

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 10, 2024

A study of Adversarial Machine Learning for Cybersecurity

Afzal-Houshmand, Sam

Publication date:
2023

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Afzal-Houshmand, S. (2023). A study of Adversarial Machine Learning for Cybersecurity. Technical University of
Denmark.

https://orbit.dtu.dk/en/publications/5a6acf31-01d4-462c-a95c-582f7bdf31b6

PhD Thesis

A study of Adversarial Machine Learning
for Cybersecurity

Sam Afzal-Houshmand

Supervisor: Prof. Christian D. Jensen
Co-supervisors: Prof. Thanassis Gianetsos

DTU Compute
Department of Compute Science
Technical University of Denmark

Richard Petersens Plads
Building 322

2800 Kongens Lyngby, Denmark

Preface
This thesis was written by Sam Afzal-Houshmand. The subject matter is the PhD
conducted on adversarial machine learning for Cybersecurity. It was submitted as
part of the requirements needed to obtain a PhD degree at the Technical University
of Denmark (DTU). The research was conducted in the section ”Cyber Security Engi-
neering” (CSE), Department of Applied Mathematics and Computer science. It was
conducted in the time period 1st of October 2019 to 31st of December 2022. This
projects was a part of the SecDNS project funded by the Innovation Fund Denmark
(IFD) under the SecDNS project (grant number 8090-00050B). The work was done
under supervision of Associate Professor Christian D. Jensen and Associate Professor
Thanassis Giannetsos, Department of Applied Mathematics and Computer Science,
Technical University of Denmark.

Kongens Lyngby, 24th February 2023

Sam Afzal-Houshmand

Abstract
The evolution of Internet of Things is expected to have a major impact on the lives
of citizens as new services can be developed by the integration of the physical and
digital worlds. However, with this increased richness there is also an emergence of
malicious actors. Basically there are hackers that attack the data itself or the models.
The models currently in use are heuristics which are susceptible to machine learning
techniques. The theory is that to solve the issue of machine learning we use machine
learning to defend ourselves i.e. fighting fire with fire. Considering that one of
the core advantages is the unprecedented amount of data available for safety-critical
decision making, we must be able to control those risks i.e. enabling security towards
this direction is the investigation of advanced intrusion detection with the use of
machine/deep-learning algorithms capable of achieving enhanced security awareness.

The goal of this research project was to engage artificial intelligence and data
science technologies towards developing a unified adversarial classification framework
for identifying complex cybersecurity threats on the Internet and other cloud-based
networking paradigms, all while taking into account uncertainty of data provenance,
used for the classification and simultaneously handling the necessary belief inference
and propagation modelling.

Towards this direction, the use of machine learning (ML) and Deep learning (DL)
has become omnipresent especially considering the advancements in computational
efficiency and the maturity of large datasets available everywhere. Their predictions
are used to make decisions about a number of critical applications including (amongst
others) security for identifying complex cybersecurity threats in the context of the
Internet (e.g., malicious domains) and other networking environments. Concretely,
this project will be taking a discourse from the standpoint of malicious Domain Name
Server (DNS) detection. DNS is a critical Internet service resolving IP addresses into
hostnames that is crucial for the day-to-day operations of most safety critical sys-
tems. DNS, however, is susceptible to a wide range of attacks ranging from Domain
Hijacking, DNS Flooding and Distributed Reflection Denial of Service (DRDoS) to
Cache Poisoning, DNS Hijacking, DNS Spoofing, DNS Tunneling, etc. Leveraging
machine- and deep-learning related concepts in the presence of these types of adver-
sarial tactics towards enhanced classification, detection and security awareness is the
core pillar of Adversarial Machine Learning - an emerging research area was exten-
sively investigated in the context of this project towards understanding and improving
the effectiveness of AI methods in the presence of advanced adversaries.

Abstract iii

Streamlined, this project used available collected data sets containing information
about known malicious attacks (e.g. phishing, botnets, viruses, man-in-the-middle
attack, spoofing etc.), in the context of malicious DNS servers (but not exclusively),
towards developing generic classification models that will be able to detect and protect
against such advanced adversaries.

The outcomes were frameworks that addressed the central objective of enhanc-
ing security against advanced adversaries using ML and DL techniques which were
capable of synthetically generate ontologies emulating DNS traffic based on a set of
parameters that was determined from research. From this framework a couple of pa-
pers emerged which addressed how generating ontologies could be viable and the good
results methods such as ML and DL learners applied to such data structure would
denote. Furthermore, the viability of using ML and DL techniques in the realm of
cybersecurity was investigated using other sources such as Mobile Crowd Sourcing
data. This resulted in multiple papers that also take into account advanced tech-
niques in the general area of Artificial Intelligence such as Explainable A.I. With this
new understanding and the proofs provided from extensive experimentation there
should now be a general approach and viability in applying and investigating ML
based models in cybersecurity and comprehending their robustness against advanced
adversarial learners.

Resume (Danish)
Udviklingen af Internet of Things forventes at få stor indflydelse på den generelle
borgers liv, da nye tjenester kan udvikles ved integration af den fysiske og digitale
verden. Men med denne øgede rigdom er der også en fremkomst af ondsindede ak-
tører. Grundlæggende er der hackere, der angriber selve dataene eller modellerne.
De modeller, der i øjeblikket er i brug, er heurestik, som er modtagelige for maskin-
læringsteknikker. Teorien er, at for at løse problemet med maskinlæring bruger vi
maskinlæring til at forsvare os selv, dvs. bekæmpe ild med ild. I betragtning af, at
en af kernefordelene er den hidtil usete mængde data, der er tilgængelig til sikker-
hedskritisk beslutningstagning, må vi være i stand til at kontrollere disse risici med
nøglesikkerhedsaktivere, der er rettet mod denne retning, som er undersøgelsen af
avanceret indtrængningsdetektion baseret på brugen af maskine/deep-learning algo-
ritmer der er i stand til at opnå øget sikkerhedsbevidsthed.

Målet med dette forskningsprojekt var at engagere kunstig intelligens og datavi-
denskabelige teknologier til at udvikle en samlet kontradiktorisk klassifikationsramme
til at identificere komplekse cybersikkerhedstrusler på internettet og andre cloud-
baserede netværksparadigmer, sammen under hensyntagen til usikkerhed om data
herkomst, brugt til klassificeringen, samtidig med at den nødvendige trosslutning og
udbredelsesmodellering håndteres.

I denne retning er brugen af maskin- og dyb-læring blevet allestedsnærværende,
især i betragtning af fremskridtene inden for beregningseffektivitet og modenheden af
store datasæt, der er tilgængelige i moderne sammenhæng. Deres forudsigelser bruges
til at træffe beslutninger om en række kritiske applikationer, herunder (blandt andre)
sikkerhed til at identificere komplekse cybersikkerhedstrusler i forbindelse med inter-
nettet (f.eks. ondsindede domæner) og andre netværksmiljøer. Konkret tog dette
projekt en diskurs ud fra synspunktet om ondsindet domænenavneserver (DNS) de-
tektion. DNS er en kritisk internettjeneste, der omsætter IP-adresser til værtsnavne,
som er afgørende for den daglige drift af de fleste sikkerhedskritiske systemer. DNS
er imidlertid modtagelig for en lang række angreb lige fra domænekapring, DNS-
oversvømmelse og DRDoS (Distributed Reflection Denial of Service) til cacheforgift-
ning, DNS-kapring, DNS-spoofing, DNS-tunneling osv. Udnyttelse af maskin- og dyb-
læring relaterede koncepter i nærvær af de førnævnte modstridende taktikker mod
forbedret klassificering, detektion og sikkerhedsbevidsthed er kernepillen i Adversar-
ial Machine Learning – et andet fremvoksende forskningsområde, der var undersøgt i
forbindelse med dette projekt for at forstå og forbedre effektiviteten af AI metoder i

Resume (Danish) v

nærværelse af sofistikerede modstandere.
Strømlinet vil dette projekt bruge tilgængelige indsamlede datasæt indeholdende

information om kendte ondsindede angreb (f.eks. phishing, botnets, vira, man-in-
the-middle-angreb, spoofing osv.) i sammenhæng med ondsindede DNS-servere (men
ikke udelukkende) , mod at udvikle generiske klassifikationsmodeller, der vil være i
stand til at opdage og beskytte mod sådanne modstandere.

Resultaterne var en ramme, der adresserede det centrale mål, som var i stand til
syntetisk at generere ontologier, der emulerede DNS-trafik baseret på et sæt parame-
tre, der blev bestemt ud fra forskning. Ud fra denne ramme dukkede et par artikler
op, som omhandlede, hvordan generering af ontologier kunne være levedygtige, og de
gode resultater, som sådanne ML- og DL-metoder anvendt på en sådan datastruktur
ville betegne. Ydermere blev levedygtigheden af at bruge ML-teknikker inden for cy-
bersikkerhed undersøgt ved hjælp af andre kilder såsom Mobile Crowd Sourcing-data.
Dette resulterede i flere artikler, der også tager højde for avancerede teknikker inden
for det generelle område for kunstig intelligens såsom Explainable A.I. Med denne nye
forståelse og beviserne fra omfattende eksperimenter burde der nu være en generel
tilgang og levedygtighed i at anvende og undersøge ML-baserede modeller inden for
cybersikkerhed og forstå deres robusthed over for modstridende aktører.

Acknowledgements
I would like to acknowledge my main supervisors Christian D. Jensen and Thanassis
Giannetsos whose guidance was very insightful and useful during this period of time
where within this PhD was conducted. I would also like to particularity acknowledge
Post.Doc Sajad Homayoun for his close collaboration, mentorship and guiding in
helping me progress with the PhD throughout.

I would also like to acknowledge our partners and contemporaries at Aalborg
Univeristy for their collaboration throughout via the SecDNS project. Their contri-
butions were most helpful in achieving the objective we set out to achieve together
for this project.

Another acknowledgement goes out to CSIS security group, in particular Amine
Laghaout whose insight and vision for the SecDNS project helped shape the directions
we took our research in throughout the PhD.

Additionally, I would also like to thank the Danish Fund of Innovation (IFD) for
funding this project and the Technical University of Denmark (DTU) for providing a
good space for me to conduct my research within.

Lastly, I would like to thank my friends and family whose support throughout I
could not be without.

List of publications
The main publications included in this thesis

• A proof of concept for supervised learning on ontologies

• A Perfect Match: Deep Learning Towards Enhanced Data Trustworthiness in
Crowd-Sensing Systems

• Detecting Ambiguous Phishing Certificates using Machine Learning

• Explainable Artificial Intelligence to Enhance Data Trustworthiness in Crowd-
Sensing Systems

Abbreviations
ML Machine Learning

DL Deep Learning

RL Reinforcement Learning

IDS Intrusion Detection System

NIDS Network Intrusion Detection System

ERD Entity Relationship Diagram

AML Adversarial Machine Learning

Contents
Preface i

Abstract ii

Resume (Danish) iv

Acknowledgements vi

List of publications vii

Abbreviations viii

Contents ix

1 Introduction 1
1.1 Methodology for SecDNS . 2

2 Problem Dispositions 4
2.1 State-of-the art in Cyber Crime Prevention 5
2.2 Objectives . 7

3 Theoretical Background and Context 9
3.1 Adversarial Machine Learning . 9

3.1.1 Threat Model . 10
3.1.2 Taxonomy of Attacks . 12
3.1.3 Preparation . 13
3.1.4 Manifestation . 14
3.1.5 Attack Evaluation . 14

3.2 Embedding Approaches . 15
3.2.1 Embedding literature . 16
3.2.2 Graph based embedding . 19
3.2.3 Nested data structures . 21
3.2.4 Selected Embedding approaches 22

3.3 Machine learning techniques . 23

Contents x

3.3.1 Feed-forward Neural Networks 24
3.3.2 Recurrent Neural Networks . 25
3.3.3 Reinforcement Learning . 25

3.4 Explainable Artificial Intelligence . 26
3.4.1 SHAP (SHapley Additive exPlanations) 28
3.4.2 Class Activation Mapping (CAM) 28
3.4.3 LIME (Local Interpretable Model-agnostic Explanations) . . . 29

3.5 Mobile Crowd Sourcing . 29
3.6 Belief Propagation in Ontologies . 31

3.6.1 Fundamentals of Belief . 31
3.6.2 Probability distribution . 32
3.6.3 Probability Mass Functions . 33
3.6.4 Marginal Probabilities . 33
3.6.5 Markov Chains and Properties 35
3.6.6 Belief Propagation Theory . 36
3.6.7 Bayesian Inference and Graphical Networks 37
3.6.8 Marginal Probability in context of Graph Inference Applications 38
3.6.9 Belief Propagation for Bayesian Networks 40
3.6.10 Non-parametic Belief Propagation 41
3.6.11 Approximate Belief Propagation 42
3.6.12 Belief Propagation in Malicious DNS Graph Mining 43
3.6.13 Considered Potential Belief Propagation (BP) Approaches . . . 45
3.6.14 Synthetic Event-based Dataset 47
3.6.15 Markovian BP by applying Neural Networks 48

3.6.15.1 Evaluation of BP Framework 49
3.7 Applying Theoretical Context Study 50

4 Papers 51

5 Conclusive Outlook from Outcomes 89

Bibliography 90

CHAPTER1
Introduction

This PhD was funded and made as part of the larger SecDNS project. The foundation
of the SecDNS project was build on designing a comprehensive model for cyber-crime
detection based on the use of machine learning concepts and classification algorithms.
The central component of the model is the classification of malicious domains, which
entail the calculation, aggregation and propagation of beliefs. To that end we would
use DNS traffic data that was provided by our collaborators at CSIS security group
among others. Particularly, it is beliefs on whether a domain is malicious or not from
the basis of the input data features and the type of attack vectors considered during
the classification process which were collected with interest.

The part DTU took part in had overall objectives to specify, develop and deliver a
belief inference and propagation engine based on a detailed feature constraint analysis
and trust management of all data sources (both internal and external). Additional
techniques and mechanisms were to be implemented towards scalability in order to
extract complex security insights and timely identify evolving threats. Taking all
these issues into account, we identified a number of research challenges and defined
our methodology on how to tackle each one of them based on the state-of-the-art of
each one of these core topics i.e.:

• Statistical Classification Methods and Tools

• Neural-based Classification

• Belief Inference and Propagation

• Adversarial Machine Learning

Specifically, the work conducted in this PhD study was centered around the Adver-
sarial Machine Learning aspects of this project. The desire was to use the foundation
of this project to study the viability, effectiveness, mitigation and opportunities pos-
sible with adversarial machine learning for cybersecurity. While the SecDNS founda-
tion is found within DNS traffic data, the work done is this thesis including its papers
are not constrained to this only. The main objective of the PhD was to investigate
and study adversarial machine learning for cybersecurity in its totality. This meant
we would take advantage of whatever may have been available to gain the desired
knowledge in this broad scope.

This thesis provides context of the main objectives of this study through the
theoretical background. This serves as the foundation behind the papers that were

1.1 Methodology for SecDNS 2

produced and are the central part of this work as we are presenting a collection
of papers as the central contributions. By the end of it, it should be clear that
the problem disposition that laid foundation for the overall project was addressed
effectively through the study in this PhD which in turn lead to contributions in
the general field of adversarial machine learning for Cybersecurity from a holistic
perspective.

1.1 Methodology for SecDNS
Pertaining to the SecDNS project, belief propagation algorithms are considered the
most efficient way of processing calculated beliefs regarding a domain’s maliciousness
through a network towards any kind of intelligent detection engine. In this context,
the SecDNS project has defined an Entity Relationship Diagram (ERD) which serves
as the foundation for the research directions and the generalized ontologies that were
considered as seen in figure 1.1.

This diagram provided served as the standpoint to build a holistic detection engine
capable of identifying malicious domains. In regards to the designed classification and
belief inference & propagation capabilities, these can be viewed in two interlocking
phases where:

• Phase I - is identification and extraction of the data features that best capture

H
IG

H
-L

E
V

E
L

LO
W

-L
E

V
E

L

DATA, OBJECTS, AND AGENTS IDENTIFIERS AND ADDRESSES

Phishing

DNS security

C&C

Malware

interaction

entity

attribute

HTTP

DNS

CT

SMTP/IMAP

edges

nodes

business case communication protocol

cert. authority

name server

packet

person

IP address service

file
pathname

content

OS

MAC address

e-mailtext body

domain e-mail addr.

URL

queries↑→ maps→↕

time-to-live

queries→

links to→

send→
receive←

record type

sent by↑
received by↑

device

attaches links to↓

registers→

creation date

accesses←

certifies→↕

is auth.→

DHCP server

maps↑↔

ASN

certificate

is in→

is within

registrar

expiration date

Figure 1.1. ERD from the monograph for the SecDNS project

1.1 Methodology for SecDNS 3

the modalities and characteristics of the network traffic to be used for the further
classification of malicious domains

• Phase II - the belief calculation, aggregation, and propagation of the graph-
ical network so that all calculated beliefs can be correlated towards the final
classification decision of benign and malicious classification.

The tasks on DTU’s end was centered around defining a novel classification model
of malicious domains based on a number of evidence (classification based on malicious-
ness).

In this thesis we will first get into details of what problem disposition we were set
with at the onset of this project. Then a theoretical background will be presented
to add detailed context to the papers which are the central piece of this work. Then
centrally for the thesis, each key paper that this study produced is presented. Lastly,
a chapter on the outlook we gained from the outcomes from the papers and project
in general is provided.

CHAPTER2
Problem Dispositions

In this section we will go into details on the problem disposition that was presented
at the onset of this project and the other issues that emerged throughout the time
period of the study as a result of what was studied about the state-of-the-art in the
area. This will lead into the main objectives that were then defined for this study
which were attempted to be addressed with the papers and work that this project
resulted in.

Traditionally, computer security has relied on conventional stationary measures
(from static repositories of intelligence) of defense against cyber-crime actors. Such
intelligence is, however, difficult to acquire and does not scale easily to the internet.
Even more significant is the difficulty such a stagnant approach have with preventing
novel threats. The SecDNS project arose from the realization that these limitations
can be overcome by applying machine learning to the cyber security domain. The
central idea was the design of a comprehensive model for cyber crime prevention us-
ing machine learning, which would be brought to fruition through the collaboration
between academic expertise (at AAU and DTU) and the hands-on access and pro-
cessing of data (at CSIS). The cyber crime prevention engine that was desired was
based on three key concepts:

• Feature engineering (i.e., the design of data relevant to cyber security),

• Belief propagation (i.e., the theory which underpins the propagation of threats
in an interacting network of entities just as is the case for virtually any event
on the internet)

• Machine learning (i.e., the disruptive, heuristic-independent, self-learning com-
putation which unravels crucial correlations between observed events and immi-
nent threats).

In scope of the greater society, the vision of this project was to create a powerful
and comprehensive model which could automatically discover a slew of online threats
and vulnerabilities, and thereby preventing extreme losses to the Danish industry in
particular while legitimizing online businesses worldwide in general.

In terms of academic perspective, the concept was to attain knowledge in the
area and investigate its viability and how to create a generalized framework that can
be used to applying A.I concepts in the realm of cyber security. Specifically, study

2.1 State-of-the art in Cyber Crime Prevention 5

the effectiveness at creating ML based models for cyber crime prevention and how
they are affected by adversaries that could conduct attacks using advanced attack
strategies (including ML based attack strategies). This also evolved to encompass,
how to create an experimentation framework to address difficulties often encountered
when doing ML and DL based experiments such as a lack of labelled data.

2.1 State-of-the art in Cyber Crime Prevention
Cybersecurity encompasses a wide range of cyberattacks and cyberdefenses that in-
cludes, but is not limited to: intrusion detection, malware detection, preventative
security (e.g. access controls, 2-factor-authentication, security training), network
monitoring, and associated investigative and remediation efforts. Defending com-
puter networks from unauthorized use and malicious domains has become an increas-
ingly critical challenge for industries, public organisations, and private individuals in
most recent years. These vulnerabilities may be hidden undiscovered on computer
networks threatening to be the vectors of the next major data breach, service disrup-
tion, or illicit appropriation of hardware. Malicious actors exploit these previously
unknown, little-known, or unpatched vulnerabilities to misuse network resources or
edge devices, sometimes to costly or disastrous effect.

The utilization of advanced network scanning and security inference algorithms
provide the cornerstones for the development of next-generation advanced Network
Intrusion Detection Systems (NIDS). By using large data sets and ML techniques
to train such systems, the analysis of network traffic and the subsequent detection
of security threats are made possible. Conventional NIDSs, antivirus software, and
similar tools have relied on heuristic-based rules and malware signatures to perform
detection so far. Using Matching, or signature-based detection techniques like these
are effective when similar attacks are known to security software developers. How-
ever, Advanced actors will sometimes rely on novel, or zero-day, vulnerabilities that
are typically resistant to signature-based detection. Detecting malicious events on a
network that are previously unknown or for which detection rules has not yet been
created requires that NIDSs follow an anomaly detection-based approach typically
denoted as a model of ”normal network activity” that is estimated, and future activ-
ity on the network is evaluated with respect to its probability under the learnt model.
This way, it is possible to distinguish a typical and potentially malicious network
activity (i.e., malicious domain) from benign.

As commonly used and despite the significant advances in NIDS technology, the
vast majority of solutions still operate using less capable signature-based techniques,
contrary to anomaly detection techniques. There are several reasons for this reluc-
tance to switch, which includes the high false error rate (and associated costs), diffi-
culty in obtaining reliable training data, longevity of training data and behavioural
dynamics of the system. Shone et al. [1] identify three main challenges concerning
the creation of a widely accepted anomaly detection technique capable of overcoming

2.1 State-of-the art in Cyber Crime Prevention 6

limitations induced by the ongoing changes occurring in modern networks i.e.:

• The continuous drastic growth in the volume of network data. This growth can
be predominantly attributed to increasing levels of connectivity, the popularity
of the Internet of Things (IoT) and the extensive adoption of cloud-based ser-
vices. Dealing with the sheer volumes of Big Data requires techniques that can
analyse data in an increasingly rapid, efficient and effective manner.

• The in-depth monitoring and granularity required to improve effectiveness and
accuracy. NIDS analysis needs to be more detailed and contextually aware,
which means shifting away from abstract and high-level observations. E.g. be-
havioural changes need to be easily attributable to specific elements of a network
such as individual users, operating system versions or protocols.

• The number of different protocols and the diversity of data traversing through
modern networks. This is possibly the most significant challenge and intro-
duces high-levels of difficulty and complexity when attempting to differentiate
between normal and abnormal behaviour. It increases the difficulty in estab-
lishing an accurate norm and widens the scope for potential exploitation or
zero-day attacks.

There are four basic types of analytics, providing businesses with insights that
can support decision making, which are increasing in both complexity and power i.e.:

• Descriptive

• Diagnostic

• Predictive

• Prescriptive

(i)
In recent years, one of the main focuses within NIDS research and the insights ex-

traction from cyber-threats have been the application of deep learning (DL), machine
learning (ML) and shallow learning techniques such as PCA, Naive Bayes, Decision
Trees and Support Vector Machines (SVM) [1], [2], [3]. The application of these
techniques has offered improvements in detection accuracy. However, there are limi-
tations with these techniques, such as the comparatively high level of human expert
interaction required, where expert knowledge is needed to process data e.g. identi-
fying useful data and patterns. Not only is this a labour intensive and expensive
process but it is also error prone. Similarly, a vast quantity of training data is re-
quired for operation (with associated time overheads), which can become challenging
in a heterogeneous and dynamic environment.

To address the above limitations, a research area currently receiving substantial
interest across multiple domains is that of Deep Learning (DL) and Adversarial Ma-
chine Learning [4]. All the technical advancements in security brought by Artificial

2.2 Objectives 7

Intelligence are due to its self-learning and self-enhancement capabilities, as it capa-
ble of mining and learning various types of data, such as spam e-mails, messages,
and videos, to then evolving an autonomous detection/defence systems. Continuous
self-training can further promote the performance of AI-powered systems, which in-
cludes their stability, accuracy, efficiency, and scalability. This is an advanced subset
of ML, which can overcome some of the limitations of shallow learning. Thus far,
DL research has demonstrated that its superior layer-wise feature learning can better
or at least match the performance of shallow learning techniques [5]. It enables to
facilitate a deeper analysis of network data and faster identification of any anomalies.

Recent advances on the DL front include experimental works using Recurrent
Neural Networks (RNN) to analyse log and network traffic data [5], [6], [7], [8], which
is sequential by nature. These works not only demonstrate the capacity for anomaly
detection via RNNs with such data but also introduce an attention mechanism to the
model that provides context for the flagged anomalies. These works follow an earlier
application of Long Short-Term Memory (LSTM) models for intrusion detection given
system call logs captured at the host level [9]. Additionally, models based on Artificial
Neural Networks (ANNs), such as Autoencoders [10], [11] and Autoencoder Ensem-
bles, have proven to be effective in detecting anomalous network behaviour while also
being lightweight, leading to the creation of a new paradigm of online, unsupervised,
distributed and efficient DL-enabled NIDSs, such as Kitsune [12].

2.2 Objectives
Based on the condition of the state-of-the-art in the area along with the require-
ments set by the SecDNS project, what was needed was the development of algo-
rithms for advanced analytics that will ingest security data towards the realisation of
an advanced intrusion framework that would be capable of detecting organisational
communication abnormalities and as well as communication abnormalities with the
Internet at large through observing traffic from both unused IP address spaces (the
so-called ”Darknet” or ”Deepnet”) as well as from used IP address spaces (or Inter-
net). Detection of darknet traffic can be used as an indication of Distributed Denial
of Service (DDoS) reflective attacks, misconfigured nodes or malware scans and at-
tacks. On the other hand, anomalous traffic observed in the Internet can indicate
a strong likelihood of the presence of compromised or malicious devices in an opera-
tional network. Aggregated data can be used for training purposes to detect malicious
behaviour. The identified malicious behaviour can also be automatically categorised
and stored in a fingerprinting database. This will allow us to successfully identify
future attacks with the same or similar behaviour. ML and DL have been used for
such classification, although new, emerging research on using Broad Learning based
on organically growing network consisting of various kinds of IoT sensors and devices,
are showing promise. The data mining processes will be streamlined, creating both
high-performance lightweight distributed and accurate models, leading to high detec-

2.2 Objectives 8

tion accuracy, cost and latency reduction. To this end, Deep Analysis functionalities
need to be investigate towards dynamically performing intrusion detection, extract-
ing analytics (features) from network traffic, identifying and correlating anomalous
communication at networking and endpoint level, and discovering new patterns by
building incremental models that can be parallelized.

Summarily, we can in short claim we strived to:

• Create a framework functioning as a ML based intelligence detection engine
using DNS traffic data

• Create an general experimental framework that could address persistent issues
regarding modelling NIDS which would allow users to set the parameters them-
selves and generate neccesary data if needed

• Study the effect of adversarial strategies and the advantages that ML and DL
based models may be provide through research and experimentation

• Explorer various techniques of ML and DL approaches in various contexts in
the realm of Cybersecurity to attain indication of the general viability of their
applications

CHAPTER3
Theoretical

Background and
Context

The theoretical background and Context chapter of this thesis is based on the theory
behind multiple project deliverables and papers that spun out of the SecDNS project
as an outcome of the PhD study. It strive to cover the central topics of research as
it concerns this PhD study, and while it won’t cover everything it will cover what is
needed to understand the context in which the outcomes of this PhD was achieved
which mainly reflected in the included papers. This encompass research, proposed
methodologies and experimentation which all hopefully lead into the specific outcomes
refelected in the included papers.

3.1 Adversarial Machine Learning
The rapidly expanding adoption of ML technologies has rendered them attractive
targets for adversaries who want to manipulate such mechanisms for malevolent pur-
poses [13]. All ML systems are trained using data sets that are assumed to be rep-
resentative and trustworthy for the subject matter in question, thus, enabling the
construction of a valid system perception of the matter of interest. However, mali-
cious actors can impact the decision-making algorithms of such approaches by either
targeting the training data or forcing the model toward their desired output, e.g.,
misclassification of abnormal events. These types of attacks, known as poisoning and
evasion attacks [14], allow adversaries to significantly decrease overall performance,
cause targeted misclassification or bad behaviour, and insert backdoors and neural
trojans [15,16].

Adversarial Machine Learning (AML) sits at the intersection of machine learning
and cyber security, and it is often defined as the study of effective machine learning
techniques against an adversarial opponent. For example, Huang et al. [17] pro-
posed a new method that learns robust classifiers from supervised data by generating

3.1 Adversarial Machine Learning 10

adversarial examples as an intermediate step facilitating the attack detection. Rep-
resentative examples of applications that AML can be applied to include intrusion
detection, spam filtering, visual recognition and biometrics authentication.

3.1.1 Threat Model
The attack models considered in the context of AML implement mainly a couple of
types of attacks i.e.: poisoning and evasion. The high level goal of these models is
to maximize the generalization error of the classification and possibly mislead the
decision making system towards desired malicious measurement values T . As stated
in [18], a system that uses machine learning aims to find a hypothesis function f that
maps observable events into different classes.

To exemplify such models, we could consider a system that monitors network
behaviour and performs anomaly-based intrusion detection. An instance of this be-
haviour is an event that is classified using utility function f either as Normal or
Malicious. Within this context, we can assume an input space X = {xi} and an out-
put space Y = {yi}, where xi is an event and yi is the output of this event determined
by f , i.e. f(xi) = yi. Additionally, we assume that the system has been trained using
N samples that form the training set S and it has derived the system perception, de-
noted by ŷ. After the end of the training phase, the system receives new events from
the actual environment and classifies them. We define this as the run-time phase of
the system. For every new event x̂i, f gives a new output f(x̂i) = ŷi. The following
cases will be denoted:

• If x̂i is malicious and the system does not recognize it as such (false negative)
there is a loss l caused to the system.

• If x̂i is malicious and the system recognizes it as such (true positive) or it is not
malicious then there is no loss to the system.

• If x̂i is not malicious and the system recognizes it as such (false positive) then
there is a loss λ.

The aim of the attacker is to maximize the impact the attack has to the system
by maximizing |f(x̂i) − yi|. Thus, a challenge of the system that defends is to find
a hypothesis/utility function that minimizes the losses, measured as the distance of
f(x̂i) to the real output yi. This function can be linear or nonlinear and be more
complex in formulation as in [19].

Evasion attacks: The adversary can take on an evasion attack against classifi-
cation during the testing phase thus producing a wrong system perception. In this
case, the goal of the adversary is to achieve misclassification of some data towards, for
example, remaining stealthy or mimicking some desirable behaviour. With regards to
network anomaly-based detection, an intrusion detection system (IDS) can be evaded
by encoding the attack payload in such a way that the destination of the data is

3.1 Adversarial Machine Learning 11

able to decode it but the IDS is not leading to a possible misclassification. Thus, the
attacker can compromise the targeted system being spotted out by the IDS.

An additional goal of the attacker could be to cause ”concept drift” to the sys-
tem leading to continuous system re-training, thus, significantly degrading its per-
formance [13]. To exemplify, we can consider a monitoring system that is based on
heterogeneous, crowdsourced data originating froms users’ sensing-capable devices to-
wards building a wide-scale information collection networks that can provide insights
for various contexts [20] (e.g., traffic jams). In this context, an adversarial agent
could introduce a misleading measurement sample at time τ , which can be modelled
as:

x
(a)
i (τ) = min(xt

i + τδ + ηi(τ), T), ∀ i = {1, ..., Na}, (3.1)
such that

τ = 0 x
(a)
i = xt

i + ηi(0) ≈ xt
i

τ = 1 x
(a)
i = min(xt

i + δ + ηi(1), T)

τ = 2 x
(a)
i = min(xt

i + 2δ + ηi(2), T)
. . .

τ → ∞ x(a) = T (3.2)

where δ is a small positive number used to slowly drift from the ”legitimate” mea-
surement of the adversarial agent’s device to the targeted final malicious measurement
value T , and ηi(τ) is a small noise component modelled by Gaussian distribution at
time instant τ . The system provides N samples {xi} made up of legitimate measure-
ments {xt

i} and malicious measurements {x(a)
i } generated by Na adversarial agents

with the overall goal to trigger the concept drift detection module, thus, leading to
a continuous system re-training, hearkening it all back to that re-training inherently
performs clustering for unsupervised classification problems which is a very compu-
tationally expensive process. When this is achieved, the adversary may also have the
chance to conduct a poisoning attack causing even higher damage to the system.

Poisoning attacks: The adversary can poison the training dataset. To achieve
this, the adversary derives and injects a point to decrease the classification accuracy
[21]. This attack has the ability to completely distort the classification function during
its training process thus allowing the attacker to define the classification of the system
in any way that is desired. The magnitude of the classification error depends on the
data the attacker has chosen to poison the training. To exemplify, the adversary may
be able to create a dataset of anomalous network-layer protocol behaviour and train
an anomaly-based intrusion detection system with a labelled attack dataset as the
ground-truth. As a result, the detector will not be able to recognize cyber attacks
against this network-layer protocol threatening the security of the underlying system.
This attack could be customized to also have a significant impact to the quality of
a signature-based intrusion detection system, which is responsible, for example, for
detecting malware infecting a system or an infrastructure.

3.1 Adversarial Machine Learning 12

Another particularly insidious attack in this category is the backdoor or trojan
attack, where the adversary carefully poisons the model by inserting a backdoor key
to ensure it will perform well on standard training data and validation samples, but
misbehaves only when a backdoor key is present. Thus an attacker can selectively
make a model misbehave by introducing backdoor keys once the model is deployed.
To exemplify, we can consider the case of assistive driving in autonomous vehicles
where a backdoor could cause the model to misclassify a stop sign as speed limit
whenever a specific mark has been placed on the stop sign. In this case, however,
the model would perform as expected on stop signs without this mark, making the
backdoor difficult to detect since users do not know the backdoor key.

To notate this, we can denote by b the benefit of the attacker from attacking
the system, where b = |yi − ŷi|, and by c as the cost of the attacker, which may be
associated with the amount of effort the attacker has to put to perform the attack
and the risk to get captured.

If we assume that the attacker injects a malicious point xc into a legitimate dataset
D to form a new compromised dataset D′. The goal of the attacker is to maximize
the generalization error W during the validation of m data samples, e.g.,: maxxc

W =∑m
j=1 l(yj , f(x̂j ,Wj)) + λ||W ||.
where f is the hypothesis function (i.e., classifier) that has been trained on a

contaminated training set, which includes xc, λ is a regularization co-efficient and
ŷj = Wx̂j .

3.1.2 Taxonomy of Attacks
While the implementation details of attacks against machine learning may vary con-
siderably, their individual steps can be broadly classified into two distinct phases: (i)
Preparation, and (ii) Manifestation, as illustrated and detailed in Figure 3.1.

Algorithmof

Attack Specificity
Targeted

Attack Mode
Colluding Non colluding

operating as

Clustering
Classification

Hybrid

Attack type

aims for

Attacker Knowledge
Graybox

Whitebox

with

Game Theory

supported by

Preparation

Manifestation

has

Yes
No

EvasionPoisoning

Attacks
against

Machine
Learning

Indiscriminate

Blackbox

Figure 3.1. A taxonomy of adversarial attacks on machine learning.

3.1 Adversarial Machine Learning 13

3.1.3 Preparation
In the preparation phase, the attackers identify their resources and gather the intelli-
gence required to prepare an attack plan. Here, what determines the characteristics of
an adversarial machine learning approach is the knowledge required by the attacker,
as well as the type of machine learning technique targeted and whether the attacker
is strategic. As such we discuss the following features:

• Attacker Knowledge: Here, we take the simplified view whereby the attacker
may know (K1) the Ground truth, (K2) the learning algorithm, or both, leading
to the following attacker knowledge categories:

– Blackbox attacks: ¬K1 ∧ ¬K2.
– Graybox attacks: K1 ∨K2.
– Whitebox attacks: K1 ∧K2.

According to [22], the attacker knowledge may refer to (i) the training data, (ii)
the feature set, (iii) the machine learning algorithm along with the objective
function minimized during training and (iv) any trained parameters if applica-
ble.

• Algorithm: A large variety of machine learning techniques has been targeted
in the literature. Commonly, it is DNNs and Convolutional Neural Networks
(CNNs) that are typically addressed in the image recognition domain, while in
spam email detection, though more common are Naive Bayes, Support Vector
Machines (SVM) and Logistic Regression (LR). Other techniques, such as K-
Means, K-Nearest Neighbour (KNN), Linear Regression, Community Discovery
and Singular Value Decomposition, are typically seen in the malware detection,
biometric recognition and network failure and security breach detection domains.
For the purposes of this taxonomy, we have classified the techniques based on
the machine learning algorithm used in: i) clustering, ii) classification, or iii)
hybrid fashion.

• Game theory: Adversarial machine learning is commonly equipped with a
strategic element, whereby, in game theory terminology, the defender is the ma-
chine learning classifier and the attacker is a data generator aiming to contami-
nate, for example, the training dataset. Both choose their actions strategically
in what can be seen as a non-cooperative game [23]. The adversary aims at
confusing the classification or clustering with costs related to, e.g. the trans-
formation process or probability of being detected. Contrarily, the defender
incurs, for instance a cost for misclassifying samples. The importance of game
theory for the defender lies within the field of making the classifiers more aware
of adversarial actions and more resistant to them.

3.1 Adversarial Machine Learning 14

3.1.4 Manifestation
Manifestation is the phase where the adversary launches the attack against the ma-
chine learning system. Largely dependent on the intelligence gathered in the prepa-
ration phase, the attack manifestation can be characterized based on the following
characteristics:

• Attack Specificity:
This refers to range of data points that are targeted by the attacker [18,24]. It
is also mentioned as error specificity in the recent survey of Barreno et al. [22].

– Targeted: The focus of the attack is on a particular sample (e.g., specific
spam email misclassified as legitimate) or a small set of samples.

– Indiscriminate: The adversary attacks a very general class of samples,
such as ”any false negative” (e.g., maximizing the percentage of spam
emails misclassified as legitimate).

• Attack Type: This refers to how the machine learning system is affected by
an attack [18,24].

– Poisoning: Poisoning attacks alter the training process through influence
over the training data.

– Evasion: Evasion attacks exploit misclassifications but do not affect train-
ing (e.g. the learner or offline analysis, to discover information).

• Attack Mode: The original assumption of adversarial machine learning, which
is still taken in most related literature, is that attackers work on their own
(non-colluding case). The alternative is that different colluding attackers can
collaborate, not only to cover their tracks but also to increase efficiency.

3.1.5 Attack Evaluation
The output of an attack’s manifestation is primarily characterized by the nature of
its impact on the accuracy of a machine learning approach.

• Evaluation Approach: A goal of this work is to help researchers and devel-
opers improve the resilience of their mechanisms against adversarial machine
learning by adopting approaches that have been thoroughly evaluated. We clas-
sify the related literature based on whether the proposed approaches have been
evaluated analytically, in simulation, or experimentally.

• Performance impact: The primary aim of adversarial machine learning is to
reduce the performance of a classification or clustering process that is based on
machine learning. For classification problems, this can be interpreted as increase
in false positives or in false negatives, or in both. For clustering problems, the
aim is generally to reduce accuracy.

3.2 Embedding Approaches 15

– False positives: In classification problems, such as spam detection, where
there are two states (spam or normal), the aim of an attacker may be to
make the targeted system falsely label many normal emails as spam emails.
This would lead to the user missing emails.

– False negatives: Using the same example, if the attacker aims to increase
the false negatives, then many spam emails would go through the user’s
filters.

– Both false positives and false negatives: Here, the attacker aims to
reduce the overall confidence of the user in their spam filtering system by
letting spam emails go through and by filtering out normal emails.

– Clustering accuracy reduction: Compared to classification, the accu-
racy of clustering is less straight-forward to evaluate. Here, we include
a general reduction of accuracy as the overall aim of the attacker of a
clustering algorithm.

3.2 Embedding Approaches
The datasets we often encounter in the realm of Adversarial machine learning and
more specifically DNS traffic data are often not pre-processed. Within that, a major
challenge emerged especially in context of DNS Traffic dataset which can be applied
to a general issue that can be encountered when creating Intrusion Detection System
(IDS) in association to adversarial machine learning models. Namely, when dealing
with data which have updating beliefs over time it can be problematic if the entities
and interaction between entities are present in nested data structures.

An exammple of nested data structures could be following teh structure as shown
in figure 3.2.

An actual excerpt of our DNS dataset in the SecDNS project show the complexity
that might be encountered:

Data Structure Example
[x] [”127.0.0.1”]
[x1, x2, x3,, xn] [”89.202.139.130”, ”89.202.139.136”]
{k : v} {”127.0.0.1”: ”no_result”}
{k1 : v1, k1 : v2, k3 : v3...kn : vn} {”2001:4860:4802:32::15”: ”US”, ”2001:4860:4802:34::15”: ”US”}
{k:[v1, v2, v3...vn] {”playtv.fr”: [”104.26.14.247”, ”104.26.15.247”, ”172.67.69.167”]}
{k1:[v1, v2, v3...vn], k2:[v1, v2, v3...vn] {”playtv.fr”: [”104.26.14.247”], ”playtv2.fr”: [”172.67.69.137”] }

The issue that is to be addressed is, that machine learning algorithms typically
ingest data in the form of numerical vectors, i.e., of ordered collections of booleans,
integers, or floats. In order to engineer such vector features, also known as embeddings,
one needs a transformation from an arbitrary nesting to a vector.

3.2 Embedding Approaches 16

d = list([
dict(

key11=list([
79,
70,
41]),

key12=list([
96,
90]),

),
dict(

key21=list([
10,
13,
17]),

key22=list([
26,
31]),

key23=list([
12,
3]),

),
dict(

key31=list([
10,
10,
9]),

),
])

Figure 3.2. Example of list ◦ dict ◦ list ◦ int.

3.2.1 Embedding literature
Fundamentally, the approaches considered could be broken down into Flatten/col-
lapse the dicts for a single representation that can be embedded where we embed
each element and infer the embeddings onto each other via arithmetic operation or
infer the embeddings onto each other by feeding them to a Neural network and con-
catanate the output.

Works that address the specific issue in regards to similar datasets as to DNS traf-
fic are sparse at best. The literature research has touched upon a lot of fairly common
technical approaches including embedding of categorical data, one-hot encoding, vec-
tor calculations etc. To address the specific issues there seemed to be the most overlap
with word-based encoding techniques such as word2vec [25], bag-of-words [26]
or methods that can also be found via [27]. In this context, however, it was more

3.2 Embedding Approaches 17

advantageous to look more holistic approaches such as doc2vec (or sentence2vec) that
used context words to merge embedding of multiple strings or cat2vec (categorical
variable to vectors) which allows us to represent high cardinality categorical variables
using low dimension embedding. The idea with cat2vec is to turn category into a
vector representation by using contextual information to assign a values, which lets
you pool information between categories with similarity. In context of NN we can
initialize with random vectors and fit the embedding via back-propagation, however,
we can also separately generate some embedding and use them effectively with linear
or logistic regression [28] [29].

The embedding aspect is fairly approachable but we had investigated approaches
on how to effectively combine multiple embedding across multiple stages. These
approaches often combine the embedding by using order, rank or hierachy or
flattening the datasets with no order considered. This came to include multilevel op-
timizations [30], nested list comprehension [31], dimensionality reduction [32], NMF,
multigrid solvers, multiplying vector of embedding, average of vector embedding,
concatenating embedding, Cosine-similarity. Pairwise rank learning [33], sub list
embedding and more. Other approaches include Graph-based approaches such as
the ones discussed across in stellargraph [34] including various iterations of GCN via
vector embeddings [35], nearest neighbor, clustering and classification for reaching
the decision [31] which can circumvent some of the issues such as the need to consider
rank and averaging the embeddings

The issues to address are two-fold. One issue is to address the high cardinality
of the dataset in question and the other issue is how to merge multiple embeddings.
To address the high cardinality it seems that a common approach to use is target
encoding along with factorization [36] which is proven across many works to be
suitable for high cardinality categorical string variables such as IP, DNS, URL etc.
which is appropriate for us. Other techniques such as Rare-word collapse, frequency
binning, random embedding, hashing, luduan features and quantile encoding has
proven useful to address high cardinality [37] [38], however, it should be noted that
one-hot encoding is typically not recommended for such contexts.

Addressing the second major issue can be more open-ended as some of the more
relevant works as denoted earlier take the approach of embeddings being treated as
vectors and can effectively be used as representative when computing the dot product
or sum of two vectors of embeddings. Another approach that have been suggested
across multiple works is to average multiple embeddings and then concatenating them
in nested data structures [39] [31]. In machine learning context a normalisation step
using e.g. min-max/l1/l2 normalisation can be recommended. Using max instead of
average can also be useful. However, in ML if we are using dissimilar features it may be
best to use concatenation before embedding [36] i.e. Average then concatanation.
This is typically done in conjunction with flattening the vectors dimensionality which
can be done multiple ways e.g. PCA, SVD, clustering,rank, decision tree, nested list
comprehension, GlobalAveragePooling1D, NMF [40].

Another major approach seem to be collapsing the ranks of the dataset to reach a
point where a single vector of embedding remain as representative. This can be done

3.2 Embedding Approaches 18

if we can justify similarity.
The average is a good summary because, under a reasonable statistical model of

neural embeddings there is a very small chance that two unrelated collections will have
similar means. The mean is a reasonable way to summarize embeddings thanks to the
concept of dimensionality reduction. Because an exponential number of embeddings
are nearly orthogonal in high dimensions, it is unlikely for two independent collections
to have similar averages. On the other hand, two related documents are guaranteed
to have similar averages. As a result, two collections have similar averages if and only
if they share many similar embeddings with very high probability. Retaining order
while reducing dimensionalty via common processes such as PCA is also often applied
such as themed in figure 3.3.

The intuitive simple way to construct embedding of complex data structures from
word embeddings is vector arithmics on all the vectors. Another possibility that can
be of interest is to use a fixed operator for vector summarizing like averaging and learn
word embeddings in a preceding layer, using a learning target that is aimed at pro-
ducing rich document embeddings e.g. using sentences to predict context sentences.
word embeddings are optimized for averaging into document representations using a
cosine layer before softmax pooling of averages of word embeddings [41]. Kanter et
al did exactly that, using a simple neural network over an averaging of word vectors,
learning the word embeddings by predicting, given a sentence representation, its sur-
rounding sentences. They compare the results to both averaged word2vec vectors
and to skip-through vectors.Furthermore, it should be explained that Kanter et.al.
proposes an approximate approach to the issues of nested data structures however

Figure 3.3. Idea is to concatenate to retain order and do dimension reduction operations
to gain a vector of fixed length and this diagram illustrate the process in a nested structure

3.2 Embedding Approaches 19

they are still working on a 1-dimensional plane i.e. they concatenate nested values
directly unto the the other leafs, which in turn undermines the ordinal info that could
be extracted. An approach to inferring the nested values can possible be found in
theorems regarding multilevel optimization [31],hierachical graphs [30], pairwise rank-
ing [33] and/or ngraph based appraoches which we will address in their own section.
Hill et. al. compare a plethora of methods, including training CBOW and skip-gram
word embeddings while optimizing for sentence representation (here using element-
wise addition of word vectors) that was based on Mikolov’s word2vec model. The
skip-gram model computes surrounding word-embeddings by being a model similar
to word2vec where is trained on context-target words given by a window-size (words
that can appear next to each other). By using one-hot encoding of words as a input
we can use the one-hot encoding of a context word and feed it to the neural network.
This in turn is multiplied with the weights of the hidden layers in the network. By
applying a softmax layer for the output we end up with a probability vector where
each component represent the probability of the given string that had been encoded
being the defined target word. Afterward a loss function is applied and through
back-propagtation we can update the weights which the word-embeddings.

The last point I would like to add is that since there is no logic behind how we
order the data in our dataset, there is no advantage to use concatenation as the only
reason to use concatenation would be to retain order information.

3.2.2 Graph based embedding
Graph embeddings are the transformation of property graphs to a vector or a set of
vectors. Embedding should capture the graph topology, vertex-to-vertex relationship,
and other relevant information about graphs, subgraphs, and vertices. We can roughly
divide embeddings into two groups [42]:

Vertex embeddings: We encode each vertex (node) with its own vector rep-
resentation. We would use this embedding when we want to perform visualization
or prediction on the vertex level, e.g. visualization of vertices in the 2D plane, or
prediction of new connections based on vertex similarities.

Graph embeddings: Here we represent the whole graph with a single vector.
Those embeddings are used when we want to make predictions on the graph level and
when we want to compare or visualize the whole graphs, e.g. comparison of chemical
structures. Later, we will present a few commonly used approaches from the first
group (DeepWalk, node2vec, SDNE) and approach graph2vec from the second group.

Graph analytic can lead to better quantitative understanding and control of com-
plex networks, but traditional methods suffer from high computational cost and ex-
cessive memory requirements associated with the high-dimensionality and heteroge-
neous characteristics. Graph embedding techniques can be effective in converting
high-dimensional sparse graphs into low-dimensional, dense and continuous vector
spaces, preserving maximally the graph structure properties. Another type of emerg-
ing graph embedding employs Gaussian distribution-based graph embedding with

3.2 Embedding Approaches 20

important uncertainty estimation. The main goal of graph embedding methods is
to pack every node’s properties into a vector with a smaller dimension, hence, node
similarity in the original complex irregular spaces can be easily quantified in the
embedded vector spaces using standard metrics [42].

Node2vec is used for the computation of node embedding, where the embeddings
are learned in a way that ensures that the nodes are close in the graph remain close
in the embedding space. This is suppported by frameworks such as Stellargraph. [34]
Attri2vec is used to calculate node embeddings, where it learns node representations
through performing a linear/non-linear mapping on node content attributes while
simultaneously making nodes sharing similar context nodes in random walks have
similar representations. Once in possession of the node content features we can use
those to learn node embeddings where we wish that Attri2vec can achieve better
link prediction performnance than the only structure preserving network embedding
algorithm Node2vec [43].

GraphSAGE method learns the node embedding for attributed graphs through
aggregating neigboring node attributes. The aggregation parameters are learned
through encouraging node pairs co-occuring in short random walks to attain simi-
lar representations. Node attributes are also leveraged, so graphSAGE is expected to
perform better than Node2Vect in link predictions [34].

GCN is yet another method of node embeddings where withing the node embed-
dings are learned thorugh graph convolution. Conventional GCN relies on node labels
as a supervision to perform training, where we consider the unsupervised link predic-
tion setting and attept to kearn informative GCN node embeddings by making nodes
co-occuring in short random walks represented closely as is performed in training
GraphSAGE [43].

Also worth mentioning is graph embedding approach which embeds the whole
where the methods computes one vector to describe the graph namely the graph2vec
approach. Graph2vec is based on doc2vec which in turn is based on word2vect. This
methods uses a skip-pgra where it gets an id of the data structure in question is
trained to predic random occurences. It consists of sampling and relabelling all sub-
graphs from graph, train the skip-gram model and compute embedding as a one-hot
vector retrieving the outcome from the hidden layer [42].

We can use these types of node embeddings to train and evaluate the resulting
link prediction model doing a graph mapping of the onthology would produce. This
is somewwhat achieved by using 4 different operators i.e. Hadamard, L1, L2, Average.
A paper provides a detailed descitption of the these operators. All operators produce
link embeddings that have equal dimensionality to the input node embeddings.

One advantage of treating the issue of nested categories as a graph issue is that we
can do the merging before the embedding unlike the word-based embeddings which we
approach semantically with models such as ELMO. Essentially, we can merge nodes
from different graphs into a singular representation hereafter we do the embedding by
methods such as Node2Vec via StellarGraph. To merge nodes from different graphs
we require a type of compatibility evaluation of sorts. There is tools for that including
gvpr which stands for graph pattern scanning and processing language. This will take

3.2 Embedding Approaches 21

graphs as input and output a new graph which has reduced the dimensionality of the
two graphs together. This works on the assumption that there is significant similarity
between the two graphs.

3.2.3 Nested data structures
The above described approaches are mostly based on data structures with two levels.
However, what about cases with multiple levels? Works touch upon this issue namely
with pairwise ranking, hierachical structures, multi-level procedures and
Graph based approaches. It is possible with arithmic approaches we discussed
first, specifically, when we apply some type of weight to the inference meaning we can
use theorems from advanced aggregations such as hierachical weighted average where
multiplication of non-null child data values by their corresponding weight values,
then divides the result by the sum of the weight values. Unlike Weighted Average,
Hierarchical Weighted Average includes weight values in the denominator sum even
when the corresponding child values are null. That why we can infer back the average
knowledge of each end leaf. However, for simplicity most works try to apply some sort
of dimensionality reduction using SVM, PCA, NMF etc. based upon the contextual
information from their data. Hierarchical interpertation of data structures is detailed
and illustrated in figure 3.4.

In cases with words in alternate sets e.g. dictionaries it may be advantageous to
take an approach that does not rely on distance /similarity between words but rather
should be based on devising a mapping-transformation between two words which is

Figure 3.4. The nested data structures can be drawn as a hierachical structure of vectors.
The idea is that we don’t know the full embedding (see table for examples) and we would
like to compute using the embeddings from each entity/object i.e. each i leaf in the model.
The issue is how to infer the information from the embeddings upwards to gain fi

3.2 Embedding Approaches 22

mentioned in multiple key works. Those works is usually based upon learning a linear
transformation matrix (such as in some of the works of mikolov et. al. [44]) typically
notated as a translation matrix.

One approach is to align vector spaces whereafter a simple operation is possible.
In such a case this is achieved with a rotation matrix.

Another approach is to do dimensionality reduction like concept et.al. did by
doing PCA, SVM or similar where the objective is to learn the projection from k
dimensions to k’ dimensions that remove redundancy from concartanation.

3.2.4 Selected Embedding approaches
From investigating the state of the art in the area and aligning it with our data struc-
ture for SecDNS there are multiple approaches that was possible with embedding
these nested categorical features which also include various approaches for encod-
ing. Applying these embeddings schemers are validating them with the same simple
classifier for best performance can help determine the preferred method to use.

The generalized approaches that was tried for the embedding are these structures:

1. 1) Flatten/collapse the dicts for a single representation as a string that can be
embedded via word2vec, BERT or one-hot

2. 2a) Encode (one-hot, word2vec) each string and infer the embeddings onto
each other via arithmetic/linear operations simple averaging , concatenation,
weighted average, addition etc. Can be done in conjunction with embedding
models for dimensionality reduction.

3. 2b) infer the embedding onto each other by feeding them to a feedforward NN
after concatanate/averaging them to receive the collective embedding represen-
tation at the pooling layer. Requires normalization.

4. 2c) Build context vectors for categorical features such as the ones applied in
doc2vec, cat2vec etc. to retain possible contextual information and effectively
reduce dimensionality by using similarity.

5. 3) Map the features as graph and perform node2vec after node merging since
that does not cosider hierachy or perform graph2vec for singular embedding
representation

Generally, all of this methods can was applied along with variations of encoding,
but the performance of them is dependent on the dataset in question and what is
desired. Simple operations often proved useful but was more accurate when a context
vector for the categorical features could be inferred as a weight through multiplication.

3.3 Machine learning techniques 23

3.3 Machine learning techniques
Fundamentally, neural networks which are the foundation for deep learning are a set
of algorithms designed to recognize patterns in a model. The networks works by
interpreting sensory data through some mode of machine perception effectively la-
belling or clustering raw input. The output (i.e. recognized patterns) are numerical,
contained in vectors into which all real-world data (images, sound, text, time series
etc.) need to be translated. Neural networks can be viewed as a clustering and clas-
sification layer on top of the data stored/managed, helping to group unlabelled data
according to similarities among the example inputs and classifying data when the
network system have a labelled dataset to train. It should also be noted that neural
networks can also extract features that are fed to other algorithms for clustering and
classification which makes it possible to look upon deep neural networks as compo-
nents of larger machine-learning applications involving algorithms for reinforcement
learning, classification and regression in context of implementations. Classification
tasks depending upon labelled datasets is known as supervised learning i.e. humans
transferring knowledge to neural network. Clustering (i.e. grouping) functions as
the detection of similarities, are used for learning without the labels which is called
unsupervised learning. With enough training deep learning is capable of establishing
correlations between current events and future events effectively running regressions
on the past and the future. Expanding this it is possible to introduce other algo-
rithms to establish models working towards a goal i.e. reinforcement learning [45].
Technically, deep learning is stacked neural networks which is networks composed of
several layers made of nodes where nodes is a place where a computation happens
given a sufficient threshold is met for a condition. Each node combines input from
data with a set of coefficients/weights which can amplify or damper it effectively
assigning significance to input with regards to the task the algorithm is trying to
learn which builds upon the network. The input-weight outcomes are summed and
that sum is passed through nodes’ activation function to determine whether or not
the signal should progress further towards the final outcome. Essentially, input is
fed to a input layer and progresses through a number of hidden layers of nodes (also
called depth) to a final output layer. The feature extraction is often automated in
such systems. In such networks concepts such as optimization algorithms such as
gradient descent and activation functions such as softmax are methods to improve
the complexity and accuracy of neural networks. To convert continuous signals into
binary output a mechanism is the common logistic regression. In deep learning it is
also advantageous to comprehend the concept of back-propagation. With this con-
cept it is possible to efficiently compute the gradient of the loss function with respect
to weights in a neural network in context of typical input-output scenario. That com-
putation make it useful to utilize gradient methods for training multi-layer networks,
updating weights to minimize loss commonly in concordance with the use of gradient
descent or variants such as stochastic gradient descent. From a technical standpoint
the back-propagation algorithm works by computing the gradient of the loss function

3.3 Machine learning techniques 24

with respect to each weight by the chain rule iterating backwards layer-by-layer at
sometime from the last layer to avoid redundant calculations of intermediate terms
in the chain rule (e.g. dynamic programming) [46] [45].

Belief propagation in neural networks could be computed by firing rates of pop-
ulations, which is multiple samples from probability distributions. The recurrent
networks can integrate and fire neurons by performing belief propagation with spikes
coding for sudden increases in probability. An advantage in neural networks belief
propagation is the avoidance of inferring loopy and false beliefs by transferring only
predication errors i.e. the difference inputs and a prediction of these inputs by the
next layer or by a local inhibitory loops cancelling reverberated deviations [47].

Typically, Recurrent neural networks are used for malicious domain detection
as it is compatible with real-time monotorization, however, some works have been
using Convulotional neural networks to process text in context of natrual-language
processing which is effective tools against malicious domains names [48].

Fundamentally, the reasoning for utilizing a neural network context for fulfilling
the purposes of the SecDNS project lies in the advantages it presents. In context
of the ERD graph in a neural network context the advantage is that it works in
cases of unlabelled data which derives that no ground truth is necessary. It allows
high level of uncertainty without the need of clustering which is computationally
heavy. In case of RNN it is always updating the belief update and belief propagation.
Another advantageous option with neural networks is the classification based on data
features that exhibit a high degree of correlations to the core of the auxiliary malicious
classification data feature. The main disadvantage is that neural networks are very
dependent on the specificity of parameters which makes it difficult (and procedurally
costly if desired to be corrected) to handle or change in response to changes (i.e.
natural changes) often requiring re-training of the model.

3.3.1 Feed-forward Neural Networks
A Feedforward neural network (also known as multilayer perceptrons) have the goal
to approximate function f∗. Essentially, to reiterate this goal for a classifier y = f∗(x)
maps an input x to a category y so in such a context the feedforward network defines
a mapping y = f(x; θ) to learn the value of the parameters θ that results in the best
function approximate. Such models have information flowing through the function
being evaluated from x through the intermediate computations utilized to define f
leading to the output y and in this context there are no feedback connections in which
outputs of the model are fed back to itself [49] [50].

Works have been done in proposing neural networks that also propagates uncer-
tainty about beliefs which is a is useful in malicious DNS detection as the beliefs are
then updated according to uncertainty that is propagated through the network at eh
introduction of current data [50].

3.3 Machine learning techniques 25

3.3.2 Recurrent Neural Networks
The recurrent neural network is similar to the regular feedforward neural networks
with the exception that there is a form of feedback connection. Essentially, con-
nections between nodes form a directed graph along a temporal sequence (allowing
dynamic temporal behaviour) by its use of the networks internal state (or memory)
to process the sequences of inputs. RNN is classified into two broad classes with sim-
ilar general structure i.e. finite pulses and infinite pulses. A finite impulse recurrent
network is a directed acyclic graph which can be unrolled and replaced with a strictly
feedforward neutral network whereas on the contrary an infinite impulse recurrent
network is a directed cyclic graph that can not be unrolled. Additionally, it is possible
to have a stored state that may be under direct control of the network with recurrent
neural networks which is also known as feedback neural network [46] [51].

As it relates to the SecDNS project, there have been several works (and patents)
proposing neural network models trained for detecting malicious domains. Some
works have utilized recurrent neural networks with ability to detect names gen-
erated by DGAs with high precision by being trained on a large set of domains
generated by various malware [52]. In context of these large scale big data sets
of DNS data a lot of methodologies that utilize apache spark clusters for storage
and machine learning classifiers such as long short-term memory (LSTM) and deep
learning approaches such as RNN networks since there have been proven to be
accurate and quite scalable. In this context, domain names are encoded in two
steps which is pre-processing by tokenization and dictionary creation of the train-
ing data set i.e. input − data − shape ∗ weights.of − character − embedding =
(nb − words, character − embedding − dimension). where input data − shape =
(nb − words, dict − size), where nb − words denotes the number of top charac-
ters, dict-size denotes the number of unique characters, each character is represented
in on-hot encoding format and weight-of-character-embedding=(dict-size, character-
embedding-dimension), character-embedding-dimension denoted the size of character
embedding vector. The hyper parameter operation maps the discrete characters to
its vectors which can then be passed through the layers in RNN. These systems are
build upon some few known information such as features of URL, IPs, name length
and other to establish a initial belief the model can then build upon [53].

3.3.3 Reinforcement Learning
In deep learning the concept of supervised learning (i.e. labelled data) and unsuper-
vised learning (i.e. unlabelled data) is commonly used and known. Besides these
two there is also reinforcement learning which is concerned with how software agents
ought to take actions in a given environment in order to maximize a notion of cu-
mulative reward. This form of learning does not necessarily need labelled data to be
presented and bad actions does not need full corrections instead focusing on exploring
new actions while retaining good actions i.e. exploring new knowledge while exploit-

3.4 Explainable Artificial Intelligence 26

ing current knowledge. Technically, this is typically formulated as a markov decision
process (MDP). The markov decision process is in context a set of environment and
agent states S, a set of actions A of the agents, the probability of transition from state
s to state s′ under action a is denoted as Pa(s, s′) = Pr(st + 1 = s′ | st = s, at = a,
the immediate reward after transition from s to s′ with action a denoted as Ra(s, s′),
rules that describe what the agent observes which are often stochastic. A grade va-
riety of methods for using current knowledge to determine which actions are good
in a network in context of exploration have been proposed over the year e.g. cirte-
rion of optimality by policy and state-value function, brute forcing, value functions,
monte-carlo methods, temporal difference methods and direct policy search [49].

3.4 Explainable Artificial Intelligence
In its base principality, it can be said that Explainable Artificial Intelligence (XAI)
is AI where the results of the intelligent solution is interpretable which is in con-
trast to the typical black box architectures followed by some machine learning al-
gorithms especially neural networks. Machine learning has a long history of being
applied to time-series data, however, the high complexity of those solution tends to
make the interpretation difficult. Without a quantitative assessment it may be hard
to understand areas of temporal data which may affect the prediction. Enter XAI
which may offer a solution to these issues, adding the additional knowledge that may
strengthen the overall model essentially aiding the models prediction by additional
information [54] [55] [56].

In this PhD study we decided to focus on its application with time-series data as
that is commonly used in NIDS systems and there are a multitude of algorithms to
use when applying explainable AI on time series information.

The most common XAI algorithms in their base forms, namely SHAP (SHapley
Additive exPlanations) and Class Activation Mapping (CAM) were studied closely. In
addition, the study of the impact of well-known non-sequential based XAI algorithms
called LIME (Local Interpretable Model-agnostic Explanations) was conducted to
study the difference between sequential and non-sequential XAI algorithms in detect-
ing malicious samples generated by adversaries.

Generally, the pipeline of applying XAI to a time-series would denote numerical
values as a scalar from -1 to 1 signifying importance score or impact. To break this
down simply we take the model and the raw data as input and obtain a vector of fixed
length determined by a set sized sliding-window in which we train the model. The
significance of the elements within what the vector consist of represent the impact the
values at a given time-frame have on the prediction. So this numerical value represent
whether a given step in the raw dataset affect the prediction negatively or positively,
which is dependent on a baseline computed by using the model and raw data as
input with the resulting prediction that can be used for comparison. This way XAI
is applied holistically to the model and will explain what kind of importance areas of

3.4 Explainable Artificial Intelligence 27

the input stream has for a given feature which are values that can be used in a variety
of ways such as enrichment or weight adjustment for the NN model. The properties
of these values added possible enrichment as one of their inherent capabilities is that
they are also affected by adversarial attack strategies which can make these values
distinguishable dependent on what type of attack has been applied to them

For SHAPley we are calculating the impact an value has on its prediction (mean-
ing it is independent from other categories). With an DL learner in time-series we
calculate SHAP values by a window of values which can be aggregated together for a
singular/shortened representation. The resulting vector is concatanated with values
for each category feature so we end up with a series of vectors where each section of
elements represent a feature explanatory value for a given time-frame. Furthermore,
this value is a scalar from -1 to 1 that can be interpreted as an impact score, with the
feature values given by a feature at time i, for the prediction of said feature derived
from the pre-trained DL model if it took some baseline value. From the SHAPley
software description the prediction starts from the baseline. The baseline for Shapley
values is the average of all predictions. There is also other method of gaining the base-
line such as an approximate method. Same concept can be applied to CAM version
for time series data. LIME is a different story all together since it is a non-sequential
model but the final output is still an impact score at each time-step which like SHAP
and CAM can be summed for a singular representation.

In cases of univariate sqequential data it may be advantageous to just use the
XAI values without applying any aggregation (some dimensionality reduction can be
applied for very sparse cases) to retain the ordinal info and get a good representation
of the impact (denoted as a score) over time. To that end, an sliding-window of a
given size can be applied so we end up with a vector of a fixed size representing the
XAI values for that chunk of samples. A lot of approaches aggregates these chunks
to reduce the dimmensionality.

The concept is that by using the predictions and feature values we can gain a
corresponding time of impact values for each feature at each time-step. These val-
ues are also affected by the adversarial strategies, therefore, enabling enrichment of
our existing vectors of distance metrics between predictions and feature values with
impact values which can all be distinguishable between legitimate and malicious sam-
ples. We essentially add in values that can be classified as malicious when compared
to a legitimate sample and concatenate with our existing vector with the same prop-
erty effectively creating more elaborate classifiers that possess more values that are
distinguishable. This approach is somewhat novel but is based on what is already
known about SHAP values and applying SHAP to time-series data which calculate
Shapley values step-wise in a time series. This is also called permutation importance
which is an approach that extracts importance per permutation enabled by XAI. It
is worthy to note that SHAP and XAI in general are often used in context of multi-
variate models. The approach that was focused on in this study (and reflected in one
of the included papers) is somewhat novel as it is based on single feature orderings,
however, it conducted this single feature ordering done step-wise in frames of time
samples within a time series making it effectively a combination of applying XAI

3.4 Explainable Artificial Intelligence 28

to time-serie by calculating impact values step-wise for each time-step applied to a
single feature ordering (often called and approximate method with the TreeSHAP
algorithm). The key goal of SHAP is to explain the prediction for any instance Xi as
a sum of contributions from it’s individual feature values which is then step-wise in
time-series context. Effectively we end up with a sequential order of values ranging
-1 to 1 which can be concatenated with our sequential order of distance metrics (be-
tween feature values and predictions) as an enrichment due to the explanatory values
having the property of also being affected by adversarial samples making it possible
to distinguish between malicious impact scores and legitimate impact scores. Same
concepts are applicable for CAM, LIME or any other XAI representation.

3.4.1 SHAP (SHapley Additive exPlanations)
Shapley values can be summarized as the average of the marginal contributions across
all permutations of a machine learning model. There are multiple advantages of SHAP.
One of the advantages provided by SHAP include global interpretability which is the
collective SHAP values showing how much each predictor contributes be it negative
or positive to the target variable. The second benefit is the local interpretability
where each observation gets its own set of shap values. Third the SHAP values can
be calculated for tree based models [54].

Once the model has been run on with a dataset we can run the DeepExplainer
and extract the SHAP importance score values locally [57]. So once we have a model
from a collection of observations we can feed this into the explainer API for SHAP
and extract some numerical values showcasing the importance of each feature. We
can then use this to add weights to our re-trained network and thus gain a better
model [58] [59].

3.4.2 Class Activation Mapping (CAM)
Unlike the SHAP which works best on a recurrent neural network model/ Long short-
term memory the Class activation mapping (CAM) works best for Convulotional
neural network model. With CAM we perform Global Average pooling on all fea-
tures before the output layer for the CNN which is fed 1D information [60]. Those
features which will be obtained are then fed to a fully connected layer with softmax
activation which produce an output that is interpretable to our given framework i.e.
an importance score. Unlike SHAP, the values for CAM are absolute so the impor-
tance of the features are determined in relation to one another which is a another step
of calculation. Otherwise the input vector is the same i.e. vector of values [61]. The
importance score like with SHAP are then used to retrain a more accurate model over
time. Unlike with RNN and SHAP we do not need to fully intialize the model once
before performing the explainer importance score extraction [54] [62] [63] [64] [65].

3.5 Mobile Crowd Sourcing 29

3.4.3 LIME (Local Interpretable Model-agnostic Explanations)
Another approach which we already took inspiration from with the SHAP approach
is the non-sequential approach using LIME (Local interpretable model-agnostic expla-
nations). LIME explains the prediction of any classifier in an interpretable manner by
learning an interpretable model locally around the prediction. LIME does not consider
the sequential order of data so a snapshot is sufficient. It is however more consistent.
Otherwise, a similar pipeline with numerical importance scores was used [56].

3.5 Mobile Crowd Sourcing
One of the other major data sources that was utilized in multiple works in this
study was data gained from mobile crowd sourcing (MCS). It was utilized since it
is commonplace and readily available which makes the experimentation conducted
easily replicable. Furthermore, it allows us to study the impact of adversarial machine
learning for cybersecurity in a more general perspective. Pertaining to MCS, System
Model: Where the actors involved in Mobile Crowd Sensing can be broadly classified
as (i) users, (ii) task initiators and (iii) infrastructure components (Figure 3.5). Users
are participants operating their mobile devices (e.g. smart-phones, tablets, smart
vehicles), equipped with multiple embedded sensors and navigation modules. These
platforms also possess transceivers that can communicate over wireless local area (i.e.,
802.11a/b/g/n) and cellular networks (3rd Generation (3G) and Long Term Evolution
(LTE)).

Task initiators (or campaign administrators) are defined as organizations, public
authorities or, even, individuals that initiate targeted data collection campaigns, by
recruiting users and distributing sensing tasks to them. Based on the adopted sensing
approach, the recruitment depends on the desired degree of user involvement in the
sensing process.

The back-end infrastructure is responsible for supporting the life-cycle of a sens-
ing task. Some works suggest, or assume, the existence of a centralized infrastructure
component to which users submit their data. Usually, such a centralized server is
run by the campaign administrators so that they can have direct access to the results
of the sensory tasks (i.e., reported sensor readings). As shown in Figure 3.5, the
campaign administrator initiates sensing tasks by either uploading the corresponding
specifications to a central repository (Step 1) or by directly distributing them to the
targeted pool of users (Step 2). Users can then start participating in the sensing
process and upload their contributions to the central server (Step 3); which may
perform some type of aggregation on the submitted reports, depending on the ap-
plication scenario. The collected (and possibly analyzed) sensor readings are finally
released in various forms, e.g., attached to maps or as statistics, made available to
the participants or to a larger public. Raw sensor data are collected on user devices
and processed by local analytic algorithms towards producing consumable data for

3.5 Mobile Crowd Sourcing 30

requesting applications [66]. In this context, for a specific time window with n time
steps, we consider a dataset D with the following format shown in (3.3),

D =

v1,1 . . . v1,j . . . v1,m

...
...

...
vi,1 . . . vi,j . . . vi,m

...
...

...
vn,1 . . . vn,j . . . vn,m

 (3.3)

where vi,j reflects the value of sensor j at time step i. Therefore, we have a sequence
of values, for each sensor, in the form of Sj = [v1,j , v2,j , · · · , vi,j , · · · , vn,j], and this is
where sequential analysis techniques, like LSTMs, are beneficial in extracting useful
insights from the relationships between the various sequence values.

Threat Model: The aim of adversarial agents is to mislead the MCS applications
towards considering malicious measurement values as legitimate in their services. To
this end, an adversary may change several of the input values vi,j in Sj to v′

i,j , where
v′

i,j ̸= vi,j , with the goal of maximizing the following constraint function:

max f [xt − x(a)(τ)] s.t. f ≤ T (3.4)

where f denotes a utility function of the adversarial agent, xt represents the actual
ground truth measurement value and x(a) denotes the malicious measurement sample.
The function can be linear or nonlinear and be more complex in formulation as in [19].

Looking at this model, there are two primary adversarial attack models [67]: 1) pre-
training (poisoning) attacks, and 2) post-training (evasion) attacks. In pre-training
attacks, adversaries try to inject malicious data in an attempt to poison the training
dataset and, thus, decrease the classification accuracy of the classifier. In the post-
training attack scenarios, adversaries aim at misleading trained classifiers to mis-
classify samples towards a malevolent intent.

Let us assume f(xi) = yi as the mapping function to calculate/map xi to yi.
For every new sensed values x′

i, f gives a new output f(x′
i) = y′

i, and we have the
following cases:

• True Positive: if x′
i is positive and f correctly outputs positive, there is no loss

on the application.

• False Positive: if x′
i is negative and f outputs positive, there is a loss ϵ on the

application.

• False Negative: if x′
i is positive and f outputs negative, there is a loss l on the

application.

• True Negative: if x′
i is negative and f correctly outputs negative, there is no

loss on the application.

3.6 Belief Propagation in Ontologies 31

Resource-rich mobile
devices; accelerometer,
gyroscope, GPS, etc.

- Participatory Sensing
- Opportunistic Sensing
- Urban Sensing

Campaign initiator directly
tasks and queries
participating devices
(Step 4)

Communication with
App Server (Step 3)
- Contributions
Centralized Architecture

Infrastructure Server
 Component

 Aggregation Service

- Queries
- Results

 Task Distribution (Step 1):
 Pull approach

- Incentives (Step 5)
- Rewards

 Decentralized Architecture

 Users

 Task Distribution (Step 2):
 Push approach

Task Initiator

Figure 3.5. Architectural Overview of Mobile Crowd Sensing

In principle, a machine learning technique tries to minimize |f(x′
i) − y′

i| which
means minimizing l and ϵ. On the contrary, an adversarial attacker attempts to
maximize the impact of the attack by maximizing |f(x′

i) − y′
i|. In the rest of the

paper we refer to adversarial data as positive class of data, and legitimate data as
negative class.

3.6 Belief Propagation in Ontologies
This section reviews the candidate approaches for propagating beliefs in the SecDNS
project. Belief propagation is a broad topic in its own, but in the context in this study
it referred to the challenge we were assigned to solve regarding how to effectively and
correctly propagate and infer beliefs of malisciousness to domains. We also discuss
limitations according to our concerns and our experiments.

3.6.1 Fundamentals of Belief
Belief is fundamentally viewed as the conviction of something being true. In cyberse-
curity environments such as the one for the SecDNS project it is about the belief of
something being a malicious threat or not which is sometimes called benign. Conven-
tional cybersecurity-by-design erects lines of defences within the computer/system
infrastructure itself e.g. authentication mechanisms, firewalls etc. In data-driven cy-
bersecurity which is the context that was relevant to this project, the beliefs is based
on estimating the severity of threats based on observed data. This results in an esti-
mation which forms a quantifiable belief from which final decisions can be motivated.
What has been structured for beliefs in the project was a belief tuple S = (β1, ..., βB)

3.6 Belief Propagation in Ontologies 32

being a collection of B ∈ N possible beliefs that may be held about a problem. Con-
sequentially, each constituent belief βk∈{1,...,B} therefore refers to a type of threat
or vulnerability. Additionally, each belief can be assigned a numerical score bk of
severity, likelihood or risk where these score could be assembled into a belief vector

denoted as b⃗ =

b1
.
.
.
bB

 which shall satisfy bk ∈ [0, 1],∀k ∈ {1, ..., B} , and
∑B

k=1 bk = 1

if B > 1, so as to live on a standard simplex β = span{⃗b} which is referred to in this
project as the belief space.

In the SecDNS project belief can be defined as a vector of b1, b2, ..., bn. In ap-
plication that means that for event Ei the totality of belief can be denoted as:
Ei(B) = b1, b2, ..., bj regarding threats t1, t2, ..., tj derives that the classification of
malicious entity/domain is based on the aggregation of set of belief B by threshold
τ . The relationship of threats may be utilized to calculate the weights of beliefs in
context of network applications of malicious domain detection.

3.6.2 Probability distribution
In the field of probability theory and statistics, a probability is a quantifiable measure
of how probable it is for something to happen. Conversely, probability distribution
is a mathematical function which provides the probabilities of occurrences of various
possible outcomes in any given experimental scenario. Technically, the probability
distribution is a description of a random phenomenon termed in probabilities of events.
This probability distribution is specified by the underlying sample space the given
experiment is build upon, which is the set of all possible outcomes of the random
phenomenon being observed denoted by either real numbers, vectors and/or non-
numerical values.

Generally speaking, when discussing probability distribution, it is divided into
two classes, namely, discrete probability distribution or continuous probability dis-
tribution. The discrete probability distribution class is associated to scenarios where
the set of possible outcomes is discrete values which mean that in this context it is
possible for the distribution to be encoded by a discrete list of the probabilities of the
outcomes which is also known as the probability mass function (PMF). In contrast,
the continuous probability distribution class is applicable to scenarios where the set
of possible outcomes can take values in continuous range such as real number, and
is often described by probability density function (PDF) with the probability of any
singular outcome actually being 0 which specifically encompass that a PDF must be
integrated over an interval to yield a probability. It is noted that general probability
measure (i.e. a real-valued function defined on a set of events in a probability space
which must be assigned value 1 that satisfies measure properties) are often a necessity

3.6 Belief Propagation in Ontologies 33

in stochastic processes defined in continuous time such as can be typically be found
in the field of deep learning [68].

In context of SecDNS, the probability distribution mainly concerns the possible
outcomes of domains’ maliciousness deemed by the classification of threats associ-
ated/believed about a domain i.e. the likelihood the domain variable assumes the
possible values for maliciousness deemed by such things as IPs, query time, domain
name etc. Both classes of probability distributions are relevant as both outcomes
(e.g. IPS as discrete and query time as continuous) may be attributes used to do a
summation of beliefs regarding a domains likelihood of maliciousness.

3.6.3 Probability Mass Functions
It is established that a probability mass function (PMF) is a function that gives
the probability that a discrete random variable is exactly equal to some value. These
values exists generally for either scalar or multivariate random variables whose domain
is discrete. Formally, the PDF is the probability distribution of a discrete random
variable, providing the possible values and their associated probabilities. Technically,
it is the function probability p : R denoted as px(xi) = P (X = xi) for −∞ < x < ∞.
The probabilities that are associated with each possible values must be positive and
sum to 1 and for all other values the probabilities need to be 0 denoted respectively
as

∑
px(xi) = 1, p(xi) > 0, p(x) = 0 for all other x. In this same domain there is

an associate measure theoretic of these types of functions which view a probability
mass function of a discrete random variable X as a special case of two more general
measure theoretic construction namely the distribution of X and the PDF of X with
respect to the counting measure [69].

3.6.4 Marginal Probabilities
In context of a lot of graphical models such as bayesian networks and neural network
the concept of marginal probabilities is very present. In probability theory and statis-
tics, the marginal distribution is defined in context of the probability of an event of one
random variable irrespective of the outcome of another variable. Here, the marginal
distribution (or marginal probability) is the probability of one event in the presence
of all or a subset of outcomes of the other random variable. Consequentially, with
that definition the marginal probability distribution is then defined as the marginal
probability of one random variable in the presence of additional random variables.
Fundamentally, given two variables the marginal probability is the sum/union over
all the probabilities of all events for the second variable for a given fixed event for
the fist variable. This means that marginal probability considers the union of all
event’s for the second variable rather than the probability of a single event which is
present with conditional probability. Marginal probability is used advantageously in
a lot of the works using bayesian models in the context of malicious domain detection
discussed throughout this literature review documentation [70] [71].

3.6 Belief Propagation in Ontologies 34

In marginal context, the marginal probability mass function can be defined by
given two discrete random variables X and Y whose joint distribution is known. Here,
the marginal distribution of X is simply the probability distribution of X averaging
over information about Y . Conversely, it is the probability distribution of X when the
value of Y is not known consequentially calculated by summing the joint probability
distribution over Y and vice versa which is denoted as equation:

pX(xi) =
∑

j

p(xi, yi) and pY (yj) =
∑

i

p(xi, yj) (3.5)

In the same context of marginal probabilities, a marginal probability can be writ-
ten as an expected value: pX(x) =

∫
y
pX|Y (x | y), pY (y)dy = EY [pX|Y (x | y)]. Typi-

cally in context of marginal probabilities the concept of conditional probability will
be present in a comparative sense.

In the realm of probability theory, conditional probability is a measure of the
probability of an event occurring given that another events has (by assumption) oc-
curred which is formally written as if event of interest is A and the event is assumed
to have occurred the conditional probability of B under the condition is P (A | B)
which should be recognizable by most who have had to deal with probability in some
sense. In context of SecDNS the conditional probability could be inferred to the re-
lationships between threats in relation to beliefs about domains i.e. calculating the
probability of threat-1 (t1) being present in domain-1 (d1) if threat-2 (t2) is known
to being malicious for that domain.

As it relates to marginal probability with conditional probability in mind, the
marginal probability of X is computed by examining the conditional probability of
X given a particular value of Y then averaging this conditional probability over the
distribution of all values Y where this follow the definition of expected value after
applying the law of the unconscious statistician i.e.EY [f(Y)] =

∫
y
f(y)pY (y) dy. Re-

sulting, the marginalization provides the rule for the transformation of the probability
distribution of a random variable Y and another random variable X = g(Y) denoted
as: pX(x) =

∫
y
pX|Y (x | y) pY (y) dy =

∫
y
δ
(
x− g(y)

)
pY (y) dy. [72].

In this marginal context it is also noteworthy to establish the marginal probability
density function. This is determined by given two continuous random variables X and
Y whose joint distribution is known then the marginal probability density function
can be obtained by integrating the joint probability distribution over Y and vice
versa given by: fX(x) =

∫ d

c
f(x, y)dy, and fY (y) =

∫ b

a
f(x, y)dx where x ∈ [a, b], and

y ∈ [c, d]. There are also marginal concepts for cumulative distribution functions and
independence relationships of variables in this context [69] [72].

Summarily, in machine learning the likelihood of encountering multiple random
variables is high. Obviously, machine learning was a key element of the SecDNS
project. A random variable is fundamentally described as a variable whose values
depend on outcomes of a random phenomenon which mathematically in context of

3.6 Belief Propagation in Ontologies 35

probability theory means that a random variable is understood as a measurable func-
tion defined on probability space whose outcome are typically numbers [73]. Assum-
ing an relation of sorts between two variables there are three types of probabilities
that are worth considering in the same context as marginal probabilities which will
be found in plenty of works utilizing belief propagation in graphical networks (e.g.
bayesian network) and neural networks. These probabilities are namely: joint proba-
bility which is the probability of events A and B, Marginal probability which is the
probability of event X = A given variable Y , conditional probability which is proba-
bility of event A given event B. As marginal probability is encountered a lot in these
works about graphical model inference and neural networks as it relate to security it
has been highlighted. Fundamentally, there is no special notation for the marginal
probability as it is the sum or union over all probabilities of all events (by given two
random variables) for the second variable for a given fixed event for the first variable
formally denoted as P (X = A) =

∑
P (X = A, Y = yi) for all y also known as the

sum rule [70].

3.6.5 Markov Chains and Properties
Markov chains and properties are prevalent in a lot of bayesian network applications
which is a common usage of belief propagation with works and techniques having
been developed for the area of malicious domain detection relevant to SecDNS. The
markov properties are found in a stochastic process if the conditional probability
distribution of future states of the process which is conditional on both past and
present values depends only upon the present state given that at present, the future
does not depend on the past. It is defined by letting (Ω,F , P) be a probability space
with a filtration (Fs, s ∈ I) for some totally ordered index set I and let (S, S) be
a measurable space where a (S, S)- valued stochastic process X = {Xt : Ω → S}t∈I

adapted to the filtration is said to possess the markov property if, for each A ∈ S and
each s, t ∈ I with s < t, P (Xt ∈ A | Fs) = P (Xt ∈ A | Xs).. Here, in the case where
S is a discrete set with the discrete sigma algebra and I = N this can be reformulated
as P (Xn = xn | Xn−1 = xn−1, . . . , X0 = x0) = P (Xn = xn | Xn−1 = xn−1). [74].
In context regarding neural networks, bayesian networks and other systems that uses
belief propagation, the concept of markov chains keep coming up as it is a concept
that is very useful in context of these methodologies. Fundamentally, markov chains
is a stochastic model which describes a sequence of possible events in which the
probability of each events depends only on the state attained in the previous events
(or one state to another) where each state is a situation (or set of values). A collection
of states are also known as a state space i.e. a list of possible states. The markov
chain tells you the probability of hopping/transitioning from one state to any other
state. So the Markov chain is a markov process (stochastic process that satisfies
markov property) that has either a discrete state or a discrete index set (representing
time). It is often defined as a process in either discrete or continuous time with a
countable state space [75]. It is noted that there is also cohesive formal definitions

3.6 Belief Propagation in Ontologies 36

for each variation of markov chain be it discrete or continuous.

3.6.6 Belief Propagation Theory
In its base definition, belief is the estimation of something being true. In systems
with multiple entities and associated data objects that can have assigned beliefs, it
may be advantageous to utilize a methodology which combines these multiple beliefs
to make weighted decisions. It is a necessity to utilize algorithms that propagate,
aggregate and calculate belief in the context of neural networks and independently
in context of scenarios such as heuristic systems or conventional machine learning.

The algorithm for propagating belief throughout a system known as belief propa-
gation (also called sum-product message passing) is a message passing algorithm used
to perform inference on graphical models by calculating the marginal distribution for
each unobserved node/variable conditional on any observed nodes/variable. In the
context of SecDNS the messages are events regarding data features which is beliefs
about threats from malicious domains. It has been formulated as an exact inference
algorithm on trees and in extension polytress. The base algorithm is defined as if
X = {Xi} is a set of discrete random variables with a joint mass function p, the
marginal distribution of a single Xi is the summation of p over all other variables i.e.:

pXi
(xi) =

∑
x′:x′

i
=xi

p(x′). (3.6)

As it relates to malicious domain detection the belief propagation (BP) algorithm
have been utilized in many works as other methods such as path-based inference
algorithms are proven to be very expensive [76] [77]. With the purpose of increas-
ing efficiency without too much loss a lot of approaches aim towards analyzing DNS
data and establishing DNS graphs with great coverage through deep-analysis associ-
ation [78] [79], signal utilization on graphs [80], belief rule based systems [81], graph
mining [82], a variety of graph inference be it bayesian, markov random fields, max-
produt BP (for optimization) [83] [84] [85] [86], feedforward neural networks [49], BP
approximation [87], passive analysis [78] and more.

The belief propagation algorithm is a powerful tool that is utilized to help solve the
inference problem that is found across multiple disciples including AI that is applied
to a great variety of graphical models used to describe those issues. Some of the
most common models that Belief propagation has a known application for include
Bayesian networks, (pairwise) Markov random fields, the Potts and Ising models,
Tanner graphs and factor graphs. We’ll touch upon the most general and relevant
in this review in relation to AI security applications but all is interesting topics to
explore [88] [83].

3.6 Belief Propagation in Ontologies 37

3.6.7 Bayesian Inference and Graphical Networks
The key denotation for bayesian rules derives the posterior probability as a conse-
quence of two antecedents i.e. a prior probability and a likelihood function derived
from a statistical model for the observed data. The bayesian rules computes the pos-
terior probability according to bayes’ theorem: P (H | E) = P (H|E)·P (H)

P (E) . Here the
H is for hypothesis whose probability is affected by data, P (H) the prior probability,
E is for evidence, P (H | E) posterior probability, P (E | H) probability of observing
E given H i.e. likelihood, P (E) is marginal likelihood [89] [90] [91].

Formally, the definitions for bayesian inference are x a data point (possibly vector
of values), θ the parameter of the data point’s distribution i.e. x ∼ p(x | θ) (vector
of parameters), α, the hyperparameter of the parameter distribution i.e. θ ∼ p(θ | α)
can be a vector of hyperparameters, X is the sample a set of n observed data points
(i.e. x1, ..., xn), x̃) a new data point whose distribution is to be predicted. In the
context of bayesian inference the aspects of the prior distribution is the distribution
of the parameters before any data is observed i.e. p(θ | α), and for the sake of its
determination it may be advantageous to use Jeffreys prior. The sampling distribu-
tion for bayesian inference is the distribution of the observed data conditional on its
parameters i.e. p(X | θ) where this is termed as the likelihood that can be written
in context as a function of parameters as L(θ | X) = p(X | θ). For the marginal
likelihood, which is also termed by the evidence is the distribution of the observed
data marginalized over parameters i.e. p(X | α) =

∫
p(X | θ)p(θ | α) dθ. Determined

by Baye’s rules that is the foundation of Bayesian inference the posterior distribution
which is the distribution of the parameters after taking into account the observed
data [90] i.e.

p(θ | X, α) = p(θ,X, α)
p(X, α)

= p(X | θ, α)p(θ, α)
p(X | α)p(α)

= p(X | θ, α)p(θ | α)
p(X | α)

∝ p(X | θ, α)p(θ | α)

(3.7)
Bayesian inference also lay out the basis for Bayesian prediction [89]. It is noted

that works have been done showcasing how BP algorithm have been utilized and
derived in context of bayesian inference application to compute the posterior distri-
bution of the time evolution of the state of each given some observation [92].

As it relates to the SecDNS purposes of effectively doing malicious domain detec-
tion, bayesian inference is an effective tool in the classification problem with binary
outcome. There have been works that used bayesian inference for the classification
of domains which have a binary outcome where the aim is to classify a domain as
either fast-flux or legitimate. In that context, bayesian classifier token (e.g. TTL)
was used to correlate ASN’s and A-record counts in order to calculate the probability
of a domain being fast-flux or not. In a real-world perspective such methodologies
have been used for email spam filtering by giving words found in emails probabilities
of occurring in spam email and legitimate email. The probabilities are calculated

3.6 Belief Propagation in Ontologies 38

from training data set that has been manually classified as either spam or legitimate
where once a classifier has been trained it is used for classification. The output
is a likelihood total which can be used to mark domain as either fast-flux or not.
The classifier for this DNS query response can be derived from bayes theorem as:
P (F | t) = P (t|F).P (F)

P (t|F).P (F)+P (t|¬F).P (¬F) where P (F | t) is the probability that a domain
is fast-flux if the token t is in the response, P (F) is the overall probability that a
domain is fast-flux, P (t | F) is the probability that the token appears in a fast-flux
domain query response, P (¬F) is the overall probability that a domain is not fast-
flux, P (t | ¬F) is the probability that the token appears in a legitimate domain query
response [91] [93] [94].

Fundamentally, the reasoning for utilizing a bayesian network context for fulfilling
the purposes of the SecDNS project lies in the advantages it presented. In context
of the ERD graph in a bayesian network context the advantage is that both prior
(initial) and posterior (belief) probability based on updating needs with ground truth
is possible. However, the disadvantage present is the assumptions of a ground truth
being present as this is a necessity. Another issue is that bayesian networks are
relatively computationally heavy (due to clustering) in regards to the requirements
that the data features for SecDNS have.

3.6.8 Marginal Probability in context of Graph Inference
Applications

Progressively with the advent of data access there have been established big data sets
of security information (network logs and application logs etc.) where efforts have
been made to analyse it and create actionable security information. This detection
problem can be viewed as a graph inference problem where a suggested solution was
to adapt a workflow that construct a host-domain graph from proxy logs, seeding
the graph with minimal ground truth information and using belief propagation to
estimate the marginal probability of a domain being malicious. It is noted that the key
to solving the inference problems lies in belief propagation in this context [86]. The
methodology behind is a approach to detect malicious domains with the assumption
that an enterprise’s host-domain graph is present i.e. it is known that the domains
are accessed by the enterprise’s hosts. A graph is constructed by adding a node for
each host in the enterprise and each domain is accessed by the hosts and then adding
edges between a host and its accessed domains (build from multiple enterprise event
log datasets such as HTTP proxy logs and DNS request logs). Another assumption in
this approach is knowledge of a few nodes’ states e.g. malicious or benign. The known
nodes constitute a ground truth data set (the rest of the graph nodes are unknown
nodes). By the given host-domain graph and the ground truth information established
it can be constituted that the goal is to infer the states of the unknown domains in the
graph. Formally, it is desirable to compute a node’s marginal probability of being in
a state i.e. the probability of the node being in a state given the states of other nodes
in the graph. Here, marginal probability estimation is known to be NP-complete. In

3.6 Belief Propagation in Ontologies 39

this application, belief propagation is a fast and approximate technique to estimate
marginal probabilities. The algorithm’s time complexity and space complexity are
linear in the number of edges in a graph which makes it scalable for large graphs
making it an appropriate inference technique as it is quite scalable and successfully
applicated in diverse fields including malicious domain detection. Technically, belief
propagation relies on ground truth information and statistical dependencies between
neighboring nodes to reliably estimate marginal probabilities where the dependencies
are derived from domain knowledge [86] [95].

Denoting this technically, given an undirected graph G = (V,E) where V is a
set of n nodes and E is a set of edges, where every node is modelled i ∈ V as a
random variable denoted as xi which can be in one of a finite set of states S con-
stitutes the graphical model. The graphical model defines a joint probability distri-
bution P (x1, x2, ..., xn) over G’s nodes. Continued, the inference process computes
the marginal probability distribution P (xi) for each random variable (denoted xi).
So in totality a nodes marginal probability is defined in terms of sums of the joint
probability distribution over all possible states of all other nodes in the graph i.e.
P (xi) =

∑
x1
..

∑
xi−1

∑
xi+1 ..

∑
xn
P (x1, x2, ..., xn) where the number of terms in

the sum is exponential in the number of nodes n. This is simplified with belief prop-
agation which can approximate the marginal probability distributions of all nodes
in time linear in the number of edges which is at most O(n2) complexity. So with
the advantageous belief propagation algorithms it is possible to estimate a nodes
marginal probability from prior knowledge about the graph’s nodes and their statis-
tical dependencies [86]. In this context, a nodes’ (denoted i) belief (denoted bi(xi)
) is i’s marginal probability of being in the state xi. The computation of bi(xi) de-
pends on priors of the graph nodes where a nodes’ prior (ϕi(xi)) is i’s initial (or
prior) probability of being in the state xi. The belief of the node is also dependent
on the edge potential functions that model the statistical dependencies among neigh-
boring nodes where the edge potential is denoted as ψij(xi, xj). The computation
for the edge potential looks at two neighboring nodes i and j for the probability of
i being in the state xi and j being in the state xj . By iterative message passing
among neighboring nodes, the belief propagation achieves relative computational ef-
ficiency by organizing global marginal probability by smaller local computations for
each node. So in the case of a node i and its neighbors N(i) in each iteration of
that algorithm i passes a message vector mij to each of its neighbors j ∈ N(i) where
each component mij(xj) of the message vector is proportional to i’s perception j’s
likelihood of being in the state xj . Summarily for this, the node’s outgoing message
vector to its neighbor j depends on i’s incoming message vectors from its other neigh-
bors and is computed by: mij(xj) =

∑
xi∈S ϕi(xi)ψij(xi, xj)

∏
k ∈ N(i)\j)mki(xi).

The order of the message passing does not matter as long as all messages are even-
tually passed in each iteration. For the update which can be synchronous or asyn-
chronous where with the advantageous synchronous it is possible to compute a node’s
belief values from i’s incoming message in the converged graph or the last iteration:
bi(xi) = Cϕ(xi)

∏
k∈N(i) mki(xi) where C is a normalization constant to ensure that

3.6 Belief Propagation in Ontologies 40

i’s beliefs add up to 1 i.e.
∑

xi∈S bi(xi) = 1. Additionally, several methods using
tree approaches for belief propagation and score summation methods for belief prop-
agation have also been proposed by several interesting contributors in the context of
malicious domain detection as a graph inference issue [88] [86].

3.6.9 Belief Propagation for Bayesian Networks
Fundamentally, it is known that a bayesian network is a graphical model that repre-
sents the probabilistic relationships of a set of variable via a directed acyclic graph
(DAG), where within variables are represented as nodes in bayesian network and their
conditional dependencies are represented in directed edges. In this model each node
is assigned an probability function of the variable. By using that dependency relation
the network provide diagnostic (bottom-up, ”symptoms to cause”) and prognostic
(top-down, ”new information about causes to new beliefs about effects”) probabilistic
inference.

The general workflow that has been identified for some BP applications in Bayesian
network (poly-tree with messages from parents to children and vice versa determined
by the direction of edges) centers around formulas chronologically concerning likeli-
hood (a product of all incoming messages sent by variable’s children), priors (initial
knowledge), belief (posterior probability), message to parents and message to chil-
dren.

In such a network the inference can be made through the message passing algo-
rithm introduced as Kim and Pearl’s message passing algorithm (most frequently used
for belief propagation), noting that this this typically works only on polytrees single
connected networks, however, bayesian network has a DAG graph structure where
two nodes have more than one path [77]. In cases where the multi-path connection
has both direct (W-R) and indirect (W-VR) connections a method called cluster-
ing is utilized and developed to transform a graph into a probabilistically equivalent
polytree as conventional message passing algorithm won’t work in this scenario. The
clustering method works by merging multiple nodes to remove the multiple paths
between two nodes. Conversely, it is worth noting that the Junction Tree Cluster-
ing algorithm is used as a default algorithm for most major software packages for
bayesian networks as it provides a systemic method of clustering consisting of three
steps i.e. 1. Moralization where all parents and remove arrows are connected, 2.
Triangulation where edges are added to ensure that every cycle has a length < 4, 3.
Junction Tree where maximal cliques are identified to create supernodes. With such
a transformation it is possible to use Kim and Pearl’s message passing algorithm for
updating beliefs. Here, the total strength of belief is a product of the casual support
π(X) from parent node and the diagnostic support λ(X) from descendants denoted as
BEL(X) = αλ(X)π(X) where a normalizing constant that makes

∑
X BEL(X) = 1.

It ought to be noted that the node probabilities are associated with their conditional
dependencies. There are two types of process methods for message passing called the
top-down prognosis and the bottom-up prognosis. In the top-down prognosis the mes-

3.6 Belief Propagation in Ontologies 41

sage passing starts from calculating the belief of the root node where from the root
the top-down message is propagated to leaves where the conventions πγ(X) to which
probabilities can be calculated using the conventional rules of probability calculation.
Conversely, the bottom-up prognosis is the inverse of the top-down where message is
passed up to the root [83] [77].

So, technically it can be stated that a bayesian netowrk is a directed acyclic graph
of N variables xi that defines a joint probability function :

p(x1, x2, ..., xN) =
N∏

i=1
p(xi | Par(xi)) (3.8)

Here, Par(xi) is the states of the parents of node i, and in scenarios where i has
no parent the denotation p(xi | Par(xi)) = p(xi) is used. In relation, marginal
probabilities are mathematically defined in terms of sums over all possible states of
all other nodes in the system generalized for the last node p(xN) as the computation:

p(xN) =
∑
x1

∑
x2

...
∑

xN−1

p(x1, x2, ..., xN) (3.9)

These approximate marginal probabilities are assigned as beliefs. For larger bayesian
networks the belief propagation algorithm is appropriate [83].

3.6.10 Non-parametic Belief Propagation
To address the issue of applying conventional methods such as bayesian networks for
belief propagation to models with continuous variables there has been works that
extend belief propagation to continuous variables models by generalizing particle
filtering and gaussian mixture filtering techniques for time series to more complex
models resulting in a nonparametic belief propagation algorithm.

The workflow identified in works about non-parametic BP usually starts with
the construction of a model their non-parametic representations. Thereafter there is
established the Gibbs sampler for the product of several gaussian mixture, and then
finally the application of the NBP algorithm. The NBP can simplified be broken
down as given message it starts with determining the marginal influence to drawing
the samples utilizing gibbs sampler and applied through conditional parameters it
will be possible to construct message updates.

The non-parametic belief propagation algorithm (NBP) adresses the problem of
analysing the messages in graphical models with continous (and non-gaussian) vari-
ables. The NBP achieves this by representing each message non-paramatically as a
gaussian mixture. Performed exactly each message update produces a new product
mixture with an exponentially larger number of components as NBP approximates
this product mixture using an efficient Gibbs sampling procedure which allows a trade-
off between statistical accuracy and computational efficiency. A derivation of interest

3.6 Belief Propagation in Ontologies 42

broke down the nonparametic belief propagation (NBP) algorithm for NBP update
of nonparametic message mts(xs) sent from node t to node s. This technique is based
on the belief propagation algorithm in graphs which are acyclic/tree-structure for the
sake of calculating the desired conditional distributions p(xs | y) at iteration n of the
algorithm where each node t ∈ V calculates a message mn

ts(xs) to be sent to each
neighboring node s | Γ(t) denoting the equation:

mn
ts(xs) = α

∫
xt

ψs,t(xs, xt)ψt(xt, yt) ×
∏

u∈Γ(t)\

mn−1
ut (xt)dxt (3.10)

where α is denoting an arbitrary proportionality constant. In the context of graph-
ical models with continuous hidden variables, the resulting message nonparamtically
is represented as a kernel density estimate. The kernel density estimation (KDE)
is non-parametic estimate of the probability density function (PDF) of a random
variable .Consequentially, this is derived by letting N (x;µ, λ) denoting a normal-
ized Gaussian density with mean µ and covariance λ evaluated at x. Hence, for the
representation an M component mixture approximation of mts(xs) in the form of
equation:

mts(xs) =
M∑

i=1
w(i)

s N (xs;µ(i)
s , λs) (3.11)

where w(i)
s is the weight associated with the ith kernel mean µ(i)

s and λs is a smooth-
ing parameter and it is noted that the weights are normalized so that

∑M
i=1 w

(i)
s = 1.

With these representations and a few assumptions about finiteness of the integrals it
is possible to derive an updating BP algorithm for this non-paramatic context [96].

This type of belief propagation could have been suitable for the purposes of the
SecDNS project as there is continuous information present (such as phishing) and
distinct data (such as IPs) present in the project. Nonparametic belief propagation
presents an option to handle continuous (typically non-Gaussian) distributions which
may be desirable in context of interest rich high-dimensional variables as inference al-
gorithms in graphical models for discrete approximation is infeasible in those contexts
for continuous distributions.

3.6.11 Approximate Belief Propagation
Belief propagation can be used for general graphs (also called loopy belief propa-
gation). In this context, all variables messages are initialized to 1 and updates all
messages at every iteration. For the convergence of loopy belief propagation it is
possible to do approximate visualization of the progress of belief propagation with
techniques like EXIT charts in order to do an approximate test for convergence. Other
methods for marginalization includes varied methods and monte carlo methods. An
ordinary method for exact marginalization in general graphs called junction tree al-
gorithm which is simply belief propagation on a modified graph guaranteed to be

3.6 Belief Propagation in Ontologies 43

a tree where the basic premise is to eliminate cycles by clustering them into single
nodes [87].

3.6.12 Belief Propagation in Malicious DNS Graph Mining
Relating a BP utilization that relates to the purposes of malicious domain detection
in the SecDNS project, it is noted that there have been some works done in the area
of utilizing graph mining. A key beneficial aspect of a graph mining approach is
that it takes the relationship between entities and events into consideration which
can be inferred to the SecDNS project as it relates to the relationships between
threats. Simplified this process establish a DNS graph composed of DNS nodes that
represents server IPs, client IPs and queried domain in the process of DNS resolution
to then applying graph mining task for malware detection by inferring graph node’s
reputation scores using the belief propagation algorithms where the nodes with lower
reputation scores are inferred as those infected with malware at higher probability.
The graph mining approach is used to do predictions based on the relationships
of (domains,host answer ips) and (domain, ip clients). In those instances the BP
algorithm functionality take a node on the graph only depending on properties of
its adjacent nodes, which in malicious domain mining denote that some nodes are
labeled as malicious (by using a labelled datasets) whilst the adjacent nodes interact
with other via an inference function to update each other’s beliefs. After that process
the reputation scores are calculated by the BP algorithm. The base idea of the graph
mining approach for malicious DNS detection is to step-wise build upon the graph
building upon (d, IP) where d is the domain resolved to IP, develop algorithms for
belief using belief propagation and markov random fields toward a novel proposal
method for this security context. In context of DNS graph, the passive DNS data
includes different aspects of DNS (A-records) which uses two columns formed as (d,IP)
where d is domain which is resolved to IP. In that kind of DNS graph duplicates
are removed from collected DNS queries visualising only connection between domain
names and IPs. So in overview, the DNS gaph in this context is a bipartite graph with
one side corresponding to domains and the opposite corresponds to IPs where an edge
is formed from a domain d to an IP if there exists a record (d, IP). In context, a base
reputation score (in scenarios not using summation) is assigned based on three given
features namely network addresses, DNS zones and malicious clues. For the malicious
clues there are different works for classification methods such as EXPOSURE that
can be utilized where aspects such as query time, response content, TTL, and domain
is included [82]. The ERD graph for SecDNS denotes similar entities. As it have been
discussed about BP so far it is noted that an important feature of it in relation to
markov random fields is the BP algorithm markov properties meaning that when a BP
algorithm is in process on a graph where a message passing interacts between any two
neighbors nodes. To understand that properly it a necessity to understand markov
random fields in this context. Markov random field (MRF) is a set of random variables
with markov properties described by an undirected graph. As discussed earlier in this

3.6 Belief Propagation in Ontologies 44

report an undirected graph is denoted as G = (V,E) where V = v1, v2, ..., vn is the
collection of vertices. In the context of markov random fields each vertex equals to
a random variable because it has markov properties which means it only depends on
properties of its adjacent nodes i.e. Given a node vi ∈ V and Ni being a neighbor
set of nodes vi if (vi, vj) ∈ E and vj ∈ Ni. Consequentially, MRF conforms to the
local property: P (vi|vjvj ∈V/vi

) = P (vi|vjvj ∈Ni
) . As it relates to DNS the properties

of this MRF model to DNS graph, each vertex of the DNS graph is corresponding
to a random variable which represent the host IPs/Domain name. In order to detect
malicious domain a knowledge set is defined as D = (d1, dm) where vi = d1 indicating
that the host IP/domain are malicious. The reputation scores for nodes and vertices
(with part of vertex labels and relation knowledge) can then be calculated using a
novel algorithm and mining algorithm respectively. One of the interesting proposal
methods starts by assigning all nodes an initial value as malicious probability and
marked as function ϕ(vi). Here, the inference between neighbor is shown as function
φji = P (vi | vj) which is the conditional probability for vi that has a label vi when
node vj has a label vj . Due to the nature of an undirected graph the potential
function of two neighbor nodes is symmetric, that is φji(vi, vj) = φji(vj , vi) set by a
value denotation that assign inference value addition or subtraction to legitimate or
malicious by 0.5 + −ϵ on the condition that 0 < ϵ < 0.5 determine the likelihood of
a legitimate node being legitimate and vice versa for malicious where one presented
implementation can assign ϵ = 0.01. The key principle s that a message is sent from vi

to vj to say how does node vi think about the label of its neighbor where the message
passing is marked as mij(xj). The calculation is for ∀eij ∈ E, the messages mij(vi)
and mji(vj) are calculated as a follow function that is computing the message from
node vi to node vj as: mt

ij(vj) = ϕi(vi)φij(vi, vj)
∏

u∈Ni/j n
t−1
ui (vi). So when node vi

wants to send a message to node vj it must collect all messages from it’s neighbors
before sending message to vj . In context of the BP methodology, at any time all
nodes send their link to the neighbors of them which is the case of this proposal is
not necessary because not all nodes have knowledge to send. Therefore, the proposed
condition is to only sent message if the malicious probability of a nodes is not equal
to 0.5. Additionally, another rule/condition is that at each interaction the probability
of knowledge node should not compute repetitively because the label of it is already
known and it can’t change regardless of what the neighboring nodes think. In BP
methodology the summary of each node after an interaction is computed being in this
context that it is the malicious probability for each of them (i.e. belief) denoted as
bi(vi). So, with Ni being the set of neighbor nodes of vi and mt−1

ui (vi) is all messages
which vi received in the last interaction a belief calculation is possible. This results
in the belief calculation in each iteration of vertex being based on messages received
from neighbors specifically:

bi(vi) = 1
Zi
ϕi(vi)φij(vi, vj)

∏
u∈Ni/j

mt−1
ui (vi) (3.12)

where Zi is the normalization constant as the sum of beliefs on each label for

3.6 Belief Propagation in Ontologies 45

vertices should be 1. Combining the BP algorithms with the proposed conditions for
neighbor N∗

i which is the neighbors of node i and the previous belief is not equal to
0.5 denotes formulas:

mt
ij(vj) = ϕi(vi)φij(vi, vj)

∏
u∈N∗

i
/j

mt−1
ui)(vi) (3.13)

and
bi(vi) = 1

Zi
ϕi(vi)φij(vi, vj)

∏
u∈N∗

i
/j

mt−1
ui (vi) (3.14)

So the message passing is operated by following these set conditions/rules and the
initial beliefs sets which are given by a prior knowledge for some vertices to, then, for
messages to be continuously iterated until the belief on a vertex is convergent or a
limit for the iteration is reached for the algorithm [82] [88].

A proposal method offer some conditions to add on BP algorithm and can be
applicable to malicious domain detection on DNS graphs where after a given initial
value the reputation of graph nodes would be computed by belief propagation with
some improvements which encompass removing nodes that don’t connect in the estab-
lished DNS graph (i.e. subgraphs with no knowledge is removed) and changing the
probability of all nodes on the graph after receiving messages from neighbors where
key idea is that the probability of a node will be aggregated from its neighbors while
known malicious nodes are not changed. This approach achieved pretty good results
for C and C [88]. Other interesting works that also utilizes the relation of markov
random fields and belief propagation is work en stereo matching [95].

3.6.13 Considered Potential Belief Propagation (BP) Approaches
Throughout our research into the realm of belief propagation, we were able to formu-
late several potential approaches to be included in the broader context and framework
of the SecDNS project (see Figure 3.6).

We divided belief propagation into two main approaches as the following:

• Time Dependent BP
Time of the events is the most important factor in time dependent approaches,
where the model updates the beliefs after each event chronologically. It is time
dependent since an event updates the belief values of the involving entities
right after the event. Therefore, if E is a sequence of events then we will
have at least |E| updates in our design matrices. As updating a belief value
may trigger updating beliefs at other connected/related instances, we may have
more updates due to propagation (more than |E|).
Figure 3.7 depicts how we see events in a timeline where the current event may
update the belief values of the involving instances. Time dependent approaches

3.6 Belief Propagation in Ontologies 46

Figure 3.6. Potential Belief Propagation approaches in SecDNS

current
interaction

Timeline

Figure 3.7. A time line and the current interaction between IPx, a server with IPy and
Domainy

propagate the maliciousness score (belief) of ipx to update maliciousness belief
of domainy and vice versa.
The event-based approach could be considered as Markovian or non-Markovian
done sequentially or non-sequentially. Non-sequential techniques only consider
the current event without looking into the history of the events related to the
involving entities, while sequential based techniques attempts to find a pattern
in historical events and updates.

• Time Independent BP
This approach does not have to update the beliefs synchronously with the events.
The updates may occur periodically by considering all events (Event-based), and
the periods could be daily, weekly, etc. Moreover, the updates may follow an
Instance-based approach which does not consider the events directly, but con-

3.6 Belief Propagation in Ontologies 47

siders the dependency between the entity types. Bayesian Networks that is a
probabilistic graphical model can be an example for Instance-based approach
which represents a set of variables and their conditional dependencies via a di-
rected acyclic graph (DAG). In other words, instance-based approach attempts
to build a general network to represent causality and dependability. In the
context of SecDNS, we may calculate maliciousness probability of a domain
(example.com) based on some observations and evidences (querying IP) which
can be propagated through the network, modifying the probability distribution
of other nodes that are probabilistically related to the evidence.

3.6.14 Synthetic Event-based Dataset
Event-based dataset contains collected events by a monitoring agent. Each event
contains a list of the involving instances, type of the event, and a timestamp. More-
over, in event-based scenario beliefs are considered as feature of instances, so the
monitoring agent tracks the features for each instance in form of matrices.

As access to real world dataset in SecDNS proved difficult to get, CSIS and DTU
have collaborated to develop a synthetic data generation module (called Ontology)
to simulate the events and the beliefs. The developed Ontology module requires a
few parameters to be set for controlling the generation procedure. As each set of
parameters generate an instance of an Ontology, so we can have different onthologies.
Table 3.1 describes the parameters and the values that we set to generate different
ontologies for our experiments in the following sections.

Table 3.1. Parameters used to generate synthetic datasets (ontologies)

Parameter Ontology1 Ontology2 Ontology3

Belief Propagation approach Markovian Markovian Markovian
Symmetry symmetric symmetric symmetric/asymmetric
Coupling 0.5 0.5 0.5

Interaction types 1 1 3
Entity types 1 2 3
Entity roles 2 2 7

Entity instances in each type 100 100 100
Intrinsic features 1 1 1
Extrinsic features 1 1 1

Train/Test ontology samples 7/3 7/3 7/3
Belief aggregation function(s) mean mean mean

Timesteps 500 500 500

3.6 Belief Propagation in Ontologies 48

3.6.15 Markovian BP by applying Neural Networks
As we preferred simpler models with good performance level, we focused our simple
neural network architecture (called BaseNN) before moving towards more complex
neural network architectures like graph-based methods. Simpler ML models may have
needed lower training time and they were easy to implement. Figure 3.8 shows the
Markovian approach for the DNSrequest example shown in Figure 3.7. The model
is Markovian as it only relies on the data (beliefs) from the current timestep when
predicting new beliefs. The model predicts how input beliefs (⃗b) turn to output
beliefs (β⃗) after an instance of the interaction. To compare our candidate methods
for belief propagation, we used a Benchmark model (Figure 3.9) that simply forwards
input beliefs as output beliefs (β⃗ = b⃗). Once we have other candidate methods, we
compared them to each other and also against the Benchmark model. This is also
reflected in one of the included papers for this thesis.

IP Design Matrix

Domain Design Matrix

ML model trained for

interaction type
'DNSrequest'

Figure 3.8. Markovian based Neural Network for the given example in Figure 3.7.

Forward (copy)

Figure 3.9. Benchmark model simply forwards (copies) input beliefs to output beliefs.

3.6 Belief Propagation in Ontologies 49

3.6.15.1 Evaluation of BP Framework

The most commonly used metrics in ML projects were used i.e. L1, Mean Square Error
(MSE), Rooted Mean Squared Error (RMSE), and cosine1 distance as our distance
metrics. The distance metrics are calculated by equation where b⃗(j)

k (t) denotes real
beliefs vector and β⃗

(j)
k (t) is predicted beliefs vector of the entity instance k of type j

at time t (equation 3.15):

D(β⃗(j)
k (t), b⃗(j)

k (t)) (3.15)

If we assume the extrinsic features are identical to the the belief vectors (equation
3.16):

χ⃗
(j,i)
k = β⃗

(j)
k (t) (3.16)

then for any given interaction type i, we can quantify the performance of its
learner with equation 3.17:

D(i) = 1
L(i)

L(i)∑
l

1∣∣ξ(i)
∣∣ ∑

∀ϵ∈ξ(i)

D(β⃗(j)
k (t), b⃗(j)

k (t))c (3.17)

where
∣∣∣ξ(i)

l

∣∣∣ is the cardinality of ξ(i)
l and L(i) is the number of interaction instances

of type i.
To make easier the comparison of different models, we calculate a disagreement

percentage (δ(i)
x,y) according to equation (3.18) for each model trained on an interaction

type, where D(i) is from equation 3.17 and D
(i)
x means D(i) achieved by model x for

interaction type i. δ(i)
x,y shows how the models x and y are different in predicting the

beliefs. Negative values of δ shows better performance for model y. In our evaluation,
x and y are BaseNN and Benchmark models, respectively.

δ(i)
x,y = D

(i)
x −D

(i)
y

D
(i)
y

(3.18)

The outcomes evaluated with aforementioned metrics are mostly reflected in the
included paper in this study: A proof of concept for supervised learning on ontolo-
gies. Using these metrics it was possible to draw conclusion with quantifiable proof,
that stongly supported the viability of the Ontology Framework used in the SecDNS
project which is central for this PhD study.

1Cosine similarity is a measure of similarity between two sequences of numbers. The
cosine distance is defined as 1.0 minus the cosine similarity that is implemented in
sklearn.metrics.pairwise.cosine_distances library.

3.7 Applying Theoretical Context Study 50

3.7 Applying Theoretical Context Study
This chapter included the theory that was researched along with the formulated pro-
posals and consideration that was gained throughout this PhD study which also en-
compassed certain implementations and experimentation that was evaluated. Hope-
fully, this theoretical context chapter provide a deeper knowledge base for the content
of the included papers which is presented later in the thesis.

CHAPTER4
Papers

The main contributions have been collected into 4 papers ready to/that have been
published, also listed in the beginning of this thesis. The papers are included in
their full format including their references. It is noted that at the time of submission
of this thesis the papers ”A proof of concept for supervised learning on ontologies”
and ”Explainable Artificial Intelligence to Enhance Data Trustworthiness in Crowd-
Sensing Systems” are to be submitted, however, the versions included in this thesis
are completed and will be (near) identical to the versions that will be submitted for
publishing. Furthermore, associated papers to this thesis include An architecture
for processing a dynamic heterogeneous information network of security intelligence
which touches upon ontologies of similar constructs as the one used in the projects
used in this thesis. Additionally, the source of DNS traffic was not the only data
source used in this project. Mobile crowd sourcing data was also used in particular in
the paper Fake sequential data detection. Regardless, the general concepts presented
in these papers are more central to the overall objectives of what this thesis strive to
achieve.

A proof of concept for supervised learning on
ontologies

1st Amine Laghaout
Machine Learning Scientist
CSIS Security Group A/S)
Copenhagen K, Denmark

ala@csis.com

2nd Sajad Homayoun
DTU Compute

Technical University of Denmark
Kongens Lyngby, Denmark

sajho@dtu.dk

3rd Sam Afzal-Houshmand
DTU Compute

Technical University of Denmark
Kongens Lyngby, Denmark

saaf@dtu.dk

4rd Christian D. Jensen
DTU Compute

Technical University of Denmark
Kongens Lyngby, Denmark

cdje@dtu.dk

Abstract—Most applications of machine learning (ML) consist
of scoring or labelling entities within a given problem domain
(e.g., economics, medicine, cybersecurity, marketing, etc). Al-
though the problem domain may comprise several entity types,
most use cases of ML focus on scoring the instances of a single
type only. Since different use cases may target different entity
types, they often end up siloed from one another. For example, in
cybersecurity, the labelling of Internet Protocol addresses (IPs)
as either malicious or benign is a priori a different use case
than labelling, say, domain names—thereby eliciting separate yet
often redundant data-processing pipelines. More fundamentally,
the fact that feature engineering is dictated by the use case
overlooks the underlying relationships that are already built into
the problem domain. For example, a domain name is hosted at
an IP. Because of this ontological relationship, the scoring of one
therefore correlates with the scoring of the other. For the sake of
modularity, it is thus beneficial to systematically engineer such
relationships into features independently of the use case at hand.

In light of the above, we propose a framework which exploits
the ontological structure of any problem domains so as to guide
the feature engineering. In particular, we propose a reference
architecture for systematically aggregating the features from
entities that interact, i.e., whose properties change as a result of
events they’re involved in. We showcase our work with a fictitious
ontology which demonstrates, at a high level, the predictive power
of this feature aggregation.

Index Terms—belief propagation, machine learning, ontologies,
cybersecurity

CONTENTS

I Machine learning on ontologies: A motivation 1
I-A Ontologies are the bigger picture 1
I-B Scope 2

II Ontologies: A data-centric representation 2
II-A Ontologies as interacting entities 2

II-A1 Entities 3
II-A2 Interactions 3

II-B The state of the art and its limitations . 3
II-C Notation for the main concepts 3

II-D A framework for supervised learning . . 3
II-E Engineering of extrinsic features 4

III A case study in cybersecurity 4
III-A Cyberspace as an ontology 4
III-B The need for synthetic data 4
III-C A systematic approach to the simulations 5
III-D Assumptions and pitfalls 6
III-E Pipeline for supervised learning 6

IV Results 7
IV-A Experiments 7
IV-B Parameter Description 7

IV-B1 Entities 8
IV-B2 Interactions 8
IV-B3 Symmetry 8
IV-B4 Experimental Setup 8

IV-C Evaluation metrics 9
IV-D Performance 9

V Conclusion and outlook 9

References 9

I. MACHINE LEARNING ON ONTOLOGIES: A MOTIVATION

A. Ontologies are the bigger picture

The field of machine learning has opened a floodgate of
applications in countless problem domains that are based on
data. Typically, the goal is to score or classify some entities
that are of a specific type. Examples of such entity types and
their corresponding problem domains are shown in Tab. I.
The shortcoming of this customary approach—which centers
the prediction on a single entity type—is that it fails to take
advantage of the fact that predictions on that entity type are
often determined by the broader context in which it evolves.
This broader context is what is known as an ontology, i.e., the

4 Papers 52

Problem domain Entity type Prediction
personal finance debtor probability of defaulting on a load

loan ROI for the creditor
economics company stock buy vs. sell
online advertisement potential customer clicks vs. doesn’t click
medicine images of tumors benign vs. malicious

symptom most likely disease
cybersecurity file legitimate vs. malware

Uniform Resource Locator (URL) legitimate vs. phishing

TABLE I: This table shows examples of entity types from different problem domains, along with the possible predictions that
can be made on them (i.e., regression or classification).

formal collection of entity types and relationships that make
up the problem domain [1]. Let’s illustrate this with the last
example from Tab. I. For example, a URL is clearly not the
only entity type that makes up the cybersecurity ontology.
There are indeed many other entity types such as domain
names, IPs, connected devices (e.g., computers, printers, etc.),
and so on. Many of these other entity types are potential
partakers in cybercrime. The probability that any given URL
is involved in phishing1 is therefore not solely based on its
intrinsic properties such as its Hypertext Markup Language
(HTML) content or its address string, but also on the reputation
of other entities that are extrinsic to it but to which it is
nonetheless related. These can be its parent domain, its hosting
IPs, or even other URL instances it links to. Similarly for the
example of whether one should buy or sell the stock of a given
company, it may not be enough to consider the balance sheet of
that one company. Instead, one should also factor in external
entities such as the market share of competing companies,
individual customers, or even—more abstractly—some general
macroeconomic variables.

Considering the above, machine learning could greatly
benefit from a framework that applies it to entire ontologies
and not merely to a single homogeneous dataset where all
training examples are independent and where the feature space
is restricted to a single entity type. This article is an attempt
to make some headway in this direction by proposing a
systematic way to engineer features that capture the influence
of the “environment” on an entity’s score.

B. Scope

Note that our present proposal is simply a framework,
i.e., a reference architecture for leveraging machine learning
techniques on ontologies. Its goal is not to be faithful to
any particular real-world ontology, since those tend to require
tedious “handcrafting” of the datasets based on domain ex-
pertise. Instead, our ambition is to set the stage for realistic
data by using simplified and controllable synthetic data. Given
the ubiquity of ontologies, our framework should then be
transposable to a wealth of problem domains.

The outline of this article is as follows. In §II, we give a
qualitative tour of what ontologies consist of and then formal-
ize their representation in a data-centric way. In particular, we

1“Phishing” is a type of cybercrime whereby the attacker creates a fake
web page that looks like that of a legitimate business. The victims who land
on that page thus run the risk of revealing sensitive information.

INTERACTION TYPES

Merger(companyj, companyk)

CustomerGained(companyj, customerk)
MarketEntry(companyj)
MarketExit(companyj)

CustomerLost(companyj, customerk)
Hire(companyj, employeek)
Fire(companyj, employeek)

ENTITY TYPES

disposable income
age

CUSTOMERS

7
6

1
2
3
4
5

9
8

revenue
expenses

stock price †

COMPANIES
7
6

1
2
3
4
5

seniority
man-hours

salary

EMPLOYEES

1
2
3
4
5

Fig. 1: Simplified ontology of microeconomics broken down
into three entity types and seven interaction types. If the
goal is to predict any company’s stock price (†), then not
only should the ML run on the company’s intrinsic features
(revenue, expenses, and historical stock prices), but it should
also process features from whichever entities it interacts with.
For example, it is reasonable to expect that the stock price
of a company goes up whenever a new customer is acquired.
Hence, the interaction CustomerGained is presumed to act
as a (semi-deterministic) function which increases the score of
the company instance companyj it acts on based on the size
of the customer instance customerk. In general, whenever
the company of interest undergoes an interaction, the ML
should be able to predict the change in its stock price as a
result of that interaction. Note how interactions are represented
as functions whose arguments are instances of entities (hence
the subscripts).

spell out a high-level framework for (i) engineering features
from any given ontology as well as (ii) subsequently running
supervised learning on it. In §III, we showcase our framework
with a simplified ontology of cybersecurity. In doing so, we
shall mention the assumptions we have made in setting up such
a proof-of-concept ontology. The results of our simulations
are finally presented in §IV, and §V summarizes the main
obstacles towards a more robust demonstration.

II. ONTOLOGIES: A DATA-CENTRIC REPRESENTATION

A. Ontologies as interacting entities

We shall define an ontology as a set of attributed and
heterogeneous entities, whose attributes2 are transformed in a
well-defined way as they undergo heterogeneous interactions.
An example of such an ontology is depicted in Fig. 1. Quali-
tatively, the characteristics of ontologies as per our definition
above are as follows:

2I.e., features and targets.

4 Papers 53

1) Entities: An ontology is a collection of attributed entity
types, also known formally as classes [1]. All entity instances
of the same type live in the same feature space. It is therefore
possible to stack the features of all entities of a same type
into a design matrix. Fig. 1 shows diagramatically the design
matrices of the three entity types. For example, the entity
type Company has seven instances and three attributes, one
of which is the target for supervised learning, namely the
stock price. The design matrix for entity type Company
is therefore 7×3. Since the ontology consists of heterogeneous
entity types, one ends up with design matrices of different
dimensions. As we shall see, unlike run-of-the-mill supervised
ML, training a model on ontologies cannot depend on a single
design matrix, but should instead aggregate features from
disparate design matrices.

2) Interactions: The dynamics of an ontology are driven
by what we shall call interactions (or events). From an
information-theoretic perspective, it is the interactions that
transform the attributes of the entities over time. For our
purposes, these interactions are mathematical functions that
transform the attributes of the entities that they involve. The
goal of ML in this context should therefore be to learn the
function behind each interaction so as to predict its effect on
the entities involved. In other words, in the bigger picture of
ontologies, the role of ML cannot limit itself to predicting
the scores of the entities as if they existed independently
of each other. Instead, it should capture the effect of their
environment—i.e., the other entities that are interacted with—
on those scores. The prediction on any given entity is therefore
based not only on its intrinsic features, but also on its extrinsic
features, i.e., on the abstract embeddings that summarize the
history of interactions it took part in. This idea will be
formalized in §II-D.

B. The state of the art and its limitations

It is tempting to see many similarities between the problem
of ML on ontologies and the field of graph machine learning
(GML) [2]–[4]. A priori, there may seem to be a one-to-one
mapping between vertices and entities on the one hand and
edges and interactions on the other; see, for example Fig. 5
for a tentative entity-relationship diagram of cyberspace. Many
applications of GML to ontologies such as social networks
[5], pharmacology [6], [7], or even cybersecurity [8], [9] have
indeed proven feasible. However, these applications are not
general enough to capture the ontologies in the way we have
defined them in §II-A. In particular, to our knowledge, none
of the off-the-shelf GML frameworks currently available (e.g.,
StellarGraph [10], GraphSage [11], etc) can handle entities that
are

1) attributed,
2) heterogeneous, and
3) interacting over time.

An even more fundamental limitation of GML is that graphs
are by default based on edges, namely bipartite relationships.
Interactions, on the other hand, can in principle be multipartite

and hence not necessarily decomposable as pairwise relation-
ships.

C. Notation for the main concepts

Let’s now formally represent ontologies in a machine-
readable way. As could already be seen from Fig. 1, all
information about the heterogeneous, attributed entities can
be stored in design matrices. As is typical of all (supervised)
ML datasets, these design matrices are made up of the targets
and intrinsic features. The latter are referred to as intrinsic
because they only depend on the entity types they’re attributed
to. However, as we’ve already argued, one also needs extra
information to summarize the history of interactions that the
entity underwent. This, we claim, can be represented by an
extension of the feature space with extrinsic features. At any
given time t, the resulting anatomy of the data for an entity
instance k of type j, ε(j)k , is depicted in Fig. 2 where

• b⃗
(j)
k (t) is the vector of the target features,

• f̂
(j)
k (t) is the vector of intrinsic features, and

• χ̂
(j,i)
k (t) is the vector of extrinsic features resulting from

interactions of type i. Several such interaction types
may exist, each involving a dictionary ξ(i) of entity
types keyed on their role in the interaction. It is these
extrinsic features which characterize ML on ontologies
since they’re the ones that propagate the influence of the
interacting entities among each other.

The entity ε
(j)
k is therefore fully represented by the data

vector that concatenates (⊕) the above vectors:

d̂
(j)
k (t) =

targets︷ ︸︸ ︷
b⃗
(j)
k (t)⊕

intrinsic features︷ ︸︸ ︷
f̂
(j)
k (t) ⊕

extrinsic features︷ ︸︸ ︷⊕

∀i|ε(j)∈ξ(i)

χ̂
(j,i)
k (t)

 .(1)

Notice that the extrinsic features are themselves concatenated
for each interaction which involves entity type j. Furthermore,
while b⃗

(j)
k and f̂

(j)
k have well-defined dimensions that are

dictated by the domain knowledge (and the availability of
data), the dimension of χ̂

(j)
k is in fact a hyperparameter

since it is a model-dependent embedding of the interactions.3

This is because the extrinsic “features” are not givens but
are instead to be inferred. In the parlance of deep learning,
χ̂
(j,i)
k (t) is therefore more akin to a hidden layer than an input

layer, except that—unlike typical hidden layers—the extrinsic
features are persisted in the design matrices of the entities and
can thus be regarded as an extension of the feature space.

D. A framework for supervised learning

Given the features, the goal of supervised learning is to infer
the targets, i.e., the collection of scalars b⃗. This means that over
all K(j) entities of type j, one needs to learn the blackbox

3In the simulations of §IV, we shall simplify χ̂
(j,i)
k to be a scalar aggregated

from the one-dimensional targets of the neighboring entities.

4 Papers 54

target
features

intrinsic
features

extrinsic
features

data vector
of entity instance

Fig. 2: Notation for the design matrix of entities of type j. The
novelty with machine learning on ontologies is that one needs
to engineer the so-called extrinsic features χ̂(j,i) which, unlike
the intrinsic ones, aren’t present ab initio, but should instead
be elicited from the sequences of each interaction of type i
undergone by the entities. Note that, for simplicity, we’ve only
shown the extrinsic features resulting from interactions of type
i. In principle, there could exist several interaction types that
involve entities of type j.

function M(j) that acts on the features so as to approximate
b⃗
(j)
k with

β
(j)
k = M(j)

f̂
(j)
k (t)⊕

 ⊕
∀i|ε(j)∈ξ(i)

χ̂
(j,i)
k (t)

 . (2)

We shall abstract away the ML model which emulates M(j)

so long as its loss function is a distance metric4 D
(⃗
b
(j)
k , β⃗

(j)
k

)
between the actual and inferred target vectors. In other words,
the optimization over M(j) is

argmin
M(j)

1

K(j)

K(j)∑
k=1

D
(⃗
b
(j)
k (t), β⃗

(j)
k (t)

)
. (3)

E. Engineering of extrinsic features

We have up to now been putting off the explanation of
how χ̂

(j,i)
k is formed from the data vectors of the interacting

entities. In other words, we still haven’t specified how the
interactions behave as mathematical functions. Let’s denote
such a function for interaction type i as the black box M(j,i)

χ .
It takes the data vectors of the interacting entities as inputs
and returns the updated extrinsic features of ε

(j)
k as outputs,

i.e.,
M(j,i)

χ :
{
d⃗
(l)
k (t− 1)

}
∀ε(l)k ∈ξ(i)

→ χ̂
(j,i)
k (t) (4)

where the curly braces encompass the data vectors from each
element in the set ξ(i) of entities involved in interaction type
i. For simplicity, we assume that the interaction took place
at the discrete time step t − 1. As mentioned earlier, the
extrinsic features aren’t available from the outset, but are
instead aggregated “on the fly” as the interactions unfold.

4Here again, the choice of the particular metric is left to the end user.

I.e., whenever an interaction happens, one should update the
relevant entries in the design matrices of the entities that
interacted.

By substituting (4) into (2), we get

β
(j)
k =

M(j)

f̂
(j)
k (t)⊕

 ⊕
∀i|ε(j)∈ξ(i)

M(j,i)
χ

({
d⃗
(l)
k′ (t− 1)

}
∀ε(l)

k′ ∈ξ(i)

)
 .

(5)

It therefore transpires that the optimization in (3) pertains
both to M(j) and to M(j,i)

χ . Whereas M(j), is the overarching
mapping of the features onto the targets b⃗

(j)
k , M(j,i)

χ can be
thought of as a latent layer that is transfer-learned from any
given interaction type i.5 The model architecture that reflects
(II-E) is depicted in Fig. 3. (For a more in-depth presentation
of this entire framework, see [13].)

III. A CASE STUDY IN CYBERSECURITY

A. Cyberspace as an ontology

We shall now showcase our proposal with a semi-realistic
ontology, namely one which approximates the problem domain
of cyberspace. Our goal shall be to score the entities of
cyberspace with a probability of being involved in a mali-
cious activity (e.g., phishing, ransomware, spyware, etc). For
example, if the entities of interest are IPs, the intelligence thus
generated would be stated in plain English as, say,

some IP 154.108.17.20 is believed to be in-
volved in a malicious activity with probability6

β⃗ (IP)
154.108.17.20 = 0.03.

Similar statements about the probability of maliciousness
could in principle be made for all entities that make up the
ontology of cyberspace. A tentative representation of such an
ontology is given by the entity-relationship diagram in Fig.
5. Note that this shows the entity and interaction types. Their
instances, as they unfold in time, would instead appear in a
time-stamped event log such as that of Fig. 6.

B. The need for synthetic data

Ideally, the data sets that could be used to showcase our
framework should be both

(i) labelled (i.e., the target vectors b⃗ should be provided for
all time steps prior to t), and

(ii) dense (i.e., all intrinsic features f̂ should be provided at
all times).

In cybersecurity, this implies that one can monitor the
activities of all entities in cyberspace and that, up to and
including time step t−1, all such entities are labeled with

5Indeed, the engineering of χ̂
(j,i)
k (t) could be thought of as a case of

transfer learning [12].
6We shall refer to the vector of targets β⃗ as the belief vector. This

terminology is inherited from the subfield of belief propagation [15] and its
wide use in cybersecurity, particularly in the context of trust management
[16].

4 Papers 55

1

2

3

4

Fig. 3: Computational graph for training ML on ontologies.
This depicts the two trainable modules required to predict the
targets b⃗

(j)
k of any entity ε

(j)
k of type j at some time step

t. The entity is shown to have undergone an interaction at
the previous time step t−1 together with some other entity
ε
(j′)
k′ of type j′ 1⃝. The vector embedding that summarizes the

effect of this interaction on ε
(j)
k is generated by the trainable

module M(j,i)
χ 2⃝. This embedding χ̂

(j,i)
k is concatenated with

the intrinsic features f̂
(j)
j to then be processed by the final

trainable module M(j) which in turn outputs a prediction β⃗
(j)
k

of the targets 3⃝. The training is driven by a distance metric D
between the actual and predicted targets, which doubles as a
loss function, and that is calculated at the very end 4⃝. Notice
how this architecture is somewhat reminiscent of wide & deep
learning [14], whereby the wide and deep parts correspond to
M(j) and M(j,i)

χ , respectively.

a ground truth b⃗. Such an omniscience over any ontology
is unlikely. In practice, the data sets would be much more
sparse and the availability of ground truth much more limited.
This said, the very potential of applying ML on ontologies
would still hold true, albeit with a much worse performance.
For the purpose of demonstrating our framework, we shall
therefore use a synthetic ontology which approximates that of
cyberspace.

C. A systematic approach to the simulations

To be able to bring more flexibility in simulating an en-
vironment, the introduced ontology requires a set of input
parameters (ontology parameters). Running the ontology with
different parameters gives us the freedom to study various
environments with different complexity. For example, we may
want to study how the number of entity types affects the com-
plexity of an ontology and subsequently the performance of the
target learning mechanisms (e.g. machine learning models).
One may simulate a simple ontology with only one entity
type and one interaction type, or may go with more complex
environments by defining more entity/interaction types. Table
II describes each parameter.

1

2

1 1

Fig. 4: Computational graph based on two simplifying as-
sumptions. The first is that there are no intrinsic features; i.e.,
only the targets get propagated between the different entities
1⃝. The second is that the predicted targets are identical to

the extrinsic features 2⃝. In other words, M(j) is an identity
operator and can thus be omitted from the computational
graph. The learning on the ontology is therefore reduced to
learning the functions M(j,i)

χ for the individual interactions.
(Here again, to minimize clutter, we are only showing a single,
bipartite interaction.)

interaction
entity
attribute

edgesnodes

cert. authority

name server

packet

person

IP address service

file
pathname

content

OS

MAC address

e-mail text body

domain e-mail addr.

URL

queries↑→ maps→↕

time-to-live

queries→

links to→

send→
receive←

record type

sent by↑
received by↑

device

attaches links to↓

registers→

creation date

accesses←

certifies→↕

is auth.→

DHCP server

maps↑↔

ASN

certificate

is in→

is within

registrar

expiration date

Fig. 5: Ontology of cyberspace represented as as an entity
relationship diagram (ERD). The nodes are either entities
(green background) or attributes thereof (white background)
whereas the edges (diamonds) are interactions—or more gen-
erally, relationships—between two or more nodes. Note that
this ERD represents entity and interaction types.

4 Papers 56

Timestamp : Event
2019-07-24 16:27:32:01 : DEVICE{my-desktop} queries NAME SERVER{pns23.cloudns.net}

for RECORD TYPE{A} of URL{http://www.csis.dk/}
2019-07-24 16:27:32:49 : NAME SERVER{pns23.cloudns.net} maps DOMAIN{csis.dk} to IP ADDRESS{94.130.180.46}
2019-07-24 16:27:33:00 : DEVICE{my-desktop} receives PACKET{PcktID#9784-a} from SERVICE{port:80}

of IP ADDRESS{94.130.180.46}
2019-07-24 17:30:07:13 : E-MAIL{ID#56789} sent by E-MAIL ADDR.{john.doe@csis.dk}

and received by E-MAIL ADDR.{jeff.roe@csis.dk} attaches FILE{Win32bot.exe}

Fig. 6: Time-stamped event log. Each event consists of interactions (ERD edges in bold) between entities (in SMALL CAPS).
The name of the entity instances is mentioned within the curly braces.

TABLE II: Describing setup parameters.

parameter description
number of int.
types

the number of ways that the entities interact with
other entities. The definition of each interaction type
can be added by adding function types such as mean
aggregation to the ontology.

symmetry determines how the interactions between entities
affect their extrinsic features and target features.
Symmetric means all involving entities in an inter-
action receives updates with the same aggregation
function, meaning the same values for the target and
extrinsic features. Asymmetric means the involving
entities gets different levels of update. Note that this
parameters applies on all interaction types.

coupling shows the degree of impact from the history of inputs
when an interaction types is calculating the updates
to extrinsic/target features. Coupling can be in [0, 1],
where 0 means the data from the past has no impact
in updating the target features.

number of time-
steps

the duration of simulation shown in number of time
steps. As there is only one interaction instance for
each time step, so it also shows the total number of
interaction instances.

number of entity
types

the total number of entity types. Each interaction
type involves a single or multiple entity types.

D. Assumptions and pitfalls

For this case study we assume that the interactions follows
the Markovian process. It means that for any given time,
the conditional distribution of future states (beliefs) depends
only on the present state and not at all on the past states. In
our case study we assume the target features (maliciousness
belief) of the entities involving in an interaction instance
would be updated based on their maliciousness at the time
of interaction. We also assume only the target features get
propagated between the different entities, which means no
intrinsic features. Figure 4 depicts a simplified version of
the computational graph given in Figure 3, where M(j) is
dropped and the loss function D would be calculated using
the output from M(j,i)

χ and the real target features b⃗
(j)
k (t). We

also assume the propagation of targets are only based on the
immediate neighboring entities meaning that there is only one
extrinsic feature. More extrinsic features can be added by any
distance.

By simplifying the ontology, we may face plateaus as a

potential challenge here where the outputs converges to a
certain value after a significant number of interaction instances
between different entity instances. the calculated targets fea-
tures converge to a certain value for all entity instances after
a significant number of interaction instances which can be
different between ontologies with different complexity. To
avoid plateaus issue, one may cut simulation after detecting
plateaus based on moving average of target features. For
example, it could be a sign of plateaus if the moving average
of the target features for most entity instances has not been
changed significantly for the last w timesteps.

E. Pipeline for supervised learning
Figure 7 depicts the underpinnings of our pipeline for

training regression models to learn from history of changes
in target features (beliefs) of the involved entities for each
interaction type of our case study. After learning from the
history, we will be able to predict new values of target features
after a certain interaction instance. The design matrices and
interactions are the input to the pipeline and the output would
be a regression model per each interaction type. Therefore, we
will be able to predict the impact of any interaction instance
using the regression models.

The training phase comprises two steps: (1) data wrangling
and preprocessing and (2) training the regressors. Data wran-
gling step receives the ontology containing all interactions and
design matrices, and creates a train-test dataset by concatenat-
ing (equation 6) all target features from the entities involved in
each interaction instance. The ontology contains target feature
values for both before and after the interaction instance. In
other words, the interaction instance based on a certain rational
spits out output vector (Vout) after feeding the input vectors
(Vin). For example, an interaction instance outputs the mean
value of the input target features of the involving entities
instances. Therefore, for each time step we have input vectors
and output vectors showing before and after the interaction
instance, respectively.

Vin =
⊕

∀ε(l)k ∈ξ(x)

b
(l)
k (t) (6)

The step for training the regressors outputs a single trained
regressor for each interaction type, which is able to predict

4 Papers 57

Design Matrices

data
wrangling

training

one regression
 model for each
interaction typemodel model

Ontology
...

Interaction Type

...

Interactions

Interaction Type

Interaction Type

Fig. 7: The pipeline to train a ML model for each interaction
type. There is a single regression model for each interaction
type (x, y etc. in this case) trained from separate dataset for
each interaction type prepared by the data wrangling step.
Note that the input to the data wrangling step could be multiple
ontologies, so the regression models have been trained using
the data from different runs of the same environment setup
(parameter setup).

output vectors based on input vectors fed to the same inter-
action type. We use regression based algorithms in this case
study, as we assumed the target features are a score showing
maliciousness score of an entity instance. One may want to
use classification if the target features are categorical features.

After the regressors are trained and are ready to predict
the output vectors, we can use the testing pipeline shown in
Figure 8 in an online manner. Assume we have an interaction
instance of type x as [ε

(j)
k , ε

(i)
p] at testing time step t. Then,

there is a data wrangling step to prepare the input vector by
concatenating all input target features (equation 6) of each
involving entity instances. Based on the type interaction, x in
this case, the input vector (Vin) is fed to the certain regression
model x for predicting output vectors (Vout). Finally, there is
the de-concatenation step (reverse of equation 6) that separates
the target features from the output vector. By this step we have
a single belief for each entity.

IV. RESULTS

The results section consist of a description of the experimen-
tal setup, the evaluation metrics used and the performance of

Regression model

Interaction Type

da
ta

w

ra
ng

lin
g Ti

m
e

st
ep

De-concatenation

Fig. 8: Belief forecasting for an interaction instance of type x
at time step t.

various ontologies fed to the different learning methods.

A. Experiments
To apply the pipeline for supervised learning, we needed to

set up a few environments to study how different parameters
impacts the complexity the environment, and subsequently the
performance of the supervised learning. We limited our study
to the environments given by the combination of parameter
values shown in Table III. However, it is possible to easily
simulate environments with higher level of complexity by
considering higher number of interaction/entity types etc. The
combination of different values in Table III make 9 environ-
ments which is given by multiplying count of all possible
values for all parameters. As interaction types could be either
symmetric or asymmetric, we can design our experiments as
Table IV by considering interaction symmetry. It worth noting
that in environments with a single interaction type, having both
symmetric and asymmetric interaction types at the same time
is invalid as a single interaction type could be of type either
symmetric or asymmetric (not both). Therefore, in the table we
do not see a row with one interaction type and Symmetry of
Sym-Asym. A simple ontology may only have one interaction
type and one entity type, while an ontology may simulate
a more complex environment with 3 interaction types and 3
entity types. In our case study, experiment 1 and 24 are the
simplest and the most complex environments, respectively.

B. Parameter Description
For the experiments it is mainly the parameters of inter-

action types, entity types and symmetry that are focused on

4 Papers 58

TABLE III: List of values assigned to each parameters

parameter value(s)
number of int. types 1, 2, 3
number of entity types 1, 2, 3

Exp. no. # of Ents # of Ints I1 I2 I3 Symmetry
1 1 1 S - - Sym
2 1 1 A - - Asym
3 1 2 S S - Sym
4 1 2 A A - Asym
5 1 2 S A - Sym-Asym
6 1 3 S S S Sym
7 1 3 A A A Asym
8 1 3 A A S Sym-Asym
9 2 1 S - - Sym
10 2 1 A - - Asym
11 2 2 S S - Sym
12 2 2 A A - Asym
13 2 2 S A - Sym-Asym
14 2 3 S S S Sym
15 2 3 A A A Asym
16 2 3 A A S Sym-Asym
17 3 1 S - - Sym
18 3 1 A - - Asym
19 3 2 S S - Sym
20 3 2 A A - Asym
21 3 2 S A - Sym-Asym
22 3 3 S S S Sym
26 3 3 A A A Asym
24 3 3 A S A Sym-Asym

TABLE IV: The constitution of ontologies denoted by the
degrees of freedom in number of entity types, number of
interaction types and symmetry (i.e. symmetric, asymmetric
or symmetric-asymmetric)

since they are kept variable, thus, functioning as the degrees
of freedom of the experiments. Therefore, it is necessary
to have clear definitions of what these parameters constitute
in the context of the framework for our case study Hence,
the definitions of the parameters used in implementing the
framework are stated.

1) Entities: For the entities there are 3 main classes that
have been defined which is ClientIP, ServerIP and Domain-
Name. Per definition when we denote 1, 2 or 3 entity types
it refers to these 3 types. So with 1 interaction type we
have chosen ClientIP, and with 2 entity types we refer to
the ClientIP types and ServerIP being present. Given by the
defined the symmetry the score of infection is assigned and
will be affecting designations of both types i.e. if there is an
interaction between entity of type ClientIP and ServerIP the
score is calculated with an aggregate function (i.e. mean, max
etc.). Same applies with 3 entity types where the DomainName
entity is introduced. These entity types are assigned randomly
but generated to make equal amount of the generated dataset.

2) Interactions: The interaction types we are using in the
experiment is defined as I1, I2 and I3, where I1 and I2 are
bipartite interactions (between two entities), and I3 is a tripar-
tite interaction type consisting of three entities. Downloading a
file from a server could be an example of bipartite interaction
types between ClientIP and ServerIP, while DNSRequest could

be an example of tripartite interaction where it connects three
entity types consist of ClientIP, ServerIP and DomainName.

Beliefs ascribed to entities can change after an interaction
i.e. interactions can be considered a function that takes input
beliefs and derive output beliefs. The interaction is Symmetric
if the impact is the same for all involving entities, for example,
the output will be mean of the inputs (other options could
have been maximum, median, minimum etc.). Whereas if the
interaction uses different aggregation functions for computing
output beliefs, such as a combination of mean for one entity
and maximum for the other entity, it is an Asymmetric
interaction type. There is situations with multiple interaction
types where one type could be symmetric and the other is
asymmetric which is given the distinction of being symmetric-
asymmetric. Furthermore, in tripartite the interactions the
interaction types can be symmetric using the same aggregate
functions (e.g. mean) for all three entities and asymmetric
when a different aggregation method (e.g. mean, median and
maximum) for all three entities.

3) Symmetry: In the experiment level, symmetry is a
reference to the whole experiment based on the containing
interactions. If all interactions are symmetric meaning that the
aggregation method is the same, e.g. mean, max or median,
on all interacting entities the experiment symmetry is consid-
ered Symmetric. Contrarily, if the interactions are asymmetric
meaning that the aggregation method differs for each inter-
acting entity. With experiments that have multiple interaction
types there is a possibility that one type could be symmetric
while every other type is asymmetric (and vice versa) resulting
in the experiment being considered Symmetric-Asymmetric.
To generalize this lets consider the real beliefs input for two
entities as b1 and b2. The predicted beliefs of each of those
interacting entities (denoted as b

′

1 and b
′

2) are calculated by an
aggregate function F , where if the the aggregate functions are
equivalent we consider the interactions symmetric and if not
we consider them asymmetric, which can be stated as:

b
′

1 = F1(b1, b2)

b
′

2 = F2(b1, b2)
(7)

where F1 = F2 ↔ symmetric, and F1 ̸= F2 ↔ asymmetric.
4) Experimental Setup: To follow a fair performance eval-

uation, we decided to run each ontology 10 times, so we had
10 files including interactions and design matrices. We then
divided the files into 9 and 1 files for training and testing,
respectively.

To show the performance of our supervised learning
pipeline, we selected five common regression algorithms
namely k-nearest neighbors regressor (kNNR), decision tree s
(DTR), random forest regressor (RFR), deep neural networks
(DNNs). We used 5-fold cross-validation to evaluate and com-
pare the performance of our trained models. After finding the
best trained model of each algorithm, we used our validation
ontology to evaluate how well the best model of each algo-
rithms predicts the updated beliefs for each interaction type.
We compare the performance of the supervised framework

4 Papers 59

with a benchmark model which simply forwards the input
beliefs as the output beliefs without any further process. It
worth noting that we removed the plateaus from validation
data to avoid biasing the evaluation towards simple Benchmark
model.

C. Evaluation metrics

The distance metric is calculated by equation where b⃗
(j)
k (t)

denotes real beliefs vector and β⃗
(j)
k (t) is the predicted beliefs

vector of the entity instance k of type j at time t (equation
8):

D(β⃗
(j)
k (t), b⃗

(j)
k (t)) (8)

where D could be L1, MSE7, RMSE8 or any other metrics
for evaluating the distance between predicted and real target
values.

If we assume the extrinsic features are identical to the target
features (equation 9):

χ⃗
(j,i)
k = β⃗

(j)
k (t) (9)

then for any given interaction type x, we can quantify the
performance of its learner with equation 10:

D(x) =
1

L(x)

L(x)∑
l

1∣∣ξ(x)∣∣ ∑
∀ε(j)k ∈ξ(x)

D(β⃗
(j)
k (t), b⃗

(j)
k (t)) (10)

where
∣∣∣ξ(x)l

∣∣∣ is the cardinality of ξ(x)l and L(x) is the number
of interaction instances of type x.

D. Performance

For the 24 experiments of differing ontologies based on
variable parameters the measured expectation and outcomes
was that the more complex ontologies (i.e. higher number
of types and asymmetric) would denote a worse performance
overall across learning methods if the ontology framework is
functioning correctly. To give a better overview it has been
decided to include a table for each metric across experiments
as rows (1-24) and methods (kNNR, DNN, Benchmark, DTR,
RFR) as columns. As a point of reference the experiments
number indicate the combination of number of entities, in-
teractions and symmetry constitute the ontology for said
experiment.

Tables V compare the performance of each studied method
using RMSE metric as our D metric in equation (8). The
results show that all learning metrics have achieved bet-
ter performance in comparison to the benchmark technique
(BM). The tables show that the performance of the studied
models are much better for simpler environments with less
entity/interaction types, and this verifies the idea behind the
defined parameters in ontology framework. For example, we
expect more complex dataset when increasing the number of
entity or interaction types, and this complexity could be proved
by comparing the performance of the learners. This can be

7Mean Squared Error
8Rooted Mean Squared Error

proved by comparing RMSE of experiment 24, which is the
most complex, with other experiments.

Exp. BM kNNR DNN DTR RFR
1 0.0793 0.0024 0.0171 0.0051 0.0019
2 0.0807 0.0024 0.0335 0.0051 0.002
3 0.0922 0.0028 0.0279 0.0072 0.002
4 0.0926 0.003 0.0293 0.0072 0.002
5 0.0859 0.0034 0.0222 0.0083 0.0035
6 0.0642 0.0038 0.0235 0.0082 0.0048
7 0.0829 0.0051 0.0433 0.0102 0.0051
8 0.0805 0.0046 0.0356 0.0093 0.0053
9 0.25 0.0028 0.033 0.0093 0.0053
10 0.1103 0.0005 0.0331 0.0011 0.0007
11 0.1076 0.0013 0.0683 0.0022 0.0015
12 0.1176 0.0016 0.0531 0.0031 0.0018
13 0.105 0.0012 0.0593 0.0025 0.0016
14 0.1402 0.0005 0.0511 0.0014 0.001
15 0.1176 0.0016 0.0433 0.0031 0.0018
16 0.1013 0.0035 0.0284 0.0069 0.0033
17 0.1088 0.0016 0.0284 0.0044 0.0029
18 0.25 0.0032 0.0371 0.0046 0.0033
19 0.25 0.0061 0.0654 0.0095 0.0059
20 0.2278 0.0061 0.0315 0.0113 0.0062
21 0.1279 0.0008 0.0675 0.0017 0.001
22 0.249 0.0045 0.0374 0.0056 0.0047
23 0.25 0.0443 0.0291 0.0495 0.0444
24 0.1302 0.0031 0.0067 0.004 0.0033

TABLE V: The comparative RMSE metric across experiments
and learning methods

V. CONCLUSION AND OUTLOOK

The outcomes of the experimentation of the framework
showcase indication that observable deviances can be detected
when increasing the complexity of an ontology as presented in
this paper. Generally, this confirms that a generated ontology
can effectively mimic real-life appliances.

Furthermore, we have observed the effectiveness of various
ML techniques including deep learning as compared to a
benchmark giving high indication that the application of such
techniques are extremely viable in the context of detecting
malicious sources based on DNS data.

ACKNOWLEDGMENT

This work was supported by the Innovation Fund Denmark
(IFD) under the SecDNS project (grant number 8090-00050B).

REFERENCES

[1] Ontology in Computer Science. London: Springer London, 2007, pp.
17–34. [Online]. Available: https://doi.org/10.1007/978-1-84628-710-7
2

[2] I. Chami, S. Abu-El-Haija, B. Perozzi, C. Ré, and K. Murphy, “Machine
learning on graphs: A model and comprehensive taxonomy,” 2020.

[3] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A
comprehensive survey on graph neural networks,” IEEE Transactions
on Neural Networks and Learning Systems, pp. 1–21, 2020.

[4] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,”
2018.

[5] S. Al-Eidi, Y. Chen, O. Darwishand, and A. M. S. Alfosool, “Time-
ordered bipartite graph for spatio-temporal social network analysis,” in
2020 International Conference on Computing, Networking and Commu-
nications (ICNC), 2020, pp. 833–838.

4 Papers 60

[6] T. Gaudelet, B. Day, A. R. Jamasb, J. Soman, C. Regep, G. Liu,
J. B. R. Hayter, R. Vickers, C. Roberts, J. Tang, D. Roblin, T. L.
Blundell, M. M. Bronstein, and J. P. Taylor-King, “Utilizing graph
machine learning within drug discovery and development,” Briefings in
Bioinformatics, vol. 22, no. 6, 05 2021, bbab159. [Online]. Available:
https://doi.org/10.1093/bib/bbab159

[7] R. Mercado, T. Rastemo, E. Lindelöf, G. Klambauer, O. Engkvist,
H. Chen, and E. J. Bjerrum, “Graph networks for molecular design,”
Machine Learning: Science and Technology, vol. 2, no. 2, p. 025023, mar
2021. [Online]. Available: https://doi.org/10.1088/2632-2153/abcf91

[8] Z. Liu, C. Chen, X. Yang, J. Zhou, X. Li, and L. Song, “Heterogeneous
graph neural networks for malicious account detection,” in Proceedings
of the 27th ACM International Conference on Information and
Knowledge Management, ser. CIKM ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 2077–2085. [Online].
Available: https://doi.org/10.1145/3269206.3272010

[9] X. Sun, M. Tong, and J. Yang, “Hindom: A robust malicious domain
detection system based on heterogeneous information network with
transductive classification,” 2019.

[10] C. Data61, “Stellargraph machine learning library,” https://github.com/
stellargraph/stellargraph, 2018.

[11] J. Leskovec, “Graphsage: Inductive representation learning on large
graphs,” https://snap.stanford.edu/graphsage/, 2017.

[12] S. Bozinovski, “Reminder of the first paper on transfer learning in
neural networks, 1976,” Informatica, vol. 44, pp. 291–309, 2020.
[Online]. Available: https://doi.org/10.31449/inf.v44i3.2828

[13] A. Laghaout, “Supervised learning on heterogeneous, attributed entities
interacting over time,” CoRR, vol. abs/2007.11455, 2020. [Online].
Available: https://arxiv.org/abs/2007.11455

[14] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye,
G. Anderson, G. Corrado, W. Chai, M. Ispir, R. Anil, Z. Haque,
L. Hong, V. Jain, X. Liu, and H. Shah, “Wide & deep learning for
recommender systems,” in Proceedings of the 1st Workshop on Deep
Learning for Recommender Systems, ser. DLRS 2016. New York, NY,
USA: Association for Computing Machinery, 2016, p. 7–10. [Online].
Available: https://doi.org/10.1145/2988450.2988454

[15] J. Pearl, “Reverend bayes on inference engines: A distributed hierar-
chical approach,” in Proceedings of the Second AAAI Conference on
Artificial Intelligence, ser. AAAI’82. AAAI Press, 1982, p. 133–136.

[16] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust manage-
ment,” in Proceedings 1996 IEEE Symposium on Security and Privacy,
1996, pp. 164–173.

4 Papers 61

A Perfect Match: Deep Learning Towards Enhanced
Data Trustworthiness in Crowd-Sensing Systems

Sam Afzal-Houshmand∗, Sajad Homayoun∗, Thanassis Giannetsos‡
∗Technical University of Denmark (DTU), Cyber Security Section, Denmark

‡Ubitech Ltd., Digital Security & Trusted Computing Group, Greece
Email: saaf@dtu.dk, sajho@dtu.dk, agiannetsos@ubitech.eu

Abstract—The advent of IoT edge devices has enabled the col-
lection of rich datasets, as part of Mobile Crowd Sensing (MCS),
which has emerged as a key enabler for a wide gamut of safety-
critical applications ranging from traffic control, environmental
monitoring to assistive healthcare. Despite the clear advantages
that such unprecedented quantity of data brings forth, it is also
subject to inherent data trustworthiness challenges due to factors
such as malevolent input and faulty sensors. Compounding this
issue, there has been a plethora of proposed solutions, based
on the use of traditional machine learning algorithms, towards
assessing and sifting faulty data without any assumption on the
trustworthiness of their source. However, there are still a number
of open issues: how to cope with the presence of strong, colluding
adversaries while at the same time efficiently managing this
high influx of incoming user data. In this work, we meet these
challenges by proposing the hybrid use of Deep Learning schemes
(i.e., LSTMs) and conventional Machine Learning classifiers (i.e.
One-Class Classifiers) for detecting and filtering out false data
points. We provide a prototype implementation coupled with a
detailed performance evaluation under various (attack) scenarios,
employing both real and synthetic datasets. Our results showcase
how the proposed solution outperforms various existing resilient
aggregation and outlier detection schemes.

Index Terms—Mobile Crowd Sensing, Adversarial Machine
Learning, Data Trustworthiness, LSTM, One-Class Classifier

I. INTRODUCTION

The emergence of resource-rich devices has changed the
landscape of mobile sensing with multiple embedded sensors,
e.g., accelerometers, cameras, etc. With more than 6 billion
mobile subscriptions worldwide, these sensors (collectively)
can be used to sense the environment and gather valuable
data of unprecedented quality and quantity, practically from
everywhere. This new sensing paradigm, Mobile Crowd Sens-
ing (MCS) [1], makes individuals and user communities the
focal point of the sensing infrastructure.

Despite all benefits of MCS, its applications still face the
critical challenges of data quality and integrity of sensed
data [2] and could suffer from incorrect contributions due
to their inherent open nature; Over the past decade machine
learning has been among the top methods to gain hidden
insights from IoT data. ML systems are trained using datasets
that are assumed to be representative and trustworthy whilst
malicious actors can impact the decision-making algorithms by
either targeting the training data (poisoning attacks) or forcing
the model to their desired output, e.g., misclassification of
abnormal events (evasion attacks).

In this context, security problems have already been ad-
dressed in the form of Adversarial Machine Learning (ML).
There are many proposed solutions leveraging conventional
ML-based techniques towards separating malicious data from
benign. Game theory has also been exploited in the design of
convolutional neural networks to detect tampering [3]. Concept
drift, which is a common phenomenon in IoT data, has also
been considered in problems such as feature extraction [4].

However, one main hurdle in all such mechanisms is how
well they can operate in a distributed environment, like the
one entailed in MCS, comprising many untrustworthy data
sources providing falsified data (either as the result of an
attack or a malfunctioning sensor). Compounding this issue,
Banerjee et. al [5] studied how concept drifts and false data can
masquerade the existence of intelligent attackers and their im-
pact on the accuracy of both the clustering and (unsupervised)
classification processes; however, they did not investigate the
integration of more advanced Deep Learning schemes. What
is needed is a set of advanced deep learning mechanisms
for assessing and sifting faulty data without any assumption
on the trustworthiness of their sources while coping with
intelligent adversaries that try to significantly decrease the
overall performance, cause targeted misclassification.

This paper meets this challenge with FSD - a novel data
verification framework employing deep learning techniques
to address the issue of possible data poisoning in MCS
environments. We define malicious data as falsified data
exhibiting different statistical properties (from the real data
provided by benign users), and our approach is leveraging
sequential relationships of sensory data towards detecting ma-
licious samples generated by adversaries or faulty components.
More specifically, our solution named False Sequential data
Detection (FSD) offers: (i) Data verification by combining
Deep Learning sequential architecture of Long Short Term
Memories (LSTMs) with conventional one-class classifiers for
distinguishing between “false” and “real” samples, (ii) Proof-
of-concept implementation evaluated under various testing
scenarios using both real and synthetic datasets in order to
have more flexibility on the type of experiments. FSD demon-
strates high accuracy even when the distribution of data comes
from adversaries that demonstrate very similar behavior with
the legitimate user data; i.e, strong colluding adversaries by
composing two main attack strategies that represent different
aspects of adversarial machine learning.

4 Papers 62

II. RELATED WORK

A problem that is inherent when applying machine learning
solutions for false data detection in MCS infrastructures is
the concept-drift that occurs in some types of sensors used in
emerging applications such as environmental monitoring; e.g.,
temperature and humidity [5]. Most recent studies, however,
mainly focus on challenges in the context of sensing task
allocation, sparse sensing, privacy, and data integrity [6]. But
only a few works try to address the problem of false data
detection [7], [8]. For instance, there are data verification tech-
niques such as Deco [8] which uses spatio-temporal techniques
to reconstruct missing values. Deco, however, suffers from
high deviations. DETECT-and-CORRECT [9] as a two-phase
framework attempts to detect false data by first leveraging a
time-series of location data to DETECT suspicious data points
while the CORRECT phase marks those points as missing
for reconstruction algorithms. This method is not a general
algorithm as it relies on additional contextual information
of the particular MSC setup, whereas FSD is agnostic to
the type of targeted domain. Methods surrounding matrix
separation have also been successfully used for separating false
data. Light Weight Low Rank and Sparse Matrix Separation
(LightLRFMS) [7] is a matrix separation technique but it was
only validated on a specific MCS context for environmental
monitoring that does not fully consider issues pertaining to
concept-drift, which FSD strives to address based on the use of
LSTMs. Furthermore, various deep learning techniques have
previously been applied in MSC including LSTM models
towards predicting traffic flow [10] or user mobility [11].
However, these do not consider the presence of adversaries.

Banerjee et. al [5] showed that most common unsupervised
learning algorithms are prone to adversarial infection and,
hence, there is a need to leverage a mix of advanced machine
learning models for overcoming this challenge. Our paper
extends the problem disposition and investigation in [5] by
trying to address issues that may be advantageous by the
application of deep learning. We will apply some of the tools
discussed in [5] to simulate adversaries targeting the datasets to
evaluate our proposed model. Overall, there is a consensus that
issues of accuracy, as a result of factors such as concept-drift
and false data generation, must be addressed by leveraging
deep learning based techniques as the ones employed by FSD.

III. TOWARDS TRUSTWORTHY MCS TASKS

In MCS platforms, users can participate in the sensing
process and upload their contributions to the central server,
and collected can be processed by local analytic algorithms
towards producing consumable data for requesting appli-
cations [12]. In this context, for a specific time window
with n time steps and m sensors, we consider a dataset D
containing a sequence (S) for each sensor j where Sj =
[v1,j , v2,j , · · · , vi,j , · · · , vn,j].

Threat Model: The aim of adversarial agents is to mislead
the MCS applications towards considering malicious measure-
ment values as legitimate in their services. To this end, an
adversary may change the input value vi,j in Sj to v′i,j , where

v′i,j 6= vi,j to maximize the distortion ”max{|vi,j − v
′

i,j |}”,
where the distortion should be lower than a maximum allowed
considered by the adversarial agent.

There are two primary adversarial attack models [13]: 1)
pre-training (poisoning) attacks, and 2) post-training (evasion)
attacks. In pre-training attacks, adversaries try to inject ma-
licious data in an attempt to poison the training dataset and,
thus, decrease the classification accuracy of the classifier. In
the post-training attack strategy, adversaries aim at misleading
trained classifiers to mis-classify samples towards a malevolent
intent. Let us assume f(xi) = yi as the mapping function
to calculate/map xi to yi. In principle, a machine learning
technique tries to minimize |f(x′i) − y′i| which means mini-
mizing False Positives and False Negatives. On the contrary,
an adversarial attacker attempts to maximize the impact of the
attack by maximizing |f(x′i)− y′i|. In the rest of the paper we
refer to adversarial data as positive class of data, and legitimate
data as negative class.

IV. FSD CONCEPTUAL ARCHITECTURE

The main motivation behind FSD is to benefit from the
relationships between samples of different time orders so as
to accurately predict the values of the next time step. It uses
the distance metrics for comparing the predicted data and real
data, in each time step, in order to prepare samples for the
one-class classification approach; i.e, draw a boundary around
the allowed deviations between predicted and real data values.

Our approach consists of two main phases, namely the
Training and Testing phases. In the Training Phase, we build
a predictor for each sensory data as well as a final one-
class classifier whereas during the Testing Phase, we feed a
combination of malicious and benign testing samples in order
to evaluate how good our trained models behave in separating
malicious data from benign values.

A. Training Phase

Figure 1 depicts the underpinnings of the FSD training
phase comprising of three steps: 1) training of LSTMs as
sequential predictors for each sensor, 2) measuring deviations
between predicted and real data vectors, for each time step, and
3) training an one-class classifier on vectors of the observed
deviations in order to detect anomalies according to real and
expected predicted values (again for each time step).

1) Training LSTMs: In this step, FSD trains separate LSTM
models, M , for predicting values of each sensor, for each
time step. As LSTM is useful for processing, classifying, and
making predictions based on time series, we employ LSTMs
on time series of sensor data in this paper. It is worth noting
that the LSTMs in Figure 1 can be replaced by any time series
based technique to predict next step data. This step results in
m trained models based on m sensors, and Mj would be a
trained model on Sj for predicting the pi,j value of sensor j
at time step i.

2) Measuring deviations between predicted and real values:
After training our LSTM models (Ms), FSD feeds all Ss in
parallel (Sj to Mj), and store all predicted values (pi,j) in

4 Papers 63

LSTM

Sm

MmMjM1

Train

Dataset

pi,j : predicted value for sensor j at time i

Training LSTMs

Trained Models

LSTMLSTM

SjS1

Mj : trained model on data from Sj

Sj : sequence of values for sensor j

MmMjM1

vi-1,1 vi-1,j

pi,m

calculating deviations using K

defined metrics

vi,1 vi,j vi,m

di,1 di,k di,K
Distance Values

for All Samples

Training

One-Class Classifier

Mocc

di,k : deviation value of metric k on (Pi , Vi) at

time step i

Trained One-Class

Classifier Model

vi-1,m

pi,jpi,1

Step 1

Step 2

Step 3

Pi Vi

Benign?

Figure 1: Training phase of FSD

matrix P where each row contains all predicted values by
Mj on Sj for each time step. Pj , is column j of P showing
the predicted values for sensor j for time step 1 to n, and
Pi = [pi,1, · · · , pi,m] is a vector of all predicted values for m
sensors at time step i referring to rows of P .

At time step i, we calculate deviations between predicted
vector (Pi) and real vector (Vi) into a new vector δi =
[di,1, di,2, · · · , di,K] using K distance/similarity metrics such
as Euclidean distance, cosine similarity, Manhattan distance,
or other customized metrics with the ability of calculating one
single scalar to show the deviation between the values of the
two input vectors. Calculating the differences of predicted and
real values we would have a new dataset ∆ as a set of δ
vectors with size K where δi = [di,1, ..., di,k, ..., di,K], and
di,k is the deviation between vector Vi and Pi calculated by
distance metric k (e.g. Euclidean distance).

3) Training one-class classifier: After feeding all legitimate
data to our trained models (Ms) and calculating δi for each
time step i, we have ∆ = [δ1, ..., δi, ..., δn] containing all
allowed deviations between the predictions and the real data
for all time step. Dataset ∆ is suitable for one-class classifiers
trying to find a boundary around the training samples in order
to separate them from the data from other distributions, where
Mocc in Figure 1 would be the trained one-class classifier.

B. Testing phase

Figure 2 shows how FSD works in real time to detect
adversarial samples. For each testing time step i, FSD predicts
Pi using trained models (Ms), and calculates δi as the distance
vector between Vi and Pi. Then, Mocc classifies δi as Benign

MmMjM1

pi,m

calculating deviations using K

defined metrics

v1,1 v1,j v1,m

di,1 di,k di,K

Mocc

pi,jpi,1

Pi
Vi

vi-1,1 vi-1,j vi-1,m

v2,1 v2,j v2,m

t1

ti-1

t2

...
vi,1 vi,j vi,m

...

ti

Time line

Benign?

Figure 2: Testing phase of FSD

or Malicious. As Mocc is a trained one-class classifier on
legitimate deviations between real and predicted values, the
output dictates whether the vector of calculated deviations is
legitimate.

V. EXPERIMENTAL SETUP

In this section, we proceed with presenting our setup for
implementing and evaluating FSD under various attack strate-
gies. The dataset considered in this paper originates from real-
world measurements collected from Data Sensing Lab [14]
by sensors deployed at the Strata Clara convention center in
2013 [1]. The dataset contains sensor data from 5 different
sensors namely, Temperature (Temp), Humidity (Hum), Pir,
Motion and Microphone (Mic). Table I shows the distributions
of each sensor type.

Temp Hum Pir Motion Mic
µ 22.5150 36.1389 0.1514 -0.000386 5.2275
σ 1.6171 6.0058 0.3583 0.3544 5.1334

Table I: Mean (µ) and standard deviation (σ) of base dataset

LSTM and One-class Classifier Architectures

As we are dealing with sequential sensor data with specific
time steps, Recurrent Neural Networks based techniques - like
the leveraged LSTMs - provide an attractive root of trust. In
this context, in order to better justify the reasoning behind
moving from Multi Layer Perceptron (MLPs) towards more
complex time oriented classification techniques, we compare
the best Root Mean Square Errors (RMSE) achieved by
MLP and LSTMs. Table II shows the RMSE values between
predicted and real corresponding values for each sensor. We
name LSTMs with 20 units as LSTMbest as it showed the
best performance in our experiments with different number
of units. LSTM with one LSTM unit (LSTM1) and conven-
tional Neural Networks with 10 hidden layers (MLPbest) are
reported to compare with LSTMbest.

4 Papers 64

Temp Hum Pir Motion Mic
MLPbest 0.208 0.350 0.797 1.152 2.322
LSTM1 0.037 0.081 0.347 0.521 1.832
LSTMbest 0.029 0.080 0.301 0.216 1.639

Table II: Comparing RMSEs achieved by the best trained MLP
model, one-layer LSTM, and best trained LSTMs.

Adversarial Behaviour: As FSD is a framework for char-
acterizing between inlying and outlying sensory data reports
in the presence of adversarial malicious users, we assume
that colluding adversaries are attacking the data collection
process (poisoning attack) or the classification process (eva-
sion attack). Therefore, we have effectively categorized attack
strategies into pre-training and post-training attack strategies
respectively. We measure the performance of the FSD frame-
work based on different levels of distortion that colluding
adversaries try to impose on the data trustworthiness. We
consider two main attack approaches for each attack strategy:
1) distribution attacks (Attack Cases I & II), which manipulate
mean or standard deviation to generate adversarial samples
which are different from the benign ones; 2) position attacks
(Attack Cases III, IV & V), which manipulate the position of
injecting adversarial samples in the sequence of values which
in turn targets the order of samples. Position attacks can only
be applied after a distribution attack for changing the order of
samples to be injected in the sequence.

Attack Case I: Adversaries may affect the system uncer-
tainty about the true value of the sensory data by setting
σ′ = σ and µ′ 6= µ which represents a malicious standard
deviation equal to the standard deviation of the legitimate data
points with smaller/larger µ as Equation (1) where λ is a scalar
value as the deviation factor. Adversarial samples generated by
λ > 2 are not attractive in our data as they are easier to detect
due to their lower overlap with benign samples.{

µ′ = µ+ (λ× σ) 0 < λ ≤ 2

σ′ = σ
(1)

Figure 3a compares the distributions of legitimate samples
and adversarial samples generated by Attack Case I for a
simple dataset with only two features, where λ = 1.0.

(a) (b)

Figure 3: Distributions of legitimate samples (class 0) vs.
adversarial samples (class 1) for two features with µ = 0
and σ = 1.0; (a) Attack Case I, and (b) Attack Case II.

Attack Case II: Adversaries may affect the system un-
certainty by selecting an adversarial distribution based on

equation 2 where the adversary’s goal is to keep the same
mean but changing the standard deviation.{

µ′ = µ

σ′ = σ + (λ× σ) 0 < λ ≤ 2
(2)

Figure 3b shows the distributions of a dataset with legitimate
and adversarial data from Attack Case II with λ = 1.0.
This attack case is designed to better reflect the real-world
case scenarios where adversaries attempt to gradually change
the classification behaviour by performing concept drifting by
modifying the standard deviation over time.

Attack Case III: Adversaries may affect the system uncer-
tainty about the true values by selecting a different distribution
by changing the order of legitimate and malicious data points
in the sequence of data. In this case all legitimate data comes
before malicious data points in the sequence.

Attack Case IV: In this case all malicious data come before
benign data points in the sequence as opposed to Case III.

Attack Case V: Adversaries may affect the system un-
certainty by putting malicious batches of data in between
legitimate data batches.

VI. RESULTS AND ANALYSIS

In this section, we evaluate the performance of FSD in the
presence of strong adversaries under the two aforementioned
attack strategies (pre-training and post-training). We use F-
Measure as our evaluation metric since it directly considers
True/False Positive Rates as well as Recall and Precision
metrics. The dataset is partitioned into two sub-sets of training
and testing sets with 60% and 40% of data respectively.

A. Strategy 1: Impact of Adversaries in Pre-training

In the pre-training strategy, detecting malicious samples
would be more difficult than in the post-training case since the
classifier has been trained to recognize the adversarial samples
as legitimate. Therefore, increasing the rate of adversaries
has a higher impact on the classifier as it may consider all
or parts of the injected malicious samples as “noise”, thus,
changing the overall perception of the classifier for the sensed
phenomenon. Usually, the attackers tend to choose higher λ
values during the pre-training attack strategy as their end-goal
would be to mislead the classifier to cover a broader area and
misclassify the attacking samples as legitimate in testing time.
Due to limited space, we only reported the results based on
changing deviations in µ′ for Attack Cases III, IV and V.

1) Distribution Attacks (Cases I & II): Tables III & IV
report the results for Attack Cases I & II, respectively. Each
row of the tables show F-Measures for a specific λ value where
the attacker generates malicious data using the previously
described equations. In the pre-training strategy, increasing
λ should result in a decrease in the adversarial data rate,
thus, leading to a less accurate classification due to the
adversarial samples affecting the classifier in order to cover
malicious data as legitimate by expanding the area under the
legitimate cluster (see Figure 3a). Tables III & IV clearly show
this performance degradation. Similarly, increasing the rate
of adversarial samples in pre-training prevents the classifier

4 Papers 65

λ Adversarial Rate
5% 10% 15% 20% 25% 30% 35% 40% 45%

0.5 0.813 0.768 0.727 0.718 0.704 0.668 0.652 0.634 0.613
1 0.768 0.737 0.696 0.676 0.679 0.643 0.608 0.591 0.558
2 0.721 0.701 0.662 0.635 0.613 0.601 0.579 0.556 0.506

Table III: F-measures for Attack Case I in pre-training strategy
λ Adversarial Rate

5% 10% 15% 20% 25% 30% 35% 40% 45%
0.5 0.755 0.741 0.719 0.700 0.681 0.661 0.641 0.597 0.564
1 0.716 0.690 0.681 0.668 0.648 0.632 0.598 0.548 0.514
2 0.678 0.668 0.665 0.658 0.621 0.607 0.565 0.516 0.468

Table IV: F-measures for Attack Case II in pre-training.

from ignoring the impact of malicious data in the training
procedure. Thus more adversarial samples mean more power
to mislead the trained classifier. Therefore, F-Measure of ML
techniques should be decreasing when increasing the rate of
adversarial data in pre-training due to the increase in quantity
of False Positives and False Negatives. As expected, FSD faced
performance degradation by increasing the rate of malicious
samples (Adversarial Rate in Tables III & IV). However, the
results are significant in comparison to conventional machine
learning techniques where FSD achieved F-measures of 0.556
for Attack Case I and 0.516 for Attack Case II with a lot of
malicious samples (40%) and a significant deviation (λ = 2)
which is higher than the random guessing.

The results also show that FSD is more robust against the
changes in mean (Attack Case II) in comparison to changes in
standard deviation (Attack Case I). We expected to see higher
F-Measures for λ = 0.5 as we had the same mean value with
a small change in standard deviation for adversarial samples,
however, we realized that the spikes in values of pir and mic
over time made it difficult for FSD to assess their values in
the context of a normal distribution.

2) Position Attacks (Cases III, IV & V): In Attack Case
III all legitimate data appear before the malicious data in
the pre-training strategy. Depending on the rate of malicious
samples, the model may ignore parts of adversarial samples.
As an example with 5% of adversarial data, the LSTMs model
learns from 95% of legitimate data before learning from the
rest of 5% malicious data, which have less impact on the
final performance in comparison with 55% legitimate and
45% malicious samples. Tables V, VI and VII support the
fact that the higher rates of adversarial data cause the higher
negative impact on the knowledge gained by the model from
the legitimate data. The results also show that for adversarial
rates ≥ 45%, random guessing works better because FSD
also learns from malicious data in training time which entails
higher false negatives rate at testing time. Comparing Table
V and Table VI reveals that the samples at the beginning
of the sequences has more impact on the learning process.
For example, 5% of malicious samples had more negative
impact on F-Measure value when FSD learned from malicious
samples before benign samples in comparison with Attack
Case III. Attack Case V let the adversary have malicious
samples in each malicious data batch, therefore more concept
drift in comparison to the other cases. Increasing the rate of
adversarial samples entails that the attacker has higher chance

of preventing LSTMs to learn with sufficient legitimate data
due to too many concept drifts on the input data.

The results show that FSD achieved higher F-Measures in
detecting samples generated by Attack Case III in comparison
to the two other Attack Cases. The results also prove that
the superiority of FSD in detecting samples from Attack
Case III diminishes by increasing λ or the rate of malicious
samples. For example, based on Tables V & VI, the difference
between F-Measures for λ = 0.5 and adversarial rate 5% is
(0.059 = 0.842 − 0.783), while for λ = 2.0 and adversarial
rate 45% is only (0.011 = 0.482−0.471). Due to page limits,
we reported all position attacks using Attack Case I, however,
FSD performance on cases using Attack Case II having similar
trend. Moreover, FSD was more robust against attacks with
one concept drift (Attack Cases III & IV) in comparison to
attacks that try to trigger more drifts on the data preventing
the model to learn enough knowledge from legitimate data.
FSD also achieved high performance in cases with high rates
of malicious samples implying superiority over conventional
machine learning studied at [5].

λ Adversarial Rate
5% 10% 15% 20% 25% 30% 35% 40% 45%

0.5 0.842 0.736 0.701 0.687 0.672 0.651 0.646 0.626 0.561
1 0.753 0.717 0.675 0.659 0.635 0.626 0.625 0.601 0.516
2 0.718 0.688 0.651 0.631 0.616 0.608 0.596 0.565 0.482

Table V: F-measures for Attack Case III (benign first) with
attack samples generated by Attack Case I in pre-training.

To give a comprehensive overview of FSD under various
position Attack Cases, Table VIII compares F-Measures of
Attack Cases III, IV and V. To calculate values of Table VIII,
we subtracted and averaged all values of two comparing Attack
Cases. For example, to calculate first row of Table VIII which
compares F-Measures of Attack Case III to Attack Case IV, we
first subtracted all values of Table VI from the paired values of
Table V, and then calculated the average of all differences for
each column shown in Table VIII. Negative values in the table
shows that FSD achieved higher F-Measures for the second
attack case.

B. Strategy 2: Impact of Adversaries in Post-training

This strategy generates samples for bypassing the classifier
during testing time without accessing the training dataset.
Therefore, we first trained the FSD on legitimate data to
evaluate this strategy. In post-training strategy, it is easier for a

λ Adversarial Rate
5% 10% 15% 20% 25% 30% 35% 40% 45%

0.5 0.783 0.719 0.683 0.676 0.663 0.647 0.638 0.612 0.554
1 0.729 0.683 0.649 0.639 0.622 0.602 0.611 0.581 0.497
2 0.702 0.647 0.612 0.591 0.585 0.585 0.571 0.559 0.471

Table VI: F-measures for Attack Case IV (malicious first) with
attack samples generated by Attack Case I in pre-training.
λ Adversarial Rate

5% 10% 15% 20% 25% 30% 35% 40% 45%
0.5 0.782 0.735 0.699 0.648 0.624 0.610 0.601 0.571 0.492
1 0.758 0.683 0.646 0.623 0.593 0.574 0.567 0.534 0.443
2 0.717 0.655 0.611 0.589 0.563 0.541 0.511 0.486 0.421

Table VII: F-measures for Attack Case V with attack samples
generated by Attack Case I in pre-training.

4 Papers 66

Adversarial Rate
5% 10% 15% 20% 25% 30% 35% 40% 45%

CaseIII-CaseIV 0.033 0.030 0.027 0.023 0.017 0.017 0.015 0.013 0.012
Case V-Case III -0.018 -0.022 -0.023 -0.039 -0.047 -0.053 -0.062 -0.067 -0.067
Case V- Case IV 0.014 0.008 0.004 -0.015 -0.030 -0.036 -0.047 -0.053 -0.055

Table VIII: An overview of the F-Measures of FSD under
different Attack Cases III, IV and V in pre-training.

trained classifier to detect non-overlapping malicious samples
as the classifier has the knowledge to cover the legitimate area.
Therefore, an adversary with this strategy tends for lower λ
since they have to follow the distributions of legitimate data
with minor changes for a successful evasion attack.

1) Distribution Attacks (Cases I & II): Table IX shows
the results of classifying poisoned testing dataset by Attack
Case I. FSD achieved higher F-Measures when we increased
the rate of malicious examples (Adversarial Rate) because it
was trained on legitimate data, so detecting malicious samples
would be easier if the adversary inject more samples. This
is because malicious data may create a new cluster with new
distribution, so it is easier to detect them in cases with enough
adversarial samples (higher rates of adversarial samples).

Comparing Table III in pre-training to the results from post-
training (Table IX) shows opposite trends for both increasing
the rate of adversaries and increasing the deviation factor
(λ). Opposite to pre-training attacks, increasing the rate of
adversarial samples may make it easier for the classifier to
separate malicious data in post-training strategy. Higher devi-
ation factors make an adversarial cluster with higher distances
to the legitimate cluster resulting to higher F-Measures for
post-training and lower F-Measures in pre-training.

λ Adversarial Rate
5% 10% 15% 20% 25% 30% 35% 40% 45%

0.5 0.551 0.582 0.598 0.606 0.629 0.648 0.677 0.698 0.743
1 0.573 0.595 0.621 0.643 0.678 0.688 0.714 0.735 0.763
2 0.592 0.600 0.642 0.666 0.697 0.701 0.745 0.765 0.815

Table IX: F-measures for Attack Case I in post-training.

The reported F-Measures in Table X indicate that FSD
achieved higher performance in cases where adversaries
change σ′ without updating µ′ (Attack Case II). Similar to
Attack Case I, there is an increase in F-Measure along with
the increase in λ and number of malicious data points in the
post-training attack strategy. Comparing the results of Tables
IX and X, we can see that FSD achieved better performance
in cases where adversarial data were generated by updating σ′

with the same mean. FSD achieved values of 0.551 and 0.566
for Attack Case I and Attack Case II, respectively, which are
higher than the random guessing in our worst-case experiments
with λ = 0.5 and 45% of adversarial data.

λ Adversarial Rate
5% 10% 15% 20% 25% 30% 35% 40% 45%

0.5 0.566 0.586 0.610 0.638 0.689 0.743 0.766 0.796 0.841
1 0.636 0.656 0.667 0.684 0.706 0.756 0.776 0.819 0.866
2 0.680 0.685 0.699 0.716 0.740 0.770 0.785 0.829 0.906

Table X: F-measures for Attack Case II in post-training

2) Position Attacks (Case III, IV & V): Table XI describes
F-Measures of detecting adversarial samples when all benign
samples appeared before malicious samples in post-training.

More adversarial samples with higher deviation means more
distance between benign and malicious clusters. Therefore,
FSD achieved high F-measure of 0.903 in post-training strat-
egy when the adversaries injected a lot of malicious samples
(45%) with high deviation of 2.

λ Adversarial Rate
5% 10% 15% 20% 25% 30% 35% 40% 45%

0.5 0.599 0.615 0.651 0.681 0.715 0.734 0.781 0.800 0.832
1 0.632 0.655 0.681 0.713 0.759 0.777 0.810 0.833 0.866
2 0.678 0.681 0.702 0.734 0.774 0.795 0.832 0.851 0.903

Table XI: F-measures for Attack Case III (benign first) with
attack samples generated by Attack Case I in post-training.

Table XII shows F-Measures of FSD in testing dataset under
Attack Case IV in post-training. As LSTMs work based on
the history of data elements in time series data, the attacker in
Attack Case IV attempts to affect the initial weights of LSTMs.
Therefore, we see lower F-measures in comparison to Attack
Case III. Comparing Tables XI & XII shows that FSD is more
efficient if the adversary positions all benign samples at the
beginning of testing data.

λ Adversarial Rate
5% 10% 15% 20% 25% 30% 35% 40% 45%

0.5 0.487 0.536 0.588 0.609 0.637 0.666 0.696 0.743 0.785
1 0.534 0.597 0.601 0.652 0.705 0.718 0.767 0.769 0.800
2 0.597 0.607 0.648 0.679 0.722 0.741 0.783 0.799 0.851

Table XII: F-measures for Attack Case IV (malicious first)
with samples generated by Attack Case I in post-training.

Table XIII reflects F-Measures of FSD where the adversary
positions the malicious data in between benign samples. FSD
showed better performance under this attack in comparison to
Attack Case IV, however the results of Attack Case V are more
or less similar to Attack Case III. F-Measures of higher than
0.785 with 45% of adversaries and λ = 0.5 is significant for
FSD under Attack Cases III-V in comparison to conventional
machine learning at [5].

Table XIV gives an overview of F-Measures for Attack
Cases III, IV and V. The first tow of the table shows that FSD
achieved higher F-measures when the adversaries put benign
samples before the attacking samples. The second row of Table
XIV shows that increasing the rate of adversarial samples to
more than 25% in Attack Case V makes the detection easier
for FSD to detect malicious samples in comparison to Attack
Case III with adversarial rate of λ > 25%.

λ Adversarial Rate
5% 10% 15% 20% 25% 30% 35% 40% 45%

0.5 0.579 0.611 0.658 0.683 0.729 0.749 0.780 0.803 0.860
1 0.592 0.631 0.676 0.704 0.748 0.771 0.814 0.838 0.878
2 0.606 0.661 0.680 0.732 0.771 0.790 0.839 0.859 0.901

Table XIII: F-measures for Attack Case V post-training attack
strategy with attack samples generated by Attack Case I.

Adversarial Rate
5% 10% 15% 20% 25% 30% 35% 40% 45%

Case III-Case IV 0.097 0.070 0.065 0.062 0.061 0.060 0.059 0.057 0.055
Case V-Case III -0.044 -0.016 -0.006 -0.003 0.000 0.001 0.003 0.005 0.012
Case V-Case IV 0.053 0.054 0.059 0.059 0.061 0.061 0.062 0.063 0.067

Table XIV: An overview of the F-Measures of FSD under
different Attack Cases III, IV and V in post-training.

4 Papers 67

VII. DISCUSSION AND CRITIQUE

As it is commonly the case for any relatively young re-
search area, the landscape of MCS for IoT is fragmented into
various families based on the emerging research challenges.
Undoubtedly, data trustworthiness is a prominent challenge
with unprecedented number of consequences. We consider
this paper as the first step towards the development of a
holistic framework, which will improve data trustworthiness
by leveraging advanced deep learning capabilities.

For the evaluation, the system uses different distance mea-
sures comprising data vectors of all 5 features originating
from data sources of various trustworthiness levels; containing
both benign and malicious data samples. This segregation is
denoted by a scalar applied to the standard deviation of each
feature ensures that the data distribution considered for each
feature is balanced. However, there are a number of challenges
to be considered: First of all, features do not behave the same
way over time as reflected in their distribution presented in
our evaluation due to changing statistical properties over time.
Typically, a feature can be modelled by a normal distribution,
however, some features possess a lot of spikes and shifts
frequently which makes them harder to predict. Furthermore,
this affects the overall performance as all features are merged
to one representative vector, meaning that features with vary-
ing behavior over time can affect the overall performance
negatively, as was also reflected in our results.

Secondly, with colluding adversaries attacking the data
collection process by feeding the classifier with falsified data,
it is evident that not only does the order of how the data is
provided matter significantly in the system’s ability to classify
malicious users, but so does the time window size. This is
why the use of LSTM agents is beneficial as it considers the
sequential order of data. In this work, we have investigated
the impact that this ordering of data has along the observed
distribution. However, in the future it may be fruitful to also
explore the open challenges regarding the impact of selecting
various time windows and consider the influence this might
have on the performance of the classifier. Recall that if the
time window is increased, we effectively increase the overall
knowledge of the classification process. However, it should
be noted that larger time windows might introduce sever
scalability issues for real-world applications.

While the current status and functionality of FSD has been
evaluated against advanced data poisoning attacks, it is also
our intention to perform a detailed analysis considering also
even more intelligent adversaries targeting different facets of
the MCS paradigm such as evasion attacks and more advanced
data poisoning techniques like the one proposed by Miao et.
al [15]. As another research direction, we may study how
extracted features from the sequential information between
data elements from other sensors can contribute to detect
malicious samples in a sensor.

VIII. CONCLUSION

Data trustworthiness has always been one of the main
concerns that current MCS platforms are facing. FSD works

based on measuring the deviation between the predicted and
the real received sensor values. We used LSTMs and One-
Class SVM to build FSD. However, it is simply possible
to replace them with alternative techniques working on time
series and one-class classification. As an intelligent frame-
work, FSD improves data trustworthiness by providing the
capability of detecting falsified data generated by adversaries
under both pre-training and post-training attack strategies. In
our experiments we designed five attack cases consisting of
two distribution attack cases and three position attack cases to
evaluate both attack strategies. FSD achieved higher perfor-
mance when it visits more benign samples before malicious
samples in both studied strategies.

IX. ACKNOWLEDGMENT

This work was supported by Innovation Fund Denmark
(IFD) under SecDNS project and the European Commission
under the STAR project, Grant Agreements no. 956573.

REFERENCES

[1] T. Giannetsos, S. Gisdakis, and P. Papadimitratos, “Trustworthy people-
centric sensing : Privacy, security and user incentives road-map,” in 2014
13th Annual Mediterranean Ad Hoc Networking Workshop, MED-HOC-
NET 2014 :, 2014, pp. 39–46, qC 20150108.

[2] N. P. Owoh and M. M. Singh, “Security analysis of mobile crowd
sensing applications,” Applied Computing and Informatics, vol. ahead-
of-print, no. ahead-of-print, Jul. 2020.

[3] A. S. Chivukula and W. Liu, “Adversarial learning games with deep
learning models,” in Int. Joint Conference on Neural Networks, 2017.

[4] R. C. Cavalcante, L. L. Minku, and A. L. Oliveira, “Fedd: Feature
extraction for explicit concept drift detection in time series,” in Int.
Joint Conference on Neural Networks, 2016.

[5] N. Banerjee, T. Giannetsos, E. Panaousis, and C. Cheong Took, “Unsu-
pervised learning for trustworthy iot,” 07 2018, pp. 1–8.

[6] B. Guo, Z. Wang, Z. Yu, Y. Wang, N. Y. Yen, R. Huang, and X. Zhou,
“Mobile crowd sensing and computing,” ACM Computing Surveys,
vol. 48, no. 1, pp. 1–31, Sep. 2015.

[7] X. Li, K. Xie, X. Wang, G. Xie, D. Xie, Z. Li, J. Wen, Z. Diao, and
T. Wang, “Quick and accurate false data detection in mobile crowd
sensing,” IEEE/ACM Transactions on Networking, vol. 28, no. 3, pp.
1339–1352, 2020.

[8] L. Cheng, L. Kong, C. Luo, J. Niu, Y. Gu, W. He, and S. Das, “Deco:
False data detection and correction framework for participatory sensing,”
in 2015 IEEE 23rd International Symposium on Quality of Service
(IWQoS). IEEE, Jun. 2015.

[9] B. Wang, L. Kong, L. He, F. Wu, J. Yu, and G. Chen, “I(TS, CS): De-
tecting faulty location data in mobile crowdsensing,” in 2018 IEEE 38th
International Conference on Distributed Computing Systems (ICDCS).
IEEE, Jul. 2018.

[10] Y. Tian, K. Zhang, J. Li, X. Lin, and B. Yang, “Lstm-based traffic flow
prediction with missing data,” Neurocomputing, vol. 318, 2018.

[11] W. Yang, G. Sun, X. Ding, and X. Zhang, “Budget-feasible user recruit-
ment in mobile crowdsensing with user mobility prediction,” in 2018
IEEE 37th International Performance Computing and Communications
Conference (IPCCC), 2018, pp. 1–10.

[12] R. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing: current state and
future challenges,” IEEE Communications Magazine, vol. 49, no. 11,
pp. 32–39, Nov. 2011.

[13] N. Pitropakis, E. Panaousis, T. Giannetsos, E. Anastasiadis, and
G. Loukas, “A taxonomy and survey of attacks against machine learn-
ing,” Computer Science Review, vol. 34, p. 100199, Nov. 2019.

[14] D. S. Lab, ““strata santa clara dataset”.” [Online]. Available:
http://datasensinglab.com/data/

[15] C. Miao, Q. Li, H. Xiao, W. Jiang, M. Huai, and L. Su, “Towards data
poisoning attacks in crowd sensing systems,” 06 2018, pp. 111–120.

4 Papers 68

Detecting Ambiguous Phishing Certificates using
Machine Learning

Sajad Homayoun
DTU Compute

Technical University of Denmark
Kongens Lyngby, Denmark

sajho@dtu.dk

Kaspar Hageman
Department of Electronic Systems

Aalborg University
Aalborg, Denmark

kh@es.aau.dk

Sam Afzal-Houshmand
DTU Compute

Technical University of Denmark
Kongens Lyngby, Denmark

saaf@dtu.dk

Christian D. Jensen
DTU Compute

Technical University of Denmark
Kongens Lyngby, Denmark

cdje@dtu.dk

Jens M. Pedersen
Department of Electronic Systems

Aalborg University
Aalborg, Denmark

jens@es.aau.dk

Abstract—Recent phishing attacks have started to migrate to
HTTP over TLS (HTTPS), making a phishing web page appear
safe to the user’s browser despite its malicious purpose. This
paper benefits from both digital certificates and domains related
data features to propose machine learning-based solutions to
predict digital certificates involved in HTTPS as phishing or
benign certificates. In contrast to previous works that consider
this a binary classification problem, we take into account that
a certificate can be partially benign and phishy simultaneously.
We propose a multi-class classifier and a regressor to classify
these ambiguous certificates, in addition to benign and phishing
certificates, where the ‘phishyness’ of a certificate is expressed as
a value between 0 and 1 for the regressor. We apply our method
to a set of certificates obtained from certificate transparency logs
and show that we can classify them with high performance. We
extend our validation by evaluating the performance of the model
over time, showing that our model generalizes over time on our
training data set.

Index Terms—Digital Certificate, Phishing, Machine Learning,
Feature Extraction

I. INTRODUCTION

Phishing is still one of the most common attacks which has a
plethora of reported cases on a daily basis [1]. In these attacks,
victims are persuaded in disclosing sensitive information by
an attacker that impersonates a legitimate organization or
person. Modern and more advanced attackers have begun to
use phishing websites offering legitimate digital certificates
as a way to persuade the users into diverging their informa-
tion willingly, by making the websites look more legitimate
through visible padlock icons in browsers. Although phishing
websites with legitimate certificates can be more effective than
their unencrypted counterparts, they have the drawback from
the attacker’s perspective that they have are visible in publicly
available certificate transparency (CT) logs.The inclusion of
certificates in these logs is a requirement to be a trusted
website in most modern mainstream browsers [2]. Monitoring
CT logs for newly-issued certificates may enable the detection
of malicious phishing websites using legitimate certificates in

the earlier stages of the attack. In fact, prior research has
proposed automated solutions for detecting digital certificates
being involved in phishing attacks [3]–[6]. Most of previous
research has tackled this as a binary classification problem,
with certificates being considered either malicious or benign.
Identifying a high-quality ground truth is challenging, because
the label of a certificate tends to based on the label of the
domain name or website that serves a given certificate. Not
only is the nature of the domain not always clear-cut benign
or malicious [3], [7], but there may also be conflicting domain
labels for a given certificate [8].

In this paper, we propose a novel machine learning tech-
nique to address the issues with this task in the state of
the art. In contrast to prior work, our solution considers the
classification of certificates to be a multi-class classification
problem, and is capable of finding certificates that fit neither
the traditional benign or malicious labels, but are rather
considered ambiguous or ‘conflicted’. More specifically, the
contributions in this paper are summarized as follows:

• we present a novel labeling mechanism that takes into
account the individual labels of the domains that are being
covered by a certificate,

• our study is not limited to benign and phishing certificates
but also considers certificates covering both benign and
phishing domains,

• We combine all features described in prior works to build
a pool of features for machine learning tasks,

• we study how our features can predict a phishyness score
for each certificates,

• we validate our methods using a time-based cross valida-
tion scheme and show that our classifier and regression
models achieve a high performance.

This paper is divided as follows. Section II gives brief
background on digital certificates and Section III reviews
some related works. Section IV describes our data collection

4 Papers 69

pipeline extracting certificate/domain related features. Section
V & VI presents our classification and regression scenarios,
respectively. Section VII evaluates our scenarios using a time-
based approach. We discuss the achievements and limitations
in Section VIII, and conclude the paper in Section IX.

II. BACKGROUND

The Transport Layer Security (TLS) protocol suite provides
encryption functionality that other networking protocols such
as HTTP and IMAP. Besides encrypting the communication
between a client and server, TLS guarantees authenticity
by operating under a public key infrastructure (PKI). When
establishing a connection, a server provides a digital certificate
(as defined in the X.509 format), which consists of a public
key (whose private key is only known to the server operator),
a set of identities (usually one or more domain names) and
a signature from a trusted third-party. These third parties, or
Certificate Authorities (CA), only sign new certificates after
successfully validating that the requestor of the certificate can
demonstrate ownership of all identities to be included in the
certificate. Clients can verify the authenticity of a certificate
by validating that the signature was created using a private
key that the client inherently trusts, as part of the certificate
root store installed on their system. Originally, a certificate
contained a single subject field, which indicated for what
domain name the certificate was valid. An extension was later
introduced to support multiple domain names to be included,
named the Subject Alternative Name extension, and
the domain names embedded in a certificate are therefore
commonly refered to as SANs.

In 2011, two CAs issued certificates for high-profile domain
names for malicious actors, which allowed these actors to
perform large-scale impersonation attacks. As a response, the
Certificate Transparency (CT) framework was developed with
the intention of monitoring the certificate issuance behavior
of the CAs. In this framework, CAs are encouraged to sub-
mit newly-issued certificates to CT logs, publicly-available
repositories of certificates. Browser vendors started to require
certificates to be included in these logs, and as a results the CT
logs capture nearly all certificates that are issued worldwide.

III. RELATED WORK

Artificial intelligence based approaches for classifying mali-
cious certificates have been studied during the past few years.
Inspired by classifiers for URL detection, there have been
works on classifiers that utilize the information that can be
gained from the certificates itself which is encompassed in
the work presented in this paper. Mohammad et al. provide
a dataset that illustrates how using the certificate issuer from
HTTPS information can be used to high avail which has bled
over to multitudes of other works [9]. It ought to be noted
that certificate information often needs additional information
extraction of viable features due to the limited information
offering as compared to URL databases [10].

Across works in the area of detecting phishing websites
based on certificates, there is a recurring theme of feature

engineering. Mishari et al. proposed a selection of certificate
features from phishing websites to be used for training a
random forest, decision tree and nearest neighbor to detect
phishing website which denoted an accuracy above 85% [11].
A more holistic real-time version with a similar approach and
results was proposed by Dong et al. where the framework of
feature extractor, classifier and decision process was included
with phishing information used to train the same models
in addition to naive bayes tree, logistic regression, decision
table and k-nearest neighbor [12]. A deep neural network
version was also proposed for classification by Dong et al.
which denoted an accuracy above 95% [13]. Relying on
deep learning, Torroledo et al. use a long short-term memory
(LSTM) based model for detection [6]. Recently, Drichel et
al. propose a pipeline where they could easily test a lot of
these classifiers using CT log data which may help in classifier
selection process [3].

The security research community tends to rely on infor-
mation from domain names to provide a label for certificates
that cover the given domain names. Typically, a list of popular
domains serves as a ground truth for benign domains, and lists
of phishing domains or URLs (e.g., PhishTank [14]) as benign
domains. Certificates that are served by these two respective
domain group can as a result be labeled as benign and phishing
as well. Hageman et al. showed that labeling certificates in
such as fashion may result in mislabeling [8]. Content Delivery
Networks (CDNs) such as CloudFlare and Incapsula that
provide HTTPs based protection services issue certificates for
sets of domains originating from different owners. In case this
set of domains include both malicious and benign domains,
labeling these certificates is a challenge.

Even though a significant effort was made by the security
community towards the detection of certificates involved in
malicious activity, to the best of our knowledge no one has
recognized it as an ambiguous problem that should not be
tackled as a binary classification problem.

IV. DATA COLLECTION

To train and validate our approach, we rely on a vast number
of labeled certificates. First, we describe how we extract a
relevant label and feature space from a certificate, and then
explain how we obtained a large dataset of certificates.

A. Feature extraction and labeling

Figure 1 shows the feature extraction and label extraction
process. For each unlabeled certificate, and a set of labeled
domains, it produces a feature space and a label for the
certificates. This set of labeled domains is prepared in advance
and contains both benign (i.e., domains that are – with high
confidence – have not been part of a phishing attack) and
phishing domains (i.e., domains that have been observed as
part of a phishing attack). The resulting feature space is a
combination of features extracted from the certificate itself,
and aggregated features extracted from the list of SANs
that are covered by the certificate. For the feature extraction
components, we rely on a combination of features that have

4 Papers 70

been used in prior research [3]–[5] or are derived from insights
from other work [8] resulting in 107 features. Due to page
limit, we have uploaded a list of our features at our page on
the internet1. The first 58 features are extracted from the X.509
certificates themselves, and include features such as the sign-
ing parameters (e.g., key size, signature algorithm), extensions
(i.e., the presence and content of certain X.509 extensions) and
the composition of the subject field. The remaining 49 features
are extracted from the lexical properties of SANs covered by
the certificate, such as the presence of particular keywords or
features related to the characters composition and diversity in
the string. Each certificate covers a variable number of SANs,
and the feature space of these individual SANs are condensed
in a fixed-length feature space. We rely on simple statistical
functions (i.e., min, max, mean, median) to summarize, and
express the diversity of, the numerical domain features and
compute a ratio for condensing binary domain features. The
dataset contains a significant number of duplicate samples,
which we filter out. It is not uncommon for certificates to be
renewed after they expire, covering the same SANs and being
signed by the same CA with the same parameters, resulting
in all our extracted features to remain identical2.

The label of a certificate is inferred from the collection
of the labels from the SANs. Depending on which model
is being trained, the label is one of three classes (benign,
phishy or conflicted) or a continuous ”phishyness” score. In
the first case, a certificate is benign or phishy when the list
of SANs is only composed of benign or phishing domains
respectively (and may include unlabeled domains as well).
A certificate covering both at least one benign and phishy
domain is considered conflicted, as it is not trivial to claim
the maliciousness of the certificate. In the latter case, we use
a function of all SANs covered by the certificate for computing
a phishyness core. This score (si) is expressed as a ratio of
the number of phishing domains (pi) and phishing domains,
benign domains (bi) and unlabeled domains (ui):

si =
pi

pi + bi + ui
(1)

Note that the label extraction is only done during the train-
ing process, and not during the operations of the framework.

B. Dataset

To train and validate our machine learning models, we
collected a vast collection of certificates. This requires a set
of certificate for which a ground-truth is known. We can
rely on known phishing and benign domains and infer the
ground-truth of certificates issued for those domains. Under
the assumption that a highly-popular domain is inherently
abused for phishing attacks (e.g., youtube.com), we rely
on the top one million most popular domains from the
Tranco list [15] as a ground truth of benign domains. For

1https://phish-certs.github.io/
2The only distinction between these certificates are the timestamps when

they become active and expire.

Table I: Collected dataset after removing duplicates.

Samples Type Number of Samples

Benign Certificates 213,353
Phishing Certificates 46,256
Conflicted Certificates 15,578

establishing a ground truth of phishing entities, we col-
lect phishing URLs from the eCrime Exchange (ECX) plat-
form [16], a platform in which various anti-phishing organiza-
tions share newly identified phishing URLs with one another.
The root domains from those URLs (e.g., example.org
from https://www.example.co.uk?help) form the
basis of our set of phishing domains. There is an overlap be-
tween this set of domains and the benign domains, since some
popular domains host some user-generated phishing content,
such as Google Forms and Facebook. As such, we remove any
of the top 1 million domains from the ECX domains to form
our ground truth of phishing domains. Furthermore, we take
into account that the nature of a phishing domain can change
over time (e.g., a domain may have been registered for benign
purposes for years, after which it was registered by phisher and
used for hosting phishing content). It is common for phishing
domains to only be abused for several days [17]. In the label
aggregation phase of Figure 1, a domain is only considered
“phishy” in the context of a particular certificate, if the validity
period overlaps with the identification of a phishing URL
associated with the domain in the ECX platform.

Similar to [3], we rely on certificates from the CT logs
as a basis for our ground truth. From both of our domain
sets, we sampled 10,000 domains each, and collected all
certificates that cover any of these 20,000 resulting domain
names [8]. As a result, our dataset contains not only the
certificates that are currently deployed on web servers – a
common method for related work to retrieve their certificate
data from [5] –, but also historical data and certificates used
for non-HTTPS related services, such as mail servers. The
certificates were collected from the Censys search engine [18],
which provides extra information to these certificates, most
notably the validation status of three root stores (Microsoft,
Mozilla’s NSS and Apple). We discard all certificates that,
according to Censys, do not have any valid certificate chain
to any of the three root stores.

V. SCENARIO 1: DISTINGUISHING BETWEEN PHISHING
AND BENIGN CERTIFICATES

Figure 2 depicts the underpinnings of a multi-class classifi-
cation training and testing phase. The training phase comprises
two steps: (1) feature engineering and preprocessing and (2)
training the multi-class classifier. The former receives benign
(B), phishing (P), and conflicted (C) certificates and prepares
data format for the training algorithm and filters features with
low variance or constant values. This step is also responsible
for normalizing the values of different features. The latter out-
puts a trained classifier to separate between phishing, benign,
and conflicted certificates. The training step is not limited to

4 Papers 71

Labeled
Domains

Unlabeled
Certificates

Domain
feature

extraction

Certificate
feature

extraction

Feature
aggregation

Feature
space Labels

Label
aggregation

Fe
at

ur
e

an
d

la
be

l e
xt

ra
ct

io
n

Figure 1: The feature engineering and preprocessing pipeline
that turns unlabeled certificates and labeled domains in a
labeled feature space. The dashed lines between the certificate
dataset and the processing modules represent the set of SANs
covered by the certificate.

Certificates
Dataset

Feature Engineering
and Preprocessing

Train Multi-class
Classifier

Multi-Class
Classifier

B
P

C

?

new
certificate

predicted
label

B
P

C

Train

Test

Data Collection and
Preprocessing

Figure 2: Multi-class classification to distinguish between
Phishing, Benign and Conflicted certificates.

certain multi-class classification algorithms. In the test phase,
for classifying new certificates, we first have a data collection
and preprocessing step to extract certificate related and domain
related features for feeding the multi-class classifier. Then the
classifier outputs a label for the new certificate.

A. Experimental Results

To show the performance of our extracted features in sepa-
rating phishing, benign and conflicted certificates, we selected
five well-known classification algorithms namely stochastic
gradient descent (SGD), k-nearest neighbors (kNN), random
forest (RF), decision tree (DT) and support vector machines
(SVM). We used VarianceThreshold from sklearn [19] for
features selection with threshold = (.9 × (1 − .9)). We
used simple classification algorithms to show the robustness
of our algorithms in classifying phishing certificates. To avoid
the complexity of parameter tuning for each algorithm, we
used default parameters given by sklearn Python library. As
kNN needs k as a required parameter, we set k as the square
root of the number of training samples (k =

√
N). We use

F1 Score as our comparison metric because it expresses the
precision and recall in a single metric [20]. Table II compares
our trained classifiers with different metrics for 5-fold cross

Table II: F1 Score of the classifiers under 5-fold evaluation.

Fold SGD KNN DT RF SVM

1 0.78 0.74 0.96 0.99 0.84
2 0.76 0.74 0.97 0.99 0.84
3 0.75 0.74 0.97 0.99 0.83
4 0.79 0.74 0.97 0.98 0.84
5 0.76 0.74 0.97 0.99 0.84

avg. 0.77 0.74 0.97 0.99 0.84

Certificates
Dataset

Feature Engineering
and Preprocessing

Train Regression
Model

Regression
Model

B
P

C

?

new
certificate

Train

Test

Data Collection and
Preprocessing

Figure 3: Regression model to predict phishyness score be-
tween 0 and 1 for each certificate.

validation. Our evaluation shows that our proposed features for
detecting phishing certificates can help to build high quality
classifiers. The RF classifiers generated higher performance in
comparison to other classifiers.

VI. SCENARIO 2: PREDICTING PHISHYNESS SCORES

Figure 3 explains training and testing phases of a regression
model to predict a phishyness score for each certificate. Similar
to Scenario 1, this scenario has one step for preprocessing and
one step for training the regression model. In the preprocessing
step we calculate a phishyness score for each certificate based
on equation (1). This step is also responsible for normalizing
the values of different features as a data preparation task. The
output would be a phishyness score for each certificate which
can be between 0 and 1. In the test phase, for predicting a
phishyness score for new certificates, the data collection and
preprocessing step extracts all required features (certificate
related and domain related features), and then the trained
regression model outputs a score.

A. Experimental Results

To show the performance of our extracted features, we
applied different regression algorithms on our dataset. To avoid
parameter tuning of different algorithms, we applied each
algorithm using default parameter set from sklearn [19]. Table
III compare the results achieved by different algorithms such
as lasso regression, ridge regression, ElasticNet, random forest
regressor (RFR), decision tree regressor (DTR) and bagging
regressor (BR). We use Root Mean Square Error (RMSE) given
by 2

√
1
n

∑n
i=1(yi − ŷi)2 as it is commonly used in regression

analysis to verify experimental results. RMSE is the standard
deviation of the residuals, which is errors between real value

4 Papers 72

Table III: RMSE of regression models under 5-fold evaluation.

Fold Lasso Ridge ElasticNet RFR DTR BR

1 0.37 0.2 0.37 0.04 0.06 0.05
2 0.37 0.2 0.37 0.04 0.06 0.05
3 0.37 0.2 0.37 0.04 0.06 0.04
4 0.37 0.2 0.37 0.04 0.06 0.04
5 0.37 0.2 0.37 0.04 0.06 0.05

avg. 0.37 0.20 0.37 0.04 0.06 0.05

Dataset

Step 1

Step 2
Step 3
Step 4
Step 5

Train, 50% Test

Train, 60%

Train, 70% Test
Train, 80% Test

Train, 90% Test

Test

Figure 4: Time-based cross validation with 10% test data.

(y) and predicted value (ŷ) for all samples (n). RFR achieved
the best RMSE equal to 0.04.

VII. VALIDATION

The CT framework was created in 2011 and as a result, the
CT logs consist of certificates spanning almost a decade. In
cross validation, both the training and validation sets included
mixed samples from different periods in time. As such, this
validation does not evaluate how well the model generalizes
to changes in the TLS ecosystem over time. An example
of a major shift was the introduction of Let’s Encrypt, the
first certificate authority that issued certificates for free fully
automated, which suddenly enabled small websites to serve
their content over HTTPS.

We perform a time-based cross validation to evaluate the
generalization of our models over time. In this evaluation,
we take the first 50% of our certificates, as defined by their
validity date, and produce the performance metrics over the
next 10% of certificates. We repeat this process by taking the
first 60, 70, 80 and 90% of certificates and test on the next
10% (see Figure 4). Tables IV show the F1 scores of time-
based validation for the classifiers. Comparing Tables II & IV
proves that our classifiers should be retrained on need data
as there is a decrease in the F1 Score for classifying recent
certificates. Our trained random forest classifier could achieve
an F1 score of 0.84, while it could get to 0.99 in our 5-fold
cross validation (II). The kNN model gave the worst results in
both 5-fold and time-based cross validations, which shows that
our feature space and dataset need more complex classification
to separate phishing, benign and conflicted samples.

Table V describes RMSE of each studied regression model.
Our time-based evaluation shows that the RFR and BR as
ensemble-based algorithms have achieved RMSE of 0.05,
which is best among our regression algorithms. The lasso and
ElasticNet regression algorithms achieved the worst RMSE,
which is 0.33. We are interested in a more in-depth look into
the errors that RFR as our best model produces. As such, we
calculate the error level (i.e., the absolute difference between

Table IV: F1 Score the classifiers under time-based evaluation.

Step SGD KNN DT RF SVM

1 0.81 0.60 0.79 0.85 0.66
2 0.75 0.59 0.84 0.85 0.62
3 0.72 0.59 0.77 0.84 0.65
4 0.72 0.58 0.79 0.81 0.61
5 0.74 0.59 0.81 0.83 0.65

avg. 0.75 0.59 0.80 0.84 0.63

Table V: RMSE of the regression models under time-based
evaluation.

Step Lasso Ridge ElasticNet RFR DTR BR

1 0.37 0.21 0.37 0.05 0.07 0.05
2 0.34 0.18 0.34 0.04 0.06 0.05
3 0.31 0.17 0.31 0.04 0.06 0.04
4 0.34 0.20 0.34 0.05 0.08 0.06
5 0.30 0.20 0.30 0.05 0.08 0.06

avg. 0.33 0.19 0.33 0.05 0.07 0.05

the predicted value and the real value) for each sample. We plot
these figure in a cumulative distribution function in Figure 5.
The figure illustrates for instance that 93.5% of samples has
an error level of smaller than 0.01, which we believe gives an
acceptable approximation of the actual value.

0.00 0.02 0.04 0.06 0.08 0.10
Absolute error

0.80

0.85

0.90

0.95

1.00

EC
DF

Error level = 0.01

0.935

Figure 5: ECDF of the error level of real vs. predicted errors
for all test samples for time-based cross validation for all test
samples of all steps at Figure 4 (n=123,835).

VIII. DISCUSSION

Our results have shown that our proposed approach can
classify with a high performance, and generalizes well over
time on historical data. We deliberately selected more classical
and simpler classifier and regression models over more novel
models, such as deep neural networks, to show that the
selected features are powerful and avoid parameter settings.

a) Adverserial robustness: A major challenge for em-
ploying machine learning models is an adversarial environ-
ment, and we should consider the robustness of the model
against behavioral changes of phishers trying to evade our
model. Evasion here is the ability of an attacker to modify
the feature space of a certificate to circumvent a ‘phishing‘
label to be produced by the classifier. A number of features
are domain name independent, and are controlled by the CA
rather than the phisher (who merely requests the issuance of
the certificate), and can therefore only be influenced by the

4 Papers 73

attacker by requesting their certificate from a different CA,
which may have monetary consequences. The domain-related
features in the feature space are derived from all SANs covered
by the certificate. These features are changed by a phisher by
requesting certificates for different sets or, or even individual,
domain names, which has once again a monetary impact and
may also impact the hosting infrastructure that phishers resort
to. As future work, we consider evaluating the performance
of our proposed approach in the absence of domain-related
features or CA related features to emulate eliminating features
due to the evasion strategies of phishers.

b) Ground truth challenges: As described in Section III,
our work is not the first attempt at certificate classification
for various security purposes. However, to the best of our
knowledge we are the first to acknowledge that there can be
conflicts in the label for a certificate. As a result, it is difficult
to compare our results with prior work in a fair representative
manner.

By monitoring CT logs, we are merely observing snapshots
of a domain, and miss the changes of the domain afterwards.
Phishers are known to compromise (i.e., hack) existing benign
websites, re-purposing them for malicious purposes. As such,
we may be labeling certificates as phishing or conflicted due
to a domains being reported as phishing domains months after
the certificate was issued, even though the certificates at time
of issuance should have been labeled differently. We devised
a method to express the maliciousness of a certificate based
on the composition of labels of the domains covered by the
certificate. Even though this method provides a continuous
scale to put certificates on, one should be careful with relying
on the results for any automated decision making. Blocking
traffic to web servers serving these certificates may block
benign traffic and disproportionately hit organisations that
provide security services. We believe that the results can
instead be highly valuable as a warning signal for security
researchers or regulators to follow up on manually.

IX. CONCLUSION

In this paper, we proposed a novel method to automatically
classify digital certificates as benign, as used in phishing
attacks, or assign it an conflicted label. Our work is motivated
by prior work on phishing certificate classification and on the
existence of ambiguous certificates that are associated with
both benign and phishing domains. We consider both a (1)
multi-class classification problem, where certificates can be be-
nign, phishy or conflicted, and (2) a regression problem where
certificates have a phishyness score. By training different
machine learning models in both scenarios, we show a highly
performant system. Furthermore, we evaluate the resulting
classifiers and regressors using time-based cross validation to
show that our approach generalizes decently over time.

X. ACKNOWLEDGMENT

This work was supported by Innovation Fund Denmark
(IFD) under the SecDNS project. The authors acknowledge

researchers at CSIS Security Group A/S (https://csis.com/) for
their constructive recommendations on this project.

REFERENCES

[1] FBI Internet Crime Complaint Center, “Internet crime report
2020,” 2020. [Online]. Available: https://www.ic3.gov/Media/PDF/
AnnualReport/2020 IC3Report.pdf

[2] B. Laurie, “Certificate transparency,” Commun. ACM, vol. 57, no. 10, p.
40–46, Sep. 2014. [Online]. Available: https://doi.org/10.1145/2659897

[3] A. Drichel, V. Drury, J. von Brandt, and U. Meyer, “Finding phish
in a haystack: A pipeline for phishing classification on certificate
transparency logs,” in The 16th International Conference on Availability,
Reliability and Security, 2021, pp. 1–12.

[4] E. Fasllija, H. F. Enişer, and B. Prünster, “Phish-hook: Detecting
phishing certificates using certificate transparency logs,” in Interna-
tional Conference on Security and Privacy in Communication Systems.
Springer, 2019, pp. 320–334.

[5] J. Li, Z. Zhang, and C. Guo, “Machine learning-based malicious X.509
certificates’ detection,” Applied Sciences, vol. 11, no. 5, p. 2164, 2021.

[6] I. Torroledo, L. D. Camacho, and A. C. Bahnsen, “Hunting malicious
TLS certificates with deep neural networks,” in Proceedings of the 11th
ACM Workshop on Artificial Intelligence and Security, ser. AISec ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
64–73. [Online]. Available: https://doi.org/10.1145/3270101.3270105

[7] S. Maroofi, M. Korczynski, C. Hesselman, B. Ampeau, and
A. Duda, “COMAR: Classification of compromised versus maliciously
registered domains,” in 2020 IEEE European Symposium on Security
and Privacy (EuroS&P). IEEE, Sep. 2020. [Online]. Available:
https://doi.org/10.1109/eurosp48549.2020.00045

[8] K. Hageman, E. Kidmose, R. R. Hansen, and J. M. Pedersen, “Can a TLS
certificate be phishy?” in 18th International Conference on Security and
Cryptography, SECRYPT 2021. SCITEPRESS Digital Library, 2021,
pp. 38–49.

[9] R. Mohammad, F. Thabtah, and T. Mccluskey, “Predicting phishing
websites based on self-structuring neural network,” Neural Computing
and Applications, vol. 25, pp. 443–458, 08 2013.

[10] U. Meyer and V. Drury, “Certified phishing: Taking a look
at public key certificates of phishing websites,” pp. 211–223,
Aug. 2019. [Online]. Available: https://www.usenix.org/conference/
soups2019/presentation/drury

[11] M. Mishari, E. De Cristofaro, K. Eldefrawy, and G. Tsudik, “Harvesting
SSL certificate data to mitigate web-fraud,” CoRR, vol. abs/0909.3688,
01 2009.

[12] Z. Dong, A. Kapadia, J. Blythe, and L. J. Camp, “Beyond the lock icon:
real-time detection of phishing websites using public key certificates,” in
2015 APWG Symposium on Electronic Crime Research (eCrime), 2015,
pp. 1–12.

[13] Z. Dong, K. Kane, and L. Camp, “Detection of rogue certificates
from trusted certificate authorities using deep neural networks,” ACM
Transactions on Privacy and Security (TOPS), vol. 19, p. 5, 09 2016.

[14] Cisco Talos Intelligence Group, “Phishtank,” n.d. [Online]. Available:
https://phishtank.org/

[15] V. L. Pochat, T. V. Goethem, S. Tajalizadehkhoob, M. Korczynski,
and W. Joosen, “Tranco: A research-oriented top sites ranking
hardened against manipulation,” in Proceedings 2019 Network and
Distributed System Security Symposium. Internet Society, 2019.
[Online]. Available: https://doi.org/10.14722/ndss.2019.23386

[16] Anti-Phishing Working Group, “The APWG eCrime Exchange (eCX),”
https://apwg.org/ecx/, n.d., accessed: 30-09-2021.

[17] M. Wullink, M. Muller, M. Davids, G. C. M. Moura, and C. Hessel-
man, “Entrada: enabling DNS big data applications,” in 2016 APWG
Symposium on Electronic Crime Research (eCrime), 2016, pp. 1–11.

[18] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A. Halderman,
“A search engine backed by Internet-wide scanning,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, Oct. 2015, pp. 542–553. [Online]. Available:
https://doi.org/10.1145/2810103.2813703

[19] “scikit-learn: machine learning in python — scikit-learn 1.0 documen-
tation,” https://scikit-learn.org/stable/, (Accessed on 10/15/2021).

[20] S. Homayoun, A. Dehghantanha, M. Ahmadzadeh, S. Hashemi,
R. Khayami, K.-K. R. Choo, and D. E. Newton, “Drthis: Deep ran-
somware threat hunting and intelligence system at the fog layer,” Future
Generation Computer Systems, vol. 90, pp. 94 – 104, 2019.

4 Papers 74

Explainable Artificial Intelligence to Enhance Data
Trustworthiness in Crowd-Sensing Systems

Sam Afzal-Houshmand∗, Sajad Homayoun∗, Thanassis Giannetsos‡, Christian D. Jensen∗
∗Technical University of Denmark (DTU), Cyber Security Section, Denmark

‡Ubitech Ltd., Digital Security & Trusted Computing Group, Greece
Email: saaf@dtu.dk, sajho@dtu.dk, agiannetsos@ubitech.eu, cdje@dtu.dk

Abstract—Around the world there has been an advancement
of IoT edge devices, that in turn have enabled the collection of
rich dataset part of the Mobile Crowd Sensing (MCS) paradigm,
which in practice is implemented in a variety of safety critical
applications. In spite of the advantages of such dataset, there
exists an inherrent data trustworthiness challege due to actors
such as malevolent input. For this issue there have a significant
quantity of proposed solutions based on the usage of conventional
machine algorithms towards the purpose of sifting through faulty
data without any assumptions on the trustworthiness of the
source. In this context there is a number of open issues such
as how to cope with strong colluding adversaries while simul-
taneously efficiently managing the sizable influx of user data.
Previously, these open challenges have attempted to be addressed
by the use of deep learning schemes which works as a black
box and conventional machine learning classifiers for detecting
and filtering out false data point. This framework provided
a considerable improvement in addressing these challenges as
compared to conventional machine. However, what is the next
step in achieving improvements upon those results. Where do
we go from deep learning? In this work we propose that the
usage of explainable artificial intelligence (XAI) may provide
even more efficient performance as we refine the conception of
the models moving away from a black box and will be actual able
to comprehend how we end up with certain outcomes in terms of
accuracy in the presence of adversaries and what can be done to
adjust this to an optimal desired outcome. To this end we provide
a prototype implementation coupled with a detailed performance
evaluation under different scenarios of attack employing both
real and synthetic datasets. Our result suggest that the addition
of XAI introduce a comparative improved performance outper-
forming other schemes while improving upon existing schemes.

Index Terms—Mobile Crowd-Sensing, Explainable AI, Ad-
versarial Machine Learning, Data Trustworthiness, Timeseries
analysis.

I. INTRODUCTION

Temporal data can be quite unpredictable to humans as it
can be hard for us to understand and explain why changes
over time happen by just observing the data as an instance
like a picture or texts. That is why it can be tricky to represent
temporal data as a signal that varies as a function of time for
us due to the ubiquitous nature of temporal data. To leverage
underlying information of such data we need to leverage
additional methods along with expert knowledge [1].

Abundances of devices worldwide have created a mobile
sensing landscape that requires users to feed information about
the sensory data of the environment, all within an sensing

paradigm known as mobile crowd sensing (MCS) [2] which
often takes the form of a temporal data set. In terms of security
there is pertaining issues to data quality and integrity since
it is a very open platform [3]. Previous works in the area
toward a solution have used solutions based upon Machine
Learning systems to gain insights to fixing those issues. ML
systems are trained using MCS datasets that are assumed
true and benign whereas maliscious actors can affect those
systems negatively by targeting training data through simple or
advanced manipulation or directly forcing the models toward
a desired output which classify incoming events.

Other works in this area have attempted to address security
issues using adversarial machine learning leveraging conven-
tional ML based techniques toward distinguishing between
malicious data from benign data [4]. However, those con-
ventional techniques have proven to be inefficient especially
when addressing pertaining issues with IoT data associated
with concept drift which can be cumbersome as it related
to feature extraction. Works have suggested and investigated
how concept drift along with falsified information caused by
many untrustworthy data sources within a distributed envi-
ronment such as MCS can have an impact on the accuracy
of the system across multiple levels, all within clustering and
classification processes while intentionally (or unintentionally)
being masked by intelligent attacker or malfunctioning users.
We have previously furthered these investigations by looking
into applying advanced Deep learning schemes [5] that were
capable of distinguishing malicious and benign data without
any assumptions regarding the trustworthiness whilst proving
robust against many colluding intelligent adversaries. In this
paper, we take all this a step further by addressing the plausible
relation between the sensory input from devices over time via
the application and integration of explainable artificial intelli-
gence (XAI). This is the aforementioned additional methods
that we use to gain knowledge and insights regarding our
temporal data set that can be typically restrictive for human
representation [1]. Using a similar pipeline as with FSD [5]
we further expand upon it to be more exhaustive with our
investigation while introducing the aspect of XAI to create
the XFSD framework.

II. RELATED WORK

A lot of papers showcase the work done within the field
of applying Machine learning and Deep Learning (DL)in

4 Papers 75

the mobile crowd sensing infrastructures, addressing issues
pertaining to concept drift, data integrity, sparse sensing [3]
[6] [7]. In this paper, we focus on work that applied XAI to
sequential time-series data so we can possibly incorporate it
into to the existing FSD framework [5] [8].

There is a great variery of works that apply XAI to time-
series information but it can be broken down into its most basic
general categories of convoulutional neural network based
methodologies, recurrent neural network based methodologies
and non-sequential based methodologies [1].

Generally, RNN are typically very applicable to time-series
datasets which also incompass the application of LSTM model
that retains the whole history of the time data. The XAI
methodology used typically within this context is some form
of SHAP which is a model-agnostic explanation method.
Kim et.al where the first to suggest using SHAP algorithms
to explain the output of RNN used on time series data to
highly accurate outcomes. SHAP has been highly successful
for financial time series information prediction and explanation
[9] [10] [11] [12].

Within the category of CNN based methods, the prevalent
approach of applying XAI to time-series seem to be class-
activation mapping. This a post-hoc method that provide ex-
planation that highlights regions in the input data which affects
the CNN ouput (or any other DL model applied to time-series)
as shown across the work of multiple groups [13] [14] [15]
with highly accurate results. Within the category of CNN there
is more interesting approaches such as ConvTimeNet which
occludes part of the time series and compute the probability of
the predicted class [16]. Another approach is Gradient*Input
with attempt to identify the contribution of the input raw data
when performing time-series classification [17].

In terms of non-sequential methods used for time-series ex-
planations there is the methodology of generating explanation
using LIME to lesser high accuracy in regards to the sequential
explanatory methods but they are highly efficient [18] [19]
[20].

In terms of how to implement XAI numerical values as a
means to improving accuracy there is sparse work to be found
in the area of MCS. Typically, XAI values are used a a way
of visualizing some sort of point that explains the model in
question, however, methodologies that actual makes practical
use of XAI values can found such as using numerical XAI
values as a supplementary value for classification purposes
[11] [21].

III. TOWARDS TRUSTWORTHY MCS TASKS

Mobile Crowdsensing (MSC) information platforms allows
users to contribute during its sensing process by uploading
their contributions to a central server where the collected
information can be processed by local analytic algorithms
with the purpose of generating data consumable to requesting
applications in different fields such as medicine, traffic flow
etc. [22]. To put it mathematically, it is denoted for a specific
time window with n time steps and m sensors, we gather a
dataset D containing a sequence (S) for each sensor j where

Sj = [v1,j , v2,j , · · · , vi,j , · · · , vn,j]. In this denotation where
vi,j represent the value of sensor j at time step i, it can be
extrapolated that sequential analysis techniques are beneficial
in possibly extracting usable insights from the relationships
between the various sequential feature values. D in (1) shows
how S sequences build the matrix as the dataset.

D =

v1,1 . . . v1,j . . . v1,m

...
...

...
vi,1 . . . vi,j . . . vi,m

...
...

...
vn,1 . . . vn,j . . . vn,m

 (1)

The sequential structure of the data makes sequential anal-
ysis techniques like LSTMs more interesting as LSTMs are
beneficial in extracting useful insights from the relationships
between the various sequence values.

A. Threat modelling

Colluding adversaries have the objective of negatively af-
fecting MCS application by applying an adversarial agent
that attempt to make malicious measurement values seem
legitimate to the application. With the established denotation
this can be considered as an adversary may change the input
value vi,j in Sj to v′i,j , where v′i,j ̸= vi,j to maximize the
distortion ”max{|vi,j − v

′

i,j |}”, where the distortion should
be lower than a maximum allowed pre-determined by the
adversarial actor.

There is general consideration of two primary adversarial at-
tack models which have many offshoots that may also be taken
into consideration for such a platform [4] i.e.: 1) pre-training
(poisoning) attacks, and 2) post-training (evasion) attacks. For
the sake of consistency we refer to data poisoning as being
the pre-training attacks and evasion attacks as post-training
attacks. With pre-training attacks the adversaries attempt to
inject malicious data in an attempt to poison the training
dataset in training time and, thus, decrease the classification
accuracy of the classifier. Furthermore, in the area of data
poisoning it is possible to apply more advanced attack modems
such as the one shown in the work of Miao et.al. where there
is consideration of how to optimize the parameter values for
two specific data poisoning attack strategies i.e. target attack
and availability attack [23].

The evasion attack are referred to as the post-training attack
strategy which happens in testing time. With the post-training
attack model, the adversaries objective is to mislead already
trained classifiers to misclassify samples towards a malevolent
intent.

To illustrate the adversarial objective, let us assume f(xi) =
yi as the mapping function to calculate xi to yi. For every new
sensed values x′

i, f gives a new output f(x′
i) = y′i, and we

have the following cases:
• True Positive: if x′

i is positive and f correctly outputs
positive, there is no loss on the application.

• False Positive: if x′
i is negative and f outputs positive,

there is a loss ϵ on the application.

4 Papers 76

• False Negative: if x′
i is positive and f outputs negative,

there is a loss l on the application.
• True Negative: if x′

i is negative and f correctly outputs
negative, there is no loss on the application.

Principally, with a machine learning technique we try to
minimize |f(x′

i)−y′i| which means minimizing False Positives
and False Negatives. Contrarily, adversarial attackers attempts
to maximize the impact of the attack by maximizing |f(x′

i)−
y′i|. For the remainder of the paper we refer to adversarial data
as positive class of data, and legitimate data as negative class.

IV. EXPLAINABLE AI

In its base principality, it can be said at Explainable AI
(XAI) is AI where the results of the intelligent solution in
interpretable which is in contrast to the typical black box
architectures followed by some machine learning algorithms
especially neural networks. Machine learning has a long
history of being applied to time-series data, however, the high
complexity of those solution tends to make the interpretation
difficult. Without a quantitative assessment it may be hard
to understand areas of temporal data which may affect the
prediction. Enter XAI which may offer a solution to these
issues, adding the additional knowledge that may strengthen
the overall model essentially aiding the models prediction by
additional information [1] [24] [18]. There are a multitude of
algorithms to use when applying explainable AI on time series
information.

As this paper deals with sequential time-series data that are
found in MCS contexts, we are focusing on two of the most
common XAI algorithms in their base forms focusing on XAI
in timeseries, namely SHAP (SHapley Additive exPlanations)
and Class Activation Mapping (CAM). Moreover, we will
study the impact of a well-known non-sequential based XAI
algorithms called LIME (Local Interpretable Model-agnostic
Explanations) to study the difference between sequential and
non-sequential XAI algorithms in detecting malicious samples
generated by adversaries.

Generally, the pipeline of applying XAI to a time-series such
as the data in MCS can denote numerical values as a scalar
from -1 to 1 signifying importance score or impact. To break
this down simply we take the model and the raw data as input
and obtain a vector of fixed length determined by the sliding-
window in which we train the model. The significance of the
elements within what the vector consist of represent the impact
the values at a given time-frame have on the prediction. So this
numerical represent whether a given step in the raw dataset
affect the prediction negatively or positively (and how much
with 1 being the maximum impact) dependent on a baseline
computed by using the model and raw data as input with
the resulting prediction which can be used for comparison.
This way XAI is applied holistically to the model and will
explain what kind of importance areas of the input stream has
for a given feature which are values that can be used in a
variety of ways such as enrichment or weight adjustment for
the NN model. The properties of these values will add possible
enrichment as one of their inherent capabilities is that they are

also affected by adversarial attack strategies which can make
these values distinguishable dependent on what type of attack
has been applied to them

For SHAPley we are calculating the impact an value
has on its prediction (meaning it is independent from other
categories). In time-series we calculate SHAP values by a
window of values which can be aggregated together for
a singular/shortened representation. The resulting vector is
concatanated with values for each category feature so we end
up with a series of vectors where each section of elements
represent a feature explanatory value for a given time-frame
computed from the information of the time-frame values and
prediction model.

In cases of univariate sqequential data it may be advan-
tagous to just use the XAI values without applying any
aggregation (some dimensionality reduction can be applied for
very sparse cases) to retain the ordinal info and get a good
representation of the impact (denoted as score) over time. To
that end, an sliding-window of a given size can be applied
so we end up with a vector of a fixed size representing the
XAI values for that chunk of samples. A lot of approaches
aggregates these chunks to reduce the dimmensionality.

A. SHAP (SHapley Additive exPlanations)

Shapley values can be summarized as the average of the
marginal contributions across all permutations of a machine
learning model. There are multiple advantages of SHAP. One
of the advantages provided by SHAP include global inter-
pretability which is the collective SHAP values showing how
much each predictor contributes be it negative or positive to the
target variable. The second benefit is the local interpretability
where each observation gets its own set of SHAP values. Third
the SHAP values can be calculated for tree based models [1].

Once the DL model has been run on with a dataset we
run the DeepExplainer (SHAP function that takes data and
model as input) and extract the SHAP importance score values
locally [9]. So once we have a model from a collection of
observations we can feed this into the explainer API for SHAP
and extract some numerical values showcasing the importance
of each feature [25] [26]. In context of time-series SHAP
calculate shapley values step-wise in a time series. This is
also called permutation importance which is an approach that
extracts importance per permutation enabled by XAI. SHAP
based on single feature orderings which is approaches already
proposed for (Saabas et.al) take this single feature ordering
done step-wise in frames of time samples within a time series
where it effectively provide a combination of applying XAI
to time-serie by calculating impact values step-wise for each
time-step applied to a single feature ordering (often called
and approximate method with the TreeSHAP algorithm). In
simple terms, the resulting value from this variation of SHAP
is a scalar from -1 to 1 that can be interpreted as an impact
score the feature value of a given feature at time i have on
the prediction of said feature derived from the pre-trained DL
model applied on the data if it took some baseline value
based on the whole history of the predictions. From the

4 Papers 77

DL Model

Predictions time-series
[ei,1...ei,W]

XAI

Explanation Values Aggregated
[xi,1...xi,m]

Feature time-series
[vi,1...vi,m]

W

vm-1...vi,1 vi,2 vi,3 vi,4 vi,5

Aggregation

Explanation Values time-series
[xi,1...xi,W]

Figure 1: . A simplified version of the general XAI pipeline.
The concept is that using the time-series feature values and
applying a sliding-time window to feed into a LSTM model
to gain prediction we can calculate evaluations scores/impact
scores which map the impact a feature value has on the
prediction at a given time as determined against a baseline
calculated from all predictions denoted from the trained model
for the given sequence of size s. That way we obtain evaluation
values in the form of vectors of fixed length. Now we can
apply an aggregation model to get a summation of these
sequence values if needed.

SHAPley software description the prediction starts from the
baseline. The baseline for Shapley values is the average of all
predictions. There is also other method of gaining the baseline
such as an approximate method suggested by Saabas. The
importance of the SHAP values are thus determined by the
whole history of the RNN/LSTM model used for prediction
and calculated for each step providing importance of each
element in relation to the whole sequence in question for a
time-frame and total sequence of the whole model post-hoc.
This means that the importance value are does not signify the
importance of a given time-step in relation to other time-steps
in a given time-frame but it is the importance of the time-step
in relation to the total prediction model for a given time-frame.

B. Class Activation Mapping (CAM)

Unlike the SHAP which was built in relatio to recurrent
neural network model/ Long short-term memory the Class ac-
tivation mapping (CAM) was build in regards to Convulotional
neural network model. CAM has the purpose of highlighting
the regions of the input data with the most influence on the
CNN models output classification prediction. This is reliant
on the prescense of a Global Average pooling at the end of
the CNN layers [17]. Those features which will be obtained
are then fed to a fully connected layer with softmax activation
which produce an output that is interpretable i.e. an importance
score. CAM values denotes how much contribution the time
segment has on the class in question based upon the DL model
and raw data input. Therefore, in this case the importance
score is calculated as related to an baseline of sorts from
the prediction and the input signifying the importance of
certain areas of the sequential data as it relates to one another
given by the resulting predictions [27]. In the end the input
and outcome of CAM and SHAP in context of time-series
is the same, where the values in both cases signifies an
importance score. However, with CAM this is computed in
relation to other values in the same time-frame whereas SHAP
is calculated based on a general baseline. As this also indicates
CAM necessitates that a CNN model has been applied. Unlike
with RNN and SHAP we do not need to fully intialize the
model once before performing the explainer importance score
extraction [1] [13] [14] [15] [28].

To distinguish between the importance scores calculated
by CAM and SHAP it can be stated that in this context of
time series that CAM denotes importance scores that signifies
the importance of regions of values in a time-frame as it
relates to other values in that given time-frame (also called
sub-sequence) for the predicting model. SHAP calculate the
importance of each values in time-frames signifying the impact
of the given value toward the prediction in totality for a given
time-frame and not its importance in relation to other values
in its timeframe i.e. the importance of the given value is
determined by whole sequence of the prediction model in
the time-frame. Essentially, this means that we are at risk
with SHAP to end up vectors of importance scores where
the standard deviation is very small (can also be very large)
whereas with CAM we will always have vectors signifying

4 Papers 78

areas which are more important than others in input sequence
towards predictions resulting in consistently large standard
deviation in values.

C. LIME (Local Interpretable Model-agnostic Explanations)

Another approach which we already took inspiration from
with the SHAP approach is the non-sequential approach us-
ing LIME (Local interpretative model-agnostic explanations).
LIME explains the prediction of any classifier in an interpra-
tive manner by learning an interpretative model locally around
the prediction. LIME does not consider the sequential order of
data so a snapshot is suficable. It is however more consistent.
So in this case the coalition that is signified is how one given
value within a time-frame correlates to one given prediction
value. Otherwise, a similar pipeline with numerical importance
scores was used as with CAM and SHAP. [18].

V. XFSD CONCEPTUAL ARCHITECTURE

The base Fake sequential data detection (FSD) framework
[5] was created to benefit from the relationships between
samples of different time orders so as to accurately predict
the values of the next time step to higher degree of success
of similar attempt with conventional machine learning in the
area. That system utilized distance metrics for comparing
the predicted data and real data, at each time step, in order
to prepare samples for a one-class classification approach
essentially drawing a boundary around the allowed deviations
between predicted and real data values.

FSD takes advantage of sequential relationships, between
collected data instances, by combining the use of LSTM,
as a deep learning technique, and one-class classifier which
captures characteristics of the training data input towards
identifying instances of a specific class amongst all instances.

With the XFSD we add in the numerical values from
Explainable AI (XAI) models which represents the importance
of each feature over time. The input for XAI is the raw
sequence of values for each feature (sensor) along with a
trained model which then output a numerical vector that
denotes the importance score of the feature for a time-frame
in the end which can then be concatenated into a vector.

Like most deep learning frameworks our approach consists
of two main phases, namely the Training and Testing phases.
In the Training Phase, we make a predictor for each sensory
data as well as a final one-class classifier along with a XAI
value generator taking the values and model as input whereas
during the Testing Phase, we feed a combination of malicious
and benign testing samples in order to evaluate how good
our trained models behave in separating data generated by
adversaries.

A. Training Phase

Figure 2 shows the steps followed by XFSD to train
the final one-class classifier to distinguish benign samples
(not generated by adversaries). Similar to FSD [5], XFSD
framework trains a sequence predictor (Pj) for every sensor j
that takes input sequence and predict the next step value (Step

1 of Figure 2 and Algorithm 6). Step 2, for each timestep,
uses the trained predictor (Pj) to estimate the expected value
(ej) at time step i by feeding the sequence (Sj) of all values
of sensor j from timestep 0 to timestep (i − 1). αi, then,
are the distance vector of size K that is computed by the
K distance metrics (e.g. Cosine Distance, etc). At the same
time, feeding the sequence Sj and the predictor Pj will to
Xj will generate a vector of values (βi,j) as the explanation
of the data at the current step. Concatenating and flattening
αi and all βi,j will give Z⃗i vector that would be row i of Z
matrix shown in (2). Thereafter, the prediction are compared to
the corresponding real value where the distance is computed
between the two and fed to a one-class classifier. However,
before feeding the vector of distance measures we create
corresponding XAI values which represent the importance
score for a given a feature in time-frame as described in
the background knowledge. The input for the XAI (where
the algorithm should be interchangeable) is the raw data
and the model wherein the XAI functionality will output
corresponding importance scores which is concatenated with
the original vector of distance vector. Essentially, we end up
with a vector of the distance measures concatenated with a
vector of multiple vectors of same length concatenated for
each feature. This is then fed to the one-class classifier.

1) Step1: Train timeseries predictors: This step trains a
predictor (P) for each sensor that is able to predict sensor
value of timestep i based on the sequence of values at previous
timesteps. Although this step is not limited to sequential based
algorithms, we recommend using Recurrent neural networks
(RNNs) and Convolutions neural networks (CNNs) as they
are widely used in predicting timeseries. The output of Step
1 (Predictors) will be used later in Step 2.

Algorithm 1: STEP1: Train timeseries predictors
Data: TD as training dataset
output: trained Predictors for timeseries

1 Predictors← empty list;
2 for j = 1 to m do
3 Sj ← sequence of all values for sensor j;
4 Pj ← Train TSP (Sj);
5 Predictors.add(Pj);

6 return Predictors;

2) Step2: Explainable feature extraction: We apply an
interchangeable XAI algorithm process which effectively cal-
culates a numerical representation of the important areas of
the data input based upon the sequential model predictor. Step
2 of Figure 2 shows the procedure of computing α⃗ and β⃗ into
Z⃗i. The output of this step is matrix Z that will be used by
Step 3 to train the final one class classifier.

4 Papers 79

Train TSP Train TSP

Train
Dataset

Train
Dataset

Train One-Class
Classifier

STEP 2

STEP 3

STEP 1

Z

Trained Predictor
for time series

Training Time Series
Predictor (TSP)

Value

Vector

XAI Explainer

Trained Classifier

Vector Flow

Vector distance
operator

Vector concatenation
operator

Dataset

Sequence Flow

Value Flow

Model Flow

Trained
One-Class
Classifier

Figure 2: Training phase of XFSD

Z =

z1,1 . . . z1,k . . . z1,q

...
...

...
z2,1 . . . zi,k . . . zi,q

...
...

...
zn,1 . . . zn,k . . . zn,q

 (2)

where q = K + (m× a) in (2).
3) Step3: Training one-class classifier: Succeeding step 2,

all legitimate data is fed to the Predictors where the system
will calculate Z for each time step i containing all allowed
deviations between the predictions and the real data plus XAI
values for all time steps. Z matrix is suitable for a one-
class classifiers as it is achieved by feeding only benign data
to the predictors and the explainers. The one-class classifier
algorithm attempts to find a boundary around the training
samples (achieved from benign samples) in order to separate
them from the data from other distributions (line 1 of 2, where
F in Figure 2 would be the trained one-class classifier.

Algorithm 2: Step2: Explainable feature extraction
Data: TD as training dataset
input : Predictors as list of timeseries predictor
output: Z as dataset of deviations and XAI values

1 Z ← empty matrix;
2 Θ← K distance metrics;
3 for i = 1 to n do
4 V⃗i ← [vector of values at timestep i of TD];
5 Z⃗i ← empty vector;
6 for j = 1 to m do
7 Pj ← Predictors[j];
8 ei,j ← Pj(V⃗i−1,j);
9 end

10 E⃗i ← [ei,j for j = 1 to m];
11 α⃗i = [Θ1(V⃗i, E⃗i), . . . ,ΘK(V⃗i, E⃗i)];
12 Zi.concatenate(α⃗i);
13 for j = 1 to m do
14 Pj ← Predictors[j];
15 Sj ← sequence of all values of sensor j from

timesteps 0 to (i− 1) ;
16 β⃗i,j ← X[j](Sj , Pj);
17 Z⃗i.concatenate(β⃗i,j);
18 end
19 Z.add(Z⃗i);
20 end
21 return Z;

Algorithm 3: Step3: Training one-class classifier
Data: Z as the training dataset
output: F as trained classifier

1 F ← train occ(Z);
2 return F ;

B. Testing phase

Figure 3 shows how XFSD works in real time to detect
adversarial samples. For each testing time step i, XFSD uses
predictor Pj to produce ej for sensor j, then it concatenate
and flatten α⃗ and β⃗ into Z⃗i ready for the one-class classifier F
to specify if the data received in the current timestep follows
the distribution of benign data. As F is a trained one-class
classifier on legitimate deviations between real and predicted
values as well as the XAI values, the output dictates whether
Z⃗i is legitimate or not. If F say Z⃗i is not in the distribution of
benign samples, then V⃗i will be flagged as malicious as one
or more sensor values at timestep i in V⃗i were generated by
adversaries.

VI. EXPERIMENTAL SETUP

XFSD is an extension of FSD with the addtion of XAI
numerical values as a way of improving distinguished. Si-
multaneously we add more advanced attack strategies to
supplement the investigation of the effect of XAI-FSD.

4 Papers 80

Benign?

tim
el
in
e

Figure 3: Testing phase of XFSD

A. Adversarial Behavior

As with FSD, the XFSD is a framework for characterizing
between inlying and outlying sensory data reports in the
presence of adversarial malicious users, where we assume that
colluding adversaries are attacking the data collection process
(poisoning attack) or the classification process (evasion attack).
Essentially, the adversary may attempt to feed malicious
data points which are then included in the training of the
deep learning model used for the classification in XFSD or
sends malicious data points after the model and classifier has
been trained on the real benign data points. Therefore, we
categorized attack strategies into pre-training and post-training
attack strategies respectively. In the addition we have furthered
the attack strategies in the pre-training (data poisoning) with
advancement from bi-level optimization. The performance of
the framework was evaluated based on different levels of
distortion by colluding adversaries trying to impose on the
data trustworthiness. In XFSD we consider two main attack
approaches for each attack strategy: 1) distribution attacks

(Attack Cases I & II) and (Attack Cases VI & VII), which
manipulate mean or standard deviation to generate adversarial
samples which are different from the benign ones; And 2)
position attacks (Attack Cases III, IV & V), which manipulate
the position of injecting adversarial samples in the sequence
of values which in turn targets the order of samples. Position
attacks can only be applied after a distribution attack toward
changing the order of samples to be injected in the sequence.

Attack Case I: The adversaries may affect the system
uncertainty about the true value of the sensory data by setting
σ′ = σ and µ′ ̸= µ which represents a malicious standard
deviation equal to the standard deviation of the legitimate data
points with smaller/larger µ as Equation (3) where λ is a scalar
value as the deviation factor. Adversarial samples generated by
λ > 2 are not attractive in our data as concluded with base
FSD, as they are easier to detect due to their lower overlap
with benign samples, so we limit λ between 0 and 2 to study
more realistic data distributions.{

µ′ = µ+ (λ× σ) 0 < λ ≤ 2

σ′ = σ
(3)

To further illustrate what the actual structure of this attack
we refer to Figure 4a where there is a comparison of the
distributions of legitimate samples and adversarial samples
generated by Attack Case I for a simple dataset with only
two features, where λ = 1.0. The adversaries may choose
the λ value depending on the attack strategy (pre-training or
post-training) and the number of attacking samples they want
to inject/test notated as a percentage of the total number of
samples. As seen in the figure, changing the mean value would
have a greater impact on changing the distribution as it will
not have a huge overlapping region with the actual distribution
of the legitimate data. The intuition is that trained classifiers
should actually work better in detecting malicious data if they
were trained solely on a legitimate distribution.

(a) (b)

Figure 4: Distributions of legitimate samples (class 0) vs.
adversarial samples (class 1) for two features with µ = 0
and σ = 1.0; (a) Attack Case I, and (b) Attack Case II.

textbfAttack Case II: Adversaries may affect the system
uncertainty by selecting an adversarial distribution based on
equation 4 where the adversary’s goal is to keep the same
mean but changing the standard deviation.

4 Papers 81

{
µ′ = µ

σ′ = σ + (λ× σ) 0 < λ ≤ 2
(4)

Similar to with case I we refer to the similar Figure 4b where
it is shown that the distributions of a dataset with legitimate
and adversarial data from Attack Case II with λ = 1.0.
This attack case is designed to better reflect the real-world
case scenarios where adversaries attempt to gradually change
the classification behaviour by performing concept drifting by
modifying the standard deviation over time.

Attack Case III: In this case of a positional attack strategy,
the adversaries may affect the system uncertainty about the
true values by selecting a different distribution by changing the
order of legitimate and malicious data points in the sequence
of data. In this case all legitimate data comes before malicious
data points in the sequence.

Attack Case IV: The opposite of III, in this case all
malicious data come before benign data points in the sequence.

Attack Case V: The adversaries attempt to affect the system
uncertainty by putting malicious batches of data in between
legitimate data batches. Variations of this served as inspiration
for the expansion of positional attacks including more specific
patters including randomization, normal and different sized
windows of malicious data batches inserted.

Attack Case VI: The availability attack aim is to maximize
the error at the point where the adversaries are sifted by the
XFSD. Essentially the attack aims to deviate the outcome of
the truth as much as possible creating as many false-positives
from true-negatives as possible i.e. the attack attempt to make
the system accept as much data as possible malicious data
points included. Practically, this means that we feed the system
a dataset during the pre-training which opens it up as much
as possible before testing phase in terms of what boundaries
the classifier can draw for benign samples putting a focus on
larger variance in the data poisoning process. With the bi-level
optimization approach we can gain the optimal attack strategy
i.e. the optimal shift, distribution, the number of malicious
samples which deviates the outcome as much as possible from
the truth. Within this case we consider both case I and II i.e.
shifting the µ and σ.

Attack Case VII:Target attack focuses on skewing the
estimated truths of the target objects to certain target answers
pre-determined by the attackers through poisoning the sensory
data. So if the truth is determined to the attackers target we
succeed whereas with the availability attack we try to deviate
that response as much as possible and not to a specific answer
which is taken into account when developing the optimized
solution to be used by the attacker. Practically, we generate a
dataset to a specific pre-determined target (decided arbitrarily
for demonstration sake) and feed it during pre-training and
observe the effects by testing phase. What the target is could
be dependent on the desired outcome of the adversary e.g.
denial of service, delay etc. Similar to availability attack we
obtain the optimal manipulable variable to obtain the outcome
which fits to a pre-determined target by a bi-level optimization.

Within this case we consider both case I and II i.e. shifting
the µ and σ.

VII. RESULTS

–In this section, we evaluate the performance of XFSD in
the presence of strong adversaries under two major attack
strategies (denoted as pre-training and post-training). For that
purpose we utilize F-measure as the evaluation metric since
it considers True/False positive rates, recall and precision. We
divided the dataset into two subsets with a 60%-40% split. It
ought to be mentioned that redundant results have not been
reported for the sake of saving space in the paper.

Furthermore, for cases VI and VII we have considered only
pre-training where the purpose of those cases was to evaluate
how well our XFSD framework holds up to more advanced
poisoning attacks as compared to the poisoning attacks in cases
I and II making it a comparison between cases essentially.

Firstly, we focus on distribution attack cases (i.e. I and
II) followed by a section with positional attack (i.e. attack
cases III, IV and V) succeeding it which also dives into the
expansion of the positional attack patterns introduced with
XFSD. After that, we have a section for the advanced attack
cases (i.e. VI and VII) where both cases include manipulation
with both µ and σ (i.e. attack cases I and II) in context of
more advanced pre-training (data posioning) attack strategies
as described previously in this paper.

We reviewed the performance of different scenarios of
incorporating the XAI values to the base FSD framework by
exploring various utilization’s of XAI values. In this case we
refer back to our overall architecture for XFSD and explore
the impact of incorporating numerical values denoted by an
XAI algorithm in different approaches before moving on to
investigating different types of algorithms effectively adjusting
the identified key parameters of sliding-window size and
aggregation algorithm.

We investigated multiple ways of including XAI values
where we focused of adjusting the parameters of sliding-
window size in order to retain ordinal information of the
sequential data. This included enriching the vector at time Ti

with the XAI values from Ti−Sliding−WindowSize where
we apply various time-window length of 2, 100,1000,10000
time-steps to the DL model so then with the XAI we end
up with fixed length vectors that can be concatenated with
the distance metric vector which is obtainable by base FSD
without any XAI applied. During our experimentation we
observed that a sliding-window of a 1000 denoted the best
results in terms of highest measured f-measure. After a sliding-
window size of a 1000 the accuracy started decreasing. Hence,
forthcoming in our results section we report the scenario where
we used a sliding-window size of a 1000 and concatanated
the XAI values directly with the distance metric vector as
they are of fixed length. Another variation of this was to
aggregate the vector of XAI values to reduce dimensionality
in the final concatanated vector but this has been separated
to its own experimentation in this paper as to also investigate
its impact and different aggregation methods. Thus with the

4 Papers 82

optimal setup for incorporating XAI algorithms established
we report the results as to do the comparative analysis of
applying various XAI algorithms along with the base without
those values i.e. SHAP, CAM and LIME.

A. Results of XFSD Distribution attacks

We are trying to establish the improvements and accuracy
that can be achieved by applying quantifiable values derived
from XAI algorithms on time series information fed to the
base FSD framework. Previously we have established the ac-
curacies possible with deep learning and conventional machine
learning. In the results section we go through the results of
each XAI algorithm along with the FSD without XAI values
for each case as to make the comparative performance easier
to comprehend. Furthermore, we apply this for all cases in all
strategy scenarios.

1) XFSD case I and II in pre-training attack strategy:
With the pre-training attack strategy the adversaries tries to
poison the training datasets manipulating the data based on an
attack vector. It is generally harder to detect malicious samples
in the pre-training than the post-training since classifiers have
been trained to recognize the adversarial samples as legitimate.
Increasing the rate of adversaries in pre-training has a higher
impact on classifiers as it consider all or part of the injected
samples as noise effectively changing the perception of the
classifier. For the same reason an attacker would chose a
higher deviation factor as the end-goal is to mislead the
classifier’s perception in that scenario. In XFSD we also
test the comparative performance of different algorithms for
XAI usually denoted as numerical values concatenated to
FSD distance metric values along with the overall impact of
applying XAI values to the FSD framework.

In table I and II the results for attack case I and II is
shown for the pre-training attack strategy. Each row of the
tables show F-measure for a specific λ value where the
attacker generate malicious data using the aforementioned
attack vectors. From what we know from theorem increasing
the λ ought to decrease the adversarial data rate, leading to less
accurate classification accuracy in the pre-training strategy as
the concept is to train the classifier to detect wrongly i.e. skew
the perception of the classifier. Increasing the adversarial rate
in pre-training prevents the classifier from ignoring the impact
of malicious data samples in the training which means more
malicious samples results in a more misled classifier. This
degradation tendency is also reflected in the results from said
tables. All of these reflections where as expected from what
we know from FSD without the XAI values. The interesting
aspect is the impact of applying different XAI methods. As
showcased in the tables the tendencies are more less the
same across different algorithms in pre-training which makes
for a very simple interpretation as the impact of different
attack cases in pre-training strategies is the same regardless of
algorithm applied. The only difference is the scale of accuracy
between different XAI methods under different cases. Gener-
ally, the introduction XAI to base FSD provide a proportional
improvement in terms of performance denoted by F-measure

meaning that the degradation is the same in regards to different
configurations of adversarial attacks in pre-training attack
strategy between FSD and XFSD, however, the F-measure is
scalably larger meaning that there is an improvement in the
performance when adding XAI values to the regular value
vector which present an improvement for the classifier. This
confirms the expectation we had to introducing XAI values as
the additional information from the explanations improves the
overall performance of the classifiers. A valuable property of
XAI is that the values that they denote are equally affected by
adversarial machine learning. This means that the introduction
of XAI provide values for the classifier that are differentiable
with or without manipulation from adversaries. This in turn is
advantageous for the one-class classifier as they will receive
enriched datasets more elaborate (more values) and therefore
distinguishable between samples.

The reasoning behind the improved performance with XAI
is that adversarial attacks strategies also impact explanation
values/importance score besides the general enrichment of
more information over a time-frame that is obtainable by
adding XAI values. If we have the importance value they
enable us to detect that impact, essentially becoming an
additional distinguishing value between what is legitimate
and malicious. So if we have explanatory values for certain
feature when it is legitimate we can measure the distance
(using our defined metrics) between that value vector and a
potentially malicious sample akin to what we have done for
the raw values to determine the legitimacy of a sample. We
have proven from theorem and observations from experiments
that the explanation values are negatively affected by the
adversarial strategies which is a correlation we take advantage
of to provide additional information in the vectors for the
classifier to utilize, hence, the addition of explanatory values
create better classifiers as they have more values that can be
distinguished as legitimate or malicious. Conceptually, the idea
is that the explanatory values showcase the values or weights
which signify the impact of a certain time-frame of data
according to a trained model i.e. explanations. That overview
of impacts denoted by values is affected by adversaries and can
help the one-class classifier in distinguishing maliciousness
by differing more than a benign explanatory distribution. Fur-
thermore, in its foundation XAI provides values that explain
the impact of input to a NN model. With that knowledge
it is possible to adjust weights that may improve a model
mitigating issues like concept-drift and similar or enriching
datasets for classifications models by adding more values from
the same distributing for the classifier to train on.

Another part of the experimentation of this project was to
find the best algorithm. We had an inkling of a idea why
certain algorithms may perform better given the dataset we
are working with i.e. we expected SHAP to outperform the
other methods as it is designed for scenarios using RNN or
LSTM which is the basis of FSD which is widely recognized
as the conventional way of handling time-series information.
To illustrate this performance lets take an example of λ = 2
and 40% adversarial rate for all algorithms in case I in pre-

4 Papers 83

training strategy. Here the outcome is XFSD-SHAP=0.613,
XFSD-CAM=0.587, XFSD-LIME=0.516, FSD=0.556. SHAP
is clearly the most accurate method in terms of F-measure
which is expected, however, it is interesting to note that LIME
actually result in a worse performance that base FSD. The
explanation for that is that LIME is a non-sequential algorithm
which indicate that there is a significant amount of information
that can be extracted from the sequential order of our data
which is sensical since we are dealing with time-series data.

λ
Adversarial Rate

5% 10% 15% 20% 25% 30% 35% 40% 45%

SH
A

P 0.5 0.963 0.929 0.941 0.933 0.915 0.881 0.865 0.848 0.826
1 0.952 0.882 0.909 0.889 0.895 0.856 0.823 0.804 0.771
2 0.914 0.837 0.876 0.849 0.828 0.819 0.792 0.769 0.719

C
A

M

0.5 0.886 0.841 0.8 0.791 0.777 0.741 0.725 0.707 0.686
1 0.841 0.81 0.769 0.749 0.752 0.716 0.681 0.664 0.631
2 0.794 0.774 0.735 0.708 0.686 0.674 0.652 0.629 0.579

L
IM

E 0.5 0.85 0.805 0.764 0.755 0.741 0.705 0.689 0.671 0.65
1 0.805 0.774 0.733 0.713 0.716 0.68 0.645 0.628 0.595
2 0.758 0.738 0.699 0.672 0.65 0.638 0.616 0.593 0.543

FS
D

0.5 0.843 0.797 0.756 0.747 0.733 0.695 0.682 0.663 0.642
1 0.797 0.765 0.725 0.703 0.707 0.672 0.637 0.619 0.587
2 0.749 0.729 0.691 0.664 0.641 0.629 0.608 0.583 0.533

Table I: Results of various XAI algorithms + FSD for Attack
Case I in pre-training attack strategy

λ
Adversarial Rate

5% 10% 15% 20% 25% 30% 35% 40% 45%

SH
A

P 0.5 0.875 0.861 0.839 0.821 0.802 0.782 0.762 0.718 0.684
1 0.836 0.811 0.802 0.789 0.769 0.753 0.719 0.669 0.635
2 0.799 0.789 0.784 0.779 0.742 0.727 0.684 0.638 0.589

C
A

M

0.5 0.866 0.852 0.83 0.811 0.792 0.772 0.752 0.708 0.675
1 0.827 0.801 0.792 0.779 0.759 0.743 0.709 0.659 0.625
2 0.789 0.779 0.776 0.769 0.732 0.718 0.676 0.627 0.579

L
IM

E 0.5 0.858 0.844 0.822 0.803 0.784 0.764 0.744 0.7 0.667
1 0.819 0.793 0.784 0.771 0.751 0.735 0.701 0.651 0.617
2 0.781 0.771 0.768 0.761 0.724 0.71 0.668 0.619 0.571

FS
D

0.5 0.791 0.777 0.755 0.736 0.717 0.697 0.677 0.633 0.6
1 0.752 0.726 0.717 0.704 0.684 0.668 0.634 0.584 0.55
2 0.714 0.705 0.701 0.694 0.657 0.644 0.601 0.552 0.504

Table II: Results of various XAI algorithms + FSD for Attack
Case II in pre-training attack strategy

We can easily establish that introducing certain XAI algo-
rithms and using their values as described in XFSD provides
an increase in performance of the classifier in terms of F-
measure in cases I and II cases for pre-training strategy.

2) XFSD case I and II in post-training attack strategy: In
post-training scenario the attacker attempt to generate samples
for bypassing the classifiers during testing time without any
access to the training data. Thus, for this attack strategy
the models are trained on legitimate data then the overall
classification is evaluated using manipulated dataset. Simply,
we split our dataset into training and testing sets. In pre-
training dataset we poison the training data set and in post-
training we poison the testing dataset. With the post-training
strategy it ought to be easier for a trained classifier to detect
non-overlapping malicious samples as the classifier has the
knowledge to cover the legitimate area. Therefore, adversaries
will tend to not deviate the incoming poisoned dataset from
the legitimate dataset i.e. not change λ much.

As shown in III and IV we can see that we achieve higher f-
measures when the poisoned test data set when the maliscious
samples are increased and the deviation λ is larger which

makes sense since the dataset in those cases are far from the
legitimate dataset making it easier to detect by the classifier.
Again these are expected results for XFSD from what we
have previously learned from FSD and as in the scenario of
pre-training strategy the post-training strategy show similar
tendencies across models for all configurations in both cases in
post-training. So once again, the interesting aspect is to inves-
tigate the observable improvement and comparative behavior
of different XAI algorithms, and , unsuprisignly the tendencies
are the same here as they were in pre-training. XFSD-SHAP
is the strongest and perform with a higher F-meaure than base
FSD proving that adding XAI-values can have a positive effect
as discussed throughout this paper. To illustrate, lets take an
example in post-training for case II with configuration 10%
and λ = 0.5. Here, XFSD − SHAP = 0.666, XFSD −
CAM = 0.677, XFSD − LIME = 0.551, FSD = 0.582.
Once again, we see the exact same tendencies comparative to
one another in this scenario for these cases.

λ
Adversarial Rate

5% 10% 15% 20% 25% 30% 35% 40% 45%

SH
A

P 0.5 0.698 0.709 0.738 0.759 0.782 0.804 0.832 0.862 0.901
1 0.72 0.738 0.755 0.774 0.796 0.839 0.853 0.905 0.945
2 0.729 0.747 0.763 0.795 0.815 0.857 0.871 0.939 0.986

C
A

M

0.5 0.647 0.66 0.687 0.71 0.734 0.755 0.782 0.813 0.853
1 0.671 0.69 0.708 0.725 0.747 0.79 0.803 0.855 0.896
2 0.678 0.699 0.713 0.746 0.766 0.807 0.823 0.89 0.947

L
IM

E 0.5 0.579 0.592 0.619 0.642 0.666 0.687 0.714 0.745 0.785
1 0.603 0.622 0.64 0.657 0.679 0.722 0.735 0.787 0.828
2 0.61 0.631 0.645 0.678 0.698 0.739 0.755 0.822 0.879

FS
D

0.5 0.578 0.609 0.623 0.633 0.654 0.675 0.703 0.723 0.769
1 0.599 0.622 0.646 0.669 0.705 0.714 0.74 0.761 0.789
2 0.617 0.627 0.669 0.693 0.724 0.727 0.771 0.791 0.842

Table III: Results of various XAI algorithms + FSD for Attack
Case I in post-training attack strategy

λ
Adversarial Rate

5% 10% 15% 20% 25% 30% 35% 40% 45%

SH
A

P 0.5 0.668 0.688 0.712 0.739 0.791 0.843 0.868 0.897 0.942
1 0.738 0.756 0.769 0.787 0.807 0.856 0.877 0.921 0.967
2 0.78 0.787 0.801 0.817 0.841 0.872 0.888 0.932 0.982

C
A

M

0.5 0.665 0.685 0.709 0.737 0.788 0.842 0.865 0.895 0.94
1 0.735 0.755 0.766 0.783 0.805 0.855 0.875 0.918 0.965
2 0.779 0.784 0.798 0.815 0.839 0.869 0.884 0.928 0.978

L
IM

E 0.5 0.651 0.671 0.695 0.723 0.774 0.828 0.851 0.881 0.926
1 0.721 0.741 0.752 0.769 0.791 0.841 0.861 0.904 0.951
2 0.765 0.77 0.784 0.801 0.825 0.855 0.87 0.914 0.991

FS
D

0.5 0.568 0.588 0.612 0.64 0.691 0.745 0.768 0.798 0.843
1 0.638 0.658 0.669 0.686 0.708 0.758 0.778 0.821 0.868
2 0.682 0.687 0.701 0.718 0.742 0.772 0.787 0.831 0.908

Table IV: Results of various XAI algorithms + FSD for Attack
Case II in post-training attack strategy

The outcome of this testing of different algorithms which
were made interchangeable in the pipeline suggest that SHAP
algorithm was the most accurate which make sense since
SHAP is built to work well with RNN which in turn is
typically associated with time-series dataset. Most improtantly,
it can be observed that the addition of XAI numerical values
provide the classifier with more information to make better
distinguisments. The manipulation does seem to affect the XAI
representation significantly of the data as the important areas
become too dissimilar between the false and real data which
in turn make it easier for classifier to work. So once more, the
addition of XAI values provide an advantage for the classifiers.

4 Papers 84

B. XFSD architecture positional attacks

With the architecture settled in terms of scenario and
algorithms, we are using similar visualisation of aggregates
to review the difference of different positional attacks using
XAI.

1) Attack case III, IV, V in pre-training: We have exploited
the sequential relationship between the data samples from
different time-steps in XFSD so it could be an option for
adversaries to use positional attacks to bypass the classi-
fiers. For the positional attacks we are talking about three
cases where in case III all legitimate data appears before
the maliscious data, IV all malscious samples appear after
the maliscious data, V maliscious data appears alternately
between legitimate data samples. Dependent on the adversarial
rate the model in question may ignoere parts of adversarial
samples e.g. with 5 % of adversarial data, the model in
question learn 95% of legitimate data before learning from
the rest of 5% maliscious data, which have less impact on
the final performance in comparison to 55% legitimate and
45% maliscious samples. This impact is also shown in tables
V VIVII i.e. the fact that higher rates of adversarial data
cause higheer negative impact on the knowledge gained by
any model from the legitimate data. While the impact is
low the model show the highest F-measure in pre-training
scenario for attack case IV across all models however,when
the impact is increased the model in context of III perform the
best. As throguhout the experimentation the outcomes show
similar tendencies across model types with the main difference
being the overall performance in term of f-measure where
XFSD generally is proven to be better performing due to the
data enrichment which is also impacted in correlation to the
adversarial strategies. The performance of LIME is somehow
the same irregardless since it does not consider the sequential
order so the impact of the XAI values from that algorithm
to the base FSD is minimum. On certain occasions, we dip
beneath random guessing which occurrences in cases where
the adversarial is ≤ 45% and the deviation is high which is the
most severe cases but this is also applicable for cases of base
FSD (no XAI enriching) and LIME. The reasons for this we
have discussed earlier, but what is interesting is that enriching
the FSD vectors with XAI values can take it above random
guessing which is significant and an outcome only found via
experimentation.

2) Attack case III, IV, V in Post-training: Similar to the
positional attacks for pre-training strategy using different XAI
algorithms, we conducted the same experiments for the post-
training. The results are reflected in table VIII, IX and XV and
as before the comparative tendencies across algorithms are the
same effectively showing that XAI algorithms does not differ
in impact depending on the order of maliscious samples or the
distribution of malicious samples which is to be expected as
the impact of that is reflected in the LSTM models whereas
XAI is a reflection of the explanations (as numerical values)
from said model.

Similar trends as we have observed earlier across various

λ
Adversarial Rate

5% 10% 15% 20% 25% 30% 35% 40% 45%

SH
A

P 0.5 0.971 0.865 0.83 0.816 0.801 0.78 0.775 0.755 0.69
1 0.882 0.846 0.804 0.788 0.764 0.755 0.754 0.73 0.645
2 0.847 0.817 0.78 0.76 0.745 0.737 0.725 0.694 0.611

C
A

M

0.5 0.901 0.856 0.815 0.806 0.792 0.756 0.74 0.722 0.701
1 0.856 0.825 0.784 0.764 0.767 0.731 0.696 0.679 0.646
2 0.809 0.789 0.75 0.723 0.701 0.689 0.667 0.644 0.594

L
IM

E 0.5 0.83 0.785 0.744 0.735 0.721 0.685 0.669 0.651 0.63
1 0.785 0.754 0.713 0.693 0.696 0.66 0.625 0.608 0.575
2 0.738 0.718 0.679 0.652 0.63 0.618 0.596 0.573 0.523

FS
D

0.5 0.842 0.736 0.701 0.687 0.672 0.651 0.646 0.626 0.561
1 0.753 0.717 0.675 0.659 0.635 0.626 0.625 0.601 0.516
2 0.718 0.688 0.651 0.631 0.616 0.608 0.596 0.565 0.482

Table V: F-measures for Attack Case III (benign first) with
attack samples generated by Attack Case I in pre-training for
different XAI algorithms.

λ
Adversarial Rate

5% 10% 15% 20% 25% 30% 35% 40% 45%

SH
A

P 0.5 0.958 0.894 0.858 0.851 0.838 0.822 0.813 0.787 0.729
1 0.904 0.858 0.824 0.814 0.797 0.777 0.786 0.756 0.672
2 0.877 0.822 0.787 0.766 0.76 0.76 0.746 0.734 0.646

C
A

M
0.5 0.841 0.796 0.755 0.746 0.732 0.696 0.68 0.662 0.641
1 0.796 0.765 0.724 0.704 0.707 0.671 0.636 0.619 0.586
2 0.749 0.729 0.69 0.663 0.641 0.629 0.607 0.584 0.534

L
IM

E 0.5 0.77 0.725 0.684 0.675 0.661 0.625 0.609 0.591 0.57
1 0.725 0.694 0.653 0.633 0.636 0.6 0.565 0.548 0.515
2 0.678 0.658 0.619 0.592 0.57 0.558 0.536 0.513 0.463

FS
D

0.5 0.783 0.719 0.683 0.676 0.663 0.647 0.638 0.612 0.554
1 0.729 0.683 0.649 0.639 0.622 0.602 0.611 0.581 0.497
2 0.702 0.647 0.612 0.591 0.585 0.585 0.571 0.559 0.471

Table VI: F-measures for Attack Case IV (malicious first) with
attack samples generated by Attack Case I in pre-training.

λ
Adversarial Rate

5% 10% 15% 20% 25% 30% 35% 40% 45%

SH
A

P 0.5 0.954 0.907 0.871 0.82 0.796 0.782 0.773 0.743 0.664
1 0.93 0.855 0.818 0.795 0.765 0.746 0.739 0.706 0.615
2 0.889 0.827 0.783 0.761 0.735 0.713 0.683 0.658 0.593

C
A

M

0.5 0.814 0.769 0.728 0.719 0.705 0.669 0.653 0.635 0.614
1 0.769 0.738 0.697 0.677 0.68 0.644 0.609 0.592 0.559
2 0.722 0.702 0.663 0.636 0.614 0.602 0.58 0.557 0.507

L
IM

E 0.5 0.77 0.725 0.684 0.675 0.661 0.625 0.609 0.591 0.57
1 0.725 0.694 0.653 0.633 0.636 0.6 0.565 0.548 0.515
2 0.678 0.658 0.619 0.592 0.57 0.558 0.536 0.513 0.463

FS
D

0.5 0.782 0.735 0.699 0.648 0.624 0.610 0.601 0.571 0.492
1 0.758 0.683 0.646 0.623 0.593 0.574 0.567 0.534 0.443
2 0.717 0.655 0.611 0.589 0.563 0.541 0.511 0.486 0.421

Table VII: F-measures for Attack Case V with attack samples
generated by Attack Case I in pre-training.

λ
Adversarial Rate

5% 10% 15% 20% 25% 30% 35% 40% 45%

SH
A

P 0.5 0.698 0.714 0.75 0.78 0.814 0.833 0.88 0.899 0.931
1 0.731 0.754 0.78 0.812 0.858 0.876 0.909 0.932 0.965
2 0.777 0.78 0.801 0.833 0.873 0.894 0.931 0.95 0.981

C
A

M

0.5 0.656 0.669 0.696 0.719 0.743 0.764 0.791 0.822 0.862
1 0.68 0.699 0.717 0.734 0.756 0.799 0.812 0.864 0.905
2 0.687 0.708 0.722 0.755 0.775 0.816 0.832 0.899 0.956

L
IM

E 0.5 0.585 0.598 0.625 0.648 0.672 0.693 0.72 0.751 0.791
1 0.609 0.628 0.646 0.663 0.685 0.728 0.741 0.793 0.834
2 0.616 0.637 0.651 0.684 0.704 0.745 0.761 0.828 0.885

FS
D

0.5 0.599 0.615 0.651 0.681 0.715 0.734 0.781 0.800 0.832
1 0.632 0.655 0.681 0.713 0.759 0.777 0.810 0.833 0.866
2 0.678 0.681 0.702 0.734 0.774 0.795 0.832 0.851 0.903

Table VIII: F-measures for Attack Case III (benign first) with
attack samples generated by Attack Case I in post-training.

algorithms and with FSD with SHAP RNN being the most
accurate whilst showcasing similar effects of the positional
attacks as was found during the original FSD experimentation.

4 Papers 85

λ
Adversarial Rate

5% 10% 15% 20% 25% 30% 35% 40% 45%

SH
A

P 0.5 0.617 0.666 0.718 0.739 0.767 0.796 0.826 0.873 0.915
1 0.664 0.727 0.731 0.782 0.835 0.848 0.897 0.899 0.93
2 0.727 0.737 0.778 0.809 0.852 0.871 0.913 0.929 0.981

C
A

M

0.5 0.596 0.609 0.636 0.659 0.683 0.704 0.731 0.762 0.802
1 0.62 0.639 0.657 0.674 0.696 0.739 0.752 0.804 0.845
2 0.627 0.648 0.662 0.695 0.715 0.756 0.772 0.839 0.896

L
IM

E 0.5 0.525 0.538 0.565 0.588 0.612 0.633 0.66 0.691 0.731
1 0.549 0.568 0.586 0.603 0.625 0.668 0.681 0.733 0.774
2 0.556 0.577 0.591 0.624 0.644 0.685 0.701 0.768 0.825

FS
D

0.5 0.487 0.536 0.588 0.609 0.637 0.666 0.696 0.743 0.785
1 0.534 0.597 0.601 0.652 0.705 0.718 0.767 0.769 0.800
2 0.597 0.607 0.648 0.679 0.722 0.741 0.783 0.799 0.851

Table IX: F-measures for Attack Case IV (malicious first) with
samples generated by Attack Case I in post-training.

λ
Adversarial Rate

5% 10% 15% 20% 25% 30% 35% 40% 45%

SH
A

P 0.5 0.699 0.731 0.778 0.803 0.849 0.869 0.9 0.923 0.98
1 0.712 0.751 0.796 0.824 0.868 0.891 0.934 0.958 0.981
2 0.726 0.781 0.8 0.852 0.891 0.91 0.959 0.979 0.989

C
A

M

0.5 0.616 0.629 0.656 0.679 0.703 0.724 0.751 0.782 0.822
1 0.64 0.659 0.677 0.694 0.716 0.759 0.772 0.824 0.865
2 0.647 0.668 0.682 0.715 0.735 0.776 0.792 0.859 0.916

L
IM

E 0.5 0.535 0.548 0.575 0.598 0.622 0.643 0.67 0.701 0.741
1 0.559 0.578 0.596 0.613 0.635 0.678 0.691 0.743 0.784
2 0.566 0.587 0.601 0.634 0.654 0.695 0.711 0.778 0.835

FS
D

0.5 0.579 0.611 0.658 0.683 0.729 0.749 0.780 0.803 0.860
1 0.592 0.631 0.676 0.704 0.748 0.771 0.814 0.838 0.878
2 0.606 0.661 0.680 0.732 0.771 0.790 0.839 0.859 0.901

Table X: F-measures for Attack Case V post-training attack
strategy with attack samples generated by Attack Case I.

C. Advanced data poisoning

Taking inspiration from the work of Miao et.al. [29] we
added cases using more advanced adversarial techniques based
on their optimal attack framework which uses a bi-level
optimization. The two types of data poisoning attacks i.e. the
availability attack and the target attack, was applied to our
work to evaluate our models effectiveness with the addition
of XAI values.

The outcomes which is mainly on the pre-training strategy
(data poisoning) showcase the optimization and these types
of attacks are highly efficient, even with the addition of XAI
values, rendering the system beneath random guessing during
some adversarial configurations.

The order in which the results are presented are 1) SHAP,
2) CAM, 3)LIME,4) FSD.

λ Adversarial Rate
5% 10% 15% 20% 25% 30% 35% 40% 45%

Optimal 0.701 0.681 0.642 0.615 0.593 0.581 0.559 0.536 0.486
Optimal 0.686 0.666 0.627 0.6 0.578 0.566 0.544 0.521 0.471
Optimal 0.674 0.654 0.615 0.588 0.566 0.554 0.532 0.509 0.459
Optimal 0.661 0.641 0.602 0.575 0.553 0.541 0.519 0.496 0.446

Table XI: Optimized Data poisoning availability attack case
VI for the scenario of µ

λ Adversarial Rate
5% 10% 15% 20% 25% 30% 35% 40% 45%

Optimal 0.687 0.677 0.674 0.667 0.63 0.616 0.574 0.525 0.477
Optimal 0.674 0.664 0.661 0.654 0.617 0.603 0.561 0.512 0.464
Optimal 0.662 0.652 0.649 0.642 0.605 0.591 0.549 0.5 0.452
Optimal 0.647 0.637 0.634 0.627 0.59 0.576 0.534 0.485 0.437

Table XII: Optimized Data poisoning availability attack case
VI for the scenario with σ

λ Adversarial Rate
5% 10% 15% 20% 25% 30% 35% 40% 45%

Optimal 0.788 0.757 0.716 0.696 0.699 0.663 0.628 0.611 0.578
Optimal 0.638 0.607 0.566 0.546 0.549 0.513 0.478 0.461 0.428
Optimal 0.625 0.594 0.553 0.533 0.536 0.5 0.465 0.448 0.415
Optimal 0.613 0.582 0.541 0.521 0.524 0.488 0.453 0.436 0.403

Table XIII: Optimized Data poisoning target attack case VII
for the scenario with µ

λ Adversarial Rate
5% 10% 15% 20% 25% 30% 35% 40% 45%

Optimal 0.717 0.707 0.704 0.697 0.66 0.646 0.604 0.555 0.507
Optimal 0.702 0.692 0.689 0.682 0.645 0.631 0.589 0.54 0.492
Optimal 0.677 0.667 0.664 0.657 0.62 0.606 0.564 0.515 0.467
Optimal 0.662 0.652 0.649 0.642 0.605 0.591 0.549 0.5 0.452

Table XIV: Optimized Data poisoning target attack case V II
for the scenario of σ

Measured in f-measure we repeated the experimentation for
an attack scenario using optimized attack strategy approach.
The outcome for this experimentation for our standard de-
viation and adversarial rate approach along with the newly
introduced optimized strategy denoted results that can give us
further insight into the robustness of our model. Our model
is still performing well within the area but in this attack
case scenario it dips beneath random in certain configurations,
especially, configurations using the optimized attack strategy
approach. The general consensus of XAI enrichment being an
advantage is still observable. It is noted that the advanced
attack strategies with the optimization is more effective in
skewing the perception of the classifiers.

D. Aggregation Method

To possibly reduce some of the dimensionality while re-
taining representitive vectors we can apply an aggregation
for XAI values. In its simplest form this is a summation
or mean (or weighted average) that result in a scalar value
which is suggested across multiple papers in context of XAI
algorithms mostly in multivariate cases. More advanced aggre-
gation methods could be using ML methods such as bagging or
time-window aggregation. Another way to get representative
values is to extract the distribution(s) and aggregate those
values to attain a representative value which is used in multiple
works.

λ
Adversarial Rate

5% 10% 15% 20% 25% 30% 35% 40% 45%

SH
A

P 0.5 0.865 0.813 0.825 0.817 0.799 0.765 0.749 0.732 0.71
1 0.836 0.766 0.793 0.773 0.779 0.74 0.707 0.688 0.655
2 0.798 0.721 0.76 0.733 0.712 0.703 0.676 0.653 0.603

C
A

M

0.5 0.77 0.725 0.684 0.675 0.661 0.625 0.609 0.591 0.57
1 0.725 0.694 0.653 0.633 0.636 0.6 0.565 0.548 0.515
2 0.678 0.658 0.619 0.592 0.57 0.558 0.536 0.513 0.463

L
IM

E 0.5 0.734 0.689 0.648 0.639 0.625 0.589 0.573 0.555 0.534
1 0.689 0.658 0.617 0.597 0.6 0.564 0.529 0.512 0.479
2 0.642 0.622 0.583 0.556 0.534 0.522 0.5 0.477 0.427

FS
D

0.5 0.724 0.681 0.64 0.631 0.617 0.579 0.566 0.547 0.526
1 0.681 0.649 0.609 0.587 0.591 0.556 0.521 0.503 0.471
2 0.633 0.613 0.575 0.548 0.525 0.513 0.492 0.467 0.417

Table XV: F-measures for Attack Case I pre-training attack
strategy where the default aggregation (simple summation)
is applied before concatenation of fixed length vectors (from
time-window)

4 Papers 86

VIII. DISCUSSION

The purpose of XFSD was to improve upon the existing
FSD framework. The landscape of MCS for IoT present a
plethora of research challenges with one of the more prominent
ones being addressing data trustworthiness. With FSD we
attempted to build a holistic framework or take a first step
toward that and with XFSD we attempt to find a way of
improving the robustness of the models that can be derived
from the framework by leveraging advanced deep learning
capabilities and explainable enrichment.

Fundamentally, the regular FSD rely on deviations between
expected (predicted) and real (received) values denoted by
the DL models where the received value may be malicious.
The addition XAI into XFSD adds more knowledge of the
DL model when gaining the predicted value. XAI assign
values to each feature in the sequence resulting in different
patterns which can make it distinguishable when classifying
as adversarial attacks also affect the XAI values enabling
comparisons of XAI values from trained benign models and
adversarial models from testing. To aspects of note is that XAI
values are also affected by adversarial strategies. With post-
training we train a model on benign samples and compute
XAI values which can be considered benign which are then
used for comparisons to malicious samples. In pre-traiing, the
accuracy is dependent on the adversarial rate in the process
which dependent on how many adversarial samples is present
determines the validity of the XAI values i.e. if the dataset in
the time-frame is significantly predominately benign the XAI
values is more significant resulting in better accuracy and vice
versa if the the dominance switches to malicious the accuracy
is negatively affected significantly. Essentially, with post-
training we have a expected pattern from the XAI values which
can be compared with the real (received) values in establishing
a class/boundary and with the data poisoning the impact is
reflected in how skewed the perception of the model is which
we can observe is determined mainly by the adversarial rate
which makes sense since the discrepancy of benign XAI values
and affected XAI values should not be significant while the
distribution is still significantly benign. The breaking point
for the significance is observed to be around which is related
as spikes in terms of performance. Furthermore, indication
show that all models converges to random guessing. However,
SHAP seem to handle this convergence which in that scenario
happens at an adversarial rate of 20%.

For the evaluation we used a vector consistent of difference
distance measures comprising data vectors of all 5 features in a
given time-frame originating from the data sources of a variety
of trustworthiness levels containing benign and malicious
samples concatenated with corresponding explainable values
in the form of quantifiable numerical values. The segmentation
of trustworthiness levels was denoted by a factor applied
to standard deviation of each feature ensuring that the data
distribution considered for each feature was balanced. The
challenges that comes with mainly pertains to differing be-
havior over time for each feature and also unforeseen changes

typically called concept drift.
Also, with colluding adversaries attacking the data collec-

tion process by feeding classifiers with falsified data, it is
evident that not does the order matter but so does the time-
window. In this project we experimented with different to
find the ideal window. Furthermore, we have tried different
algorithms both for XAI and DL. In the future this can be
done more exhaustively but we have attempted to cover most
general ground and provide a framework which incorporates
explainable values.

With this sort of framework it is always possible to add more
i.e. add more algorithms, attack strategies, aggregation meth-
ods an so forth. Future, works can expand upon this general
framework and aim toward a more exhaustive experimentation.

IX. CONCLUSION

The general conclusion that could be reached was that the
enrichment of XAI values provided an observable improve-
ment in terms of classifiers being able to distinguish between
legit and malicious samples. We also showcased that for time-
series data using LSTM/RNN in combination with SHAP
was more accurate than applying it with CAM which can be
explained by the nature in which CAM works in combination
with CNN for time-series i.e. CAM considers areas of impor-
tance whereas SHAP considers the whole ordinal information
sequence. This is observed to be advantagoues in dataset such
as ours which has to consider issue pertaining to concept
drift i.e. unforeseen changes over time. The information that
can be extracted from sequential order is further proven
important by the improvements in accuracy for the classifiers
that can be observed when introducing XAI values and its
comparative better performance when comparing it to non-
sequential algorithms such as LIME or the base model which
has no enrichment with XAI values.

X. ACKNOWLEDGMENT

This work was supported by Innovation Fund Denmark
(IFD) under SecDNS project and the European Commission
under the STAR project, Grant Agreements no. 956573.

REFERENCES

[1] T. Rojat, R. Puget, D. Filliat, J. Del Ser, R. Gelin, and N. Diaz Ro-
driguez, “Explainable artificial intelligence (xai) on timeseries data: A
survey,” 04 2021.

[2] S. Gisdakis, T. Giannetsos, and P. Papadimitratos, “Shield: a data
verification framework for participatory sensing systems,” 07 2015.

[3] N. Banerjee, T. Giannetsos, E. Panaousis, and C. Cheong Took, “Unsu-
pervised learning for trustworthy iot,” 07 2018, pp. 1–8.

[4] N. Pitropakis, E. Panaousis, T. Giannetsos, E. Anastasiadis, and
G. Loukas, “A taxonomy and survey of attacks against machine learn-
ing,” Computer Science Review, vol. 34, p. 100199, Nov. 2019.

[5] S. Afzal-Houshmand, S. Homayoun, and T. Giannetsos, “A perfect
match: Deep learning towards enhanced data trustworthiness in crowd-
sensing systems,” in 2021 IEEE International Mediterranean Conference
on Communications and Networking (MeditCom), 2021, pp. 258–264.

[6] B. Guo, Z. Yu, X. Zhou, and D. Zhang, “From participatory sensing
to mobile crowd sensing,” in 2014 IEEE International Conference
on Pervasive Computing and Communication Workshops (PERCOM
WORKSHOPS), 2014, pp. 593–598.

4 Papers 87

[7] X. Li, K. Xie, X. Wang, G. Xie, D. Xie, Z. Li, J. Wen, Z. Diao, and
T. Wang, “Quick and accurate false data detection in mobile crowd
sensing,” IEEE/ACM Transactions on Networking, vol. 28, no. 3, pp.
1339–1352, 2020.

[8] L. Cheng, L. Kong, C. Luo, J. Niu, Y. Gu, W. He, and S. Das, “Deco:
False data detection and correction framework for participatory sensing,”
in 2015 IEEE 23rd International Symposium on Quality of Service
(IWQoS). IEEE, Jun. 2015.

[9] K. E. Mokhtari, B. P. Higdon, and A. Başar, “Interpreting financial time
series with shap values,” in Proceedings of the 29th Annual Interna-
tional Conference on Computer Science and Software Engineering, ser.
CASCON ’19. USA: IBM Corp., 2019, p. 166–172.

[10] P. Linardatos, V. Papastefanopoulos, and S. Kotsiantis, “Explainable ai:
A review of machine learning interpretability methods,” Entropy, vol. 23,
p. 18, 12 2020.

[11] D. Dataman. Explain your model with the shap
values. [Online]. Available: https://towardsdatascience.com/
explain-your-model-with-the-shap-values-bc36aac4de3d

[12] B. Khaleghi. The how of explainable ai: Post-modelling
explainability. [Online]. Available: https://towardsdatascience.com/
the-how-of-explainable-ai-post-modelling-explainability-8b4cbc7adf5f

[13] Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch
with deep neural networks: A strong baseline,” in 2017 International
Joint Conference on Neural Networks (IJCNN), 2017, pp. 1578–1585.

[14] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller,
“Accurate and interpretable evaluation of surgical skills from kinematic
data using fully convolutional neural networks,” 08 2019.

[15] F. Oviedo, Z. Ren, S. Sun, C. M. Settens, Z. Liu, N. T. P. Hartono,
R. Savitha, B. L. DeCost, S. I. P. Tian, G. Romano, A. G. Kusne, and
T. Buonassisi, “Fast classification of small x-ray diffraction datasets
using data augmentation and deep neural networks,” ArXiv, vol.
abs/1811.08425, 2018.

[16] K. Kashiparekh, J. Narwariya, P. Malhotra, L. Vig, and G. Shroff,
“Convtimenet: A pre-trained deep convolutional neural network for time
series classification,” 07 2019, pp. 1–8.

[17] L. Zhou, C. Ma, X. Shi, D. Zhang, W. Li, and L. Wu, “Salience-cam:
Visual explanations from convolutional neural networks via salience
score,” 07 2021, pp. 1–8.

[18] M. T. Ribeiro, S. Singh, and C. Guestrin, “”why should i trust you?”:
Explaining the predictions of any classifier,” in Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ser. KDD ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 1135–1144. [Online]. Available:
https://doi.org/10.1145/2939672.2939778

[19] L. Hulstaert. Understanding model predictions with
lime. [Online]. Available: https://towardsdatascience.com/
understanding-model-predictions-with-lime-a582fdff3a3b

[20] A. Sharma. Decrypting your machine learning model
using lime. [Online]. Available: https://towardsdatascience.com/
decrypting-your-machine-learning-model-using-lime-5adc035109b5

[21] I. Kakogeorgiou and K. Karantzalos, “Evaluating explainable artificial
intelligence methods for multi-label deep learning classification tasks in
remote sensing,” 04 2021.

[22] R. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing: current state and
future challenges,” IEEE Communications Magazine, vol. 49, no. 11,
pp. 32–39, Nov. 2011.

[23] C. Miao, Q. Li, H. Xiao, W. Jiang, M. Huai, and L. Su, “Towards data
poisoning attacks in crowd sensing systems,” 06 2018, pp. 111–120.

[24] D. Mercier, A. Dengel, and S. Ahmed, “Patchx: Explaining deep models
by intelligible pattern patches for time-series classification,” 02 2021.

[25] J.-Y. Kim and S.-B. Cho, “Electric energy consumption prediction by
deep learning with state explainable autoencoder,” Energies, vol. 12, p.
739, 02 2019.

[26] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” ArXiv, vol. abs/1705.07874, 2017.

[27] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in ECCV, 2014.

[28] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning
deep features for discriminative localization,” in 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2921–
2929.

[29] C. Miao, Q. Li, H. Xiao, W. Jiang, M. Huai, and L. Su, “Towards data
poisoning attacks in crowd sensing systems,” 06 2018, pp. 111–120.

4 Papers 88

CHAPTER5
Conclusive Outlook

from Outcomes
This PhD study general objective was to conduct an investigation into Adversar-
ial Machine Learning in Cybersecurit with a disposition starting from the SecDNS
project using DNS data to create machine learning frameworks towards cyber crime
prevention. Throughout, this expanded to also include other data sources such as
mobile crowd sourcing.

We have been able to establish the major advantages that using Machine learning
methods provides in the realm of cybersecurity using Data scientific approach. As a
results, we have been able to create frameworks and experimental approaches that
can be applied to multitude of different contexts with similar objectives.

The scope of artificial intelligence is quite broad, even if we try to restrict it to
machine learning or deep learning for that matter. The hope for the future is that the
area get further investigated in a great variety of contexts and with a great variety
in data sources.

Bibliography
[1] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, “A deep learning approach for net-

work intrusion detection system,” in Proceedings of the 9th EAI International
Conference on Bio-Inspired Information and Communications Technologies (For-
merly BIONETICS), BICT’15, p. 21–26, ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2016.

[2] A. A. Diro and N. K. Chilamkurti, “Distributed attack detection scheme using
deep learning approach for internet of things,” Future Generation Comp. Syst.,
vol. 82, pp. 761–768, 2017.

[3] B. L. Dong and X. Wang, “Comparison deep learning method to traditional
methods using for network intrusion detection,” 2016 8th IEEE International
Conference on Communication Software and Networks (ICCSN), pp. 581–585,
2016.

[4] R. Zhao, R. Yan, Z. Chen, K. Mao, P. Wang, and R. X. Gao, “Deep learning
and its applications to machine health monitoring: A survey,” 2016.

[5] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of adversarial
machine learning,” Pattern Recognition, vol. 84, pp. 317–331, 2018.

[6] A. Tuor, R. Baerwolf, N. Knowles, B. Hutchinson, N. Nichols, and R. Jasper,
“Recurrent neural network language models for open vocabulary event-level cyber
anomaly detection,” 2017.

[7] A. Tuor, S. Kaplan, B. Hutchinson, N. Nichols, and S. Robinson, “Deep learn-
ing for unsupervised insider threat detection in structured cybersecurity data
streams,” 2017.

[8] A. Brown, A. Tuor, B. Hutchinson, and N. Nichols, “Recurrent neural network
attention mechanisms for interpretable system log anomaly detection,” in Pro-
ceedings of the First Workshop on Machine Learning for Computing Systems,
MLCS’18, (New York, NY, USA), Association for Computing Machinery, 2018.

[9] B. J. Radford, B. D. Richardson, and S. E. Davis, “Sequence aggregation rules
for anomaly detection in computer network traffic,” 2018.

Bibliography 91

[10] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed deep learning:
An in-depth concurrency analysis,” ACM Comput. Surv., vol. 52, Aug. 2019.

[11] Y. Li, R. Ma, and R. Jiao, “A hybrid malicious code detection method based on
deep learning,” 2015.

[12] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An ensemble of
autoencoders for online network intrusion detection,” 2018.

[13] N. Banerjee, T. Giannetsos, E. Panaousis, and C. C. Took, “Unsupervised learn-
ing for trustworthy iot,” CoRR, vol. abs/1805.10401, 2018.

[14] N. Baracaldo, B. Chen, H. Ludwig, A. Safavi, and R. Zhang, “Detecting poison-
ing attacks on machine learning in iot environments,” in 2018 IEEE International
Congress on Internet of Things (ICIOT), pp. 57–64, July 2018.

[15] Y. Liu, Y. Xie, and A. Srivastava, “Neural trojans,” CoRR, vol. abs/1710.00942,
2017.

[16] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. Tygar, “Adversarial
machine learning,” in Proceedings of the 4th ACM workshop on Security and
artificial intelligence, pp. 43–58, ACM, 2011.

[17] R. Huang, B. Xu, D. Schuurmans, and C. Szepesvári, “Learning with a strong
adversary,” arXiv preprint arXiv:1511.03034, 2015.

[18] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar, “Can machine
learning be secure?,” in Proceedings of the 2006 ACM Symposium on Information,
computer and communications security, pp. 16–25, ACM, 2006.

[19] N. Dalvi, P. Domingos, S. Sanghai, D. Verma, et al., “Adversarial classification,”
in Proceedings of the tenth ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 99–108, ACM, 2004.

[20] S. Gisdakis, T. Giannetsos, and P. Papadimitratos, “SHIELD: A data verification
framework for participatory sensing systems,” in 8th ACM Conf. on Security &
Privacy in Wireless and Mobile Networks, p. 16, 2015.

[21] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support vector
machines,” arXiv preprint arXiv:1206.6389, 2012.

[22] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of adversarial
machine learning,” Pattern Recognition, vol. 84, pp. 317–331, 2018.

[23] Y. Vorobeychik, “Adversarial ai.,” in IJCAI, pp. 4094–4099, 2016.

[24] M. Barreno, B. Nelson, A. D. Joseph, and J. Tygar, “The security of machine
learning,” Machine Learning, vol. 81, no. 2, pp. 121–148, 2010.

Bibliography 92

[25] S. Mokhtarani, “Embeddings in machine learning: Everything you need
to know.” https://www.featureform.com/post/the-definitive-guide-to-
embeddings.

[26] pascal brokmeier, “An overview of categorical input handling for neural net-
works.”

[27] “Starspace.” https://github.com/facebookresearch/StarSpace.

[28] P. Shreyas, “Deep embedding’s for categorical variables (cat2vec).”
https://towardsdatascience.com/deep-embeddings-for-categorical-
variables-cat2vec-b05c8ab63ac0", addendum =.

[29] E. Ross, “Building categorical embeddings.” https://skeptric.com/
categorical-embeddings/", addendum =.

[30] N. Takama and D. P. Loucks, “Multi-level optimization for multi-objective prob-
lems,” Applied Mathematical Modelling, vol. 5, no. 3, pp. 173–178, 1981.

[31] R. Achddou, J. M. Di Martino, and G. Sapiro, “Nested learning for multi-level
classification,” in ICASSP 2021 - 2021 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 2815–2819, 2021.

[32] J. Li, L. Wu, R. Guo, C. Liu, and H. Liu, “Multi-level network embedding with
boosted low-rank matrix approximation,” in Proceedings of the 2019 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining,
ASONAM ’19, (New York, NY, USA), p. 49–56, Association for Computing
Machinery, 2019.

[33] M. Köppel, A. Segner, M. Wagener, L. Pensel, A. Karwath, and S. Kramer, Pair-
wise Learning to Rank by Neural Networks Revisited: Reconstruction, Theoretical
Analysis and Practical Performance, pp. 237–252. 04 2020.

[34] “Stellargraph.” https://stellargraph.readthedocs.io/en/stable/demos/
index.html.

[35] W. Yu, N. Lu, X. Qi, P. Gong, and R. Xiao, “Pick: Processing key information ex-
traction from documents using improved graph learning-convolutional networks,”
in 2020 25th International Conference on Pattern Recognition (ICPR), pp. 4363–
4370, 2021.

[36] P. Rodríguez, M. A. Bautista, J. Gonzàlez, and S. Escalera, “Beyond one-hot
encoding: Lower dimensional target embedding,” Image and Vision Computing,
vol. 75, pp. 21–31, 2018.

[37] O. Ben-Ayed, “Bilevel linear programming,” Computers Operations Research,
vol. 20, no. 5, pp. 485–501, 1993.

https://www.featureform.com/post/the-definitive-guide-to-embeddings
https://www.featureform.com/post/the-definitive-guide-to-embeddings
https://github.com/facebookresearch/StarSpace
https://towardsdatascience.com/deep-embeddings-for-categorical-variables-cat2vec-b05c8ab63ac0"
https://towardsdatascience.com/deep-embeddings-for-categorical-variables-cat2vec-b05c8ab63ac0"
https://skeptric.com/categorical-embeddings/"
https://skeptric.com/categorical-embeddings/"
https://stellargraph.readthedocs.io/en/stable/demos/index.html
https://stellargraph.readthedocs.io/en/stable/demos/index.html

Bibliography 93

[38] C. Mougan, D. Masip, J. Nin, and O. Pujol, “Quantile encoder: Tackling high
cardinality categorical features in regression problems,” 05 2021.

[39] R. Achddou, J. Martino, and G. Sapiro, “Nested learning for multi-granular
tasks,” 07 2020.

[40] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for youtube
recommendations,” in Proceedings of the 10th ACM Conference on Recommender
Systems, (New York, NY, USA), 2016.

[41] S. Palachy, “Document embedding techniques.” https://towardsdatascience.
com/document-embedding-techniques-fed3e7a6a25d.

[42] P. Godec, “Graph embeddings — the summary).” https://
towardsdatascience.com/graph-embeddings-the-summary-cc6075aba007",
addendum =.

[43] R. Y. R. S. Jure Leskovec, William L. Hamilton, “Representation learning on
networks.”

[44] Q. Le and T. Mikolov, “Distributed representations of sentences and documents,”
31st International Conference on Machine Learning, ICML 2014, vol. 4, 05 2014.

[45] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[46] C. Nicholson, “A beginner’s guide to neural networks and deep learning,” 2019.

[47] T. Lochmann and S. Deneve, “Neural processing as causal inference,” Current
opinion in neurobiology, vol. 21, pp. 774–81, 07 2011.

[48] L.-f. REN, Z. WANG, X. LIU, Q.-s. LI, and Z. Chen, “The design and im-
plementation of a covering mdn-complete-life-cycle malicious domain detection
framework,” DEStech Transactions on Computer Science and Engineering, 07
2017.

[49] T. Gupta, “Deep learning: Feedforward neural network,” 2017.

[50] A. Shekhovtsov, B. Flach, and M. Busta, “Feed-forward uncertainty propagation
in belief and neural networks,” 03 2018.

[51] K. Yoon, R. Liao, Y. Xiong, L. Zhang, E. Fetaya, R. Urtasun, R. Zemel, and
X. Pitkow, “Inference in probabilistic graphical models by graph neural net-
works,” 03 2018.

[52] P. Lison and V. Mavroeidis, “Automatic detection of malware-generated domains
with recurrent neural models,” 09 2017.

https://towardsdatascience.com/document-embedding-techniques-fed3e7a6a25d
https://towardsdatascience.com/document-embedding-techniques-fed3e7a6a25d
https://towardsdatascience.com/graph-embeddings-the-summary-cc6075aba007"
https://towardsdatascience.com/graph-embeddings-the-summary-cc6075aba007"
http://www.deeplearningbook.org

Bibliography 94

[53] V. R, S. Kp, and P. Poornachandran, “Detecting malicious domain names using
deep learning approaches at scale,” Journal of Intelligent and Fuzzy Systems,
vol. 34, pp. 1355–1367, 03 2018.

[54] T. Rojat, R. Puget, D. Filliat, J. Del Ser, R. Gelin, and N. Diaz Rodriguez,
“Explainable artificial intelligence (xai) on timeseries data: A survey,” 04 2021.

[55] D. Mercier, A. Dengel, and S. Ahmed, “Patchx: Explaining deep models by
intelligible pattern patches for time-series classification,” 02 2021.

[56] M. T. Ribeiro, S. Singh, and C. Guestrin, “”why should i trust you?”: Explaining
the predictions of any classifier,” in Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’16,
(New York, NY, USA), p. 1135–1144, Association for Computing Machinery,
2016.

[57] K. E. Mokhtari, B. P. Higdon, and A. Başar, “Interpreting financial time series
with shap values,” in Proceedings of the 29th Annual International Conference on
Computer Science and Software Engineering, CASCON ’19, (USA), p. 166–172,
IBM Corp., 2019.

[58] J.-Y. Kim and S.-B. Cho, “Electric energy consumption prediction by deep learn-
ing with state explainable autoencoder,” Energies, vol. 12, p. 739, 02 2019.

[59] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predic-
tions,” ArXiv, vol. abs/1705.07874, 2017.

[60] L. Zhou, C. Ma, X. Shi, D. Zhang, W. Li, and L. Wu, “Salience-cam: Visual
explanations from convolutional neural networks via salience score,” pp. 1–8, 07
2021.

[61] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional net-
works,” in ECCV, 2014.

[62] Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch with
deep neural networks: A strong baseline,” in 2017 International Joint Conference
on Neural Networks (IJCNN), pp. 1578–1585, 2017.

[63] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller, “Ac-
curate and interpretable evaluation of surgical skills from kinematic data using
fully convolutional neural networks,” 08 2019.

[64] F. Oviedo, Z. Ren, S. Sun, C. M. Settens, Z. Liu, N. T. P. Hartono, R. Savitha,
B. L. DeCost, S. I. P. Tian, G. Romano, A. G. Kusne, and T. Buonassisi, “Fast
classification of small x-ray diffraction datasets using data augmentation and
deep neural networks,” ArXiv, vol. abs/1811.08425, 2018.

Bibliography 95

[65] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning deep
features for discriminative localization,” in 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2921–2929, 2016.

[66] R. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing: current state and future
challenges,” IEEE Communications Magazine, vol. 49, pp. 32–39, Nov. 2011.

[67] N. Pitropakis, E. Panaousis, T. Giannetsos, E. Anastasiadis, and G. Loukas, “A
taxonomy and survey of attacks against machine learning,” Computer Science
Review, vol. 34, p. 100199, Nov. 2019.

[68] E. Cinlar, Probability and Stochastics - 2011. Springer, 2011.

[69] F. Dekking, C. Kraaikamp, H. Lopuhaä, and L. Meester, A modern introduction
to probability and statistics. Understanding why and how. 01 2005.

[70] J. Brownlee, “A gentle introduction to joint, marginal, and conditional probabil-
ity,” 2019.

[71] R. J. Trumpler and H. F. Weaver, “Statistical astronomy,” 1962.

[72] A. Everitt, B. S.; Skrondal, “Cambridge dictionary of statistics,” 2010.

[73] J. H. Joseph K. Blitzstein, “Introduction to probability,” 2014.

[74] R. Durrett, “Probability. theory and examples,” 01 2010.

[75] P. A. Gagniuc, “Markov chains: From theory to implementation and experimen-
tation, first edition,” 2017.

[76] J. Kim, Jin H.; Pearl, “A computational model for causal and diagnostic reason-
ing in inference systems,” Proceedings of the Eighth International Joint Confer-
ence on Artificial Intelligence, 1983.

[77] P. Wenig, “Belief propagation in bayesian networks,” 2019.

[78] I. Khalil, T. Yu, and B. Guan, “Discovering malicious domains through passive
dns data graph analysis,” 06 2016.

[79] I. Khalil, B. Guan, M. Nabeel, and T. Yu, “Killing two birds with one stone:
Malicious domain detection with high accuracy and coverage,” 11 2017.

[80] D. M. . D. Rodriguez, “Beyond lexical and pdns: using signals on graphs to
uncover online threats at scale,” Cisco Umbrella (OpenDNS), USA, 2017.

[81] L. Chang, Z.-J. Zhou, Y. You, L.-H. Yang, and Z.-G. Zhou, “Belief rule based
expert system for classification problems with new rule activation and weight
calculation procedures,” Information Sciences, vol. 336, 12 2015.

Bibliography 96

[82] H. Tran, A. Nguyen, P. Vo, and T. Vu, “Dns graph mining for malicious domain
detection,” pp. 4680–4685, Dec 2017.

[83] J. Yedidia, W. Freeman, and Y. Weiss, Understanding belief propagation and its
generalizations, vol. 8, pp. 239–269. 01 2003.

[84] J. Diebel and S. Thrun, “An application of markov random fields to range sens-
ing.,” Advances in Neural Information Processing Systems, vol. 5, 01 2005.

[85] M. Ibrahimi, A. Javanmard, Y. Kanoria, and A. Montanari, “Robust max-
product belief propagation,” Circuits, Systems and Computers, 1977. Conference
Record. 1977 11th Asilomar Conference on, 11 2011.

[86] P. Manadhata, S. Yadav, P. Rao, and W. Horne, “Detecting malicious domains
via graph inference,” pp. 1–18, 09 2014.

[87] A. Nath and P. Domingos, “Approximate lifted belief propagation,” AAAI Work-
shop - Technical Report, 11 2010.

[88] H. Tran, C. Dang, H. Nguyen, P. Vo, and T. Vu, “Multi-confirmations and dns
graph mining for malicious domain detection,” 2019.

[89] W. Link and R. Barker, “Bayesian inference,” Bayesian Inference, 01 2010.

[90] J. Brooks-Bartlett, “Probability concepts explained: Bayesian inference for pa-
rameter estimation,” 2018.

[91] J. R. Chung and G. Yi, “Belief propagation in bayesian network,” 2014.

[92] F. Altarelli, A. Braunstein, L. Dall’Asta, A. Lage-Castellanos, and R. Zecchina,
“Bayesian inference of epidemics on networks via belief propagation,” Physical
review letters, vol. 112, p. 118701, 03 2014.

[93] E. Stalmans and B. Irwin, “A framework for dns based detection and mitigation
of malware infections on a network,” pp. 1–8, Aug 2011.

[94] V. Létal, T. Pevnỳ, V. Šmıdl, and P. Somol, “Finding new malicious domains
using variational bayes on large-scale computer network data,” pp. 1–10, 2015.

[95] Jian Sun, Nan-Ning Zheng, and Heung-Yeung Shum, “Stereo matching using
belief propagation,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 25, pp. 787–800, July 2003.

[96] E. Sudderth, A. Ihler, M. Isard, W. Freeman, and A. Willsky, “Nonparametric
belief propagation,” Commun. ACM, vol. 53, pp. 95–103, 10 2010.

	Preface
	Abstract
	Resume (Danish)
	Acknowledgements
	List of publications
	Abbreviations
	Contents
	1 Introduction
	1.1 Methodology for SecDNS

	2 Problem Dispositions
	2.1 State-of-the art in Cyber Crime Prevention
	2.2 Objectives

	3 Theoretical Background and Context
	3.1 Adversarial Machine Learning
	3.1.1 Threat Model
	3.1.2 Taxonomy of Attacks
	3.1.3 Preparation
	3.1.4 Manifestation
	3.1.5 Attack Evaluation

	3.2 Embedding Approaches
	3.2.1 Embedding literature
	3.2.2 Graph based embedding
	3.2.3 Nested data structures
	3.2.4 Selected Embedding approaches

	3.3 Machine learning techniques
	3.3.1 Feed-forward Neural Networks
	3.3.2 Recurrent Neural Networks
	3.3.3 Reinforcement Learning

	3.4 Explainable Artificial Intelligence
	3.4.1 SHAP (SHapley Additive exPlanations)
	3.4.2 Class Activation Mapping (CAM)
	3.4.3 LIME (Local Interpretable Model-agnostic Explanations)

	3.5 Mobile Crowd Sourcing
	3.6 Belief Propagation in Ontologies
	3.6.1 Fundamentals of Belief
	3.6.2 Probability distribution
	3.6.3 Probability Mass Functions
	3.6.4 Marginal Probabilities
	3.6.5 Markov Chains and Properties
	3.6.6 Belief Propagation Theory
	3.6.7 Bayesian Inference and Graphical Networks
	3.6.8 Marginal Probability in context of Graph Inference Applications
	3.6.9 Belief Propagation for Bayesian Networks
	3.6.10 Non-parametic Belief Propagation
	3.6.11 Approximate Belief Propagation
	3.6.12 Belief Propagation in Malicious DNS Graph Mining
	3.6.13 Considered Potential Belief Propagation (BP) Approaches
	3.6.14 Synthetic Event-based Dataset
	3.6.15 Markovian BP by applying Neural Networks
	3.6.15.1 Evaluation of BP Framework

	3.7 Applying Theoretical Context Study

	4 Papers
	5 Conclusive Outlook from Outcomes

	Bibliography

