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Resumé
En lang række problemstillinger indenfor akustisk ingeniørarbejde påkræver inkluderingen af både viskøs
og termisk dissipation for nøjagtigt at fange den virkelige fysik. Disse dissipative effekter bliver særligt
vigtige, når man har at gøre med mindre geometriske dimensioner i det akustiske domæne, som det ses i
anvendelser som akustiske transducere og høreapparater. Beregningsteknikken kendt som randelement-
metoden gør det muligt at tage højde for dissipation og samtidig undgå behovet for randlagsmaskering.
Dette er i modsætning til den meget anvendte finite element metode, hvor randlagsmaskering er et krav.
Derudover er randelementmetoden velegnet til modellering af åbne domæner, hvilket ofte er af interesse
i akustisk modellering.

Den nuværende formulering af randelementmetoden for viskøse og termiske tab benyttet i litter-
aturen, har to væsentlige begrænsninger. Den første begrænsning er at den er baseret på frekven-
safhængige randintegraler, hvilket gør formuleringen uegnet til scenarier, der involverer flere frekvenser.
Den anden begrænsning er, at formuleringen afhænger af både sparse og tætte matricer, som hver især
kommer med sine udfordrigner. Selvom sparsitet oftest er forbundet med behageligheder i numerisk
analyse, kan den nuværende formulering ikke udnytte disse egenskaber fuldt ud. Faktisk omfatter løs-
ningsstadiet en række sparse matrix-matrix-produkter, som ikke kan garanteres at være sparse, hvilket
igen ødelægger den beregningsfordel, der normalt er forbundet med sparsitet. De tætte matricer er
et andet dyr og ville øjeblikkeligt gøre formuleringen ubrugelig til bereningsmæssige store problemer.
Men i forbindelse med randelementmatricer findes der måder at tilnærme matrik-vektor-produkterne
på en måde, der bereningsmæssigt let kan skaleres til store problemer. Indsigten er her derfor at for-
mulere problemet på en måde, hvortil kun matrix-vektor-produktet kræves, således at tilnærmelserne
kan benyttes.

Løsninger på de to begrænsninger er allerede udviklet i for rene akustiske problemer. Denne
afhandling udvider løsningerne til også at inkludere tilfælde der inkluderer viskøse og termiske tab.
Multifrekvensproblemet løses ved at udvide en kendt reduceret ordens serieekspansionsrandelement-
metode til at inkludere randlagstimpedansrandbetingelsen. Denne udvikling krævede afledning af
Taylor-udvidelsen af den tangentielle gradient af Green’s funktionen. Den resulterende model er mere
kompleks end den originale på grund af de frekvensafhængige koefficienter foran integralerne, der stam-
mer fra randlagstimpedansrandbetingelsen. Løsningen i forbindelse med simuleringer i stor skala er en
to-trins proces. Det første trin er en omfattende omformulering af den underliggende model, der gør det
muligt at udnytte sparsitetsmønstrene i de såkaldte termiske og viskøse matricer i løsningsfasen af prob-
lemet. Dette var et nødvendigt første skridt i retning af simulering i stor skala, da det uden dette ikke
ville have givet mening at fortsætte med denne formulering. Det sidste trin var så at omformulere prob-
lemet på en måde, hvortil kun det tætte matrix-vektor-produkt med de såkaldte akustiske matrices var
en nødvendighed. Givet denne omformulering var det så muligt at tilnærme matrix-vektor-produktet
ved hjælp af standardteknikker såsom hurtigmultipolmetoden eller H-matricer. Ved at benytte disse
teknikker var det muligt at løse problemer af størrelser langt ud over, hvad der tidligere har været muligt.

Keywords: randelementmetoden; hurtigmultipolmetoden; H-matricer; rank-struktur; viskoter-
miske effekter; Kirchhoff dekomposition; randlagsimpedans; reduceret ordens model.
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Abstract
A long range of problems in acoustical engineering necessitate the incorporation of both viscous and
thermal dissipation in order accurately capture the real-world physics. These dissipative effects become
particularly important when dealing with smaller geometrical dimensions in the acoustic domain, as
seen in applications like acoustic transducers and hearing aids. The computational technique known as
the boundary element method offers the ability to account for dissipation while avoiding the need for
boundary layer meshing. This is opposed to the widely used finite element method for which boundary
layer meshing is a must. In addition, the boundary element method is suitable for modeling unbounded
domains, which is often of interest in acoustical modeling.

However, the current formulation of the boundary element method including viscous and thermal
losses, has two notable drawbacks. The first major limitation is the reliance on frequency-dependent
boundary integrals, which makes the formulation unsuitable for scenarios involving multiple frequencies.
The second major limitation is that the formulation depends on both sparse and dense matrices, each
of which comes with its own problems. Although sparsity is most often associated with pleasantries
in numerical analysis, the current formulation cannot utilize its properties to the fullest. In fact, the
solution stage includes a series of sparse matrix-matrix products which cannot be guaranteed to be
sparse, which in turn ruins the computational advantage that is usually contributed to sparsity. The
dense matrices is a different beast and would instantly render the formulation unusable for large-scale
problems. However, in the context of boundary element matrices, there exist ways to approximate the
matrix-vector products of these types of matrices in a way that scales. The key is to then reformulate
the problem in a way for which only the matrix-vector product is required.

Solutions to the two issues at hand have been developed within the context of pure acoustical prob-
lems. This thesis extends the solutions in the context of viscous and thermal losses. In particular
the multifrequency problem is resolved by extending a known reduced order series expansion boundary
element method to include the boundary layer impedance boundary condition. This development re-
quired the derivation of the Taylor expansion of the tangential derivative of the Green’s function. The
resulting model is more complex than the original due to the frequency-dependent coefficients in front
of the integrals stemming from the boundary layer impedance condition. The solution in the context
of large-scale simulations is a two-step process. The first step is an extensive reformulation of the
underlying model that allows one to utilize the sparsity patterns of the so-called thermal and viscous
modes in the solution phase. This was a necessary first step in the direction of large-scale simulation,
as without this it would have not made sense to continue with this formulation. The final step was
then to reformulate the problem in a way for which only the dense matrix-vector product with the
so-called acoustical mode was required. Given this reformulation, it was then possible to approximate
the matrix-vector product using standard techniques such as the fast multipole method or H-matrices.
Using these, it was possible to solve problems of sizes far beyond what was previously possible.

Keywords: boundary element method; fast multipole method; H-matrices; rank-structure; viscous
thermal effects; Kirchhoff Decomposition; boundary layer impedance; reduced order model.



Resumé vi



Acknowledgements
I want to acknowledge the many great discussions and incredible feedback that I received from my
supervisors Vicente and Niels. Additionally, I would like to thank you for giving me your trust and the
freedom to explore the things that I found important and interesting - I do not think I would have survied
the full PhD without it. I would also like to acknowledge Peter, who for the first two years of my journey
acted as a great unofficial supervisor while being an overall amazing desk neighbor. Our discussions
on numerical methods, viscothermal losses, and everyday life have made this project possible and joyful.

In addition, I would like to thank my colleagues in the Acoustic Technology group (ACT) as well
as the Centre for Acoustic-Mechanical Microsystems (CAMM). Every PhD student, professor, and af-
filiates has been a pleasure to work with. In particular, I would like to mention the CAMM PhDs
Jonathan and Hossein for injecting some fun into my Wednesdays and my ACT colleagues Yorgos,
Birgitte, Yauheni, Pierangelo, Zenong, Henrik, Samuel, Sophia, and Antonio for never making me eat
lunch alone. Also, I would like to thank the people whom I met mainly virtually, Diana, Daniel P,
Daniel G, and Javier, for making my first years enjoyable. Lastly, a big shout-out needs to be given to
Nikolas, Xenofon, Franz, and Manuel. Nikolas for our many great talks and the shared long evenings
towards the end of our PhDs. Xenofon and Franz for our travels and bikepacking in South Korea after
the ICA2022 conference - this was a highlight of a PhD study that was greatly impacted by COVID19
travel restrictions. Franz and Manuel for our many shenanigans including, but not limited to finding the
best falafel in Copenhagen and bouldering sessions before, after, but never during work. I am grateful
to all of you.

I can not finish this without mentioning the many great people that I met during my visits to the
Chair of Vibro-Acoustics of Vehicles and Machines at the Technical University of Munich. Professor
Marburg has here assembled an inspiring group of young researchers which I am grateful to have been
able to get to know during my stays in Munich. In particular, I would like to mention Simone for her
overwhelming hospitality during my visits to Munich and our trip to the Boundary Element summer
school in the Alps. I hope you enjoyed your visit to Denmark as much as I did my visits to Munich.
Lastly, I would like to stress how important it was to me to have you be part of my project. Having
someone with whom to share my frustrations, progress, and ideas was a major reason for the various
successes during the project. For this I am grateful.

Finally, but perhaps most importantly, I would like to thank my friends (Wadklubben, MIL-crewet,
Mønisterne, Gadevængerne, MatTekkerne, Oskar, Jens, Emma, Krabbe, my brother, and many more)
and family (my mom, my dad, my brother, my grandparents, my cousins, my uncle, my aunts, and
many more) for continually reminding me that the most important things in life is what happens outside
of work - even if science can be really really interesting sometimes.



Resumé viii



Publications
The thesis is based on a collection of scientific works in various forms: Paper J1 is an accepted journal
paper; Paper J2 is a submitted journal paper; Paper J3 is a manuscript in preparation; Paper C1 and
Paper C2 are conference contributions. The list of papers is as follows:

• Paper J1: M. Paltorp, V. C. Henríquez, N. Aage, P.R. Andersen. ”A Reduced Order Series Ex-
pansion for BEM Incorporating the Boundary Layer Impedance Condition.”, Accepted to the Jour-
nal of Theoretical and Computational Acoustics (2023), doi.org/10.1142/S2591728523500123.

• Paper J2: S. Preuss, M. Paltorp, A. Blanc, V. C. Henríquez, S. Marburg. ”Revising the Bound-
ary Element Method for Thermoviscous Acoustics: An Iterative Approach via Schur Complement.”
Accepted to the Journal of Theoretical and Computational Acoustics (2023).

• Paper J3: M. Paltorp, S. Preuss, V. C. Henríquez, S. Marburg. ”Large-Scale Boundary Element
Computations Including Viscous and Thermal Losses.” Manuscript (2023).

• Paper C1: M. Paltorp, V. C. Henríquez, N. Aage, P. R. Andersen. ”A reduced order model
including viscothermal losses.” In: Proceedings of 24th International Congress on Acoustics, ICA
2022. Gyeongju, Republic of Korea (2022).

• Paper C2: M. Paltorp, V. C. Henríquez. ”An Open-source Boundary Element Framework
for Large-scale Viscothermal Acoustics.” In: Proceedings of the 10th convention of the European
Acoustic Association, Forum Acusticum 2023. Turin, Italy (2023).

doi.org/10.1142/S2591728523500123


Resumé x



List of symbols and abbreviations
Abbreviations

H-matrix Hierarchical Matrix

2D Two-dimensional

3D Three-dimensional

BE Boundary Element

BEM Boundary Element Method

BLI Boundary Layer Impedance

DOF Degrees of Freedom

FEM Finite Element Method

FLNS Fully Linearized Navier-Stokes

FMM Fast Multipole Method

GMRes Generalized Minimal Residual Method

HPC High-Performance Computing

IFD Interpolation Function Derivative

KD Kirchhoff Decomposition

MOR Model Order Reduction

PDE Partial Differential Equation

ROM Reduced Order Model

ROSEBEM Reduced Order Series Expansion Boundary Element Method

SEBEM Series Expansion Boundary Element Method

SVD Singular Value Decomposition

Symbols (Bold)

Dc ∈ Rnd×n Column collection of interpolation function derivatives, see (4.39)

Dr ∈ Rn×nd Row collection of interpolation function derivatives, see (4.39)

Ds ∈ Rn×n Second tangential interpolation function derivatives

Dt ∈ Rn×n First tangential interpolation function derivatives

Dx ∈ Rn×n x-component of interpolation function derivatives, see (4.21)

Dy ∈ Rn×n y-component of interpolation function derivatives, see (4.21)
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Dz ∈ Rn×n z-component of interpolation function derivatives, see (4.21)

Fm ∈ Cn×n Discretized surface integral of the mth derivative of normal Green’s function

Fℓm ∈ Cℓ×ℓ Projected Discretized surface integral of the mth derivative of Normal Green’s function

G ∈ Cn×n Discretized surface integral of the Single Layer Potential

Gm ∈ Cn×n Discretized surface integral of the mth derivative of Green’s function

Gℓm ∈ Cℓ×ℓ Projected Discretized surface integral of the mth derivative of Green’s function

H ∈ Cn×n Discretized surface integral of the Double Layer Potential

Hm ∈ Cn×n Discretized surface integral of the mth derivative of Green’s function

Hℓm ∈ Cℓ×ℓ Projected Discretized surface integral of the mth derivative of Green’s function

I ∈ Rn×n The Identity matrix

n ∈ Rd Normal vector

N ∈ Rnd×n Projection onto normal direction, see (4.39)

n(y) ∈ Rd Normal vector at position y

p ∈ Cn Pressures

pa ∈ Cn Acoustical pressures

ph ∈ Cn Thermal pressures

pinc ∈ Cn Incident pressures

psca ∈ Cn Scattered pressures

R ∈ Cn×nd Inner Matrix, see (4.47)

t ∈ Rd Target Location

Tm ∈ Cn×n Discretized surface integral of the mth derivative of Tangential Green’s function

Tℓm ∈ Cℓ×ℓ Projected Discretized surface integral of the mth derivative of Tangential Green’s function

u ∈ Rd−1 Local coordinates

Uℓ ∈ Cn×ℓ Projection matrix / Reduced Order Basis

v ∈ Rnd (Stacked) Viscous velocity, see (4.7)

vs ∈ Rnd (Stacked) Boundary velocity, see (4.14)

x ∈ Rd Target Location

y ∈ Rd Source Location

Le ∈ Rne×n Element localization matrix, see (3.10)

∂np ∈ Cn Normal derivative of the pressures

∂npa ∈ Cn Normal derivative of the acoustical pressures

∂nph ∈ Cn Normal derivative of the thermal pressures
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∂nv ∈ Rdn (Stacked) Normal derivatives of viscous velocity, see (4.7)

Super- and subscripts

H Hermitian/Conjugate Transpose

∥ Tangential direction

⊥ Normal direction

⊤ Transpose

a Indicates the acoustic mode, see (4.1)

e Element number

h Indicates the thermal mode, see (4.2)

v Indicates the viscous mode, see (4.3)

Functions

blkdiag(A1,A2, . . . ,An) Block-diagonal matrix with Ai in its diagonal (and the rest being zero)

T(x) Global basis functions (row vector, see (3.1))

Te(x) Element basis functions

vv(x) Viscous velocity

δ(x) Dirac delta function

δ(x,y) Dirac delta function

diag(x) Square matrix with x as its diagonal

∥x∥2 Euclidean norm of x

G(x,y) Green’s function

p(x) Pressure

pa(x) Acoustic pressure

ph(x) Thermal pressure

pinc(x) Incident pressure

psca(x) Scattered pressure

Operators

∆ Laplacian

∆∥ Tangential (part of) Laplacian
∂

∂n Normal derivative (n⊤∇)

∇ Gradient

∇∥ Tangential (part of) Gradient (∇∥ = (I− nn⊤)∇)

∇⊥ Normal (part of) Gradient
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oprojn(∇pa) Vector rejection of pa from n

projn(∇pa) Vector projection of pa onto n

Symbols

α Sign of time dependency

δij Kronecker delta

η Viscosity of air

Γ Boundary of PDE domain

γ Ratio of specific heats

i Imaginary unit

λ Thermal conductivity

µa Acoustic Lossy Constant, see (4.42)

µh Thermal Lossy Constant, see (4.42)

Ω Domain of PDE

ω Angular frequency of the pressure

ϕa Acoustic No-slip Constant, see (4.11)

ϕh Thermal No-slip Constant, see (4.11)

ρ0 Equilibrium density

τa Acoustic Isothermal Constant, see (4.9)

τh Thermal Isothermal Constant, see (4.9)

c0 Equilibrium speed of sound

Cp Specific heat capacity at constant pressure

Cv Specific heat capacity at constant volume

d Dimension (usually we deal with 2- or 3-dimensional computations).

f Frequency

f0 Expansion frequency

k Wavenumber

k0 Expansion wavenumber

ka Acoustic wavenumber, see (4.1)

kh Thermal wavenumber, see (4.2)

kv Viscous wavenumber, see (4.3)

n Number of collocation nodes

ne Number basis functions on element e

r Euclidean distance between x and y
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CHAPTER 1
Introduction

1.1 Motivation
An increasingly important application of acoustics is that of micromechanical systems such as hearing
aids and mobile phones. In these devices, the acoustics is propagating in narrow channels and chambers
on the millimeter scale. As such, it can be important to include physical phenomena occurring on the
microscale, such as e.g. viscous and thermal effects. If these effects are not included in the simulation,
the results may be incorrect [28, 36, 50, 63].

1.2 Scope of Thesis
The aim of this PhD study is to develop new methods to efficiently simulate large-scale acoustical
problems, including viscous and thermal losses, using the boundary element method (BEM). Given the
computational complexity of large-scale problems, thoughts had to be put into the underlying language
of implementation. Due to the relatively short timeframe of the project, it was chosen to use the Julia
programming language as the compromise between efficiency and ease-of-use was found fitting. The
final code is made available through GitHub and an overview of which acoustical problems it can be
used to solve is presented in Paper C2. When taking viscothermal simulations large-scale two issues
arise. The first issue is that the naive discretization process will result in fully populated matrices,
which for even moderately sized problems becomes a memory bottleneck. The second issue is that
the frequency dependence of the underlying boundary element integrals makes it so that for every
frequency of interest the discretization process needs to be redone. We note that the second issue is
an inherent problem of the boundary element method and is therefore also present for computations
without viscous and thermal losses. The two approaches, aiming to resolve the two issues, were studied
and can be summarized as follows:

• The first approach is based on a new formulation for the inclusion of viscous and thermal losses in
boundary element computations. The new model eliminates the reliance of tangential directions,
making it easier to implement. More importantly, we show that the new formulation makes it
possible to utilize the sparsity in the solution phase of the equations, whereas previously it was only
possible to utilize the sparsity in the assembly phase (Paper J2). As a result, the limiting factor
of the computation became the two dense acoustical matrices. Fortunately, standard techniques
for accelerating the boundary element computations, e.g. the fast multipole method and the H-
matrix approach, can be used to speed up this part of the computation. As such, we show that it
is possible to solve problems of sizes that far exceed what has previously been possible (Paper J3).
The underlying simulation code, written in the Julia programming language, was made available
as an open-source package (Paper C2).

• The second approach tackles the computational issues of handling multiple frequencies using the
boundary element method. The main idea is rather simple: We combine a known technique
for approximating viscothermal losses with a known technique for reducing computational efforts
for multifrequency boundary element problems. Doing so, however, is not trivial and requires
additional derivations of e.g. the Taylor expansion of the tangential gradient of the Green’s
function. The resulting model can be used to efficiently solve multifrequency boundary element
problems including (approximate) losses. The results show that the introduced model is around
25-100 times faster while using a similar memory footprint (Paper J1 and Paper C1).
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1.3 Thesis Structure
The thesis is organized as follows. Chapters 2 and 3 introduce the basic theory of sound propagation and
the boundary element method. Chapter 4 deals with the basics of viscous and thermal losses and gives
a description of the new formulation. Similarly, Chapter 5 gives a short introduction to the proposed
model capable of improving the computational efficiency of multifrequency analysis including viscous
and thermal losses. Chapter 6 then draws conclusions from the PhD study. Finally, in Chapter 7, the
potential next steps of the research are presented and discussed.



CHAPTER 2
Sound Propagation

2.1 Acoustic Waves
In acoustics, we most often assume that waves are perturbations of the medium density (ρ(x, t)), pressure
(p(x, t)), and velocity (v(x, t)), where t is the time [34]. Furthermore, it is often assumed that the fluid
is inviscid and that the perturbations are small, that is, ρ′ ≪ ρ0, p′ ≪ p0, and |v′| ≪ c (with c being the
wave speed), with the primes denoting the perturbations, and the subscript zero denoting the values
when the fluid is at rest. Finally, the density and pressure can be computed as

ρ = ρ0 + ρ′, p = p0 + p′. (2.1)

In this case, the linearized mass and momentum conservation equations can be written as
∂ρ′

∂t
+∇ · (ρ0v′) = 0, ρ0

∂v′

∂t
+∇p′ = 0. (2.2)

Differentiating the first equation with respect to t and then utilizing the second equation, it follows that

∂2ρ′

∂t2
−∆p′ = 0., (2.3)

where ∆ is the Laplacian. Now the set of equations in (2.2) is not closed since there are only two
equations, but more unknowns (density, pressure, and the components of the velocity). The relation
needed to close the system of equations is the equation of state, which relates perturbations of the
pressure and density. The simplest of such relations is that the pressure depends solely on the density
as [40]

p = p(ρ). (2.4)
Approximating the above using a Taylor expansion, we get the following approximation of the density

p = p(ρ0) + dp
dρ

∣∣∣∣
ρ=ρ0

(ρ− ρ0) +O((ρ− ρ0)2). (2.5)

Furthermore, using p(ρ0) = p0, p = p0 + p′, and ρ′ = ρ − ρ0 and disregarding the higher-order terms,
the above becomes

p′ ≈ c2ρ′, c2 = dp
dρ

∣∣∣∣
ρ=ρ0

. (2.6)

Inserting this back into (2.3) we arrive at the wave equation for pressure perturbations.

1
c2
∂2p′

∂t2
−∆p′ = 0. (2.7)

The relation in (2.6) naturally gives a similar wave equation for the density perturbations. Equivalently,
the velocity perturbations satisfy the vector wave equation

1
c2
∂2v′

∂t2
−∆v′ = 0, (2.8)

meaning that each of its components satisfy their own scalar wave equation. However, these equations
are not independent since the momentum equation shows that there exists some scalar potential ψ′,
called the velocity potential, such that [35]

v′ = ∇ψ′,
1
c2
∂2ψ′

∂t2
−∆ψ′ = 0, ρ0

∂ψ′

∂t
= −p′. (2.9)
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2.2 Monochromatic waves
For time-harmonic problems the solution can be written as

p(x, t) = Re
{
p(x)eαiωt

}
, (2.10)

where α = ±1 is the sign of the chosen time dependency, ω = 2πf is the angular frequency (and f
being the frequency), i is the imaginary unit, and x is a point in space. Inserting the time-harmonic
solution into the wave equation, the Helmholtz equation appears

∆p(x) + k2p(x) = 0, x ∈ Ω, (2.11)

where k = ω
c is called the wavenumber. The Helmholtz equation naturally occurs in conservation laws

and can be interpreted in the frequency domain as a wave equation for monochromatic waves. The
Helmholtz equation can be derived from various partial differential equations such as the diffusion equa-
tion, the Schödinger equation, and other wave-like equations [25, 40, 65]. From a mathematical point of
view, the Helmholtz equation is an eigenvalue problem. Note that (2.11) appears to be independent of
the choice of α, which can cause confusion for cases where the time dependence is not explicitly stated.
In many cases the normal velocity will be given as a boundary condition, hence the relation between
the normal derivative of the pressure and normal velocity is importantly given as

∂p(x)
∂n(x)

= −αiρ0ckvn(x), x ∈ Γ, (2.12)

where α is importantly part of the definition. For simplicity, similarly to [58], we introduce

s(α) = −αiρ0c, (2.13)

such that
∂p(x)
∂n(x)

= s(α)kvn(x), x ∈ Γ. (2.14)

2.3 Kirchhoff-Helmholtz Integral Equation
For three-dimensional problems the Green’s function, which will come in handy soon enough, is given
by

G(α,x,y) = exp (−αik∥x− y∥2)
4π∥x− y∥2

, x,y ∈ R3. (2.15)

The Green’s function is the solution to the modified Helmholtz equation [58]

∆G(α,x,y) + k2G(α,x,y) = αδ(x,y), (2.16)

where δ(x,y) is Dirac delta function. Note that the Green’s function takes two inputs, x and y, which
is commonly referred to as the target location (x) and the source location (y), or simply the target(s)
and source(s).

The first step in deriving the Kirchhoff-Helmholtz Integral equation is to multiply the Helmholtz
equation from (2.11) with a test function q followed by an integration over the domain of interest∫

Ω
q(y)

[
∆p(y) + k2p(y)

]
dΩy = 0. (2.17)

Integrating by parts twice it follows that∫
Ω
q(y)

[
∆p(y) + k2p(y)

]
dΩy = s(α)k

∫
Γ
q(y)vn(y) dSy −

∫
Γ

∂q(y)
∂n(y)

p(y) dSy

+
∫

Ω
p(y)

[
∆q(y) + k2q(y)

]
dΩy = 0.

(2.18)
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Now, setting q(y) = G(α,x,y) into (2.18) and utilizing that the Green’s function is the solution to the
modified Helmholtz equation, it follows that

αζ(x)p(x)−
∫

Γ

∂G(α,x,y)
∂n(y)

p(y) dSy + s(α)k
∫

Γ
G(α,x,y)vn(y) dSy = 0, (2.19)

where ζ(x) is the so-called integral free term depending on the geometry at x. For smooth geometries
ζ(x) is equal to 1

2 , but for corners the values deviate between 0 and 1. Since α is part of every term
of (2.19) one often finds that it is completely left out in the literature. The unfortunate side effect of
this is that the two terms including the Green’s function changes signs depending on the chosen time
dependency. Although the above equation could be solved directly, it is common to again multiply the
equation with a test function ϕ(x) and then apply a surface integral to the domain Γ. The resulting
equation is the so-called weak formulation∫

Γ
ϕ(x)

(
αζ(x)p(x)−

∫
Γ

∂G(x,y)
∂n(y)

p(y) dSy + s(α)k
∫

Γ
G(x,y)vn(y) dSy

)
dSx = 0. (2.20)

By default, the solution computed using (2.20) satisfies the Sommerfeld radiation condition

lim
r→∞

[
r

d−1
2

(
∂p

∂r
+ αikp

)]
= 0. (2.21)

As a result, the integral formulation has found a footing in both acoustics and electromagnetics, where
this condition is often encountered in specialized measurement facilities.
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CHAPTER 3
The Boundary Element Method

The boundary element method (BEM) can be used to numerically approximate solutions to boundary
integral equations (BIEs). In the area of acoustics, a common BIE is the Kirchhoff-Helmholtz integral
equation used to describe time-harmonic acoustics. The literature of BEMs is vast and giving a full
summary is beyond the scope of this thesis. Instead, the following chapter will limit itself to only
describing the basics required to understand the fundamental ideas of the research carried out during
this PhD study.

3.1 Getting the computer to understand functions
In the most basic terms, computers are only capable of understanding numbers, which means that they
are inherently unable to solve equations where the unknowns are functions. This is a problem when
trying to solve BIEs. To solve this problem, the functions are instead approximated using parameteri-
zations for which the coefficients (numbers) are unknown. Intuitively, these numbers are exactly what
the computer is asked to find. For element methods, this parameterization is chosen to be the simplest
possible: A linear combination of functions

p(x) ≈ T(x)p =
[
T1(x) T2(x) . . . Tn(x)

]

p1
p2
...
pn

 , (3.1)

where p is the unknown function being approximated. Note that the linearity is with respect to the
unknown parameters p, but not necessarily in the known basis functions T(x). A useful, but not
necessary, property is called the Cardinal property stating that

Ti(xj) = δij =

{
1, i = j

0, i ̸= j
. (3.2)

The usefulness is due the property making the jth value of p interpretable as the value of the function
at point xj as

T(xj)p = pj . (3.3)

One might ask: How does the above relate to the boundary element method? The answer is that the
functions Ti are chosen to be simpler functions with support equal to only a few subdomains of the
original domain (the support is drawn in red in Figure 3.4). These subdomains are commonly referred
to as elements.

3.2 What is an element?
A key insight is that the element serves two purposes: It represents a subdomain of the original domain
(also referred to as the geometry) while also describing parts of the unknown function(s) of interest. In
the case of surface elements, which are the ones used for BEMs, the parameterization of the subdomain,
i.e. the element, is done as

xe(u) = XeNe(u) ∈ Γe, ∀u ∈ Le, (3.4)
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where the superscript e denotes the element number, Xe is a matrix with columns equal to the inter-
polation nodes of the geometry, Ne(u) are the so-called shape functions, Γe is the element in global
coordinates and Le are the local coordinates. The structure of some collection of interpolation nodes
(Xe) multiplied by some shape function (Ne(u)) is the same for most geometric elements. For BEMs
in 3D, it is common to work with triangular elements, which can be seen in Figure 3.1. In particular,
the elements in Figure 3.1 are linear, for which a description can be found in Example 3.1.

u1

u2

Le

x3 x4

x1x2

Γ1 Γ2

X2N2(u1, u2)

X1N1(u1, u2)

Figure 3.1: The original domain in shown in gray while two (linear) elements are shown in shaded
black. The black points denote the interpolation nodes of the elements (the columns of Xe).

Example 3.1. Linear triangular elements

The linear shape functions for a triangular element can have the form

Ne(u1, u2) =

1− u1 − u2
u1
u2

 , u1 ∈ [0, 1], u2 ∈ [0, 1− u1]. (3.5)

The choice in the wording can is because the ordering of the columns of Xe can change the
ordering rows of Ne(u) or vice versa. This is something that one should keep in mind in practice
when using different mesh file formats. Taking the second element of Figure 3.1 as an example,
it could be that

X2 =
[
x3 x1 x4

]
. (3.6)

Note that extending the geometric interpolation to higher orders is as simple as adding more
rows/functions to Ne(u1, u2) as well as more columns/points to Xe.

In addition to the geometric interpolation of each element, we need to further define interpolations
of the unknown functions, which in the case of the Kirchhoff-Helmholtz equation is p(x) and vn(x).
Taking p(x) as an example, we find that on element e this interpolation can be done as

p(xe(u)) = T(xe(u))p = T(x(u))(Le)⊤︸ ︷︷ ︸
Te(u)

Lep︸︷︷︸
pe

= Te(u)pe, u ∈ Le, (3.7)

where Le is a permutation-like matrix that extracts the relevant values of p and orders them such
that they correspond to the local basis functions of Te(u). The local basis functions are usually
chosen as Lagrange polynomials, but other basis functions, such as, e.g., Legendre polynomials and
splines, have also been successfully applied [14, 51]. Figure 3.2, Figure 3.3, and Example 3.2 show the
interpolation of (3.7) for triangular elements in the case of continuous interpolation (Figure 3.2) and
discontinuous interpolation (Figure 3.3). In short, the difference between continuous and discontinuous
interpolations is that the interpolation nodes pe are shared between multiple elements (continuous
elements) or completely inside the element (discontinuous elements). A consequence of the position
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of the interpolation nodes is that the value on the shared edge, highlighted in blue in both figures, is
uniquely defined for continuous elements, while it serves as a discontinuity for discontinuous elements.

u1

u2

Le

p3
p4

p1p2

T2(u1, u2)p2

T1(u1, u2)p1

Figure 3.2: The original domain in shown in gray while two continuous linear interpolations on
triangular elements are shown in red. The red points denote the interpolation nodes of the elements
(where the interpolation of p is equal to a value in pe).

u1

u2

Le

p3

p1p2

p4
p5

p6

T2(u1, u2)p2

T1(u1, u2)p1

Figure 3.3: The original domain in shown in gray while two discontinuous linear interpolations on
triangular elements are shown in red. The red points denote the interpolation nodes of the elements
(where the interpolation of p is equal to a value in pe).

Example 3.2. Basis functions (Te(u)) for linear interpolation

Continuous linear basis functions on triangular elements are similar to shape functions for a
linear triangular element and differ only in the fact that it is the transpose.

Te
continuous(u1, u2) =

[
1− u1 − u2 u1 u2

]
, u1 ∈ [0, 1], u2 ∈ [0, 1− u1], (3.8)

where the subscript ”continuous” is only there to highlight that it is a continuous formulation.
Again, the ordering of the columns of the row vector depends on the ordering of the element
corners. The discontinuous linear interpolation is simply a scaled continuous formulation

Te
discontinuous(u1, u2) = Te

continuous

(
u1 − β
1− 3β

,
u2 − β
1− 3β

)
, (3.9)

where β ∈
[
0, 1

2
[

is a scalar representing the location of the interpolation nodes in the local Le

coordinates.
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Example 3.3. Element localization matrix

For a continuous linear element e all three corners correspond to a value of the global vec-
tor p. For example, the second element in Figure 3.2 has local corner values given by
p2 =

[
p3 p1 p4

]⊤. This element would have Le given as

L2 =

0 0 1 0 . . . 0
1 0 0 0 . . . 0
0 0 0 1 . . . 0

 , (3.10)

so that p2 = L2p. Note that Le is only an artifact of the mathematical description. Any
reasonable implementation should use indexing instead of multiplication with Le.

In the case of the discontinuous description the same element in Figure 3.3 would have p2 =[
p4 p5 p6

]⊤ meaning that

L2 =

0 0 0 1 0 0 0 . . . 0
0 0 0 0 1 0 0 . . . 0
0 0 0 0 0 1 0 . . . 0

 . (3.11)

Note here that the discontinuous nature result in Le simply picks out three consecutive values.

Note 3.1. Revisiting the geometric interpolation

The element localization matrix can also be used to define the geometric interpolation described
in (3.4). Following a similar procedure as for the pressure, we can write the interpolation as

x(u) = XN(u) = X (Le)⊤︸ ︷︷ ︸
Xe

LeN(u)︸ ︷︷ ︸
Ne(u)

, (3.12)

where X is a matrix whose columns contain all the interpolation nodes of the geometry and
N(u) are global basis functions. However, in practice, using this formulation does not give an
advantage, as X is fully known. This is opposed to the interpolation of functions for which both
p and vn are unknown.

3.3 Applying Quadrature
As we will explore in the next section, the underlying mathematics of boundary element methods is
that of boundary integrals. In most cases, it is not possible to compute these integrals analytically.
Instead, a quadrature scheme is used to approximate the integrals. To do so, the boundary integrals in
global coordinates are transformed into the local element coordinates. This transformation comes with
the cost of the need to compute the so-called Jacobian function, which describes the local deformation
from the transformation. For 2D and 3D this deformation looks as follows

2D: jacobian(u) =
∥∥∥∥Xe dNe(u)

du

∥∥∥∥
2

(length deformation)

3D: jacobian(u) =
∥∥∥∥(Xe dNe(u)

du1

)
×
(

Xe dNe(u)
du2

)∥∥∥∥
2

(area deformation)
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Applying this the surface integral can be transformed into local coordinates and approximated using a
suitable quadrature scheme as∫

Γe

f(y) dSy =
∫

Le

jacobian(u)f(u) du ≈
Q∑

i=1
jacobian(ui)wif(ui), (3.13)

where ui is the ith quadrature point with corresponding (quadrature) weight wi.

3.4 The Boundary Element Method
In simple terms, the boundary element method is a method for solving boundary integral equations
through a discretization of both the unknown function and the domain [53, 57, 59, 74]. In this thesis, the
main focus is solving the BIE through the so-called collocation approach. This approach is a particular
case of the Galerkin approach of (2.20) where the test function is equal to the sum of Dirac-delta
functions centered around each of the collocation points, that is,

ϕ(x) = a⊤


δ (x− t1)
δ (x− t2)

...
δ (x− tn)

 , (3.14)

where a ∈ Cn is a vector of arbitrary coefficients and ti ∈ R3 are the so-called collocation points. For
ease of implementation, the collocation points are in most cases chosen as the interpolation nodes of
the basis functions. The reason why this result in an easy implementation is that the cardinal property
of the basis function can then be easily be used. Inserting this is into (2.20), while setting the constant
coefficients a⊤ outside of parentheses it follows that

a⊤


∫

Γ


δ (x− t1)
δ (x− t2)

...
δ (x− tn)


(
αζ(x)p(x)−

∫
Γ

∂G(x,y)
∂n(y)

p(y) dSy + s(α)k
∫

Γ
G(x,y)vn(y) dSy

)
dSx

 = 0.

(3.15)
By the sifting property of the Dirac-delta function the above can be reduced to

a⊤


α



ζ(t1)p(t1)

ζ(t2)p(t2)

...

ζ(tn)p(tn)


−



∫
Γ

∂G(t1,y)
∂n(y)

p(y) dSy∫
Γ

∂G(t2,y)
∂n(y)

p(y) dSy

...∫
Γ

∂G(tn,y)
∂n(y)

p(y) dSy


+ s(α)k



∫
Γ
G(t1,y)vn(y) dSy∫

Γ
G(t2,y)vn(y) dSy

...∫
Γ
G(tn,y)vn(y) dSy




= 0. (3.16)

In its current form, the solution to this equation is a function that a computer cannot be tasked to find.
Instead, the problem is made computationally tractable by parameterizing the functions p and vn as
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shown in (3.1). As such the above reduces to

a⊤


α



ζ(t1)T(t1)p

ζ(t2)T(t2)p

...

ζ(tn)T(tn)p


−



∫
Γ

∂G(t1,y)
∂n(y)

T(y)p dSy∫
Γ

∂G(t2,y)
∂n(y)

T(y)p dSy

...∫
Γ

∂G(tn,y)
∂n(y)

T(y)p dSy


+ s(α)k



∫
Γ
G(t1,y)T(y)vn dSy∫

Γ
G(t2,y)T(y)vn dSy

...∫
Γ
G(tn,y)T(y)vn dSy




≈ 0.

(3.17)
Setting the parameters p and vn outside the integrals while also using the cardinal property of the
basis functions it follows that

a⊤




αdiag





ζ(t1)

ζ(t2)

...

ζ(tn)




−



∫
Γ

∂G(t1,y)
∂n(y)

T(y) dSy∫
Γ

∂G(t2,y)
∂n(y)

T(y) dSy

...∫
Γ

∂G(tn,y)
∂n(y)

T(y) dSy




p + s(α)k



∫
Γ
G(t1,y)T(y) dSy∫

Γ
G(t2,y)T(y) dSy

...∫
Γ
G(tn,y)T(y) dSy


vn


≈ 0.

(3.18)
Since the above has to hold for all a ∈ Cn it follows that the term inside the parentheses is equal to 0,
i.e.

αdiag





ζ(t1)

ζ(t2)

...

ζ(tn)




−



∫
Γ

∂G(t1,y)
∂n(y)

T(y) dSy∫
Γ

∂G(t2,y)
∂n(y)

T(y) dSy

...∫
Γ

∂G(tn,y)
∂n(y)

T(y) dSy




p + s(α)k



∫
Γ
G(t1,y)T(y) dSy∫

Γ
G(t2,y)T(y) dSy

...∫
Γ
G(tn,y)T(y) dSy


vn ≈ 0. (3.19)

Which can be written in matrix form as

(αdiag(ζ)− F)p + s(α)kGvn = Hp + s(α)kGvn = 0, (3.20)

where we simply defined H = αdiag(ζ)− F for the sake of convenience.

3.4.1 Discretization
While (3.20) is easily stated, it does not mention how to actually compute G and H. As such, we now
briefly explain how to compute the kth row of F and note that the exact same procedure can be used to
compute the kth row of G. The key insight to do this computation is to realize that the interpolation
on the eth element is done using (3.7). This means that, for example, the pressure on element e can be
described as

p(ye(u)) ≈ T(y)p = T(ye(u))(Le)⊤︸ ︷︷ ︸
Te(u)

Lep (3.21)
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Approximating the full boundary integral as a sum of each element contribution in addition to inserting
(3.21) into the kth row of F while utilizing the linearity of the sum and integral it follows that∫

Γ

∂G(tk,y)
∂n(y)

T(y)p dSy ≈
N∑

e=1

(∫
Γe

∂G(tk,y)
∂n(y)

T(y)(Le)⊤Le dSy

)
p

≈


N∑

e=1

Q(tk,e)∑
i=1

∂G(tk,ye(ui))
∂n(ye(ui))

jacobian(ui)wiTe(ui)

Le

︸ ︷︷ ︸
kth row of F

p,
(3.22)

where it is highlighted that the number of quadrature points, Q(tk, e), can be depended on the col-
location point tk and the eth element. Note that the approximation in the first line of (3.22) is due
to the approximation of the geometry using elements while the second approximation is due to the
approximation of the integral using a quadrature scheme. The computation of the kth row of G can be
performed analogously.∫

Γ
G(tk,y)T(y)vn dSy ≈

N∑
e=1

(∫
Γe

G(tk,y)T(y)(Le)⊤Le dSy

)
vn

≈


N∑

e=1

(
Q∑

i=1
G(tk,ye(ui))jacobian(ui)wiTe(ui)

)
Le

︸ ︷︷ ︸
kth row of G

vn,

(3.23)

A considerable downside of the BEM is that the resulting matrices H,G ∈ Cn×n are dense, meaning that
memory used to store the two matrices on a computer scales as O(n2), rendering the direct application
of the method unusable for large n. However, various methods have been developed that reduce memory
consumption to O(n log(n)) or even O(n) by utilizing the rank-structure of the problem. Many of these
methods depend only on defining the matrix-vector products with the matrices, which means that the
resulting linear system of equation, like (3.19), must be solved using an iterative scheme. The most
common of these schemes is the generalized minimal residual method (GMRes) [60, 70, 71].

3.5 Acceleration Methods
The aim of this section is to show how matrix-vector product of G and H (or maybe more precisely F)
can be reduced from O(n2) to O(n) using the fast multipole method (FMM) or hierarchical/H-matrices.
To do so, we start by assuming that the integration of each element can be done using the same Q
quadrature points1. As solving linear systems using an iterative scheme only requires the matrix-vector
products, we look into these specifically for G and F. For simplification purposes, we look only at the
kth rows, as extending this to include all rows is trivial. We start by looking at G∫

Γ
G(tk,y)T(y) dSy︸ ︷︷ ︸

kth row of G

 z ≈
(

N∑
e=1

(
Q∑

i=1
G(tk,ye(ui))jacobian(ui)wiTe(ui)

)
Le

)
z

=

NQ∑
j=1

G(tk,yj) jacobian(uj)wjTe(j)(uj)Le(j)︸ ︷︷ ︸
jth row of C

 z

=
[
G(tk,y1) G(tk,y2, ) . . . G(tk,yNQ)

]
Cz

(3.24)

1This will cause numerical issues that are then fixed by a near field correction step



3.5 Acceleration Methods 14

where the subscript j refers to an ordering of the collection of Gaussian points from all elements and
e(j) is a function that returns the element number that Gaussian point j is located on. Furthermore,
the matrix C is extremely sparse and can be thought of as a transformation/interpolation of values (z)
at the collocation points (tk) into coefficients

(
c =

[
c1 c2 . . . cNQ

]⊤) at the Gaussian points (yj).
A similar approach can be applied to F∫

Γ

∂G(tk,y)
∂n(y)

T(y) dSy︸ ︷︷ ︸
kth row of F

 z ≈
(

N∑
e=1

(
Q∑

i=1

∂G(tk,ye(ui))
∂n(ye(ui))

jacobian(ui)wiTe(ui)

)
Le

)
z

=

NQ∑
j=1

n(yj)⊤∇G(tk,yj) jacobian(uj)wjTe(j)(uj)Le(j)︸ ︷︷ ︸
jth row of C

 z

=
[
n(y1)⊤∇G(tk,y1) . . . n(yNQ)⊤∇G(tk,yNQ)

]
Cz,

(3.25)

where C similar to (3.24) transforms z into some coefficients c =
[
c1 c2 . . . cNQ

]⊤.

Applying directly (3.24) or (3.25) for all rows of G and H will result in products that scale O(NQn),
which could hurt more than we gain (as NQ ⪆ n). However, the fast multipole method or the H-matrix
approach can be used to speed up the product with the dense part of the product. However, doing
so blindly will cause some numerical errors stemming from the integration of elements close to the
collocation point. To resolve this issue, a near-field correction matrix is applied to the product. As
such, applying (3.24) and (3.25) for all rows at the same time can be thought of as

A = BC + S, S,A ∈ Cn×n, B ∈ Cn×NQ, C ∈ RNQ×n, (3.26)

where B is the dense part approximated by either the fast multipole method or a H-matrix (see (3.28)
and (3.29) for examples of B), C is the coefficient map and S is the near field correction. In short, the
near-field correction matrix subtracts the wrong integration done by using only Q Gaussian points and
adds the correct integration instead. It is important to note that S and C are highly sparse matrices,
meaning that both the assembly and the matrix-vector product scale as O(nτ) where τ ≪ n. This
means that using an approximate scheme for B with a product that scales linearly in time and memory
results in a representation of A that scales similarly.

A priori knowledge of the sparsity pattern of the near-field correction step is needed to compute it
efficiently. In the case of collocation, such knowledge could, for example, be the neighboring elements
of the interpolation nodes (Figure 3.4). While this approach works well in many cases, it will fail in
instances where the elements that are not neighbors are close geometrically, as is the case of e.g. flat
structures.
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(a) Continuous Elements. (b) Discontinuous elements.

Figure 3.4: The figure originally appeared in Paper J3. Supports of the interpolation functions on
the vertex/edge node is shown in red. In some cases, one can also increase the singularity extraction to
include the blue areas.

3.5.1 The Fast Multipole Method
The fast multipole method (FMM) can be used to accelerate sums of Green’s functions (G) as well as the
normal derivative of the Green’s function (H) [24, 38, 39]. Throughout the years, many good resources
have been written explaining the intricacies of fast multipole methods. For a gentle introduction to
the topic, I recommend [12] and [77], while for a more detailed look with an emphasis on boundary
element methods, [40] and [76] are good choices. Also, Lexing Ying, the author of [77], has a wonderful
introductory talk which can be found online [78]. Given these resources, the specific details of fast
multipole methods will be left out here. Instead, we focus on the intuition behind their connection
to boundary element methods. For this, it is enough to think of fast multipole methods as a way of
speeding up sums of the form

u(tk) =
NQ∑
j=1

G(tk,yj)cj , u(tk) =
NQ∑
j=1

n(yj)⊤∇G(tk,yj)cj (3.27)

where when tk = yj the jth term is excluded from the sum. Looking back at (3.24) and (3.25) it can
be seen that (3.27) is exactly what is being computed for each of the rows of G and F with coefficients
given as c = Cz. Applying the fast multipole method to all n collocation points results in something
that scales O((n + NQ) log3/2(1/ε)) where ε is the relative precision. Many fast multipole software
libraries have been developed over the years, such as ExaFMM [73], ScalFMM [72], and FMM3D [4]. Due to
the existence of their Julia interface, it was chosen in this study to work with FMM3D developed at the
Flatiron Institute.

3.5.2 Hierarchical Matrices
The H-matrix approach differs from the fast multipole method by the fact that it does not accelerate
the sums of (3.27) directly [61, 62]. Instead, it approximates the matrix that corresponds to performing
the sum in (3.27) for all the n collocation points at the same time, that is, for all t1, t2, . . . , tn. Taking
the G matrix as an example this means approximating a matrix of the form

B =


G(t1,y1) G(t1,y2) . . . G(t1,yNQ)
G(t2,y1) G(t2,y2) . . . G(t2,yNQ)

...
... . . . ...

G(tn,y1) G(tn,y2) . . . G(tn,yNQ)

 , (3.28)
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based on the fact that subblocks of the matrix is well approximated by low-rank matrices. For the H
matrix the matrix being approximating by low-rank matrices is given by

B =


n(y1)⊤∇G(t1,y1) n(y2)⊤∇G(t1,y2) . . . n(yNQ)⊤∇G(t1,yNQ)
n(y1)⊤∇G(t2,y1) n(y2)⊤∇G(t2,y2) . . . n(yNQ)⊤∇G(t2,yNQ)

...
... . . . ...

n(y1)⊤∇G(tn,y1) n(y2)⊤∇G(tn,y2) . . . n(yNQ)⊤∇G(tn,yNQ)

 , (3.29)

Exactly how hierarchical low-rank approximation is computed is, however, outside the scope of this
thesis, but the interested reader should look at [6, 13, 42] where I would like to highlight [6] as my
preferred introduction. In addition a wonderful lecture series by Alex Barnett, Adrianna Gillman and
Per-Gunnar Martinsson from the 2014 CBMS-NSF Conference: Fast Direct Solvers for Elliptic PDEs
can be found online [7]. There exist many implementations of hierarchical matrices such as HLIBpro [54],
HLib [21], and H2Lib [22]. In Julia the packages KernelMatrices.jl [48], HssMatrices.jl [19] and
HMatrices.jl [32] all implement various hierarchical matrix formats with different properties. For an
even longer list of various software, see [23]. In this PhD study, it was chosen to utilize HMatrices.jl
developed by Luiz M. Faria as it was general, fast, and perhaps even more importantly written with
integral equations in mind. The specific format implemented in this library is the standard that scales
O(n log(n)) in terms of memory and computation. Note that an often mentioned strength of the
H-matrix approach is that it is possible to compute the LU-factorization of the matrix efficiently,
which is particularly important for high-frequency problems where an iterative solver might have issues
converging. However, in the case of (3.26) an LU-factorization cannot be applied directly. Worse still,
when dealing with losses, as seen in (4.50), the matrix of interest has a form even more complicated
than in (3.26).

3.5.3 Interpolated Factored Green Function
Recently a new approach called the ”Interpolated Factored Green Function” (IFGF) was introduced in
[9]. Some advantages of this approach is that it does not require a split on low and high frequencies as
needed for the fast multipole method. At the same time, the method is easily parallelized as it does not
rely on the fast Fourier transform (FFT) [8]. However, as opposed to the purely algebraic techniques
of the H-matrix approach, the IFGF is based on interpolation. As such, it requires that the matrix is
generated by a function that can be evaluated at all sets of points (x,y). Unfortunately, this is not
the case for H as its elements depend on the normal which is computed using the local u coordinates
due to the element description of the geometry. A workaround is to approximate the full gradient of
the Green’s function using the IFGF, as it can be easily evaluated at any (x,y), and then compute the
normal derivative from this. A simple (single node) implementation of the approach can be found in
the IFGF.jl package written by Luiz M. Faria [33].



CHAPTER 4
Viscothermal Effects

This chapter introduces the basic concepts of viscous and thermal dissipation. It starts by describing
the Kirchhoff decomposition (KD) and its solution through the BEM is explained in two parts. The first
part introduces the old state-of-the-art formulation, while the second part explains the new formulation.

4.1 Viscothermal BEM

4.1.1 Kirchhoff Decomposition
An equivalent formulation of the fully linearized Navier-Stokes (FLNS) equation is the Kirchhoff de-
composition, which divides the problem into three modes, each satisfying its own Helmholtz equation.

Acoustic Mode: (∆ + k2
a)pa(x) = 0, (4.1)

Thermal Mode: (∆ + k2
h)ph(x) = 0, (4.2)

Viscous Mode: (∆ + k2
v)vv(x) = 0, with ∇ · vv(x) = 0. (4.3)

The three modal wavenumbers (ka, kh & kv) all depend on the lossless wavenumber (k) and the physical
properties of the fluid, such as the thermal conductivity, specific heat capacity under constant pressure
and the shear/bulk viscosity coefficients [43]. The total pressure and velocity can be extracted as the
sum of the contributions of each of the three modes

pt = pa + ph, (4.4)
vt = va + vh + vv. (4.5)

Using the standard notation for the BEM discretization, i.e., using (3.20) for the three modes, it must
be true that

Hapa + Ga
∂pa

∂n = 0, Hhph + Gh
∂ph

∂n = 0, Hvv + Gv
∂v
∂n = 0, (4.6)

where
v =

[
vvx vvy vvz

]⊤
, ∂nv =

[
∂nvvx ∂nvvy ∂nvvz

]⊤
, (4.7)

and
Hv = blkdiag

(
H̃v, H̃v, H̃v

)
, Gv = blkdiag

(
G̃v, G̃v, G̃v

)
, (4.8)

with H̃v and G̃v being the result of a scalar discretization with wavenumber kv and blkdiag is the
block-diagonal operator.

4.1.2 Boundary Coupling of the Modes
In the case of the fluid being air, it is valid to prescribe the so-called isothermal boundary condition due
to high higher heat capacity of the boundary material. Mathematically, this condition can be written
as

pa(x)τa + ph(x)τh = 0, x ∈ Γ, (4.9)
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where τa and τh are dependent on the lossless wavenumber as well as the physical properties of fluid.
In short, this boundary condition forces the temperature fluctuations to be zero, meaning that there is
no exchange of heat between the fluid and the boundary. As such, there is a transition from the physics
at the boundary to the bulk where the wave propagation can be considered isentropic (Figure 4.1).
This transitional phase is in the literature called the thermal boundary layer and has a thickness that
depends on the frequency. In air, the thickness can be approximated as [64]

δh ≈ 2.5 1√
f

mm. (4.10)

δh

Bulk

Boundary Layer

Boundary

Heat Flux

T = 0

Figure 4.1: Visualization of the thermal boundary layer representing the transitional phase from the
boundary to the bulk.

Furthermore, due to frictional forces the air sticks to the surface of objects. As such, it is common
to prescribe a no-slip boundary condition

∇pa(x)ϕa +∇ph(x)ϕh + vv(x) = vboundary(x), x ∈ Γ, (4.11)

Similar to the modal wavenumbers the constants ϕa, and ϕh are dependent on the lossless wavenumber
as well as the physical properties of fluid. Again, the boundary condition results in a transitional phase
from the boundary to the bulk (Figure 4.2). The thickness of the viscous boundary layer is of the same
order as that of the thermal boundary layer, and can be approximated as [64]

δv ≈ 2.1 1√
f

mm. (4.12)

δv

Bulk

Boundary Layer

Boundary

v

v = vboundary

Figure 4.2: Visualization of the viscous boundary layer representing the transitional phase from the
boundary to the bulk.
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4.1.3 The Lossy System of Equations
The components of the three modes can be computed by solving the large system of equations origi-
nating from the combination of the three discretized integral equations, null-divergence constraint and
boundary conditions


The three modes on the form described in (4.6)

Null Divergence Constraint
Isothermal Boundary Condition

No-Slip Boundary Condition




pa

∂npa

ph

∂nph

v
∂nv

 =


0
0
0
0
0
vs

 , (4.13)

where
vs =

[
vx0 vy0 vz0

]⊤
, (4.14)

is the boundary velocities at each of the collocation nodes stacked with respect to the x, y, and z
direction. From an implementation point of view, (4.13) poses a challenge: How are the gradients
required for the two boundary conditions and the null-divergence constraint computed? The answer
lies in the boundary element representation of the underlying variables.

4.1.4 Interpolation Function Derivatives
The interpolation function derivatives (IFDs) are the derivatives of the boundary element interpolation
functions. As the boundary element interpolation is defined only on the surface, the interpolation
function derivatives contain only the tangential information. The full gradient is then computed by
combining the tangential information from the IFDs with the normal information coming directly from
the boundary element interpolation of the normal derivative.

Taking the acoustic pressure pa as an example, it follows from (3.7) that the boundary element
representation of the interpolation on element e is given as

pa (xe(u)) = Te(u)pe
a, u ∈ Le, x ∈ Γe, (4.15)

where pe
a represent the nodal acoustical pressures of element e while Ne(u) and Te(u) denotes the

chosen interpolation schemes for respectively the geometry and the (acoustical) pressure on element e.
The resulting gradient of pa on element e can then be computed as

∇upa (xe(u)) = (∇uTe(u)) pe
a (4.16)

since the values pe
a are constants. Applying the multivariate chain rule ∇upa = (∇uxe(u)⊤)∇xpa

followed by an isolation with respect to ∇x gives the gradient of interest. Since the computations are
based on boundary elements we have that the transpose of the Jacobian matrix

∇uxe(u)⊤ = ∇u(XeNe(u))⊤ = ∇uNe(u)⊤ (Xe)⊤
, (4.17)

is a 2 × 3-matrix which cannot be inverted. It has been shown that it is enough to introduce an
artificial u3 such that ∂Te

∂u3
= 0 (with 0 being a row vector of appropriate length filled with zeros), while

substituting ∂xe

∂u3
= ∂xe

∂u1
× ∂xe

∂u2
[5]. As a result, the tangential part of the gradient can be computed as

∇∥
xpa (xe(u)) =



(
∂xe

∂u1

)⊤

(
∂xe

∂u2

)⊤

(
∂xe

∂u1
× ∂xe

∂u2

)⊤



−1 

∂Te

∂u1

∂Te

∂u2

0


pe

a, x ∈ Γe, (4.18)
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where the superscript ∥ is used to explicitly show that this is only the tangential part of the gradient.
On element e there is a local coordinate u for which xe(u) is equal to a collocation point. Say that this
is the ith collocation point then this means that there is a ue,i for which xe

(
ue,i

)
= xi. Using what

was described in subsection 3.4.1, namely that pe
a = Lepa, it follows that

∇∥
xpa

(
xe(ue,i)

)
= ∇∥

xpa(xi) =



(
∂xe

∂u1

)⊤

(
∂xe

∂u2

)⊤

(
∂xe

∂u1
× ∂xe

∂u2

)⊤



−1 

∂Te

∂u1

∂Te

∂u2

0


Lepa =



De,i
x

De,i
y

De,i
z


pa. (4.19)

In the case of discontinuous elements, the collocation point is only connected to a single element,
meaning that in practice the eth superscript is redundant. However, in the case of continuous elements,
the collocation point can be connected to multiple elements, and the interpolation function derivative
is chosen to be the average contribution from each of the connected elements. As such, the ith rows of
the D•-matrices can be computed as

Di
x = 1

Ne(i)

Ne(i)∑
e=1

De,i
x , Di

y = 1
Ne(i)

Ne(i)∑
e=1

De,i
y , Di

z = 1
Ne(i)

Ne(i)∑
e=1

De,i
z , (4.20)

where Ne(i) denotes the number of elements that is connected to collocation point i. The different Di
•

of (4.20) are the collection of the ith rows in three separate matrices, Dx,Dy and Dz so that

∂pa

∂x

∥
= Dxpa,

∂pa

∂y

∥
= Dypa,

∂pa

∂z

∥
= Dzpa. (4.21)

If the chosen discretization of the thermal and viscous modes is the same as for the acoustical mode,
then the above interpolation function derivative matrices can be reused to compute ∇∥

xph and ∇∥
x · vv

respectively.

4.2 State of the art
In the viscothermal acoustics literature, the observation that the IFD only represented the tangential
part of the gradient was only implicitly used [28, 68]. We now briefly explain why this was the case.
Previously the normal and tangential components were coupled by transforming the derivatives in the
(x, y, z)-coordinates (denoted later by e) into local (t, s, n)-coordinates (denoted later by ℓ) at each
collocation point through a change of basisDt

Ds

Dn

 = ℓMe

Dx

Dy

Dx

 , (4.22)

where ℓMe is an (orthogonal) change of basis matrix given by

ℓMe =

diag(tx) diag(ty) diag(tz)
diag(sx) diag(sy) diag(sz)
diag(nx) diag(ny) diag(nz)

 (4.23)
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(tx, ty, tz) are respectively the (x, y, z)-coordinates of the first tangential direction (t) and similarly
(sx, sy, sz) are respectively the (x, y, z)-coordinates of the second tangential direction (s). The argument
for why (4.23) is orthogonal comes from the fact that it is a permutation of rows and columns of
a block-diagonal matrix for which each block is orthogonal (since they are local orthogonal change-
of-basis matrices), meaning that the block-diagonal matrix is orthogonal. As permutations preserve
orthogonality, it must be true that ℓMe is also orthogonal. The gradient in local coordinates can then
be described by combining the first two components of the above, representing the derivatives in the
tangential plane, with the normal derivative described directly from the BE discretization. As a result,
the local gradient was computed as

∇ℓpa =

Dt

Ds

0

pa +

0
0
I

 ∂npa, (4.24)

where 0 ∈ Rn×n is a matrix filled with zeros. While the above is clearly logical, it begs the question
of what happened to Dn? The answer is simply that since the IFDs do not contain any information
in the normal direction, it must be true that Dn = 0. However, this was never explained before. Now,
the sole reason for computing the gradient above is to apply it when asserting the no-slip boundary
condition. Unfortunately, inserting (4.24) directly into the no-slip boundary condition is problematic
because v is given in global coordinates. To solve this problem, a change of basis, similar to that in
(4.22), is applied to v, resulting in

vℓ = ℓMev. (4.25)

As such, the no-slip boundary condition could be rewritten as

ϕa

Dt

Ds

0

pa +

0
0
I

 ∂npa

+ ϕh

Dt

Ds

0

ph +

0
0
I

 ∂nph

+ ℓMev = ℓMevs, (4.26)

where vs is the surface velocity in global coordinates.

Computing the divergence was done using a similar approach to that of (4.24) with the problem of v
being given in global coordinates still being an issue. Similar to the gradient computation the solution
used was to apply a change of basis to v and combining the result with the BE normal derivative as
shown below

∇ℓ · vℓ =
[
Dt Ds 0

]
vℓ +

[
0 0 I

]
∂nvℓ, (4.27)

where vℓ is given in (4.25) and
∂nvℓ = ℓMe∂nv. (4.28)

Although keeping everything in local ℓ coordinates works in practice, it introduces additional model
complexity, as it requires knowledge of the two tangential directions, t and s (see the definition of ℓMe in
(4.23)). This complexity is exactly what the new approach described in section 4.3 avoids by utilizing the
fact that the IFDs only contain the information in the tangential directions and directly combine that
with the information in the normal direction described by the BEM discretization through a simple
projection. Furthermore, previous work tried to simplify the derivation by applying the following
relation

diag(x)Ddiag(x) = D ◦ (x⊤x). (4.29)

While mathematically true, a naive implementation of this approach would scale O(n2) in both com-
putation and storage, as it would require the computation and storage of an outer product. However,
this problem could have been resolved by the fact that Dt and Ds are sparse and then only compute
the parts of the outer product that correspond to the same sparsity pattern.
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4.3 A new formulation (Paper J2)
The aim of the new formulation is to eliminate the change-of-basis utilized in both the no-slip and the
null-divergence conditions. For the no-slip boundary condition, the solution is simply to realize that
the full gradient is the sum of the tangential and normal gradient information. Written out this means
that

∇pa = ∇∥pa +∇⊥pa, (4.30)

where ∇⊥pa is the projection of the gradient onto the normal direction

∇⊥pa = projn(∇pa) = nn⊤∇pa

n⊤n = n∂npa. (4.31)

From the knowledge that the IFD only contains the tangential information and that the normal deriva-
tive is described by the BE discretization the discrete form of (4.30) can be written as

∇pa =

Dx

Dy

Dz

pa +

diag(nx)
diag(ny)
diag(nz)

 ∂npa. (4.32)

The observant reader will have realized that this is, in fact, equivalent to changing the basis of the local
gradient in (4.24) back to the global basis. This can be easily verified as

∇pa = (ℓMe)⊤

Dt

Ds

0

pa +

0
0
I

 ∂npa

 =

Dx

Dy

Dz

pa +

diag(nx)
diag(ny)
diag(nz)

 ∂npa, (4.33)

where the last equality comes directly from the fact that the change of basis is orthogonal. For the
divergence a similar realization to that of the gradient is needed. That is, the total divergence is equal
to the sum of the tangential and normal divergence. Written out, this means that

∇x · vv = ∇∥
x · vv +∇⊥

x · vv. (4.34)

As such, the discrete form of divergence of vv can be computed as

∇ · v =
[
Dx Dy Dz

]
v +

[
diag(nx) diag(ny) diag(nz)

]
∂nv. (4.35)

It turns out that the above is equivalent to (4.27). The reason for this is firstly that[
Dt Ds 0

]
vℓ =

[
Dx Dy Dz

]
(ℓMe)⊤

ℓMev =
[
Dx Dy Dz

]
v, (4.36)

where the last equality is obtained using the orthogonality of ℓMe, and secondly that[
0 0 1

]
ℓMe∂nv =

[
diag(nx) diag(ny) diag(nz)

]
∂nv. (4.37)

As such, it can be seen that (4.27) and (4.35) are, in fact, the same expression. Although this equivalence
at first glance might seem strange, it is not. It is simply the discrete form of an old and well-known fact:
The divergence is invariant with respect to an orthogonal change-of-basis. Finally, using the discrete
forms of the gradients and null-divergence (4.13) can be written as

Ha Ga 0 0 0 0
0 0 Hh Gh 0 0
0 0 0 0 Hv Gv

0 0 0 0 Dr N⊤

τaI 0 τhI 0 0 0
ϕaDc ϕaN ϕhDc ϕhN I 0




pa

∂npa

ph

∂nph

v
∂nv

 =


0
0
0
0
0
vs

 , (4.38)
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where the following notation were introduced

N =
[
diag(nx) diag(ny) diag(nz)

]⊤
, Dc =

[
D⊤

x D⊤
y D⊤

z

]⊤
, Dr =

[
Dx Dy Dz

]
. (4.39)

As this linear system has 10 DOF pr. collocation node, it becomes problematic to solve directly for even
moderately large problems on a desktop machine. Fortunately, the system itself has structure which
can be utilized. In particular, all the matrices, except Ga and Ha, are extremely sparse (Figure 4.3).
However, due to the ill-conditioning of the system described in (4.38), the structure cannot be easily
utilized. The following section explains how the system can be condensed to a well-conditioned linear
system with only 1 DOF pr. collocation node.

Dense Sparse Diagonal


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0
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∂nphvv,x
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0
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0
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Figure 4.3: Visualization of the sparsity structure of (4.38). Figure originally appeared as an equation
in Paper J2.

4.3.1 Condensation
It turns out that the system of (4.38) is ill-conditioned as is. As such, solving it through a conventional
iterative solution scheme does not work. To resolve this, a Schur complement preconditioning step is
used to reduce to a linear system that only has pa as a DOF. The resulting system is well-conditioned
and can be solved using an iterative solution scheme. A brief derivation similar to that found in Paper
J2 is restated here.
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Due to the simplicity of the isothermal boundary condition described in (4.9) the thermal mode can
easily be removed using that

ph = − τa

τh
pa, ∂nph = τa

τh
G−1

h Hhpa. (4.40)

As such (4.38) can be reduced to
Ha Ga 0 0
0 0 Hv Gv

0 0 Dr N⊤

µaDc + µhNG−1
h Hh ϕaN I 0




pa

∂npa

v
∂nv

 =


0
0
0
vs

 , (4.41)

where the following two constants are introduced to ease the notation

µa = ϕa −
τaϕh

τh
, µh = τaϕh

τh
. (4.42)

The normal components of pa and v can further be removed using the discretized integral equations

∂npa = −G−1
a Hapa, (4.43)

∂nv = −G−1
v Hvv. (4.44)

Using the above (4.41) can be reduced to[
0 Dr −N⊤G−1

v Hv

µaDc + N
(
µhG−1

h Hh − ϕaG−1
a Ha

)
I

] [
pa

v

]
=
[

0
vs − ϕaNG−1

a pinc

]
. (4.45)

Finally, the viscous mode can be completely removed using that

v = vs −
(
µaDc + µhNG−1

h Hh − ϕaNG−1
a Ha

)
pa. (4.46)

To ease the notation the following shorthand is introduced

R = Dr −N⊤G−1
v Hv. (4.47)

As such (4.45) simplifies to

R
(
µaDc + N

(
µhG−1

h Hh − ϕaG−1
a Ha

))
pa = Rvs. (4.48)

From a numerical point of view, the above is inconvenient as it requires the inverse of the dense matrix
Ga. To remove this requirement the above is left multiplied with

Ga (RN)−1
, (4.49)

which result in [
Ga

(
µa (RN)−1 RDc + µhG−1

h Hh

)
− ϕaHa

]
pa = Ga (RN)−1 Rvs. (4.50)

As the aim is to solve large problems, we need to be able to solve (4.50) using an iterative scheme. To
do so, we must be able to define multiplication with the linear map corresponding to the system matrix.
Doing so is fairly straightforward, with the caveat that each multiplication actually requires the solution
of additional linear systems. The reason for this is that we need to multiply by both G−1

h , G−1
v , and

(RN)−1. Given that G−1
h and G−1

v are sparse and well-conditioned, they can be applied using a sparse
LU-factorization or another iterative scheme. For multiplication with (RN)−1, the only option is to
use an iterative scheme, as there is no guarantee that the matrix is sparse. The full efficient solution
scheme of (4.50) can be found in Algorithm 1.
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Algorithm 1 Efficient solution scheme for (4.50).
Require: Ga,Ha,Gh,Hh,Gv,Hv,Dr,Dc,N, µa, µh, ϕa

procedure MUL_R(z)
return Drz−N⊤ (gmres(Gv,Hvz))

end procedure
procedure MUL_RN(z)

return MUL_R(Nz)
end procedure
procedure MUL_A(z)

return Ga (gmres(MUL_RN,MUL_R(Dcz))µa + gmres(Gh,Hvz))µh − ϕaHaz
end procedure
Compute right-hand side: b = Ga (gmres(MUL_RN,MUL_R(vb)))
Solve the linear system: gmres(MUL_A,b)

While the proposed scheme of Algorithm 1 solves some issues regarding the computational scaling,
most notably making it possible to utilize the sparsity of the thermal and viscous modes in the solution
phase, it does not resolve all problems. In fact, Figure 4.4 shows the computational complexity of
the large 10n × 10n system (Figure 4.3) and the n × n system (Algorithm 1). In particular, we see
significant improvements in computational time using the n × n formulation. Unfortunately, the two
dense matrices from the acoustical mode can be seen to ruin the memory scaling of the computation.
In the following section, we explain how we in Paper J3 resolved this issue by applying standard the
acceleration techniques for boundary element methods.
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Figure 4.4: Complexity of 10n× 10n system and the 1n× 1n system using either dense matrices and
the fast multipole operators. The simulation performed is that of an oscillating sphere in a viscous
fluid.

4.4 Taking things Large-scale (Paper J3)
Getting rid of the O(n2) complexity of both memory and computational time of (4.50) can be achieved
utilizing the fast multipole method or the H-matrix approach for the dense part of the computation,
i.e. for approximating Ga and Ha. We find that for memory-constrained hardware the fast multipole
method is the preferred approach, and reversely theH-approach is preferred when memory is a non-issue
(Figure 4.5). This should not come as a surprise, since the added memory is due to more information
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being stored of the dense matrices, resulting in less on-the-fly computation, in turn reducing the com-
putational efforts. In Figure 4.5 we repeat the tests of Figure 4.4 using both the fast multipole method
and H-matrices to approximate the acoustical mode. From the figure it is clear that the scalability
issues have been resolved.
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Figure 4.5: Figure originally appeared in Paper J3. Left: Complexity of storing all matrices plus
performing a single call of MUL_A in Algorithm 1. The reason for this addition is that the acceleration
techniques include intermediate steps that allocate memory when performing multiplications. Right:
Complexity of the total solution time. This includes the assembly of the matrices and the reconstruction
of the additional variables (∂npa, ph, ∂nph, vv & ∂nvv).

We note that results seen in Figure 4.5 where all performed using the Julia programming language
and the High-Performance Computing (HPC) resources provided by the Technical University of Den-
mark [17, 16, 31]. The dense linear algebra was handled using LAPACK/BLAS [3, 18] while the sparse
computation was handled using SuiteSparse [26, 29, 30].

4.5 Contributions
The papers J2, J3, and C2 contain the methods described in this chapter and further verify the formu-
lations using numerical test setups. The contributions contained in Paper J2 are:

• We derived a new formulation for boundary element simulations including viscous and thermal
losses that does not directly rely on the tangential directions. The new formulation is based on
two simple facts: First, the gradient can be split into a normal part and a tangential part, and
second, that the interpolation function derivatives only give the tangential part of the derivatives.
Combining the two facts then makes it possible to get full gradient by adding the boundary
element discretization of the normal derivative (containing the normal part of the gradient) and
the interpolation function derivatives (containing the tangential part of the gradient).

• We show how the new formulation relates to the old state-of-the-art formulation. In particular, we
show that the difference in the no-slip condition between the two formulations is a simple change-
of-coordinates and that the null-divergence constraint is equivalent between the two formulations.

• Using the new formulation, we derive an iterative solution strategy that employs nested iterative
schemes. This new scheme makes it possible to take advantage of the sparse matrices from the
thermal and viscous modes in the solution phase. This is in contrast to previous attempts where
the sparsity could only be utilized in the assembly phase. As a result, the solution scheme is
significantly more efficient than the original formulation.
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• Finally, we show that the new formulation makes it possible to solve problems larger than pre-
viously possible. In fact, most of the time is spent reconstructing the normal derivative of the
acoustical pressure. As such, a key takeaway is that if it is possible for a specific mesh size to
solve a pure acoustical system with Dirichlet boundary conditions, then it should be possible to
solve the lossy system for the same mesh/setup.

• Unsurprisingly, however, the formulation is found to still suffer from a computational bottleneck
stemming from the two dense matrices originating from the acoustical mode.

The contributions contained in paper J3 are:

• We relieve the computational bottleneck found in paper J2 by utilizing both the fast multipole
method andH-matrices. Whether to use one or the other is found to depend on the computational
constraints of the chosen hardware. If memory is a problem, then the fast multipole method is
favorable, while if memory is not an issue, then the H-matrix approach is favorable.

• We noted that a possible middle ground between memory and computational constraints could
be the interpolated factored Green’s function (IFGF) as it requires significantly less memory to
store than that of a typical H-matrix while possibly being faster than the fast multipole method.
At the same time, the IFGF method is known to be easily scaled up to multicore systems.

• Furthermore, it is important to note that parts of the implemented method contain a simplification
of the sparsity patterns of the viscous and thermal matrices (Figure 3.4) resulting in a lack of
robustness in the implementation, which could result in failures for geometries with overlapping
boundary layers.

The contributions contained in paper C2 are:

• A description of an open-source library, written in the Julia programming language, that im-
plements the ideas presented in both Paper J2 and Paper J3. Due to the length limitations of
the conference contributions, Paper C2 did not include the ideas of Paper J1, even though the
software includes partial support of the method.

• A validation of the software using three test cases: Scattering of a rigid sphere, a plane wave in a
duct, and an oscillating sphere in a viscous fluid. The latter test case is equivalent to what was
used in Papers J2 and J3. However, the mesh used in Paper C2 is of significantly smaller size.

• The hope is that the software will make the proposed models more accessible for researchers as
well as practitioners.

All in all, the contributions serve as important steps in the direction of large-scale boundary element
simulations including viscous and thermal losses. A key takeaway is that the computational complex-
ity of the computations including viscous and thermal losses behaves similarly to the computational
complexity of the pure acoustical computation.
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CHAPTER 5
Reduced Order Boundary Element Models

The frequency-dependent integrals that lays the foundation of the boundary element method make
the method infeasible for multifrequency analysis. Several solutions based on making the integrals
frequency independent through approximations of the Green’s function has been proposed [52, 66, 69,
75]. These techniques differ from other techniques used primarily in finite element analysis, where the
frequency response itself is approximated [27, 44, 46, 49, 56]. In addition, there have also been works
on approximating the system itself using series expansions [10, 11]. In this chapter, we explain how the
first mentioned methods can be extended to handle the boundary layer impedance boundary condition.

5.1 State-of-the-art
In [66] the BE integrals of (2.19) is made frequency independent by utilizing a Taylor expansion of w.r.t
the wavenumber for the Green’s function and its normal derivative

G(x,y) ≈
Nv−1∑
m=0

(k − k0)m

m!

[
G(m)(x,y, k0)

]
,

∂G(x,y)
∂n(y)

≈
Np−1∑
m=0

(k − k0)m

m!

[
n(y)⊤∇G(m)(x,y, k0)

]
,

where Nv and Np is the number of terms included in the Taylor expansion of respectively the Green’s
function and its normal derivative while k0 is the expansion wavenumber. For simplification purposes,
it is in the following chosen to set Np = Nv = M . Inserting the above into the Kirchhoff-Helmholtz
integral equation the following system of equations will appear(

αdiag(ζ)−
M−1∑
m=0

(k − k0)m

m!
Fm(k0)

)
p + s(α)k

(
M−1∑
m=0

(k − k0)m

m!
Gm(k0)

)
vn ≈ 0, (5.1)

which it sometimes referred to as the series expansion boundary element method or SEBEM for short.
The important aspect of (5.1) is that the two series of matrices, Fm and Gm, depend only on the
expansion wavenumber k0 and can therefore be computed in a so-called offline stage. After applying
boundary conditions (5.1) will have the form of(

M−1∑
m=0

(k − k0)m

m!
Am(k0, α)

)
z ≈

M−1∑
m=0

(k − k0)m

m!
bm(k0, α), (5.2)

where z is a vector containing nodal values of either p or vn. Unfortunately, (5.2) does not resolve
all the issues, as it only reduces the assembly from a discretization of boundary integrals to a sum of
matrices that still scales as O(n2) in both computation and storage. Additionally, for large systems,
the time spent solving the linear system of equations is overshadowed by the time spent assembling the
linear system, making the gain of using (5.2) insignificant with respect to the total computational time.

In order to reduce both the memory footprint and the assembly time of (5.2) a Galerkin projection
can be applied. The main assumption behind this projection is that the solution, as well as the right-
hand side of (5.2) is spanned by a lower dimensional subspace. This means that

z ≈ Uℓzℓ, bm ≈ Uℓbℓm, Uℓ,∈ CN×ℓ (5.3)
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will be good approximations. For simplification purposes, it is often chosen to let Uℓ be unitary. An
intuitive explanation as to why this must be a good approximation is that most BE systems are well-
conditioned and iterative solvers such as the generalized minimal residual method (GMRes) converge
quickly. In addition, this motivates a good place to search for both Uℓ is the ℓ-Krylov subspace defined
by [45]

Kℓ (A(k),b(k)) = span
{

b(k), A(k)b(k), A(k)2b(k), . . . , A(k)ℓ−1b(k)
}
. (5.4)

Setting the columns of Uℓ equal to the Krylov vectors would result in (5.3) being a good approximation
for wavenumbers close to k. The subspace can be made to handle a wider range of wavenumbers by
combining the Krylov subspace for the wavenumbers k1, k2, . . . kL. As such the final projection matrix,
Uℓ, is computed as the singular value decomposition (SVD) of the concatenation of the columns of all
the q-Krylov vector subspaces [37, 67]

UℓΣℓVH
ℓ = svd

([
Kk1 Kk2 . . . KkL

])
, (5.5)

where Kki denotes a matrix with columns equal to some Krylov vectors at wavenumber ki. Now
inserting the approximations introduced in (5.3) into (5.2) while also multiplying both sides with the
hermitian transpose of Uℓ from the left it follows that(

M−1∑
m=0

(k − k0)m

m!
UH

ℓ Am(k0, α)Uℓ

)
zℓ ≈

M−1∑
m=0

(k − k0)m

m!
UH

ℓ Uℓbℓm(k0, α). (5.6)

Using that Uℓ is unitary while defining Aℓm = UH
ℓ Am(k0, α)Uℓ the above becomes(

M−1∑
m=0

(k − k0)m

m!
Aℓm(k0, α)

)
zℓ ≈

M−1∑
m=0

(k − k0)m

m!
bℓm(k0, α). (5.7)

The important part of the above is that Aℓm(k0, α) ∈ Cℓ×ℓ and bℓm(k0, α) ∈ Cℓ, which means that if
ℓ ≪ n this representation requires significantly less memory than the original system. Note, however,
that Am(k0, α) should never explicitly be stored. Instead, the rows should be projected during the
assembly phase, as described in Algorithm 2.

Algorithm 2 Assembly of the ROSEBEM
Require: Uℓ ∈ Cn×ℓ, k0 ∈ R,M ∈ N

Preallocate A,∈ Cn×ℓ, b ∈ Cn

for m = 0 : M − 1 do
for n = 1 : N do

Assemble ith row of Am(k0) and bm(k0) (denoted by ai
m and bi

m)
Save right-hand side: bi ← bi

m

Compress columns: A[i,:] ← ai
mUℓ

end for
Compress rows: Aℓm(k0)← UH

ℓ A
Compress rows: bℓm(k0)← UH

ℓ b
end for

5.2 The Boundary Layer Impedance Condition
We now leave the realm of series expansions and reduced basis and instead focus on how to include
(approximate) viscous and thermal losses using specialized boundary conditions. In particular, we
look at the so-called boundary layer impedance (BLI) boundary condition described in [15]. This
approximation is derived using a few assumptions such as e.g. low curvature and non-overlapping
boundary layers. As introduced in [1] the BLI condition can be written as

∂p

∂n (y) =
[
(γ − 1) ik2

kh
− i∆∥

kv

]
p(y), y ∈ Γ (5.8)
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where ∆∥ is the tangential Laplacian, γ is the ratio of specific heat and k, kv, kh are respectively the
isentropic, viscous and thermal wavenumbers. The two additional wavenumbers are calculated using
the physical properties of the fluid, such as thermal conductivity, specific heat capacity under constant
pressure, and shear and bulk viscosity coefficients [20].

∂Γ

∂Γ

ΓNΓBLI
Ω

n

Figure 5.1: Figure originally appeared in Paper J1. Domain of an interior problem.

For the sake of simplicity the following derivation is done in the case where the boundary (Γ) is split into
a part applied with the BLI condition (ΓBLI in Figure 5.1) and a part applied a Neumann condition (ΓN
in Figure 5.1). The reason for this simplification is that it represents the numerical cases investigated
in Paper J1. Inserting (5.8) into the boundary integral equation of (2.19)

ζ(x)p(x) =
∫

ΓN

G(x,y) ∂p(y)
∂n(y)

dSy −
∫

Γ

∂G(x,y)
∂n(y)

p(y) dSy

+
∫

ΓBLI

G(x,y)
[

(γ − 1)ik2

kh
− i∆∥

kv

]
p(y) dSy.

(5.9)

Applying integration by parts to the term including ∆∥ in (5.9) while assuming [55]∫
∂ΓBLI

G(x,y) ∂p(y)
∂n(y)

dSy = 0, (5.10)

it follows that

ζ(x)p(x) =
∫

ΓN

G(x,y) ∂p(y)
∂n(y)

dSy −
∫

Γ

∂G(x,y)
∂n(y)

p(y) dSy

+ (γ − 1)ik2

kh

∫
ΓBLI

G(x,y)p(y) dSy + i
kv

∫
ΓBLI

∇∥
yG(x,y)⊤∇∥

yp(y) dSy,

(5.11)

where
∇∥

yG(x,y) = oprojn (∇yG(x,y)) = (I− n(y)n(y)⊤)∇yG(x,y), (5.12)

is the tangential gradient of the Green’s function. Lastly since ∇∥
yp(y) is the tangential gradient of

the pressure it can be computed directly from the BEM discretization using the interpolation function
derivatives described in subsection 4.1.4.

5.3 New developments
In contrast to previous works the boundary layer impedance formulation described in (5.11) requires
the Taylor series expansion of the tangential gradient of the Green’s function. Thankfully, using (5.12),
the Taylor expansion of the tangential gradient can easily be obtained as

∇∥
yG(x,y) ≈

M−1∑
m=0

(k − k0)m

m!

[(
I− n(y)n(y)⊤)∇G(m)(x,y, k0)

]
, (5.13)
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Now inserting the different Taylor series into (5.11) the expression reduces to

diag(ζ)p ≈
(

M−1∑
m=0

(k − k0)m

m!
Gm(k0)

)
∂p
∂n +

(
M−1∑
m=0

(k − k0)m

m!
Fm(k0)

)
p

+ (γ − 1)ik2

kh

(
M−1∑
m=0

(k − k0)m

m!
Hm(k0)

)
p + i

kv

(
M−1∑
m=0

(k − k0)m

m!
Tm(k0)

)
p.

(5.14)

We now again assume that the solution is spanned by lower-dimensional subspace i.e. that the following
are good approximations

p ≈ Uℓpℓ,
∂p
∂n ≈ Uℓ

∂pℓ

∂n . (5.15)

Again Uℓ is computed from the ℓ-Krylov subspace which in this case comes from the linear system
generated after applying boundary conditions to the full BLI equations. Now collecting terms in (5.14),
adding diag(ζ) to F0 and then using the above introduces approximations it follows that

M−1∑
m=0

(k − k0)m

m!

([
Fm(k0) + (γ − 1)ik2

kh
Hm(k0) + i

kv
Tm(k0)

]
Uℓpℓ + Gm(k0)Uℓ

∂pℓ

∂n

)
≈ 0. (5.16)

Finally, multiplying UH
ℓ from the left followed by moving Uℓ (and UH

ℓ ) inside the parentheses followed
by collecting terms we reach the final expression of

M−1∑
m=0

(k − k0)m

m!

([
Fℓm(k0) + (γ − 1)ik2

kh
Hℓm(k0) + i

kv
Tℓm(k0)

]
pℓ + Gℓm(k0)∂pℓ

∂n

)
≈ 0, (5.17)

where

Fℓm(k0) = UH
ℓ Fm(k0)Uℓ, Hℓm(k0) = UH

ℓ Hm(k0)Uℓ,

Tℓm(k0) = UH
ℓ Tm(k0)Uℓ, Gℓm(k0) = UH

ℓ Gm(k0)Uℓ,

with all the matrices being of size ℓ × ℓ. This approach is reasonable storage wise if ℓ2M ⪅ n2, such
that storing all the SEBEM matrices is less than or of the order of storing a single of the original BEM
matrices. Additionally, if ℓ≪ n solving the resulting linear system of (5.17) will be significantly faster
than solving the original system.

Algorithm 3 Assembly of the ROSEBEM incorporating the BLI boundary condition
Require: Uℓ ∈ Cn×ℓ, k0 ∈ R,M ∈ N

Preallocate Z,F,H,T ∈ Cn×ℓ, b ∈ Cn

for m = 0 : M − 1 do
for n = 1 : N do

if m = 0 then
Assemble integral free term for the nth collocation point (denoted by ζn)
Scale row of Uℓ: Z[n,:] ← ζnUℓ,[n,:]

end if
Assemble ith row of Fm(k0), Hm(k0), Tm(k0) and bm(k0) (denoted by f i

m, hi
m, ti

m, bi
m)

Save right-hand side: bi ← bi
m

Compress columns: F[i,:] ← f i
mUℓ, H[i,:] ← hi

mUℓ, T[i,:] ← ti
mUℓ

end for
Compress rows: Fℓm(k0)← UH

ℓ F, Hℓm ← UH
ℓ H, Tℓm ← UH

ℓ T
Compress rows: bℓm(k0)← UH

ℓ b
end for
Compress columns: Zℓ ← UH

ℓ Z
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5.4 Visualizations
In many cases visualizations of the mathematics gives rise to a deeper understanding. Therefore, a
short visual introduction to the ROSEBEM incorporating the BLI boundary condition is given. We
start by introducing the following visual representation of the vector spaces

Cn×n Cn Cn×ℓ Cℓ×n Cℓ×ℓ Cℓ

Using this we can visualize (5.14) as

≈
(

M−1∑
m=0

(k − k0)m

m!

)
+

(
M−1∑
m=0

(k − k0)m

m!

)

+ (γ − 1)ik2

kh

(
M−1∑
m=0

(k − k0)m

m!

)
+ i
kv

(
M−1∑
m=0

(k − k0)m

m!

)
.

(5.18)

Similarly, the reduced basis assumption, for both p and ∂np, is visualized as

= . (5.19)

Inserting assumption from above into (5.18) while re-arranging similar to (5.16) it follows that

M−1∑
m=0

(k − k0)m

m!

([
+ (γ − 1)ik2

kh
+ i
kv

]
+

)
= . (5.20)

Now by performing the matrix-matrix, i.e. setting the reduced basis matrix inside of the parenthesis,
it follows that

M−1∑
m=0

(k − k0)m

m!

([
+ (γ − 1)ik2

kh
+ i
kv

]
+

)
= . (5.21)

Note that the above is the first step in the assembly process of Algorithm 3 where only a row of original
dense matrices are assembled at a time. The next step is to project columns by

M−1∑
m=0

(k − k0)m

m!

([
+ (γ − 1)ik2

kh
+ i
kv

]
+

)
= . (5.22)

Performing the multiplcations it follows that

M−1∑
m=0

(k − k0)m

m!

([
+ (γ − 1)ik2

kh
+ i
kv

]
+

)
= , (5.23)

which is the final ROSEBEM system.
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5.5 Contributions
The contributions contained in Papers J1 and C1 are as follows:

• We successfully combined two methods from two different fields of research. That is, we extended
the reduced order series expansion boundary element method (ROSEBEM) from [66] to incorpo-
rate the boundary layer impedance (BLI) boundary condition described in [15]. This required the
derivation of the Taylor expansion of the tangential gradient of the Green’s function which was
not present in the previous publications. Furthermore, the final model differs from the one found
in [66] due to the fact the frequency-dependent coefficients in front of the boundary integrals
stemming from the BLI condition (Paper J1 and Paper C1).

• The model was numerically verified using two test cases representing impedance tubes with dif-
ferent setups of resonators at their termination ends. The quantity chosen to evaluate the model
was the absorption coefficient (Paper J1) [47].

• The numerical investigation show that the reduced order basis must include information from at
least two frequencies in order to accurately represent the solution in the full frequency range of
interest. In particular, we show that the solution quickly drifts if only information from only a
single frequency is used. This indicates that simply applying multiple ROSEBEMs to capture the
full frequency range of interest will generally not work.

• The computational efficiency then the ROSEBEM is shown to be significantly better than the
standard full solution. In particular, for the numerical example presented in Paper C1, the
ROSEBEM is shown to be more 100 times faster while 1.65 times the storage, while the two
setups in Paper J1 are shown to be around 25 timers faster while consuming less memory.

• Additionally, in Paper J1, we present an a priori analysis that is crucial when deciding whether a
specific problem would benefit from using the ROSEBEM. The analysis is based on the number
of Taylor terms included, the size of the reduced basis, and the number of frequencies of interest.

All in all, the proposed model significantly alleviates the computational bottlenecks in the cases for which
the boundary layer impedance boundary condition can be used to approximate the viscous and thermal
losses. As such, the results could lay the foundation for broadband shape optimization, including
viscothermal losses, where many frequencies must be included into the optimization loop.



CHAPTER 6
Concluding remarks

In this PhD study we investigated various methods for improving the computational performance of
the boundary element method including viscous and thermal losses. The purpose of the thesis was
to improve the computational efficiency of the underlying simulation, thereby paving the way for both
large-scale and broadband shape optimization including viscous and thermal losses. Given the difference
in the two challenges, two distinct ideas were explored. The first approach looked at computational
improvements in the full boundary element formulation including viscous and thermal losses. Here, the
following conclusions could be raised:

• Boundary element simulations including viscous and thermal losses can be formulated in a way
for which the tangential directions is not explicitly needed. This simplification makes it possible
to exploit in sparsity structure of the thermal and viscous modes in the solution phase (Paper
J2). This is opposed to previous formulations, where the sparsity could be utilized only in the
assembly phase.

• The new formulation makes it possible to solve the linear system of equations using a nested
iterative approach. As such, the formulation makes it possible to solve problems larger than before.
However, since the computation still contains two dense matrices coming from the acoustical mode,
the memory consumption acts as a computational bottleneck (Paper J2).

• The computational bottleneck that arises from dense acoustical matrices can be alleviated using
standard techniques such as the fast multipole method or an H-matrix (Paper J3).

• The findings show that the computation time for large problems is dominated by the reconstruction
of the normal derivative of the acoustical pressure. This reconstruction step is equivalent to solving
a pure acoustical system with Dirichlet boundary conditions. As such, this indicates that if it is
possible to solve a pure acoustical problem using the boundary element method, then it should also
be possible to solve the boundary element problem including viscous and thermal losses (Papers
J2 and J3).

For the second problem, a reduced order series expansion boundary element method including the losses
as boundary conditions was examined. Here, the following conclusions could be raised:

• It is possible to apply the reduced order series expansion boundary element method on the integrals
stemming from the boundary layer impedance condition (Papers J1 and C1). Said differently, the
method from [66] can be extended to include the boundary conditions of [15].

• The reduced order basis should be computed using information from at least two distinct fre-
quencies in order to accurately capture the solution in the full frequency range of interest (Paper
J1).

• The final computational model is significantly faster than the original full solution. In particular,
it is shown to be more than 25 times faster while using a similar memory footprint (Paper J1).

• Additionally, we introduce an a priori analysis of when to use the ROSEBEM as opposed to the
full formulation depending on the number of frequencies, the size of the reduced basis, and the
number of Taylor series terms included (Paper J1).
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CHAPTER 7
Outlook

When this PhD study was started, the main objective was to extend previous work on shape optimization
in 2D to 3D [1, 2]. To do so required the development of efficient algorithms for larger problems (Papers
J2 and J3) as well as methods for faster evaluation of multiple frequencies (Papers J1 and C1). However,
a crucial part is missing in order for shape optimization to be possible. How do we efficiently compute
the sensitivities?

• In particular, we must answer the question of whether or not it is even possible to compute the
sensitives of the iterative scheme presented in Paper J2.

• If the previous statement is true, then the follow-up question would be to ask if it is possible
to efficiently compute the sensitivities when acceleration techniques are utilized in the iterative
scheme.

• A similar question can be asked for the ROSEBEM presented in Papers J1 and C1. Here, com-
plexity comes into play with how the reduced basis affects the sensitivity calculation.

Furthermore, the following ideas building up the topics presented in this thesis could also be of interest.

• Given that most of the time of the new formulation presented in Paper J2 is spent on the re-
construction of the normal derivative of the acoustical pressure, a question on how to speedup
should be asked. An obvious idea, but necessarily the only one, would be to look into the field of
preconditioners.

• We mentioned briefly that the sparse assembly of the thermal and viscous modes is based on
simple assumptions of contributions only from neighboring elements. This assumption is not,
in general, valid and therefore must be considered. Ideas in this area could be looking at tree
structures similar to the ones encountered for fast multipole methods.

• A current memory bottleneck of the ROSEBEM comes from the fact that the reduced basis is
computed using dense matrices at the primary frequencies. This bottleneck can be relieved by
instead utilizing acceleration techniques such as, e.g. the fast multipole method instead, as the
Krylov vectors are computed using only matrix-vector products. This idea has already been
implemented for scattering problems in the software presented in Paper C2, although left out of
the paper due to the limitations of the paper length of the conference. A simple test case can be
found in the online documentation of the software.

• The multifidelity approach described in Gurbuz et. al [41] could be used in combination with
the ROSEBEM and the acceleration techniques. In particular, the ROSEBEM could be used to
easily create data entries for many frequencies for the low-fidelity model, whereas the acceleration
techniques could be used to capture the high-fidelity model. This is in contrast to the original
paper that utilizes the standard full dense approach to generate the low- and high-fidelity data.

• Finally, as mentioned previously in the thesis, it would be of interest to investigate whether the
IFGF method would be a good balance between memory and computational scaling.
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When modelling sound waves in fluids it can be important to include the viscous and thermal
losses originating from the fluids’ interaction with boundaries. In the audible frequency range the
thickness of the boundary layers is between a micrometer and a millimeter. As such the viscous and
thermal losses are important when simulating the properties of small acoustical devices such as e.g.
hearing aids or transducers. However, the inclusion of viscous and thermal losses is a computationally
demanding task as it requires a fine discretization of the boundary layer in order to fully capture the
complicated physical phenomena happening on the microscale. Recently there has been developments
to ease the computational demands using both the Finite Element Method and the Boundary Element
Method, by approximating the losses using the Boundary Layer Impedance boundary condition. In
this paper we extend previous developments for multifrequency analysis using the Reduced Order
Series Expansion Boundary Element Method to handle the BLI condition. This model follows a
two-step procedure: Using a series expansion to decrease the assembly time of the BEM matrices
and a projection to reduce the overall memory consumption of the model. Results from two acoustic
interior problems show that the model decreases the total computational time by around 96% while
using less than 15% of the memory. For both test setups the limiting factor of the accuracy was the
reduction and not the series expansion.

Keywords: boundary layer impedance; boundary element method and model order reduction

1. Introduction

Sound waves experience losses through viscous and thermal effects, which become relevant i)
over long propagation distances, of no relevance for the cases addressed here, and ii) within a
thin region next to the boundaries. For audible frequencies, the thickness of these boundary
layers is of the order of tens to hundreds of micrometers.1 These lossy regions, tough small,
can become relevant for low-volume, small devices, e.g. hearing aids or transducers.

Traditionally viscous and thermal losses have been modelled using the Full Linearized
Navier-Stokes (FNLS) equations and solved using e.g. the Finite Element Method (FEM).2

1
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Solving these equations is typically computationally demanding since it introduces the
temperature and the velocity as additional Degrees Of Freedom (DOF). Another drawback
of this approach is that it requires the use diminutive elements in the close vicinity of the
boundary in order to fully capture the underlying microscale physics, which leads to even
more DOF. In order to avoid this fine boundary meshing the Boundary Element Method
(BEM) can be used as an alternative to the FEM. This approach utilizes the Kirchhoff
Decomposition (KD) which separates the FLNS into five Helmholtz equations that is then
coupled through the boundary conditions.3,4

Recently there has been an interest in approximating the viscous and thermal losses using
the Boundary Layer Impedance (BLI) boundary conditions from Berggren et al.,5 as this
does not introduce any extra DOF. Instead, this approximation relates the pressure with
its normal derivative and tangential Laplacian. This formulation is derived under certain
assumptions such as non-overlapping boundary layers and low curvature. These assumptions
must be checked to hold by the user or the approximation might not be correct.6,7

A general drawback of the BEM is that it requires a recomputation of the discrete form
of the underlying integral equation for each frequency of interest. As a result, performing
frequency sweep analysis using the BEM is a computationally demanding process. Multiple
solutions to this shortcoming of the BEM have been developed. Most of these techniques can
be split into two categories: Interpolation of the discrete form of the integral equation8–10 or
an approximation of the Green’s function before computing the discrete form of the integral
equation.9,11,12 In both cases the central idea is to reuse computations at certain frequencies
(called primary frequencies) at intermediate frequencies (called secondary frequencies). As an
alternative to decreasing the assembly time of the discrete form it is possible to instead look
for an approximate functional form of the response using e.g. a Padé approximation.13 This is
a standard technique for dynamic FEM problems,14,15 however it is not directly transferable
to the BEM as the boundary integrals are infinitely smooth with respect to the frequency.
Worse yet, in the case of the BLI condition the derivatives are non-trivial as the viscous and
thermal wavenumbers depend on the frequency.16

The main contribution of this paper is a Reduced Order Series Expansion Boundary
Element Method (ROSEBEM) for multi-frequency analysis including the Boundary Layer
Impedance condition. This is achieved by applying a similar approach to that of Pana-
giotopoulos et al.11 to the model described by Berggren et al.5 The model differs from the
previous works in two ways. Firstly the derivation of a Series Expansion Boundary Element
Method (SEBEM) for the BLI condition requires an additional Taylor expansion of the
tangential gradient of the Green’s function. Secondly, since the coefficients in front of two
of the boundary integrals are depended on the wavenumber, the final model requires the
storage of three separate reduced matrices, in contrast to the previous model where only one
was needed.

The paper is organized as follows: In section 2 an introduction to the Boundary Element
Method (BEM) as well as the Boundary Layer Impedance (BLI) boundary condition is given.
Next section 3 explains how the Series Expansion Boundary Element Method (SEBEM)
can be utilized to remove the frequency dependency of the BLI-BEM integrals. Then in
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section 4 a simple Reduced Order Model (ROM) approach is applied to the SEBEM resulting
in a Reduced Order Series Expansion Boundary Element Method (ROSEBEM). Lastly in
section 5 the model is verified numerically by comparison against the full BEM solution.

2. The Boundary Element Method

In this section a brief introduction to the Boundary Element Method17–21 (BEM) is given.
Afterwards the Boundary Layer Impedance5 (BLI) boundary condition is summarized. Lastly
a short description of how to compute the tangential gradient is given.

2.1. The Boundary Integral Equation for Acoustics

A common way of solving time-harmonic acoustical problems is to use the Boundary Element
Method (BEM). In the case of the scalar Helmholtz equation this means solving the Kirchhoff-
Helmholtz integral given by

ϕ(x)p(x) =

∫
Γ
G(x,y)

∂p(y)

∂n(y)
dSy −

∫
Γ

∂G(x,y)

∂n(y)
p(y) dSy, x ∈ Ω (1)

where Ω is a domain with boundary Γ, G(x,y) is the Green’s function, p(y) and n(y)

is respectively the pressure and normal at point y on the surface while p(x) and ϕ(x) is
respectively the pressure and the integral free form at point x in the domain. In the following
the time-dependency eiωt is used, meaning that22

G(x,y) =
exp (−ik∥x− y∥2)

4π∥x− y∥2
. (2)

The numerical approximation of (1) then follows from two steps: Firstly a discretization
of the boundary (Γ) into elements and secondly setting an interpolation scheme for the
pressure (p) and its normal derivative (∂np). Following these two steps the two integrals
can be approximated using a quadrature scheme for the integral over each element. What is
left is to compute the nodal values of the chosen interpolation nodes of the pressure and its
normal derivative. There exist a plethora of ways of doing so with the main three approaches
being the Galerkin, Collocation and Nyström approaches. The approach taken here is that
of Collocation, which generates an equation for each node by setting x in (1) equal to all the
interpolation nodes of p and ∂np. The resulting linear system of equations has the form

diag(ϕ)p = G
∂p

∂n
− Fp. (3)

After applying boundary conditions the above system will become consistent, and it can be
solved using standard techniques. Since the solution gives an interpolation representation for
both p and ∂np on the boundary it can be used to compute (1) for any x in the domain Ω.
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2.2. Boundary Layer Impedance

The inclusion of viscothermal losses in acoustical computations can be approximated using
the so-called Boundary Layer Impedance (BLI) boundary condition.5 Here the viscothermal
effects are approximated by applying a Wentzell type boundary condition of the form5,7

∂p

∂n
(x) =

[
(γ − 1)

ik2

kh
− i∆∥

kv

]
p(x), (4)

where ∆∥ is the tangential Laplacian, γ is the heat capacity ratio and k, kv, kh are respectively
the isentropic, viscous and thermal wavenumbers. The two additional wavenumbers are
computed using the physical properties of the fluid such as the thermal conductivity, specific
heat capacity under constant pressure and the shear and bulk viscosity coefficients.3

∂Γ

∂Γ

ΓNΓBLI
Ω

n

Fig. 1: Domain of an interior problem.

For the sake of simplicity the following derivation is done in the case of Neumann condition,
but a similar approach can be applied in the case of e.g. an impedance boundary condition.
The first step is to split the boundary (Γ) into a part with a Neumann boundary condition
(ΓN in Figure 1) and a part with a BLI condition (ΓBLI in Figure 1). Applying this to (1)
one finds that it can be written as

ϕ(x)p(x) =

∫
ΓN

G(x,y)
∂p(y)

∂n(y)
dSy −

∫
Γ

∂G(x,y)

∂n(y)
p(y) dSy

+

∫
ΓBLI

G(x,y)

[
(γ − 1)ik2

kh
− i∆

∥
y

kv

]
p(y) dSy.

(5)

Applying integration by parts to the term including ∆
∥
y in (5) while assuming

∫
∂ΓBLI

G(x,y)
∂p(y)

∂n(y)
dSy = 0, (6)
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it follows that

ϕ(x)p(x) =

∫
ΓN

G(x,y)
∂p(y)

∂n(y)
dSy −

∫
Γ

∂G(x,y)

∂n(y)
p(y) dSy

+
(γ − 1)ik2

kh

∫
ΓBLI

G(x,y)p(y) dSy +
i

kv

∫
ΓBLI

∇∥
yG(x,y) · ∇∥

yp(y) dSy,

(7)

where ∇∥
y denotes the tangential gradient. The tangential gradient of the Green’s function

can be computed as the vector rejection of the gradient of the Green’s function onto the
normal direction i.e.

∇∥
yG(x,y) = (I− n(y)n(y)⊤)∇yG(x,y), (8)

where I is the identity matrix. In order to discretize (7) a discrete form of ∇∥
yp(y) must be

introduced. The following subsection explains how.

2.3. Computing the Tangential Gradient

As the Boundary Element (BE) interpolation only describes the surface values it does not
contain derivative information orthogonal to the surface. As such the tangential gradient of
the pressure can be computed as the gradient of the chosen BE interpolation. In the following
derivation the notation x(u) =

[
x(u) y(u) z(u)

]⊤ with u =
[
u1 u2

]⊤ is used. On element j

the BE interpolation is given as

p (x(u)) = p
(
Nx(u)

⊤Xj

)
= Np(u)

⊤pj , x ∈ Γj , (9)

where Xj and pj contains respectively the nodal positions and pressures of element j, and Nx

and Np denotes the chosen interpolation scheme for respectively the geometry and pressure.
In order for the gradient to be non-zero the interpolation of the pressure must at least be
linear. The resulting gradient of p with respect to u on element j is given by

∇up (x(u)) =
(
∇uNp(u)

⊤
)
pj , (10)

since the values in pj are constant. The chain rule for gradients it states that ∇up =

(∇ux
⊤)∇xp.23 From this the tangential gradient can be isolated. Note that since the compu-

tations are based on Boundary Elements the isolation poses an initial problem as (∇ux
⊤) is

a 2×3-matrix which is not directly inverted. It has been shown that it is enough to introduce
an artificial variable, u3, for which ∂Np

∂u3

⊤
= 0⊤ (where 0 is a vector of appropriate length

filled with zeros) while substituting ∂x
∂u3

= ∂x
∂u1
× ∂x

∂u2
.19 As such it follows that

∇∥
xp (x(u)) =

(
∇ux(u)

⊤
)−1 (

∇uNp(u)
⊤
)
pj =


∂x
∂u1

∂y
∂u1

∂z
∂u1

∂x
∂u2

∂y
∂u2

∂z
∂u2

∂x
∂u1
× ∂x

∂u2


−1 

∂Np

∂ξ1

⊤

∂Np

∂ξ2

⊤

0⊤

pj , (11)



September 12, 2023 13:53 output

6 M. P. Schmitt, et al.

where the superscript ∥ indicates that the gradient only contains the tangential information.

u1

u2

u1 u2

p

Nx(u1, u2)
⊤Xj

xz

y

p(Nx(u1, u2)
⊤Xj)

∇up(u1, u2)∇∥
xp(x) Utilizing u3

Γj

Np(u1, u2)
⊤pj

a

Fig. 2: Visualization of the interpolation function derivative approach.

3. Series Expansion Boundary Element Method

A weakness of the Boundary Element Method (BEM) is that it requires a recomputation of
the integrals for every frequency of interest. In order to alleviate this issue the so-called Series
Expansion Boundary Element Method (SEBEM) is utilized. The basic idea of the SEBEM is
to assemble a few BEM matrices at specified frequencies (called primary frequencies) and
then using a polynomial interpolation as approximations of the BEM matrices at intermediate
frequencies (called secondary frequencies). Common choices of polynomials are the Taylor
polynomials,11 Chebyshev polynomials10 and even simple q-order polynomials.8 The approach
taken here is that of expanding the Green’s function and its derivatives in terms of their
respective Taylor series. This idea is far from new and was already commonly used in the
early 90s,9 but has recently regained interest.11

3.1. The Series Expansion

In contrast to previous works the formulation in (7) requires the Taylor series expansion of
the tangential gradient of the Green’s function

∇∥
yG(x,y) =

∞∑
m=0

(k − k0)
m

m!

(
I− n(y)n(y)⊤

) (x− y) (−ir)m(1 + ik0r −m)exp (−ik0r)
4πr3

,

where r = ∥x−y∥2 is introduced in order to ease the size of the above expression. Expansions
for the remaining kernels can be found in Appendix A. By inserting the four Taylor series
expansions into (7) the wavenumber can be decoupled such that its interaction with the
integrating variable (y) is linear. As such the discrete form of (7) reduces to

diag(ϕ)p =

( ∞∑
m=0

(k − k0)
m

m!
Gm

)
∂p

∂n
−

( ∞∑
m=0

(k − k0)
m

m!
Fm

)
p

+
(γ − 1)ik2

kh

( ∞∑
m=0

(k − k0)
m

m!
Hm

)
p+

i

kv

( ∞∑
m=0

(k − k0)
m

m!
Tm

)
p.

(12)
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A short description on how to compute the matrices above can be found in Appendix B.
After applying the Neumann boundary condition the above becomes(

diag(ϕ) +
∞∑

m=0

(k − k0)
m

m!

[
Fm −

(γ − 1)ik2

kh
Hm −

i

kv
Tm

])
p =

∞∑
m=0

(k − k0)
m

m!
bm. (13)

In any practical setting, however, one can only include a finite number of terms of the above
sums. It has been suggested that the Lagrange form of the remainder of the Taylor series
can be used as an a priori estimation of the required order achieving a specified desired
maximum error.11 Alternatively the integration error of the Lagrange remainder on the
largest element on the mesh gives s similar estimate.24 In practice, however, one should not
use these suggestions blindly as they are only based on the Taylor expansion of the Green’s
function itself which is only relevant for pure Dirichlet boundary conditions. At the same time
the correspondence between the error of the integral of the Green’s function and the error
of the solution to the linear system are not one-to-one. A rigorous analysis would require
the usage of the condition number of the linear system described in (13), however, this will
result in the error estimator losing its main purpose as a simple a priori estimate for the
order of the Taylor series.

4. Computing a Projection Basis

An essential consideration when applying the Series Expansion Boundary Element Method
(SEBEM) is the large amount of memory required if applied directly. Specifically the memory
scales O(N2M), where N is the number of Degrees Of Freedom (DOF) and M − 1 is the
order of the Taylor series applied. This means that for even reasonably large problems the
total memory usage will be the bottleneck of this approach. From a computational point of
view the method should only be applied when the number of frequencies of interests (Nf )
is larger than the order of the Taylor series (M ≤ Nf ). To resolve the memory issue of the
SEBEM a Galerkin projection method can be utilized.11 This approach reduces the memory
scaling to O(ℓ2M), which is a very practical improvement in the case of ℓ≪ N .

4.1. Galerkin Projection

The main assumption behind the projection method is that the solution, as well as the
right-hand side of (13), for a certain frequency range is spanned by a lower dimensional
subspace. This means that

z ≈ Uℓzℓ, bm ≈Wℓbℓm, Uℓ,Wℓ ∈ CN×ℓ (14)

will be good approximations within this frequency range. This assumption is valid for BE
systems which are well-conditioned. In particular, for BE systems for which the Generalized
Minimal Residual Method (GMRes) converges quickly, the ℓ-Krylov subspace

Kℓ (A,b) = span
{
b, Ab, A2b, . . . , Aℓ−1b

}
, (15)
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is naturally a suitable subspace. Setting the columns of Uℓ equal to these Krylov vectors would
result in (14) being a good approximation - at least for a single frequency. In subsection 4.2
we discuss how to make a projection matrix fill the full frequency range of interest. The choice
for Wℓ is not as straight forward as the choice for Uℓ. However, since bm is computed as the
sum of particular columns of the BE matrices, a Galerkin projection, i.e. setting Wℓ = Uℓ,
is natural. In order to make the derivation simpler it is chosen to let Uℓ be unitary, as this
results in

bℓm ≈ UH
ℓ bm, (16)

where the H superscript denotes the Hermitian transpose. Applying the projection to (13) it
follows that(
diag(ϕ) +

M−1∑
m=0

(k − k0)
m

m!

[
Fm −

(γ − 1)ik2

kh
Hm −

i

kv
Tm

])
Uℓzℓ =

M−1∑
m=0

(k − k0)
m

m!
Uℓbℓm.

Now multiplying with UH
ℓ from the left followed by moving Uℓ (and UH

ℓ ) inside the parentheses
the above simplifies to(

Φℓ +
M−1∑
m=0

(k − k0)
m

m!

[
Fℓm −

(γ − 1)ik2

kh
Hℓm −

i

kv
Tℓm

])
zℓ =

M−1∑
m=0

(k − k0)
m

m!
bℓm, (17)

where Φℓ,Fℓm,Hℓm,Tℓm ∈ Cℓ×ℓ and bℓm ∈ Cℓ. This approach is reasonable if ℓM ⪅ N ,
such that storing all the SEBEM matrices is less than or of the order of storing a single of
the original BEM matrices.

4.2. The Arnoldi Algorithm

In order to make a projection matrix that covers the full frequency band of interest, in-
formation from multiple frequencies within this band needs to be combined. The chosen
frequencies for which this information is extracted will be referred to as primary frequencies
(denoted by fi). At each primary frequency the full BEM system (Afi ,bfi) are assembled
and the q-Krylov subspace computed using the Arnoldi Algorithm (Algorithm 1). Under the
assumption that the solution changes smoothly with frequency the collection of the Krylov
vectors from each of the Krylov subspaces can be expected to span the solution space for
the full frequency band. The final projection matrix, Uℓ, is then computed as the Singular
Value Decomposition (SVD) of the concatenation of the columns of all the q-Krylov vector
subspaces

UℓΣℓV
H
ℓ = svd

([
Kf1 Kf2 . . . KfL

])
. (18)

The reason the SVD is important is that the derivation of (17) required that Uℓ was a
unitary matrix which would not be true for the concatenation of the columns of the q-Krylov
vector subspaces.
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Algorithm 1 Arnoldi Algorithm
Assemble Afi , bfi

k1 ← bfi/∥bfi∥2
Kfi ←

[
k1

]
for j = 2 : q do

kj ← Afikj−1 −
∑j−1

l=1

(
kH
l Afikj−1

)
kl

kj ← kj/∥kj∥2
Kfi ←

[
Kfi kj

]
end for

4.3. Implementation Details

While the previous sections explain the mathematical background of the computations, a
straightforward implementation would result in unnecessary memory allocations, as it would
require the full assembly of Fm,Hm and Tm before applying the projection matrices. Instead,
only a single row gets assembled at the time, which then gets projected directly (Algorithm
2). This assembly strategy requires only O(ℓN) memory compared to the standard O(N2).
While this is an improvement, it is important to note that the overall approach still suffers
from the O(N2) memory requirement stemming from the computation of the projection
matrix Uℓ. This issue could possibly be resolved by utilizing an approximate method such as
the Fast Multipole method (FMM) when computing the projection basis, however, this is
left for future work as the current study concerns the reduced order method itself.25

Algorithm 2 Assembly

Require: Uℓ ∈ CN×ℓ, k0 ∈ R,M ∈ N
Preallocate Φ,F,H,T ∈ CN×ℓ, b ∈ CN

for m = 0 : M − 1 do
for n = 1 : N do

if m = 0 then
Assemble integral free term for the nth collocation point (denoted by ϕn)
Scale row of Uℓ: Φ[n,:] ← ϕnUℓ,[n,:]

end if
Assemble nth row of Fm, Hm, Tm and bm (denoted by f

(m)
n , h(m)

n , t(m)
n , b(m)

n )
Save right-hand side: bn ← b

(m)
n

Compress columns: F[n,:] ← f
(m)
n Uℓ, H[n,:] ← h

(m)
n Uℓ, T[n,:] ← t

(m)
n Uℓ

end for
Compress rows: Fℓm ← UH

ℓ F, Hℓm ← UH
ℓ H, Tℓm ← UH

ℓ T

Compress rows: bℓm ← UH
ℓ b

end for
Compress columns: Φℓ ← UH

ℓ Φ
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5. Numerical Evaluation

In this section the Reduced Order Series Expansion Boundary Element Method (ROSEBEM)
including the Boundary Layer Impedance (BLI) boundary condition is applied to two acoustic
interior problems with increasing complexity. In particular the first setup is chosen such that
the frequency response contain only a single resonance in the frequency range of interest
while the frequency response of the second setup contain four resonances. As such the first
setup gives insights into various aspects of the computational model while the latter setup
highlights what knowledge from the first setup generalizes to more complex setups.
Both test setups are based on an impedance tube which can be used to measure the sound
absorption of the material/object placed at the termination end (Figure 3). In a real-world
scenario a plane wave is created by a loudspeaker placed opposite of the termination end.
This end will be referred to as the source end. In the simulations the loudspeaker excitation
will be mimicked by imposing a Neumann boundary condition. The sound properties of what
is placed at the termination end is then evaluated by measuring the pressure at the two
distinct points (denoted here by x1 and x2).

y

x
50 cm

6 cm
x1

20 cm

x210 cm
vn = 1

ρc termination end

rounded using a quarter of a circle with radius 0.5 cm

Fig. 3: Two-dimensional slice of the impedance tube (symmetric around the y-axis). The
source end, drawn in light green, is prescribed a velocity condition while the remaining
boundary, drawn in black, is prescribed the BLI condition.

In the two test cases the termination end will contain resonators for which a good measure
of effectiveness is the absorption coefficient,26

α(k,x1,x2) = 1−

∣∣∣∣∣∣
p(x1)
p(x2)

− exp (−ik∥x1 − x2∥2)
p(x1)
p(x2)

− exp(ik∥x1 − x2∥2)

∣∣∣∣∣∣
2

, (19)

where k is the wavenumber and p(x1) and p(x2) are computed using (1).
For both test setups the frequency band spans from 200Hz to 600Hz and the same

Neumann condition of vn = 1
ρc was applied at the source end while the remaining boundaries,

including those of the resonators, were fitted with the Boundary Layer Impedance condition.
The two points, x1 and x2, were put on the y-axis with respectively a distance of 20 cm and
30 cm to the origin. The main analysis in both setups is the investigation of the importance
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of the Krylov subspace. As such it was chosen to truncate the Taylor series at M = 20 as
this bounds the pointwise error of the Green’s function on the order of 10−11 making the
projection the limiting factor of the accuracy of the ROSEBEM. See Appendix C for a short
derivation for the multiple resonator test case. This error bound also holds for the single
resonator geometry as the frequency range for both setups is the same and the geometry of
the multiple resonator design is larger than the single resonator design.

The simulation code was implemented in the Julia programming language and run on the
High-Performance Computers provided by the DTU Computing Center (DCC) using Julia
1.727,28. The Boundary Element part of the code was inspired by the OpenBEM package.29 The
two boundary meshes were created using COMSOL multiphysics® and all corners, except
those at the source end, were rounded using the fillet functionality with a radius of 0.5 cm.

5.1. Single resonator test case

The first test case is an impedance tube with a single Helmholtz resonator attached to
the center of the termination end. The two tubes making up the Helmholtz resonator have
diameters of 2 and 4 cm and lengths 2 and 7.5 cm respectively (Figure 4). The boundary mesh
has 2530 isoparametric quadratic elements resulting in a total of 5062 DOF and hmax ≈ 2.9 cm

(Figure 5). In the following the maximum frequency is 600Hz, meaning that the smallest
wavelength is approximately 55 cm. As such the mesh has more than nineteen elements per
wavelength for all frequencies of interest, making its size sufficient for its purpose.30

Termination end
Attachment

2 cm 7.5 cm

2 cm 4 cm

rounded using a quarter of a circle with radius 0.5 cm

Fig. 4: Left: Resonator placement on the termination end. Right: Two-dimensional cut of
the resonator and its dimensions. All corners were rounded using a quarter of a circle with
radius 0.5 cm (right).
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Fig. 5: Three-dimensional visualization of the single resonator setup.

5.1.1. Creating a Suitable Projection Basis

The simplest approach when creating a projection basis is to use only the information
available at the expansion frequency. From a computational point of view this would be
preferable, as this information is readily available from the matrices corresponding to the
zeroth order terms in the Taylor expansions. To evaluate this approach three distinct Taylor
expansions are created using the three expansions frequencies 200Hz, 400Hz and 600Hz.
At every frequency a projection matrix using 170-Krylov vectors of the zeroth order Taylor
system is created. This leads to a reduction of the overall DOF of around 97%. Figure 6
show that this approach captures the resonance effects only if the expansion frequency of the
Taylor series is chosen sufficiently close to the resonance frequency. For all three setups the
error is only small in the close vicinity of their respective the expansion frequency.

Next we examine the influence of adding a single additional frequency when creating the
projection matrix. In order to keep the size of the projection matrix constant the 85-Krylov
vectors will be computed per primary frequency. Using the same frequencies as before, three
distinct projection matrices using two primary frequencies can be computed. Moreover, since
the Taylor series can be expanded at either primary frequency, the total number of distinct
setups is six. The results show that including information from just one additional frequency
results in a good approximation for the full frequency band (Figure 7). Interestingly, as seen
from the pairwise identical errors (Figure 7), the same projection gives the same accuracy for
different expansion frequencies. This indicates that accuracy of the ROSEBEM, for the single
resonator problem, is limited by the resolution of the projection rather than the truncation
of the Taylor series.

The errors in Figure 7 are significantly smaller than those previously seen in Figure 6. It
can therefore be concluded, for this particular test setup, that it is better to expand around a
single frequency and use a more precise projection basis than using two expansion frequencies
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with a projection basis computed using only the information available at that frequency.
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Fig. 6: The absorption coefficient computed using the ROSEBEM with only the information
available at the expansion frequencies 200Hz, 400Hz & 600Hz. The ROSBEM expanding
close to the resonance is the only model which gives reasonable results (left). The error
dip around the expansion frequency is due to the Taylor expansion being exact at these
frequencies (right).
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Fig. 7: Legend explanation: fi ∈ {f0, f1} where f0 is the expansion frequency and f1 is the
additional primary frequency. Using information from two primary frequencies is enough to
capture the correct response over the full frequency band (left). The error is dominated by
the projection as it is small close to the two primary frequencies (right).
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5.2. Multiple resonator test case

The following is based on the same impedance tube, but this time four Helmholtz resonators
are attached at the termination end (Table 1, Figure 8). The boundary mesh has 4554
isoparametric quadratic elements with 9110 DOF and hmax ≈ 2.9 cm (Figure 9). The
frequency band of interest remains the same as before, meaning that this mesh is sufficient for
the frequency range of interest. The Krylov subspace was computed using ℓ ≈ 425, resulting
in a reduction of the DOF of around 95%.

Table 1: Dimensions of the four Helmholtz resonators.

Neck1 Cavity1 Neck2 Cavity2 Neck3 Cavity3 Neck4 Cavity4
Length 2 cm 7.5 cm 6 cm 5 cm 8 cm 5 cm 10 cm 5 cm

Radius 1 cm 2 cm 1 cm 2 cm 1 cm 2 cm 1 cm 2 cm

Termination end

3.25 cm

n1

n2

n3

n4

n1

n2

n3

n4

rounded using a quarter of a circle with radius 0.5 cm

rounded using a quarter of a circle with radius 0.5 cm

Fig. 8: The resonators are placed along the x and z axes with a distance of 3.25 cm from
center to center (left). The dimensions of the two-dimensional cuts of the resonators can be
found in Table 1. All corners were rounded using a quarter of a circle with radius 0.5 cm.

5.2.1. Creating a Suitable Projection Basis

From the single resonator test case it was seen that expanding close to the resonance frequency
resulted in a good fit for the full frequency range. This is not the case for the more complicated
geometry. All solutions, no matter the chosen expansion frequency, drift as seen by the error
only being small in the close vicinity of the expansion frequency (Figure 10).

Adding information from just a single additional frequency is, however, still enough to
create a projection basis with a resolution sufficient to accurately capture the response on
the full domain (Figure 11). The errors for the six setups are all on the same scale, with a
slight edge to the four setups that includes information from the frequency in the middle of
the domain (400Hz). Additionally, it can be seen that the same projection matrix, but with
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Fig. 9: Three-dimensional visualization of the multiple resonator setup.

different expansion frequencies, result in almost identical errors. The conclusion is henceforth
the same as for the simple geometry: The error is bounded by the resolution of the projection
matrix and not by the approximation of the Green’s function. Given that the dimensions of
the two geometries are almost identical, this should not come as a surprise, as the error of
the Taylor expansion is bounded by the size of the geometry.
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Fig. 10: The absorption coefficient computed using the ROSEBEM with only the information
available at the expansion frequencies 200Hz, 400Hz & 600Hz. Not even expanding close to
the resonances result in good performance over the full frequency band (left). The absolute
error dip around the expansion frequency is due to the Taylor expansion being exact at these
frequencies (right).
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Fig. 11: Legend explanation: fi ∈ {f0, f1} where f0 is the expansion frequency and f1 is the
additional primary frequency. Using information from two primary frequencies is enough to
capture the correct response over the full frequency band (left). The error is still dominated
by the projection as the absolute error dip around the two primary frequencies (right).

5.3. Speedup

The desirable outcome of using the ROSEBEM as opposed to the full solution is to reduce
the total computational time of frequency responses. As such it is germane to figure out a
priori when to use either of the two approaches. A simplified analysis of the speedup is as
follows

TROSEBEM(Nf )

TFull(Nf )
=

TKrylov + TTaylor

(TFull-A + TFull-S)Nf
+

(TROSEBEM-A + TROSEBEM-S)Nf

(TFull-A + TFull-S)Nf
, (20)

where Nf denotes the number of frequencies of interest while -A and -S indicates assembly
and solution time respectively. From (20) it becomes clear that when Nf →∞ the speedup
tends towards the fraction between the time of assembling and solving the ROSEBEM and
the full model respectively. These results are expected since numerous evaluations will make
the time spent computing the Krylov vectors and Taylor matrices negligible compared to
the frequency sweep itself. To further the analysis two assumptions will be made: The time
spent assembling the Krylov vectors is negligible compared to assembling the BEM matrix
at the primary frequency and the time spend assembling a single derivative matrix is equal
to that of assembling the regular BEM system. Using these assumptions it follows that

TROSEBEM(Nf )

TFull(Nf )
=

TFull-A(L+M)

(TFull-A + TFull-S)Nf
+

3Tℓ2M +R3TFull-S

TFull-A + TFull-S
, (21)

where R = ℓ
N is the ratio between the number of DOF in the reduced system and the number

of DOF in the original system, L is the number of primary frequencies used and Tℓ2 is the
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time to add two ℓ× ℓ-matrices. For the second test setup (L = 2, M = 20 and Nf = 400) it
is found that the speedup is close to 25 (orange, Figure 12). Disregarding the latter term in
(21) it can be seen that the cutoff of when to use either the ROSEBEM or the full model
will be when Nf = L+M . For any other setup the cutoff will lie at a larger Nf and even in
some circumstances, when e.g. the reduction of DOF is not large enough and the latter term
is larger than 1, the cutoff does not exist.
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Fig. 12: The cutoff for when to the use the ROSEBEM roughly doubles when M doubles
(left). The speedup approximately halves when M doubles (right).

A similar a priori analysis can be performed for the memory usage of the ROSEBEM as
compared to the full model. In both cases the memory required to store the right-hand side
will not be included as it is negligible compared to the system matrices. Since the assembly
of the full system can be implemented such that only a single matrix needs to be stored,
while the ROSEBEM requires the storage of three separate matrices, it follows that

MEMROSEBEM(N,M,R)

MEMFull(N)
=

3(RN)2M

N2
= 3R2M. (22)

For the second test setup R ≈ 0.05 and M = 20, meaning that the ROSEBEM used
approximately 15% of the memory the full model required (Figure 13).
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Fig. 13: The memory scaling of the ROSBEM as a function of R and M . The second test
setup with R ≈ 0.05 and M = 20 can be seen to have used approximately 15% of the memory
of the full model (left). A linear correspondence between the memory scaling and the order
of the Taylor expansion can be seen (right).

6. Discussion

In this paper previous ideas of a Reduced Order Series Expansion Boundary Element Method
(ROSEBEM) are extended to handle the Boundary Layer Impedance (BLI) boundary
condition. Similar to previous works, the model order reduction technique used is the
Galerkin projection based on Krylov subspace recycling. The addition of the BLI condition
required a derivation of both the tangential gradient of the pressure and the Taylor series of
the tangential gradient of the Green’s function.

The proposed model was numerically investigated using two geometries representing
impedance tubes with resonators attached at their termination end. As such the study
concerned interior problems only. The results showed that in order to capture the response
accurately in the full frequency band of interest one should create a Galerkin projection
matrix based on information from at least two frequencies. Further analysis showed that the
error, for both test setups, was dominated by the limitations of the projection rather than
the truncation of the Taylor series. As such, it was concluded that it is best to increase the
resolution of the projection matrix rather than applying multiple Taylor expansions.

Lastly a short description of the computational and memory scaling of the underlying
model, with respect to the various hyperparameters, was presented. Such an analysis is an
important a priori tool when applying the ROSEBEM on future problems. In the case of the
two numerical investigations presented in this paper the speedup using the ROSEBEM was
found to be approximately 25 times while using less than 15% of the memory.
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Appendix

A. List of Taylor Expansions of Relevant Kernels

In the following r = ∥x− y∥2, k0 denotes the expansion wavenumber and α denotes the sign
of the chosen harmonic time-dependency. Previously in the text α was set to 1.

A.1. Taylor Expansion of Green’s function

G(x,y) ≈
M−1∑
m=0

(k − k0)
m

m!
G(m)(x,y, k0) =

M−1∑
m=0

(k − k0)
m

m!

[
(−αir)m exp (−αik0r)

4πr

]
(A.1)

A.2. Taylor Expansion of Gradient of Green’s function

∇yG(x,y) ≈
M−1∑
m=0

(k − k0)
m

m!
∇yG

(m)(x,y, k0), (A.2)
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where ∇yG
(m)(x,y, k) is the gradient of the mth term in (A.1) which can be computed as

∇yG
(m)(x,y, k0) = ∇y ((−αir)mG(x,y, k0))

= (−αi)m∇y (r
m)G(x,y, k0) + (−αir)m∇yG(x,y, k0)

= (−αir)m
(
m

r
∇y (r)

exp (−αik0r)
4πr

+
(x− y) (1 + αik0r) exp (−αik0r)

4πr3

)
= (−αir)m

(
(y − x)m exp (−αik0r)

4πr3
+

(x− y)(1 + αik0r) exp (−αik0r)
4πr3

)
=

(x− y)(−αir)m(1 + αik0r −m) exp (−αik0r)
4πr3

A.3. Taylor Expansion of normal derivative of Green’s function

∂G(x,y)

∂n(y)
≈

M−1∑
m=0

[
(k − k0)

m

m!
n(y)⊤∇yG

(m)(x,y, k0)

]
(A.3)

A.4. Taylor Expansion of tangential derivative of Green’s function

∇∥
yG(x,y) ≈

M−1∑
m=0

[
(k − k0)

m

m!

(
I− n(y)n(y)⊤

)
∇yG

(m)(x,y, k0)

]
(A.4)

B. List of Integrals

On the surface the chosen interpolation of the pressure and its normal derivative is given by

p(x) = B(x)⊤p,
∂p

∂n
(x) = B(x)⊤

∂p

∂n
, x ∈ Γ. (B.1)

This means that Bj(x) is the global basis function for the jth node. As such the integrals of
(12) can be computed as

[Gm]ij =

∫
ΓN

G(m)(xi,y, k0)Bj(y)
⊤ dSy, (B.2)

[Fm]ij =

∫
Γ

[
n(y)⊤∇yG

(m)(x,y, k0)
]
Bj(y)

⊤ dSy, (B.3)

[Hm]ij =

∫
ΓBLI

G(m)(xi,y, k0)Bj(y)
⊤ dSy, (B.4)

[Tm]ij =

∫
ΓBLI

[(
I− n(y)n(y)⊤

)
∇yG

(m)(x,y, k0)
]⊤
∇∥

yBj(y)
⊤ dSy, (B.5)
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where ∇∥Bj(y)
⊤ can be computed using the interpolation function derivative described

in (11) on each element. Note that while each integral of (B.2)-(B.5) is defined on the full
part of their respective boundaries the integrals need only to be computed where Bj(y) has
support.

C. Error bounds of Taylor series

The Lagrange remainder theorem of the Taylor series says that the pointwise error is bounded
as11 ∣∣∣∣(rmax)

M

M !
(k − k0)

M

∣∣∣∣ , (C.1)

where k ∈ [kmin, kmax], rmax is the diameter of the smallest sphere containing the geometry
and M − 1 is the order of the Taylor series. To investigate the maximum error we must pick
k the furthest away from k0 while finding a bound on rmax. The first part is solved by setting
k = kmax as k0 is set in the middle of the frequency domain for both cases. For rmax we see
that the longest resonator has length 15 cm meaning that the maximum distance can be
bounded as

rmax ≤
√
(0.50m + 0.15m)2 + 0.12m2 ≈ 0.66m. (C.2)

Using this one find that ∣∣∣∣(0.66)2020!
(11.09− 7.39)20

∣∣∣∣ ≤ 2.33 · 10−11. (C.3)
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The Helmholtz equation is a reliable model for acoustics in inviscid fluids. Real fluids, however,
experience viscous and thermal dissipation that impact the sound propagation dynamics. The
viscothermal losses primarily arise in the boundary region between the fluid and solid, the acoustic
boundary layers. To preserve model accuracy for structures housing acoustic cavities of comparable
size to the boundary layer thickness, meticulous consideration of these losses is essential. Recent
research efforts aim to integrate viscothermal effects into acoustic boundary element methods (BEM).
While the reduced discretization of BEM is advantageous over finite element methods, it results in
fully populated system matrices whose conditioning deteriorates when extended with additional
degrees of freedom to account for viscothermal dissipation. Solving such a linear system of equations
becomes prohibitively expensive for large-scale applications, as only direct solvers can be used. This
work proposes a revised formulation for the viscothermal BEM employing the Schur complement and
a change of basis for the boundary coupling. We demonstrate that static condensation significantly
improves the conditioning of the coupled problem. When paired with an iterative solution scheme,
the approach lowers the algorithmic complexity and thus reduces the computational costs in terms
of runtime and storage requirements. The results demonstrate the favorable performance of the new
method, indicating its usability for applications of practical relevance in thermoviscous acoustics.

Keywords: boundary element method; acoustic boundary layers; viscous and thermal losses; Schur
complement; static condensation; iterative solvers

1. Introduction

Standard numerical methods in acoustics are typically based on the wave equation and its
time-harmonic counterpart, the Helmholtz equation. The derivation of these equations from
the set of conservation laws employs simplifications and idealizes the physical field as inviscid
and adiabatic.1 While restricting the model to a linear stationary regime covers a variety of

1



September 7, 2023 13:33 output

2 S. Preuss et al.

applications, recent studies question the general disregard of dissipative effects.2–8 Acoustic
waves traveling through fluids are affected by viscous and thermal losses. The viscothermal
losses manifest in the bulk of the fluid cavity and in the vicinity of its solid frame in the
acoustic boundary layers. The boundary layers form due to viscous friction hindering the
sound waves to freely propagate and due to heat exchange between the adiabatic bulk
and isothermal wall.9 Whereas the bulk losses only take effect on propagation over long
distances, the relative importance of the boundary losses varies with the properties of the
propagation medium, the characteristic size of the fluid domain, and the wavelength.10

For air in a frequency range audible by humans, the viscous and thermal boundary layers
comprise a region spanning from a few micrometers to a fraction of a millimeter.11 Hence,
the dissipation effects are small, and omitting them usually does not notably reduce the
model accuracy. However, for applications such as hearing aids, condenser and MEMS
(micro-electromechanical system) microphones, or small-scale acoustic metamaterials, the
fluid enclosures become similarly sized as the boundary layers. The viscothermal damping
consequently dominates the acoustic field and needs to be included in the modeling process.

In order to numerically analyze the aforementioned test cases, research efforts brought
forth finite (FEM)12,13 and boundary element methods (BEM)11,14,15 that fully incorporate
the dissipation in the bulk and boundary layers. Moreover, simplified models were proposed,
cf. 16–21 These models resolve the losses in an approximate and therefore efficient manner but
are only suited for specific geometries, frequency ranges, or boundary layer constitutions.22

Whereas volumetric domain methods like the lossy FEM offer extensive modeling capabilities,
they also prove computationally demanding. To capture the small-scale dissipation effects,
fine meshing of the associated boundary layers is required.12 In addition to the large mesh,
each discretization point comes with extra degrees of freedom (DOFs) for the temperature-
and viscosity-related quantities, resulting in ten times more unknowns than for a conventional
acoustic problem. The boundary element method, however, only requires discretization of
the surfaces bounding the fluid domain.1,14 This avoids costly meshing of the boundary
layers and reduces the overall problem size. Furthermore, the BEM formulation implicitly
satisfies the far-field radiation condition, making it a good fit for exterior acoustics.23,24

Starting from the linearized Navier-Stokes, continuity, and Kirchhoff-Fourier equations
describing the conservation of momentum, mass, and energy,25,26 Cutanda Henríquez et al.14

developed a first direct collocation BEM including the viscous and thermal effects. While
this early version of the viscothermal BEM was tailored to axisymmetric geometries, later
publications generalize the concept for arbitrary two- and three-dimensional problems.11,15

The state-of-the-art lossy boundary element methods have shown promising results when
applied to practical problems but still suffer from shortcomings rooted in the inherent
properties of the BEM.24 Restricting the discretization process to the boundary comes at the
cost of dense non-symmetric coefficient matrices.1 The assembly of those matrices has a time
and space complexity of quadratic order. The computational costs of the algorithm unfold
even worse when considering the increased number of matrix coefficients stemming from the
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viscothermal degrees of freedom. As a first remedy, Andersen et al.8 suggested exploiting the
spatially limited significance of the viscothermal effects by truncating the Green’s function
at a distance of twenty times the boundary layer thicknesses. As a result, the coefficient
matrices for the viscous and thermal wave fields become sparse. The sparsity, however,
cannot be further utilized when plugged into the coupled global system. The matrix blocks
show vastly different characteristics that cause the system to be ill-posed. Thus, solving
the linear system of equations by means of classical iterative solvers like the generalized
minimal residual method (GMRes)27–29 proves impossible. Instead, the system is solved
directly. When using an LU - factorization, the asymptotic solution complexity with respect
to execution time and memory usage stands as O

(
N3)

and O
(
N2)

, respectively, with N

being the dimension of the discrete boundary problem.30 As the problem dimensions increase,
the cubic time and quadratic memory effort of the dense factorization makes it prohibitively
costly to handle large-scale viscothermal problems.

In order to alleviate the computational burden, we propose a revised version of the
viscothermal BEM. First, a change of basis for the coupling conditions is introduced. By
defining the no-slip and null-divergence equations in global coordinates, the formulation
for the lossy BEM becomes simpler and less cumbersome to implement. To counteract
the ill-conditioning, we further apply the Schur complement and condense the formulation
sequentially until solely the acoustic pressure remains as an unknown. The resulting system
is well conditioned and of reduced size, thus avoiding the necessity for direct solvers while
requiring less computational effort for the solution. Furthermore, separation of the dense
acoustic matrices from the sparse viscothermal terms sets the way for future use of fast BEM
methods. Finally, the new formulation is evaluated through a simple academic test case
comparing it to an analytical reference model and the original formulation from Cutanda
Henríquez et al.11

2. Viscothermal Boundary Element Formulation

The present work relies on a previously published three-dimensional BEM with losses. An
in-depth description can be found in Ref. 11. This section gives a short overview of the
underlying formulation, focusing on the issues motivating this paper.

2.1. Kirchhoff Decomposition and Coupling Conditions

Unlike the finite element method, the BEM cannot directly evaluate the fundamental
equations governing the acoustic wave propagation in the presence of viscosity and thermal
conduction. Instead, Kirchhoff’s dispersion relation26 and its later extension25 is adopted.
Kirchhoff proposed to decompose the physical problem into three modal wave fields coupled
solely on the domain boundary. The acoustic, entropy, and vorticity mode, which correspond
to the perturbation of the scalar-valued acoustic and thermal pressure pa and ph and the
vector-valued viscous velocity vv, each satisfies a continuous equation of the Helmholtz form.
The set of partial differential equations (PDEs) for linear time-harmonic acoustics can be
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written as

∆pa(x) + k2
apa(x) = 0 , (1)

∆ph(x) + k2
hph(x) = 0 , (2)

∆vv(x) + k2
vvv(x) = 0 with x ∈ Ω , (3)

where Ω ⊂ Rd is the computational domain. Whereas Eq. (1) models the sound propagation,
the latter two cover the thermal and viscous diffusion, respectively. The complex-valued
modal wavenumbers ka, kh, and kv are functions of the isentropic wavenumber k and the fluid
properties of the propagation medium. This includes, among others, the thermal conductivity,
specific heat capacity, and the shear and bulk viscosity.25 The formulas for the wavenumbers
are outlined in Appendix A. For simplicity reasons, we omit sources that might be added as
extra terms to the right-hand sides of Eqs. (1)-(3). Superposition of the modal contributions
yields the total velocity and pressure in the fluid as

p(x) = pa(x) + ph(x) , (4)
vf (x) = va(x) + vh(x) + vv(x) with x ∈ Ω . (5)

Further introduction of coupling conditions on the boundary Γ enables the solution of the
PDEs with a direct collocation BEM. Whereas the viscous coupling is usually realized by a
no-slip condition,

vb(x) = vf (x) = ϕa∇pa(x) + ϕh∇ph(x) + vv(x) with x ∈ Γ , (6)

matching the boundary velocities in the fluid vf and structure vb, the thermal coupling is
accounted for by an isothermal condition as

Tb(x) = τapa(x) + τhph(x) = 0 with x ∈ Γ . (7)

The latter assumes that due to the higher heat capacity and thermal conductivity of the
structure bounding the fluid domain, any temperature fluctuation T associated with the trav-
eling acoustic wave vanishes at the boundary (subscript b).25 Similar to the wavenumbers in
Eqs. (1)-(3), the coefficients τa, τh, ϕa, and ϕh represent constant complex-valued parameters
that depend on the frequency and fluid properties.14 Calculation of the parameters follows
the expressions given in Appendix A. Furthermore, the null-divergence characteristic of the
viscous velocity, which marks the rotational part of the total velocity field, is exploited. To
compute the divergence, a dot product, denoted by the " · " operator, is performed. Setting
the divergence to zero as

∇ · vv(x) = 0 with x ∈ Ω , (8)

and using it as a coupling condition on Γ completes the full description of the viscothermal
acoustic field.



September 7, 2023 13:33 output

Revising the Boundary Element Method for Thermoviscous Acoustics 5

2.2. Acoustic Boundary Element Method

Except for a few academic test cases, the coupled system of equations cannot be solved
analytically. Instead, numerical methods are tasked with finding a discrete approximation to
the solution.31 In order to apply the boundary element method to the viscothermal Helmholtz
problem, the governing PDEs from Eqs. (1)-(3) are converted to boundary integral equations
(BIEs). Taking the acoustical mode as an example, the integral formulation reads

c(y)pa(y) +
∫

Γ

∂G(ka, x, y)
∂n(x) pa(x)dΓ(x) =

∫
Γ

G(ka, x, y)∂pa(x)
∂n(x) dΓ(x) , (9)

where x ∈ Γ and y ∈ Γ denote the field and source points, respectively, and n is the
normal direction.1 We establish the normal vector to point outward from domain Ω. The
constant c(y) ∈ [0, 1] as part of the integral-free term depends on the boundary geometry and
positioning of y relative to the computational domain. Equally to the conventional acoustic
BEM, the integral kernel is built from the Green’s function G and its normal derivative ∂nG.
Here, the shorthand notation ∂• replaces a partial derivative defined as ∂

∂• . Assuming a
harmonic time dependence of e−iωt with ω denoting the angular frequency, the fundamental
solution for the 3D acoustic Helmholtz operator is given by

G(ka, x, y) = 1
4π

eikar(x,y)

r(x, y) with r = ∥x− y∥2 , (10)

in which r represents the Euclidean distance.1 The same procedure is applied to the governing
equations (2) and (3) describing the thermal pressure and viscous velocity. The resulting
two BIEs are of the same form as Eq. (9) but carry kh and kv as wavenumbers in their
kernel functions.14 For solving the system numerically, the continuous integral equations
are discretized using the collocation approach. The physical quantities are formulated in
terms of interpolation polynomials. Although not a requirement, we utilize the same set
of Lagrangian polynomials to approximate all unknowns. Furthermore, the nodes for the
piece-wise approximation coincide with the collocation points. Division of the geometrical
boundary into surface elements sized according to the problem characteristics eventually
allows calculating the integrals via a Gaussian quadrature scheme.1 In matrix notation, the
BEM formulation for the acoustic, thermal, and viscous mode are written as

Hapa −Ga ∂npa = 0 , (11)
Hhph −Gh ∂nph = 0 , (12)
Hvvv −Gv ∂nvv = 0 . (13)

The variables pa, ph, and vv and their derivative counterparts constitute arrays holding the
nodal results - one for each of the n collocation points.11 The matrices G• and H• replace
the discretized integrals on the right-hand and left-hand side of the BIEs, also known as
single layer and double layer potentials, respectively.1 The latter include the contribution
from the integral free term. As the velocity has three directional components, defined in
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global coordinates as

vv =

vv,x

vv,y

vv,z

 , ∂nvv =

∂nvv,x

∂nvv,y

∂nvv,z

 , (14)

the coefficient matrices in Eq. (13) represent block-diagonal matrices of size 3n× 3n built
from the component-wise (superscript c) viscous potentials as Gv = blkdiag(Gc

v, Gc

v, Gc

v)
and Hv = blkdiag(Hc

v, Hc

v, Hc

v). Further discretization of the coupling conditions yields the
final linear system of equations solvable by means of a direct solver. Whereas the isothermal
boundary coupling from Eq. (7) appears straight-forward,

paτa + phτh = 0 , (15)

the no-slip (Eq. (6)) and null-divergence (Eq. (8)) equations contain gradients that need
further clarification and pose a challenge for the viscothermal BEM setup.

2.3. Previous Developments

In previous publications on the viscothermal BEM, both coupling conditions were defined in
a nodal coordinate basis such that the included differential operator conveniently connects
to the ∂n - unknowns from the discrete BIEs in Eqs. (11)-(13), cf.11,14,15 When split into
its vectorial components, the no-slip boundary condition states

vb,t = ϕa ∂tpa + ϕh ∂tph + vv,t , (16)
vb,s = ϕa ∂spa + ϕh ∂sph + vv,s , (17)
vb,n = ϕa ∂npa + ϕh ∂nph + vv,n . (18)

Similarly, the component-wise notation of the null-divergence characteristic is given by

0 = ∂tvv,t + ∂svv,s + ∂nvv,n . (19)

Here, the subscripts (t, s, n) indicate the contributions in first and second tangential and in
normal direction, respectively. While early implementations of the lossy BEM calculated
the surface tangential derivatives via central14 or Voronoi cell finite differences32 that are
cumbersome to implement and numerically unstable for nearly uniform pressure distributions,
the latest version circumvents the critical differentiation by utilizing analytical derivatives of
the interpolation functions.11 Thus, the ∇ - operator is shifted from the physical quantities
to their piece-wise approximation.

2.3.1. Interpolation Function Derivatives in Global and Local Space

In the following, a detailed description of the interpolation function derivatives (IFDs) is
given since a change of formulation will be proposed later on. As the interpolation in the
boundary element method is conducted on surface elements, the interpolation functions
are defined in two-dimensional space. As a consequence, differentiating the basis functions
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only yields the in-plane component of the gradient. The full gradient is then computed by
combining the tangential information from the IFDs with the normal derivatives from the
discrete BE formulation.

To compute the boundary integral at any position x =
[
x y z

]⊤
all continuously defined

variables are reformulated in terms of their element-wise basis functions evaluated based
on their parametric coordinates ξ =

[
ξ1 ξ2

]⊤
on a reference element.1 Taking the acoustic

pressure pa as an example, the discrete BE representation is given by

pa (x(ξ)) = ϕ(ξ)⊤pj
a with x ∈ Γj , (20)

where pj
a represents the acoustic pressure in the physics nodes of element j and ϕ denotes

the physical interpolation polynomials. These discrete variables constitute column vectors
with as many entries as physical nodes on the element. Since pj

a has only constant values, the
gradient of pa with respect to ξ can be replaced by the equivalent gradient of its interpolation
functions as

∇ξpa (x(ξ)) =
(
∇ξϕ(ξ)⊤

)
pj

a with x ∈ Γj . (21)

In the case of collocation on continuous elements, the physical and geometrical nodes coincide.
As nodes are shared between elements, the interpolation function derivatives are taken as the
average of the contributions from all the elements connected to a node. Further explanations
on the procedure are given in Appendix B.

Applying the multivariate chain rule ∇ξpa = (∇ξx⊤)∇xpa followed by a reformulation
to isolate ∇xpa gives the gradient in a global coordinate basis. Since the computations
are conducted on boundary elements, the f : R3 7→ R2 mapping via ∇ξx⊤ manifests as a
2× 3 Jacobian matrix which cannot be inverted. As a remedy, an artificial third coordinate
direction ∂x

∂ξ3
= ∂x

∂ξ1
× ∂x

∂ξ2
is introduced such that ∂ϕ

∂ξ3
= 0.33 Inversion of the square Jacobian

eventually delivers the pressure gradient in global space as

∇∥
xpa (x(ξ)) =


∂x
∂ξ1

∂y
∂ξ1

∂z
∂ξ1

∂x
∂ξ2

∂y
∂ξ2

∂z
∂ξ2

( ∂x
∂ξ1
× ∂x

∂ξ2
)⊤


−1 

∂ϕ
∂ξ1

⊤

∂ϕ
∂ξ2

⊤

0⊤

pj
a with x ∈ Γj , (22)

where the superscript ∥ highlights that this is only the in-plane component of the gradient.
To compute the coefficients of the Jacobian matrix, we use the discrete representation of the
position vector x as

∇ξx⊤ =
(
∇ξNx(ξ)⊤

)
Xj with x ∈ Γj , (23)

where the rows of Xj contain the global coordinates of the geometry nodes of element j and
Nx holds the geometrical basis functions. Storing the discrete nodal values requires three
and one columns in Xj and Nx, respectively. The row count is dictated by the number of
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geometrical nodes per element.

Splitting the tangential gradient in Eq. (22) into its directional components (x, y, z) and
further applying a coordinate transformation allows to formulate the coupling conditions from
Eqs. (16)-(19) in a discrete manner. The global derivative matrices D• are built such that
multiplying one row i of the matrices with the array of nodal values equals the interpolation
function derivative at node i (see also Appendix B). Written out this means that

∂xpa
∥ = Dxpa , ∂ypa

∥ = Dypa , ∂zpa
∥ = Dzpa . (24)

If the chosen discretization of the thermal and viscous mode are the same as for the
acoustical mode, then the above interpolation function derivative matrices can be reused to
compute ∇∥

xph and ∇∥
x · vv, respectively. We further introduce a transformation matrix that

performs a change of basis from global (x, y, z) - coordinates (denoted by subscript g) to
local node-based (t, s, n) - coordinates (denoted by subscript ℓ) as

ℓMg =

diag(tx) diag(ty) diag(tz)
diag(sx) diag(sy) diag(sz)
diag(nx) diag(ny) diag(nz)

 , (25)

where (tx, ty, tz) are respectively the directional components of the first and (sx, sy, sz)
of the second unit tangential vectors. Similarly, (nx, ny, nz) hold the nodal values of the
unit normal vector in (x, y, z) - direction. The matrix in Eq. (25) is a permutation of a
block-diagonal matrix whose blocks resemble the local orthogonal change of basis matrices.
As permutations preserve orthogonality, it must be true that ℓMg is also orthogonal. Using
the change-of-basis matrix, the derivatives of Eq. (24) can be cast to the local space asDt

Ds

Dn

 = ℓMg

Dx

Dy

Dx

 . (26)

It is apparent that a matrix Dn representing the normal derivatives is included. However, due
to the IFDs only containing the in-plane information, this part disappears up until machine
precision, resulting in Dn ≈ 0. Instead, the out-of-plane information is added through a
combination with the ∂n - components of the discrete BIEs.

2.3.2. Discrete Coupling Conditions and Final Formulation

While the local gradients in the coupling conditions are now accessible via Eq. (26), the
mismatch between the locally defined velocities in the no-slip and null-divergence equation
(Eqs. (16)-(19)) and the global definition in the discrete BEM equations (Eq. (14)) remains.
To resolve this issue, a change-of-basis is applied to vv and its normal derivative using once
again ℓMg as

vvℓ = ℓMgvv , (27)
∂nvvℓ = ℓMg ∂nvv . (28)
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Finally, the no-slip and null-divergence conditions are computed numerically via

ϕa


Dt

Ds

0

 pa +

0
0
I

 ∂npa

 + ϕh


Dt

Ds

0

 ph +

0
0
I

 ∂nph

 + ℓMgvv = ℓMgvb , (29)

[
Dt Ds 0

]
ℓMgvv +

[
0 0 I

]
ℓMg ∂nvv = 0 , (30)

where vb =
[
vb,x vb,y vb,z

]⊤
is the boundary velocity in global coordinates. Putting to-

gether the discrete formulations of the BIEs (Eqs. (11)-(13)) and the coupling conditions
(Eqs. (15),(29),(30)), the viscothermal BEM system reads

Ha −Ga 0 0 0 0
0 0 Hh −Gh 0 0
0 0 0 0 Hv −Gv

0 0 0 0 (Drℓ ℓMg)
(
N⊤

I ℓMg

)
τaI 0 τhI 0 0 0

ϕaDcℓ ϕaNI ϕhDcℓ ϕhNI ℓMg 0





pa

∂npa

ph

∂nph

vv

∂nvv


=



0
0
0
0
0

ℓMgvb


, (31)

where the following row (subscript r) and column (subscript c) matrices where introduced
to shorten the notation

NI =

0
0
I

 , Dcℓ =

Dt

Ds

0

 , Drℓ =
[
Dt Ds 0

]
. (32)

While keeping the formulation in local space works in practice and has been the go-to
strategy previously, it also introduces additional model complexity as knowledge of the
nodal tangentials t and s is required to perform the coordinate transformation via ℓMg,
cf. Eq. (25). In the following, we avoid said complexity by updating the formulation to a
global basis. In doing so, the gradient can be put together from a combination of the global
in-plane IFDs and a normal projection.

3. Global Formulation of the Viscothermal BEM

Since the IFDs only replace the in-plane differential operator, we propose to decompose the
gradients of the (acoustic and thermal) pressure p• such that

∇p• = ∇∥p• +∇⊥p• , (33)

where ∇⊥p• is the vector projection of the pressure gradient onto the out-of-plane normal
direction described by

∇⊥p• = projn (∇p•) = n (∇p• · n) = n ∂np• . (34)
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Here, ∂np• is the result of the scalar projection of ∇p• onto the unit normal vector n. Given
that the IFDs contain the tangential contribution and that the normal derivative is part of
the BIEs, the discrete form of Eq. (33) can be rewritten as

∇p• =

Dx

Dy

Dz

 p• +

diag(nx)
diag(ny)
diag(nz)

 ∂np• . (35)

Using this decomposed formulation of the gradients, we redefine the no-slip condition from
Eq. (29) in global space as

ϕa


Dx

Dy

Dz

 pa +

diag(nx)
diag(ny)
diag(nz)

 ∂npa

 + ϕh


Dx

Dy

Dz

 ph +

diag(nx)
diag(ny)
diag(nz)

 ∂nph

 + vv = vb . (36)

Similarly, the divergence splits into a tangential and normal component as

∇x · vv = ∇∥
x · vv +∇⊥

x · vv . (37)

Using once more that the tangential information comes directly from the IFDs and that the
normal information is included in the discrete BIEs, Eq. (30) converts to

∇ · vv =
[
Dx Dy Dz

]
vv +

[
diag(nx) diag(ny) diag(nz)

]
∂nvv . (38)

Finally, by replacing the original no-slip and null-divergence conditions with their globally
defined counterparts, the updated formulation of the viscothermal BEM reads

Ha −Ga 0 0 0 0
0 0 Hh −Gh 0 0
0 0 0 0 Hv −Gv

0 0 0 0 Dr N⊤

τaI 0 τhI 0 0 0
ϕaDc ϕaN ϕhDc ϕhN I 0





pa

∂npa

ph

∂nph

vv

∂nvv


=



0
0
0
0
0
vb


, (39)

where the following shorthand notation has been used

N =

diag(nx)
diag(ny)
diag(nz)

 , Dc =

Dx

Dy

Dz

 , Dr =
[
Dx Dy Dz

]
. (40)

As this viscothermal system comes with 10 degrees of freedom for each of the n collocation
points, solving the linear system of equations directly on a desktop machine proves impractical
even for moderately large problems. Fortunately, the system matrix shows a distinct block
structure that can be exploited to reduce the problem size. In particular, all matrices except
for Ga and Ha are sparse. The following section explains how to take advantage of the sparsity
pattern via a Schur complement reduction. Additionally, applying the Schur complement
can be a measure to counteract the ill-conditioning that occurs in coupled systems with
quantities of different orders of magnitude. Similar concepts are used in elastoacoustics to
improve the convergence of iterative solvers.34
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4. Static Condensation via Schur Complement

Applying the Schur complement resembles a Gaussian elimination at matrix block level.35

By eliminating internal unknowns, we sequentially reduce the system’s size until only n

DOFs remain. As the pressure field is of primary interest for engineering applications, we
keep the nodal acoustic pressure as the solution vector. The simplicity of the isothermal
boundary condition allows for an initial removal of the thermal mode. By solving Eqs. (7)
and (12) with respect to pa and ∂nph as

ph = −τa

τh
pa , ∂nph = G−1

h Hhph = −τa

τh
G−1

h Hhpa , (41)

the matrix equation (39) is reduced to
Ha −Ga 0 0
0 0 Hv −Gv

0 0 Dr N⊤

µaDc − µhNG−1
h Hh ϕaN I 0




pa

∂npa

vv

∂nvv

 =


0
0
0
vb

 , (42)

where the following constants are introduced to ease the notation

µa = ϕa −
τaϕh

τh
, µh = τaϕh

τh
. (43)

Further, the normal derivatives of pa and vv are eliminated by utilizing reformulations of
the discretized integral equations (11) and (13) as

∂npa = G−1
a Hapa , (44)

∂nvv = G−1
v Hvvv . (45)

Plugging the above into Eq. (42) condenses the system to[
0 Dr + N⊤G−1

v Hv

µaDc + N
(
ϕaG−1

a Ha − µhG−1
h Hh

)
I

] [
pa

vv

]
=

[
0
vb

]
. (46)

Finally, the viscous mode is taken out using that

vv = vb −
(
µaDc + ϕaNG−1

a Ha − µhNG−1
h Hh

)
pa . (47)

To simplify the formulation, the following shorthand notation is applied

R = Dr + N⊤G−1
v Hv . (48)

As such Eq. (46) simplifies to

R
(
µaDc + N

(
ϕaG−1

a Ha − µhG−1
h Hh

))
pa = Rvb . (49)

From a numerical point of view, the above formulation is challenging as it includes the
inverse of the dense matrix Ga. To remove the necessity for a dense inversion, Eq. (49) is
multiplied from the left with Ga (RN)−1 resulting in[

Ga

(
µa (RN)−1 RDc − µhG−1

h Hh

)
+ ϕaHa

]
pa = Ga (RN)−1 Rvb . (50)
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Since the reduced system matrix is of the same size as in the conventional lossless formulation,
storing the matrix requires much less memory than experienced for previous versions of the
lossy BEM. Furthermore, solving the linear system of equations takes significantly fewer
floating point operations since only 1/10th of the former viscothermal unknowns and thus
1/100th of the number of matrix coefficients remain. As the boundary layer contributions
are relatively small, the condensed coupled system is expected to be mainly dominated by
the dense acoustic matrices. As such, their well-conditioning is inherited, which clears the
path for usage of iterative solvers.

5. Nested Iterative Solution Scheme

While the Schur complement formulation reduces the system’s overall size, its setup goes
along with multiple additional matrix-matrix products, some of which require a matrix
inversion. As such, the computational complexity of the condensation scales cubicly. In
order to mitigate this performance penalty, we propose combining the Schur complement
lossy BEM with a nested solution scheme, which employs iterative solvers in three stages.
By performing the math operations in an iterative manner, the sequence of matrix-matrix
products in Eq. (50) is replaced by matrix-vector products. Thus, neither any intermediate
nor the final system matrix must be stored directly. Instead, the solution for the acoustic
pressure is computed using linear operators that access the matrix-building blocks. In doing
so, the time and space complexity of the system solve are improved by an order.

Establishing such a nested solution scheme requires propagating the matrix-vector
multiplications in Eq. (50) from right to left. Parenthesizing the four components that form
the left- and right-hand side of Eq. (50) as

µaGa

(
(RN)−1 (R(Dcpa))

)
− µhGa

(
G−1

h (Hhpa)
)

+ ϕaHapa = Ga

(
(RN)−1(Rvb)

)
,

(51)

yields the ordering of the math operations. The products with Dc and Hh are evaluated
using sparse linear algebra and multiplication with G−1

h can be done by means of either a
sparse direct or an iterative solver, both of which scale linearly. Computing the product
with R and (RN)−1, on the other hand, requires some preliminary thoughts. We start by
looking at the multiplication of R with any vector x̄. The matrix-vector product is computed
following

Rx̄ = Drx̄ + N⊤
(
G−1

v (Hvx̄)
)

, (52)

where G−1
v is, similarly to G−1

h , handled efficiently using a sparse direct or an iterative
solver. For the test case considered in this paper, the viscous and thermal matrices are very
sparse and well-conditioned. The resulting quick convergence of the iterative solvers favors
the iterative approach over the sparse direct solver. For multiplication with (RN)−1, we first
evaluate Eq. (52) replacing the generic vector x̄ with the matrix-vector product Nx̄ and
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then employ an iterative solver to obtain the result of the multiplication with the inverse. A
detailed description of the concept for solving the condensed viscothermal BEM efficiently is
given in Algorithm 1. As the matrices are generally non-Hermitian, we pick a robust iterative
solver considered appropriate for these circumstances: GMRes.1,27 For now, we refrain from
applying preconditioners.

Algorithm 1 Nested solution scheme employing restarted GMRes solvers on three levels.
Input: Ga, Ha, Gh, Hh, Gv, Hv, Dr, Dc, N, µa, µh, ϕa ▷ Matrix-building blocks
Output: pa ▷ Nodal acoustic pressure

function ConstructOperator_R(x̄) ▷ Level 1: Linear operator
return Drx̄ + N⊤ ∗ gmres(Gv, Hvx̄)

end function
function ConstructOperator_RN(x̄) ▷ Auxiliary operator

return R(Nx̄)
end function
function ConstructOperator_A(x̄) ▷ Level 2: Linear operator

return Ga (µa ∗ gmres(RN, R(Dcx̄))− µh ∗ gmres(Gh, Hhx̄)) + ϕaHax̄
end function
b← Ga ∗ gmres(RN, R(vb)) ▷ Compute right-hand side
pa ← gmres(A, b) ▷ Level 3: Solve linear system

6. Results

6.1. Geometry and Discretization

The performance of the global IFD-BEM is studied based on an academic test case. We
investigate the sound radiation of a rigid sphere of radius 1 m that is surrounded by air
at reference ambient conditions. The corresponding properties of the thermoviscous fluid
are provided in Appendix A. The sphere oscillates along its polar axis in z - direction. As
boundary condition, a uniform particle velocity of vb,z = 10−2 m/s is applied to all surface
nodes. This example presents an exterior problem where the tangential movement of the
surface induces significant viscous dissipation in the boundary layers. Although analysis of
any field point in the exterior domain is possible, only the boundary solution is of interest
since the viscothermal effects become increasingly small with a growing distance from
the surface. The same application has been previously used to test the axisymmetric,14

2D,15 and 3D formulation11 of the viscothermal BEM. The test case offers an analytical
solution36 and can therefore be used to validate the numerical results of the revised lossy
BEM. Note that the analytical reference only includes the dominant viscous effects but
omits the less significant thermal losses.36 A detailed description of the analytical model can
be found in Appendix C. To avoid the non-uniqueness problem of the BEM,1 the studies
are conducted at frequencies sufficiently distant from the internal eigenfrequencies of the
sphere. Benchmarking and testing is done at 100 Hz and 1000 Hz. The boundary meshes are
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generated using COMSOL Multiphysics37 and are centered at the origin of the coordinate
axes. As shown in Fig. 1, seven different meshes built from quadratic 6-node triangular
elements are studied. We employ isoparametric elements using the same set of basis functions
for both geometry and physics interpolation.

x

z

y

Fig. 1: Boundary element meshes employed for testing the lossy BEM. All meshes are built
from quadratic triangular elements. From top left to bottom right, incremental refinement
results in meshes composed of 246, 464, 840, 1320, 2794, 4506, and 6530 elements, respectively.

In order to decrease the computational costs for assembling and storing the viscothermal
matrices, we predetermine the sparsity pattern of the matrices. Since the boundary losses
have limited spatial significance,8 calculating the boundary layer thicknesses relative to the
element size reveals the nonzero nodal interactions, which will contribute to the matrix
setup. The boundary layer thicknesses in air can be approximated by10

δv ≈
2.1√
f/Hz

mm , δh ≈
2.5√
f/Hz

mm . (53)

Thus, in the frequency range of interest from 100 Hz to 1000 Hz, the maximum space the
boundary layers will occupy equals δmax ≈ 2.5/

√
fmin/Hz = 2.5 · 10−4 m. By ensuring that all

elements of the meshes are larger than a predefined multiple of said maximum thickness,
we can limit the boundary integration to the element the current collocation point is part
of and its direct neighbors. Tab. 1 gives the minimum edge length of each of the boundary
meshes and the number of maximum-sized boundary layers that would fit into said element.
We rule out any number being smaller than 20 since truncating the viscothermal kernel
functions at a distance of 20 boundary layers is regarded as sufficiently accurate.8
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Table 1: Minimum and maximum element edge lengths (hmin and hmax) in meters evaluated
according to Ref. 38 for all mesh configurations. Estimate of worst-case scenarios for the
number of (abbreviated #) elements per wavelength and the number of vertically stacked
boundary layers fitting into an element.

# elements ne 246 464 840 1320 2794 4506 6530
# nodes n 494 930 1682 2642 5590 9014 13062

hmin 0.1981 0.1352 0.0925 0.0718 0.0462 0.0373 0.0243
hmax 0.2554 0.1823 0.1521 0.1139 0.0790 0.0618 0.0508

Min. # elements 1.34 1.88 2.26 3.02 4.35 5.56 6.77
per wavelength

Min. # boundary 792.4 540.8 370.0 287.2 184.7 149.2 97.1
layers per element

Furthermore, the maximum element edge length and the minimum wavelength of
λmin = c/fmax = 0.344 m are put in relation to give a worst-case estimate for the num-
ber of elements per wavelength for all test cases. As demonstrated in Tab. 1, the coarser
boundary meshes do not comply with common rules for discretization,39 which might lead
to inaccurate results for the 1000 Hz studies.

6.2. Validation

For validating the revised BEM with losses, we reproduce the oscillating sphere test case
from Ref. 11. The sphere mesh with ne = 1320 elements (n = 2642 nodes) serves as geometry
approximation for a study at 1000 Hz. Although the new Schur complement formulation
exclusively solves for the acoustic pressure, we retrieve the condensed velocity vector using
Eq. (47). As such, a comparison to the full analytical solution is possible. The code base
used for all simulations in this work has been developed by the Acoustics Technology Group
at DTU jointly with the Chair of Vibroacoustics of Vehicles and Machines at TUM. The
software is written in the Julia Programming Language,40 which constitutes a good compro-
mise between speed and ease of implementation and usage. All results are generated running
Julia version 1.9.1.

Fig. 2 shows the analytical and numerical results for the complex-valued acoustic pressure
and viscous velocity on the boundary. Depicted are the discrete nodal values at the continuous
surface nodes. Aiming for validation of the new lossy BEM, we consult an appropriate
analytical model.36 Since the reference model, as discussed in Appendix C, returns the
viscous velocity in radial direction (denoted by superscript r) and along the polar angle
(denoted by superscript θ), which align with the normal and tangential directions, we convert
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the solution vector to the same spherical coordinate basis through

vr
v = −vv,n = −N⊤vv , (54)

v∥
v = vv − v⊥

v = vv −Nvv,n , (55)
vθ

v = diag(cos θ) diag(cos φ) v∥
v,x + diag(cos θ) diag(sin φ) v∥

v,y − diag(sin θ) v∥
v,z . (56)

Eq. (55) makes use of the assumption that each quantity can be split into its tangential
in-plane component and a normal out-of-plane part, cf. Sec. 3. Note that this transformation
does not require explicit knowledge of the nodal tangentials. The polar angle in Eq. (56)
marks the inclination from the positive z - axis as specified in ISO standard 80000-2:2019.
Following this convention, the polar and azimuth angles θ and φ for collocation point i

depend on its respective Cartesian coordinates as

θi = arccos zi√
x2

i + y2
i + z2

i

, φi = sgn(yi) arccos xi√
x2

i + y2
i

. (57)

Since we deal with discrete results, all mathematical operations are performed entry-wise,
meaning separately for each entry of the discrete arrays. Consequently, we evaluate the sine
and cosine in Eq. (56) for each of the nodal values stored in θ and φ.

As depicted in Fig. 2, the transverse movement of the sphere generates a viscous mode
prevalent at its equator. While the magnitude of the viscous velocity peaks at around
θ = 90◦ in the tangent space, the normal component has its maxima at the poles where
the boundary excitation aligns with the direction of the normal vectors. The curves for
the acoustic pressure follow a similar pattern, with the sound pressure magnitude being
largest at θ = 0◦ and 180◦ and zero at the equator. Due to the test case resembling a dipole
source, sound is primarily radiated in positive and negative z - direction. In general, the
numerical and analytical results are in good agreement. But similar to previous versions
of the lossy BEM,11 the newly developed formulation fails to meet the reference curves
when the values become very small. Quantities of small order of magnitude, like the normal
viscous velocity, seem more likely to be affected by discretization inaccuracies. Even when
using quadratic elements, the nodal positions may deviate from the theoretical radius of the
sphere. A small study focusing on the impact of geometrical inaccuracies introduced during
the meshing process has revealed that relocation of the nodes to match the ideal radius
does not change the results significantly. Hence, we conclude that the geometry error only
slightly contributes to the deviation from the analytical solution. The error associated with
the physics discretization, especially when considering discontinuous instead of continuous
elements, remains unclear and will be part of future contributions by the authors.
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Surface pressure and viscous velocity at 1000 Hz

Fig. 2: Nodal acoustic pressure (top), viscous velocity in radial direction (middle), and
viscous velocity along the polar angle (bottom) on the discrete surface of a sphere with
ne = 1320 elements, oscillating at 1000 Hz. Shown are the real (left), imaginary (middle),
and absolute values (right) of the analytical reference (solid line) and the numerical solution
calculated using the lossy iterative BEM (dots). The curves follow an arc from one pole of
the sphere to the other (z = 1 m to −1 m). Note the different orders of magnitude for the
velocity plots.
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For further clarification of the model accuracy, we evaluate the relative surface error as1

eΓ
2 = ∥eΓ∥2
∥pΓ

a,ref∥2
=

√√√√√√√
n∑

i=1
|pa(xi)− pa,ref(xi)|2

n∑
i=1
|pa,ref(xi)|2

, (58)

for all mesh configurations and both frequencies. Here, we focus on the acoustic pressure pa

at the nodal positions xi as this is the solution quantity of the global Schur complement
BEM. We analyze the convergence with respect to h-refinement, expecting a steady decrease
of the error. Similarly, considering a larger frequency ideally leads to larger approximation
errors when the mesh is kept constant. Both effects can be observed in Fig. 3. For the 1000 Hz
study, a bend in the convergence curve occurs when approaching the coarser discretization
levels. As the error surpasses 1 %, we conclude that the number of elements per wavelength
in these meshes does not suffice to accurately model the physics.

103 104
10−4

10−3

10−2

10−1

1.34 1.88 2.26 3.02 4.35 5.56 6.77

100 Hz

1000 Hz

n

ne per λmin

eΓ 2
of

p a

1n - iter
1n - direct
4n - direct
10n - direct

Relative RMS surface error

Fig. 3: Euclidean error norm1 in terms of the node count n and the corresponding minimum
number of elements per wavelength (ne per λmin) evaluated on the discrete sphere surfaces.
The relative error comparing the numerical and analytical solution for the acoustic pressure
at 100 Hz and 1000 Hz is shown. The numerical results are computed using the global lossy
BEM at different condensation levels: "10n" denotes the uncondensed, "4n" the partially
condensed, and "1n" the fully condensed formulation. While the first two only allow a direct
solution ("direct"), the last one can be solved directly or iteratively ("iter"). As all variants
of the lossy BEM lead - except for the error introduced by GMRes - to nearly the same
solution, the curves fall on top of each other.
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Comparison of the error at different condensation levels further reveals the same model
accuracy for the full model as defined in Eq. (39), the reduced model lacking the normal
derivatives as described by Eq. (46), and the final model as stated in Eq. (50), which keeps
only pa as unknown. All variants of the system formulation have been solved directly using
an LU - factorization. Furthermore, the iterative approach has been tested, cf. Algorithm 1.
As shown in Fig. 3, the nested iterative solution scheme does not introduce significant
additional errors.

6.3. Computational Scaling

After confirming the validity of the new formulation, we evaluate the performance gain
achieved through the Schur complement reduction and iterative solution. First, we assess
the method in terms of its theoretical algorithmic complexities. Then, we measure the actual
performance with respect to the execution time and memory usage. To maintain consistency,
all simulations for benchmarking the model are carried out on the Linux Cluster of the
Leibniz Supercomputing Centre, specifically on the single-node Teramem partition, which is
tailored to applications with extreme memory requirements. The linear-algebra operations
are performed on 32 cores using the Julia link to the Linear Algebra PACKage (LAPACK)41

and the multi-threaded BLAS library.42

All four versions of the lossy BEM rely on a precomputation of the building blocks
for setting up the global system matrix. Both the assembly time (denoted by T ) and
the memory requirements (denoted by M) for this precomputation scale as O(2n2 + sn)
with n2 emerging from the two dense acoustic matrices and n from the sparse matrices
with matrix count s. After the computation of the matrix-building blocks, the asymptotic
space complexity for setting up the dense linear systems of equations generally unfolds as
O(N2) with N being either 10n, 4n, or 1n depending on the system formulation. The time
complexity heavily depends on the intermediate computations which are required to perform
the condensation. Whereas the 10n - system from Eq. (39) does not introduce any extra
steps, the 4n - formulation from Eq. (46) relies on the matrix products G−1

a Ha, G−1
h Hh, and

G−1
v Hv with the dense multiplication setting the upper bound of the complexity as O(n3).

The same holds for the assembly of the 1n - system from Eq. (50) as it involves multiplying
Ga with (RN)−1RDc. When solving the system of equations directly via LU - factorization,
the algorithmic time complexity peaks at O(N3). Although of the same order, we expect
a shift in performance for the three condensation levels due to the different system sizes
and amount of additional matrices that need to be computed and kept in storage. When
considering the cubic scaling for the direct solution, the necessary floating point operations
multiply by a factor of 1000, 64, or 1. A similar but less pronounced shift is to be expected
in the space complexity as the quadratic scaling for storing the matrix arises from 100, 16,
or 1n2 memory allocations. Unlike the direct approach, the nested iterative solution scheme
does not incorporate any operations of cubic order but is dominated by the dense matrix-
vectors products scaling with O(n2). By employing a restarted GMRes that utilizes the
matrix-building blocks without explicitly storing the full matrix, the assembly and solution
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time is bound by O(pn2) and the memory by O(prn).27 Here, p = ij(3k) is the product of
the total number of iterations on the outer (i), mid (j), and inner level (k) of the iterative
scheme, and pr = irjr(3kr) is the corresponding iteration count before restart. As such, the
computational scaling of the iterative approach strongly depends on the system conditioning.
An in-depth analysis of the conditioning follows in Sec. 6.4. Tab. 2 summarizes the theoretical
estimates for the asymptotic space and time complexities. In order to distinguish the various
cases, we include the multiplication factor of the highest-order term.

Table 2: Theoretical estimate for the asymptotic time and space complexity comprising
the system assembly with precomputed matrix building blocks and the direct or iterative
solution with respect to the acoustic pressure.

System 10n - direct 4n - direct 1n - direct 1n - iter Common offset

Space O(100n2) O(25n2) O(8n2) O(prn) + M

Time O(1000n3) O(65n3) O(3n3) O(pn2) + T

For benchmarking the different versions of the lossy BEM, we track the elapsed wall clock
time and the memory allocations from 20 simulation runs. The measurement results with
respect to the system assembly and solution for pa are visualized in Fig. 4. The computa-
tional effort for setting up the matrix-building blocks is not included, as it remains constant
throughout the variants. The memory usage is evaluated as the maximum allocations that
occur either during the matrix setup or during the solution while keeping the system matrix
in storage. The assembly makes up the primary costs for the 4n - and 1n - direct variants,
whereas the solution dominates for the others. Overall, the condensation and, if applicable,
the iterative solution significantly improve both the time and space complexity. Taking the
finest mesh as an example, the iterative approach proves more than 104 times faster at
100 Hz and 2.7 · 103 times faster at 1000 Hz than the conventional uncondensed version of
the viscothermal BEM. Memory-wise, the performance gain is significant but less distinctive.
At 100 Hz, 1169 times less memory is allocated and at 1000 Hz, 328 times less.

The measured memory consumption matches the predicted spatial complexities of linear
and quadratic order. The runtime analysis, however, reveals fewer computational costs than
estimated. As the values in Tab. 2 represent upper bounds, we expect the algorithms to
somewhat outperform these theoretical complexities. The scaling behavior observed in Fig. 4
exceeds said expectations. Possible explanations might lead back to the utilized software
and hardware architecture. The Julia packages are mainly written for scientific computing
purposes and therefore performance-optimized with respect to math operations.40 Some
measures implemented are, for example, partial pivoting in the LU - decomposition43 or
restarting the GMRes algorithm.27 Furthermore, in case of high constant factors, the lower-
order terms can dominate the scaling until the matrices become very large. As such, the
number of DOFs considered here might not suffice since some curves still experience a change
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in slope, cf. the 4n - direct timings. Lastly, as more computations fit into the processor cash,
which has a higher memory bandwidth than RAM, the reduction in memory allocations
might result in speedups up to super-linear order. In general, all scaling measurements
disclose a decrease in order for the new iterative Schur complement BEM, making it better
suited for acoustic applications of larger size.
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Fig. 4: Maximum memory consumption (right) and lower bound of wall clock time (left)
measured from 20 evaluations of each of the lossy BEM algorithms. Depicted is the com-
putational scaling for 100 Hz (top) and 1000 Hz (bottom) comprising the system assembly
with precomputed matrix building blocks and the direct or iterative solution with respect
to the acoustic pressure. Any steps to compute the building blocks or to reconstruct the
condensed unknowns are excluded. The marks show the measurement results from the
benchmarking runs, and the gray curves indicate matching theoretical complexities of linear
(solid), quadratic (dashed), or cubic order (dotted).
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When comparing the top and bottom plots of Fig. 4, the offset between the curves
representing the iterative approach and the direct methods appears smaller in the 1000 Hz
study. This dependence on the frequency can be attributed to a different convergence rate of
the iterative solvers. Similar to conventional acoustics problems, we expect GMRes to take
more iterations to converge when the frequency increases.28 The following Tab. 3 lists the
number of matrix-vector products performed when solving the viscothermal problem with
respect to the acoustic pressure. While the solution at 100 Hz takes 6 to 7 matrix-vector
products, at 1000 Hz 24 to 96 products are required. This only holds for the outmost GMRes
loop. At the other levels of the nested solution scheme, 3 to 4 iterations suffice no matter the
test case. The occurring decline in matrix-vector products with growing mesh size impacts
the execution time at 1000 Hz. Although the scaling order remains the same, the shrinking
multiplication factor flattens the time curve.

Table 3: The top rows list the number of matrix-vector products that were performed in the
outer (level 3) GMRes-loop to solve the 1n - system iteratively. Only the convergence rate
of the outmost GMRes varies with frequency and system size. Within every outer iteration
step, 4 to 5 matrix-vector multiplications are performed in each of the mid (level 2) and
inner loops (level 1). The bottom rows contain the number of matrix-vector products needed
in the extension step for recovering vv with GMRes. The relative error tolerance is set to
1e-7 for all steps.

n 494 930 1682 2642 5590 9014 13062

100 Hz 7 7 7 7 6 6 6
1000 Hz 96 73 50 42 35 27 24

100 Hz 18 17 19 19 18 18 17
1000 Hz 520 224 297 322 310 339 380

As the last part of the runtime analysis, we look into the computational costs for recovering
the unknowns that are eliminated during the system reduction via Schur complement. Since
the viscothermal BEM is mainly utilized in engineering acoustics, this step is generally not
needed. The focus is on the pressure field as the solution quantity of the numerical method.
Nevertheless, some applications might require additional knowledge of the velocity field.
Extending the condensed system to retrieve the nodal viscous velocities follows Eq. (47),
where the multiplication with an inversion of the dense acoustic matrices stands out as
bottleneck. To relieve the computational burden, we employ an iterative solver, specifically
restarted GMRes without preconditioning, for calculating G−1

a (Hapa). This computation
resembles the classical system setup we encounter in isentropic acoustics. Fig. 5 gives an
outlook on how much effort the extension step takes when compared to the system assembly
and solution, as well as the construction of the right-hand side. A tendency is evident in the
1n - iter case, where recovering the velocities becomes more costly with increasing problem
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size. For 13062 nodes, most of the total execution time is spent on the extension. This is
a consequence of the convergence rate for the GMRes solver, which proves worse than the
ones observed in the nested scheme for calculating pa. The corresponding iteration count for
the extension step is given in Tab. 3. As the increasing number of iterations does not change
the order of the overall algorithmic complexity but only impacts the multiplication factor,
we do not expect significant drawbacks for larger problems.
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Fig. 5: Elapsed wall clock times measured from 20 evaluations of each of the lossy BEM
algorithms. The bars indicate a cumulation of the runtimes for the system assembly and
solution, the setup of the right-hand side, and the steps required to extend the system for
recovering the condensed viscous velocities. Shown are the total runtimes for a specific mesh
(left), and, for three different meshes, the relative share of each of the three computation
steps (right). Only the maximum frequency of 1000 Hz is looked into as this will require the
most GMRes iterations and therefore have a lesser time advantage when compared to the
direct approaches.
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As shown in the left plot of Fig. 5, even when including the costly extension step, the
runtime reduction due to condensation and iterative solution improving the scalability
remains strong when compared to the other lossy BEM variants. An opposite trend regarding
the relative importance of the extension step is observed for the 1n - direct case. Although
the absolute costs for recovering the viscous velocities stay the same, the solution via
factorization scales worse and therefore dominates the time effort. The remaining variants of
the lossy BEM spend almost all runtime on the assembly and solution.

6.4. Conditioning

To understand the reason behind the changing convergence for different condensation levels,
we analyze the conditioning of the systems. Tab. 4 features the condition numbers κ of the
system matrices for each of the condensation levels and test cases up to 5590 discretization
nodes. Due to the high computational costs for calculating the condition numbers and the
problem size having no visible impact, we refrain from extending the study to finer meshes.
While the original uncondensed system suffers from ill-conditioning with κ being of the order
> 109, the system reduction via Schur complement relieves this issue gradually. Unfolding
the matrix structure from Eq. (39) as

Dense Sparse Diagonal



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0





pa

∂npa

ph

∂nphvv,x

vv,y

vv,z

∂nvv,x

∂nvv,y

∂nvv,z





=



0
0
0
0
0
0
0vb,x

vb,y

vb,z





, (59)

visualizes the cause for the initial ill-conditioning. Coupling the acoustic, viscous, and
thermal modes results in an inhomogeneous matrix structure with building blocks of dense,
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sparse, and diagonal nature. Note that the diagonal matrices stemming from the coordinate
transformation with N can have close-to-zero entries on the diagonal if the nodal normal
vectors align with the coordinate axes. As the solution quantities are of vastly different orders
of magnitude, so are the matrix coefficients. For the 4n - system as defined in Eq. (46), we
can already see an improvement to κ < 107 caused by the changing structure as we apply
the Schur complement. While the first reduction does not guarantee convergence of iterative
solvers yet, the final stage of the global lossy BEM formulation, as stated in Eq. (50), shows
favorable condition numbers in accordance with the convergence behavior observed during
the benchmarking runs, cf. Tab. 3. Furthermore, we notice an adverse influence of the
frequency for the fully condensed system. As such, the number of iterations required to find
a solution increases for higher frequencies.

Table 4: Condition numbers of global system matrix for different condensation levels at
frequencies of 100 Hz and 1000 Hz.

Number of nodes n

System size f/Hz 494 930 1682 2642 5590

10n× 10n 100 1.55 · 1010 1.57 · 1010 1.58 · 1010 1.55 · 1010 1.53 · 1010

1000 3.57 · 109 3.66 · 109 3.88 · 109 3.66 · 109 3.77 · 109

4n× 4n 100 2.99 · 106 3.01 · 106 3.03 · 106 3.03 · 106 3.04 · 106

1000 9.89 · 107 3.12 · 107 2.42 · 107 2.44 · 107 2.57 · 107

1n× 1n 100 2.71 2.71 2.71 2.70 2.71
1000 36.31 34.45 35.64 35.85 36.35

When looking deeper into the characteristics of the matrix-building blocks, we see a correlation
between the dense matrices and the overall conditioning of the 1n - system. For n = 2642
nodes and a frequency of 1000 Hz, the discrete single and double layer potentials show
condition numbers of

κ(Ga) ≈ 62.9413 , κ(Ha) ≈ 35.8337 , (60)
κ(Gh) ≈ 1.0024 , κ(Hh) ≈ 1.0004 , (61)
κ(Gv) ≈ 1.0020 , κ(Hv) ≈ 1.0004 . (62)

As such, the properties of the final system matrix seem to be mainly dominated by the
acoustic double-layer potential. Note that all H• matrices include the contribution from the
integral free term. The matrices for the viscous and thermal modes have condition numbers
of close to one, explaining the fast convergence of the inner GMRes loops.
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7. Conclusions and Future Work

A modified formulation of the direct three-dimensional boundary element method for time-
harmonic acoustics with viscothermal losses has been presented in this paper. By redefining
the coupling of the viscous, thermal, and acoustic wave fields on the boundary in global space,
a previously needed coordinate transformation11 becomes redundant. As such, the change
of basis facilitates a software implementation of the method and removes the necessity for
computing the nodal tangential vectors. The new method is validated, and its performance
is analyzed based on an academic test case that shows a notable impact from boundary
layer effects: an oscillating sphere. We investigate seven different mesh configurations at two
frequencies and compare the results to an analytical solution.

To counteract the system’s ill-conditioning, which has been observed for both the former
local formulation and the proposed global one, we apply the Schur complement. An analysis
of the matrix properties reveals that the ill-conditioning can be traced back to the inho-
mogeneous block structure and different orders of magnitude of the solution quantities. A
systematic condensation of the internal unknowns proves an effective measure for adjusting
the conditioning of the system matrix. A complete condensation with the acoustic pressure
as remaining unknown results in a system matrix whose properties are mainly dominated by
the dense acoustic double-layer potentials. Furthermore, the reduction in system size carries
a memory advantage. To mitigate the computational costs of solving the coupled system
directly, which has been inevitable as of now, we set up a nested iterative solution scheme
that employs a restarted GMRes solver in three stages. The inner loops of the multilevel
solver operate on the viscothermal matrices that show sparse matrix patterns due to the
limited spatial reach of the boundary layer effects. The iteration counts remain constant
throughout the test cases. The outer loop performs a dense matrix-vector product, and its
convergence varies with frequency and mesh discretization. In general, a fast convergence for
the solution scheme is observed, resulting from the improved conditioning via Schur com-
plement. Evaluation of the discrete surface error yields the expected convergence behavior,
confirming that the new global Schur complement BEM is stable and sufficiently accurate
when solved iteratively.

Furthermore, an in-depth analysis of the performance with respect to execution time and
memory consumption reveals the computational scaling of the newly developed method. The
benchmarking measurements underline that combining the static condensation and iterative
scheme reduces the order of the algorithmic complexity for the system assembly and solution.
As such, the new method is computationally less expensive and therefore better suited for
practical applications in acoustics. The next steps should include testing the method for
larger applications relevant in viscothermal acoustics, such as metamaterials6,7 and sound
barriers.44 Of particular interest are structures composed of narrow gaps and small acoustic
cavities where the spatial significance of the losses extends beyond the neighboring elements.
We consequently expect a change in the sparsity pattern of the viscothermal matrices.
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While the iterative fully condensed system reduces the computational complexity signifi-
cantly by avoiding any dense matrix inversions as well as dense matrix-matrix products, it
still suffers from computational drawbacks rooted in the characteristics of the acoustic single-
and double-layer potentials. Computing the acoustic part of the matrix-building blocks for
assembling the coupled system requires O(n2) operations, resulting in quadratic time and
space complexities. A similar effort is spent on the dense algebraic operations included in the
outer linear operator for the iterative solution. To tackle this issue, future work should focus
on incorporating acceleration techniques like the fast multipole method,45 that improve the
scalability by approximating the matrix-vector products. The new formulation is already set
up such that the acoustic matrices are isolated and can easily be treated with a low-rank
approximation that does not require an explicit assembly and storage of the full matrix.
Furthermore, we suggest generalizing the method formulation to guarantee applicability for
all kinds of test cases, such as non-smooth geometries and studies at eigenfrequencies of
the corresponding interior problems. As such, the use of discontinuous elements and the
method by Burton and Miller should be evaluated.46 Additionally, a close examination of
the current technique for nearly singular and singular integration might reveal alternative
methods better suited for the fast decaying viscothermal kernel functions. Lastly, applying
preconditioners like the ILU - type preconditioner29 or the diagonal preconditioner28 can
help with the slower convergence of the extension step for recovering the velocities.
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Appendix

A. Viscothermal Coefficients and Material Model

The following section elaborates on the modal wavenumbers k• and model parameters ϕ• and
τ• that are needed to construct the viscothermal BEM model. We focus on the expressions
corresponding to a negative harmonic time dependence, as has been assumed throughout this
work. The equivalent expressions for eiωt are outlined in Ref. 14. The viscothermal parameters
emerge from the conservation laws for mass, momentum, and energy, which constitute the
starting point for the model derivation. When cast into the form of time-harmonic Helmholtz
equations as given in Eqs. (11)-(13), the material properties originally included in the
governing equations become part of complex-valued wavenumbers. As detailed in Refs. 25
and 47, the dispersion relations for the acoustic, thermal, and viscous modes read

k2
a = k2

1− ik [lv + (γ − 1) lh]− k2lh (γ − 1) (lh − lv) , (A.1)

k2
h = ik

lh [1 + ik (γ − 1) (lh − lv)] , (A.2)

k2
v = iρ0 ω

µ
, (A.3)

with the thermal and viscous characteristic lengths defined as

lv =
η + 4

3µ

ρ0 c
, lh = λh

ρ0 c cp
. (A.4)

Here, ω is the angular frequency, c the speed of sound, k = ω/c the isentropic wavenumber,
ρ0 the static density, λh the thermal conductivity, µ the shear viscosity, η ≈ 0.6µ9 the bulk
viscosity, cp the specific heat capacity at constant pressure, cv the specific heat capacity at
constant volume, and γ = cp/cv the specific heat ratio. We further define the coefficients
appearing in the coupling conditions (Eqs. (6) and (7)) as

τa = γ − 1
βγ

1

1 + ilh
k2

a

k

, τh = γ − 1
βγ

1

1 + ilh
k2

h

k

, (A.5)

ϕa = −i
ρ0 ω

1

1 + ilv
k2

a

k

, ϕh = −i
ρ0 ω

1

1 + ilv
k2

h

k

, (A.6)

where β = ρ0(cp − cv) denotes the thermal expansion coefficient. The material properties in
this study have been evaluated following the description in Ref. 48. For air as propagation
medium, assuming reference ambient conditions of
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• Static temperature: T0 = 293.15 K
• Static pressure: p0 = 101 325 Pa
• Relative humidity: φ = 50 %

we assign the following material properties

• Static density: ρ0 = 1.199 kg/m3

• Speed of sound: c = 343.986 m/s
• Thermal conductivity: λh = 251.778 · 10−4 W/(m K)
• Shear viscosity: µ = 181.267 · 10−7 Pa s
• Heat capacity at const. pressure: cp = 1012.368 J/(kg K)
• Heat capacity at const. volume: cv = 722.552 J/(kg K)

to compute the solution of all test cases considered in this work.

B. Further Explanations on the Interpolation Function Derivatives

On all boundary elements and their respective parametric representation, there is a local
coordinate ξ for which x(ξ) marks the location of a collocation point in global space. Say
that this is the ith collocation point being part of the jth element, then ξj,i evaluated on
the parametric reference element determines the global position of this collocation point
as xj

(
ξj,i

)
= xi. From this discrete representation of the nodal position, together with

assuming pj
a = Ljpa, where Lj represents a sparse matrix that extracts the correct values

of pa, it follows that

∇∥
xpa

(
xj(ξj,i)

)
= ∇∥

xpa(xi) =


∂x
∂ξ1

∂y
∂ξ1

∂z
∂ξ1

∂x
∂ξ2

∂y
∂ξ2

∂z
∂ξ2

( ∂x
∂ξ1
× ∂x

∂ξ2
)⊤


−1 

∂ϕ
∂ξ1

⊤

∂ϕ
∂ξ2

⊤

0⊤

Ljpa =

Dj,i
x

Dj,i
y

Dj,i
z

 pa . (B.1)

In the case of continuous elements, the collocation point is connected to multiple elements,
and the interpolation function derivative is chosen to be the average contribution from each
of the connected elements. As such, the ith rows of the D• - matrices can be computed via

Di
x = 1

ne(i)

ne(i)∑
j=1

Dj,i
x , Di

y = 1
ne(i)

ne(i)∑
j=1

Dj,i
y , Di

z = 1
ne(i)

ne(i)∑
j=1

Dj,i
z , (B.2)

where ne(i) denotes the number of elements that belong to collocation point i. Note that in
the case of discontinuous elements, the collocation point is only part of a single element,
meaning that no averaging is needed and Eq. (B.1) directly computes the rows of the
D• - matrices.
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C. Analytical Model of a Transversely Oscillating Sphere

For the sake of completeness, we include the analytical model that serves as a reference for
the test case studied in this work. The analytical solution considers boundary losses due to
viscosity but omits effects that arise from heat conduction. The formulas, as stated below,
closely follow the derivation in Sec. 6.9 of Ref. 36. We consider a rigid sphere of radius a

whose center oscillates harmonically along the z - axis. The transverse motion in the viscous
fluid can be described conveniently in terms of polar-spherical coordinates (r, θ, φ), where the
polar axis of the sphere (θ = 0◦) matches the z - direction of the global coordinate system.
We follow the convention specified by ISO 80000-2:2019 to define the spherical coordinate
system. The boundary condition at the sphere’s surface is defined as

vr(r = a, θ) = v0 cos θ , (C.1)
vθ(r = a, θ) = −v0 sin θ , (C.2)

where v0 denotes the amplitude of excitation. Since we assume a uniform excitation in
z - direction without slip, v0 is equivalent to vb,z. A solution of the linear acoustic equations
satisfying the boundary condition is given by

p(r, θ) = iρ0ω
∞∑

n=0
in(2n + 1)Anh(1)

n (kr)Pn (cos θ)

≈ pa ,

(C.3)

vr(r, θ) =
∞∑

n=0
in(2n + 1)k

(
Anh(1) ′

n (kr)− n(n + 1)Bn

kr
h(1)

n (kvr)
)

Pn (cos θ)

≈ vr
a + vr

v ,

(C.4)

vθ(r, θ) =
∞∑

n=0
in(2n + 1)1

r

(
Anh(1)

n (kr)−Bn

(
kvrh(1) ′

n (kvr) + h(1)
n (kvr)

))
P 1

n (cos θ)

≈ vθ
a + vθ

v .

(C.5)

Given that the external medium is unbounded, the acoustic field around the sphere is
symmetric about the polar axis, and the solution therefore independent from the azimuth
angle φ. Since the analytical model generally neglects heat transfer, the solution quantities
built from the superimposed modal wave fields lack the thermal contributions and only
depend on the isentropic and viscous wavenumbers k and kv. Eqs. (C.3)-(C.5) include the
spherical Hankel function of the first kind and nth order h

(1)
n , its first derivative with respect

to the argument h
(1) ′
n , and the coefficients An and Bn. Furthermore, the solutions depend on

Pn and P 1
n representing the Legendre polynomial of degree n and the associated Legendre

polynomial of first order, respectively. We truncate the series at n = 1, focusing on the
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dominating first-order terms. As such, the solution for pa and vv simplifies to

pa(r, θ) ≈ −3ρ0ωA1h
(1)
1 (kr) cos θ , (C.6)

vr
v(r, θ) ≈ −6iB1

r
h

(1)
1 (kvr) cos θ , (C.7)

vθ
v(r, θ) ≈ 3i

r
B1

(
kvrh

(1) ′

1 (kvr) + h
(1)
1 (kvr)

)
sin θ . (C.8)

For arbitrary arguments α, the spherical Hankel function of first order and its derivative are
calculated via

h
(1)
1 (α) = −eiα

α2 (α + i) , (C.9)

h
(1) ′

1 (α) = eiα

α3

(
2α + i(2− α2)

)
, (C.10)

respectively. Constructing a system of equations that computes the boundary solution allows
to find the values of the coefficients A1 and B1. Setting Eqs. (C.3)-(C.5) at r = a and for
n = 1 equal to the boundary conditions in Eqs. (C.1) and (C.2) and reformulating with
respect to the solution vector [A1, B1]⊤ leads to

h
(1) ′

1 (ka) −
2

ka
h

(1)
1 (kva)

h
(1)
1 (ka) −

(
kvah

(1) ′

1 (kva) + h
(1)
1 (kva)

)


[
A1
B1

]
=


v0

3ik
av0

3i

 . (C.11)

Solving the above naively will be numerically unstable due to the large values of kv. Instead,
we insert the expressions for the Hankel functions as given in Eqs. (C.9) and (C.10) and
apply Cramer’s rule to find A1. After calculating A1 via

A1 = −v0
3i k2ae−ika 3kva + 3i− ik2

va2

k2
v(k2a2 − 2)− k2 + ikvka(k + 2kv) , (C.12)

we can plug the solution for the coefficient into Eq. (C.11) and rearrange as

vr
v(r = a, θ) ≈

(
v0 − 3ikA1h

(1) ′

1 (ka)
)

cos θ , (C.13)

vθ
v(r = a, θ) ≈

(
−v0 + 3i

a
A1h

(1)
1 (ka)

)
sin θ , (C.14)

to determine the solution for the viscous velocity on the boundary. Hence, the viscous
component containing the unknown coefficient B1 and the problematic Hankel function
h

(1)
1 (kva) is alternatively evaluated as the difference between the total velocity prescribed

on the surface and the acoustic velocity depending on h
(1)
1 (ka) and A1. Eqs. (C.13), (C.14),

and (C.6) at r = a provide a solution that can be used for validating the numerical method
developed in this work, cf. Fig. 2.
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Accurate acoustical simulations in the vicinity of boundaries require the inclusion of viscous and
thermal effects resulting from fluid-boundary interactions. The additional complexity of the model
comes with an expected increase in the computational demands of the simulation. Recently a paper20

by the authors has shown improvements in the boundary element description of the Kirchhoff
decomposition used to include the viscous and thermal effects. The new formulation, as opposed
to previous formulations, made it possible to utilize the sparsity structure present in the system
of equations during the solution phase. As a result, the proposed formulation was significantly
more computationally efficient than previous formulations. However, two fully populated matrices25

arising from the acoustical mode were unsurprisingly shown to be a computational bottleneck. This
study shows that it is possible to eliminate the computational bottleneck by employing either the
fast multipole method or hierarchical matrices as approximations to the acoustical matrices. The
computational scaling of the new formulation is validated using meshes of various refinements. The
findings show significant improvements in both the required memory consumption and computational30

effort, making it possible to solve problems of sizes that far exceed anything previously possible.
As such, the ideas presented in this paper serve as important first steps in the direction of large-
scale boundary element simulations, including viscous and thermal losses, using the Kirchhoff
decomposition.

Keywords: boundary element method and Kirchhoff decomposition and viscothermal losses and fast35

multipole method and hierarchical matrices

1. Introduction

When performing acoustical simulations in the vicinity of boundaries, it is crucial to consider
the impact of viscous and thermal effects of the fluid resulting from its interaction with
the boundary.1 The dissipation occurs primarily in the transitional phase, between the40

boundary and the bulk, called the boundary layer. For audible frequencies, the thickness of
the boundary layers is approximately one hundred micrometers, making it significant when

1
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modeling acoustic micro-devices like hearing aids or transducers.

Traditionally, viscous and thermal losses have been addressed using the fully linearized45

Navier-Stokes (FNLS) equations for which a numerical solution can be obtained using the
finite element method (FEM).2–4 However, solving these equations can be computationally
intensive, because of the inclusion of additional degrees of freedom (DOF) for the temperature
and the velocity. Another limitation is the requirement for fine meshing near the boundary
in order to accurately capture the microscale physics, which further increases the number50

of DOF. To overcome these challenges and avoid the need for fine boundary meshing, an
alternative to the finite element method known as the boundary element method (BEM) can
be used.5–7 This method is based on the Kirchhoff decomposition (subsection 2.1), which
separates the FLNS equations into one vectorial and two scalar Helmholtz equations that
are then coupled through a set of boundary conditions (subsection 2.2).855

This approach was initially developed for axisymmetrical problems, but was later gener-
alized to full three-dimensional objects.9,10 The underlying model included fully populated
and sparse matrices of which the sparse structure was only later utilized to increase the
computational efficiency of the assembly phase.11 Recently, the authors showed that the60

sparsity structure can be further utilized to increase the computational efficiency of the
solution phase.12 In this paper we show that the new formulation can be further improved
by exploiting the structure of the fully populated matrices. In particular, we apply both
the fast multipole method (FMM) and hierarchical matrices (H-matrices) to accelerate the
matrix-vector products of the two otherwise fully populated matrices.13–16 The results show65

that the memory and computational complexity of the model follow that of pure acoustical
simulations.

The paper is structured as follows: In section 2 a short introduction to the boundary
element method and the Kirchhoff decomposition is given. Then in section 3 we give a70

description of how the fast multipole method and hierarchical matrices can be applied to
relieve the computational bottleneck arising from the acoustical mode. Finally, in section 4,
we investigate the scalability of the computational model on meshes of various refinements.

2. Boundary Element Method Formulation including Losses

2.1. The Kirchhoff Decomposition75

An equivalent formulation of the fully linearized Navier-Stokes equations is the Kirchhoff
decomposition, which splits the equation into three so-called modes, each satisfying its own
Helmholtz equation

Acoustic Mode: (∆ + k2a)pa(x) = 0, (1)
Thermal Mode: (∆ + k2h)ph(x) = 0, (2)
Viscous Mode: (∆ + k2v)vv(x) = 0, with ∇ · vv(x) = 0. (3)



September 6, 2023 8:17 output

Large-Scale Boundary Element Computations Including Viscothermal Losses 3

The three modal wavenumbers (ka, kh, and kv) all depend on the lossless wavenumber (k) and
the physical properties of the fluid, such as the thermal conductivity, specific heat capacity
under constant pressure and the shear/bulk viscosity coefficients.8 The total pressure and
velocity can be extracted as the sum of the contributions of each of the three modes

pt = pa + ph, (4)
vt = va + vh + vv. (5)

2.2. Coupling the Modes Through Boundary Conditions

In the case of the fluid being air, it is valid to prescribe the so-called isothermal boundary
condition due to the higher heat capacity of the boundary material. Mathematically, this
condition can be written as

pa(x)τa + ph(x)τh = 0, x ∈ Γ, (6)

where τa and τh are complex and depend on the frequency and properties of the fluid and Γ80

is the boundary of the domain. Furthermore, due to frictional forces the air sticks to the
surface of objects. As such, it is common to prescribe a no-slip boundary condition which
states that the total velocity of the fluid on the boundary is equal to the velocity of the
boundary. Mathematically, this can be written as

vb(x) = ϕa∇pa(x) + ϕh∇ph(x) + vv(x), x ∈ Γ, (7)

where vb(x) is the surface velocity at x while ϕa and ϕh are complex and depend on the85

frequency as well as the physical properties of the fluid.

2.3. The Boundary Element Method

The boundary element method can be used to solve the Helmholtz equations through the
discretization of the Kirchhoff-Helmholtz boundary integral equation. Taking the acoustical
mode as an example, this boundary integral has the form90

ζ(x)pa(x) =

∫
Γ
G(ka,x,y)∂np(y) dSy −

∫
Γ

∂G(ka,x,y)

∂ny
pa(y) dSy, x ∈ Ω (8)

where x is a point in the domain Ω, y represent a point on the boundary Γ, pa(x) is the
acoustical pressure, ζ(x) is the integral free form depending only on the geometry at x and
G(ka,x,y) is the Green’s function. In the following text, the time dependence e−iωt is chosen.
As such the Green’s function in three-dimensional space is given as17

G(ka,x,y) =
exp (ika∥x− y∥2)

4π∥x− y∥2
. (9)

The Kirchhoff-Helmholtz equation looks similar to (8) for the thermal and viscous modes,95

but with respectively the thermal and viscous wavenumbers in the Green’s function. The
numerical approximation of (8) requires two steps: First, a discretization of the boundary



September 6, 2023 8:17 output

4 M. Paltorp et al.

into surface elements, and second, the establishment of an interpolation scheme for pa and
∂npa. The first step starts with defining a set of elements (Γe) such that Γ ≈ ∪N

e=1Γ
e. These

geometric elements are often parametrized by100

xe(u) = XeNe(u) ∈ Γe, ∀u =

[
u1
u2

]
∈ Le ⊂ R2, (10)

where Xe is a matrix with columns equal to the so-called interpolation nodes of the geom-
etry, Ne(u) is a column-vector containing the shape functions and Le is the local element
coordinates of the eth element. Using this formulation, it becomes possible to approximate
the boundary integral using a quadrature scheme as∫

Γe

f(y) dSy =

∫
Le

J (u)f(u) du ≈
Q∑

j=1

wjJ (uj)f(uj), (11)

where (wi,ui) is the ith quadrature weight and node while J is the Jacobian of the element105

parametrization. In 3D the Jacobian can be thought of as a pointwise area deformation and
is computed as

J (u) =

∥∥∥∥(XedN
e(u)

du1

)
×
(
XedN

e(u)

du2

)∥∥∥∥
2

. (12)

The second step begins by introducing approximations of the pressure and its normal
derivative as follows

pa(x) = T(x)pa, ∂npa(x) = T(x)∂npa, x ∈ Γ (13)

where T(x) is a row-vector containing the global basis functions while pa and ∂npa contain110

the nodal values of respectively the pressure and its normal derivative. In general, however,
its easier to work with local basis functions meaning that the interpolation on the eth element
is instead given by

pa(x
e(u)) = Te(u)Lepa, ∂npa(x

e(u)) = Te(u)Le∂npa, (14)

where Te(u) is a row-vector containing the local basis functions and Le is a sparse matrix
that extracts and orders the values of pa and ∂npa in a way that matches with the ordering115

of the local basis functions. Note that any reasonable implementation would never form Le

but would instead use the indexing of the vectors. Determining the values of pa and ∂npa

can be done in a variety of ways, the most common methods being the Nyström, collocation,
and Galerkin approaches. The approach taken in this text is that of collocation. Here, a
linear system of equations is generated by setting x in (8) equal to the so-called collocation120

points ({xk}nk=1. As such, for the collocation approach, pa and ∂npa contain the values of
the pressure and the normal derivative at the collocation points. In section 3 we explain in
detail how the linear system is generated, but for now it is enough, think of the discrete form
of (1) as

Hapa +Ga∂npa = 0, (15)
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where Ha = −Fa − diag(ζ). Following a similar procedure, the discrete form of (2) and (3)
becomes

Hhph +Gh∂nph = 0, (16)
Hvvv +Gv∂nvv = 0. (17)

Note that as opposed to the dense matrices in the discrete acoustical mode the matrices in125

the discrete thermal and viscous modes are sparse. The mathematical reason for this is due
to the thermal and viscous wavenumbers being complex, with a large imaginary component,
resulting in rapidly decaying Green’s functions. A physical intuition here is that the physics
that the two modes represent are local effects. Furthermore, the discrete form of the viscous
mode is special as it comes from a vector Helmholtz equation. In (17) it was chosen to stack130

the components of the viscous velocity such that

vv =
[
vv,x vv,y vv,z

]⊤
, ∂nvv =

[
∂nvv,x ∂nvv,y ∂nvv,z

]⊤
, (18)

meaning that

Hv = blkdiag
(
H̃v, H̃v, H̃v

)
, Gv = blkdiag

(
G̃v, G̃v, G̃v

)
, (19)

where blkdiag represent the block-diagonal operator while H̃v and G̃v is the discrete BEM
equations for a scalar Helmholtz equation with wavenumber kv, i.e., they are computed
similarly to Ha and Ga but with wavenumber kv.135

2.4. The Lossy System of Equations

The values at the collocation points for each of the three modes can be computed by solving
the large system of equations originating from the combination of the three discretized
integral equations, the null-divergence constraint, and the boundary conditions as seen below


The three discrete modes as described in (15)-(17)

Null Divergence Constraint
Isothermal Boundary Condition

No-Slip Boundary Condition




pa

∂npa

ph

∂nph

vv

∂nvv


=



0

0

0

0

0

vb


, (20)

where140

vb =
[
vb,x vb,y vb,z

]⊤
, (21)

is the prescribed boundary velocity at each collocation point stacked componentwise. While
(20) is ill-conditioned, it turns out that the acoustical pressure, pa can be found by solving
the following well-conditioned linear system12[

Ga

(
µa (RN)−1RDc + µhG

−1
h Hh

)
− ϕaHa

]
pa = Ga (RN)−1Rvb, (22)
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where

R = Dr −N⊤G−1
v Hv, µa = ϕa −

τaϕh

τh
, µh =

τaϕh

τh
, (23)

with

N =
[
diag(nx) diag(ny) diag(nz)

]⊤
, Dc =

[
D⊤

x D⊤
y D⊤

z

]⊤
, Dr =

[
Dx Dy Dz

]
.

where in the above, nx refers to a vector that collects all the x-components of the normals at145

the collocation points and similarly for ny and nz. Furthermore, Dx, Dy, and Dz are the
interpolation function derivatives (IFDs) matrices used to compute the gradient of pa and ph
as well as the divergence of vv. See Appendix A for a derivation of the IFDs. A derivation of
the IFDs can be found in Appendix A. As described in Preuss et. al 12 (22) can be solved
using nested iterative solution schemes as described in Algorithm 1. In Preuss et. al 12 it150

was found, unsurprisingly, that the acoustical matrices, Ga and Ha limited the scalability
of the model due to the dense nature of the two matrices. However, given that they are
both standard BEM matrices they can be approximated using acceleration techniques such
as the fast multipole method and Hierarchical/H-matrices. The following section explains
the basics of how these acceleration techniques can be applied in the context of boundary155

element matrices.

Algorithm 1 Efficient solution scheme for (22).
Require: Ga,Ha,Gh,Hh,Gv,Hv,Dr,Dc,N, µa, µh, ϕa

procedure MUL_R(z)
return Drz−N⊤gmres(Gv,Hvz)

end procedure
procedure MUL_RN(z)

return MUL_R(Nz)

end procedure
procedure MUL_A(z)

return Ga (µagmres(MUL_RN,MUL_R(Dcz)) + µhgmres(Gh,Hvz))− ϕaHaz

end procedure
Compute right-hand side: b = Gagmres(MUL_RN,MUL_R(vb))

Solve the linear system: gmres(MUL_A,b)

3. Acceleration Techniques

The fast multipole method and H-matrices can be used to accelerate the complexity of
the boundary element method from O(n2) to O(n log(n)) or even O(n) in some cases. To
achieve this improvement, the matrix-vector products of Ga and Ha must be approximated.160

Matrix-vector products are crucial, as it is the only operation required to solve a linear system
of equations using an iterative scheme such as, e.g. the generalized minimal residual method
(GMRES). A brief explanation of how the two aforementioned approximation techniques
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can be applied to BEM computations is now given. To simplify the derivation, we apply
the same Q quadrature points to all elements. This would cause numerical problems that,165

however, can be fixed by applying a so-called near-field correction matrix (see (26)). We start
by showing the matrix-vector product of Ga with a vector z. For simplicity, we focus on the
kth row of Ga
∫
Γ
G(ka,xk,y)T(y) dSy︸ ︷︷ ︸

kth row of Ga

 z ≈

(
N∑
e=1

(
Q∑
i=1

G(ka,xk,y
e(ui))wiJ (ui)T

e(ui)

)
Le

)
z

=

NQ∑
j=1

G(ka,xk,yj)wjJ (uj)T
e(j)(uj)L

e(j)︸ ︷︷ ︸
jth row of C

 z

=
[
G(ka,xk,y1) G(ka,xk,y2, ) . . . G(ka,xk,yNQ)

]
Cz,

(24)

where the subscript j refers to an ordering of the collection of Gaussian points from all elements
and e(j) is a function that returns the element number that Gaussian point j is located on.170

Furthermore, the matrix C is sparse and can be thought of as a transformation/interpolation
of values (z) at the collocation points (xk) into coefficients (c) at the Gaussian points (yj).
Note that C is independent of the chosen row, meaning that it only needs to be computed
once. The derivation for the multiplication with the kth row of Fa follows similarly
∫
Γ

∂G(ka,xk,y)

∂n(y)
T(y) dSy︸ ︷︷ ︸

kth row of Fa

 z ≈

(
N∑
e=1

(
Q∑
i=1

∂G(ka,xk,y
e(ui))

∂n(ye(ui))
wiJ (ui)T

e(ui)

)
Le

)
z

=

NQ∑
j=1

n(yj)
⊤∇G(ka,xk,yj)wjJ (uj)T

e(j)(uj)L
e(j)︸ ︷︷ ︸

jth row of C

 z

=
[
n(y1)

⊤∇G(ka,xk,y1) . . . n(yNQ)
⊤∇G(ka,xk,yNQ)

]
Cz,

(25)

where C is the same as for Ga as it still representation the transformation/interpolation of175

values from collocation points to Gaussian points.

Applying (24) or (25) directly to all rows of Ga and Ha will result in a matrix-vector
product that scale O(NQn) for which no performance improvement is achieved given that
NQ ⪆ n. However, the fast multipole method or the H-matrix approach can be used to speed180

up the dense part of the matrix-vector product. However, doing so blindly will cause some
numerical errors stemming from the integration of elements close to the collocation point. To
solve this issue, a so-called near-field correction matrix is added to the matrix-vector product.
As such, applying (24) and (25) for all rows at the same time can be thought of as

A = BC+ S, S,A ∈ Cn×n, B ∈ Cn×NQ, C ∈ RNQ×n, (26)
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where B is the dense part approximated by e.g. the fast multipole method or a H-matrix185

(see (28) and (29)), C is the mapping from values (z) at the collocation points (xk) to
coefficients (c) at the Gaussian points (y), and S is the sparse near-field correction matrix.
The near-field correction matrix is assembled such that it subtracts the incorrect integration
made by using only Q Gaussian points in the near-field while adding the correct near-field
integration. Note that similar to C the matrix S is highly sparse, which means that their190

assembly and matrix-vector products both scales O(nτ) where τ ≪ n. As such, using an
approximate scheme for B will result in a representation of A that is useful for large-scale
computations.

3.1. The Fast Multipole Method

Throughout the years, many good resources have been written explaining the intricacies195

of fast multipole methods.13,18 While the specifics for the different implementations might
vary, the ideas are the same, namely that fast multipole methods can be used to accelerate
summations. In the context of the acoustical boundary element method, the sums of interests
have the form

u(xk) =

NQ∑
j=1

G(ka,xk,yj)cj , u(xk) =

NQ∑
j=1

n(yj)
⊤∇G(ka,xk,yj)cj (27)

where if xk = yj the jth term is excluded from the sums. These sums are of interest, as they200

exactly represent the multiplication of the kth row of respectively Ga and Fa as described in
(24) and (25). In both cases, the coefficients are simply computed from the sparse matrix-
vector product c = Cz =

[
c1 c2 . . . cNQ

]⊤. As such, the fast multipole method can be used
to accelerate the multiplication with Ga or Fa by accelerating the product with each of their
rows.205

3.2. Hierarchical Matrices

The H-matrix approach differs from the fast multipole method approach in the sense that it
does not accelerate the multiplication with each row directly. Instead, it approximates the
full dense matrices

B =


G(ka,x1,y1) G(ka,x1,y2) . . . G(ka,x1,yNQ)

G(ka,x2,y1) G(ka,x2,y2) . . . G(ka,x2,yNQ)
...

...
. . .

...
G(ka,xn,y1) G(ka,xn,y2) . . . G(ka,xn,yNQ)

 , (28)

and210

B =


n(y1)

⊤∇G(ka,x1,y1) n(y2)
⊤∇G(ka,x1,y2) . . . n(yNQ)

⊤∇G(ka,x1,yNQ)

n(y1)
⊤∇G(ka,x2,y1) n(y2)

⊤∇G(ka,x2,y2) . . . n(yNQ)
⊤∇G(ka,x2,yNQ)

...
...

. . .
...

n(y1)
⊤∇G(ka,xn,y1) n(y2)

⊤∇G(ka,xn,y2) . . . n(yNQ)
⊤∇G(ka,xn,yNQ)

 , (29)
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by utilizing the hierarchical rank-structure of subblocks of the matrices.15,16,19 There exist
many ways for which the rank-structure is both computed and utilized. However, the idea of
approximating the full matrix at the same time is universal for all H-matrix-based methods.

3.3. Sparsity Patterns

Many of the matrices in the final linear system described in (22) are sparse, for example, the215

boundary element matrices for discrete thermal and viscous modes and the interpolation
function derivative matrices. In general, efficient construction of sparse matrices requires the
need to avoid slow memory allocations. As such, it is important to include a priori knowledge
of the sparsity patterns. For the interpolation function derivative matrices, this information
is straightforward, as the interpolation functions for each collocation point have compact220

support equal to the elements connected to the collocation point. As an example, Figure 1
draw a collocation point in red and the support of its interpolation function as the shaded
red area. In practice the sparsity patterns of the thermal and viscous matrices will be similar,
but for smaller geometries the support might need to be increased slightly. As such, it may
be necessary to increase the support to include the areas shown in blue in Figure 1. The225

sparsity pattern will generally be similar to the one for the singularity extractions applied
when using the acceleration methods, and therefore the underlying code can be reused in
many cases. The consequence of the sparsity patterns being the result of contributions from
only local elements means that the memory scaling for all sparse matrices used must be
O(γn) where γ ≪ n.230

Fig. 1: The red point denotes the collocation points. The area shaded in red is the support
of the IFDs while the blue area can be included in the assembly of the discrete form of the
thermal and viscous modes.

4. Results

All simulations were performed using a reimplementation of the OpenBEM software written
in the Julia programming language and carried out on the High-Performance Computers
(HPC) provided by the DTU Computing Center (DCC).20–22 The cluster used was using
the AMD EPYC™ 7543 processor with 64 threads and was equipped with 1008 GB of235
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RAM. All meshes were generated using COMSOL multiphysics® v. 6.0 and were chosen
to include only six-node quadratic triangular elements.23 For fast multipole acceleration,
the Flatiron Institute Fast Multipole Libraries v. 1.0.1 with a precision set to 10−6 was
used.24 Acceleration using the H-matrix approach was done using HMatrices.jl v. 0.1.3, with
a relative tolerance set at 10−6.25

240

4.1. Oscillating Sphere

A widely used test case in the literature is that of a sphere in a viscous fluid oscillating along
the z -axis. This test case has previously been used to validate the Kirchhoff decomposition
of axisymmetrical, 2D, and 3D formulations.9,10,26 The main reason for its wide adaptation
is that the exterior test case offers an analytical solution for which the numerical results can245

be validated.27 In the following we use spheres of radius 1m and set the vertical a velocity
equal to 0.01m s−1. The simulation is run for nine different mesh sizes ranging from around
104 to 106 degrees of freedom (Figure 2).



September 6, 2023 8:17 output

Large-Scale Boundary Element Computations Including Viscothermal Losses 11

Fig. 2: The nine boundary meshes used in the simulation. From top left to bottom right
the incremental refinements are as follows: 13.062, 39.486, 69.038, 153.978, 271.778, 390.890,
610.058, 753.778 and 955.706 DOFs.

The memory and computational complexity of solving (22) at 100Hz using the acceleration
techniques for approximating the discrete acoustical mode follows the theoretical scaling250

of said acceleration techniques (Figure 3). As such, both acceleration techniques seem to
solve the computational problems described in Preuss et. al .12 In particular, the memory
complexity is seen to be a substantial improvement, when compared to the O(n2) scaling of
storing Ha and Ga as dense matrices. A key observation when looking at Figure 3 is that
while the H-matrix approach uses close to an order of magnitude more memory than the255

fast multipole method (left plot in Figure 3) it decreases the overall computational effort by
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close to an order of magnitude (right plot in Figure 3). Therefore, the conclusion must be
that if one has the available memory, then the H-matrix approach is preferred; however, in
cases where the memory is a constraint, the fast multipole method can still be used to solve
the problem at hand.260
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Fig. 3: Left: Complexity of storing all matrices plus performing a single call of MUL_A
in Algorithm 1. The reason for this addition is that the acceleration techniques include
intermediate steps when performing multiplications. Right: Complexity of the total solution
time. This includes the assembly of the matrices and the reconstruction of the additional
variables (∂npa, ph, ∂nph, vv, & ∂nvv).

5. Discussion and Conclusions

A solution to the scalability issues of a recent new formulation for three-dimensional boundary
element method for time-harmonic acoustics including viscothermal losses is presented in this
paper. The solution utilizes known acceleration techniques for boundary element simulations,
namely the fast multipole method and H-matrices. As such, the model is shown to be capable265

of solving problems of sizes far beyond what was previously possible. In fact, due to most of
the time being used in the reconstruction of the normal derivative of the acoustical pressure,
this indicates that it is not that much of an extra effort to include the viscous and thermal
losses into the computation.

270

The difference between the fast multipole method and the H-matrix approach is close to
similar; however, a significant difference in total memory usage and computational time can
be seen. In short, if memory is a constraint, the fast multipole method is favorable and, if
not, then the H-matrix approach is favorable. However, this should not come as a shock, as
the larger memory footprint of the H-matrix is due to more intermediate information being275

saved, resulting in less computation on the fly when compared to the fast multipole method.
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A possible middle ground between the fast multipole method and the H-matrix, like the
interpolated factored Green’s function (IFGF), could be the best approach.28,29 A downside
of this method is that it requires the underlying matrix to be generated by a continuous280

function of x and y, which is a problem for the Ha matrix due to its dependence on the
normals that are computed only from the local coordinates. The workaround is to apply the
IFGF for each of the components of the gradient of the Green’s function resulting in three
separate matrix approximations, which increases the model complexity substantially.
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Appendix

A. Interpolation Function Derivatives

The interpolation function derivatives (IFDs) are the derivatives of the boundary element360

interpolation functions. As the boundary element interpolation is defined only on the surface,
the derivatives of the interpolation function contain only tangential information. The full
gradient is then computed by combining the tangential information from the IFDs with
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the normal information that comes directly from the boundary element interpolation of the
normal derivative.365

Taking the acoustic pressure pa as an example, it follows from (14) that the boundary
element representation of the interpolation on element e is given as

pa (x
e(u)) = pa (X

eNe(u)) = Te(u)pe
a, u ∈ Le, x ∈ Γe, (A.1)

where pe
a represent the nodal acoustical pressures of element e while N(u) and Te(u) denotes

the chosen interpolation schemes for respectively the geometry and the (acoustical) pressure370

on element e. The resulting gradient of pa on element e can be computed as

∇upa (x
e(u)) = (∇uT

e(u))pe
a (A.2)

since the values pe
a are constants. Applying the multivariate chain rule ∇upa = (∇ux

⊤)∇xpa
followed by isolating with respect to ∇x gives the gradient of interest. Since the computations
are based on boundary elements we have that the transpose of the Jacobian matrix

∇ux
e(u)⊤ = ∇u(X

eNe(u))⊤ = ∇uN
e(u)⊤ (Xe)⊤ , (A.3)

is a 2× 3-matrix which cannot be inverted. It has been shown that it is enough to introduce375

an artificial u3 such that ∂Te

∂u3
= 0 (with 0 being a row vector of appropriate length filled with

zeros), while substituting ∂x
∂u3

= ∂x
∂u1

× ∂x
∂u2

.5 As a result, the tangential part of the gradient
can be computed as

∇∥
xpa (x

e(u)) =


∂x
∂u1

∂y
∂u1

∂z
∂u1

∂x
∂u2

∂y
∂u2

∂z
∂u2

( ∂x
∂u1

× ∂x
∂u2

)⊤


−1 

∂Te

∂u1

∂Te

∂u2

0

pe
a, x ∈ Γe, (A.4)

where the superscript ∥ is used to explicitly show that this is only the tangential part of the
gradient. On element e there is a local coordinate u for which xe(u) is equal to a collocation380

point. If this is the ith collocation point, then this means that there is a ue,i for which
xe
(
ue,i
)
= xi. Using what was described in (14), namely that pe

a = Lepa, it follows that

∇∥
xpa

(
xe(ue,i)

)
= ∇∥

xpa(xi) =


∂x
∂u1

∂y
∂u1

∂z
∂u1

∂x
∂u2

∂y
∂u2

∂z
∂u2

( ∂x
∂u1

× ∂x
∂u2

)⊤


−1 

∂Te

∂u1

∂Te

∂u2

0

Lepa =


De,i

x

De,i
y

De,i
z

pa. (A.5)

In the case of discontinuous elements, the collocation point is only connected to a single
element, meaning that in practice the eth superscript is redundant. However, in the case of
continuous elements, the collocation point can be connected to multiple elements, and the385
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interpolation function derivative is chosen to be the average contribution from each of the
connected elements. As such, the ith rows of the D•-matrices can be computed as

Di
x =

1

Ne(i)

Ne(i)∑
e=1

De,i
x , Di

y =
1

Ne(i)

Ne(i)∑
e=1

De,i
y , Di

z =
1

Ne(i)

Ne(i)∑
e=1

De,i
z , (A.6)

where Ne(i) denotes the number of elements that is connected to collocation point i. The
different Di

• of (A.6) are the collection of the ith rows in three separate matrices, Dx,Dy

and Dz so that390

∂pa

∂x

∥
= Dxpa,

∂pa

∂y

∥
= Dypa,

∂pa

∂z

∥
= Dzpa. (A.7)

If the chosen discretization of the thermal and viscous modes are the same as for the acoustical
mode, then the above interpolation function derivative matrices can be reused to compute
∇∥

xph and ∇∥
x · vv respectively.
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ABSTRACT
The Boundary Element Method (BEM) is a well-known numerical method for solving time harmonic acous-
tical problems. While the BEM has attractive features e.g. automatically satisfying the free field conditions,
the frequency dependence of the Greens function makes is inconvenient for broadband simulations due to ex-
cessive computational costs. This problem becomes worse yet when viscous and thermal effects are included
in the BE computations. Recently it has been suggested that a series expansion of the Greens function as well
as its directional derivatives together with model order reduction techniques can relieve some of the compu-
tational demands. This paper applies similar ideas in the setting of the so-called boundary layer impedance
boundary conditions used to approximate viscous and thermal effects. The final computational model can be
used to efficiently perform broadband simulations including viscothermal losses of devices on the centimeter
scale, thereby paving the path towards e.g. broadband shape optimization of small acoustical devices such as
transducers, metamaterials and hearing aids.

Keywords: Boundary Element Method, Viscothermal Effects, Reduced Order Model

1 INTRODUCTION
The Boundary Element Method (BEM) is a well-known simulation technique where the underlying (partial)
differential equation is solved through the discretization of a boundary integral. It is a popular choice for
problems concerning semi-infinite and infinite domains, as the solution computed from the BEM automat-
ically fulfills the so-called free-field conditions. As a result the method is widespread within the fields of
electromagnetics and acoustics as these commonly deal with such domains. As opposed to the Finite Element
Method (FEM) the discretization of the BEM result in frequency-depended and dense linear systems. The
latter problem can be alleviated by utilizing compression techniques such as the Fast Multipole Method[1]
(FMM) and H -matrices[2]. While some details of the two approaches differ they are both based on the
same ideas of so-called near and far field splits of the underlying integral operators. While these approaches
solves the memory issue of the BEM they still require a reevaluation of the underlying boundary integrals
for every frequency of interest. As a result the BEM is cumbersome to apply when one is interested in a
wide range of frequencies. Several solutions to this problem has been proposed during the years, all with
different pros and cons. These techniques are almost exclusively based on interpolations of either the dis-
crete or continuous form of the boundary integral [3, 4, 5]. In this text the interpolation scheme chosen is
that of a Taylor series expansion of the (derivatives of the) Green’s function. This approach transforms the
time-consuming boundary integral discretization into a sum of matrices. For small orders of Taylor expan-
sions this reduces the assembly significantly, however the total memory used to store the derivatives matrices



makes this approach close to unusable in many cases. This memory increase can be diminished by following
the approach taken in Panagiotopoulos et al. [6]. Here a projection matrix is created from the collection of
Krylov vectors from specified frequencies. The full system is then projected resulting in a reduced number
of DOFs. This approach works under the assumption the solution is spanned by said Krylov vectors, which
is true for problems for which a Krylov based iterative solver converges quickly.

The main result presented in this paper is an extension of the model proposed in Panagiotopoulos et al.
[6]. This extension makes it possible for the model to also handle the so-called Boundary Layer Impedance
(BLI) boundary conditions [7]. The text is structured as follows: In section 2 we describe how the discrete
BEM system representing the BLI boundary condition can be formulated as a Taylor series of frequency-
decoupled matrices. Next, in section 3 the model order reduction procedure is explained. Finally, in section 4
the proposed model is numerically evaluated using a simple test case.

2 BOUNDARY ELEMENT METHOD WITH BLI BOUNDARY CONDITION
In this section a rudimental description of the BEM, the Boundary Layer Impedance (BLI) boundary condi-
tion and the Series Expansion Boundary Element Method (SEBEM) is given.

2.1 The Boundary Element method
The BEM for time-harmonic acoustical problems is based on the discretization of the Kirchoff-Helmholtz
representation formula for the scalar Helmholtz equation. The representation formula has the following form

c(x)p(x) =
∫

Γ

G(x,y)
∂ p(y)
∂ny

dSy−
∫

Γ

∂G(x,y)
∂ny

p(y) dSy, x ∈Ω, (1)

where Ω is the domain with boundary Γ, c(x) is the free coefficient depending only on the geometry at point
x and (∂nG) G is the (normal derivative of the) Green’s function for the scalar Helmholtz equation, with the
form

G(x,y) =
exp(−ik‖x−y‖2)

4π‖x−y‖2
,

∂G(x,y)
∂ny

=
exp(−ik‖x−y‖2)(1+ ik‖x−y‖2)(x−y)>ny

4π‖x−y‖3
2

, (2)

where k = ω

c is called the wavenumber. Due to the nonlinear coupling between the frequency-depended
wavenumber and the variable of integration inside the exponential, the frequency can not be decoupled from
the integration in (1). As a result the integral needs to be recomputed for every frequency of interest, making
the use of BEM for large frequency sweeps inconvenient. In subsection 2.3 we describe how these can be
decoupled through a Taylor series expansion.

2.2 The Boundary Layer Impedance
The Boundary Layer Impedance (BLI) boundary condition, described in Berggren et al. [7], is an impedance
like boundary condition in the way that it linearly relates the pressure and its normal derivative. However, in
addition to this relation there is also the addition of the tangential Laplacian

∂ p
∂n

=

[
(γ−1)

ik2

kh
− i∆T

kv

]
p, (3)

where kh and kv are respectively the thermal and viscous wavenumbers and γ is the ratio of specific heats.
The two additional wavenumbers are computed using the frequency and the physical properties of the fluid
such as the thermal conductivity, specific heat capacity under constant pressure and the shear and bulk vis-
cosity coefficients [8].

In the following the boundary of the domain is split into two parts. The first will be applied a Neumann
boundary condition while the second will be applied the BLI boundary condition (Figure 1).
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Figure 1. Domain of an interior problem. The boundary is split into two parts: One with a Neumann
boundary condition (Γv) and one with the BLI boundary condition (ΓBLI).

Using the boundary splitting and inserting (3) into the representation formula we attain the following

c(x)p(x) =
∫

Γv
G(x,y)

∂ p(y)
∂ny

dSy +
∫

ΓBLI

G(x,y)
[
(γ−1)ik2

kh
− i∆T

kv

]
p(y) dSy−

∫
Γ

∂G(x,y)
∂ny

p(y) dSy. (4)

Due to the polynomial representation of the pressure on each element the tangential Laplacian restricts the
elements to be at least second order. To relax this restriction we apply integration by parts on the term
including the tangential Laplacian. Setting the additional term equal to 0, similar to what is described in
Berggren et al. [7], while rearranging a few terms we end up with the following equation of interest∫

Γv
G(x,y)

∂ p(y)
∂ny

dSy = c(x)p(x)+
∫

Γ

∂G(x,y)
∂ny

p(y) dSy

− (γ−1)ik2

kh

∫
ΓBLI

G(x,y)p(y) dSy−
i

kv

∫
ΓBLI

∇TG(x,y) ·∇T p(y) dSy.

(5)

In the above only the tangential gradient of the pressure is needed, meaning that elements need only be of at
least linear order. Finally, applying the element discretization on (5) the following linear system of equations
is computed (

diag(c)+F(k)− (γ−1)ik2

kh
H(k)− i

kv
T(k)

)
p = b(k). (6)

2.3 Series Expansion BEM
As mentioned previously a drawback of the BEM is the frequency-depended integrals. In order to resolve
this issue all relevant kernels in (5) is expanded in terms of their respective Taylor series. This approach is
sometimes referred to as the Series Expansion BEM (SEBEM), although other series representations of the
kernels could have been utilized. The simplest of the Taylor series expansions is that of the Green’s function

G(x,y) =
exp(−ik‖x−y‖2)

4π‖x−y‖2
=

1
4π

∞

∑
i=0

(k− k0)
m

m!
(−i‖x−y‖2)

m

‖x−y‖2
exp(−ik0‖x−y‖2) , (7)

where k0 is the expansion wavenumber. Applying the analogous on the remaining kernels in (5) we have
that the discrete form of (6) can be approximated as(

diag(c)+
M−1

∑
m=0

(k− k0)
m

m!

[
Fm−

(γ−1)ik2

kh
Hm−

i
kv

Tm

])
p =

M−1

∑
m=0

(k− k0)
m

m!
bm. (8)

Note that we already here have truncated the series the Taylor series to be order M (degree M− 1). As a
result the above should strictly speaking be an approximation. While the Series Expansion Boundary Element
Method (SEBEM) reduces the assembly time by reducing the integral discretization to matrix additions, the



resulting model have a large memory footprint, stemming from the need to store intermediate matrices. A
first fix could be to Taylor expand the full expression in (5) instead of the kernels separately. This would
result in only needing to store one derivative matrix (for the total derivative) instead of the 3 required in (8)
(one for each integral). However, the implementation of this approach would be significantly more compli-
cated while most likely being less accurate.

3 BOUNDARY ELEMENT METHOD WITH MODEL ORDER REDUCTION
In order to reduce the large memory footprint of the SEBEM a Model Order Reduction (MOR) approach
can be utilized. There exist several possible MOR techniques that can be applied with the one used here
following that of Panagiotopoulos et al. [6]. In short this approach works under the assumption that the true
solution can be well approximated by a lower-dimensional subspace, meaning that the total size of linear
system can be reduced by projection onto this subspace.

3.1 Krylov projection
In general a projection based MOR utilizes the assumption that the solution as well as the right-hand side
of the linear system of equations can be well-approximated by a lower-dimensional subspace. As such the
following are assumed to be good approximations

p≈ U`p`, bm ≈ U`b`m, U` ∈ CN×`, (9)

where the columns of U` forms a basis for the lower-dimensional subspace. The Krylov projection technique
is based on setting these columns equal to the first ` Krylov vectors of the system matrix (subsection 3.2).
In order to reduce the system further, one can introduce a projection of the rows. If the projection of the
rows is equal to the Hermitian transpose of the column projection, then the approach is called Galerkin. This
is the approach taken here. As a result (8) can be approximated as

UH
`

(
diag(c)+

M−1

∑
m=0

(k− k0)
m

m!

[
Fm−

(γ−1)ik2

kh
Hm−

i
kv

Tm

])
U`p` = UH

`

M−1

∑
m=0

(k− k0)
m

m!
U`b`m. (10)

Moving U` and UH
` inside the parentheses and using that U` is unitary, the above can be written as(
C`+

M−1

∑
m=0

(k− k0)
m

m!

[
F`m−

(γ−1)ik2

kh
H`m−

i
kv

T`m

])
p` =

M−1

∑
m=0

(k− k0)
m

m!
b`m, (11)

where all matrices are in C`×` and vectors in C`. Given that `� N the above is a very efficient way of
storing the information. In many practical cases one find that storing the full reduced SEBEM requires less
memory than storing just a single of the original N×N matrices.

3.2 Creating a projection matrix
Computing a projection matrix U` using just the information available at a single frequency does not result in
a good approximation on the full frequency range (Figure 3). To resolve this issue information from multiple
frequencies is utilized. The collection of frequencies for which this information is extracted will be referred
to as primary frequencies (denoted by fi). The total number of primary frequencies is denoted by L. At each
primary frequency the full BEM system (A fi ,b fi ) is computed and the first q Krylov vectors computed using
the Arnoldi Algorithm (Algorithm 1).



Algorithm 1 Arnoldi Algorithm

Assemble A fi , b fi
k1← b fi/‖b fi‖2

K fi ←
[
k1

]
for j = 2 : q do

k j← A fik j−1−∑
j−1
l=1

(
kH

l A fik j−1
)

kl
k j← k j/‖k j‖2

K fi ←
[
K fi k j

]
end for

The idea is that by collecting all ` = qL Krylov vectors will result in a projection matrix that covers
the full frequency range of interest. However, doing this without any additional computation will result in a
projection matrix that is not necessarily unitary, which was a requirement in order to arrive at (11). In order
to arrive at a unitary projection matrix the Singular Value Decomposition (SVD) is applied to the collection
of the Krylov subspaces

U`Σ`VH
` = svd

([
K f1 K f2 . . . K fL

])
, (12)

where U` is the final projection matrix.

4 NUMERICAL EVALUATION
In this section the accuracy of the Reduced Order Series Expansion Boundary Element Method (ROSEBEM)
for the BLI boundary conditions is numerically evaluated. All simulation were performed using the Julia
programming language [9, 10] on computational resources provided by the DTU Computing Center [11].
The core of the code was inspired by the OpenBEM software written in MATLAB [12, 13].

4.1 Simulation setups
In this section we numerically study a small tube of length 10cm and radius 1cm (Figure 2). The used
mesh contained 1916 quadratic elements resulting in a total of 3834 DOFs. The frequency of interest is
[20Hz, 10kHz], meaning that the mesh with hmax ≈ 0.033cm had at minimum 10 elements per wavelength,
satisfying the standard rule-of-thumb of [14]. The object is excited by applying a Neumann boundary con-
dition at one of the tube ends (Figure 2) while the remaining part of the boundary were applied the BLI
boundary condition. In order to evaluate the response the acoustic pressure were evaluated at a point on the
opposite side of the Neumann condition.

vn =
1

ρc

Figure 2. Cylinder with length 10cm and radius 1cm. The mesh has 1916 quadratic elements resulting in
3834 DOFs. The pressure is evaluated at the point shown in red, located at x = (0cm, −1cm, 0cm).

Two different ROSEBEM with expansion frequency f0 = 5kHz where evaluated. The first used only the
information available at the expansion frequency when creating the projection matrix whereas the second
used two additional primary frequencies, meaning that fi ∈ {1.5kHz, 5kHz, 8.5kHz}. In both cases the total
size of the projection space was 450, resulting in a total reduction of DOFs of approximately 88%.



4.2 Frequency response
The acoustic response is evaluated at increments of 1Hz in the interval [20Hz, 10kHz] resulting in a total
of 9981 evaluations. Around the expansion frequency the two ROSEBEM setups are indistinguishable from
the full BEM computations (Figure 3). However, at the two ends of the frequency range of interest the setup
that only uses the information from the expansion frequency drifts away from the true solution (Figure 3).
The pointwise relative error is significantly lower over the full domain when using three primary frequencies
as compared to only one (Figure 3), albeit both setups experience large relative errors close to resonances.
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Figure 3. Top: Absolute value of the pressure at point x as a function of frequency. Bottom: Relative error
of the ROSEBEM setups compared to the full BEM solution.

Comparing the computational efforts of the model can easily lead to skewed results as the efficiency
greatly depend on the problem at hand. One of the more prominent of these dependencies is the number
of frequencies evaluated. The more frequencies evaluated the better the ROSEBEM will perform compared
to the full model. It is therefore better to think in terms of the computational and memory scaling of the
various components that goes into the ROSEBEM. A good summary of these can be found in Table 1 in
Panagiotopoulos et al. [6]. A general rule-of-thumb is that the ROSEBEM should only be utilized if the
number of frequencies evaluated is larger than the order of the Taylor expansion.

For our specific setup there were almost 10,000 frequencies evaluated resulting in the ROSEBEM being
around 106 times faster than the full solution (Table 1). In practical terms this meant that the total compu-
tational time went from close to 5 days to a little over an hour. Comparing the total memory, it was seen
that the ROSEBEM used 370.789 MB which is 1.65 times more than the full BEM. Either decreasing or
increasing the size of the projection matrix could change these results. However, had the ROM not been
applied the SEBEM it would have used close to 27 GB of memory which highlights why the ROM is a
crucial part of making the model applicable on regular machines.



Table 1. Computation efforts: Full BEM vs. ROSEBEM.

Full BEM ROSEBEM

Computational Time 6.914min 65min

Memory Consumption 224.297 MB 370.789 MB

5 CONCLUSIONS
In this short work we extended a Model Order Reduction (MOR) technique for the Series Expansion Bound-
ary Element Method (SEBEM) to handle the Boundary Layer Impedance (BLI) boundary condition. Similar
to the previous work the series expansion was based on the Taylor expansion of all relevant kernels and the
reduced order model based on the Galerkin projection. Lastly the model was numerically verified and ana-
lyzed using a cylinder as a test case. It was found that information from a single frequency was not enough
to create a suitable projection basis.
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ABSTRACT

BoundaryIntegralEquations.jl is an open source software
library aimed at solving the Kirchhoff-Helmholtz Integral
Equation using the collocation Boundary Element Method
(BEM). The software is written in the Julia programming
language, making it both easy to use and maintain while
also being computationally efficient. The package builds
upon the ideas of the OpenBEM software, but adds on ad-
ditional functionality such as the Fast Multipole Method
(FMM) and sparse assembly of all matrices used in the
Kirchhoff Decomposition (KD) description of viscous and
thermal losses. As such the package takes the first steps
towards large-scale BEM computations including viscous
and thermal losses. The package is validated using simple
geometries, such as cuboids and spheres, where an analyt-
ical solution exist.

Keywords: boundary element method, viscothermal
losses, open-source, fast multipole method

1. INTRODUCTION

The Helmholtz equation is often met when solving time-
harmonic acoustical problems. The analytical solution to
this Partial Differential Equation (PDE) is limited to sim-
ple geometries such as e.g. spheres, cuboids and cylin-
ders. As the real geometry of the world much more com-
plex than this the solution to the PDE is more often than

*Corresponding author: mpasc@dtu.dk.
Copyright: ©2023 Mikkel Paltorp et al. This is an open-access
article distributed under the terms of the Creative Commons At-
tribution 3.0 Unported License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the orig-
inal author and source are credited.

not approximated using a numerical scheme such as the
Finite Element Method (FEM) or the Boundary Element
Method (BEM).

This paper focuses on the latter method
and introduces the open-source library
BoundaryIntegeralEquations.jl aimed at
solving the Helmholtz using the collocation Boundary El-
ement Method [1]. The design of the package is inspired
by the OpenBEM package written in MatLab [2]. The
package itself is implemented in the Julia programming
language as it was found to be good compromise of
efficiency and maintainability [3]. Additionally the Julia
language is free and open-source making it accessible to
a larger audience than the OpenBEM package.

2. THEORY

The basic idea of the Boundary Element Method is
to transform the Helmholtz equation into the Kirchoff-
Helmholtz integral equation. The weak form of this in-
tegral equation is∫

Γ

ϕ(x)

(
αζ(x)p(x)−

∫
Γ

∂G(α,x,y)

∂n(y)
p(y) dSy

− αiρck

∫
Γ

G(α,x,y)vn(y) dSy

)
dSx = 0,x ∈ Ω,

(1)

where i is the imaginary unit, k is the wavenumber, c is the
speed of sound of the medium, ρ is the medium density, Ω
is the domain of interest, Γ = ∂Ω is the boundary of the
domain, ζ(x) is the integral free term at point x, n(y) is
the normal vector at point y, p(y) is the pressure at point
y, vn(y) is the normal velocity at point y, ϕ(x) is a so-
called test function and G(α,x,y) is the Green’s function
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defined as

G(α,x,y) =
exp (−αik∥x− y∥2)

4π∥x− y∥2
, (2)

with α being the sign of the chosen time dependency [4].
In the case of collocation BEM the test function is chosen
as the sum of Dirac delta functions, i.e. that

ϕ(x) = a⊤

δ (x− t1)
...

δ (x− tn)

 , (3)

where a ∈ Cn is a vector of arbitrary coefficients and ti is
the i-th collocation point, with the set of collocation points
being the collection of all interpolation nodes from the el-
ements describing the geometry (see Figure 1 and Figure
2). The discretization of (1) is a two step process: First a
discretization of the boundary into so-called elements and
secondly by approximating the pressure and the velocity
on each element by simple functions. Part of the first step
is to represent the coordinates of element e as

xe(u) = XeNe(u) ∈ Γe, ∀u =

[
u1

u2

]
∈ Le ⊂ R2, (4)

where Xe is a matrix with columns equal to the interpola-
tion nodes of the geometry, Ne(u) are the shape functions
of the e-th element, Γe is the global element coordinates
and Le represent the local element coordinates of the e-th
element. As an example, a flat (linear) triangular element
will have

Ne(u) =

1− u1 − u2

u1

u2

 , u1 ∈ [0, 1], u2 ∈ [0, 1− u1], (5)

with the columns of Xe being equal to the corners of the
triangle. The integral over the e-th element can be approx-
imated using a quadrature scheme as∫

Γe

f(y) dSy =

∫
Le

J (u)f(u) du

≈
Q∑
i=1

wiJ (ui)f(ui),

(6)

where (wi,ui) is a set of quadrature weights and points,
Q is the number of quadrature weights/points and J (u)
is the Jacobian of the parametrization. For 2D surface in
3D, which is the case for BEM, the Jacobian represents the

area distortion from Le to Γe in (4). This area distortion
can be computed as

J (u) =

∥∥∥∥(Xe dN
e(u)

du1

)
×

(
Xe dN

e(u)

du2

)∥∥∥∥
2

. (7)

For the second step the discretization of the pressure and
normal velocity is

p(x) ≈ T(x)p, vn(x) ≈ T(x)vn, (8)

where T(x) is a row vector containing the global nodal
interpolation functions while p and vn contain the nodal
values of respectively the pressure and normal velocity.
Taking the pressure as an example it follows further that
the pressure on the e-th element can be described as

p(xe(u)) = T(xe(u))p = T(x(u))(Le)⊤︸ ︷︷ ︸
Te(u)

Lep︸︷︷︸
pe

, u ∈ Le

where Le is a permutation-like matrix that extracts the rel-
evant rows of p and orders them into pe such that they cor-
respond to the order of the local basis functions of Te(u).
The advantage of this description is that Te(u) can be
chosen to the same for all elements. As an example, a
continuous linear interpolation of the pressures will have

Te(u) =
[
1− u1 − u2 u1 u2

]
, (9)

where u1 ∈ [0, 1] and u2 ∈ [0, 1−u1]. The normal veloc-
ity on the e-th element can be defined analogously. Insert-
ing the element approximations of the pressure, the nor-
mal velocity and the test function into (1), while imposing
that the equality has to hold for all a ∈ Cn, the following
linear system is generated

αdiag(ζ)p− Fp− αiρckGvn = 0, (10)

where the kth row of G is approximated using a quadra-
ture scheme as

N∑
e=1

(∫
Γe

G(tk,y)T(y) dSy

)
︸ ︷︷ ︸

kth row of G


≈

 N∑
e=1

Q(k,e)∑
i=1

G(tk,y
e(ui))wiJ (ui)T

e(ui)

Le

 ,

(11)
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with a similar approximation of the kth row of F
N∑
e=1

(∫
Γe

∂G(tk,y)

∂n(y)
T(y) dSy

)
︸ ︷︷ ︸

kth row of F


≈

 N∑
e=1

Q(k,e)∑
i=1

∂G(tk,y
e(ui))

∂n(ye(ui))
wiJ (ui)T

e(ui)

Le

 .

(12)

In both cases the number of quadrature points, Q(k, e),
depends on the collocation point and the element.

While (10) can be solved directly, a naive discretiza-
tion will result in G,F ∈ Cn×n being fully populated
matrices. Due to the O(n2) scaling of the memory, as
well as the matrix vector products, this naive approach
will only be possible for relatively small number of De-
grees of Freedom (n < 50.000). In the following section
we show how either the Fast Multipole Method (FMM) [1]
or Hierarchical matrices (H-matrices) [5] can be utilized
to reduce the scaling respect to both memory and compu-
tation from O(n2) to O(n log(n)).

2.1 Acceleration Methods

In order to simplify the description of how to acceler-
ate the Boundary Element (BE) computations we assume
that the integration of each element requires the same Q
quadrature points to be approximately correct. This will
be the source of numerical error for every element close
to the collocation point. This error can, however, be dealt
with by a so-called near field correction step (as shown
in (15)). As a result of this assumption it is possible to
describe the product of G and F with a known vector z
easily. In order to avoid too large expressions in the fol-
lowing we again zoom in on the multiplication with the
kth rows. Starting with G it follows that

N∑
e=1

(∫
Γe

G(tk,y)T(y) dSy

)
︸ ︷︷ ︸

kth row of G

 z

≈

NQ∑
j=1

G(tk,yj)wjJ (uj)T
e(j)(uj)L

e(j)︸ ︷︷ ︸
jth row of C

 z

=
[
G(tk,y1) . . . G(tk,yNQ)

]
Cz,

(13)

where the subscript j refers to an ordering of the collec-
tion of Gaussian points from all elements and e(j) is a

function that returns the element number that Gaussian
point j is located on. The matrix C is sparse and can
be thought of as a transformation of z into coefficients
c =

[
c1 c2 . . . cNQ

]⊤
. A similar approach can be

applied to F resulting in
N∑
e=1

(∫
Γe

∂G(tk,y)

∂n(y)
T(y) dSy

)
︸ ︷︷ ︸

kth row of F

 z

≈

NQ∑
j=1

∇G(tk,yj) · n(yj)wjJ (uj)T
e(j)(uj)L

e(j)︸ ︷︷ ︸
jth row of C

 z

=
[
∇G(tk,y1) · n(y1) . . . ∇G(tk,yNQ) · n(yNQ)

]
Cz,

(14)

where C is the same transform as for the G operator. In
order to fix the numerical inaccuracies caused by the el-
ements close to each collocation we add a so-called near
field correction matrix, S, to the matrix product. As such
multiplying with either G and F is as follows

A = BC+ S, S,A ∈ Cn×n, B,C⊤ ∈ Cn×NQ, (15)

where A represent either G or F, B is the fully popu-
lated part for which multiplication can be accelerated by
the FMM or a H-matrix, C is the coefficient map and S
is the near field correction. In short S corrects the compu-
tation by subtracting the wrong integration done by using
only Q Gaussian points and adds on the correct integra-
tion instead. Note that both S and C are sparse matrices,
meaning that their assembly and matrix-vector-products
scale O(nτ) where τ ≪ n. As such using an approximate
scheme for B is all that is needed to reduce the memory
and computational scaling of G and F.

2.2 Viscous and thermal losses

The inclusion of viscous and thermal losses can be
achieved utilizing the Kirchoff Decomposition [6]. This
approach splits the problem into three separate Helmholtz
equations, commonly referred to as modes, as follows

Acoustic Mode: (∆ + k2a)pa(x) = 0, (16)

Thermal Mode: (∆ + k2h)ph(x) = 0, (17)

Viscous Mode: (∆ + k2v)vv(x) = 0, (18)

where the viscous mode is divergence free (∇ · vv(x) =
0). The three modal wavenumbers (ka, kh & kv) all de-
pend on the lossless wavenumber (k) as well as the phys-
ical properties of the fluid, such as the thermal conduc-
tivity, specific heat capacity under constant pressure and
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the shear/bulk viscosity coefficients [7]. The three modes
are coupled through the isothermal and no-slip boundary
conditions. The first boundary condition states that there
is no change of the surface temperature while the sec-
ond boundary condition states that the fluid sticks to the
surface. Mathematically the two boundary conditions are
given as

pa(x)τa + ph(x)τh = 0,

∇pa(x)ϕa +∇ph(x)ϕh + vv(x) = vs(x),
(19)

where x ∈ Γ, vs(x) is prescribed surface velocity at
point x and like the modal wavenumbers the constants
τa, τh, ϕa, and ϕh depends on the lossless wavenumber
and the physical properties of the fluid. The total pres-
sure and velocity can be extracted from the three modes
as follows

pt = pa + ph, (20)
vt = va + vh + vv. (21)

Each of the three modes give rise to a linear system of
equations similar to that of (10). Writing this out it means
that the following must be true

Hapa +Ga
∂pa

∂n = 0, Hhph +Gh
∂ph

∂n = 0,

Hvv +Gv
∂v
∂n = 0,

(22)

where Hi = αdiag(ζi) − Fi and Gi = −αiρckGi for
i ∈ {a, h, v}. Note that the viscous mode is special as it
is a result of a vector Helmholtz equation. In the above
it was chosen to separate the x, y and z components as

v =
[
vx vy vz

]⊤
and ∂v

∂n =
[
∂vx

∂n
∂vy

∂n
∂vz

∂n

]⊤
.

Using this description will result in Gv and Hv being
block diagonal matrices with the three blocks being iden-
tical and computed similar to the acoustical and thermal
mode but with wavenumber kv . In order to assert the null-
divergence of the viscous mode, as well as applying the
no-slip boundary condition, we need to be able to com-
pute the gradient. The idea in both cases is to split the
gradient computation into a tangential part (denoted by ∥)
and a orthogonal part (denoted by ⊥). In the case of the
divergence this means that

∇ · vv = ∇∥ · vv +∇⊥ · vv, (23)

while for the gradients this means that

∇pa = ∇∥pa +∇⊥pa, ∇ph = ∇∥ph +∇⊥ph. (24)

It turns out that since the Boundary Element discretization
only prescribes values on the surface, then the tangential
part of the gradient is extracted directly from the interpo-
lation functions. Likewise the orthogonal part can be ex-
tracted from the Boundary Element discretization of the
normal derivatives by multiplication with the normals. As
such the divergence can be computed as

∇ · v = Drv +N⊤ ∂v

∂n
, (25)

where N =
[
diag(nx) diag(ny) diag(nz)

]⊤
with nx,

ny and nz being respectively the vectors collecting the
x, y and z components of the normals at the collocation
points and Dr =

[
Dx Dy Dz

]
with the sparse matri-

ces Dx, Dy and Dz being computed directly from the
Boundary Element interpolation using the interpolation
function derivative approach [6]. Using the same idea for
the gradients it is found that

∇pa = Dcpa +N
∂pa

∂n
, ∇ph = Dcph +N

∂ph

∂n
, (26)

where Dc =
[
D⊤

x D⊤
y D⊤

z

]⊤
.

Putting everything together it turns out that the acous-
tical pressure can be computed by solving the following
linear system of equations[

Ga

(
µa (RN)

−1
RDc + µhG

−1
h Hh

)
− ϕaHa

]
pa

= Ga (RN)
−1

Rvs.
(27)

where µh = τaϕh/τh, µa = ϕa − µh and vs =[
vsx vsy vsz

]⊤
is the boundary velocities stacked

with respect to the x, y, and z direction and

R = Dr −N⊤G−1
v Hv. (28)

An important detail to mention is that only the acoustical
mode, corresponding to Ga and Ha, are fully populated
matrices while the remaining matrices in (27) are sparse.
This means that simply utilizing one of the acceleration
strategies for the acoustical mode is enough to make (27)
solvable for even relatively large problems. Using the no-
slip boundary condition it is possible to extract the viscous
velocity as

v = vs −
(
µaDc + µhNG−1

h Hh − ϕaNG−1
a Ha

)
pa. (29)

The normal and tangential components of the viscous ve-
locity, as described above, will later be used to verify the
simulation results (Figure 7).
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3. IMPLEMENTATION

This section gives an overview of the currently supported
elements types, mesh file formats, and acceleration meth-
ods.

3.1 Element Types

The software package currently supports triangular and
quadrilateral elements. For the geometry both linear and
quadratic elements are supported. Additionally the global
interpolation functions for the pressure and normal deriva-
tive, as shown in (8), can be chosen to be discontinuous
constant, linear and quadratic. For continuous elements
interpolation nodes are being put on the boundary of the
element while for the discontinuous elements the interpo-
lation nodes are exclusively put inside the domain of the
elements. The different setups of geometric and interpo-
lation elements of triangles can be seen in Figure 1 while
the elements for the quadrilaterals can be seen in Figure 2.

Geometric Nodesp Interpolation Nodes

Figure 1. Top row: Linear and quadratic contin-
uous interpolation. Middle row: Linear Geometry
with discontinuous Constant, linear and quadratic in-
terpolation. Bottom row: Quadratic Geometry with
discontinuous constant, linear and quadratic interpo-
lation.

3.2 Meshes

Currently flat triangular panels can be imported through
the OBJ, STL, PLY, OFF and 2DM file formats using the

Geometric Nodesp Interpolation Nodes

Figure 2. Top row: Linear and quadratic contin-
uous interpolation. Middle row: Linear Geometry
with discontinuous Constant, linear and quadratic in-
terpolation. Bottom row: Quadratic Geometry with
discontinuous constant, linear and quadratic interpo-
lation.

MeshIO.jl package. Additionally both triangular and
quadrilateral panels of linear and quadratic order can be
imported using the MPHTXT file format from COMSOL
Multiphysics® [8].

3.3 Fast Operators

The implementation currently supports applying G and F
using the Fast Multipole Method [1] (through the FMM3D
library [9]) and the H-matrix approach [5] (using the
HMatrices.jl package [10]). Additionally there is an
experimental implementation of the Interpolated Factored
Green’s Function approach [11] (using the IFGF.jl
package [12]).

4. EXAMPLES

In the following examples, it was chosen to set the speed
of sound as c = 343m s−1 and the medium density of air
as ρ = 1.21 kgm−3. In the case of viscothermal losses the
ambient properties of air was used. A more in-depth de-
scriptions of each the three examples, including the code,
can be found in the online documentation of the software.
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4.1 Rigid sphere with radius equal to 1m

The acoustic scattering of a rigid sphere coming from a
plane wave traveling in the z-direction can be computed
analytically as [13]

panalytical(r, θ) = P0 exp (ikr cos(θ))

− P0

∞∑
n

in(2n+ 1)
j
′

n(ka)

h′
n(ka)

Pn(cos(θ))hn(kr),
(30)

where r is the distance to the origin, θ is the colatitude
angle, P0 is the magnitude of the plane wave, jn is the
spherical Bessel function of the first kind, hn is the spher-
ical Hankel function of the first kind and a is the radius of
the sphere.

Figure 3. Visualization of the sphere mesh. Note
that while the mesh is quadratic only flat triangles are
plotted due to limitations in the used plotting library.

In the simulation we set P0 = 1Pa and f = 100Hz.
The geometry of the sphere was approximated using 246
quadratic triangular elements with the interpolation func-
tion set to be discontinuous linear (Figure 3). As a result
the simulation had 738 Degrees of Freedom. Furthermore
given that the sphere is rigid we set vn = 0 in (10). As
such this simulation solves

(αdiag(ζ)− F)p = pincident, (31)

0 1 2 3

−1

0

1

Colatitude angle (rad)

R
e(
p

)a
nd

Im
(p

)

Re-Analytical Re-Full Re-FMM
Im-Analytical Im-Full Im-FMM

Figure 4. Real and imaginary part of the surface
pressure as a function of the angle for a rigid sphere
with radius 1m at 100Hz.

where pincident is the pressure of the plane wave at the col-
location nodes. The results of the simulation can be seen
in Figure 4.

4.2 Plane wave in cube with side lengths equal to 1m

The analytical description of the pressure from a plane
wave is given by

p(x) = P0 exp (−ik · x) , (32)

where P0 is the magnitude of the plane wave, k is the
wave vector and x is the position vector. If a plane wave
is perfectly aligned with the sides of an open duct the pres-
sure should behave the same as (32), i.e. a plane wave in
the free field. In the simulation we align the wave with
the x-direction and set P0 = 1Pa and f = 54.59Hz.
Given the flat sides of the cube it was chosen to use 224
linear elements for the geometry while the chosen inter-
polation was set to be discontinuous quadratic resulting in
1344 Degrees of Freedom. For the simulation the side at
x = 0 is applied a pressure condition equal to P0 while
the side at x = 1 is applied a ρc impedance condition.
The remaining boundaries are set as rigid (vn = 0). The
resulting linear system of equations becomes(

Hdiag(p∁
0)− αiρckGdiag(y)

)
z = −Hdiag(p0), (33)
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Figure 5. Visualization of the cube mesh. The red
side (x = 0) is applied a pressure condition while the
blue side (x = 1) is applied an impedance condition.

where H = (αdiag(ζ)− F), p0 is a vector contain-
ing P0 at the collocation points positioned at x = 0,
p∁
0 = 1−p0/P0 and y contains the prescribed admittance

at the collocation points positioned at x = 1. Finally,
(33) is solved iteratively without ever forming the matrix-
matrix products. From the solution (z) the unknown sur-
face pressures and normal velocities are extracted. Using
this the pressure inside the cube is evaluated using (1) di-
rectly. The results can be seen in Figure 6.

4.3 Oscillating sphere with radius equal to 1m
including viscothermal losses

The analytical solution of a sphere oscillating in the z-
direction in a viscous fluid is described in section 6.9 of
[14]. While the solution is stated as a infinite series it is
dominated by the first order terms. As such the analytical
solution for the acoustical pressure, normal velocity and
tangential velocity can be approximated accurately as

panalytical
a (r, θ) ≈ −3ρcA1h

(1)
1 (kr) cos(θ)

|vn|analytical(r, θ) ≈ −6ikB1

kvr
h1(kvr) cos(θ)

|vt|analytical(r, θ) ≈ −3iB1 (kvrh
′
1(kvr) + h1(kvr))

r
sin(θ),

(34)
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Re-Analytical Re-Full Re-FMM
Im-Analytical Im-Full Im-FMM

Figure 6. Real and imaginary part of the pressure on
the line (x, 0.5, 0.5) inside of the duct of side lengths
1m at 54.59Hz.

where r is the distance to the origin, θ is the colatitude
angle, h1 is the spherical Hankel function of the first kind,
kv is the viscous wavenumber, and the coefficients A1 and
B1 is computed as the solution to

[
vz/(3ik)
avz/(3i)

]
=

[
h′
1(ka) −2h1(kva)/(ka)

h1(ka) − (kvah
′
1(kva) + h1(kva))

] [
A1

B1

]
, (35)

where a is the radius of the sphere and vz is the speed in
the z-direction.

In the simulation we set f = 100Hz and vz =
0.01m s−1. The mesh used was the same as for the scat-
tering case (Figure 3). This time, however, utilizing con-
tinuous quadratic interpolation functions resulting in 494
Degrees of Freedom. Given the velocity in the z-direction
the following surface velocity vector is created

vs =
[
0 0 vz1

]⊤ ∈ R3n, (36)

where 0 denotes a vector filled with zeros of length n and
1 denotes a vector filled with ones of length n. In order to
compute the acoustical, pa, we solve (27) directly while
v is computed afterwards using (29). The results of the
simulation can be seen in Figure 7.
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Figure 7. Real part of the acoustical pressure as
well as absolute value of the normal and tangential
viscous velocity for a sphere with 1m radius in at
100Hz.

5. CONCLUSIONS

In this paper some of the current features and im-
plementation details of the open-source software
BoundaryIntegralEquations.jl were ex-
plained. The package was validated on three different
examples where a good compliance between the analyti-
cal solution and the simulation results. While the features
are not expected to change we suggest that the reader look
online for the most recent version of both the software
and documentation.
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