition statistics should be avoided.
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2.3.2.5 Non-Parametric Methods

Anneken et al. [2015] compare the abnormality detection performance of Kernel
Density Estimators to Gaussian Mixture Models on an self-annotated data set
of AIS messages from tankers and cargo vessels. Both methods are trained using
only the points marked as normal and abnormality detection is based on the
assumption that the log-likelihood for abnormal points will be lower. Anneken
et al. [2015] conclude that both methods are prone to false positives and false
negatives and argue that looking at the entire trajectory instead of single points
could improve performance.

Laxhammar and Falkman [2011], Smith et al. [2014a] both suggest using K-
nearest neighbors with the Hausdorff distance to detect abnormalities using
conformal prediction. Laxhammar and Falkman [2011] focus on making an
online classifier by considering a directed Hausdorff distance to calculate the
similarity between incomplete trajectories. For each trajectory, the k-th highest
similarity scores are saved and used for conformal prediction of new unseen
trajectories. Smith et al. [2014a] compares non-conformity measures based on
K-nearest neighbors and Kernel Density functions with a Gaussian Kernel. They
find that K-nearest neighbours performs better when minimizing the number of
false positives is important, but Kernel Density Estimators achieved an overall
better performance. The methods were evaluated using a combination of real
trajectories from vessel types not included in the training data and simulated
abnormalities. Smith et al. extends proposed approach by conditioning the
detection according to the type of ship. This is found to improve detection,
finding more abnormalities and fewer false positives.

Laxhammar and Falkman [2012] propose to swap the K-nearest neighbours non-
conformity measure to one based on Local Outlier Factor (LOF, Breunig et al.
[2000]). LOF computes the local neighbourhood density around each data point
and computes an abnormality score comparing the local neighbourhood density
of each data point to that of its nearest neighbours. Laxhammar and Falkman
[2012] suggests a sliding window to accommodate for possible incomplete tra-
jectories and allow for online detection. For each full trajectory in the training
data, this is done by finding the subsegment with the highest similarity with
the incomplete trajectory under investigation.

A major drawback with conformal abnormality detection detection [Laxhammar
and Falkman, 2012, Smith et al., 2014a] and Kernel Density Estimation [Smith
et al., 2014a, Anneken et al., 2015] is that they require storage of and compari-
son with the complete training data. Therefore, it is computationally inefficient
and scales very poorly to large training sets. Laxhammar and Falkman [2015]
attempts to combat this issue using an inductive approach to calculate non-
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conformity scores. The training set is split into the proper training set and a
calibration set. The nonconformity score of the calibration set is then precal-
culated using the proper training set. Given a test sample the non-conformity
score is calculated relative to the training set, and detection is based on com-
parison with the non-conformity score of the calibration set. With the proposed
approach, one does not need to recalculate the non-conformity score of each
previous data point; however, calculation of the non-conformity score for the
test trajectory still may be infeasible for large training sets.

2.3.2.6 Predictive/Reconstructive Models

Predictive and reconstructive models are unsupervised approaches that detects
abnormalities based on the predictive or reconstructive error. We previously
mentioned SVMs applied for direct prediction of abnormality labels; however,
they may also be applied for prediction of future positions for abnormality de-
tection. Kim et al. [2019] use Support Vector Regression to learn the historical
shipping lanes. The future position is predicted based on the learned shipping
lanes, current position, heading, and speed. If the future position, heading, or
speed deviates from the predicted values by a fixed threshold, the trajectory is
classified as abnormal.

Deep neural networks have been especially prevalent as predictive and recon-
structive models. In Chapter 6 we provide a more in depth review of deep
learning methodologies used for analysis of maritime trajectories. In this sec-
tion, we shall briefly discuss how deep learning methods tackle the five issues
raised previously.

For trajectory prediction/reconstruction, the architecture most applied has been
RNNs either as one-step predictions [Liu et al., 2021, Sørensen et al., 2022],
direct multistep predictions [Chondrodima et al., 2022, Mandalis et al., 2022,
Spadon et al., 2022], iterative one-step prediction [Forti et al., 2020, Capobianco
et al., 2021b, Dijt and Mettes, 2020] in a sequence-2-sequence fashion or in a
reconstructive AutoEncoder architecture [Nguyen et al., 2021, Hu et al., 2022,
Murray and Perera, 2021]. Several different combinations of recurrent architec-
tures have been suggested in the literature with different recurrence cells, unidi-
rectional vs. bidirectional, context lengths, etc. Additionally, a few extensions
to the basic RNN structure have been proposed. Spadon et al. [2022] suggest a
hybrid solution where each recurrence is preceded by a 1-dimensional convolu-
tion and Capobianco et al. [2021b] suggests the use of an attention mechanism
to allow the decoder to more easily focus on specific time updates of the input
during prediction. In order to account for external information, some works
include additional features extracted from AIS or external data sources. Liu
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et al. [2021, 2022c] suggest an encoder/decoder structure in which the encoded
latent vector from multiple ships is averaged and used to initialise the decoder.
This is supposed to make the decoder able to take into account not just the
previous trajectory of the current ship being predicted but also all other vessels
in the vicinity. Dijt and Mettes [2020] include a sequence of radar images cen-
tered on the modeled vessel to provide context regarding the local environment,
including the shoreline and nearby vessels.

For the purpose of abnormality detection, it is necessary to study the effect of
different architectures including additional input features on the type of behav-
ior flagged as abnormal. Features such as final destination, external weather
data, nearby vessel positions, etc. all seem intuitive to include, but it is ex-
tremely difficult to evaluate their value without a publicly available baseline
validation set. Even if these features are discovered to be useful for abnormal-
ity detection, it may not be trivial to include them in a real-life operational
setting. Even comparison of trajectory prediction models is difficult due to a
lack of a standardized available dataset. Spadon et al. [2022] compare the per-
formance of deep learning models with traditional machine learning models for
regression and find deep learning models significantly outperform other models.
Spadon et al. [2022] similarly compare different architectures of RNNs. They
find that their proposed CNN-RNN hybrid stabilizes the performance across
data complexity and improves feature extraction for multiple vessels of different
types. However, in general, they find little difference in terms of the Root Mean
Squared Error (RMSE) between deep learning models, and the variance over
multiple trainings is larger than the differences between models.

Most applications of deep learning methods allow for real-time detection of ab-
normalities. RNNs process trajectories sequentially and predictive/reconstructive
errors of individual updates may be used to flag abnormalities. Most work uti-
lize a global threshold for detection [Zhao and Shi, 2019b, Singh et al., 2021],
however, the use of a global threshold for abnormality detection may cause
a bias in sparse regions in the input space. Since models will naturally per-
form better in regions with more training data, the use of global thresholds
will cause an increase in detection in regions with lower modeling performance.
The A-Contrario detection method [Nguyen et al., 2021] overcomes this issue
by only considering the reconstruction/predictive errors of the observation in
the local vicinity when deciding the threshold. However, the time complexity of
A-Contrario detection is quadratic with respect to the trajectory length, thus,
there may be a need for more efficient real-time detection methods.

Predictive/reconstructive deep learning methods can be trained on large corpora
of data using mini-batches and stochastic optimization algorithms. This allows
unsupervised deep learning models for abnormality detection to scale very well
with large amounts of training data. Similarly, neural networks allow for rel-
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atively easy inclusion of explanatory features. However, these features needs
to be widely available in real time to be useful in an operational setting and
recording of the features must be scaleable to large data amounts as well. Dijt
and Mettes [2020] include a sequence of radar images centered on the modeled
vessel. This approach may work for large ships with on-board radar capabilities
centered on their own position but applications to off-site surveillance centers
when radar images are off center is less clear. Capobianco et al. [2021b] in-
clude the final destination as an optional categorical variable in the decoder of
a Seq-2-Seq model predicting the future position. This distinction may not be
scaleable to global or large ROIs with many different shipping lanes, harbors,
and traffic that does not follow the well-defined shipping lanes. First, the discov-
ery of exit points requires a clustering of AIS messages similar to the procedure
suggested in TREAD [Pallotta et al., 2013b]. Secondly, in order to be used in
real-time it requires a mapping from the final destination reported using AIS to
the discovered exit points. Similarly, Zhao and Shi [2019b], Singh et al. [2021]
both suggest preprocessing trajectories using DBSCAN to make the LSTM eas-
ier to train. Zhao and Shi [2019b] trains different predictive models for each
cluster discovered using DBSCAN [Zhao and Shi, 2019a] and Singh et al. [2021]
suggest the generation of a graph network based on waypoint discovery using
DBSCAN. Each trajectory update is then assigned to an edge in this network,
and this assignment is provided to the LSTM model as input. As we discussed
previously, clustering does not scale very well to large amounts of training data,
thus training of the proposed models might prove computationally expensive in
practice.

To a large extent, the literature has focused on the design of increasingly deeper
and more complex models and interpretation of detections has been largely ig-
nored by previous works. As discussed previously, clustering of the latent space
of deep recurrent AutoEncoders found that the latent space encodes information
related to the route chosen through the ROI. This information might be useful
for the detection of abnormalities that evolve on a global scale, that is, across
the entire ROI. However, information related to behavior on a global scale does
not provide useful contextual information related to the detection of local ab-
normalities that depends on more localized behavioral differences. In Chapter
8, we investigate the interpretability of sequential reconstruction based deep
neural networks and if information related to the detection of abnormalities can
be induced in the latent variables.



Chapter 3

Deep Neural Network

In this chapter, we present the deep neural networks used in this thesis for learn-
ing the normalcy model using historical AIS data. These networks combine ideas
from two classes of models, the variational AutoEncoder (VAE) and recurrent
neural networks (RNNs). VAEs are used to model complex high dimensional
data by introducing latent variables and use neural networks to parameterize
conditional distributions for the latent variables and the observed data. RNNs
are used to model temporal dependencies in data (usually time series) through
their internal memory units.

3.1 Variational AutoEncoder

An AutoEncoder (AE) is a neural network trained to copy the provided input,
x, to the output, x̂. This is done by first learning a compressed description, z,
which is the used to make a reconstruction as faithful as possible to the input,
x̂ ≈ x. The unobserved variable z is referred to as the latent variable and
the layer is commonly called the bottleneck layer. The network consists of two
parts; an encoder function, z = f(x), that learns the latent variable given an
input, and a decoder function, x̂ = g(z), that generates a reconstruction of the
original data given a latent representation.
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Historically, AEs have been used for dimensionality reduction and feature ex-
traction Protopapadakis et al. [2017]. However, the Variational AutoEncoder
(VAE) [Kingma and Welling, 2013, Rezende et al., 2014] extends the encoder
and decoder functions from deterministic functions to probability distributions
pencoder(z|x) and pdecoder(x̂|z), making VAEs excellent for generative modeling..

The joint distribution of the input and latent variables defines the generative
model as

p(x, z) = pdecoder(x|z)p(z) (3.1)

The prior over the latent variable, p(z), is often chosen to be a simple Gaussian
distribution. The decoder pdecoder(x|z) is typically a Gaussian distribution (for
continuous data) or a Bernoulli distribution (for binary data) whose parameters
are computed by passing the latent state z through a deep neural network. The
weights and biases in the deep neural network defines the parameters, θ, over
which we wish to optimize. Since we are interested in learning a model that
explains the observed data well, we aim at maximizing the probability assigned
to x. Therefore the optimal parameter θ∗ is given by

θ∗ := argmax
θ

pθ(x) =

∫
z

p(x, z)dz (3.2)

Computation of pθ(x) using (3.2) becomes intractable since the marginaliza-
tion over z is prohibitively expensive due to the non-linearities in the decoder.
Similarly, the true posterior distribution pencoder(z|x) is also intractable, since
this requires computation of pθ(x). Variational Inference (VI) overcomes the
intractability of the true posterior pencoder(z|x) by introducing an approximate
posterior

qencoder(z|x) ≈ pencoder(z|x) (3.3)

The approximate posterior is often chosen to be a Gaussian distribution with
diagonal variance.

qencoder(z|x) = N(µ, diag(σ2)) (3.4)

where the parameters µ and σ are modeled using a neural network referred to
as the encoder network.

The introduction of the approximate posterior allows to express the likelihood
of pθ(x) as an expectation over the approximate posterior qencoder(z|x).

pθ(x) =

∫
z

p(x, z)dz =

∫
z

qencoder(z|x)
qencoder(z|x)

p(x, z)dz = Eqencoder(z|x)

[
p(x, z)

qencoder(z|x)

]
(3.5)
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Taking the logarithm defines the Evidence Lower Bound (ELBO) loss function.

L(x) := Eqencoder(z|x) [log(pdecoder(x|z))− log(qencoder(z|x)) + log(p(z))] (3.6)

=

Reconstruction Error︷ ︸︸ ︷
Eqϕ(z|x) [log pθ(x|z)]−

Regularization︷ ︸︸ ︷
DKL (qϕ(z|x) | p(z)) (3.7)

Thus, learning advances by maximising the ELBO (3.6). Optimizing the ELBO
results in a trade-off between two terms (3.7). The first term measures the
quality of the reconstruction, while the second term enforces the posterior
qencoder(z|x) to match the prior p(z). Regularization is done using the Kullback-
Leibler (KL) divergence. The KL divergence is a measure of the similarity be-
tween two probability distributions. Thus, a stronger regularization (weighting
the KL term higher) drives the approximate posterior closer to the prior, mak-
ing it more difficult to produce good reconstructions. Maximization of (3.6)
can be done by standard backpropagation Rumelhart et al. [1986] using the
reparametrization trick [Kingma and Welling, 2013, Rezende et al., 2014] to
sample and backpropagate through the latent variable z.

3.2 Recurrent Neural Net

Recurrent neural networks (RNN) are an extension of deep neural networks
designed to model sequential data of variable length. RNNs assume that the
joint distribution over the sequence x1:L follows the factorization.

pϕ(x1:L) =

L∏
t=1

pϕ(xt|xt−1, . . . ,x1) (3.8)

We assume that, at time t, all the relevant information from the past x1:t−1 can
be encoded into a single variable ht−1. The latent variable ht evolves over time,
and at each time step incorporates the information from the previous elements
of the sequence, using the update equation ht = fϕ(ht−1,xt−1). With this
definition, the factorization (3.8) becomes

pϕ(x1:L) =

L∏
t=1

pϕ(xt|ht−1) (3.9)

The function fϕ used to update the latent variable is a differentiable non-linear
function that has to be powerful enough to capture long-term dependencies in
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the sequence. Common choices for fϕ are memory cell units such as Long-Short
Term Memory (LSTM Hochreiter and Schmidhuber [1997]) or Gated Recurrent
Unit (GRU Chung et al. [2014]).

RNNs normally process sequences in the forward direction, i.e. from the past
to the future. However, sometimes future events may influence the past. In
translation tasks the order of the words may change between the languages or
in the maritime domain a ship may reduce the speed to prepare for a future
turn. Bidirectional RNNs combine two RNNs to provide an architecture where
sequences are processed in both the forward and backward temporal directions.
At each time step, the latent variable is obtained by concatenating the forward
and backward variables ht =

[−→
ht,
←−
ht

]
.

RNNs may be trained for different purposes. If RNNs are used to predict the
next word given the previous, it may be sufficient for the latent variable to
only store information a few words back. However, we may also use the latent
variable in an AE framework where we reconstruct an entire sequence from a
single variable encoding the entire input sequence.

3.3 Sequence-2-sequence models

RNN Sequence-2-Sequence (Seq-2-Seq) models have been proposed in order to
train an RNN to map an input sequence to an output sequence of different
lengths. They are widely used in natural language processing for translation
[Sutskever Google et al., 2014] and text generation [Graves, 2013]. Similarly
to the AE it employs 2 RNNs in an encoder-decoder architecture. The en-
coder reads the input sequence {x1, . . . ,xl} and obtains the fixed-dimensional
latent variable hl. The final latent variable hl is passed to the decoder which
recursively predicts the output sequence {y1, . . . ,ym}.

ŷt = Wux̂ut + bux̂ (3.10)
ut = gθ(ŷt−1,ut−1,hl) (3.11)

where ut−1 is the hidden state of the decoder RNN modelled by the function
gθ. The length l of the input sequence and the length m of the output sequence
are referred to as the context length and the prediction length, respectively.
Training is carried out by minimizing the prediction error.

L(x,y) = 1

m

m∑
t=1

∥ŷt − yt∥2 (3.12)

A simple Seq-2-Seq network as described above is shown in Figure 3.1.
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Figure 3.1 – A basic Seq-2-Seq network. Diamonds denote deterministic vari-
ables and circles random variables.

A clear limitation of the encoder-decoder strategy occurs when the size of the
hidden state is too small to properly summarize an entire sequence. To alleviate
this problem, the attention mechanism can be added as an intermediate layer
between the encoder and decoder. The attention mechanism allows each step in
the decoder to focus on the hidden state at intermediate time steps instead of
just the last. This is done by taking a weighted average of the encoder hidden
states. Consider the sequence of encoder hidden states {h1, . . . ,hl} and the
hidden state of the decoder uj , then each context vector zj is found by

zj =

l∑
t=1

αjtht (3.13)

The attention weights αjt are calculated using the softmax operator as

αjt =
exp ejt∑l
t=1 exp ejt

(3.14)

with
ejt = vT

a tanh(Whht +Wuuj−1) (3.15)

The weights va, Wh, and Wu are trainable network parameters used to score
the spatio-temporal relationship between inputs around time t and the output
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at time j. A graphical representation of a Seq-2-Seq with bidirectional encoder
and attention is shown in Figure 3.2.

Figure 3.2 – A bidirectional Seq-2-Seq network with attention. Diamonds de-
note deterministic variables and circles random variables.

3.4 Recurrent Variational AutoEncoder

In the previous section, we saw how the hidden state of the RNN can be used
to make sequential predictions of future positions. In a Recurrent Variational
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AutoEncoder (RVAE, Srivastava et al. [2015]) the final latent hidden state is
instead used to make a reconstruction of the entire input sequence. This cre-
ates an AE where both the encoder (3.4) and decoder (3.1) are approximated
by recurrent neural networks. The final hidden states of encoder network is
passed through a fully connected layer to give the parameters of the Gaussian
distribution (3.4)

µz = WµhL + bµ (3.16)
σz = WσhL + bσ (3.17)

(3.18)

We then sample a latent variable z from (3.4) and calculate the initial hidden
state of the decoder

u0 = tanh(Wzuz+ bzu) (3.19)

Reconstruction of the trajectory is done sequentially using (3.10) and (3.11),
however, the decoder is not updated using the hidden state of the encoder. The
RVAE is with bidirectional encoder is sketched in Figure 3.3

Figure 3.3 – A RVAE with bidirectional encoder. Diamonds denote determinis-
tic variables and circles random variables.
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3.5 Variational Recurrent Neural Network

The Variational Recurrent Neural Network (VRNN, Chung et al. [2015]) can be
considered a RNN which at each time step consists of a VAE conditioned on the
recurrence model. As previously, we model the sequence using (3.9). However,
we then introduce the latent stochastic variables zt. The prior distribution of the
latent stochastic variable at time t, zt, is given by a Gaussian with parameters
µ0,t and σ2

0,t, obtained by a neural network ϕprior taking as input the recurrent
hidden states ht−1.

zt ∼ N(µ0,t, diag(σ2
0,t)), (3.20)

where [µ0,t,σ
2
0,t] = ϕprior(ht−1)

Similarly the generating distribution and the approximate posterior q(zt|xt) is
also modelled using neural networks, ϕdec and ϕenc, taking ht−1 as an input.
The generating distribution also depends on the latent variable zt, which first
passes through a feature extractor ϕz.

xt|zt,ht ∼ P (px,t), (3.21)

where P (px,t) = ϕdec(ϕz(zt),ht−1)

As mentioned, the distribution P (px,t) is often chosen as a Gaussian or Bernoulli
distribution depending on the nature of the input x. The approximate posterior
depends on the input xt that passes through another feature extractor ϕx.

zt|xt,ht ∼ N(µz,t,diag(σ2
z,t)), (3.22)

where [µz,t,σ
2
z,t] = ϕenc(ϕx(xt),ht−1)

At each time step the recurrence ht is updated according to

ht = fθ(ϕ
x(xt), ϕ

z(zt),ht−1) (3.23)

The VRNN network is pictured in Figure 3.4. The probability of observing the
sequence x1:T is obtained by integrating out zt from (3.21)

log(p(x1:T )) =

T∑
t=1

log(p(xt|ht−1)) (3.24)

=

T∑
t=1

log(Ep(zt|xt,ht−1) [p(xt, zt|ht−1)]) (3.25)

=

T∑
t=1

log(Ep(zt|xt,ht−1) [p(xt|zt,ht−1)p(zt|ht−1)]) (3.26)
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This integral is intractable but can be approximated using variational inference
as explained in Section 3.1. Thus, learning is done by maximizing the timestep-
wise ELBO.

L(x1:T) =

T∑
t=1

Eq(zt|xt,ht−1)p(xt|zt,ht−1)−KL [q(zt|xt,ht−1)|p(zt,ht−1)]

(3.27)

Figure 3.4 – The VRNN network is a VAE which at each time step is conditioned
on a recurrence model. Diamonds denote deterministic variables
and circles random variables.

3.6 A-Contrario detection

In this section we present a description of A-Contraio detection suggested in
Nguyen et al. [2021]. In this section, the method will be derived using recon-
structive probabilities as suggested in Nguyen et al. [2021]. However, the method
is equally applicable using reconstruction or predictive errors from point pre-
dictions as in (3.10), by changing from detection of probabilities lower than the
training set to errors higher than the training set. .

Having learned the distribution p(x1:T ) (3.24), one may apply a global threshold
to mark all trajectories with low probability. These trajectories may be regarded
as abnormal since the model have not learnt to accurately model the dynamics.
However, in local regions with a limited number of trajectories, the model may
not have learned to reconstruct trajectories to the same degree as in densely
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populated regions. Thus, applying a global threshold might cause the detection
of trajectories in a sparsely populated region, regardless of whether they are
abnormal or not. This issue is alleviated using A-Contrario detection.

A-Contrario detection divides the ROI into geographical cells Ci. Instead of
considering the global reconstruction, we limit ourselves to a small geographical
cell around the current target Ci, and look at the reconstruction within this cell.
Let lCi

x′
t

denote the log-probabilities log(p(x′
t|ht−1)) of AIS messages within Ci.

PCi then denotes the distribution of lCi

x′
t
modelled by Kernel Density Estimation.

lCi

x′
t
∼ PCi (3.28)

An AIS-message is the considered to be abnormal if the log probability, Lxt
, is

less than the 1/p-quantile of PCi . In other words, an AIS message is abnormal
if the probability of observing worse log-probabilities within the same cell is
less than p. When using reconstruction errors, the error must be greater than
(1-1/p)-quantile to be considered abnormal.

xt is abnormal↔ PCi(lCi

x′
t
< Lxt

) < p (3.29)

In Nguyen et al. [2021] the value p is set to 0.1. Therefore, the probability that
any individual randomly sampled AIS message is abnormal is 10%.

Assuming that the event "xt is abnormal" is independent for updates in a tra-
jectory x1:T , the probability that at least k of n AIS messages are abnormal
follows the tail of a binomial distribution.

B(n, k, p) =

n∑
i=k

(
n
i

)
pi(1− p)n−i (3.30)

A-Contrario detection detects whether a trajectory x1:T contains any abnormal
sub-segments. A subsegment is abnormal if the probability of the observed
binomial tail is lower than some threshold. If an abnormal subsegment exists,
the entire trajectory is denoted as abnormal.

x1:T is abnormal⇔ ∃(n, k), Ns ·B(n, k, p) < ϵ (3.31)

The scaling factor Ns accounts for the number of different subsegments that
can be created from the trajectory x1:T of length T . Its value can be calculated
using Ns =

T (T+1)
2 . The quantity Ns ·B(n, k, p) denotes the outlier score of the
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trajectory x1:T that we can use to gauge the degree of abnormality. We define
the outlier factor of the trajectory x1:T as the inverse of this quantity.

OF (x1:T ) ≡
1

Ns ·B(n, k, p)
(3.32)
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Part II

Research Outcomes





Chapter 4

Summary and Discussion of
Research

In this chapter, the included publications presented in the following chapters are
summarized. The research follows two main sections. In Section 4.1 papers I and
II are presented. These papers study deep learning models for the automated
detection of maritime abnormalities in real time. Papers III and IV are presented
in Section 4.2. These papers study the interpretability of a state-of-the-art
model evaluated in the first section and ways to extract the learned normalcy
model in order to provide detection explanation or to allow for more man-in-the-
loop style detection. Methods for more abnormality detection of more localized
kinematic behaviour are developed.

4.1 Reconstruction based Abnormality Detection

In this section, deep learning models for automated detection of maritime abnor-
malities are investigated. A major issue with using unsupervised deep learning
methods for extracting the normalcy picture is evaluation of the learned nor-
malcy model, i.e. can the learned representation of maritime traffic be used for
detection of abnormal behaviour. One possible solution is to evaluate the ab-
normality detection performance of trained models on a data set representative
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of real-life maritime traffic.

For this purpose, we use a dataset with annotated abnormal traffic related to
a collision accident in the waters northwest of the Danish island of Bornholm
on December 13th 2021 originally prepared for Paper IV. In total, the data set
consists of 521 trajectories extracted from AIS data, where 25 trajectories were
found to be abnormal. Trajectories consist of latitude and longitude coordi-
nates, as well as speed and course over ground reported using the AIS system.
In addition to the colliding vessels, the abnormal trajectories involve commer-
cial traffic, which had to deviate from the planned course, Search-and-Rescue
and law enforcement vessels responding to the accident, and any other vessel
participating in the search of two missing sailors. For training, trajectories from
the period of June 1st to November 30th from the same region was extracted.

The datasets cover a rectangular ROI over the Bornholm island bounded by
(54.5o N, 13o E) to (56o N, 16o E). The data was limited to moving updates,
that is, AIS messages with a stationary flag were discarded, and 8 different types
of ship covering a number of different priorities and complex behaviors. These
ship types are; Cargo, Tanker, Fishing, Passenger, Sailing, Pleasure, Military,
High Speed Vessel. For the test set the ship types Search-and-Rescue and Law
Enforcement where added. The speed was limited to 20 m/s, and updates with
higher speeds were discarded. Unless otherwise mentioned tracks shorter than
10 minutes were discarded and tracks exceeding 12 hours were split into smaller
tracks, each between 10 minutes and 12 hours. Tracks are resampled every 120
seconds using linear interpolation. In order to ensure updates for interpolation,
tracks were split into two contiguous tracks if the time interval between two
successive AIS messages exceeded 15 min,

Paper I - A Review of Current Deep Learning Techniques for Mar-
itime Abnormality Detection and Directions for Future Progress

Paper I presents a review of deep learning methodologies for analyzing maritime
trajectories from a perspective of abnormality detection. The review finds sev-
eral different applications of deep learning models for the detection of maritime
abnormalities and other problems requiring the analysis of maritime trajecto-
ries. Other problems within the field of maritime trajectory analysis can in
many circumstances be interpreted as detection models for a special case of
maritime abnormalities. For instance, classification of the ship type may be
used to detect vessels trying to hide their true identity and prediction of the
vessel state may be used to detect illegal fishing activities in exclusion zones. In
fact, many abnormality detection methods are based on prediction of the future
trajectory.
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We find that previous literature has mainly focused on the design of more com-
plex models for both abnormality detection and other problems within maritime
deep learning. However, it remains an open question how these models compare
with each other quantitatively and qualitatively. Likewise, it remains an open
question what impact the choice of architecture, hyperparameter values, and
input features have on abnormality detection.

We then evaluate four methodologies suggested in the literature for abnormality
detection using the test set described above. We find that the models gener-
ally achieve similar performance as measure by the ROC-AUC, however, by
inspecting the false positives we find that they flag different forms of behavior.

We find that predictive Seq-2-Seq models generally learned a linear projection of
future states causing false positive for trajectories with varying course and turns
at high speeds. Course variations at low speeds were found not to induce alarms
due to the relatively smaller prediction errors. This stresses a potential issue
with the prediction of abnormal behavior at low speeds. We find that the Geo-
TrackNet model is susceptible to flag trajectories with frequent course changes,
and RAE better detects traffic that follows the shipping lanes with small devi-
ations or is located near the shipping lanes. For this reason, we argue that an
ensemble of the two AutoEncoder based models is a better abnormality detector
than any of the studied models individually. Additionally, the paper investigate
the outliers scores of different ship types and find large differences between ship
types indicating the ship types should be included in the abnormality detection.

Based on the review and evaluation of models the paper presents the following
guidelines for future research:

• Models should be trained and evaluated on data sets representative of the
expected traffic in real-time applications.

• Abnormality detection models should focus on unsupervised methods.

• Preprocessing steps should be kept to a minimum unless a change in the
abnormality detection performance can be verified.

• We propose a study of the impact of additional inputs such as kinematic
AIS information, weather data, vessel-2-vessel interaction, etc. on the
behavior flagged as abnormal.

• We suggest that future model designs include ideas of how prediction
interpretability may be achieved.

• The ship type should be included in the abnormality detection.
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• The literature should work towards ensembles of models that detect dif-
ferent types of abnormal behavior.

In terms of the research objectives presented in Section 1.2 Paper I contributes
primarily to objectives A and B. Deep learning frameworks are discussed in
detail and evaluated on the basis of the performance for automated abnormal-
ity detection. The paper shows by using objective measures that deep learning
methods can be used for automated detection of maritime abnormalities asso-
ciated with collision accidents. Although both colliding vessels are detected as
abnormal, it is generally due to events after the collision occurred. As such
an impending collision was not detected and models which better model vessel
interactions should be investigated.

As discussed previously, automated abnormality detection models may not be
a desired end goal Endsley [2017]. It is likely that automated abnormality
detection models will be implemented as a decision support tool instead of a
tool to enhance level 2 situation awareness of human surveillance operators. As
such special care should be taken as to how automated models are utilized in a
practical operational setting if at all. A very conservative model with only few
alarms might be implemented in a parallel setting with human operators and
contribute with detection of only the most extreme cases concerning operational
security. However, previous cases of this sort are generally unknown to the
public, making it very difficult to objectively measure the performance of these
extreme cases. Automated tools could potentially also be utilized in limited
capacity for training purposes or for application in new ROIs where little is
known about the normal maritime picture and human operators may lack level
2 situation awareness.

Paper II - Detecting Abnormal Maritime Trajectories using Ensem-
bles and Transfer Learning

Paper II builds upon the findings of Paper I and addresses some of the questions
raised for future work. Initially, the different inputs and objective functions are
investigated based on their practicality for abnormality detection. Overall, the
behavior flagged as abnormal is very similar between the three learning objec-
tives considered. The model trained for point predictions achieves the overall
best abnormality detection performance. Models trained for predictions of the
full generative distribution are generally more susceptible to noise. This sensi-
tivity can be reduced by implementing a discretization of the inputs. However,
this makes the models tied to the ROI and makes application to new regions or
implementation on moving platforms impossible.
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Models are then trained on trajectories with irregular sampling. The training
trajectories are subsampled by randomly selecting a number of updates from
each trajectory, each mini-batch. The number of sampled points depends on the
length of the entire trajectory. Therefore, the previous limitation of a maximum
trajectory length of 12 hours is removed. We found that training using random
irregular sampled trajectories did not negatively affect the abnormality detection
of models trained for point predictions. Training with random irregular samples
made the models generalizable to different resample periods during evaluation.
As such, the same model was evaluated with a resample period of 120 seconds
as described above, but also using a resample period of 600 seconds. Depending
on the type of behavior of interest, different sampling periods may be useful,
and a model trained on random irregular samples can be used to evaluate all
sampling periods.

We then evaluate ensembles of models with different model architecture, ob-
jective function, and resample periods and find that an ensemble consisting of
GeoTrackNet evaluated using resample periods of 120 and 600 seconds and a
RAE model evaluated using resample a period of 120 seconds achieves the best
performance as measured by ROC-AUC. The ensemble members were qualita-
tively found to flag different types of abnormal trajectories, which explain the
performance boost.

Lastly, the generalization to different ROIs is studied and it is investigated
whether transfer learning can be applied to reduce the training time for new
ROI. Models are trained using trajectories captured around the Danish island
of Anholt within the bounding box (56o N, 10.7o E) to (57.5o N, 13o E) using the
same preprocessing strategy. It is found that models trained for point prediction
does not require any form of fine-tuning on the target domain to achieve similar
level of abnormality detection performance.

Paper II address the generalization of deep learning methods and contributes to-
wards objective C and B. Ensembles are found to improve abnormality detection
when made up of members that flag different types of behavior as abnormal. In
order to improve automatic detection further additional ensemble members that
flag other abnormal forms of behaviour could be introduced. For this purpose,
additional cases with different forms of abnormal behavior should be annotated
for evaluation purposes.

Construction of such ensembles might not only be beneficial for automated mod-
els, but also useful for enhancing level 2 situation awareness. With different
deep learning models, the trajectories can be evaluated against different nor-
malcy models. However, this requires that it is possible to extract the normalcy
model in a form that is interpretable for human operators, which might prove
difficult for every ensemble member.
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4.2 Clustering based Abnormality Detection

An issue of particular interest to surveillance operators is the general lack of
interpretability of model detections. This is especially true for the deep learn-
ing architectures explored in papers I and II. In this section, we study how to
extract normalcy models from deep learning models and we develop a method
for constructing normalcy models focusing on the local kinematic behavior. In
particular, we wish to construct normalcy models with disentangled and phys-
ically interpretable information. That is, we wish that dynamic information,
e.g. local kinematic behavior, is disentangled from static information, e.g. the
general location or route choice.

In this section, we shall briefly use the previously mentioned annotated test set
for a quantitative comparison of clustering and deep learning-based automated
detection of maritime abnormalities in Paper IV. However, the primary discus-
sion of results is based on qualitatively comparisons. The datasets used are
described in each respective paper.

Paper III - Towards latent representation interpretability for mar-
itime anomaly detections

Paper III study how to extract the learned normalcy model from the state-
of-the-art GeoTrackNet model studied in papers I and II. The study focuses
primarily on the GeoTrackNet model, as the RAE model has been investigated
from this perspective in Murray and Perera [2021]. Murray and Perera [2021]
found that clusters in the latent space of the RAE model correspond to the
global behavior through the ROI, i.e. the route chosen through the ROI. As
such, clustering in the latent space of the RAE model can be used to extract
information about the shipping lanes and major routes through the ROI. This
study was initially conducted before the works of Paper I and II and some of the
takeaways from these two papers could have been used to change the scope of
the paper or further strengthen the analysis. We shall comment on this where
ever necessary in the discussion.

To extract information related to the learned normalcy model, we studied the
activation of the stochastic latent space in the GeoTrackNet model. The latent
space is found to be nonzero only in the most extreme cases of vessel maneuver-
ing at high speeds with a highly varying course. Thus, the information extracted
from the latent space may not be useful for explaining flagged trajectories or to
detect abnormalities in a man-in-the-loop style. GeoTrackNet is based on the
VRNN described in Section 3.5 and introduces the latent variables zt described
by the inference model Eq. (3.22) to account for the random effects from exter-
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nal sources. However, the trajectories are then preprocessed using discretization
so that only the most extreme cases of random effects are reflected in the data.
From this aspect, it is not surprising that the stochastic latent space is mostly
inactive, and the majority of information is modeled using the recurrent model.
However, using the continuous inputs investigated in Paper II the random effects
will not be suppressed to a similar degree, and a larger amount of information
in the stochastic latent space would be expected.

In order to induce more information encoded into the stochastic latent space
the learning objective is modified. To allow for a more flexible latent space,
the Kullback-Leibler regularization term in Eq. 3.27 is relaxed by slowly an-
nealing the weight, β, of the term from 0 to 1 over the first 10 training epochs.
To improve the disentanglement of physically interpretable information in the
stochastic latent space, an ElasticNet loss is added to the weights of the en-
coder ϕenc, and prior ϕprior, networks. Additionally, it is preferred if dynamic
information related to the reconstruction of the current update is modeled using
the recurrence model and that information in stochastic latent space is related
to an overall or local description of the current vessel state across several time
updates, independent of current location, speed, and course. For this purpose,
a static consistency loss is added to drive the latent encodings from the same
trajectory at different times towards one another. To avoid the trivial zero
encoding, we also add a loss to drive away the latent encodings of other vessels.

In a disentangled latent space, we would expect to see a connection between
updates in a trajectory, and we would expect to see clusters of trajectory seg-
ments with similar behavior, i.e. clusters denoting different behaviors such as
steaming at constant speed, acceleration, turn to starboard, etc. However, clus-
tering in this latent space, we found that latent encodings generally corresponds
to segments of shipping lanes in the ROI. We also observe a significant overlap
between the segments of the shipping lanes assigned to different clusters. We
suspect this to be an artifact of the static consistency loss forcing apart latent
encoding of trajectories sharing similar behavior. Due to a large overlap, we
do not identify any specific type of vessel behavior associated with each cluster
as we would have hoped from a fully disentangled latent space. This indicates
that the stochastic latent space alone may not be sufficient for the detection of
maritime trajectories with abnormal behavior in a man-in-the-loop style. Se-
quences of latent vectors jump between different areas of the latent space as
the trajectory moves through the ROI making it difficult to detect abnormal
behavior based on latent space transitions.

Compared to the clusters reported in Murray and Perera [2021], the clusters
obtained using the static consistency loss only make up parts of each possible
route through the ROI. Therefore, two trajectories that share parts of the same
route will be clustered together for the common sections but clustered differently



54 Summary and Discussion of Research

when they do not follow the same routes. Thus, we have obtained a more
localized description of the behavior through the ROI, but not local enough to
identify common families of behavior as desired. An interesting open question
is whether limiting the static consistency loss in time could induce a further
localized description in the latent variables. I.e., instead of driving the latent
variable of the full trajectory towards each other, the static consistency loss is
computed using a sliding window centered on the current position.

Paper III address the interpretability of the state-of-the-art GeoTrackNet model
in an attempt to extract the learned normalcy model to support for level 2 situa-
tion awareness. Paper III contributes to research objective A from a perspective
of extracting the learned normalcy model. Paper III also attempts to address re-
search objective D. However, it is evident that a more localized representation of
behavior is needed in order to make man-in-the-loop style detections. The Seq-2-
Seq models suggested in Paper I could be interpreted as a localized model as the
latent encodings only depend on the most recent part of the trajectory and not
the full history. As such, Seq-2-Seq models may be preferable for clustering of
local behavior. However, as discussed previously, an AutoEncoder architecture
may be better suited for automated detection. These two approaches could per-
haps be combined in a hierarchical recurrent neural network architecture, which
has been suggested for video summarization [Zhao et al., 2019] and intersession
memory [Sordoni et al., 2015, Quadrana et al., 2017].

Another interesting possibility is the combination of disentangled local and
global stochastic latent variables. This has been a wide studied problem within
the video analysis [Zhu et al., 2020, Bai et al., 2021]. Both papers apply the same
static consistency loss as suggested in Paper III to ensure that the global latent
variable remains constant subject to random shuffling of the input frames. How-
ever, training of the local latent variable is less trivial for spatio-temporal time
series. Augmentations, as suggested in Bai et al. [2021], may not be applicable,
since permutations break the physical dependence between updates, resulting
trajectories with no physical meaning, and auxiliary tasks, as suggested in Zhu
et al. [2020], are not trivial, as time-dependent classification problems, such as
location of the maximum optical flow or prediction of the volume, are not readily
apparent using the information contained in the AIS data.

Paper IV - A two-step clustering method for maritime behaviour
identification

Paper IV investigates how clustering can be used to derive a normalcy model
that describes local kinematic behavior that allows for man-in-the-loop style
abnormality detection. As such, Paper IV primarily contributes to research
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objective D.

The paper designs two trajectory similarity measure meant to capture different
aspects of trajectory similarities. The first similarity measure calculates the
position similarity using the Haversine distance. It has a linear-time complexity
w.r.t. trajectory length, meaning that it can be applied relatively quickly across
a large dataset. The second similarity measure calculates the kinematic simi-
larity between trajectories. This similarity measure is the sum of speed- and
course-based similarities measured using Dynamic Time Warping. This dis-
tance measure is quadratic w.r.t. to trajectory length so before calculating the
kinematic similarity, the trajectories are compressed using a 2-stage Douglass-
Peucker algorithm. Additionally, the trajectory similarity is calculated only for
a subsample of the training set as described in the next section.

Paper IV proposes to use these two similarity measure in a two-step clustering
approach. In the first stage all trajectories are clustered using their positional
similarity. This results in clusters of trajectories with the same origin in the
ROI and then divided into different maritime routes originating at this location.
This clustering serves the purpose of filtering the training set into clustering in
which we expect to find similar kinematic behavior. Then, within each of these
positional clusters, another round of clustering is performed using kinematic
similarity. The final result is clusters whose members start in the same general
area and follow the same kinematic behavior. This means that not only can
the major routes be detected, they can also be separated into different speed
profiles. We can also detect similar types of behavior that are not restricted
to the major shipping lanes. For example, pilot boats are generally found to
be different from the rest of the traffic in the ROI and mostly similar to one
another even though they do not follow well-defined routes.

We may also use the kinematic similarity measure to identify abnormal traffic
that does not resemble any other traffic in the ROI. This means that the sim-
ilarity measure can also be used for automated detection of abnormalities. In
this application, the positional clustering is conducted as before, but the sec-
ond step clustering is exchanged with an abnormality detection step using Local
Outlier Factor. This may also be used to evaluate new unseen trajectories using
inductive clustering. A K-Nearest-Neighbor classifier is trained to classify new
trajectories into one of the positional clusters. The kinematic similarity with
the cluster members is then computed and the new trajectory is evaluated for
normality using Local Outlier Factor. Automated detection of abnormalities
was evaluated on the annotated collision dataset and found to perform signifi-
cantly worse than the predictive/reconstructive methods investigated in Section
4.1. However, the more intuitive interpretability an explainability makes the
clustering approach more applicable for practical use.
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Paper IV designs a clustering model that can disentangle positional and kine-
matic behavior resulting in a normalcy model that may be used to evaluate
local kinematic behavior. This normalcy model may be used for automated
detection, as outlined above, but we see it better utilized in a man-in-the-loop
style in cooperation with human operators. Human operators may define the
characteristic behavior of each clusters and evaluate trajectories against these
characteristics. For example, if a vessel claims to be a sailing ship, it does not
make much sense if it suddenly sails at a speed of 10 m/s along the shipping
lanes or if a fishing vessel is found to have the same behavior as pilot boats, one
might suspect some kind of illicit behavior, as fishing boats should not sail close
to large commercial traffic. Additionally, operators may flag certain trajectories
in the training set as abnormal and can flag new test trajectories if any of these
known abnormal trajectories are found to have the highest similarity.

It is natural to seek a combination of the clustering approach of Paper IV with
the reconstruction based deep learning methods discussed in Section 4.1. Such
a model could be used for automated detection of abnormalities as discussed
in Paper I-II and man-in-the-loop style detection using clustering. Boubekki
et al. [2021] suggest an AutoEncoder architecture for combined reconstruction
and clustering (AECM) using isotropic Gaussian Mixture Models (GMM). Two
problems arise when adapting the AECM model to the two-step clustering, and
preliminary experiments addressing both of these issues are presented here.

The first is related to number of clusters which is unknown. The AECM model
provides a Dirichlet prior over the mixing coefficients of the GMM, which po-
tentially may eliminate unused components. In practice, however, we often see
clusters split equally into multiple components if a symmetric prior is used. This
is illustrated in Figure 4.1a which shows the AECM with 20 clusters applied to
the MNIST dataset. In order to eliminate unused components, we suggest up-
dating the Dirichlet prior after each epoch using the posterior distribution of the
previous epoch. Since the Dirichlet prior is the conjugate prior of the categorical
distribution, this posterior is of the form

Dir(α0 +N1, . . . , α0 +NK), (4.1)

where α0 denote the initial symmetric prior and Nk is the number of observation
assigned to the k’th component; Nk =

∑N
i=1 γi,k. Using this update the rule

the Dirichlet prior loss, E4, of the AECM becomes

K∑
k=1

(1− α0 −Nk · C) log γ̃k , (4.2)

where γ̃k = 1/N
∑N

i=1 γi,k and C is hyperparameter scaling the weights of the
prior updates.
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Preliminary findings on tuning these hyperparameters using the MNIST dataset
are illustrated in figure 4.1. For a component k to die out, we must require that
(1 − α0 − Nk · C) ≈ 0 since log γ̃k → −∞ as Nk → 0. Therefore, α0 serves
as an upper bound for the sparsity that we can achieve in the mixing compo-
nents. High values of α0 result in a solution in which all components are used
equally, and low values of α0 result in a solution that diverges to a single com-
ponent. However, tuning the alpha values we can slowly eliminate unnecessary
components and find the correct number of clusters without knowing how many
clusters to initialize.

(a) No prior update. (b) High α0. (c) Low α0. (d) Tuned α0.

Figure 4.1 – Cluster association of the MNIST testset using the AECM with 20
clusters. Models are trained with varying levels of prior updating
and initial prior, α0.

The second issue with adapting the AECM for the two-step clustering is related
to the kinematic clustering being conditioned on the positional clusters.

P (kin|pos) =
P (kin, pos)
P (pos)

(4.3)

The distribution P (pos) is modeled by a GMM using only positional inputs.
However, joint distribution P(kin,pos) is not as simple. This distribution is
given by

P (kin, pos) =
K∏

k=1

πkN(kin|θkin,k)N(pos|θpos,k), (4.4)

where πk denotes the mixing coefficients and θk the parameters of the Gaussian
distribution that describe positional and kinematic features, respectively. If
the covariance matrices are diagonal, these two Gaussian distributions can be
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combined to a single Gaussian distribution of the concatenated feature vectors
and may be modeled using a GMM.

Figure 4.2 – The AECM architecture adapted for the clustering of the joint
distribution P (kin, pos).

We have obtained latent encodings using two RAE’s from Paper I trained on
only the positional and kinematic features, respectively and trained two GMM’s
each with 50 components and spherical covariance matrices using these latent
encodings. Evaluating the distribution in Eq. (4.3) for the testset from Decem-
ber 13th, we find an AUC of 0.64 which is far below the both the reconstructive
based outlier detection from Paper I and the clustering of Paper IV. However,
considering that we have not put any effort into fine-tuning the approach, this
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may serve as an affirmation that the AECM approach could be a promising
solution. The joint distribution, P (kin, pos), requires a small change in the ar-
chitecture of the AECM model, as the latent encodings of the positional and
kinematic parts must be independent but concatenated for the clustering mod-
ule. Thus, we need a two-branched architecture with two input and output
branches for the positional and kinematic features, respectively, and the latent
encodings of each branch are concatenated for the clustering module. A sketch
of this updated network is shown in Figure 4.2.

4.3 General Discussion

In this section, we discuss the research contributions, how they advance the
research objective presented in Section 1.2 and the limitations of the research
presented in this thesis.

A) Research, develop, and evaluate deep learning frameworks for de-
scribing normal maritime behavior using historical AIS data to sup-
port maritime situation awareness of surveillance operators.
This thesis found that deep learning models may be used to describe normal
maritime behaviour and that they natively address many of the issues of other
data-driven methods for constructing the normal maritime picture. However,
application of these models to support maritime situation awareness of surveil-
lance operators is not straight forward.

Contribution 1 advances this objective from the perspective of automated ab-
normality detection as a way to evaluate the learned normalcy model. It is
important that the dataset used for evaluation is representative of the true real-
life traffic situation and that the abnormalities reflect actual abnormal behavior
of operational interest. For this purpose, we have released an annotated dataset
for public use. However, data sets with more types of abnormal behavior need to
be made public to perform a comprehensive evaluation of the detection models.

Accurate evaluation of detection models is very important for operational use
in order to have accurate estimates of the false positives and negatives. False
negatives may have large societal, environmental, or fatal consequences and
reduction of them is the most important issue in operational use. Normally,
reducing the number of false negatives requires acceptance of false positives.
However, detection models with an abundance of false positives may suffer from
"alarm blindness", where operators slowly disregard all alarms by the system,
since in their experience they are mostly incorrect. For this reason operators
may tend to favor man-in-the-loop style detection systems.
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Contribution 3 addresses objective A from this perspective. Extraction of the
learned normalcy model from deep neural networks in order to facilitate man-in-
the-loop style detection requires large amounts of interpretability. Contribution
3 clearly shows this as a major limitation of current application of deep neu-
ral networks. In future work, ideas for extracting and presenting the learned
normalcy should be included already in the design phase.

This thesis only considers a methodology for evaluating deep learning meth-
ods for enhancing situation awareness and does not consider how this may be
presented or visualized for operators. Clustering facilitates a very intuitive de-
tection scheme and seem like a natural choice for presenting the normal maritime
picture. Thus, the combination of deep learning and clustering should be a focus
of future work.

A natural limitation of using historical AIS data is that many smaller vessels are
not outfitted with or switch off their AIS transponders or spoof their AIS signal.
Many abnormalities of operational interest might be carried out by so-called
dark vessels that have turned off their AIS transponder [MI News Network,
2022, Kroodsma et al.]. To overcome these limitations, new data sources must
be used such as radar or satellite imagery, e.g., synthetic aperture radar (SAR).

B) Development of deep learning methods for the automated detec-
tion of maritime abnormalities.
This thesis found that ensemble models may be utilized for a more robust de-
tection of different types of abnormal behaviour. As such, this objective is
addressed by contribution 2, which provides an ensemble model that outper-
forms the state-of-the-art. The models considered in this study are limited to
analysing trajectories individually and may benefit from the addition of other
members detecting other kinds of abnormal behavior. For example, models
that facilitate vessel-2-vessel interaction may detect collisions and rendezvous
situations before they occur.

Similarly, other inputs may be considered to reduce the amount of false positives
or to detect abnormalities that depend on certain external conditions. However,
it is important that the addition of these does not have negative effects on the
scaleability of the models and the impact of the added data sources must be
documented using the datasets with real-life abnormalities.

C) Study the generalization of deep learning methods for automated
detection of maritime abnormalities over time and across geographi-
cal area.
As discussed previously, ship behavior change over time and differs between
geographical areas. Deep learning models facilitate easy adjustments of nor-
malcy models to new areas or seasons through fine-tuning of existing models.
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Contribution 1 address this objective by evaluating the abnormality detection
performance of models trained on different geographical areas and subject to
different degrees of fine-tuning. This thesis found models trained for point pre-
dictions require very little degree of fine-tuning if any in order to achieve similar
performance of abnormality detection. Although very little fine-tuning is re-
quired, a good amount of historical data is required to construct the reference
of predictive/reconstructive errors required for abnormality detection. Therefore
the abnormality detection systems investigated in this thesis will not function
in regions with no historical data.

D) Methods to describe abnormal local behavior not constrained to
major shipping lanes.
This thesis aims to construct normal models that disentangle positional and
kinematic information such that kinematic behavior may be described indepen-
dently from the location it happens. Contributions 4 addresses this objective
by providing a two-step clustering approach where the second stage clusters are
able to differentiate between kinematic behavior. It is natural to seek a com-
bination of this clustering approach with reconstruction based detection using
deep neural networks. As such, contribution 1 also addresses this objective to
some extent.

The limitations of the data discussed above apply equally to the proposed clus-
tering approach. Additionally, while deep learning models have been studied
using data recorded over longer periods, clustering is based only on a single
month of data. Thus, the generalization of the normal model in time remains
an open question. Similarly, each normal model is restricted to the ROI in which
it is trained and has to be retrained for every new ROI.
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Chapter 5

Conclusion

The main objective of this study was to assess the feasibility of deep learning
techniques for enhancing the situation awareness of maritime surveillance oper-
ators. Surveillance operators likely use level 2 situation awareness to mentally
construct a model of the normal maritime picture and base their decision of nor-
mality on comparing observed behavior with the established normal behavior
model. Therefore, this thesis aims to provide level 2 situation awareness using
automated tools to build a model of the normal maritime picture.

Deep neural networks are used to construct maritime normalcy models which
are evaluated from an operational perspective. Networks are evaluated based
on the performance of automated abnormality detection and the interpretability
of learned normalcy models to facilitate man-in-the-loop style detection. The
networks are trained using historical AIS data which are freely available in large
quantities in many areas of the world.

This thesis shows that deep neural networks address many of the issues with
data-driven methods for constructing the normal maritime picture and that deep
neural networks can learn a representation of the normal maritime picture using
historical AIS data. However, most of the previous works have focused on the
creation of more complex models, and little work has focused on the evaluation
of the learned normalcy model. Annotating abnormal behavior related to a
collision accident, it was found deep normalcy models may be used for automated
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detection of maritime abnormalities. Using different architectures of deep neural
networks in an ensemble, it is possible to detect different types of abnormal
behavior, improving the state-of-the-art.

Using a random resampling strategy during training it is possible to train models
which generalize to different resampled periods. Thus, the same model may be
used to evaluate abnormalities that evolve on different time-scales. Further,
deep representations of the normal maritime picture may generalize to different
ROI reducing the need for training area specific models. However, it is still
necessary to obtain some historical data from the new ROI in order to create a
reference of historical errors for comparison with errors of new traffic.

Although deep neural networks are found to be effective for automated detection
of maritime abnormalities, clustering of stochastic latent variables is ineffective
in extracting and visualizing the learned normalcy model. Latent variables
were found to encode information related to the current position in the main
shipping lanes of the ROI. Information on such a large time scale might not be
useful for man-in-the-loop style detections, which require knowledge regarding
the kinematic evolution on a much smaller local time scale.

There is a general lack of normal models that focus on local kinematic behavior
which is often only incorporated during the abnormality detection step. Using
clustering in a two-step process, it is possible to disentangle positional and
kinematic features and achieve normal models which separate trajectories based
on the local kinematic behavior. Clustering provides clear advantages over deep
neural networks for visualization and interpretation purposes, however, scales
very poorly with large training data. Thus, a combination of the two-step
clustering result with deep neural networks remains an open but interesting
problem.

Overall, this thesis has discussed methods to support level 2 situation aware-
ness of maritime surveillance operators. While deep neural network has clear
benefits, the application in an operational setting is still an issue due to lack of
interpretability and that previously suggested models generally focus on auto-
mated detection over man-in-the-loop style detection. Therefore, the following
extensions to the work are suggested:

• The creation of more annotated data sets for evaluation of different types
of annotated abnormal behavior will allow for a better understanding of
the trained normalcy models and potentially highlight limitations in the
behavior which may be flagged using deep neural networks.

• Development of additional models using different architectures may detect
abnormal behavior different from previously suggested networks and im-
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prove the detection performance of the collective ensemble. For example,
the use of graph neural networks may allow modeling of vessel-2-vessel
interactions, which could help detect collision and rendezvous scenarios.

• The use of historical AIS has a clear disadvantage, as abnormal behavior
of the highest priority often occurs without AIS. Therefore, AIS-based
detection systems will fail to detect these abnormalities, which may have
large societal consequences.

• Enhance the AIS data set by including relevant external parameters. In-
cluding additional parameters might allow for a more complete normalcy
model which may account for different contextual situations. Before inclu-
sion of these additional features it is important to evaluate their relevancy
e.g. using automated detection. Additionally it is important that they
can be collected and used in real time and still allow training to scale to
large data sets.

• The ship type is very important for the detection of abnormal behavior, as
a certain type of behavior is allowed for some ship types but not for oth-
ers. Additionally, reconstructive performance were found to differ heavily
between ship types, resulting in some ship types being prone to false nega-
tive/positives. Therefore, it is important to incorporate the type of vessel
into the detection process and possibly into the normalcy model.

• Although the normal maritime picture of deep neural networks was found
to transfer to new ROIs without the need of extensive fine-tuning, the
ROIs studied share many similarities in terms of the expected behavior.
Therefore, the generalization to new ROIs with major changes in expected
behavior remains to be studied.

• Deep learning methods trained for joint reconstruction and clustering.
Such models may be used for automated detection using reconstruction
errors and facilitate extraction and man-in-the-loop style detection using
clustering.

• Deep learning architectures using global and local latent variables may
facilitate a two-fold normal picture which can be used to detect global
and local abnormalities.

• This thesis suggests that automated tools for deriving a maritime picture
should enhance level 2 situation awareness of maritime surveillance op-
erators. However, this claim remains unverified. Experiments involving
surveillance operators should be conducted in order to verify the impact of
automated tools for deriving the maritime normal picture and how these
are best presented. Additionally, involvement of surveillance operators
would be beneficial in defining user and operational requirements.
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Abstract: Increasing worldwide maritime traffic makes maritime safety and
security of growing importance. Surveillance operators monitor and predict
emerging critical situations based on a wide range of data sources from many
vessels within a large sea area. This makes operators prone to mistakes due to
cognitive overload, time pressure, and fatigue. To support operators, methods
and systems capable of performing anomaly detection have received increased
attention. In this work, we provide a review of deep learning techniques applied
to the problem of maritime abnormality detection. We find a general lack of eval-
uation of proposed methods caused by the lack of established state-of-the-art
baseline methods and open source benchmark data. We compare the perfor-
mance of unsupervised anomaly detection based on reconstruction/prediction
using five different Recurrent Neural Network architectures from the literature.
We find poor performance of all suggested approaches for detection of real-life
anomalies. Reconstruction-based (AutoEncoder) methods outperform predic-
tive methods, but still suffer from too many false positives to be practical in
operational use. We recommend future research focus on evaluation and com-
parison of proposed methods, development of larger benchmarks, and aims to
establish ensemble models for anomaly detection and incorporation of the ship
type into the abnormality detection.

6.1 Introduction

The oceans remain one of the most important ways to connect and sustain
a growing globalised world. Maritime shipping is the most efficient and cost-
effective form of long-distance transportation and is responsible for 80% of the
world’s trade [IMO, 2021]. The recent geopolitical issues in Ukraine have shown
the necessity of free trade and transportation. The restriction of free trade and
transportation of food, feed materials, fuel, energy, etc. have propelled into a
food- and energy-crisis due to rising commodity costs [World Food Program,
2022], and even after an agreement to open Ukraine’s Black Sea Ports for food
transports the conflict still prevented shipowners due to fear risking their vessels
[Bloomberg News, 2022]. Furthermore, oceans currently contribute 17 % of the
world’s production of edible meat, and it is estimated that this production
could increase by 36 − 74 %, compared to current yields, by 2050 [Costello
et al., 2020]. Various threats such as collisions, smuggling, piracy, overfishing,
maritime pollution, sabotage of infrastructures, etc. endanger activities at sea
and an increasing usage of the oceans will only increase the risk of these threats
[Statista Research Department, 2021]. This makes maritime safety and security
key issues and, for this purpose, real-time delivery of maritime situational maps
is a necessity for Search-and-Rescue (SAR) and law enforcement activities.
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Anomaly detection is one of the most important tasks within the domain of
maritime safety and security. Current operational systems rely strongly on
human experts. Surveillance operators monitor and predict emerging critical
situations mentioned above from a large number of vessels within a large sea
area. As the amount of data increases, it becomes increasingly difficult for
operators to process the amount of information due to a number of factors such
as cognitive overload, time pressure, fatigue, and uncertainty in addition to the
complex and heterogeneous nature of the data. In order to provide support for
the operators, methods and systems capable of performing anomaly detection
is a very active research area.

Initially designed for collision avoidance, the Automatic Identification System
(AIS) has quickly become the main source of trajectories for maritime surveil-
lance. Every day, AIS provides on a global scale hundreds of millions of messages
[MarineTraffic, 2016], which contain the identifiers of the ships, their coordinates
from the Global Positioning System (GPS), their speed, course, etc. In many
areas this data is freely available and may be collected into large amounts of
historical maritime trajectories. Previous works [Riveiro et al., 2018, Sidibé
and Shu, 2017] highlight the need for scaleable models that are applicable to
and may improve with very large training sets. Thus, it seems there is a great
potential in combining large amounts of AIS trajectories with deep learning
techniques. However, application of deep learning techniques for detection of
abnormal maritime trajectories remains limited and is yet to be fully utilised.

A major barrier to the application of deep learning to maritime abnormality
detection is the lack of large, freely available annotated data sets [Riveiro et al.,
2018]. Since AIS was originally designed only for collision avoidance, it does
not contain any metadata that could be used for anomaly detection. In addi-
tion, most surveillance operations are conducted by law enforcement or military
personnel. Therefore, any information related tomanual detection of abnormal
behavior is often classified for security purposes. This makes labeling of a large
amount of abnormal trajectories very difficult and limit the possible approaches
to unsupervised methods. The lack of annotated data sets limits evaluation
and comparison of different models to qualitative comparison of the discovered
abnormalities. This approach is highly problematic since it ignores potentially
important false negatives.

In this work, we provide a review of recent deep learning methods applied to
maritime abnormality detection and compare the abnormality detection per-
formance of the most prevalent methodologies. The aim of this review is to
provide an early idea of working techniques and identify short-comings and
open questions for future work addressing the challenges identified in [Riveiro
et al., 2018, Sidibé and Shu, 2017]; scaleability, interpretation of alarms, online
detection, and incorporation of relevant external features. Pang et al. [2021]
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provides a general review of deep learning techniques for abnormality detection
and highlights AutoEncoders [Nguyen et al., 2021, Murray and Perera, 2021] and
predictability modelling [Forti et al., 2020, Capobianco et al., 2021b] as widely
used methods for learning generic feature representations useful for abnormality
detection. These models are tested and compared on data in which abnormal
trajectories related to a collision accident have been manually labelled. Based on
our findings we propose guidelines for the future work of maritime abnormality
detection.

Our contributions are:

• A review of existing deep learning approaches for maritime abnormality
detection.

• Comparison of maritime deep learning methodologies for reconstruction/predictive
based outlier detection.

• We provide empirical evidence towards the short-comings of the investi-
gated models.

• Guidelines for future work within the field of deep learning based maritime
abnormality detection.

The paper is organised as follows: In section 6.2 we discuss previous applications
of deep learning for abnormality detection of maritime trajectories. Section 6.3 is
a more general discussion of deep learning methods for the analysis of maritime
trajectories. Section 6.4 compares the abnormality detection performance of
five deep learning model on real-life abnormal trajectories from a ship collision.
Finally, we present our conclusion in Section 6.5.

6.2 Maritime Abnormality Detection

Maritime anomaly detection can be separated into two main approaches: knowl-
edge based or data driven. Knowledge-based approaches look for predefined
patterns in the data source, while data-driven approaches derive a model rep-
resenting the normal picture and evaluate anomalies as observations deviating
from normalcy.

The majority of knowledge-based approaches implement well-defined rule sys-
tems. Having rules makes detections very easy to interpret and analyse since
operational systems may output which rules were broken and supply operators
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with a clear reason for an alert in real time. However, rules may vary heavily
between time of year or geographic location, making a relevant and exhaustive
list of rules difficult to construct and implement in operational systems.

Traditionally, the most common way of expressing the normal maritime picture
is through density based clustering. Pallotta et al. [2013b] presented the widely
used TREAD method to cluster trajectories into traffic routes used for anomaly
detection and trajectory prediction. TREAD is a point-based method and ex-
tracts coordinates of new entries, exits, and stops within the region of interest
(ROI). These points are clustered using density-based clustering (DBSCAN Es-
ter et al. [1996]), to form waypoints in which ships enter, exit, or stop within the
ROI. A route between waypoints is formed when a certain number of transitions
between the waypoints have been observed. Yang et al. [2022b] and Zhao and
Shi [2019a] take another approach to density-based clustering. Here, the tra-
jectories are reduced using the DP algorithm [Douglas and Peucker, 2011] and
similarity is measured using the Hausdorff distance or dynamic time warping
before being clustered by DBSCAN.

6.2.1 Deep Learning for Maritime Abnormality Detection

The wide availability of AIS based maritime trajectories have recently spurred
an increase in applications of deep learning techniques to describe the normal
maritime picture for the purposes of maritime abnormality detection. While
the applications of deep learning are still new and remains limited, we believe
the field would benefit from a discussion of the diverse approaches to abnormal-
ities, evaluation, and detection models. The problem of maritime abnormality
detection can be separated into three main elements; What constitutes an abnor-
mality, how the normalcy model is constructed, and how detections are made.
A summary of how previous deep learning applications have approached these
three elements can be found in Table 6.1 and will be discussed in detail in the
following subsections.

6.2.1.1 Abnormalities and Evaluation

A precise definition of what constitutes maritime abnormalities is very difficult
to make. Today, most maritime surveillance operations are conducted manually
by military or law enforcement. Thus, the reasons for detection of an abnormal-
ity are often classified information. Additionally, abnormal behaviour is highly
dependent on factors such as time, location, and ship type. For this reason, it
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Work Abnormalities Normalcy model Detection
Singh and Heymann [2020a] Labelled abnormal inputs Artificial Neural Network Prediction

Wang [2020] Simulated abnormalities Artificial Neural Network Prediction
Liu et al. [2022a] Labelled abnormal inputs Recurrent Neural Network Prediction

Zhang et al. [2021b] Labelled abnormal inputs Recurrent Neural Network Prediction
Hu et al. [2022] Labelled abnormal inputs Ensemble⋆ Prediction

Protopapadakis et al. [2017] Unsupervised Density based clustering clustering outliers
Huang et al. [2021] Unsupervised Recurrent Neural Network Global threshold

Zhao and Shi [2019b] Unsupervised Recurrent Neural Network Global threshold
Singh et al. [2021] Unsupervised Recurrent Neural Network Global threshold
Xia and Gao [2020] Unsupervised Bayesian Recurrent Neural Network Global threshold
Liu et al. [2022b] Unsupervised Graph Neural Network Global threshold

Eljabu et al. [2021] Unsupervised Graph Neural Network Global threshold
Nguyen et al. [2019, 2021, 2020] Unsupervised Variational Recurrent Neural Network A-Contrario

Zang et al. [2021] Unsupervised Variational Recurrent Neural Network A-Contrario

Table 6.1 – Summary of previous deep learning based approaches to maritime
abnormality detection. ⋆: Graph Neural Network and LSTM based
Variational AutoEncoder ensemble members.

is often not possible to obtain a large list of annotated maritime trajectories for
training or evaluation.

In the work of data-driven automated abnormality detection there are generally
three ways of defining abnormalities; Simulated abnormalities Wang [2020], self
annotated abnormalities Singh and Heymann [2020a], Liu et al. [2022a], Hu
et al. [2022], and unsupervised anomalies Nguyen et al. [2021], Zhao and Shi
[2019b]. The general lack of labelled data sets causes the majority of previous
work to approach maritime abnormality detection as an unsupervised problem.
In order to avoid unsupervised methods, some use self-labelling based on added
noise, rules, or clustering. The use of self-labelling allows direct classification
of trajectories as normal or abnormal, and networks can be trained using the
cross-entropy loss.

Wang [2020] simulate outliers by adding noise to their normal observations and
predicts the probability of abnormality directly using the simulated labels. Singh
and Heymann [2020a] suggest a model for detection of AIS on/off switching.
They propose to re-sample incoming AIS messages to every two seconds and
treat missing data as abnormal cases of on/off switching. Trajectories with con-
tinuously missing data are labelled as abnormal. Liu et al. [2022a] self annotate
the dataset based on extreme position, speed, or course values decided using
the COLREGS international collision avoidance rules for the area. Zhang et al.
[2021b] cluster the data using DBSCAN and propose a Long-Short Term Mem-
ory (LSTM) model to classify abnormal trajectories identified by DBSCAN. Hu
et al. [2022] self annotate their data set based on large deviations in position,
speed, or course.

Self-annotated or simulated data sets may fully utilise the power of supervised
deep learning models and are trained purposefully for abnormality detection.
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Additionally, evaluating their performance is trivial. However, it is important
that the models are trained on meaningful outliers, and while extreme values
or observations with added noise are outliers compared to the training set, they
might not define abnormal trajectories of operational interest to surveillance
operators. In addition, the process of manual annotation or annotation using
clustering suffers from scaleability issues negating the modelling power of deep
neural networks applied to very large data sets.

To utilise the immense modelling power of deep neural networks applied to large
training sets, an unsupervised approach is needed. In unsupervised models, a
normalcy model is learnt on the training set. It is then assumed that abnormal
observations are poorly modelled by the normalcy model and abnormal trajec-
tories can be detected based on the loss. Unsupervised approaches can be easily
trained on very large data sets and use big data to learn the normalcy model.
A drawback of unsupervised methods is that they flag statistical outliers as ab-
normal. This means that they can potentially learn to model abnormal data if
it occurs frequently, causing false negatives. Thus, evaluation and comparison
of unsupervised methods is an important aspect for them to find practical use.

The most common way to evaluate unsupervised methods is through qualitative
examples and cases, but simulated anomalies using added noise or comparison
with rule-based systems have also been suggested. Nguyen et al. [2021] provide
a qualitative description of the trajectories flagged as abnormal. This is further
expanded in Nguyen et al. [2020] where experts affirm the flagged trajectories
and provide contextual explanation for the abnormalities. Zhao and Shi [2019b]
provide evaluation of their proposed algorithm by a walk-through of a hand full
of detections. Singh et al. [2021] simulate a single case by translating normal
data to another position and provide a qualitative description of the detections.
Huang et al. [2021] simulate abnormal trajectories by adding noise to the po-
sition and speed inputs and compute accuracy and false positive rate. Eljabu
et al. [2021] and Liu et al. [2022b] compute the accuracy of the detection using
labels obtained from real world context and news or by a rule based anomaly
detection toolkit, respectively.

Maritime abnormality detection suffers from the lack of standardised data sets
that authors may use to evaluate and compare models. Evaluation using sim-
ulated data with noise suffers from the same issues as a model trained using
simulated data. There is an inherent risk that the simulated abnormalities have
lost physical meaning, which makes the task trivial and without practical ap-
plication. Similarly, an evaluation using the detections of rule-based systems as
the ground truth would result in models that are only capable of reproducing
rule-based detections and not providing any new information about the problem.
Verification of detections by the means of qualitative examples or cases works
to illustrate the potential type of abnormal behaviour that could be flagged.
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However, it completely negates the issue of false negatives, which in a military
or law enforcement operation is of far greater importance. In this case, false
negatives could potentially be both trajectories showing similar behaviour to the
ones detected, but also trajectories with a completely different behaviour that is
of interest for operational use. For this purpose, the generation of smaller man-
ually annotated data sets for evaluation may be the superior approach. These
data sets should ideally be annotated by subject matter experts but using con-
textual knowledge of the environment and news events, one might be able to
create hand annotated data sets that is expected to have an operational inter-
est. In section 6.4, we compare different unsupervised models for abnormality
detection on a manually labelled data set with verified abnormal activity.

6.2.1.2 Models and Detection

Several different neural network architectures have been suggested for the de-
tection of maritime abnormalities. However, as discussed previously, the lack
of a standardised data sets for evaluation purposes makes it very difficult to
compare the performance of different models. For supervised tasks, both feed-
forward artificial neural networks (ANN) [Singh and Heymann, 2020a, Wang,
2020] and recurrent neural networks (RNN) [Liu et al., 2022a, Zhang et al.,
2021b] have been suggested. Hu et al. [2022] train an ensemble of Variational
AutoEncoders (VAE) based on LSTM and a Graph Variational AutoEncoder
based on trajectory similarities. Each member of the ensemble is trained to
reconstruct the input trajectory. Reconstruction errors are then combined us-
ing the Twin Delayed Deep Deterministic Policy Gradient Algorithm (TD3) to
make a final binary prediction of the abnormality.

Protopapadakis et al. [2017] suggest using AutoEncoders (AE) as feature ex-
tractors for density-based clustering. They find that features extracted using
AEs are superior to principal component analysis or the raw input. Huang
et al. [2021], Zhao and Shi [2019b] train LSTM models for one-step predictions
of the position and kinematic values and abnormal trajectories are detected by a
global threshold on the prediction error. Liu et al. [2022b] also base detection on
one-step predictions, but suggest a self-attention graph neural network in which
each trajectory is transformed into a graph with every node corresponding to one
time stamp. The attention scores are then used to update a Gated Recurrence
Unit for one-step prediction. Singh et al. [2021] suggest training a bidirectional
LSTM to output the parameters of a Normal inverse-Gamma distribution of fu-
ture position and kinematics. The predictive probability of the location, speed,
and course is then used to optimise the network. Abnormalities are defined as
those that experience a significant increase in predicted variance. Xia and Gao
[2020] suggest a Bayesian RNN to model the probability of reconstruction and
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detect abnormal trajectories based on a global threshold. Nguyen et al. [2019]
suggest a Variational Recurrent Neural Network (VRNN) approach in a multi-
task fashion. The proposed network is used for trajectory prediction, ship type
classification, and anomaly detection. Anomaly detection is further expanded
in Nguyen et al. [2021, 2020]. Instead of a global threshold for detection, an A-
Contrario detection is suggested taking into account the model performance in
a local area to determine detection thresholds. Zang et al. [2021] test the VRNN
approach suggested in Nguyen et al. [2021] in a case study in another maritime
area and based on qualitative investigations find the method generalizes here.

Instead of modelling individual trajectories, Eljabu et al. [2021] detect abnor-
malities in traffic patterns over larger time scales of weeks or months. They
propose a graph neural network where semantic stopping points in the ROI,
e.g. ports, form nodes in a graph. The number of transitions between these
nodes over a long period of time is then embedded using graph convolutions.
The embeddings are assumed to be normally distributed and outliers declared
as abnormal transition patterns.

The use of a global threshold for abnormality detection may cause a bias in
sparse regions in the input space. Since the model will naturally have better
performance in regions with more training data, the use of global thresholds
will cause an increase of detection in regions with lower modelling performance.
The A-Contrario detection methods overcome this issue by only considering
the reconstruction/predictive errors of observation in the local vicinity when
deciding on the threshold. The time complexity of A-Contrario detection is
quadratic wrt. to the trajectory length. Thus, there may be a need for real-
time detection methods.

Interpretation of detections has been largely ignored by previous works. We
suggest to investigate four approaches. 1. For automated models to be useful
in an operational setting, they must be able to explain why a certain trajectory
was flagged as abnormal. Deep neural network are infamous for their general
lack of interpretability but this is a very active research area and we recommend
state-of-the-art methods (see e.g., Samek et al. [2019]) be adapted for maritime
abnormality detection. 2. Generative distributions, as suggested in Nguyen
et al. [2019], Singh et al. [2021], provide uncertainty estimates on reconstruc-
tion/prediction for operators to assess model confidence. 3. Latent variable
models Nguyen et al. [2021], Hu et al. [2022] could be used to extract physical
interpretable information from the latent space which could be used to explain
model predictions. 4. Statistical detection methods such as A-Contrario can be
applied on top of other models and tuned with a specific false positive ratio in
mind, giving operators a tool to control the number of detections.
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6.3 Applications of Deep Learning for Analysis
of Maritime Trajectories

Deep Learning methods have been applied to a wide variety of problems asso-
ciated with maritime trajectories. The most common problems are trajectory
prediction and anomaly detection, but other applications include; shipping lane
recognition [Yao et al., 2017], collision risk [Dan Vukša et al., 2022, Namgung
and Kim, 2021], track association [Yu et al., 2020], traffic flow prediction [Zhou
et al., 2020, Mandalis et al., 2022], ship type classification [Duan et al., 2022,
Liang et al., 2021], prediction of vessel service time [Abualhaol et al., 2019],
and classification of vessel states [Chen et al., 2020, Mantecon et al., 2019, Fer-
reira et al., 2022]. Table 6.2 summarises recent applications of Deep Learning
methodologies. A more detailed table of all references can be found in the
supplementary material.

Problem - # Works Model - % of works Input Features - % of works

Abnormality Detection - 16

RNN - 37.5%
AutoEncoder - 37.5%
ANN - 12.5%
Graph Neural Network - 12.5%

Position - 100%
Kinematic - 93.8%
Time - 25%
Environment - 6.2%
Size - 6.2%

Track association - 1 AutoEncoder - 100% Position - 100%
Time - 100%

Collision risk - 2 RNN - 100% Feature Engineering - 100%
Shipping lane recognition - 1 AutoEncoder - 100% Feature Engineering - 100%

Traffic flow prediction 2 RNN - 100%
Flow matrices - 50%
Position - 50%
Time - 50%

Trajectory prediction - 31

RNN - 48.4%
ANN - 19.4%
Seq-2-Seq - 16.1%
AutoEncoder - 9.7%
Transformer - 3.2%
Graph Neural Network - 3.2%

Position - 96.8%
Kinematic - 61.3%
Time - 16.1%
Destination - 9.7%
Vessel-Vessel Interaction - 6.5%
Size - 3.2%
Draught - 3.2%
Radar Imagery - 3.2%

Vessel classification - 2 RNN - 50%
AutoEncoder - 50%

Position - 100%
Kinematic - 50%
Size - 50%
Draught - 50%

Vessel service time prediction - 1 RNN - 100% Feature Engineering - 100%

Vessel state classification - 3 CNN - 66.7%
RNN - 33.3%

Kinematic - 100%
Position - 66.7%

Table 6.2 – Summery of deep learning methods and input features used in anal-
ysis of problems with maritime trajectory data.

In the previous section, we discussed how the normalcy model for unsupervised
abnormality detection can be constructed both as a predictive or reconstructive
model. Thus, any model that can be converted into a trajectory prediction or
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reconstruction model can potentially be used for abnormality detection. In this
section, we review and discuss the wide range of deep learning models and the
related learnings for analysis of maritime trajectories.

6.3.1 Application to Abnormality Detection

As discussed previously, trajectory prediction can be extended to the detection
of abnormal trajectories based on predictive errors. Unsupervised abnormality
detection using reconstructive or predictive methods may in theory be able to
detect all kinds of abnormal maritime behaviour. Other applications may be
extended similarly or directly interpreted as detection of specific types of mar-
itime abnormalities. The risk of collision [Dan Vukša et al., 2022, Namgung and
Kim, 2021] itself can be considered an abnormality and is closely related to the
rendezvous case where two or more vessels meet at sea. This form of behaviour
is expected in port areas or other locations where vessels may accumulate, but
in other areas only pilot boats are expected to approach other vessels. Clas-
sification of the ship type [Duan et al., 2022, Liang et al., 2021] based on the
trajectory may be used to detect vessels that behave unexpectedly for their
shipping type and are trying to hide their true identity. Prediction of the vessel
state Chen et al. [2020], Mantecon et al. [2019], Ferreira et al. [2022] may be
used to detect illegal fishing activities in exclusion zones. Track association [Yu
et al., 2020] may be used to verify incoming AIS messages and detect cases of
spoofing. Finally, while the methods discussed so far detect abnormalities on an
individual scale, traffic flow prediction [Zhou et al., 2020, Mandalis et al., 2022]
may be used to detect potential abnormalities on a population scale.

6.3.2 Deep Learning Models

Early applications of Deep Learning were mainly focused on feed forward ANN’s
for prediction of the future position [Zissis et al., 2015, Gan et al., 2018, Wen
et al., 2020]. Since then, several different architectures have been suggested
for various applications. Convolutional Neural Networks (CNN) have been the
most widely applied model for vessel classification [Duan et al., 2022, Nguyen
et al., 2019] or vessel state classification [Chen et al., 2020, Mantecon et al.,
2019], suggesting that the entire trajectory is needed for a precise classification.

For trajectory prediction, the most applied architecture has been RNNs either
as one-step predictions [Liu et al., 2021, Sørensen et al., 2022], direct multi-step
predictions [Chondrodima et al., 2022, Mandalis et al., 2022, Spadon et al., 2022],
or iterative one-step prediction [Forti et al., 2020, Capobianco et al., 2021b, Dijt
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and Mettes, 2020] in a Sequence-2-Sequence fashion. Liu et al. [2022d] suggest
a Graph Convolutional Network. At each time step the authors construct a
graph in which nodes denote the current location of vessels in the ROI and
the future position is then predicted using graph convolutions. Nguyen and
Fablet provide an initial preliminary study on the feasibility of Transformers for
trajectory prediction. Transformers have become state-of-the-art within Natural
Language Processing but applications for trajectories are still limited.

AutoEncoder models have been suggested for different purposes of maritime
trajectory analysis but are especially appropriate for abnormality detection and
feature extraction for further downstream tasks. Yao et al. [2017] and Murray
and Perera [2021] suggest using a Recurrent AutoEncoder (RAE) for extrac-
tion of features useful for clustering. In a RAE the encoder and decoder are
LSTM/GRU cells with the last hidden state being used as the latent variable.
However, Murray and Perera [2021] impose an additional variational constraint,
(RVAE), on the latent space assuming it can be modelled using a standard
normal distribution. Yu et al. [2020] focus on the reconstruction errors of the
trajectories for the purpose of verifying new AIS updates. If a newly received
update is a true continuation of the previous trajectory, then the trajectory can
be reconstructed with a very low error, whereas false updates will cause a large
reconstruction error. Hu et al. [2022] suggest a similar approach for abnormal-
ity detection; using a VAE-LSTM model each trajectory update, xt, is encoded
into a latent variable, zt. The sequence of latent variables is then used as inputs
for a decoder reconstructing the original trajectory. Nguyen et al. [2021], Ding
et al. [2020] suggest the closely related Variational Recurrent Neural Network
(VRNN) model. In the VRNN model, both the encoder and decoder depend
on the same hidden state of a unidirectional LSTM. In addition, the encoder
depends on the current input xt and the decoder on the current latent variable
zt. At each time step the recurrence is then updated using xt and zt. Although
abnormality detection using AEs has mainly focused on the reconstruction er-
ror as in Hu et al. [2022] and Nguyen et al. [2021], RAE and RVAE models as
suggested in Yao et al. [2017], Murray and Perera [2021] may also be able to
detect outliers depending on latent variables.

Several different combinations of recurrent architectures have been suggested in
the literature. Although GRU cells have been suggested in both unidirectional
[Suo et al., 2020] and bidirectional settings [Wang et al., 2020], most works
suggest either unidirectional [Gao et al., 2021, Qian et al., 2022] or bidirectional
[Park et al., 2021, Yang et al., 2022a] LSTM cells for temporal modelling. A
few extensions to the basic RNN structure have also been proposed. Spadon
et al. [2022] suggest a hybrid solution where each recurrence is preceded by
a 1-dimensional convolution. Capobianco et al. [2021b] suggest the use of an
attention mechanism to allow the decoder to focus more easily on specific time
updates of the input during prediction. Liu et al. [2021, 2022c] suggest an
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encoder/decoder structure in which the encoded latent vector from multiple
ships is averaged and used to initialise the decoder. This is supposed to make
the decoder able to take into account not just the previous trajectory of the
current ship being predicted but also all other vessels in the vicinity.

While RNNs allow for variable-length input sequences, it seems valid to assume
that the position multiple hours ago has very little impact on predictions in
the short term. Therefore, many works in literature limit the input length and
treat the window size as a hyperparameter to tune. The limitation on the input
window is often referred to as the context length. Gao et al. [2018], Qian et al.
[2022] find a context length of 3 time steps sufficient to accurately predict the
next position, while Sørensen et al. [2022], Forti et al. [2020] suggest a much
longer context length of 20 time steps. Other works [Liu et al., 2021, Yang
et al., 2022a, Suo et al., 2020] completely remove the windowing constraint
and instead use the entire previous trajectory to predict the next position. In
addition to the context length, Seq-2-Seq models vary by the number of time
steps predicted, referred to as the prediction length. Capobianco et al. [2021b],
Forti et al. [2020], and Dijt and Mettes [2020] suggest a prediction length of 12,
20, and 50 time steps, respectively.

The effect of increased context/prediction length on the prediction error re-
mains unclear as there is no established state-of-the-art nor baseline data sets
used for comparison of models. In addition, most papers differ in their pro-
posed preprocessing or data filtering, making it even more difficult to evaluate
the effect of context length. Spadon et al. [2022] investigate different values
of context/prediction length with the purpose of finding the optimal model ar-
chitecture for different data complexities, but do not investigate the effect of
varying the context length on the prediction error. For the purpose of anomaly
detection, the context/prediction length can have quite an impact. An increased
context length may allow us to successfully predict more complicated manoeu-
vres and behaviour, reducing the number of false alarms. On the other hand, a
very large context length may oversaturate the models with data unrelated to
the abnormality decision. Similarly, the prediction length must have a suitable
value. A very long prediction length is unwarranted because it requires the op-
erator to wait a long time before a decision can be made. However, a very short
prediction length may result in noisy prediction and more false alarms.

While many different architectures and hyperparameters have been proposed,
in particular for trajectory prediction, it remains difficult to compare their per-
formance against each other due to the lack of baseline data sets. Most works in
the literature conduct ablation studies and compare their proposed architecture
with basic RNNs using unidirectional LSTMs or GRUs. In Nguyen and Fablet,
Transformers are found to outperform the Seq-2-Seq and RVAE models sug-
gested in Forti et al. [2020], Capobianco et al. [2021b], and Murray and Perera
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[2021] but the performance on large complex data sets remains to be studied in
depth. Spadon et al. [2022] compare performance of different recurrence cells in
stacks up to three, as well as in unidirectional and bidirectional settings. They
find that the proposed CNN-RNN hybrid stabilises the performance across data
complexities and improves feature extraction for multiple vessels of different
types. However, in general, they find little difference in terms of the Root
Mean Squared Error (RMSE) between models, and the variance over multiple
trainings is larger than the differences between models.

6.3.3 Input Features for Deep Neural Networks

Using the AIS system, ships are required to broadcast dynamic information
related to movement, such as vessel position, speed, course, heading, rate of
turn, and current navigational status. This information is submitted every 2-
10 seconds while underway and every 3 minutes while at anchor. In addition,
static information about the ship is broadcasted every 6 minutes. This static
information contains the call sign and name of the vessel, the type of ship, the
dimension of the ship, the position of the positioning system on the ship, the
draught of the ship, the current destination of the ship and the estimated time
of arrival.

As stated above, the AIS information is transmitted at irregular intervals de-
pending on the speed of the vessel. Additionally, the AIS system is inherently
noisy and some messages may not be received causing gaps in the data stream.
In order to account for the irregular sequences, most works resample and in-
terpolate the AIS data-stream to some predefined frequency. For the purpose
of abnormality detection, this resampling frequency is expected to be very im-
portant. At longer time steps between updates we might fail to detect small
maneuvers but a fast resampling might cause trajectories to be very long and
training to be computationally heavy. Additionally, a fixed interval sampling
makes it difficult to detect trajectories with missing fragments as the missing
segment is simply interpolated between normal segments. Instead of resampling
the AIS data stream to regular time intervals, some works suggest incorporating
the time into the input features of the models. This can be done either by the
raw time [Yu et al., 2020, Gao et al., 2018] or by the time step from the previous
update [Spadon et al., 2022]. This requires some form of trajectory compression
or sampling in order to avoid computationally infeasible training due to long
trajectories. Gao et al. [2018] suggest a trajectory compression algorithm in
which only relevant AIS updates are retained. Yu et al. [2020] sample a pre-
defined number of AIS messages from each trajectory and Spadon et al. [2022]
suggest sampling a set of windows of consecutive AIS updates of a predefined
length from each trajectory. For trajectory prediction tasks, the window sam-
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pling technique may be practical, since we are interested in predicting the future
in the same time-step size as the input. However, in abnormality detection we
may be interested in evaluating the trajectories with different step sizes, thus
the random step size of the fixed number sampling may be preferable.

The dynamic information from AIS messages can be processed into trajectories
of latitude and longitude, however, it varies whether or not kinematic infor-
mation such as speed, course, and heading is included. Many trajectory fore-
casting problems suggest only using positional information [Forti et al., 2020,
Capobianco et al., 2021b, Chondrodima et al., 2022] whereas other works also
include speed, course and/or heading [Murray and Perera, 2021, Gao et al., 2018,
Zhang et al., 2021a]. For trajectory prediction tasks, the inclusion of kinematic
information is logical if the objective includes the prediction of future speed and
course; however, in the case of abnormality detection, this distinction is not as
clear. Zhao and Shi [2019b] and Huang et al. [2021] both use kinematic features
for trajectory prediction, but only consider the prediction error of the positional
features for the purpose of abnormality detection. At low speeds the prediction
error of the position must be expected to be very low. This could lead to an
increase in false negatives unless other kinematic features are included in the
abnormality detection. Conversely, the course over ground is known to be noisy
at low speeds which could lead to an increase in false positives. To allow for
easier modelling of the course, it has been suggested to preprocess the feature
into sine and cosine values [Murray and Perera, 2021] which potentially could
be extended to velocity vectors. We believe that there is a lack of study into the
impact of different input features and their preprocessing on the abnormality
detection results, particularly using only positional features vs including speed
and course.

In most applications, static information is disregarded, and only dynamic infor-
mation is used. However, a few previous works discuss the value of contextual
information added from static messages. Capobianco et al. [2021b] include the
final destination as an optional categorical variable in the decoder of a Seq-2-Seq
model predicting the future position and report an approximate 50 % increase
in performance. Capobianco et al. [2021b] consider only two possible shipping
lanes and use the exit points of these shipping lanes as the final destination
categories. This distinction may not be scaleable to global or large ROIs with
many different shipping lanes, harbours, and traffic that does not follow the well-
defined shipping lanes. First, the discovery of exit points requires a clustering
of AIS messages similar to the procedure suggested in TREAD [Pallotta et al.,
2013b]. Secondly, in order to be used in real-time it requires a mapping from
the final destination reported using AIS to the discovered exit points. Duan
et al. [2022] find that the size and draught of the ship are important features
in classifying the type of vessel. Inclusion of ship dimensions and/or external
weather data for trajectory prediction or abnormality detection might seem in-
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tuitive as smaller vessels are capable of tighter maneuvers and extreme weather
might lead to a higher number of abnormal trajectories. However, according
to our personal feedback from maritime surveillance operators, the effect of the
environment on maritime trajectories is minor. Huang et al. [2021] include ship
dimensions and weather data for each time step in the input trajectory to detect
abnormal trajectories based on one-step predictions of position and speed. De-
tecting trajectories with added noise, Huang et al. [2021] report a minor increase
in performance.

While static information from AIS messages may be generalised to full trajec-
tories, the acquisition of external weather data is less trivial. Weather data are
generally not recorded at sea and is typically reported less frequently than AIS
messages using average and extreme values for the previous time-period. Thus,
weather data may require both spatial and temporal interpolation in order to be
included as features in the input trajectory as suggested in Huang et al. [2021].
Alternatively, weather data could be included using a separate RNN encoding
external weather data with a different update frequency or as categorical vari-
ables. Additionally, real-time trajectory prediction applications might require
access to weather forecasts for long-term predictions. More studies are needed
to fully evaluate the effect of including external weather data for trajectory pre-
diction and abnormality detection. For this purpose, the validation data should
consist of a large ROI and time period in order to ensure significant variation
in the weather.

Most applications limit themselves to individual trajectories and ignore vessel
interactions with each other. However, a couple of different methods for in-
cluding vessel interactions has been suggested. Liu et al. [2021, 2022c] suggest
accounting for vessel interactions by incorporating a repulsive force from nearby
vessels. At each time step a weighted sum of the LSTM hidden states of nearby
vessels is calculated. This weighted sum is used as an additional input feature for
the LSTM of the original vessel being modelled. While this makes it possible to
model vessel interactions, it may be difficult to scale to very large data sets with
long trajectories. The method requires a large batch size, preferably the entire
data set, to ensure proper vessel-to-vessel interaction. Secondly, the inclusion of
the hidden states as a feature makes it impossible to parallelise over time during
training. Dijt and Mettes [2020] include a sequence of radar images centred on
the modelled vessel to provide context regarding the local environment includ-
ing the shoreline and nearby vessels. To ensure that the radar images encode
physical information, the encoding of the radar images is used both as features
for the LSTM encoder and to create a mask for land masses. This approach
may work for large ships with on-board radar capabilities centered on their own
position but applications to off-site surveillance centers when radar images are
off center is less clear.
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For the purpose of abnormality detection, it is necessary to study the effect of
including additional input features on the type of behaviour flagged as abnormal.
Features such as final destination, external weather data, nearby vessel positions,
etc. all seem intuitive to include, but it is extremely difficult to evaluate their
value without a publicly available baseline validation set. Even if these features
are discovered to be useful for abnormality detection, it may not be trivial to
include them in a real-life operational setting.

6.3.4 Limitations of the Training Data

To a large extent, the literature has focused on the design of increasingly deeper
and more complex models. However, as highlighted by Spadon et al. [2022], the
literature lacks investigation of the application of these models to streaming data
reflective of data expected in real life operational settings. Many works limit
the size of training data [Capobianco et al., 2021b, Dijt and Mettes, 2020], only
consider a small ROI [Liu et al., 2022a, Zhou et al., 2020], or limit the analysis
to a single-ship type [Sørensen et al., 2022, Forti et al., 2020]. From personal
interviews with maritime surveillance operators, we learnt that models trained
on such data sets generalise poorly to the data observed in real-life applications.
In particular, this is an issue for unsupervised abnormality detection. Out-of-
sample trajectories are expected to have higher error and tend to be flagged as
abnormal, increasing the amount of false positives. Therefore, it is important
to evaluate methods on data sets representative of expected traffic in terms of
ROI size, time period, and ship types.

Other methods constrain the application compared to having more complete
data sets. Zhao and Shi [2019b], Murray and Perera [2021] suggest cluster-
ing trajectories into clusters representing the major shipping lanes and train
separate trajectory prediction networks for each cluster. In both methods, the
outliers found in the clustering are disregarded in the following prediction model.
If applied to the detection of abnormalities, this approach could be sensitive to
minor abnormalities in the major shipping lanes, but it completely disregards
vessels that do not conform to the shipping lanes. Additionally, the training of
the clustering algorithm may not be scaleable with large amounts of data, mak-
ing this approach less desirable. Nguyen et al. [2021], Lu et al. [2021] apply a
discretization of the features. Each feature is converted into a one-hot encoded
vector based on grid values, which are then concatenated to the final input.
This discretization creates a trade-off similar to the resampling frequency of the
trajectories. If the resolution of the grid is too coarse, we can not detect small
maneuvers, but a very fine grid or very large ROI might cause the dimension-
ality of the data to be too large and computationally heavy. The proper size of
the grid resolution is also connected to the resampling frequency. If we choose
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a high resampling frequency, we might be forced into choosing a finer grid in
order to ensure frequent movement between grid cells, further increasing the
computational complexity.

Osekowska et al. [2017] finds that maritime normality pictures change signifi-
cantly over time, which requires the abnormality detection models to be updated
frequently. Deep learning models natively allow for retraining of model weights
in light of a changed normalcy picture, new data, or for application to new ROIs.
Hu et al. [2022] apply a linear data transformation to allow for transfer learning
of trained abnormality detection models to new ROIs. They find that transfer
learning can heavily reduce the amount of training needed.

6.3.5 Summary

The previous literature has mainly focused on the design of more complex mod-
els for both abnormality detection and other problems within maritime deep
learning. Trajectory prediction often serves as the first step in an abnormality
detection model and many other problems can also be interpreted as abnor-
mality detection focusing on one special type of abnormal behaviour. However,
the question of how these models compare with each other quantitatively and
qualitatively when applied to abnormality detection remains open. Likewise,
it remains an open question what impact the choice of architecture, hyperpa-
rameter values, resample period, and input features have on the abnormality
detection. An issue of particular interest to surveillance operators is the general
lack of interpretability of model detections. Based on these findings, we present
a few guidelines for future work in the detection of maritime abnormalities using
deep reconstructions/predictions.

• Models should be trained and evaluated on data sets representative of the
expected traffic in real-time applications.

• Abnormality detection models should focus on unsupervised methods.

• Preprocessing steps should be kept to a minimum unless a change in the
abnormality detection performance can be verified.

• We propose a study into the impact of additional inputs such as kinematic
AIS information, weather data, vessel-to-vessel interaction, etc. on the
behaviour flagged as abnormal.

• We suggest future model designs include ideas of how prediction inter-
pretability may be achieved.
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6.4 Experiments and Results

In order to make a through investigation of the current deep learning methods,
we evaluate the abnormality detection performance of five different deep learning
architectures suggested in the literature to review their abilities of abnormality
detection in a real application. We evaluate a basic Seq-2-Seq predictive model
Forti et al. [2020], a Seq-2-Seq model with attention Capobianco et al. [2021b], a
RVAE reconstructive model Murray and Perera [2021] with (RVAE) and without
(RAE) variational regularisation, and a VRNN reconstructive model Nguyen
et al. [2021]. Unless otherwise detailed the architectures, preprocessing and
hyperparameters used are the same as suggested in the original works. All
networks are trained using Adam optimiser with a learning rate of 0.001 for 50
epochs using a batch size of 200 for the Seq-2-Seq models, 300 for the RVAE, and
32 for GeoTrackNet. The prediction length of the Seq-2-Seq models is limited
to 25 updates to provide an adequate number of time steps for abnormality
detection and keep detections close to real time. The context length is initially
limited to 25 updates.

The models are trained and evaluated on the data sets released by Olesen et al.
[2022a,b]. The test set labels abnormal traffic related to a collision accident.
In addition to the colliding vessels, the abnormal trajectories include commer-
cial traffic which had to deviate from the planned course to avoid the accident,
Search-and-Rescue activities and law enforcement vessels responding to the ac-
cident, and any vessel taking part in the following search of two sailors thrown
overboard. This is a small data set of only 521 trajectories and 25 labelled
abnormalities, however, the abnormalities are confirmed to be of operational
interest. In the future, we recommend the creation of additional data sets with
labelled abnormalities of operational interest.

Abnormalities are discovered using the A-Contrario detection suggested in Nguyen
et al. [2021]. Unlike Nguyen et al. [2021], we do not impose a fixed threshold
for detection. Instead, we calculate the receiver operating characteristic (ROC)
and measure the abnormality detection performance by the area under the ROC
curve (AUC).

6.4.1 Comparison of Methods

Figure 6.1 compares the ROC curves of the five models. GeoTrackNet has the
highest performance measured by the AUC followed by the RAE without vari-
ational constraint which achieves almost the same AUC. The two Seq-2-Seq
models achieve a similar performance only slightly less that the AutoEncoder
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models. The RVAE model achieves the worst performance, significantly under-
performing compared to the other suggested architectures. However, all five
methods suffer from false positives to a degree that would make them impracti-
cal in a real world setting. In order to detect 80% of all abnormal trajectories,
validation suggests that a false alarm is triggered on every fifth trajectory.

Figure 6.1 – Receiver operating characteristic (ROC) curves. P-values for the
hypothesis of equality with the highest measured AUC is given
[Hanley and McNeil, 1982].

Figure 6.2 shows 30 false positives from the four models with the highest AUC.
False positives in the Seq-2-Seq models in figures 6.2a and 6.2b generally fall
into the 3 categories; very short trajectories, trajectories with a highly varying
course, or trajectories sailing along the shipping lanes but showing minor course
adjustments. For very short trajectories, the separation into contextual and
prediction parts may result in contextual parts that are too short for the model
to learn meaningful behaviour resulting in poor predictions and trajectories
being flagged as abnormal. The other two categories indicate that the models
have learnt to linearly project the future positions as if the ship continues the
current course. As such the models have not learned to model any turns apart
from perhaps the well established turns in the large shipping lanes. The false
positives using GeoTrackNet, Figure 6.2c, are generally trajectories with many
course changes. GeoTrackNet also flags stationary trajectories as abnormal due



6.4 Experiments and Results 87

to their highly varying course when drifting. This indicates the GeoTrackNet
model may be susceptible to flag trajectories with frequent course changes. The
RAE model, Figure 6.2d, flags trajectories that follow the shipping lanes or has
widely varying course in close proximity to the shipping lanes. This kind of
behaviour may be of big interest to the maritime safety as ships drifting near
the shipping lane increase the risk of collisions.

(a) Seq-2-Seq. (b) Seq-2-Seq with attention.

(c) GeoTrackNet. (d) RAE.

Figure 6.2 – The top 30 false positive using the suggested models.

Figure 6.3 shows all five reconstructions of two abnormal trajectories. The
RVAE model makes the same reconstruction for both trajectories. Thus, the
model has not learnt meaningful feature representations and has collapsed into
a solution where all trajectories are mapped into the same point in the latent
space. This results in large reconstruction errors for trajectories that cover a
large distance and a long duration, while short trajectories close to the centre of
the ROI have smaller reconstruction errors. The top case depicts a cargo ship
sailing along the shipping lane. The ship suddenly makes a double u-turn before
continuing out of the ROI. The Seq-2-Seq models predict the ship to continue
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Figure 6.3 – Normal trajectories flagged as abnormal by the two Seq-2-Seq mod-
els. The models have learned to predict the vessels continue on the
current course resulting in false positives. Trajectory origin is de-
noted in black.



6.4 Experiments and Results 89

on course which causes large prediction errors at the time of the u-turn and
the trajectory is flagged as abnormal. Similarly, the RAE model is capable of
mapping out the total route but the abnormal behaviour is not reconstructed
causing a large reconstruction error and an alarm being raised. Contrarily,
GeoTrackNet reconstructs the u-turn behaviour and does not flag the trajectory.
A double u-turn in the shipping lane is clearly abnormal behaviour, and that
it is not flagged by GeoTrackNet is very surprising. The bottom case shows a
trajectory sailing parallel and close to the shipping lane at high speed before
abruptly stopping. It then continues north at very low speed and turns along
the coast when reaching land. The sub-segment with the highest prediction
error using the Seq-2-Seq models is the segment in which the trajectory slows
down near the shipping lane. Here the models predict the trajectory to continue
along the shipping lane but at reduced speed causing the smaller prediction error
resulting in a false negative prediction. This is an example of abnormal activity
that will not be detected because it is conducted at slow speeds. The RAE
model reconstructs the general route of the trajectory, but since this abnormality
generally occurs away from the shipping lanes, the outlier score is much lower.
GeoTrackNet has a high reconstruction error due to the highly varying course
and correctly flags the trajectory as abnormal. The RAE and GeoTrackNet
models generally detect very different behaviour as abnormal. Therefore, we
hypothesise a combination or an ensemble of these two models would be a better
outlier detector than each model individually.

Figure 6.4 shows box plots of the outlier score split by ship type. We identify
two major issues with the proposed detection of abnormal trajectories. Different
models will result in outliers scores on different scales maybe even with an
order of magnitude difference. This makes it difficult to compare the degree
of abnormality across models. Additionally, there are also large differences in
outlier scores between ship types. Ship types with a less restricted behavioural
patterns have higher outlier factors than ship types typically restricted to the
shipping lanes. Therefore, deciding on a fixed threshold for detection across all
ship types may result in some ship types being prone to false positives/negatives.

The difference in outlier scores may cause the creation of an ensemble to be a
non-trivial task. Taking the average of the outlier scores may not be a fair mea-
sure due to the large-scale difference. The RAE obtains outlier scores that are
one order of magnitude larger than GeoTrackNet, so this model may dominate
when calculating the average. Majority voting of the models’ binary abnormal-
ity decisions is also not trivial for the same reason. The differences in scale
warrant the need for different detection thresholds for each model participating
in the voting. Taking the average of the reconstruction loss is also not possible
due to differences in loss functions. GeoTrackNet is trying to maximise the re-
construction loss, while the RAE model is trying to minimise the reconstruction
loss. Thus, taking the mean of the reconstruction error would average out the
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differences. The different loss functions are due to the different inputs used.
Thus, in order to have an ensemble using the mean of the reconstruction errors
the models would have to use the same input. However, deciding an input type
for all models warrants a study of how each model interacts with different input
types and if there are any pros/cons with each suggested input.

Figure 6.4 – The outlier scores calculated on the test set separated by ship type
and model. HSV: High Speed Vessel

6.5 Conclusion

In this work, we review and discuss maritime abnormality detection using Deep
Learning. We have provided an overview of methods applied in the literature
along with the pros and cons of each method. We find a wide variety of differ-
ent deep learning architectures have been applied for different problems using
maritime trajectories. Most applications rely solely on positional and kinematic
data from AIS messages, but other features including environmental informa-
tion and radar imagery have been suggested. However, we find a general lack of
evaluation of the proposed methods caused by no established state-of-the-art,
baseline methods, or data sets and suggest the community to work on estab-
lishing benchmark data sets and baseline methods as a top priority. Supervised
and unsupervised methods have been suggested for the problem of abnormality
detection. Since large labelled datasets for training are difficult to achieve, la-
belled datasets are often based on simulated data or extreme values which might
not reflect true abnormalities. Based on these findings, we recommend abnor-
mality detection models should focus on unsupervised methods, preprocessing
steps should be kept to a minimum, and the impact of additional external data
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sources needs to be evaluated on an independent test set representative of the
expected data in real-time applications. Additionally, there is a need to fo-
cus on the interpretability of detections for models to be applicable in real-life
operations.

We compare the performance of maritime abnormality detection of five recon-
structive / predictive models suggested in the literature. The AutoEncoder-
based GeoTrackNet and RAE models have the highest performance measured
by the AUC followed by the predictive Seq-2-Seq method. We hypothesise that
an ensemble of the two different AutoEncoder models (RAE, GeoTrackNet)
would have better abnormality detection performance than any of the individ-
ual models. We have shown that ship types and different models may have
outlier scores on different orders of magnitude, meaning that some ship types
may be prone to false positives/negatives, and an ensemble may be dominated
by a single model. In future work, we recommend that the use of ensembles are
studied further. This will require investigations into both inputs and outputs
to make sure models are directly comparable.
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6.6 Appendix

Work Problem Model Inputs Data Limitations
Singh and Heymann [2020a] Abnormality Detection ANN Pos/Kin -

Wang [2020] Abnormality Detection ANN Pos/Kin/∆T Small dataset
Liu et al. [2022a] Abnormality Detection RNN Pos/Kin Small area

Zhang et al. [2021b] Abnormality Detection RNN Pos/Kin/T Small dataset
Hu et al. [2022] Abnormality Detection VAE-LSTM & Graph Neural Network Pos/Kin/∆T Small dataset

Protopapadakis et al. [2017] Abnormality Detection VAE Pos/Kin -
Huang et al. [2021] Abnormality Detection RNN Pos/Kin/T/Size/Enviromental -

Zhao and Shi [2019b] Abnormality Detection RNN Pos/Kin Clustering
Singh et al. [2021] Abnormality Detection RNN Pos/Kin Limited ship types
Xia and Gao [2020] Abnormality Detection Bayesian RNN Pos/Kin -
Liu et al. [2022b] Abnormality Detection Graph Neural Network Pos/Kin Limited ship types

Eljabu et al. [2021] Abnormality Detection Graph Neural Network Pos/Kin Small dataset
Nguyen et al. [2019, 2021, 2020] Abnormality Detection VRNN Pos/Kin Discretization

Zang et al. [2021] Abnormality Detection VRNN Pos/Kin Discretization
Yao et al. [2017] Shipping lane recognition RAE Feature Engineering Few Trajectories

Dan Vukša et al. [2022] Collision risk RNN Feature Engineering Small dataset
Namgung and Kim [2021] Collision risk RNN Feature Engineering Small dataset

Yu et al. [2020] Track association RAE Pos/T -
Zhou et al. [2020] Traffic flow prediction RNN Flow matrices Small area

Mandalis et al. [2022] Traffic flow prediction RNN Pos/∆T -
Wen et al. [2020] Trajectory prediction ANN Pos/Kin/Static Clustering
Zissis et al. [2015] Trajectory prediction ANN Pos/Kin Discretization
Gan et al. [2016] Trajectory prediction ANN Feature Engineering Small dataset
Xu et al. [2011] Trajectory prediction ANN Kin Small dataset

Zhou et al. [2019] Trajectory prediction ANN Pos/Kin Small dataset
Gan et al. [2018] Trajectory prediction ANN Feature Engineering Small dataset
Gao et al. [2018] Trajectory prediction RNN Pos/Heading/T Compression
Suo et al. [2020] Trajectory prediction RNN Pos Clustering
Gao et al. [2021] Trajectory prediction RNN Pos Limited ship types
Qian et al. [2022] Trajectory prediction RNN Pos/Kin Few trajectories
Wang et al. [2020] Trajectory prediction RNN Pos/Kin -
Yang et al. [2022a] Trajectory prediction RNN Pos/Kin Small dataset
Liu et al. [2021] Trajectory prediction RNN Pos -
Liu et al. [2022c] Trajectory prediction RNN Pos -

Zhang et al. [2020c] Trajectory prediction RNN Pos/Kin Small dataset
Lu et al. [2021] Trajectory prediction RNN Pos Discretization

Park et al. [2021] Trajectory prediction RNN Pos/Kin Clustering
Chondrodima et al. [2022] Trajectory prediction RNN Pos/∆T -

Zhang et al. [2021a] Trajectory prediction RNN Pos/Kin/T Small dataset
Sørensen et al. [2022] Trajectory prediction RNN Pos/Kin Limited ship types
Dijt and Mettes [2020] Trajectory prediction Seq-2-Seq Pos Small dataset

Forti et al. [2020] Trajectory prediction Seq-2-Seq Pos Small dataset
Capobianco et al. [2022] Trajectory prediction Seq-2-Seq w. Att Pos/Destination Small dataset
Capobianco et al. [2021a] Trajectory prediction Seq-2-Seq w. Att Pos/Destination Small dataset
Capobianco et al. [2021b] Trajectory prediction Seq-2-Seq w. Att Pos/Destination Small dataset

Spadon et al. [2022] Trajectory prediction CNN-RNN Hybrid Pos/Kin/∆T -
Murray and Perera [2020] Trajectory prediction AE Pos/Kin Clustering
Murray and Perera [2021] Trajectory prediction RVAE Pos/Kin Clustering

Ding et al. [2020] Trajectory prediction VRNN ∆Pos/Kin/∆T -
Nguyen and Fablet Trajectory prediction Transformers Pos/Kin Discretization
Liu et al. [2022d] Trajectory prediction Graph Neural Network Pos -
Duan et al. [2022] Vessel classification CNN-VAE Pos/Kin/Size/Draught Discretization
Liang et al. [2021] Vessel classification RNN Pos -

Abualhaol et al. [2019] Vessel service time prediction RNN Feature Engineering -
Chen et al. [2020] Vessel state classification CNN Pos/Kin Discretization

Mantecon et al. [2019] Vessel state classification CNN Kin -
Ferreira et al. [2022] Vessel state classification RNN Pos/Kin Clustering

Table 6.3 – Problems, models, and input features considered by references in
this review.
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Abstract: Detection of abnormal maritime behavior detection is a key com-
ponent of ensuring maritime safety and security. Current operational systems
are largely based on manual surveillance of a wide range of data sources from
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many vessels within a large sea area. To support operators, methods and sys-
tems capable of performing anomaly detection have received increased attention.
As abnormal maritime behaviour is a complex and ill defined concept, different
model architectures or data preprocessing may be better suited for detection
of certain types of abnormal behaviour. In this work, we suggest the use of
ensembles consisting of different model architectures to improve detection of
abnormal maritime traffic in the wake of a fatal collision accident. We find that
ensemble members flag different types of abnormal behavior, and using them in
an ensemble setting both increases the chance of detection and the reduction of
false positives. We also investigate the possibility of transfer learning to reduce
training times of models in new maritime regions and find that models trained
for point prediction do not require fine-tuning to achieve the same abnormality
detection performance.

7.1 Introduction

Maritime shipping is the most efficient and cost-effective form of long-distance
transportation and is responsible for 80% of the world’s trade [IMO, 2021]. This
makes maritime security and safety crucial to the protection of the global supply
chain. Every day, the Automatic Identification System (AIS) provides on a
global scale hundreds of millions of messages [MarineTraffic, 2016], which contain
identifiers of ships, their coordinates of their Global Positioning System (GPS),
their speed, course, etc. In many areas this data is freely available and may
be collected into large amounts of historical maritime trajectories for maritime
surveillance. Anomaly detection is one of the most important tasks within the
domain of maritime surveillance. Current operational systems rely strongly on
human experts and to provide support for operators, methods, and systems
capable of performing anomaly detection have been a very active research area
Pallotta et al. [2013a], Nguyen et al. [2021], Singh et al. [2021].

Maritime abnormal behavior is complex, poorly defined, and may vary widely
between regions of interest (ROI), time of year, and ship types. As a result, dif-
ferent models may be preferable to detect certain types of abnormal behaviour
Singh et al. [2021], Hu et al. [2022], Olesen et al. [2022c]. Ensembles of different
model architectures or data fusion using different feature extractors have been
found to improve prediction/detection in many transport domains such as hot
spot prediction Jin et al. [2020], Yao et al. [2018], flow prediction Zhang et al.
[2020b], Yuan et al. [2020], vessel classification Zhang et al. [2019], and abnor-
mality detection Singh et al. [2021], Hu et al. [2022]. Additionally, analysis of
trajectories using different spatial and temporal resolutions may improve perfor-
mance Zhang et al. [2019, 2020b]. Particularly, for abnormality detection it may
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be interesting to evaluate the trajectories using different temporal resolutions
Mascaro et al. [2014]. A low sampling frequency might be too slow to adequately
capture the trajectories of vessels with frequent course changes, such as fishing
or leisure vessels. However, a faster sampling might lead to noisy trajectories
and have difficulty modeling frequent course changes leading to false positives.

As mentioned, the behaviour deemed as abnormal may vary heavily between
ROIs and time of year. Additionally, patrol vessels, coast guard, or military
war ships in large scale anti-piracy operations are not fixed to a predefined area
but are moving platforms with a constantly changing ROI. Particularly, the case
of international antipiracy operations may see a military warship deployed to
an area where little to no historical data is available for model training. These
problem require the use of transfer learning to apply large scale model between
ROIs and occasional retraining of models for season based pattern fluctuations
Osekowska et al. [2017]. Graph- or grid-based models and preprocessing as
suggested in Nguyen et al. [2021] may render trained models inapplicable for
transfer learning as the model architecture will be tired to chosen size and
resolution of the input features.

In this work, we make an analysis and comparison of input features, resulting
objective functions, and random temporal sampling of trajectories. The purpose
of this analysis is to design ensembles of Sequential AutoEncoder based models
with different temporal resolutions, model architectures, and learning objectives.
These models will then be trained and applied on different ROIs to investigate
the spatial generalization of models and the applicability of transfer learning to
reduce training times on new ROIs. We summarize our contributions as follows:

• Analysis of input features and objective functions of deep learning models
for the detection of abnormal maritime trajectories.

• We suggest the use of ensembles of different temporal resolutions, models,
and objective functions for the detection of abnormal maritime trajectories
improving the current state-of-the-art.

• Investigation of the applicability of transfer learning to reduce model train-
ing times in new maritime regions.

The paper is organized as follows: Section 7.2 discuss previous work on maritime
abnormality detection, particularly related to ensembles and transfer learning.
Section 7.3 outlines and discuss the models, learning objectives, and temporal
sampling applied in this paper. In Section 7.4 presents our experiments and
results within ensemble creation and transfer learning. Finally, we present our
conclusion in Section 7.5.
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7.2 Related Work

Historically, detection of abnormal maritime behaviour has been implemented
using knowledge based approaches that look for predefined patterns in the data
source. The majority of knowledge-based approaches implement well-defined
rule systems Lauro Snidaro et al. [2012], Snidaro et al. [2015], Neves et al.
[2019]. Having rules makes detections very easy to interpret and analyze, since
operational systems may output which rules were broken and supply operators
with a clear reason for an alert in real time. However, rules may vary heavily be-
tween time of year or geographic location, making a relevant and exhaustive list
of rules difficult to construct and implement in operational systems. The recent
wide availability of open AIS data has made data-driven maritime anomaly
detection using AIS trajectories a popular research question for detection of
abnormal maritime behaviour. Data-driven approaches derive a model repre-
senting the normal picture and evaluate anomalies as observations deviating
from normalcy. Traditionally, the most common way of expressing the normal
maritime picture is through density-based clustering Pallotta et al. [2013b], Liu
et al. [2015b]. Density-based clustering is used to find waypoints within the
ROI, and a route is formed between waypoints whenever a certain number of
transitions have been observed. Density-based clustering may form the basis for
anomaly detection. Pallotta and Jousselme [2015] proposes a two-stage anomaly
detection scheme using the extracted routes. First, a trajectory is associated
with a route using only the positional part. Afterwards, kinematic outliers are
found by comparing the speed and course to the average behaviour of the route.
Liu et al. [2015b] proposes to divide the routes into smaller geographical regions
and compute the average kinematic values for each split. These values are then
used to detect abnormalities Liu et al. [2015a]. Yang et al. [2022b] and Zhao
and Shi [2019a] take another approach to density-based clustering. First trajec-
tories are reduced using the DP algorithm [Douglas and Peucker, 2011] and the
similarity is measured using the Hausdorff distance or dynamic time warping
before being clustered. Zhao and Shi [2019b] extend this clustering for anomaly
detection. The discovered clusters are used to train LSTM models for one-step
predictions of position and kinematic values, and abnormal trajectories are de-
tected by a global threshold on the prediction error. Recently, deep learning
has been proposed as a feature extractor for clustering of maritime trajectories
Yao et al. [2017], Murray and Perera [2021]. Clustering in the latent space of re-
current AutoEncoders were find to discover clusters representative of the major
shipping routes through the ROI.

Deep learning has similarly been applied to explicit detection of abnormal tra-
jectory. Singh et al. [2021] suggests training a bidirectional LSTM to output
the parameters of a Normal inverse-Gamma distribution of the future position
and kinematics. The predictive probability of the location, speed, and course is
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used to optimise the network and abnormalities are defined as trajectories which
experience a significant increase in predicted variance. Nguyen et al. [2019] sug-
gests GeoTrackNet, a Variational Recurrent Neural Network (VRNN) approach
in a multitask fashion. The proposed network is used for trajectory prediction,
ship type classification, and anomaly detection. The anomaly detection is fur-
ther expanded in Nguyen et al. [2021] and Nguyen et al. [2020]. Instead of a
global threshold for detection, an A-Contrario detection is suggested taking into
account the overall model performance in the local area to determine detection
thresholds. Zang et al. [2021] test the VRNN approach suggested in Nguyen
et al. [2021] in a case study in another maritime area.

Olesen et al. [2022c] provide a general review and comparison of deep learning
methods for the detection of abnormal maritime behavior and find that Au-
toEncoder approaches such as GeoTrackNet Nguyen et al. [2021] or recurrent
AutoEncoders Murray and Perera [2021] are preferable to predictive models.
Analysis of the type of behaviour flagged as abnormal by each method finds
that the two models flag different behaviour and Olesen et al. [2022c] suggest
an ensemble of these models may be a better detector than each model indi-
vidually. The idea of ensembles is also investigated in Hu et al. [2022]. The
proposed ensemble consists of a Variational LSTM AutoEncoder (VAE-LSTM)
and a Graph Variational AutoEncoder. Each ensemble member is trained to re-
construct the input trajectory, and the reconstruction errors are then combined
using the Twin Delayed Deep Deterministic Policy Gradient Algorithm (TD3)
to make a final binary prediction of the abnormality. They find ensembles may
effectively improve the accuracy of abnormal trajectory detection, however, the
proposed fusing method is prone to being dominated by a single member.

Most works employ a resample and interpolation strategy to create a regularly
sampled trajectory from AIS data Nguyen et al. [2021], Zhao and Shi [2019b].
For the purpose of abnormality detection this resampling frequency is expected
to be very important. A longer time step between updates we might fail to
detect small maneuvers but a fast resampling might cause trajectories to be very
long and training to be computationally heavy. Additionally, a fixed interval
sampling makes it difficult to detect trajectories with missing fragments as the
missing segment is simply interpolated between normal segments. Alternatively,
the time may be incorporated into the input features of the models Spadon
et al. [2022], Yu et al. [2020]. Yu et al. [2020] sample a predefined number of
AIS messages from each trajectory and Spadon et al. [2022] suggests to sample
a set of windows of consecutive AIS updates of a predefined length from each
trajectory. For trajectory prediction tasks, the window sampling technique may
be practical since we are interested in predicting the future in the same timestep
size as the input. However, in abnormality detection we may be interested in
evaluating the trajectories with different step sizes, thus the random step size
of the fixed number sampling may be preferable. Mascaro et al. [2014] use
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a Bayesian Network to investigate the importance of including a wide variety
of factors and the importance of the time scale. Two different networks are
trained; one on the track data in its original time series form and one on a track
summery, which includes included average speed and course, number of stops,
major stopping points, and percentage of time traveling straight. They find
both methods are successful in detecting anomalies although they conclude the
methods focus on different variables and thus best used in conjunction with one
another.

The application of transfer learning in for maritime abnormality detection is
very limited. Hu et al. [2022] suggests a data transformation strategy. A simple
linear transformation of the AIS trajectories from the target region to the source
region is calculated. This is found to speed up the training time in a new
ROI; however, it is not investigated whether transfer learning affects trajectories
flagged as abnormal.

7.3 Methodology

In this section, we introduce the neural networks, learning objectives, and tem-
poral sampling used in this paper to construct the different ensembles. We then
briefly present the anomaly detection method suggested in Nguyen et al. [2021].
First, we define an AIS trajectory:

Definition 1: An AIS trajectory x of length L is represented by a sequence of
time-stamped points collected from the AIS system, that is, X1:L = (x1,x2, . . . ,xL)
where xt = (timet, longitudet, latitudet, speedt, courset) denote the positional
and kinematic features extracted from an AIS message at time t.

7.3.1 Neural Networks

In this paper, we shall use two sequential AutoEncoder models previously sug-
gested for analysis of maritime trajectories; the Recurrent AutoEncoder, sug-
gested in Murray and Perera [2021], and the Variational Recurrent Neural Net-
work suggested in Nguyen et al. [2021]
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7.3.1.1 Recurrent AutoEncoder

The Recurrent AutoEncoder (RAE Srivastava et al. [2015]) is an AutoEncoder
model in which both the encoder and decoder consists of RNN’s. The RNN
encoder reads an input sequence, X1:L, of length L. The RNN decoder is ini-
tialized using the final hidden state of the encoder network, hL, and outputs a
reconstruction of the input sequence.

The encoder is capable of processing variable-length time series, e.g., AIS tra-
jectories, and compressing them into a fixed size vector, hL. From this repre-
sentation, the decoder must reconstruct the input sequentially. The network
must learn to retain as much mutual information as possible between the input
sequence and the compressed representation, hL. Since hL has a fixed lower
dimensionality, it is unlikely that the model can learn trivial identity mappings
for input sequences of arbitrary length.

The reconstruction can be done either as point predictions x̂t or as parameters
θx,t, of probability distribution, P (θx,t), describing the input. In the case of
point predictions, we have

x̂t = ϕpred(ut) (7.1)
ut = gθ(x̂t,ut−1), (7.2)

where ϕpred denotes a linear neural network of one layer. In the case of proba-
bility distributions, we have

xt ∼ P (θx,t) (7.3)

θx,t = ϕpred(ut) (7.4)
ut = gθ(µt−1,ut−1), (7.5)

where µt−1 denote the mean of the distribution P (θx,t−1). In both cases the
decoder hidden state ut and input is initialized as u0 = hL and x̂0 = µ0 = 0
respectively. The decoder RNN, gθ, is modelled by a Gated Recurrent Unit
(GRU) [Chung et al., 2014] as suggested in Murray and Perera [2021]. Learning
is done by maximizing the probability of reconstruction.

L(X1:L) =

L∑
t=1

p(xt|θx,t) (7.6)

7.3.1.2 Variational Recurrent Neural Network

The Variational Recurrent Neural Network (VRNN, Chung et al. [2015]) is an
RNN that at each time step consists of a Variational AutoEncoder (VAE) condi-
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tioned on the recurrence model. The prior distribution on the latent stochastic
variable at time t, zt, is given by a Gaussian with parameters µ0,t and σ2

0,t,
obtained by a neural network ϕprior taking as input the recurrent hidden states,
ht−1.

zt ∼ N(µ0,t,diag(σ2
0,t)), (7.7)

where [µ0,t,σ
2
0,t] = ϕprior(ht−1)

Similarly the generating distribution and the approximate posterior q(zt|xt) is
also modelled using neural networks, ϕdec and ϕenc, taking ht−1 as an input.
The generating distribution also depends on the latent variable zt, which first
passes through a feature extractor ϕz.

xt|zt,ht ∼ P (θx,t), (7.8)

where P (θx,t) = ϕdec(ϕz(zt),ht−1)

The approximate posterior depends on the input xt that is first passed through
another feature extractor ϕx.

zt|xt,ht ∼ N(µz,t,diag(σ2
z,t)), (7.9)

where [µz,t,σ
2
z,t] = ϕenc(ϕx(xt),ht−1)

At each time step the recurrence ht is updated according to

ht = fθ(ϕ
x(xt), ϕ

z(zt),ht−1) (7.10)

The recurrence function fθ is modelled using an LSTM unit as suggested in
Nguyen et al. [2021]. The neural networks ϕprior, ϕdec, ϕenc, ϕx, ϕz are modelled
using two layer linear networks with ReLU activation functions. Learning is
done by maximizing the time-stepwise ELBO.

L(X1:L) =
1

L

L∑
t=1

Eq(zt|xt,ht−1)p(xt|zt,ht−1)− βKL [q(zt|xt,ht−1)|p(zt,ht−1)]

(7.11)

7.3.2 Temporal Sampling

The transmission frequency of the AIS system is related to the current sailing
speed, resulting in AIS trajectories with irregular samples. Previous works gen-
erally adopt a resample and interpolation strategy to create a regularly sampled
trajectory. This approach resamples trajectories to some lower update frequency
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using the average value in each interval. Virtual messages obtained by linear in-
terpolation are inserted in case of missing values after resampling. This strategy
can introduce uncertainty in trajectories when the gap between two consecutive
AIS messages is too large or if the resampling frequency is set too low. In this
case the data distribution of the trajectory would be changed and picture an
inaccurate trajectory. This would especially be the case for vessels with sailing
patterns different from a constant velocity such as fishing and military vessels.
To avoid large gaps between consecutive AIS messages, we split trajectories into
two if the gap between consecutive AIS messages exceeds 15 minutes.

Using the resample and interpolation strategy, the combination of different tem-
poral resolution would require the training of different models for each frequency.
Inspired by Yu et al. [2020] we instead propose to train a single model by sam-
pling trajectories with varying time steps between messages. We propose to
sample n points from each trajectory where n is decided based on the length of
the trajectory. For short trajectories with fewer than 360 messages we use all
messages. The limit of 360 messages was selected because this is the number of
messages expected during one hour when using a sampling period of 10 seconds,
which is the upper limit of the AIS transmission rate for vessels under way using
engine. For trajectories longer than 360 messages, we sample 360 messages pr.
12 hour of duration with a minimum of 360 messages. The purpose of this is to
simulate real-time use in which the model may initially be applied to streaming
data without temporal sampling. As the trajectory evolves, the sampling pe-
riod may be increased to compensate for the increased trajectory length. Using
this approach the expected time between AIS messages from long trajectories
becomes two minutes.

n = max(durx/43200, 1) · 360 (7.12)

As discussed in Spadon et al. [2022] modelling of random time stamps is theo-
retically infeasible since they have a discrete probability distribution. Instead,
we consider the elapsed time ∆t since the previous AIS message.

At evaluation time, we propose to use the resample and interpolation strategy
with a constant time step between AIS messages. In this way, we can evaluate
trajectories using the same model with different temporal resolutions.

7.3.3 Data Representation and Objective Functions

Several different data representations have been suggested for the analysis of
AIS trajectories. Nguyen et al. [2019, 2021] suggest a discrete encoding based



102
Detecting Abnormal Maritime Trajectories using Ensembles and Transfer

Learning

on concatenated one-hot encodings. Other works in the literature consider con-
tinuous inputs with point predictions [Murray and Perera, 2021, Capobianco
et al., 2021b] or parameters of distributions [Capobianco et al., 2021a, Sørensen
et al., 2022] for prediction/reconstruction. In this section, we shall briefly intro-
duce each data representation and the resulting generative model and objective
function.

7.3.3.1 Discrete Encoding

The discrete 4-hot encoding suggested in Nguyen et al. [2019, 2021] discretizes
latitude, longitude, speed, and course into grids using one-hot encoding and
concatenates these vectors to form a 4-hot encoding. Thus, the 4-hot encoding
becomes a concatenation of four categorical distributions. This can be modelled
as a special case of a multivariate Bernoulli distribution in which exactly four
of the binary variables takes the positive value. In this case, the generating dis-
tribution P (θx,t) in Eq. (7.3) and Eq. (7.8) is given by a multivariate Bernoulli
distribution P (θx,t) = Bernoulli(θx,t) with logits θx,t.

The resolution of the imposed grid naturally plays an important role. If it is
too high, the network may require too many computational resources to run
and is sensitive to noisy inputs, which could lead to overfitting. Contrary, If
the resolution is too low, we may lose critical information. In this work, we use
resolutions suggested in Nguyen et al. [2021]. Using the discrete 4-hot-encoding
the inputs will be centered using the mean computed by

µ =

∑N
i

∑Li

t x̄i,t∑N
i Li

(7.13)

where x̄i,t denotes the 4-hot encoded vector of the AIS message at time step t
from the trajectory i.

The discrete 4-hot-encoding has two major drawbacks. First, it is only appli-
cable to regularly sampled sequences. The discretization of the time feature is
computationally infeasible, since irregular sampled AIS trajectories may have
very large time steps, causing the dimensionality of the associated one-hot en-
coded vector to be very large. The temporal resolution could be lowered in order
to reduce the dimensionality, but this would cause critical information loss re-
lated to the relationship between temporal and spatial features. Secondly, the
input features and size of the network weights becomes tied to the design of the
grid making it impossible to transfer learned networks onto new area of different
sizes.
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7.3.3.2 Standardization

The restrictions of the 4-hot encoding related to the discretization of the inputs
can be relaxed by using continuous inputs. In this case we assume the gener-
ating distribution P (θx,t) in eq. (7.3) and eq. (7.8) is given by a multivariate
normal distribution P (θx,t) = N(µx,t, σx,t) with mean and covariance matrix
[µx,t,Σx,t] = θx,t. We shall impose a regularization and only consider diagonal
covariance matrices assuming that the inputs are uncorrelated. Since we assume
the inputs are normally distributed, we standardize to zero mean and unit vari-
ance using the empirical mean µx and standard deviation σx. In the case of the
course feature, we convert to radians and only center the data since this feature
is cyclical.

x′
t =

xt − µx

σx
(7.14)

In the case of irregular sampled data the empirical mean and variance are not
given as the trajectories in each epoch varies due to the random temporal sam-
pling. In this case, we estimate the empirical mean and variance by repeating
the temporal sampling as described in Section 7.3.2 on each trajectory 10 times,
calculating the empirical mean and variance of the sampled trajectories.

In this study, we shall only consider a multivariate normal distribution as the
generating distribution for all features. However, the course would be better
described by cyclical distribution such as a warped normal distribution or a Von
Mises distribution. However, these distributions have computationally expensive
probability densities that significantly increase training time.

7.3.3.3 Normalization

Instead of considering complete generative distributions, models may output
point predictions, x̂t, of the predictive mean. This corresponds to the maxi-
mum likelihood estimate of the reconstructed value. In this case, the recon-
struction probabilities p(xt|θx,t) and p(xt|zt,ht−1) in Eq. (7.6) and eq. (7.11)
are exchanged for the maximum likelihood estimate using the MSE loss.

L(X1:L) =

{
− 1

L

∑L
t=1∥x̂t − xt∥2 for RAE

− 1
L

∑L
t=1∥x̂t − xt∥2 + βKL [q(zt|xt,ht−1)|p(zt,ht−1)] for VRNN

(7.15)
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As mentioned above, the course feature is cyclical, which could cause major
reconstruction errors at the discontinuity. Therefore, we split the course into
coordinate directions taking sine and cosine, (sin(courset), cos(courset)) mak-
ing the features continuous. Since we make no assumptions as to the underlying
distribution of the data, we normalize all inputs to be between [−1, 1]. The
course values are already normalized to this interval due to being processed
using the sine and cosine.

x′
t = 2

(xt −Xmin)

Xmax −Xmin
− 1 (7.16)

Xmin and Xmax denote the minimum and maximum feature values observed.
As previously, we sample each trajectory 10 times to find the minimum and
maximum values when using irregular samples.

7.3.4 A-Contrario Detection

In this work, we shall use A-Contrario detection suggested in Nguyen et al.
[2021] for the detection of abnormal behavior based on the reconstruction error.
A-Contrario detection divides the ROI into geographical cells Ci. In order to
determine whether an AIS message is abnormal, only the local reconstruction
errors within the same cell is considered, lCi

x′
t
. An AIS message is considered

abnormal if the reconstruction error is worse than the 1/p -quantile of the local
reconstruction errors distributed according to lCi

x′
t
∼ PCi .

Assuming that the events "xt is abnormal" are independent in a trajectory X1:L,
the probability that at least k out of n AIS messages are abnormal follows the
tail of a binomial distribution.

B(n, k, p) =

n∑
i=k

(
n
i

)
pi(1− p)n−i (7.17)

A segment of a trajectory is considered abnormal if the probability of the ob-
served binomial tail is lower than some threshold. If an abnormal segment exists
the entire parent trajectory is denoted as abnormal.

X1:L is abnormal ⇔ ∃(n, k), Ns ·B(n, k, p) < ϵ (7.18)

The scaling factor Ns accounts for the number of different subsegments that
can be created from the trajectory x1:T of length T . Its value can be calculated
using Ns = T (T+1)

2 . For more details on A-Contrario detection, we refer to
Nguyen et al. [2021]



7.4 Experiments 105

The quantity Ns ·B(n, k, p) denotes the outlier score of the trajectory x1:T that
we can use to gauge the degree of abnormality. We define the outlier factor of
the trajectory x1:T as the inverse of this quantity.

OF (X1:L) ≡
1

Ns ·B(n, k, p)
(7.19)

7.3.5 Ensembles

In the previous sections, we discussed different models, objective functions, and
temporal sampling strategies. We propose to create ensembles consisting of
these different models, learning objectives, and temporal resolutions in order to
provide a more detailed situational picture. We propose to average the outlier
factor (7.19) of the ensemble members to evaluate the outlier score of an AIS
trajectory X1:L.

7.4 Experiments

We test the models on AIS data from Danish waters around the island of Born-
holm. The ROI is a rectangle bounded by (54.5oN , 13oE) to (56oN , 16oE). The
training data were collected from June 1st to November 30th 2021 and contains
traffic from 8 different ship types ranging from commercial cargo and tanker
traffic to fishing vessels and private sailing and pleasure vessels. The speed was
truncated to 20m/s. Tracks shorter than 10 minutes were discarded, and tracks
exceeding 12 hours were divided into smaller tracks, each between 10 minutes
and 12 hours. The test data were collected on December 13th 2021. On this
day there was a fatal collision accident between two ships that caused several
abnormal trajectories. Data from this day have been manually labeled, finding
25 abnormalities out of 521 trajectories. In addition to the colliding vessels,
abnormal trajectories include commercial traffic, which had to deviate from the
planned course to avoid the accident, SAR and law enforcement vessels respond-
ing to the accident, and any vessel taking part in the following search of two
sailors thrown overboard. The test data was sampled at Models are evaluated
using the receiver operating characteristic (ROC) obtained by varying ϵ in eq.
(7.18) and measure the abnormality detection performance by the area under
the ROC curve (AUC).

All networks are trained using Adam optimizer with a learning rate of 0.0003
for 30 epochs. After 15 epochs the learning rate was further reduced by a factor
of 0.3. The models are trained using a batch size of 300 for the RAE model and
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32 for GeoTrackNet. The dimensionality of the stochastic latent space zt and
recurrent hidden state ht are set to 100 for discrete input features and 20 and
50 respectively for continuous input features.

7.4.1 Analysis of Objective Functions

We compare the abnormality detection performance of GeoTrackNet trained
using different generative distributions as described in section 7.3.3 and different
inputs. Figure 7.1 shows the ROC curves for the GeoTrackNet model trained
using a diagonal Gaussian generative distribution with point predictions of the
mean (left) or prediction of the distribution parameters (right). Additionally,
the models are trained using only position (green) or position and kinematic
input features (orange). Models trained using a discrete multivariate Bernoulli
distribution as the generative distribution are shown in blue and serve as a
baseline performance.

Figure 7.1 – ROC curves from varying the network inputs and generative mod-
els. Left: Using point predictions. Right: Using diagonal Gaussian
distribution.

The model trained for point predictions using both position and kinematic in-
puts obtains the highest AUC and has the fewest amounts of early false positive.
It achieves a True Positive Rate (TPR) of 60% and a False Positive Rate (FPR)
of 0%, i.e., it detects 60% abnormal trajectories before making one false alarm.
However, we see the last 5 abnormal trajectories are detected very late. In order
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to obtain a TPR of 90% the FPR increase to approx. 45%. The model trained
for prediction diagonal Gaussian parameters performs worse than the discrete
model and suffers heavily from false positives early in the detection. The FPR is
6% before the first correct detection is made. Interestingly, the model achieves
a TPR of 90% before the point prediction model already at a FPR of approx.
30%.

We also note the models trained using only the position as input features de-
crease in performance for point predictions, but have similar performance and
fewer early false positive when prediction distribution parameters. This may
indicate that most abnormal behavior is defined by kinematic behavior, and
removing these as explicit features may hurt detection performance. On the
contrary, providing estimates of the standard deviation may reveal abnormal
behaviour due to increased uncertainty in the reconstructed position. Addition-
ally, much normal traffic, such as fishing or sailing vessels, may have frequent
speed and course changes that are difficult to model and subsequently flagged
as false positives.

Figure 7.2 shows all three model reconstructions (red) of a false negative tra-
jectory (black) using the point prediction model. This is the trajectory of the
vessel responsible for the collision during the tow to the port of Ystad. The
behavior is fairly predictable; either at drift with little to no course changes or
steaming with a constant speed. This is typical behaviour for the false negatives
using the point prediction model. Both the multivariate Bernoulli model and the
point prediction model reconstruct the trajectory without major errors. How-
ever, the diagonal Gaussian model has a high uncertainty in the reconstruction,
particularly, of the course, which causes an alarm to be triggered.

Figure 7.3 shows all three model reconstructions (red) of an early false positive
(black) using the model predicting the distribution parameters. All three models
make good reconstructions of the positional features, and the point prediction
model reconstructs the speed and course with only minor errors that cause the
trajectory not to be flagged as abnormal. Although the diagonal Gaussian model
correctly reconstructs the mean, the standard deviation is very large during the
last section of the trajectory. The added uncertainty makes the reconstruction
loss high and causes an early detection. The reason for the increased uncertainty
may be due to the very high speed of the trajectory. Our best empirical guess of
the usual speed of the ships in this section of the shipping lanes is slower at about
6− 8m/s. The resolution of the multivariate Bernoulli model causes the speed
time-series to be fairly constant. This reduces the complexity of the problem
and removes the uncertainty of the generative model triggering no alarm.

The large amount of early false positive trajectories generally fall into two cat-
egories. Vessels at high speed with very high uncertainty as in Figure 7.3 or
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Figure 7.2 – Reconstruction of a false negative using the point prediction model.
The reconstruction is shown in red and true values in black. For the
diagonal Gaussian distribution the shaded area denote plus/minus
2 standard deviations.
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Figure 7.3 – Reconstruction of an early false positive using the model predicting
the distribution parameters. The reconstruction is shown in red
and true values in black. For the diagonal Gaussian distribution
the shaded area denote plus/minus 2 standard deviations.



110
Detecting Abnormal Maritime Trajectories using Ensembles and Transfer

Learning

fishing vessels with frequent speed and course changes. The fishing vessels were
also reconstructed with very high uncertainty in speed and course. The discrete
multivariate Bernoulli and point prediction models also have higher reconstruc-
tion errors for the fishing vessels, and they are the first trajectories of normal
behavior to be flagged as abnormal.

Most abnormal behaviour is defined by the kinematic behaviour and require
explicit inclusion of these feature. The behaviour flagged as abnormal is over-
all very similar between the three learning objectives considered. The model
trained for point predictions achieves the overall best abnormality detection
performance. However, introduction of the uncertainty prediction by using the
full generative diagonal Gaussian distribution may make the prediction more
sensitive to frequent changes. This may help detect some abnormal trajecto-
ries, but at the cost of more false positives and a general sensitivity to noise.
This sensitivity can be reduced by implementing a discretization of the inputs.
However, this makes the models tied to the ROI and makes application to new
regions or implementation on moving platforms impossible. Furthermore, the
discretization may make irregular sampling impractical due to difficulty select-
ing a proper time resolution and lack of well defined upper limit on the time
step.

7.4.2 Irregular Sampling

In this section, we implement the irregular sampling strategy outlined in sec-
tion 7.3.2. We train GeoTrackNet and RAE models for point predictions and
prediction of the distribution parameters. The models are then evaluated on
the testset with a regular sampling of 2 and 10 minutes. Figure 7.4 shows the
ROC curves for these models. The GeoTrackNet model is generally not affected
by random irregular samples based on the AUC and TPR/FPR values. The
model trained for the point predictions has the same AUC and same general
shape of the ROC curve. The AUC of the model trained to predict the distri-
bution parameters increases slightly. The large number of early false positives
is generally removed, but the following detections are also pushed later. As a
result, the TPR does not reach 90% until a FPR of 50%, which is higher than
the model trained for point predictions.

Training using irregular sampled trajectories may act as a regularizer. Com-
pared with the regularly sampled case, the diagonal Gaussian model reconstruct
the speed of fast going vessel without incurring a large uncertainty as we noted
previously. This has removed a large portion of false positives. However, it is
also the cause of the later detection of the abnormal commercial traffic that
mainly follow the shipping lanes.



7.4 Experiments 111

Figure 7.4 – ROC curves from varying the generative distribution and temporal
resolution using GeoTrackNet (left) and RAE (right).

Increasing the sampling period to 10 minutes during the evaluation slightly
increases the performance using the GeoTrackNet model for point prediction,
but heavily decreases the performance of the diagonal Gaussian model. The
increased sampling period accentuates the reconstruction error of minor devi-
ations from normal steaming behaviour. This behaviour was typical for false
negatives using point predictions when evaluated using a two min sampling pe-
riod and thus increasing the sampling period causes them to be detected earlier.
The false positives using 10 min sampling tend to be fishing ships with a varying
course; however, we see the increased sampling period may help reduce detection
of stationary vessels with highly varying course due to drift at low speeds. The
reduced sampling rate may act as a low-pass filter, smoothing course changes
and reducing the reconstruction error. This has the adverse effect for diagonal
Gaussian model. In this case, the smoothing of the course changes results in
Search-and-Rescue activities being detected later because the sampled course
generally being within the two standard deviation interval of the reconstructed
mean. On the contrary, we see high reconstruction loss for traffic following the
shipping lanes and making course changes. Due to the time passed since the
previous sample, the new course is not within the two standard deviation inter-
val, and if multiple such course changes occur within a short time, the trajectory
may be flagged as abnormal.
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Using the RAE model, the AUC slightly decreases for all models. The trajec-
tories from Search-and-Rescue activities are generally detected later, and the
first detections made are false positives that fall into one of two types; fishing
vessels that are very close to the shipping lanes or commercial traffic following
the shipping lanes. Additionally, the detection of abnormal trajectories of com-
mercial traffic that deviate from the shipping lanes is made earlier compared
with the VRNN model. The same results hold for the RAE model evaluated
using a 10 minute sampling period, but they are less pronounced than using a
2 min sampling period. This is also reflected in the AUC which decreases when
increasing the sampling period.

Training using random irregular samples does not worsen the abnormality detec-
tion capability of the GeoTrackNet or RAE model when using point predictions.
However, it negatively affects the reconstruction capabilities of the RAE models.
RAE models trained using irregular samples are unable to correctly reconstruct
the temporal aspect of trajectory. As a result, the reconstructions show the
general shape of the trajectory, but the origin and end locations are not correct.
Using the MSE loss (Eq. (7.15)) this does not affect the abnormality detection
results. However, using the full probability loss (Eq. (7.6)) the abnormality
detection results are worse due to systematic errors at the origin and end of
trajectories with large spatial extent. Training using random irregular samples
makes the models generalizable to different resample periods. These different
resample periods can be sensitive to different types of behavior due to longer
sampling periods acting as a smoothing low-pass filter. Therefore, depending
on the type of behavior of interest, different sampling periods may be useful,
and a model trained on random irregular samples can be used to evaluate all
sampling periods.

7.4.3 Ensembles

(a) Different sampling periods. (b) Different models. (c) Different objective functions.

Figure 7.5 – Ensembles of different sampling periods, models, or objective func-
tions.
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In the previous section, we highlighted how the GeoTrackNet and RAE model
flag different types of behaviour as abnormal and found that different resam-
pling periods may also change the type of behaviour flagged. In this section we
investigate the performance of ensembles of either different sampling periods,
models, and/or objective functions. The ROC curves of ensembles of models
with different sampling periods, model architectures, and learning objectives are
shown in Figure 7.5.

We see combining detections with different sampling periods using the VRNN
model for point predictions results in superior detection to each individual
model. The AUC is the same, however, the ensemble model reaches a TPR
of 90% before the individual models. As we discussed above, the behavior of
detections made using a resampling period of two and ten minutes, respectively,
differed, which is why we see a small boost in performance. Ensembles of the
RAE model for point predictions has a lower AUC than the individual model
sampled at a period of two minutes due to later detection of the first few abnor-
mal trajectories. Ensembles of diagonal Gaussian models are much worse than
individual models sampled at a period of two minutes. As discussed above, the
increased sampling period caused the diagonal Gaussian models to not detect
Search-and-Rescue activities, which is also reflected in the poor performance of
ensembles with these members.

Ensembles with different models trained point predictions with a resampling
period of two minutes are better than each individual model and are in fact
the best performing detector as measured by AUC. This is due to the difference
in behavior detected by the ensemble members, making the ensemble good at
detecting both Search-and-Rescue activities using GeoTrackNet and deviations
from the shipping lanes using the RAE model. With a sampling time of ten
minutes the ensemble performs a little worse than the GeoTrackNet model by
itself. This is mainly due to the later detection of abnormal trajectories due to
the RAE model, which is a worse predictor. As discussed above, the two models
with a sampling period of ten minutes flag similar behavior. Therefore, they
are not able to complement each other as in the case for sampling period of two
minutes Ensembles of the diagonal Gaussian models using a sampling period
of two minutes is a little worse than the individual GeoTrackNet model mainly
due to the very late detection of the last three abnormal trajectories. These
three trajectories are detected very late in the RAE model, which dominate the
ensemble.

The ensemble of GeoTrackNet models trained for different objectives with a
resampling period of 2 minutes has the same AUC as the best performing en-
semble member. The ensemble struggles with early false detections. However,
it already reaches a TPR of 90% at a FOR of 30% and detects all abnormal
trajectories with an FPR of 60% which is the best of any ensemble or individual
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model.

Figure 7.6 – ROC curve of an ensemble with members hand picked due to type
of behaviour flagged as abnormal.

Based on the discussion above, we identify two ensembles which noticeably im-
proved the performance over the three members individually (GeoTrackNet for
point predictions and a sampling of two minutes was a common member in
both ensembles). Common for these two ensembles were that we had identified
they flag different types of behaviour. Thus, the ensembles are capable of flag-
ging both kinds of behaviour and the ensemble may help suppress some false
positives. Figure 7.6 show the ROC curve of an ensembles with these three
members. This ensemble is the best performing detector of abnormal maritime
trajectories compared with all other ensembles and models considered.

7.4.4 Transfer Learning

In this section, we evaluate the abnormality detection performance of models
trained on a different ROI. We consider GeoTrackNet and RAE models trained
for point prediction and distribution parameters evaluated using a resampling
period of two minutes. The models will be trained on the waters around the
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Figure 7.7 – ROC curves of models trained using trajectories from Anholt and
fine-tuned using trajectories from Bornholm.
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Danish island of Anholt bounded by (56oN , 10.7oE) to (57.5oN , 13oE) using
the same collection period and preprocessing. This ROI was selected because
it is of similar size and expected behaviour as the Bornholm area, however, the
directions of main shipping lanes around Anholt are in a north/south direction
opposite the primary east/west direction around Bornholm.

Figure 7.7 shows the ROC curves for all models with varying amounts of fine-
tuning on the Bornholm area. The baseline (blue) is trained fully on data from
the Bornholm area. We note here that the A-Contraio detection is grid based
and computation of the local area distribution PCi requires evaluation of a
training set from the target domain. For this reason we also use the values of
the mean/std/min/max on the target domain to preprocess the data on the
target domain.

The models trained for point predictions have the same abnormality detection
performance as models trained on the target domain and require no fine-tuning
on the target domain. There are no significant changes to the outlier factor and
the reconstructions are only slightly affected by the transfer to another ROI.
Particular, the speed feature is reconstructed with a small error without any
fine-tuning, However, it does not affect the abnormality detection. Additionally,
the reconstructions are similar to models trained fully on the target domain
after just a single epoch of fine-tuning. We see two possible explanations for
this result. One explanation could be the two ROIs are not sufficiently different
to produce poor reconstructions when weights are transferred between ROIs.
Secondly, the suggested preprocessing to the interval [−1, 1] causes inputs from
different ROIs to be mapped to the same domain before the model. This in turn
make the models capable of reconstructing trajectories sufficiently regardless of
the target domain.

The abnormality detection performance of the GeoTrackNet model trained for
prediction of distribution parameters is worse and requires at least 10 epochs
of tine-tuning before the performance is comparable to models trained on the
target domain. There is a general increase of the uncertainty levels, particu-
larly on the reconstruction of the course. Even after 20 epochs of fine-tuning
the reconstruction of the course is nearly constant for all trajectories and 95%
confidence level cover all possible values of the course. The reason for the nearly
constant course reconstruction is unknown and is also seen for vessels with a
primarily north/south bound direction. As a consequence of the constant course
reconstruction, the relative weight of the course when determining abnormali-
ties is reduced since all reconstructions have comparable reconstruction errors.
Therefore, stationary trajectories at drift with frequent course changes are re-
moved as false positives and the SAR vessels has generally a lower outlier factor,
but are still flagged as abnormal. Furthermore, trajectories steaming at a con-
stant course is now flagged as abnormal due to the relative higher weight on the
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position error, particularly outside the shipping lanes.

The RAE model for prediction of distribution parameters perform better than
the target domain model after a few epochs of fine-tuning and then decrease
in performance with additional fine-tuning. The model may not be applied
without any fine-tuning as the reconstruction quickly diverge and result in log-
probabilities of negative infinity. The increase in detection performance is due
to a poor reconstruction of the position of most SAR vessels. Since most SAR
vessels originate in port the reconstruction of the position stay stationary over
the port resulting in large positional reconstruction errors. With more fine-
tuning the reconstruction of the position becomes better and detection of the
SAR vessels are conducted later similar to the model trained on the target
domain.

We find it overall interesting that the models for point predictions generally
does not require any fine-tuning. Whether, this is a result of the suggested
preprocessing or the similarity of the ROIs remains unclear. To further test the
reason, the reason requires data from an area significantly different from Danish
waters. Using the models for prediction of distribution parameters requires a
large degree of fine-tuning and may not save much training time in practice.
During and after the fine-tuning process, abnormality detection results may be
significantly different. However, whether this is for the better or worse depends
on the behaviour of interest and source/target domains.

7.5 Conclusion

In this work, we suggest the use of ensembles to improve the detection of ab-
normal maritime traffic in the wake of a fatal collision accident. We find that
different model architectures and sampling periods may flag different types of
behavior as abnormal. Additionally, ensembles consisting of members that flag
different behavior can improve the detection rate and reduce the number of false
positives. In future work, we wish to design and add ensembles members that
alert to different kinds of behaviour. For instance, an ensemble member account-
ing for ship-to-ship interactions might be able to detect possible collision before
they happen or serious maritime threats such as piracy or smuggling. However,
detection of most other types of abnormal behaviour requires development of
data sets labeled for each type of behaviour.

We investigate the applicability of transfer learning to reduce training times of
models on new maritime regions and find that models trained for point pre-
diction require no fine-tuning to achieve the same abnormality detection per-
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formance. However, it still remains unclear whether this is a result of the sug-
gested pre-processing or the relatively close similarity of the ROIs. Using models
trained for prediction of distribution parameters the type of behaviour flagged
as abnormal may change significantly, and thus may not be very applicable for
transfer learning.
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Abstract: The increase in worldwide maritime traffic makes maritime safety
and security ever increasing key issues. For surveillance operators, the inter-
pretability of the predictions of any system are of absolute importance in order
to adequately gauge security risks. For these reasons, we argue that recently
proposed anomaly detection models are impractical for operational use. We
show that the generating models of state-of-the-art sequential AutoEncoders
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disregard the stochastic latent variables. We propose to induce physical inter-
pretable information in the stochastic latent space through the use of Kullback-
Leibler (KL) annealing as well as sparsity and temporal invariance enforcing
losses. We test our proposed losses on maritime trajectories extracted from
AIS data from Danish waters around the island of Bornholm. We find that
the proposed losses increase the interpretability of latent vectors in terms of
geographical position. However, due to overlap in the latent space, we doubt
the proposed self-supervised methods can learn a sufficiently disentangled latent
space to generate realistic trajectories of modified latent variables.

8.1 Introduction

According to the International Maritime Organization, international shipping is
currently carrying 80% of the world’s trade. It is the most efficient and cost-
effective form of long distance transportation 1. These factors make maritime
safety and security key issues. For this purpose, real-time delivery of maritime
situation maps is a necessity for activities like search-and-rescue, smuggling
detection, piracy detection etc. Current operational systems rely strongly on
human experts, and surveillance operators monitor and predict emerging critical
situations within a large sea area. Meanwhile, data are collected from a wide
range of sensors, like radar, sonar, and Automatic Identification System (AIS)
as well as intelligence reports and weather data. As the number of data sources
increases, it becomes increasingly difficult for operators to process the amount
of information due to factors like cognitive overload, time pressure, fatigue,
and uncertainty due to the complex and heterogeneous nature of the data. In
order to provide support for the operators, methods and systems capable of
performing anomaly detection have been an active research area; Pallotta et al.
[2013b], Nguyen et al. [2021], Ding et al. [2020], Protopapadakis et al. [2017].

A key requirement of any surveillance system is interpretability in order for
operators to analyse the results, how they are derived, and decide on which
actions to take next. This is further underlined by the inclusion of many external
data sources, which operators might need to evaluate. Furthermore, the role of
the external factors may be better understood using a stochastic latent space.
In the ideal case, the random latent space would help explain the role these
external factors play when generating maritime trajectories whose kinematics
are described by a recurrence model.

In this paper we propose loss adjustments to GeoTrackNet, a state-of-the-art,
anomaly detection algorithm based on sequential Variational AutoEncoders,

1About IMO

http://www.imo.org/en/About/Pages/Default.aspx


8.2 Related Work 121

and compare the abilities to encode physical interpretable information in the
stochastic latent space. Our contributions include:

• Evidence that the GeoTrackNet model does not fully utilize the stochastic
latent layer.

• A comparison of loss functions in terms of latent space interpretability,
and a demonstration of the limitation of the current approaches.

The paper is organised as follows: In section 8.2 we provide an overview of
related work. Section 8.3 argues for the underused stochastic latent space in the
GeoTrackNet model, in 8.4 we describe our suggested modifications to the loss
function and our experimental results and conclude in Section 8.5.

8.2 Related Work

Maritime Anomaly Detection

Previous work within the domain of maritime trajectory analysis can be divided
into knowledge-based approaches and data-driven approaches. Knowledge based
approaches, Snidaro et al. [2015], Thomopoulos et al. [2019], form the basis of
most operational anomaly detection systems currently in use due to a large de-
gree of interpretability, human interaction, and capabilities for online detection.
However, these models suffer from scaling issues when adding new data sources,
and currently, no studies have focused on redefining the rule basis due to sea-
sonality, geographical or data source related changes. Due to lack of labelled
anomalies in public data sets Data-driven approaches have mainly focused on
unsupervised methods. However, supervised methods such as: Support Vector
Machines Sfyridis et al. [2013], self-organizing maps Venskus et al. [2019], Gaus-
sian Mixture Models and Kernel Density Estimation Anneken et al. [2015] have
been suggested using a combination of authors’ own labelling and simulated
outliers. Unsupervised methods first attempt to construct a normalcy model
based on historical positional and kinematics data obtained from AIS messages.
Outliers are then determined based on this model. The most popular approach
for constructing a normalcy model has been using density based clustering; Pal-
lotta et al. [2013b] Radon et al. [2015]. More recently, several deep learning
based methods have been suggested. Zhao and Shi [2019b] suggest training a
Long-Short-Term Memory (LSTM) network on trajectories clustered by DB-
SCAN Ester et al. [1996], Gao et al. [2018] use a bidirectional LSTM to predict
future positions, and determine anomalies based on the prediction error, Pro-
topapadakis et al. [2017] use stacked AutoEncoders in combination with density
based clustering. Both Ding et al. [2020] and Nguyen et al. [2021] train a VRNN
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Chung et al. [2015] in order to learn a probabilistic reconstruction of the tra-
jectory. GeoTrackNet Nguyen et al. [2021] also suggested a preprocessing step
converting the continuous kinematic data from AIS into four one-hot-encoded
vectors and using the concatenated vector as inputs to the network.

Sequential Variational AutoEncoder

The VRNN can be considered a RNN which at each time step consist of a Vari-
ational AutoEncoder Kingma and Welling [2013] conditioned on the recurrence
model. This means the prior distribution on the latent stochastic variable at
time t, zt, is given by a Gaussian with parameters µ0,t and σ2

0,t, conditioned on
the recurrent hidden states, ht−1.

zt ∼ N(µ0,t, diag(σ2
0,t)), (8.1)

where [µ0,t,σ
2
0,t] = ϕprior(ht−1)

Similarly the generating distribution and the approximate posterior q(zt|xt)
will also be conditioned on ht−1. Using the four-hot-encoding suggested in
GeoTrackNet, the generating distribution is given by a multivariate Bernoulli
distribution with parameter px,t

xt|zt ∼ B(px,t), (8.2)

where B(px,t) = ϕdec(ϕz(zt),ht−1)

and the approximate posterior is given by

zt|xt ∼ N(µz,t, diag(σ2
z,t)), (8.3)

where [µz,t,σ
2
z,t] = ϕenc(ϕx(xt),ht−1)

At each time step the recurrence ht is updated according to

ht = fθ(ϕ
x(xt), ϕ

z(zt),ht−1) (8.4)

Learning is done by maximizing the timestep-wise Evidence Lower Bound (ELBO)

L(x1:T) =

T∑
t=1

Eq(zt|xt,ht−1)p(xt|zt,ht−1)

− βKL [q(zt|xt,ht−1)|p(zt,ht−1)] (8.5)

It is a well documented issue that sequential VAEs may suffer from inactive
latent variables Goyal et al. [2017], Bowman et al. [2015], Semeniuta et al.
[2017]. Goyal et al. [2017] argues this because of strong local correlations at
low level features. This causes the training objective to be insensitive to higher
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level abstractions in the observations. Several solutions to this problem have
been proposed; like reducing the capacity of the autoregressive decoder Bow-
man et al. [2015], Semeniuta et al. [2017], self-supervised learning objectives
Zhu et al. [2020], Brito et al. [2020], auxiliary tasks Goyal et al. [2017], Figueroa
and Rivera [2017], and sparsity enforcing penalty terms or priors Mathieu et al.
[2018]. Furthermore, work in deep hierarchical Variational AutoEncoders Søn-
derby et al. [2016] shows annealing of the KL loss during the initial phase of
training is essential for training deep latent encodings.

8.3 Encoding in GeoTrackNet

In recent work by Nguyen et al. [2020], the GeoTrackNet Model is extended with
a post-processing step taking into account weather and other external sources.
This post-processing step serves the purpose of potentially filtering out statisti-
cally unusual, but due to external conditions, not suspicious trajectories. Such a
processing step would require knowledge of why a trajectory is considered statis-
tically unusual. For this purpose, it may be beneficial to traverse a disentangled
random latent space and condition generation on various physical conditions in
order to test different hypotheses. In order to gauge the latent encoding in the
GeoTrackNet model, we conduct a few different experiments.

Throughout training, the approximate posterior and prior distributions are very
similar and show very little variation between observations. This causes the re-
constructions generated using the approximate posterior and prior distributions
to be very similar. Thus, the reconstructions will primarily be driven by the
kinematic encoding in the recurrence and show very little variation due to the
external random effects that might effect the trajectory of maritime traffic. This
means that GeoTrackNet defaults into a LSTM-network trained to minimize the
1-step prediction error. Training such a network we found only a very small dif-
ference in the total reconstruction errors again confirming the vast majority of
the information in GeoTrackNet passes through the recurrence.

In figure 8.1, we plot the latent encoding of the test set along the first two
principal components found by Principal Component Analysis. The two first
principal components describe 99.3% of the variance between them. We see
the vast majority of latent vectors follow a linear relation between the first two
principal components. The remaining 495 points show a larger variation along
the first component especially. Plotting these points in the physical input space,
figure 8.2. We note that the outlying points corresponds to a small region in
the western part of the region of interest (ROI). The speed of these are among
the highest observed and their course show large variation. These observations
further confirm that the random latent space is mostly unused in the generative
model. However, we do see that information may be encoded in extreme cases.
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Figure 8.1 – Decomposition of the latent space in GeoTrackNet using Principal
Component Analysis. We see the vast majority of encodings follow
a linear relation (blue). The remaining points (red) corresponds
to updates in a specific geographical area with high speeds and a
large variation in course, see figure 8.2

This leads us to hypothesize that encoding relevant physical information in the
latent space is possible, and that this information may be useful in evaluating
detected abnormalities.

8.4 Experiments and Results

Implementation details

We tested the models on AIS data from Danish waters. We limited the study to
AIS data from the area around the island of Bornholm. The ROI is a rectangle
bounded by (54.5oN , 13oE) to (56oN , 16oE). The maritime traffic in this area
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Figure 8.2 – Physical input space of AIS updates in the test set. Points showing
a linear relation among the two first principal components of the
stochastic latent space (blue) are spread through out the input
space. Points showing a non-linear relation (red) are focused in
two well defined geographical locations, and shows very high speeds
(bottom left) and a large variation in course (bottom right).

resembles that used in Nguyen et al. [2021] and contains primary shipping lanes
including forks and mergers as well as traffic to and from several ports. The
data were collected from March 1st to June 31st 2021 and contains traffic from
8 different ship types. The speed was truncated to 15.5m/s. If the time interval
between two successive AIS messages exceeds 15 min, the track was split into
2 contiguous tracks. Tracks shorter than 10 minutes were discarded and tracks
exceeding 12 hours were split into smaller tracks each between 10 minutes and
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12 hours. All tracks are resampled every 120 seconds using linear interpolation.
We then randomly set aside 20% of the generated tracks as a test set. For the
four-hot-encoding we use a resolution of 0.01o for the latitude and longitude,
0.5m/s for the speed, and 5o for the course. This gives an input dimension of
553 for each timestep. For the functions ϕx, ϕz, ϕenc, ϕprior, ϕdec we use fully
connected neural networks with one hidden layer of size 100. The recurrence
fθ is a LSTM with hidden size 100. The dimension of the posterior, q(z|x) and
prior, p(z) distributions is also set to 100. All inputs are normalized using the
mean and the mean vector is used as a bias for the generative distribution. We
use Adam optimizer with a learning rate of 0.001 which is decreased by 30%
after 2, 5, and 10 epochs.

Improving latent information

We attempt to improve information in the stochastic latent space by linearly
annealing the weight β of the KL loss in (8.5) from 0 to 1 during the first 10
epochs of training. This provides the posterior with additional flexibility in the
early stages of training such that it is not overpowered by the recurrent part of
the VRNN.

In order to improve disentanglement and ensure we encode physical interpretable
information, we also implement an ElasticNet (EN) loss on the weights of the
encoder, wenc, and prior networks wprior.

LEN = α(|wenc|2 + |wprior|2) + λ(|wenc|1 + |wprior|1) (8.6)

In order to make sure the stochastic latent space does not encode any dynamic
recurrent information we suggest a self-supervised static consistency (SCC) loss
inspired by Zhu et al. [2020]. For the sequence of latent vectors corresponding to
input i, zi1:T , we compute the mean of the pairwise distance of all latent vectors

lpos =

∑T−1
k=1

∑T
l=k+1 D(zik, z

i
l )

T (T − 1)/2
(8.7)

This serves to drive the latent encodings at different time steps towards each
other such that they may describe static information related to the entire tra-
jectory. Direct minimization of (8.7) may result in trivial solutions that does
not utilize the latent space as seen in section 8.3. Therefore, we also compute
the pairwise distance of all latent vectors of other trajectories. We implement a
batch-all strategy computing the average of trajectories in the current training
batch i within the margin, M .

lneg =

∑m
j=1,j ̸=i

∑Ti
k=1

∑Tj
l=1 D(zi

k,z
j
l )

TiTj

m
(8.8)
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We use the euclidean norm as the distance measure D(·, ·). We wish to minimize
the triplet loss using the margin M = 1 and weighting η.

LSCC = η max (lpos − lneg +M, 0) (8.9)

Figure 8.3 – PCA Decomposition of the latent encoding in topleft: native Geo-
TrackNet, topright: Using KL-annealing, bottomleft: Using Elstic-
Net loss (8.6), bottomright: Using SCC-loss (8.9). Colors indicate
the longitude of the corresponding input.

In figure 8.3 we plot the latent variables of the testset along the first two principal
components. In all experiments, the first two principal components explain
more than 98% of the variance. Thus, it does not seem the proposed extensions
induce a higher dimensional encoding into the latent space. However, we note
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a much larger variation along the first two principal components. The latent
space is defined by a dense center with a couple of less dense outlying regions.
The colouring indicates different intervals in the longitude of the corresponding
input. For KL-annealing, we note the longitude intervals are not ordered the
latent space. Thus, as a trajectory traverse the ROI in an east-west fashion, the
trajectory of latent vectors will likewise traverse the entire latent space. This
is not an unexpected behaviour as the shipping lanes in our ROI mostly travel
east-west, and thus, more variance is associated with longitude compared to
latitude. Introducing the EN- and SCC-losses cause a larger overlap between
longitude intervals in the latent space. This indicates similar values in the latent
space are now associated with a wider range of longitude inputs. Thus, we may
hypothesize that each area in the latent space is associated with a segment of
shipping lanes covering a larger interval of longitudes. The SCC-loss cause a
more smooth transition between areas of latent space since latent vectors on the
border are being driven towards similar values.

To verify our association hypothesis between segments of shipping lanes and
areas in the latent space, we train a KMeans clustering in the unreduced la-
tent space. In figure 8.4 we plot the geographical position in the input space
coloured by the cluster affinity in the latent space. We see that clusters in the
latent space tend to be associated with segments of shipping lanes, as we hypoth-
esised. However, we note a significant overlap in geographical position between
clusters associated with segments of shipping lanes. Occasionally, the clusters
are spread to very wide geographical areas outside of the busiest shipping lanes.
We further notice that segments overlapping in geographical position also often
overlap in their speed associations. This is contradictory to our expectancy that
overlapping geographical clusters showcase different speed profiles. We suspect
the negative case of the SCC-loss cause separation in the latent vectors, which
further increase the overlap between sections of the latent space.

We note the scale of the principal components significantly increase when im-
plementing the SCC-loss (8.9). This might indicate that the latent vectors are
being separated rather than driven towards temporal invariant encodings. Ide-
ally, we would like trajectories sailing in the same shipping lanes with similar
speed to have approximately equal encodings. However, since we treat such a
pair of trajectories as negative cases we might inadvertently end up separating
similar trajectories in the latent space.

The large overlap in latent space may indicate that the network has not achieved
the degree of disentanglement we desired. In a fully disentangled latent space,
we would expect to see a connection between updates in a trajectory. We would
expect to see clusters of trajectories or segments thereof showing similar be-
haviour. However, due to the large overlap in the latent space, we see little
separation in the latent space between different types of trajectories or ship
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Figure 8.4 – Physical interpretation in input space of dense KMeans clusters
of latent vectors using the SCC-loss (8.9). We note a significant
overlap between clusters associated with shipping lane segments.
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types. This indicates that the latent space may not be sufficient for anomaly
detection. Sequences of latent vectors jump between different areas of the la-
tent space as the trajectory moves through the ROI making it difficult to detect
outliers based on latent space transitions. Thus, to do anomaly detection it
is not enough to look at each update in isolation but we have to look at the
trajectory as a whole. In GeoTrackNet this larger perspective is incorporated in
the proposed A-Contrario Detector. We would argue that it would be possible
to achieve a more interpretable prediction, if this perspective instead is incorpo-
rated into the normalcy model as a latent space incorporating knowledge from
the entire trajectory.

Representation swapping

We investigate the possibility of swapping the latent vectors in the generating
model between two trajectories in maritime shipping lanes. Suppose we have
trajectories A and B, which both travel through the ROI in a westbound di-
rection. Trajectory A sails through the westbound sea lane and trajectory B
suddenly leaves the sea lane sailing due south before slowly returning to the
appropriate shipping lane. The first column in figure 8.5 denotes generation
using recurrent hidden states hA and the latent vectors zA. Going to the right,
the generation model is conditioned on (hB , zB), (hA, zB), and (hB , zA). As
expected from the inactive latent space, the swapping of latent vectors in the
native GeoTrackNet does not affect the generated trajectory. For the KL an-
nealing, EN-, and SCC-losses the generation does depend on the latent vectors,
which causes the generation to break. The model is not capable to produce
the wanted behaviour of transferring trajectories between input areas. We sus-
pect this is because latent vectors zt and recurrent hidden states ht−1 share
dynamic information. This causes the mixing of potential contradicting local
behavioral. We suspect representation swapping would be improved if the latent
space encoded static knowledge from the entire trajectory.

8.5 Conclusion

In this work, we have studied the stochastic latent encodings of the VRNN
based GeoTrackNet model for maritime anomaly detection. We find the genera-
tive model ignores the stochastic latent space making the model impractical for
trajectory generation potentially conditioned on weather parameters or other
external factors. We show the latent space can be activated through the use of
KL annealing and that the latent space may encode noisy physical interpretable
information using penalties enforcing sparsity and temporal invariance. How-
ever, these losses do not achieve a fully disentangled latent space. We suspect
this is because the network is trained on each update in isolation and not con-
ditioned on information related to complete trajectories. In future work, we
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Figure 8.5 – Example of swapping of latent vectors in the generation model. For
trajectories A and B the generating model is conditioned on (going
left to right) (hA, zA), (hB , zB), (hA, zB), and (hB , zA).

wish to explore architectures which encoded static knowledge from the entire
trajectory in the latent space.
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Abstract: The analysis of maritime traffic patterns for safety and security
purposes is increasing in value. Expected maritime traffic patterns depend on
several factors, such as position, kinematic behaviour, ship type, etc., which
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complicates the analysis. It is beneficial for traffic pattern extraction methods to
be able to disentangle these factors, whereof positional and kinematic behaviour
are more complex and need to be derived from data. We propose a two-step
clustering method to extract clusters that describe local kinematic behaviour.
We design two similarity measures meant to capture positional and kinematic
similarity, respectively. We separate trajectories into positional clusters and split
them within each such cluster according to kinematic behaviour. We find that
the proposed method results in clusters that have different kinematic behaviour
while trajectories with the same behaviour but different local positions end up
in the same cluster. We also extend the methodology for automatic anomaly
detection and find that the performance is comparable to detections based on
reconstruction using state-of-the-art deep neural networks.

9.1 Introduction

According to the International Maritime Organization, international shipping
is currently responsible for 80% of the world’s trade and is the most efficient
and cost-effective form of long-distance transportation [IMO, 2021]. This makes
maritime safety and security key issues.

During the last decade, research in maritime traffic patterns has been spurred
along by easy access to large quantities of historical data from the Automatic
Identification System (AIS). AIS is compulsory for all vessels exceeding a certain
tonnage [Int]. Every day, AIS provides hundreds of millions of messages on a
global scale [Mar] with static information such as ships’ identifiers, size, as well
as dynamic information of the Global Positioning System (GPS) coordinates,
speed, course, etc. AIS forms the basis for extracting maritime trajectories used
to model navigational characteristics and rules by analysing maritime traffic
patterns. The most prevalent method for analysis of traffic pattern remains
clustering either on the individual AIS updates [Pallotta et al., 2013a, Liu et al.,
2015b] or using trajectory similarity measures [Zhao and Shi, 2019a, Yang et al.,
2022b].

Real-life maritime laws and regulations are complex. Ship types such as cargo
and tankers mainly follow well-defined shipping lanes with near-constant speeds,
while other ship types, such as fishing vessels and sailing ships, have less con-
strained and more complex behaviour. The mixture of densely populated ship-
ping lanes and more sparse regions with increased behavioural freedom com-
plicates clustering. Most studies limit the data to focus on a single aspect
of maritime traffic, for instance the behaviour of commercial merchant traffic
[Wang et al., 2021] or port entry/exit ways [Liu et al., 2015a, Zhao and Shi,
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2019a, Yang et al., 2022b]. However, in order for the discovered traffic patterns
to be useful in a practical scenario, it is important that the underlying data set
must be complete in terms of possible traffic. For this purpose, the training data
has to contain trajectories from a Region of Interest (ROI) of a suitable size and
all possible ship types. In ROIs of limited size, restrictions of ship types may
be warranted, however, previous work on large ROI with complex behavioural
patterns of various different ship types remains limited. In this work, we cluster
traffic patterns in a large ROI with a number of different ship types with various
priorities, tasks, and complex behavioural patterns.

Due to the simplifications discussed above, most previous research focuses heav-
ily on clustering the position for the identification of shipping lanes [Pallotta
et al., 2013a, Zhao and Shi, 2019a, Murray and Perera, 2021]. However, most
ship types are generally not constrained to major shipping lanes. The exact
route of these trajectories is less important than the local behaviour, i.e. speed
and course changes, due to the additional freedom of movement. Thus, in order
to better model the traffic outside the shipping lanes, we propose to look at the
kinematic behaviour of the vessels using the speed and course. Naturally, the
expected behaviour differs between locations and ship types. For instance, in
specific locations, pilot boats steam between harbours and commercial traffic in
the shipping lanes, but in other locations, this type of behaviour may be highly
unexpected.

The discovery of maritime traffic patterns allows for the design of surveillance
models for automatic maritime abnormality detection models, which may en-
hance maritime traffic safety. Anomaly detection of maritime behaviour is a
difficult problem since there is no clear definition of what defines anomalous
behaviour. Whether or not an event is abnormal is a combination of several
factors: the location, the speed and course during the event, the ship type, the
time of day/week/year, etc. Above, we mentioned that the behaviour of pilot
boats might be considered abnormal outside specific locations or if being con-
ducted by other ship types. Likewise, it may be expected that diving vessels
perform frequent starts or stop in order to support divers in the water, but
if this behaviour is seen from research vessels or happens near major shipping
lanes, it may be considered abnormal unless permission has been obtained.

Recently, deep neural network models have been suggested for abnormality de-
tection on large data sets of AIS trajectories covering multiple different ship
types [Nguyen et al., 2021, Murray and Perera, 2021]. These models classify
anomalies, as the trajectories for which they fail to predict the future or re-
construct. The main drawback here is a lack of any form of explainability as
to why the networks fail to predict/reconstruct the correct trajectory. How-
ever, to be useful and accepted in an operational setting, abnormality detection
models require a large degree of explainability to accommodate any scepticism
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surveillance operators may have.

Our hypothesis is that separating position and kinematic information is key to
describing different behavioural patterns in different local areas of a large ROI
and detecting abnormalities. We propose a two-step clustering method that
disentangles positional and kinematic behaviour. In the first step, trajectories
are grouped based on their positional data. In the second step, the trajectories
in each positional cluster are further clustered based on their speed and course.
This final clustering is used to assess the typical behavioural patterns in the
local area of a large ROI and to detect abnormalities. The latter can then be
brought to the attention of an operator who can further assess the situation
based on the expected behaviour of the given ship type in the area in question
learned by the clustering.

We summarize our contributions as:

• We design positional and kinematic similarity measures that focus on dif-
ferent dimensions of maritime trajectories.

• We provide evidence that a multi-step clustering approach can help disen-
tangle positional and kinematic information resulting in a better descrip-
tion of behavioural patterns in a large ROI.

• We provide an automated method for detecting abnormal maritime tra-
jectories based on the designed similarity measures.

• We provide public access to data sets of preprocessed maritime trajecto-
ries in regions of Danish waters including one day with annotations for
abnormal behaviour related to a search and rescue event.

The paper is organised as follows: In Section 9.2 we provide an overview of re-
lated work within trajectory clustering. In Section 9.3 we present our proposed
two-step clustering. Section 9.4 shows the ability of our proposed method to
disentangle maritime traffic patterns as well as detect real-life abnormal tra-
jectories from a ship collision. Finally, we present our conclusion in Section
9.5.

9.2 Related Work

Clustering of maritime trajectories has been widely studied to explain typical
traffic patterns and find abnormal trajectories. The type of behaviour discovered
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by clustering spatio-temporal trajectories depends heavily on the chosen simi-
larity measure. Laxhammar and Falkman [2015] suggest using the maximum
Euclidean distance between each pair of coinciding points along two trajectories
of the same length. The requirement of equal trajectory length can be relaxed
by using either the Hausdorff distance, [Zhen et al., 2017, Yang et al., 2022b,
Wang et al., 2021] or Dynamic Time Warping (DTW), [Klaas et al., Zhao and
Shi, 2019a] to measure trajectory similarity. The Hausdorff distance is invari-
ant to time flipping, meaning trajectories following the same route in opposite
directions would not be distinguishable from one another. In addition, from the
clusters reported in Wang et al. [2021] we notice that the Hausdorff distance may
assign a large similarity to significantly different trajectories. If trajectories are
spread over a large area, the Hausdorff distance and DTW may overestimate the
distance between trajectories with similar behaviour. This makes clustering us-
ing these similarity measures prone to noise and may not prove useful over larger
geographical areas containing many different ship types. Additionally, both of
these methods have quadratic time complexity, and several works, therefore,
suggest a compression using the Douglas-Peucker (DP) algorithm [Douglas and
Peucker, 2011]. Klaas et al. propose a two-stage DP algorithm: first reducing
the trajectory based on the speed time series and secondly based on the posi-
tion. This two-stage approach is found to better retain periods of acceleration
such as stops.

Several different clustering algorithms have been applied for clustering of tra-
jectories. Methods such as K-means, [Klaas et al.] and K-medoids, [Zhen et al.,
2017] have been suggested in collaboration with similarity measures. However,
density-based clustering techniques have long been the predominant approach to
data mining within maritime trajectory analysis. Pallotta et al. [2013b] proposed
the widely used TREAD method to cluster trajectories into traffic routes, which
can then be used for anomaly detection and trajectory prediction. TREAD is
a point-based method that extracts coordinates of new entries, exits and stop-
ping within the ROI. These points are clustered using DBSCAN [Ester et al.,
1996] to form waypoints in which ships enter, exit or stop within the ROI. A
route between waypoints is then formed whenever a certain number of transi-
tions between them have been observed. Several works, [Yang et al., 2022b,
Wang et al., 2021, Zhao and Shi, 2019a] combine the idea of a similarity mea-
sure and density-based clustering. First, trajectories are simplified using the DP
algorithm. The similarities are then computed using the Hausdorff distance or
DTW before being clustered by DBSCAN. Wang et al. [2021] considers a hier-
archical search over the hyperparameters of DBSCAN, which allows for groups
with different densities, and helps to find clusters in sparsely populated geo-
graphical regions. Murray and Perera [2021] cluster the latent encodings from a
recurrent variational autoencoder (RVAE) trained for trajectory reconstruction
using hierarchical DBSCAN and find clusters corresponding to the major ship-
ping lanes. The clusters are then used to train neural networks for predicting
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the future position.

The above-mentioned approaches have only considered the positional input,
yielding clusters that mostly correspond to the primary shipping lanes. Zhen
et al. [2017] introduce the difference of the average course in their similarity mea-
sure and Liu et al. [2015b] extends the DBSCAN clustering models to consider
not only the geographical distance of the coordinates, but also the difference in
speed and course. This allows them to distinguish between shipping lanes in
opposite directions and find speed differences within the main shipping lanes.
However, the work is limited to small geographical areas and a limited number
of ship types.

Knowledge about maritime traffic patterns is useful for detecting abnormal ac-
tivity, and several clustering methods have been extended with a detection step.
Often this step includes knowledge about the kinematic behaviour. Pallotta
and Jousselme [2015] proposes a two-stage anomaly detection scheme using the
routes extracted by TREAD. First, a trajectory is associated with a route using
only the positional part. Afterwards, kinematic outliers are found by comparing
the speed and course to the average behaviour of the route. Liu et al. [2015b]
propose to split clusters into smaller geographical regions and compute average
kinematic values for each split. These values are then used to detect abnormali-
ties [Liu et al., 2015a]. Zhao and Shi [2019b] use the initial clustering from Zhao
and Shi [2019a] to train deep neural networks for trajectory prediction. Abnor-
malities are then detected based on the prediction error. Recently, Nguyen et al.
[2021] has suggested a variational recurrent neural network (VRNN) for abnor-
mality detection based on trajectory reconstructions. Nguyen et al. [2021] also
suggests an A-Contrario detection methodology which is supposed to account
for regional differences in the reconstruction accuracy. While results reported
using VRNN look promising, our feedback from surveillance operators mentions
the lack of explainability as a key limitation for operational use.

In this work, we introduce an alternative positional distance measure to effi-
ciently capture trajectory similarities across a large, complex data set of mar-
itime trajectories representative of real-life traffic. In addition, the proposed
two-step clustering method is not limited to the identification of shipping lanes
but focuses also on the diverse behavioural differences within the discovered
positional clusters.
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9.3 Proposed Method

To address the lack of focus on kinematic behaviour in previous clustering meth-
ods, we propose to separate the clustering of trajectories’ positional evolution
and kinematic time series using different similarity measures. Before presenting
our algorithm in detail, we discuss candidate similarity measures for spatio-
temporal trajectories.

Trajectories extracted from AIS data are multi-dimensional, including position
(latitude, longitude) and kinematics (speed, course). To address the lack of focus
on kinematic behaviour in previous clustering methods, we propose to cluster
the trajectories’ positions and their kinematics sequentially. Both dimensions
carry different structures, which requires the clustering algorithm to employ
different similarity measures. We will review first existing similarity measures
for spatio-temporal data before introducing our two-step clustering algorithm,
followed by a discussion on its application for anomaly detection.

9.3.1 Existing Similarity Measures

In this section, we assume that trajectories are regularly sampled without miss-
ing data and that data points lie in a euclidean space where d is a generic
distance. Throughout the section, we consider two trajectories A and B of time
duration TA and TB , both integers, at time points t and τ .

9.3.1.1 Hausdorff

The type of behaviour discovered by clustering spatio-temporal trajectories de-
pends heavily on the chosen similarity measure. As discussed above, the Haus-
dorff distance and DTW are the most used trajectory similarity measures. The
Hausdorff distance [Shamos and Preparata, 1985] between two trajectories cor-
responds to the maximum smallest distance realized by any pair of points each
in one of the trajectories:

Hausdorff(A,B; d)= max
t∈[0,TA−1]

min
τ∈[0,TB−1]

d
(
A(t), B(τ)

)
. (9.1)

The computations require a comparison of all possible pairs of points resulting
in quadratic time complexity. Furthermore, the Hausdorff distance disregards
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Figure 9.1 – Left: Two trajectories with the same origin and terminal point
and similar behaviour through out the journey may obtain a large
distance calculated by DTW. Right: The course sequences of the
two trajectories may be warped perfectly onto each other and have
zero distance between them calculated by DTW.

the time component. This means ships along parallel shipping lanes sailing in
opposite directions are not distinguishable. Such a situation is studied in Wang
et al. [2021].

9.3.1.2 Dynamic Time Warping

Dynamic Time Warping minimizes the pair-wise distance by re-indexing (align-
ment of) the data points in the trajectories according to certain rules. It can
be defined as follows:

DTW(A,B; d) = min
π∈Π(TA,TB)

 ∑
(i,j)∈π

d
(
A(ti), B(tj)

) (9.2)

where Π(TA, TB) is the set of all possible alignments that are sequences pairs
of indices (i, j) ∈ [0, TA − 1] × [0, TB − 1] satisfying three constraints: (1) the
beginning and end of the time series must be matched together, respectively; (2)
the sequence must be monotonically increasing in i and j; (3) all indices i and
j must appear at least once. These ensure the sequences start and end together
and that each point on either sequence is mapped onto at least one point of the
other sequence without these mappings crossing in time.
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Since DTW processes pairs of indices, it also has quadratic time complexity. The
DTW alignment may overestimate the distance of trajectories with similar be-
haviour if this behaviour is spread over a large area. For example, consider two
trajectories with the same starting point and sailing along the same direction as
illustrated in Figure 9.1. At one point, trajectory A makes a 30 degree turn and
continues in this direction, moving away from trajectory B. Later, trajectory
B makes a similar 30 degree turn and continues parallel to trajectory A. Both
vessels return to their initial course some time later, and the trajectories termi-
nate at the same point. Since these two trajectories have the same origin and
terminal location, and have similar behaviour throughout the journey, we would
expect the distance between them to be very small. However, their distance,
calculated by DTW on the sequence of geographical coordinates, may be sig-
nificant. The re-indexing procedure of DTW aligns the course changes between
the trajectories. However, due to the spatial nature of geographical coordinates
DTW calculates the geographical distance between the location where the tra-
jectories made the course changes. If we instead were to use the time series of
the measured angles towards true north, the DTW distance would calculate the
difference of the course values. Since these values are the same before and after
the changes, the DTW distance between the two trajectories would be zero. By
using the time series data, we remove the spatial dependence, and DTW can
properly calculate the similarity of the course after aligning the changes. There-
fore, DTW is a good candidate for a similarity measure for course and speed
time series.

9.3.1.3 Average Haversine

The quadratic time complexity and the issues mentioned above make the Haus-
dorff distance and DTW unsuitable for measuring the similarity of many long
and complex sequences of geographical coordinates. On the other hand, the
average Haversine (AH) distance proposed in Nanni and Pedreschi [2006] to
measure the positional evolution of AIS trajectories has a linear time complex-
ity. It is defined as a continuous distance measure, but it can be approximated
using the trapezoidal rule and assuming a regular sampling :

AH(A,B;dH)=

T−1∑
t=0

dH
(
A(t),B(t)

)
+dH

(
A(t+1),B(t+1)

)
2T

, (9.3)

where T = min(TA, TB) and dH is the Haversine distance. This similarity mea-
sure computes the geographical distance between trajectory points one by one
in a linear fashion until the length of the shortest trajectory is reached. This
means the measure puts an increased weight on the beginning of the trajectories.
Thus, we expect the measure to be able to separate trajectories based on their
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starting location. This is ideal in a real-time operational setting when observing
new trajectories, as even short trajectories can very quickly be classified into a
subset of historical trajectories with similar behavior.

9.3.2 Two Step Clustering

The rationale is first to make a rough separation of trajectories based on the
global positional behaviour through the ROI, followed by a more fine-grained
separation based on local kinematic behaviour. When used for anomaly detec-
tion, the first clustering step should not flag too many trajectories as outliers
since this should be the purpose of the second step.

Our clustering algorithm consists of two steps:

1. Cluster all the trajectories based on their positional dimensions (latitude
and longitude) using the average Haversine distance.

2. Cluster the trajectories within each positional cluster based on their kine-
matic dimensions (speed and course) using a custom similarity measure
Dkin.

In both steps, we rely on hierarchical clustering with average linkage. The
similarity measure Dkin is based on DTW:

Dkin(τA, τB) = DTW(sA, sB ; dspeed)

+ DTW(cA, cB ; dcourse),
(9.4)

where sA, sB and cA, cB are, respectively, the speed and course sequences of
trajectories A and B; dspeed is the standardized Euclidean distance and dcourse
the normalized angular difference in radians:

dspeed(x, y) =
|x− y|√

V
, (9.5)

dcourse(x, y)=
1

π
·

{
|x− y| if |x−y| ≤ π

π−(|x−y| mod π) otherwise
(9.6)

where V is the variance computed empirically from the speed time series sA and
sB .

In practice, the distance thresholds for both hierarchical clusterings are set
using Kneedles algorithm [Satopaa et al., 2011]. Also, in order to reduce the
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time complexity of DTW, we compress the trajectories using the two-stage DP
algorithm suggested in Klaas et al. and use the speed and course time series of
the compressed trajectories. Note that although DTW-based similarity matrices
are computed for each cluster, these involve much fewer trajectories than the
whole dataset. The quadratic time complexity of DTW is thus less worrisome
here.

9.3.3 Anomaly Detection

For anomaly detection, we exchange the kinematic clustering step with an outlier
detection using our proposed kinematic distance measure, Eq. (9.4), as a basis
for Local Outlier Factor (LOF) [Breunig et al., 2000] to detect trajectories with
abnormal speed and course sequences.

The proposed method may also be used for anomaly detection on a new unseen
trajectory. First, the trajectory is assigned to a positional cluster using a KNN
classifier with k = 3 (hierarchical clustering cannot handle unseen data). Then,
we compute the outlier scores using LOF within the assigned positional cluster.

LOF compares the local neighbourhood density of a point to that of its K-
Nearest Neighbors (KNN). If the density of a point is significantly lower than
its neighbours, the point is flagged as an outlier. In our experiments, we use
k = 5 nearest neighbors. In practice, we did not see large changes in the number
of outliers detected when varying that number. Nevertheless, we recommend a
low value in order to capture information only from the local neighbourhood.
LOF also has a hyperparameter related to the expected percentage of outliers.
Since we only expect a small number of outliers, we recommend again to use
small values for the hyperparameter. See Section 9.4.7 for an ablation study.

9.4 Experimental Results

9.4.1 Data Sets

For this work, we built two datasets of AIS data from Danish waters cover-
ing large ROIs and containing various types of vessels with different priorities
and expected behavioural patterns. Both datasets are available for public use to
facilitate reproducibility and to give researchers the ability to evaluate their pro-
posed models on a complex data set representative of real-world setting [Olesen
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et al., 2022b]1. Complete AIS data from all Danish waters are available pub-
licly [Soefartsstyrelsen], however, minor differences between the two sources may
occur.

The first dataset covers a rectangle ROI over the Sjælland island bounded by
(54.4oN , 10.5oE) to (56.4oN , 13.5oE). The data were collected during Novem-
ber 2021 and contain 18738 of trajectories from 11 different types of ships rang-
ing from commercial cargo and tanker ships to private sailing and fishing boats.
The second dataset covers a rectangle ROI over the Bornholm island bounded
by (54.5oN , 13oE) to (56oN , 16oE). The data were collected during December
2021 and contain 12591 of trajectories from 8 different ship types. The speed
was limited to 20m/s, and updates with higher speeds were discarded. For both
datasets, if the time interval between two successive AIS messages exceeds 15
min, the track was split into two contiguous tracks. Tracks shorter than 10
minutes were discarded and tracks exceeding 12 hours were split into smaller
tracks, each between 10 minutes and 12 hours. All tracks are resampled every
120 seconds using linear interpolation.

We used the Sjælland data to evaluate the proposed two-step clustering algo-
rithm. The entire data set was used for training. We test the proposed anomaly
detection algorithm on the Bornholm data set. Data from December 13th, 2021
was withheld as a test set, the rest serving as training set. On that day, a
collision accident between two ships occurred, causing several abnormal trajec-
tories. Trajectories from this day have been manually labeled, resulting in 25
abnormalities out of 521 trajectories. In addition to the colliding vessels, the ab-
normal trajectories correspond to commercial traffic, which had to deviate from
the planned course, Search-and-Rescue and law enforcement vessels responding
to the accident, and any other vessel taking part in the search of two missing
sailors.

9.4.2 Experiments

We test our proposed distance measures and clustering method for both unsu-
pervised clustering and abnormality detection. We evaluate clusterings using
the Silhouette [Rousseeuw, 1987] score. In addition to our similarity measures,
we include as baselines the Hausdorff and DTW distance using the Haversine
distance as suggested in Yang et al. [2022b], Zhao and Shi [2019a]. In terms
of clustering algorithm, we compare hierarchical clustering and DBSCAN. The
linkage distance threshold for hierarchical clustering is decided using Kneedles
algorithm to select the number of clusters. The hyperparameters of the DB-

1Datasets available at: https://figshare.com/s/0012239be1c55e988a32

https://figshare.com/s/0012239be1c55e988a32
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Table 9.1 – Positional clustering performance in terms of silhouette score for
various combinations of distance and clustering algorithms along
with hyperparameters and characteristics of the clusterings. Our
model corresponds to the last line.

Distance Measure Clustering Algorithm Eps-Threshold MinSamples # Clusters % Outliers Silhouette Score
Hausdorff Hierarchical 9000 - 1515 - 0.535
Hausdorff DBSCAN 12504 242 15 45.7 0.127
Hausdorff DBSCAN 12504 25 53 10.7 0.376
Hausdorff DBSCAN 27000 242 7 12.6 0.265

DTW Hierarchical 140000 - 2862 - 0.349
DTW DBSCAN 60941 91 7 68.8 −0.454

Avg. Haversine DBSCAN 1.07 261 14 57.8 −0.033
Avg. Haversine Hierarchical 10 - 52 - 0.651

SCAN are tuned by creating candidate lists of minimum distances and samples
as suggested in Yang et al. [2022b]. The optimal value from these candidates
is then determined using Kneedles algorithm [Satopaa et al., 2011]. For hierar-
chical clustering, we use Kneedles algorithm. We measure the performance of
the proposed inductive clustering and anomaly detection using the area under
the receiver operating characteristic (AUC). As baselines, we use the state-of-
the-art VRNN [Nguyen et al., 2021] and RVAE [Murray and Perera, 2021] deep
learning architectures.

9.4.3 Step 1: Positional Clustering

We begin by evaluating the first step of our clustering algorithm using the posi-
tional information of the Sjælland dataset. We consider different combinations
of distance measures (Hausdorff, DTW based on Haversine distance and av-
erage Haversine distance computed using Eq. (9.3)) and clustering algorithm
(hierarchical, DBSCAN). Our model combines the average Haversine distance
with hierarchical clustering. We provide quantitative, qualitative, and runtime
analyses.

9.4.3.1 Quantitative Analysis

In Table 9.1, we report clustering performance of each combination of distance
measure and algorithm in terms of silhouette score (the larger, the better).
We include hyperparameters selected using Kneedles algorithm, the number of
clusters found and, when DBSCAN is used, the percentage of outliers. We ob-
serve that our combination of hierarchical clustering with the average Haversine
distance achieves the best clustering.
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The silhouette scores show that DBSCAN generally performs worse than hier-
archical clustering. One explanation could be the large number of trajectories
flagged as outliers by DBSCAN. For all three distance measures, DBSCAN con-
siders at least 45% of the data as outliers. This is too many false positives for an
automated system to be useful. Despite the better silhouette scores, hierarchical
clustering with the Hausdorff and DTW distances suffers from a similar phe-
nomenon. Indeed, both combinations produce the largest number of clusters.
Most of these clusters contain very few trajectories and, thus, serve a similar
purpose as the outliers in DBSCAN.

On the other hand, our proposed combination finds a reasonable number of 52
clusters. The average number of trajectories in a cluster is 360 with a standard
deviation of 380, meaning most clusters have roughly 100 trajectories assigned
to them. These are reasonable numbers of trajectories per cluster to allow for
further analysis in the second clustering step of the kinematic parts using DTW.
Note that these numbers are comparable with the size of the full data sets used
in most other works such as Yang et al. [2022b], Zhao and Shi [2019a].

9.4.3.2 Qualitative Analysis

Clustering using DTW or the Hausdorff distance results in clusters correspond-
ing to the well-defined shipping lanes as seen in Figure 9.2(a)-(b). However,
they fail to cluster two types of trajectories: small groups of trajectories in less
populated maritime routes, and trajectories which mostly follow the shipping
lanes but make minor deviations from the other cluster members, see Figure
9.2(d). These trajectories are marked as outliers in DBSCAN or as single obser-
vation clusters in hierarchical clustering. Fine-tuning the hyperparameters may
reduce the number of outliers by slowly admitting trajectories with similar po-
sitions into the clusters but with the risk of joining clusters of different shipping
lanes as shown in Figure 9.2(c). This indicates that real, unfiltered trajectory
recordings from a diversely populated ROI have too much randomness for these
measures to find well-separated clusters using only the latitude and longitude
without removing the majority of the data as outliers.

In Figure 9.2(e)-(f), we plot the 4 most populated clusters in the ROI around
Sjælland using our positional clustering algorithm. Each cluster contains more
than 1000 trajectories. We see that in each cluster, the trajectories begin in
the same geographical area unique to each cluster. This is expected due to
the increased attention by the average Haversine distance to the initial part of
the trajectories. The discovered clusters contain trajectories from all different
shipping lanes that originate in a given area. However, this is acceptable as we
expect the second step clustering to separate the shipping lanes based on their
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(a) DTW, hierarchical. (b) Hausdorff, DBSCAN.

(c) Hausdorff, increased threshold. (d) Hausdorff, DBSCAN outliers.

(e) Avg. Haversine, hierarchical. (f) Avg. Haversine, hierarchical.

Figure 9.2 – Examples of clusters and outliers discovered in the first positional
step using different similarity measures and clustering methods.
Historical traffic is shown in grey and trajectory origins are denoted
by a black circle.

common kinematic behaviour.

The merging of shipping lanes is similar to how clustering using the Hausdorff
distance merged different shipping lanes when DBSCAN hyperparameters were
optimized to reduce the number of outliers, as seen in Figure 9.2(c). However,
shipping lanes are merged based on the origin and end location of the trajectory
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because the Hausdorff distance is invariant to the direction of travel. This is a
potential problem for real-time classification of incomplete trajectories into the
discovered clusters.

9.4.3.3 Runtime Analysis

In Table 9.2, we report average runtimes for computing the average Haver-
sine distance based on Eq. (9.3), DTW, and the Hausdorff distance. The dis-
tances were implemented in Python v. 3.8.11, programming language using
Numpy v. 1.23.2. The Hausdorff and DTW distances were calculated using the
trajectory_distance library2 implemented in Cython v. 0.29.24. With its lin-
ear time complexity, the average Haversine distance is undoubtedly the fastest
to compute: it is 10 times faster than DTW and 100 times faster than the
Hausdorff distance.

9.4.3.4 Summary

The traditional distance measures DTW and Hausdorff result in many outliers
when applied to a complex, unfiltered dataset resembling trajectories expected
in real-life applications. On the contrary, the average Haversine distance results
in clusters that contain all the different routes that originate in a location that
varies between clusters. Additionally, the average Haversine distance is much
faster to compute, which allows for real-time assignment of unseen trajectories
into precomputed clusters. Yet, these clusters do contain trajectories from many
different maritime routes. Therefore, simply reducing the threshold in the hi-
erarchical clustering does not equal a more detailed clustering describing their
global positional or local kinematic behaviour. To achieve clusters that describe
positional or kinematic behavior in more detail a different distance measure
must thus be used during the second step.

Table 9.2 – Average time in seconds to compute a pair of trajectory similarities
during computation of the distance matrix.

avg. Haversine DTW Hausdorff
16.38µs 107.2µs 1084µs



9.4 Experimental Results 149

Table 9.3 – Hyperparameter values and clustering results of DBSCAN and hier-
archical clustering using distances computed by Hausdorff, average
Haversine distance, Eq. (9.3), or our proposed kinematic distance
measure, Eq. (9.4), on trajectories assigned to positional cluster 0
in the first step.

Distance Measure Clustering Method Eps-Threshold MinSamples # Clusters # Outliers Silhouette Score
Avg. Haversine, Eq. (9.3) Hierarchical 0.9 - 49 - 0.558

Hausdorff Hierarchical 6250 - 134 - 0.533
Avg. Kinematic Hierarchical 1.8 - 34 - 0.126

Kinematic DBSCAN 12.0 46 2 821 0.036
Kinematic DBSCAN 12.0 2 21 477 −0.221
Kinematic Hierarchical 22.5 - 221 - 0.217

9.4.4 Step 2: Kinematic Clustering

In this section, we study the kinematic clustering of the second step using the
positional cluster shown in blue in Figure 9.2(e). The trajectories in this cluster
originate at the southeastern edge of the ROI and split into 4 major shipping
lanes. One going west towards the Kieler Channel allowing passage to the At-
lantic, one going north towards the North Sea, one going east towards the Baltic
Sea, and one going northeast, terminating in the Swedish port of Trelleborg. In
addition to these shipping lanes, the Danish port of Gedser (southern tip of the
Lolland island) is a hub for pilot boats which often have to rendezvous with
larger ships passing through the Fehmarn Belt between Denmark and Germany.
These pilot boats form a triangle fanning outwards east from the port of Gedser
seen in the bottom of Figure 9.2(e).

In order to evaluate the added value of kinematic features, we compare position
and kinematic-based distance measures for the second step clustering. Regard-
ing positional clustering, based on the results of Section 9.4.3, we consider only
hierarchical clustering combined with the average Haversine distance and the
Hausdorff distance. The former yielded better groupings, and the latter showed
potential to further split clusters. As for the kinematic clustering, we test our
proposed kinematic distance measure, Eq. (9.4) based on DTW. For complete-
ness, we also include a DBSCAN clustering based on our kinematic distance.
Finally, we also consider the average kinematic distance, Eq. (9.3) computed as
the sum of speed and course differences computed by Eqs. (9.5)-(9.6).

We report in Table 9.3 hyperparameters and statistics about each clustering.
The two positional-based clusterings find fewer clusters and obtain better sil-
houette scores than our proposed kinematic distance measure, Eq. (9.4). How-
ever, if we look at some of the clusters obtained in Figure 9.3(a)-(b), we notice
that these former methods do not produce a more detailed clustering in terms
of the local kinematic behavior of the trajectories.

2https://github.com/bguillouet/traj-dist

https://github.com/bguillouet/traj-dist
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(a) Avg. Haversine. (b) Hausdorff.

(c) Avg. Kinematic. (d) Kinematic, Eq. (9.4).

Figure 9.3 – Second step clusters obtained using hierarchical clustering and dif-
ferent similarity measures. Trajectories in grey denote trajectories
in the same positional cluster and trajectory origins are denoted
by a black circle.

9.4.4.1 Positional based Distance Measures

The clustering based on the average Haversine distance (Figure 9.3(a)) is un-
able to split the shipping lanes. We believe the focus on the initial part to be
the cause. Using the Hausdorff distance for the second step clustering (Figure
9.3(b)) allows separating the maritime routes through the ROI. We also no-
tice some maritime routes divided into two or more clusters, as seen in Figure
9.3(b). Thus, we have gained a more detailed clustering in terms of describing
their global positional behaviour. In Figure 9.4, we show the speed and course of
the trajectories assigned to the two clusters of Figure 9.3(b). We see that both
clusters contain trajectories with different speeds and we notice trajectories that
heavily decrease their speeds while in the shipping lane (blue trajectories with
initial speed of about 12m/s). This is abnormal, and we would expect such tra-
jectories to be outliers based on the kinematic features. Looking at the course,
we see the two clusters generally have similar course changes, although they
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(a) Speed.

(b) Course.

Figure 9.4 – Kinematic time series of the trajectories assigned to clusters ob-
tained from the Hausdorff clustering shown in Figure 9.3(b).

happen at different times due to the time invariance of the Hausdorff distance.
Based on the results above, we conclude that using the Hausdorff distance in
the second step clustering results in a more detailed clustering regarding the
global positional behaviour but not the local kinematic behaviour.
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9.4.4.2 Kinematic based Distance Measures

(a) Clusters going west. (b) Clusters going east.

(c) Clusters to Gedser. (d) Clusters to Trelleborg.

Figure 9.5 – Second step clusters with more than 5 assigned trajectories ob-
tained using the kinematic distance matrix. Colours denote differ-
ent clusters. Trajectories in grey denote trajectories in the same
positional cluster.

Above we found positional-based distance measures unable to describe clusters
with similar local kinematic behaviour. We now investigate the clusters obtained
using kinematic-based distance measures, in particular our proposed kinematic
distance measure (9.4). Our proposed distance measure obtains a higher sil-
houette score than the average kinematic distance, but the average kinematic
distance finds fewer clusters. However, we see from Figure 9.3(c) that the av-
erage kinematic distance groups together trajectories that follow very different
shipping lanes. Using Eq.(9.4) as the distance measure for hierarchical clus-
tering, we find that a distance threshold of 22.5 is satisfactory using Kneedles
algorithm. This threshold results in 221 different clusters. However, only 34 of
these clusters have more than 5 trajectories assigned to them. These 34 clusters
are pictured in Figure 9.5. The clusters are now separating the major maritime
routes, and we notice clusters that are assigned trajectories that follow roughly
the same route. Also, by looking at the speeds within these clusters (Figure
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9.6(a-c)), we notice that trajectories within the same cluster tend to have the
same speed and trajectories from different clusters have different speeds. In
particular, the clusters distinguish five unique types of behaviour from the tra-
jectories heading towards the port of Trelleborg, see Figure 9.6(b and d): slow
speed returns south (green), fast speed return south (red), slow speed stops in
port (orange), fast speed stops in port (yellow), fast speed stops in port with
a spike in speed during slowdown (blue). Note that the high-frequency course
changes at low speeds in Figure 9.6(d) are due to a vessel drifting in port. These
random course changes may artificially decrease the similarity between trajec-
tories of the same behaviour, but it is expected the two-stage DP compression
[Klaas et al.] filter out the majority of these stationary periods at drift. Over-
all, the kinematic distance, Eq. (9.4) yields clusters with consistent kinematic
behaviour. We notice another key difference with the Hausdorff case. Using the
Hausdorff distance, the resulting clusters in Figure 9.3(b) become quite narrow,
i.e. all the trajectories assigned to a cluster follow the same narrow maritime
route. However, using Dkin Eq. (9.4) the resulting clusters have a larger geo-
graphical spread as seen in Figure 9.5(b). Thus, it indicates that the proposed
kinematic distance measure, Eq. (9.4), is capable of clustering trajectories with
similar kinematic behavior but in different geographical locations.

(a) Speed, eastbound. (b) Speed, Trelleborg.

(c) Course, eastbound. (d) Course, Trelleborg.

Figure 9.6 – Kinematic time series of all clusters following two different mar-
itime routes, see Figure 9.5(b-d). Different colours represent dif-
ferent clusters.

All cases of pilot boats are not clustered together even though we know they
must share some intrinsic behaviour. When inspecting the dendrogram, we ob-
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served that they are closer to one another than any other trajectories, but the
distance between them is always above the selected distance threshold. Thus,
there is a trade-off between clustering behaviour we know to be similar but that
naturally has a higher distance, and clustering different behaviour that natu-
rally is very close to one another. One might speculate whether a hierarchical
density-based clustering approach as used in Murray and Perera [2021] would be
able to correctly find clusters of varying density. However, most density-based
approaches are based on some variant of single linkage, which we empirically
find not to perform very well. We find our choice of hierarchical clustering with
average linkage to be superior to variants of DBSCAN, as shown in Table 9.3.
Using DBSCAN with the proposed hyperparameter selection, we find only two
large clusters and the majority of trajectories assigned as outliers. Reducing
the minimum number of sample required to define clusters increased the num-
ber of cluster to 21, but the vast majority of trajectories was assigned to the
same cluster. This would not allow us to make any distinction between types of
kinematic behaviour. We thus focused on hierarchical clustering with average
linkage.

9.4.5 Single Step Clustering

We now compare the proposed two-step clustering to a single hierarchical clus-
tering merging both steps using as similarity measure the sum of the average
Haversine distance, Eq. (9.3) and of DTW based on Dkin of Eq. (9.4). The
Kneedles algorithm for the single-step clustering obtains a silhouette score of
0.095 and finds 2880 clusters. For comparison, the two-step clustering approach
achieves a silhouette score of 0.162 and a total of 6963 clusters when applied to
the entire dataset. In both methods, the majority of the clusters contain only
1 observation, which we previously highlighted for the two-step algorithm. Us-
ing the sum Eq. (9.3) and Eq. (9.4) may average out some of the differences in
either position or kinematics that may be captured by modelling the similarity
measures individually. Therefore, it is expected that the two-step returns more
clusters.

Using the single-step clustering, trajectories travelling along different shipping
lanes may be clustered together (Figure 9.7(a)), while our two-step algorithm
disentangles them (Figure 9.7(b)). For example, the single-step approach groups
together (orange cluster of Figure 9.7(a)) trajectories with distant initial points
and following different shipping lanes because the speed of the trajectories are
very similar. Thus, differences in the position are compensated by similar speed
behavior. The two-stage algorithm splits these two routes into multiple clusters
since it is able to disentangle the positional information from the kinematic.
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As discussed previously, the 2-step approach has a trade-off between clustering
behaviour we know to be similar, but that naturally has a higher distance, and
clustering different behaviour that naturally is very close to one another. Using
the single-step approach seems to automatically push this trade-off towards the
latter option. Thus, our proposed 2-step approach allows for a more detailed
clustering in terms of the kinematic behaviour and a better disentanglement of
position and kinematic behaviour.

(a) Single-step clusters. (b) Two-step clusters.

Figure 9.7 – Trajectory clusters produced by the single-step clustering (a) that
are split into multiple clusters (b) using the the two-step algorithm.

9.4.6 Outlier Contamination Analysis

In this section, we qualitatively explore how the kinematic distance measure may
be used to find trajectories with similar kinematic behaviour regardless of the
position and identify abnormal kinematic behaviour. The positional clustering is
trained as described above, and the kinematic clustering is exchanged for outlier
detection using LOF. In Figure 9.8, we plot a T-SNE embedding of the kinematic
distance matrix and the results of LOF with different contamination levels of
all trajectories of the blue positional cluster of Figure9.2(e). The contamination
hyperparameter is related to the expected number of outliers in the data and
is used to decide the threshold on the outliers scores. We compare (a) the
auto option where the level is decided as suggested in Breunig et al. [2000], (b)
0.1 , (c) 0.05, and (d) 0.01. The auto options returned a contamination level
decided from the data of 0.14. Points in clusters with at least 5 trajectories
are in blue, and the others are in gray. Outliers are denoted by red borders.
We see that the majority of the flagged outliers are observations that do not
belong to highly populated clusters. However, some trajectories on the border of
highly populated clusters (blue) are also marked as outliers. Most of the single
cluster trajectories are marked as outliers except in the case where multiple of
these trajectories join together in small groups of minimum 5 trajectories as,
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(a) Contam. auto=0.14, 178 outliers. (b) Contam. 0.10, 128 outliers.

(c) Contam. 0.05, 64 outliers. (d) Contam. 0.01, 13 outliers.

Figure 9.8 – TSNE of the kinematic distance matrix of the blue cluster of Fig-
ure 9.2(e) with varying levels of contamination in LOF. Crosses
denote detected outliers. Colors denote cluster assignments with
grey being clusters with less than 5 members.

for instance, the majority of the pilot boats discussed previously. Fixing the
contamination level acts as an upper bound on the number of marked outliers.
Reducing the contamination level to 0.05 in Figure 9.8(c) seems to almost remove
the outliers clustered around highly populated clusters.Reducing it further to
0.01 leaves almost no outliers. Thus, it seems that contamination levels from
0.05 to 0.15 would work best in practice.

9.4.7 Outliers and Embedding Analysis

In Figure 9.9, we plot a TSNE representation of the kinematic distance matrix
of all trajectories in positional cluster 0, shown in blue in 9.2(e). Colours denote
cluster assignments from the kinematic clustering, and grey dots are clusters
with at most 5 trajectories. Red borders denote outliers flagged by LOF using a
contamination level of 0.05. Squares denote embeddings of pilot boats, triangle
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Figure 9.9 – TSNE of the kinematic distance matrix of the blue cluster in Fig-
ure 9.2(e). Colours denote the kinematic cluster assignment with
grey being clusters with less than 5 members. Red borders denote
outliers flagged by LOF. Shapes denote manually identified special
trajectories.

trajectories with u-turns, and crosses trajectories with stops outside a port.

As we noted above, the majority of the pilot boats closest neighbours were
other pilot boats which we also see in Figure 9.9. The majority of the pilot
boats form a small unclustered group near a larger cluster (blue) in the bottom
of the figure. This cluster represents ships coming from the south docking in
the port of Gedser and leaving south. In the same area, we find cases of ships
(red, green) sailing north and docking at Trelleborg before returning south. In
between the pilot boats and the large blue cluster we notice three trajectories
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discovered to be outliers by LOF. These three trajectories are boats coming from
the south and making a stop and U-turn in the middle of the shipping lane very
similar to the pilot boats. This is another example of the capabilities of our
proposed kinematic distance measure to capture similar kinematic behaviour
regardless of the position. However, small differences in the course time series
lead the three U-turns trajectories to be flagged as abnormal. In Figure 9.10(a)
and (b) we show an example of U-turn trajectories and the pilot boats nearby.

(a) U-turn. (b) Pilot boat.

(c) Multiple stops on shipping lane. (d) Pilot boat.

Figure 9.10 – Trajectories of abnormal activity such as U-turns (a) and stop-
ping in the shipping lane (c) found to have similarity with the
behaviour of pilot boats (b), (d).

We also notice the tail clustered into many different clusters in the left of Figure
9.9. These clusters correspond to the traffic following the shipping lanes east
(Figure 9.5(b)) at different speeds. To the right of this tail, we find some pilot
boats (square) and a highlighted outlier corresponding to a trajectory following
the shipping lanes going east with multiple sudden stops in the middle of the
shipping lane (cross). This type of behaviour is of interest for certain ship types,
such as research vessels and diving vessels. These two trajectories are shown
in Figure 9.10(c) and (d). The large yellow cluster in the center of Figure 9.9
corresponds to trajectories going north and stopping in the port of Trelleborg.
Contrary to the previous smaller red and green clusters in the bottom of Figure
9.9, these trajectories end in the port. This means that our proposed kinematic
distance measure has found the start-stopping behaviour to be more akin to the
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trajectories ending in port or pilot boats, however, not so much as to be part
of their cluster due to differences in the course. Thus, we find our proposed
distance measure is capable of capturing local kinematic similarities regardless
of the geographical position and flag trajectories with abnormal local kinematic
behaviour.

9.4.8 Anomaly Detection

We now study the proposed anomaly method (Section 9.3.3), which involves in-
ductive clustering (i.e. clustering on new unseen data) and outlier detection on
the data from the Bornholm area on December 13th. The positional clustering
and LOF are trained using data from December 2021 except that of Decem-
ber 13th. Trajectories of that day are then processed as in a fully automated
streaming scenario: A trajectory is first assigned to positional a cluster using a
KNN classifier with k = 3, then kinetic similarities to other trajectories of the
cluster are computed and fed to the LOF model which may trigger an alarm
based on the outlier scores.

We investigate the precision of our model and discuss which value of contam-
ination parameter to use based on the receiver operating curve from outlier
detection on the December 13th data as shown in Figure 9.11. We compare
to the A-Contrario outlier detection method [Nguyen et al., 2021] using RVAE
[Murray and Perera, 2021] and VRNN [Nguyen et al., 2021].

(a) All trajectories. (b) Without stationary trajectories.

Figure 9.11 – ROC of the outlier detection on the Bornholm 13th December
data.

We see that our method outperforms detection based on RVAE reconstruction
but not based on VRNN reconstruction. In particular, we see that our method
suffers from false positives early in the detection. Looking at these trajectories,
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we notice that the vessels are mostly stationary in port with a highly vary-
ing course resulting in a large directional distance to all other trajectories. By
removing trajectories with an average speed of less than 0.3m/s from the de-
tection, we can reduce the number of early false positives to similar levels as
RVAE.

Previously, we counted outliers to infer the contamination parameter. Here, we
show how the ROC curve may provide more intuition behind this hyperparame-
ter. In order to detect 96% of the abnormal trajectories a false alarm is triggered
on 40% of the normal trajectories which corresponds to a contamination rate
of 0.43. A contamination level of 0.05 and 0.10 flag about 20% and 25% of
the abnormal trajectories respectively, and the value discovered on the Sjælland
data of 0.14 would result in a true positive rate of approximately 40%.

9.4.9 Anomaly Detection and Interpretation

The performance of our proposed method is below that of the VRNN. However,
the time complexity of our proposed clustering methodology is much lower than
using A-Contrario detection with the VRNN model. The evaluation time of
VRNN and A-Contrario detection heavily depends on the resample frequency
during preprocessing and the maximum sequence length evaluated during A-
Contrario detection. In our experiments, the VRNN model and A-Contrario
detection had an average evaluation time of 176 seconds pr trajectory. In com-
parison, our clustering approach average an evaluation time of only 6.8 seconds
per trajectory. Furthermore, our method is based on similarities that allow for
fast comparison with the expected behaviour and may be used to quickly identify
the most similar trajectories. This could be used as an additional explainability
to surveillance operators or be used to design rules for abnormal trajectories.

In Figure 9.12 we show in red the geographical evolution (a), speed (b) and
course (c) time series of an abnormal trajectory making a double U-turn in the
shipping lane. The trajectory was made by the sister ship of the vessel which
caused a collision accident and was returning to the site of the collision perhaps
to transfer crew to the collided vessel.

We plot in black the five most similar trajectories from the training set (differ-
ent day) according to the proposed distance measures, Eq. (9.3) and Eq. (9.4)
computed until time step t = 205 which corresponds to the period after the first
u-turn when the vessel is travelling in the opposite direction of the shipping lane
. All five trajectories originate in the northeastern part of the ROI, and all five
vessels have extended periods of time in which they travel at reduced speeds.
Surveillance operators may use the description of the most similar trajectories
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(a) Geographical evolution.

(b) Speed.

(c) Course.

Figure 9.12 – Top five most similar trajectories to the abnormal trajectory in
red determined by Eq. (9.4) at time step t = 205. The future
trajectory is shown in dashes.

to categorize maritime behaviour in real time. Coupled with the operators’ ex-
pectations towards the behaviour of the given ship type in the ROI, this may
be used to identify vessels behaving abnormally. Additionally, surveillance op-
erators could make predefined rules based on the clusters or trajectories of the
training set. Alarms could be triggered if certain known abnormal trajectories
are found as the nearest neighbours or ship types are classified to clusters with
unexpected behaviour from the given ship type. Surveillance operators may
prefer such human-in-the-loop decision making.

Information about the current behaviour may not be readily available in the
VRNN model and may have to be discovered manually post detection. The
VRNN outputs the probabilities of a multivariate Bernoulli distribution. We
can evaluate how the actual values relate to the expected values by the VRNN
models for each time update. This is illustrated in Figure 9.13 where we plot
the multivariate Bernoulli distribution from the VRNN model at two time steps
during and after the first u-turn. During the u-turn the speed and course are
not reconstructed accurately. The multivariate Bernoulli distribution may be
used to understand which input feature is abnormal, and surveillance operators
may use this information to evaluate the behaviour. However, after the u-turn
all four input features are reconstructed accurately. Thus, there is a risk that
operators may disregard alarms thinking that everything went back to normal.
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(a) During first u-turn t = 189.

(b) After first u-turn t = 205.

Figure 9.13 – multivariate Bernoulli distribution (blue) for the VRNN output at
two time steps observed during and after the first u-turn. Actual
values in orange.

9.5 Conclusion

In this work, we have proposed a 2-step clustering methodology for maritime
trajectories. The two steps allow the clustering to better focus on the kinematic
behaviour expected in a certain geographical position and help disentangle the
geographical position with kinematic behaviour. This is useful information for
surveillance operators in determining abnormal behaviour understood as com-
binations of physical position, kinematics, ship type, etc. We propose two tra-
jectory similarity metrics. One metric allows for fast computation of positional
similarity and reduces the need of time-costly hyperparameter optimization.
The other metric captures the kinematic behaviour of the trajectories which
improves clustering in terms of local kinematic behaviour.

We have also provided a method for automatic outlier detection using the de-
signed similarity metrics and find it comparable to reconstruction based detec-
tion using deep neural networks. Although our proposed model achieves a lower
area under the ROC than the VRNN model, it has a clear advantage in terms
of explainability over current deep learning methods. In future work, we aim to
compute the proposed similarity measures with neural networks and to utilize
deep models for reconstruction based outlier detection that also align trajecto-
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ries in the latent space in order to preserve a certain level of explainability.
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