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Abstract
The world is experiencing a new wave of connected devices that can measure temper
ature, humidity, water levels, etc., and the volume of these devices is increasing expo
nentially over time. The concept of Internet of Things (IoT) existed for several years,
but in recent years, the introduction of Low Power Wide Area Network (LPWAN) tech
nologies has expanded its scope of applications in several other verticals. Now the use
of IoT devices can be found in industrial automation applications, utilities, smart cities,
smart communities, transportation, etc. One vertical that can benefit from using the new
generation of LPWAN technologies is remote healthcare. This thesis validates the use
of Cellular Internet of Things (CIoT) technologies for building an EndtoEnd (E2E) criti
cal application that is expected to perform continuous remote monitoring of chronically ill
Cardiovascular Disease (CVD) patients. The project follows Participatory Design method
ology to design an IoT end device that is capable of performing continuous measurement
of Electrocardiogram (ECG) and Heart Rate (HR). The device can then send that data to a
remote data collection, storage, and visualization system using CIoT technologies. The
efforts in evaluating the KPI performance of the CIoT technologies involved performing
an experimental evaluation of network Key Performance Indicator (KPI) such as E2E la
tency, bitrate, and Packet Drop (PD) in several physical environments. The experiments
were performed in indoor, deepindoor, outdoor, remoteoutdoor, and network roaming
environments. The project further goes on to evaluate the CIoT per cell capacity and the
power consumption recorded using different CIoT modules to understand the wholistic
picture of the state of CIoT network deployed by Denmark’s two biggest MNO.

The outcome of the experimental evaluation of CIoT networks in various conditions per
form differently. There have been noticeable KPI performance dissimilarities in the differ
ent MNO within the country and in the Nordic region. The Radio Access Network (RAN)
parameter settings can affect the capacity of the number of devices that can perform con
tinuous data transmission as well the RAN settings can affect the power consumption of
the CIoT devices. The experiment also resulted in testing CIoT devices in an outage
scenario and discovered the poor performance capabilities of these devices to maintain
connectivity in outage situations. This highlights the limitation of using a single frequency
band to deploy the CIoT network. Identification of gaps in the current CIoT deployments
led to using different techniques such as Multiple Radio Access Technology (MultiRAT)
and DeviceTODevice (D2D) communication to avoid complete loss of connectivity of IoT
devices. During the project, a new prototype was developed that could combine these two
approaches to enable more reliable and robust communication between the IoT device
and a remote server.

The results from the experimental testing of CIoT indicate that the technologies are not
fully matured yet to support the deployment of critical IoT applications requiring continu
ous remote monitoring. Perhaps there is a need for a substandard that can allow these
technologies to support continuous critical monitoring applications such as telemedicine
and telemonitoring.
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Resumé
Verden oplever en ny bølge af forbundne enheder, der kan måle temperatur, luftfugtighed,
vandstand osv., og antallet af disse enheder stiger eksponentielt over tid. Konceptet In
ternet of Things (IoT) har eksisteret i flere år, men i de seneste år har introduktionen af
Low Power Wide Area Network (LPWAN) teknologier udvidet dens anvendelsesområde
inden for flere andre vertikaler. Nu kan brugen af IoTenheder findes i industrielle au
tomationsanvendelser, forsyningsvirksomheder, smarte byer, smarte fællesskaber, trans
port osv. En vertikal, der kan drage fordel af at bruge den nye generation af LPWAN
teknologier, er fjernsundhed. Denne afhandling validerer brugen af Cellular Internet of
Things (CIoT) teknologier til at opbygge en EndtoEnd (E2E) kritisk applikation, som
forventes at udføre kontinuerlig fjernovervågning af kronisk syge kardiovaskulære syg
dom (CVD) patienter. Projektet følger metoden Participatory Design til at designe en
IoTendenhed, der er i stand til at udføre realtidsmåling af elektrokardiogram (ECG) og
hjertefrekvens (HR) og sende disse data til et fjernt datasamlings, opbevarings og vi
sualiseringssystem ved hjælp af CIoTteknologier. Anstrengelserne i at evaluere KPI
præstationen af CIoTteknologierne omfattede udførelse af en eksperimentel evaluering
af netværksnøglepræstationsindikatorer (KPI) som f.eks. E2Elatens, bitrate og paket
tab (PD) i flere fysiske miljøer. Eksperimenterne blev udført indendørs, dybt indendørs,
udendørs, fjerntliggende udendørs og roamingmiljøer. Projektet fortsætter med at eval
uere CIoT pr. cellekapacitet og strømforbrug, der er registreret ved hjælp af forskellige
CIoTmoduler for at forstå det helhedsbillede, der gælder for CIoTnetværket, der er
implementeret af Danmarks to største mobilnetværksoperatører.

Resultatet af den eksperimentelle evaluering af CIoTnetværk under forskellige forhold
viser forskellige præstationer. Der har været mærkbare forskelle i KPIpræstationen på
de forskellige mobilnetværksoperatører inden for landet samt i Norden som helhed. Ind
stillingerne for det radioadgangsnetværk (RAN) kan påvirke kapaciteten af antallet af en
heder, der kan udføre kontinuerlig dataoverførsel, samt RANindstillingerne kan påvirke
strømforbruget for CIoTenhederne. Eksperimentet resulterede også i test af Cellular
Internet of Things (CIoT) enheder i en nedbrudsscenarie og afslørede de dårlige præs
tationsmuligheder for disse enheder til at opretholde forbindelse i sådanne situationer,
hvilket afslører begrænsningen ved at bruge en enkelt frekvens til at drive CIoTnetværket.
Identifikationen af sådanne huller i de nuværende CIoTimplementeringer førte til brug af
forskellige teknikker som f.eks. Multiple Radio Access Technology (MultiRAT) og Device
TODevice (D2D) kommunikation. I løbet af projektet blev der udviklet en ny prototype,
der kunne kombinere disse to tilgange for at muliggøre mere pålidelig og robust kommu
nikation mellem IoTenheden og en fjernserver.

Resultaterne fra den eksperimentelle test af CIoT indikerer, at teknologierne endnu ikke
er fuldt udviklede til at understøtte implementeringen af kritiske IoTapplikationer, der
kræver kontinuerlig fjernovervågning. Måske er der behov for en standard, der kan tillade
disse teknologier at understøtte kontinuerlig overvågning af kritiske applikationer som
fjernsundhed.
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1 Introduction
The Internet of Things (IoT) has experienced rapid and exponential growth in the past
few years and has shown no sign of slowing down. IoT is a network of connected devices
that can sense and interact with the surrounding physical environment and communicate
using the network, facilitating the seamless transfer of information. Figure 1.1 shows this
growing trend of IoT devices over 15 years. According to Ericsson, by 2028, the total
number of connected devices is expected to grow to 34.7 billion from just 17.7 billion in
2023. Cellular Internet of Things (CIoT) alone will contribute to about 17.3% of total de
vices, about 6 billion [1]. The applications of the IoT have expanded over many sectors of
business and society, including consumer electronics, agriculture, utilities, transportation,
healthcare, etc.

Figure 1.1: Ericsson Internet of Things (IoT) Devices Forecast

[2]

Several reasons contribute to this growth of IoT devices, the primary one being the avail
ability of different network technologies developed specifically for IoT applications (such
as LPWAN, NBIoT, etc.) and the second being the affordability of hardware technolo
gies to build IoT applications (LoRaWAN module from Microchip for 11 EUR [3]). IoT
can improve different industries by improving efficiency, providing valuable insights, and
automating processes.

The primary research question addressed in this dissertation for the technical study of this
project was:

To verify the use of publicly deployed network infrastructure of the CIoT communication
technologies are sufficient to meet the specific requirements of critical IoT application or
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is there a need for a parallel infrastructure to support the stringent demands of the critical
applications.

In order to perform the pragmatic evaluation of CIoT, it was decided first to develop a
critical healthcare application using the CIoT technologies and use the expected per
formance requirement of such an application to evaluate the performance of the CIoT
technologies.

Several reasons make deploying a realtime critical application over an IoT network chal
lenging. The LPWAN IoT technologies are spread across licensed and unlicensed spec
trum of frequencies. It is challenging to build a realtime application over unlicensed LP
WAN IoT alone due to duty cycle restrictions imposed on them. In Denmark, and the rest
of Scandinavia, the CIoT technologies are deployed primarily in the lowband (Band 20
in most Scandinavian countries). According to a report from Global System for Mobile
communications Association (GSMA), lowband frequencies are now being used world
wide by Mobile Network Operators (MNO) for 5G deployment. This helps extend the 5G
coverage in rural areas and decrease deployment costs. This makes it challenging for
continuous monitoring IoT applications to have enough radio resources for uninterrupted
operations. In busy hours, the DownLink (DL) speeds offered by lowband are up to 81%
lower than that of midband frequencies [4].

The Quality of Life (QoL) of patients with chronic illness such as Cardiovascular Disease
(CVD) can be improved using IoT technologies. CVD have the highest mortality rate
worldwide, accounting for between 13% to 15% of all deaths worldwide. The number is
even higher in Europe, contributing to about 24.8% of deaths due to CVD [5, 6]. Out of all
the CVDs, Heart Failure (HF) is the most commonly diagnosed cardiovascular disease,
with just over 37 million of the world’s population being diagnosed with heart failure [7]. HF
is causing a growing burden on the healthcare sector due to poor prognosis, unhealthy
lifestyle, obesity, and increasing prevalence. This, combined with the increasing aging
population, has started to put a financial strain on healthcare systems worldwide [8].

Multiple studies worldwide have shown rehabilitation programs’ benefits and effective
ness for chronic diseases [9]. In the case of HF, cardiac rehabilitation is crucial to ensure
improved & speedy recovery, improved Quality of Life (QoL), and overall wellbeing. Car
diac rehabilitation includes interventions like physical activity, weight control, improved
diet, etc. These interventions are essential for a patient’s recovery, but unfortunately,
cardiac rehabilitation program suffers from poor compliance and adherence. Patient’s
have been compliant with taking the medication regularly but have failed to comply with
the lifestyle changes [10]. In order to simplify and increase adherence to the rehabilitation
programs, they started using more technology and telerehabilitation during the process.
Traditionally, the telerehabilitation program has focused on collecting the data from pa
tients and transferring it to medical professionals who can determine the improvements
and worsening of HF. In most cases, the patients were uninvolved and exposed to their
health data. Multiple studies highlighted that telerehabilitation was more effective when
both the patients and the medical professionals were given access to the health data [11,
12, 6, 13].

This application developed in this PhD project is based on the Future Patient Telerehabil
itation (FPT) project and leverages research outcomes from the project [14]. The focus
behind FPT is the development of a telerehabilitation program designed to improve pa
tient’s QoL and empower them to perform selfmonitoring to detect the worsening of their
health, which can avoid rehospitalization. In multiple interactions with medical doctors
and researchers, it was understood that Electrocardiogram (ECG) could help detect and
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classify different CVD, such as arrhythmias, coronary artery diseases, heart failure, car
diomyopathies, etc. Some medical professionals believe that using ondemand or semi
realtime access to patient’s ECG data can help detect some CVD early [5, 15, 16].

In order to increase the adaptation process, the project followed the Participatory Design
(PD) methodology, which aimed to include all the stakeholders, e.g., patients, doctors,
medical professionals, researchers, etc., while designing a continuous ECG and HRmon
itoring system [17, 18]. Multiple studies have highlighted that the eHealth system’s suc
cess depends on the enduser’s inclusion in the design process. Several other benefits
of Participatory Design include improved user satisfaction, increased user engagement,
reduced development time and cost, etc. [19, 20].

Figure 1.2 shows the different phases of the project and Participatory Design phases. As
can be seen, the overall Participatory Design process was divided into three phases, each
focusing on different aims, data collection techniques, and timelines.

1. Phase I: The first phase of the Participatory Design process focused on three aims.

(a) The first was to understand the end user’s perspective regarding continuous
ECG and HR monitoring applications, their psychological and technical readi
ness levels, and their expectations.

(b) The second aim was to address the pain points of the medical professionals
and the challenges that can be considered while building such a system.

(c) The third aim was to validate the initial prototypes and conceptual understand
ing of the problem that this system aims to solve.

The first phase included different data collection techniques; some involved visiting
the patient’s home in Viborg and Skive (cities in Denmark) to ask them about their
experience with the disease, their thoughts on continuous ECG and HR monitoring,
wearing ECG sensors and IoT devices for extended periods, etc. Understanding
patient’s views on technologies and devices they would like to use in a workshop
in Viborg. Another group of users of this system were medical professionals like
cardiac doctors, cardiac nurses, other medical professionals, etc. In order to cap
ture their understanding, a workshop was arranged where they were presented with
early ideas and drawings of a contineous ECG and HR monitoring system and were
asked for feedback. The system also was presented in summer schools organized
by Transatlantic Telehealth Research Network (TTRN) in 2019 and in a Japanese
& Danish Research Network on Telehealth/Telerehabilitation and Welfare Technolo
gies (JD TeleTech). The timeline for this phase was between August 2019 to March
2020 A.

Unfortunately, this project phase was shortlived due to the rise of the Covid19
pandemic worldwide, which resulted in very limited access to cardiac patients and
medical professionals. In order to move forward, the project decided to continue
with the Participatory Design approach by involving researchers in the healthcare
sector and students from diverse backgrounds.

2. Phase II: This project phase involved designing and implementing the IoT end de
vice, web portal, and Android app based on the initial feedback received from phase
I of the project.

(a) The first aim of the phase was to evaluate the design principles and the proto
type designs of the end device, web portal, and Android app.
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(b) The second phase aimed to perform network tests to verify whether or not the
designed application can meet the requirements identified in Phase I.

The datagathering techniques used in this phase were divided into two. The first
was a questionnaire sent out to medical professionals and domain experts to get
feedback on the User Experience (UX) design and the usability of the web portal,
and the second involved presenting the end device and the web portal virtually to
medical researchers and fellow PhD students from Denmark, USA, and Japan in
the TTRN summer school 2020. The primary goal behind the presentation at the
summer school was to gather feedback that could be used to develop the system
further. The timeline for this phase was between March 2020 to August 2022.

3. Phase III: All aspects of the system were further improved based on the feedback
from Phase II of the project. Phase III, the final phase of this project, focused on
performing several usability tests to identify potential challenges that can be solved
using such a system. The data gathering technique used in this phase was to ar
range workshops with the industry leaders, experts in the CVD field, and medical
doctors and professionals from different backgrounds. This involved presenting the
live functioning of the E2E system in front of medical doctors from Neuroscience in
Denmark and Sweden. A similar demo of the system was presented in front of the
researcher from Aalborg University to get more technical feedback on the overall
system. The timeline for this phase was between January 2022 to August 2022.

The following section describes the highlevel functional requirements set on the continu
ous Electrocardiogram (ECG) and HR monitoring system at the beginning of the project.
The requirements are based on building a hypothesis based on the outcome from the
different Participatory Design phases.

1. The ECG and HR monitoring should be performed in near realtime. This can allow
medical professionals to look into the incoming ECG data to notice different patterns.
The realtime data, if possible, should include both heart rate and ECG.

2. The monitoring device should not restrict the mobility of the individual wearing the
device. The device mobility should not be restricted to indoor environments such as
hospitals, homes, offices, etc.

3. The visible parts of the system should blend in for everyday wearing and should not
stand out, indicating that the person wearing such a device is undergoing medical
treatment.

4. The system should be able to provide continuous ECG and HR for extended periods
without loss in data.

5. The monitoring device should serve as a generic platform for further project ex
pansion. For example, the device should not be limited to only measuring heart
activity but also support interfacing with other sensors to create an ecosystem of
data points. In other words, the monitoring device should act as a gateway towards
further project expansion, including different sensors.

6. The data collected by the monitoring device should be visualized and stored for later
consumption. The visualization system should allow import from other systems and
export data for further processing.

7. There should be a way for CVD patients to see their data to track their health.
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8. There should be a possibility to develop Machine Learning (ML) algorithms that can
assist medical professionals in understanding the patient’s health condition.

9. The developed system should support ondemand as well as continuous monitoring
of the patients.

The requirements above for building the continuous ECG and HR monitoring application
helped us identify the approach to benchmark the performance of the CIoT technologies:

1. Evaluating the performance and reliability of CIoT in different coverage environ
ments to carry critical application data in an E2E system.

2. Evaluating the performance of CIoT technologies over an extended period of time.

3. Mobility and roaming support offered by CIoT technologies.

4. Evaluating the scalability aspects of CIoT technologies.

Overview of the Chapters

The content of this dissertation is divided into two parts. The first part of the dissertation
focused on building an E2E continuous ECG and HR monitoring system for monitoring
the heart activity of CVD patients. The second part of the thesis evaluates the KPI for
CIoT technologies by performing several experiments.

Chapter 2 provides an overview of different communication technologies used during this
project. This includes an introduction and overview of the LPWAN technologies such as
Long Range Wide Area Network (LoRaWAN), NarrowBandInternet of Things (NBIoT),
and LongTerm Evolution Machine Type Communication (LTEM).

Chapter 3 describes the development journey of the different prototypes of the end devices
which were built during this project. The chapter also provides an overview of different
ECG sensors discovered during the project and an overview of the development and
validation of all prototypes developed during the project.

Chapter 4 provides an overview of the developed server and backend system. This in
cludes the different prototype versions of the data collection & storage system and data
visualization systems such as the heart rater, live web portal, and eMed Android app.
The chapter also gives an insight into the different ML algorithms developed during this
project.

Chapter 5 presents the results from several Key Performance Indicator (KPI) tests con
ducted using the CIoT technologies, NBIoT and LTEM in multiple test environments.
This includes performing the KPI tests of CIoT technologies in indoor, deep indoor, out
door, remote outdoor, and roaming conditions using multiple MNO. NBIoT and LTEM
have also been tested for their power usage in different network conditions with different
communication modules and per eNB device capacity.

Chapter 6 focuses on the experimental evaluation of different techniques that can help
further improve the developed system’s reliability. This includes an experimental imple
mentation of Multiple Radio Access Technology (MultiRAT) and DeviceTODevice (D2D)
communication. The project develops a new prototype to support all the necessary tech
nologies (including the fallback technologies) to send the data.

At last, Chapter 7 highlights the conclusion and key research findings and summarises the
whole document. The chapter also provides an outlook on the possible future research
directions.
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2 Technical overview

2.1 Internet of Things (IoT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Overview of Low Power Wide Area Network (LPWAN) . . . . . . . . . . . . 9

2.1 Internet of Things (IoT)
The general term Internet of Things (IoT) can be defined as the network of connected de
vices that can sense and interact with the neighboring environment and communicate that
information with the cloud. Wide area communication technologies for IoT have existed
ever since the introduction of 2G in the early 90s. Since then, the number of new and ad
vanced communication technologies and connected devices has increased. A typical IoT
system consists of three main components: an enddevice, a communication technology,
and a cloud solution. Figure 2.1 shows a very generic implementation architecture of an
IoT system.

• End Device: This is a device such as a temperature sensor, water meter, light
meter, etc., that consists of a sensor to measure the surrounding environment, a
processing unit to understand the analog or digital measurement from the sensor,
a communication unit to exchange the information backandforth with the system,
and an actuator to take action either based on measured values from the sensor or
by decoding the instruction received from the cloud system.

• Communication Technology: The primary function of communication technology
is to transfer measurement data and control signals between the end device to the
cloud system. Depending upon the requirement of the application, a shortrange or
a longrange communication technology can be used. A communication technol
ogy designed explicitly for IoT applications often has two components a Gateway,
which handles local wireless communication between the devices, and a longrange
network technology that provides Internet access to the gateway. The choices of

ProcessorSensor

Actuator

Gateway

Network

Data
Processing

End-Device CommunicationTechnology Cloud Systems

Data visualization 
 

Communication  

Unit 

Figure 2.1: IoT generic implementation architecture
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Figure 2.2: IoT application categories (inspired from [22])

these technologies are often dependent on but are not limited to the application
requirements, user needs, and the available technologies in a given area.

• Cloud System: A cloud system in an IoT application is often a remote computing
system or an online platform responsible for data processing, storage, and visualiza
tion. Cloud systems could have several algorithms, Machine Learning (ML) models
for generating value, investigating patterns & trends, and providing deeper insights
into the collected data.

IoT applications can be classified into different categories based on their characteristics,
network requirements, and intended use. These categories include Massive IoT and Criti
cal IoT. The performance requirements for these applications can vary in terms of mobility,
security, reliability, latency, data rates, battery life, and cost of deployment. Cellular Inter
net of Things (CIoT) technologies include 5G New Radio (5G NR), NarrowBandInternet
of Things (NBIoT), and LongTerm Evolution Machine Type Communication (LTEM),
which opens up more categories of IoT applications such as broadband IoT and industrial
automation IoT [21].

Figure 2.2 shows some examples of applications falling into different IoT application cat
egories and their general characteristics.

2.1.1 IoT Connectivity Alternatives
For an IoT system to function properly, it requires connectivity or communication technolo
gies. Depending on the specific IoT application, different communication technologies are
utilized to provide access to these devices. To simplify things, we can classify these tech
nologies based on the range of communication they offer.

When IoT applications are deployed in limited areas such as houses or office build
ings, shortrange communication technologies like WiFi, Bluetooth, Bluetooth Low En
ergy (BLE), and ZigBee are often used. These technologies operate in an unlicensed
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frequency spectrum, have limited battery life, varying data rates, and Quality of Service
(QoS).

For applications that require longrange and wide area connectivity, there are two cate
gories of connectivity options to choose from.

• Cellular technologies: This includes technologies introduced by 3rd Generation
Partnership Project (3GPP), such as SecondGeneration Cellular Network (2G),
ThirdGeneration Cellular Network (3G), LongTerm Evolution (LTE), NBIoT, LTE
M, 5G NR, etc. These technologies are primarily deployed and operate in the li
censed spectrum. These technologies can provide LongDistance coverage while
simultaneously improving QoS, high data rates, lower interference, etc. Technolo
gies like NBIoT and LTEM are specifically designed for IoT applications that de
mand extended coverage, long battery life, and reliable data transfer, among other
things.

• Unlicensed technologies: Due to the demand for IoT and the wide range of appli
cations it covers, several other proprietary solutions have been developed to satisfy
the needs of LongRange IoT applications. Sigfox and LoRaWAN are examples
of such technologies requiring a dedicated endtoend infrastructure. These tech
nologies often work in ISM bands which have some limitations when using radio
resources. Sigfox and LoRaWAN must follow dutycycle restrictions (transmitter
power, transmission interval, etc.) while transferring the information from the end
device to the rest of the infrastructure.

During this project, several of these shortrange and longrange technologies were tested
and evaluated. Section 2.2 describes in detail the state of the art of some of the commu
nication technologies which were used during the project.

2.2 Overview of Low Power Wide Area
Network (LPWAN)

As the name suggests, the Low Power Wide Area Network (LPWAN) is a wireless tech
nology that connects longdistance, batterypowered, lowbitrate IoT applications. When
it comes to the deployment of wireless IoT applications, there is a wide range of tech
nologies that can be used. Each of these technologies varies in their offerings in terms
of link budget, power consumption, range, bitrate, etc. Figure 2.3 shows the overview of
different communication technologies typically used when interconnecting and deploying
IoT applications.
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Figure 2.3: Wireless Technologies for IoT [23]

LPWAN technologies support some general characteristics,

• Long deployment rage of upto 20 km

• Low power consumption and support for longer battery life of upto 10 years

• Low data rate support upto 375 kbps

• Low subscription cost

LPWAN technologies can be divided into two main categories: Cellular Internet of Things
(CIoT) technologies and noncellular IoT technologies. Cellular technologies, developed
by 3GPP, aim to support LPWAN IoT development. NBIoT and LTEM are examples of
CIoT technologies. On the other hand, noncellular IoT technologies such as Sigfox and
Long Range Wide Area Network (LoRaWAN) are also commonly used.

This chapter will focus on the LPWAN technologies used in this PhD project, specifically
LoRaWAN, NBIoT, and LTEM. These technologies will be described in detail in the fol
lowing sections.

2.2.1 Long Range Wide Area Network (LoRaWAN)
Long Range Wide Area Network (LoRaWAN) is a wireless network protocol and system
architecture that uses LoRa as a physical layer wireless communication link. This allows
enddevices to send data to an application server. The standard is developed and op
erated by LoRa Alliance [24]. LoRa is a wireless modulation technique that has a high
tolerance to interference. This allows the LoRaWAN network to provide robust coverage
with low energy consumption. Chirp Spread Spectrum (CSS) is used for communication
between the end node and the gateway due to its robustness to interference, long com
munication distance, and bidirectional communication. CSS has been used in military
applications for decades (e.g. tracking, encrypted communication for unmanned ground
vehicles, etc. [25, 26]) .
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Figure 2.4: Example of LoRaWAN CSS [27]

Figure 2.4 shows an example of LoRa CSS modulation. In this example, it can be ob
served that the first up chirps are 8 preamble symbols followed by 2 down chirps which
are synchronisation symbols. After that the actual payload is transferred [27].
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Figure 2.5: LoRaWAN Network Architecture (based on [28])

Most of the LoRaWAN deployed networks follow the star topology in the access network
mainly to preserve the battery life of the end nodes. Figure 2.5 shows the E2E network
architecture of LoRaWAN. LoRaWAN network can be deployed nationwide by one oper
ator, but the private deployment of the technology is also possible. LoRaWAN primarily
consists of the following network components:

1. LoRaWAN end devices: End devices are typically equipped with sensors, actu
ators, etc., with a LoRaWAN communication module attached. After collecting the
sensor(s) data, these devices forward the information to the application server using
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the LoRaWAN network. According to the LoRaWAN specification, the end devices
fall into one of three classes Class A, Class B, and Class C.

• Class A devices support the lowest power consumption while simultaneously
offering bidirectional communication. Class A device opens two receive win
dows after an uplink transmission to receive the downlink message from the
gateway. The windows are opened after 1s and 2s, respectively. In the case
of Class A devices, the downlink message from the server at any given time
will have to wait until the next uplink message from the device.

• Class B devices also offer bidirectional communication and a scheduled times
lot for any downlink communication. Class B devices, in a way, are an exten
sion of Class A devices. Class B devices use the gateway’s time synchroniza
tion beacon frame to register for a fixed downlink slot. Class B devices are
designed more for applications that send more downlink messages.

• Class C devices are designed to have maximum receive slots. Class C devices
have no power restrictions and offer a continuously open receive window to
receive downlink transmission. Class C devices use a similar method as class
A devices for uplink transmission during which the receiver window is closed.
However, as soon as the uplink transmission is finished, the device opens the
receive window. Class C devices have higher power consumption than Class
A and Class B devices but, at the same time lowest latency for communication
between the server and the end device.

2. LoRaWAN Gateway: The basic function of a LoRaWAN gateway is to listen to all
the incoming messages on all available LoRa frequencies. Once the gateway has
received a packet from a LoRaWAN device, it adds metadata to the packet. The
metadata could contain timestamps, frequency spreading factor, gateway id, Re
ceived Signal Strength Indicator (RSSI), etc. After this, the data is forwarded to the
network server using an IP link. Unlike many other wireless communication tech
nologies, in LoRaWAN, the devices are not attached to the gateway. Instead, once
the device is registered on LoRaWAN, all the gateways belonging to the same Lo
RaWAN network and within the range can receive the message from the LoRaWAN
device. Once the message is received, all the gateways add the metadata and send
it to the network server.

3. LoRaWAN Network Server: In the case of LoRaWAN, the network server is where
all the complex functionality is stored. Some of the primary tasks carried out by
the network server are to authenticate the device, accept all the incoming packets
(including the duplicate packets), store metadata, forward device payload to an ap
plication server (if specified), LoRaWAN V1.1 also supports location service using
multilateration techniques, send downlink messages to the device, etc..

4. Application Server: The application server is usually not part of the LoRaWAN in
frastructure and is mainly set up by individuals to receive data from the LoRaWAN
devices. Application servers can contain logic to understand the payload from the
device and may contain different commands for the end device based on the re
ceived data. The application server can send actions to the end device by sending
a LoRaWAN downlink frame to the network server, which then forwards that infor
mation to the gateways and then to the end device.
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Figure 2.6: NBIoT deployment modes (based on [34])

2.2.2 NarrowBandInternet of Things (NBIoT)
NarrowBandInternet of Things (NBIoT) is a cellular MachineType technology described
first in the 3GPP release 13. NBIoT standard shares many of its features on the existing
LTE standard. NBIoT, amongst other things, primarily focuses on providing deeper in
door coverage, massive device deployment, lower cost of deployment, and longer battery
life. Release 13 of NBIoT supports the Maximum Coupling Loss (MCL) of 164 dB, which
is almost 20dB higher than the standard LTE, up to 52547 devices handled by a single
cell. A higher MCL of 164dB translates into better deepindoor coverage; this is achieved
via the combination of newly introduced techniques of message repetition in both UL and
DL messages and increased Power Spectral Density [29]. NBIoT supports Extended
Coverage (EC) classes, EC0, EC1 and EC2. NBIoT supports a maximum of 2048 rep
etitions in the DL directions and 128 repetitions in the UL directions [30]. NBIoT uses
Binary Phase Shift Keying (BPSK) and Quadrature Phase Shift Keying (QPSK) modula
tion schemes. This helps reduce the complexity of wireless communication but comes
at the expense of reduced data rates. According to the NBIoT standard described in re
lease 13 of 3GPP, there is no support for voice or Voice over LongTerm Evolution (VoLTE)
calls or IP Multimedia Subsystem (IMS) services. NBIoT standard does not support the
handover functionality in LTE, and there is no good choice of technology for applications
requiring mobility support. In order to keep implementation less complex, NBIoT only
supports halfduplex communication, which means the NBIoT UE can either transmit or
receive data at a time from the eNB [31, 32].

NBIoT uses a carrier of 180kHz bandwidth equal to one Physical Resource Block (PRB)
of LTE. Depending upon where the 180kHz carrier is deployed NBIoT standard has built
in support for three ways of deployment: InBand, Guard Band, and Standalone [33].

Figure 2.6 shows the different deployment modes of NBIoT.

• Standalone mode of deployment allows NBIoT deployment on a single 200 kHz
timeslot of GSM with a 10 kHz guard band on either side.

• Inband deployment mode utilizes one PRB from LTE resources inside the LTE
band.

• Guard band, as the name suggests, allows NBIoT to be deployed in the guard
band around the LTE carrier.

NBIoT supports Extended Discontinuous Reception (eDRX) and Power Saving Mode
(PSM) to extend the device’s battery life by optimizing power consumption. eDRX mode
allows for extended timer values while listening to a DL message from the Evolved Node
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Figure 2.7: CIoT power saving features (based on [35])

B (eNB). eDRX can be configured to a maximum value of three hours. In PSM, the de
vice enters a lowpower state to reduce unnecessary network signaling activity. This is
ensured by maintaining the context of the device and at the network end. This optimizes
the signaling required to change the state from idle to active mode. In addition to PSM and
eDRX mode, NBIoT also adapts to the Connect mode Discontinuous Reception (cDRX)
with the maximum cycle value of 10.24s in 3GPP release 13. cDRX typically consists of
a combination of a short and long DRX cycle. Combining all these advanced features for
NBIoT allows the technology to extend the device’s battery life significantly [36, 37, 38].
Figure 2.7 an overview of different power savings mode.

Figure 2.8 give an overview of the data architecture of NBIoT. Unlike traditional LTE
systems, NBIoT is designed to use both the control and data plane of the communication
to transfer IP and nonIP messages. This is possible because of the optimization of the
User Plane CIoT Evolved Packet System (EPS) and Control Plane EPS.

1. Control plane optimization: The uplink data is transferred from eNB to Mobility Man
agement Entity (MME), and the data is further forwarded based on IP or nonIP type.
If the data traffic is IP, it is forwarded to the Serving Gateway (SGW) and then to
the Packet Data Gateway (PGW). If the traffic is nonIP, it is forwarded to Service
Capability Exposure Function (SCEF). After this, the data is finally forwarded to an
application server. SCEF is a new node designed for IoT data, which helps deliver
nonIP data from the control plane over the abstract interface.

2. User Plane optimization: In this case, both the IP and nonIP data follow the usual
path. From the device, the uplink data reached the eNB. After eNB the data goes
over SGW to PGW to the application server [32].

Subsequent releases form 3GPP for NBIoT include improvements on bitrate (UL: 159
Kbps DL:127 Kbps), supporting lower power class devices (with 14 dBm), support for lo
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Figure 2.8: NBIoT data architecture(based on [39])

calization (ECID and OTDOA), wake up signaling, and support for small cell [32]. 3GPP
has described improvements to the NBIoT until release R16. The NBIoT network eval
uated during this project was deployed in 3GPP release R13.

2.2.3 LongTerm Evolution Machine Type Communication
(LTEM)

LongTerm Evolution Machine Type Communication (LTEM) was introduced in 3GPP
release 13, alongside NBIoT. NBIoT and LTEM share many designs but can support
different use cases. According to 3GPP release 13, LTEM can support use cases with
expected higher data rate, device mobility, lower latency, etc [33, 40].

Although NBIoT and LTEM are very similar by design, some differences allow them to
complement each other, and combined technologies can support a much wider range of
applications. Unlike in NBIoT, LTEM usually can only be deployed inband and can oc
cupy up to 6 Physical Resource Block (PRB) making a total of 1.4MHz bandwidth. LTEM
supports higher peak bitrates of 1 Mbps (both UL and DL) than that of NBIoT. LTEM
supports more functionality, similar to LTE including device mobility, VoLTE calls, location
based on Observed Time Difference Of Arrival (OTDOA), etc. Unlike NBIoT, LTEM also
supports fullduplex communication. Higher bandwidth supported by the LTEM standard
makes it possible to use higher modulation scheme of 16 Quadrature amplitude modula
tion (QAM) [33, 40].

Like NBIoT, LTEM supports deepindoor coverage more than LTE (at least by 20 dB).
This is possible due to the support for repetitions in the standard. In case of LTEM, the
standard described support for two EC modes, mode A supports 32 repetitions whereas
mode B supports 2048 repetitions. Mode A is the default mode of deployment for LTEM,
it is designed to support high bitrate IoT applications such as voice calls, mobility etc.
Mode B is primaraly focuses on lowspeed or stationary IoT applications where the data
rates are not that important . LTEM also supports longer battery life due to the support
for features like PSM and eDRX mode. Like NBIoT, the LTEM technology supports IP
and nonIP traffic over control and user plane[32, 37, 41].
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Feature LoRaWAN NBIoT LTEM
Bandwidth 125 kHz 180 kHz 1.4MHz
Modulation Chirp spread spectrum BPSK, QPSK QPSK, 16 QAM

Bitrates 0.3  27 kbps 127 kbps (DL)
158 kbps (UL)

1 Mbps for DL &
UL

Localisation Yes No (Rel. 13) Yes
Voice Services No No Yes (VoLTE)

Duplex Mode Halfduplex Halfduplex Halfduplex,
Fullduplex

Maximum Coupling Loss NA 164 db 164 dB
Table 2.1: LPWAN feature comparison [33, 40]

Table 2.1 summarises some of the features of LoRaWAN, NBIoT, and LTEM discussed
in the chapter.

After considering different features offered by all the LPWAN technologies, it was decided
to continue with LTEM as the primary communication technology for designing the con
tinuous ECG and HR monitoring application. Following reasons were the primary factors
contributing in making this decision:

1. LTEM provides deep indoor coverage (at least 20 dB improvement over the tradi
tional LTE standards).

2. LTEM supports higher bandwidth as well as data rates when compared with data
rates offered NBIoT.

3. LTEM supports possibility of initiating Mobile Originated (MO) and Mobile Termi
nated (MT) VoLTE calls.

4. LTEM supports mobility, which is not supported by 3GPP release 13 for NBIoT.

5. LTEM supports power saving features such as PSM and eDRX.
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3.1 Overview selfmonitoring devices
The use of health apps and wearable devices is increasing exponentially day by day ,
and people are becoming more conscious of monitoring their health. The global fitness
monitoring devices market size is expected to jump from 30.41 billion USD to 114.36 bil
lion USD by 2028 [42]. Selfmonitoring technologies include wearable and nonwearable
sensors, which are often integrated with a smartphone app or web interface. This allows
individuals to collect and reflect on their health data. Fitbit tracker, Apple Watch, Sam
sung Galaxy Watch, bloodpressure monitors, sleep sensors, etc., are some examples
of wearable monitoring devices. The baseline idea of these technologies is to enhance
the Quality of Life (QoL) of the users by empowering and motivating them to take active
participation in improving their overall health [43].

However, most of these self monitoring technologies are not designed with an under
standing of the adequate needs of people with homemonitoring requirements. Another
challenge with using these technologies is the lack of publicly available reports about clin
ical validation of these technologies, making it harder for medical professionals to rely on
the data entirely [44]. Several studies have shown potential in supporting a patient’s tran
sition from the hospital back to home [45, 46, 47]. There are still some open challenges
in doing this transition, namely technological acceptance by the patients and the family,
with everyday life howpatients can install, transport, and use these monitoring devices to
obtain the best possible results, lack of privacy measures, stigmatization (due to carrying
visible sensors, etc.), reliability of the Information and Communications Technology (ICT)
infrastructure for transportation of data from patient’s home to the hospital systems [43].

Most remote monitoring sensors/devices, like Fitbit, Apple Watch, etc., collect user data
and send it to a proprietary cloud system, making it harder for the medical professional to
access it directly. Other monitoring devices like Electrocardiogram (ECG) holter maintains
a local recording of the data for several days, which is then sent to the hospital by post
for further examination. In both cases, performing an accurate and timely evaluation of
the patient’s health condition is tedious and timeconsuming. The alternative is to use
continuous monitoring of these critical health parameters and provide preliminary health
analysis.
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Figure 3.1: AliveCor KardiaMobile [50]

There are several popular at home ECG monitoring devices that are used by patients,
researchers, and even clinical professionals. We decided to study the design of these de
vices. The two most commonly used devices recommend by the telemedicine researcher
were AliveCor KardiaMobile and Cortrium [48, 49] .

Figure 3.1 and 3.2 shows the two devices developed by AliveCor and Cortrium. As can
be seen from the diagram, both of devices use a different way of recording the ECG.

Working of AliveCor KardiaMobile

KardiaMobile provides a single lead ECG measurements that can be used for detecting
atrial fibrillation, bradycardia, and tachycardia. The patient need to place the smartphone
app running while performing the ECG measurement as can be seen from the figure 3.1.
The deviced used Bluetooth to share the data with the smartphone app. Once the ECG is
recorded, the patient needs to download and send the recording to the doctor. Although
KardiaMobile had many good, clinically validated fetures, the biggest challenge in using
it in the context of this project was the lack of ability to provide continuous recording of
ECG and HR. KardiaMobile, in one measurement could only record the data for only 30
seconds which made is mismatch for the application targeted by this project [48].

Working of Cortrium

Cortrium C3 + holter monitor was a much better match in comparison to the KardiaMobile,
this was mainly because of its ability of performing continuous ECG recording. The device
also had a long battery life (up to 7 days) which made it more fit for the project. Cortrium
out of the box is designed to continuously record the ECG and share the data with the
smartphone app using Bluetooth. Cortrium provides a 3 channel ECG recording and also
allows for the realtime visualization of ECG data in their smartphone app. The data sent
by the Cortrium C3 + holter monitor uses a proprietary data structure that is not publicly
available. Unfortunately our collaboration attempts with Cortrium were not successful
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Figure 3.2: Cortrium Device: C3 + holter monitor[49]

therefore, even though C3 + holter monitor was really good match for the project, the use
of Cortrium device had to be discarded.

3.2 Considerations for the end device
After initial discussions with the clinical researchers, medical professionals, and previous
research studies, a development direction for the end device was established. Following
were the design goals established at the beginning of the Phase I of the Participatory
Design

1. The device should have an integrated ECG and HR monitoring sensor.

2. The device should have realtime data and control signal transmission capabilities.

3. The device should have a smaller footprint and be able to run on battery power.

4. The device should support user mobility, i.e., a person wearing the device should
not be confined to one place (e.g., home, hospital, etc.) but should be able to move
inbetween environments.

5. The device should support a generic interface for data transfer between the sensor
and the communication module in order to have easy expansion and integration of
the future body sensors.

Figure 3.3 illustrates the conceptual design of the end device. Multiple prototypes of the
described end device were designed during the project’s duration. Multiple body sensors
were identified and integrated with the end device during this time. Section 3.3 provides
an overview of the different sensor and end device designs explored during the imple
mentation of the project.
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3.3 Sensor search
This section goes over the overview and the evaluation process of different ECG sensors.

Figure 3.4: AD8232 Sensor [51]

3.3.1 Single Lead Heart Rate Monitor: AD8232
AD8232 is a single lead HR monitoring sensor and allows for measuring the electrical
activity within the heart. It can be used to measure the ECG of the person wearing the
sensor and collect data into a microcontroller for further processing. Figure 3.4 shows
the sensor and the three wired electrodes needed to gather the electrical signal from the
heart. After receiving the data from the heart AD8232 combines the signals from all three
electrodes and generates a single output ECG signal.

Figure 3.5 shows the first prototype developed during the course of the project. As can be
seen from the figure, the prototype uses an Arduino UNO as a microcontroller connected
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Figure 3.5: AD8232 prototype

to the AD8232. The two boards are connected using jumper wires, and output from the
AD8232 is fed to the analog input pin of the Arduino UNO microcontroller.

There are several advantages of using an ECG device described in figure 3.5. The entire
assembly of devices is cheaper than that of professional ECG equipment. Another advan
tage of this ECG device is that it is straightforward to set up and uses familiar electrodes
for measurement.

The device in figure 3.5 was presented as a concept at an outpatient visit conducted in
Skive, Denmark, and during the discussion, it was conclude that using a device like this
is not preferred by the patients mainly for the following reasons:

1. The device is very bulky to carry around.

2. The device uses wires for connection; the patients gravitatedmore toward a wireless
solution.

3. Patients prefer a plugandplay solution rather than manually connecting different
system components.

Apart from the issues discussed with the clinical users and patients, several technical
issues were discovered with this implementation approach.

1. It takes much work to make a smaller footprint of the device.

2. The connector if loosely connected may introduce noise into the measurement due
to the motion of the electrical wires.

3. There is no communication technology built into the device, making it very challeng
ing to send the ECG data to a remote server without adding additional modules to
the system. This meant connecting more wires to the main mcirocontroller board.

Therefore, due to all the issues described by the clinical users and considering techni
cal challenges, it was decided to build a more compact solution with a special focus on
including wireless technologies in the setup.
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Figure 3.6: Movesense ECG sensor [54]

3.3.2 Wireless ECG sensors
There are several wireless ECG and HR monitors which are available. The selection of
the sensor is primarily dependent on the following key criteria:

1. Programmability of the sensor, i.e., to choose the sampling frequency, measurement
interval, etc.

2. Support for wireless communication technology, e.g., Bluetooth Low Energy (BLE),
etc.

3. No use of wired electrodes to perform the measurement.

Based on the above criteria, we narrowed the search to two ECG and HR monitoring
sensors Movesense [52] and Savvy [53]. Both of these sensors matched the required
criteria set for the ECG and HR sensor. The following section goes over the technical
details and the functionality offered by Movesense and Saavy sensors.

Movesense Medical:

Movesense is a BLEbased ECG and motion monitoring sensor which has undergone
clinical Class IIa certification. Class IIa is a regulatory classification of medical devices in
the EU. It indicates that the device follows specific standards and can be sold inside the
EU. Class IIa devices are usually meant to be used in or on the human body for a limited
period. Figure 3.6 shows the two different form factors of the Movesense ECG sensor.
The Movesense ECG sensor has a smaller form factor, is comfortable, and is easy to put
on. This can help patients use this sensor for extended periods without feeling fatigued.
One of the key advantages of using this sensor is the wide range of programmability
offered by the sensor; this enables the development of custom applications that are very
specific for the use case. The sensor is also equipped with motion sensors, which can be
further used to detect the motion of the patients alongside the heart activity. The sensor
uses a coin cell battery and provides a long battery life which makes it easy to be used
by people of all ages and categories [52, 54].

Savvy:

Saavy ECG was developed in collaboration with the Parallel and Distributed Systems
Laboratory, Department of Communications Systems at Josef Stefan Institute. Saavy is
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Figure 3.7: Savvy ECG sensor [53]

a CEmarked Class IIa medical device. Unlike Movesense, Saavy uses two electrodes
that can be mounted at different locations to measure the ECG of the patient. Saavy use
BLE to transfer the ECG data, and the sampling frequency can be customized. One of the
important features of Saavy is that it comes with a rechargeable battery, which eliminates
the need to replace batteries from the device. Saavy resembles the traditional portable
ECG monitors, making them familer and easy to use. Figures 3.7 show the device and
the app showing the ECG sample [53].

3.4 Making first prototype
In the last section, we narrowed down our search for the ECGandHRmonitor toMovesense
and Saavy. The primary reason for their selection was the use of BLE as a communica
tion technology and the ability to program the sensors on the fly. In this section, we will
focus on the first prototype, which was designed to test and verify the hypothesis of using
a wireless ECG sensor to perform the ECG and HR monitoring of the patients. In order
to make this prototype, we needed the following components:

• A Microcontroller with BLE transceiver

• Movesense and Savvy sensors

• Application to visualize the sampled ECG data

In order to make this prototype, ESP32 was selected as the microcontroller. ESP32 is a
compact SystemonChip (SoC) developed for lowcost and batterydriven applications.
ESP32 has a 32bit CPU operating at 240MHz and can connect different peripherals
using BLE, WiFi, UART, SPI, and I2C protocols. This enables us to not only connect both
the ECG sensors to the ESP32 but also gives us the possibility to send the data to a remote
database for storage. ESP32 is one of the most popular microcontrollers amongst IoT
developers because it has a good online support community and documentation available
[55]. Figure 3.8 shows the ESP32 development board used during the design of the first
prototype.

The development approach was divided into two phases. Phase one focused on estab
lishing a connection with the ECG sensors (both Movesense and Savvy), and phase two
involved sending the data to a remote server for storage and visualization.
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Figure 3.8: ESP32 Development Board [56]

3.4.1 Integration with ECG sensor
Movesense ECG and Saavy both support BLE, but they had a different procedures to
connect and start streaming the ECG and Heart. This section will go through the commu
nication flow for both sensors.

Connecting Movesense with ESP32

Figure 3.9 shows the flowchart for the BLE setup. Once the ESP32 has finished booting,
it activates the BLE radio and scans for the Movesense ECG sensor’s Universal Unique
Identifier (UUID). Movesense ECG allows modification of the UUID of the sensor in the
firmware. In order to simplify the process, the UUID of the sensor was kept as the default
value, and it was programmed in the ESP32. The ESP32 executes a periodic WHILE
LOOP until the desired UUID is found. Once the UUID is found, the ESP32 looks for the
HR service; this service is also highlighted with its own UUID and also is programmed in
the ESP32. If the HR service is not found, the ESP32 will print the error message on the
serial monitor highlighting the reason for terminating the program. Once the HR service is
found, the program looks for the notify characteristic of the service; this instructs the BLE
module inside the Movesense ECG monitor to send a notification to the ESP32 when the
new ECG and HR data is available to fetch. If the notify characteristic is not found, the
ESP32 writes the error message onto the serial monitor. Once the correct characteristic
is subscribed, the ESP32 looks for a command characteristic that allows the program
to feed data to the Movesense sensor. This data is nothing but a command constructed
using different configuration values, which tells the sensor to start the ECG sampling and
send that data back to the ESP32. Once the correct command is fed to the Movesense
sensor, the ESP32 waits for new data to be received from the sensor. The received heart
data is processed to extract ECG and HR from it and is plotted onto the serial monitor.
Movesense ECG monitor keeps sending the new data until the BLE connection is active,
or the manual termination of the data is requested.

Figure 3.10 shows the output data from the Movesense ECG sensor. The blue line indi
cates the ECGmeasurement whereas the red line indicates the HR of the person wearing
the Movesense sensor.

Connecting Savvy with ESP32

Figure 3.11 shows the BLE connection setup for Savvy ECG monitor. Most of the steps
involved in establishing the connection between Savvy and Movesense are very similar,
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Figure 3.9: Movesense BLE Setup

Figure 3.10: Movesense ECG output (Arduino IDE Serial Monitor)
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Figure 3.11: Savvy BLE setup
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except for the data processing steps and the fact that the Savvy ECG monitor requires
an authentication code. Like Movesense, while connecting Savvy ECG monitor, ESP32
scans for the Savvy UUID, connects with the HR service, and searches for the command
characteristics. In the case of Savvy, the sensor does not allow further communication
unless the authentication procedure is completed within 4 seconds of the BLE connec
tion. Once the ESP32 has written the Personal Identification Number (PIN) code that
will authenticate the user using the command characteristics, ESP32 enables the notify
characteristics. Savvy ECG starts sampling data immediately and notifying the ESP32
with new data. ESP32 processes this data, and the ECG and HR values are plotted onto
the serial monitor. The command characteristics of Savvy can be used for further config
uration Savvy, e.g., changing the sampling frequency, etc. The ECG data is continuously
fed to ESP32 until the BLE connection is broken or Savvy is asked to terminate the notify
characteristics.

Figure 3.12: Savvy ECG output (Arduino IDE Serial Monitor)

Figure 3.12 shows the output data from the Savvy ECGmonitor. The blue graph indicates
unfiltered data, whereas the red line indicates filtered data after using a smoothing filter.

3.4.2 Continuous monitoring using Cellular Internet of
Things (CIoT)

Monitoring a patient’s heart and showing the data in the form of a continuous graph can
bring some insights to the patient viewing the results. However, the real benefits of this
monitoring can be achieved if the data can be transferred to a remote server where a
medical professional can see the data and understand the health condition of the patient
without a in person physical examination. In this section, we try to achieve sending the
ECG and HR received by the Savvy and Movesense sensors to a server for further pro
cessing. The idea behind this prototype is to connect the wireless ECG and HRmonitoring
sensor to the ESP32 and, using LTEM communication technologies, have this incoming
heart data transferred to a remote location for storage and data visualization.

Design of continuous monitoring system

According to the identified requirement in section 3.3.1, and the feature requirement LTE
M was chosen as the preferred primary communication technology in section2.2.3. Figure
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Figure 3.13: First prototype components [57]

3.13 shows the components used to design the first prototype.

Figure 3.13 (a) shows the ESP32 that was used during building the first prototype. 3.13
(c) shows the Movesense ECG and HR monitor.

Figure 3.13 (b) shows the Ublox Saara R410 communication module. A CIoT commu
nication module connects to the microcontroller using various interfaces (InterIntegrated
Circuit (I2C), Universal Asynchronous Receiver/Transmitter (UART), Serial Peripheral In
terface (SPI)). The module is connected to ESP32 using a UART connection in this pro
totype. SARAR410 module was chosen particularly because it supports both NBIoT
and LTEM communication technologies, the small form factor, and firmware that can be
controlled using AT commands. The module supports many IoT protocols, including User
Datagram Protocol (UDP), Transmission Control Protocol (TCP), Hypertext Transfer Pro
tocol (HTTP), Transport Layer Security (TLS), Constrained Application Protocol (CoAP),
and Message Queuing Telemetry Transport (MQTT). This allows for flexibility while send
ing the user data to the backend systems. Themodule was fully compatible with the 3GPP
rel. 13, that was deployed across Denmark at the time of prototype development.

Figure 3.14 shows the first prototype. The compact design and ability to run the device on
Lithiumion batteries enable the portability of the device. Once powered ON, the devices
automatically detects the relevant Movesense ECG and HR sensor and start the setup
process. After the setup process is complete, the device starts sending ECG and HR data
to the remote server. The device works as a plugandplay setup, eliminating the need
for any external configuration or human intervention during setup as well as during the
measurements.

The custom payload format used for monitoring the ECG and HR in realtime involves the
utilization of a Movesense sensor. The sensor is configured to monitor and sample heart
activity for one second, with a sampling frequency of 128Hz. Each sample recorded by
the sensor is a 2byte signed Hexadecimal (HEX) value. As we are recording at 128Hz,
the sensor generates 256 bytes of ECG data. The device processes the received data
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Figure 3.14: First Prototype [58]

Figure 3.15: Heart Monitor UDP Packet Format (based on[58])

locally and constructs an IP packet, as shown in Figure 3.15. The ECG data occupies
256 bytes, and there are 2 bytes allocated for the average HR value. Once the packet
is formed, the device encapsulates it in a UDP header, including all relevant parameters,
such as the remote IP address, port number, etc. The device then transmits the UDP
packet to the remote server for further processing and storage.

Figure 3.16 shows the complete flowchart of the functioning of the first prototype. When
the device is powered on, it starts by initializing all the externally connected peripherals.
Once all the modules are powered ON and initialized, the device sends a command to the
Ublox SARAR410module to connect to the CIoT network. Since the module connects to
multiple CIoT technologies, the preferred technology choice is coded into the firmware (in
this case LTEM). However, it is also possible to dynamically select the technology based
on factors like the best available coverage in the area or bandwidth requirements. After
completing the LTEM network initialization process, the device verifies the connection
link and obtains the IP address. If the device encounters any issues with network con
nection, the ESP32 resets the module and starts the connection process again. Once
the network connection is successful, the device starts the process of connecting to the
Movesense heart monitor. In this case, the device is preconfigured with the necessary
BLE characteristics, making it easier to initiate the connection. Once the BLE connection
is established, the device subscribes to ECG and HR characteristics and that enable BLE
notifications. This allows the Movesense ECG and HR sensor to send the data every
time new data is available, for this prototype the sampling frequency is one second. This
approach is superior to constantly reading values from the sensor every second. It also
enables the device to process the ECG and HR and send it to the remote server before
the arrival of new data. Once the data is sent to the remote server, the device waits for
the new incoming ECG and HR data. This loop continues as long as the BLE connection
between the device and the Movesense ECG and HR is active.

Figure 3.17 shows the E2E architecture used for the first prototype. The device prototype
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in figure 3.14 uses LTEM to connect to the network and obtain the IP address. Once the
device establishes a connection and acquires an IP address, it sends packaged data to
a remote server. The data transmission is performed using UDP, a lightweight and con
nectionless transport protocol. The data is sent to a remote server located in Frankfurt,
Germany. The server runs a Python script responsible for handling the payload received
from the device. The server processes the data in realtime, extracting relevant informa
tion from the payload. The extracted ECG and HR are stored in InfluxDB, a time series
database for further consumption[59].

Drawbacks of the first prototype

Although, the design of the first prototype was as per the requirements identified in section
3.3.1 . Several design choices needed further improvements. All the shortcomings of the
first prototype are listed below.

1. Although the prototype could run on a battery, the design of the prototype could
have been more portable. The prototype’s size was way too big for it to be carried
around.

2. Another issue with the prototype was that different components were connected
using wires. This was not very particle design, given that the ambition in this case
was to use the device for continuous monitoring regardless of the location.

3. The prototype was built using offtheshelf components. It meant there was no con
trol over the design of the device. The components used in the prototype had higher
power consumption, e.g., the ESP32 alone was consuming about 240 mA current
in active state. The intention was to be able to perform continuous ECG and HR
monitoring for a longer time. Higher power consumption meant the patients needed
a highercapacity bulky battery.

4. There was no way to locate the patient in an emergency situation with the current
design. Therefore we needed a mechanism to locate the patient’s location if re
quired.

Considering all the points above, it was decided to make a new prototype designed.

3.5 Design and Validating second
prototype

In this section design and validation of the second prototype is described. The require
ments for the second prototype came from the knowledge learned while designing the
first prototype and the clinical feedback.

In order to achieve the goal of building this prototype which can receive data from the
ECG sensor and send it to a remote backend server in realtime to be visualized following
components hardware were needed.

• Microcontroller

• BLE module

• Global Navigation Satellite System (GNSS) Module
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• CIoT communication module

• Printed Circuit Board (PCB) design to mount these components

In this section, all the choices of the components that are used while designing the second
prototype are described.

Mirocontroller:

Figure 3.18: Microcontroller ATSAMD21 [60]

A central processing unit that can interface with different peripheral modules such as
BLE, CIoT communication module, and GNSS is needed. Therefore, a microcontroller
was needed to handle multiple serial communication channels simultaneously while being
power efficient. The initial firmware for prototype one was written in Arduino IDE; there
fore, choosing a microcontroller compatible with any of the Arduino bootloaders was a
wise option. It was decided to proceed with Microchip ATSAMD21 as the choice for the
microcontroller shown in figure 3.18. ATSAMD21 has the following highlighting features
which made it a perfect fit for the prototype [60]:

• ATSAMD21 features a small 7mm x 7mm form factor. This allows for a very compact
design of the microcontroller.

• ATSAMD21 offers six serial communication interfaces that can be configured to use
UART communication protocol and simultaneously handle the communication with
all the peripherals, such as BLE, GNSS, and the CIoT module.

• ATSAMD21 was fully compatible with Arduino MKE Zero bootloader, allowing us to
reuse part of the code from the firmware written for the first prototype but at the same
time allowing us to write assembly code which can allow us to access the different
registers inside the ATSAMD21. This was especially important given the low power
requirements of the prototype.

• ATSAMD21 operates between 1.62V and 3.63V, providing flexibility in power supply
options and compatibility with various peripheral devices.

BLE module:

In the first prototype, the ESP32 had a builtin BLE protocol stack as well as a transceiver.
Unfortunately, this was not the case with the ATSAMD21 microcontroller chosen for the
final prototype. Therefore it was necessary to find a suitable external BLE module that
could fit the design criteria of the prototype. The primary criteria for the BLE module were
to have a compact design, support for serial UART communication, and Bluetooth 5.0
(which was the latest when designing the prototype). Considering all these criteria, Ublox
NINAB312 was chosen as the BLE module shown in figure 3.19 [61].
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Figure 3.19: BLE Module Ublox NINAB312 [61]

• Ublox NINAB312 supports Bluetooth 5.0 and is backward compatible with previ
ous Bluetooth versions. Its low power consumption allows it to be used in battery
powered IoT applications.

• Ublox NINAB312 features a compact size of 10 mm x15 mm, allowing including
builtin antenna. This allows for the compact form factor of the final PCB.

• Ublox NINAB312 provides UART and I2C interfaces to integrate host devices and
microcontrollers seamlessly.

• Ublox NINAB312 runs on a 1.7V to 3.6V similar to that of ATSAMD21, making the
power design of the PCB simpler.

Global Navigation Satellite System (GNSS) Module:

In the first prototype, no locationmodule was used, but it was later decided that the location
of the patient might be very relevant in case of an emergency. Therefore it was necessary
to find a GNSS module that could be used for such purposes. The main criteria for the
choice were to find a GNSS module that features a compact design at the same time, is
more power efficient. Based on the design criteria, it was decided to use a TESEOLIV3R
GNSS module design by ST Microelectronics (STM). Figure 3.20 shows the overall form
factor of the GNSS module. Some of the key features of the module are described below
[62]:

Figure 3.20: GNSS Module ST Microelectronics TESEOLIV3R [63]

• STM TESEOLIV3R GNSS module supports multiple satellite constellations (GPS,
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Figure 3.21: CIoT Module Ublox SARAR412M [64]

GLONASS, Galileo, and BeiDou) to determine the location. MultiConstellation sup
port improves the availability and accuracy of the location.

• Regarding receiver sensitivity STM TESEOLIV3R GNSS module is on the higher
end of the spectrum, supporting up to 163dBm. This allows faster location calcula
tion in areas where there is limited visibility of the sky.

• STM TESEOLIV3RGNSSmodule features a small form factor of 9.7mm x 10.1mm.
This allows for the compact design of the overall PCB.

• STM TESEOLIV3R GNSS supports various serial communication interfaces, in
cluding UART, I2C, and SPI. This allows easy integration with the ATSAMD21 mi
crocontroller chosen for this prototype.

• The operating voltage range for the STM TESEOLIV3R GNSS module is between
2.1V to 4.3V, making it compatible with the overall PCB power design.

Cellular Internet of Things (CIoT) communication module:

Ublox SARAR412M shown in figure 3.21 is from the same family of modules as that of
Ublox SARAR410M. Both of these modules share a similar set of features, except the
fact that SARAR412M also supports 2G fallback. This was added as a feature for this
prototype. Therefore, if required 2G was expected to be used as a fallback technology to
send data across the mobile network to a remote server. This feture was not used in the
actual firmware, instead a BLE fallback feature was developed. Some of the features of
Ublox SARAR412M are described below:

• Ublox SARAR412M is a multiregion cellular communication module with support
for most of the LTE frequencies worldwide.

• Ublox SARAR412M supports the use of NBIoT, LTEM, and 2G (primarily as a
fallback technology).

• The form factor of Ublox SARAR412M is 16mm x 26mm.

• Ublox SARAR412M does not support the new eSIM standards, forcing the PCB to
have an external SIM slot. This increases the overall size of the final PCB.

Low power consumption, support for multiple IoT protocol (UDP, TCP, HTTPS, MQTT,
CoAP, etc.), easytouse AT command interface, and the possibility of Firmware Over
TheAir (FOTA) updates makes this module ideal to be used in this prototype [64].
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PCB Design:

Figure 3.22 shows the Front and Back design of the PCB developed during this prototype.
All the different components chosen for this prototype’s development are highlighted on
the drawing. As it can be seen in the images, the design of the PCB is very compact
35.40mm x 35.10mm.

Figure 3.23 shows the simplified overview of the complete working of the second proto
type. The functionality can be divided into two parts. Part one is where the device tries
to establish a BLE connection with the Movesense ECG and HR monitor, and Part two
is where it starts sending the ECG and HR data to the remote server using the LTEM
network.

As soon as the device is powered ON, it starts by initializing all the General Purpose
Input/Output (GPIO) pins that will give power to the BLE and CIoT modules. Once the
initial device setup is complete, the device resets the SARAR412 CIoT communication
module and initiates the LTEM connection. The device waits until the LTEM connection
is established. Once the LTEM connection is established, it calls for a function that allows
the BLE module on board to connect with the Android app eMed. The app’s functionality
is described in section 4.3.2. The device waits for 30 seconds and checks for the bonding
status. If the BLE app bonding is successful, it continues; otherwise, it resets the BLE
device. After that, the BLE mode of the device is changed to central and verified. The
central mode in BLE enables the prototype device to scan for the advertisements from the
Movesense ECG and HR monitor. Once the device is verified to be in the central mode,
the device starts the discovery process to look for the Movesense ECG sensor. Here
the discovery process is performed three times for a duration of 1 second each. If the
sensor is not discovered, the BLE module is reset. When the Movesense ECG module is
discovered, the device initiates the Asynchronous Connectionoriented Logical transport
(ACL) connection processes and looks for the BLE services. Once the relevant services
are found, the ECG and HR characteristics are written. This tells the Movesens sensors
that the device requests two measurements. After that, the relevant characteristics are
subscribed for notification.
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Once the BLE setup is complete, the device opens a UDP socket on the SARAR412
communication module. This UDP socket sends the ECG and HR data to the remote
server.

Once the BLE and LTEM setups are complete, the device starts accepting and processing
data from the Movesense ECG and HR monitor. The Movesense ECG and HR monitor is
set up to sample heart activity at 128 Hz, and each data packet received from the sensor
contains 16 measurement samples. Therefore, in total, the Movesense sensor sends
eight packets. The device buffers the incoming packets until the packet count equals
eight. Once eight packets are received, the device makes a final check whether the LTE
M network is still connected or not. If the device has LTEM connectivity, the data is sent to
the remote server using the UDP socket. Otherwise, the no signal counter is incremented.
Meanwhile, the device has started preparing the next packet; once this packet is ready to
be sent, the device will again check for LTEM connectivity and send the packet over. The
fallback solution takes over if five consecutive packets are dropped due to no signal. In
the fallback solution, the device will notify the eMed app to connect with the Movesense
ECG and HR monitor monitor and continue recording the ECG data in full resolution.

While the system is in the fallback solution, the IoT prototype device will try to regain the
LTEM connection, and if it is successful, it will restart the complete BLE pairing process.
After the BLE process is complete, the device will again start sending the data using LTE
M.

3.6 Feedback from the clinical side
As a part of the Phase II and Phase III of the PD, the end device with the ECG and HR
sensor was shown to different groups of individuals, including medical doctors, medical
professionals, and researchers in healthcare & telerehabilitation. The feedback received
by different groups is motioned below:

• The size and the design of the end device PCB are very positive. At approximately
3.5mm x 3.5 mm, it is small enough to be used in various remote monitoring sce
narios. The BLE link with the ECG sensors is another positive sign in the design of
the end device.

• It was recommended to design a plastic enclosure in different shapes to house the
PCB design. The most common suggestions were to design the enclosure in the
form of a wristwatch, and the other was to design it as a waist belt clip.

• Another feedback related to the end device enclosure was to design the housing,
which is IP68 certified. This is meant to make the device dust and waterresistant.

• To add a display to show the ECG and HR measurements on the device, and when
the device is not measuring the ECG or HR, then use the screen to show the date
and time. This feature will help keep the device more discrete and more acceptable
in society.

• The current PCB design used a microUSB charging port; it was recommended to
change it to more commonly found charging ports like USBtype C or to use include
Qi wireless charging.
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4.1 Data visualisation background
In several studies around cardiac rehabilitation, physical activity has been found to have a
significant impact in reducingmortality rates in Cardiovascular Disease (CVD) [10]. There
fore it was decided to include a step counter to measure the daily activity; based on the
Future Patient Telerehabilitation (FPT) project’s research output, it was decided to col
lect the blood pressure and sleep data from the individual patients [18]. Alongside these
onceaday measurement data points, a particular feature was developed to receive the
continuous Electrocardiogram (ECG) and Heart Rate (HR) data. In addition to these fea
tures, there was a need to develop the backend system, which is in line with the system
requirements highlighted in Chapter 1. This included developing a data storage system to
make data available for later consumption, visualize continuous ECG and HR, visualize
once a day measurements, interfacing with other backend systems, different ways to ex
port data, data The system needed to support methods to request the data so that it could
be used for further processing. A visualization feature will allow CVD patients and their
loved ones to consume the recorded data and monitor the progress of the individuals.
The last requirement was using Machine Learning (ML) to assist medical professionals in
detecting abnormalities in the recorded data.

The rest of the chapter is divided into three sections: Data collection and Storage, Data
visualization, andML Algorithms, describing the functionality developed during this project
to meet the requirements set for this part of the system as an outcome of the different
phases of the Participatory Design methodology.

4.2 Data collection and storage
Similar to how the end device designed during this PhD went through multiple iterations
and Participatory Design, the data collection and storage system was designed using
the same principle. The system underwent three revisions, which are discussed in this
section. The primary aim behind developing such a system was to be able to store the
incoming ECG and HR data from the end device.
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Figure 4.1: system Overview Prototype1

4.2.1 Data Collection and Storage System: prototype 1
In this section, we will go over the initial design of the EndtoEnd (E2E) architecture
of the prototype data collection and storage system. From the beginning of the project,
the ambition has been to send the collected heart data to a remote server for analysis by
medical professionals. Step one in achieving this goal was to create a digital infrastructure
that can accept the incoming data from the end device, store it, process it, and visualize
it.

Figure 4.1 shows the E2E architecture used to develop the first data collection and visu
alization system prototype. As can be seen from the figure, the data from the Movesense
ECG and HR monitor was sent to the end device. The data was packaged in the device
and encapsulated in the UDP packet, and sent to the server using LTEM. The after the
data enters the Mobile Network Operators (MNO) network, it is forwarded to the online
server hosted in Frankfurt, Germany. A script runs at the server that accepts the incoming
data and stores it in the InfluxDB database. ECG and HR, are measured in reference to
the time. Therefore it was essential to find a database that can handle time series data
and make it available for realtime consumption. InfulxDB is an opensource time series
database. InfluxDB can help in time stamping the data as soon as it is being inserted
into the database and make the data available for realtime consumption [59]. InfluxDB is
widely used in the IoT environment to store sensor data, performance monitoring data,
etc. InfluxDB also provides different techniques to handle high volumes of data by allow
ing better data compression, faster queries, and scalability [65].

Once the data was inserted into the database, it was fetched by Grafana. Grafana is
also an opensource data visualization and monitoring platform. Grafana supports builtin
integration with the InfluxDB database. This allowed for a much faster integration between
the data storage and visualization [66].

Figure 4.2 shows the ECG graph being printed in realtime. As can be noticed from the
graph, the different peaks of the plot are not synchronized. This was because Grafana
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Figure 4.2: ECG visualisation using Grafana

Figure 4.3: System overview prototype 2

prints the data according to the timestamp found in the InfluxDB database. This timestamp
is inserted automatically by the database when the decoded ECG and HR data is inserted
into the table. The heart data was sent to the server using the data structure described
in Figure 3.15. The data measurement was performed by sampling the heart activity 128
times for 1 second and sent to the server. There was always an error introduced in storing
data with just one timestamp. To an extent, this was solved by artificially adding delays
while saving every measurement to the database. Another timing error was introduced
because the server’s data arrival rate was not constant. This meant that no two packets
were arriving at the same time. This can be seen from the ECG plot that the distance
between two consecutive R peaks is not constant.

4.2.2 Data Collection and Storage System: prototype 2
This section goes over the second version of the data collection and storage system.

Figure 4.3 shows the overview of prototype 2. There are the following changes made to
the system:

• The system uses a new and improved end device prototype with the Printed Circuit
Board (PCB) designed at DTU.
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• The system uses PostgreSQL as the database instead of using InfluxDB [67]. This
was mainly to accommodate the changes in the backend architecture.

• Development of entirely new frontend data visualization webUI hosted on heartrater.live
domain. The server was hosted on a remote server in Frankfurt, Germany.

The data flow in the case of the system overview described in Figure 4.3 is very similar
to that of in the case of 4.1. The data from the Movesense ECG and HR monitor is
sent to the new end device prototype, where the data is encapsulated into a UDP packet
and sent to the server using LTEM. Once the data reaches the server, it is stored in the
PostgreSQL database. PostgreSQL is a relational database management system that
is robust, compatible with SQL standards, and scalable [67]. The move from InfluxDB to
PostgreSQLwas primarily done tomake the systemmore generic. In the case of influxDB,
the data structure wasmore rigid and used only one object containing all themeasurement
types. Since the project was in the research stage, adding and removing data types from
the table format would have made it more difficult and timeconsuming. In other words, it
would have made it difficult to add/remove columns from the tables stored in the database
as the data structure kept on evolving throughout the duration of this project.

Figure 4.4 shows the software architecture of the deployed solution. As can be seen from
the figure, the architecture is divided into three main categories Database, Backend, and
Frontend. The primary reason for dividing the solution into multiple parts was to make it
as generic as possible. This division allows for easy extension of the existing deployed
solution and swapping different components to a different technology.

• Database: As it can be seen from the figure 4.4 the database used in this proto
type is PostgrSQL. The database consists of three tables patient_data_1, ecg, and
thresholds. Figure 4.5 shows the new data structure used in tables patient_data_1.
The daily measurements from the patients are stored in tables patient_data_1. The
realtime heart data sent by the prototype end device is stored in the ecg table. The
data stored in the threshold table sets the threshold values for different measure
ment types stored in table patient_data_1. As the name suggests, the values from
this table are stored to highlight the different thresholds by the medical professionals
for each patient ID.

• Backend: The system’s backend is divided into three components: Repositories,
Models, and Controllers.

– Repositories: Java API repositories are used for queering the data from the
PostgreSQL database. Repositories allow controllers to access data from the
database in the format defined in the data models.

– Model: The model layer consists of the definition of objects and their structure
that the controller uses to map the data and repositories to query the data. The
model’s definition must match the table format containing the data.

– Controllers: The primary purpose of the controller is to expose the APIs which
can be used by different web applications to query the data. These APIs are
used by the front end of this web application.

• Forntend: The primary objective of the frontend is to visualize the data exposed
by the different APIs in the backend. The frontend has two data services mea
surement data service and frontend data service. Both of these data services send
Hypertext Transfer Protocol (HTTP) requests using Axios and node.js [69, 70]. Data
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Figure 4.4: System Architecture V1 [68]
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Figure 4.5: Measurements with Mocked with new data structure (based on [68]

requested by these data services is then displayed in the Graphical User Interface
(GUI) described in section 4.3

4.2.3 Data Collection and Storage System: prototype 3
The third prototype of the Data Collection and Storage system further added new func
tionality for collecting the data from other sensors used in the project, such as pedome
ters and sleep sensors. This implementation was done in collaboration with Aalborg Uni
versity, where the data from Fitbit and Emfit was stored. This data was fetched by the
heartrater.live system periodically using REST APIs provided by Aalborg University. Fol
lowing are the new capabilities added in this version of the system prototype:

• The entire heartrater system was moved from the data center in Frankfurt, Ger
many, to a server infrastructure created for this project at DTU. The server where
the system is hosted is shown in figure 4.6.

• Adding the ability to get onceaday data like, step count, sleep data, etc., from the
Aalborg University database.

• Adding the ability for individual patients to view the data generated by them in a mo
bile app. This feature was added based on the feedback received from the medical
professionals for this project.

• Ability to classify the incoming ECG in realtime to detect abnormalities in the mea
surements and raise a flag on the heartrater.live web portal.

Figure 4.7 shows further improvements to the system’s software architecture. Following
are the new features added since System Architecture V1.

• In the database, a few more tables were added, mainly ecg_float and ml_output.
ecg_float table, as the name suggests, was added to store the floating value of
the incoming ECG data. This was done due to inconsistent data plotting of the
continuous ECG data from the prototype end device. Similarly, the ml_output table
was used for storing the output from the classification model developed to detect
the abnormal ECG data.

• This system architecture also added the capability of fetching the real measurement
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Figure 4.6: DTU Server Hosting Environment

values from an external server hosted at Aalborg University. This mainly included
fetching real data generated using different sensors such as Fitbit, Emfit sleep sen
sor, blood pressure, etc.

• Addition of new functionality also needed modification and improvements to the
Backend. New repositories, data models, and controllers were added to handle
new data points.

• Improvements to the GUI of the system. e.g., improvements to the headers, the
ability to delete thresholds, etc.

Figure 4.8 shows the overview of the entire system. The main feature developed during
this system version was the ability to classify the incoming ECG data using a ML model
developed on the incoming ECG data from a healthy person. Development of this clas
sification ML model is described in brief in section 4.4. The incoming data was stored in
the PostgreSQL database and fed to the ML model simultaneously. The ML model was
designed to classify the ECG data and to give a binary output of 0 or 1. This output from
the ML model was then stored in the ml_output database; from there, it was displayed on
the system’s Frontend.

Another functionality added in this prototype version was the ability to consume the data
stored on the server and database through an Android App. The design of the Android
app is described in section 4.3. The app was mainly designed to be used by individual
patients. The app and the prototype end device implemented a unique fallback feature,
allowing us to establish a Fallback Bluetooth Low Energy (BLE) link. The purpose of
this link was to create a functionality to store data on the Android app when the primary
method of data communication was unavailable. Once the prototype end device detected
no signal on the LTEM network, it could send a message to the Android app saying it
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can directly connect with the Movesence ECG and HR monitor to avoid data loss. An
additional API was created, which was designed to accept the data directly from a 3rd
party application to add the data to the system.

4.3 Data visualisation
This section of the thesis describes the different visualization interfaces deployed during
this project. The overall idea behind the project was to develop a continuous ECG and HR
monitoring system that can be used for continuous monitoring patients with Cardiovascu
lar Disease (CVD) from a distance and to view the results using web portals. The idea
behind designing a web portal is to provide a holistic picture of a patient’s health condition
to a medical professional. This meant that a portal was designed to be used for accessing
the data from onceaday measurements, realtime ECG data, and HR. While discussing
with CVD patients and the medical professionals, it was discovered that it could be ben
eficial to develop two visualization systems. One is where the medical professionals can
view data from all the patients using the web portal system, and the second is where
the patients being monitored can look at their own data. It was then decided to build an
Android application to fetch the data stored on the heartrater backend using the devel
oped REST APIs. The decision to develop an Android app was taken later in the project’s
development based on the medical professional’s feedback, especially around improving
the Quality of Life (QoL) of the CVD patients.

Therefore, the project focused on developing two visualization tools a web portal for med
ical professionals to monitor multiple patients using the system and an Android app for
individual patients to monitor their own progress. Both tools were developed in collabo
ration with student projects at the Technical University of Denmark (DTU).

1. Development of API and User Interface (UI) for Visualization of Heart Sensor Data
[68].

2. Remote monitoring of heart patients using 5G & IoT [58]

The web portal (heartrater.live) and the android app (eMed) were validated by conduct
ing tests with several fellow students, performing social surveys, receiving feedback from
summer schools, and feedback from medical doctors, medical technicians, and profes
sors in the healthcare domain.

The section is divided into two parts, an overview of the web portal (heartrater.live) and
an overview of the Android app (eMed). The development of both visualization tools is
described in detail in the student projects

4.3.1 Web Portal: Heartrater.live
Based on the outcome of Packet Drop, it was decided to have the measurements divided
into two categories. The first category was the onceaday measurements such as step
count, sleep, blood pressure, etc., and the second category was the continuous HR &
ECG. The onceaday measurements were finalized at the end of the project. Therefore
the project kept using the existing data points identified from the Future Patient Telereha
bilitation (FPT) project [6].
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Figure 4.9: Heartrater.live Login page [68]

Figure 4.10: Heartrater.live daily measurements page [68]

Figure 4.9 shows the login page for the web portal haertrater.live. Similarly, Figure 4.10
shows the page with daily measurements. In this version of heartrater.live web portal, the
daily measurements included blood pressure, steps, and sleep values.

Figure 4.11 shows the page where the medical professionals can set the threshold values
for each daily measurement. These values are dynamic and unique per patient. These
values were also deletable in the last prototype of the web portal.

4.12 shows the ECG data monitoring page. This page shows the realtime ECG, HR,
and ML output. On this page, there is also an added functionality of switching between
a patient’s live and recorded ECG. The thought behind having this toggle button was to
build a functionality where an ML model can already carve out an irregular patterns of
ECG for medical professionals to be examined later. Another feature which was added
at the bottom of the page was the ability to pause the ECG graph, this feature was added
after receiving feedback from the medical professionals about how they read the ECG
patterns.
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Figure 4.11: Hearrater.live Threshold Page [68]

Figure 4.12: Heartrater.live live monitoring page [68]
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4.3.2 Android app eMed
The Android app eMed was developed for individual patients to view their health data,
including onceaday measurements and the realtime ECG and Heartrate data. The app
was developed using the existing REST APIs developed in section 4.2. The app added
the functionality to connect directly to the Movesense ECG and HR monitor using BLE.
The primary reason for developing such functionality was to ensure the app can continue
monitoring the heart if the cellular connection using LTEM drops out.

Figure 4.13 shows the different pages designed during the development of the Android
app. Figure 4.13 (a) is presented when the app is starting up for the first. In this case, the
app is performing a sync with the heartrater.live backend and fetching new and updated
information about the daily measurement of the patient. Figure 4.13 (b) presents the
choice between doing local monitoring using the Movesense ECG and HR monitor or
monitoring through the REST APIs. When the REST APIs are used, graph data shown in
Figure 4.13 (c) is delayed a little. This was done to buffer a few packets, which allows for
a smoother viewing experience and helps compensate for the network delays caused by
LTEM. Final figure 4.13 (d) shows the average data of onceaday measurement values.

4.4 Machine Learning (ML) Algorithms
One of the critical aspects of developing a continuous ECG and HR monitoring system for
CVD patients was to develop an instantaneous feedback system. There was no use in
using the system to record the activity of the patients in realtime if there was no realtime
monitoring being conducted. Therefore, from the beginning of the project, the ambition
was to record the patient activity and monitor it with the help of Machine Learning (ML) to
detect abnormalities in the incoming ECG data.

In the initial discussions with the medical professionals, several tasks were identified
where using a trained ML model made sense. The identified activities were as follows:

• Predict the onceaday measurements from the patients. i.e., steps, sleep, weight,
etc., to apply to generate early warnings of worsening health conditions based on
the observed trends.

• Predict the patient’s heart activity a few seconds in advance to detect early signs of
HF.

• To classify incoming onceaday measurements for signals of health deterioration.

• To classify the incoming ECG signal into normal and abnormal heart activity.

An ML model’s performance depends on the data quality available for training the model.
Having access to good quality data may lead to improved accuracy, generalizability, re
liability, etc., of the trained model. During this PhD project, accessing real onceaday
measurement data generated by actual patients was difficult due to privacy and General
Data Protection Regulation (GDPR) restrictions in handling the health data. Although
the onceaday measurements were begging recorded during the project, the data only
contained measurements from one person. At the time of developing the ML model, the
measurements were only conducted for 120 days. Therefore, it was decided to continue
only with the ECG signal classification model for the time being, where there was a possi
bility of generating sufficient data, and also try to use the opensource datasets available
on the internet.

Evaluation of Cellular IoT Technologies for Critical Applications 51



Figure
4.13:O

verview
ofeM

ed
Android

Application
[58]

52 Evaluation of Cellular IoT Technologies for Critical Applications



In this project we are dealing with a time series data, i.e. the ECG is recorded continuously
over time and the data is in sequence. Therefore, there are several ML that can be used
to classify the time series data. Some algorithms that are suited for time series data
classification are:

• Long ShortTerm Memory (LSTM) Networks

• Convolutional Neural Networks (CNN)

• kNearest Neighbors (KNN)

• Random Forest (RF) etc.

Mohamed et al. [71] investigated use of Support Vector Machine (SVM), KNN, CNN,
and RF in designing automatic classification system for improved detection of minority
arrhythmical classes. Ali et al. [72] evaluates the performance of different ML such LSTM,
CNN, Deep Neural Network (DNN), etc. Yang et al. [73] have demonstrated benefits
of cross domain transfer of EEG to EEG or EEG to ECG to improve the classification
performance of CNN at the same itme reducing the training time required to fully train the
model. Malak et al. [74] uses KNN and RF to detect abnormalities in the ECG signal,
the study resulted in showing RF is slightly better than that of KNN. Elena et al. [75]
designs a patient specific CNN model to classify ECG from a single led sensor for long
term monitoring of patients. Deena et al. [76] highlights that accuracy of CNN is much
higher in comparison with KNN, RF, and logical regression in classifying time series data
from colorimetric sensor. They also discovered that RF and KNN have performed good in
classifying sensor data whereas CNN and LSTM have shown much better performance in
classifying time series data. Therefore based on these findings, we decided to compare
performance of CNN, KNN, and RF while classifying the continuous ECG send by the end
device using Movesense ECG and HR monitor. The following section briefly explains the
three algorithms used for developing the final ML model.

• Convolutional Neural Networks (CNN): CNNs are a feedforward artificial neural
network with primary applications in analyzing visual data. CNNs are very success
ful in tasks involving image classification, image recognition, and object detection.
CNN can be trained by supervised as well as unsupervised training methods. The
convolution layer is one of the key components used in constructing the CNN. This
layer is mainly used for detecting patterns in an image, such as edges, shapes, etc.
CNN also consists of Max Pooling Layers, the primary function of this layer is to
reduce the spatial dimensions of the features while preserving the important fea
tures of the data. The reduced dimension also reduces the parameter needed to be
learned by the CNN. Pooling layers also contribute in making the CNN more robust
to the changes in the feature locations in the input images [77, 78].

• kNearest Neighbors (KNN)r: KNN or the Knearest neighbor is another commonly
used algorithm in classification scenarios. In KNN, in any given training data set,
the algorithm assigns the value in the sample data set to the class of values defined
by the class of Knearest neighbors. In other words, KNN looks at the K nearest
neighbors to determine (classify) the sample data value. The choice of the K value
is crucial in KNN. If the K value is too low, the model can be susceptible to the
local variations of the training data. On the other hand, if the value of K is too low,
then the model performance may be smoother but can overlook the fine details and
patterns in the training data set. The KNN model can be described in two phases.
First is the training phase, where the algorithm will try to label the features of the
training data set. The second phase is where the prediction takes place, where the
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Figure 4.14: CNN classification performance of MITBIH arrhythmia aata Set [78]

Euclidean distance between the sample data is calculated, the K nearest neighbors
are selected, and sample data is labeled according to themajority class. KNN shines
in nonlinear complex data distribution but suffers in high dimensional data sets [77,
78].

• Random Forest (RF): RF is another popular algorithm used in ML used for data
classification and regression. The RF algorithm is based on a decision tree structure
where each node corresponds to features, each branch corresponds to a possible
outcome, and each leaf corresponds to a classified label and regression value. The
RF algorithm is constructed of multiple unrelated and random decision trees. The
RF algorithm can be divided into three main phases. The first phase is the train
ing phase, where multiple decision trees are constructed using a random subset of
training data as well as a random feature subset. In the second phase, a random
feature set is selected for splitting at each node of every decision tree. The random
ness in the feature selection ensures the diversity of features being selected across
the forest. The final phase is the classification phase, where all the decision trees in
the random forest algorithm vote on the label of the class. The label with the highest
votes is chosen as the final classification output. RF is less prone to overfitting, and
works well with data sets with missing data as well as high dimensional data. RF
could be very computationally heavy and struggles to find meaningful patterns in a
noisy data set [77, 78].

The development of the ML model was divided into two phases.

• Phase 1: To select the best performing ML algorithm, which was trained using open
source databases on the internet.

• Phase 2: To adapt the model to the taring data generated by the Movesense ECG
and HR monitor.

The first data set used for training the ML model is the MITBIH arrhythmia data set [79].
The data set consists of normal ECG signals and signals from cases affected by differ
ent heart arrhythmia conditions. The performance of CNN, KNN, and RF algorithms is
discussed in the following section.

Implementation of Convolutional Neural Networks (CNN)

After several iterations, the final CNN developed was constructed using 8 convolutional
layers and 2 dense layers with several maxpooling and dropout layers in between.

Figure 4.14 shows the performance of the CNN on the MITBIH data set. The CNN was
able to achieve an accuracy of 98.21% after 250 epochs. One epochs is defined that the
entire dataset has passed through the learning algorithm once during the taring phase.
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Figure 4.15: KNN classification performance of MITBIH arrhythmia data Set [78]

Figure 4.16: RF classification performance of MITBIH arrhythmia data Set [78]

Exposing the ML algorithm to the same dataset multiple time allows the model to learn
different features of the dataset. As can be observed from the graph, during the first 100
epochs, the validation accuracy is more unstable. After approximately 150 epochs, the
validation accuracy improves very slightly after each iteration of the gradient descent.
Gradient decent is used for optimising of different weights used by the training algorithm.
The idea is to find the optimal values for each of the weights so that the overall accuracy
of the model increases.

Implementation of kNearest Neighbors (KNN)

Figure 4.15 shows the classification accuracy performance of the KNN on the MITBIH
data set. The selected range of K is between 1 and 1o. As can be observed, the KNN
algorithm has achieved the highest rate of 96% accuracy at K=3. The accuracy of the
KNN rises until K=3, then drops as the value of K increases to 10.

Implementation of Random Forest (RF)

Figure 4.16 shows the classification accuracy performance of the RF algorithm on theMIT
BIH data set. The algorithm was set to evaluate the performance over the depth of the
decision tree between 10 and 100. As can be observed from the accuracy performance,
the accuracy of the RF is the highest at 96.16% at tree depth level 40.
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Algorithm % Accuracy Training Time (S)
RF 96.16% 614.4
CNN 98.21% 495.6
KNN 96% 289.1

Table 4.1: ML models performance comparison (based on: [78])

Figure 4.17: CNN classification performance of custom dataset [78]

Table 4.1 shows the classification accuracy outcome and training time comparison be
tween RF, CNN, and KNN algorithms. As the number indicates, the CNN model has the
highest classification accuracy than RF and KNN. Therefore, CNN was chosen as the
preferred algorithm to be used in the deployed ML model.

After choosing the ML algorithm, it was time to train the CNN on the data generated by
the Movesense ECG and HR monitor and the prototype device. In this case, the idea was
to record the ECG of the people involved in this project. Therefore a data set of the ECG
measurement was created by performing measurements on three volunteers. The total
number of ECG measurements recorded was 20000 samples. When the data was first
analyzed, it was evident that almost all the measurements were without any heart issues.
This would have been a big challenge since the trained model would have been biased in
its performance. Therefore, it was decided to develop a hybrid data set comprising 20000
entries, 10000 from the good ECG sample, and 10000 from abnormal cases fromMITBIH
and PTBXL datasets. PTBXL, is a large publicly available 12led ECG dataset consisting
of various 10 second long ECG recordings from 18885 patients cardiac arrhythmias and
heart conditions [80]. This meant that the final data set combined 50% good data and
50% of abnormal data.

Figure 4.17 shows the training and performance accuracy graph of the CNN model as it
can be observed from the graph the 99.37%, which is really good. For the first 50 epochs,
the accuracy fluctuates, but after that, it stabilizes, and there is very little difference be
tween training and validation accuracy.

To test the versatility of the developed CNN network, it was decided to test the perfor
mance of this network against the PTBXL data set. PTBXL data set contains 6528
samples of 12LED ECG signal containing normal and abnormal data samples. For the
taring of the CNN network, two data classes were chosen from the data set normal sam
ples and samples with atrial fibrillation. This reduced the sample size for training from
6528 to 3587 samples.

Figure 4.18 shows the training and validation accuracy of the CNN network on the 12LED
ECG signal data set. As can be seen from the graph, the performance accuracy of the

56 Evaluation of Cellular IoT Technologies for Critical Applications



Figure 4.18: CNN classification performance of PBTXL dataset [78]

Data Set % Accuracy Training Time (S)
MITBIH 98.21% 496.6
Custom 99.42% 488.2
PTBXL 88.86% 176.6

Table 4.2: CNN models performance comparison (based on: [78])

CNN network is worse than the previous two data sets, with just 87.75%. The reason for
this could be the low sample size of the data to train the network.

Table 4.2 shows the performance comparison of the CNN network when trained on three
different data sets. As seen from the table, the performance of CNN in the custom data set
is the highest. Therefore, to put the CNN for further testing, it was decided to make one
last test with a completely different data set. The hypothesis here was that the custom
data set used during the training of CNN was balanced, meaning the division between
the normal and abnormal signals was 5050. This balanced distribution is very unlikely to
occur in a realworld scenario. Therefore, to replicate a realistic scenario, a new data set
was created with 4000 abnormal signals and 10000 normal signals. This data set was
not used for training the CNN but was used for just validation of the CNN. The accuracy
of the CNN network for this new data set was recorded at 99.04%. This accuracy is very
high but is a result of not having true abnormal data being recorded by the prototype end
device. Therefore, to further improve the performance of the CNN network, gathering real
ECG data from CVD patients and training the CNN model once again is essential.

4.5 Feedback from Clinical side
In this chapter, there were three different parts on which the feedback was collected. The
feedback for the web portal, Android app, and ML Algorithm is described below:

WebPortal: heartrater.live

The overall feedback around the usability of the web portal was very positive. The de
signed portal was found to be very simple to use and navigate, and all the relevant infor
mation was easily accessible or could be found without much effort. The overall design
of the web portal was found intuitive to navigate, well designed, and included relevant
features.

It was also highlighted that the functionality offered by the portal was fundamental, but if it
was included as a part of a complete system, it made sense. The presentation of realtime
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moving ECG was found cool, but it was pointed out that the ECG diagnosis is done on
a still frame of ECG. This led to the addition of a pause button on the ECG portal which
added the functionality of pausing the moving realtime ECG graph.

Android app: eMed

The Android app eMed was evaluated by performing a Heuristic Evaluation in which the
usability of the user interface is measured by using the rule of thumb. Another tool used
for testing the usability was using the protocol ThinkAloud, where data is gathered from
the number of participants by asking a series of questions while using the prototype.

The overall feedback given for the app was good, and has the potential to serve as an
MVP. Some of the feedback includes ease of use, a minimalist design, and intuitive navi
gation is present. Some drawbacks of the desired app include a need for a startup guide,
error prevention, and error messages. The app has some unnecessary features, such as
the total number of steps in a year. This information is relatively useless for the end user.

Machine Learning Algorithm:

Even though the ML algorithm can identify the abnormal ECG pattern from the regular
ECG pattern, it still lacks the functionality to detect and identify between different CVD.
In future versions of the ML models, it is very critical to use a rich dataset where different
ECG patterns are recorded.
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The chapter Network Tests focuses on performing an experimental evaluation of the Cel
lular Internet of Things (CIoT) technologies in different physical environments under dif
ferent radio conditions. The experiments are designed to calculate the network Key Per
formance Indicator (KPI), such as EndtoEnd (E2E) latency, bitrate, and Packet Drop
(PD). The rest of the chapter is divided into describing the experimental test setup and
the results from CIoT KPI testing in indoor, deep indoor, outdoor, deepoutdoor, and in
roaming network conditions. Furthermore, the chapter includes evaluating the capacity
and the network KPIs of a single eNB to support several simultaneous IoT devices. The
chapter also includes performing tests to calculate the energy consumption of two CIoT
communication modules by sending TCP and UPD packets to a remote server. Finally,
the chapter includes tests conducted to explore the use of CIoT in applications involving
continuous monitoring of patients under emergency transportation.

5.1 CIoT test setup and Network KPI
5.1.1 Related Work:
There have been a number studies where authors have tired to evaluate the simulated as
well as experimental performance of coverage, capacity, Quality of Service (QoS) offered
by CIoT technologies. Radheshyam et al. [81] experimentally shows that in case of NB
IoT the cell boundary is 800 meters, before the end device connects to another eNB to
send data. Samir et al. [82] performance a simulation study where the LTEM network per
formance is thoroughly evaluated for Machine Type Communication (MTC) devices and
highlighed that the LTEM technology is not ready yet to satisfy QoS the requirements of
future IoT applications. Hassan et al. [83] performed coverage analysis of NBIoT within
700 meters radius from the eNB to evaluate the coverage in outdoor, indoor, and under
ground locations. The tests results reveled that NBIoT can provide connectivity to de
vices up to 400 meters underground. Shankar et al. [84] evaluates the QoS performance
of commercially deployed NBIoT networks in Belgium using Ublox SaRaN211 module.
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Based on the obtained results, they managed to achieve 17 Kbps maximum bitrate, less
than 5 seconds of latency in both DL and UL communication. Massimo et al. [85] per
formance a comparison study of LoRaWAN and NBIoT involving energy efficiency, QoS,
and coverage for an industrial application. In their findings they discovered that NBIoT
energy consumption is 10X higher than that of LoRaWAN, at the same time NBIoT is
much more reliable and provides highest QoS. Ahmed et al. [86] evalualtes performance
of NBIoT under different deployment modes and found that NBIoT performs the best in
guard band deployment in singletone configuration. Krzysztof et al. [87] experimentally
evaluates the signal strength and quality of NBIoT and compares it’s performance with
LoRaWAN in marine environment. The results show that NBIoT signal penetration is
higher than that of LoRaWAN. Sebastian et al. [88] provides a performance comparison
between LPWAN and CIoT networks. The tests revels that CIoT has lowest observed
packet drop, latency, and range than that of other LPWAN technologies. Andre et al. [89]
highlights the difference between modeled and experimental battery life estimations for
NBIoT and LTEM and show that the battery life performance of devices using LTEM
and NBIoT can reach upto 10 years as highlighted by 3GPP by optimising application
specific and network specific parameters. Sebastian et al. [90] performance emulated
as well as experimental measurements of NBIoT networks. The performance study in
cludes coverage, latency, and protocol consistency. The tests were performed on two
MNO Vodafone and TMobile. The average throughput in DL direction was lower than UL
direction, and the average RTT recorded was 878.94 ms & 1055,67 ms for Vodafone &
TMobile respectively.

Although the existing research gives a good starting point in understanding the perfor
mance of CIoT networks, most of the studies include using either simulations, use of
only one MNO, or only one test environment, or just using one of the CIoT technology.
Therefore, in order to understand the true nature of these technology in a physical hetero
geneous network deployment it was decided to conduct a through experiemtnal evalua
tion of both NBIoT and LTEM during this project. The purpose behind testing the CIoT
networks was to identify the performance of NBIoT and LTEM in a realistic deployment
scenario for continuous monitoring applications. Therefore, it was decided to test both
NBIoT and LTEM from an E2E perspective in different deployment scenarios. The end
goal was to generate some network performance KPI, which can be used to benchmark
the behavior of these technologies across different applications. In order to keep the test
setup and the tests as generic as possible, standard offtheshelf components were used.
The tests evaluated generic network KPI such as latency, bitrate, and PD in various radio
conditions. Different MNO networks can have varying E2E network performances; there
fore, all the tests were conducted using Denmark’s two main radio network operators.
Both of these operators, at the time of testing, had nationwide NBIoT and LTEM cover
age. The CIoT device, test setup architecture, and critical KPI for the tests are defined
below:

Test End Device:

Figure 5.1 shows the overview of the test device used for carrying out all the network
KPI tests. In order to keep the results obtained as generic as possible, it was decided to
use a commercially available offtheshelf CIoT device. PYCOM FIPY is a commercially
available test device that was updated to the latest firmware when testing the network KPI
[91]. PYCOM FIPY device was chosen for the following reasons:

1. PYCOM FIPY supports both the CIoT technologies (LTEM and NBIoT), which
makes it easier to test both technologies using the same hardware. This meant that
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Figure 5.1: Test EndDevice

it was safe to assume that the obtained results would only differ because of changes
in the network. During the tests, it was also ensured that the same device and it’s
peripheral components were used to perform all the tests (i.e. one device for one
CIoT technology and one MNO). This helped us assume even fewer variations in
the end results caused by the hardware.

2. The board’s design is very compact, making it possible to test multiple MNO and
CIoT technologies from the exact location simultaneously. This was especially im
portant because cell loading and availability of the network resources could affect
the calculation of the KPI making the test results less comparable.

3. PYCOM FIPY also supported using a MicroSD card to store all the results locally
on the device. This made it possible to conduct tests without requiring additional
computers during the tests.

Test Network Architecture

Figure 5.2 shows the complete E2E test network architecture. All the test scenarios use
the same architecture to conduct the KPI tests. Once powered, the device is connected
to Operator One (OP1) or Operator Two (OP2). The choice of the operator is defined
in the setup sequence of the firmware flashed onto the device at the beginning of the
test. Depending upon if it is an NBIoT or LTEM network test, the test device connects
to the appropriate Radio Access Technology (RAT). Once connected, the device sends
UDP packets of different payload sizes to the application server. In order to keep the
network architecture generic, the application server is hosted on a cloud service provider’s
data center located in Frankfurt, Germany, which is approximately 850km to 900km away,
depending on the test locations. This architecture allows data to be sent over the public
internet, where it is assumed that all the traffic is handled in a besteffort manner, and it
can also be safe to assume there are no particular priorities assigned to traffic coming
from different MNO.

Network KPI calculations

Figure 5.3 describes the overall setup procedure and highlights how the network KPI
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Figure 5.2: Test Network Architecture

were calculated. Once the device boots up, based on the choice of operator and the
technology to be tested, follows the setup procedure. The operator and the technology
choice are defined in the network attach parameters in the firmware. Once the device is
connected to the network, it requests the Packet Data Protocol (PDP) context using the
appropriate Access Point Name (APN). In order to keep the setup as generic as possible,
both device requests for generic public APNs allowed by the two MNO. This ensures that
the traffic sent using both these devices follows the default network settings applied by
the MNO. Once the IP address is allocated to the device, the device opens a UDP socket
and sends data to the application server. Once the data is sent, the device waits for the
acknowledgment packet to arrive from the server. The network KPI are calculated using
the following logic:

• Latency: When the device sends the UL UDP packet, it keeps an entry of the times
tamp at which the UL packet was sent. When the application server receives this
packet, it sends a DL acknowledgment packet to the device. Once this packet ar
rives at the device, it takes the arrival timestamp of this packet. Once the device has
both sent and arrival timestamps, the device subtracts these two values to calculate
the E2E latency experienced by the packet.

• Bitrate: Similar to the end device, the server also keeps an arrival rate between the
two consecutive incoming packets from the same end device and calculates bitrate
in Kilobits per Second (Kbps).

• Packet Drop (PD): During these UL and DL packets, if for some reason the DL
packet does not reach the test device because either the UL packet did not reach the
server or the DL acknowledgment packet was dropped. The end device considers
the packet to be dropped after a predefined timeout in the firmware.

62 Evaluation of Cellular IoT Technologies for Critical Applications



Acknowledgement
3

Acknowledgement
1 

Data Packet
1

Data Packet
2

Acknowledgement
2

Data Packet
3

Data Packet
3

End-Device Server

BitrateLatency

Packet 
Drop

Figure 5.3: Experimental Setup and KPI calculation

Network Operators 

Operator 1 Operator 2

NB-IoT

DTU Tunnels

LTE-M

DTU Campus DTU Buildings Forest

NB-IoT LTE-M

Selected Environments For Test

Figure 5.4: Network KPI Test Scenarios

Evaluation of Cellular IoT Technologies for Critical Applications 63



5.2 Network tests
The network KPI testing involved simultaneously testing both Operators 1&2 in the same
environment using both NBIoT and LTEMM RATs. This was especially important due
to the dynamic nature of cellular communication technologies and the effects of network
traffic patterns across 24 hours. Figure 5.4 shows the different network KPI test scenarios.

The network KPI test scenarios where the tests are performed were identified based on
the active dialog with themedical professionals, clinical researchers and the CVD patients.
The whole idea behind designing such a remote heart monitoring system was to monitor
the patients’ activity no matter where they go. Therefore, the requirements were narrowed
down to four different environments and then further translated into realistic scenarios that
closely resemble the challenges presented by each of these environments. The four test
environments were indoor, deep indoor, outdoors, and remote outdoors.

The first test environment chosen was performing tests indoors. This could mean test
ing the network KPI when the patient wearing the device can be monitored in a confined
space, e.g., a house, hospital, rehabilitation center, etc. Therefore, a regular Technical
University of Denmark (DTU) office building was chosen to resemble such an environ
ment.

The second test environment chosen to perform KPI testing was deep indoor. This could
mean testing the network performance in environments such as house basements, park
ing places, etc. Therefore, to closely resemble such an environment underground tunnel
system at the DTU was chosen. The underground tunnel system of DTU covers the
entire university campus, and a part of this tunnel system was chosen to perform the ex
periments. The route was explicitly designed to start away from the eNB on campus and
walk towards it; in other words, the device goes from an inferior coverage area to a better
one.

The next tests were conducted in an outdoor environment. This could mean performing
the network KPI testing on streets, parks, etc. It was decided to use different streets
around the campus to carry out the tests. In order to keep the deep indoor and outdoor
tests more relatable, it was decided to perform the outdoor tests following the same path
as the deep indoor tests.

The final test environment chosen for network KPI testing was remote outdoor. This en
vironment was supposed to capture network KPI performance in hiking trails, walking
paths in the forest, etc. This was especially interesting given that most CVD patients
are instructed to carry out outdoor exercises during the rehabilitation period. The closest
environment where we could resemble such an environment was at Rude Skov (Rude
Forest), which has several walking trails and is about 10km north of the university [92].

5.2.1 Indoor Test Scenario
In this section, the different tests intend to emulate the indoor environment in which the
device could be used. Therefore, an office phasing the direction of the oncampus CIoT
eNB was chosen to replicate the scenario. The idea was to use the PYCOM FIPY test
device to send UDP packets to the application server hosted online. The packets were
sent using different payload sizes 128 Bytes, 256 Bytes, 512 Bytes, and 1024 Bytes. The
tests followed the same experimental setup described in figure 5.3. The tests were kept
running without any interruption for a total duration of five days prior to the Christmas

64 Evaluation of Cellular IoT Technologies for Critical Applications



Considered Base Station

Building 343

Test Devices

Figure 5.5: Indoor test location

holidays. The timeline was chosen under the assumption that there will be less activity on
the campus and the tests will not be affected due to extreme traffic patterns experienced
by the mobile networks. However, unfortunately, the LTEM tests failed twice during this
period, and NBIoT failed once, and the experiment needed to be restarted.

Table 5.1 describes the different test attempts and the number of packets sent in each
attempt. The primary reason to have these tests run over multiple days was to try to
evaluate the E2E performance of the CIoT over an extended period and to check whether
the performance varies during the peak vs. nonpeak traffic hours experienced by the C
IoT cells.

Test
attempts

No. of packets
OP1 LTEM

No. of packets
OP1 NBIoT

No. of packets
OP2 LTEM

No. of packets
OP2 NBIoT

1 20104 3504 20004 7580
2 51100 101912 50004 53204
3 100300 NA 100104 NA

Table 5.1: Indoor test attempts

Figure 5.6 shows the LTEM E2E latency and bitrate calculated over 171504 packets.
In this case, the box plots are drawn over the raw data recorded by the device and the
application server. Figure 5.6a shows the box plot for E2E latency observed by OP1
while performing the KPI testing using varying payload sizes. As can be observed from
the plots, the median E2E latency value across all the payload sizes is very similar. The
highest latency experienced during OP1 LTEM KPI testing was 13.075 Seconds where,
as the minimum latency observed by OP1 during the tests was 35.65 mSec.

Figure 5.6b shows the bitrate calculated during the same test across all the payload sizes.
As can be seen from the graph, the recorded bitrate of the OP1 LTEM network goes
on increasing as the payload of the packet increases. This is an expected behavior, as
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Figure 5.6: OP1 LTEM KPI in indoor environment

the increase in payload meant more bits/second received at the application server. The
highest bitrate recorded for the OP1 LTEM network during the testing was 55.652 Kbps,
whereas the lowest bitrate recorded during the test was 0.02 Kbps.

Figure 5.7 shows the OP2 LTEM E2E latency and bitrate performance results. This
performance was calculated over 170112 packets of varying payload. Figure 5.7a shows
the box plot results for calculated E2E latency over different packet sizes. It can be seen
from the plots that the calculated median latency for 128 Bytes packets is slightly lower in
comparison with the rest of the payload sizes. The highest value of E2E latency recorded
was 7.541 seconds, whereas the lowest recorded value was 50.99 mSec. Figure 5.7b
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Figure 5.7: OP2 LTEM KPI in indoor environment

shows the observed bitrate performance during the same test. Similar to the case for
OP1, in the case of OP2, the median bitrate increases as the payload size increases.
The highest calculated bitrate during the OP2 LTEM was 42.89 Kbps, whereas the lowest
value was 0.02 Kbps.

Figure 5.8 shows the OP1 NBIoT KPI performance results in an indoor environment. The
KPI performance was calculated over 105416 packets of varying payload sizes sent to the
application server. Figure 5.8a shows the E2E latency experienced by NBIoT packets
throughout the test. As can be seen from the plots, the median latency recorded for all the
packet sizes is is very similar. The highest E2E observed during the OP1 NBIoT testing
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Figure 5.8: OP1 NBIoT KPI in indoor environment

was 14.833 Seconds, whereas the lowest observed E2E latency was 28.93 mSec. Figure
5.8b shows the calculated bitrate during OP1 NBIoT testing. Similar to the LTEM testing
for OP1, the NBIoT bitrate increases as the payload size of the packet increases. The
highest calculated in case OP1 NBIoT was 19.229 Kbps, whereas the lowest calculated
bitrate was 0.002 Kbps.

Figure 5.9 shows the box plots for the bitrate and E2E latency recorded during the KPI
testing of OP2 NBIoT network in an indoor environment. The KPI values were calculated
over 60784 packets sent using varying payload sizes. Figure 5.9a shows the E2E latency
observed for the OP2 NBIoT network. As can be seen from the graphs, the median value
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Figure 5.9: OP2 NBIoT KPI in indoor environment

for observed E2E latency is similar across all the payloads. The highest recorded E2E
latency value for OP2 NBIoT was 14.979 Seconds, and the lowest recorded value was
22.07 mSec.

Similarly, Figure 5.7b shows the recorded bitrate during the same KPI testing. As seen
from the plots, in the case of OP2 NBIoT, the median value during all the tests shows a
very slight improvement as the payload size of the packet increases. The highest bitrate
value recorded during the KPI testing was 70 Kbps, whereas the lowest recorded value
was 0.001 Kbps.

The table 5.2 summarises all the test results. The summary table, along with Minimum
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Technology
E2E Latency

(mSec)

Bitrate

(Kbps) PD Total Packets
Sent

Drop
Rate

Min Max Min Max
OP1 LTEM 35.65 13075 0.02 55.652 225 171504 0.13%
OP1 NBIoT 28.93 14833.48 0.002 19.229 593 105416 0.56%
OP2 LTEM 50.99 7541.08 0.02 42.89 75 170112 0.04%
OP2 NBIoT 22.07 14979 0.001 70 2138 60784 3.51%

Table 5.2: Summery of KPI measurements for indoor environment

Figure 5.10: DTU deep indoor KPI test location

and Maximum values for E2E latency and bitrate, also summarises the PD during each
test. In the case of OP1, the LTEM and NBIoT PD rates are very low, 0.13% and 0.04% ,
respectively. On the other hand, the PD ratio for OP2 LTEM is 0.56% but has the highest
drop rate ratio of 3.51% for the NBIoT.

Based on the KPI tests performed during the fiveday interval using OP1 and OP2 CIoT
network, it was observed that the payload size had very little to no effect on the overall E2E
latency performance values. Another noteworthy observation was that both OP1 and OP2
had comparable network performance when it came to LTEM networks. Unfortunately,
it was a completely different story in the case of the NBIoT network. The OP1 NBIoT
network offered superior network performers than OP2 in the indoor environment KPI
tests. A possible hypothesis for the observed performance gap could be caused by the
deployment configuration (inband or guard band) of NBIoT. This hypothesis could not be
confirmed or further analyzed due to a lack of knowledge of the OP2’s network deployment
settings.

5.2.2 Deep Indoor Test Scenario
Figure 5.11 shows the path which was taken while testing the Basement and Outdoor
network test scenario. As can be seen from the graph, the network KPI test was conducted
on 17 different locations, which were 100 meters apart from each other. This path was
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Figure 5.11: DTU Tunnel System Overview and KPI Test Path

specifically designed to test the network KPI further from the test eNB on campus. Figure
5.10 shows the different underground levels of the measurement path. Point 1 to point 9
were located in the tunnel level L1 whereas point 10 to point 17 were located in tunnel
level L2. Before conducting the tests, it was assumed that only the oncampus eNBwould
be used during all the tests. This assumption was based on the previous study conducted
that highlighted the maximum distance before a NBIoT device changes the connected
cell was 800 meters [81]. The distance between the furthest measurement point and the
considered eNB was 525 meters (measured using google maps). In order to verify this
assumption, especially in the deep indoor scenario, the cell id of the connected CIoT
device was also recorded during each test.

Figure 5.12 shows the median performance values of calculated E2E latency observed
by both the operators for LTEM and NBIoT. In the graph, the Xaxis represents the
different points at which the KPI tests were performed, while Yaxis represents the latency
calculated for both the RATs on a given test point.

As observed in the first graph, the LTEM performance of the OP1 is very stable and
consistent across the different points compared to the OP2. The median E2E latency
calculated for LTEM OP1 is 245.41 mSec, whereas, for OP2, it is 215.11 mSec. As one
can see from the graph at point 4, both OP1 and OP2 have no coverage resulting in an
empty test. Similarly, in the case of OP2, there is no coverage at points 3, 5, 11, 17, and
18. At point 2, OP1 has experienced the highest E2E latency of 563 mSec, whereas,
at point 1, OP2 has experienced the highest E2E latency of 628.16 mSec. As can be
observed from the graphs, even though OP2 had lower median latency values across
the different KPI measurement points, OP1 offered a very stable network performance
overall.

Regarding NBIoT performance measured in the case of both operators, the story is very
similar to that of LTEM; OP1 had overall stable and consistent performance across all the
points compared to OP2. In the case of OP1, the median E2E latency observed during
NBIoT testing was 625.76 mSec, whereas, for OP2, that number was around 848.47
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Figure 5.12: E2E Latency at all points deep indoor (based on [93])

mSec across all the measured points. OP1 experienced the highest median latency of
2258.12 mSec where, whereas OP2 experienced the highest median latency of 3785.04
mSec.

Figure 5.13 shows the recorded bitrate in Kbps for LTEM and NBIoT across all deep
indoor points. The Xaxis represents the different points where the tests were conducted,
and the Yaxis represents the bitrate in Kbps. In the case of LTEM, just like in the E2E
latency tests, there is no observed coverage at point 4 for both the operators, and points
3, 5, 11, 17, and 18 had no OP2 coverage. At point 1, OP1 has the highest median bitrate
of 63.589 Kbps, whereas, at point 15, OP2 has the highest median bitrate of 56.8 Kbps.
In the case of the lowest median bitrate, OP1 observed 3.17 Kbps at point 2, whereas
OP2 observed 3.25 Kbps at point 1.

In the case of NBIoT highest and lowest bitrates were observed by OP1 at points 13
and point 2 with 29.82 Kbps and 0.62 Kbps, respectively. Similarly, for OP2, the highest
median NBIoT bitrate was observed at point 15 at 22.58 Kbps, whereas the lowest bitrate
was observed at point 2 at 0.58 Kbps.

Figure 5.14 shows the recorded PD in UL and DL direction by OP1 on LTEM and NBIoT.
As shown in the case of LTEM, OP1 has the highest DL PD of 3045 packets at point 1,
and the lowest PD of 2 packets is recorded at point 6. Similarly, the highest UL PD of 124
packets is recorded at point 2, and the lowest UL PD of 1 packet is observed at point 16.

Regarding NBIoT, in the case of OP1, the highest DL PD of 1027 packets is recorded at
point 6, whereas the lowest DL PD of 5 packets is recorded at point 11. The highest UL
PD in the case of NBIoT was recorded at point 18 with 38 packets, and the lowest UL
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Figure 5.13: Bitrate at all points deep indoor (based on [93])
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Figure 5.14: PD by OP1 at all points deep indoor [93]
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Figure 5.15: PD by OP2 at all points deep indoor [93]

PD of 2 packets was recorded at points 3, 8, and 9.

Figure 5.15 shows the recorded PD for OP2 during the deep indoor testing for both the
CIoT technologies. In the case of LTEM for OP2, the highest DL PD of 7518 packets
was recorded at point 1, whereas the lowest PD of 0 packets was recorded at point 9.
Similarly, the highest LTEM UL PD for OP2 was recorded at point 2 with a drop count of
2008, and the lowest UL PD was at points 8, 9, 15, and 16 with a packet count of 4.

In the case of NBIoT deep indoor tests for OP2, the highest DL and UL PD was recorded
at points 1 and 4 with 7516 and 1658 packets, respectively. Similarly, the lowest DL PD
was recorded at points 3, 4, 5, 7, 9, 11, and 17 with no dropped packets. The lowest UL
PD was recorded at point 11, with 3 UL packets dropped.

The KPI performance of OP1 in deep indoor conditions was very stable and consistent.
At point 4, both OP1 and OP2 observed no LTEM coverage. After further analysis, it was
discovered that points 3, 4, and 5 were directly under a parking lot and concrete roads
with multiple buildings blocking the LoS towards the eNB. Furthermore, Figure5.16 shows
the deep indoor environment where the KPI testing was conducted. The figure shows that
the test environment is constructed using heavy concrete walls, which can attenuate the
cellular signal significantly. Not only that, the test environment was surrounded by water
pipes, highvoltage electrical cables, and fiber optic cables, which all could contributed in
reducing SignaltoNoise Ratio (SNR).

After looking into the metadata from different tests, it was identified that the test device
was connecting to two eNB in the case of OP1 and three different eNB in the case of
OP2. Therefore, the performance differences observed during the test might have been
due to the uneven availability of the RAN resources. The information about the location of
different eNB during the different tests was unavailable from the MNO, hence this theory
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Figure 5.16: Deep indoor environment Hardware Test Setup

could not be further tested and verified.

In the case of the PD tests, there was an evident trend observed in the DL packet loss
being higher than the UL packet loss. A possible hypothesis for this trend could be:

1. Possible Inband deployment configuration of NBIoT and LTEM having to share the
same resources as regular LTE UEs. This could lead to radio resource congestion
during peak hours and lower performance.

2. Network congestion could lead to long delays, which were higher than the timeout
time set in the firmware.

3. DL packet loss due to use of Network Address Translator (NAT). Both operators
OP1 and OP2 allotted Privet IP addresses to the test devices.

5.2.3 Outdoor Test Environment
The KPI testing in the outdoor environment is conducted on the path highlighted in Fig
ure5.11 around the university campus. The same path is used for conducting the deep
indoor environment tests, and the test location of the points coinside. Figure 5.17 shows
the hardware setup used for the KPI testing in an outdoor test environment. This setup
is the same as the one used in the deep indoor environment tests. All other aspects of
the tests were kept identical. Therefore apart from the test location being in the outdoor
environment, there were no changes to the overall E2E test setup.

Figure 5.18 shows the E2E latency recorded while testing both LTEM and NBIoT using
both OP1 and OP2. The LTEM measurements indicate that the tests performed using
OP1 have consistent E2E latency values. Themedian E2E latency observed in the case of
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Figure 5.17: outdoor environment Hardware Test Setup
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Figure 5.18: E2E Latency at all points outdoor environment
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OP1 across all the points is 220 mSec. In the case of OP2, the E2E latency performance
reflects the payload sizes of the test packets. For example, the tests involving packet
sizes of 128 Bytes and 256 Bytes have shown lower E2E latency numbers than the 512
Bytes and 1024 Bytes. This is in contrast to what was observed in the 5.2.1, where the
median E2E latency appeared to be independent of the payload size. This difference in
the behaviour was not observed in the case of OP1 LTEM network. The difference E2E
latency performance in the case of OP2 LTEM could be justified because of:

• Changes in the LTEM RAN parameters of OP2 whch enabled more RAN resources
for the LTEM networks.

• The indoor tests described in section 5.2.1 were conducted during Christmas holi
day period indicating differences in the availability of the RAN resources, that could
justify the variation in the E2E latency.
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Figure 5.19: Bitrate at all points during outdoor environment

When it comes to the NBIoT E2E latency performance, OP1 has a very consistent per
formance. In the case of OP1, the calculated median E2E latency across all the points is
612 mSec. A strange network behavior was observed while testing OP2 for E2E latency
KPI using NBIoT. For instance, at point 1, the initial latency recorded during the test is
approximately 1.9 seconds (with payloads of 128 and 256 bytes). However, as the test
progresses, the latency significantly decreases to lower values of 400 milliseconds (with
a 512byte payload) and 200 milliseconds (with a 1024byte payload). This similar behav
ior is observed at points 2, 3, and 10, and repeated tests resulted in identical results. An
initial possible hypothesis was that the device in the middle of testing was handed over
to the LTEM RAT as a part of the network feature. However, after checking the network
metadata multiple times, the device consistently reported being connected to the NBIoT
RAT. The behavior was more suspicious, given that the PYCOM FIPY board was flashed
with different CIoT modem firmware versions for LTEM and NBIoT. This strange behav
ior was reported to the concerned MNO for further investigation. Several possible causes
for such a behavior are listed below:

• This sudden behavior change was caused due to an error in the modem firmware.

• Possible availability of more radio resources while testing allowed low resource al
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Figure 5.20: PD at all points outdoor environment

location delays.

• Error in the ratio parameter setting set by the MNO or possible bug in the NBIoT
eNB software.

Unfortunately, during these tests, it was impossible to access the MNO’s network infras
tructure and network traces. Therefore the concrete reason behind such behavior on
NBIoT RAT was never identified.

The graph reporting the received signal strength indicates a gradual increase in received
power from points 1 to 13, followed by a subsequent decline. This observed behavior
aligns with expectations, as the tests were intentionally designed to transition from a NLoS
environment to a LoS environment, and then go back to the initial NLoS conditions.

Figure 5.19 shows the recorded bitrate performance observed during LTEM and NBIoT
testing on OP1 and OP2 networks in outdoor environment. As can be observed from
the plot for LTEM, the calculated median bitrate goes up as the test packet payload size
increases. This is an expected behavior since the increase in payload size increases the
number of bits arriving at the application server. The highest observed median bitrate for
OP1, considering all points, is 34 Kbps, while the lowest observed median bitrate is 4.7
Kbps. Similarly, in the case of OP2, the highest observed median bitrate is 33 Kbps, and
the lowest observed median bitrate is 4.6 Kbps.

In the case of NBIoT, the overall performance of both MNO is very similar and consistent.
The highest median bitrate for OP1 is 31 Kbps, whereas, for OP2, it is 23 Kbps. The lowest
median bitrate recorded for OP1 is 1.6 Kbps, and for OP2 is 0.8 Kbps. When comparing
all the KPI values, OP2 has slightly worst performance across the board in comparison
with OP1.

Figure 5.20 shows the recorded PD during testing LTEM and NBIoT using OP1 and OP2
in an outdoor environment. The bar plots are colorcoded to give a PD at a given location
divided into individual payload sizes. Figure a shows the PD recorded while testing LTE
M using OP1 in an outdoor environment. As can be seen from the graphs, the maximum
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Figure 5.21: Forest measurement path and Elevation map [94]

PD occurred at point 15 with a loss of 13 packets, whereas the minimum PD of 3 packets
was at points 7 and 16. In the case of OP2 LTEM outdoor testing shown in figure b, the
maximum PD of 4 packets was recorded at point 6, whereas the minimum PD of zero was
recorded at points 5, 7, 8, and 11.

In the case of NBIoT outdoor testing using OP1 plotted in figure c, the maximum PD
was experienced at point 5 with 9 packets dropped, and the lowest PD was observed at
multiple test points with 1 PD. Compared with OP2 shown in figure d, no PD is observed
at points 4,5,7,8,15, and 16. OP2 has experienced the highest packet loss at point 17,
with 20 packets dropped.

5.2.4 Remote Outdoor tests
The remote outdoor test environment was the final test environment where it was decided
to perform the KPI testing. This test aimed to understand the behavior and the KPI per
formance of CIoT technologies in remote outdoor locations where there is no direct LoS
with any of the eNB and consist of a mixed terrine.

Figure 5.21 shows the path chosen to perform this test and the elevation of the terrine.
The figure’s red line indicates the path followed during the test. The total length of the
path was approximately 6.74 km, and all the measurements were taken 500 meters apart.
Therefore, there were 13 locations in which the tests were conducted. Test point 6 in the
path was at the highest elevation of 83 meters, whereas point 11 had the lowest elevation
of 46 meters.

Figure 5.22 shows the location of the CIoT cell towers spread across the test path. All
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Figure 5.22: eNB Locations for OP1 and OP2

the eNB on the map are located between 0 km to 2.5km. As it can be observed from
the locations of the eNBs, in the case of both the operators, there are no CIoT eNBs
in the radius of 1.3 km from the test points. Another fact is that, even though there are
a few CIoT cell towers on the outskirts of the forest, the direction of the eNB sectors is
unknown.

Uneven test terrine, no LoS with the eNBs, and no eNBs within the 1.3km radius make
this test very challenging, and it is reflected in the test results.

Figure 5.23 shows the different points along the path where these tests were conducted
and the results obtained at each point. At each point, the table summarises the median
E2E latency (in mSec), median bitrate (in Kbps), calculated PD, and CSQ. If there is no
connectivity for a particular Operator or the CIoT technology at any test point, it is denoted
by No Coverage (NC) in the table. The tests are conducted, and KPI are extracted using
the same test procedure described in Figure 5.3.

OP1 LTEM: As seen from the different tables in Figure5.23, OP1 had coverage at 7
out of the 14 points on the test trail. Points 1, 2, and 3 had comparable performance,
and point 3 had the best E2E latency and bitrate of the three. Point 2 observed the
lowest drop of 5 packets and had the highest RSRP value. The higher E2E latency and
bitrate performance at points 2 and 3 could be because the elevation in the terrine allowed
devices to be above the tree levels and somewhat LoS with the eNB to the test of the test
path. At Points 5 and 6, there was no coverage for the OP1 LTEM signal, and the tests
could not be conducted. This could have been because point 5 is somewhat is a valley and

80 Evaluation of Cellular IoT Technologies for Critical Applications



Figure 5.23: Forest CIoT test results in Remote outdoor environment

Evaluation of Cellular IoT Technologies for Critical Applications 81



point 6 had the highest elevation in the test path, and there are no eNBs from OP1 directly
facing toward those points. Points 7, 8, 9, and 4 have a consistent coverage of LTEM
from OP1. These are also the points that are closer to the eNB from the OP1. Point 9
has the lowest E2E latency, 201.632 mSec, and the highest bitrate of 16.04 Kbps and PD
of 25 packets. Point 9, being closer to the road, might be one of the contributing factors.
Points 10, 11, 12, 13, and 14 had no OP1 coverage to perform the KPI testing. This could
be because the signal from the closest OP1 eNB might be too noisy. There might be no
sectors of the eNBs facing toward the test path resulting in an outage scenario.

OP1 NBIoT: As it can be observed from all the results, OP1 NBIoT coverage was much
stronger than that of LTEM. Only at point 3 did the OP1 NBIoT test fail due to insufficient
coverage. The test was repeated multiple times at point 3, resulting in no coverage. In
the case of OP1 NBIoT, points 1, 2, 5, and 13, the recorded E2E latency was less than
500 mSec, point 2 being the lowest at 230.1125 mSec. Point 2 was also the point at
which the highest bitrate was recorded, with 15.746 Kbps. No PD was recorded at points
4, 6, 8, 9, and 11. The highest PD was recorded at point 1, with 50 dropped packets.
OP1 NBIoT shows the characteristics of NBIoT standards and coverage improvements
promised being translated into realworld performance.

OP2 LTEM: The performance of LTEM fromOP2 was the worst overall. Out of 14 points,
it was only possible to conduct the KPI testing at 2 points. During the test setup on many
locations, the device was getting connected to the network but was getting deregistered
right after sending a few data packets. This behavior was very strange, given that several
eNB sites were deployed around the test path. Points 2 and 13 were the only points where
the KPI tests were successful, and point 2 had the best performance KPI of the two. At the
point to the recorded E2E latency was 218.280 mSec, and the bitrate was 15.746 Kbps,
but it had a higher packet loss of 5.

OP2 NBIoT: On the contrary to the OP2 LTEM performance, the OP2 NBIoT perfor
mance was better. It was possible to conduct the KPI testing on all 14 points using the
OP2 NBIoT. There was a minor change in the test configuration when it came to NBIoT
testing, and the device was sending approximately 1/3 of the packets as that of the OP1
NBIoT tests. This change was made because it took a long time to get the initial net
work attached at the beginning of the test and longer E2E latency. Points 1, 2, 3, and
5 have very similar performance, except, at point 3, the E2E latency of 343.12 mSec is
much lower than the rest, and the bitrate is quite high, 9.369 Kbps. The RSRP values
are above 10 dBm. Points 6 & 7 have very similar in terms of KPI performance, point 7
being better by a small margin. At point 7, the recorded E2E latency was the lowest of all
the points, with 260.486 Kbps and the highest bitrate of 18.924 Kbps. Points 4, 8, and 9
all have E2E latency values higher than 1 second. Point 4 has the highest recorded E2E
latency value of 1.906 seconds and the highest bitrate of 3.1955 Kbps. Point 9 has the
highest packet loss of all the test points, with 76 overall dropped packets. Points 10, 11,
12, and 13 had much better overall OP2 NBIoT performance except for point 11, where
the E2E latency was an average of 3 times higher than the rest with 1.138 mSec.

Overall performance of both the MNO on LTEM and NBIoT is described in table 5.3.

5.3 CIoT performance over time
This section highlights the results from testing the CIoT over time. The idea behind these
tests was to determine any changes in the calculated performance of the NBIoT and LTE
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E2E
latency (mSec) Bitrate (Kbps) PD Total Packets

sent
Drop
RateMin Max Min Max

OP1 LTEM 201.632
(Point 9)

313.6645
(Point 1)

9.98775
(Point 1)

18.795
(Point 3) 147 26715 0.55%

OP1 NBIoT 239.1125
(Point 2)

802.486
(Point 10)

1.836
(Point 10)

15.746
(Point 2) 111 24359 0.45%

OP2 LTEM 218.28
(Point 2)

704.241
(Point 13)

3.869
(Point 13)

12.803
(Point 2) 2 4846 0.04%

OP2 NBIoT 260.486
(Point 7)

1906.95
(Point 4)

0.584
(Point 8)

18.924
(Point 7) 218 17950 1.21%

Table 5.3: Summery of Forest CIoT test results in Remote outdoor environment

M when the measurements are performed three months apart. The hypothesis was to
observe possible changes in the CIoT performance caused by network software updates,
radio replanning, changes in network parameters, etc. The tests were performed with a
smaller sample size than those performed in section 5.2. The test setup was the same,
with no changes from the UE and remote server side. The test locations were also kept
the same to minimize any measurement error. The only difference between the two tests
was the timeframe for the tests. All the tests conducted in this section are approximately
90 days after the initial network testing.

Point 1 Point 5 Point 9 Point 13 Point 17
Old 314.351 330.92225 220.0355 171.2095 258.836E2E

latency New NC NC NC NC NC
Old 50.6512 8.50145 12.798 21.615 10.73675LTEM

bitrate New NC NC NC NC NC
Old 169.5799 404.0555 620.6152 669.036 620.603E2E

latency New NC 619.3665 619.005 619 1383.168
Old 16.564 4.79875 4.8 4.1317 4.8

OP1

NBIoT
bitrate New NC 2.3987 4.7987 4.8 0.74

Old 257.36 NC 168.015 203.329 NCE2E
latency New NC NC 140.88 88.975 NC

Old 7.543 NC 15.2632 16.408 NCLTEM
bitrate New NC NC 19.2 26.846 NC

Old 265.965 1855.188 1048.177 1904.636 1456.053E2E
latency New 2896.69 NC 286.2295 271.7905 NC

Old 10.4889 0.775 7.5747 1.5995 6.9537

OP2

NBIoT
bitrate New 0.318 NC 17.8995 17.2792 NC

Table 5.4: Performance comparison deep indoor scenario (measurements are three
months apart)

Table 5.4 shows the performance comparison between the tests conducted in a deep
indoor scenario. The tests were conducted in the underground tunneling system at DTU
at locations that were 400 meters apart. The E2E latency is measured in mSec whereas
the bitrate is measured in Kbps.

As it can be observed from the table, there was no coverage detected for LTEM from
OP1. This was completely contracting behavior to the initial OP1 LTEM performance.
Similarly, in the case of NBIoT from OP1, the performance is degraded since the earlier
measurements in 5.2. In the case of OP2, the change in performance is less drastic.
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Point 1 Point 5 Point 9 Point 13 Point 17
Old 3045 8 12 145 128LTEM PD New NC NC NC NC NC
Old 3 5 6 62 24OP1

NBIoT PD New NC 0 0 0 34
Old 7518 NC 1 55 NCLTEM PD New NC NC 0 4 NC
Old 144 1285 114 3728 40OP2

NBIoT PD New 52 NC 16 5 NC
Table 5.5: PD performance comparison deep indoor scenario (measurements are three
months apart)

Point 1 Point 5 Point 9 Point 13 Point 17
Old 220.7357 220.415 220.4967 220.12 220.5112E2E

latency New NC NC NC NC NC
Old 12.8085 12.8 12.797 12.798 12.801LTEM

bitrate New NC NC NC NC NC
Old 620.621 620.3022 620.5407 621.1872 620.3275E2E

latency New NC 619.1795 619.05675 619.20825 619.2082
Old 4.7995 4.8 4.7995 4.8 4.799

OP1

NBIoT
bitrate New NC 3.1985 4.8 4.8 3.2

Old 220.291 140.9185 141.365 220.1127 220.0667E2E
latency New NC 181.0095 179.747 180.48275 180.996

Old 12.8 19.1947 19.193 12.7995 12.8005LTEM
bitrate New NC 12.796 14.93825 14.933 12.799

Old 1130.0877 1904.115 1904.644 1904.95 1882.2245E2E
latency New NC 1904.5775 1904.9977 1904.896 1904.923

Old 11.2265 1.6028 1.5995 1.5995 1.068

OP2

NBIoT
bitrate New NC 1.066 1.5995 1.5995 1.066

Table 5.6: Performance comparison outdoor (measurements are three months apart)

At point 1 for LTEM and at points 5 & 7 for NBIoT, there is no longer CIoT coverage
detected. In the case of LTEM coverage from OP2, the rest of the point has either stayed
the same or shown slight improvement. In the case of NBIoT from OP2, the network has
seen performance increase at points 9 & 10 and performance degradation at point 1.

Table 5.5 shows the dropped packets recorded while performing the tests. Similar to the
E2E latency and bitrate tests, OP1 LTEM had no PD data available. In the case of NBIoT
for OP1, the PD performance slightly improved with fewer dropped packets. Similarly, in
the case of OP2, the number of dropped packets was reduced for LTEM and NBIoT.

Table 5.6 shows the performance comparison of CIoT networks in an outdoor scenario.
The tests were conducted at the exact location as that of in section 5.2, and the points
were 400 meters apart. The E2E latency is measured in mSec whereas the bitrate is
measured in Kbps.

Similar to the deep indoor testing, there was no network coverage offered by OP1 for its
LTEM network. This was the opposite network behavior than that of the tests conducted
earlier. In the case of the NBIoT network from OP1, except for point 1, where there was
no NBIoT coverage, the rest of the network performance was very similar with some
minor variations.
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Point 1 Point 5 Point 9 Point 13 Point 17
Old 8 6 5 8 4LTEM PD New NC NC NC NC NC
Old 1 9 1 1 7OP1

NBIoT PD New NC 0 1 0 0
Old 2 0 1 1 2LTEM PD New NC 0 0 0 0
Old 4 0 3 1 21OP2

NBIoT PD New NC 0 0 1 0
Table 5.7: PD performance comparison outdoor (measurements are three months apart)

Similarly, for OP2, no CIoT coverage was observed at point 1. In the case of LTEM
at points 5 & 9, the performance was slightly degraded compared to previous measure
ments. Whereas at points 13 & 17, it was improved. Similarly, in the case of NBIoT, the
performance remained identical except for improvements at point 5.

Table 5.7 shows the PD performance of CIoT networks while testing in an outdoor envi
ronment. Similar to the E2E latency and bitrate tests, there was no data available due to
lack of coverage in the case of OP1 LTEM network. For NBIoT offered by OP1, the PD
performance slightly improved in comparison with the initial testing. PD performance also
improved for CIoT networks offered by OP2 in an outdoor scenario.

Point 1 Point 4 Point 7 Point 10 Point 13
Old 313.6645 231.94 220.596 NC NCE2E

latency New 185.8 217.1855 221.10625 313.88775 NC
Old 9.987 12.693 12.798 NC NCLTEM

bitrate New 13.18975 12.832 12.778 8.9605 NC
Old 274.32 620.834 620.726 802.486 301.324E2E

latency New 630.0037 500.9905 619.00875 648.627 737.0992
Old 12.283 4.799 4.799 1.836 9.024

OP1

NBIoT
bitrate New 4.734 7.05625 4.79975 3.2845 3.6805

Old NC NC NC NC 704.241E2E
latency New NC NC NC NC NC

Old NC NC NC NC 3.869LTEM
bitrate New NC NC NC NC NC

Old 1855.294 1906.95 260.386 333.54 401.359E2E
latency New 1766.1007 554.7235 1875.426 591.25575 NC

Old 1.6175 3.1955 18.924 10.586 10.024

OP2

NBIoT
bitrate New 5.09925 4.62525 2.34025 6.122 NC

Table 5.8: Performance comparison remote outdoor (measurements are three months
apart)

Table 5.8 compares performance CIoT measurements taken three months apart in re
mote outdoor conditions. The measurement points are aligned with the measurement
points from the initial tests in section 5.2. The E2E latency is measured in mSec whereas
the bitrate is measured in Kbps.

In the case of OP1 LTEM network, the performance has improved compared to the initial
measurements, especially at point 10, where there is now LTEM coverage. Similarly, in
the case of NBIoT coverage from OP1, network improvements were recorded at points
4 & 10, whereas performance degradation was recorded at points 1 & 13.
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Point 1 Point 4 Point 7 Point 10 Point 13
Old 45 18 5 NC NCLTEM PD New 13 0 0 8 NC
Old 50 0 1 2 16OP1

NBIoT PD New 0 51 0 8 0
Old NC NC NC NC 53LTEM PD New NC NC NC NC NC
Old 9 76 8 5 45OP2

NBIoT PD New 23 69 1 12 NC
Table 5.9: PD performance comparison remote outdoor (measurements are three months
apart)

Point 1 Point 5 Point 9 Point 13 Point 17

OP1
(LTEM)

E2E
latency

Old 220.7357 220.415 220.4967 220.12 220.5112
New 220.633 221.4612 221.551 221.0725 221.4717

bitrate Old 12.8085 12.8 12.797 12.798 12.801
New 12.78025 12.7785 12.78 12.7752 12.79425

Table 5.10: Performance comparison outdoor for OP1 LTEM network

The LTEM network offered by OP2 saw a performance degradation. The LTEM perfor
mance of OP2 during the initial testing was already poor, and three months later, it got
even worse. In the case of the NBIoT network from OP2, the network performance at
points 1 & 4 has improved, whereas at points 7, 10, and 13 has degraded in comparison
with initial tests.

Table 5.9 compares dropped packets in remote outdoor conditions. As can be observed
from the table, the performance of LTEM fromOP1 improved slightly with fewer PDs. The
NBIoT network from OP1 improved a little except for the increased PD at point 4. Similar
to the E2E latency and bitrate tests, the performance of LTEM fromOP2 has gotten worse
with no coverage on the test locations. In the case of NBIoT, the performance degraded
slightly with higher PD observed at points 1 & 10 and with no connection at point 13.

When looking at the tests in deep indoor (table 5.4) and outdoor scenario (table 5.6) OP1
LTEM tests could not be concluded. While testing, it was observed that the device could
not attach to the OP1 network. This was an abnormal behavior recorded while testing and
an implausible scenario. Therefore, it was decided to perform the tests again using OP1
LTEM network in an outdoor environment; the tests were conducted three days after the
initial testing. Table 5.10 shows the results from the tests conducted using LTEM network
of OP1. As seen from the tests, it was possible to perform the LTEM tests at all the test
points without any issues. This indicated some issue with the OP1 LTEM network.

In order to further investigate this issue, it was decided to perform all the tests once more
at point 1, given that all the tests failed at this point. After looking at the test data, it was
discovered that all the tests were completed successfully at point 1 from both the MNO
using CIoT.

A few possible reasons could have been responsible for this network behavior:

• The network blocked the test devices for a limited time, leading to no network attach.

• There was CIoT network outage in the eNB clusters covering DTU.
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Figure 5.24: NBIoT E2E latency performance using different RAN vendors

• There was a power outage that caused CIoT networks from both the MNOs to
become completely unavailable from the eNB cite

This recorded issue needed further investigation, but unfortunately, a concrete reason for
this behavior was not identified due to lack of access to the MNO infrastructure and device
traces.

Another test performed during this timeframe was to identify KPI performance of CIoT
networks deployed by different MNO using different RAN vendors. Figure 5.24 shows the
observed difference between four different Nordic MNO and E2E latency performance of
their NBIoT based on the RAN vendor that is used to deploy the radio network. The
figures displays unprocessed E2E latency values measured over 200 UDP packets of
128 B each. The RAN vendor 2 E2E latency performance is superior than that of the
RAN vendor 1. The similar difference in the performance are measured in the case of
bitrate and PD experiments.

5.4 CIoT Network Roaming Tests
Expain why roaming and how is it relevant

In order to evaluate the KPI performance of CIoT, MNO was selected, which has nation
wide CIoT deployment in Scandinavia. The test was conducted to evaluate the perfor
mance of the IoT test device in the home network and then compare the performance in
two different roaming networks. The tests were conducted in Denmark (Home Network),
Sweden (Operator Roaming Network), and Norway (Operator Roaming Network). The
test setup and procedure were the same as described in section 5.1 CIoT test setup and
Network KPI. In all the tests conducted for this experiment following steps were followed:

• The tests were performed in indoor environments, e.g., University offices, coffee
shops, etc.

• The tests were always conducted in the good coverage area with RSRP > 85 dBm.

• To avoid any errors caused by network parameters, all the MNOspecific features
were turned off. e.g., powersaving features such as PSM, eDRX, cDRX, etc., were
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Figure 5.25: CIoT Roaming Test Network Architecture [95]

turned off before the test started.

• All the tests were conducted using only 2 PYCOM FIPY devices, one for LTEM and
one for NBIoT.

• The network parameters, such as APN name, were locked to Danish MNO settings
while testing the device in Norway and Sweden.

• In all the tests, the device was programmed to select the operator automatically.

Figure 5.25 shows the CIoT KPI test architecture used in the roaming environment. As
can be observed from the figure, the test end device and the application server were kept
constant across all the tests. The application server was hosted in Frankfurt, Germany.
Therefore the application server was approximately 825 km from the Danish test site, 869
km from the Swedish test site, and 1800 km from the Norwegian test site (Distances are
calculated using Google Maps). Therefore, the only variable in all the tests was each
country’s individual CIoT MNO network.

The first tests were conducted in Denmark at the Technical University of Denmark. The
tests were conducted using a Danish SIM card. This was the regular test scenario where
a local MNO SIM card connected to its home network. The test was conducted by sending
1000 packets of varying packet sizes 128 Bytes, 256 Bytes, 512 Bytes, and 1024 Bytes.
The packets were sent using UDP as a transport protocol.

The same device was then tested in Sweden under similar conditions. The device was
tested at Lund University premises with a Danish SIM card. This meant that the device
was sending data using the CIoT network in Sweden but with a Danish SIM, which was
the first roaming operator. The tests were the same as those conducted in Denmark, with
1000 UDP packets with varying payloads sent from each of the CIoT technologies.

In order to perform roaming KPI testing in Norway, the same setup was used as that of
Denmark and Sweden. The tests in Norway were performed in similar physical conditions
at the Norwegian University of Science and Technology (NTNU) premises. The test in
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Figure 5.26: CIoT E2E Latency Tests in Roaming Environment [95]

cluded sending 1000 UDP packets with varying packet sizes over Norwegian CIoT MNO
using a Danish SIM card.

Figure 5.26 shows the overall observed E2E Latency during the CIoT KPI testing in Den
mark, Sweden, and Norway. The graph’s Xaxis shows the packet count, whereas the
Yaxis shows the calculated E2E Latency.

In the case of LTEM, the E2E latency performance across all the countries is very sim
ilar. At the beginning of the test for the packets with a payload size of 128 Bytes, the
performance is very unstable in all the countries, but for the higher payload sizes, the
E2E latency is stable with some exceptions where the latency suddenly increases or de
creases than the median value. In the case of NBIoT, the performance of the network
in all the countries is not very stable, and unlike LTEM, there are no visible patterns ob
served during the testing. There are several spikes observed in E2E latency performance
in all three countries. Another observation is that the E2E latency performance recorded
in the Danish network is much higher than that of Sweden and Norway. In Sweden and
Norway, the median E2E latency performance is much closer to the median LTEM E2E
latency performance.

Figure 5.27 shows the calculated bitrate performance from CIoT KPI testing in Denmark,
Sweden, and Norway. The graph’s Xaxis shows the packet count, whereas the Yaxis
focuses on bitrate values in Kbps. While testing LTEM, the bitrate performance in all
the countries is very similar, with some exceptions where the bitrate fluctuates between
packets. As can be observed from the graph, the LTEM birate increases in steps after
every 250 packets. This is because the increase in the packet size from 128 Bytes to 1024
Bytes increases the number of bits arriving at the application server per minute. The over
all LTEM performance in Denmark, Sweden, and Norway is very similar and stable. In
the case of NBIoT KPI testing, similar to E2E latency testing, the calculated bitrate is very
unstable, and no performance pattern can be extracted from the results. The noticeable
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Figure 5.27: CIoT bitrate in Roaming Environment [95]

Technology E2E Latency
(mSec) Bitrate (Kbps) Number of Packets

Dropped
Denmark

(Home Network)
Sweden

(Roaming MNO)
Norway

(Roaming MNO)
Denmark

(Home Network)
Sweden

(Roaming MNO)
Norway

(Roaming MNO)
Denmark

(Home Network)
Sweden

(Roaming MNO)
Norway

(Roaming MNO)
LTEM 220.362 219.795 220.623 8.5665 12.8115 12.8055 36 16 40
NBIoT 1905.004 373.571 314.77 2.102 8.7515 8.9805 180 64 31

Table 5.11: CIoT Summery of Netowrk KPI in Roaming Environment [95]

difference was observed in the bitrate performance in the home network, i.e., Denmark
was much lower than that of the roaming networks, i.e., Sweden and Norway. In Sweden,
for the first 400 packets, the bitrate recorded bursts of packets with higher performance
than the LTEM bitrate at the same location. Similar behavior was also present in results
from Norway; after 425 packets, higher bursts of bitrate were recorded where the bitrate
values were very close to and even higher than the LTEM bitrate at the same location.

Table 5.11 highlights all the median KPI values obtained from the different tests conducted
in Denmark, Sweden, and Norway. As one can see from the table, the E2E latency per
formance of LTEM in the home network (Denmark) and roaming networks (Sweden and
Norway) is almost equal. Unfortunately, this is not the case when it comes to NBIoT E2E
latency performance. The E2E latency is worst in Denmark, which is the home network,
compared to Sweden and Norway. Norway has the best NBIoT E2E latency performance
of all three countries.

In the case of bitrate performance, the device performs the worst in the home network for
both LTEM and NBIoT. The bitrate performance in the roaming environment is very sim
ilar, i.e., the LTEM and NBIoT calculated median bitrate values in Sweden and Norway
are almost equal for the respective technologies.

When it comes to the PD, comparing the LTEM KPI in all three countries, Norway has
recorded the highest PD of 40 packets, and Denmark is a close second with 36 packets.
When considering the NBIoT PD, the results in the home network are more than 2.9 times
the worst performer in the roaming network.

90 Evaluation of Cellular IoT Technologies for Critical Applications



After comparing all the KPI results from the different tests conducted in Denmark, Sweden,
and Norway, it was observed that the LTEM performance offered by this MNO across its
Scandinavian footprint is comparable. However, this is different when it comes to the
NBIoT performance from the same MNO in all three countries.

After analyzing the results further, we could develop the following hypotheses.

• The NBIoT network configuration implemented, especially the radio parameters in
the different countries, are different.

• The NBIoT deployment method, i.e., guard band, inband, etc., could be different
in different countries

• The Network resources (both the radio and the rest of the network) reserved for
CIoT technologies might be different in each country.

None of the above hypotheses could be further investigated due to the confidentiality
around network architecture, deployment strategies, etc. Nonetheless, these exercises
gave a deeper insight into how CIoT roaming works and the key elements to consider
while developing a batterypowered, constrained IoT device.

5.5 Network capacity tests for continuous
data transmission

One of the features highlighted in the 3GPP standards for CIoT is the ability to support
a massive number of enddevices per cell cite sector [96, 97]. According to the 3GPP, C
IoT device density per sector is calculated to be 52547 devices. This calculation assumes
the number of devices per household to be 40 and data throughput of 50 bytes every two
hours per device [97]. A simulation study by Ericsson shows that the devices supported
by per NBIoT cell site are up to 200,000 [36]. The capacity of deployed devices per cell
increases to 72000 in an inband NBIoT deployment study performed by Nokia [98]. In
a study by Mads et al. [99], the cell sector capacity for two applications was evaluated.
During the day, depending upon the type of application and the number of transmissions,
the total number of devices supported by a cell sector under challenging radio conditions
by LTEM ranges from 80K to 1 Million. In contrast, for NBIoT, it ranges from 5K to 25K
devices. Tin et al. [100] proposes a new Periodic Uplink Scheduling Algorithm (PPUSA)
that considers the PSM features offered by the technology and can increase the number
of connected devices to 600,000 in case of NBIoT.

In all the simulations studies conducted to calculate the cell sector capacity of CIoT de
vice, it was assumed that the device would only transmit a few times during the day, and
no studies were available defining the continuous data transmission capacity of the cell
sector. Since the application designed during this PhD relies on continuous ECG and HR
monitoring of CVD patients, it was decided to perform an experimental evaluation of cell
sector capacity of NBIoT and LTEM networks.

In order to carry out the experimental evaluation of the cell capacity, a total of 8 tests were
conducted for LTEM and NBIoT, respectively. In each test, the number of connected
devices increased by one; e.g., test 1 was performed using only one IoT device, whereas
test 2 was performed using two connected devices. The overall test setup is as follows:
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• The tests were performed using the PyCOM Gpy devices. The device and the cel
lular module were updated to the latest available firmware.

• The devices were kept in an indoor environment with an NLoS with the nearest eNB.
The device location was the same as the indoor tests described in Section 5.2.1.

• The devices were programmed to send 500 packets in each test with varying pay
load sizes (128 Bytes to 1024 Byes).

• The experiments were conducted using the same setup used in all other experi
ments and is described in 5.3.

• In all the experiments, latency, bitrate, PD, test duration, and number of reconnections
were measured.

The device reconnection flag was used in this experiment due to the device’s very fluc
tuating performance while testing the NBIoT network. The reconnect flag was set if one
of the following errors occurred and the modem had to be reset and reconnected again:

1. Continuous drop of more than ten packets.

2. modem is stuck and caused a ”modem suspend error”.

3. Complete network disconnection

In the case of NBIoT tests, sometimes the device abruptly disconnects from the network.
The only way to reconnect was to perform a power cycle reset, where the device was
disconnected and reconnected again. Such power cycle attempts were also recorded
each time the device was power cycled. This issue was observed only during the NBIoT
testing and not during the LTEM tests.

Figure 5.28 shows the calculated E2E latency during all the network capacity tests per
formed. The Xaxis represents the number of connected devices, whereas the Yaxis
represents the calculated median latency in different tests.

In the case of test 1, the lowest latency calculated was 295 mSec, whereas the highest
latency calculated was 545 mSec.

For test 2, the lowest latency of 296 mSec was calculated by device d2, whereas the
highest latency of 545 mSec was calculated by d1.

In test 3, the E2E is much lower for devices 2 and 3 than for device 1. In the case of
device 1, the highest E2E is 544 mSec, similar to that of test 2, whereas, for devices 2
and 3, the E2E is 220 mSec.

Similarly, in the case of test 4, d1 and d3 have calculated higher E2E values compared
to devices d2 and d4. The highest E2E latency value was 546 mSec by d3, whereas the
lowest E2E latency value of 220 mSec by device d2.

In the case of test 5, d1 and d3 had higher E2E latency values than d2, d4, and d5. The
highest E2E value of 547 mSec was calculated by d1, whereas the lowest E2E value of
220 mSec was recorded by d2.

During test 6, except d1, all the other devices had a lower E2E value. The highest E2E
value of 544 mSec was calculated by d1, whereas the lowest E2E latency value of 220
mSec was calculated by d2 and d3.

In the case of test 7, devices d1, d2, d3, and d6 had higher E2E latency performance than
that of devices d4, d5, and d7. The highest E2E latency value of 564 mSec was recorded
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Figure 5.28: Latency LTEM
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Measurement Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8
PD 0 0 0 0 0 0 0 0

Number of
Reconnections 0 0 0 0 0 0 0 0

Table 5.12: LTEM network capacity test

by d2, whereas the lowest E2E value of 219 mSec was recorded by d7.

Finally, in test 8, devices d1, d2, and d3 had higher E2E values than devices d4 to d8.
The highest E2E value of 568 mSec was recorded by d3, whereas the lowest value of
219 mSec was recorded by d7.

Figure 5.29 shows the bitrate performance of LTEM across all the network capacity tests.
The Xaxis represents the number of connected devices, whereas the Yaxis represents
the calculated median bitrate for each device.

In the case of test 1, the highest calculated bitrate of 14.49 Kbps whereas the lowest
bitrate is 3.28 Kbps.

For test 2, the highest bitrate of 14.52 Kbps and 3.16 Kbps is calculated for device d1.

In the case of test 3, the highest bitrate of 33.709 Kbps is calculated for device d2, whereas
the lowest bitrate of 3,17 is calculated for device d1.

In the case of test 4, device d2 has the highest calculated bitrate value of 27.11 Kbps
whereas device d3 has the lowest bitrate of 3.16 Kbps.

During test 5, the highest bitrate of 34.114 Kbps was calculated for device d2, and the
lowest bitrate of 3.16 Kbps was calculated for device d1.

In the case of test 6, the highest bitrate value of 34.13 Kbps was calculated for device d6,
whereas the lowest value of 3.16 Kbps was calculated for device d1.

For test 7, the highest calculated value of 25.121 Kbps was calculated by d5, whereas
the lowest value of 3.16 was calculated by devices d1, d2, and d3.

Similarly, for test 8, the highest bitrate of 29.68 Kbpswas calculated for device d6, whereas
the lowest bitrate of 3.16 Kbps was calculated for device d1, d2, and d3.

Table 5.12 shows the PD and number of reconnections recorded during the LTEM ca
pacity test. As can be seen from the table, there were no PDs as well as network recon
nections recorded during the entire test.

Figure 5.30 shows the E2E latency calculated during the NBIoT network capacity testing.
The Xaxis represents the number of connected devices, whereas the Yaxis represents
the calculated median E2E latency values during each test.

In the case of test 1, the lowest E2E latency was 1900 mSec, whereas the highest calcu
lated E2E latency was 2102 mSec.

In test 2, the lowest E2E latency of 1900 mSec was calculated for device d1, whereas the
highest E2E latency of 2880 mSec was calculated for device d2.

Similarly, for test 3, the lowest E2E latency of 838 mSec was calculated for device d1,
whereas the highest E2E latency of 5257 mSec was calculated for device d3.
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Figure 5.29: Bitrate LTEM
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Figure 5.30: Latency NBIoT
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Measurement Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8
PD 17 39 42 38 41 84 105 152

Number of
Reconnections 6 15 18 16 20 44 56 58

Power Cycle 0 0 0 1 1 3 2 2
Table 5.13: NBIoT capacity test

In the case of test 4, the lowest E2E latency of 1900 mSec was calculated for device d4,
whereas the highest latency of 3040 mSec was calculated for device d2.

In test 5, the lowest E2E of 1768 mSec was calculated for device d3, whereas the highest
E2E latency of 3758 mSec was calculated for device d5.

Similarly, in the case of test 6, the lowest E2E of 1900 mSec and the highest E2E latency
of 6189 mSec was calculated for device d6.

In the case of test 7, the lowest E2E latency of 1841 mSec was calculated for device d1,
whereas the highest E2E latency of 5490 mSec was calculated for device d3.

Finally, in the case of test 8, the device d2 had the lowest E2E latency of 1580 mSec,
whereas the device d7 had the highest E2E latency of 5353 mSec.

Figure 5.31 shows the total calculated bitrate for all the devices during all the network
capacity tests. The Xaxis in the graph represents the total number of connected devices
during the test, whereas the Yaxis represents the calculated bitrate for each device during
different tests.

During test 1, the lowest calculated bitrate for device d1 was 0.53 Kbps whereas the
highest calculated bitrate was 3.82 Kbps.

In test 2, device d1 and d2 had the same lowest bitrate of 0.533 Kbps whereas device d1
had the highest bitrate of 3.99 Kbps.

In the case of test 3, the lowest bitrate of 0.52 Kbos was calculated for device d2, whereas
device d3 had the highest calculated bitrate of 3.99 Kbps.

Similarly, in test 4, the lowest bitrate of 0.52 Kbps was calculated for device d3, and the
highest bitrate of 4.11 Kbps was calculated for device d4.

In the case of test 5 and test 6, all the test devices had the same lowest calculated bitrate
of 0.53 Kbps. In contrast, device d3 had the highest calculated bitrate of 4.47 Kbps during
test 5, and device d5 had the highest bitrate of 4.1 Kbps.

Similarly, for test 7, device d6 had the lowest calculated bitrate of 0.3 Kbps, whereas
device d5 had the highest bitrate of 3.6 Kbps.

Finally, in the case of test 8, the lowest bitrate of 0.32 Kbps was calculated for device d7,
whereas the highest bitrate of 5.24 Kbps was calculated for device d2.

Table 5.13 shows the PD as well as the number of network reconnections and power
cycles recorded during the NBIoT capacity testing. As can be seen from the table, the
highest number of PD of 152 packets was recorded for all the devices in test 8. At the same
time, the highest number of network reconnections were recorded during the same tests.
As can be highlighted from the table, the number of dropped packets and the number
of times a device performed a network reconnection increases as the number of test
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Figure 5.31: Bitrate NBIoT
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Test number Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8
Avg. test

time (LTEM) 4 4 3 3.5 2.8 2.2 3.14 3

Avg. test
time (NBIoT) 30 43.5 36 31.75 30.4 46.33 51.57 53,62

Table 5.14: CIoT average test time in minutes
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Figure 5.32: Performance difference between different cells

devices increases. Similarly, in the case of power cycles, the test devices in the network
go on increasing, and the number of power cycles required for the device to reconnect
and restart the test again also increases. This is a very contradicting result to what was
observed in the case of LTEM in similar test settings (shown in Table 5.12).

Table 5.14 shows each device’s average time to complete the network capacity testing.
The table shows that the maximum time taken by LTEM devices in all the tests was
4 minutes. In the case of NBIoT, a clear pattern can be observed as the number of
connected devices increases and the average time to complete each test increases. The
maximum time taken to complete the test in case of NBIoT was recorded to be slightly
over 53 minutes.

In order to further investigate different hypotheses, it was decided to check device meta
data on the serving eNB id for all the devices and the signal level of all the devices during
the test. The observations are as follows:

• In the case of LTEM, it was discovered that the devices connected to three differ
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Measurement Device 1 Device 2 Device 3 Device 5 Device 6 Device 7 Device 8
Packet Loss 9 4 4 3 0 0 3
Number of

Reconnection 2 1 1 1 0 0 1

Table 5.15: LoS NBIoT capacity test

ent cells during the test. This was interesting because the devices reported similar
signal quality within 1 to 2 dBm margins in different measurements. Figure 5.32
highlights which devices were connected to which cells at the testing time. Devices
d1, d6, and d7 are connected to Cell 1. Similarly, devices d2, d3, and d5 are con
nected to Cell 2. Finally, device d3 is connected to Cell 3.

• The performance of different test devices varies depending upon the cell it is con
nected.

• The similar finding was made during reviewing the data from NBIoT capacity test
ing, and just like the LTEM tests, the network performance is different for different
devices based on which cell it is connected to. Figure 5.32 also highlights which
NBIoT devices are connected to which cell. In the case of NBIoT, devices d1, d3,
d6, and d7 are connected to Cell 1, whereas devices d2, d4, and d5 are connected
to Cell 2. The performance gap between the two cells is more visible in this case.

• Another behavior observed in the case of NBIoT capacity testing was that each
device connected to the same cell as the previous test unless the device was power
cycled. Once the device was power cycled, it was attached to a completely different
cell.

• Another observation was that, in the case of LTEM, the maximum number of de
vices connected to one cell was five. In contrast, in the case of NBIoT, there were
a maximum of four devices connected to each of the cells.

The cell selection was performed automatically by the IoT device; therefore, it was decided
to redo the LTEM and NBIoT cell capacity tests after midnight from a LoS location that is
approximately 160 meters away from the cell tower. The considered test time was under
the assumption that the CIoT base station on DTU campus would be less loaded with
regular mobile communication traffic during this time.

Figure 5.33 shows the measured performance from the LTEM and NBIoT testing when
measured in LOS condition after midnight by connecting all the eight test devices at once.
The tests were repeated several times for both the technologies, and the outcome was
the same every time.

In the case of LTEM, we could only test 6 simultaneous devices attached to one cell.
Therefore as it can be observed from figure 5.33, in the case of LTEM testing, there
was no connection to devices d2 and d4 during the test. Although, after the first six
devices finished testing, d2 and d4 could connect to the same cell and finish the test. The
observed performance for d2 and d4 is similar to the other devices. No PD and network
reconnections were recorded while LTEM testing.

Similarly, in the case of NBIoT, we could only test 7 simultaneous devices attached to
one cell. This can be seen from the figure 5.33. Device d4 had no connection until the rest
of the devices finished their testing. Unlike LTEM, the NBIoT testing resulted in many
dropped packets and network reconnections.
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Figure 5.33: Line of sight CIoT capacity tests
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Table 5.15 shows the overview of PD and several reconnections experienced by different
devices while testing in LoS with the cell.

As can be seen from different measurements performed during all the experiments, a few
critical outcomes can be highlighted, such as:

• LTEM performs much better than that of NBIoT as we keep adding devices to the
network.

• Another outcome from this test is that LTEM performance depends on the number
of cells available in a given area and how much traffic they carry from other wireless
devices and technologies. The difference in the performance of different cells is
visible in figure 5.32.

• In the case of LTEM, the maximum number of six simultaneous devices indicates
that the operator has implemented the minimum requirements for 6 Physical Re
source Block (PRB) stated in LTEM standard (discussed in 2.2.3. This is the mini
mum bandwidth requirements from the LTEM standards.

• In the case of NBIoT, the network performance started degrading as we added new
devices during the test. The device needed to restart the network attach procedure
several times during the test and, in some cases, needed to be power cycled.

• In the case of NBIoT, once the device was power cycled, the device changed the
cell it was initially connected. This might have been because lack of handover sup
port in the NBIoT standard. When one NBIoT cell reached its maximum device
capacity, the network could not hand over the device to another cell with more avail
able resources.

• In the case of the LoS testing of NBIoT, it was observed that each cell could support
a maximum of 7 simultaneous devices that are attached to the network. The number
of attached devices differs from the number of devices sending the packets during
the test. When further investigating the exact timestamp of the received packets, it
was discovered that, after starting the test in the first two minutes of testing, only 4
devices were sending the data. The other devices sent packets once these devices
started sending higher payloads.

• The numbers observed during the test might vary between inband and guardband
deployment of the NBIoT network. A similar observation was made in the initial
capacity testing of NBIoT, that each cell accepted a maximum of 4 devices. This
indicates the operator might have deployed the NBIoT in a guard band configuration
and is not affected by the traffic patterns experienced by the cell.

5.6 IoT protocols and power consumption
One of the highlighting features of NBIoT and LTEM technologies is that they can support
the deployment of devices with a battery life of up to 10 years with a 5watt hour battery
capacity [96].

Andre et al. [89] calculates the battery lifetime estimates of NBIoT and LTEM networks
by performing modeling as well as experimental validation. Their findings showed that
achieving up to 10 years of battery life is possible if the devices and the network config
uration parameters are optimized. Haider et al. [101] performed a realworld evaluation
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of battery consumption and performance of NBIoT in Malaysia and discovered that the
NBIoT battery life depends heavily on the signal quality and latency of the communica
tion. When compared with Sigfox and LoRaWAN, NBIoT was found to have the worst
battery performance in similar measurements. Mads et al. [102] performs an experi
mental evaluation of first generation CIoT modules using Keysight UXM eNB emulator
and discovers that the battery life calculated by performing this study is only 10% shorter
than that of 3GPP estimations. Pascal et al. [103] performs a modeling study to perform
the power consumption analysis of NBIoT and LTEM in challenging, smart city environ
ments. The results from the study reveal that LTEM is 4% power efficient than that of
NBIoT in MCL 144 dBm to 154 dBm. However, even lower coverage levels NBIoT show
better battery life performance. Rudi et al. [104] performance comparison between PSM
and eDRX modes offered by NBIoT to find out which one can offer longer battery life in
a flood monitoring system deployment. The tests were performed by sending data using
HTTP protocol, and the results showed power consumption using PSM is 52% higher
than that of eDRX. Chunhe et al. [105] performs an experimental evaluation of power
consumption of NBIoT UE when exposed to complex electromagnetic interference. The
tests included sending UDP payload to a remote server using two different UEs, one with
cell reselection parameter ON and the second with cell reselection parameter OFF. It was
discovered that when the NBIoT UE is performing the network attach, and it can take
a longer time to perform the cell selection procedure when deployed in an area covered
with multiple NBIoT eNBs. The time taken to perform the cell selection directly affects
the device’s power consumption. Svetoslav et al. [106] performs an experimental evalu
ation of power consumption experienced by a NBIoT UE when sending data using three
different NBIoT networks in Germany. The results highlighted performance differences
in different NBIoT networks, and with network and peripheral optimization, it is possible
to achieve 10 years of battery life.

One can notice from the current research outcomes that different parameters such as
NBIoT UE, use of PSM and eDRX features, MNO networks, coverage levels at the de
ployment locations, etc. seems to affect the power consumption and the expected battery
life of the CIoT network. Although these results are very insightful, they lack the complete
picture of the power consumption performance of CIoT networks. This is in terms of the
use of multiple kinds of UE, use of multiple MNO networks (including NBIoT & LTEM),
and use of different transport protocols tested in different coverage conditions. Therefore
it was decided to perform an experimental evaluation of the power consumption of the
different communication modules used in this thesis using SaRaR410 and Pycom Gpy
[107]. The test was conducted by sending UDP and TCP packets using different MNO
CIoT networks in Denmark. The test setup used during the test consisted of

• The SaRaR410 and Pycom Gpy modules were controlled by using AT commands
to send and receive data.

• The remote server for sending the data was the same as all the othermeasurements.
The server was hosted in Frankfurt, Germany.

• The tests were conducted on the Technical University of Denmark (DTU) campus
from a location in LoS, NLoS, and deep indoor from the eNB present on campus.

• The tests were conducted in three locations, the first location had excellent signal
quality > 75 dBm, the second location where the signal quality drops below < 100
dBm, and the third where the signal drops below < 110 dBm.

• The tests were repeated using the same operators OP1 and OP2 as the rest of the
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Figure 5.34: Power measurement setup

tests in this chapter.

• The tests were conducted using both NBIoT and LTEM networks provided by both
the MNO.

Components used in the test setup:

Figure 5.34 shows the experimental setup contracted while performing the power con
sumption tests. The power measurement device used during the test is from Nordic
Semiconductors called nRF Power Profiler Kit 2 (PPK2) [108]. The nRF PPK2 supports
measurements of up to 1A current draw and has a very easytouse user interface to
conduct the measurements. The nRF PPK2 allows using a sampling frequency of up to
100000 samples per second. This allows us to detect minor fluctuations in the power mea
surements. The device used to calculate the power consumption is Arduino MKRNB1500.
The device uses the same microcontroller SAMD21 used in developing the final prototype
during the PhD project. Similarly, MKR1500 uses the same UBlox SARAR410 module
as the prototype device.

In order to conduct the measurements, the device needed to be connected to the nRF
PPK2 and to the computer to give AT commands to themodule. Therefore a custom board
was developed that allowed us to provide the power through the nRF PPK2 while allowing
the AT commands from the computer to pass through. The device power consumption
tests are performed after the device has been connected to the network. Also, while
performing all the tests, the antenna and the peripheral devices used were the same.
Therefore the only two variables while testing was the choice of transport protocol (either
UDP or TCP) used, coverage level, and the choice of the MNO. The results were obtained
by repeating the tests several times over several days to check for irregular behavior in
the network while sending the data. Some results obtained from the tests are highlighted
in this section, and the rest are summarised in a table at the end.

Figure 5.35 shows the complete power consumption graph recorded by sending a UDP
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Figure 5.35: Example of NBIoT UDP data transmission using OP2

Figure 5.36: Example of NBIoT TCP data transmission using OP1

packet using OP2. The device follows the following procedure when the UDP packet is
sent:

• A UDP socket is OPEN. This brings the device’s power consumption from idle mode
to active mode.

• Once the socket is OPEN, the data in HEX format is written to the socket and trans
mitted to the remote server.

• The remote server sends a DL acknowledgment when the data is received.

• The device stays in active mode for 8 more seconds before returning to idle mode.

Similarly, figure 5.36 shows the power consumption recorded by sending a TCP packet
using OP1. The device follows the following procedure when a TCP packet is sent:

• After the TCP packet is OPEN, the device changes from idle to active state and
performs a TCP 3way handshake.
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Measurement
for

NBIoT

OP 1
UDP

OP 1
TCP

OP 2
UDP

OP 2
TCP

RSRP
>100 dBm

110 dBm
<RSRP <
100 dBm

RSRP <
110 dBm

RSRP
>100 dBm

110 dBm
<RSRP <
100 dBm

RSRP <
110 dBm

RSRP
>100 dBm

110 dBm
<RSRP <
100 dBm

RSRP <
110 dBm

RSRP
>100 dBm

110 dBm
<RSRP <
100 dBm

RSRP <
110 dBm

Avg. Current
(mA) 68.82 72.73 No

connection 67.68 71.46 No
connection 62 66.85 117.99 63.23 62.31 137.14

Peak Current
(mA) 112.60 278.31 No

connection 108.82 266.78 No
connection 100.41 244.45 282.10 103.73 114.49 319.19

Transmission
Time in Seconds 8.44 9.45 No

connection 10.10 10.66 No
connection 11.46 11.73 28.98 13.32 15.05 54.46

Table 5.16: NBIoT power consumption tests

Figure 5.37: NBIoT TCP data transmission in RSRP < 110 dBm

• As soon as the 3way handshake is complete, the device sends a UL packet to the
remote server and waits for the TCP acknowledgment.

• Once the TCP acknowledgment is received, the TCP socket is closed, and the de
vice waits another 8 seconds before returning to idle mode.

Table 5.16 shows the average current, peak current, and the total transmission time for
both OP1 and OP2 by sending UDP and TCP packets over NBIoT. In the case of NB
IoT, OP1 has higher current consumption than that OP2 for both UDP and TCP data
transfer. At the same time, OP2 takes longer to transfer both UDP and TCP packets. In
the case of OP1, there were issues in sending the data at extremely low coverage levels.
This was mainly because the device was rebooting once the device was attached and
the data send command was issued. In the case of OP2, it was possible to measure the
current consumption in extremely poor radio conditions. As can be seen from the table,
the time taken to transmit the data transmission was 28.98 seconds and 54.46 seconds
for UDP and TCP data transfer, respectively. The considerable time delay in sending
the packets was due to repetitions observed in the NBIoT network. This behavior of the
NBIoT network can be observed in figure 5.37.

Table 5.17 shows the average current, peak current, and total transmission time observed
while performing the LTEM power consumption tests using OP1 and OP2 in different ra
dio conditions. As can be observed from the current consumption of OP2 is higher than
that of OP1 in good radio conditions, whereas OP1 has higher current consumption in
poor radio conditions than that of OP2. Similar to the NBIoT testing, the device showed
similar behavior in the extremely poor radio conditions for OP1. One hypothesis for device
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Measurement
for

LTEM

OP 1
UDP

OP 1
TCP

OP 2
UDP

OP 2
TCP

RSRP
>100 dBm

110 dBm
<RSRP <
100 dBm

RSRP <
110 dBm

RSRP
>100 dBm

110 dBm
<RSRP <
100 dBm

RSRP <
110 dBm

RSRP
>100 dBm

110 dBm
<RSRP <
100 dBm

RSRP <
110 dBm

RSRP
>100 dBm

110 dBm
<RSRP <
100 dBm

RSRP <
110 dBm

Avg. Current
(mA) 54.11 58.62 No

connection 60.54 65.39 No
connection 106 112.77 108.29 108.95 111.34 114.72

Peak Current
(mA) 148.98 333.74 No

connection 146.61 336.59 No
connection 180.07 225.53 308.87 195.97 234.37 354.73

Transmission
Time in Seconds 7.055 8.11 No

connection 7.790 9.686 No
connection 6.52 6.647 8.770 7.33 8.599 10.52

Table 5.17: LTEM power consumption tests

Measurement
for

LTEM

OP 1
UDP

OP 1
TCP

OP 2
UDP

OP 2
TCP

MKRNB
1500

PYCOM
GPY

MKRNB
1500

PYCOM
GPY

MKRNB
1500

PYCOM
GPY

MKRNB
1500

PYCOM
GPY

Avg. Current
(mA) 54.11 107.39 60.54 149 106 171.79 108.95 169.60

Peak Current
(mA) 148.98 204.05 146.61 202.82 180.07 290.23 195.97 288.60

Transmission
Time in Seconds 7.055 6.29 7.790 6.237 6.52 6.250 7.33 6.42

Table 5.18: LTEM power consumption tests MKRNB 1500 vs Pycom gpy

reboot in the case could have been that the total power consumption jumped above 400
mA, and the onboard voltage regulator was not equipped to support such a high surge
in current. This led to rebooting of the device every time the message transfer was at
tempted. OP2 overall had taken less time than that OP1 while sending the packets once
the send command was issued to the module.

The average current consumption in idle state MKRNB 1500 was recorded to be 31.28
mA, whereas for Pycom Gpy was 63.74 mA. Considering the idle mode current draw, it
was decided to compare the power consumption of both of these boards using the OP1
and OP2 in good radio condition (RSRP > 100dBm).

Table 5.18 shows the average current, peak current, and transmission time recorded while
testing the performance of MKRNB 1500 and PycomGpy devices using LTEM technology
from OP1 and OP2. The current consumption values in the table include these boards’
idle mode power consumption. Even after considering the idle mode current consumption,
Pycom Gpy consumed much higher current than MKRNB 1500 during data transmission.
At the same time, the transmission time Pycom Gpy takes is lower than that of MKRNB
1500.

Considering all the power measurement tests, a few observations can be made:

• In the case of CIoT, the device’s power consumption depends on the signal condi
tion the device is operating under.

• CIoT networks offered by different MNO have different power consumption when
tested using the same end device and similar network conditions.

• Different CIoT end devices have different power consumption when tested against
each other under similar network conditions.

• TCP tends to consume more power and takes a longer time for transmission than
UDP.

• Different MNO network configuration settings and protocol stack implementation on
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Figure 5.38: TSMA6B Radio Frequency scanner

devices contribute to different power performances of one particular protocol.

5.7 Other use cases for continuous
monitoring system using CIoT

During this project, there was an active collaboration with medical experts, doctors in
different specializations, and patients. During one of the feedback sessions towards the
end of the PhD project, it was discussed what other use cases, such a realtime heart
monitoring system and, in general, CIoT, could be used for.

One such application was to monitor the patients transported to the hospital in case of an
emergency. Although modern ambulances have very professional medical grade 12 lead
ECG monitoring systems, these systems are often only capable of recording data locally.
Therefore, paramedics must keep the hospital doctors updated about the patient’s vitals.
Therefore the intention was to see if the system developed during this PhD can be used
for transmitting this data in realtime to the doctors who are waiting for the ambulances to
arrive at the hospital so that they can be better prepared. The initial idea was to see if this
system could be used to treat patients with Thrombosis [109].

In order to test the use of CIoT in such a scenario, we needed to make sure there was
adequate coverage of the technology so that the data could be transferred remotely when
the vehicle was traveling at high speed.

The first step in building such a system was to carry out some experiments to measure the
CIoT coverage around the paths taken by the ambulances. For this reason, we collabo
rated with Roskilde Hospital, Næstved region, and Ringsted region. The coverage of the
CIoT technologies was measured using TSMA6B Radio Frequency Scanner developed
by Rohde & Schwarz [110].

Figure 5.38 shows the overview of the frequency scanner.

The TSMA6B RF Scanner supports scanning multiple cellular technologies deployed in
the spectrum of 350MHz to 6 GHz. The TSMA6B scanner can record radio parame
ters cell id, Received Signal Strength Indicator (RSSI), Reference Signal Received Power
(RSRP), Reference Signal Received Quality (RSRQ), Tx Power, etc., and crossreference
the measurements to a GPS location. All the data recorded by the scanner is then ex
ported to a CSV file for further processing.
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(a) LTEM: RSRP Value Along the Route (b) LTEM: RSRP in Næstved City

Figure 5.39: LTEM Coverage Measurement

In order to perform the experiment, the TSMA6B scanner was mounted on top of an
ambulance that was in service. This meant that we could record the network coverage
along that path every time the ambulance was out on an emergency call. This was very
interesting because we could capture data from a real incident.

In order to perform the experiment, the scanner was set to measure the performance of
three technologies NBIoT, LTEM, and LTE. In the following section, the results obtained
from each of the tests are discussed.

Figure 5.39 shows the coverage measurement of the LTEM signal between Næstved
City and Roskilde Hospital. The coverage RSRP values are recorded between 45 dBm
to 107 dBm. Figure 5.39a shows the RSRP between Næstved city and Roskilde along
the highway, whereas figure 5.39b shows the LTEM coverage in the city of Næstved. As
can be seen from the two different graphs, the LTEM coverage in the city is much better
than that of the highway.

Figure 5.40 shows the observed NBIoT coverage measurements during the tests. As
seen from the different figures, NBIoT has worse coverage than that LTEM. This is es
pecially evident along the highway as can be seen from figure 5.40a, the NBIoT coverage
in the city of Næstved is better seen from figure 5.40b. The range of RSRPmeasurements
for NBIoT is between 40 dBm to  100 dBm. Given that NBIoT technology does not sup
port connection handover functionality at the time of testing. Therefore the technology has
minimal use for this application, given that the ambulances on call are expected to move
at a very high speed.

Figure 5.41 shows the LTE coverage measurements during the measurement. Figure
5.41a shows the RSRP measurement values for the highway measurements between
Næstved city and Roskilde hospital, whereas figure 5.41b shows the LTE coverage in the
Næstved city. The RSRP values recorded during these measurements ranged from 58
dBm to 120 dBm. When observed closely, it was discovered that the LTEM performance
during this measurement was worse than that of the LTE performance. This was espe
cially surprising given that LTEM coverage performance is expected to be better than that
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(a) NBIoT: RSRP Value Along the Route (b) NBIoT: RSRP in Næstved City

Figure 5.40: NBIoT Coverage Measurement

(a) LTE: RSRP Value Along the Route (b) LTE: RSRP in Næstved City

Figure 5.41: LTE Coverage Measurement
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of LTE.

After further investigation into the scanning data and looking at the deployment of the eNB
deployments around the test path, a probable hypothesis was formed.

• In Denmark, three operators have the radio network deployed on various technolo
gies, but the nationwide CIoT coverage deployment is only provided by two oper
ators. Therefore, it was discovered that when the scanner was measuring the LTE
RSRP performance, the results were based on the coverage from three operators in
the region. However, when the scanner measured the CIoT coverage, especially
the LTEM coverage, the measurements only included coverage from two opera
tors. Therefore, the difference in the coverage could be because of the lack of MNO
providing LTEM coverage.

• At the time of measurements, the TSMA6B scanner was set to scan for the dif
ferent technologies and not the specific frequency band. The TSMA6B scanner is
capable of scanning between the spectrum of 350MHz to 6 GHz. When performing
these measurements, the CIoT is only deployed in band 20 (800 MHz) in Denmark,
whereas LTE is deployed in multiple bands. This could be responsible for further
improving the coverage of LTE over LTEM.

5.8 Summery
This chapter measures the CIoT network KPI by evaluating experiments in indoor, deep
indoor, outdoor, remote outdoor, and in roaming scenarios. The CIoT networks were
further tested to determine the number of devices that can simultaneously be connected
to a single eNB in a given area. The power consumption of different CIoT communica
tion modules was evaluated by sending TCP and UDP packets to a remote server using
CIoT technologies. Furthermore, in order to find alternate use cases for the use of a con
tinuous ECG and HR monitoring system, the use of CIoT was evaluated by measuring
the coverage of CIoT networks along the highways between Næstved City and Roskilde
Hospital.

The tests highlight that the performance of the CIoT networks in an indoor and an outdoor
scenario is stable with fewer observed variations in the calculated network KPI parame
ters. In the case of the indoor tests, OP1 LTEM and OP2 NBIoT has experienced the
most variation in the E2E latency performance. Overall, the CIoT indoor tests indicate
that OP2 NBIoT has the worst performance compared to the rest of the tests. Similar
observation can be made from the outdoor CIoT KPI tests, that the OP2 NBIoT network
is subpar with the rest of the CIoT networks.

The CIoT, especially the LTEM network, suffers degradation in the measured KPI when
testing in deep indoor and deepoutdoor conditions. In many locations where there was
no adequate LTEM coverage, it was discovered that we could find coverage for other
cellular communication technologies such as 2G and LTE. This was identified by per
forming network tests using an R&S TSM6B radio frequency scanner. The scanner also
highlighted the absence of band 20 in deep indoor and deepoutdoor locations, further
supporting the findings from the KPI testing. Coverage from 2G was present in almost all
the locations, whereas LTE coverage was observed in limited locations while performing
the deep indoor tests. Similarly, for the remote outdoor test, the scanner only reported the
presence of 2G coverage, and no LTE coverage was observed. The absence of band 20
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in such remote locations highlights the limitations of using only a single frequency band
to deploy the CIoT networks. Another observation from the remote outdoor testing of
the CIoT networks was the extended network attach times experienced by the test de
vices. In most cases, NBIoT experienced more than 5 minutes delay before the device
could find the correct network to attach. This issue was more prominent in the NBIoT
network deployed by OP2. One reason for such an extended network attach delay might
have been the operator settings stored onto the SIM card [111]. Long delays in a network
connection may lead to degradation in the battery life of a CIoT device.

When the CIoT networks were tested after three months intervals, there were some no
ticeable changes in the overall KPI performances across different MNO networks. The
noticeable finding during this test was the absence of LTEM coverage for OP1 during
the deep indoor and outdoor tests. A closer look into the test results revealed that none
of the CIoT networks had coverage at point 1 while performing the outdoor KPI tests.
After performing the tests a few days apart, the tests successfully highlighted a very pe
culiar behavior of the CIoT networks and how a network outage scenario can affect the
deployed IoT devices. This presents a challenge, when critical IoT applications that are
realing on two MNO, one as primary and other as secondary to increase the reliability of
the communication link.

While performing the network roaming tests, it was observed that the performance of KPI
CIoT is different in different countries even though the devices are roaming in the same
MNO network. In our testing, we discovered that the home network NBIoT KPI perfor
mance of the MNO is much worse than that of the roaming networks. Using different RAN
vendors and misaligned radio parameters could be responsible for such a big difference
in the network KPI. These differences can affect application’s performance, especially the
device’s battery performance, if these differences are not considered while developing an
IoT device. Another important finding from these roaming tests was the roaming architec
ture from different MNO. OP1 has followed the traditional roaming implementation where
the device’s internet traffic exits from the Danish packet gateway. In contrast, in the case
of OP2, the data is pooled into one country instead of different packet gateways for differ
ent countries. This behavior was identified by capturing incoming packets on the remote
server and checking the source IP for different packets.

Network capacity tests for continuous data transmission highlight that the cell capacity of
LTEM networks per sector is six devices when attached to an unloaded cell. In the case
of NBIoT, it is seven devices, although only four can experience a stable network per
formance. The cell capacity of LTEM reduces to only three devices per cell when tested
in peak traffic conditions, but for NBIoT, it remained the same. This strongly suggests
that the NBIoT is deployed in a guardband configuration for the tested MNO and cell
capacity of guardband deployment for NBIoT is not affected by the cell traffic. NBIoT
tests show exponential degradation in performance as the number of connected devices
increases. The cell capacity results indicate that the performance of the LTEM networks
is directly affected by the available resources in a given cell sector, and CIoT might not
have any reserved radio resources to guarantee the performance.

Power consumption tests show that the peak current consumption while transmitting data
using different MNO results in different power consumption for the same end device. It
was also highlighted that different IoT end devices consume different power when tested
on the same MNO network under similar network conditions. The tests highlight the vast
differences in the implementation of CIoT networks by different MNO and RAN vendors,
as well as the manufacturers of the IoT chipsets.
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Similar to the observations from the CIoT KPI tests, the LTEM performance degrades
as the number of eNB in a given area is reduced. This was observed while testing the C
IoT coverage along the highways between Næstved and Roskilde using an R&S TSM6B
radio frequency scanner.

LTEM is the primary communication technology used in transferring ECG and HR mon
itoring data from the patients in the application designed during this project. Therefore
there is a need to find alternative ways of ensuring an active communication link between
the end device and the remote server.
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6.1 Improve reliability of Data transfer
As it was highlighted in the Chapter 5 at many test locations the performance of the Cel
lular Internet of Things (CIoT) networks was not consist. This was especially evident in
poor radio conditions. In several discussions with the medical professionals it was high
lighted that how important is for the device to maintain some sort of communication with
the backend systems. This was specially important given that the one of the motiva
tion factor behind developing this system was to empower patients by presenting them
with summery of their health parameters and to improve the Quality of Life (QoL) post
Cardiovascular Disease (CVD). Therefore in this section we focused on developing and
incorporating different techniques to improve the reliability of data transfer from the proto
type device. The overall goal for this section was to maintain some sort of communication
link with the backend systems if the primary communication technology fails. In this case,
the primary communication technology was LongTerm Evolution Machine Type Commu
nication (LTEM). In order to improve the reliability of the communication following two
methods were implemented.

• Use of Multiple Radio Access Technology (MultiRAT)

• Use of DeviceTODevice (D2D) communication

In following subsections we will go over both the methods, the implementations, and per
formance.

6.1.1 Use of Multiple Radio Access Technology (MultiRAT)
The use of Multiple Radio Access Technology (MultiRAT) means using more than one
Radio Access Technology (RAT) to send the information. In the case of this project,
there were two technologies were chosen to send the data. The first technology was
NarrowBandInternet of Things (NBIoT), a CIoT technology, and the second was Long
Range Wide Area Network (LoRaWAN). The reason for choosing both of these technolo
gies was that both of these technologies have nationwide coverage in Denmark.

In the case of NBIoT, the communication module used in the prototype device Ublox
SARAR412 supports it. Therefore, updating the device firmware to use NBIoT when the
primary communication technology (LTEM) is unavailable was just a matter of updating
the device firmware.
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Figure 6.1: MultiRAT Network Architecture

Figure 6.1 shows the MultiRAT Network Architecture. As it can be seen from the dia
gram, there was a new prototype developed using the same components as that of the
final enddevice prototype in section 3.5. The only changes were that the BLE module
Ublox NiNAB312 was not added to this prototype version, and NEMEUSMM002 commu
nication module was added. NEMEUSMM002 supports LoRaWAN and Sigfox commu
nication technologies and can be controlled using AT commands. The NEMEUSMM002
was connected to the SAMD21 microcontroller using URAT communication links. Due
to time constraints, the complete functioning of the complete MultiRAT system was not
performed. Instead working of each technology was verified individually.

6.1.2 DeviceTODevice (D2D) communication
DeviceTODevice (D2D) communication is where the end device or the User Equipment
(UE) can communicate with another UE directly, without or with minimal involvement from
the core of the cellular network. Widespread use of D2D communication happens in the
emergency networks such as Terrestrial Trunked Radio (TETRA) [112]. There might be
situations in which the RAT might not be accessible due to failures in a network. The un
availability of cellular networks affects various users. However, it is especially difficult for
CIoT devices, given that primary deployment of the CIoT technologies occurs in a single
frequency band. In the case of Denmark, all the Mobile Network Operators (MNO) have
deployed their LTEM and NBIoT networks on band 20 (800 MHz). This means these
devices will not be able to hand over to another band in case of network failure. In order
to mitigate such scenarios, 3rd Generation Partnership Project (3GPP) first talked about
D2D communication for Internet of Things (IoT) in release 12 by releasing a Proximity
Service (ProSe) architecture [113].

Figure 6.2 shows the ProSe architecture described in 3GPP release 12. The architecture
introduces a new Evolved Packet Core (EPC) entity called the ProSe function as well
as five new interfaces (PC1PC5) to connect different network elements. As per 3GPP
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Figure 6.2: Proximity Service (ProSe) Architecture with LTE [113]

release 12, there are three scenarios where this ProSe architecture can be used. These
three scenarios are described in Figure 6.3.

• In Coverage: In this scenario, the D2D communication can increase the total speed
of data transfer from the network to a particular UE. This means if UE1 is receiving
information from Evolved Node B (eNB), the path between eNB » UE2 » UE1 can
be used for sending more information simultaneously, effectively increasing the data
speeds for UE1.

• Out of Coverage: This scenario can mainly be used in emergency cases where
the network infrastructure is unavailable for communication. In this case, UE1 and
UE2 can communicate with each other directly using their own set of wireless fre
quencies. In this scenario, the UE can use both licensed as well as unlicensed
frequencies.

• Partial Coverage: In this scenario, the UE, which is in coverage, can be used as a
relay to extend the network’s coverage. In this case, UE1 acts as a relay to extend
the eNB coverage to UE2, which otherwise is out of coverage. Therefore, UE1
can forward the data from UE2 to eNB. This scenario significantly affects the UE’s
battery life connected to the eNB.

In release 14 from 3GPP, new work started on extending the D2D functionality to Cellular
IoT devices. The work focused on simplifying the D2D channels and interfaces for NB
IoT and LTEM for Machine Type Communication (MTC) applications [114]. Unfortunately,
the efforts of using D2D MTC communication have been shifted to applications of D2D
in vehicular communication. This implies that the work started in 3GPP release 14 of
enabling the use of D2D in MTC applications has yet to be standardized to the best of our
understanding from the 3GPP releases [115].

As observed in the deepindoor testing of CIoT networks, there were several locations
in the underground tunneling system where no coverage was available from NBIoT and
LTEM. Therefore, to address such situations, it was decided to continue working with the
D2D concept and develop a hybrid approach using MultiRAT and D2D communication.

At the time of implementation of D2D in the project, there were no commercially available
CIoTmodules that supported the use of ProSe architecture proposed in 3GPP standards.
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Figure 6.3: Deployment scenarios supported by ProSe architecture [113]

Therefore, to avoid a complete loss of connectivity, it was decided to use Long Range
(LoRa) Chip to Chip communication to develop a working D2D setup.

6.1.3 Using Long Range (LoRa) and Long Range Wide Area
Network (LoRaWAN) for DeviceTODevice (D2D)
Communication

Konstantin et al. [116] highlights the benefits and drawbacks of implementing D2D com
munication over LoRaWAN and furhter go on to implement network assisted D2D commu
nication protocol for commercial available LoRaWAN devices. Akram et al. [117] demon
strates use of LoRa D2D in transferring image sensor data in a forest environment. The
authors further go on to implement a new scheme to overcome the bandwidth limitations of
LoRa D2D communication. Jaehyu et al. [118] develops a method to secure D2D com
munication link between two LoRa devices. This is achieved by sharing cryptographic
keys between the two devices that are used for manual authentication, confidentiality,
and integrity of the communication. Nazmus et al. [119] have presented latency analysis
for indoor applications of LoRa D2D communication. The experimental study is performed
by varying the LoRa Spreading Factor (SF) and the communication bandwidth. The re
sults show that, in case of LoRa D2D communication the lowest latency is observed with
SF 7 and bandwidth of 500 kHz. Luca et al. [120] in their work try to use LoRa D2D
to overcome the challenges presented by WiFi and cellular technologies in case of the
emergency scenarios. A proposed solution, A LoRabased Mobile Emergency Manage
ment System (LOCATE) which includes a mobile app interface, can be used to make short
emergency communication over long distances. Alves et al. [121] evaluates the perfor
mance and energy efficiency of LoRa D2D. The authors go on to propose a network coded
cooperations (NCC) where LoRa capable of sending combinations of multiple frames
without affecting energy efficiency of the entire system.

The research related to use of LoRa for D2D indicates that the technology can be used for
situations where the primary device is outside of regular network coverage. Most of the
implementations of LoRa D2D focused on deploying the setup in a confined geographical
location. The application developed in this project wanted to achieve exactly opposite of
that, therefore we focused on developing a mechanism that can distribute the LoRa D2D
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communication frequencies dynamically based on the current location of the end device.
The approach described in this section could help in implementing a nationwide, dynamic
LoRa D2D network that can be used by the critical data delivery applications in case
of complete loss of primary communication technology. The LoRa D2D channel, in this
context is only used for sending a ”Keepalive” messages, to ensure the bare minimum
communication with the remote servers.

This section gives an overview of the LoRa D2D setup, which was developed to mitigate
the complete loss of connectivity in deep indoor locations. In section 5.2.2, there were
several points in the deep indoor coverage where no LTEM or NBIoT coverage was
found. To avoid complete loss of data in such corner cases, it was decided to develop a
D2D system by combining LoRa and LoRaWAN technologies and build an experimental
setup based on the partial coverage scenario.

Figure 6.4 shows the endtoend D2D experimental architecture using CIoT as the pri
mary communication technology and LoRa/LoRaWAN as the fallback D2D communica
tion technology. The setup mainly consists of two communication channels; when the
device is in good radio conditions, it will send data using the CIoT. When the device is in
an outage scenario, it will send data using the fallback D2D setup.

When the device is in good radio conditions and is powered ON for the first time, it per
forms the initial D2D setup shown in Figure 6.5.

The initial D2D setup procedure involves accessing available LoRa frequencies in the
surrounding area.

1. End Device uses Representational State Transfer (REST) Application Programming
Interface (API) provided by the application server to send its geolocation coordi
nates.

2. The application server uses these coordinates to compile a list of available LoRa
D2D devices and their default channel frequency to the end device as a REST re
sponse. The list of available frequencies can be controlled by defining the radius
parameter in the application server.

3. If the end device changes its location, it can send updated location coordinates to
the application server to get the new list of available D2D frequencies.

Figure 6.6 shows the Interaction between the application server and end device using
REST APIs. The device is using LTEM to send and receive these JSON messages. The
application server’s response is stored in a file called ”jsondata” on the communication
module SARAR412. This file is updated every time a new list of frequencies is available.

Figure 6.7 shows the physical locations on which the LoRa DeviceTODevice (D2D) de
vices are deployed. In this case, the IoT device is the one that has no CIoT connectivity
and is powered by an internal battery. LoRa DeviceTODevice (D2D) device runs on
external power and always listening incoming messages on its default frequency. The
location of the IoT device matches the test location in section 5.2.2, where no coverage
was measured from CIoT technologies.

When the device enters into a location where there is no CIoT communication available,
it performs a partial coverage communication sequence shown in figure 6.8 to try and
maintain a fallback connection with the application server. The partial coverage commu
nication sequence involves the following steps:
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End-Device Server

Location of the End-device

Frequencies of available D2D devices

Change in Location 

Updated D2D frequencies

Figure 6.5: Initial D2D Setup Procedure [122]

Figure 6.6: Interaction between the end device and application server [122]
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Figure 6.7: Deployment of the LoRa Devices [122]

End-Device D2D device LoRaWAN 
Network server

reach d2d device at frq1
Timeout

10
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reach d2d device at frq2

ACK on frq2 with key

Send data to d2d device on frq2

Register and activate LoRaWAN

Send Data received over D2D link

Figure 6.8: Partial Coverage Communication Sequence [122]
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Figure 6.9: Data Delivery to LoRaWAN Network Server[122]

1. The device uses the list of frequencies stored in the ”jasondata” file on the com
munication module to send a ”Hello” message on every LoRa frequency. After the
message is sent, the timeout period before the device switches to the next frequency
is defined as 10 Sec. This is a preconfigured time setting and can be changed if re
quired. This value was chosen by performing some initial DeviceTODevice (D2D)
tests on the university campus and depended on the device’s Spreading Factor (SF).
During this experiment, the SF was set to 12. In LoRaWAN, the SP varies from SP7
to SP12; SP7 offers the highest bitrate, whereas SP12 offers the most extended
range possible.

2. Once the LoRa DeviceTODevice (D2D) device has received the hello message,
it sends back an acknowledgment and a secret key. This key is used by the IoT
device to validate the identity of the LoRa DeviceTODevice (D2D) device.

3. Once the LoRa DeviceTODevice (D2D) secrete key is validated by the end device,
it sends the actual payload to the LoRa DeviceTODevice (D2D) device using the
same channel.

4. Once the LoRa DeviceTODevice (D2D) device receives the data, it changes its
mode of operation from LoRa to LoRaWAN and starts the network registration pro
cess towards a LoRaWAN network server. Once the device is registered on the
network server, it forwards the data received from the IoT end device to the net
work server. Depending upon the network server, the data can be pushed to our
application server using REST APIs.

5. Once the data from the IoE end device has been forwarded using LoRaWAN, the
DeviceTODevice (D2D) device changes its mode of operation again to LoRa.

Figure 6.9 shows the DeviceTODevice (D2D) messages sent from the IoT device us
ing the DeviceTODevice (D2D) LoRa link. The data terminated in the LoRa network
server is sent from the LoRa DeviceTODevice (D2D) devices. During the experiment,
the data was sent thrice to the network server at three different time intervals. During
the experiment, the last byte of the data was kept unique to find out which of the LoRa
DeviceTODevice (D2D) device was sending the data. As it can be seen from the figure,
the payload that was received by the LoRaWAN network server always had the same
value 646174615f6431, which is a HEX representation of ”data_d1” meaning for all three
transmissions the DeviceTODevice (D2D) device one was used.

6.2 Summery
This chapter focuses on doing an experimental evaluation of different techniques to im
prove the reliability of the communication link between the end device and the remote
server. The chapter explores possibilities of using MultiRAT and D2D communication
using LoRa to establish a fallback keepalive channel between the end device and the
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server. The chapter also includes the development of a new prototype that combines
both the approaches of MultiRAT and D2D communication to improve the reliability of
the CIoT technologies when in outage scenario. Furthermore, the chapter includes the
development and experimental validation of the LoRa DeviceTODevice (D2D) hand
shake method that can be used to transfer the end device data to the remote server by
combining the use of LoRa and LoRaWAN technologies.
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7 Conclusion and Future Works
The PhD thesis addresses the use of novel Cellular Internet of Things (CIoT) technolo
gies in telemedicine and continuous monitoring applications. The project evaluates a Mo
bile Network Operators (MNO) infrastructure’s performance to support critical application
needs. During the PhD project, several networks Key Performance Indicator (KPI) tests
were conducted to evaluate the performance of CIoT technologies. The primary ques
tion this PhD thesis focuses on is to verify the use of publicly deployed CIoT networks for
deploying critical Internet of Things (IoT) applications with demanding network Quality of
Service (QoS) requirements. In order to make a realistic evaluation of the CIoT networks,
the author first builds a continuous ECG and HR monitoring application for patients with
Cardiovascular Disease (CVD) by following Participatory Design methodology and then
goes on to evaluate the CIoT network Key Performance Indicator (KPI). The study is di
vided into two parts. Part one focuses on building an EndtoEnd (E2E) system, including
the design of the end device and the data collection, storage, and visualization system,
whereas the second part focuses on performance KPI evaluation of CIoT networks.

The first part of the thesis focuses on designing different prototypes of the end device that
can measure Electrocardiogram (ECG) and Heart Rate (HR) using Movesense and Savvy
ECG monitors. The designed end device uses LongTerm Evolution Machine Type Com
munication (LTEM) as the primary communication technology to send data to a data col
lection, storage, and visualization system called heartrater.live that is hosted on a server
infrastructure at Technical University of Denmark (DTU). The part of the project follows
Participatory Design that involves close collaboration with clinical researchers, medical
professionals, and doctors from Denmark, Sweden, USA, and Japan.

The second part of the thesis focuses on performing several experiments to evaluate the
KPI for CIoT technologies. The results from testing CIoT in an indoor and outdoor en
vironment suggest that the technology can only support critical applications in some sce
narios. When the CIoT technologies are tested for continuous data transfer for several
days, it was discovered that the KPI parameters differ between different MNO network de
ployments. Another outcome from the outdoor tests is that in the case of possible Evolved
Node B (eNB) failure, the performance of LongTerm Evolution Machine Type Commu
nication (LTEM) suffers the most creating a complete outage scenario. In the case of
the deepindoor and remoteoutdoor tests, the LTEM network performance tends to suf
fer the most. When the CIoT technologies were tested over three months, a noticeable
performance difference was observed in the network KPI. Such variations in the network
KPI can affect the performance of the IoT application. One way to adapt to the changing
behavior of the CIoT networks would be to deploy applicationspecific probes that are
designed to periodically verify whether the KPI performance of CIoT networks is within
the expected range. This approach can help to adapt network degradation and help avoid
complete loss of communication.

The testing of CIoT networks in roaming scenarios exposes a significant performance
gap between the NarrowBandInternet of Things (NBIoT) network deployed by the same
MNO in different countries under similar network conditions. The possible reason for
such a mismatched performance could be using different Radio Access Network (RAN)
vendors and up to some extended mismatching radio parameter configurations. It was
also discovered that different MNO had chosen different roaming architectures for their
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CIoT network deployment. Some MNO prefer sending data back to the home country of
the Subscriber Identity Module (SIM), whereas others prefer pooling data to one country
and sending it out through a common packet gateway. This approach might create chal
lenges for the IoT applications that are part of the new directive on security of Network
and Information systems (NIS) and the national autonomy restrictions imposed in the EU.

The network capacity tests indicate that in the case of LTEM, only six simultaneous de
vices can send data without experiencing performance degradation when the cell is un
loaded. If we assume that there are 4000 base stations in the whole of Denmark sup
porting LTEM, we can only have a maximum of 72000 devices simultaneously sending
data. This raises a big question on the scalability of the continuous remote heart motoring
application designed during this project.

The power measurement tests conducted using different communication modules and
different MNO networks highlight a big difference between these network’s peak power
consumption levels for different communication protocols in different coverage levels. The
possible observed difference in the power levels could be because of the difference in the
RAN vendors used for CIoT deployments, different RAN parameters, different software
releases of CIoT, differences in the design of communication chipsets, etc.

Combining all the outcomes from different tests performed in this project, we believe that
LTEM and NBIoT networks are not fully matured yet to support requirements imposed
by continuous critical applications. Perhaps there is a need to create a substandard that
can strictly impose the QoS requirements on these networks. Similar to Global System
for Mobile Communications  Railway (GSMR), which is a separate standard for railway
communication over a generic GSM standard, there is a need to create NBIoTc and
LTEMc, where the c stands for explicitly designed for critical applications.

The contributions of the document can be summed up as follows:

Chapter 1 introduces the research questions and the current challenges in the field, and
Chapter 2 focuses on providing core technical concepts and working principles of different
technologies used during this PhD project.

Chapter 3 describes the different arguments for developing a custom IoT device that can
communicate with multiple health sensors, receive data from them, and send it to a remote
server location via CIoT technologies. The discussion begins with the concept and the
vision behind developing such a hardware device. The next part of the chapter focuses on
developing three different prototypes of IoT devices, each with substantial improvements
compared to the previous version. The chapter also includes evaluating different heart
monitoring sensors and integrating those sensors with the IoT device. The final prototype
closely resembles the vision for a continuous ECG and HR monitoring IoT device devel
oped by following the Participatory Design methodology involving medical professionals,
clinical researchers, and the CVD patients.

Chapter 4 evolution of the data collection and storage system and data visualization plat
form developed as a part of this PhD project. The different versions of the system proto
type were developed closely following Participatory Design methodology involving med
ical professionals, clinical researchers, and CVD patients. The final version of the de
signed system can accept continuous monitoring data from the developed IoT prototype
and onceaday measurements containing step count, blood pressure, and sleep quality.
The designed system features two visualization tools: a web portal called heartrater.live,
designed specifically for medical professionals to visualize data from multiple profession
als at once, and an Android app eMed, targeted for individual patients. The system can
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also process the incoming ECG data using an Machine Learning (ML) algorithm to classify
the normal and abnormal patterns present in the data.

Chapter 5 focuses on evaluating the performance of CIoT technologies in different phys
ical environments. The tests were designed to measure E2E latency, bitrate, and Packet
Drop (PD) in different network conditions. The tests were performed in indoor, deep in
door, outdoor, and remote outdoor environments. In most test scenarios, it was concluded
that both LTEM and NBIoT perform well in good radio conditions. On the other hand,
the network performance for LTEM suffers the most in poor radio conditions than that of
NBIoT. When the CIoT tests are performed after three months, the results indicate that
the performance of the CIoT varies over time.

Furthermore, similar tests were conducted in a roaming environment using a Nordic MNO.
The test results show significant variation in the network performance, especially for NB
IoT. The observed differences might be due to the RAN deployed in these countries
and the radio resources allocated for the CIoT technologies. The chapter also gives
an overview of power usage for different IoT modules using TCP and UDP to send data
to an application server CIoT technologies. The results highlight the difference between
peak power consumption levels experienced by different protocols when data is sent us
ing different communication modules using different MNO CIoT deployments. The chap
ter includes experiments verifying the capacity of the eNB to handle simultaneous data
transmission from several IoT devices. This test aimed to identify the scalability of the
developed continuous remote ECG and HR monitoring application. The results indicate
that in the case of LTEM, one sector of the eNB can support a maximum of six continu
ously transmitting devices. In contrast, in the case of NBIoT, that number is four. These
results are MNO specific and may vary based on the available of LTEM bandwidth and
deployment modes NBIoT (inband, guardband, etc.). Finally, the chapter includes tests
conducted to understand the usability of the developed continuous ECG and HR moni
toring system in other applications within healthcare. The results show that the LTEM
performance is dependent on the number of eNB deployed in the region, and it gets worse
when the tests are conducted in areas where the eNB deployment is scattered.

Chapter 6 focuses on developing different solutions to improve the reliability of the data
transfer by using Multiple Radio Access Technology (MultiRAT) and DeviceTODevice
(D2D) communication techniques using LoRa and LoRaWAN. The chapter experimentally
validates the D2D handshakemethod that can send the end device data to a remote server
by combining LoRa and LoRaWAN technologies to enable a ”keep alive” link in case the
primary communication technology fails.

7.1 Future Research Directions
The continuous ECG and HR monitoring system can be used as an intervention for a
Randomise Control Trial (RCT) in case of CVD patients rehabilitation study. Studying
the likelihood of CVD patients and medical professionals adapting to using this system
and including it in their everyday use will be exciting. Another area to focus on could
be improving the range of health sensors that the device currently connects with; adding
seamless integration with the weight scale, sleep sensor, pedometers, etc., will improve
the quality of patient data collected and help remove humaninduced errors. An obvious
continuation of the developed system will include security features in the further develop
ment of the system. This can be done either by implementing low power, less complex
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IoT encryption algorithms that will have less impact on the power usage of the devices.
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for drone communication above 450 feet”. In: 2023, p. 6

Thesis Collaborations
1. Saqib Hameed and Oliver Isling Pærregaard. Remote monitoring of heart patients

using 5G & IoT. DTU Department of Photonics Engineering, 2021

The collaboration with students during the time of the thesis focused on the following
aspects:

(a) Improving the stability of the Bluetooth Low Energy (BLE) connection link.

(b) Validation of the working of the final prototype.

(c) Validation of the working of EndtoEnd (E2E) continuous Electrocardiogram
(ECG) and Heart Rate (HR) monitoring system in different environments.

(d) Development of the Android app eMed.

2. Mathilde Tannebæk and Naja Jean Larsen. Development of API and User Interface
for visualization of Heart sensor data. DTU Department of Applied Mathematics and
Computer Science, 2021

The collaboration with students during the time of the thesis focused on the following
aspects:

(a) Creating a relevant data visualization layer to view the monitoring data sent by
patients. This included data points measured once a day and the possibility of
viewing the ECG and HR measurements in realtime.

(b) A generic approach to creating different components in the system which can
function in decoupled state and can easily be extended or replaced if required.

(c) Ability to retrieve data from the backend system by means of Representational
State Transfer (REST) Application Programming Interface (API) that can be
consumed by other applications.

(d) Validation of the designed system by experts in the User Experience field and
medical professionals.

This section 4.2.2, describes the key outcomes from the bachelor project and high
lights some important changes in the system overview.

3. Yun Ma. The application of machine learning in the field of intelligent medical data
analysis. DTU Department of Electrical and Photonics Engineering, 2022

The collaboration with students during the time of the thesis focused on the following
aspects:

(a) Design and verification of Machine Learning (ML) model to classify the incom
ing ECG into normal and abnormal pattern.
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A Clinical Feedback
A.1 Workshop with Patients
Aim:

The aim of the workshop was to understand requirements from patients and their choices
when it comes to the choices for ECG sensors and HR monitors.

Date:

June 2019

Participants:

CVD patients, clinical researchers, medical doctors from Viborg and Skive cardiac reha
bilitation center.

Place:

Viborg, Denmark.

Outcome related to the project:

Information and requirements about the expected behaviour of the continuous remote
monitoring system according to the end users (i.e., medical professionals and CVD pa
tients)

A.2 Danish Japanese Technology
Workshop

Aim:

The aim of the telecardiology workshop was to discuss use of different technologies that
are used in treating patients with CVD

Date:

June 2019

Participants:

clinical researchers in the field of telemedicine and telecardiology, industries from Japan
designing healthcare equipment and sensors, technical experts in the field of telemedicine.
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Place:

Aalborg University, Denmark.

Outcome related to the project:

Understanding the SateofArt when it come to healthcare devices used in telecardiology,
digital platforms platform, and conceptual validations for a need of continuous monitoring
using of IoT technologies.

A.3 TTRN PhD Summer School: 01
Aim:

The aim of the summer school was to present the conceptual idea of remote monitoring
system using IoT technologies and receive feedback.

Date:

August 2019

Participants:

Telemedicine and telemonitoring researchers from USA, AAL, SDU, and DTU.

Place:

SDU University, Denmark.

Outcome related to the project:

Basic understanding of the clinical domain and what not to do when designing a critical
monitoring system

A.4 Project Workshop: 01
Aim:

The aim of the workshop was to kick start the discuss for using Low Power Wide Area
Network (LPWAN) IoT technologies for remote monitoring of CVD paients.

Date:

September 2019
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Participants:

Telemedicine researchers from AAU and technical experts.

Place:

Aalborg University, Denmark.

Outcome related to the project:

1. Continuous vs ondemand use of remote monitoring of CVD patients using LPWAN
IoT.

2. Different use cases and possible scenarios, as well as stakeholders that can benifit
from the use of continuous remote heart monitoring IoT system.

A.5 Outpatient visit
Aim:

The aim of the activity was to speak with actual CVD patients to understand their feedback
on use of sensors and IoT to collect continuous realtime data remotely and allowing them
to reduce the hospital visits. The patients were also asked to give their feedback on the
device prototype and the sensor.

Date:

January 2020

Participants:

Telemedicine researchers from AAU and CVD patients.

Place:

Skive, Denmark.

Outcome related to the project:

1. Recommended changes in the design of the prototype device.

2. Possible locations and places where they would like to wear the device and use
such remote monitoring system.
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A.6 Outpatient visit
Aim:

The aim of the activity was to speak with actual CVD patients to understand their feedback
on use of sensors and IoT to collect continuous realtime data remotely and allowing them
to reduce the hospital visits. The patients were also asked to give their feedback on the
device prototype and the sensor.

Date:

January 2020

Participants:

Telemedicine researchers from AAU and CVD patients.

Place:

Skive, Denmark.

Outcome related to the project:

1. Recommended changes in the design of the prototype device.

2. Possible locations and places where they would like to wear the device and use
such remote monitoring system.

A.7 Project Workshop: 02
Aim:

The aim was the workshop was to understand the clinical requirements from the data col
lection device as well as data visualisation platform from medical doctors, cardiac nurses,
researchers from AAU.

Date:

February 2020

Participants:

Telemedicine researchers from AAU, cardic nurses, medical doctors, clinical technician.

Place:

Skive, Denmark.
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Outcome related to the project:

1. feedback on current challenges while treading patients with CVD.

2. use of technology and CVD patients expectations.

3. Recommended changes in the design of the prototype device.

A.8 TTRN PhD Summer School: 02
Aim:

The aim of the summer school was to present the realtime HRmonitoring device prototype
and receive feedback from domain experts.

Date:

August 2020

Participants:

Telemedicine and telemonitoring researchers from USA, AAL, SDU, and DTU.

Place:

Virtual Summer School.

Outcome related to the project:

General feedback on use of prototype design and the use of HR sensor. Feedback on
the design changes to the end device and recommended changes to ML model.

A.9 Project Workshop: 03
Aim:

The aim of the workshop was to possibilities of continuous ECG and HR using sensors
like Cotrium, Movesense, etc. to send data to a remote server.

Date:

September 2020

Participants:

Telemedicine researchers from AAU, clinical technician.
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Place:

Aalborg University, Denmark.

Outcome related to the project:

• Possibilities of outpatient visits

• To build a protype using ECG and HR sensors and send data to a remote server for
storage and visualisation.

A.10 TTRN PhD Summer School: 03
Aim:

The aim of the summer school was to present the realtime ECG and HRmonitoring device
prototype coupled with the live demo of the heartrate.live visualisation sytem.

Date:

August 2021

Participants:

Telemedicine and telemonitoring researchers from USA, AAL, SDU, and DTU.

Place:

Virtual Summer School.

Outcome related to the project:

General feedback on use of new E2E ECG and HR monitoring system.

A.11 Workshop: Developing a Realtime
remote monitoring system for
patients with Atrial Fibrillation

Aim:

• To demonstrate a realtime remote monitoring system for patients with Atrial Fibril
lation

• To get feedback from specialist in atrial fibrillation on requirements to the system for
future remote monitoring of patients with Atrial Fibrillation
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Date:

November 2021

Participants:

Egon Toft, Research Director, Forskning, Uddannelse og Innovation, clinical researchers
from AAU.

Place:

Aalborg University, Denmark

Outcome related to the project:

Overall feedback was very positive with minor suggested changes in the outer design of
the device and the visualisation layers. The next suggested next steps were to use the
system in a clinical study.

A.12 Project Workshop: 03
Aim:

• To demonstrate a realtime remote monitoring system for patients with Atrial Fibril
lation

• To get feedback from specialist in atrial fibrillation on requirements to the system for
future remote monitoring of patients with Atrial Fibrillation

Date:

May 2022

Participants:

Clinical researchers and technical domain experts from AAU.

Place:

Aalborg University, Denmark

Outcome related to the project:

The overall feedback for the system was positive. The specific feedback for each part of
the system is as follows:
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• end device: It was suggested to design a waist belt clip for housing the end device
PCB. To make the enclosure waterresistant, and add other ways of charging the
device. Another feedback was to include display onto the device that can display
local recording of the ECG and HR.

• Data collection, storage, and visualisation system: The visualisation part of the
system was very simple to navigate and understand. To add a ECG pause button,
so that people looking signal can examine the signal without worrying about loosing
the data.

A.13 Project Workshop: 05
Aim:

• To demonstrate a realtime remote monitoring system for patients with Atrial Fibril
lation

• TO identify other areas withing telemedicine and telemonitoring where these devices
could be used.

Date:

June 2022

Participants:

Troels Wienecke, Department of Neurology, Zealand University Hospital, Roskilde, Den
mark

Place:

Roskilde Hospital, Denmark

Outcome related to the project:

The overall feedback for the system was positive and indicated that the designed system
can be useful in detecting early signs of atrial fibrillation after suffering from acute stroke.

A.14 UX design Questionnaires and eMed
app evaluation

The UX design questionnaires were part of the BSc Thesis collaboration [68].
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12.5.2021 Early user experience testing

https://docs.google.com/forms/d/1uDhIrJQe-5WZBnl9EbU7-st2ElOqs4zU7Ipv7S-rja4/viewanalytics 1/5

Prototype

Hvad var dit første indtryk af applikationen?

9 svar

wowsa

Dejlig nem og overskuelig

Behageligt farvevalg

Flot og informationsrigt. Der er meget data.

Super overskueligt og nemt at aflæse

Den var simpel of ligetil. Akse tick-labels i ECG live virker forvirrende når de er så
lange. Måske ville det bære bedre bare at have en akse med tid i [s] og så ikke angive
det præcise klokkeslæt.

It looks very nice

Virkelig flot! Looks very professional ;)

Early user experience testing
11 svar

Offentliggør analyse

A.14.1 First UX Questionnaire
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12.5.2021 Early user experience testing

https://docs.google.com/forms/d/1uDhIrJQe-5WZBnl9EbU7-st2ElOqs4zU7Ipv7S-rja4/viewanalytics 2/5

Kunne du navigere mellem siderne "Dashboard" og "ECG Live"?

11 svar

Hvordan synes du om brugen af farver på applikationen generelt?

11 svar

et højdepunkt, jeg med det samme lagde mærke til

Fin men det kunne også være nice hvis der var et overordnet farve tema

Farverne er ikke for skrappe og der er samme farvestemning indenfor hver individuel
graf (for eks. grøn og mørkegrøn i den første graf)

Farverne er meget professionelt anlagt og de viser en form for identitet. Dog ift.
labels, så ville jeg gøre teksten federe (dvs. tykhed), da det vil blive en smule svært at
se tydligt med hvid tekst på lyseblå labels.

Super

Tekst farven (Hvid) af titel teksten på jeres plot kan være lidt svær at se. Måske er
skriften også lidt lille.

Diagrammerne og menuen til venstre er godt men resten går lidt i et farvemæssigt

Ja det var nemt at finde
Jeg brugte lidt tid, men fandt ud
af det
Nej slet ikke
Jeg synes det var lidt øv at man
skulle klikke så præsist på dem.
dashboard knappen flimrede
bare når jeg prøvede at gå ind
på ECG

9,1%

9,1%

81,8%



12.5.2021 Early user experience testing

https://docs.google.com/forms/d/1uDhIrJQe-5WZBnl9EbU7-st2ElOqs4zU7Ipv7S-rja4/viewanalytics 3/5

Hvordan synes du om brugen af farver på de forskellige grafer?

11 svar

Hvor foretrækker du placering af labels til grafen?

11 svar

Godt

samme

de spiller godt sammen på de individuelle grafer, men clasher lidt når man
sammenligner graferne

Se svar ovenover

Nemt at kende forskel på de forskellige data. Det blænder heller ikke øjnene, dvs. de
er satureret rigtigt. Dog ville jeg tjekke om de er venlige for mennesker med
farveblindhed.

Super

Fint.

Good

Under grafen
Til højre for grafen
Over grafen27,3%

72,7%



12.5.2021 Early user experience testing

https://docs.google.com/forms/d/1uDhIrJQe-5WZBnl9EbU7-st2ElOqs4zU7Ipv7S-rja4/viewanalytics 4/5

Hvordan foretrækker du grafens titel?

11 svar

Hvilket logo foretrækker du?

11 svar

Titlen med sort skrift over
grafen
Titlen i blå boks over grafen
En blanding. Sort tekst i den blå
boks.
I skal måske overveje at gøre
overskriften konsekvent enten i
den blå boks eller som overskift
over grafen for alle jeres grafer.
Men generelt synes jeg bedst…

9,1%

9,1%

9,1%

72,7%

Logo 1
Logo 2
Logo 327,3%

9,1%

63,6%



12.5.2021 Early user experience testing

https://docs.google.com/forms/d/1uDhIrJQe-5WZBnl9EbU7-st2ElOqs4zU7Ipv7S-rja4/viewanalytics 5/5

Har du nogle kommentarer eller forslag til logoet?

6 svar

fattigdom

Man kunne ikke trykke på fanerne "Measurements" og "Notifications", men det var måske
heller ikke meningen?

Nej

Nej det er godt

Nope, super cool stuff!

Jeg kan godt lide logoet, og det er klart logo 3 som bedst ligner et stetoskop. Dog kunne
I overveje at jeres farve på logoet var sammenhængende med de blå bokse - I kan evt.
gøre de blå bokse samme matte lilla farve?  
Ellers synes jeg meget godt om overblikket over designet af appen. Men overvej
farvevalget (det kan være mere sammenhængende).

Dette indhold er hverken oprettet eller godkendt af Google. Rapportér misbrug - Servicevilkår - Privatlivspolitik

 Analyse



12.5.2021 User-friendliness for HeartRater.live

https://docs.google.com/forms/d/1VIWo09uDmYjJeI3S1TQunWTnsVeKB4N_tMCqGNGVwsI/viewanalytics 1/5

What is your background?

8 svar

Please open the application and play around with it, what’s your first impression
of the app?

8 svar

Very simple to use and nice design

Very Nice app. Navigation is easy.

Virker simpel

Relatively user friendly. Default Blood pressure and steps should start at 0. There are no
denominations on the axes and speed of ECG also missing. Too many numbers on the
axes in my opinion

I think it gives a good overview of relevant patient data

let at forstå

Overskueligt, brugervenligt, nemt at tilgå

It seams nie and easy to get aound

User-friendliness for Hea�Rater.live
8 svar

Offentliggør analyse

Student
Cardiologist
Researcher
Other medical professional
Other

12,5%

25%

25%

37,5%

A.14.2 Second UX Questionnaire
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12.5.2021 User-friendliness for HeartRater.live

https://docs.google.com/forms/d/1VIWo09uDmYjJeI3S1TQunWTnsVeKB4N_tMCqGNGVwsI/viewanalytics 2/5

Is the platform intuitive to navigate in?

8 svar

How will you rank the overall design of the platform?

8 svar

1 2 3 4 5 6 7 8 9 10
0

1

2

3

0 (0 %)0 (0 %)0 (0 %) 0 (0 %)0 (0 %)0 (0 %) 0 (0 %)0 (0 %)0 (0 %) 0 (0 %)0 (0 %)0 (0 %)

1 (12,5 %)1 (12,5 %)1 (12,5 %)

0 (0 %)0 (0 %)0 (0 %)

1 (12,5 %)1 (12,5 %)1 (12,5 %)

3 (37,5 %)3 (37,5 %)3 (37,5 %)

1 (12,5 %)1 (12,5 %)1 (12,5 %)

2 (25 %)2 (25 %)2 (25 %)

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

0 (0 %)0 (0 %)0 (0 %) 0 (0 %)0 (0 %)0 (0 %) 0 (0 %)0 (0 %)0 (0 %)

1 (12,5 %)1 (12,5 %)1 (12,5 %)

0 (0 %)0 (0 %)0 (0 %) 0 (0 %)0 (0 %)0 (0 %) 0 (0 %)0 (0 %)0 (0 %)

4 (50 %)4 (50 %)4 (50 %)

1 (12,5 %)1 (12,5 %)1 (12,5 %)

2 (25 %)2 (25 %)2 (25 %)



12.5.2021 User-friendliness for HeartRater.live
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On the Dashboard-page, try to change the dates for the measurements.
Now the graphs should change correspondingly if there's data from the
specified date. How was your experience doing this?

7 svar

On the Dashboard-page, click the 'Set Thresholds'-button. Now you're able
to set limits for every kind of measurement and visulize it on the graph. In
the future the platform will be able to send notifications if these thresholds
are exceeded. Do you find this feature useful?

8 svar
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Now go to the Live ECG-tab. You won't see anything on the graph. Now, if
you click the 'Get Recorded ECG'-button you'll see some historic ECG-
data played in a loop. How was your experience?

8 svar

The Dashboard and the ECG live are on two different tabs, what do you
prefer?

8 svar
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I like them seperated into two
tabs
I think, it would be nicer with
one big overview
No prefrence
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Do you think you would find this application useful as a cardiologist/medical
professional/researcher? Why? Why not?

6 svar

Dette indhold er hverken oprettet eller godkendt af Google. Rapportér misbrug - Servicevilkår - Privatlivspolitik

Great

Yes it is useful

Lidt simpel. EKG-data live er meget cool - men et stillestående EKG er der man stiller
diagnoser.

Maybe it is not so unique. But if it was part of an equipment we have bought I would
be okay with it.

Im a student, so I'm not relly sure here :) But I guess that a medical professional
would like an application like this, as it gives them easy access to review the patients
data for example before a consultation

I think it could be useful if its posible for a patient to tack it ever single day. So maybe
it could be conected to a smartwatch or so.  
 
NOTE: I could not find the Set Thresholds botton on my phone.

 Analyse



Evaluation and validation of E-Med
This paper will describe the methods and results found from testing a functional prototype of
the mobile application E-Med against Heuristic Evaluation and the usability protocol
Think-Aloud.

Heuristic Evaluation
We take our starting point in the 10 Usability Heuristics for User Interface Design developed
by Jakob Nielsen1

Method
Two UX experts were asked to systematically determine E-Med’s usability using the 10
heuristics, furthermore the experts were asked to rate each heuristic from 1 (very poor or
lacking completely) to 10 (very good). The experts were handed a mobile phone with the
prototype installed.

Results

#1 Visibility of system status

Done well:
- Bottom menu highlights the page currently active (e.g. Home)
- Connection-status to sensor is displayed (online/offline)
- When waiting for the live ECG to display, a loading bar is seen.

Lacking:
- When on the tab ‘History’ or ‘Me’ it is unclear if you are connected to an ECG sensor

or not.
Rating: 8/10

#2 Match between system and the real world (5)

Done well:
- Icons are intuitive and easy to understand

Lacking:
- Server is internal jargon - we fear that the end-user won’t understand it.
- The difference between Sensor and Device is unclear.

Rating: 5/10

#3 User control and freedom

Lacking:

1 Jakob Nielsen, 1994, Usability Inspection Methods, a summary can be found on the homepage of
Nielsen’s heuristics: https://www.nngroup.com/articles/ten-usability-heuristics/
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- No ‘go-back’, ‘undo’ or ‘cancel’ buttons. E.g. when watching the live ECG, you have
to press ‘Home’ again to go back.

Rating: 2/10

#4 Consistency and standards

Done well:
- Color and design is consistent.
- Order of Calendar in steps and sleep are consistent, intuitive order.
- The placement of icons are also intuitive and consistent.

Lacking:
- Device is present under the three dots together with sensor+server, but on home

page it is missing.
Rating: 9/10

#5 Error prevention

Lacking:
- In general ‘undo’ is not supported, which means higher chance of error prone

systems.
- Error messages are missing if the device is not connected. The user needs some

explanation and a suggested action, e.g. a message saying ‘Can’t connect to device,
switch on and off your bluetooth and try again’

Rating: 3/10

#6 Recognition rather than recall

Done well:
- Highlighted labels and icons when pushing a button or you are on the current page.

Lacking:
- The offline/online status of the sensor should be visible on all pages.

Rating: 9/10

#7 Flexibility and efficiency of use

Done well:
- Generally done well, especially through the menu bar at the bottom.

Lacking:
- It could be more customizable and thereby flexible by being able to move around the

cards that are displayed under the tab ‘History’, such that the user can prioritize
which information they want to see first and for which time-period.

Rating: 6/10

#8 Aesthetic and minimalist design

Done well:
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- No unnecessary information is displayed and the focus is on the essentials.
Lacking:

- Maybe a little too minimalistic. A lot of empty space on the ‘Home’ and ‘Me’ page
Rating: 8/10

#9 Help users recognize, diagnose, and recover from errors

Lacking:
- The user is not guided to help reconnect a device that is not connected.
- Lack of error messages which make it hard to recover from these.

OBS! As the sensor wasn’t available when conducting this evaluation, the error-messages
and information giving to the user when the sensor is connected weren’t evaluated
Rating: (3)/10

#10 Help and documentation

Done well:
- There is a little help info displayed on the main page under Server and Sensor to

explain what they are about.
Lacking:

- There could in general be help icons with tooltip functionality displaying an
explanation of various cards.

Rating: 4/10

Heuristic score results:

Conclusion (heuristics)
Overall the prototype is a good basis for a patient application, but it’s missing some major
parts, especially concerning error prevention, communication of these errors and user
freedom. The prototype is doing well with visibility of the system status, consistency,
minimizing the user’s memory load and minimalistic design.
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Think-Aloud
The tests consisted of a combination of exploratory and task instruction.

Method
Three participants were handed the prototype on a mobile phone and asked to imagine that
they were now wearing a heart-sensor. The following were asked:

1. Open the application. Explain what you see.
2. Navigate to see your ECG live. What information are you presented with?
3. Go to ‘History’. Explain what you see.
4. How many steps did you take on average last year?
5. How many hours of REM, deep and light sleep did you have on the 23rd of June

2021?
6. What do you think about the information presented under the tab ‘Me’?
7. What is your general impression of the app?

These were the question guidelines, but sometimes the interviewer would ask additional
questions if needed.

Results
In this section we refer to the numbering of the questions above instead of writing all
questions again.

Participant 1

1. The screen is pretty empty. I like the information underneath the ‘Sensor’ and
‘Server’, but it’s still unclear what is meant.

2. It looks fine. Since it’s not actually connected I don’t really know what to look at.
3. I see steps, sleep, pulse and ECG. The measurements shown are from one day.
4. What does total mean? Like my entire lifetime? Ah total for a year. I think the

information about the total steps is irrelevant and confusing. Maybe you could add it
somewhere as a sort of fun bonus-info

5. *The phone crashes when wanting to go here*
6. I like the call function, and it even puts the number in your phone. It’s also a pretty

empty screen. I know this phone is pretty big, but because the information is placed
pretty high up on the screen, it’s difficult to reach with your thumb.

7. It’s maybe a little too minimalistic, it looks like a very standard app, right from the
app-design-catalog. I would have liked some of that information about my health
displayed somewhere. And why does the patient themselves need to go in and say
‘now I want to connect to the sensor’, why can’t it do it on it’s own when I open the
app? The app is quite basic, but I could imagine using it when it was further
developed. Also I think that the ‘Home’-screen should be the ‘History’ page instead.

Participant 2

1. The design is nice, I like the boxes of information. It’s a little unclear what ‘server’ and
‘sensor’ is. Underneath the three dots there’s a device option as well, I’m not sure
what the difference between device and sensor is, or what a device is supposed to
mean in the first place.
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2. It’s been pending for a while. Looks ok. It’s annoying that there aren’t any ‘go back’
button.

3. The steps and sleep are only showing for the previous day or? I think I would like it
better if it showed like a weekly average, that would make better sense, or maybe
even a monthly average. Or like, how much better or worse I’m doing compared to
last week, that would be kind of cool.

4. That’s a lot of steps. I don’t know why I would need to know how many steps I took in
a full year, I mean it’s funny, but not very relevant I guess. Otherwise I think the min,
max and average is fine.

5. *The phone crashes when wanting to go here*
6. It looks fine, good information. I like how the boxes can expand and collapse.
7. The app doesn't really explain anything about my health, I would like that, some sort

of conclusion. I think the design is okay. Little confused about setting the whole thing
up, there could maybe have been some sort of manual.s

Participant 3

1. I see a home screen displaying the option of connecting to Server or Sensor. I am
unsure of the difference between the two is, or why I would want to connect to a
server. I am expecting to wear a heart sensor and only want to connect to that.

2. I see ECG, pulse and condition. I don’t know what condition means or what I should
expect being displayed here. There is a pause feature which was cool, but no return
button.

3. I see my steps, sleep, pulse and ecg. I expect the presented data to be from 24
hours, but it is not totally clear.

4. I took 3519. It took me a while to find out that I could click on the steps card to get
more info about the steps.

5. I could not go back, when I came from the steps infomation, I had to reclick history. I
had to click many-many-many times on the left arrow on the ‘day’ tab to get to the
23rd of june 2021. There was to specification that it was in fact year 2021. But I think
about 1.25 h deep, 4.75 h light and 1.5 h rem sleep.

6. Very nice. I have no further comments.
7. It is good. It is missing some design aspects to be completely user friendly, especially

back buttons. But generally good and I understood most of it.

Conclusion (Think-Aloud)
From the Think-Aloud test, we got insights about the usability of the App. We can conclude
that the app in general is missing some explanatory text or optionally, an onboarding flow for
first time users. Also a back-button is needed in all screens to ease the navigability. The
developers should be a bit more clear about their end-user and what is relevant for them. A
feature like total steps in a year is not useful for the end-user. The Me-page is very well
designed, but the other pages could use a bit of redesign to optimize the user experience.
But all-in-all it is a useful app that works well for an MVP.
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B Selection of antenna for Cellular
Internet of Things (CIoT) tests

The appendix gives an overview of the antenna choices used while performing the Cellular
Internet of Things (CIoT) Key Performance Indicator (KPI) experiments. Choosing the
right antenna for the tests was crucial and could significantly affect the performance of the
wireless communication technologies. Two main factors were considered when selecting
the most suitable antenna for the CIoT device.

• Antenna matching circuit: This is usually an impedance matching circuit that is de
signed to ensure the input impedance of the antenna is matched with the output
impedance of the Radio Frequency (RF) circuit. A fully matched circuit ensures that
the maximum RF power is transferred into the antenna to be radiated.

• Return Loss (s11): It measures the reflected power or the signal strength that bounces
back toward the transmission line.

In the case of the offtheshelve devices, the device manufacturer designed the matching
circuit. Therefore, in theory, it was just to find the antenna with matching input impedance
to ensure the maximum power is transferred to the antenna. In the case of all the devices
used in the CIoT KPI experiments, were having a 50Ω. Therefore, all the antennae
chosen for the experiment had a match impedance of 50Ω.

Figure B.1: Example of return loss (s11) graph of one of the chosen antenna [131]
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Figure B.1 shows the return loss (s11) graph across different frequencies. The red mark
indicated the lowest s11 value of 15dBm at around 868 MHz. The CIoT network is
deployed in LTE band 20 in Denmark, which uses frequencies between 832 MHz – 862
MHz for UPLink (UL) transmission and 791 MHz – 821 MHz DL transmission [132].

In order to further verify the performance of the antenna while connected to Pycom Fipy,
Pycom Gpy, and SaRaR410, multiple such matching antenna (all with 50Ω impedance)
were tested in Line of Sight (LoS) from the Evolved Node B (eNB) on campus and the
antenna with the highest Reference Signal Received Power (RSRP) value was chosen
for the CIoT KPI testing. The chosen antenna had the highest RSRP value for both the
Mobile Network Operators (MNO).
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C Overview of ECG

Figure C.1: Waveform annotation in an ECG[133]

Figure C.1 shows the different electrical activity recorded during the single heart beat.

• P wave: P wave is caused by the depolarisation of the atria myocardium, which
intern triggers the mussel contraction of the heart. This marks as the beginning of
the heart beat. Under normal circumstances the duration of the P wave is less than
0.12 seconds and the height is about 0.25 mV.

• PR interval: The PR interval is the time taken from the beginning of the P wave
till the start of QRS complex. In other words, PR interval shows the time taken by
the electrical signal generated by the heart to travel through and finish the mussel
contraction, in medical terms it also known as atrial systole. The normal PR interval
is between 0.120.2 seconds.

• QRS complex: The QRS complex represents the depolarisation of the ventricular
myocardium and start of the contraction of the large ventricular muscles. In medical
terms it is called as ventricular systole. In the case of adults, the duration of the
QRS complex is between 0.075 to 0.105 seconds. This is where, the pumping of
heartbeat takes place, this is why the electrical signal during this wave is the highest.
Heartrate can be calculated using the interval between two R waves.

• T: The T wave is when the heart goes from depolarised to polarised stage again,
in medical terms where the ventricular repolarisation of the heart takes place. The
time between start of Q wave and end of T wave is also called as QT interval. The
QT interval, typically shortens as the heartrate increases and the other way around
when the heartrate decreases.
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Figure C.2: Regular ECG waveform recorded from the continuous remote monitoring
system [78]

Figure C.2 shows the regular ECG data recorded by the continuous remote monitoring
system designed during the PhD project.

Figure C.3: Example of an irregular ECG waveform [134]

Figure C.3 shows an example of irregular ECG data.
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D Power consumption of the end
device

This appendix gives an overview of the power consumption measurement conducted us
ing the nRF PPK2.

Figure D.1: Power consumption developed Internet of Things (IoT) device

Figure D.1 shows the power consumption of the developed continuous Electrocardiogram
(ECG) and Heart Rate (HR) monitoring device when it is in an indoor scenario. The device
is monitoring the ECG and HR in a Non Line of Sight (NLoS) location. As can be seen
from the figure, the maximum current consumption of the device is 630 mA, whereas the
average current consumption of the device is 190 mA over two minutes.

Considering these values in the calculation, the device can be powered continuously for
over 25 hours where ECG and HR data is being sent to the remote server. The power cal
culations consider a 5000 mAh lithiumion (Liion) battery chemistry. This device’s power
consumption is without any power optimization settings such as Extended Discontinuous
Reception (eDRX), Power Saving Mode (PSM), general code optimization, etc., applied
to the device.
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