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Abstract

The theory of quantum mechanics establishes that some physical behaviors
depart drastically from the classical world we are all used to. For instance,
two different state preparations on the same physical system, in general,
cannot be perfectly distinguishable. This statement motivates the question
of how well quantum states can be discriminated, which is the main study
of quantum state discrimination. In this thesis, I investigate two important
branches of quantum information science from the perspective of quantum
state discrimination.

The first is quantum randomness. Randomness plays an important role in
cryptography, where unpredictability is central. Here, I present a surprisingly
simple protocol to generate more than one bit of certified randomness per
round in a qubit prepare-and-measure scenario. The protocol is also imple-
mented and experimentally tested in an optical platform.

The second is quantum contextuality. Contextuality is a fundamental
property of quantum mechanics which states that the distribution of measure-
ment outcomes of a physical system depends not only on its state, but also
on the context in which it is measured. In this thesis I propose a noise-robust
contextuality witness based on optimal two-state discrimination. Moreover, I
explore contextual advantages in state discrimination tasks versus noncontex-
tual models, which can be seen as representing classical physics.

Throughout this thesis, I center on maximum confidence discrimination,
a state discrimination protocol with the goal of maximizing the confidence.
That is, the probability that the state preparation is indeed the one indicated
by the measurement outcome. From this perspective, I compare the power
of quantum and noncontextual models in terms of randomness certification.
Our results report that the certified randomness in a quantum framework is
greater than in the noncontextual model, as long as the adversary is quantum
in both cases.
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Resumé (Danish)

Kvantemekanikken fastsl̊ar at visse fysiske fænomener adskiller sig markant
fra den klassiske forst̊aelse. For eksempel kan to forskellige tilstande af det
samme fysiske system generelt ikke skelnes perfekt. Denne p̊astand motiverer
spørgsm̊alet om hvor godt kvantetilstande kan skelnes, hvilket er hovedstudiet
i kvantetilstandsskelnen. I denne afhandling undersøger jeg to vigtige grene
af kvanteinformationsvidenskaben set gennem kvantetilstandsskelnens per-
spektiv.

Den første er kvantemekanisk tilfældighed. Tilfældighed spiller en vigtig
rolle inden for kryptografi, hvor uforudsigelighed er centralt. Her præsenterer
jeg en overraskende simpel protokol til at generere mere end én bit certifi-
ceret tilfældighed pr. runde i et qubit forbered-og-m̊al-scenarie. Protokollen
implementeres ogs̊a og testes eksperimentelt p̊a en optisk platform.

Den anden er kvantekontekstualitet. Kontekstualitet er en grundlæggende
egenskab ved kvantemekanikken, som siger at fordelingen af måleresultater
for et fysisk system afhænger ikke kun af dets tilstand, men ogs̊a af den
kontekst hvori der m̊ales. I denne afhandling foresl̊ar jeg en støjrobust kontek-
stualitetsindikator baseret p̊a optimal skelnen mellem to tilstande. Derudover
udforsker jeg kontekstuelle fordele i forhold til tilstandsskelnen, kontra ikke-
kontekstuelle modeller, der kan ses som repræsentationer af klassisk fysik.

I hele denne afhandling fokuserer jeg p̊a skelnen med maksimal p̊alidelighed,
dvs. protokoller for tilstandsskelnen med m̊alet om at maksimere tilliden til
at tilstandspræpareringen faktisk er den, der angives af måleresultatet. Fra
denne synsvinkel sammenligner jeg kvante- og ikke-kontekstuelle modeller i
termer af tilfældighedscertificering. Vores resultater viser, at den certificerede
tilfældighed i en kvantemæssig ramme er større end i den ikke-kontekstuelle
model, s̊a længe modstanderen er kvantemekanisk i begge tilfælde.
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Chapter 1

Introduction

In this chapter we introduce the two main blocks that build this thesis:
quantum random number generation and quantum contextuality.

1.1 Quantum random number generation

Randomness is the quality that governs the outcome of events or the values
taken by a variable of being unpredictable and lacking a pattern. It is a
fundamental aspect of many physical and mathematical systems, and it is
often used to model uncertainty or to generate unique values in a wide variety
of applications. Randomness can be a powerful tool in algorithms for several
reasons. It can help avoiding bias that might arise if a deterministic algorithm
always makes the same choices. For example, if randomly shuffling a deck
of cards, every possible ordering has equal chance of occurring. In computer
science for instance, random numbers are used in cryptography to generate
unpredictable keys [1]. Randomness is essential in cryptographic algorithms
to generate secure keys and prevent unauthorized access to data. Without
randomness, an attacker could potentially predict the key or guess through
brute force. Randomness can also be used to simulate complex processes that
involve unpredictable or stochastic behavior with Monte Carlo simulations
[2] and statistical samplings [3, 4]. Random samplings are used to model
real-world phenomena and make predictions based on observed data, like
in weather forecast [5]. Beyond scientific uses, random sources of data can
also play an important role in political issues as for achieving fairness in
non-biased selections or sortition [6], as well as in gaming and gambling [7].

Let us illustrate a simple example where randomness can improve algo-
rithms. Imagine you want to determine whether a certain number n is prime

1



Chapter 1 – Introduction

or composite. One could simply use brute force and try to divide it by all
possible factors. This “trial and error” method however gets disturbingly
slow, scaling exponentially bad in the number of digits. In terms of the
number of bits a, it would take around O(2||a||/2) computations. Also, in case
the number n turns out to be composite, such method would tell you the
values of its divisors, which is more information than what we asked for. A
more simple and efficient algorithm can be implemented using Fermat’s little
theorem [8–10]. The basic idea goes back to a result from Pierre de Ferman
during the 17th century. Consider two integers n and x. Fermat proved that,
if n is a prime number, then xn − x is always a multiple of n, regardless of
the value of x. In other words, the remainder when xn−1 is divided by n is
always 1. One can turn Fermat’s little theorem into a primality test: take a
number n of interest and pick x at random. If xn − x is not a multiple of n,
we know that n must be definitely composite. Otherwise, n is probably prime.
Each computation of xn is ∼ O(||n||2), turning the scalability polynomial.

Another example of how randomness can be used to improve algorithms
is with random samplings. Monte Carlo simulations use random sampling to
simulate complex processes that are difficult or impossible to solve analytically.
Suppose that you wanted to estimate the value of π. You could do this by
simulating the process of throwing darts at a circular target. Each dart would
hit the target at a random point within the unit square. The ratio of darts
that landed inside the circle to the total number of darts would be an estimate
of the area of the circle divided by the area of the square, which is equal
to π/4. If the darts are thrown uniformly random with respect to the area
of the target, the estimated value of π gets more accurate. However, if the
quality of randomness is poor, i.e. the direction of the darts is biased towards
a particular direction, the estimated value gets worse.

Thus, indeed, fast sources of randomness play an important role in many
tasks in the modern world. Historically, the process of generating pseudo-
random bits of information [11, 12] was carried out through deterministic
formulas (random number generators) which relayed on an input, or seed,
implying some correlation of these numbers and hence their predictability.
We say apparently as for a particular seed, the outputted string of random
bits is always the same. Pseudo-random number generators provide a poor
level of security in that regard, since they are completely predictable if the
seed is revealed. Another option is to use hardware-based random number
generators. These generators use physical processes, such as electronic or
radioactive noise, to generate random numbers. These generators are more
secure that pseudo-random number generators because they rely on highly

2



Chapter 1 – Introduction

unpredictable physical phenomena.

It was not until the arrival of quantum mechanics that true randomness
was unveiled [13, 14]. Indeed, quantum mechanics provides a probabilistic
description of nature. One of the main consequences of quantum mechan-
ics is that certain physical phenomena are inherently unpredictable. For
instance, the spin of a particle in a superposition state cannot be predicted
with certainty before it is measured, and even then, the measurement is prob-
abilistic. This unpredictability can be harnessed to generate random numbers.
Quantum random number generators (QRNG) use quantum phenomena to
generate true random numbers. These phenomena could be the measurement
of photon polarisation or the detection event of atom decay. QRNGs work by
measuring the state of a quantum system and using the randomness of the
measurement to generate a random number. The hardware used to implement
the generator must be carefully designed and calibrated to ensure that the
measurement outcomes are truly random and unbiased. That specific setting,
where QRNG relies on the specific hardware used in the implementation, is
called device-dependent (DD).

Beyond DD-QRNG, one can generate truly random numbers without char-
acterising any of the involved devices. That setting (called device-independent,
DI) can be done in a way that is completely independent of the specific hard-
ware used in the implementation. The idea behind DI-QRNGs is to harness
nonlocality to generate completely unpredictable random numbers. Unlike
traditional DD-QRNGs, DI-QRNGs are designed to be completely indepen-
dent of the specifics of the quantum hardware used to implement them. This
can be done considering setups with multiple, separate parties. The nonlocal
behavior can be harnessed to certify true random measurement outcomes
in all parties, even if their measurement devices are treated as completely
uncharacterised black boxes. The setup is required to violate a Bell inequality
[15]. This is, however, technologically very demanding, as the violation must
be loophole free. Further approaches focus on semi-DI settings where, while
some of the the involved devices are still black boxes, others are complemented
with a few general assumptions, turning them into “gray” boxes. In semi-DI
settings, nonlocality is not necessary and thus, more technologically feasible.

In this thesis we present two works on semi-DI randomness certification.
In Ref. [16], we design a surprisingly simple protocol to generate more than
one bit of certified randomness per round in a prepare-and-measure scenario
by only measuring qubit states. In Ref. [17], we compare the randomness
generation power of quantum mechanics and the so-called noncontextual

3



Chapter 1 – Introduction

models, which can be used as a reference of classicality. In the following
section we elaborate further on the concept of quantum contextuality and
what we refer as noncontextual models.

1.2 Contextuality

Contextuality is a fundamental property of quantum mechanics that states
that the measurement outcome of a quantum system depends not only on its
state, but also on the context in which it is measured. This means that the
measurement of a quantum system can produce different results depending on
the set of compatible observables that are being measured simultaneously, or
the set of quantum states being prepared prior to measurement. The notion
of contextuality firstly emerged from a theorem established by John Bell
[18], Simon Kochen and Ernst Specker [19]. There, it is established that it
is impossible to fully describe reality with a noncontextual hidden-variable
model. A context is defined, according to the Bell-Kochen-Specker theorem,
as a commutative relation between the Hermitian operators describing ob-
servable quantities. Imagine you dispose of a physical system in a particular
quantum state described by the density matrix ρ. Also, you dispose of three
different measurements identified with the Hermitian operators A, B and
C. Observable A is jointly measurable with B and C, which means that
[A,B] = 0 and [A,C] = 0. However, B and C are not jointly measurable,
[B,C] ̸= 0. Thus, it is impossible to measure all three observables together.
You can, however, measure A and B, or A and C together. In this sense we
say that B and C are two distinct measurement contexts for the measurement
A. This commutative property plays an important role in the repeatability of
outcomes. According to the state-update rule, if you measure first with A, the
state left after the measurement is AρA. Then, a subsequent measurement
of B will not affect the result of a latter measurement of A, such as in the
sequence ABA. That is not true replacing A with C, as in that case the
result of a latter measurement of C will depend whether B was measured
subsequently, such as CBC.

Let us see how, in a contextual theory such as quantum mechanics, one can
distinguish between preparations and measurements with different contexts.
Measuring C yields essentially distinct observable statistics in the context
whether if B was measured (CBρBC) or not (CρC). In this framework, one
can tentatively define a generalised notion of contextuality, or noncontextu-
ality, in an operational manner. A model that reproduces a noncontextual
behavior in state preparations, for instance, can be viewed as one in which
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these are operationally equivalent if they cannot be distinguished by any
possible measurement. In Ref. [20] an ontological operational model is in-
troduced, which reproduces some observations obtained according to the
quantum theory. In this model, all properties of a physical system in question
are deterministically collected in an ontic state. However, preparations and
measurements are described as probabilistic samplings over the ontic space.
These are called epistemic states and response functions respectively. This
probabilistic description is attributed solely to ignorance. Noncontextuality
is implemented through the assumption that all indistinguishable prepara-
tions and measurements are operationally equivalent. This means that all
preparations (measurements) which are indistinguishable by any measure-
ment (preparation) must be described by the same epistemic state (response
function).

Apart from Kochen-Spekker and generalised contextuality, other notions
emerged during the recent years. The most well-known example are the
so-called nullifications of the Kochen-Specker theorem by Meyer [21], Kent
[22], Cliffton and Kent [23] and Barrett and Kent [24]. Their work holds great
significance as it has served as a source of inspiration for the development
of novel Kocken-Specker inequalities. Nonetheless, in keeping with the focus
and aims of this thesis, we will refrain from providing a detailed analysis of
their contributions.

Here, we center our study in generalised contextuality for preparations and
measurements. We use an operational noncontextual model as a reference of
classicality to find contextual advantages in state discrimination in Ref. [25]
and randomness certification in Ref. [17]. Also, in Ref. [26], we elaborate a
contextuality witness based on optimal two state discrimination.

1.3 Thesis structure

The present thesis consists of a collection of five works, each presented in
a different self-contained chapter, with their own introduction, main body,
conclusions and supplemental material (or appendices). These are preceded
by an introductory chapter in qubit state discrimination. Specifically, the
remainder of this thesis is organised as follows:

In Chapter 2 we introduce the main basics in quantum state discrim-
ination for qubit states. This includes prepare-and-measure scenarios, the
Bloch representation of qubit states, the (semi)-device independent treatment
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and the principles of convex optimisation. In addition, we introduce mini-
mum error state discrimination and unambiguous state discrimination, two
well-known state discrimination protocols. All these tools are indispensable
throughout all works presented in this thesis.

In Chapter 3 we present and study the protocol of maximum confidence
state discrimination. There, we introduce the main goal of the protocol: the
confidence. Roughly speaking, that is the probability that the prepared state
was indeed the one indicated by the measurement device, given the measure-
ment outcome. We continue arguing that maximum confidence discrimination
can be reduced to minimum error and unambiguous state discrimination. A
geometrical interpretation in terms of the Bloch sphere is given with various
examples. We finish differentiating the behaviours of the so-called maximum
confidence measurement in terms of the rates of observed events.

In Chapter 4 we study contextual advantages in state discrimination.
Concretely, we center in maximum confidence state discrimination, which was
already presented in detail in Chapter 3. We start reviewing the contextual
advantages in minimum error discrimination, previously covered in Ref. [27].
We extend this results to unambiguous state discrimination, and later on to
maximum confidence discrimination which we study in much more detail.

In Chapter 5 we continue studying prepare-and-measure scenarios to
derive a contextuality witness which is based on optimal state discrimination.
Here, we optimise the measurement based on a witness which is defined
at the level of probabilities. We sample accordingly the correlation space
parameterized by error and success probabilities, seeing that a maximum
confidence measurement yields correlations on the boundary. Based on this
observation, we claim that the most optimal measure coincides with maximum
confidence state discrimination for the whole ensemble.

In Chapter 6 we compare quantum and noncontextual models in terms of
randomness certification. We center in maximum confidence state discrimina-
tion for a particular state of the prepared ensemble. Our observations suggest
that, within the quantum model we are able to certify more randomness than
in a noncontextual one, as long as the adversary in both cases is quantum.
There is an interesting result if one compares two different worlds instead.
By a quantum or noncontextual world, we mean a scenario where both the
prepare-and-measure model and the adversary are quantum or noncontextual,
respectively. In our results, we see that a noncontextual world can certify
more randomness than a quantum world.
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In Chapter 7 we center in practical quantum randomness certification. We
design an extremely simple quantum randomness certification protocol, based
on semi-device independent state discrimination. Additionally, the protocol
is implemented in the lab through an optical platform. Our experimental
results report more than one bit of randomness per round where a single
qubit is measured.

We end this thesis in Chapter 8, concluding all presented works with
some remarks and pointing out potential future routes of investigation.
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Chapter 2

Quantum state discrimination
for qubit states

In this chapter we present the quantum mechanical background and formalism
used throughout this thesis, which is central for quantum state discrimination.
It is quite impossible to give a full treatment of this subject in one chapter,
as a whole book would be needed for this task. For more detailed reviews see
Refs. [28–33].

2.1 Fundamentals in quantum state discrimi-

nation

In the following we will see some fundamental aspects which are key in quan-
tum state discrimination. First, we will investigate how we mathematically
treat a state and a measurement in a so-called prepare-and-measure setup.
Then, we will show how we can view all states and measurements in the
useful representation of the Bloch sphere in a two-dimensional Hilbert space.
We will continue presenting device and semi-device independent scenarios
which are widely considered in related randomness certification and quantum
cryptography protocols. We end this section by presenting the basic ideas in
convex optimisation and semidefinite programming, a tool which is central in
many of the works presented in this thesis.
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2.1.1 Prepare-and-measure scenarios

Quantum states

Every physical theory attempts to explain a concrete spectrum of reality from
observations and consequent interpretations. Quantum mechanics is a branch
of physics that describes the behaviour of matter and energy at the atomic
and sub-atomic level 1. Physical systems can be prepared in states which can
be then detected and measured. From textbook quantum mechanics, quantum
states are represented as density matrices ρ. Let B(H) denote the algebra of
linear operators acting on the Hilbert space H, and let D(H) ⊂ B(H) denote
the set of states. Then ρ ∈ D(H). These must satisfy a set of requirements
to be considered valid. Any mathematically acceptable state operator must
satisfy the following three conditions:

• Positive Semi-Definiteness (PSD): ρ ≥ 0

• Normalisation: Tr [ρ] = 1

• Hermiticity: ρ = ρ†,

for ρ† denoting the complex conjugate and transpose operation. Being a self-
adjoint operator, ρ has a spectral representation in terms of its eigenvalues
and orthonormal eigenvectors. The set of acceptable mathematical state
operators forms a convex set. This means that if two or more density matrices
satisfy the above conditions, then so does a convex combination of those.
Convexity is a very useful property, as we will later see, in various optimisation
problems which are essential in every state discrimination problem. Within
the set of all possible states we find a very special class: pure states. A pure
state operator can be represented as ρ = |ψ⟩ ⟨ψ|, where the unit vector |ψ⟩ is
called state vector. A common feature in all pure states is that Tr [ρ2] = 1.
Another remarkable property is that a pure state cannot be expressed as
a nontrivial convex combination of other states. However, we can find
states that can be described by statistical mixtures of pure states. These
are called mixed states. The representation of a mixed state as a convex
combination of pure states is never unique. One can see that by considering
the following state ρa = a |0⟩ ⟨0| + (1 − a) |1⟩ ⟨1|. By defining the two vectors
|±⟩ =

√
a |0⟩ ±

√
1 − a |1⟩ one re-write the state ρa as

ρa =
1

2
|+⟩ ⟨+| +

1

2
|−⟩ ⟨−| . (2.1)

1Recently, there has been experimental evidence of macroscopic objects showing quantum
behaviors [34]. Thus, quantum mechanics might then not be uniquely describing microscopic
phenomena.
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This is of particular interest if |0⟩ and |1⟩ are considered two orthonormal
states forming a basis on the Hilbert space. Then, ρa is called maximally-
mixed state if a = 1/2. Formally, in a D-dimensional Hilbert space, this is
represented by

1

D
1 :=

1

D

D∑
n=1

|n⟩ ⟨n| , (2.2)

for 1 being the identity operator and |n⟩ forming an orthonormal basis.

Quantum observables

In a real experiment, what we observe are not states but the outcomes of any
measurement we perform on those states. In general, a pair of quantum states
are not always perfectly distinguishable from each other. This motivates
the question on how well can we discriminate such states with a particular
measurement. In quantum mechanics, every observable corresponds to an
operator A ∈ B(H) which is Hermitian, A = A†, and outcomes that are iden-
tified with its eigenvalues, A =

∑
i λiPi. These projectors Pi are identified

as measurement effects which are related to the probability of observation
through the Born rule [35]: p(λi) = Tr [ρPi].

The general scenarios to study quantum state discrimination are so called
prepare-and-measure scenarios. These involve two devices: a preparation
device and a measurement device. The first device receives an input x ∈ X
which determines the procedure for preparing a physical state represented by
the density matrix ρx. This state is then sent to the second device, which will
perform a measurement M on it. From that measurement, an outcome event
b ∈ B will occur. We denote by π̂b the probability operator associated to each
measurement outcome b. To be considered valid probability operators, these
must obey a list of constraints:

• Positive Semi-Definiteness (PSD): π̂b ≥ 0, ∀ b ∈ B.

• Normalisation:
∑
b∈B

π̂b = 1.

• Hermiticity: (π̂b)
† = π̂b, ∀ b ∈ B.

The collection of probability operators π̂b that meet these criteria are said
to form a generalised measurement or a positive operator-valued measure
(POVM). Roughly speaking, a POVM is a mathematical tool to express the
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probabilities of the outcomes of a particular measurement strategy. In general,
one can consider multiple measurement strategies available to the measurement
device specified by an input y. Throughout this thesis, however, we consider
protocols where the user can only choose a single measurement strategy and
thus, we ignore any input the measurement device can receive. The goal
in quantum state discrimination is to determine the optimal measurement
strategy, which can be expressed mathematically as finding the best POVM.
The optimality is defined based on a predetermined goal, usually represented
as a linear combination of the observed probabilities p(b|x). The mathematical
tools used to describe the prepared states ρx and measurements π̂b allow for
the calculation of the observed probabilities using the Born rule [35] as

p(b|x) = Tr [π̂bρx] . (2.3)

The previous conditions applied to valid quantum states and POVMs en-
sure that p(b|x) are valid probability distributions. Explicitly, PSD condition
implies p(b|x) ≥ 0, normalisation implies

∑
b p(b|x) = 1, ∀x and Hermicity

implies that p(b|x) are real valued quantities. The collection of conditional
probabilities are a very effective tool to represent the correlations reproducible
by the quantum theory. Also, the goal and constraints in any state discrimina-
tion protocol is represented through these correlations, making them central
in this thesis.

2.1.2 Qubit states and the Bloch sphere

Every physical system can be prepared in a particular state taken from an
ensemble. The simplest example is a physical variable that can take two
possible values, usually labeled as 0 or 1. The information carried by this
binary variable is called a bit. A bit of information can be stored in any 2-level
quantum system, whose basis states may be denoted as orthogonal vectors in
the Hilbert space: |0⟩ and |1⟩. In addition, the superposition principle allows
for a continuum of pure states of the form

|ψ⟩ = c0 |0⟩ + c1 |1⟩ , (2.4)

where the complex coefficients must satisfy normalisation through |c0|2 +
|c1|2 = 1. The state |ψ⟩ is called qubit, since it carries information within
the two amplitudes c0 and c1. This information is quantum in the sense
that it is encoded in a state under the quantum superposition principle.
All 2-dimensional Hilbert spaces are isomorphic, which means that we can
describe any two-level quantum system through the qubit state (2.4). This
is a powerful tool since this includes 1

2
spin systems, polarized photons and
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superconducting anharmonic two-energy levels among many other examples,
which can be treated with the same mathematical formalism.

A qubit state can be associated with a three-dimensional vector v⃗ = (x, y, z)
such that 0 ≤ ||v⃗|| ≤ 1. Then, any qubit state operator can be expressed as

ρ =
1

2
(1+ v⃗ · σ⃗) , (2.5)

where σ⃗ := (X, Y, Z) is the vector collecting all three Pauli matrices

X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
. (2.6)

One can use the association in (2.5) to draw a qubit state space in a
three-dimensional space. All vectors in this space are confined in a unit-radius
fictitious sphere, which is called the Bloch sphere. Any point on the surface
of the Bloch sphere is associated to a pure qubit state. One can see that by
computing

Tr
[
ρ2
]

=
1

2

(
1 + ||v⃗||2

)
. (2.7)

Observe that Tr [ρ2] = 1 ⇐⇒ ||v⃗|| = 1. On the other hand, a maximally
mixed state is associated with a representation (2.5) with a zero vector v⃗ = 0,
which is located at the center of the sphere. The purity of a qubit state is
related to the length of its Bloch vector v⃗.

We can further relate the Bloch sphere representation of pure states with
their state vector representation. Consider the state

|ψ⟩ = cos
θ

2
|0⟩ + eiφ sin

θ

2
|1⟩ . (2.8)

The representation of this state in terms of the Bloch vector (see Fig. 2.1)
is

v⃗ = (sin θ cosφ, sin θ sinφ, cos θ) . (2.9)

This representation, for pure states, is always unique. This means that
every pure state has a single associated point on the surface of the Bloch
sphere. This reflects the impossibility of expressing a pure state as a non-
trivial convex combination of other states. On the Bloch sphere, a convex
combination of two pure states can be interpreted as picking a spot on the
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X

Z

Y

Figure 2.1: Representation of the generic pure qubit state in (2.8) on the
Bloch sphere.
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straight path connecting the two places on the sphere’s surface that represent
those states. The length between these points represent the weights of the
convex combination. Then, every mixed state is associated with a single
point inside the Bloch sphere. Due to the convexity of the set, any point on a
line crossing the sphere will be inside the sphere. However, one can consider
infinite lines crossing a single point inside the Bloch sphere. This reflects the
fact that there are infinite different convex combinations of pure states to
represent a single mixed state.

The Bloch sphere representation can be used to facilitate the interpretation
of states, transformations and measurements in quantum state discrimination.
Consider for instance, without loss of generality, the pair of pure states laying
on the real plane of the Bloch sphere (that is the X-Z plane):

|ψ0⟩ = cos
θ

2
|0⟩ + sin

θ

2
|1⟩ and |ψ1⟩ = cos

θ

2
|0⟩ − sin

θ

2
|1⟩ . (2.10)

The overlap of these two states is essentially characterised by the inner
product of their Bloch vectors:

| ⟨ψ0|ψ1⟩ |2 = cos2 θ =
1 + v⃗0 · v⃗1

2
. (2.11)

A part from states, measurements can also be represented on the Bloch
sphere. Consider a POVM {π̂b}nb=1 representing a measurement with n differ-
ent outcomes. Each POVM element has the following Bloch representation:

π̂b =
Rb

2
(1+ u⃗b · σ⃗) . (2.12)

To be considered a valid POVM, the parameter Rb and Bloch vectors u⃗b
must satisfy

Rb ≥ 0,
∑
b

Rb = 2 and
∑
b

Rbu⃗b = 0⃗ , (2.13)

for 0⃗ being a vector will zeros in all its entries. The Bloch representation
of measurements is also a useful geometrical interpretation. Analogously to
quantum states, POVM elements lying on the surface of the Bloch sphere
(that is, with a unitary Bloch vector ||u⃗b|| = 1) represent rank-1 measurements.
If, additionally, Rb = 1, the POVM element represents a projector onto a
particular state.
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The Bloch sphere representation turns out to be quite useful to represent
states and measurements in a qubit space. Any state discrimination can be
represented and better understood as such. It is thus worth it to mention
the analogous Bloch representation for protocols involving states with higher
dimension. For qutrit states for instance, the Pauli matrices for SU(2)
are naturally generalized by the Gell-Mann matrices in SU(3) [36]. This
representation has eight dimensions, making it difficult to imagine. In this
thesis however, we will use only the Bloch sphere representation for qubit
states, without the need of extending to higher dimensions.

2.1.3 Device independence and semi-device indepen-
dence

Before getting into specific state discrimination protocols, we need to specify
what assumptions we place on the involved devices. Considering the amount
of trust we put in the devices involved in a prepare-and-measure scenario is a
central aspect in quantum cryptography or randomness certification protocols.
There, the aim is to generate a list of values to be kept in secret from any
external agent, whom can indeed be manipulating our devices without us
even being able to detect it. Assuming the involved devices to be untrusted
empowers the security in quantum cryptography and the unpredictability in
randomness certification protocols.

Let us start with the most straight-forward choice: a simple prepare-and-
measure scenario where both preparation and measurement devices are fully
characterized. This means that all state preparations and measurements
are known, i.e. the state operators ρx and POVM elements {π̂b} are fixed.
These schemes are often known as device-dependent (DD) protocols. DD
protocols can be tailored to take advantage of the specific properties and
capabilities of the devices involved. This flexibility allows for protocols well-
suited to the available resources, potentially improving the efficiency and
accuracy of the state discrimination task. Also, by utilising specific features
of the devices, DD protocols can optimise the use of resources. However,
the heavy reliability on the capabilities and characteristics of the devices
places limitations in concrete implementations. Also, these are vulnerable to
attacks that exploit weaknesses in the devices such as Trojan horse attacks or
untrusted providers. In that regard, quantum behaviours such as nonlocality
and superposition permit the design of protocols where the devices can be
only partially characterized. Measurement-device independent protocols, for
instance, are those where the measurement is completely unknown, but is
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required to reproduce a set of observable statistics [37–42]. On the other hand,
if the state preparations are the completely unknown part, with a fully revealed
measurement, the protocol is said to be source-device independent [43–46].
One can draw a richer picture if both state preparation and measurement
parts are fully unknown. These are called device independent (DI) protocols
[47–53]. As a matter of fact, however, DI protocols can only be staged
in mulipartite scenarios, where nonlocality enters into play as an essential
ingredient. This is a very restrictive condition, since it is extremely difficult
to experimentally build and maintain coherently entangled systems in the lab
and break a Bell inequality in a loop-hole free manner [54–59]. What one
can do in single-party prepare-and-measure scenarios is to partially uncover
the preparation by bounding a concrete particularity of the prepared states.
In that semi-DI setting, for example, one can bound the amount of energy
that can be transmitted from preparation to measurement devices[60–64].
One can observe quantum correlations that depart form classical models with
a rich structure [65]. Other semi-DI approaches make assumptions on the
dimension of the Hilbert space [66, 67] and the overlap of the prepared states
[17, 68]. In this thesis we will focus on the latter, although all three semi-DI
approaches are inherently related.

2.1.4 Convex optimisation

The basic structure in every state discrimination problem can be framed as
a convex optimisation problem [69]. Consider a vector space denoted by X.
A convex subset X ∈ X is one where, for any two vectors x⃗, y⃗ ∈ X and any
scalar t between 0 and 1, the vector (1 − t)x⃗ + ty⃗ is also contained in X .
Geometrically, that means that any line segment connecting two points in
X lies entirely within X . The goal of convex optimisation is to solve any
problem of the form

minimize
x⃗

f(x⃗) (2.14)

such that x⃗ ∈ X ,

for f being a convex function, i.e., f ((1 − t)x⃗+ ty⃗) ≤ (1 − t)f(x⃗) + tf(y⃗),
for x⃗, y⃗ ∈ X and 0 ≤ t ≤ 1. Any x⃗ ∈ X satisfying x⃗ ∈ X is considered a
feasible point. Convex optimisation problems are much easier to solve than
general optimisation problems. Convex optimisation algorithms can find the
global minimum of a convex objective function in polynomial time, which
makes them very useful in many real-word applications. The set of feasible
correlations involved in every quantum state discrimination scenario is a
convex sub-space, making convex optimisation a central tool. One can go
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Figure 2.2: Illustration of a simple semidefinite program.

further and consider even simpler situations with optimisation problems with
linear object functions and constraints. Linear programming is a branch of
convex optimisation where X is a polytope (that is, a convex set defined by
a finite number of inequalities), and f is a linear function on the variables
x⃗ ∈ X of the optimisation problem. The problems in linear programming are
of the kind of

minimize
x⃗

a⃗ · x⃗+ b⃗ (2.15)

such that Cx⃗ ≥ d⃗ ,

for a⃗ ∈ X, b⃗ ∈ X, d⃗ ∈ X and the matrix C being inputs to the problem. Lin-
ear programming is an essential instrumental tool to optimise hidden-variable
correlations such as in local or noncontextual models [20]. These can serve in
contextuality witnessing or nonlocality detection [53, 70].

In order to formally deal with discrimination tasks involving quantum
states with quantum measurements, we need to use a more sophisticated tool,
namely, semidefinite programming [30]. A semidefinite program (SDP) is a
linear convex optimisation problem of the form

minimize
x⃗

c⃗ T · x⃗ (2.16)

such that F0 +
m∑
i=1

xiFi ≥ 0 .

The given data of the problem are c ∈ Rm and the m + 1 symmetric ma-
trices F0, . . . , Fm ∈ Rn×n. Beware the change of notation: if M is a square
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matrix, then M ≥ 0 implies that M is positive semidefinite (PSD). In fact,
throughout this thesis any inequality relating two matrices implies a PSD
condition. In Fig. 2.2 we depict a very simple semidefinite program. The
boundary of the feasible region where available solutions exsist is delimited
with a black curve. Roughly speaking, the goal in a semi-definite program is to
move as far as possible in the direction −c⃗ while staying on the feasible region.

Semidefinite programming can be thought as an extension of linear pro-
gramming where the element-wise inequalities between vectors are replaced
with PSD constraints, i.e., matrix inequalities. These kind of problems fit
quite well with state discrimination scenarios. States and measurements are
also represented through square PSD matrices. Also, quantum correlations are
computed through the Born rule (2.3) which is a linear function on the state or
measurement whenever the other is given, making SDPs a very convenient tool.

There exist free solvers available to solve SDPs. These exploit the convex
architecture of the problem to provide an approximate solution of the problem
and also rigorous bounds on the precision of the solution with respect to its
exact value. Throughout this thesis we make use of mosek [71]. We also
use scs [72] to find approximate solutions, with much less precision, only in
the cases where mosek cannot find a solution. We do not work directly with
these solvers, but through a general convex optimisation package provided
in python [73]: cvxpy [74, 75]. The advantage of using cvxpy is that the
user does not need to write the programs in the standard form (2.16). One
can just indicate which are the semidefinite constraints, object function and
declare the variables of the problem.

Duality in semidefinite programming

The semidefinite program we introduced in (2.16) (which we will call from
now on primal) can be reformulated into its dual version. To do so, let us
first write the Lagrangian L associated with the primal problem

L =
∑
i

cixi − Tr

[(
F0 +

∑
i

xiFi

)
Z

]
(2.17)

=
∑
i

xi (ci − Tr [FiZ]) − Tr [F0Z] ,

where Z ∈ Rn×n is introduced as a Lagrange multiplier. The stationary points
of L are obtained by nullifying the partial derivatives ∂xi

L = 0 which means
that ci − Tr [FiZ] = 0. The solution of the original constrained problem is
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always a saddle point of L, identified among the stationary points. We then
introduce the associated dual problem as the following maximisation

maximize
Z

− Tr [F0Z] (2.18)

subject to Tr [FiZ] = ci, ∀i
Z ≥ 0 .

The key property of the dual SDP is that it yields bounds on the optimal
value of the primal SDP. Consider the difference between both object functions
in the primal and dual formulations∑

i

xici + Tr [F0Z] =
∑
i

xi Tr [FiZ] + Tr [F0Z] (2.19)

= Tr

[(∑
i

xiFi + F0

)
Z

]
≥ 0 ,

where in the last step we used the fact that Tr [AB] ≥ 0 if A = AT ≥ 0 and
B = BT ≥ 0 [30]. Thus, −Tr [F0Z] ≤ c⃗ T · x⃗, which means that the value
of the object function of the dual SDP for any feasible Z is smaller than or
equal to the object function of the primal SDP.

Let p∗ be the optimal value of the primal SDP, and d∗ the optimal value
of the dual SDP. We have that p∗ = d∗ if the primal or dual SDPs is strictly
feasible, i.e. there exist a set of variables satisfying the optimisation con-
straints [76]. Roughly speaking, the dual formulation of the SDP provides an
analogous problem to reach the optimal solution from the primal SDP from
the opposite direction. In other words, both primal and dual SDPs yield the
exact same optimal solution (if strictly feasible) from above and below.

Other than a different perspective, the dual problem can also help provid-
ing with useful optimality conditions. Consider non-empty optimal sets of
feasible solutions x⃗ and Z. From (2.19) we have that Tr [(

∑
i xiFi + F0)Z] = 0.

Since
∑

i xiFi +F0 ≥ 0 and Z ≥ 0, one has that both symmetric matrices are
orthogonal. This is called the complementary slackness condition. Another
optimality condition we already exposed as a constraint in the dual SDP is
Tr [FiZ] = ci, which is known as Lagrange stability.

Throughout most of all works presented in this thesis, duality in a semidef-
inite program is exploited in order to derive the optimality conditions, as
well as many other features from which we can benefit. The dual formulation
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in many cases presents a simpler problem computationally speaking, with
dual variables smaller in size. We harness this fact, and use it to speed-up
computations. Finally, in most optimisation problems derived in state dis-
crimination, correlations enter in the constraints on the primal SDP, which
in turn appear as an affine combination on the dual object function. We
use this in Ref. [16] to account for deviations provoked by finite-size effects
on the collected data from an experiment, directly plugging in the corrected
correlations on the solution of the dual SDP.

In the following sections we will review two of the most studied quantum
state discrimination protocols. We will look at the particular case the discrim-
ination of two qubit states, show the POVM representation of the optimal
measurements and the form of the observed conditional probabilities.

2.2 Minimum error state discrimination

Minimum error state discrimination (MESD) is a fundamental problem in
quantum information science that deals with the task of identifying an un-
known quantum state from a set of possible states. In this process, an
observer (receiver) receives a quantum system in one of several known states
and must determine which state it is, based on the measurement outcome.
The challenge in MESD is to determine the optimal measurement strategy
that minimizes the probability of making an error in the state discrimination
task.

2.2.1 Two state MESD

Let us have a look at the special case where the prepared state is known
to be one of the two pure states |ψx⟩ ∈ {|ψ0⟩ , |ψ1⟩}, with a density matrix
representation ρx = |ψx⟩ ⟨ψx|, according to the associated prior probabilities
{p0, p1 = 1 − p0}. The outcomes of the measurement will be described by the
POVM {π̂b} for b = 0, 1. The averaged probability of successfully guessing
the prepared state will then be expressed as

psuc := p0p(0|0) + p1p(1|1) = p0 Tr [π̂0ρ0] + p1 Tr [π̂1ρ1] , (2.20)

for p(b|x) following the Born rule in described in (2.3).
On the other hand, the averaged probability of miss-identifying the pre-

pared state, or error probability, is defined by

perr := p0p(1|0) + p1p(0|1) = p0 Tr [π̂1ρ0] + p1 Tr [π̂0ρ1] . (2.21)
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Normalisation and positivity apply in the probabilities defined in (2.20)
and (2.21). One can easily check that, if {π̂0, π̂1} form a valid POVM and
{ρ0, ρ1} are valid density matrices, psuc + perr = 1, psuc ≥ 0 and perr ≥ 0.
We want to find now the optimal pair {π̂0, π̂1} that minimizes perr. We can
formally write down the problem as the following SDP:

minimize
{π̂b}

perr = p0 Tr [π̂1ρ0] + p1 Tr [π̂0ρ1] (2.22)

subject to: π̂0 ≥ 0, π̂1 ≥ 0

π̂0 + π̂1 = 1 .

Thanks to the normalisation of the POVM, we can write the error probabil-
ity in terms of a single element of the POVM as perr = p0−Tr [π̂0 (p0ρ0 − p1ρ1)].
The trace of any operator is invariant under unitary transformations. So,
switching to the eigenbasis of the operator p0ρ0 − p1ρ1, the error probability
will reach its minimum whenever π̂0 is a projector onto the eigenvector corre-
sponding to the largest eigenvalue of p0ρ0 − p1ρ1. To see that, we can express
both qubit states in terms of the Bloch vector u⃗x as ρx = 1

2
[1+ u⃗xσ⃗], where

σ⃗ = (X, Y, Z) is a vector containing the Pauli matrices in (2.6). Let us con-
sider the pair of states defined by the Bloch vectors u⃗0 = (sinϕ, 0, cosϕ) and
u⃗1 = (− sinϕ, 0, cosϕ), where the angle ϕ determines the overlap ⟨ψ0|ψ1⟩ =
cosϕ. The eigenvalues of the operator p0ρ0 − p1ρ1 in terms of the prior
probabilities px and the overlap between both states are

λ± =
1

2

[
p0 − p1 ±

√
1 − | ⟨ψ0|ψ1⟩ |2 (1 − (p0 − p1)2)

]
. (2.23)

Obviously, the largest of these values is given by the one with the plus
sign λ+. Thus, at the end of the day the minimal attainable error probability,
in the framework of two-state discrimination, yields

perr ≥
1

2

[
1 −

√
1 − 4p0p1| ⟨ψ0|ψ1⟩ |2

]
. (2.24)

The lower bound in the error probability is commonly known as the
Helstrom bound, named after Carl W. Helstrom, who first derived it in [77].

2.2.2 Example of implementation

The Helstrom measurement was first implemented in the laboratory in
1997 [78], using highly attenuated laser light where the two states are non-
orthogonal polarisation states. Here we will show a very simple scheme to
perform a Helstrom measurement using polarized photons to encode qubit
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states.

Let |↕⟩ and |↔⟩ denote the mutually orthogonal vertical and horizontal
polarization states, respectively. Consider a pair of polarized photon states
parametrerised by the polarisation angle θ:

|ψ0⟩ = cos θ |↕⟩ + sin θ |↔⟩ (2.25)

|ψ1⟩ = cos θ |↕⟩ − sin θ |↔⟩ . (2.26)

Each state is prepared with fixed equal probability p0 = p1 = 1/2. The
overlap is fixed by the polarisation angle ⟨ψ0|ψ1⟩ = cos 2θ. A Helstrom
measurement can be implemented driving these states through a diagonal-
polarisation beamsplitter (PBS) and putting photo-detectors at each end.
Assuming that the PBS is set to filter diagonally polarised photons (|↕⟩ +
|↔⟩)/

√
2, the probability that the photo-detector at the other end of the PBS

clicks is ∣∣∣∣(⟨↕| + ⟨↔|√
2

)
|ψ0⟩

∣∣∣∣2 =
1

2
(1 + sin 2θ) (2.27)∣∣∣∣(⟨↕| + ⟨↔|√

2

)
|ψ1⟩

∣∣∣∣2 =
1

2
(1 − sin 2θ) . (2.28)

On the other hand, the probability that the other photo-detector clicks is∣∣∣∣(⟨↕| − ⟨↔|√
2

)
|ψ0⟩

∣∣∣∣2 =
1

2
(1 − sin 2θ) (2.29)∣∣∣∣(⟨↕| − ⟨↔|√

2

)
|ψ1⟩

∣∣∣∣2 =
1

2
(1 + sin 2θ) . (2.30)

Thus, by assigning the outcome b = 0 to the event that the photo-detector
at the other end of the PBS clicks and b = 1 otherwise, one reaches the
Helstrom bound.

2.3 Unambiguous state discrimination

Unambiguous state discrimination (USD) is a problem in quantum information
science that deals with the task of identifying an unknown quantum state
from an ensemble of possible states, without making any errors [79–81]. In
contrast to the MESD, where some errors are allowed, the goal in USD is to
find a measurement strategy such that the probability of a false positive or
false negative is zero. The zero error condition introduces the possibility that
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some measurement outcomes turn inconclusive. In other words, the observer
must be able to determine with certainty the state of the quantum system, or
else reject it if the state cannot be determined. The problem of USD was first
introduced by Ivanovic in 1987 [79], where he provided an example of two
non-orthogonal quantum states that can be perfectly distinguished without
making an error, a task that was previously thought to be impossible.

2.3.1 Two state USD

Let us have a look at the case previously studied of the discrimination of two
pure states |ψx⟩ ∈ {|ψ0⟩ , |ψ1⟩}. Consider the success and error probabilities
defined in (2.20) and (2.21) respectively. We aim to find a measurement
able to determine the state of the prepared physical system without making
any errors, i.e. perr = 0. Normalisation constraints in this particular case
imply psuc = 1, which goes against the superposition principle of quantum
mechanics for states with finite non-zero overlaps. This issue is addressed
by including an additional possible outcome which we will label b = ø, with
its corresponding POVM element π̂ø. This outcome will not provide any
information about which physical state was prepared. Thus, we shall call it
inconclusive. The probability of having an inconclusive outcome reads

pø := p0p(ø|0) + p1p(ø|1) = p0 Tr [π̂øρ0] + p1 Tr [π̂øρ1] , (2.31)

for p(b|x) also following the Born rule in described in (2.3).
Normalisation and positivity are still applicable to the defined probabilities.

It is easy to verify that, provided {π̂0, π̂1, π̂ø} constitute a legitimate POVM
and {ρ0, ρ1} are valid density matrices, the following conditions hold: psuc +
perr + pø = 1, psuc ≥ 0, perr ≥ 0, and pø ≥ 0. We now aim to find the optimal
USD measurement which minimizes the probability pø. We can formally write
down the problem as the following SDP:

minimize
{π̂b}

pø = Tr [π̂øρ0] + p1 Tr [π̂øρ1] (2.32)

subject to: π̂b ≥ 0 ∀b∑
b

π̂b = 1

p0 Tr [π̂1ρ0] + p1 Tr [π̂0ρ1] = 0 .

The main constraint in USD applies to POVM elements π̂0 and π̂1, such
that Tr [π̂0ρ1] = Tr [π̂1ρ0] = 0. This condition can only be satisfied if π̂0 and π̂1
are rank-1, together with ρ0 and ρ1 being linearly independent pure states (also
rank-1). Let |ψ⊥

x ⟩ denote the orthogonal state to |ψx⟩, i.e. ⟨ψx|ψ⊥
x ⟩ = 0. In a
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two-dimensional space spanned by the pure states {|ψ0⟩ , |ψ1⟩} this condition
translates to π̂0 = c0 |ψ⊥

1 ⟩ ⟨ψ⊥
1 | and π̂1 = c1 |ψ⊥

0 ⟩ ⟨ψ⊥
0 |, for c0 and c1 being

real non-negative constants which we now aim to determine. Normalisation
leaves the POVM element corresponding to the inconclusive outcome as
π̂ø = 1−c0 |ψ⊥

1 ⟩ ⟨ψ⊥
1 |−c1 |ψ⊥

0 ⟩ ⟨ψ⊥
0 |. With that, the probability of inconclusive

events is

pø = 1 − (1 − | ⟨ψ0|ψ1⟩ |2)(c0p0 + c1p1) . (2.33)

To minimize pø it is clear that we seek maximal c0 and c1. However, the
PSD constraint π̂ø ≥ 0 leaves the constants limited to fulfil the relation

c0c1(1 − | ⟨ψ0|ψ1⟩ |2) ≥ c0 + c1 − 1 . (2.34)

That places a tight bound on c0 and c1 that constitute the optimal USD
measurement and thus, for that, we will only consider the equality. The
following steps are in order: from (2.34) isolate c0, substitute it in (2.33) and
find a minimum by solving

dpø
dc1

∣∣∣∣
c∗1

= (1 − | ⟨ψ0|ψ1⟩ |2)
(

p0| ⟨ψ0|ψ1⟩ |2
[1 − c∗1(1 − | ⟨ψ0|ψ1⟩ |2)]2

+ p1

)
= 0 . (2.35)

This results in

c1 ≤ c∗1 =
p1 − | ⟨ψ0|ψ1⟩ |√p0p1
p1(1 − | ⟨ψ0|ψ1⟩ |2)

=⇒
(2.34)

c0 ≤
p0 − | ⟨ψ0|ψ1⟩ |√p0p1
p0(1 − | ⟨ψ0|ψ1⟩ |2)

. (2.36)

One then can directly plug this bounds in (2.33) and see that the minimal
attainable rate of inconclusive events, in the framework of USD, is

pø ≥ 2
√
p0p1| ⟨ψ0|ψ1⟩ | . (2.37)

These results show that, in some cases, a POVM that cannot be reduced
into standard projectors of the initial state onto orthogonal states may be
preferable to a rank-1 POVM.

2.3.2 Example of implementation

The first experimental implementation of USD in the lab was in 2000,
through a so called Ivanovic-Dieks-Peres (IDP) measurement [82]. There,
two nonorthogonal linear polarization states of lights were discriminated
using an optical interferometer to separate the appropriate components of
light, manipulate them and recombine them in order to perform the desired
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measurement. Here, let us consider an alternative implementation presented
in Ref. [68], which employs an optical setup with time-bin encoded coherent
states.

Consider a source of light which we can block with a black cover. This
source is tuned to produce a beam with a coherent amplitude α, so that a
coherent state

|α⟩ =e−|α|2/2
∞∑
n=0

αn

√
n!

|n⟩ (2.38)

is prepared. If we block the light instead, the prepared state would be nothing
else than vacuum |0⟩. At each round, we prepare two pulses of light separated
in two different time-bins which we call early and late. At each pulse we can
choose whether we block or not the light. With this toolbox, let us consider
the two possible prepared states |ψx⟩:

|ψ0⟩ = |α⟩E ⊗ |0⟩L |ψ1⟩ = |0⟩E ⊗ |α⟩L . (2.39)

We use the tensor product notation “⊗” to differentiate between states
prepared on the early “|·⟩E” or late “|·⟩L” time-bins. For x = 0, we let
light pass through during the early pulse but block it during the late pulse.
For x = 1 we do the opposite. The distinguishability of these two states
is characterized by their overlap: ⟨ψ0|ψ1⟩ = e−|α|2 . To perform USD, we
consider the measurement which simply consists of a single photo-detector
at the end of the light-beam. Whenever the photo-detector receives a pho-
ton, it will emit a signal which will be registered in a set of collected data.
We call this event a “click” of the photo detector. To see that this simple
measurement unambiguously discriminates the prepared states, note that
the only preparation that could trigger a click on the first time-bin is |ψ0⟩.
The same occurs for a click on the second time-bin which is only possible
if |ψ1⟩ is prepared. In that regard, let us label the measurement events b
with b = 0 corresponding to the outcome when the detector clicks during
the early time-bin, and b = 1 when it clicks during the late time-bin. Thus,
the error conditional probabilities p(b = 0|x = 1) = p(b = 1|x = 0) = 0 are
null, a necessary condition in USD. Moreover, coherent states have a non-zero
support on the vacuum, which implies that in some rounds we will not see
clicks on the detector. Whenever the detector does not click, we cannot certify
which state was prepared. We label the no-click events with b = ø, implying
that we denote them as inconclusive.
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To calculate the probabilities of each event we need to operationally
describe the measurement events. Let us use the decomposition of the
identity on the photon-number basis to identify each possible event. Also, let
us separate each time-bin event in two different Hilbert spaces.

1E ⊗ 1L =

(
∞∑
n=0

|n⟩ ⟨n|
)

︸ ︷︷ ︸
Early bin

⊗
(

∞∑
m=0

|m⟩ ⟨m|
)

︸ ︷︷ ︸
Late bin

=

(
|0⟩ ⟨0| +

∞∑
n=1

|n⟩ ⟨n|
)

⊗
(
|0⟩ ⟨0| +

∞∑
m=1

|m⟩ ⟨m|
)

(2.40)

= |0⟩ ⟨0| ⊗ |0⟩ ⟨0|︸ ︷︷ ︸
Detectors don’t click

+ |0⟩ ⟨0| ⊗
∞∑

m=1

|m⟩ ⟨m|︸ ︷︷ ︸
Click on late bin

+
∞∑
n=1

|n⟩ ⟨n| ⊗ |0⟩ ⟨0|︸ ︷︷ ︸
Click on early bin

+
∞∑
n=1

|n⟩ ⟨n| ⊗
∞∑

m=1

|m⟩ ⟨m|︸ ︷︷ ︸
Click on both time-bins

.

The last event we identity from the decomposition is the one corresponding
to the detector clicking at both time-bins. This event is orthogonal to both
states |ψx⟩ in (2.39). Thus, we will not consider it. The probabilities p(b|x)
corresponding to the other events can be computed as follows. The success
probabilities are

p(0|0) = ⟨ψ0|
(

∞∑
n=1

|n⟩ ⟨n| ⊗ |0⟩ ⟨0|
)
|ψ0⟩ =

∞∑
n=1

| ⟨α|n⟩ |2

=
∞∑
n=1

|e−|α|2/2
∞∑

n′=0

αn′

√
n′!

⟨n′|n⟩ |2 (2.41)

=e−|α|2
∞∑
n=1

α2n

n!
= e−|α|2

(
e|α|

2 − 1
)

= 1 − e−|α|2
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and

p(1|1) = ⟨ψ1|
(
|0⟩ ⟨0| ⊗

∞∑
m=1

|m⟩ ⟨m|
)
|ψ1⟩ =

∞∑
m=1

| ⟨α|m⟩ |2

=
∞∑

m=1

|e−|α|2/2
∞∑

n′=0

αn′

√
n′!

⟨n′|m⟩ |2 (2.42)

=e−|α|2
∞∑

m=1

α2m

m!
= e−|α|2

(
e|α|

2 − 1
)

= 1 − e−|α|2 .

The probabilities of having an inconclusive event are

p(ø|x) = ⟨ψx| (|0⟩ ⟨0| ⊗ |0⟩ ⟨0|) |ψx⟩ = | ⟨α|0⟩ |2 = e−|α|2 . (2.43)

We see that with this implementation we match the minimal attainable
rate of inconclusive events according to optimal USD: p(ø|x) = | ⟨ψ0|ψ1⟩ |,
which we derived in (2.37).
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Chapter 3

Maximum confidence
measurement for qubit states

In this chapter we present the results in “Maximum confidence measurement
for qubit states” [83], authored by Hanwool Lee, Kieran Flatt, Carles Roch i
Carceller, Jonatan Bohr Brask and Joonwoo Bae. This work was published
in Physical Review A.

3.1 Abstract

In quantum state discrimination, one aims to identify unknown states from
a given ensemble by performing measurements. Different strategies such
as minimum error state discrimination or unambiguous state identification
find different optimal measurements. Maximum confidence measurements
(MCMs) maximise the confidence with which inputs can be identified given
the measurement outcomes. This unifies a range of discrimination strategies
including minimum error and unambiguous state identification, which can be
understood as limiting cases of MCM. In this work, we investigate MCMs
for general ensembles of qubit states. We present a method for finding
MCMs for qubit-state ensembles by exploiting their geometry, and apply it
to several interesting cases, including ensembles of two and four mixed states
and ensembles of an arbitrary number of pure states. We also compare MCMs
to minimum error and unambiguous discrimination for qubits. Our results
provide interpretations of various qubit measurements in terms of MCMs and
can be used to devise qubit protocols.
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3.2 Introduction

One fundamental difference between classical and quantum physics is that,
while all information about the physical state of a quantum system is captured
by its quantum state, such states are in general not perfectly distinguishable.
Specifically, no measurement can perfectly discriminate nonorthogonal quan-
tum states. This is closely related to other fundamental results in quantum
mechanics such as the impossibility of perfectly copying quantum states [84]
and of faster-than-light signaling [85]. The limits to discriminating between
quantum states have numerous applications in quantum information science.
Such limits are key to the security of quantum key distribution [86, 87];
near-optimal state discrimination enables approximate quantum error correc-
tion [88]. They are also useful for operationally interpreting the differences
between separable and entangled states [89, 90] (see also [91, 92]). For further
examples of the wide impact of quantum state discrimination, see the related
reviews Refs. [29, 92–97].

If it is impossible to perfectly discriminate quantum states, the natural
thing to ask is precisely how well one can. This in turn introduces the need
for different figures of merit, corresponding to variations of the discrimination
task. In general, the task consists in identifying states drawn from some
ensemble, given a single copy of the state and prior knowledge of the possi-
ble states. Two well-studied cases are minimum error state discrimination
(MESD) and unambiguous state discrimination (USD). In MESD, one aims
to minimize the probability that the state is misidentified while forbidding
inconclusive outcomes [77, 98, 99]. In USD, one instead enforces that the
state is never misidentified, at the price of allowing for a nonzero inconclusive-
outcome rate, which one then aims to minimize [79–81]. Both MESD and
USD are naturally formulated as statements about the conditional probabili-
ties for observing certain outcomes, given that particular states were prepared.

Interestingly, distinct figures of merits in quantum state discrimination can
be rephrased in terms of predictive and retrodictive formulations of quantum
probabilities [100]. Predictive probabilities are probabilities of future events
conditioned on past events, which, in this context, are the probabilities of
the outcomes conditioned on the input states. Retrodictive probabilities are
probabilities of past events conditioned on future events occurring; here this
means the probabilities, conditioned on the observed outcomes, that particular
input states were prepared. Predictive and retrodictive probabilities can be
linked via Bayes’ theorem.
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In this work we focus on maximum confidence discrimination, which is
most naturally formulated in the retrodictive picture. The figure of merit here
is the confidence, defined as the conditional probability that an input was
prepared given that the corresponding outcome was observed. A maximum
confidence measurement (MCM) is a measurement strategy which achieves the
best possible confidence. Maximum confidence measurements were introduced
in Ref. [101]. They unify the MESD and USD settings of state discrimination.
In particular, MCMs implement USD whenever USD is possible for the given
ensemble and MESD if a zero inconclusive rate is enforced and the maximum
confidence considers an ensemble itself. In general, they make optimal use of
detection events for guessing which states were prepared in the past [102–106].

We investigate MCMs for qubit states and determine general relations
between a given ensemble and its MCM. We present a method for finding
MCMs by exploiting the geometry of the Bloch sphere directly, without refer-
ence to the algebraic optimization problem, in a similar manner to geometric
schemes for MESD of n qubit states [107–109]. We then consider several
particular ensembles of qubit states, derive their MCMs, and also compare to
MESD and USD.

The article is structured as follows. In Sec. 3.3 we start by briefly recalling
the state discrimination problem in the simplest case of two pure states
and results for optimal MESD and USD. In Sec. 3.4 we summarize MCMs.
In Sec. 3.5 we formulate the problem of identifying an optimal MCM for
qubits as a semidefinite program and present optimality conditions. The
relations between state ensembles and MCMs are found by exploiting the
Bloch sphere geometry. In Sec. 3.6 various ensembles of qubit-state ensembles
are considered and their MCMs are explicitly derived. We consider two mixed
states, geometrically uniform states, tetrahedron states, and asymmetric
states. In Sec. 3.7 we derive the bounds on the observed rates of events which
delimit different behaviours for MCMs. In Sec. 3.8 we summarize.

3.3 MESD and USD for two pure states

Let us consider the simplest non-trivial ensemble, consisting of two pure states,
|ψ0⟩ and |ψ1⟩, generated with a priori probabilities p0 and p1, respectively.
A measurement device receives state |ψx⟩ with x ∈ {0, 1}, drawn from this
ensemble, and provides an output b ∈ {0, 1, ø}. The output can be understood
as a guess for what input was prepared, i.e. for the value of x, with b = ø
denoting inconclusive outcomes. One can thus define an average error rate
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and an inconclusive rate, respectively, as

perr = p0p(b = 1|x = 0) + p1p(b = 0|x = 1), (3.1)

and
pø = p0p(b = ø|x = 0) + p1p(b = ø|x = 1), (3.2)

where p(b|x) denotes the conditional probability of observing outcome b given
input x.

In MESD, the goal is to minimise perr under the constraint that no
inconclusive outcomes occur, i.e., p(b = ø|x = 0) = p(b = ø|x = 1) = 0. In
this case, the minimal error rate is known as the Helstrom bound [77, 98, 99]

perr =
1

2
− 1

2
∥p0 |ψ0⟩ ⟨ψ0| − p1 |ψ1⟩ ⟨ψ1| ∥1, (3.3)

where ∥ · ∥1 denotes the trace distance.

This result applies to an arbitrary pair of quantum states and is found by
a measurement with a construction as follows. As it is shown in (3.3), the
optimal measurement can be found in the support of given states |ψ0⟩ and
|ψ1⟩. Then, two optimal positive-positive-operator-valued-measure (POVM)
elements π̂0 and π̂1 are found as projectors with positive and negative eigen-
values of the operator (p0 |ψ0⟩ ⟨ψ0| − p1 |ψ1⟩ ⟨ψ1|).

One can also notice that, independently to a dimension of a Hilbert space
where two states can be described, the two-state discrimination problem can
be reduced to a two-dimensional space spanned by |ψ0⟩ and |ψ1⟩. In this
sense, the two-state problem is equivalent to discrimination of two qubit
states. Then, by referring to a Bloch sphere, an optimal measurement with
POVM elements π̂0 and π̂1 can be found in a diameter of a half-plane due to
the completeness, i.e., π̂0 + π̂1 = 1. The Helstrom bound in (3.3) clarifies that
the diameter should be parallel to the difference (p0 |ψ0⟩ ⟨ψ0| − p1 |ψ1⟩ ⟨ψ1|).

In USD, on the other hand, the goal is to minimise pø under the constraint
that no errors occur, i.e., p(b = 1|x = 0) = p(b = 0|x = 1) = 0. In this case,
the minimal inconclusive rate is

pø = 2
√
p0p1| ⟨ψ0|ψ1⟩ |. (3.4)

If one hopes to be certain about which state was prepared, it suffices to
rule out the other option. If one measurement outcome is |ψ⊥

0 ⟩, such that
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⟨ψ0|ψ⊥
0 ⟩ = 0, then that outcome can never occur when |ψ0⟩ is measured. This

means that the prepared state must have been |ψ1⟩. The same holds for the
other state, so that the POVM must include among its elements the two
states orthogonal to those in the ensemble. A measurement consisting of just
those outcomes, however, will not be complete, and so the POVM must be
completed by a third element, which is the inconclusive one. Each of the
elements must be weighted by constant factors and that associated with the
third outcome determines the inconclusive rate. It is thus minimised. In this
manner, the rate (3.4) is attained [29].

3.4 Maximum confidence measurement

We now turn to the more general case of discriminating between an arbitrary
number of states. Let S denote an ensemble of quantum states in which the
states ρx are generated with a priori probabilities px:

S = {px, ρx}n−1
x=0 , and ρ =

n−1∑
x=0

pxρx. (3.5)

The most general measurement corresponds to an n+ 1-outcome POVM,
denoted by {π̂b}n−1,ø

b=0 , where outcome b = ø collects inconclusive events, and
the rest b = 0, · · · , n− 1 denotes the guess that the input ρx=b was prepared.

Let ρx denote the state of particular interest in the ensemble. The
probability that the correct state is identified is the confidence associated
with the measurement [101],

Cx := px|b(x|x) =
pxpb|x(x|x)

ηx
=
px Tr [ρxπ̂x]

Tr [ρπ̂x]
, (3.6)

where Bayes’ theorem is applied, and ηb = Tr [ρπ̂b] is the rate with which the
outcome b is triggered. For example, Cx = 1 for some x signifies unambiguous
identification of the state ρx by a detection event on π̂x. Given a detection
event, a state ρx is verified with certainty. Unambiguous discrimination of
quantum states is achieved when Cx = 1 for all x. In (3.6) we explicitly show
the sub-indices in the conditional probabilities for clarity, but we will drop
them from now on.

The confidence in (3.6) can be maximised by optimising over each POVM
element according to

maxCx = max
π̂x

px Tr [ρxπ̂x]

Tr [ρπ̂x]
, (3.7)
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where 0 ≤ π̂x ≤ 1. A valid POVM, which attains the optimum for all x, can
always be obtained by re-scaling the π̂x and including one additional element
π̂ø which collects inconclusive outcomes. Such a measurement is called an
MCM. In general, we have π̂ø ̸= 0.

As mentioned, when unambiguous discrimination is possible for an en-
semble, the MCM is identical to the measurement giving unambiguous dis-
crimination. An MCM for an ensemble of two pure states, for instance, will
identify each state with perfect confidence. Note, however, that an MCM
can be introduced for ensembles for which unambiguous discrimination is
impossible, such as three-qubit states.

One may consider the maximum confidence for an ensemble itself: denoting
by ηx the probability that a detector π̂b shows a detection event, i.e., ηb =
Tr [ρπ̂b], the maximization

max
n−1∑
x=0

ηxCx (3.8)

over a complete measurement equals the highest success probability in min-
imum error state discrimination [29]. We remark that an MCM provides
a unifying picture of different figures of merits in quantum state discrimination.

The maximisation of Cx in (3.6), which is computationally feasible, is
greatly facilitated by the ansatz [101]

π̂b = ηbρ
−1/2Q̂bρ

−1/2 for Q̂b ≥ 0, Tr
[
Q̂b

]
= 1 . (3.9)

We write explicitly

max
{π̂b}n−1,ø

b=0

Cx = max
{Q̂b}n

b=0

Tr
[
ρ̃xQ̂x

]
, (3.10)

for ρ̃x = ρ−1/2pxρxρ
−1/2. The confidence Cx is therefore maximised if Q̂x is a

projector onto the eigenstate of ρ̃x with largest eigenvalue, i.e.

maxCx = ||ρ−1/2pxρxρ
−1/2||op , (3.11)

where || · ||op denotes the operator norm ||A||op = sup||v||=1 ||Av||. Once an
optimal operator in (3.10), denoted by Q∗

x, is obtained, an optimal POVM
element π̂∗

x is found as (3.9).
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3.5 MCM for qubit states

In this section we approach the maximum confidence in (3.7) from the point
of view of convex optimisation. We first show a semidefinite program (SDP)
for the optimisation problem and then analyze the optimality conditions in
order to show that a general structure relates the states to their MCM.

3.5.1 Convex optimisation

We begin with the maximisation problem in (3.10) which is linear with respect
to a state of interest. The optimization problem can be written as an SDP as

p∗ = maximize
Q̂x

Tr
[
ρ̃xQ̂x

]
(3.12)

such that Q̂x ≥ 0, Tr
[
Q̂x

]
= 1. (3.13)

Its dual problem is found by constructing the Lagrangian

L (Qb, λb, Zb) = Tr
[
ρ̃xQ̂b

]
δb,x + λb

(
1 − Tr

[
Q̂b

])
+ Tr

[
Q̂bZb

]
. (3.14)

We introduced the dual variables λb and Zb ≥ 0 for b = 0, 1, . . . n, correspond-
ing to the trace-one and PSD constraints for Q̂b, respectively. Finding the
supremum of this Lagrangian gives the dual function

S (λb, Zb) = supp
Q̂b

L
(
Q̂b, λb, Zb

)
(3.15)

= λb + supp
Q̂b

Tr
[
(ρ̃xδb,x − λb1+ Zb) Q̂b

]
.

The supremum (3.15) will diverge unless the last term vanishes. Thus, the dual
parameters must satisfy the condition ρ̃xδb,x − λ∗b1+ Z∗

b = 0, which is called
Lagrangian Stability (LS) [110]. Another condition that optimal parameters

satisfy is the Complementary Slackness (CS) [111], given as Tr
[
Z∗

b Q̂
∗
b

]
= 0.

With the CS condition, LS enters as an inequality constraint in the dual
problem. We are now ready to formally state the dual problem as the following
minimisation problem:

d∗ = minimize
λb

λb (3.16)

subject to λbρ− δb,xpxρx ≥ 0 .

To this point, since the confidence is maximised for a particular state of
interest ρx, we will only focus on the outcome b = x identifying that particular
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state. In general, it holds that the optimal primal solution is greater or equal
than the dual. The equality holds when the problem is strictly feasible. In the
present case, both primal (3.10) and dual (3.16) are simultaneously feasible,
and one can find the maximum confidence Cx from both (p∗ = d∗ = maxCx).

Both the LS and CS conditions must be fulfilled by the parameters that
yield the optimal solution of the problem. One can see that by using a Linear
Complementarity Problem (LCP) [112] which is commonly used to understand
better the convex optimisation structure of the problem. Technically speaking,
while the optimisation problem, either primal or dual, includes inequality con-
straints, an LCP directly analyses the optimality conditions, which are in form
of equalities. The LCP is given by the LS and CS conditions, and those pa-
rameters satisfying these equalities will automatically find an optimal solution.

We write again the LCP conditions but first, we introduce a new parameter
rx ≥ 0 and a complementary state σx such that rxσx =

√
ρZx

√
ρ. The reason

why we call σx complementary will be apparent later. With these new
parameters, the optimality conditions turn

Lagrange stability: λxρ = qxρx + rxσx (3.17)

Complementary slackness: rx Tr [σxπ̂x] = 0 . (3.18)

Since both primal and dual problems are feasible, those primal and dual pa-
rameters satisfying (4.62) and (4.63) automatically pinpoint the optimization
problem’s solution. Once dual parameters are found from (4.62), the optimal
POVM element is characterized by (4.63). Note that an optimal POVM
element is found by the equalities given in the optimality conditions.

3.5.2 MCM for qubit states

We now investigate the optimality conditions for qubit states and show how
one can solve the optimization problem directly. Both the maximum con-
fidence and optimal POVM elements can be found. Let us begin with the
condition in (4.63). The product of a complementary state σx and an optimal
POVM must be zero. Since the optimal measurement satisfies π̂x ̸= 0 for
∀x = 0, · · · , n−1, it holds that both σx and π̂x must be rank-1 and orthogonal
with each other.

Let us consider the Lagrangian stability in (4.62), which can be rewritten
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for all x = 0, . . . , n− 1 as

ρ = µxρx + (1 − µx)σx , (3.19)

where µx = qx
λx

. Note that decompositions above for qubit states have been
also obtained in Ref. [105]. MCMs can be computed analytically from this
relation, which implies

Tr
[
σ2
x

]
=

Tr
[
(ρ− µxρx)2

]
(1 − µx)2

. (3.20)

For qubit states, the complementary state that fulfills the CS condition in
(3.18) is rank-1. This leaves the left-hand side equal to 1 and then, one can
analytically find µx knowing the whole ensemble ρ and the state of interest
ρx. Suppose that the state of interest ρx is pure, i.e., Tr [ρ2x] = 1. We then
have

µx =
1 − Tr [ρ2]

2 [1 − Tr [ρρx]]
, (3.21)

which can be computed from an ensemble ρ and a state of interest ρx.

When a state of interest is not pure, we have

µx =
1 − Tr [ρρx] − Det (ρ, ρx)

1 − Tr [ρ2x]
, (3.22)

where

Det (ρ, ρx) =

√
(1 − Tr [ρρx])2 − (1 − Tr [ρ2]) (1 − Tr [ρ2x]) . (3.23)

The maximum confidence is obtained as

maxCx = λ∗x =
px
µx

. (3.24)

when the state of interest ρx is prepared a priori with probability px. We
have therefore shown how to compute the maximum confidence for a state of
interest. Once µx is found as above, one can find the complementary state σx
in (3.19), from which the optimal POVM element is also found.

Example: N qubit pure states

To illustrate our approach, let us consider an ensemble of n arbitrary pure
states:

{|ψj⟩}n−1
j=0 , where |ψ0⟩ = |0⟩ and (3.25)

|ψj⟩ = cos
θj
2
|0⟩ + eiϕj sin

θj
2
|1⟩ for j = 1, · · · , n− 1.
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Note that the angles (θj , ϕj) are arbitrary and the state of interest is denoted
by |ψ0⟩. One can compute the maximum confidence as

maxC0 =
2 (1 − Tr [ρ0ρM ])

n+ 1 − (n− 1) Tr [ρ2M ] − 2 Tr [ρ0ρM ]
, (3.26)

where ρM is an equally weighted mixture of n−1 states |ψj⟩ for j = 1, · · · , n−1.
It is seen that the maximum confidence depends on two parameters: the
purity of an ensemble ρM and the fidelity between ρM and ρ0.

In addition, as shown in Refs. [17, 25], the maximum confidence is closely
related to the outcome rate, the probability that a detection event occurs,
denoted by η0 = Tr[ρπ̂0]. Here, the outcome rate is upper-bounded by

η+ = 1 +
µ0 Tr[ρρ0] − Tr[ρ2]

1 − µ0

, (3.27)

where µ0 = (1 − Tr[ρ2])/(2(1 − Tr[ρρ0])).

It’s worth emphasizing that any n state discrimination problem within
the MCM framework can be turned into a two-state discrimination problem.
Since an MCM can only focus on one state of interest (ρ0), the rest can be
collected in a mixture ρM . Maximum confidence can be straight computed
with (3.26), which is equivalent to (3.24) for equiprobable preparations.

3.5.3 Geometry of the MCM

The general structure of qubit states and MCMs can be depicted on the Bloch
sphere. We analyze here the optimality condition geometrically and present
the structure. We also show forms of the maximum confidence different from
(3.24).

Let us refer to Fig. 3.1. Note that the natural distance measure in the
Bloch sphere is given by the Hilbert-Schmidt norm, which turns out to be
proportional to the trace norm for qubit cases [108], i.e.,

√
2dHS (ρ, σ) = ||ρ− σ||1, (3.28)

where dHS (ρ, σ) =
√

Tr
[
(ρ− σ)2

]
. For instance, the trace notm between two

orthogonal qubit states equals 2, and the Hilbert-Schmidt distance is
√

2.
Thus, one can consider two measures interchangeably in the Bloch sphere
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(1 � µx)

Figure 3.1: Figure extracted from [83]. Geometry of an MCM for qubit states
on the Bloch sphere. The arrows represent Bloch vectors. For instance, Bloch
vectors OM and OV reach opposite points on the surface of the Bloch sphere,
and represent pure orthogonal states. An ensemble ρ and a state of interest
ρx correspond to OS and OU respectively. Since ρ is a convex combination
of ρx and a complementary state σx, the state σx is immediately obtained
as OV by extending US until it reaches the surface. An optimal POVM
element (MCM) corresponds to OM . It holds that OA + OB = OS and
OS +OC = OB ∝ OV .
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and relate them by a factor of
√

2.

We begin interpreting (3.19). An ensemble ρ is given as a convex mixture
of a state of interest ρx and its complementary one σx. This means that the
Bloch vector of a state ρ lies on a line connecting two Bloch vectors of two
states ρx and σx. It also implies that the Bloch vector of a state σx can be
found on a line connecting those of two states ρ and ρx. Let us recall from the
complementary slackness optimality condition in (3.18) that a complementary
state σx must be rank-1. Therefore, one can find a complementary state σx
on the surface at which the line connecting two known states ρ and ρx meet
(see Fig. 3.1). Once a complementary states is found, an optimal POVM
element is obtained as the orthogonal complement: π̂∗

x ∝ σ⊥
x . Both operators

π̂∗
x and σ⊥

x are rank-1.

Let us also explain the relations between the states and the MCM, as
shown in Fig. 3.1. Given states ρ and ρx, displayed as OS and OU respectively,
an optimal measurement is found as OM that is orthogonal to OV obtained
on the sphere by extending US. The Bloch vector of a complementary state
that corresponds to OV can be found as follows. Throughout, let r⃗(ρ) denote

the Bloch vector of a qubit state ρ. A vector
−→
US lying on a line defined by

points U and S is given by
−→
US = (r⃗(ρ) − r⃗(ρx))tx + r⃗(ρ) , (3.29)

for some tx ≥ 0. The complementary state’s Bloch vector r⃗(σx) is found when

tx is fixed such that ||−→US|| = 1.

From the convex ombination in (3.19) it holds that

||ρ− ρx||1
||ρ− σx||1

=
1 − µx

µx

. (3.30)

From the relation above, it is straightforward to find µx = ||ρ− σx||1/||ρx −
σx||1, so that

maxCx =
px||ρx − σx||1
||ρ− σx||1

= px

(
1 +

1

tx

)
, (3.31)

for tx fulfilling ||−→US|| = 1.

We have therefore shown that a complementary state can be directly found
by exploiting the qubit state geometry, as well as an MCM. In summary, the
maximum confidence for qubit states can be written in the various forms in
(3.24) and (3.31).
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3.5.4 Minimum probability of inconclusive events

Having found POVM elements for an MCM, let us consider the probability
inconclusive outcomes. We previously mentioned that a POVM element in an
MCM is rank-1. For a general ensemble (3.5), let π̂x = cx |φ⊥

x ⟩ ⟨φ⊥
x | denote

a POVM element for each state where cx is a non-negative constant and
|φ⊥

x ⟩ ⟨φ⊥
x | a rank-1 projector onto a pure state orthogonal to the complemen-

tary state σx = |φx⟩ ⟨φx|. These projectors are immediatly obtained such
that they perform an MCM. Then, a set of is constants {cx}N−1

x=0 is chosen to
find the probability of inconclusive outcomes, for which the POVM element
is denoted by

π̂ø = 1−
N−1∑
x=0

cx |φ⊥
x ⟩ ⟨φ⊥

x | , (3.32)

such that ηø = Tr [ρπ̂ø].

Some remarks are in order. Firstly, an MCM for an ensemble (3.5) varies
by choosing different values of {cx}n−1

x=0, for all of which an MCM holds true.
This immediately concludes that an MCM for an ensemble is not unique.
Secondly, if the convex hull of POVM elements performing an MCM contains
the identity, so that {cx}n−1

x=0 can be chosen such that
∑

x π̂
n−1
x=0 = 1, one can

find an MCM that is also complete. Consequently, an inconclusive outcome
does not occur, since π̂ø = 0 and then ηø = 0. Thirdly, if the convex hull of
POVM elements does not contain the identity, the probability of inconclusive
outcomes is non-zero. We thus introduce an optimisation problem to minimize
ηø. The problem is defined as follows

minimize
cx

Tr [ρπ̂ø] (3.33)

subject to cx ≥ 0, π̂ø ≥ 0 . (3.34)

The optimisation problem can be approached from the following Lagrangian,

L = Tr [ρπ̂ø] −
∑
x

νxcx − Tr [Kπ̂ø] , (3.35)

where K ≥ 0 and νx ≥ 0 are dual parameters. The optimality conditions
contain the Lagrangian stability,

⟨φ⊥
x |K |φ⊥

x ⟩ + νx − ⟨φ⊥
x | ρ |φ⊥

x ⟩ = 0 , (3.36)

and the complementary slackness

νxcx = 0, and Tr [Kπ̂ø] = 0 . (3.37)
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This optimization problem works for an arbitrary ensemble of quantum states.
In what follows, let us rewrite the problem specifically for qubit states.

One finds that complementary slackness condition (3.37) implies that π̂ø
is rank-1 for qubit states. Hence, it holds that

(
π̂ø

Tr [π̂ø]

)2

=
π̂ø

Tr [π̂ø]
, (3.38)

which, according to (3.32), is equivalent to

1 −
∑
x

cx +
1

2

∑
x,x′

(
1 − | ⟨φ⊥

x |φ⊥
x′⟩ |2

)
cxcx′ = 0 . (3.39)

In addition, also according to (3.32), we have that Tr [π̂ø] ≥ 0, which means
that 2−∑x cx ≥ 0. With these relations as constraints now, the optimisation
problem in (3.33) can be rewritten as

minimize
cx

Tr

[
ρ

(
1 −

∑
x

cx |φ⊥
x ⟩ ⟨φ⊥

x |
)]

(3.40)

subject to cx ≥ 0, 2 −
∑
x

cx ≥ 0

1 −
∑
x

cx +
1

2

∑
x,x′

(
1 − | ⟨φ⊥

x |φ⊥
x′⟩ |2

)
cxcx′ = 0 .

The probability of inconclusive outcomes for an MCM of qubit states can be
generally obtained by solving this optimisation problem. We reiterate that,
once a set of projectors for an MCM is obtained, the optimisation problem
above finds a set of optimal coefficients {cx}n−1

x=0 to minimize the probability
of inconclusive outcomes.

3.6 Various qubit states

In the following, let us apply the geometric structure of MCM to various
ensembles of qubit states. We show how states and their MCM are related
to each other. We also compare MCMs for qubit states to measurements for
unambiguous and minimum error state discrimination.
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B

Figure 3.2: Figure extracted from [83]. The couple of states considered in
(3.41) are shown in the Bloch sphere. OA and OB denote the Bloch vectors of
the states ρ0 and ρ1 respectively. Complementary states σ0 and σ1 are found
by extending the lines connecting A0B and A1B. These are represented by
OS1 and OS2 respectively. The MCM is obtained by flipping OS1 and OS2 to

their opposite directions, and are represented by the vectors
−−−→
OM0 and

−−−→
OM1.

These align with OU0 and OU1 which are the directions of unambiguous
measurements in the noiseless case. When the POVMs are aligned with OE0

and OE1, one recovers the optimal measurement for MESD. Then, we see
that MCM is found between USD and MESD.
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3.6.1 Two qubit states

The first example is two qubit states, each prepared with equal a priori
probabilities (see Fig. 3.2)

ρx = r |ψx⟩ ⟨ψx| + (1 − r)
1

2
, x = 0, 1 and (3.41)

ρ =
r

2
(|ψ0⟩ ⟨ψ0| + |ψ1⟩ ⟨ψ1|) + (1 − r)

1

2
.

Unambiguous discrimination is not possible for this ensemble states if r < 1.
Two pure states may be parameterized by cos θ = ⟨ψ0|ψ1⟩, so we can without
loss of generality write

|ψx⟩ = cos
θ

2
|0⟩ + (−1)x sin

θ

2
|1⟩ . (3.42)

The maximum confidence for each state is computed as

maxCx =
1

2

(
1 +

r
√

1 − cos2 θ√
1 − r2 cos2 θ

)
. (3.43)

The MCM can be obtained from the Bloch vectors of the states:

r⃗(ρx) = {(−1)xr sin θ, 0, r cos θ} (3.44)

r⃗(ρ) = {0, 0, r cos θ} . (3.45)

From these, the Bloch vectors of the complementary states are found, using
(3.31), to be

r⃗ (σx) =
{
tx(−1)x+1r sin θ, 0, r cos θ

}
(3.46)

with: tx =

√
1 − r2 cos2 θ

r
√

1 − cos2 θ
,

where we note that ||r⃗(σx)|| = 1. An optimal POVM is rank-1 and can be de-
scribed by the unit Bloch vector r⃗(π̂x) = −r⃗(σx). That is, an optimal POVM
element for state ρx is given by π̂x ∝ (1+ r⃗(π̂x) · σ⃗) /2, for σ⃗ = {X, Y, Z} is a
vector containing the Pauli matrices in (2.6). We show the geometric picture
in Fig. 3.2.

Remarks are in order. Firstly, suppose that pure states are given, i.e.
r = 1. Then, we have that r⃗(π̂x) = r⃗(ρx+1), meaning π̂x ⊥ ρx+1. In this case,
an MCM coincides with USD. Secondly, the MCM varies according to the
noise parameter r. Thirdly, for all values of r ∈ (0, 1], an MCM is never a null
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measurement. The same holds true even for different a priori probabilities
px. That is, the act of not measuring can never give the maximal confidence.
This contrasts with certain cases of MESD, in which a null measurement is
optimal whenever |p0 − p1| > ||p0ρ0 − p1ρ1||1.

The probability of inconclusive outcomes can be minimized according to
(3.40). Since we consider equal a priori probabilities, the problem present
the following symmetry c0 = c1. Then, it is straightforward to solve the
optimisation problem. The minimal probability of inconclusive events is then
ηø = p cos θ. Note that in the noiseless case (r = 1) one recovers the USD
bound in (2.37).

3.6.2 Geometrically uniform states

A set of n states {ρx}n−1
x=0 are geometrically uniform when there exists a unitary

transformation U such that UρxU
† = ρx+1, ∀x, and Un = 1 [113]. As one

example (see Fig. 3.3), geometrically uniform qubit pure states can be written
as

|ψx⟩ = cos
θ

2
|0⟩ + ex

2π
n
i sin

θ

2
|1⟩ . (3.47)

Note that a set of n states {ρx}n−1
x=0 generalized the three qubit states considered

in Ref. [101]. Assume that the states are given with equal a priori probabilities
px = 1/n, ∀x. Then, the ensemble is given by

ρ =
1

2
(1+ cos θZ) . (3.48)

Since we consider pure states, we have µx = 1/2, ∀x. The maximum confidence
is then given by

maxCx =
2

n
. (3.49)

In this case, the maximum confidence concerning a particular state of interest
only depends on the cardinality of an ensemble: it is less confident to detect
a particular state of a larger set, and vice versa.

An optimal measurement can be found as follows. The Bloch vectors of
the states are

r⃗(ρx) =

{
cos

2π

n
x sin θ, sin

2π

n
x sin θ, cos θ

}
(3.50)

r⃗(ρ) = {0, 0, cos θ} . (3.51)
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Ex+1

Figure 3.3: Figure extracted from [83]. Geometrically uniform pure states
OAx form a circle with radius BAx, where OB denotes the ensemble of the
states with equal a priori probabilities. For every particular state OAx, its
complementary state is found in OSx by extending BAx to the surface of the
Bloch sphere. Then, one finds the corresponding MCM OMx flipping OSx.
We highlight the half-plane defined by the collection of midpoints AxMx.
The MESD measurement is formed by vectors aligned with OEx, which are
projections of OAx onto the half-plane. For states lying on the half-plane,
MCM coincides with a measurement in MESD.
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Then, the Bloch vectors of the complementary states are found, using (3.31),
to be

r⃗(σx) =

{
− cos

(
2π

n
x

)
sin θ,− sin

(
2π

n
x

)
sin θ, cos θ

}
, (3.52)

where {−r⃗(σx)}x denote the vectors of optimal POVM elements.

The minimal probability of inconclusive events can be obtained solving the
optimisation problem in (3.40). Since we consider equal a priori probabilities,
the problem presents the following symmetry cx = cx′ , ∀x. Then, the minimal
probability of inconclusive events is ηø = | cos θ|. Note that if n = 3, one
recovers the same results as in Ref. [101].

One cannot recover the same results from USD for n > 2. The measure-
ment for MESD is found on the half-plane [fig ref], and the success probability
is psuc = (1+sin θ)/n. That is, the geometrically uniform states with θ = π/2,
the MCM recovers the MESD bound.

3.6.3 Tetrahedron states

For the next example we consider an ensemble of tetrahedral states,

|ψ0⟩ = |0⟩ , |ψx⟩ =

√
1

3
|0⟩ + ex

2π
3
i

√
2

3
|1⟩ , for: x = 1, 2, 3 . (3.53)

These states form a tetrahedrom in the Bloch sphere, as shown in Fig. 3.4,
hence the name. These are symmetric, informationally complete (SIC) states,
since | ⟨ψx|ψx′⟩ | = 1/3 for x ̸= x′ [114].

To be more general, let us consider noisy tetrahedron states

ρx = r |ψx⟩ ⟨ψx| + (1 − r)
1

2
, for: x = 0, 1, 2, 3 , (3.54)

with equal a priori probabilities, hence ρ = 1/2. From (3.24), it follows that

µx =
1

1 + r
with maxCx =

1 + r

4
, for: x = 0, 1, 2, 3 . (3.55)

Note that, for pure noiseless states, the maximum confidence is 1/2. Since
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Figure 3.4: Figure extracted from [83]. Collection of noisy tetrahedron states
OAx, the ensemble of which is 1/2, represented as the origin point O on the
Bloch sphere. The complementary states are then directly on the opposite
directions of the given states: OSx. This means that the optimal POVM
yielding an MCM (OMx) are projectors onto the same directions of the given
states OAx.

48



Chapter 3 – Maximum confidence measurement for qubit states

the Bloch vectors of the tetrahedron states are given by

r⃗(ρ0) = {0, 0, r} (3.56)

r⃗(ρx) =

{
2
√

2

3
r cos

(
2π

3
x

)
,
2
√

2

3
r sin

(
2π

3
x

)
,−1

3
r

}
(3.57)

r⃗(ρ) = {0, 0, 0} , (3.58)

for x = 0, 1, 2, 3, one can find the Bloch vectors of the complementary states,

r⃗(σx) = −1

r
r⃗(ρx), for: x = 0, 1, 2, 3 . (3.59)

We show the corresponding MCM for tetrahedron states in Fig. 3.4. This
MCM coincides with the measurement that minimizes the error, i.e., MCM
and a MESD measurement are equivalent for the tetrahedron states [108,
109]. We also remark that, as shown in Sec. 3.5.4, since the convex hull
of projectors contains the identity, one can always find an MCM with zero
inconclusive events.

3.6.4 Asymmetric states I

Consider the ensemble of three asymmetric states, which is constructed by
slightly modifying one of the three geometrically uniform states. We look at
the three states

|ψ0⟩ = cos
θ

2
|0⟩ + sin

θ

2
|1⟩ , and

|ψ1⟩ =
1

2
|0⟩ +

√
3

2
|1⟩), |ψ2⟩ =

1

2
(|0⟩ −

√
3 |1⟩). (3.60)

That is, two states |ψ1⟩ and |ψ2⟩ are fixed and a state |ψ0⟩ is varied by an
angle θ. The Bloch vectors are

n⃗(ψ0) = (sin θ, 0, cos θ), n⃗(ψ1) = (

√
3

2
, 0,−1

2
) (3.61)

n⃗(ψ2) = (
−
√

3

2
, 0,−1

2
), n⃗(ρ) =

1

3
(sin θ, 0,−1 + cos θ).

It turns out that an MCM for them does not contain any symmetry, as can
be seen in Fig. 3.5. We make use of the expression in (3.31) to get

t0 =
9 − 2(1 − cos θ)

9 − 4(1 − cos θ)
and (3.62)

tx =
9 − 2(1 − cos θ)

9 − (1 − cos θ) − 3
√

3(−1)x sin θ
, x = 1, 2. (3.63)

49



Chapter 3 – Maximum confidence measurement for qubit states

<latexit sha1_base64="wuJ5mgB5ybuupaDy4SaaCaW3n/g=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKUI9BL95MwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+n2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rw2p9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaV6UvctypV4pVW+yOPJwAqdwDh5cQRXuoAYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A6sDjNw=</latexit>

O

<latexit sha1_base64="nHV6ZkUj2uHQz28RjqNxNOP9tOc=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY8ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9YvltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia89adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWldl77pcaVRK1VoWRx7O4BwuwYMbqMI91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AJdPjM8=</latexit>

B

<latexit sha1_base64="1jM/+lhH5yHf31UUzR8v296eypc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPVi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6uO65vXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+ien5/Xqnd5HEU4QiO4RQ8uIQa3EEdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8we5QY1x</latexit>

A0

<latexit sha1_base64="fPy1Zut4+Nh672Bw8J33CD5JYhY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPVi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6uO55vXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+ien5/Xqnd5HEU4QiO4RQ8uIQa3EEdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8we6xY1y</latexit>

A1
<latexit sha1_base64="nldCXVjQXXLla3o8KRQsYrlvh9Y=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY+oF48Y5ZHAhswOszBhdnYz02tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmd+64lrI2L1iOOE+xEdKBEKRtFKD9e9Sq9YcsvuHGSVeBkpQYZ6r/jV7ccsjbhCJqkxHc9N0J9QjYJJPi10U8MTykZ0wDuWKhpx40/mp07JmVX6JIy1LYVkrv6emNDImHEU2M6I4tAsezPxP6+TYnjlT4RKUuSKLRaFqSQYk9nfpC80ZyjHllCmhb2VsCHVlKFNp2BD8JZfXiXNStm7KFfvq6XaTRZHHk7gFM7Bg0uowR3UoQEMBvAMr/DmSOfFeXc+Fq05J5s5hj9wPn8AvEmNcw==</latexit>

A2

<latexit sha1_base64="Husc4nc7UXSbUzoIkZ/DYte4euo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8dK7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHstHM0nQj+hQ8pAzaqzUaPTdfrniVt05yCrxclKBHPV++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPEzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqndVvXy4rNRu8ziKcAKncA4eXEMN7qEOTWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QPUrY2D</latexit>

S0

<latexit sha1_base64="SjINRKQZRyTsCjrmIx8Td4lxDVE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8dK7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHstHM0nQj+hQ8pAzaqzUaPS9frniVt05yCrxclKBHPV++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPEzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqndVvXy4rNRu8ziKcAKncA4eXEMN7qEOTWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QPWMY2E</latexit>

S1

<latexit sha1_base64="PtN1yyeLkII+1LwVICBHg8+0904=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRixehov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3Uz91hMqzWP5aMYJ+hEdSB5yRo2VHu56bq9ccavuDGSZeDmpQI56r/zV7ccsjVAaJqjWHc9NjJ9RZTgTOCl1U40JZSM6wI6lkkao/Wx26oScWKVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE175GZdJalCy+aIwFcTEZPo36XOFzIixJZQpbm8lbEgVZcamU7IheIsvL5PmWdW7qJ7fn1dq13kcRTiCYzgFDy6hBrdQhwYwGMAzvMKbI5wX5935mLcWnHzmEP7A+fwBy4mNfQ==</latexit>

M0

<latexit sha1_base64="O7WTdkXZXQzQD271mQkF4cIVViA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRixehov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3Uz91hMqzWP5aMYJ+hEdSB5yRo2VHu56Xq9ccavuDGSZeDmpQI56r/zV7ccsjVAaJqjWHc9NjJ9RZTgTOCl1U40JZSM6wI6lkkao/Wx26oScWKVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE175GZdJalCy+aIwFcTEZPo36XOFzIixJZQpbm8lbEgVZcamU7IheIsvL5PmWdW7qJ7fn1dq13kcRTiCYzgFDy6hBrdQhwYwGMAzvMKbI5wX5935mLcWnHzmEP7A+fwBzQ2Nfg==</latexit>

M1

<latexit sha1_base64="oXLwGkeHBL0oSM33NGecfmrTqdo=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB6DXrwIEc0DkiXMTmaTIbOzy0yvEEI+wYsHRbz6Rd78GyfJHjSxoKGo6qa7K0ikMOi6305ubX1jcyu/XdjZ3ds/KB4eNU2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo5uZ33ri2ohYPeI44X5EB0qEglG00sNdr9IrltyyOwdZJV5GSpCh3it+dfsxSyOukElqTMdzE/QnVKNgkk8L3dTwhLIRHfCOpYpG3PiT+alTcmaVPgljbUshmau/JyY0MmYcBbYzojg0y95M/M/rpBhe+ROhkhS5YotFYSoJxmT2N+kLzRnKsSWUaWFvJWxINWVo0ynYELzll1dJs1L2LsrV+2qpdp3FkYcTOIVz8OASanALdWgAgwE8wyu8OdJ5cd6dj0VrzslmjuEPnM8fzpGNfw==</latexit>

M2

<latexit sha1_base64="WNMJVtt0EI1+lLcljti8s7rlwWc=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY9ELx4xyCOBDZkdemHC7OxmZtaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzSRBP6JDyUPOqLFSo9Gv9Islt+wuQNaJl5ESZKj3i1+9QczSCKVhgmrd9dzE+FOqDGcCZ4VeqjGhbEyH2LVU0gi1P12cOiMXVhmQMFa2pCEL9ffElEZaT6LAdkbUjPSqNxf/87qpCW/8KZdJalCy5aIwFcTEZP43GXCFzIiJJZQpbm8lbEQVZcamU7AheKsvr5NWpexdlasP1VLtNosjD2dwDpfgwTXU4B7q0AQGQ3iGV3hzhPPivDsfy9ack82cwh84nz/XtY2F</latexit>

S2

<latexit sha1_base64="nWwFofU58f/o0tULfi1Y4v69JVA=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY+oF4+QyCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvPaHSPJYPZpygH9GB5CFn1FipftMrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdl77JcqVdK1dssjjycwCmcgwdXUIV7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AJXLjM4=</latexit>

A

Figure 3.5: Three states OA, OA1 and OA2 are geometrically uniform. The
first state is slightly tilted so that an ensemble of three states OAx for
x = 0, 1, 2 is considered. The ensemble is denoted by OB. Complementary
states OSx are found by extending AxB, and optimal POVM elements are
found by inverting OSx with respect to O. None of the elements OMx are
identical to states OAx.
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<latexit sha1_base64="wuJ5mgB5ybuupaDy4SaaCaW3n/g=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKUI9BL95MwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+n2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rw2p9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaV6UvctypV4pVW+yOPJwAqdwDh5cQRXuoAYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A6sDjNw=</latexit>

O

<latexit sha1_base64="nHV6ZkUj2uHQz28RjqNxNOP9tOc=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY8ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9YvltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia89adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWldl77pcaVRK1VoWRx7O4BwuwYMbqMI91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AJdPjM8=</latexit>

B

<latexit sha1_base64="1jM/+lhH5yHf31UUzR8v296eypc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPVi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6uO65vXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+ien5/Xqnd5HEU4QiO4RQ8uIQa3EEdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8we5QY1x</latexit>

A0

<latexit sha1_base64="fPy1Zut4+Nh672Bw8J33CD5JYhY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPVi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6uO55vXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+ien5/Xqnd5HEU4QiO4RQ8uIQa3EEdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8we6xY1y</latexit>

A1

<latexit sha1_base64="nldCXVjQXXLla3o8KRQsYrlvh9Y=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY+oF48Y5ZHAhswOszBhdnYz02tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmd+64lrI2L1iOOE+xEdKBEKRtFKD9e9Sq9YcsvuHGSVeBkpQYZ6r/jV7ccsjbhCJqkxHc9N0J9QjYJJPi10U8MTykZ0wDuWKhpx40/mp07JmVX6JIy1LYVkrv6emNDImHEU2M6I4tAsezPxP6+TYnjlT4RKUuSKLRaFqSQYk9nfpC80ZyjHllCmhb2VsCHVlKFNp2BD8JZfXiXNStm7KFfvq6XaTRZHHk7gFM7Bg0uowR3UoQEMBvAMr/DmSOfFeXc+Fq05J5s5hj9wPn8AvEmNcw==</latexit>

A2

<latexit sha1_base64="SjINRKQZRyTsCjrmIx8Td4lxDVE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8dK7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHstHM0nQj+hQ8pAzaqzUaPS9frniVt05yCrxclKBHPV++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPEzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqndVvXy4rNRu8ziKcAKncA4eXEMN7qEOTWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QPWMY2E</latexit>
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<latexit sha1_base64="O7WTdkXZXQzQD271mQkF4cIVViA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRixehov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3Uz91hMqzWP5aMYJ+hEdSB5yRo2VHu56Xq9ccavuDGSZeDmpQI56r/zV7ccsjVAaJqjWHc9NjJ9RZTgTOCl1U40JZSM6wI6lkkao/Wx26oScWKVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE175GZdJalCy+aIwFcTEZPo36XOFzIixJZQpbm8lbEgVZcamU7IheIsvL5PmWdW7qJ7fn1dq13kcRTiCYzgFDy6hBrdQhwYwGMAzvMKbI5wX5935mLcWnHzmEP7A+fwBzQ2Nfg==</latexit>
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<latexit sha1_base64="oXLwGkeHBL0oSM33NGecfmrTqdo=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB6DXrwIEc0DkiXMTmaTIbOzy0yvEEI+wYsHRbz6Rd78GyfJHjSxoKGo6qa7K0ikMOi6305ubX1jcyu/XdjZ3ds/KB4eNU2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo5uZ33ri2ohYPeI44X5EB0qEglG00sNdr9IrltyyOwdZJV5GSpCh3it+dfsxSyOukElqTMdzE/QnVKNgkk8L3dTwhLIRHfCOpYpG3PiT+alTcmaVPgljbUshmau/JyY0MmYcBbYzojg0y95M/M/rpBhe+ROhkhS5YotFYSoJxmT2N+kLzRnKsSWUaWFvJWxINWVo0ynYELzll1dJs1L2LsrV+2qpdp3FkYcTOIVz8OASanALdWgAgwE8wyu8OdJ5cd6dj0VrzslmjuEPnM8fzpGNfw==</latexit>

M2

<latexit sha1_base64="WNMJVtt0EI1+lLcljti8s7rlwWc=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY9ELx4xyCOBDZkdemHC7OxmZtaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzSRBP6JDyUPOqLFSo9Gv9Islt+wuQNaJl5ESZKj3i1+9QczSCKVhgmrd9dzE+FOqDGcCZ4VeqjGhbEyH2LVU0gi1P12cOiMXVhmQMFa2pCEL9ffElEZaT6LAdkbUjPSqNxf/87qpCW/8KZdJalCy5aIwFcTEZP43GXCFzIiJJZQpbm8lbEQVZcamU7AheKsvr5NWpexdlasP1VLtNosjD2dwDpfgwTXU4B7q0AQGQ3iGV3hzhPPivDsfy9ack82cwh84nz/XtY2F</latexit>
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<latexit sha1_base64="Husc4nc7UXSbUzoIkZ/DYte4euo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8dK7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHstHM0nQj+hQ8pAzaqzUaPTdfrniVt05yCrxclKBHPV++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPEzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqndVvXy4rNRu8ziKcAKncA4eXEMN7qEOTWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QPUrY2D</latexit>

S0

Figure 3.6: Three states OA0, OA1 and OA2 are considered where OA1 and
OA2 are orthogonal. Complementary states OSx are found on the sphere
by extending AxB. An optimal POVM consists of OA0, OM1, and OM2. A
measurement for minimum error state discrimination contains two POVM
elements OA1 and OA2.

The maximum confidence is found to be (1 + 1/tx)/3. It is seen that an MCM
for the asymmetric states does not contain any symmetry.

3.6.5 Asymmetric states II

The next example of asymmetric states considered is the following

|ψ0⟩ = cos
θ

2
|0⟩ + sin

θ

2
|1⟩ , |ψ1⟩ = |+⟩ , and |ψ2⟩ = |−⟩ ,

where each state is prepared with equal a priori probability (see Fig. 3.6).
Similarly to the previous case, two states |ψ1⟩ and |ψ2⟩ are fixed and a state
|ψ0⟩ varies by an angle θ. In contrast with the ensemble in (3.60), the pair of
states |±⟩ contains a symmetry: they are invariant under a rotation about

51



Chapter 3 – Maximum confidence measurement for qubit states

the x-axis. Their Bloch vectors are

n⃗(ψ0) = (sin θ, 0, cos θ), n⃗(ψ1) = (1, 0, 0)

n⃗(ψ2) = (−1, 0, 0), n⃗(ρ) =
1

3
(sin θ, 0, cos θ). (3.64)

We again exploit the expression in (3.31) to find

t0 = 2, t1 =
4

5 − 3 sin θ
, t2 =

4

5 + 3 sin θ
. (3.65)

It follows that

maxC(x) =
1

3
(1 +

1

tx
). (3.66)

Interestingly, the maximum confidence for the state |ψ0⟩, which is parameter-
ized by θ, does not depend on the angle. The maximum confidence for the
other two states depends upon the angle θ from the other state |ψ0⟩.

In contrast to the three states in the case of the ensemble in (3.60), the
MCM contains a symmetry, seen from the Bloch vectors of the complementary
states which are

r̂0 = −n⃗(ψ0) (3.67)

r̂1 = (
1

3
sin θ − 1, 0,

1

3
cos θ)t1 +

1

3
(sin θ, 0, cos θ)

r̂2 = (
1

3
sin θ + 1, 0,

1

3
cos θ)t2 +

1

3
(sin θ, 0, cos θ).

That is, an optimal POVM element for the state |ψ0⟩ shares its Bloch vector
with the state n⃗(ψ0). An MCM for two states |±⟩ depends on the angle θ of
the other state |ψ0⟩.

In the case of minimum error state discrimination for the ensemble, an
optimal measurement does not aim to detect a state |ψ0⟩. It contains two
POVM elements having Bloch vectors n⃗(ψ1) and n⃗(ψ2). Then, a detection
event on the first (second) POVM element characterized by n⃗(ψ1) (n⃗(ψ2))
concludes a state |ψ1⟩ (|ψ2⟩). In this way, the guessing probability is given as
2/3 [108].

3.7 Bounds on the rate of observed events

We add this section, which is not included in [83], for completeness in the
framework of presenting MCMs. The results presented in this section turn
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useful for understanding future chapters.

As previously discussed, the maximum attainable confidence has an inher-
ent dependence on the rate of observed events ηx. This dependence manifests
as a bound, limited by the geometry of the MCM. Also, depending whereas the
confidence of a single state of interest or the confidence of the whole ensemble
is maximised, the achievable rates will differ. Hence, we will particularly look
at both cases, and specify the analytical values of these bounds. We will
consider the task of discriminating the states in the ensemble introduced in
(3.41).

3.7.1 MCM of the whole ensemble

The maximum confidence C in (3.43) can be simultaneously reached for the
whole ensemble ρ if both POVM elements π̂0 and π̂1 are proportional to
the projectors onto the orthogonal complementary states. Since no state
has a preference, we rather not specify a particular bound for η0 or η1, but
for the rate of inconclusive events. The minimum value of ηø at which
both confidences C0 = C1 = C are maximum can be obtained by studying
the positive semi-definiteness constraint on the POVM element π̂ø. The
process is the same as we did when finding a lower bound on ηø but in
USD (see Sec. 2.3.1). First of all, we write the rate of inconclusive events
as ηø = 1 − (1 − r2 cos2 θ)(c0 + c1)/2. Then, one finds that π̂ø ≥ 0 if and
only if c0c1(1 − r2 cos2 θ) ≥ c0 + c1 − 1. Any values of c0 and c1 satisfying
this inequality constitute a valid MCM and thus, place a bound on the rates
ηx. The following steps are in order: from the previous inequality isolate ci,

substitute it in ηø and find a minimum by solving dηø
dci

∣∣∣
c∗i

= 0. At the end of

the day, the minimum rate ηø for which an MCM is possible is

ηø ≥ r cos θ . (3.68)

Again, in the noiseless case one recovers the exact same result in USD (2.37).
For smaller rates of inconclusive events the maximum confidence is no longer
achievable. However, we can still find a bound which is strictly dependent
on ηø. Let us use the geometrical interpretation on the Bloch sphere. The
maximum confidence for rates 1 ≥ ηø ≥ r cos θ is achieved by rank-1 POVM
elements. As ηø becomes smaller, the Bloch vector of π̂x increases in length
until it reaches the surface of the Bloch sphere for ηø = r cos θ. If one now
wants to see what happens if ηø keeps decreasing, the Bloch vector of the
POVM elements π̂x must rotate in a particular direction. This rotation will
increase the error probability (i.e. Tr [ρxπ̂b] for b ̸= x and b ̸= ø), which can
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be mitigated by decreasing the value of the proportionality coefficients cx.
Observe that we converted our maximum confidence problem into a minimum
error problem with a fixed rate of inconclusive events. Let us introduce the
success psuc and error perr probabilities as

psuc =
1

2
(p(0|0) + p(1|1)) perr =

1

2
(p(1|0) + p(0|1)) . (3.69)

Without loss of generality, one can consider the symmetric case (p(0|0) =
p(1|1) and p(0|1) = p(1|0)) and re-write the confidence as C = psuc/(psuc+perr).
Roughly speaking, here psuc and perr correspond to the success and error
probabilities of measuring ρx using the best possible measure to discriminate
the complementary states σx. The inconclusive rate is then 1−ηø = psuc +perr.
Finding the maximum confidence is equivalent to maximising the difference
between the success and error probabilities, fixing the rate of inconclusive
events. In Chapter 5 we find the explicit analytic solution for the maximal
success and minimum error. Using that solution, at the end of the day, one
ends up with the maximum confidence

C =
1

2

(
1 +

r
√

(1 − cos2 θ)(1 + r cos θ − 2ηø)√
1 + r cos θ(1 − ηø)

)
for ηø ≤ r cos θ . (3.70)

The values of the maximum confidence for the whole ensemble are shown
in Fig. 3.7 on the left. We thus found an upper bound on the confidence for
any rate of inconclusive events. This generalises the results from USD and
MESD due to the flexibility of accepting any value of inconclusive events.

3.7.2 MCM for a state of interest

One can only be interested in a particular state ρx of the whole ensemble ρ.
Then, the only object of interest is the individual confidence Cx in correctly
measuring state ρx. In our present case, we will focus in maximising the
confidence C0 of ρ0 (although results are valid for any state ρx) from the
ensemble formed by the states in (3.41). The rate of events of interest is then
η0. For small enough values of η0, the maximum confidence in (3.43) can be
reached. That is, when the POVM element corresponding to the outcome of
interest (i.e. π̂0) is rank-1, proportional to the projector onto the orthogonal
complementary state |φ⊥

0 ⟩. The positive semi-definiteness condition π̂ø ≥ 0
applied to the coefficients cx states that c0c1(1− r2 cos2 θ) ≥ c0 + c1−1. Since
we are only interested in the case of x = 0, one sees that c0 ≤ 1. This means
that, since cx = 2ηx/(1 − r2 cos2 θ), ∀x, the possible rates η0 at which the
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Figure 3.7: Maximum confidence for the whole ensemble ρ (left figure) and
for a particular state of interest ρx (right figure) for different noise parameters
r. The discrimination task is done between the pair of states in (3.41). We
show the particular case of two-state discrimination with a fixed overlap
cos θ = 0.8. In the orange regions the maximal confidence in (3.43) is
reached. On the left figure, the yellow region covers inconclusive rates
ηø ≥ r cos θ. On the right figure, the yellow region covers rates within the
range (1 − r2 cos2 θ) ≤ 2ηx ≤ (1 + r2 cos2 θ), whilst the blue region shows
2ηx ≥ (1 + r2 cos2 θ) cases.
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maximum confidence is achieved are

0 ≤ η0 ≤
1

2

(
1 − r2 cos2 θ

)
. (3.71)

Note that here the maximum confidence is achieved for inconclusive rates
smaller than the usual USD bound in (3.68). Explicitly, one sees that
ηø = 1 − η0 − η1 ≥ r cos θ ≥ r2 cos2 θ according to (3.71). The interpretation
is the following: for inconclusive rates ηø ≥ r cos θ, both states ρx can be
discriminated with maximum confidence, as shown in the previous section,
but if r cos θ ≥ ηø ≥ r2 cos2 θ, only one POVM can have rank-1, in this case
π̂0. In the noiseless case (r = 1), if 1 ≥ ηø ≥ r cos θ the problem reduces
to USD, whereas if r cos θ ≥ ηø ≥ r2 cos2 θ only ρ0 can be unambiguously
identified.

If the experiment reaches greater values of η0, the maximum confidence
in (3.43) cannot be achieved. However, we can still place a tight bound on
the confidence C0. To do that, we need to allow π̂0 to rotate towards the
state ρ0 in the Bloch sphere representation. Unlike the maximum confidence
for the whole ensemble, we only need to minimise the error probability
Tr [ρ1π̂0] which appears in the denominator of C0. This means that, for
η0 ≥ (1− r2 cos2 θ)/2, we only care about the rotation of π̂0 towards ρ0, while
c0 is kept at maximum (c0 = 1). We denote by ϕ0 the Bloch angle of π̂0 with
Z (for Z being the Pauli matrix in (2.6)), which will run within the range
arccos [r cos (π − θ)] ≥ ϕ0 ≥ arccos (r cos θ). The rate η0 can be expressed in
terms of the angle ϕ0 as η0 = (1 − r cos θ cosϕ0)/2, which means that the
range of rates η0 at which this behavior is attainable is

1

2

(
1 − r2 cos2 θ

)
≤ η0 ≤

1

2

(
1 + r2 cos2 θ

)
. (3.72)

The maximum confidence in that range of rates can be directly computed
and is given by

C0 =
1

2

(
1 +

√
(1 − cos2 θ)(r2 cos2 θ − (1 − 2η0)2)

2 cos θη0

)
. (3.73)

For greater values of η0, the measurement cannot be longer represented
by a POVM with a rank-1 element π̂0. The only direction to go, while
keeping the error probability Tr [ρ1π̂0] at minimum, is to increase Tr [π̂0]
while paying the price of decreasing the length of the Bloch vector of the
operator π̂0. The rate η0 (now corresponding to a POVM π̂0 with a fixed
angle ϕ0 = arccos (r cos θ) but a variable vector length rπ̂0) is then expressed
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by η0 = Tr [π̂0] (1 + rrπ̂0 cos2 θ) /2. The rate η0 is saturated when π̂0 → 1, i.e.
rπ̂0 = 0 and Tr [π̂0] = 2. The rate of events η0 is then bounded by

1

2

(
1 + r2 cos2 θ

)
≤ η0 ≤ 1 . (3.74)

In terms of the maximum attainable confidence for this particular rate of
observed events, this means

C0 =
1

2

(
1 +

r
√

1 − cos2 θ√
1 − r2 cos2 θ

1 − η0
η0

)
. (3.75)

In Fig. 3.7, on the right, we show the bounds on the maximum confidence for
a state of interest. As a safe check, the analytical results are compared with
numerical solutions from semidefinite programming, and match perfectly.

3.8 Conclusion

In summary, we have investigated MCMs for qubit states. We have presented
a simple scheme to find MCMs for qubit states when an ensemble and a
state of interest are given. The scheme exploits the geometry in a Bloch
sphere without resorting to the computational optimization problem. We then
considered various qubit states. From the cases of two qubit states, it is shown
that an MCM lies between two strategies, minimum error and unambiguous
discrimination. An MCM for geometrically uniform states generalizes an
example from Ref. [101]. An MCM for tetrahedron states is identical to a
measurement for minimum error state discrimination. Otherwise, when an
ensemble does not contain any symmetry, it was seen that MCMs highly
depends on the particular state of interest.

Our results elucidate the meanings of different qubit measurements, each
of which may aim to maximize different figures of merit. Measurements for
various qubit ensembles may also be used to devise quantum protocols to
certify the properties of qubit states.

57



Chapter 3 – Maximum confidence measurement for qubit states

58



Chapter 4

Contextual advantages and
certification for maximum
confidence discrimination

In this chapter we present the results in “Contextual advantages and certifica-
tion for maximum confidence discrimination” [25], authored by Kieran Flatt,
Hanwool Lee, Carles Roch i Carceller, Jonatan Bohr Brask and Joonwoo Bae.
This work was published in PRX Quantum.

4.1 Abstract

One of the most fundamental results in quantum information theory is that
no measurement can perfectly discriminate between non-orthogonal quantum
states. In this work, we investigate quantum advantages for discrimination
tasks over noncontextual theories by considering a maximum confidence mea-
surement that unifies different strategies of quantum state discrimination,
including minimum- error and unambiguous discrimination. We first show
that maximum confidence discrimination, as well as unambiguous discrim-
ination, contains contextual advantages. We then consider a semi-device
independent scenario of certifying maximum confidence measurement. The
scenario naturally contains undetected events, making it a natural setting
to explore maximum confidence measurements. We show that the certified
maximum confidence in quantum theory also contains contextual advantages.
Our results establish how the advantages of quantum theory over a classical
model may appear in a realistic scenario of a discrimination task.
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4.2 Introduction

Quantum information processing displays advantages over its classical counter-
part. These gaps have their origins in fundamental results that show how the
two types of theories differ. Quantum key distribution protocols, for example,
exploit the indistinguishability of non-orthogonal states to establish security
without any assumptions on the computational capabilities [87]. Likewise,
measurements on entangled states may give rise to nonlocal correlations, which
cannot be produced from classical systems [15, 53]. Nonlocal correlations lead
to various practical quantum information applications, in particular device
independent quantum information processing, including secure communica-
tion [49, 50, 115] and randomness generation [116, 117]. These correlations
are used, on the other hand, as a useful tool in the certification of quantum
resources such as entanglement, which enables the aforementioned advantages
for quantum information processing [118].

The fact that two nonorthogonal states cannot be perfectly discriminated
is among the most fundamental results in quantum information theory [77].
This is closely connected to other key results, such as the quantum no-cloning
theorem [84] and no-signaling condition [85]. If perfect clones of a pair of
non-orthogonal states could be obtained, it would be possible to perfectly
discriminate the states. Conversely, perfect discrimination between non-
orthogonal states makes it possible to prepare copies of the states. Quantum
cloning converges, in the asymptotic limit, to quantum state discrimination
[119], which is then limited by the no-signaling condition [120, 121]. The
results for a pair of non-orthogonal states have been applied to quantum
cryptographic protocols [87] and various other tasks in quantum information
theory [29, 93–95, 97].

The distinction between quantum and noncontextual theories in the task
of two-state discrimination has recently been shown [27]. In a noncontextual
ontological model, operationally equivalent experimental procedures have
the same representation. This feature does not hold for quantum theories,
so noncontextuality can be understood as one form of classicality. In the
aforementioned work, the maximal success probability in two-state, minimum
error state discrimination (MESD) is characterised in a noncontextual on-
tological model. It turns out that two-state MESD in quantum theory is
more successful than the derived limitation, showing contextual advantages
for quantum state discrimination.

From the point of view of realising these quantum advantages, a general
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difficulty lies in the inherent noise of quantum measurements. Even if a state
has been prepared, it will sometimes not be detected due to, for example,
photon losses. This is treated in MESD by binning such cases among the
possible outcomes at the cost of increasing the error rate.

Another form of quantum state discrimination may be considered. In
unambiguous state discrimination (USD), a conclusion from certain detection
events is never wrong but there is a possibility that no guess is returned
[79–81]. An additional arm that collects all inconclusive outcomes is included.
The possibility of realising USD, however, highly depends on parameters such
as the Hilbert space dimension and the number of states. For instance, for
qubit states it cannot be realised for cases other than two pure states.

A figure of merit that operationally unifies the different senses of quantum
state discrimination is the confidence [101]. The confidence is defined as
the probability that, given a detection event, a detector correctly concludes
that a state, chosen among an ensemble, has been prepared. In a maximum
confidence measurement (MCM) this figure of merit is maximised. Detectors
in USD have certainty as the maximum confidence since a detection event
never leads to a wrong conclusion. An MCM performs MESD if the confidence
over the whole ensemble of states is considered.

It should be noted that MCMs are concerned with detected events only.
The consequence is that MCMs do not suffer from the same weaknesses as
MESD or USD. This is closely connected to a retrodictive view of quan-
tum theory, whereby detected events in the present assert statements about
state preparation in the past, as discussed in a recent review [100]. One
may therefore exploit MCMs to pave a way to gain contextual advantages
with imperfect measurement devices in a realistic setting. It is also possible,
taking a different point of view of retrodictive quantum theory, to certify
the maximum confidence one can have in uncharacterised detectors used for
state discrimination. This may be interpreted as a semi-device independent
scenario, [65, 122] under the assumption that states are well-characterised
but the measurements not at all.

In this work, we establish contextual advantages for both state discrimina-
tion and its certification in a realistic scenario where undetected events may
appear. We first present contextual advantages for USD by showing that the
minimal rate of inconclusive outcomes in quantum theory is strictly lower than
that in a noncontextual ontological model. Then, the contextual advantages
are shown for maximum confidence discrimination: an MCM in quantum
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theory gives rise to a higher maximum confidence over a noncontextual theory.
We next consider a semi-device independent scenario with uncharacterised
detectors. We develop the framework of certifying the maximum confidence in
the scenario given a preparation of states and detected events. It is shown that
the certifiable maximum confidence in quantum theory contains contextual
advantages in the realistic scenario that may contain undetected events. Our
results provide the unifying framework for the existence and the certification
of contextual advantages in a realistic quantum state discrimination scenario.

The paper is organised as follows. In Sec. 4.3, we begin with a summary of
different figures of merits in quantum state discrimination. The contextual ad-
vantages for minimum error, unambiguous and maximum confidence quantum
state discrimination are then shown in Sec. 4.4. We then present the certifi-
cation of an MCM in Sec. 4.5. Two-input and three-outcome scenarios, with
one arm containing the undetected events only, are considered. In Sec. 4.6,
we compare quantum and noncontextual theories in the certification of an
MCM, then include noise in our model in Sec. 4.7. Finally, we summarise the
results and discuss related questions in Sec. 4.8.

4.3 Background

Let us begin by collecting the terminology and notation to be used throughout
the manuscript. We also summarise different figures of merits in quantum
state discrimination.

For convenience, state discrimination can be framed as a communication
protocol for two parties, named Alice for preparation and Bob for measurement.
Alice prepares her quantum system in one of the states in an ensemble of n
states, denoted by

ensemble: Sn = {px, ρx}n−1
x=0, (4.1)

which describes a state ρx is generated with prior probabilities px for x =
1, · · · , n. Bob then performs an n outcome measurement described by positive-
operator-valued-measure (POVM) elements, denoted by

measurement: Mn = {π̂b}n−1
b=0 , (4.2)

each of which may be optimised to give a correct guess about a state that has
been prepared. For completeness, the condition

∑
b π̂b = 1 must be satisfied.

62



Chapter 4 – Contextual advantages and certification for maximum confidence
discrimination

4.3.1 Minimum error and unambiguous state discrimi-
nation

In MESD, the figure of merit, called the success probability psuc, is the highest
probability of detecting x correctly on average:

psuc = max
n∑

x=1

px Tr [ρxπ̂x] , (4.3)

where the maximisation runs over a complete measurement. A closed form of
the maximal success probability is known for two states in general,

psuc =
1

2
+

1

2
∥p0ρ0 − p1ρ1∥1, (4.4)

where ∥X∥1 = Tr
√
X†X. Otherwise, a closed form has been found in some

specific cases only [108, 109, 123, 124]. While the error, averaged over the
states in Sn, is minimised, not all detection events lead to a correct guess.

Detection events in USD measurements identify states with certainty. This
is possible if the probability of outcome b given a state ρx is given by

PM|P(b|x) := Tr[ρxπ̂b] ∝ δx,b , (4.5)

where M and P denote a measurement and a preparation, respectively. This
shows that the detector described by π̂b responds to ρx but not the other
states. Under this condition, it may, however, appear that a measurement is
not complete, i.e.,

∑
b π̂b < 1. An additional outcome π̂ø is included to fulfill

the completeness condition:

n−1∑
b=0

π̂b + π̂ø = 1. (4.6)

The arm described by π̂ø collects those detection events which give ambiguous
conclusions. Then, in the case of USD, a conclusion from a detection event is
completely unambiguous since no error in the legitimate arms is permitted.
For qubit states, this is possible only when two pure states can be prepared.
Preparation of pure states with certainty would not be feasible in a realistic
setting either. We can say that it is not practical to meet the conditions in
(4.4) and (4.5) in MESD and USD, respectively.
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4.3.2 Maximum confidence discrimination

The notion of confidence for a detection event in a discrimination task has
been defined as the conditional probability [101]:

confidence : Cx = PP|M(x|x) , (4.7)

i.e., the probability that a detection event corresponding to π̂x correctly
indicates that a preparation was ρx. One can interpret this retrodictively, as a
detected event implying a conclusion about state preparation done in the past.

The confidence may be computed with quantum probabilities by using
Bayes’ rule,

CQ
x =

PP(x)PM|P(x|x)

PM(x)
=
px Tr[π̂xρx]

Tr[π̂xρ]
, (4.8)

where PM(x) is the probability of a detection event on the detector π̂b for
an ensemble ρ =

∑
x pxρx and PP(x) = px the a priori probability. Hence,

an MCM aims to maximises the confidence above. Throughout, an MCM in
quantum theory is denoted by

max CQ
x , (4.9)

where the maximisation runs over all measurements. It should be added that
it does not matter whether a particular x is optimized or all x are optimized
simultaneously. The confidence for a particular state will depend upon a
single POVM element only, so the measurement can be completed in any
matter. The only difference between individual and ensemble optimisation is
the possibility of different inconclusive outcome rates. In the present work,
our focus is on the maximal confidence that we can have in a particular state
and so the distinction can be ignored. Note that an MCM can be defined for
any ensemble in (4.1).

We remark that maximum confidence state discrimination is well-fitted
to a realistic scenario including imperfect preparations and measurements.
Firstly, it can be adapted to cases where the detected measurement statistics
are not complete whereas MESD can only find the optimal guessing prob-
ability whenever a measurement is complete. As MCM is concerned with
detected events only, undetected ones can be counted as ambiguous outcomes.
Secondly, an MCM can be considered for ensembles for which unambigu-
ous measurement outcomes can not be obtained. MCM presents, for these
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reasons, a more realistic setting for identifying a state among a given ensemble.

Maximum confidence state discrimination also provides a unifying frame-
work of the aforementioned figures of merits in state discrimination. An
MCM coincides with USD if Cx = 1 for all x. In this sense, whenever USD is
possible for an ensemble, it will emerge as the MCM. One can also apply an
MCM to maximise the success probability over an ensemble or a sub-ensemble
by taking into account in the possibility of undetected events occurring:

max
∑
x

PM(x)Cx = max
∑
x

px Tr[π̂xρx] (4.10)

where the maximisation runs over a complete measurement. An MCM as
defined above reproduces MESD if the inconclusive outcome rate is zero. It is
also worth noting that optimal measurements for MESD, USD, and maximum
confidence discrimination are generally not identical [101].

4.4 Contextual advantages for quantum state

discrimination

It is central to the field of quantum information theory to find circumstances in
which quantum experiments perform differently to their classical equivalents.
This distinction will depend upon the chosen notion of (non)classicality. In
many cases, the most relevant definition is that classical theories do not vio-
late Bell-like inequalities, whereas nonclassical ones do. Space-like separated
correlations, however, are required in order for this definition to be useful but
do not appear in all experimental applications. Bell violations, in addition,
will occur only for the particular class of nonseparable states.

Noncontextuality, the independence of experimental statistics from the
context in which they are gathered, is a more widely applicable notion of
classicality [125]. It is defined independently of the choice of state and is valid
for experiments, such as state discrimination, that are spacelike local. The
concept has been introduced by Kochen and Specker [19] and more recently
generalized by Spekkens [20].

In all forms, noncontexuality acts as a constraint on various objects within
the theory. By “objects”, we mean states, channels or transformations. In
the original proof of the Kochen-Specker theorem, which states that quantum
theory is contextual, a set of 117 projective measurements are shown to violate
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noncontextuality. This means that we must constrain any classical theory to
contain less than this number of possible measurements. In a similar manner,
Spekkens has shown that the “trine ensemble,” the set of three symmetric
states on the Bloch sphere, cannot be prepared in a noncontextual theory. It
follows that quantum theory is able to recreate a greater range of experimental
statistics.

A number of “noncontextual inequalities” have been derived [27, 126, 127].
In these, a particular figure of merit is optimized within a theory constrained
by noncontextuality. The maximal value of some figures of merit, for the
aforementioned reasons, is less than what can be obtained by quantum theo-
ries and the latter consequently violate such inequalities. In such a case, it is
said that quantum theory contains “contextual advantages”. This question
has been addressed in Ref. [27], where it has been shown that the MESD of
quantum states contains contextual advantages.

In this section, we consider USD and MCM and show contextual advan-
tages. For the latter case, a pair of mixed states for which USD cannot be
achieved are considered. Thus, we show contextual advantages for quantum
state discrimination in general. We begin with a review of noncontextual
ontological models and then consider MESD, USD and MCM.

4.4.1 Noncontextual ontological model

An operational theory contains descriptions of possible operations, such as
preparations and measurements, and a prescription for calculating probabili-
ties of measurement outcomes. Here, let us review noncontextual ontological
models [20, 27, 128] and characterise preparation noncontextuality.

Let Λ denote an ontic state space so that an element λ ∈ Λ fully char-
acterises the physical properties of a given system. A state preparation x
corresponds to a sample of the ontic state space up to a probability distribu-
tion µx(λ), which is called an epistemic state. A measurement M contains
a set of possible outcomes that occur with a dependence on the ontic state
space. An outcome denoted by b is represented by a response function ξb|M (λ)
that satisfies

positivity : ξb|M(λ) ≥ 0, ∀b, ∀λ
completeness :

∑
b

ξb|M(λ) = 1, ∀λ , (4.11)
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Figure 4.1: Figure extracted from Ref. [25]. A prepare-and-measure scenario
in an ontological model (left) is modelled by the ontic state space Λ (right).
Note that P denotes a preparation represented by an epistemic state µx(λ) and
M a measurement by a response function ξb(λ). The probabilities extracted
from the theory are given by integrals over the overlap marked by a black
pentagon ( see (4.13) ).

so that it is interpreted probabilistically. Probabilities extracted from the
ontological model with a preparation x and a measurement M are given by

p(b|x,M) =

∫
Λ

dλ µx(λ)ξb|M(λ). (4.12)

The preparation noncontextuality criterion is then identified as follows. Con-
sider two preparations µx(λ) and µx′(λ) that cannot be distinguished by any
measurement, i.e., no response function provides different probabilities for
the preparations. These preparations are called operationally equivalent. A
model is then preparation noncontextual if the operational equivalence of a
set of preparatory processes implies that they are represented by the same
epistemic state:

p(b|x,M) = p(b|x′,M), ∀{b|M} =⇒ µx(λ) = µx′(λ) ∀λ ∈ Λ. (4.13)

Measurement noncontextuality can also be defined in a similar manner.

Having introduced an operational framework above, we use definitions
and notations in the following manner. For an epistemic state µx(λ), a
non-overlapping state is denoted by µ⊥

x (λ) such that

µx(λ)µ⊥
x (λ) = 0, ∀λ ∈ Λ. (4.14)

In preparation-noncontextual theories, an epistemic state µx(λ) uniquely
defines its non-overlapping state µ⊥

x (λ). This does not necessarily hold for
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other theories. The support of an epistemic state µx is defined as follows:

supp[µx(λ)] = {λ ∈ Λ : µx(λ) ̸= 0}. (4.15)

For instance, we have supp[µx(λ)] ∩ supp[µ⊥
x (λ)] = ∅.

An important set of response functions is the set representing projectors
from quantum theory. In quantum theory, each POVM element Eb = |b⟩ ⟨b|
of a projective measurement satisfies Tr[Eb|x⟩⟨x|] = δx,b for an ensemble
ρx = |x⟩ ⟨x| for x = 1, ..., N . In an operational theory, Eb is represented by
ξb(λ) and ρx by µx(λ). It has been shown that, in noncontextual theories, the
corresponding response functions take the form [27]

ξb(λ) =

{
1 if λ ∈ supp[µb(λ)]

0 otherwise ,
(4.16)

in which µb(λ) are epistemic states representing pure-state preparations. In
this sense, they are outcome deterministic.

As for two-state discrimination in a noncontextual model, a useful quan-
tity is the confusability, which is the probability of finding one state µx(λ)
given a measurement on a different state µy(λ) [27, 129]. In a preparation
noncontextual model, the confusability for a pair of states µx(λ) and µy(λ)
can be defined as follows:

cx,y =

∫
supp[µx(λ)]

dλµy(λ). (4.17)

In quantum theory, the confusability for two pure states can be identified
with the state overlap

cx,y = Tr[|ψx⟩⟨ψx| |ψy⟩⟨ψy|] = |⟨ψx|ψy⟩|2. (4.18)

It is clear that that the confusability is symmetric, i.e., cx,y = cy,x.

4.4.2 Contextual advantages for MESD

The first instance of contextual advantages for quantum state discrimination
has been shown for MESD. In Ref. [27], MESD for two states in a noncontex-
tual model was considered, and contextual advantages for MESD of quantum
states were shown.
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Suppose that two quantum states |ψ0⟩ and |ψ1⟩ are provided, for which
an optimal measurement for MESD is denoted by M = {π̂0, π̂1}. Two states
can be characterised by the angle between them,

cos θ = |⟨ψ0|ψ1⟩| =
√
c0,1 (4.19)

where c0,1 is the confusability and we take the positive-valued square root.
It suffices to consider a two dimensional Hilbert space. It is clear that one
can find the statistics of measurement outcomes from the states and the
measurement. The guessing probability for two quantum states in (4.4) can
be straightforwardly computed.

The ensemble consisting of the states |ψ0⟩ and |ψ1⟩ only, however, does
not imply any equivalence relations so that noncontextuality cannot yet be
used to constrain the model. Another pair of states, |ψ⊥

0 ⟩ and |ψ⊥
1 ⟩, must

be used. The overlap and optimal guessing probability of this ensemble are
identical to those of the former. The two pairs of states are related by

1

2

(
|ψ0⟩ ⟨ψ0| + |ψ⊥

0 ⟩ ⟨ψ⊥
0 |
)

=
1

2

(
|ψ1⟩ ⟨ψ1| + |ψ⊥

1 ⟩ ⟨ψ⊥
1 |
)

=
1

2
, (4.20)

where 1 is the identity operator for the subspace spanned by the two states.
This provides an equivalence relation between the two quantum ensembles
which can be used to derive relations between epistemic states.

A noncontextual model is then constructed such that it is consistent
with this equivalence relation. Two epistemic states, denoted by µ0(λ) and
µ1(λ), can be introduced so that they have the same confusability c0,1 with
the quantum states (4.19), see also (4.17) and (4.18). The state space in a
noncontextual model should also satisfy the equivalence relation. This implies
that there exist mirrored states µ⊥

0 (λ) and µ⊥
1 (λ) such that

1

2
µ0(λ) +

1

2
µ⊥
0 (λ) =

1

2
µ1(λ) +

1

2
µ⊥
1 (λ) = µ1/2(λ), (4.21)

where µ1/2(λ) is the maximally mixed state in a noncontextual model analo-
gous to 1/2 in the quantum theory. This is consistent with (4.20). Note also
that the mirrored states share the same confusability with the original pair.

In Ref. [27], it is shown that the preparation nontextuality constrains the
statistics in terms of various sharp measurements (see (4.16) ) and finds the
success probability as follows:

pNC
suc = 1 − 1

2
c0,1 (4.22)

69



Chapter 4 – Contextual advantages and certification for maximum confidence
discrimination

which is strictly less than the quantum bound in (4.4), i.e.,

pQsuc =
1

2
+

1

2

√
1 − c0,1. (4.23)

This result is significant in that it shows that the predictions of noncontextual
theories differ quantitatively from those of quantum theory. The results can
also apply to mixed states when noise is present.

4.4.3 Contextual advantages for USD

Another scenario in state discrimination is USD, where, rather than finding
the highest success probability over an ensemble, each state is identified with
certainty. As with MESD, a noncontextual model of USD can be constructed.
Given the constraint of USD, the aim is to minimise the probability of having
inconclusive outcomes. In what follows, we show USD in a noncontextual
theory and derive a noncontextual inequality associated with the rate of
inconclusive outcomes, from which contextual advantages for quantum USD
are shown.

Quantum states

Let us first consider two pure quantum states |ψ0⟩ and |ψ1⟩ for which USD
can be performed. The POVM elements may be given as

π̂0 ∝ |ψ⊥
1 ⟩ ⟨ψ⊥

1 | and π̂1 ∝ |ψ⊥
0 ⟩ ⟨ψ⊥

0 | (4.24)

where ⟨ψ⊥
0 |ψ0⟩ = ⟨ψ⊥

1 |ψ1⟩ = 0. An additional POVM element π̂ø is needed to
collect inconclusive outcomes. The probability of inclusive outcomes for the
quantum states denoted by ηQø is known to be [79–81],

min ηQø = |⟨ψ0|ψ1⟩| =
√
c0,1 (4.25)

where the minimization runs over complete measurements and c0,1 is the
confusability in (4.18). In Fig. 4.2, the probability in (4.25) is plotted.

States with preparation noncontextuality

We then consider USD for states with preparation noncontextuality. Let us
first investigate constraints on response functions ξb(λ). Note that a response
function corresponding to a sharp measurement can be expressed in the form
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Figure 4.2: Figure extracted from Ref. [25]. The minimum value of the
inconclusive error rate ηø is plotted against the confusability c0,1 > 0 for
preparation noncontextual theories (dashed) and quantum theory (solid). It
is shown that the former is strictly greater than the latter, meaning that
USD for quantum states contains advantages over a noncontextual model.
In a noncontextual theory, the probability of inconclusive outcomes is 0 for
c0,1 = 0. There is a sharp discontinuity, see the main text.
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of (4.16). This can be generalised by including a probabilistic mixture of
measurement outcomes. Hence, the most general form of a response function
ξb(λ) unambiguously identifying an outcome b = x takes the form

ξx(λ) =

{
q if λ ∈ supp[µx(λ)]

0 if λ ∈ supp[µ⊥
x (λ)]

(4.26)

for an epistemic state µx(λ), which can be freely chosen, and 0 ≤ q ≤ 1. A
response function with the structure above may represent a POVM element
in the form q|ψb⟩⟨ψb| in quantum theory.

The condition that a measurement outcome gives an unambiguous conclu-
sion is

PM|P(ξb|µx) ∝ δx,b , (4.27)

for δi,j being the Kronecker delta. The condition, applied to a response
function in the form of (4.26), identifies the following response function for
two-state USD:

ξ0(λ) =

{
q if λ ∈ supp[µ⊥

1 (λ)]

0 if λ ∈ supp[µ1(λ)].
(4.28)

The same argument applies to the other response function ξ1(λ). Note that
two states are given with an equal a priori probability. Because the con-
fusability of µ0(λ) with µ⊥

1 (λ) is the same as that for µ1(λ) with µ⊥
0 (λ), we

can, without loss of generality, take the weighting parameter q ∈ [0, 1] to
be the same for both response functions ξ0(λ) and ξ1(λ). The probability
of unambiguous outcomes is thus proportional to q, which we hence aim to
maximise. Equivalently, the probability of inconclusive outcomes is to be
minimised.

In fact, two response functions ξ0(λ) and ξ1(λ) do not form a complete
measurement for the same reason as in USD for quantum states: completeness
enforces that

∑
b ξb(λ) = 1 for all λ ∈ Λ. It is necessary to have an additional

response function denoted by ξø(λ) that collects all inconclusive outcomes

ξø(λ) = 1 − ξ0(λ) − ξ1(λ). (4.29)

Note also that ξø(λ) ≥ 0 for all λ. The region in which the probability of
inconclusive outcomes is minimal can be characterised by the subset

{λ ∈ Λ : λ ∈ supp[µ0(λ)] ∩ supp[µ1(λ)]} (4.30)
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Figure 4.3: Figure extracted from Ref. [25]. Two pure states |ψ0⟩ and |ψ1⟩ are
considered in USD, for which an optimal measurement corresponds to their
orthogonal states |ψ⊥

0 ⟩ and |ψ⊥
1 ⟩, respectively. The inconclusive outcomes are

collected by a POVM element constructed by an equal mixture of given states.
The structure is shared with USD of two states µ0(λ) and µ1(λ), diagrammed
by blue and green regions respectively. The outer lines signify the supports of
reponse functions. ξ0(λ) has the same support as µ⊥

1 (λ) (green-dashed line)
and ξ1(λ) has the same support as µ⊥

0 (λ) (blue-dashed line).

where both ξ0(λ) and ξ1(λ) are nonzero. Using the response functions above,
it holds that ξø(λ) = 1 − 2q in the region. The maximization of q thus
corresponds to minimising the response function ξø(λ) ≥ 0: one can find
q = 1/2.

The response functions for USD in (4.26) are thus given by

ξ0(λ) =

{
1
2

if λ ∈ supp[µ⊥
1 (λ)]

0 if λ ∈ supp[µ1(λ)]
, ξ1(λ) =

{
1
2

if λ ∈ supp[µ⊥
0 (λ)]

0 if λ ∈ supp[µ0(λ)]
. (4.31)

From above and (4.29), the response function giving inconclusive outcomes
can be obtained :

ξø(λ) =
1

2
(1 − 2ξ0(λ)) +

1

2
(1 − 2ξ1(λ)) =

1

2
ξ0(λ) +

1

2
ξ1(λ), (4.32)

with ξb(λ) = 1 − 2ξb(λ) for b = 0, 1. Let us write this as

ξ0(λ) := ξµ1(λ) =

{
1 if λ ∈ supp[µ1(λ)]

0 if λ ∈ supp[µ⊥
1 (λ)],

(4.33)
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with ξµ1(λ) corresponding to a sharp measurement for the epistemic state
µ1(λ). The same argument also applies to the response function ξ1(λ) = ξµ0(λ).
Bringing all of these together, we have the response function for inconclusive
outcomes as follows,

ξø(λ) =
1

2
ξµ0(λ) +

1

2
ξµ1(λ). (4.34)

It is therefore shown that the response function is given by a convex combi-
nation of two response functions which correspond to sharp measurements
for the states in the ensemble.

In fact, the measurement can be operationally realized by applying two
complete sets

{ξµ0(λ), ξµ⊥
0

(λ)} and {ξµ1(λ), ξµ⊥
1

(λ)} , (4.35)

with probability 1/2, respectively. Outcomes with ξµ⊥
b

(λ) for b = 0, 1 collect
inconclusive outcomes and the others lead to unambiguous conclusions. The
relevant epistemic states are also depicted in Fig. 4.3 alongside the analogous
quantum states.

It is clear that the measurement leads to USD in the following sense. In
quantum theory, a measurement strategy of USD consists of three outcomes,
two of which show unambiguous detection events and the third of which gives
an inconclusive result. In the case of the response functions obtained in a
noncontextual theory, there is no chance that the outcome ξµ⊥

1
(λ) occurs if

µ1(λ) is prepared. The epistemic state µ0(λ) will likewise never result in the
detector associated with the response function ξµ⊥

0
(λ) being triggered. These

results are, therefore, unambiguous. The remaining outcomes are ξµ0(λ) and
ξµ1(λ) and could be triggered by either of the possible epistemic state. These
outcomes are collected into the inconclusive outcomes.

Having characterised the optimal measurement, we are now in a position
to compute the rate of inconclusive outcomes in noncontextual theories. Given
the measurement shown above, the probability of inconclusive outcomes is
given as

min
ξø|M

ηNC
ø =

∫
Λ

dλ
1

2
(µ0(λ) + µ1(λ)) ξø|M(λ) =

1

2
(1 + c0,1) . (4.36)

In Fig. 4.2, the probabilities of inconclusive outcomes in quantum theory and
a contextual model are compared. Hence, contextual advantages for USD of
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quantum states are shown.

The caveat is the case when c0,1 = 0, where the rate of inconclusive
outcomes in a noncontextual theory is in fact given by 0. By definition,
USD is possible with no inconclusive outcomes. It should be noted that the
parameter q in the sharp measurement in (4.26) can be made equal to one
when there is no overlap between the desired response functions. As soon as
their supports have some non-zero overlap, no matter how small that region
is, the framework enforces that q ≤ 1/2. There is a discontinuity in the
probability of inconclusive outcomes in a noncontextual theory. Therefore,
the probability in (4.36) is valid for c0,1 > 0 only.

Finally, it is worth mentioning a physical reason that the aforementioned
measurement is a form of USD in a noncontextual theory. There are two classes
of measurement possible in quantum theory. Most simply, we can perform
projective measurements and probalistically mix the outcomes. Outside of
this, we can access a greater set of measurements by entangling the system
with an ancilla and then projectively measuring the latter, following the
Neumark dilation theorem. An example of this type would be a measurement
of the three symmetric qubit states, which requires entanglement with a
qutrit. However, as this resource is not available in a noncontextual theory,
only the first class can be implemented. Indeed, it has been previously shown
that the correlations available to a preparation noncontextual model must be
local [27]. This prevents access to the wider class of POVM elements and we
are restricted to the form which was just found.

4.4.4 Contextual advantages for MCM

In this subsection, we consider two mixed quantum states for which USD
cannot be achieved. Maximum confidence discrimination can be, however,
defined, for which we show contextual advantages over a noncontextual model.

MCM in quantum theory

We consider a pair of mixed quantum states given with equal a priori proba-
bilities (px = 1/2),

ρ0 = r |ψ1⟩ ⟨ψ1| + (1 − r)
1

2
, ρ1 = r |ψ1⟩ ⟨ψ1| + (1 − r)

1

2
, (4.37)

The confusability for two pure states is denoted by | ⟨ψ0|ψ1⟩ | =
√
c0,1. It is

straightforward to find an MCM for a quantum state. Following (4.8), we
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must evaluate

maxCQ
0 = max

p0 Tr[π̂0ρ0]

Tr[π̂0ρ]
, (4.38)

where the maximisation runs over POVM elements and ρ = (ρ0 + ρ1)/2
denotes the ensemble of given states. The maximisation above can be solved
as [101],

maxCQ
0 = ||√ρ−1p0ρ0

√
ρ−1||∞ (4.39)

where || · ||∞ denotes an operator norm. One can find the maximum confidence
and write it in terms of the confusability as follows,

maxCQ
0 =

1

2

(
1 +

r
√

1 − c0,1√
1 − r2c0,1

)
. (4.40)

Note that the noiseless case r = 1 considering two pure states reproduces
USD where the maximum confidence is 1.

MCM in a noncontextual model

In Sec. 4.4.3, epistemic states µx(λ) are associated with pure states |ψx⟩ for
x = 0, 1. Here, we consider a noisy preparation in a noncontextual model in
the following:

µ̃0(λ) = rµ0(λ) + (1 − r)µ1/2(λ),

µ̃1(λ) = rµ1(λ) + (1 − r)µ1/2(λ). (4.41)

The overall ensemble is then given by

µP (λ) =
1

2
µ̃0(λ) +

1

2
µ̃1(λ)

= (1 − r)µ1/2(λ) + r

(
1

2
µ0(λ) +

1

2
µ1(λ)

)
. (4.42)

The goal is now to compute the maximum confidence, denoted by maxCNC
1 ,

for the state µ̃1(λ) above, and compare it with the quantum counterpart in
(4.40).

The confidence is defined as

CNC
0 =

1

2η0

∫
Λ

dλµ0(λ)ξb(λ) (4.43)
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where η0 denotes the outcome rate defined by the ensemble and the response
function:

η0 =

∫
Λ

dλµP (λ)ξb(λ). (4.44)

Since our aim is to determine the support of our epistemic state, it is
natural to consider a sharp measurement. This can be justified by considering a
response function as a mixture of sharp measurements, ξi(λ) = αξj(λ)+βξk(λ),
with α, β ∈ [0, 1] such that ξi(λ) is a proper response function. A simple
calculation reveals that the confidence given by this measurement will take
the form

CNC
0 = 1 − α

p (ξj|µ0)

η0
− β

p (ξk|µ0)

η0
. (4.45)

It is readily seen that a nonsharp measurement will always be less confident
than a sharp one. Note that the special case α = β = 0 is ruled out, as it
would give η0 = 0. without loss of generality, then, we can represent our
maximally confident response function ξ0(λ) as a sharp measurement of the
placeholder epistemic state µx(λ):

ξb(λ) =

{
1 if λ ∈ supp[µb(λ)]

0 if λ ∈ supp[µ⊥
1 (λ)].

(4.46)

the probability of outcome ξb(λ) given that the state µi(λ) is prepared will
be given by the confusability ci,b, which simplifies our notation in what follows.

The outcome rate can be rewritten by using (4.42),

η0 = (1 − r)

∫
Λ

dλµ1/2(λ)ξb(λ) +
r

2

∫
Λ

dλ(µ0(λ) + µ1(λ))ξb(λ). (4.47)

In a noncontextual theory, it holds that for all x, the maximally mixed
epistemic state can be written as

µ1/2 =
1

2

(
µx(λ) + µ⊥

x (λ)
)

(4.48)

where µ⊥
x (λ) is the non-overlapping epistemic state to µx(λ). This means that

the first integral above is equal to 1/2. The other integral can be expressed
in terms of the confusability so that the outcome rate can be written as

η0 =
1

2
((1 − r) + r(c0,b + c1,b)) . (4.49)
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The same argument applies to evaluating the numerator in (4.43). After
all these steps, we obtain

CNC
0 =

1

2

(
1 +

r(c0,b − c1,b)

(1 − r) + r(c0,b + c1,b)

)
, (4.50)

which is characterised in terms of the noise parameter r and the confusabilities
c0,b and c1,b.

It remains to maximise the confidence over response functions. That is,
one should maximise the difference between the confusabilities c0,b and c1,b
while minimising their sum. On one hand, we recall from MESD that the
following relation holds∫

Λ

dλ

(
1

2
µ0(λ)ξb(λ) +

1

2
µ1(λ)ξb̄(λ)

)
≤ 1 − c0,1

2
. (4.51)

Note that ξb̄(λ) = 1 − ξb(λ) for all λ. Substituting in this and rearranging
then gives us

c0,b − c1,b ≤ (1 − c0,1) , (4.52)

with equality if and only if b = 1̄, i.e., the response function is a sharp
measurement of the epistemic state that has no overlap with µ1(λ). Thus,
the maximum of the difference c0,b − c1,b is shown.

On the other hand, the sum c0,b + c1,b can be constrained in the following
way. It is bounded from above as follows,

c0,b + c1,b = 1 + c0,b − c1̄,b ≤ 1 + (1 − c0,1̄) ≤ 1 + c0,1 . (4.53)

It is also bounded from below by

c0,b + c1,b = 2 − c0̄,b − c1̄,b ≥ 2 − (1 + c0̄,1̄) ≥ 1 − c0,1 . (4.54)

To summarise, we show the upper and lower bounds

(1 − c0,1) ≤ c0,b + c1,b ≤ (1 + c0,1) . (4.55)

Thus, the optimal choice by which the sum c0,b+c1,b is minimised and also
at the same time the difference c0,b − c1,b is maximised is given by by b = 1̄.
We can thus conclude that the maximum confidence in (4.50) is given by the
response function ξ1̄(λ). Note that the measurement is identical to that in
USD. The maximum confidence is then given by

maxCNC
1 =

1

2

(
1 +

r(1 − c0,1)

1 − rc0,1

)
(4.56)

which is now determined by the noise parameter r and the confusability c0,1
only. The case of USD is reproduced by noiseless cases r = 1.
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Figure 4.4: Figure extracted from Ref. [25]. The maximum confidence is
computed for a pair of quantum states (solid) and also in a noncontextual
model (dashed). The noise parameter is denoted by r ∈ [0, 1], see (4.37) and
(4.41): the case r = 1 reproduces USD. Contextual advantages for an MCM
of noisy quantum states are shown for r ∈ (0, 1).
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Comparison

We compute the maximum confidence for quantum states in (4.40) and in a
noncontextual model in (4.56). For r ∈ (0, 1),

maxCQ
0 > maxCNC

0 (4.57)

holds, which shows contextual advantages for MCMs of quantum states, as
seen in Fig. 4.4.

One can investigate optimal measurements for an MCM in quantum and
noncontextual theories. In a noncontextual model, an MCM for the noisy
states is identical to the measurement used in USD. This shows that an MCM
does not rely on the noise parameter in (4.41). That is, the measurement
that realises USD is also an MCM for noisy states in (4.41).

Interestingly, an optimal measurement that realises USD for two quantum
states cannot be extended to noisy states in (4.37). Suppose that, for the
POVM element that performs USD for a state |ψ0⟩, is given as π̂0 ∝ |ψ⊥

1 ⟩⟨ψ⊥
1 |.

If the measurement is performed on a noisy state ρ0 in (4.37), it is not difficult
to see that the maximum confidence is equal to (4.56) in a noncontextual
model. No quantum advantage is concluded. In other words, the noncontex-
tual bound in (4.56) can be reproduced in quantum theory by applying the
USD measurement of the original states to the noisy states.

In fact, an MCM for the noisy states relies on the noise parameter r. To
be explicit, an MCM is given by π̂b ∝ |ϕb⟩⟨ϕb| for b = 0, 1 where

|ϕb⟩ =

√
1 − r

√
c0,1

2
|0⟩ + (−1)b

√
1 + r

√
c0,1

2
|1⟩ (4.58)

for states ρb, respectively. With the measurement above, the maximum
confidence for quantum states in (4.40) can be obtained, see also Fig. 4.5.

4.5 Certifying maximum confidence

So far, we have shown that quantum state discrimination in the forms of
MESD, USD and MCM generally contains contextual advantages. However,
a measurement in a realistic scenario consists of imperfections: it may be
neither complete nor sharp. One can therefore ask if the quantum advantages
for state discrimination can be obtained in practice when, in particular, un-
detected events are present.
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Figure 4.5: Figure extracted from Ref. [25]. An MCM for two states ρ0 and
ρ1 in (4.37) is shown. An optimal POVM element |ϕb⟩⟨ϕb| for state ρb for
b = 0, 1 relies on the noise parameter r ( see (4.58) ).
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The aforementioned list of imperfections in a quantum measurement can
be dealt with in a black-box scenario where the statistics of inputs, outputs,
and their relations are available but one has no knowledge of the functioning
of the measurement apparatus. Given the input and output statistics of a
black-box measurement, one may be able to characterize the worst-case sce-
nario. The most well-known instance of this approach is device independent
quantum information processing, in which no assumptions are placed upon
the measurement but quantum theory is assumed as a working principle [49,
50]. It often requires loophole-free Bell tests, which are difficult to imple-
ment in practice. In such a case, some assumptions may be relaxed. This is
the case for quantum steering, in which two-party quantum correlations are
characterized in a one-sided device independent manner [130]. One can then
see a relation between the number of assumptions made on devices and the
level of certification: the more one assumes, the weaker is the certification.
In a semi-device independent (semi-DI) scenario, one considers all possible
assumptions and then adjusts so that the scenario is realistic [65]. Quantum
state discrimination in an semi-DI scenario is hence the most practical setting
for finding which state among an ensemble is detected given statistics gathered
with realistic quantum detectors.

In this section, we consider the realistic scenario of quantum state discrimi-
nation in an semi-DI scenario. Namely, a measurement is not yet characterised
for an ensemble of quantum states and may also be incomplete. We present a
framework for certifying the maximum confidence in the semi-DI scenario.

4.5.1 Semi-device independent scenario

Let us begin by presenting the semi-DI scenario to consider. A set of well-
characterised n states, as in (4.1), is assumed and detected events are provided.
By repeating a prepare-and-measure experiment, the rates of detection events
on the n arms are collected. It is also assumed that states are prepared in an
independently and identically distributed manner. The observed probabilities
from detectors are denoted by

outcome rate : ηobs = {ηb}n−1,ø
b=0 (4.59)

where ηb = Tr[π̂bρ] for an ensemble ρ =
∑

x pxρx and some POVM element π̂b.
Note that ηø denotes the collection of undetected events. The probability ηb
is called an outcome rate throughout. The certification scheme is desplayed
in Fig. 4.6.
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Figure 4.6: Figure extracted from Ref. [25]. The prepared quantum states are
well-characterised (white). Detectors are arranged to determine which state
has been sent. The certification of maximum confidence of a measurement
can be obtained from outcome rates from untrusted detectors (black).
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4.5.2 Certification of maximum confidence for quan-
tum states

The framework in quantum theory

For full generality, we consider an MCM with a predetermined weight {αx}n−1
b=0

denoted by

⟨CQ⟩α =
n−1∑
x=0

αxC
Q
x . (4.60)

The parameters {αx} may define a figure of merit in state discrimination.
For instance, if they are identical to the outcome rates, i.e., αx = ηx for
∀x ∈ {0, · · · , n−1}, the MCM maximises a success probability in the absence
of undetected events. This can be seen in the relation in (4.10). When
considering an MCM for the k-th single detector only, one can put αx = δx,k.

Given an ensemble Sn in (4.1) and detected probabilities ηobs in (4.59),
the certification of the maximum confidence is formulated as an optimization
problem,

maximise ⟨CQ⟩α (4.61)

subject to π̂b ≥ 0,
n−1∑
b=0

π̂b + π̂ø = 1

Tr[π̂bρ] = ηb, b = 0, 1, · · · , n− 1, ø

where ηø is the collection of undetected events. The optimisation problem
can be solved by a semidefinite program (SDP). This SDP is computationally
feasible. Note also that, as it is shown the above, the optimisation problem
is equivalent to MESD of the n states with prior probabilities {αxpx/ηx}n−1

x=0

where a measurement may be incomplete, i.e.,
∑n−1

x=0 ηx < 1.

Note that the SDP in (4.61) is numerically feasible: one can obtain a
solution by realizing the optimization numerically [69]. On the other hand,
an analytic solution to the optimization problem in (4.61) can be attempted:
the strategy is known as the linear complementarity problem (LCP), which
directly considers the optimality conditions [112]. For instance, the case of
MESD for qubit states has been approached by the LCP and a geometric
method of finding an optimal measurement has been presented [108]. Tech-
nically, the LCP may be considered more difficult in that a larger set of
parameters is taken into account. Its usefulness, however, lies in the fact that
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the general structure of an optimization problem can be exploited so that
analytic solutions can be achieved. The key fact in exploiting the LCP is the
optimality conditions characterized by the Karush-Kuhn-Tucker (KKT) con-
ditions [69, 112]. In this way, an optimization problem, either maximization
and minimization, can be solved by equalities [112].

By following the techniques in convex optimization in Ref. [69], the
optimality conditions are the Lagrangian stability and the complementary
slackness are as follows:

Lagrangian stability : K = αx
px
ηx
ρx + rxσx − sxρ, and K = røσø (4.62)

Complementary slackness : rx Tr[π̂xσx] = 0, ∀x (4.63)

with dual parameters K and {sx, rx, σx}, in which {sx} and {rx ≥ 0} are
constants and {σx} quantum states. Once these parameters satisfy the opti-
mality conditions, they are automatically optimal parameters and therefore
solve the problem in (4.61). With the optimal parameters K∗ and {s∗x, r∗x, σ∗

x}
that satisfy the conditions above, the maximum confidence is given as

max⟨CQ⟩α = Tr[K∗] +
n−1∑
x=0

s∗xη
∗
x. (4.64)

A detailed derivation of the optimality conditions is shown in Sec. 4.9. Our
SDP is universal in the sense that, as long as we are in the certification
scenario, it can be applied to ensembles including any possible set of quantum
states prepared with any probabilities.

Certification of an MCM for a two-state ensemble

To illustrate the certification scenario, we consider two equally probable states

|0⟩ and |+⟩ =
1√
2

(|0⟩ + |1⟩). (4.65)

Let CQ
0 denote the confidence for the first detector to conclude the state |0⟩.

The outcome rate in the first detector is also obtained as η0. We implement
a numerical package of an SDP for the optimisation problem in (4.61), from
which the certifiable maximum confidence on the first detector is obtained as
follows. When the outcome rate is in the range such that η0 < 1/4, the SDP
returns maxCQ

0 = 1. For the range η0 > 1/4, it is numerically shown that
the maximum confidence is decreasing from 1 to 1/2 as the rate η0 increases.
The results are obtained by implementing an SDP numerically. Note that as
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an approach to the LCP, one can find an analytic solution for two arbitrary
states, one can find an analytic solution for two arbitrary states, which is
presented in Sec. 4.6.

The maximum confidence above is interpreted as follows. If the outcome
rate is low such that η0 ≤ 1/4, one cannot rule out the possibility that the
first detector performs USD. When the outcome rate is more frequent, with
η0 > 1/4, it is clear that the detector cannot perform USD since the maximum
confidence is strictly less than 1. As the outcome rate increases, the maximum
confidence on the first arm becomes lower. The example shows a trade-off
relation between the maximum confidence and the outcome rate.

4.6 Contextual advantages for certifiable max-

imum confidence

Let us now consider a realistic two-state discrimination scenario in which
two states are prepared but three outcomes, including an additional one
that collects undetected events, are provided. The certification of the maxi-
mum confidence in a detector is investigated and its contextual advantage is
analysed.

4.6.1 Quantum state discrimination in practice

Here, we investigate the certifiable maximum confidence in a realistic two-state
discrimination in detail. The framework developed in Sec. 4.5.2 is applied to
certify the maximum confidence on a single detector. We recall that a pair of
two pure states can always be identified by a single parameter θ such that

cos θ = ⟨ψ0|ψ1⟩ =
√
c0,1 , (4.66)

with the confusability c0,1. This also means that any two-state discrimination
problem can be mapped onto a two-dimensional plane spanned by the two
states, i.e., span{|ψ0⟩, |ψ⊥

0 ⟩} = span{|ψ1⟩, |ψ⊥
1 ⟩}. Hence, without loss of

generality, a two-state discrimination problem can be safely restricted to a
qubit space. Let us write down the ensemble as

|ψ0⟩ = cos
θ

2
|0⟩ + sin

θ

2
|1⟩ and |ψ1⟩ = cos

θ

2
|0⟩ − sin

θ

2
|1⟩ , (4.67)

which may be prepared with a priori probabilities p0 and p1, respectively.
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Two detectors are arranged to find which of the states has been sent. A
“click” in the first detector concludes that the state |ψ0⟩ was prepared and
a detection event in the second one is for the state |ψ1⟩. The experiment is
performed repeatedly so that one finds the rate of detection events in each
arm. There are also cases where no detections are reported due to either
the loss of prepared quantum systems during transmission or the failure of
detectors to respond. After a measurement is repeated, outcome rates are
found to be

ηobs = {η0, η1, ηø}, (4.68)

where ηø is the rate of undetected events.

For outcome rates compatible with quantum theory, there exist POVM
elements {π̂b}1,øb=0 for the ensemble ρ such that

ηb = Tr[π̂bρ] where ρ =
∑
x=0,1

px |ψx⟩ ⟨ψx| (4.69)

where the measurement fulfills the condition, π̂0 + π̂1 + π̂ø = 1. In general,
the figure of merit can be written for predetermined parameters α = {α0, α1}:

max⟨CQ⟩α = max
(
α0C

Q
0 + α1C

Q
1

)
, (4.70)

where the maximization runs over POVM elements. The optimisation problem
can be solved analytically with the optimality conditions in (4.62) and (4.63).

4.6.2 Maximum confidence on a quantum state

The maximum confidence in the realistic two-state discrimination scenario
above can be certified as follows. For simplicity, let us assume the preparation
of equiprobable states, i.e., p0 = p1 = 1/2 and show the certification for the
first detector. The detailed derivation is shown in Sec. 4.10.

In the certification scenario, a detector in a two-state discrimination
scenario shows an outcome rate η0 when the measurement is repeated. Using
our KKT conditions, it can be shown that the certifiable maximum confidence
on such a measurement is given by

maxCQ
0 =


1, for η0 ∈ [0, c−]

1/2 + f(η0, c0,1), for η0 ∈ [c−, c+]

1/(2η0), for [c+, 1]

(4.71)
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where

c± =
1

2
(1 ± c0,1) (4.72)

f(η0, c0,1) =
1

4η0

√(
1 − c0,1
c0,1

)
(c0,1 − (1 − 2η0)2) . (4.73)

Note that certification depends upon the outcome rate η0 of detected events
only for a given ensemble of states.

An optimal measurement for maximum confidence state discrimination
can be characterized according to the outcome rate. For an outcome rate
η0 ≤ c+, an optimal measurement is given by rank-one POVM elements. For
η0 > c+ where the outcome rate is relatively higher, the maximum confidence
is obtained from a rank-2 POVM element. One can find that that too frequent
detection events, i.e., η0 ≥ c+, rule out a rank-1 measurement for maximum
confidence discrimination: thus, a rank-2 measurement is also certified.

4.6.3 Contextual advantage

We now investigate the certification of an MCM in a noncontextual theory
and compare it with the quantum case. To this end, the main task is to
optimise a measurement in a noncontextual ontological model, i.e., a response
function ξ0(λ) in the first arm, given the extra constraint with a fixed out-
come rate η0. We write two epistemic states as µ0(λ) and µ1(λ), showing
the confusability c0,1 that is the same as that of quantum states defined in
(4.67). ξ0(λ) identifies µ0(λ) and, for the same reason as discussed above
(4.67), is taken to be a sharp measurement of the state µb(λ). As elsewhere,
the ensemble is prepared equiprobably, that is, with p0 = p1 = 1/2.

The fixed outcome rate must first be addressed. The outcome rate can be
expressed in terms of the confusabilities as

η0 =
1

2
c0,b +

1

2
c1,b. (4.74)

where b labels the sharp response function for the epistemic state µb(λ). We
can see, following (4.55), that a sharp measurement will only be able to attain
outcome rates in the range

c− ≤ η0 ≤ c+. (4.75)

For rates less than the lower bound, we must use a sharp measurement
weighted by a probability. Such response functions were seen in (4.26). For
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rates above this bound, a “rank-2” response function (i.e., one consisting of
mixing multiple outcomes) is required. We note that these boundaries are
exactly the same as those from the quantum case ( see (4.71) ). Each region
of our piecewise confidence function will be addressed in what follows.

Let us begin with the infrequent detection region where η0 ≤ c−. Here we
must again use a response function of the form

ξ0(λ) =

{
q if λ ∈ supp[µb(λ)]

0 if λ ∈ supp[µ⊥
b (λ)].

(4.76)

With this function we can express the confidence as

CNC
1 =

q

2η0

∫
Λ

dλµ1(λ)ξb(λ) =
q

2η0
c0,b. (4.77)

The goal is to maximise the confusability over a constant outcome rate.
To take the latter into account, we use the ℓ1 distance, which is shown in
Ref. [131] as follows:

cx,b = 1 − 1

2
||µx − µb||1, where ||µx − µb||1 =

∫
Λ

dλ|µx(λ) − µb(λ)|. (4.78)

We now express η0 in terms of the ℓ1 distance:

η0 =
q

2
(cb,0 + cb,1) =

q

2

(
2 − 1

2
∥µb − µ0∥1 −

1

2
∥µb − µ1∥1

)
. (4.79)

The triangle inequality allows us to exploit the relation,

∥µb − µ1∥1 ≤ ∥µb − µ0∥1 + ∥µ0 − µ1∥1. (4.80)

Combining this result with (4.78) above and writing in terms of c0,1, we obtain

∥µb − µ0∥1 ≥ 1 − 2
η0
q

+ c0,1, (4.81)

or, in a more convenient form using the confusabilities,

c0,b ≤
η0
q

+ c−, (4.82)

as the upper bound on the confusability c1,b consistent with a fixed outcome
rate and weighted by the probabilistic parameter q, under the assumption
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that a “rank-1” operator is able to recreate the desired η0. Bringing all of
these together, the maximum confidence can be expressed as

maxCNC
0 = max

q

(
1

2
+
c−
2η0

q

)
, (4.83)

where the maximisation runs over the variable q ∈ [0, 1].

Let us now find the certified maximum confidence given an outcome rate
η0. For the range of the outcome rate where η0 < c−, the optimal parameter
can be chosen as q = 2η0/c−. Thus, the certifiable maximum confidence is
given as CNC

0 = 1. These cases can be interpreted as USD, except that the
confidence of the other arm of the detector is not yet specified. Therefore, a
distinction between the quantum and noncontextual theories is not found in
terms of the maximum confidence of a given state. Of course, as it has been
shown above, there is a distinction in terms of a different figure of merit, the
rate of ambiguous outcomes.

The next range to consider is when the outcome rate is within the bounds,
η0 ∈ [c−, c+] where we recall c± = (1 ± c0,1)/2. Here, sharp measurements
give the desired outcome rate and, therefore, are treated simply by letting
q = 1 in the above calculation. This gives a maximum confidence,

maxCNC
1 =

1

2

(
1 +

1 − c0,1
2η0

)
< maxCQ

0 , (4.84)

with the maximum confidence in quantum theory in (4.71). Thus, a quantum
advantage is shown in the range (see Fig. 4.7).

For the high-outcome-rate range where η0 ≥ c+, we deduce the response
function by considering the behaviour at two values of η0. The confidence must
be continuous at the point η0 = c+ and the response function at this point
is a sharp measurement of µ0(λ). The response function for higher values of
η0 must consist of binning together multiple measurement outcomes due to
the bounds on sharp measurements. At η0 = 1, the response function will be
equal to one across the whole ontic state space, which can be decomposed
into a sum of two non-overlapping sharp measurements. We can see that the
response function will take the form

ξ0(λ) = ξµ0(λ) + aξµ⊥
0

(λ) , (4.85)

where a is some constant that can be determined by evaluating the associated
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Figure 4.7: Figure extracted from Ref. [25]. In two-state discrimination
between |0⟩ and (|0⟩ + |1⟩)/

√
2, the certifiable MCM in the first detector,

denoted by maxC0, is plotted with respect to outcome rate η0. The certifiable
MCM is shown in both quantum theory (solid line) and in a noncontextual
ontological model (dotted line). A low detection rate η0 ≤ 1/4 is compatible
with USD. The contextual advantages exist whenever an outcome rate is
within the range η0 ≤ 3/4. However, no contextual advantage can be obtained
if an outcome rate is too high for η0 > 3/4.
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outcome rate. Doing this gives

ξ0(λ) = ξµ0(λ) +
η0 − c+
1 − c+

ξµ⊥
0

(λ). (4.86)

This function gives a outcome rate η0 and a maximum confidence

maxCNC
0 =

1

2η0
(4.87)

which is again the same as the behaviour in the quantum case.

Let us summarise the key features of the response function, which is
optimized according to the outcome rate η0 ∈ [0, 1]. In the low outcome
region with η0 ≤ c−, the optimal response function has the same support
as the state µ1(λ), on which it linearly increases from zero to one as the
outcome rate goes from zero to c−. In the central region with η0 ∈ [c−, c+],
the optimal response function corresponds to a projective measurement which
slightly shifts its support away from supp[µ1(λ)] and towards supp[µ0(λ)],
to which it coincides when η0 = c+. Finally, when the outcome rate is even
higher for η0 ≥ c+, the support includes the rest of the ontic state space. The
response function increases linearly on the region of two supports supp[ξ0(λ)]
and supp[µ⊥

0 (λ)]. When η0 = 1, the response function will be equal to one
for all ontic states.

Interestingly, the three ranges showing distinct forms of the response
functions in a noncontextual model and an optimal measurement in quantum
theory precisely coincide with each other. Contextual advantages in terms
of a higher maximum confidence are shown in the central region only, where
a sharp measurement turns out to be optimal (see also Fig. 4.7). In the
next section, noisy preparations are considered where the aforementioned
properties do not hold in general. Contextual advantages in terms of a higher
maximum confidence appear over the whole range of outcome rates. The
ranges giving distinct forms of a measurement in quantum and noncontextual
theories no longer coincide with each other.

4.7 Certifiable maximum confidence on noisy

preparation

We consider a noisy preparation and investigate contextual advantages in
the certification of an MCM. We first recall the result in Sec. 4.4.4 that the
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contextual advantages for the MCM hold true for noisy quantum states. We
here extend the contextual advantage to the certification scenario. Again, let
us consider a pair of mixed states given with equal a priori probabilities

ρ0 = r |ψ0⟩ ⟨ψ0| + (1 − r)
1

2
, ρ1 = r |ψ1⟩ ⟨ψ1| + (1 − r)

1

2
. (4.88)

We also exploit the confusability for the pure states, c0,1 = | ⟨ψ0|ψ1⟩ |2. In
what follows, we compute the certified maximum confidence when the outcome
rate is given by η0 in the first arm.

4.7.1 Quantum states

We apply the same method used in Sec. 4.5 to compute the certifiable max-
imum confidence. The detailed derivation is shown in in Sec. 4.10. It is
fairly straightforward to obtain the results. Contrary to the noiseless case in
Sec. 4.5, it is found that the ranges in which different kinds of measurements
are optimal do not coincide between quantum and noncontextual theories.
The certifiable maximum confidence can be summarised depending on the
range of the outcome rate.

First, when the outcome rate is in the range η0 ∈ [0, η
(−)
0 ] where

η
(±)
0 =

1

2

(
1 ± r2c0,1

)
, (4.89)

the confidence is given by,

maxCQ
0 =

1

2

(
1 +

r
√

1 − c0,1√
1 − r2c0,1

)
. (4.90)

Note that the noiseless case r = 1 reproduces USD and also the boundary
condition in the range η

(−)
0 = c− in (4.71). For noisy cases with r < 1, it

holds that η
(−)
0 > c−.

Second, when η0 ∈ [η
(−)
0 , η

(+)
0 ] the certifiable maximum confidence is

computed as

maxCQ
0 =

1

2
+ gp(η0, c0,1) , (4.91)

where

gp(η0, c0,1) =
1

4η0

√(
1 − c0,1
c0,1

)
(r2c0,1 − (1 − 2η0)2). (4.92)
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Note that the case r = 1 reproduces the certifiable maximum confidence in a
noiseless case in (4.71).

Third, when the outcome rate is in the range η0 ∈ [η
(+)
0 , 1], the certifiable

maximum confidence is obtained as

maxCQ
0 =

1

2

(
1 +

r
√

1 − c0,1√
1 − r2c0,1

(
1

η0
− 1

))
. (4.93)

Note that it holds that η
(+)
0 < c+ for noisy cases with r < 1 (see (4.71)). In

addition, the noiseless case r = 1 also reproduces (4.71).

4.7.2 Noncontextual model

Similarly to what is shown in Sec. 4.4.4, we consider noisy states µ̃0(λ) and
µ̃1(λ) as defined in (4.41) with a priori probabilities 1/2, respectively. In the
certification scenario, it is assumed that the outcome rate in the first arm is
given by η0. We then aim to find the certifiable maximum confidence on, say,
the first arm.

Sharp measurements cannot reproduce all outcome rates, as shown in
(4.55). The outcome rate η0 can be obtained using

η0 =

∫
Λ

dλµP (λ)ξ0(λ) (4.94)

where µP (λ) denotes the ensemble in (4.42). Applying (4.55) to the integral
above, one can obtain bounds on the outcome rate as follows:

1

2
(1 − rc0,1)) ≤ η0 ≤

1

2
(1 + rc0,1) . (4.95)

Note that a sharp measurement can produce the desired statistics in the range
above. If we require an outcome rate is below the lower bound, we must use
weighted sharp measurements. If the desired outcome rate is higher than the
upper bound, we must use rank-2 equivalent measurements. Interestingly, the
boundaries in a noncontextual theory are different from those in the quantum
case in Sec. 4.6 (see also Fig. 4.8).

Once the outcome rate is in the range η0 ∈ [0, (1 − rc0,1)/2], the measure-
ment for the maximum confidence must be a weighted sharp measurement, i.e.,
we again let ξ0(λ) = qξb(λ) where 0 ≤ q ≤ 1 and ξb(λ) is a sharp measurement
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Figure 4.8: Figure extracted from Ref. [25]. The certifiable maximum confi-
dence is shown for two noisy states c0,1 = 1/2 and r = 1/2 where r is the noise
parameter in (4.88). The certifiable maximum confidence varies depending on
a outcome rate η0. The certifiable maximum confidence for quantum states
(solid) is higher than that in a noncontextual model (dotted) for all η0 ∈ [0, 1].
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for a to-be-determined epistemic state.

For this response function, it holds that

η1 =
q

2
((1 − r) + r(c0,b + c1,b)) (4.96)

which can be written as,

q =
2η0

(1 − r) + r(c0,b + c1,b)
. (4.97)

Thus, the value q is obtained from a given η0. Let us express the confidence
in terms of the confusabilities,

CNC
0 =

1

2η0

∫
Λ

dλµ̃0(λ)ξ0(λ) =
q

2η0

∫
Λ

dλµ̃0(λ)ξb(λ)

= 1 − (1 − r) + 2rc1,b
(1 − r) + r(c0,b + c1,b)

. (4.98)

To find the maximum confidence, one has to minimise the fraction by finding
b such that the numerator is minimal and the denominator is maximal. It
turns out that the optimal choice is given by b = 1̄. It is obvious that c1,b is
minimized with b = 1̄. From (4.55), the sum c0,b + c1,b is minimal as 1 − c0,1.
Therefore, we have

maxCNC
0 = 1 − 1 − r

2 (1 − rc0,1)
(4.99)

which also shows that the noiseless case r = 1 reproduces the case USD.

When the outcome rate is in the range in (4.95), the measurement must
be sharp and we again use ξ0(λ) = ξb(λ) to avoid confusion between response
functions. We apply the same technique used in Sec. 4.6.3. The key tool is
the inequality,

1 − cb,1 ≤ 2 − c0,b − c0,1, (4.100)

Note also that

η0 =
1 − r

2
+
r

2
(c0,b + c1,b) , (4.101)

from which,

c1,b =
2η0 − (1 − r)

r
− c0,b. (4.102)
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All these imply that

c0,b ≤
1

2

(
1 +

2η0 − (1 − r)

r
− c0,1

)
. (4.103)

The confidence is given by

CNC
0 =

1

2η0

(
1 − r

2
+ rc0,x

)
, (4.104)

which has the maximum as follows,

maxCNC
0 =

1

2
+
r(1 − c0,1)

4η0
. (4.105)

This agrees with (4.84) when r = 1.

Again, in the range η0 ∈ [(1 + rc0,1)/2, 1] when the outcome rate is high,
the response function can be directly deduced. The response function will
take the form

ξ0(λ) = ξµ0(λ) + aξµ⊥
0

(λ) (4.106)

as in (4.85) and for the same reasons, where ξµ0(λ) is the sharp measurement
associated with µ0(λ). Note that the value a is fixed by the outcome rate and
can be found by calculating the η0 given by the response function,

a =
2η0 − 1 − rc0,1

1 − rc0,1
. (4.107)

The confidence is therefore obtained as

maxCNC
0 =

1

2η0

(
1 − (1 − r)(1 − η0)

1 − rc0,1

)
. (4.108)

This agrees with (4.86) for cases r = 0, 1.

4.7.3 Comparison

A comparison of the noiseless and noisy cases in Sec. 4.6 and Sec. 4.7 shows
that the maximum confidence can be characterised depending upon how
frequent an outcome rate is, that is, within the ranges of low, intermediate
and high outcome rates. The feature commonly shared between them is
that the maximum confidence does not increase as the outcome rate gets
more frequent: a less frequent outcome rate implies a higher the maximum
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Figure 4.9: Maximum confidence in a qubit state discrimination scenario,
according to quantum (purple dotted lines) and noncontextual (green straight
lines) models. We directly compare with Fig. 3.7, where only the quantum
case is considered, with

√
c0,1 = 0.8. Black lines correspond to the bounds on

the outcome rates at which behaviours change in quantum (dotted lines) and
noncontextual (dashed lines) models. On the left-hand side: the yellow area is
delimited by 0 ≤ ηø ≤ (1+rc0,1)/2 and the green area by (1+rc0,1)/2 ≤ ηø ≤ 1.
On the right-hand side: the green area is limited by 0 ≤ ηx ≤ (1 − rc0,1)/2,
the yellow area by (1 − rc0,1)/2 ≤ ηx ≤ (1 + rc0,1)/2 and the purple area by
(1 + rc0,1)/2 ≤ ηx ≤ 1.
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confidence and vice versa (see Fig. 4.9.).

Contrasting the cases, it is shown that the ranges characterising the maxi-
mum confidence coincide in quantum and noncontextual theories when the
preparation is noiseless. Contextual advantages are shown in the intermediate
range only. In the noisy case, the ranges are distinct in quantum and noncon-
textual theories, where the intermediate range becomes narrower. Contextual
advantages in this scenario appear in the whole range of outcomes rates.

It is observed that the contextual advantages appearing in the low and
high outcome rates are related with each other. Let us consider the range of
lower detection rate in a noisy case,

η0 <
1

2
(1 − rc0,1)) . (4.109)

In the low-outcome-rate region, the confidence is constant. We can evaluate
the difference between the two functions and denote it as follows:

∆L :=
(

maxCQ
0 − maxCNC

0

)∣∣∣
η0<(1−rc0,1)/2

. (4.110)

One can find that the gap is strictly positive if r < 1 and zero for r = 1.
Then, for a higher outcome rate where

η0 >
1

2
(1 + rc0,1)) (4.111)

it turns out that the gap between quantum and noncontextual theories can
be written as,

∆H :=
(

maxCQ
0 − maxCNC

0

)∣∣∣
η0>(1+rc0,1)/2

=

(
1

η0
− 1

)
∆L. (4.112)

which is also strictly positive for r < 1. If no contextual advantage appears
in the low-outcome-rate range, i.e., ∆L = 0, then neither does it when the
outcome rate is high, i.e., ∆H = 0.

4.8 Conclusion

State discrimination is a fundamental tool in information processing in general
[97]. Its central role in quantum information applications requires us to specify
exactly when quantum theory provides an advantage compared to classical
theories. When classicality is regarded as noncontextuality, the contextual
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advantages for quantum state discrimination are characterized in the scenario
of two-state MESD, for which noisy measurements are also considered, so
that the observation of the advantages is experimentally feasible [27].

The main contribution of the present work is twofold. On one hand, we
show that contextual advantages generally exist in quantum state discrimina-
tion: the advantages exist not only in MESD but also in the cases of USD and,
more generally, maximum confidence state discrimination, which presents a
unifying framework for state discrimination including USD and MESD. Our
results hence show that quantum information applications based on state
discrimination in general can be leveraged to attain quantum advantages. We
also develop an optimization technique for investigating MCM. An MCM for
multiple quantum states in any dimension can hence be computed (see also
an analytic derivation for qubit states [83, 105]).

Furthermore, we examine and compare maximum confidence measure-
ments in noncontextual and quantum theories. In a noncontextual theory,
it turns out that the optimal measurement for an ensemble is unchanged
even if the preparation is noisy. In quantum theory, however, the MCM is
constructed depending upon how much noise is present in given states. Conse-
quently, an MCM for noisy states in quantum theory shows a higher maximum
confidence over a noncontextual theory. We remark that our examination
of the optimal measurements for noisy states is distinct from the results of
noncontextual inequalities presented in Ref. [27]. While the noncontextual
bounds are typically found at a higher level, we analyze in detail the optimal
measurements as well as their structure. Our techniques will be applicable
to future research in the field and give us a closer look at the structure of
measurements on the ontic state space.

On the other hand, our findings that contextual advantages for state
discrimination exist in general, precisely, for MCMs, leverage an semi-DI
scenario of certifying a quantum measurement. We develop a framework for
certifying the maximum confidence on a quantum measurement in a realistic
semi-DI manner, where the outcome rates for an ensemble of states are pro-
vided by an experiment while the measurement is neither fully characterized
nor trusted. Note also that the undetected events that may be present in
an experiment are naturally taken into account. In fact, undetected events
appear so frequently in photonic quantum experiments that this directly
applies to various quantum information applications: quantum key distri-
bution, Bell nonlocality detection, photonic quantum computation, etc. It
should also be pointed out that our consideration in the framework of an
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semi-DI scenario goes beyond noisy measurements (e.g., Ref. [27]), which
shows the resilience of contextual advantages to noise. The semi-DI scenario
considered here deals with untrusted or uncharacterized measurement de-
vices and also undetected events, which are not allowed in MESD in particular.

We then formulate an optimization problem for the certification of the
maximum confidence on a quantum measurement in an semi-DI scenario.
To demonstrate contextual advantages in an semi-DI scenario, we develop
the certification of the maximum confidence in a noncontextual ontological
model and also in a quantum theory and then compare them. It is seen
that one can always find contextual advantages in the maximum confidence
on quantum states in an semi-DI scenario with untrusted detectors. Our
results show that quantum state discrimination in the most realistic scenario
with uncharacterized and lossy detectors can achieve its advantage over a
noncontextual ontological model.

Finally, it is worth mentioning that there is still much room to generalize
further by considering a wider class of ensembles. In particular, three-state
discrimination poses an interesting problem due to the impossibility of cre-
ating the symmetric three-state ensemble in a noncontextual theory [20].
Contextual advantages associated with discrimination of general mixed states
are an intriguing extension. As such states can be decomposed in the Hilbert-
space formalism in a number of different possible ways, their representation in
a noncontextual operational ontological model should have rich consequences.
The exploration of such areas will further our understanding of the quantum-
classical boundaries.

Our results set the ground for understanding how quantum information
applications that exploit quantum state discrimination can achieve advantages
over a classical theory in a realistic scenario. Our results are not limited
to advances in quantum information theory from the fundamental point of
view but, more importantly, can be exploited to show quantum advantages
in existing practical quantum information applications. Among the tasks
using state discrimination, it would be interesting to investigate randomness
generation (see, e.g., Ref. [17, 68]). It would also be interesting to investigate
contextual advantages in quantum computing tasks, such as quantum machine
learning, where state discrimination is often processed to manipulate classical
data over the limitations of conventional computing [132].
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4.9 Appendix A: Derivation of the optimality

condition in the certification scenario

We here derive the optimality conditions in (4.62) and (4.63), which allow
for the certification of an MCM given specified outcome statistics. That is,
given outcome rates ηx, the goal is to maximise

∑
x αxCx over a measurement,

where

Cx =
px
ηx

Tr[π̂xρx]. (4.113)

In fact, the optimisation problem can be written as an SDP. The primal
problem is the following:

p∗ = maximize
n∑

x=1

αx
px
ηx

Tr[π̂xρx] (4.114)

subject to π̂b ≥ 0,
n−1∑
b=0

π̂b ≤ 1,

Tr[ρπ̂x] = ηx

Let π̂ø = 1−∑n−1
b=0 π̂b ≥ 0 denote a slack variable that takes undetected events

into account. Let us introduce dual variables rbσb for inequality constraint
where rb ≥ 0 and σb is a quantum state, and K and sx to derive the Lagrangian
functional in the following,

L({π̂b}n−1,ø
b=0 , {rb}n−1,ø

b=0 , {σb}n−1,ø
b=0 , {sx}n−1

x=0, K) (4.115)

=
n−1∑
x=0

αx
qx
ηx

Tr[π̂xρx] +

n−1,ø∑
b=0

rb Tr[π̂bσb] + Tr[K(I −
n−1,ø∑
b=0

π̂b)] +
n−1∑
x=0

sx(ηx − Tr[ρπ̂x])

=
n−1∑
b=0

Tr[π̂x(αx
ρx
ηx

+ rxσx −K − sxρ)] + Tr[π̂ø(røσø −K)] + Tr[K] +
n−1∑
x=0

sxηx.

The dual functional is derived as follows,

g({rb}n−1,ø
b=0 , {σb}n−1,ø

b=0 , {sx}n−1
x=0, K) (4.116)

= sup
{π̂b}n−1,ø

b=0

L({π̂b}n−1,ø
b=0 , {rb}n−1,ø

b=0 , {σb}n−1,ø
b=0 , {sx}n−1

x=0, K)

=


Tr[K] +

∑n−1
b=0 sxηx if αx

ηx
ρx + rxσx −K − sxρ = 0 and røσø −K = 0,

for x = 0, 1, · · · , n− 1

+∞ otherwise.

.
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Since the dual functional does not diverge, we have that

K = røσø, and K = αx
ρx
ηx

+ rxσx − sxρ, x = 0, 1, 2, · · ·n− 1. (4.117)

This condition is called the Lagrangian stability. The dual problem can be
written as,

d∗ = minimize Tr[K] +
n−1∑
b=0

sxηx (4.118)

subject to K + sxρ ≥
αx

ηx
ρx, and

K ≥ 0.

In general, it holds that p∗ ≥ d∗. The equality holds when the problem is
strictly feasible. For instance, one can choose π̂b = ηb1 for all b to show that
the primal problem is strictly feasible. We thus have that p∗ = d∗.

When the dual and primal problems give the same solution, one can also
solve the optimisation problem by analyzing the optimality conditions directly.
For the SDP above, the optimality conditions are listed as,

Lagrangian stability: K = αx
qx
ηx
ρx + rxσx − sxρ, K = røσø ∀x (4.119)

Complementary slackness: rb Tr[π̂bσb] = 0, ∀b , (4.120)

together with the constraints in the primal and dual problems. Although the
optimality conditions contain a greater number of variables than the primal
and dual problems, they are useful for exploiting the generic structure existing
in an optimisation problem.

4.10 Appendix B: Solving the optimality con-

ditions for certifying the maximum con-

fidence

We here show the approach of the so-called linear complementarity problem
in the certification of a maximum confidence. We consider qubit states and
show how the optimality conditions can be directly analysed.
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Suppose that two states ρ1 and ρ1 are given with prior probability 1/2,
respectively,

ρ0 = r |ψ0⟩ ⟨ψ0| + (1 − r)
1

2
, and ρ1 = r |ψ1⟩ ⟨ψ1| + (1 − r)

1

2
(4.121)

for which the outcome rates given by η0 and η1. The goal is now to find
the certifiable maximum confidence on the first arm. Let us begin with the
following primal problem:

p∗ = maximize
1

2η0
Tr[π̂0ρ0] (4.122)

subject to 0 ≤ π̂0 ≤ 1,

Tr[π̂0ρ] = η0.

The Lagrangian function can be constructed as

L(π̂0, X0, X1, λ)

=
1

2η0
Tr[ρ0π̂0] + Tr[X0π̂0] + Tr[(I − π̂0)X1] + λ(η0 − Tr[ρπ̂0])

= λη0 + Tr[X1] + Tr[(
ρ0
2η0

+X0 −X1 − λρ)π̂0] (4.123)

from which the dual problem can be obtained:

d∗ = minimize λη0 + Tr[X1] (4.124)

subject to X1 + λρ ≥ 1

2η0
ρ0,

X1 ≥ 0

The optimality conditions can be found and listed out as follows,

X0 −X1 = λρ− 1

2η0
ρ0 (4.125)

X0, X1 ≥ 0

π̂0X0 = 0

(I − π̂0)X1 = 0

0 ≤π̂0 ≤ I

Tr[ρπ̂0] = η0.

Since qubit measurements are considered, X0X1 = 0 holds. Since the non-
negative operators X0 and X1 are orthogonal, they can be obtained from the
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spectral decomposition in (4.125). Let ν± denote the positive and negative
eigenvalues |ν±⟩, respectively, so that

X0 −X1 = λρ− 1

2η0
ρ0 = ν+ |ν+⟩ ⟨ν+| + ν− |ν−⟩ ⟨ν−| (4.126)

where

ν± =
tan θ

4η0
(γ ±

√
1 + γ2r cos θ) (4.127)

|ν±⟩ =
1√

2 + 2γ2 ∓ 2γ
√

1 + γ2
(|0⟩ + (γ ∓

√
1 + γ2) |1⟩) (4.128)

with γ = (2η0λ−1) cot θ. It is straightforward to find the maximum confidence,

maxCQ
0 = λη0 + Tr[X1] =

1

2
(1 + γ tan θ) − ν−

=
1

2
+

tan θ

4η0
[(2η0 − 1)γ + r cos θ

√
1 + γ2], (4.129)

where the parameter γ, relying on the dual parameter λ, needs to be further
optimised. If either X0 or X1 is of full-rank, then the optimisation becomes
trivial since π̂0 = 0 or 1. Assuming X0 and X1 are not full-rank, there are
three possible cases for X0X1 = 0.

Firstly, we consider that X0 = 0 and X1 > 0. Since X0 = 0, we have that
ν+ = 0,

γ =
−r cos θ√

1 − r2 cos2 θ
(4.130)

and

maxCQ
0 =

1

2

[
1 +

r sin θ√
1 − r2 cos2 θ

(
1

η0
− 1

)]
, (4.131)

where |ν−⟩ =
1√
2

(
√

1 + r cos θ |0⟩ +
√

1 − r cos θ |1⟩).

Since X1 = −ν− |ν−⟩ ⟨ν−| and X1(I − π̂0) = 0,

π̂0 = |ν−⟩ ⟨ν−| + α |ν+⟩ ⟨ν+| = αI + (1 − α) |ν−⟩ ⟨ν−| (4.132)

for some constant 0 ≤ α ≤ 1. That is, the optimal measurement is a convex
combination of I and |ν−⟩ ⟨ν−|. To find α, we use condition Tr[π̂0ρ] = η0 so
that

α =
2η0 − 1 − r2 cos2 θ

1 − r2 cos2 θ
. (4.133)
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Since α ≥ 0, the outcome rate is constrained by η0 ≥ 1
2
(1 + r2 cos2 θ).

Secondly, we consider that X1 = 0 and X0 > 0. For X1 = 0, for which it
holds that ν− = 0.

γ =
r cos θ√

1 − r2 cos2 θ
. (4.134)

Since X0 is rank-one, the optimal measurement must be rank-one π̂0 =
β |ν−⟩ ⟨ν−|. It is straightforward to find the maximum confidence,

maxCQ(1) =
1

2
(1 +

r sin θ√
1 − r2 cos2 θ

) (4.135)

where |ν−⟩ =
1√
2

(
√

1 − r cos θ |0⟩ +
√

1 + r cos θ |1⟩).

The optimal measurement is given by

π̂0 =
2η0

1 − r2 cos2 θ
|ν−⟩ ⟨ν−| . (4.136)

The condition β ≤ 1 is equivalent to η0 ≤ 1
2
(1 − r2 cos2 θ).

Thirdly, X0 > 0 and X1 > 0. Since X0 and X1 are both rank-one, optimal
POVM elements π̂0 and 1− π̂0 are also rank-one so that π̂0 = |ν−⟩ ⟨ν−|. From
the condition Tr[π̂0ρ] = η0, we find

γ =
1 − 2η0√

r2 cos2 θ − (1 − 2η0)2
.

We then have,

maxCQ
0 =

1

2
+

tan θ

4η0

√
r2 cos2 θ − (1 − 2η0)2

where |ν−⟩ =
1√
2

(√
1 − 1 − 2η0

r cos θ
|0⟩ +

√
1 +

1 − 2η0
r cos θ

|1⟩
)
.

The conditions ν+ ≥ 0 and ν− ≤ 0 are equivalent to 1
2
(1 − r2 cos2 θ) ≤ η0 ≤

1
2
(1 + r2 cos2 θ).
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Chapter 5

A contextuality witness inspired
by optimal state discrimination

In this chapter we present the results in “A contextuality witness inspired by
optimal state discrimination” [26], authored by Carles Roch i Carceller and
Jonatan Bohr Brask. A final version of this work is still in preparation.

5.1 Abstract

Many protocols and tasks in quantum information science rely inherently
on the fundamental aspect of contextuality to provide advantages over their
classical counterparts, and contextuality represents one of the main differences
between quantum and classical physics. In this work we present a witness
for preparation and measurement contextuality inspired by optimal two-state
discrimination. The main idea is based on finding the accessible averaged
success and error probabilities in both classical and quantum models. We can
then construct a noncontextuality inequality and associated witness, which
we find to be robust against depolarising noise in both state preparation and
measurements.

5.2 Introduction

Contextuality is a fundamental aspect of quantum mechanics which states that
the result of measurements may depend on which other compatible measure-
ments are jointly performed, in contrast with classical models, which allow no
such dependence and are noncontextual. The Bell-Kochen-Specker theorem
[18, 19] demonstrates that quantum theory is incompatible with noncontextual
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hidden-variable models. It has been demonstrated that contextuality consti-
tutes as a resource for various applications in quantum information including
magic states [133], quantum key distribution [134], device-independent secu-
rity [135] and quantum randomness certification [136, 137]. The traditional
definition of contextuality requires a composite system, and its standard proof
applies to Hilbert spaces of dimension three or higher [138, 139]. The notion
of (non)contextualilty has been further generalised in the work of Spekkens
[20], based on operational equivalences and ontological models. Similar to
Kochen-Specker, generalised contextuality has also been proven to provide a
resource for certain quantum information tasks. For instance parity-oblivious
multiplexing [140, 141], random-access codes [142], quantum randomness
certification [17], communication [143–145], and state discrimination [25, 27].
Other interesting works have studied some limitations of physical theories
[144]. Quantum theory has also been shown to be less preparation contextual
than the general operational theory known as box world [146].

In this work we aim to find a simple witness for generalised contextuality
in the sense introduced in [20]. While a number of contextuality witnesses
exist in the literature [147–152], here we benefit from a simple prepare-and-
measure scenario with two preparations and a single measurement to find a
good contextuality witness inspired by optimal state discrimination.

5.3 Basic notions in state discrimination

Any state discrimination scenario is formed by state preparations and effects
[153, 154]. The former are labeled by preparation procedures x ∈ X and the
latter by answers b ∈ B to the questions in X, which can be answered in
an experiment. From the list of questions X and answers B, the gathered
data is usually expressed as conditional probabilities p(b|x). The goal in state
discrimination is to determine x from the transmitted states, i.e. achieving
b = x. Then, an optimisation problem is built, where these probabilities take
a principal role. All the involved correlations are further constrained to obey a
particular set of rules based on a concrete model (quantum, noncontextual,...).
Furthermore, as is customarily done in state discrimination settings, we name
the probabilities depending whereas the answer is correct, wrong or else. If
the answer to the question x is b = x, we define p(b = x|x) as the success
probability, whereas p(b ̸= x|x) is called the error probability. One must
also consider events where the answer b is not in the set of questions X (i.e.
X ⊆ B). We group answers not in X and label them by b = ø. We denote
p(b = ø|x) the inconclusive probability.
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Success, error and inconclusive probabilities play each a different role in the
discrimination scenario [29, 95, 97]. Different state discrimination tasks can
be defined by different figures of merits, which are functions of the observed
conditional probabilities, and different constraints on the same probabilities.
For example, the goal in minimum error state discrimination (MESD) is
to maximise the success probability whilst inconclusive events do not occur
[108, 155, 156] (hence converting the goal into a minimisation of the error
probability due to normalisation). On the other hand, in unambiguous state
discrimination (USD), the goal is also to maximise the success probability,
with the main constraint that error probabilities must vanish [79–81] (thus
converting the goal into a minimisation of inconclusive probabilities). Lastly,
in maximum confidence state discrimination (MCSD), the goal is to maximise
the confidence, that is, the probability of receiving input x given the outcome
b = x) which can be expressed as the success probability divided by the rate
of events of interest [101–104, 106, 157]. Concretely, for a particular state
of interest x, Cx := pxp(b = x|x)/ηx, for ηb =

∑
x pxp(b|x), where px are the

prior probabilities for each preparation x. If one centers on the whole prepared
ensemble instead, the total equally-weighted confidence is C =

∑
xCx/n, for

n being the total number of state-preparations. No further constraints are
applied to MCSD, making it rather a more general approach. Also, it can be
reduced to MESD and USD as concrete cases. If Cx = 1, the input x must be
unambiguously identified, or if C = 1 the whole ensemble is unambiguously
discriminated, resulting in USD. On the other hand, MESD is recovered by
adopting

∑
x ηxCx as the figure of merit.

5.4 Scenario

We focus on two-state discrimination with equiprobable preparations, charac-
terised by the sets of preparations X = {0, 1} and outcomes B = {0, 1, ø},
and px = 1/2. We also introduce the averaged success psuc, error perr, and
inconclusive pø probabilities as

psuc :=
1

2
(p(0|0) + p(1|1)) , (5.1)

perr :=
1

2
(p(1|0) + p(0|1)) , (5.2)

pø :=
1

2
(p(ø|0) + p(ø|1)) = 1 − psuc − perr. (5.3)

We will fix pø and ask the following question: which regions in correlation
space, parameterized by psuc and perr, are feasible in quantum mechanics or
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in a noncontextual model? The answer to this question is not trivial if state
preparations are not perfectly distinguishable. For fixed inconclusive rate,
the sum psuc + perr = 1 − pø is fixed and we can focus on the difference. We
therefore define the following witness on the level of probabilities

W :=
1

2
(psuc − perr) . (5.4)

For each model, we will separately formulate an optimisation problem,
and find a bound on W. The feasible region is necessarily convex since, for
two different measurement strategies producing different behaviours, proba-
bilistically choosing between them (using local randomness) defines another
valid measurement strategy. The corresponding behaviour will then be the
convex combination of the first two behaviours. We can thus use techniques
in convex optimisation to efficiently solve the maximisation problem for each
model.

5.4.1 Quantum model

Consider an ensemble of two noisy states ρx = rs |ψx⟩ ⟨ψx| + (1 − rs)1/2 for
x = 0, 1, characterised by the overlap δ = | ⟨ψ0|ψ1⟩ |. Let π̂b represent a valid
POVM for b = 0, 1, ø, such that Tr [ρxπ̂b] = p(b|x) according to the Born
rule. Our goal is to find the maximum difference between success and error
probabilities, for a fixed inconclusive rate. To do so, let us introduce the
following operator

∆̂x :=
(−1)x

2
(π̂0 − π̂1) . (5.5)

We aim to find the maximum difference

WQ := max
1

2

(
pQsuc − pQerr

)
= max

∑
x

Tr
[
∆̂xρx

]
, (5.6)

where the optimisation is over all measurements forming valid POVMs π̂b ≥ 0
and

∑
b π̂b = 1, and subject to pø = 1

2
Tr [(ρ0 + ρ1)π̂ø]. This maximisation

can be rendered as a semidefinite program (SDP) [30].

In Sec. 5.7 we find an analytical form of the optimal measurement that
solves our initial problem. The solution to (5.6) is given by

WQ = rs

√
(1 − δ2)(1 − 2pø

1 + rsδ
) for pø ≤ rsδ (5.7)

WQ = rs
√

1 − δ2
√

1 − r2sδ
2

1 − pø
1 − r2sδ

2
for pø ≥ rsδ .
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One can also write down the optimal success and error probabilities. For
pø ≤ rsδ

pQsuc =
1

2

(
1 + WQ − pø

1 + δ

1 + rsδ

)
, (5.8)

and for pø ≥ rsδ:

pQsuc =
1

2

(
1 + WQ − pø

)
, (5.9)

and pQerr = 1 − pQsuc − pø.

The success and error probabilities we found are the maximal and minimal
probabilities according to the quantum theory in a qubit state discrimination
problem. Interestingly, one can recover the bounds from other protocols as
specific cases. For instance, if the experiment only reproduces conclusive
measurement outcomes (pø = 0), the problem is reduced to the usual MESD.
Then, one recovers the Helstrom bound as a minimum error rate perr [99,
108, 158]. On the other hand, if the experiment is designed with a null
error rate (perr = 0) and zero noise (rs = 1), one recovers USD. In that case,
the maximal success probability is psuc = 1 − δ, leaving a minimal rate of
inconclusive events pø = δ, the minimal value for USD [159, 160]. Finally,
one can directly compute the maximum confidence of the whole ensemble
by writing C = psuc/(psuc + perr). One recovers the maximum confidence
obtained in [25] if pø ≤ rsδ. For larger values of the inconclusive rate, one
can still compute the maximum confidence with the same formula since MCD
and the present scheme share the exact same goal (maximise the success and
minimize the error probabilities).

5.4.2 Noncontextual model

Let us start by presenting the model we use to contrast quantum contextuality.
We take an ontological model of the prepare-and-measure scenario [20, 27,
161]. The system is associated with an ontic state space Λ in which each
point λ ∈ Λ completely defines all physical properties, i.e. the outcomes of all
possible measurements. Each state preparation x samples the ontic state space
according to a probability distribution µx(λ), referred to as the epistemic
state. Each measurement is defined by a set of response functions, that is,
non-negative functions ξb(λ) over the ontic space, such that

∑
b ξb(λ) = 1 for

all λ ∈ Λ. The probability of obtaining the outcome b when state µx was
prepared is then

p(b|x) =

∫
Λ

dλ µx(λ)ξb(λ). (5.10)
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While distinct ontic states can be perfectly discriminated, epistemic states
with overlapping distributions cannot. This overlap introduces the notion of
confusability between two epistemic states µx and µy:

cx,y :=

∫
supp[µx(λ)]

dλ µy(λ) . (5.11)

It is the discrimination of epistemic states which we compare against quantum
state discrimination.

Furthermore, we require the considered ontological model to be preparation-
noncontextual. Two preparations are said to be operationally equivalent if
they cannot be distinguished by any measurement, and an ontological model
is said to be preparation-noncontextual if all operationally equivalent prepa-
rations are assigned to the same epistemic state. To impose noncontextuality
on the ontological model, we imply the existence of a particular pair of states
S := {µ0, µ1} and complementary states S⊥ :=

{
µ⊥
0 , µ

⊥
1

}
. That is, for every

set of states µ0(λ), µ1(λ) ∈ S with pairwise confusability c0,1 , there must
exist a complementary set of states µ⊥

0 (λ), µ⊥
1 (λ) ∈ S⊥ with the same pairwise

confusability c0,1. Each pair of states µx and µ⊥
x must have non-overlapping

supports, and any convex combination of those should be operationally equiv-
alent. By noncontextuality, they must be equal 1

2
µx + 1

2
µ⊥
x = 1

2
µy + 1

2
µ⊥
y .

This statement implies that any pair of epistemic states µx(λ) and µy(λ) with
overlapping supports are equivalent on the overlap, i.e.

µx(λ) = µy(λ) ∀λ ∈ supp [µx(λ)] ∪ supp [µy(λ)] . (5.12)

This, in turn, results in symmetric confusabilities, c := cx,y = cy,x. Quantum
and noncontextual models can be then compared through δ2 = c. The noncon-
textual model we use in this work is to be understood as an attempt to describe
the quantum theory but with noncontextual preparations and measures. One
can see it relies on a deterministic ontic space but with the added probabilistic
nature brought by the epistemic states. Thus, it should reproduce a sub-
set of the spectrum of quantum probabilities in a state discrimination scenario.

We now present the main problem in a noncontextual model. The two
preparations are represented by the following epistemic states affected by
depolarising noise

µ̃0(λ) = rsµ0(λ) + (1 − rs)µ1/2(λ) (5.13)

µ̃1(λ) = rsµ1(λ) + (1 − rs)µ1/2(λ) .
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These can be characterised by the confusability of the noiseless epistemic states
c from (5.11). We also consider a single measurement with two conclusive
outcomes b = 0, 1 and an inconclusive result b = ø, represented by the
response functions ξb(λ). Let us define the analogous observable in (5.5) for
the noncontextual model

∆NC
x (λ) :=

(−1)x

2
(ξ0(λ) − ξ1(λ)) . (5.14)

Then, we can rewrite the problem as the maximisation of

WNC := max
1

2

(
pNC
suc − pNC

err

)
(5.15)

= max
∑
x

∫
Λ

dλ µ̃x(λ)∆NC
x (λ) ,

subject to ξb(λ) ≥ 0 and
∑

b ξb(λ) = 1, ∀λ are valid response functions, and
the rate of inconclusive events is given by pø = 1

2

∫
dλ (µ̃0(λ) + µ̃1(λ)) ξø(λ)

and fixed. In Sec. 5.7 we show how this maximisation can be rendered as a
simple linear problem, for which we are able to find an analytical solution:

WNC = rs (1 − c)

(
1 − pø

1 + rsc

)
for pø ≤ (1 + rsc)/2

WNC = (1 − pø)
rs(1 − c)

1 − rsc
for pø ≥ (1 + rsc)/2 . (5.16)

This results in the following success and error probabilities. For pø ≤ (1 +
rsc)/2:

pNC
suc =

1 + rs
2

(
1 − pø

1 + rsc

)
− rsc

2
, (5.17)

and for pø ≥ (1 + rsc)/2:

pNC
suc =

1

2

(
1 + WNC − pø

)
, (5.18)

and pNC
err = 1 − pNC

suc − pø.

5.5 Results

One can see the space of probabilities drawn in Fig. 5.1. The white region
delimited by the black contour shows the feasible space in the case of fully
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0.5

1.0
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rs = 1.0rs = 0.7

= 0.8

Q MCM
NC MCM

 
 

Noncontextual
Quantum

Figure 5.1: Figure extracted from Ref. [26]. Space of probabilities correspond-
ing to a two-state discrimination setting. Continuous lines denote maximum
confidence measurements in both quantum (purple) and noncontextual (green)
models. Even with a bounded value of noise (rs = 0.7), the MCM line accord-
ing to the quantum model falls outside the noncontextual region.

distinguishable preparations. That is, when states can be directly identified
with ontic states λ. The area shaded in blue shows the feasible space according
to the quantum theory. In its contour we can find pQsuc from (5.8) and (5.9),
for rs = 1. The region reproducible by the noncontextual model (green area)
is included within the quantum limits. Similarly, we find pNC

suc , from (5.17)
and (5.18), in its contour, also for rs = 1. The area of the quantum (and
noncontextual) feasible space becomes narrower as the effects of superposition
become more evident (i.e. when the overlap δ =

√
c increases). We can

see then how the quantum predictions depart from classical interpretations.
There, the contextual aspect of the quantum model becomes more visible.

Moreover, we can identify some extremes of the quantum region with the
bounds found in each state discrimination protocol. The diagonal line that
delimits the right-upper part of the feasible regions covers the state discrimi-
nation scenarios with zero inconclusive rates. The vertices of the quantum
region on that line reproduce the Helstrom bound [77, 98, 99] obtained in
MESD. The same applies for the vertices corresponding to the noncontextual
line, which reproduce the maximal success probabilities in MESD obtained in
[27]. Also, the maximal perr and psuc lying on the bottom and left-most sides
reproduce the maximal unambiguous error and success rates for quantum [79]
and noncontextual [25] models, obtained in USD. Finally, the whole purple
line (called MCM lines for reasons that will be apparent later) surrounding all
the quantum feasible region reproduce the maximum confidence for any value

114



Chapter 5 – A contextuality witness inspired by optimal state discrimination

of pø [83, 101], whilst the green line does the same but for a noncontextual
model [25]. We can see that by writing the confidence C = psuc/(psuc + perr),
the value of which (along the lines of Fig. 5.1) coincides with the bounds
found in the literature [25, 83, 101, 102, 157].

When noisy states affected by depolarizing noise are taken into play, the
bounds on all protocols depart from the borders of the quantum region. The
Helstrom bound from both quantum and noncontextual MESD comes closer
to the center of the probability space as noise increases. Also, when noise is
taken into account, USD is not possible as here we can see that the bottom
and left-most borders are not reachable. The space closed by the MCM lines
also turns narrower. For a given noisy ensemble, the points on the quantum
region outside the MCM lines are not accessible.

During the whole discussion we have been ignoring the fact that, indeed,
the POVM in (5.28) is a maximum confidence measurement (MCM)[83].
Thus, according to Fig. 5.1, an MCM (for an entire ensemble ρ of qubit states)
reaches the limits of the space of feasible correlations. This indicates that an
MCM is the most optimal measure in any (qubit-)state discrimination scenario.

A different perspective is plotted in Fig. 5.2. Contextual behavior is
manifested above the dashed-black line, in the blue shaded region. We
can write this statement a the following noncontextual inequality: Given an
experiment with two preparations X ∈ {0, 1}, with a distinguishability (which
can be characterized by an overlap | ⟨ψ0|ψ1⟩ |) bounded by δ, the following
inequality is always fulfilled in a noncontextual scenario:

W∗ :=
pNC
suc − pNC

err

2

∣∣∣∣
rs=1

≤ (1 − δ2)

(
1 − pø

1 + δ2

)
. (5.19)

Whenever that inequality is violated in a two-state prepare-and-measure
scenario, contextuality is solely manifested. For a concrete value of noise
and nonzero inconclusive events, contextuality can still be harnessed. The
quantum model (bounded by the purple line in Fig. 5.2) still reproduces
contextual behavior.
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Note that the distinguishability (denoted through the overlap | ⟨ψ0|ψ1⟩ |)
does not necessarily need to be fixed but it is enough to bound it. We can
do that because the bounds we found in W decrease as preparations become
less distinguishable. Also, note that the measurement can be completely
left uncharacterised as only statistics are taken into account. These two
particularities highlight the semi-device independent setting of the scenario
we are discussing.

One can also introduce a measurement affected by depolarising noise,
in addition to the noise in the state preparation. Depolarising noise on
the measurement affects directly the observed probabilities according to the
efficiency rm as follows

p(b|x) −→ rmp(b|x) + (1 − rm)
1

nB

, (5.20)

for nB being the number of different measurement outcomes (in our case
nB = 3). This noise is reflected on the witness as a visibility parameter, which
turns the maximum value of W to rmW for both quantum and noncontextual
models. We see in Fig. 5.3 how both noises in preparation and measurement
affect the manifestation of contextuality in a state discrimination experiment.
Observe that even noisy states can exhibit contextual behavior up to the
following value of noise:

rm ≥
(1 − δ2)(1 − pø

1+δ2
)

rs

√
(1 − δ2)(1 − 2∗pø

1+rsδ
)
, (5.21)

which follows the dashed contour in Fig. 5.3.

5.6 Conclusion

We presented a witness of contextuality in two-state discrimination scenarios.
We started by formulating the problem of finding the most optimal mea-
surement in a two state discrimination setting that allows for inconclusive
events. That problem led to the definition of a quantity W in (5.4). Not
only we solved the optimality problem for the quantum theory but also for
a noncontextual ontological model. We found that W can be used as a
witness of contextuality. Furthermore, we defined a semi-device independent
noncontextuality inequality in (5.19) that delimits the frontier between non-
contextual and solely contextual behaviors on the probability space feasible to
the quantum theory. That inequality allows for a flexible rate of inconclusive
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Figure 5.3: Figure extracted from Ref. [26]. Solely manifestation of contextu-
ality for different values of depolarising noise on the state preparation (rs)
and on the measurement (rm).
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events and overlaps, and is robust against depolarising noise both in the
preparation and measurement devices.

5.7 S1: Optimal measurements

In this part of the supplemental material, we derive the optimal measurements
for both the quantum and noncontextual models considered in the main text.
We call a measurement optimal when it maximises the probability success
whilst the error probability is kept at minimum.

5.7.1 Quantum model

Let us start by writing the semidefinite program that finds the optimal
measurement according to the quantum theory. We express the difference we
aim to maximise as

WQ =
1

2

(
pQsuc − pQerr

)
=

1

2
(Tr [ρ0π̂0] + Tr [ρ1π̂1]) −

1

2
(Tr [ρ0π̂1] + Tr [ρ1π̂0])

=
1

2
Tr [(ρ0 − ρ1)(π̂0 − π̂1)] =

1∑
x=0

Tr
[
ρx∆̂x

]
, (5.22)

where we included the operator ∆̂x introduced in the main text. One can
write down the problem in the following SDP form:

maximise
{π̂b}

1

2
Tr
[
ρx∆̂x

]
subject to: π̂b ≥ 0

∑
b

π̂b = 1 (5.23)

1

2
Tr [(ρ0 + ρ1)π̂ø] = pø .

We begin by analysing the optimality conditions of the POVM π̂b. The
corresponding Lagrangian is given by

L =
1

2
Tr [(ρ0 − ρ1)(π̂0 − π̂1)] +

∑
b

rb Tr [π̂bσb] (5.24)

+ Tr

[
K

(
1−

∑
b

π̂b

)]
+ s

(
pø −

1

2
Tr [(ρ0 + ρ1)π̂ø]

)
,

where we introduced the following dual variables: rbσb for the PSD constraint,
K accounting for the normalisation constraint and s for the constraint fixing
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the inconclusive rate. The dual problem can be straight formulated through
the supremum of the Lagrangian

S = supp
π̂b

Tr [K] +Qs+
∑
b

Tr [π̂bGb] , (5.25)

where we defined

Gb =
1

2
Tr [(ρ0 − ρ1) (δb,0 − δb,1)] + rbσb −

1

2
(ρ0 + ρ1) δb,ø −K . (5.26)

The supremum in (5.25) will diverge unless Gb = 0. This leads to the
Lagrange stability optimality condition. Complementary slackness reads
rb Tr [σbπ̂b] = 0, which in a qubit space means that πb must be rank-1. With
all that, we are ready to derive the form of the optimal POVM. We consider
a pair of pure states ρx oriented symmetrically with respect to the Z pole in
the Bloch sphere. That means

ρ0 =
1

2

[
1+ r

√
1 − δ2X + rsδZ

]
(5.27)

ρ1 =
1

2

[
1− rs

√
1 − δ2X + rδZ

]
.

By fixing the orientation of the states in that way,the problem acquires a
symmetry with respect to the states. This is very convenient since we can
directly find the analytical form of π̂ø through the last constraint in (5.23):
π̂ø = pø

1+rsδ
[1+ Z]. The other two POVM elements (π̂0 and π̂1) can be also

directly found noting that the maximum in (5.23) is reached when π̂0 − π̂1 is
proportional to ρ0 − ρ1 = rs

√
1 − δ2X (according to (5.27)). At the end of

the day, this leaves us with the following optimal POVM:

π̂0 =
1

2

(
1 − pø

1 + rsδ

)[
1+

1 + rsδ

rs
√

1 − δ2
WQ

1 + rsδ − pø
X − pø

1 + rsδ − pø
Z

]
π̂1 =

1

2

(
1 − pø

1 + rsδ

)[
1− 1 + rsδ

r
√

1 − δ2
WQ

1 + rsδ − pø
X − pø

1 + rsδ − pø
Z

]
π̂ø =

2Q

1 + rsδ

1

2
[1+ Z] , (5.28)

for pø ≤ rsδ, and

π̂0 =
1

2

1 − pø
1 − r2sδ

2

[
1+

√
1 − r2sδ

2X − rsδZ
]

π̂1 =
1

2

1 − pø
1 − r2sδ

2

[
1−

√
1 − r2sδ

2X − rsδZ
]

(5.29)

π̂ø =
2(pø − r2sδ

2)

1 − r2sδ
2

1

2

[
1+

1 − pø
pø − r2sδ

2
Z

]
,
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for pø ≥ rsδ. That POVM yields the optimal measurement that maximises
the difference between success and error probabilities for a fixed rate of
inconclusive events.

5.7.2 Noncontextual model

In a noncontextual model we can write the problem in the following maximi-
sation form:

maximise
ξb(λ)

1

2

∫
dλ (µ̃0(λ) − µ̃1(λ)) (ξ0(λ) − ξ1(λ)) (5.30)

subject to: ξb(λ) ≥ 0,
∑
b

ξb(λ) = 1 ∀λ

pø =
1

2

∫
dλ (µ̃0(λ) + µ̃1(λ)) ξø(λ) .

We consider a pair of noisy epistemic states affected by depolarising noise:

µ̃0(λ) = rsµ0(λ) + (1 − rs)µ1/2(λ) (5.31)

µ̃1(λ) = rsµ1(λ) + (1 − rs)µ1/2(λ) .

These are characterised by the confusability of the noiseless states given
by

c = c1,0 =

∫
supp[µ0(λ)]

dλµ1(λ) . (5.32)

For low enough rates of inconclusive events, the optimal response functions
are those which unambiguously discriminate the noiseless epistemic states.
These are of the following form

ξ0(λ) =

{
q if λ ∈ supp[µ⊥

1 (λ)]

0 otherwise .
ξ1(λ) =

{
q if λ ∈ supp[µ⊥

0 (λ)]

0 otherwise .
(5.33)

One can determine the value of q in terms of the rate of inconclusive
events and obtain

q =
1 − pø
1 − rsc

, (5.34)

leaving the following extremal success and error probabilities:

pNC
suc =

1 − pø
2

(
1 +

rs(1 − c)

1 − rsc

)
pNC
err =

1 − rs
2

1 − pø
1 − rsc

. (5.35)
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Normalisation implies in (5.34) that pø ≥ (1 + rsc)/2. In the noiseless
case, that is the lower bound on the rate of inconclusive events in USD.
Also, note that the confidence can be written as C = psuc/(1 − pø), which
according to (5.35) one recovers the maximum confidence in [25] according to
a noncontextual model.

For smaller rates pø, the support of the response functions corresponding
to conclusive outcomes will shift to the support of the oposite states. In other
words, we can write down these response functions as follows

ξ0(λ) =


a if λ ∈ supp[µ0(λ)] ∪ supp[µ⊥

1 (λ)]

b if λ ∈ supp[µ⊥
0 (λ)] ∪ supp[µ⊥

1 (λ)]

a− b if λ ∈ supp[µ0(λ)] ∪ supp[µ1(λ)]

0 otherwise

(5.36)

ξ1(λ) =


a if λ ∈ supp[µ⊥

0 (λ)] ∪ supp[µ1(λ)]

b if λ ∈ supp[µ⊥
0 (λ)] ∪ supp[µ⊥

1 (λ)]

a− b if λ ∈ supp[µ0(λ)] ∪ supp[µ1(λ)]

0 otherwise

. (5.37)

Note that if a = b we recover the response functions in (5.33). This allows
us to rewrite the initial optimisation problem (5.30) in the following form

maximise
a,b

1

2
ars(1 − c) (5.38)

subject to a− b ≤ 2 , b ≤ 1

2
pø = 1 − a(1 + rsc) + 2brsc .

The optimal values of the parameters a and b are

a = 1 − pø
1 + rsc

b =
1

2
. (5.39)

Then, one can write the success and error probabilities directly as follows:

pNC
suc =

1 + rs
2

(
1 − pø

1 + rsc

)
− rsc

2
(5.40)

pNC
err =

(
rsc+

1 − rs
2

)(
1 − pø

1 + rsc

)
− rsc

2
. (5.41)
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One can use this result to obtain the maximum confidence for smaller
inconclusive rates (i.e. for pø ≤ (1 + rsc)/2), which yields

maxCNC =
1

2(1 − pø)

(
(1 + rs)

(
1 − pø

1 + rsc

)
− rsc

)
. (5.42)

We can claim that this is the maximum confidence since it is also achieved
by a measurement that simultaneously minimizes the error and maximises
the success.
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Chapter 6

Quantum vs. noncontextual
randomness certification

In this chapter we present the results in “Quantum vs. noncontextual semi-
device independent randomness certification” [17], authored by Carles Roch i
Carceller, Kieran Flatt, Hanwool Lee, Jonatan Bohr Brask and Joonwoo Bae.
This work is published in Physical Review Letters.

6.1 Abstract

We compare the power of quantum and classical physics in terms of ran-
domness certification from devices which are only partially characterised.
We study randomness certification based on state discrimination and take
noncontextuality as the notion of classicality. A contextual advantage was
recently shown to exist for state discrimination. Here, we develop quantum
and noncontextual semi-device independent protocols for random-number
generation based on maximum-confidence discrimination, which generalises
unambiguous and minimum-error state discrimination. We show that, for
quantum eavesdropppers, quantum devices can certify more randomness than
noncontextual ones whenever none of the input states are unambiguously
identified. That is, a quantum-over-classical advantage exists.

6.2 Introduction

Quantum physics departs radically from everyday experience. Observations
on quantum systems can defy classical notions of cause and effect and exploit-
ing quantum effects enables advantages for a number of applications including
precision sensing, computing, and information security. Understanding the
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quantum-classical boundary is both of fundamental importance to the founda-
tions of physics in general and of relevance to characterising and quantifying
quantum-over-classical advantages in specific tasks and applications.

In this work, we compare the power of quantum and classical physics for
randomness certification. Random numbers are needed for many tasks in
science and technology [14, 162]. In particular, high-quality randomness is
central to cryptographic security and thus to much of modern information
technology. Due to the inherent randomness in quantum measurements,
strong guarantees can be established for the extraction of randomness from
quantum systems. In fact, randomness can be certified with little or no trust
in the devices used to generate it. In setups with multiple, separate parties,
randomness can be certified in a device-independent (DI) setting, where the
devices are treated as untrusted black boxes [58, 116, 117]. In that setting,
the relevant notion of classicality is locality (also known as local causality), in
the sense of Bell [15, 53], and the setup is required to violate a Bell inequality
to generate randomness. This is, however, technologically very demanding,
as the violation must be loophole free [116, 163–167]. Here, we focus on the
semi-DI setting, where the black boxes are complemented by a few, general
assumptions, representing an increased level of trust in the devices. This
renders implementations much more accessible, and semi-DI randomness
certification can be realised in simple prepare-and-measure setups [44, 61,
66–68, 168–174]. As our notion of classicality we adopt noncontextuality [19,
175], in the form introduced by Spekkens [20], which is applicable also in
scenarios which do not have the multipartite structure of Bell tests.

We consider semi-DI randomness certification based on state discrim-
ination, where the partial trust in the devices consists in an assumption
about the distinguishability of the prepared states. In particular, we consider
maximum-confidence state discrimination [101]. In the context of randomness
certification, a semi-DI protocol based on unambiguous state discrimination
was previously demonstrated [68], and in the context of comparing quantum
and noncontextual models, a quantum advantage for minimum-error state
discrimination was demonstrated by Schmid and Spekkens [27]. Maximum
confidence state discrimination is more general, containing minimum-error
and unambiguous state discrimination as particular cases. In related work,
we demonstrate a quantum-over-noncontextual advantage for maximum-
confidence state discrimination [25]. In the present work, we find a rich
picture. In a setting where the devices are either quantum or noncontextual,
but where the eavesdropper in both cases is allowed quantum powers, quan-
tum devices outperform noncontextual ones. However, comparing a quantum
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c ω

c c

Λ01

Λ01
λ λ

Figure 6.1: Figure extracted from Ref. [17]. (a) Prepare-and-measure sce-
nario for state discrimination and randomness certification, in quantum and
non-contextual settings. A preparation device takes an input and transmits
states to a measurement device, which produces an output. From an assump-
tion about the distinguishability of the states and the observed input-output
correlations, the entropy in the raw output can be bounded and random
numbers extracted from it. (b) In the quantum setting, the distinguishability
is quantified by the overlap of the quantum states. For binary inputs, these
can be represented by qubit states. (c) In the non-contextual setting, there is
an ontological state space, consisting of perfectly distinguishable states. The
preparation device emits epistemic states, given by probability distributions
over ontological states. The distinguishability of epistemic states is quanti-
fied by the confusability, which measures the overlap of the corresponding
distributions.
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universe with quantum eavesdroppers against a noncontextual universe with
noncontextual (hence less powerful) eavesdroppers, the amount of quantum
certifiable randomness may be both larger than, smaller than or equal to the
amount of noncontextual randomness, depending on the distinguishability of
the states and the observed confidence of discrimination.

A prepare-and-measure setting for state discrimination and randomness
certification is illustrated in Fig. 6.1(a). We will restrict our attention to
binary inputs x ∈ {0, 1} and ternary outputs b ∈ {0, 1, ø}. In the case of
state discrimination, b represents a guess for which state was prepared, with
ø labelling inconclusive outcomes. For randomness certification, the amount
of true randomness present in the output b can be lower bounded based on
the observed distribution p(b|x) and an assumption on the distinguishability
of the prepared states. We start by considering state discrimination, first in
the quantum case and then for noncontextual theories.

6.3 Quantum state discrimination

In quantum state discrimination, quantum states ρx are prepared and the
measurement device implements a POVM with elements π̂b, resulting in the
distribution p(b|x) = Tr[ρxπ̂b]. For binary inputs, without loss of generality,
the state space can be taken to be a qubit space. When the states are further-
more pure, ρx = |ψx⟩ ⟨ψx|, their distinguishability can be quantified simply by
their overlap δ = | ⟨ψ0|ψ1⟩ |. Its estimation will depend on the implementation.
For instance, in [68] a time-bin encoding with coherent states was used. In
that case, the overlap can be controlled through the amplitude of the pulses.
Different quantifiers of performance can be adopted.

In minimum-error state discrimination (MESD), no inconclusive outcomes
are permitted, p(ø|x) = 0, and the figure of merit is the average error rate
perr = p0p(1|0) + p1p(0|1), where px is the prior probability for input x. Op-
timal MESD achieves a minimal error rate given by the Helstrom bound
perr = 1

2
(1 −

√
1 − 4p0p1δ2) [176]. Thus, errors are unavoidable for non-

orthogonal states.

Errors can be suppressed at the cost of a non-zero rate of inconclusive
outcomes. In unambiguous state discrimination (USD), the error probabilities
are strictly zero, p(0|1) = p(1|0) = 0, and the average inconclusive rate
pinc = p0p(ø|0) + p1p(ø|1) can be taken as the figure of merit. For unbiased
inputs, p0 = p1 = 1

2
, optimal USD achieves pinc = δ [29]. In the case of qubits,
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USD is possible only for two pure states.

Maximum confidence state discrimination (MCSD) generalises the notions
of MESD and USD [101]. The confidence Cx is the probability that, given an
outcome b = x, the input was x. From Bayes’ theorem

Cx =
px
ηx
p(x|x), (6.1)

where ηb =
∑

x p(b|x)px is the rate of outcome b (i.e. the marginal distribution
of the output). In MCSD, the figure of merit is a given Cx, or any convex
combination of them, and the goal is to maximise this quantity. When Cx = 1,
the input x is unambiguously identified. Hence, unambiguous discrimination
is a particular case of MCSD, and if no further constraints are imposed,
MCSD recovers USD whenever the latter is possible. This is the case for an
arbitrary number of linearly independent pure states, and thus in particular
always for two distinct pure states, as considered here. MESD can also be
recovered by adopting η0C0 + η1C1 = 1 − perr as the figure of merit, when the
inconclusive rates are zero [29]. In general, MCSD is flexible and can handle
situations in which both error rates and inconclusive rates are nonzero.

6.4 Noncontextual state discrimination

We now proceed to consider noncontextual state discrimination. We start
from an ontological model of the prepare-and-measure scenario [27, 161].
The system is associated with an ontic state space Λ in which each point λ
completely defines all physical properties, i.e. the outcomes of all possible
measurements. Each state preparation x samples the ontic state space
according to a probability distribution µx(λ), referred to as the epistemic
state. Each measurement is defined by a set of response functions, that is,
non-negative functions ξb(λ) over the ontic space, such that

∑
b ξb(λ) = 1 for

all λ ∈ Λ. The probability of obtaining the outcome b when state µx was
prepared is

p(b|x) =

∫
Λ

dλµx(λ)ξb(λ). (6.2)

While distinct ontic states can be perfectly discriminated, epistemic states
with overlapping distributions cannot. It is the discrimination of epistemic
states which we compare against quantum state discrimination.

To compare the two requires a notion analogous to the quantum state
overlap. Note that δ2 = | ⟨ψ0|ψ1⟩ |2 can be thought of as the probability
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that an outcome corresponding to projection onto |ψ1⟩ occurs when |ψ0⟩ was
prepared (or vice versa). Similarly, in the ontological model we define sharp
outcomes as outcomes that are certain to occur for a given preparation. ξb is
a sharp outcome for µx if p(b|x) = 1. For discrimination of µ0 and µ1, the
confusability c0,1 is then the probability that a sharp outcome for µ1 occurs
when µ0 was prepared. For preparation-noncontextual models, that we now
introduce, one has the same symmetry as in the quantum case c0,1 = c1,0 = c,
and the models can be compared for c = δ2.

Two preparation procedures are said to be operationally equivalent if they
cannot be distinguished by any measurement, and the ontological model is said
to be preparation noncontextual if all operationally equivalent preparations are
represented by the same epistemic state. We take preparation noncontextuality
as our notion of classicality and refer to it simply as noncontextuality. We
impose two requirements on the noncontextual model. First, it reproduces the
observed distribution p(b|x). Second, we need an operational equivalence to
which noncontextuality can be applied. We take the model to reproduce the
existence of complementary states |ψ⊥

x ⟩, with |ψx⟩ ⟨ψx| + |ψ⊥
x ⟩ ⟨ψ⊥

x | = 1 and
| ⟨ψ⊥

0 |ψ⊥
1 ⟩ | = δ. That is, in addition to the epistemic states µ0, µ1, it must

also contain two states µ⊥
0 , µ⊥

1 such that their confusability is c, they obey
µxµ

⊥
x = 0, and the convex combinations 1

2
µx + 1

2
µ⊥
x for x = 0, 1 correspond to

operationally equivalent preparations. By noncontextuality they must hence
be equal 1

2
µ0+ 1

2
µ⊥
0 = 1

2
µ1+ 1

2
µ⊥
1 . It was shown by Schmid and Spekkens, under

similar assumptions, that quantum mechanics outperforms noncontextual
theory for MESD in the sense that the Helstrom bound is lower than the
minimum achievable error rate in the noncontextual model for any value of c
[27]. In Ref. [25], we study quantum vs. noncontextual maximum-confidence
discrimination.

6.5 Semi-device independent randomness cer-

tification

The prepare-and-measure state-discrimination setup can be exploited for semi-
DI randomness certification by taking c as given while the devices are otherwise
uncharacterised (the states and measurements are unknown), and then assess
the randomness of b based on the observed distribution p(b|x). Intuitively,
if p(b|x) is close to optimal discrimination for the given c, this constrains
the measurements to be close to the optimal ones, and the predictability of
b to someone with perfect knowledge of the states and measurements can

130



Chapter 6 – Quantum vs. noncontextual randomness certification

be estimated. More precisely, we introduce a hidden variable ω, distributed
according to q(ω), labelling measurement strategies. The average guessing
probability for an eavesdropper with access to ω and the input x

pg =
∑
x

px
∑
ω

q(ω) max
b
p(b|x, ω), (6.3)

with p(b|x, ω) given by Tr[ρxπ̂
ω
b ] when the eavesdropper is quantum and

by (6.2) with response function ξωb if the eavesdropper is restricted to be
noncontextual. Note that ω is assumed to be independent of x (otherwise the
discrimination problem becomes trivial). We quantify the randomness by the
min-entropy Hmin = − log2 pg, which gives the number of (almost) uniformly
random bits which can be extracted per round of the protocol [177].

6.5.1 Quantum guessig probability

Since the measurement strategies are unknown to the user, to certify random-
ness pg must be upper-bounded by optimising over all strategies compatible
with the observed data. We focus on MCSD for the input x = 0 and impose
only that the rate η0 and the confidence C0 are reproduced (as opposed to
the full distribution p(b|x). For a quantum eavesdropper, pg ≤ pQg with

pQg = max
q(ω),Πω

b

∑
x,ω

pxq(ω) max
b

Tr[ρxπ̂
ω
b ], (6.4)

subject to q(ω) and π̂ω
b being valid probability distributions and POVMs re-

spectively,
∑

x,ω q(ω)px Tr[ρxπ̂
ω
0 ] = η0 and

∑
ω q(ω)p0 Tr[ρ0π̂

ω
0 ] = η0C0. With-

out loss of generality, the states can be fixed to any pair of states with overlap
δ. Thus pQg is a function only of the confusability c and the distribution p(b|x).
The optimisation problem in (6.4) can be rendered as a semidefinite program,
as we show in [178].

6.5.2 Noncontextual guessing probability

Similarly, the guessing probability for a noncontextual eavesdropper is bounded
by pg ≤ pNC

g with

pNC
g = max

q(ω),Mω
b

∑
x,ω

pxq(ω) max
b

∫
T

dλµx(λ)ξωb (λ), (6.5)

where now ξωb must be valid response functions, and the constraints are the
same as in the quantum case with the Born rule replaced by (6.2).
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Figure 6.2: Figure extracted from Ref. [17]. Quantum HQ
min and noncontextual

HNC
min certifiable min-entropies vs. output rate η0, for three different confusabil-

ities c, optimal confidence C0 and equal prior probabilities p0 = p1 = 1
2
. Solid

vertical lines delimit parameter regions in which input x is unambiguously
identified, labelled UI-x. Dashed vertical lines indicate rates at which HQ

min

is maximal. The confidences are maximal in all plots. Top row: eavesdrop-
pers in quantum and noncontextual models are respectively quantum and
noncontextual. Bottom row: a quantum eavesdropper is considered in both
cases.

In a noncontextual theory, a pair of epistemic states must be equal on the
overlap of their supports [20, 27]. This allows a general response function
to be decomposed into four extremal functions, corresponding to integrals
over the regions defined by the overlapping supports of µ0, µ1 and their
non-overlapping partners. These integrals are, furthermore, functions of the
confusability c. Using this, in [178] we show that (6.5) can also be rendered
as a semidefinite program.

6.6 Results

In Fig. 6.2, we compare the certifiable quantum and noncontextual min-
entropies, HQ

min and HNC
min, in two different manners, focusing on equal prior

probabilities p0 = p1 = 1
2

for simplicity. First, we compute the certifiable

Hmin within each theory (top row), i.e., HQ
min when the device attains the
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maximum quantum confidence and the eavesdropper is also quantum, and
HNC

min for maximum noncontextual confidence and a noncontextual eavesdrop-
per. This is the maximal certifiable randomness in each theory, as Hmin is
maximised for optimal discrimination. Second, we consider the case in which
the eavesdropper is always quantum (bottom row). That is, the minimum
entropy is computed via the quantum SDP. Since quantum MCSD can reach
higher confidences than noncontextual MCSD, C0 is not necessarily the same
in the two cases. In [178] we went beyond the study of pure states by studying
the case where noisy (mixed) states ρ′x = (1 − r)ρx + r1/2 are prepared.
Distinguishablity is still bounded by c, and the eavesdropper has no access to
decompositions of the mixture. The qualitative behaviour in this setting is
similar and thus our main conclusions remain valid.

In the first case we find quantum-over-noncontextual as well as noncontextual-
over-quantum advantages in terms of certifying randomness. Whenever any
of the states is unambiguously identified by the measurement device, the
quantum and noncontextual certifiable randomness are equal, HQ

min = HNC
min.

Outside these regions, for confusabilities c < 1/2 there is a noncontextual
advantage, while for c > 1/2 a quantum advantage appears and eventually
dominates for large c. We interpret this as follows. A quantum eavesdropper is
more powerful than a noncontextual one, but optimal quantum discrimination
also imposes stronger constraints on the measurement device. For states
that are easy to discriminate (low c), the former effect wins while for states
that a hard to distinguish (high c), the second effect dominates. Note that a
noncontextual advantage appears only in a universe where the eavesdropper
is noncontextual, but does not have access to the ontic state.

In the second case, the eavesdropper is quantum in both models, i.e.,
we allow the eavesdropper in the noncontextual setting more power. As
may be expected, quantum devices are then always at least as powerful as
noncontextual ones, with a quantum-over-noncontextual advantage appear-
ing for all values of c whenever none of the inputs are unambigiously identified.

The maximal quantum advantage in terms of generating unpredictable
(random) measurement outputs for a quantum eavesdropper is plotted against
the confusability in Fig. 6.3. The quantum advantage is largest for nearly
indistinguishable states (similar to what was found in Ref. [179]). The
eavesdropper’s available strategies become more constrained when the optimal
confidence has to be reproduced. In a noncontextual scenario, the constraint
on the eavesdropper’s strategies grows weaker for both nearly distinguishable
and indistinguishable states.
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Figure 6.3: Figure extracted from Ref. [17]. Minimum entropy corresponding
to the output rates with maximal quantum advantage, for quantum and
noncontextual discrimination schemes and a quantum eavesdropper.

6.7 Conclusion

In conclusion, we have computed the amount of randomness which can be
semi-device-independently certified in maximum-confidence state discrimi-
nation setups in both quantum and preparation-noncontextual models. We
have derived the maximal randomness within each model, and we find a
quantum advantage for MSD-based randomness generation against quantum
adversaries. When the adversary in the noncontextual setting is constrained
to be noncontextual as well, we find a quantum advantage when the prepared
states are difficult to distinguish, but a noncontextual advantage when they
are easy to distinguish. In the future, it would be interesting to extend these
results to settings with more than two inputs, where more randomness can
potentially be generated, and to mixed-state preparations, where correlations
between the prepared states and the eavesdropper potentially need to be
taken into account.

6.8 S1: SDP derivation for quantum random-

ness certification

In this part of the supplemental material, we show how that the average guess-
ing probability for a quantum eavesdropper can be rendered as a semidefinite
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program (SDP). Our derivation closely follows [68].

The objective function (guessing probability) is nonlinear in the variables
q(ω), π̂ω

b , contains a maximisation over b, and the number of strategies ω is a
priory unbounded. The latter two issues can be resolved, following [180], by
noting that all strategies for which the max occurs for the same b for given x
can be lumped together. Hence, only |b||x| = 32 = 9 strategies are required.
We label each strategies by (ω0, ω1) where ωx ∈ {0, 1, ø} indicates the optimal
b given x. Thus

pQg = max
q(ω0,ω1),π̂

ω0,ω1
b

∑
x,ω

pxq(ω) Tr[ρxπ̂
ω0,ω1
ωx

], (6.6)

where the distribution over strategies and the POVM elements fulfill

∑
ω0,ω1

q(ω0, ω1) = 1, (6.7)

q(ω0, ω1) ≥ 0 ∀ω0, ω1, (6.8)

π̂ω0ω1
b = (π̂ω0ω1

b )† ∀ω0, ω1, (6.9)

π̂ω0ω1
b ≥ 0 ∀ω0, ω1, b, (6.10)∑

b

π̂ω0ω1
b = 1 ∀ω0, ω1, (6.11)

and the observed output rate η0 and confidence CQ
0 should be reproduced

∑
ω0,ω1

∑
x

pxq(ω0, ω1)Tr [π̂ω0ω1
0 ρx] =η0 (6.12)

∑
ω0,ω1

p0
η0
q(ω0, ω1)Tr [π̂ω0ω1

0 ρ0] =CQ
0 . (6.13)

Next, pQg and the constraints can be linearised by defining new optimisation

variables M̂ω0ω1
b = q(ω0, ω1)π̂

ω0ω1
b . The primal version of the SDP can then
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be written:

maximise
M̂

ω0ω1
b

pQg =
1∑

x=0

∑
ω0,ω1

pxTr
[
M̂ω0ω1

ωx
ρx

]
subject to :

M̂ω0ω1
b ≥ 0,

(
M̂ω0ω1

b

)†
= M̂ω0ω1

b , ∀ω0, ω1, b

∑
b

M̂ω0ω1
b =

1

2
Tr

[∑
b

M̂ω0ω1
b

]
1, ∀ω0, ω1

∑
b

∑
ω0,ω1

∑
x

pxTr
[
M̂ω0ω1

b ρx

]
= 1

∑
ω0,ω1

∑
x

pxTr
[
M̂ω0ω1

0 ρx

]
= η0

∑
ω0,ω1

p0
η0

Tr
[
M̂ω0ω1

0 ρ0

]
= CQ

0 .

(6.14)

The last two constraints can be reduced to

∑
ω0,ω1

pxTr
[
M̂ω0ω1

0 ρx

]
= η0C

Q
0 δx,0 + η0

(
1 − CQ

0

)
δx,1 ,

and normalisation implies

∑
b

∑
ω0,ω1

∑
x

Tr
[
M̂ω0ω1

b ρx

]
= 2 . (6.15)

Further on, we formulate the dual version of the problem. From each
primal constraint in (6.14), we introduce the dual variables Ĝω0ω1

b , Ĥω0ω1, νx
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and χ. The corresponding Lagrangian will then be

L =
∑
x

∑
ω0,ω1

pxTr
[
ρxM̂

ω0ω1
ωx

]
+
∑
b

∑
ω0,ω1

Tr
[
Ĝω0ω1

b M̂ω0ω1
b

]
+
∑
ω0,ω1

Tr

[
Ĥω0ω1

∑
b

(
M̂ω0ω1

b − 1

2
Tr
[
M̂ω0ω1

b

]
1

)]
(6.16)

+
∑
x

νx

(∑
ω0,ω1

pxTr
[
ρxM̂

ω0ω1
0

]
− η0

(
δx,0C

Q
0 + δx,1

(
1 − CQ

0

)))

+ χ

(∑
b

∑
ω0,ω1

∑
x

pxTr
[
ρxM̂

ω0ω1
b

]
− 1

)
.

Let us now introduce the supremum of the Lagrangian,

S ≡ supp
M̂

ω0ω1
b

L . (6.17)

Given any solution M̂ω0ω1
b of the primal, the last three terms in (6.16)

vanish. Thus, as M̂ω0ω1
b are constrained to be positive semi-definite, the first

line in (6.16) yields an upper bound on the guessing probability pQg (only if

all Ĝω0ω1
b are positive semi-definite). The dual can then be formulated by

minimising the supremum in (6.17). We re-write it as follows:

S = supp
M̂

ω0ω1
b

∑
ω0,ω1

∑
b

Tr
[
M̂ω0ω1

b K̂ω0ω1
b

]
(6.18)

−
∑
x

νxη0

(
δx,0C

Q
0 + δx,1

(
1 − CQ

0

))
− χ,

where,

K̂ω0ω1
b =

∑
x

pxρx (δb,ωx + νxδb,0 + χ) (6.19)

+ Ĝω0ω1
b + Ĥω0ω1 − 1

2
Tr
[
Ĥω0ω1

]
1 .

Now the supremum in (6.18) will diverge, unless K̂ω0ω1
b = 0. We will drop

Ĝω0ω1
b , imposing that the remaining expression is negative. This way, the

guessing probability can be upper bounded by:

pg ≤ pQg = −
1∑

x=0

νxη0

(
δx,0C

Q
0 + δx,1

(
1 − CQ

0

))
− χ (6.20)
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for a given value of confidence C0 in discriminating ρ1 and any numbers νx
and χ which fulfil that there exists nine 2× 2 hermitian matrices Ĥω0ω1 , with
indices ω0, ω1 = 0, 1, ø, such that:

1∑
x=0

pxρx (δb,ωx + νxδb,0 + χ) + Ĥω0ω1 − 1

2
Tr
[
Ĥω0ω1

]
1 ≤ 0 . (6.21)

6.9 S2: Matrix notation for noncontextual

theory

In this part of the supplemental material, we provide a formalisation of
noncontextual state discrimination, paving the way for the comparison with
the quantum model.

6.9.1 Ontic space division and noncontextuality

The observed data in state discrimination problems are the conditional input-
output probabilities. In a noncontextual framework, these take the a form
analogous to the Born rule in quantum mechanics. In order to simplify the
noncontextual optimisation problem, our goal now is to split up the integral
over four different regions, as sketched in Fig. 6.4.

For each epistemic state (µx (λ)) we define its complementary epistemic
state(µ⊥

x (λ)) which fulfil the orthogonality relation, µx (λ) · µ⊥
x (λ) = 0. Also,

the preparation noncontextuality assumption implies that each pair of com-
plementary epistemic states sum to the maximally mixed state (µ 1

2
(λ)):

1

2
µ0 (λ) +

1

2
µ⊥
0 (λ) =

1

2
µ1 (λ) +

1

2
µ⊥
1 (λ) = µ 1

2
(λ) . (6.22)

The maximally mixed state is introduced within noncontextual models analo-
gously to the quantum maximally mixed state [27].

Let us divide the ontic space in four regions on the ontic space (Fig. 6.4).
In each region at least two epistemic states will overlap. For example, µ0 (λ)
and µ1 (λ) will overlap if λ ∈ Λ01; or µ0 (λ) and µ⊥

1 (λ) overlap if λ ∈ Λ0.
On the region where two epistemic states overlap they are equal, due to the
noncontextuality assumption. Thus, since µx (λ) and µ⊥

x (λ) have disjoint
supports:

µ0 (λ) = µ⊥
0 (λ) = µ1 (λ) = µ⊥

1 (λ) = 2µ 1
2

(λ) . (6.23)
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Λ10Λ1Λ0Λ10

ΛΛ

Λ Λ

λ λ λ λ
Figure 6.4: Figure extracted from Ref. [17]. Regions on the ontic space (Λ)
according to the overlap of a couple of epistemic states. On the second circle
starting form the left, the supports of µ0 (λ) and µ1 (λ) are drawn. On the
third, the supports of µ⊥

0 (λ) and µ⊥
1 (λ) are sketched. On the last circle, the

supports of all states are drawn.
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6.9.2 Noncontextual matrix notation

When optimising the noncontextual guessing probability, it is not be con-
venient to work directly with the response functions ξb (λ) and epistemic
states µx (λ). We can reduce the problem to depend on a finite number of
real optimisation variables. Let us introduce the following quantities based
on integrating the response functions over the regions of the ontic space
previously defined:

α0b =
1

1 − c

∫
Λ0

dλξb (λ)µ0 (λ) =
n.c.

1

1 − c

∫
Λ0

dλξb (λ)µ⊥
1 (λ)

α1b =
1

1 − c

∫
Λ1

dλξb (λ)µ1 (λ) =
n.c.

1

1 − c

∫
Λ1

dλξb (λ)µ⊥
0 (λ)

βb =
1

c

∫
Λ10

dλξb (λ)µ0 (λ) =
n.c.

1

c

∫
Λ10

dλξb (λ)µ1 (λ)

β̄b =
1

c

∫
Λ1̄0

dλξb (λ)µ⊥
0 (λ) =

n.c.

1

c

∫
Λ1̄0

dλξb (λ)µ⊥
1 (λ) .

(6.24)

The second equality in each row of (6.24) is fulfilled when preparation
noncontextuality is fulfilled, i.e. (6.23). In fact, we can express these terms
in a more compact form

αxb =
2

1 − c

∫
Λx

dλξb (λ)µ 1
2

(λ) ,

βb =
2

c

∫
Λ10

dλξb (λ)µ 1
2

(λ) ,

β̄b =
2

c

∫
Λ1̄0

dλξb (λ)µ 1
2

(λ) .

(6.25)

Probabilities can then be written in terms of these quantities as

p (b|x) = αxb (1 − c) + βbc . (6.26)

It is then sufficient to consider the value of the integration of the response
functions times the maximally mixed state, over the regions we introduced,
to solve the noncontextual state discrimination problem.

Pushing this notation further, we propose a matrix structure which collects
the notion of the divisions of the ontic space in Fig. 6.4. Each epistemic state
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will be represented by a 2 × 2 matrix, µ̂x, and each term will represent the
definite integral over the different regions on the ontic space, as

µ̂T
x ≡


∫
Λ0

dλµx (λ)

∫
Λ10

dλµx (λ)

∫
Λ1̄0

dλµx (λ)

∫
Λ1

dλµx (λ)

 (6.27)

=

 (
δx,0 + δx,1̄

)
(1 − c) (δx,0 + δx,1) c(

δx,0̄ + δx,1̄
)
c

(
δx,0̄ + δx,1

)
(1 − c)

 ,

for δi,j being the Kronecker delta. It is convenient to define the transpose
of the matrix form of the epistemic state to ease the notation later on. The
orthogonality relation between the complementary and the prepared epistemic
states becomes µ̂x ◦ µ̂⊥

x = 0, where ◦ is the element-wise matrix product, com-
monly known as Hadamard product, and the right-hand side is the zero matrix.

We can use the quantities introduced in (6.25) to write down the matrix
form of the response functions, as

ξ̂b ≡

 α0b βb

β̄b α1b

 . (6.28)

The input-output conditional probabilities can thus be written with the form

p (b|M,x) =
N∑
ij

[
ξ̂b ◦ µ̂T

x

]
ij

= Tr
[
ξ̂bµ̂x

]
. (6.29)

The first equality can be derived straight from (6.26), by summing up all
the terms from the Hadamard product between the response function and
epistemic state. The second equality holds for any pair of N ×N matrices,
relating the Hadamard product with the usual matrix product. The result
from (6.29) allows us to write the input-output probabilities on a form similar
to the Born rule in quantum mechanics.

As mentioned in [27], the noncontextual model we are building must
reproduce some results from the quantum theory. In the present case, we are
interested in two state discrimination. Thus, all statistics from discriminating
any two states |ψ0⟩ and |ψ1⟩ (together with their orthogonal counterparts)
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Figure 6.5: Figure extracted from Ref. [17]. Representation of the POVM
element π̂0 and the quantum states ρ0 and ρ1 on the Bloch sphere for different
values of the output rate η0.

must be reproducible by the response functions. This condition puts a
constraint on the components of ξ̂b. Concretely, α0b + α1b = βb + β̄b shall be
fulfilled.

6.10 S3: Rates at which states can be unam-

biguously identified

In this part of the supplemental material, we derive analytical expressions for
the output rates at which optimal MCSD unambiguously identifies one of the
inputs. We will look separately at the quantum and noncontextual scenarios.

6.10.1 Quantum case

We look at the discrimination of two pure states ρ0 = |ψ0⟩ ⟨ψ0| and ρ1 =
|ψ1⟩ ⟨ψ1| randomly prepared with equal probability. The POVM element
corresponding to outcome b can be represented on the Bloch sphere as

π̂b =
Rb

2
[1+ rb sin θbX + rb cos θbZ] , (6.30)

where X and Z are the Pauli matrices in (2.6) and (rb sin θb, 0, rb cos θb) is
the Bloch vector (on the X-Z plane), with |rb| ≤ 1, Rb ≥ 0 [181]. Positivity
and normalisation imply that∑

b

Rb = 2,
∑
b

Rbrb sin θb =
∑
b

Rbrb cos θb = 0 . (6.31)

142



Chapter 6 – Quantum vs. noncontextual randomness certification

In Fig. 6.5 we show the POVM element π̂0 in the Bloch sphere, together
with the quantum states

ρ0 =
1

2
[1− sinϕX + cosϕZ] ,

ρ1 =
1

2
[1+ sinϕX + cosϕZ] .

(6.32)

The overlap is given by cosϕ = δ. Assuming equal prior probabilities
(p0 = p1 = 1/2), the confidence C0 expressed in terms of π̂0 is

C0 =
Tr [π̂0ρ0]

Tr [π̂0ρ0] + Tr [π̂0ρ1]
. (6.33)

The expression in (6.33) is the figure of merit in MCSD. Without loss of
generality, we can focus on the POVM element π̂0, and consider π̂1 = π̂ø.

The maximum value of the confidence (C0 = 1) can be obtained if the
measurement device is able to unambiguously discriminate the state ρ0, i.e.
Tr [π̂0ρ1] = 0. This implies that θ0 = ϕ+ π and r0 = 1. The POVM element
π̂0 has rank 1, and we are left with 0 ≤ R0 ≤ 1. The only possible output
rates are

0 ≤ η0 ≤
1

2

(
1 − δ2

)
. (6.34)

For higher rates, we need to allow π̂0 to rotate. To keep C0 as large as
possible, we need to make sure that the numerator is also at its maximum.
Thus, our goal now is to find the maximum value of p(0|0). That is achieved
by rotating π̂0 towards ρ0. The rotation angle θ0 can be parametrized in
terms of the output rate as, cos θ0 = (2η0 − 1)/δ. This will run within the
interval ϕ+ π ≤ θ ≤ 2π − ϕ. For the output rate, this means

1

2

(
1 − δ2

)
≤ η0 ≤

1

2

(
1 + δ2

)
. (6.35)

Beyond that point, the output rate saturates when the POVM element π̂0
is no longer projective. Thus, r0 will be reduced to zero and R0 will increase
from 1 to 2. For the output rate this means

1

2

(
1 + δ2

)
≤ η0 ≤ 1 . (6.36)

Here state ρ1 can be unambiguously discriminated, i.e. Tr [π̂1ρ0] = 0, as
θ1 = θø = π − ϕ because of (6.31).
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6.10.2 Noncontextual case

In the noncontextual framework, we use (6.25), and the probabilities (6.26).
Then, the confidence can be written as

C0 =
(α00 (1 − c) + β0c)

(α00 + α10) (1 − c) + 2β0c
. (6.37)

The maximal value on the confidence (C0 = 1) is achieved when α10 =
β0 = 0. Since 0 ≤ α00 ≤ 1, this occurs for rates

0 ≤ η0 ≤
1

2
(1 − c) . (6.38)

For larger rates, we need β0 to grow. We can keep α10 = 0 since it only
appears in the denominator. Again, since 0 ≤ β0 ≤ 1, the rates at which this
is possible are

1

2
(1 − c) ≤ η0 ≤

1

2
(1 + c) . (6.39)

Finally, for even larger η0 we need α10 to grow. As 0 ≤ α10 ≤ 1, we are
left with

1

2
(1 + c) ≤ η0 ≤ 1 . (6.40)

6.11 S4: SDP for noncontextual randomness

certification

In this appendix, we show that the average guessing probability for a noncon-
textual eavesdropper can be cast as an SDP, similarly to the quantum case.
Similarly as in the first section of the additional information, the number of
relevant strategies is again 9, labeled by ωx ∈ {0, 1, ø} for x ∈ {0, 1}. These
distributions over strategies and the response functions fulfill∑

ω0,ω1

q(ω0, ω1) = 1, (6.41)

q(ω0, ω1) ≥ 0 ∀ω0, ω1, (6.42)∑
b

ξω0ω1
b (λ) = 1 ∀ω0, ω1, λ, (6.43)

ξω0ω1
b (λ) ≥ 0 ∀ω0, ω1, b, λ, (6.44)
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and the observed output rate η0 and confidence CNC
0 should be reproduced,

∑
ω0,ω1

∑
x

pxq(ω0, ω1)

∫
dλξω0ω1

0 (λ)µx(λ) = η0 (6.45)

∑
ω0,ω1

p0
η0
q(ω0, ω1)

∫
dλξω0ω1

0 (λ)µ0(λ) = CQ
0 . (6.46)

Finally, pNC
g can be linearised by defining Mω0ω1

b (λ) = q(ω0, ω1)ξ
ω0ω1
b (λ).

The primal version of the SDP can then be written as follows:

maximise
M

ω0ω1
b (λ)

pNC
g =

1∑
x=0

∑
ω0,ω1

px

∫
dλMω0ω1

ωx
(λ)µx(λ)

subject to :

Mω0ω1
b (λ) ≥ 0, ∀ω0, ω1, b, λ∑

b

Mω0ω1
b (λ) =

1

|Λ|

∫
dλ
∑
b

Mω0ω1
b (λ), ∀ω0, ω1

∑
b

∑
ω0,ω1

∑
x

px

∫
dλMω0ω1

b (λ)µx(λ) = 1

∑
ω0,ω1

∑
x

px

∫
dλMω0ω1

0 (λ)µx(λ) = η0

∑
ω0,ω1

p0
η0

∫
dλMω0ω1

0 (λ)µ0(λ) = CNC
0 .

(6.47)

The last two constraints can be reduced to:

∑
ω0,ω1

px

∫
dλMω0ω1

0 (λ)µx(λ) = η0C
NC
0 δx,0 + η0

(
1 − CNC

0

)
δx,1 . (6.48)

The explicit use of functions over the ontic space as optimisation variables
and the presence of integrals makes the SDP impractical to solve. To avoid
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these issues, we introduce the quantities from (6.25) and define:

Aω0ω1
xb = q(ω0, ω1)αxb =

2

1 − c

∫
Λx

dλMω0ω1
b (λ)µ 1

2
(λ) ,

Bω0ω1
b = q(ω0, ω1)βb =

2

c

∫
Λ10

dλMω0ω1
b (λ)µ 1

2
(λ) ,

B̄ω0ω1
b = q(ω0, ω1)β̄b =

2

c

∫
Λ1̄0

dλMω0ω1
b (λ)µ 1

2
(λ) .

(6.49)

We can now re-write the primal problem in (6.47) with the quantities in
(6.49). Since this process in not trivial, we go through it step by step.

• Guessing probability:

pNC
g =

∑
x

∑
ω0,ω1

px

[∫
Λ0

dλMω0ω1
ωx

(λ)µx (λ) +

∫
Λ10

dλMω0ω1
ωx

(λ)µx (λ)

+

∫
Λ1

dλMω0ω1
ωx

(λ)µx (λ) +

∫
Λ1̄0

dλMω0ω1
ωx

(λ)µx (λ)

]
(6.50)

=
∑
x

∑
ω0,ω1

px
[
(1 − c)Aω0ω1

xωx
+ cBω0ω1

ωx

]
• Non-negativity constraint:

Mω0ω1
b (λ) ≥ 0 ⇔


Aω0ω1

xb ≥ 0

Bω0ω1
b ≥ 0

B̄ω0ω1
b ≥ 0

∀ω0, ω1, x, b, (6.51)

• Ontic state independence from q(ω0, ω1):∑
b

Aω0ω1
xb =

1

1 − c

∫
Λx

dλ
∑
b

Mω0ω1
b (λ)µx (λ) (6.52)

=
∑
b

Mω0ω1
b (λ′)

1

1 − c

∫
Λx

dλµx (λ) =
∑
b

Mω0ω1
b (λ′) .

Also: ∑
b

Bω0ω1
b =

∑
b

B̄ω0ω1
b =

∑
b

Mω0ω1
b (λ′) . (6.53)
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On the other hand:∑
b

[
(1 − c) (Aω0ω1

0b + Aω0ω1
1b ) c

(
Bω0ω1

b + B̄ω0ω1
b

)]
=
∑
b

[∫
Λ0

dλMω0ω1
b (λ)µ 1

2
(λ) +

∫
Λ1

dλMω0ω1
b (λ)µ 1

2
(λ) (6.54)

+

∫
Λ10

dλMω0ω1
b (λ)µ 1

2
(λ) +

∫
Λ1̄0

dλMω0ω1
b (λ)µ 1

2
(λ)

]
=
∑
b

Mω0ω1
b (λ′)

∫
Λ

dλ2µ 1
2

(λ) = 2
∑
b

Mω0ω1
b (λ′)

Thus, combining (6.52), (6.53) and (6.54) one ends up with:∑
b

Aω0ω1
xb =

∑
b

Bω0ω1
b =

∑
b

B̄ω0ω1
b (6.55)

=
∑
b

[
1 − c

2
(Aω0ω1

0b + Aω0ω1
1b ) +

c

2

(
Bω0ω1

b + B̄ω0ω1
b

)]

• Reproduce the output rates:

ηb =
∑
ω0ω1

∑
x

px (6.56)[∫
Λ0

dλMω0ω1
b (λ)µx (λ) +

∫
Λ10

dλMω0ω1
b (λ)µx (λ) (6.57)

+

∫
Λ1

dλMω0ω1
b (λ)µx (λ) +

∫
Λ1̄0

dλMω0ω1
b (λ)µx (λ)

]
=
∑
ω0ω1

∑
x

px [(1 − c)Aω0ω1
xb + cBω0ω1

b ] .

• Normalisation of the output rates:

∑
b

∑
ω0ω1

∑
x

px

[∫
Λ0

dλMω0ω1
b (λ)µx (λ) +

∫
Λ10

dλMω0ω1
b (λ)µx (λ)

+

∫
Λ1

dλMω0ω1
b (λ)µx (λ) +

∫
Λ1̄0

dλMω0ω1
b (λ)µx (λ)

]
=
∑
b

∑
ω0ω1

∑
x

px [(1 − c)Aω0ω1
xb + cBω0ω1

b ] = 1 . (6.58)
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• Fix the confidence C0 of the measurement device:

∑
ω0ω1

p0
η0

∫
Λ

dλMω0ω1
0 (λ)µ0 (λ) (6.59)

=
∑
ω0ω1

p0
η0

[(1 − c)Aω0ω1
0b + cBω0ω1

b ] = CNC
0 .

At the end of the day, we can write the primal problem as follows:

maximise
{Aω0ω1

xb ,B
ω0ω1
b ,B̄

ω0ω1
b }

pNC
g =

∑
x

∑
ω0,ω1

px
[
(1 − c)Aω0ω1

xωx
+ cBω0ω1

ωx

]
subject to : Aω0ω1

xb ≥ 0, Bω0ω1
b ≥ 0, B̄ω0ω1

b ≥ 0 ∀ω0, ω1, b∑
b

Aω0ω1
0b =

∑
b

Aω0ω1
1b =

∑
b

Bω0ω1
b =

∑
b

B̄ω0ω1
b =

=
∑
b

[
1 − c

2
(Aω0ω1

0b + Aω0ω1
1b ) +

c

2

(
Bω0ω1

b + B̄ω0ω1
b

)]
∑
b

∑
ω0ω1

∑
x

px [(1 − c)Aω0ω1
xb + cBω0ω1

b ] = 1

∑
ω0ω1

∑
x

px [(1 − c)Aω0ω1
x0 + cBω0ω1

0 ] = η0

∑
ω0ω1

p0
η0

[(1 − c)Aω0ω1
0b + cBω0ω1

b ] = CNC
0 .

(6.60)

Using the matrix form of the response functions introduced in (6.28), we
define:

M̂ω0ω1
b ≡ q(ω0, ω1)ξ̂

ω0ω1
b =

 Aω0ω1
1b Bω0ω1

b

B̄ω0ω1
b Aω0ω1

2b

 . (6.61)

Implementing this matrix notation, together with the matrix form of the
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epistemic states in (6.27), we re-write the primal problem in (6.60) as follows:

maximise
M̂

ω0ω1
b

pNC
g =

∑
x

∑
ω0,ω1

pxTr
[
M̂ω0ω1

ωx
µ̂x

]
subject to : M̂ω0ω1

b ≥
e.w.

0 ∀ω0, ω1, b

∑
b

M̂ω0ω1
b = Tr

[∑
b

M̂ω0ω1
b µ̂ 1

2

]
Ĵ2

∑
b

∑
ω0,ω1

∑
x

pxTr
[
M̂ω0ω1

b µ̂x

]
= 1

∑
ω0,ω1

∑
x

pxTr
[
M̂ω0ω1

0 µ̂x

]
= η0

∑
ω0,ω1

p0
η0

Tr
[
M̂ω0ω1

0 µ̂0

]
= CQ

0 .

(6.62)

Here, Ĵ2 denotes a 2 × 2 matrix with all entries equal to 1. Also, ≥
e.w.

denotes element-wise inequalities between matrices, and the maximally mixed
state in noncontextual theory has been introduced in the matrix notation. It
is given by

µ̂ 1
2
≡ 1

2

 1 − c c

c 1 − c

 . (6.63)

Finally, note that both last constraints in (6.62) can be re-written as:∑
ω0,ω1

pxTr
[
M̂ω0ω1

0 µ̂T
x

]
= CNC

0 δx,0 +
(
1 − CNC

0

)
δx,1 . (6.64)

Also, due to normalization:∑
b

∑
ω0,ω1

∑
x

Tr
[
M̂ω0ω1

b µ̂x

]
= 2 . (6.65)

We proceed obtaining the dual problem in the noncontextual framework.
From each constraint in (6.62), we introduce the dual variables: Ĝω0ω1

b , Ĥω0ω1,
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νx and χ. The corresponding Lagrangian will then be:

L =
∑
x

∑
ω0,ω1

pxTr
[
µ̂xM̂

ω0ω1
ωx

]
+
∑
b

∑
ω1,ω2

Tr
[
Ĝω0ω1

b M̂ω0ω1
b

]
+
∑
ω0,ω1

Tr

[
Ĥω0ω1

∑
b

(
M̂ω0ω1

b − Tr
[
M̂ω0ω1

b µ̂ 1
2

]
Ĵ2

)]

+
∑
x

νx

(∑
ω0,ω1

pxTr
[
µ̂xM̂

ω0ω1
0

]
− η0

(
δx,0C

NC
0 + δx,1

(
1 − CNC

0

)))

+χ

(∑
b

∑
ω0,ω1

∑
x

pxTr
[
µ̂xM̂

ω1ω2
b

]
− 1

)
. (6.66)

We write the supremum of the Lagrangian as:

S ≡ supp
M̂

ω0ω1
b

L . (6.67)

Given any solution M̂ω0ω1
b of the primal, the last three terms in (6.66)

vanish. Thus, as M̂ω0ω1
b are constrained to be positive semi-definite, the first

line in (6.16) yields an upper bound on the guessing probability pNC
g (only

if all Ĝω0ω1
b are positive semi-definite). The dual can then be formulated by

minimising the supremum in (6.67). We re-write it as follows:

S = supp
M̂

ω0ω1
b

∑
b

∑
ω0,ω1

Tr
[
M̂ω0ω1

b K̂ω0ω1
b

]
(6.68)

−
∑
x

νxη0
(
δx,0C

NC
0 + δx,1

(
1 − CNC

0

))
− χ,

where,

K̂ω0ω1
b =

∑
x

pxµ̂x (δb,ωx + νxδb,0 + χ) (6.69)

+ Ĝω0ω1
b + Ĥω0ω1 − Tr

[
Ĥω0ω1 Ĵ2

]
µ̂ 1

2
.

The supremum in (6.68) will diverge, unless K̂ω0ω1
b = 0. We will drop

Ĝω0ω1
b , imposing that the remaining expression is negative. This way, the

guessing probability can be upper bounded by:

pg ≤ pNC
g = −

1∑
x=0

νxη0
(
δx,0C

NC
0 + δx,1

(
1 − CNC

0

))
− χ (6.70)
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for a given value of confidence C0 in discriminating ρ1 and any numbers νx
and χ which fulfil that there exists nine 2 × 2 matrices Ĥω0ω1 , with indices
ω0, ω1 = 0, 1, ø, such that:

1∑
x=0

pxµ̂x (δb,ωx + νxδb,0 + χ) + Ĥω0ω1 − Tr
[
Ĥω0ω1 Ĵ2

]
µ̂ 1

2
≤ 0 . (6.71)

As a final remark, note that one can straightforwardly switch between
quantum and noncontextual models by switching: the bound on the confidence
(CQ

0 ↔ CNC
0 ); the physical state representations (ρx ↔ µ̂x); the measure-

ment outcome representation (π̂ω
b ↔ ξ̂ωb ); the identity element (1 ↔ Ĵ2);

the maximally mixed state (1
2
1 ↔ µ̂ 1

2
); and the positive (negative) semi-

definite matrix constraints with the non-negativity (negativity) element-wise
restriction (≥ (≤) ↔≥

e.w.
( ≤
e.w.

)).

6.12 S5: Min-entropies for pure and noisy

states

We denote the prepared states as an ensemble of pure states (ρx = |ψx⟩ ⟨ψx|
for x ∈ {0, 1}) with distinguishability bounded by c = | ⟨ψ0|ψ1⟩ |2. These
pure states are then mixed with white noise with probability r, and result
into the following noisy states

ρ′x = rρx + (1 − r)
1

2
1 . (6.72)

The confidence in discriminating ρ′0 is then bounded by C ′Q
0 . It follows

that, compared to the pure state bound CQ
0 , the noisy states bound on the

confidence is strictly C ′Q
0 ≤ CQ

0 , being equal only if r = 1.

One can consider the model in the following manner. In some rounds the
distinguishability of the prepared states is bounded with respect to Eve and
in some other rounds white noise is prepared. She knows whether the pure
state ρx or white noise 1/2 is sent to the measurement device. In this manner,
she is as able to discriminate ρ̂x

′ as if only the pure states ρx where pre-
pared, with probability r. Only the observed confidence, therefore, will differ
when comparing pure and noisy states in the randomness certification process.

Similarly, in the noncontextual model the following noisy epistemic states
are prepared

µ′
x(λ) = rµx(λ) + (1 − r)µ 1

2
(λ) . (6.73)
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Figure 6.6: Figure extracted from Ref. [17]. Quantum HQ
min and noncon-

textual HNC
min certifiable min-entropies vs. output rate η0, for three different

confusabilities c, optimal confidence C0, equal prior probabilities p0 = p1 = 1
2
,

pure (r = 1) and noisy (r = 0.7) states. Solid vertical lines delimit parameter
regions in which input x is unambiguously identified, labelled UI-x. Dashed
vertical lines indicate rates at which HQ

min is maximal. The confidences are
maximal in all plots. Top row: eavesdroppers in quantum and noncontextual
models are respectively quantum and noncontextual. Bottom row: a quantum
eavesdropper is considered in both cases.
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The confusability c between epistemic states µ0(λ) and µ1(λ) is fixed. The
confidence in discriminating µ′

0(λ) is then bounded by C ′NC
0 , which is strictly

lower than or equal to the bound on the confidence in discriminating µ0(λ),
namely CNC

0 . As in the quantum case, the eavesdropper knows whether the
epistemic states (µx(λ)) with bounded confusability or the maximally mixed
state (µ 1

2
(λ)) are prepared.

Results on the min-entropies are shown in Fig. 6.6. We look at the cases
where pure states (r = 1) and noisy states with r = 0.7 are prepared. In
both cases, the min-entropies on the measurement outcomes of noisy states
are lower than those of pure states. Remarkably, even with noisy states a
quantum advantage is still found whenever the eavesdropper is quantum in
both quantum and noncontextual state discrimination schemes.

153



Chapter 6 – Quantum vs. noncontextual randomness certification

154



Chapter 7

More than one bit of
semi-device independent
randomness from a single qubit

In this chapter we present the results in “More than one bit of semi-device
independent randomness from a single qubit” [16], authored by Carles Roch i
Carceller, Lucas Nunes Faria, Zheng-Hao Liu, Ulrik Lund Andersen, Jonas
Schou Neegaard-Nielsen and Jonatan Bohr Brask. A final version of this work
is still in preparation.

7.1 Abstract

Certified randomness guaranteed to be unpredictable by adversaries is central
to information security. The fundamental randomness inherent in quan-
tum physics makes certification possible from devices that are only weakly
characterised hence requiring little trust in their implementation. Here, we
demonstrate semi-device independent randomness certification from untrusted
measurements on the simplest possible system – a single quantum bit – pro-
ducing more than one bit of certified randomness per round.

7.2 Introduction

Randomness is a fundamental aspect in many physical and mathematical
systems, and it is often used to model uncertainty or to generate unique
unpredictable values in a wide variety of applications. The role of randomness
is central in many applications of the modern world. Cryptographic protocols
heavily rely on the unpredictability of a secret key between two parties, a
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task for which random number generators are essential [1, 3, 182]. Many
algorithms, such as in cryptography or prime factorization, also make use
of random sequences of numbers to run optimally [2, 4, 183–187]. In all
cases, random numbers with high quality are required, which can be provided
through quantum random number generators (QRNG).

The inherent randomness of quantum mechanics can be harnessed to
generate “true” random numbers [14, 188–190]. Those are essentially different
from pseudo-random numbers which rely on the complexity of a deterministic
algorithm to be generated [11, 12]. True random numbers can be generated
in a simple prepare-and-measure scenario from the outcomes of a fully char-
acterized measurement of a quantum state. These schemes are often known
as device-dependent protocols. Albeit unpredictable by nature, one cannot
be sure whether there is not some subtle regularity that would let someone
else predict them. This problem is more philosophical and goes back to the
beginning of quantum mechanics. It was proven by John Bell [15, 18] and
later by Kochen and Specker [19] that quantum mechanics is nondeterministic
and does not admit a local hidden-variable model [53]. This statement is the
principal aspect which allows for protocols where the devices are allowed to
be only partially characterized. Measurement-device independent protocols,
for instance, are those where the measurement is completely unknown, but is
required to reproduce a set of observable statistics. On the other hand, if the
state preparations are the completely unknown part, with a fully revealed
measurement, the protocol is said to be source-device independent. Fully
device independent (DI) protocols rely on even fewer assumptions, with both
the state preparation and measurement parts unknown. Randomness through
DI protocols, however, can only be certified in multipartite scenarios, where
nonlocality enters into play as an essential ingredient [58, 116, 117]. Such
protocols are therefore very demanding, out of reach for current technology
and only possible in highly sophisticated environments [163–167]. In single-
party prepare-and-measure scenarios, one can relax the DI assumption still
retaining the randomness certification capabilities to design semi-DI QRNG
protocols with less strict experimental requirements [66, 191–193]. One can
partially uncover the preparation by bounding a concrete particularity of
the prepared states, such as the overlap or the transmitted energy [61, 65, 194].

In this paper we propose a simple QRNG protocol involving the prepara-
tion of three qubit states and a single measurement. What sets our work apart
from other semi-DI QRNG proposals is that we are able to observe more than
one bit of randomness per round where a single qubit state is measured with
a surprisingly simple setup. The protocol is semi-DI in the sense that only the
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pair-wise overlap of the prepared states is bounded, leaving the measurement
completely un-characterised. This framework allows us to target high values
of randomness during the rounds when only one of the states is measured.
This is possible thanks to the utilization of the rounds where the other two
states are prepared to self-test the measurement device. Also, it is central
in our protocol that the measurement outcome is at least threefold. The
idea is simple: we target preparations and measurements such that observed
correlations are only reproducible with extremal and unique strategies. A
measurement is said to be extremal if its positive operator-valued measure
(POVM) representation can only be trivially expressed through a convex com-
bination of other valid POVMs. These can be found, for instance, in quantum
state-discrimination protocols such as minimum error state discrimination
(MESD) [97, 108, 155, 195].

The goal of MESD is to minimise the error in detecting a particular state
from an ensemble with a single measurement. The minimum attainable error
in MESD is given by the Helstrom bound, which is reached through a projec-
tive (hence extremal) and unique measurement [77, 98, 99, 176]. Suppose now
that one aims to use MESD to certify the randomness on the measurement
outcome. In order to evaluate more than one bit of randomness per round,
we would need a three state discrimination scenario with a Helstrom measure-
ment with three different outcomes (one for each state). That measurement
is described through a POVM in a qutrit space [196]. In our case we aim
to evaluate the randomnness in a qubit discrimination setup, thus making
MESD not a good candidate for us. We need to choose a measurement
strategy with at least three outcomes. A good option is to use unambiguous
state discrimination (USD) during the self-test rounds [79–81]. In USD, the
error rate is nullified, at the cost of adopting an additional measurement
event which gives no information on which state was prepared (formally
called inconclusive event). That way, an optimal three outcome measurement
can be implemented in a two-qubit state discrimination framework, making
it possible to reach more than one bit of randomness per round. In this
work, we implement a protocol which uses USD during the self-test rounds
as in [68], allowing us to make use of the additional inconclusive event in
two-state discrimination to reach randomness values greater than one bit per
round. Then, we choose a third state that yields equiprobable outcomes when
involved in the state discrimination scenario.

The paper is organised as follows. In the “Results” section we begin intro-
ducing the qubit state discrimination scenario and specifying the measurement
strategy. Later we explain how we evaluate the randomness and continue

157



Chapter 7 – More than one bit of semi-device independent randomness from
a single qubit

=0

=1

=2

=0

=1

=2

Early

EOMLASER SSPDAOM

LateEarly Late

=3

=0

=1

=2

click

no click

EarlyEOMLASER SSPDAOM Late

=0

=1

=2

Early Late

=3

=0

=1

=2

a) b)

Figure 7.1: Figure extracted from Ref. [16]. a) Sketch of the semi-device
independent prepare-and-measure scenario with the three preparations and
one untrusted measurement (black box). b) The implemented USD protocol
is illustrated on the Bloch sphere, with the Bloch vectors corresponding to
the prepared states |ψx⟩ and POVM elements π̂b.

with the main semi-device independent assumptions we consider. We end
the section by experimentally implementing the protocol with coherent states
and presenting the results we observe in the experiment and in simulations.
In the following “Discussion” section we explain how we deal with finite size
effects assuming independent and identically distributed (i.i.d.) and non-i.i.d.
rounds. We end the paper detailing some important particularities involved
in the experimental implementation in the “Methods” section.

7.3 Results

7.3.1 Prepare-and-measure

Consider a device that can receive an input x ∈ {0, 1, 2} with prior proba-
bilities px and prepares a pure quantum state ρx = |ψx⟩ ⟨ψx|. Consider the
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following preparations with Bloch representation

|ψ0⟩ = cos
ϕ

2
|0⟩ + sin

ϕ

2
|1⟩ (7.1)

|ψ1⟩ = cos
ϕ

2
|0⟩ − sin

ϕ

2
|1⟩ ,

and a third state |ψ2⟩ with a general qubit structure which shall remain
unspecified for now. These states are sent to a second device which will
perform a measurement described by the POVM {π̂b} for b ∈ {0, 1, 2}, as we
show in Fig. 7.1. Over many rounds of the experiment, one can gather enough
data to build consistent statistics according to the underlying probability
distribution p(b|x) = Tr [ρxπ̂b], according to the Born rule.

Our first task is to find the optimal measurement, according to a particular
state discrimination protocol, to identify whether the preparation was x = 0
or x = 1, ignoring the third possible input x = 2. This will yield correlations
reproducible only with extremal and unique POVMs. Then, the idea is to
properly design a state |ψ2⟩ such that, with that optimal measurement, all
outcomes are equiprobable whenever that state is prepared (i.e. p(b|x = 2)
are equal ∀b). In order to do that, we take USD as our target strategy.

7.3.2 Unambiguous state discrimination

The task in USD is to identify which state was prepared without making
any errors, i.e. perr = p0p(1|0) + p1p(0|1) = 0 [79–81]. That can be done if
one pays the price of having some rounds in which the measurement result
turns inconclusive. In the present case, USD targets preparations x = 0 and
x = 1. The events that turn inconclusive will be labeled with b = 2. The
goal of USD is to minimize the rate of inconclusive events, which here we
call pø := p0p(2|0) + p1p(2|1). The minimum rate of inconclusive events in
two-state discrimination is proportional to the overlap of the prepared states,
which is denoted by | ⟨ψ0|ψ1⟩ | = cosϕ, according to (7.1). In this case, the
minimum rate of inconclusive events is lower bounded by

pø ≥ 2
√
p0p1 cosϕ . (7.2)

The POVM that represents an optimal USD measurement must be given
by rank-1 POVM elements, proportional to the projectors onto the orthogonal

159



Chapter 7 – More than one bit of semi-device independent randomness from
a single qubit

states (7.1). Concretely, for equiprobable preparations p0 = p1 = 1/2,

π̂0 =
1

1 + cosϕ
|ψ⊥

1 ⟩ ⟨ψ⊥
1 |

π̂1 =
1

1 + cosϕ
|ψ⊥

0 ⟩ ⟨ψ⊥
0 | (7.3)

π̂2 = 1− π̂0 − π̂1 ,

where ⟨ψx|ψ⊥
x ⟩ = 0. Consider now we put a third preparation x = 2 into play.

We aim to find a state |ψ2⟩ which triggers all three outcomes b = 0, 1, 2 of
the measurement in (7.3) with the same probability. That means, it must
satisfy ⟨ψ2| π̂b |ψ2⟩ = 1/3. A state that potentially fulfills that condition is
given by a state with the form

|ψ2⟩ = cos
θ

2
|0⟩ + i sin

θ

2
|1⟩ . (7.4)

Now, all three outcomes will be equiprobably triggered when

cos θ =
1 − 2 cosϕ

3 cosϕ
. (7.5)

This condition is only valid when −1 ≤ cos θ ≤ 1. This means that
equiprobable outcomes in this setting are only achievable for cosϕ ≥ 1/5.
This is only true if the states are constrained to be two-dimensional. In semi-
DI randomness certification, one wants to keep the number of assumptions
at minimum. We will later show how we can get rid of the assumption of a
fixed dimension.

7.3.3 Randomness certification

We proceed to explain how we certify the randomness of the measurement
outcomes. To do that, we introduce the figure of a third malicious party
(Eve) as an adversary that aims to guess the outcome b. Eve is given control
of the preparation (x) and measurement device, and even can hold a state
which shares quantum correlations within our setup. We also give her the
freedom to change her strategy ω each round, according to the distribution
q(ω). We certify the amount of randomness in the measurement outcome
only when state |ψ2⟩ is prepared. In this sense, the rounds where states |ψ0⟩
and |ψ1⟩ are prepared can be thought as self-test rounds used to build up the
observed statistics. During the rounds that the state |ψ2⟩ is prepared, her
best guessing probability averaged through each round can be written as

pg =
∑
ω

q(ω)max
b

{p(b|x = 2, ω)} , (7.6)
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for p(b|x, ω) = Tr [ρxπ̂
ω
b ] (ρx = |ψx⟩ ⟨ψx|) being the probability that the

measurement outcome is b given state preparation x and the eavesdropper’s
strategy ω. Each round of the experiment she can change the measurement
strategy ω that suits her better in order to get the best possible guess of
the outcome b. That is, as long as she reproduces the observed statistics on
average, i.e. p(b|x) =

∑
ω q(ω) Tr [ρxπ̂

ω
b ].

We aim to find an upper bound on pg in (7.6) for all possible strategies
ω, distributions q(ω) and measurements π̂ω

b . Such optimisation problem can
be rendered as a semidefinite program (SDP) [31], as we detail in Sec. 7.8.
We further define the dual problem as a semidefinite program which, in turn,
allows us to re-write Eve’s guessing probability as

pg = −
∑
b,x

νbxp(b|x) . (7.7)

An upper bound p∗g ≥ pg can be found by minimizing (7.7) through all

possible parameters νbx and 2 × 2 matrices Ĥω that fulfil the constraints

ρ2δb,ω +
∑
x

ρxνb,x + Ĥω − 1

D
Tr
[
Ĥω
]
1 ≤ 0 (7.8)

Ĥω =
(
Ĥω
)†

, (7.9)

where δx,y is the Kronecker delta and D is the dimension of the eavesdropper.
The randomness of the measurement outcomes is quantified through the min-
entropy Hmin = − log2 (pg), which gives the number of (almost) uniformly
random bits which can be extracted per round of the protocol [177].

7.3.4 Semi-device independent certification

To run the semidefinite program one needs to insert specific quantum states.
In a semi-device independent approach, however, those should not be com-
pletely specified, but only a particularity of the states should be bounded
or fixed. For two-state discrimination problems, usually one imposes some
dimensionality bounds (which can be translated to energy bounds [61]) and
the distinguishability through their overlap. Then, one can specify a couple
of states without losing any sense of generality, as unitary rotations on the
Bloch sphere will not affect the results. Also, in those cases it is clear that
Eve will not gain extra information about the outcome by working with a
three-dimensional space. However, that statement does not hold anymore
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if we add a third state into play. We want to avoid constraining the dimen-
sionality accessible by the eavesdropper. To do that, suppose that the three
prepared states span a three-dimensional space. That is, the third state is

|ψ̃2⟩ =
√
a |ψ2⟩ +

√
1 − a |2⟩ , (7.10)

for |ψ2⟩ in (7.4) having support on the bi-dimensional space spanned by
|ψ0⟩ and |ψ1⟩ in (7.1), and |2⟩ has only support on an additional orthogonal
dimension, such that ⟨ψx|2⟩ = 0, ∀x. One can see that, if both overlaps
| ⟨ψ̃2|ψ0⟩ |2 and | ⟨ψ̃2|ψ1⟩ |2 are simultaneously fixed to be

| ⟨ψ̃2|ψ0⟩ |2 = | ⟨ψ̃2|ψ1⟩ |2 =
1

2
(1 + cosϕ cos θ) , (7.11)

then normalisation in (7.10) imposes a⇒ 1, and all three preparations must
solely have support on a qubit space. However, strict equalities can be hard
to satisfy in the lab. In Sec. 7.6 we show how one can relax this assumption
by only bounding the overlaps with some fixed quantities as | ⟨ψx|ψy⟩ | ≥ dxy.
This, in turn, bounds the accessibility to an additional third dimension by
the eavesdropper as a turns to be lower-bounded by

a ≥ d202 + d212 − 2d01d02d12
1 − d201

. (7.12)

Also, since a ≤ 1, one also finds the following relation between the bounds
on the overlaps:

1 ≥ d202 + d212 + d201 − 2d01d02d12 , (7.13)

which must hold true for any dimension. Equation (7.12) defines the surface
of a tetrahedron with curved faces (see Sec. 7.6). The amplitude a decreases
towards the center of the tetrahedron. Thus, in another perspective, bounding
| ⟨ψx|ψy⟩ | ≥ dxy implies that we forbid Eve to access the core of the tetrahe-
dron.

Our protocol is semi-device independent in the sense that we do not make
any assumption on the devices involved on the experiment, other than only
bounding the overlap of the prepared states.

7.3.5 From qubit to coherent states

Let CD denote the convex set of correlations reproducible by D-dimensional
states ρx and POVM elements π̂b. Then, the observed probabilities on the
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experiment p(b|x) = Tr [π̂bρx] belong to C2. However, the availability of an
additional third dimension to an eavesdropper allows her to access probabili-
ties p(b|x, ω) ∈ C3 ⊃ C2, as long as on average p(b|x) are reproduced. The fact
that from our setup we can only constrain correlations in C2 is what allows us
to certify the randomness when qubit states are measured, with unbounded
dimensionality to the eavesdropper.

In our model, states are interpreted as qubit preparations according to
bounded overlaps. However, the implementation we use in this work makes
use of coherent state preparations. To map the theoretical framework to the
actual implementation, we collect the overlaps of the prepared coherent states
which can be expressed with their corresponding coherent amplitudes. Then,
we choose three qubit states |ψx⟩ which fulfill the registered overlaps, and a
qubit POVM to calculate the observed probabilities p(b|x), which belong to
the sub-set of correlations C2. However, as previously manifested, the relevant
Hilbert space in any state discrimination problem is that with dimension
equal to the number of involved states. This means that any eavesdropper
may benefit from using qutrits and correlations in C3 to increase the guessing
probability. This is accounted for by considering an eavesdropper with access
to qutrit states |ψ̃x⟩, of the form in (7.10), which satisfy the registered overlaps
in the experiment, and qutrit POVMs reproducing, on average, the observed
correlations.

7.3.6 Implementation

We implement the protocol on a real prepare-and-measure experiment through
a very simple optical setup. Our time-bin-encoding method is inspired by
previous works with a similar setting [64, 68]. The setup is illustrated in
Fig. 7.2; here we briefly sketch its working principle. In the Methods section,
we elaborate the detailed experimental setup.

The photon source in our experiment is a 1550 nm continuous-wave laser.
We have used an electro-optic modulator (EOM) and an acousto-optic modu-
lator (AOM) to carve the output of the laser into 10 ns-width pulsed coherent
states with appropriate amplitude. In each round of the experiment, the
coherent states can emerge at an early time-bin and a late time-bin.

The two self-testing states for x = 0 and x = 1 are prepared with a coher-
ent state with amplitude α encoded in an early and late time-bin respectively,
that is, |ψ0⟩ = |α0⟩ and |ψ1⟩ = |0α⟩, where the two entries in the ket denote
the amplitude of the coherent state at the two time-bins. On the other hand,
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Figure 7.2: Figure extracted from Ref. [16]. Experimental implementation
of the protocol. The input states are generated by a sequence of EOM and
AOMs. The measurement simply consists of a single-photon detector.
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the third state, x = 2, used for randomness extraction is prepared with a
coherent amplitude β in both early and late time-bins: |ψ2⟩ = |ββ⟩.

The measurement simply consists of a superconducting single-photon
detector (ID Quantique ID281) with a quantum efficiency of 94% which
detects photons from the carved, attenuated laser beam. We label the
outcome b according to whether the detector clicks on the early or late time
bins: we relate the events triggered only on the early time-bin with b = 0,
those triggered only on the late time-bin with b = 1. We label the events
where the detector does not click at any time-bin with b = 2. Lastly, due
to the third state preparation and dark counts we have the possibility that
the detector clicks at both early and late time-bins in a single round. We
incorporate those events with b = 3. In Sec. 7.7 we specify in more detail
the different events and their corresponding probabilities with the time-bin
coherent state preparations.

7.3.7 Simulation and observation

In order to find optimal experimental settings, we first simulate the system by
running the SDP in a closed range of coherent amplitudes. In Fig. 7.3 we show
the minimum entropy from the SDP under realistic experimental conditions.
The results show optimal minimum entropy around the amplitudes αT = 0.41
and βT = 0.66 which will be targeted in the experiment. This corresponds to
states |ψx⟩ with overlaps | ⟨ψ0|ψ1⟩ | ≃ 0.84 and | ⟨ψ0|ψ̃2⟩ | = | ⟨ψ1|ψ̃2⟩ | ≃ 0.78.
This value depends on the relative phase between α and β, which is not
controlled in the experiemt. However, it does not matter neither due to the
phase-insensitivity of the detector and because the relative phase does not
play any role in our protocol. So, we take those as the bounds dxy we consider
to certify the randomness. According to the criterion deduced from (7.5),
| ⟨ψ0|ψ1⟩ | ≥ 1/5, which means that these preparations should allow us to find
a set of correlations which yields more than one bit of randomness.

Let us first analyze the effects on the dimensional unboundedness due
to the semi-device independent treatment. This is denoted by the minimal
amplitude a introduced in (7.10). In principle, the observed probabilities
when the third state |ψ2⟩ = |ββ⟩ is prepared should not depend on α, and this
should be reflected on the Hmin as well. However, we see a subtle dependency
on α in Fig. 7.3, which becomes more evident for higher values of β.

The fact that a < 1 in the set of sampled amplitudes is not only the main
responsible of that dependency. It also makes the observed correlations no
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Figure 7.3: Figure extracted from Ref. [16]. Bound on the min-entropy after
finite-size effects are accounted for assuming independent and identicallu
distributed (i.i.d.) rounds (Chernoff-Hoeffding tail inequality) and non i.i.d.
rounds (entropy accumulation theorem). (a) Result of the SDP for a limited
range of coherent amplitudes. The targeted α = 0.414 ± 4.38 · 10−5 and
β = 0.662 ± 3.63 · 10−5 in the lab are denoted with black-dashed lines. (b)
Slice of the color plots at the chosen amplitudes. The results of the experiment
are showed in a cross with error bars too small to be visible (see main text).
The chosen parameters are ε = 10−9 with photon loss 1 − η = 0.06, dark
count probability of pdc = (4.49 ± 0.14) · 10−6 and total number of samples
n = 108.
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Figure 7.4: Figure extracted from Ref. [16]. Observed correlations p(b|x)
and guessing probability pg. Here α = αT . If the dimension were to be
constrained, the probabilities would be only reproducible through a unique
and extremal POVM. However, pg deviates from max

b
{p(b|x)} as the minimal

amplitude a decreases. This evidences the access to an unconstrained third
dimension by Eve.

longer uniquely reproducible by unique and extremal POVMs. In Fig. 7.4
we show how the guessing probability deviates from the maximal conditional
probability p(b|2), which means that the measurement is reproducible through
multiple strategies accessible by Eve. This compromises the secrecy of the
outcome, which means a decrease on the expected randomness. Nonetheless,
we are able to find a set of amplitudes where, although Eve has unbounded
dimensionality, her guessing probability is lower than 1/2.

We run the experiment through the proposed implementation and evaluate
the randomness for a single configuration of targeted amplitudes. We show the
obtained results in Fig. 7.3 (side and top plots). Our observations agree well
with the predictions from the simulations, and show a randomness extraction
rate of 1.09817±0.00012 and 0.986±0.008 bits per round after 108 runs of the
experiment, when analyzed using the entropy accumulation theorem (EAT)
[197] and considering independent and identically distributed (i.i.d.) rounds,
respectively. Here, the error bars (which are too small to be visible in Fig. 7.3)
are the 1σ bootstrap standard deviation obtained via resampling the data.
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Although the chosen coherent amplitudes avoid the big drop in randomness
from the i.i.d. analysis (blue curve in Fig. 7.3), we are not able to observe more
than one bit of randomness per round. This drop is caused by the deviation
on the observed correlations due to the Chernoff-Hoeffding tail inequality (see
Sec. 7.9). At some point, the dual coefficients νbx become so big that small
deviations turn into a huge drop in the certifiable randomness. Surprisingly,
dealing with finite-size effects through the EAT, without assuming i.i.d. rounds,
avoids such drops in the randomness (red curve in Fig. 7.3). It is in this case
that we are able to observe more than one bit of randomness per round.

7.4 Discussion

We have realized a semi-DI randomness generation protocol that is capable
of generating more than one bit of randomness in every round of experiments
without assuming fair sampling. Although high-rate randomness generation
via multi-outcome POVM could be intuitive, certification of the generated
randomness against side information to the adversaries remains challeng-
ing. Our contribution in this regard is twofold. First, we used semidefinite
programming tools to bound the probability that any potential adversary
could guess the measurement outcome in a prepare-and-measure experiment.
Second, we have applied the EAT to certify the amount of entropy gener-
ated during the experiment from finite-size statistics and without assuming
i.i.d. which is often unphysical in a realistic scenario. Our methodology thus
provides a pathway for effectively certifying randomness under very simple
experimental settings with a minimum number of assumptions.

From a pragmatic perspective, our randomness generation protocol is
highly economic and resource-efficient: the preparation of qubit states can
be equivalently attained with coherent light (see the “from qubit to coher-
ent states” part in Resutls section), and the entire setup requires no phase
stabilization which simplifies the control loop and offered desirable stability
in realistic applications. The main technical requirement in our experiment
seems to lie in the high-efficiency photodetection part. Commercial super-
conducting single-photon detectors are able to achieve the efficiency required
for the current protocol, but a more intriguing direction would be to further
improve the protocol so the requirement of high-efficiency photodetection can
be eased. We anticipate the future protocols developed from our results will
have a nice prospect for broader practical applications.

Our experimental setup yields a 4 outcome measurement. However, in the
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present semi-device independent setting, the certifiable randomness cannot
be larger than log2(3) [179]. This is because we effectively treat the prepared
coherent states as qubits, even through their dimension is unbounded for the
eavesdropper. Since a 4th outcome turns useless, we reduce the size of the set
of outcomes. We do that by absorbing the outcome b = 3 with the events
b = 0 and b = 1 with equal probability so that, at the end of the day, our
protocol only yields a ternary outcome. Our measurements consist entirely
of a single photo-detector which is subject to photon losses and dark counts.
These effects are accommodated as undesired deviations in the observed
statistics.

In real-life experiments, the observed probabilities are built from the fre-
quencies of data-points. Due to the finite number of data points, the observed
frequency of events freq.(b|x) = nbx/nx, for nbx denoting the total number
of events b given a state preparation x does not exactly represent the true
conditional probability p(b|x). We deal with finite-size effects making use of
the Chernoff-Hoeffding tail inequality [198], as we detail in the Sec. 7.9. This
allows us to quantify the deviation of the sum of data-points from its expected
value, assuming these are obtained in independent and identically distributed
(i.i.d.) rounds. In Fig. 7.3, we show a simulation of the minimum min-entropy
when taking into account finite size effects from the collected data. Due to the
pessimistic approach of the Chernoff-Hoeffding tail inequality, the randomness
we are able to extract does not go beyond one bit of randomness per round.

As mentioned earlier, in our analysis we go beyond the i.i.d. assumption
and perform a second characterization of finite size effects. In this case,
we use the EAT [197], which allows us to quantify the amount of entropy
accumulated per round when those are not i.i.d. Furthermore, one could
harness the asymptotic equipartition property by considering multiple rounds
of the experiment to use the Von-Neumann entropy, instead of the min-entropy,
plus a correction term to evaluate the randomness [199] (in fact, the EAT is
originally formulated with that idea). This approach would yield higher values
of randomness. However, we do not find it necessary in this work, and the
reason is twofold. First, because we find our methodology more comprehensive
by working directly with a guessing probability. Secondly, because even using
the min-entropy which is the most pessimistic (conservative) choice, we are
able to reach more than one bit of randomness per round as we see in Fig. 7.3,
which empowers even more the protocol we propose.
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7.5 Methods

As sketched in the main text, the input states used in the experiment are
created by using an EOM capable of inducing intensity modulation, and a
sequence of two AOMs to carve the output of a 1550.32 nm continuous-wave
laser into time-bin-encoded series of pulsed weak coherent states. Concretely,
the AOMs attenuate the output of the laser by 77 dB when sending a pulse,
so the intensities of the output states are at a single-photon level, and it
completely shuts off the laser output when no pulse is being sent. In doing
so, we achieve a dark count rate of only ≈ 10−6 per pulse. The EOM, on
the other hand, generates the correct amplitudes for the input states during
a 10 ns time window, which is chosen as the duration of the time-bin. We
have introduced a feedback control loop to stabilize the output power of
the EOM; consequently, we are able to keep the standard deviation of the
counting rate against time at (0.29±0.22)% during each run of the experiment.

The values for α and β are calibrated using a single-photon detector with
a specified efficiency of η = 94%. Based on the amplitude we desire to achieve,
we are able to calculate the click rate related to this coherent state. For the
values α = 0.41 and β = 0.66, which optimize the randomness we obtain,
we are expected to measure clicks on 14.5% and 33.2% of the coherent state
pulses, respectively.

In order to account for finite size effects, we take around 108 rounds of
measurements. Since our oscilloscope can only save data from 107 rounds
of experiments before the memory is filled, we obtain the amount of data
which is possible and then perform a calibration measurement before taking
data again. This ensures that we are keeping track of possible fluctuations
of parameters on the experiment and we are able to correct for it. Indeed,
the standard deviation of the counting rate across all experiment runs is only
0.37%, certifying the consistency between the states prepared at different
times.

7.6 S1: Unconstrained dimensionality and

semi-device independence

In this section we show how the eavesdropper can use the unbounded dimen-
sionality assumption in a semi-device independent setting. Also, we show
how bounding the overlaps between the prepared states can limit this the use
of any additional dimension by the eavesdropper.
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Consider the state discrimination scenario with three preparations. Two
of the prepared states |ψ̃0⟩ and |ψ̃1⟩ have support only on a two-dimensional
Hilbert space, but the third state |ψ̃2⟩ may have support also on a third
dimension. Then,

|ψ̃0⟩ = cos
ϕ

2
|0⟩ + sin

ϕ

2
|1⟩ + 0 |2⟩ (7.14)

|ψ̃1⟩ = cos
ϕ

2
|0⟩ − sin

ϕ

2
|1⟩ + 0 |2⟩ (7.15)

|ψ̃2⟩ =
√
a

(
cos

θ

2
|0⟩ + eiφ sin

θ

2
|1⟩
)

+
√

1 − a |2⟩ . (7.16)

Suppose now that we only trust a bound on the overlap of the prepared
states. Let us define | ⟨ψ̃0|ψ̃1⟩ | ≥ |d01|, | ⟨ψ̃0|ψ̃2⟩ | ≥ |d02| and | ⟨ψ̃1|ψ̃2⟩ | ≥
|d12|. This means that

a ≥ d202 + d212
1 + d01 cos θ

. (7.17)

If a = 1, the three states will have support on the same bi-dimensional
Hilbert space. Whilst the measurement device is treated as a black box, the
preparation device is partially characterized through the bounds we place on
the overlaps of the prepared states. Then, the eavesdropper has the freedom
in choosing the states |ψx⟩ in terms of the angles ϕ, θ and φ that satisfy those
bounds. Her probability of guessing the measurement outcome when state
|ψ̃2⟩ is prepared is

pg =
∑
ω

q(ω)max
b

{
⟨ψ̃2| π̂ω

b |ψ̃2⟩
}

(7.18)

=
∑
ω

q(ω)max
b

{a ⟨ψ2| π̂ω
b |ψ2⟩ + (1 − a) ⟨2| π̂ω

b |2⟩+√
a(1 − a) (⟨ψ2| π̂ω

b |2⟩ + ⟨2| π̂ω
b |ψ2⟩)

}
.

The support of the POVM onto the qubit space spanned by the test states
|ψ̃0⟩ and |ψ̃1⟩ is constrained by the reproducibility of the observed statistics
p(b|x). However, the support onto the sub-space spanned by |2⟩ does not
have any constraints applied. This implies that pg is maximum whenever
the measurement described by the POVM {π̂ω

b } has minimal support on the
constrained subspace. Thus, the upper bound on pg is given whenever a is
minimal, which we know is lower bounded indirectly by (7.17) whenever the

171



Chapter 7 – More than one bit of semi-device independent randomness from
a single qubit

overlaps of the prepared states are also bounded.

On the SDP this is reflected by considering the discrimination of the qutrit
states |ψ̃x⟩. Assume that Eve is even allowed to change the angles ϕ and θ, so
that the bounds on the overlaps are still satisfied. Eve can pick them to be the
ones she wants in order to make the support onto the third dimension as large
as she can. Let’s see what is the best she can do. We first relate both angles

in a single expression by first writing a = (d202 − d212) /
(√

1 − d201 sin θ cosφ
)

and equating with the right-hand side in (7.17). One gets

cos θ =
d202 − d212
d202 + d212

1 + d01 cos θ√
1 − d201 sin θ

. (7.19)

If one plots cos θ vs. cosφ, one will see that: if d02 > d12, cos θ is maximal
if cosφ = 1; if d02 < d12, cosϕ is maximal if cosφ = −1; and if d02 = d12,
cos θ is maximal if cosφ = 0. The maximal value of cos θ is the same in the
three cases, being

(cos θ)max =
2d02d12 − d01 (d202 + d212)

d202 − 2d01d02d12 + d212
, (7.20)

which means

a ≥ d202 + d212 − 2d01d02d12
1 − d201

. (7.21)

Equation (7.21) defines the surface of a tetrahedron with curved faces. The am-
plitude a decreases towards the center of the tetrahedron non-symmetrically,
as we show in Fig. 7.5.

On the SDP, the prepared states shall only be expressed in terms of the
bounds of the overlaps dxy, which can be done by replacing the angles ϕ, θ
and φ with d01, d02 and d12 accordingly. This yields

|ψ̃0⟩ =

√
1 + d01

2
|0⟩ +

√
1 − d01

2
|1⟩ + 0 |2⟩

|ψ̃1⟩ =

√
1 + d01

2
|0⟩ −

√
1 − d01

2
|1⟩ + 0 |2⟩ (7.22)

|ψ̃2⟩ =
1√
2

d02 + d12√
1 + d01

|0⟩ +
1√
2

d02 − d12√
1 − d01

|1⟩

+

√
1 − |d02 + d12|2

2(1 + d01)
− |d02 − d12|2

2(1 − d01)
|2⟩ .

172



Chapter 7 – More than one bit of semi-device independent randomness from
a single qubit

d 01

1.0
0.5

0.0
0.5

1.0d02

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0
d12

a = 1.0

d 01

1.0
0.5

0.0
0.5

1.0d02

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0
d12

a = 0.7

d 01

1.0
0.5

0.0
0.5

1.0d02

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0
d12

a = 0.3

d 01

1.0
0.5

0.0
0.5

1.0d02

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0
d12

a = 0.1

Figure 7.5: Figure extracted from Ref. [16]. Tetrahedron formed by the
available overlap configurations in the preparation of three non-orthogonal
quantum states. The parameter a indicates the minimal support of the
prepared states onto a two-dimensional subspace if only their overlaps are
bounded.
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A particular choice of bounds on the overlaps and their phases limits the
accessibility to a the third dimension by Eve. Concretely, one can tune the
states to be symmetric in the sense that d02 = d∗12 = d̃eiγ. Thus, fulfilling
the relation d̃2 = (1 − d201)/(2(1 − d01 cos 2γ)) makes the third component of
|ψ̃2⟩ null. This means that we can be sure that any potential eavesdropper
will gain no information of the outcome by reaching into an additional third
dimension.

7.7 S2: Implementations: specific details

In this section of the appendix we detail the specific parameters to be adjusted
to obtain the desired statistics in the measurement outcomes on the proposed
implementation.

The proposed implementation for the USD setup consists in preparing the
equi-probable two-mode coherent states |ψ0⟩ = |α⟩ ⊗ |0⟩ and |ψ1⟩ = |0⟩ ⊗ |α⟩.
These can be unambiguously discriminated by means of using only photo
detectors in each mode. If only the photo detector in the first mode clicks,
that would mean that state |α0⟩ had been prepared, and thus, we associate
the outcome b = 0. Otherwise, if only the second photo-detector clicks, means
that |0α⟩ was prepared and we associate b = 1 as a measurement outcome.
Note that if these two states are prepared, there is a possibility that none
of the detectors click. If that happens, the measurement is uncertain of
which state was prepared and we associate this events with the inconclusive
measurement outcome b = 2. Assume now that we include the preparation
of a third two-mode coherent state |ψ2⟩ = |β0β1⟩ into play. Whenever this
state is prepared, either only one detector can click, the other, none or even
both at the same time. Let us go through all possible measurement events
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and their probabilities to happen whenever a generic state |ψx⟩ is prepared.

1 = ⟨ψx| (1⊗ 1) |ψx⟩ = ⟨ψx|
(

∞∑
n=0

|n⟩ ⟨n|
)

⊗
(

∞∑
m=0

|m⟩ ⟨m|
)
|ψx⟩

= ⟨ψx|
(
|0⟩ ⟨0| +

∞∑
n=1

|n⟩ ⟨n|
)

⊗
(
|0⟩ ⟨0| +

∞∑
m=1

|m⟩ ⟨m|
)
|ψx⟩

= ⟨ψx|

 |0⟩ ⟨0| ⊗ |0⟩ ⟨0|︸ ︷︷ ︸
Detector does’t click

+ |0⟩ ⟨0| ⊗
∞∑

m=1

|m⟩ ⟨m|︸ ︷︷ ︸
Click on late bin

(7.23)

+
∞∑
n=1

|n⟩ ⟨n| ⊗ |0⟩ ⟨0|︸ ︷︷ ︸
Click on early bin

+
∞∑
n=1

|n⟩ ⟨n| ⊗
∞∑

m=1

|m⟩ ⟨m|︸ ︷︷ ︸
Click on both early and late bins

 |ψx⟩

=| ⟨00|ψx⟩ |2 +
∞∑

m=1

| ⟨0m|ψx⟩ |2 +
∞∑
n=1

| ⟨n0|ψx⟩ |2 +
∞∑
n=1

∞∑
m=1

| ⟨nm|ψx⟩ |2 .

The event consisting in a simultaneous click at both time-bins does not
come into play when unambiguously discriminating the two-mode coherent
states |α0⟩ and |0α⟩. In fact, that event would correspond in a unambiguous
identification of the third state |β0β1⟩. Since our aim is to only consider
measurement strategies able to unambiguously discriminate solely states
|α0⟩ and |0α⟩, whenever that event occurs we will consider that b = 0 with
probability g0, b = 1 with the same probability g1 and the rest of the times
b2 with probability b = 2. No data will be discarded so that the certified
randomness is not affected. The considered events and their corresponding
probabilities depending on which state was prepared after the post-processing
are summarized in table 7.1.

For simplicity and without loss of generality, we will consider non-imaginary
coherent amplitudes only. The overlaps of the prepared states are character-
ized by the amplitudes of the coherent states as follows

d01 = e−α2

d02 = e−
(α−β0)

2

2 e−
β21
2 d12 = e−

β20
2 e−

(α−β1)
2

2 . (7.24)

Over a set of runs, we observed that the best and simplest choice is to pick
g0 = g1 = 1/2 and so g2 = 0.
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hhhhhhhhhhhhhhhhhhPrepared state
Meas. Event

b = 0

|ψ0⟩ = |α⟩ ⊗ |0⟩ 1 − e−|α|2

|ψ1⟩ = |0⟩ ⊗ |α⟩ 0

|ψ2⟩ = |β0⟩ ⊗ |β1⟩

(
1 − e−|β0|2

)
e−|β1|2

+g0

(
1 − e−|β0|2

)(
1 − e−|β1|2

)
hhhhhhhhhhhhhhhhhhPrepared state

Meas. Event
b = 1

|ψ0⟩ = |α⟩ ⊗ |0⟩ 0

|ψ1⟩ = |0⟩ ⊗ |α⟩ 1 − e−|α|2

|ψ2⟩ = |β0⟩ ⊗ |β1⟩
e−|β0|2

(
1 − e−|β1|2

)
+g1

(
1 − e−|β0|2

)(
1 − e−|β1|2

)
hhhhhhhhhhhhhhhhhhPrepared state

Meas. Event
b = 2

|ψ0⟩ = |α⟩ ⊗ |0⟩ e−|α|2

|ψ1⟩ = |0⟩ ⊗ |α⟩ e−|α|2

|ψ2⟩ = |β0⟩ ⊗ |β1⟩
e−|β0|2e−|β1|2

+g2

(
1 − e−|β0|2

)(
1 − e−|β1|2

)

Table 7.1: Summary of the considered measurement events and their corre-
sponding re-normalized probabilities for the USD setup.
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7.8 S3: Semi-definite program: primal and

dual

In this section we formally introduce the semidefinite program we use to
bound the certifiable randomness.

7.8.1 Primal SDP

We start presenting the primal form of the problem. Our goal is to maximise
the guessing probability of the eavesdropper which we can write as

pg =
∑
ω

q(ω)max
b

{Tr [ρ2π̂
ω
b ]} . (7.25)

The maximisation is done through all possible measurement strategies ω,
distributions q(ω) and POVM elements π̂ω

b . These are constrained to be valid
distributions and POVMs, which implies

q(ω) ≥ 0
∑
ω

q(ω) = 1 q(ω) ∈ R (7.26)

π̂ω
b ≥ 0

∑
b

π̂ω
b ≥ 0 π̂ω

b = (π̂ω
b )† . (7.27)

There is the additional constraint that the observed probabilities must be
reproduced on the real experiment. This is reflected in

p(b|x) =
∑
ω

q(ω) Tr [ρxπ̂
ω
b ] . (7.28)

Since states ρx are not fully specified, but instead only their overlaps are
bounded, we will insert the states in (7.22), so ρx = |ψ̃x⟩ ⟨ψ̃x|.

This optimisation problem can be rendered as a linear semidefinite pro-
gram following a couple of steps. First, we will consider only the most
relevant steategies, which in our case are those which yield the maximal value
max

b
{Tr [ρxπ̂

ω
b ]}. This can be done by simply labeling ω = b the maximal

strategy for outcome b, i.e. max
b

{p(b|x = 2, ω)} = p(ω|x = 2, ω). This leaves

us with only nB relevant strategies, being nB the number of different outcomes
from the measurement. Secondly, we will absorb the distribution q(ω) in the
POVM element π̂ω

b and define a new quantity M̂ω
b = q(ω)π̂ω

b . The definition
of this new operator changes the above constraints to the following:

M̂ω
b ≥ 0, M̂ω

b =
(
M̂ω

b

)†
∀b, ω,

∑
b

M̂ω
b =

1

D
Tr

[∑
b

M̂ω
b

]
∀ω , (7.29)
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where D is the dimensionality of the eavesdropper. The useful space accessible
by the eavesdropper is that spanned by the states involved in the experiment.
Since we are considering a three-state discrimination setting, the dimension
can be at maximum the number of states, i.e. D = 3. The reproducibility
constraint is also changed to simply

p(b|x) =
∑
ω

Tr
[
ρxM̂

ω
b

]
. (7.30)

Finally, we can re-write the guessing probability in the following way

pg =
∑
ω

Tr
[
ρ2M̂

ω
ω

]
. (7.31)

An upper bound p∗g ≥ pg can be found by maximising it through all possible

2 × 2 matrices M̂ω
b that fulfil the constraints above.

7.8.2 Dual SDP

We continue by presenting the dual form of the SDP. We begin by writing
the Lagrangian corresponding to the present problem:

L =
∑
ω

Tr
[
ρ2M̂

ω
ω

]
+
∑
b,ω

Tr
[
Gω

b M̂
ω
b

]
(7.32)

+
∑
ω

Tr

[
Ĥω
∑
b

(
M̂ω

b − 1

D
Tr
[
M̂ω

b

]
1

)]

+
∑
b,x

νb,x

(∑
ω

Tr
[
ρxM̂

ω
b

]
− p(b|x)

)
.

The supremum S of the Lagrangian, over the primal SDP variables, reads

S = sup
M̂ω

b

∑
b,ω

Tr
[
M̂ω

b K
ω
b

]
−
∑
b,x

νb,xp(b|x) , (7.33)

where we defined

Kω
b = ρ2δb,ω +

∑
x

ρxνb,x +Gω
b + Ĥω − 1

D
Tr
[
Ĥω
]
1 . (7.34)

The supremum will diverge unless Kω
b = 0. This is also commonly known

as Lagrange stability in convex optimisation. Also, since Gω
b ≥ 0 ∀b, ω, we
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can drop them and imply Kω
b ≠ 0. With these remarks, the dual form of the

SDP reads

p∗g = minimize
Ĥω ,νb,x

−
∑
b,x

νb,xp(b|x) (7.35)

subject to ρ2δb,ω +
∑
x

ρxνb,x + Ĥω − 1

D
Tr
[
Ĥω
]
1 ≤ 0

Ĥω =
(
Ĥω
)†

,

for δi,j being the Kronecker delta and D the dimensionality of the eavesdropper.
Observe that the observed statistics p(b|x) only appear in the dual object
function and not on the constraints. This implies that, given a dual solution
(so a set of Ĥω and νbx that fulfill the constraints above), valid bounds on pg
can still be computed for any p(b|x) by just evaluating the object function.
This form allows us to treat finite size effects as we explain in the following
section.

7.9 S4: Finite size effects and entropy accu-

mulation

In this section we explain how we treat finite size effects from the data
extracted in the experiment. Also, we explain how we can abandon the
general assumption of independent and identically distributed rounds (i.i.d)
though the entropy accumulation theorem (EAT) as is explained in [197].

7.9.1 Finite-size effects under the i.i.d. assumption

In the real life implementation of the protocol, the observed statistics are
built from finite sets of collected data. Thus, the entropy is computed based
on a finite number of samples. In order to incorporate such finite-size effects
into our analysis, we make use of the Chernoff-Hoewffding tail inequality [198].
This allows us to quantify the probability that the sum of data-points deviates
from its expected value, assuming these are obtained in independent and
identically distributed rounds. From the experiment we collect pairs of data-
points for each question (or state preparation x) and answer (measurement
outcome b). We label by nb,x the number of pairs with question x and answer
b. Then, from the set of questions we label nx the number of questions x,
and form the set of answers we label nb the number of answers b. The total
number of extracted data-points is N =

∑
b nb =

∑
x nx =

∑
b,x nb,x. From
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these, we can obtain the observed frequencies as freq.(b|x) = nb,x/
∑

b nb,x.
Then, neglecting finite-size effects, we can compute the guessing probability
according to the dual SDP with

p∗g ≤ pg = −
∑
b,x

νb,xfreq.(b|x) . (7.36)

With the solution of the dual SDP (i.e., with Ĥω and νb,x that satisfy the
dual constraints), we proceed by evaluating a bound on pg, now taking into
account the finite-size effects. The Chernoff-Hoeffding inequality allows us to
write a bound on the true observed probabilities with respect to the obtained
frequencies. The inequality reads

freq.(b|x) −
√

log (1/ε)

2N
≤ pf.s.(b|x) ≤ freq.(b|x) +

√
log (1/ε)

2N
, (7.37)

for here ε being the probability of this bound not being satisfied (in our
results we choose 10−9). Since coefficients νb,x can be negative or positive,
we might choose either the lower or upper bound on the Chernoff-Hoeffding
inequality. The most conservative choice is to choose the bounds that yield
the highest bound in pg. That is, if νb,x ≥ 0 we choose the lower bound and
otherwise if νb,x ≤ 0. This yields the new bound on the guessing probability

p∗g ≤ pg = −
∑
b,x

νb,xpf.s.(b|x) . (7.38)

7.9.2 Entropy accumulation theorem: dropping the
i.i.d. assumption

The i.i.d. assumption is not very attractive in (semi-)Device Independent
protocols. Indeed, this assumes that the eavesdropper can not learn form past
rounds to have a better guess in future rounds (sort of if the eavesdropper
looses its memory in each round). To get rid of this strong assumption, we
refer to the entropy accumulation theorem and its application in [197] for a
Device-Independent setting. Here we adapt it to our semi-Device Independent
scenario, where nonlocality does not play any role. The EAT places a bound
on the smooth-min-entropy, that is the min-entropy of a distribution ε-close to
the target distribution, per round in a prepare-and-measure experiment with
N rounds. The EAT implies that the operationally total relevant uncertainty
about the total set of outcomes over N rounds BN

1 corresponds to the sum
of the entropies of the individual rounds to first order in N under the i.i.d.
assumption, plus a contribution from not assuming the i.i.d. case. This
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Figure 7.6: Figure extracted from Ref. [16]. (a) Illustration of the trade-off
function fmin we choose to characterize the EAT bound. For a large amount of
data, the EAT bound becomes practically equivalent to the trade-off function.
(b) Scaling of the obtained data-points with the number of collected samples.
We show the raw randomness (i.e. with finite size effects not accounted for),
the i.i.d. case treated with the Chernoff-Hoeffding inequality and the non
i.i.d. case treated with the EAT.
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contribution is provided given that one quantifies the uncertainty of each
individual round with the Von-Neumann entropy of a suitable chosen state.
Formally, the EAT is

1

N
Hε

min(BN
1 |SN

1 E) > t− ν√
N

, (7.39)

where

ν = 2 (log2 (1 + 2dBi
) + ⌈||∇fmin||∞⌉)

√
2 log2 (ε · pΩ) (7.40)

and t ≤ fmin (freq (b|x)) .

Here, dBi
is the dimension of Bi, which in our case is the number of

different outcomes: 3. Also, ε the smoothing of the min-entropy. Finally,
pΩ is the probability of the event Ω of winning a game, or in our case the
probability that the eavesdropper does not guess toe outcome (i.e. pΩ = 1−pg).

A trade-off function for EAT channels fmin is formally defined as fmin(p) ≤
inf

σ∈Σi(p)
H(Bi|SiR

′)σ. The infimum of the Von-Neumann entropy is performed

over all post-measurement states σ after each EAT channel (that is, every
round in our experiment). In our case we can, instead of the Von-Neumann
entropy, consider the min-entropy which we know is the lower bound on
the Von-Neumann entropy. We do that for two main reasons. First, we
do not need to extend our results through the Asymptotic Equipartition
Property (AEP) from characterising the randomness of the outcome with the
min-entropy to the Von-Neumann entropy. Our results are robust and good
enough for the purpose of this work: certify more than one bit of randomness.
The second, and more important reason, is that we already know which is the
minimum min-entropy per round with finite-size effects already accounted
for. Thus, we consider

fmin ≤ inf
σ∈Σi(p)

Hmin(B|E)σ = − log2

(
−
∑
b,x

νb,xpf.s.(b|x)

)
(7.41)

≤ inf
σ∈Σi(p)

H(Bi|SiR
′)σ .

The next step is to find a good candidate for fmin which satisfies that
condition. We see that the maximal value of its derivative ⌈||∇fmin||∞⌉
appears as a negative term in the lower bound. This derivative is performed
over the probability of event Ω (pΩ) which in our case is the event that the
eavesdropper does not guess the measurement outcome (i.e. pΩ = 1 − pg).
A good candidate is then than that is lower than the min-entropy and has
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a derivative with a not-so-big maximal value. We plot in Fig. 7.6 the min-
entropy vs. 1 − pg. We see that its derivative increases as the guessing
probaiblity decreases. Thus, since our goal is to find more than one bit of
ranodmness, we pick fmin = Hmin for 1 − pg ≤ p̃ = 1/2, and an increasing
straight line otherwise. This is pictured in Fig. 7.6. Specifically,

fmin =

Hmin if 1 − pg ≤ p̃,
1 − pg − p̃

(1 − p̃) log 2
− log2(1 − p̃) if 1 − pg ≥ p̃ .

(7.42)

With all this, we can find a certifiable lower bound on the smooth-min-
entropy, exempt of the i.i.d. assumption.
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Chapter 8

Conclusion and outlook

In this thesis, I investigated two main branches in quantum information
science: quantum randomness certification and quantum contextuality, form
the perspective of quantum state discrimination. Here, I take an overview
of all the works presented in this thesis to reflect on their potential, extract
some conclusions and consider future related routes of investigation.

Maximum confidence state discrimination

The problem of discriminating quantum states has been one of the central
topics in quantum information science since the arrival of the quantum theory.
This motivated the development of many state discrimination protocols, the
most remarkable being minimum error state discrimination (MESD) and un-
ambiguous state discrimination (USD). Both protocols have been presented in
this thesis, and there has been a lot of progress during the recent years. Here,
I centered on studying maximum confidence state discrimination (MCSD)
[183], and the reason in twofold. First, because MCSD generalises the notion
of MESD and USD, predicting the best possible measurement for a flexible
rate of inconclusive outcomes or undetected events. It follows that, this
flexibility, might facilitate potential implementations, which makes all works
presented in this thesis good candidates to be implemented in the laboratory.
The second reason is that MCSD proves to be the best measurement strategy
in terms of randomness certification and finding contextual advantages, at
least in two state discrimination scenarios. We base this statement from the
observation that statistics in MCSD cover the limits in the correlation space
parameterized with error and success probabilities [26]. There, measurement
statistics are only reproducible by extremal and unique POVMs, making them
the best candidates for randomness certification.
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In the works presented in this thesis I centered in studying the simplest
case of qubit state discrimination. A natural continuation would therefore be
to extend the scenario to D > 2 dimensional Hilbert spaces. Maximum confi-
dence measurements have been already been studied in a multidimensional
system [157], but only in the symmetric noiseless case. The main obstacle in
examining a more general scenario is that the intuitive Bloch representation
of does not hold anymore. Even for the nearest extension of qutrit states,
an analogous Bloch representations requires eight dimensions. In this case,
a study of the geometry of a noisy and general D-dimensional maximum
confidence measurement remains still a difficult challenge.

Following up, the search for extremal and unique measurements in qubit
spaces through the investigation of quantum correlations (as in Refs. [26,
200]) could be extended to N > 2 states. The challenging part would be
to perform this search at the level of probabilities, and properly find a
good parametrization of the correlation space. For two-state discrimination
scenarios, by simply defining success and error probabilities for both states,
one can draw a comprehensive two-dimensional correlation space. The choice
of error probabilities, in a general N state discrimination case, is not trivial.

Contextual advantages in state discrimination

The context-dependent nature of quantum observables has been one of the
main gaps between classical and quantum models. As so in quantum infor-
mation science, Bell-Kochen-Specker contextuality [18, 19] served to propel
the search for advantages in many aspects versus classical models. Gener-
alised contextuality [20] has been found to provide certain advantages, for
instance, in random-access codes [142], parity-oblivious multiplexing [140,
141], and certain advantages in quantum communication [143, 145] and state
discrimination [27]. In this thesis we elaborated further in finding contextual
advantages in state discrimination. Concretely in Ref. [25] we extended the
work in Ref. [27] finding contextual advantages for USD and MCSD. More-
over, in Ref. [17] we studied the contextual advantages in using MCSD for a
particular state in terms of randomness certification. A simple an interesting
continuation of this work would consist in testing the contextual advantages
in randomness certification when implementing MCSD for the whole ensem-
ble. In [26] we found that this strategy accesses the limits of the space of
correlations in two-state discrimination, which is also very convenient for
randomness generation.

An alternative interesting route of research would be to find other practical
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uses for contextual advantages in state discrimination. For instance, contex-
tuality has been found to provide advantages in quantum key distribution
(QKD) in the notion introduced by Kochen and Specker [201] and in the
Klyachko-Can-Binicioglu-Shumovsky [138] contextuality scenario [202]. Gen-
eralised contextuality advantages in state discrimination could also potentially
be used in communication tasks with QKD protocols.

Quantum randomness certification

Quantum randomness has also been a rapidly developing field of quantum
information science, especially showing significant progress, both fundamen-
tally and experimentally, over the recent years. There exist, however, many
challenges in finding feasible implementations of randomness certification
protocols, from which I will highlight two. First, randomness protocols are
theoretically designed at the level of operators, POVMs and state prepara-
tions. It is not usually trivial to find a direct implementation of a particular
measurement from a POVM description. All that, without mentioning the ex-
perimental challenges entailed in concrete platforms, to generate and maintain
quantum states with tolerable, albeit inevitable, noise values. This introduces
the noise robustness as another main challenge. We know that high values for
randomness can be achieved by extremal and unique measurements, reaching
the limits of the correlation space. Any kind of noise affecting our setup
disturbs the targeted statistics. A small displacement on the correlation space
away from the border of the convex set involves a prominent drop on the
certifiable randomness. The protocol in Ref. [16] is implemented in an optical
platform, using coherent states of light. In this case, the main sources of
noise are photon losses and dark counts. There, we managed to calibrate our
experimental setup to tolerate affordable losses and dark counts, and still
obtain extremely good values of randomness per round.

Moreover, in this thesis we considered only semi-device independent set-
tings in prepare-and-measure scenarios. In Ref. [17] for instance, only the
overlap of the two possible preparations is bounded. Since two states can
only span at maximum a two-dimensional Hilbert space, the dimension is
automatically bounded to a qubit-space. This is not the case in Ref. [16],
where we aim to certify the randomness for three qubit-state preparations.
There, we used a trick to bound the dimensionality of the eavesdropper by
only using a bound on the overlap of the three prepared states. Nonethe-
less, there is a potential alternative method, which involves a hierarchy of
semidefinite programs. The Navascués-Pironio-Aćın (NPA) hierarchy [203,
204] is a method to approximate the quantum set of correlations in bi-partite
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scenarios which does not require to specify either the states or measurements
involved in the experiment, only the observable probabilities. This means
that the dimension of the Hilbert space is completely uncharacterised. Re-
cently, many works implemented the NPA hierarchy for device-independent
randomness certification [205–208]. A similar implementation of the NPA,
but in a semi-device independent single-party prepare-and-measure scenario
such as in Ref. [16], would also solve the issue with the unbounded Hilbert
space dimension. An SDP hierarchy in this case would approximate the
quantum set of correlations reproducible in a prepare-and-measure scenario
from the exterior. Thus, it would provide an upper-bound on the guessing
probability, which gets tighter as the hierarchy level increases. This method
would also facilitate the randomness certification semi-device independently
if the scenario is extended for more than three state preparations.
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