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Summary
Biotechnological processes are used to produce many products in society, e.g., bio-
plastics, beer, vaccines, enzymes, and biopharmaceuticals. A promising biopharmaceuti-
cal is monoclonal antibodies (mAbs), which have been applied for treatment of various
diseases including cancer, autoimmune disorders, and infectious diseases such as coro-
navirus disease 2019 (COVID-19). In 2017, the 6 top-selling biopharmaceuticals were
mAbs. In 2022 the mAb market size was valued at 210.06 billion USD and the expected
market size in 2030 is 494.52 billion USD.

The subject of this thesis is economic nonlinear model predictive control (ENMPC)
for biotechnological processes and uncertainty quantification (UQ) of closed-loop systems.
We develop an ENMPC algorithm for profit maximization of an mAb fermentation
process and a high-performance Monte Carlo simulation toolbox for UQ of closed-loop
systems. The purpose of this thesis is to demonstrate, by simulation, that ENMPC can
increase the profit of the mAb fermentation process and that Monte Carlo simulation
can quantify uncertainties and closed-loop performance for the process.

In this work, we develop 1) a high-performance Monte Carlo simulation toolbox
for UQ of closed-loop systems, 2) a modeling methodology for processes consisting of
reactive systems conducted in reactors, and 3) an ENMPC algorithm for profit maxi-
mization. In addition, we develop a target-tracking nonlinear model predictive control
(NMPC) algorithm for testing purposes. This thesis introduces the Monte Carlo sim-
ulation toolbox, the modeling methodology, the NMPC algorithms, and a set of main
numerical results. The Monte Carlo simulation toolbox applies Open Multi-Processing
(OpenMP) for parallelization on shared memory architectures and shows almost lin-
ear parallel scaling for both proportional-integral-derivative (PID) controllers and the
developed NMPC algorithms. The Monte Carlo simulation approach is applicable for
quantification of uncertainties and closed-loop performance with respect to any selected
key performance indicators (KPIs), which makes the approach versatile. The modeling
methodology separates modeling of the reactor and the reactive system. In this way, the
reactor equations are not required to be updated to change the considered process. We
apply the modeling methodology to introduce three models in this thesis. The ENMPC
algorithm consists of a continuous-discrete extended Kalman filter (CD-EKF) for state
estimation and an economic regulator for profit maximization. We apply the ENMPC
algorithm for profit maximization of an mAb fermentation process, where the economic
regulator depends on mAb and glucose prices. The numerical results show that avail-
ability of Monte Carlo simulations enables closed-loop performance quantification with
respect to selected KPIs and simplifies comparison between controllers. Closed-loop sim-
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ulations with the ENMPC algorithm indicate that ENMPC can increase the profit of the
mAb fermentation process. In addition, a set of operational insights summarizes the EN-
MPC operational strategy, which we apply to design a simple controller. Monte Carlo
simulation quantifies the simple controller performance and show practically identical
performance as the ENMPC algorithm. These results demonstrate the “from-simple-via-
complex-to-lucid” approach, where the ENMPC technology enables design of a simple
controller with practically identical performance.

This thesis consists of a summary report and a collection of seven research papers and
a technical report. Six papers are published or accepted for publication in conference
proceedings and one paper is submitted to Journal of Process Control. The technical
report is not peer-reviewed.



Summary (danish)
Bioteknologiske processer bruges til at producere mange produkter i samfundet, f.eks.
bioplast, øl, vacciner, enzymer og biofarmaceutiske midler. Et lovende biofarmaceutisk
middel er monoklonale antistoffer (mAb’er), som er blevet anvendt til behandling af
forskellige sygdomme, herunder kræft, autoimmune lidelser og infektionssygdomme som
coronavirussygdom 2019 (COVID-19). I 2017 var de 6 bedst sælgende biofarmaceutiske
midler mAb’er. I 2022 blev mAb-markedet værdisat til 210,06 milliarder amerikanske
dollars, og den forventede markedsværdi i 2030 er 494,52 milliarder amerikanske dollars.

Denne afhandling omhandler økonomisk ikke-lineær model prædiktiv regulering (EN-
MPC) for bioteknologiske processer og usikkerhedskvantificering (UQ) af lukket-sløjfe
systemer. Vi udvikler en ENMPC-algoritme til at maksimere profitten af en mAb-
fermentationsproces og et høj-ydeevne Monte Carlo-simuleringsværktøj til UQ af lukket-
sløjfe systemer. Formålet med denne afhandling er at demonstrere ved simulering, at
ENMPC kan øge profitten af mAb-fermentationsprocessen og at Monte Carlo-simulation
kan kvantificere usikkerheder og lukket-sløjfe-ydeevne for processen.

I dette arbejde udvikler vi 1) et høj-ydeevne Monte Carlo-simuleringsværktøj til
UQ af lukket-sløjfe systemer, 2) en modelleringsmetodologi til processer bestående af
reaktive systemer udført i reaktorer og 3) en ENMPC-algoritme til profitmaksimer-
ing. Derudover udvikler vi en referencesøgende NMPC-algoritme til testformål. Denne
afhandling introducerer Monte Carlo simuleringsværktøjet, modelleringsmetodologien,
NMPC-algoritmerne og en række numeriske hovedresultater. Monte Carlo simuler-
ingsværktøjet anvender Open Multi-Processing (OpenMP) til parallelisering på delte
hukommelsesarkitekturer og har næsten lineær parallel skalering både for proportional-
integral-derivative (PID)-regulatorer og de udviklede NMPC-algoritmer. Monte Carlo
simuleringsværktøjet kan anvendes til kvantificering af usikkerheder og lukket-sløjfe-
ydeevne i forhold til valgte key performance indicators (KPI’er), hvilket gør tilgangen al-
sidig. Modelleringsmetodologien adskiller modelleringen af reaktoren og det reaktive sys-
tem. På denne måde kræves der ikke opdatering af reaktorligningerne for at ændre den
betragtede proces. Vi anvender modelleringsmetodologien til at introducere tre modeller
i denne afhandling. ENMPC-algoritmen består af et kontinuert-diskret udvidet Kalman-
filter (CD-EKF) til tilstandsestimering og en økonomisk regulator til profitmaksimering.
Vi anvender ENMPC-algoritmen til profitmaksimering af en mAb-fermentationsproces,
hvor den økonomiske regulator afhænger af mAb- og glukosepriser. De numeriske resul-
tater viser, at tilgængeligheden af Monte Carlo-simuleringer muliggør kvantificering af
lukket-sløjfe-ydeevne med hensyn til valgte KPI’er og forenkler sammenligningen mellem
regulatorer. Lukket-sløjfe simuleringer med ENMPC-algoritmen antyder, at ENMPC
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kan øge profitten af mAb-fermentationsprocessen. Derudover opsummerer en række
operationelle indsigter ENMPC-operationsstrategien, som vi anvender til at designe en
simpel regulator. Monte Carlo-simulering kvantificerer ydeevnen af den simple regulator
og viser praktisk identisk ydeevne som ENMPC-algoritmen. Disse resultater demonstr-
erer tilgangen “from-simple-via-complex-to-lucid”, hvor ENMPC-teknologien muliggør
design af en simpel regulator med praktisk identisk ydeevne.

Denne afhandling består af en sammenfattende rapport og en samling af syv forskn-
ingsartikler samt en teknisk rapport. Seks artikler er blevet udgivet eller accepteret til
udgivelse i konferenceprocedurer, og en artikel er indsendt til Journal of Process Control.
Den tekniske rapport er ikke peer-reviewed.
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CHAPTER 1
Introduction

The subject of this thesis is economic nonlinear model predictive control (ENMPC) for
optimized operation of biotechnological processes and uncertainty quantification (UQ)
of closed-loop systems. Model predictive control (MPC) applies the moving horizon opti-
mization principle, where optimal open-loop control strategies are obtained as solution to
optimal control problems (OCPs). We implement the first part of the open-loop control
strategy in the process and solve a new OCP each time new measurements are available.
This forms a closed-loop system. Closed-loop systems involving model-based controllers
have many sources of uncertainty, e.g., process noise, measurement noise, disturbances,
and uncertainty related to plant-model mismatch. The main motivation for this project
is to develop advanced control technology for closed-loop operation of biotechnological
processes and an UQ tool for quantification of uncertainties in closed-loop systems. In
this work, we apply large-scale high-performance Monte Carlo simulation for UQ of
stochastic closed-loop systems and develop an ENMPC algorithm for profit maximiza-
tion. We design the ENMPC algorithm for a monoclonal antibody (mAb) fermentation
process, which constitutes a relevant biotechnological process in society.

The remaining parts of this chapter are structured as follows. Section 1.1 provides a
motivation for research within optimization of mAb production and development of both
ENMPC technology and UQ tools for mAb production in closed-loop. In Section 1.2,
we give a review of relevant literature related to mAb production, MPC technology, and
numerical optimization. Then, we introduce the objectives and contributions of this
thesis in Section 1.3. Section 1.4 presents the structure of the remaining parts of this
thesis. Finally, Section 1.5 provides a list of publications included in this thesis and a
list of relevant publications not included in this thesis.

1.1 Motivation
Biotechnological processes are essential for production of a variety of products in society,
e.g., bio-plastics, beer, vaccines, enzymes, and biopharmaceuticals. Biopharmaceuticals
are drugs produced using biological sources. An example of a promising biopharma-
ceutical is mAbs. MAbs are laboratory-produced proteins designed to recognize and
target specific harmful substances such as viruses, cancer cells, or other abnormal cells.
The first mAb was developed in 1975 and the first therapeutic mAb, muromonab-CD3
(Orthoclone OKT3), was fully licensed and approved by the United States Food and
Drug Administration (US FDA) in 1986 (Köhler and Milstein, 1975; Sommerfeld and
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Strube, 2005; Liu, 2014; Ecker et al., 2015; Lu et al., 2020). Research and development
related to mAb production have increased drastically since discovery of the first mAb
in 1975. Figure 1.1 shows the evolution of the US FDA approved mAbs in the period
1975–2019, which shows that the US FDA had approved 80 therapeutic mAbs by 2019.
As a result, the mAb market size has experienced an exponential growth in the past
years. Figure 1.2 illustrates the mAb market size growth in the period 1975–2019. In
2019, the mAb market size was valued at 150 billion USD (Lu et al., 2020). Already
in 2022, the market size had increased to 210.06 billion USD and current projections
indicate a compound annual growth rate (CAGR) of 11.04% from 2023 to 2030 resulting
in an expected market size of 494.53 billion USD in 2030 (Grand View Research, 2023).

In conclusion, mAbs are biopharmaceuticals with a market size in exponential growth.
MAbs have shown promising properties to target harmful substances and have been ap-
plied as treatment for a number of diseases including cancer. However, production of
mAbs is both time-consuming and costly, which can ultimately lead to very expensive
treatments (Hernandez et al., 2018). The increasing market size and costly production
motivate research within optimization and control of mAb production processes. Devel-
opment of ENMPC algorithms allows for optimization related to economic objectives in
closed-loop. Therefore, ENMPC might offer opportunities to increase profit and avail-
ability of mAb treatments. However, quantification of uncertainties and closed-loop
performance can be cumbersome when applying advanced control technology such as
ENMPC. This motivates the development of a versatile UQ tool for closed-loop sys-
tems, which might offer valuable performance insights prior to experiments and thereby
possibly reduce the production cost of mAbs.

Figure 1.1: Number of approved mAbs by the US FDA from 1975–2019. This figure
is based on data from Table 1 in (Lu et al., 2020).



1.2 Literature review 5

Figure 1.2: Evolution of mAb market size from 1975–2019. This figure is adapted from
Fig. 1 in (Lu et al., 2020).

1.2 Literature review
In this section, we provide a review of literature relevant to this thesis. We cover litera-
ture related to 1) mAb production, 2) MPC technology, and 3) numerical optimization.

Monoclonal antibodies. As previously mentioned, the first mAb was discovered in
1975 (Köhler and Milstein, 1975). In 1986 the first therapeutic mAb, muromonab-CD3
(Orthoclone OKT3), was approved by the US FDA and the market size for mAbs has
grown exponentially since (Sommerfeld and Strube, 2005; Liu, 2014; Ecker et al., 2015;
Lu et al., 2020). As of 2022, the market size was 210.06 billion USD and it is expected to
increase to 494.53 billion USD by 2030 (Grand View Research, 2023). MAbs are proteins
designed to target harmful substances giving them significant relevance in medical ap-
plications. In 2017, the 6 top-selling biopharmaceuticals were mAbs and in 2021 mAbs
represented more than half of the 20 top-selling biopharmaceuticals (Walsh, 2018; Walsh
and Walsh, 2022). They have shown great effect against a number of diseases includ-
ing cancer, autoimmune disorders, and infectious diseases (Carter, 2001; Melero et al.,
2007; Hafeez et al., 2018; Otsubo and Yasui, 2022). MAbs were repeatedly proposed as
treatments for coronavirus disease 2019 (COVID-19) in the recent global pandemic of
COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
(Jahanshahlu and Rezaei, 2020; Marovich et al., 2020; Wang et al., 2020; Zhou et al.,
2020). During the pandemic, the US FDA issued multiple emergency use authoriza-
tions (EUAs) for mAb treatments of COVID-19, e.g., for casirivimab and imdevimab
the 21st of November 2020 and for bamlanivimab and etesevimab the 9th of February
2021 (U.S. Food and Drug Administration (FDA), 2020, 2021). Treatments involving
mAbs are usually very expensive and a study from 2018 showed that among 107 unique
mAb-indication combinations an average annual price of mAb treatments was 96, 731
USD (Hernandez et al., 2018). The study also showed that the average price of a cancer
drug has doubled in the last decade.
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Production of mAbs is a complex process involving several steps, 1) immunization,
where animal injection of the antigen of interest triggers the animals immune system
to form antibody producing B cells, 2) cell fusion, where hybridoma cells are formed
by fusing the antibody producing B cells with myeloma cells, 3) screening, where the
screening technique enzyme-linked immunosorbent assay (ELISA) is applied to identify
hybridoma cells that produce the desired antibody, 4) cloning, where the antibody pro-
ducing hybridoma cells are grown in a bioreactor to increase the number of identical
cells and produce mAbs, and 5) mAb purification, where chromatography techniques
are applied to separate the produced mAbs from impurities in the production medium
(Schofield, 2023). The process of growing cells in a bioreactor is an upstream biotech-
nological fermentation process, whereas the purification steps are downstream processes.
This work focuses on the upstream fermentation process for production of mAbs in biore-
actors. The bioreactor is a controlled environment, where the growth of hybridoma cells
can be monitored and factors such as temperature, pH, dissolved oxygen concentration,
and available nutrients can be controlled to improve the growth conditions during the
fermentation (Erickson, 2009).

Mechanistic modeling of biotechnological processes is a useful tool that provides a
deeper understanding of the fermentation process. The models are also essential for
model-based optimization and new models for simulation and optimization are continu-
ously developed (Bailey, 1998; Provost and Bastin, 2004; Liu et al., 2008; Craven et al.,
2012; Glen et al., 2018; Kyriakopoulos et al., 2018; Sha et al., 2018; Badr et al., 2021;
Kumar et al., 2022). Models vary in complexity and many different factors can be
incorporated, e.g., the impact of glucose concentration, lactate concentration, and tem-
perature (Fan et al., 2015; Sissolak et al., 2019). The cells often consume glucose as
their main source of carbon and energy (Fan et al., 2015), where the glucose consum-
ing metabolism produces lactate as a bi-product (Li et al., 2012; Kumar et al., 2022).
The concentration of both glucose and lactate in the bioreactor impact the growth rate
of cells and their productivity (Li et al., 2012; Dean and Reddy, 2013; Pereira et al.,
2018; Vergara et al., 2018). There exist many methods to optimize mAb fermentation
processes, e.g., exploring new cell culture systems, optimizing bioreactor designs and
operation, and developing advanced modeling and control strategies (Fong et al., 1997;
Butler, 2005; Li et al., 2010; Hong et al., 2018).

Model predictive control. The development of MPC (also referred to as moving
horizon control (MHC) or receding horizon control (RHC)) traces back to the 1970s
and 1980s (Garcia and Prett, 1986; Morari et al., 1988). MPC is a closed-loop feedback
strategy, where optimal open-loop control strategies are repeatedly computed based on
available feedback (Rawlings et al., 2017). The MPC algorithm implements the first
part of the optimal open-loop strategy in the process and recomputes a new open-loop
strategy when new feedback is available. Applications with MPC span many fields and
MPC is widely applied in the industry (Qin and Badgwell, 2003; Forbes et al., 2015;
Honc et al., 2016). In the late 1980s and early 1990s, the concept of nonlinear model
predictive control (NMPC) appeared (Eaton et al., 1988; Rawlings et al., 1994; Biegler,
1998; Rawlings, 2000; Allgöwer et al., 2004). NMPC directly handles nonlinearities and



1.2 Literature review 7

in turn provides a powerful technology for nonlinear systems. More recently, the new
concept of economic model predictive control (EMPC) (or ENMPC specifically for non-
linear systems) appeared (Rawlings and Amrit, 2009; Amrit et al., 2011; Diehl et al.,
2011; Angeli et al., 2012; Heidarinejad et al., 2012; Rawlings et al., 2012; Ellis et al.,
2014). In EMPC algorithms, economic factors, such as profit maximization, are directly
incorporated into the objective function rather than usual steady-state tracking objec-
tives. Applications involving different MPC technologies span many fields of research.
We provide a few examples from the process control literature (Diehl et al., 2002; Nagy
and Braatz, 2003; Aehle et al., 2012; Craven et al., 2014; Huyck et al., 2014; Dewasme
et al., 2015; Drejer et al., 2017; Ritschel et al., 2019).

MPC algorithms solve an OCP to achieve the optimal open-loop control strategy.
The OCP involves dynamic state constraints for the considered system, which form
an initial value problem (IVP). The initial condition for the IVP is the current vector
of state variables. However, for most practical purposes, full state information is not
available, since it is either not possible or not feasible to measure all states. In this case,
state estimation techniques can estimate the states of the system based on the available
measurements. For linear systems, the Kalman filter is an optimal state estimator
(Kalman, 1960). A direct extension to nonlinear systems is the extended Kalman filter
(EKF), which applies the original Kalman filter algorithm to a local linearization of the
nonlinear system (Jazwinski, 1970). The EKF is a computational efficient algorithm,
which in many applications show great estimation properties (Schneider and Georgakis,
2013; Frogerais et al., 2012). However, the EKF may struggle in highly nonlinear systems
due to linearization. There exist several other filtering methods, which can have better
estimation properties in the case of high nonlinearity, e.g., the unscented Kalman filter
(UKF) and the ensemble Kalman filter (EnKF) (Julier and Uhlmann, 2004; Gillijns
et al., 2006; Nielsen et al., 2023). Alternatively, there exist optimization based methods
like moving horizon estimation (MHE), where the estimation problem is an dynamic
optimization problem (DOP) (Alessandri et al., 2010).

Numerical optimization and dynamic optimization problems. Numerical opti-
mization is a broad and well-developed area of research (Fletcher, 1987; Gill et al., 1999;
Nocedal and Wright, 1999). There exist various types of optimization problems and
methods to solve them (Biegler and Grossmann, 2004). In this review, we restrict our-
selves to quadratic programming problems (QPs) and nonlinear programming problems
(NLPs), which are relevant for this thesis. QPs are a class of mathematical optimiza-
tion problems that involve minimization of a quadratic objective function subject to
linear equality constraints and inequality constraints. There exist different methods to
solve QPs, where interior-point (IP) methods and active-set methods are widely applied
(Goldfarb and Idnani, 1983; Powell, 1985; Mehrotra, 1992; Bartlett and Biegler, 2006).
In IP methods, a sequence of barrier problems are solved to move towards the optimal
solution while staying within the feasible region. Active-set methods update a so-called
active-set that forms a smaller equality constrained QP to be solved in each iteration
until the optimal solution is reached. NLPs are a broader class of mathematical opti-
mization problems involving a nonlinear objective function subject to nonlinear equality
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constraints and inequality constraints. Popular methods to solve NLPs are IP methods
and sequential quadratic programming (SQP) methods (Gould and Toint, 2000; Fors-
gren et al., 2002; Wright, 2004; D’Apuzzo et al., 2010; Gondzio, 2012). SQP methods
solve a QP-subproblem to obtain a search direction in each iteration. Stepping in the
search direction advances towards the optimal solution. Many descriptions of the men-
tioned algorithms exist in the literature (Nocedal and Wright, 1999; Potra and Wright,
2000; Gill and Wong, 2012).

DOPs are special types of optimization problems involving dynamic constraints.
OCPs arising in MPC applications are a special type of DOPs, where the dynamic
constraints describe the evolution of state variables in time. The solution to an OCP
is the control action (inputs) that minimizes some objective function subject to the dy-
namic constraints and possibly other process constraints, which makes OCPs infinite
dimensional. Methods to solve OCPs are divided into two major categories namely di-
rect and indirect methods. Application of indirect methods lead to a multiple-point
boundary-value problem (Rao, 2009). In direct methods, which we consider in this the-
sis, the DOP is transcribed to an NLP by some discretization of the problem. The
direct single-shooting method, direct multiple-shooting method, and direct collocation
method (referred to without direct from now on) are popular choices to discretize OCPs
(Bock and Plitt, 1984; Binder et al., 2001; Biegler, 2007; Schäfer et al., 2007; Diehl
et al., 2009; Rao, 2009). We apply the multiple-shooting method in this thesis. The
multiple-shooting method involves numerical solution of the state dynamics, for which
Runge-Kutta schemes are popular choices (Butcher, 2000). The time interval is split
into subintervals and the states at the beginning of each subinterval are decision vari-
ables. In each subinterval, an IVP is solved and continuity of the solution is enforced
with a new set of equality constraints in the resulting NLP. The cost function is inte-
grated with a quadrature rule consistent with the integration scheme in each subinterval
(Rao, 2009). Single-shooting methods result in small and dense NLPs, while multiple-
shooting and collocation methods result in large and sparse NLPs. Appropriate sparse
NLP solvers make it computational tractable to apply both multiple-shooting and collo-
cation methods even though they often result in very large optimization problems with
many decision variables (Rao, 2009). An example of such a solver is IPOPT, which
has also been interfaced with the symbolic automatic differentiation software CasADi
(Wächter and Biegler, 2006; Andersson et al., 2019). In particular, multiple-shooting
methods result in structured sparse NLPs. When solved with SQP algorithms, the
QP-subproblem inherits a specific structure, where a Riccati recursion based QP solver
can be utilized (Rao et al., 1998; Jørgensen, 2004; Jørgensen et al., 2012; Frison and
Jørgensen, 2013; Frison et al., 2018; Frison and Diehl, 2020; Frison et al., 2020).
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1.3 Objectives and contributions
In this work, the main objectives are to develop 1) a high-performance Monte Carlo
simulation toolbox for UQ of closed-loop systems, 2) a systematic modeling methodol-
ogy for processes consisting of reactive systems conducted in reactors, and 3) an EN-
MPC algorithm for profit maximization applied to an mAb fermentation process. High-
performance Monte Carlo simulation constitutes a versatile UQ tool for closed-loop
systems and systematic modeling of reactive systems contributes to simple implementa-
tion of various models. With development of ENMPC technology for mAb production,
we apply advanced process control technology to optimize a relevant biotechnological
process, and we demonstrate both the systematic modeling methodology and the Monte
Carlo simulation toolbox for UQ. We apply an existing model for an mAb fermentation
process and show with Monte Carlo simulation that the developed ENMPC algorithm
improves the profit of the process compared to a base case operational strategy. The
work in this thesis is a first step towards a Monte Carlo simulation tool for UQ of biotech-
nological processes and ENMPC technology for mAb production. Figure 1.3 illustrates
the conceptual idea, where an engineer can remotely monitor the production plant, mon-
itor the control system, and access cloud computing services to perform simulations and
UQ. The main contributions of this thesis are listed in the following.

Monte Carlo simulation toolbox. We apply Monte Carlo simulations for UQ of
closed-loop systems. For this purpose, we implement a high-performance Monte Carlo
simulation toolbox in C, which applies Open Multi-Processing (OpenMP) for paralleliza-
tion on shared memory architectures. The parallelization enables almost linear scaling
on multiple central processing unit (CPU) cores due to complete independence of closed-
loop simulations and a thread-safe implementation of the toolbox. In this work, we 1)
demonstrate parallel scalability of the toolbox for closed-loop simulations involving both
proportional-integral-derivative (PID) controllers and NMPC algorithms and 2) apply
Monte Carlo simulation for UQ of different closed-loop systems.

Systematic modeling methodology. We develop a systematic modeling methodol-
ogy for processes consisting of reactive systems conducted in reactors. The methodology
separates modeling of the reactor and the reactive system. The reactor models con-
sist of mass balance differential equations, and the reactive system models consist of
a stoichiometric matrix and a reaction rate vector function. In this way, the reactor
equations are not required to be updated to change the considered reactive system. In
this work, the considered reactor types result in ordinary differential equation (ODE)
models, however the methodology can be generalized for reactor types resulting in par-
tial differential equation (PDE) models such as plug-flow reactors (PFRs). We apply
the considered ODE models for simulation in the Monte Carlo simulation toolbox and
in NMPC algorithms.

Economic nonlinear model predictive control algorithm. We develop an EN-
MPC algorithm for profit maximization, which we apply for an mAb fermentation pro-
cess. We select the specific mAb fermentation process due to collaboration with the
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Production plant
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Database
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Uncertainty quantification

and simulation
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Past Future

Figure 1.3: Conceptual idea of an advanced monitoring and simulation system. An
engineer can remotely monitor both the plant and its control system while having access
to cloud computing services. Cloud-based high-performance Monte Carlo simulation is
applicable for UQ of the production process. Parts of this figure originally appeared in
(Kaysfeld and Jørgensen, 2023).

main author of the original publication (Kumar et al., 2022). The collaboration yielded
a dynamic optimization study of the mAb fermentation process (Appendix F), which
later resulted in the ENMPC algorithm. The ENMPC algorithm applies a continuous-
discrete extended Kalman filter (CD-EKF) as the state estimator and the regulator
solves an economic OCP based on the CD-EKF state estimate. We apply a multiple-
shooting method to transcribe the infinite dimensional OCP to a finite dimensional NLP
and develop the SQP algorithm NLPSQP to solve the resulting NLP. NLPSQP applies a
structure preserving Broyden–Fletcher–Goldfarb–Shanno (BFGS) update for Lagrangian
Hessian approximation and a Riccati recursion based primal-dual IP algorithm to solve
the QP-subproblem in each iteration. The ENMPC algorithm is thread-safe and im-
plemented in C making it applicable in closed-loop simulations with the parallel Monte
Carlo simulation toolbox.
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1.4 Outline of the thesis
Chapter 2. We introduce the procedure for closed-loop simulation and Monte Carlo
simulation. The considered closed-loop system formulation consists of a stochastic
continuous-discrete system and a controller. The continuous-discrete system involves
a stochastic differential equation (SDE), a static measurement function corrupted by
measurement noise, and a static output function. We apply an Euler-Maruyama scheme
for integration of SDEs to form discrete-time systems. Together with a discrete-time con-
troller formulation, we form a discrete-time closed-loop system for simulation. Finally,
we introduce the implemented high-performance Monte Carlo simulation toolbox for
UQ of closed-loop systems. The toolbox applies OpenMP for parallelization on shared
memory architectures. This chapter is based on Appendices A, D, and E.

Chapter 3. This chapter presents the systematic modeling methodology for systems of
reactions conducted in reactors. We provide mass balance ODE models for three reactor
types, 1) fed-batch reactors (FBRs), 2) continuous stirred tank reactors (CSTRs), and
3) continuous perfusion reactors (CPRs). We provide stoichiometry and kinetics for
three reactive systems. Selected combinations of reactors and reactive systems result in
three models, 1) a biomass fermentation process conducted in an FBR, 2) an exothermic
chemical reaction conducted in an adiabatic CSTR, and 3) an mAb fermentation process
conducted in a CPR. This chapter is based on Appendices C, D, F, and G.

Chapter 4. This chapter introduces an NMPC formulation consisting of an estimator
and a regulator. The estimator is the CD-EKF and the regulator solves an OCP based
on the state estimate. We introduce the OCP with a general objective function and
apply a multiple shooting method to transcribe the infinite dimensional OCP to a finite
dimensional NLP. We introduce two objective functions, 1) a target-tracking objective
function and 2) a profit maximization objective function. The first objective function
leads to a target-tracking NMPC algorithm and the second objective function leads to an
ENMPC algorithm, where economic objectives are directly incorporated in the objective
function. This chapter is based on Appendices B, E, G, and H.

Chapter 5. This chapter presents the main numerical results and demonstrates the
performance of the Monte Carlo simulation toolbox and NMPC algorithms. We 1) show
almost linear parallel scaling for Monte Carlo simulation of closed-loop systems with a
PID controller and apply the toolbox for UQ of the biomass fermentation process, 2) show
similar parallel scaling for closed-loop systems with NMPC algorithms and apply Monte
Carlo simulation for performance quantification of the target-tracking NMPC algorithm
for temperature tracking in the chemical reaction, and 3) apply Monte Carlo simulation
to show that the ENMPC algorithm improves the profit of the mAb fermentation process
compared to a base case operational strategy. This chapter is based on Appendices A,
E, and G.

Chapter 6. We give the final conclusions and summarize the main contributions. We
provide suggestions for future work and improvements of the presented work.
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CHAPTER 2
Monte Carlo simulation

based uncertainty
quantification

In this chapter, we introduce the proposed Monte Carlo simulation approach for uncer-
tainty quantification (UQ) of closed-loop systems. The considered closed-loop systems
consist of a stochastic continuous-discrete system and a discrete-time controller. The
stochastic continuous-discrete system involves a stochastic differential equation (SDE), a
static measurement function corrupted by measurement noise, and a static output func-
tion. We discretize the continuous-time SDE with an Euler-Maruyama scheme to form
a stochastic discrete-time system. The controller consists of an estimator, a regulator,
and a predictor. We represent the controller in discrete-time similar to the discrete-time
system. In combination, the stochastic discrete-time system and the discrete-time con-
troller form a discrete-time closed-loop system. There are many sources of uncertainty
in a closed-loop system, e.g., process noise, measurement noise, disturbances, and un-
certainty related to plant-model mismatch. To quantify the uncertainties of closed-loop
systems, we propose a Monte Carlo simulation approach. The Monte Carlo simulation
approach utilizes repeated simulation of the closed-loop system with different realiza-
tions of selected uncertain quantities in the process. The output of the simulations is
a data set with selected key performance indicators (KPIs) for each simulation. With
this approach, the uncertainties related to specific quantities can be quantified with
respect to the selected KPIs, which makes the approach versatile. The Monte Carlo
simulation approach is computational tractable due to the implementation of a high-
performance Monte Carlo simulation toolbox for closed-loop systems in C. The toolbox
is parallelized with Open Multi-Processing (OpenMP) for shared memory architectures
(Dagum and Menon, 1998). The independence of closed-loop simulations and the thread-
safe implementation of the toolbox lead to almost linear parallel scaling for Monte Carlo
simulations.

This chapter is based on the papers in Appendices A, D, and E. In Appendix A,
we introduce the Monte Carlo simulation toolbox and apply the toolbox for UQ of a
biomass fermentation process conducted in a fed-batch reactor (FBR). Appendix A also
demonstrates almost linear parallel scaling for Monte Carlo simulation of closed-loop
systems with proportional-integral-derivative (PID) controllers. Appendix D tunes a
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model predictive control (MPC) algorithm with controller matching to a Monte Carlo
simulation tuned proportional-integral (PI) controller. In Appendix E, we extended
the toolbox with a nonlinear model predictive control (NMPC) algorithm and show
similar parallel scaling for Monte Carlo simulation of closed-loop systems with the NMPC
algorithm.

2.1 Procedure for closed-loop simulation
In this section, we introduce the procedure for simulation of closed-loop systems. The
closed-loop system consists of a process with an output, sensors for measurements, and
a controller. Figure 2.1 provides an illustration of the closed-loop system.

2.1.1 Process, sensors, and output
We model the stochastic process as an SDE, the measurements as a static function
corrupted by measurement noise, and the output as a static function. This forms a
stochastic continuous-discrete system in the form

x(t0) = x0, (2.1a)

dx(t) =
drift term︷ ︸︸ ︷

f(t, x(t), u(t), d(t), p)dt +
diffusion term︷ ︸︸ ︷

σ(t, x(t), u(t), d(t), p)dω(t), (2.1b)
y(ti) = g(ti, x(ti), p) + v(ti, p), (2.1c)
z(t) = h(t, x(t), p). (2.1d)

x(t) are states, u(t) are inputs, d(t) are disturbances, and p are parameters. The function
f(·) is the drift function, σ(·) is the diffusion function, g(·) is the measurement function,
and h(·) is the output function. The diffusion term involves a standard Wiener process,
ω(t), i.e., dω(t) ∼ Niid(0, Idt), and the measurements are corrupted by normally dis-
tributed noise, v(ti, p) ∼ Niid(0, Rv(ti, p)). Measurements are available with sampling

Process

Sensors

Controller
Input Output

Closed-loop system 

Figure 2.1: Illustration of the closed-loop system consisting of a process, a set of
sensors, and a controller.
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time Ts such that ti+1 = ti + Ts. We assume zero-order-hold (ZOH) parameterization of
the inputs, u(t), and disturbances, d(t), i.e.,

u(t) = u(ti), ti ≤ t < ti+1, (2.2a)
d(t) = d(ti), ti ≤ t < ti+1. (2.2b)

We apply a numerical explicit-explicit (Euler-Maruyama) scheme to solve the continuous
SDE (2.1b) (Higham, 2001). Let Ns denote the number of internal steps, i.e., the number
of Euler-Maruyama steps of fixed size ∆t to integrate the SDE between ti and ti+1. Then,
the Euler-Maruyama scheme applied to (2.1b) results in

ti,n+1 = ti,n + ∆t, (2.3a)
xi,n+1 = xi,n + f(ti,n, xi,n, ui, di, p)∆t + σ(ti,n, xi,n, ui, di, p)∆ωi,n, (2.3b)

for n = 0, 1, ..., Ns − 1 with ti,n = ti + n∆t, xi,n = x(ti,n), ui = u(ti), di = d(ti),
∆wi,n ∼ Niid(0, I∆t), ti,0 = ti, xi,0 = xi, ti+1 = ti,Ns , and xi+1 = xi,Ns . Let Φ(·) denote
an operator that applies the Euler-Maruyama scheme (2.3) and returns xi+1. We express
the process, sensors, and output as a stochastic discrete-time system in the form

xi+1 = Φ(ti, xi, ui, di, wi, p), (2.4a)
yi = g(ti, xi, p) + vi, (2.4b)
zi = h(ti, xi, p). (2.4c)

yi = y(ti), zi = z(ti), vi = v(ti, p), and wi = [∆ωi,0; ∆ωi,1; ...; ∆ωi,Ns−1]. In this work,
we consider only non-stiff SDEs, which makes the Euler-Maruyama scheme a reasonable
choice. We point out that we have implemented an implicit-explicit scheme as well,
which should be applied for stiff SDEs (Tian and Burrage, 2001).

2.1.2 Controller
The controller consists of an estimator, a regulator, and a predictor. Figure 2.2 illustrates
the controller and its connection to the process. We express the controller in discrete
time similar to the discrete-time system (2.4). The discrete-time controller is

xc
i+1 = κ(ti, xc

i , ui, dc
i , yi+1, pc), (2.5a)

ui = λ(ti, xc
i , pc), (2.5b)

zc
i = µ(ti, xc

i , pc). (2.5c)

xc
i are estimated states, ui are the computed control signal, zc

i are predictions, pc are
parameters in the controller, and dc

i are disturbances known to the controller, which can
differ from the real disturbances, di. The estimator κ(·), the regulator λ(·), and the
predictor µ(·) depend on the selected controller and can for some controllers be empty.
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Process

Estimator Regulator

Controller

Predictor

Figure 2.2: Illustration of the controller consisting of an estimator, a regulator, and
a predictor. The estimator receives measurements from the process and the regulator
returns a control signal back to the process. The predictor computes predictions of the
system, which can be applied for, e.g., visualization.

2.1.3 Discrete-time closed-loop system
We combine the discrete-time system (2.4) and the discrete-time controller (2.5) to form
the following discrete-time closed-loop system

yi = g(ti, xi, p) + vi, (Measurement) (2.6a)
zi = h(ti, xi, p), (Output) (2.6b)
xc

i = κ(ti−1, xc
i−1, ui−1, dc

i−1, yi, pc), (Estimation) (2.6c)
ui = λ(ti, xc

i , pc), (Regulation) (2.6d)
zc

i = µ(ti, xc
i , pc), (Prediction) (2.6e)

xi+1 = Φ(ti, xi, ui, di, wi, p), (Simulation) (2.6f)

for i = 0, 1, ..., Nsim − 1. Nsim is the number of samples in the closed-loop simulation.

2.2 Procedure for Monte Carlo simulation
In this section, we introduce the Monte Carlo simulation procedure. We apply repeated
simulation of the discrete-time closed-loop system (2.6), where each simulation includes
a different realization of selected uncertain quantities. We save selected KPIs relevant
to the specific system in each simulation. The KPI data can be applied for, e.g., UQ
of the closed-loop performance and tuning of the controller. Figure 2.3 illustrates the
Monte Carlo simulation approach for UQ of closed-loop systems. Algorithm 1 outlines
the procedure for Monte Carlo simulation of closed-loop systems, where x

(j)
i , u

(j)
i , d

(j)
i ,

z
(j)
i , p(j), y

(j)
i , v

(j)
i , w

(j)
i , x

c,(j)
i , z

c,(j)
i , and d

c,(j)
i denote closed-loop data for the j’th Monte

Carlo simulation and Nmc denotes the total number of Monte Carlo simulations. The
procedure is versatile and enables the user to select uncertain quantities for realization
and KPIs for quantification.
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Figure 2.3: Illustration of Monte Carlo simulation approach for UQ of closed-loop
systems. We select realizations of uncertain quantities and perform repeated closed-loop
simulations. The resulting KPI data is applicable for UQ of the closed-loop performance.

2.2.1 High-performance Monte Carlo simulation
toolbox for closed-loop systems

We implement a high-performance Monte Carlo simulation toolbox for closed-loop sys-
tems, which makes large-scale Monte Carlo simulation studies computational tractable.
The toolbox implements the Monte Carlo simulation procedure presented in Algorithm 1.
Closed-loop simulations are independent, which makes the outer loop of the Monte Carlo
simulation approach well-suited for parallelization. The toolbox is implemented in C
and applies OpenMP for parallelization on shared memory architectures. The imple-
mentation is thread-safe due to external memory allocation and internal distribution
of the allocated memory. The toolbox supports user-implemented controllers, which
are required to be thread-safe to achieve parallel scaling. In the case of optimization-
based controllers, such as MPC algorithms, the optimization algorithm is also required
to be thread-safe. For this purpose, we implement a thread-safe sequential quadratic
programming (SQP) algorithm in C, which we discuss further in Chapter 4. Due to in-
dependence of closed-loop simulations and a thread-safe implementation of the toolbox
and controllers, the Monte Carlo simulation toolbox has almost linear parallel scaling
for both PID controllers and NMPC algorithms as demonstrated in Chapter 5. Cur-
rently, the toolbox supports variations in 1) model parameters (in both the simulation
model and the controller model), 2) controller parameters, 3) process noise realizations,
4) initial conditions, and 5) disturbances (known and unknown to the controller).

2.3 Summary
In this chapter, we introduced the procedure for closed-loop simulation and Monte Carlo
simulation. A closed-loop simulation consisted of a stochastic continuous-discrete system
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Algorithm 1 Monte Carlo simulation procedure
Result: Statistics and output data (KPIs)

1: for j = 1, 2, ..., Nmc do ▷ Monte Carlo loop
2: for i = 0, 1, ..., Nsim − 1 do ▷ Closed-loop simulation
3: // Measurement
4: y

(j)
i = g(ti, x

(j)
i , p(j)) + v

(j)
i

5: // Output
6: z

(j)
i = h(ti, x

(j)
i , p(j))

7: // Estimation
8: x

c,(j)
i = κ(ti−1, x

c,(j)
i−1 , u

(j)
i−1, d

c,(j)
i−1 , y

(j)
i , p(j)

c )
9: // Regulation

10: u
(j)
i = λ(ti, x

c,(j)
i , p(j)

c )
11: // Prediction
12: z

c,(j)
i = µ(ti, x

c,(j)
i , p(j)

c )
13: // Simulation
14: x

(j)
i+1 = Φ(ti, x

(j)
i , u

(j)
i , d

(j)
i , w

(j)
i , p(j))

15: end for
16: // Final measurement and output
17: y

(j)
Nsim = g(tNsim , x

(j)
Nsim , p(j)) + v

(j)
Nsim

18: z
(j)
Nsim = h(tNsim , x

(j)
Nsim , p(j))

19: end for
Note: This algorithm is adapted from its original appearance in (Wahlgreen et al., 2021).

that involves an SDE, a static measurement function corrupted by measurement noise,
and a static output function. The SDE was discretized with an Euler-Maruyama scheme
to form a stochastic discrete-time system. We considered controllers in discrete time with
an estimator, a regulator, and a predictor. In combination, the discrete-time system
and the discrete-time controller constituted a discrete-time closed-loop system. We
introduced the Monte Carlo simulation procedure, which was based on repeated closed-
loop simulation with different realizations of uncertain quantities. For computational
tractability, we implemented a high-performance Monte Carlo simulation toolbox in C,
which applies OpenMP for parallelization on shared memory architectures. The toolbox
saves selected KPIs, which can be applied for UQ. The Monte Carlo simulation toolbox
constitutes a versatile UQ tool, where the user can select any uncertain quantities for
realization and any KPIs for quantification.



CHAPTER 3
Systematic process

modeling
In this chapter, we introduce a systematic modeling methodology for processes consist-
ing of reactive systems conducted in reactors. The modeling methodology provides a
systematic and compact representation of models, where the reactor model and the re-
action model is separated. Mass balances in the form of ordinary differential equations
(ODEs) represent the reactor and the reaction model consists of stoichiometry and ki-
netics. In this way, processes can be changed without updating the reactor equations.
The methodology presents models as ODEs in the form

ẋ(t) = f(t, x(t), u(t), d(t), p), x(t0) = x0. (3.1)

The ODE (3.1) constitutes the drift term of the stochastic differential equation (SDE)
(2.1b) in the stochastic continuous-discrete system (2.1). We consider three reactor types
and three processes, which form three models for 1) a biomass fermentation process con-
ducted in a fed-batch reactor (FBR), 2) an exothermic chemical reaction conducted in an
adiabatic continuous stirred tank reactor (CSTR), and 3) a monoclonal antibody (mAb)
fermentation process conducted in a continuous perfusion reactor (CPR). We separately
present the mass balance ODEs for each reactor type and the stoichiometric and kinetic
models for the three processes. For each model, we introduce a static measurement
function, a diffusion matrix function to extend the ODE models to SDE models, and
operational information, e.g., available flow streams for the reactor. The three models
are implemented in C for application in Monte Carlo simulation of closed-loop systems.

This chapter is based on the papers in Appendices C, D, F, and G. Appendix C intro-
duces the modeling methodology and demonstrates the methodology on a fermentation
process conducted in an FBR. In Appendix D, we apply the methodology to introduce
a model for an exothermic chemical reaction conducted in an adiabatic CSTR. Appen-
dices F and G applies the methodology for an mAb fermentation process conducted in
a CPR.

3.1 Modeling methodology
In this section, we present the systematic modeling methodology for processes consisting
of reactive systems conducted in reactors. The methodology separates the modeling of
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the reactor and the reactions. The reactor model arises from mass balances and forms
a system of ODEs for the reactor types considered in this thesis. The methodology is
generalizable for reactor types giving rise to partial differential equations (PDEs), e.g.,
Appendix C applies the methodology for a chromatography process. The reaction model
consists of stoichiometry and kinetics for the specific system of reactions.

3.1.1 Reactor modeling
We consider a reactor model as a virtual version of the physical reactor, in which any
set of reactions can be conducted. This requires separation of the reactor model from
the reaction model. The reactor mass balances are given by

Acc = In − Out + Prod. (3.2)

The Acc term represents the change in the volume and the modeled components. The
In and Out terms depend on the specific reactor type and the selection of inlet and
outlet streams available in the reactor type. The Prod term models the reaction inside
the reactor, which depends on the stoichiometry and kinetics for the specific system of
reactions.

In the following, we introduce the mass balances for three different reactor types,
FBRs, CSTRs, and CPRs. We assume that the density of a well-stirred reactor is
constant. The reactor contains a set of modeled components denoted C and a set of
inlet streams denoted S. We denote the set of reactions conducted in the reactor R,
which contains reaction numbers.

3.1.1.1 Mass balances for fed-batch reactors
We assume that FBRs have no outlet flow streams and a set of inlet streams with flow
rates Fin. Figure 3.1(a) illustrates the FBR. The resulting system of ODEs is

dV

dt
= e⊤Fin, (3.3a)

dm

dt
= CinFin + RV. (3.3b)

V ∈ R is the volume, e ∈ R|S| is a vector of ones, Fin ∈ R|S| are the inlet flow rates,
m ∈ R|C| are the component states measured with extensive properties, e.g., mass or
amount, Cin ∈ R|C|×|S| contains the inlet stream concentrations, c = m/V ∈ R|C| are the
component concentrations, and R ∈ R|C| are the component production rates computed
as

R = S⊤r. (3.4)

S ∈ R|R|×|C| is the stoichiometric matrix and r = r(c, p) ∈ R|R| are the reaction rates,
where p includes a set of kinetic parameters. The FBR model (3.3) represents a batch
reactor (BR) when Fin = 0.
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3.1.1.2 Mass balances for continuous stirred tank reactors
We assume that CSTRs have a single outlet flow stream with flow rate Fout and a set
of inlet streams with flow rates Fin. Figure 3.1(b) illustrates the CSTR. The resulting
system of ODEs is

dV

dt
= e⊤Fin − Fout, (3.5a)

dm

dt
= CinFin − cFout + RV, (3.5b)

where Fout ∈ R is the outlet flow rate. The CSTR model (3.5) represents an FBR when
Fout = 0.

3.1.1.3 Mass balances for continuous perfusion reactors
We assume that CPRs have a single outlet flow stream with flow rate Fout, a single
perfusion stream with flow rate Fper, and a set of inlet flow streams with flow rates Fin.
Figure 3.1(c) illustrates the CPR. The system of ODEs is

dV

dt
= e⊤Fin − Fout − Fper, (3.6a)

dm

dt
= CinFin − cFout − CpercFper + RV. (3.6b)

Fper ∈ R is the perfusion flow rate and Cper ∈ R|C|×|C| is a diagonal matrix with perfusion
removal percentages. The CPR model (3.6) represents a CSTR when Fper = 0.

3.1.2 Reaction modeling
The production rate computation R = S⊤r constitute the reaction model, which requires
the stoichiometric matrix, S, and the reaction rate vector function (reaction kinetics),
r. We consider a general system of M reactions and N components, i.e., the component
set and reaction set are

C = {A1, A2, ..., AN}, R = {1, 2, ..., M}. (3.7)

The reactive system is in the form

α1,1A1 + α1,2A2 + · · · + α1,NAN −→ β1,1A1 + β1,2A2 + · · · + β1,NAN , r1,

α2,1A1 + α2,2A2 + · · · + α2,NAN −→ β2,1A1 + β2,2A2 + · · · + β2,NAN , r2,

...
αM,1A1 + αM,2A2 + · · · + αM,NAN −→ βM,1A1 + βM,2A2 + · · · + βM,NAN , rM ,

(3.8)

where ri for i ∈ R are reaction rates for each reaction. The stoichiometric matrix
provides a compact representation of reactive systems in the from (3.8). We define
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(a) Illustration of the FBR. (b) Illustration of the CSTR.

(c) Illustration of the CPR. This figure originally appeared in (Kaysfeld and Jørgensen, 2023).

Figure 3.1: Illustrations of the modeled FBR, CSTR, and CPR.

the stoichiometric matrix such that each column represents a component and each row
represents a reaction. The resulting stoichiometric matrix for (3.8) is in the form

S =

A1 A2 · · · AN


β1,1 − α1,1 β1,2 − α1,2 · · · β1,N − α1,N 1
β2,1 − α2,1 β2,2 − α2,2 · · · β2,N − α2,N 2

... ... . . . ... ...
βM,1 − αM,1 βM,2 − αM,2 · · · βM,N − αM,N M

. (3.9)
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The reaction rate, ri = ri(c, p) for i ∈ R, is a function of the component concentrations
c and kinetic parameters included in p. We define the reaction rate vector function,
r = r(c, p), as

r(c, p) =
[
r1(c, p) r2(c, p) · · · rM(c, p)

]⊤
. (3.10)

For a specific process, we define the stoichiometric matrix S and the reaction rate vector
function r(c, p), which together represent the reaction model.

3.2 Biomass fermentation process conducted
in a fed-batch reactor

In this section, we introduce a biomass fermentation process with stoichiometry and ki-
netics for Methylococcus Capsulatus (Olsen et al., 2010; Ryde et al., 2021). The process
model has a single reaction and two components, 1) the substrate and 2) the biomass.
The fermentation is conducted in an FBR in the form (3.3), and we assume that the
system is oxygen saturated (Ryde et al., 2021). In the following, we define the stoichiom-
etry and kinetics for the fermentation process and define the operational information for
the FBR. We refer to previous work for the model parameters and more details (Ryde
et al., 2021).

3.2.1 Stoichiometry and kinetics
The process consists of a single reaction. The component set and reaction set are

C = {S, X}, R = {1}, (3.11)

where S is the substrate and X is the biomass. The reaction describes the consumption
of substrate to produce biomass as

γS −→ X, r1. (3.12)

γ is the stoichiometric coefficient. The stoichiometric matrix, S (not to be confused with
the substrate component), is

S =
S X[ ]

−γ 1 1 . (3.13)

The reaction is governed by Haldane growth kinetics resulting in the reaction rate func-
tion

r1(c) = µ(cS)cX , (3.14)
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where the specific growth rate, µ(cS), is

µ(cS) = µmax
cS

KS + cS + c2
S/KI

. (3.15)

µmax, KS, and KI are parameters in the model.

3.2.2 Operation
We operate the FBR with two inlet streams, 1) a pure water inlet stream and 2) a stream
with substrate at a constant concentration cS,in. The inlet stream set and corresponding
inlet flow rate vector are

S = {SW , SS}, Fin =
[
FW

FS

]
, (3.16)

where SW is the water stream with flow rate FW and SS is the substrate stream with
flow rate FS. The inlet concentration matrix, Cin, is

Cin =
[
0 cS,in
0 0

]
. (3.17)

We consider the two inlet flow rates, FW and FS, as manipulated inputs to the system.

3.2.3 Deterministic model
The stoichiometry and kinetics (3.11)-(3.15) constitute the reaction model for the fer-
mentation process. Together with the FBR model (3.3) and the operational information
(3.16)-(3.17), the model is complete. In the general form (3.1), the fed-batch fermenta-
tion model has

x =

 V
mS

mX

 , u =
[
FW

FS

]
, d =

[ ]
, f =

[
e⊤Fin

CinFin + RV

]
. (3.18)

V [m3] is the volume, mS [kg] is the substrate mass, mX [kg] is the biomass mass, FW

[m3/h] is the water inlet flow rate, and FS [m3/h] is the substrate inlet flow rate.

3.2.4 Diffusion matrix and measurement function
We extend the deterministic model (3.18) with a diffusion term to get an SDE in the
form (2.1b). We model stochastic variations in the three states with a constant diagonal
diffusion matrix

σ =

σV

σS

σX

 . (3.19)
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The diffusion parameters, σV , σS, and σX , are parameters in the model. We apply a
static measurement function for substrate concentration measurements at discrete times

y(ti) = g(ti, x(ti), p) = cS = mS

V
. (3.20)

Substrate concentration measurements are corrupted by measurement noise with covari-
ance matrix

Rv = σ2
y,S, (3.21)

where σy,S is a parameter for estimation or selected based on measurement equipment
specifications.

3.3 Exothermic chemical reaction
conducted in an adiabatic continuous
stirred tank reactor

In this section, we introduce an exothermic chemical reaction conducted in a laboratory
scale adiabatic CSTR (Wahlgreen et al., 2020; Jørgensen et al., 2020). The reaction has
five components (two reactants and three products) and is exothermic, i.e., produces
heat. We model the two reactants and the temperature, and we apply the CSTR model
(3.5) to represent the reactor. In the following, we define the stoichiometry and kinetics
for the chemical reaction and define the operational information for the CSTR. We refer
to previous work for the model parameters and more details (Wahlgreen et al., 2020;
Jørgensen et al., 2020).

3.3.1 Stoichiometry and kinetics
The process consists of a single reaction. The exothermic chemical reaction is

Na2S2O3(aq) + 2H2O2(aq) −→ 1
2

Na2SO4(aq) + 1
2

Na2S3O6(aq) + 2H2O(aq), (3.22)

which we express as

A + 2B −→ 1
2

C + 1
2

D + 2E. (3.23)

We consider the thermal energy as a product and disregard the components C, D, and
E. The component set and reaction set are

C = {A, B, T}, R = {1}, (3.24)
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where A and B are reactants and T is the thermal energy. The reduced reaction is

A + 2B −→ βT, r1, (3.25)

where we consider β = −∆Hr/(ρcP ) as the stoichiometric coefficient for T . ∆Hr is the
enthalpy of reaction, ρ is the density of the aqueous mixture, and cP is the specific heat
capacity. The concentration of the thermal energy component, cT , is the temperature of
the mixture. Based on the components (3.24) and the reaction (3.25), the stoichiometric
matrix is

S =
A B T[ ]

−1 −2 β 1 . (3.26)

The reaction rate is

r1(c) = k(cT )cAcB, (3.27)

where the rate function, k(cT ), is given by the Arrhenius expression

k(cT ) = k0 exp
(

−Ea

R

1
cT

)
. (3.28)

k0 is the Arrhenius constant, Ea is the activation energy, and R is the gas constant.

3.3.2 Operation
We operate the CSTR with a single inlet media flow stream with flow rate F . The inlet
stream has a temperature of cT,in and contains both reactants at concentrations cA,in
and cB,in. The volume of the CSTR is constant due to overflow into a waste tank. We
model the overflow as an outlet flow stream with flow rate Fout = F to maintain the
constant volume. The inlet stream set and corresponding inlet flow rate vector are

S = {SM}, Fin =
[
F

]
, (3.29)

where SM is the media inlet flow stream with flow rate F . The inlet concentration
matrix, Cin, is

Cin =

cA,in
cB,in
cT,in

 . (3.30)

We consider the inlet and outlet flow rate, F , as the single manipulated input to the
system.
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3.3.3 Deterministic model
The stoichiometry and kinetics (3.24)-(3.28) constitute the reaction model for the exother-
mic chemical reaction. Together with the CSTR model (3.5) and the operational infor-
mation (3.29)-(3.30), the model is complete. In the general form (3.1), the model for
the exothermic chemical reaction conducted in an adiabatic CSTR has

x =

nA

nB

nT

 , u =
[
F

]
, d =

[ ]
, f = CinF − cF + RV. (3.31)

nA [mol] is the mole number of reactant A, nB [mol] is the mole number of reactant B,
nT [K·L] is the total thermal energy, and F [L/s] is the inlet and outlet flow rate. The
volume, V [L], is a model parameter rather than a state, since the CSTR has constant
volume. Notice, we apply the notation n instead of m for the component states in this
model, since the unit of reactant components is moles.

3.3.4 Model reduction
The model (3.31) has three states and one input. The three-state model is exactly
represented by a one-state model at steady-state, which enables a model reduction based
on steady-state assumptions (Wahlgreen et al., 2020). At steady-state, the reactant
concentrations, cA and cB, are functions of the temperature, cT , as

cA(cT ) = cA,in + 1
β

(cT,in − cT ), cB(cT ) = cB,in + 2
β

(cT,in − cT ). (3.32)

By elimination of the two reactant states, the model has only the thermal energy state
remaining. The stoichiometric matrix and inlet concentration matrix are

S =
[
β

]
, Cin =

[
cT,in

]
. (3.33)

The reaction rate is

r1(cT ) = k(cT )cA(cT )cB(cT ), (3.34)

and the complete one-state model in the general form (3.1) has

x =
[
nT

]
, u =

[
F

]
, d =

[ ]
, f = CinF − cF + RV. (3.35)

nT [K·L] is the total thermal energy and F [L/s] is the inlet and outlet flow rate.

3.3.5 Diffusion matrix and measurement function
We extend the deterministic models (3.31) and (3.35) with diffusion terms to get SDEs
in the form (2.1b). We model stochastic variations in the three-state model and in the
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one-state model with diagonal diffusion matrices

σ3d =

σA

σB

σT

 , σ1d =
[
σT

]
. (3.36)

We select σA = σB = 0 and σT = Fσ̄T with σ̄T being a parameter. This particular choice
of diffusion matrix models stochastic variations in the inlet temperature, cT,in. We apply
a static measurement function for temperature measurements at discrete times in both
the three-state and the one-state model

y(ti) = g(ti, x(ti), p) = cT = nT

V
. (3.37)

The temperature measurements are corrupted by measurement noise with covariance
matrix

Rv = σ2
y,T , (3.38)

where σy,T is a parameter for estimation or selected based on measurement equipment
specifications.

3.4 Monoclonal antibody fermentation
process conducted in a continuous
perfusion reactor

In this section, we introduce an mAb fermentation process conducted in a CPR (Kumar
et al., 2022). In Appendix F, we extend the original model with a glucose inhibition
term and a smooth maximum approximation for product inhibition. The process model
consists of six reactions and includes five components, 1) viable cells, 2) dead cells, 3)
glucose, 4) lactate, and 5) the product (mAb). Factors like oxygen and pH are not
included in the model, but are part of the reactor operation (Kumar et al., 2022). The
fermentation is conducted in a CPR, which we model in the general form (3.6). In
the following, we define the stoichiometry and kinetics for the fermentation process and
define the operational information for the CPR. Appendices F and G present the model
parameters and more details.

3.4.1 Stoichiometry and kinetics
The mAb fermentation process consists of six reactions conducted in a CPR. The com-
ponent set and reaction set are

C = {Xv, Xd, G, L, P}, R = {1, 2, 3, 4, 5, 6}, (3.39)
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where Xv are viable cells, Xd are dead cells, G is glucose, L is lactate, and P is the
product. The six stoichiometric reactions are

1. Cell division, α1,GG + Xv −→ 2Xv + α1,P P, r1, (3.40a)
2. Cell death, Xv −→ Xd, r2, (3.40b)
3. Maintenance 1, α3,GG + Xv −→ Xv + α3,P P, r3, (3.40c)
4. Maintenance 2, Xv −→ Xv + α4,LL, r4, (3.40d)
5. Lactate production 1, Xv −→ Xv + α5,LL, r5, (3.40e)
6. Lactate production 2, Xv −→ Xv + α6,LL, r6. (3.40f)

Here, α1,G, α1,P , α3,G, α3,P , α4,L, α5,L, and α6,L are stoichiometric coefficients. The
stoichiometric matrix for the six reactions (3.40) is

S =

Xv Xd G L P



1 0 −α1,G 0 α1,P 1
−1 1 0 0 0 2
0 0 −α3,G 0 α3,P 3
0 0 0 α4,L 0 4
0 0 0 α5,L 0 5
0 0 0 α6,L 0 6

. (3.41)

The reaction rates are all dependent on the viable cell density, cXv , and specific rate
functions. The reaction rates are

r1 = µX(c, T )cXv , r2 = µD(T )cXv , r3 = µm1cXv , (3.42a)
r4 = µm2cXv , r5 = µL,p1(c, T )cXv , r6 = µL,p2(c)cXv , (3.42b)

where T is the temperature. We represent the reaction rates (3.42) as a vector function,

r =
[
r1 r2 r3 r4 r5 r6

]⊤
. (3.43)

The vector function, r = r(c, T, p), is a function of the concentrations, c, the temperature,
T , and kinetic parameters included in p. The specific growth rate for viable cells is

µX = µX,maxflimfL,inhfG,inhfP,inhftemp, (3.44)

where µX,max is the maximum growth rate, flim is the limiting growth term, fL,inh is
the lactate inhibition term, fG,inh is the glucose inhibition term, fP,inh is the product
inhibition term, and ftemp specifies the temperature dependency of the specific growth
rate. The five terms are

flim = cG

KGcXv + cG

, fL,inh = KI,L

KI,L + cL

, (3.45a)

fG,inh = 1 − sγ(cG, c̄G), fP,inh = maxα(0, 1 − KI,P cP ), (3.45b)

ftemp = exp
(

−K1

T

)
. (3.45c)
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In the glucose inhibition term, we apply the sigmoid function, sγ, and in the product in-
hibition term, we apply the smooth maximum approximation, maxα. The two functions
are

sγ(cG, c̄G) = 1
1 + exp(−γ(cG − c̄G))

, (3.46a)

maxα(x1, x2) =
x1 + x2 +

√
(x1 − x2)2 + α2

2
. (3.46b)

The original model did not include the glucose inhibition term and the product inhibition
term was linear without the soft maximum function (Kumar et al., 2022). The specific
cell death rate function is

µD = µD,maxfD,temp. (3.47)

µD,max is the maximum death rate and fD,temp specifies the temperature dependency of
the specific death rate given as

fD,temp = exp
(

−K2

T

)
. (3.48)

The two maintenance specific rate functions, µm1 and µm2 , and the two lactate produc-
tion specific rate functions, µL,p1 and µL,p2 , model the passive consumption of glucose
to produce lactate and product. The rate functions are

µm1 = µ̄m1 , µm2 = µ̄m2

Lmax,2 − cL

Lmax,2
, (3.49a)

µL,p1 = µX
Lmax,1 − cL

Lmax,1
, µL,p2 = µ̄L,p2

Lmax,1 − cL

Lmax,1
. (3.49b)

The following kinetic and stoichiometric coefficients are parameters in the model:
µmax, µD,max, µ̄m1 , µ̄m2 , µ̄L,p2 , K1, K2, KG, KI,L, KI,P , Lmax,1, Lmax,2, c̄G, γ, α, α1,G,
α1,P , α3,G, α3,P , α4,L, α5,L, and α6,L.

3.4.2 Operation
We operate the CPR with two inlet streams, a perfusion stream, an outlet stream, and
a temperature regulation system. We assume the temperature regulation system to be
an ideal controller such that the temperature, T , is a manipulated input in the model.
The two inlet streams are 1) a pure water inlet stream and 2) a glucose inlet stream
with glucose at constant concentration cG,in. The inlet stream set and corresponding
inlet flow rate vector are

S = {SW , SG}, Fin =
[
FW

FG

]
, (3.50a)
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where SW is a water stream with flow rate FW and SG is a glucose stream with flow rate
FG. The inlet concentration matrix, Cin, is

Cin =


0 0
0 0
0 cG,in
0 0
0 0

 . (3.51)

The perfusion stream is an outlet stream with flow rate Fper, where cells and product
are assumed to be completely filtrated and kept in the reactor. Only spend media, i.e.,
glucose and lactate, is removed from the reactor through the perfusion stream. We
model the filtration behavior of the perfusion stream with a diagonal perfusion matrix,
Cper. The value of each diagonal element is between 0 and 1, where 0 means no removal
of the component and 1 means complete removal of the component. Accordingly, the
perfusion matrix, Cper, is

Cper = diag
([

0 0 1 1 0
])

, (3.52)

which models full glucose and lactate removal through the perfusion stream. The CPR
has an outlet stream, which harvests the reactor content with flow rate Fout. We consider
the four flow rates, FW , FG, Fper, and Fout, and the temperature, T , as manipulated
inputs to the system.

3.4.3 Deterministic model
The stoichiometry and kinetics (3.39)-(3.49) constitute the reaction model for the mAb
fermentation process. Together with the CPR model (3.6) and the operational informa-
tion (3.50)-(3.52), the model is complete. In the general form (3.1), the model for the
mAb fermentation process conducted in a CPR has

x =



V
mXv

mXd

mG

mL

mP


, u =


FW

FG

Fper
Fout
T

 , d =
[ ]

, f =
[

e⊤Fin − Fout − Fper,
CinFin − cFout − CpercFper + RV

]
. (3.53)

V [L] is the volume, mXv [cells ×109] is the number of viable cells, mXd
[cells ×109] is

the number of dead cells, mG [g] is the glucose mass, mL [g] is the lactate mass, mP [g] is
the product (mAb) mass, FW [L/min] is the pure water stream flow rate, FG [L/min] is
the glucose stream flow rate, Fper [L/min] is the perfusion stream flow rate, Fout [L/min]
is the outlet stream flow rate, and T [K] is the temperature.
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3.4.4 Diffusion matrix and measurement function
We extend the deterministic model (3.53) with a diffusion term to get an SDE in the
form (2.1b). We model stochastic variations in the number of viable cells, mXv , the
glucose mass, mG, and the lactate mass, mL, with a diagonal diffusion matrix

σ =



0 0 0
σXv(cXv) 0 0

0 0 0
0 σG(cG) 0
0 0 σL(cL)
0 0 0


. (3.54)

We apply concentration dependent diffusion given as

σXv(cXv) = σ̄XvcXv , σG(cG) = σ̄GcG, σL(cL) = σ̄LcL, (3.55)

where σ̄Xv , σ̄G, and σ̄L are parameters in the model. We apply a static measurement
function for discrete-time measurements of the volume, V , the glucose concentration, cG,
and the lactate concentration, cL,

y(ti) = g(ti, x(ti), p) =

V
cG

cL

 =

 V
mG/V
mL/V

 . (3.56)

The three measurements are corrupted by independent measurement noise with diagonal
covariance matrix

Rv =

σ2
y,V

σ2
y,G

σ2
y,L

 , (3.57)

where σy,V , σy,G, and σy,L are parameters for estimation or selected based on measure-
ment equipment specifications.

3.5 Summary
In this chapter, we introduced a general modeling methodology for processes consisting of
reactive systems conducted in reactors. The methodology separately models the reactor
and the reactions. In this way, processes can be changed without updating the reactor
equations. We demonstrated the methodology representation of three reactor types, 1)
FBRs, 2) CSTRs, and 3) CPRs. Mass balances in the form of ODEs constituted the reac-
tor model. The reaction models were based on stoichiometric and kinetic considerations
for a specific process. The models were completed by specification of the stoichiometric
matrix and a reaction rate vector function together with operational information for the
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chosen reactor. We introduced stoichiometry and kinetics for three reactive systems. In
combination with the three reactor types, we presented three models, 1) a biomass fer-
mentation process conducted in an FBR, 2) an exothermic chemical reaction conducted
in an adiabatic CSTR, and 3) an mAb fermentation process conducted in a CPR. The
general modeling methodology provided ODE models for the three systems, and we ex-
tended the models with diffusion terms to model stochastic variations. This resulted
in SDE models. The stochastic models are applicable for Monte Carlo simulation of
closed-loop systems and in nonlinear model predictive control (NMPC) algorithms.
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CHAPTER 4
Nonlinear model predictive

control
This chapter presents a nonlinear model predictive control (NMPC) formulation consist-
ing of an estimator and a regulator. The estimator is the continuous-discrete extended
Kalman filter (CD-EKF) and the regulator solves an optimal control problem (OCP)
based on the CD-EKF state estimate. The solution to the OCP is the input trajectory
in a finite horizon, where only the part corresponding to the first control interval is im-
plemented in the process. The OCP has a general objective function that can be selected
based on the specific process. We apply a multiple-shooting method to transcribe the
infinite dimensional OCP to a finite dimensional nonlinear programming problem (NLP).
The structure of the resulting NLP motivates implementation of the Riccati recursion
based sequential quadratic programming (SQP) algorithm NLPSQP. NLPSQP solves
the quadratic programming problem (QP)-subproblem with the Riccati recursion based
primal-dual interior-point (IP) method QPIPM. We introduce two objective functions, 1)
a target-tracking objective function based on a weighted least squares (LS) cost function
and 2) a profit maximization objective function based on process incomes and expenses.
These objective functions lead to a target-tracking NMPC algorithm and an economic
nonlinear model predictive control (ENMPC) algorithm. The NMPC algorithms and the
two optimization packages, QPIPM and NLPSQP, are implemented thread-safe in C. As
a result, the NMPC algorithms are applicable in the parallel Monte Carlo simulation
toolbox introduced in Chapter 2.

This chapter is based on the papers in Appendices B, E, G, and H. Appendix B
provides details about the initial implementation of QPIPM in Matlab. Appendix H
gives a detailed description of the two software packages QPIPM and NLPSQP imple-
mented in both Matlab and C. In Appendix E, we apply the target-tracking NMPC
algorithm for temperature tracking of a chemical reaction conducted in an adiabatic
continuous stirred tank reactor (CSTR). Appendix G applies the ENMPC algorithm for
profit maximization of a monoclonal antibody (mAb) fermentation process.

4.1 Estimator
We consider controller models as stochastic continuous-discrete systems in the form
(2.1). We assume zero-order-hold (ZOH) parameterization of the inputs and disturbances
such that they are constant between every measurement sample, which are available
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with sampling time Ts. When a noisy measurement vector, yi, is available at time
ti, the estimator computes an estimate of the states, x̂i|i. For this purpose, we apply
a CD-EKF, which consists of two steps, 1) a prediction step and 2) a filtering step
(Jazwinski, 1970; Schneider and Georgakis, 2013). The CD-EKF computes the filtered
state estimate x̂i|i and its covariance Pi|i from the measurement vector, yi, the previous
actually implemented inputs, ui−1, the previous disturbances, di−1, and the previous
filtered mean-covariance pair, x̂i−1|i−1 and Pi−1|i−1. At time ti, the CD-EKF procedure
is,

1) provide current measurement vector, yi, previous actual input vector, ui−1, previous
disturbances, di−1, and previous filtered mean-covariance pair, x̂i−1|i−1 and Pi−1|i−1,

2) compute the one-step prediction, x̂i|i−1 and Pi|i−1, from x̂i−1|i−1, Pi−1|i−1, ui−1, and
di−1,

3) compute the filtered state estimate x̂i|i and its covariance Pi|i from the measurement
vector, yi, and the one-step prediction, x̂i|i−1 and Pi|i−1.

The actually implemented inputs can differ from the input signal computed by the
regulator due to, e.g., failure in communication. In the proposed procedure, we base the
CD-EKF prediction on the inputs that have actually been implemented in the process
rather than the computed input signal from the regulator. In the first iteration, we
provide reasonable values for x̂−1|−1, P−1|−1, u−1, and d−1 to initialize the CD-EKF.

The CD-EKF constitutes the estimator, κ(·), in the general controller form (2.5).

4.1.1 Prediction
The CD-EKF computes a prediction of the state and covariance evolution one sampling
time ahead, i.e., a one-step prediction. The predictions are computed from the following
system of ordinary differential equations (ODEs)

d
dt

x̂i−1(t) = f(t, x̂i−1(t), ui−1, di−1, p), (4.1a)
d
dt

Pi−1(t) = Ai−1(t)Pi−1(t) + Pi−1(t)Ai−1(t)⊤

+ σi−1(t)σi−1(t)⊤,
(4.1b)

where

Ai−1(t) = ∂

∂x
f(t, x̂i−1(t), ui−1, di−1, p), (4.2a)

σi−1(t) = σ(t, x̂i−1(t), ui−1, di−1, p). (4.2b)

The CD-EKF solves (4.1) for t ∈ [ti−1, ti] and applies the previous filtered mean-covariance
pair, x̂i−1|i−1 and Pi−1|i−1, as initial condition, i.e.,

x̂i−1(ti−1) = x̂i−1|i−1, Pi−1(ti−1) = Pi−1|i−1. (4.3a)
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The one-step prediction is the state and covariance at ti given as

x̂i|i−1 = x̂i−1(ti), Pi|i−1 = Pi−1(ti). (4.4)

The CD-EKF applies the one-step prediction (4.4) in the filtering step.

4.1.2 Filtering
In the filtering step, the CD-EKF computes the filtered mean-covariance pair, x̂i|i and
Pi|i. From the measurement vector, yi, and the one-step prediction, x̂i|i−1 and Pi|i−1, the
CD-EKF computes the filtered state estimate, x̂i|i, as

ŷi|i−1 = g(ti, x̂i|i−1, p), Ci = ∂

∂x
g(ti, x̂i|i−1, p), (4.5a)

ei = yi − ŷi|i−1, Re,i = Ri + CiPi|i−1C
⊤
i , (4.5b)

x̂i|i = x̂i|i−1 + Kiei, Ki = Pi|i−1C
⊤
i R−1

e,i , (4.5c)

where Ri = Rv(ti, p) denotes the covariance of the measurement noise v(ti, p) in (2.1).
The covariance of x̂i|i is

Pi|i = Pi|i−1 − KiRe,iK
⊤
i (4.6a)

= (I − KiCi)Pi|i−1 (4.6b)
= (I − KiCi)Pi|i−1(I − KiCi)⊤ + KiRiK

⊤
i . (4.6c)

The expression (4.6c) is the Joseph stabilizing form (Schneider and Georgakis, 2013),
which ensures symmetry and positive semi-definiteness of the update. Therefore, (4.6c)
is the preferred form even though (4.6a) is computationally more efficient.

The regulator receives the filtered state estimate, x̂i|i, once it is available from the
CD-EKF. The CD-EKF applies both the state estimate, x̂i|i, and its covariance, Pi|i, in
the next iteration to compute a new one-step prediction.

4.2 Regulator
At time ti, the regulator computes an open-loop control strategy in a finite control
horizon when the CD-EKF provides a state estimate. To compute open-loop strategies,
the regulator solves an OCP based on the deterministic part of the stochastic differential
equation (SDE) (2.1b) and the available state estimate, x̂i|i. We denote the finite control
horizon Th and split it into N intervals of size Ts, i.e., Th = NTs. The inputs and
disturbances are constant in each interval due to ZOH parameterization. We define the
start of each interval as ti,k = ti +kTs for k = 0, ..., N −1, where ti,0 = ti. We also denote
the final time tf,i = ti,N = ti + Th. The solution to the OCP is the continuous state
trajectory and the parameterized input trajectory, [x(t), u(t)]tf,i

ti
. We implement only
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the inputs corresponding to the first interval, [ti, ti + Ts[, in the process. The regulator
OCP is in the form

min
[x(t);u(t)]

tf,i
ti

φi = φi

(
[x(t), u(t)]tf,i

ti

)
, (4.7a)

s.t. x(ti) = x̂i|i, (4.7b)
ẋ(t) = f(t, x(t), u(t), d(t), p), ti ≤ t ≤ tf,i, (4.7c)
u(t) = ui,k, ti,k ≤ t < ti,k+1, k = 0, ..., N − 1, (4.7d)
d(t) = di,k, ti,k ≤ t < ti,k+1, k = 0, ..., N − 1, (4.7e)
xmin ≤ x(t) ≤ xmax, ti ≤ t ≤ tf,i, (4.7f)
umin ≤ u(t) ≤ umax, ti ≤ t ≤ tf,i. (4.7g)

The objective function (4.7a) defines the objective of the regulator, e.g., target-tracking
or profit maximization as introduced later in this chapter. The dynamic state constraints
(4.7b) and (4.7c) constitute an initial value problem (IVP) for the state dynamics with
the state estimate, x̂i|i, as initial condition. (4.7d) and (4.7e) are ZOH parameterization
of the inputs and disturbances. The finite input set {ui,k}N−1

k=0 uniquely defines the input
trajectory solution [u(t)]tf,i

ti
due to ZOH parameterization. Finally, (4.7f) are state bound

constraints and (4.7g) are input bound constraints. The state bound constraints might
require softening to avoid feasibility issues in the OCP.

4.2.1 The multiple-shooting method
The OCP (4.7) is finite in the inputs due to ZOH parameterization and infinite in
the states. We apply a multiple-shooting method to transcribe the infinite dimensional
OCP to a finite dimensional NLP. The multiple-shooting method splits the finite control
horizon, Th, into control intervals. In this work, we assume that control intervals are
equidistant, non-overlapping, and coincide with the sampling time, i.e., there are N
control intervals of size Ts and the k’th control interval is defined as [ti,k, ti,k+1]. The
states at the left boundary of each control interval are considered as decision variables
in the resulting NLP, i.e., {xi,k+1}N−1

k=0 with xi,0 = x̂i|i being a parameter. We solve
an IVP for the state dynamics in each control interval with the corresponding decision
variable as initial condition. A set of new NLP constraints ensures continuity in the
solution. Figure 4.1 illustrates the multiple-shooting method. The multiple-shooting
method transcribes the OCP (4.7) to an NLP in the form

min
{ui,k,xi,k+1}N−1

k=0

φi = φi

(
{ui,k, xi,k+1}N−1

k=0

)
, (4.8a)

s.t. Ri,k = xi,k+1 − F (ti,k, xi,k, ui,k, di,k, p) = 0, k = 0, ..., N − 1, (4.8b)
xmin ≤ xi,k+1 ≤ xmax, k = 0, ..., N − 1, (4.8c)
umin ≤ ui,k ≤ umax, k = 0, ..., N − 1, (4.8d)

where F (·) constitutes a numerical integration scheme to solve the state dynamic IVP
with initial condition xi,k. Often, the objective function (4.8a) depends continuously
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on the states, e.g., by integration of a state dependent cost function. In this case, we
formulate the integral as an IVP and solve it simultaneously with the state equations
in each control interval. The constraint (4.8b) is a set of continuity constraints that
forces the dynamic solution in each control interval to coincide with the corresponding
decision variables. The constraints (4.8c) and (4.8d) constitute the state and input
bound constraints.

To efficiently solve the NLP (4.8), we require gradient information about the objec-
tive function (4.8a) and the nonlinear equality constraints (4.8b). The gradients require
sensitivities of the numerical integration scheme F (·) and the objective function evalu-
ation. We apply a forward algorithmic differentiation approach to obtain the required
sensitivities (Andersson, 2013; Gebremedhin and Walther, 2019). If the objective func-
tion (4.8a) is partially separable, which we assume in this work, the NLP has a specific
structure, where the Lagrangian Hessian is block diagonal. When solved with an SQP
algorithm, the QP-subproblem inherits a specific sparse structure, which can be uti-
lized by a Riccati recursion based QP-solver (Rao et al., 1998; Jørgensen, 2004; Frison
and Jørgensen, 2013; Frison and Diehl, 2020; Wahlgreen and Jørgensen, 2022; Kaysfeld
et al., 2023b). This motivates the implementation of the Riccati recursion based SQP
algorithm NLPSQP to solve OCPs in NMPC regulators. We implement NLPSQP thread-
safe in C such that the software is applicable in parallel Monte Carlo simulations. The
SQP algorithm solves the QP-subproblem with the Riccati recursion based primal-dual
IP algorithm QPIPM, which we also implement thread-safe in C. NLPSQP applies a
structure preserving Broyden–Fletcher–Goldfarb–Shanno (BFGS) update to avoid the
need of second order derivative evaluations (Bock and Plitt, 1984). Appendix H pro-

...

Figure 4.1: Illustration of the multiple-shooting method. The blue curve is the discon-
tinuous state trajectory and the red curve is the ZOH parameterized input trajectory.
We enforce continuity in the state trajectory by imposing continuity constraints in the
resulting NLP.
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vides details on QPIPM and NLPSQP. The implementations of QPIPM and NLPSQP
are still in development and the main strengths of the implementations are their parallel
scalability making them applicable with the Monte Carlo simulation toolbox introduced
in Chapter 2. Multiple improvements can be considered to increase the computational
performance of QPIPM and NLPSQP.

The solution to the NLP (4.8) constitutes both the regulator, λ(·), and the predictor,
µ(·), in the general controller form (2.5). The regulator extracts the inputs corresponding
to the first control interval, i.e., ui = ui,0, and implements these inputs in the process.
The predictor applies the inputs and states, {ui,k, xi,k+1}N−1

k=0 , as predictions in the finite
horizon.

4.2.2 Target-tracking NMPC objective function
The first objective function considered in this work is for output target-tracking. We
apply two different formulations for the OCP objective function, 1) integration of a cost
function over the control horizon and 2) point-wise evaluation of the cost function at
discrete points in the control horizon. The cost function is a weighted LS function for
output target-tracking in the form

l(t, x(t), u(t), p) = l(z(t)) = ||z(t) − z̄(t)||2Qz
. (4.9)

The output, z(t), is defined in (2.1d), z̄(t) is the output target, and Qz is a weight matrix.
The integral objective function is in the form

φi =
∫ tf,i

ti

l(t, x(t), u(t), p)dt

=
N−1∑
k=0

∫ ti,k+1

ti,k

l(t, x(t), ui,k, p)dt,

=
{

N−1∑
k=0

∫ ti,k+1

ti,k

l(t, x(t), ui,k, p)dt :

x(ti,0) = x̂i|i,

x(ti,k) = xi,k, k = 1, ..., N − 1,

ẋ(t) = f(t, x(t), ui,k, di,k, p), ti,k ≤ t ≤ ti,k+1, k = 0, ..., N − 1
}

.

(4.10)

l(·) is the selected cost function (4.9) and the second equality is due to ZOH parame-
terization of the inputs. The third equality arises from multiple-shooting discretization.
In practice, we formulate the objective integral as an IVP and solve it simultaneously
with the state equations in each control interval. The point-wise objective function is
a simplification of the integral objective function, where we evaluate the cost function
only in the available decision variables. The point-wise objective function is

φi = l(ti,0, ui,0, p)Ts +
N−1∑
k=1

l(ti,k, xi,k, ui,k, p)Ts + l(ti,N , xi,N , p)Ts. (4.11)
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The computational requirement for the point-wise objective function (4.11) is lower
compared to the integral objective function (4.10), however it considers only point-wise
information about the cost function. In Chapter 5, we apply the point-wise formulation
(4.11) for temperature target-tracking in the CSTR model introduced in Chapter 3.

4.2.3 Profit maximization ENMPC objective function
The second objective function maximizes profit and leads to an ENMPC algorithm. We
define profit as the difference between the incomes of the process and the expenses of
the process. Therefore, the profit maximization objective function is

φi = −φprofit,i = −(φincome,i − φexpense,i), (4.12)

where φincome,i is the economic income from the process and φexpense,i is the economic
expense from the process. Specification of φincome,i and φexpense,i depends on the specific
process. In Chapter 5, we define these for profit maximization of the mAb fermentation
process introduced in Chapter 3.

4.3 Summary
In this chapter, we presented an NMPC formulation that consisted of an estimator and a
regulator. The estimator was the CD-EKF, which applies a prediction step and filtering
step to compute state estimates. The regulator solved an OCP when the CD-EKF
provides a state estimate based on new available feedback. The OCP involved a general
objective function, and we applied a multiple-shooting approach to transcribe the infinite
dimensional OCP to a finite dimensional NLP. We introduced two objective functions,
1) a target-tracking objective function based on a weighted LS cost function and 2) a
profit maximization objective function based on process incomes and expenses. These
objective functions gave rise to a target-tracking NMPC algorithm and an ENMPC
algorithm for profit maximization. We implemented the NMPC algorithms in C and
applied the thread-safe SQP algorithm NLPSQP to solve OCPs in the regulators. The
NMPC algorithms are applicable in the Monte Carlo simulation toolbox for parallel
Monte Carlo simulation of closed-loop systems.
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CHAPTER 5
Main results

This chapter presents the main numerical results of the thesis. We apply the Monte
Carlo simulation toolbox introduced in Chapter 2, the three models introduced in Chap-
ter 3, and the nonlinear model predictive control (NMPC) algorithms introduced in
Chapter 4, i.e., the target-tracking NMPC algorithm and the economic nonlinear model
predictive control (ENMPC) algorithm for profit maximization. We demonstrate that
the Monte Carlo simulation toolbox has almost linear parallel scaling for proportional-
integral-derivative (PID) controllers and the developed NMPC algorithms. We apply the
toolbox for 1) uncertainty quantification (UQ) of the biomass fermentation process con-
ducted in a fed-batch reactor (FBR) and tuning of the PID controller in the closed-loop
system, 2) UQ of a closed-loop system consisting of the exothermic chemical reaction con-
ducted in an adiabatic continuous stirred tank reactor (CSTR) and the target-tracking
NMPC algorithm, and 3) UQ of profit in the monoclonal antibody (mAb) fermentation
process with the developed ENMPC algorithm. The results demonstrate applications of
the Monte Carlo simulation toolbox for UQ of different closed-loop systems with con-
troller of varying complexity and the performance of the ENMPC algorithm for profit
maximization of the considered mAb fermentation process.

This chapter is based on the papers in Appendices A, E, and G. In Appendix A,
we introduce the implemented Monte Carlo simulation toolbox and demonstrate almost
linear parallel scaling for a closed-loop system with a PID controller. Appendix E extends
the toolbox with the target-tracking NMPC algorithm based on the sequential quadratic
programming (SQP) algorithm NLPSQP and shows that the toolbox achieves similar
parallel scaling with the NMPC algorithm. Finally, Appendix G applies the developed
ENMPC algorithm for profit maximization of the mAb fermentation process and applies
the Monte Carlo simulation toolbox for UQ of the closed-loop system.

5.1 Uncertainty quantification for biomass
production

In this section, we apply the Monte Carlo simulation toolbox for UQ of the biomass
fermentation process introduced in Section 3.2. The process is conducted in an FBR
with an upper volume limit of 12.39 m3. Measurements of the substrate concentration,
cS, are available with sampling time Ts and the stochastic differential equation (SDE)
model includes variations in the three state variables. The closed-loop system has initial
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time t0 = 0.0 h, final time tf = 10.0 h, and sampling time Ts = 36.0 s. We provide a short
motivation for the necessity of Monte Carlo simulations, demonstrate the parallel scaling
properties of the toolbox, and apply Monte Carlo simulation for UQ of the process and
tuning of the PID controller in the closed-loop system. The results are conducted on
a dual-socket Intel® Xeon® Gold 6226R CPU @ 2.90GHz system with 16 cores in each
non-uniform memory access (NUMA) node.

5.1.1 Motivation for Monte Carlo simulation
In the deterministic case, there exist infinitely many optimal open-loop operational
strategies for maximization of the biomass production, which all maintain an optimal
substrate concentration (Ryde et al., 2021). However, stochastic variations might lead
to non-optimal substrate concentrations resulting in non-optimal biomass production in
the open-loop system. To motivate this statement, we select one optimal operational
strategy, the Bang-Bang strategy from the original paper (Ryde et al., 2021), and sim-
ulate the stochastic system twice. Figure 5.1 presents the two stochastic simulations
compared to the deterministic simulation. The first stochastic simulation is almost iden-
tical to the deterministic simulation, but the second stochastic simulation results in
low biomass production. It is hard to make reasonable conclusions about the process
performance based on these two stochastic simulations. In conclusion, single or few
stochastic simulations provide limited information about the uncertainty in the system.
This motivates the application of Monte Carlo simulation for UQ of the process.

5.1.2 Parallel scaling with PID controller
We design a PID controller for tracking of the optimal substrate concentration by ma-
nipulating the substrate inlet stream flow rate, FS. We perform 10, 000 Monte Carlo
simulations on different numbers of central processing unit (CPU) cores to get scale-up
data for the Monte Carlo simulation toolbox. Figure 5.2 presents the scale-up results.

(a) Stochastic simulation 1. The stochastic simu-
lation almost coincide with the deterministic sim-
ulation.

(b) Stochastic simulation 2. The stochastic simu-
lation results in low biomass production compared
to the deterministic simulation.

Figure 5.1: Stochastic simulations of the biomass fermentation model.
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The Monte Carlo simulation toolbox shows almost linear parallel scaling on a single
NUMA node and approximately 27.3 times speedup on 32 cores. The decrease in per-
formance on the second NUMA node is expected since the toolbox is not designed for
multiple NUMA nodes.

5.1.3 Uncertainty quantification and controller tuning
We apply the Monte Carlo simulation toolbox for UQ of the stochastic biomass fermen-
tation process. We select the produced biomass as key performance indicator (KPI) for
UQ. Figure 5.3 presents biomass production histograms with three different controllers.
Each histogram is based on biomass production data from 30, 000 closed-loop simula-
tions with different process noise realizations, which takes less than a second to simulate.
Figure 5.3(a) shows the open-loop performance of the Bang-Bang strategy resulting in
a long-tailed biomass distribution with high probability of low biomass production. Fig-
ure 5.3(b) presents the closed-loop performance of a proportional (P) controller, which
improves the biomass production in both mean and variance compared to the open-loop
strategy. Finally, we apply the Monte Carlo simulation toolbox to tune a PID controller
based on the performance of different PID gain combinations in 303, 000 closed-loop sim-
ulations. The tuning process takes approximately 7.5 s. Figure 5.3(c) shows the biomass
distribution for the tuned PID controller. The tuned PID controller improves the mean
and variance of the biomass production compared to both the open-loop strategy and
the P controller. The results show that Monte Carlo simulation enable simple KPI
comparison between different operational strategies.

Figure 5.2: Parallel scaling of the Monte Carlo simulation toolbox with a PID controller
based on 10, 000 Monte Carlo simulations. The red dashed line shows the first 16 cores,
i.e., the first NUMA node. We observe almost linear scaling on a single NUMA node
and a scale-up of 27.3 on 32 cores. This figure originally appeared in (Wahlgreen et al.,
2021).
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(a) Open-loop controller.

(b) Sub-optimal P controller.

(c) Optimal PID controller.

Figure 5.3: Histograms for biomass production computed from 30, 000 closed-loop sim-
ulations with different process noise realizations. The control strategy is specified in
each subplot. The red dashed line is the produced biomass in the deterministic simula-
tion and the orange dashed line is the 10% quantile. This figure originally appeared in
(Wahlgreen et al., 2021).
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5.2 Uncertainty quantification of NMPC
algorithm for a chemical reaction

In this section, we consider the model in Section 3.3 for an exothermic chemical reaction
conducted in an adiabatic CSTR. The CSTR is laboratory-scale with a constant volume
of 0.105 L. We consider the temperature as the output, i.e.,

z(t) = h(t, x(t), p) = nT

V
= cT , (5.1)

and apply the target-tracking NMPC algorithm in Chapter 4 for temperature tracking in
the CSTR. The NMPC algorithm consists of the continuous-discrete extended Kalman
filter (CD-EKF) and a tracking regulator based on the point-wise tracking objective
formulation (4.11). The closed-loop system consists of the three-state model for simula-
tion and the NMPC algorithm based on the reduced one-state model. Measurements of
the temperature, cT , are available with sampling time Ts and the SDE model includes
variations in the inlet temperature, cT,in. The initial time is t0 = 0.0 s, the final time is
tf = 600.0 s, and the sampling time is Ts = 1.0 s.

The results are conducted on the same CPU as in the previous section. We apply
a reference proportional-integral (PI) controller for comparison, but point out that this
is solely to demonstrate the ease of comparing two controller types with Monte Carlo
simulation. Figure 5.4 shows a single closed-loop simulation demonstrating that both
controllers are able to track a variable temperature set-point in the process.

5.2.1 Parallel scaling with NMPC algorithm
We perform a parallel scaling study for the Monte Carlo simulation toolbox with the
NMPC algorithm. Figure 5.5 shows that the Monte Carlo simulation toolbox achieves
similar scaling with the NMPC algorithm as it did with the PID controller in Figure 5.2.
The toolbox shows approximately 27 times speedup on 32 cores.

5.2.2 Comparing controllers with Monte Carlo
simulation

We apply the Monte Carlo simulation toolbox to quantify the performance of the NMPC
algorithm and the PI controller. As KPI, we select a scaled point-wise squared-2-norm
metric given as

Φ = 1
N̄ + 1

N̄∑
i=0

||z(ti) − z̄(ti)||22, (5.2)

where z̄(t) is the output target and N̄ = tf −t0
Ts

is the number of samples in the closed-
loop simulation. Figure 5.6 shows histograms for the two controllers based on KPI data
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Figure 5.4: A single stochastic closed-
loop simulation of the CSTR model with
both the PI controller and the NMPC al-
gorithm for temperature, T = cT , set-
point tracking. Both controllers are able
to track the variable temperature set-point.
This figure originally appeared in (Kaysfeld
et al., 2023b).

Figure 5.5: Parallel scaling of the Monte
Carlo simulation toolbox with the NMPC
algorithm. The red dashed line shows the
first 16 cores, i.e., the first NUMA node.
We observe similar parallel scaling as ob-
served in Figure 5.2 and approximately 27
times speedup on 32 cores. This figure orig-
inally appeared in (Kaysfeld et al., 2023b).

from 30, 000 closed-loop simulations. The histograms enable performance quantification
based on KPI distributions, which makes comparison simple. As expected in this case,
the NMPC algorithm outperforms the PI controller in both mean and variance. This
result demonstrates that availability of large-scale Monte Carlo simulation data simplifies
the process of comparing two controllers.

5.3 Uncertainty quantification of ENMPC
algorithm for mAb production

In this section, we apply the developed ENMPC algorithm for profit maximization of
the mAb fermentation process presented in Section 3.4. The process is conducted in
a small-scale continuous perfusion reactor (CPR) with an upper volume limit of 8.0 L.
Measurements of the volume, V , the glucose concentration, cG, and the lactate concen-
tration, cL, are available with sampling time Ts and the SDE model includes variations
in the number of viable cells, mXv , the glucose mass, mG, and the lactate mass, mL.
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Figure 5.6: Histograms of the tracking KPI (5.2) for the PI controller and the NMPC
algorithm based on 30, 000 closed-loop simulations. The red dashed line is the perfor-
mance of the NMPC algorithm in the deterministic case. The 30, 000 simulations with
the NMPC algorithm took approximately 55 min. This figure originally appeared in
(Kaysfeld et al., 2023b).

The original paper on this process applied an operational strategy, which we denote the
base case (Kumar et al., 2022). We design the closed-loop with initial time t0 = 0.0
min, final time tf = 14 · 24 · 60 = 20, 160.0 min, and sampling time Ts = 60.0 min.
We introduce the income and expense terms for the ENMPC regulator, show a single
stochastic closed-loop simulation, apply Monte Carlo simulation for UQ of the profit and
mAb production, and apply operational insights from the ENMPC algorithm to design
a simple controller. We conduct the simulations on a Linux workstation with a 6 core
Intel® Xeon® W-2235 CPU with frequency 3.80 GHz.

5.3.1 Income and expense term for mAb production
The profit objective term in the ENMPC regulator, φprofit,i (4.12), includes an income
term, φincome,i, and an expense term, φexpense,i. We apply simple expressions, where the
income term is the price of produced mAb and the expense term is the price of spend
glucose. We express the income as

φ̄income,i = φP,i = PP

∫ tf,i

ti

RP (t)V (t)dt

= PP (mP (tf,i) − mP (ti)) + PP

∫ tf,i

ti

cP (t)Fout(t)dt.
(5.3)

PP [USD/g] is the price of mAb (the product) and RP is the product production rate as
computed in (3.4). We assume that the outlet stream is only applied for harvesting at
the end of the fermentation process, i.e., the reactor is in fed-batch perfusion mode with
Fout = 0 throughout the fermentation. Instead of imposing a constraint in the optimizer,
we implement the income term as

φincome,i = PP (mP (tf,i) − mP (ti)) , (5.4)
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where harvesting during the fermentation has a negative impact on the profit. This
implies that the controller should set Fout = 0. The expense term is

φexpense,i = φG,i = PG

∫ tf,i

ti

cG,inFG(t)dt

= PG

N−1∑
k=0

cG,inFG,i,kTs.
(5.5)

PG [USD/g] is the price of glucose and the second equality is due to zero-order-hold
(ZOH) parameterization of the inputs such that FG(t) = FG,i,k for ti,k ≤ t < ti,k+1. We
apply (5.4) and (5.5) to compute the profit term (4.12) for profit maximization of the
mAb fermentation process.

5.3.2 Closed-loop simulation with ENMPC algorithm
We consider the ENMPC algorithm in closed-loop for profit maximization of the mAb
fermentation process. The ENMPC consists of the CD-EKF and an economic regulator
based on the income term (5.4) and expense term (5.5). Figure 5.7 presents a single
stochastic closed-loop simulation of the system. The ENMPC algorithm operates the
CPR in two phases, which we denote the growth phase and production phase. The process
starts in the growth phase and the production phase begins when the controller reduces
the temperature from the upper limit to the lower limit. The optimal operation provides
a set of key insights for selection of the inputs. Table 5.1 summarizes the insights, and
we notice that the ENMPC algorithm keeps the glucose concentration close to the point
of glucose inhibition. The simulation resulted in a 24.82 g mAb production in the 14
days fermentation.

Table 5.1: Input key insights for optimal operation of the CPR. This table originally
appeared in (Kaysfeld and Jørgensen, 2023).

Input Growth phase Production phase
FW Selected based on FG and Fper such

that the volume is constant at the up-
per limit.

Set to zero.

FG Selected such that the glucose concen-
tration, cG, is almost constant at 7.0
g/L.

Same operation as in the growth
phase.

Fper Fixed at the upper limit. Selected equal to FG such that the
volume is constant at the upper limit.

Fout Set to zero. Set to zero.
T Fixed at the upper limit. Fixed at the lower limit.
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Figure 5.7: A single closed-loop simulation with the ENMPC algorithm. The blue
lines are the simulation of the CPR, the red lines are estimates from the CD-EKF
together with the red shaded 95% confidence interval for the estimates, and the black
dots are measurements. We observe that the ENMPC algorithm operates the reactor
in two phases: Growth phase (shaded green) and production phase (shaded yellow).
The production phase is initialized after approximately 10 days, where the controller
decreases the temperature. This figure originally appeared in (Kaysfeld and Jørgensen,
2023).

5.3.3 Uncertainty quantification
We apply the Monte Carlo simulation toolbox to perform UQ for the mAb fermentation
process. We select two KPIs to evaluate the performance of the fermentation process
given as

Φ1 = mP (tf ) − mP (t0), (mAb production) (5.6a)

Φ2 = PP (mP (tf ) − mP (t0)) − PG

Nsim−1∑
i=0

cG,inFG,iTs, (Profit) (5.6b)
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where FG,i = FG(ti) is the implemented glucose flow rate at time ti and Nsim denotes
the number of samples in the closed-loop simulation. The KPIs (5.6) are valid since
Fout = 0 throughout closed-loop simulations. We gather KPI data in 10, 000 stochastic
closed-loop simulations with different process noise realizations. The simulations took
approximately 6 h on 6 CPU cores. Figure 5.8 presents KPI histograms for the ENMPC
algorithm and the base case strategy. The two KPIs have very similar distributions likely
due to the low price of glucose compared to mAb. Table 5.2 presents selected statistical
data for the simulations. The ENMPC algorithm increases the mean profit, but also
increases the uncertainty measured in the range (difference between smallest and largest
value) compared to the base case. The ENMPC algorithm operates the process close to
a point of glucose inhibition, which might explain the increased uncertainty. There are
no confidence interval overlap between the two operational strategies indicating a high
statistical probability for the ENMPC algorithm to have higher profit.

We consider the CPU time for each call to the ENMPC algorithm in the 10, 000
Monte Carlo simulations. Figure 5.9 presents a histogram for the CPU time of the
14 ·24 ·10, 000 = 3.36 ·106 calls to the ENMPC algorithm. The Monte Carlo simulations
show that in 99.9% of the calls, the computation time is less then 0.35 s and that the
worst case CPU time is 3.2 s. The CPU times indicate that the algorithm is applicable
in real time applications, where the time to compute the ENMPC response is negligible
compared to the sampling time of Ts = 60 min. The low computation time is impor-
tant for computational tractability of large-scale Monte Carlo simulation studies, where
even lower CPU times would be beneficial and should be achievable by improving the
computational efficiency of NLPSQP.

(a) Distribution of mAb production for the EN-
MPC algorithm and the base case strategy. The
mean production is 23.89 g for the ENMPC algo-
rithm and 15.68 g in the base case.

(b) Distribution of profit for the ENMPC algo-
rithm and the base case strategy. The mean profit
is 10.2 × 104 USD for the ENMPC algorithm and
6.68 × 104 USD in the base case.

Figure 5.8: Histograms of the mAb production and the profit based on 10, 000 Monte
Carlo simulations with the ENMPC algorithm in closed-loop and the base case strategy
in open-loop. The black dashed lines show 95% confidence intervals. This figure origi-
nally appeared in (Kaysfeld and Jørgensen, 2023).
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Table 5.2: Statistical data for the mAb production and the profit based on 10, 000
closed-loop Monte Carlo simulations. The profit numbers (except percentages) are ×104.
The increase in percentage is relative to the base case, i.e., (xENMPC −xbase case)/xbase case.
This table originally appeared in (Kaysfeld and Jørgensen, 2023).

mAb production
Mean min max Range Std 95% CI

ENMPC 23.89 [g] 18.83 [g] 31.13 [g] 12.29 [g] 1.59 [g] [20.78, 27.04] [g]
Base case 15.68 [g] 12.69 [g] 20.56 [g] 7.87 [g] 0.99 [g] [13.75, 17.61] [g]
Increase 52 [%] 48 [%] 51 [%] 56 [%] 62 [%] [51, 53] [%]

Profit ×104

Mean min max Range Std 95% CI
ENMPC 10.18 [USD] 8.02 [USD] 13.26 [USD] 5.24 [USD] 0.68 [USD] [8.85, 11.51] [USD]
Base case 6.68 [USD] 5.41 [USD] 8.76 [USD] 3.35 [USD] 0.42 [USD] [5.86, 7.50] [USD]
Increase 52 [%] 48 [%] 51 [%] 56 [%] 62 [%] [51, 53] [%]

5.3.4 Simple controller design and comparison
We apply the “from-simple-via-complex-to-lucid” approach and use the input key insights
to design a simple controller (Stoustrup, 2013). We let a PI controller select the glucose
flow rate, FG, to track a glucose concentration of cG = 7.0 g/L and set the remaining
inputs according to Table 5.1. We apply the Monte Carlo simulation toolbox to quantify
the performance of the simple controller. Figure 5.10 presents histograms of the mAb
production for the closed-loop with the ENMPC algorithm and the simple controller.
The simple controller and the ENMPC algorithm have practically identical performance.

5.4 Summary
In this chapter, we presented the main numerical results of the thesis. First, we demon-
strated that the implemented Monte Carlo simulation toolbox has almost linear parallel
scaling for closed-loop systems with a PID controller. We showed that Monte Carlo
simulations are applicable for tuning of a PID controller and for UQ of a biomass fer-
mentation process conducted in an FBR. Then, we showed similar linear parallel scaling
for Monte Carlo simulations with the implemented target-tracking NMPC algorithm.
We applied Monte Carlo simulation to quantify the performance of the NMPC algo-
rithm for temperature set-point tracking of an exothermic chemical reaction conducted
in an adiabatic CSTR. Finally, we applied the developed ENMPC algorithm for profit
maximization of an mAb fermentation process conducted in a CPR. The profit was
based on mAb and glucose prices. We quantified the ENMPC algorithm performance
with Monte Carlo simulation, which showed a high statistical probability for the EN-
MPC algorithm to increase the profit of the process compared to a base case strategy.
From the operational insights provided by the ENMPC algorithm, we developed a simple
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Figure 5.9: Histogram of CPU time
for calls to the ENMPC algorithm in
10, 000 Monte Carlo simulations. The black
dashed line shows the 99.9% quantile, i.e.,
99.9% of the CPU times are below 0.35 s.
The worst case CPU time is 3.2 s. This
figure originally appeared in (Kaysfeld and
Jørgensen, 2023).

Figure 5.10: Histograms of mAb produc-
tion for the ENMPC algorithm and the sim-
ple controller. The two controllers have
practically identical performance. This fig-
ure originally appeared in (Kaysfeld and
Jørgensen, 2023).

controller. Monte Carlo simulation showed that the simple controller and the ENMPC
algorithm had practically identical performance. This result indicates that we can 1) uti-
lize ENMPC for potentially increasing the profit in mAb fermentation processes either
by implementation of ENMPC algorithms in the process or by collecting operational
insights from ENMPC simulations to design simpler controllers and 2) apply Monte
Carlo simulation to quantify the performance of the ENMPC algorithm and in this case
show that the simple controller has practically the same performance as the ENMPC
algorithm.



CHAPTER 6
Conclusions

In this chapter, we present the conclusions of the thesis. The main contributions of
this work is 1) a Monte Carlo simulation toolbox for uncertainty quantification (UQ) of
closed-loop systems, 2) a systematic modeling methodology for processes consisting of
reactive systems conducted in reactors, and 3) an economic nonlinear model predictive
control (ENMPC) algorithm for profit maximization applied to a monoclonal antibody
(mAb) fermentation process.

This thesis presented a high-performance Monte Carlo simulation toolbox for UQ of
closed-loop systems parallelized with Open Multi-Processing (OpenMP) for shared mem-
ory architectures. We introduced the procedure for simulation of closed-loop systems
consisting of a stochastic continuous-discrete system and a controller. The stochastic
continuous-discrete system involved a stochastic differential equation (SDE), a static
measurement function corrupted by measurement noise, and a static output function.
The controller consisted of an estimator, a regulator, and a predictor. We applied an
Euler-Maruyama scheme to discretize the SDE and express the closed-loop system in
discrete time. The Monte Carlo simulation approach was based on repeated simulation
of the closed-loop system with different realizations of selected uncertain quantities in
the process. During Monte Carlo simulation, we collected key performance indicator
(KPI) data. The distribution of KPI data over large-scale Monte Carlo simulations was
applicable for UQ of the closed-loop system. We implemented the Monte Carlo simula-
tion toolbox in C for computational tractability of large-scale Monte Carlo simulations.
The toolbox is thread-safe due to external memory allocation and internal distribution
of the allocated memory. The thread-safe implementation enabled almost linear paral-
lel scaling for closed-loop simulations with both proportional-integral-derivative (PID)
controllers and nonlinear model predictive control (NMPC) algorithms.

The thesis introduced a systematic modeling methodology for processes consisting of
reactive systems conducted in reactors. The methodology enabled complete separation
of the reactor model and the reaction model. We demonstrated the methodology for
three different reactors and three different reactive systems. A selected combination
of reactors and reactions provided three ordinary differential equation (ODE) models,
which we extended with diffusion terms to form SDE models. The models were for 1) a
biomass fermentation process conducted in a fed-batch reactor (FBR), 2) an exothermic
chemical reaction conducted in an adiabatic continuous stirred tank reactor (CSTR), and
3) an mAb fermentation process conducted in a continuous perfusion reactor (CPR). We
applied the models for simulation and in NMPC algorithms.

The thesis presented an NMPC formulation consisting of an estimator and a reg-
ulator. The estimator was the continuous-discrete extended Kalman filter (CD-EKF)
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and the regulator solved an optimal control problem (OCP) based on state estimates.
The OCP had a general objective function, and we applied a multiple-shooting method
to transcribe the infinite dimensional OCP to a finite dimensional nonlinear program-
ming problem (NLP). We applied the sequential quadratic programming (SQP) algo-
rithm NLPSQP to solve the resulting NLP. NLPSQP solves the quadratic programming
problem (QP)-subproblem with the Riccati recursion based primal-dual interior-point
(IP) algorithm QPIPM. We introduced two different objective functions resulting in a
target-tracking NMPC algorithm and an ENMPC algorithm for profit maximization.
The NMPC algorithms were thread-safe and integrated in the Monte Carlo simulation
toolbox.

Finally, the thesis introduced the main numerical results, which showed that the
Monte Carlo simulation toolbox had almost linear parallel scaling with both PID con-
trollers and the developed NMPC algorithms. We applied the toolbox for UQ of 1)
biomass production in the FBR, 2) temperature set-point tracking for the chemical
reaction in the CSTR, and 3) profit and mAb production in the mAb fermentation pro-
cess. These results demonstrated applications of the Monte Carlo simulation toolbox
for UQ of three closed-loop systems with respect to different KPIs. In particular for the
mAb fermentation process, we showed that the ENMPC algorithm improved the profit
of the process compared to a base case operational strategy. The ENMPC strategy
was summarized in a set of simple operational insights, which we applied to develop
a simple controller. Monte Carlo simulation showed that the simple controller and the
ENMPC algorithm had practically identical performance. This result was an example of
the “from-simple-via-complex-to-lucid” approach, where the complex ENMPC algorithm
contributed to the design of a simple controller with practically identical performance.

In conclusion, we developed a Monte Carlo simulation approach for UQ of closed-
loop systems and demonstrated its parallel scaling properties for both PID controllers
and NMPC algorithms. We developed an ENMPC algorithm for an mAb fermentation
process and showed, with Monte Carlo simulation, that the ENMPC algorithm improved
the profit of the process. Finally, we applied the “from-simple-via-complex-to-lucid”
approach to implement a simple controller with similar performance as the ENMPC
algorithm. These results are intended as the first step in the development of a fully
integrated cloud-based high-performance Monte Carlo simulation framework for UQ of
closed-loop systems and ENMPC technology for biotechnological processes.

6.1 Suggestions for future work
In this section, we discuss suggestions for future work based on the work in this thesis.
We consider 1) the Monte Carlo simulation toolbox, 2) the optimization software, and
3) perspectives on mAb production and design of the ENMPC algorithm.

Monte Carlo simulation toolbox. The current version of the toolbox is written
purely in C and application of the toolbox requires knowledge of the low-level program-
ming language. We suggest to implement high-level interfaces in, e.g., Python and
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Matlab, which would make the toolbox accessible for non-expert users. The toolbox is
parallelized for shared memory architectures with OpenMP. We suggest to implement
a distributed memory version with, e.g., Message Passing Interface (MPI), to enable
applications with more central processing unit (CPU) cores. The distributed memory
version would bring the toolbox closer to the vision of a cloud-based tool, where high-
performance Monte Carlo simulations can be computed remotely for UQ of closed-loop
systems.
Optimization software. The software packages QPIPM and NLPSQP are initial
versions and are currently still in development. We suggest to run a detailed profiling
of the software to detect points in the code, where computational efficiency could be
improved. The packages include a Matlab version for development purposes. In Matlab,
we implemented an integrated option to apply soft state constraints, which was not
implemented in C due to time limitations of this project. We suggest to implement
the soft state constraint option in C based on the Matlab version. This would provide
more options to design NMPC algorithms with soft state constraints in the regulator.
Finally, the main computational burden of NLPSQP lies in solving the QP-subproblem,
i.e., the call to QPIPM. We suggest to investigate open-source options to solve the QP-
subproblem that might improve computational performance. One option is HPIPM,
which is also Riccati recursion based, have shown good computational properties for
QPs in the required form, and should be thread-safe (Frison and Diehl, 2020).
MAb production. The results in this thesis were based on a rather simple model
for mAb fermentation. While the model is previously validated with experimental data
(Kumar et al., 2022), there are many factors not included in the model, e.g., pH dy-
namics and dissolved oxygen. We suggest to investigate important factors for inclusion
in the model. This work considered the upstream part of the mAb production process.
However, mAb production includes a number of purification steps after the upstream
process, which usually include different types of chromatography processes. We suggest
to apply the developed Monte Carlo simulation toolbox, modeling methodology, and EN-
MPC technology for simulation and optimal control of downstream processes for mAb
production. Finally, we suggest to consider plant-wide optimization of the combined
upstream and downstream process for mAb production and develop, e.g., an ENMPC
algorithm for plant-wide control.

In this work, the ENMPC design included only the price of mAbs and glucose in
the economic regulator. We suggest to include more important economic factors of the
process to get a better measure of the profit, e.g., expenses of substrate feeds besides
glucose. Finally, the ENMPC algorithm disregarded the value of harvested mAb, which
as expected resulted in no outlet flow throughout the fermentation, i.e., Fout = 0. For
generality, we suggest to include the value of harvested mAb and let the controller
choose whether or not harvesting is beneficial. In recent work, we performed dynamic
optimization studies, where we included the value of harvested mAb in the economic
objective function. The initial results indicated that harvesting is not beneficial in a 14
days fermentation, but might be beneficial in a longer fermentation.
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A High-Performance Monte Carlo Simulation Toolbox for
Uncertainty Quantification of Closed-loop Systems

Morten Ryberg Wahlgreen, Asbjørn Thode Reenberg, Marcus Krogh Nielsen,
Anton Rydahl, Tobias K. S. Ritschel, Bernd Dammann, John Bagterp Jørgensen

Abstract— We apply Monte Carlo simulation for perfor-
mance quantification and tuning of controllers in nonlinear
closed-loop systems. Computational feasibility of large-scale
Monte Carlo simulation is achieved by implementation of a
parallelized high-performance Monte Carlo simulation toolbox
for closed-loop systems in C for shared memory architectures.
The toolbox shows almost linear scale-up on 16 CPU cores on a
single NUMA node, and a scale-up of 27.3 on two NUMA nodes
with a total of 32 CPU cores. We demonstrate performance
quantification and tuning of a PID controller for a bioreactor in
fed-batch operation. We perform 30,000 closed-loop simulations
of the fed-batch reactor within 1 second. This is approximately
a 2300 times computational performance increase compared
to a serial reference implementation in Matlab. Additionally,
we apply Monte Carlo simulation to perform automatic tuning
of the PID controller based on maximizing average produced
biomass within 8 seconds.

I. INTRODUCTION

In closed-loop systems, we encounter unknown quantities
that need to be estimated, e.g., model parameters. Addition-
ally, it can be beneficial to quantify controller performance.
Currently, there exist well-defined methods for parameters
estimation [1], [2] and tuning of controllers in linear systems
[3]–[5]. However, for nonlinear systems, quantification of
controller performance and tuning is not as well developed.
We propose a Monte Carlo simulation brute-force tech-
nique for automatic performance quantification and tuning
of controllers in linear and nonlinear systems. With the
Monte Carlo approach, we can tune controllers with any
performance measure, e.g., maximizing economic yield or
minimizing the risk of low production, such as in modern
control applications [6], [7]. The Monte Carlo simulation
technique is made computationally feasible by implementa-
tion of a high-performance Monte Carlo simulation toolbox
parallelized for shared memory architectures in C.

Monte Carlo simulation is a widely used technique for
quantification of uncertainties. It is applied in various ar-
eas, e.g., portfolio management and epidemiology [8]–[10].
Monte Carlo simulation uses random sampling to obtain
numerical results about deterministic quantities. However,
the method requires many samples to be effective, and
thus computational efficiency becomes a bottleneck. The
development in central processing unit (CPU) technology
increases the number of possible applications for Monte
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S. Ritschel, B. Dammann, and J. B. Jørgensen are with the Department
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Carlo simulation. However, trends in CPU development show
that the clock frequency of new CPUs is no longer increasing
due to power consumption and heat issues [11]. Instead,
new CPUs have increased performance by increasing the
number of cores. Consequently, the full potential of modern
CPUs is only achieved with parallelized software executed
on multi-core processors. Not all problems are paralleliz-
able, but Monte Carlo simulation is a prime example of a
parallelizable problem, as each simulation is independent of
all other simulations. To achieve the full potential of Monte
Carlo simulation on modern CPUs, we require state-of-the-
art parallelized software in high-performance languages.

In this paper, we present closed-loop systems based on a
stochastic continuous-discrete model, a stochastic differen-
tial equation (SDE) solver, and a controller. We introduce
our implementation of a high-performance Monte Carlo
simulation toolbox for closed-loop systems. Additionally,
we introduce the SDE solvers and controllers contained in
the toolbox. Furthermore, we demonstrate applications of
the toolbox on a bioreactor in fed-batch operation [12].
In particular, we demonstrate that Monte Carlo simulation
can be used for performance quantification and tuning of a
proportional–integral–derivative (PID) controller.

The remaining part of the paper is organized as follows.
Section II introduces the stochastic continuous-discrete sys-
tem, two SDE solvers, and four controllers of increasing
complexity. Section III presents the Monte Carlo simulation
scheme for closed-loop systems and introduces our toolbox
for Monte Carlo simulation. Section IV presents an example
application of the toolbox. Section V presents our conclusion.

II. CLOSED-LOOP SIMULATIONS

This section presents our representation of closed-
loop systems for simulation. Our simulations consist of
1) an SDE model with discrete measurements, represented
as a stochastic continuous-discrete model, 2) an SDE solver,
and 3) a controller.

A. Stochastic continuous-discrete system
We consider stochastic continuous-discrete systems in the

form

x(t0) = x0, (1a)
dx(t) = f(t, x(t), u(t), d(t), pf )dt

+ σ(t, x(t), u(t), d(t), pσ)dω(t),
(1b)

y(tk) = g(tk, x(tk), pg) + v(tk, pv), (1c)
z(t) = h(t, x(t), ph), (1d)



where x(t) are the states, u(t) are inputs, d(t) are dis-
turbances, and pf , pσ , pg , pv , and ph are parameters.
Additionally, x0 is a normally distributed initial condition,
ω(t) is a standard Wiener process, and v(tk, pv) is normally
distributed measurement noise at discrete time, i.e.,

x0 ∼ N(x̄0, P0), (2a)
dω(t) ∼ Niid(0, Idt), (2b)

v(tk, pv) ∼ Niid(0, R(tk, pv)). (2c)

Measurements are sampled with sampling time ∆t, such that,
tk+1 = tk + ∆t. We use zero-order-hold parameterization of
the inputs and disturbances:

u(t) = uk, tk ≤ t < tk+1, (3a)
d(t) = dk, tk ≤ t < tk+1. (3b)

B. Stochastic differential equation solvers

SDE solvers are required to simulate stochastic
continuous-discrete systems in the form (1). We consider
an explicit-explicit (Euler-Maruyama) solver and an
implicit-explicit solver [13], [14].

1) Explicit-explicit (Euler-Maruyama):

tk,n+1 = tk,n + ∆t, (4a)
xk,n+1 = xk,n + f(tk,n, xk,n, uk, dk, pf )∆t

+ σ(tk,n, xk,n, uk, dk, pσ)∆ωk,n,
(4b)

2) Implicit-explicit:

tk,n+1 = tk,n + ∆t, (5a)
xk,n+1 = xk,n + f(tk,n+1, xk,n+1, uk, dk, pf )∆t

+ σ(tk,n, xk,n, uk, dk, pσ)∆ωk,n,
(5b)

where tk,0 = tk, xk,0 = xk, and ∆wk,n ∼ Niid(0, I∆t).
Let Nk denote the number of steps of size ∆t in the

interval [tk, tk+1]. Then

tk+1 = tk,Nk
, (6a)

xk+1 = xk,Nk
. (6b)

The explicit-explicit solver is suitable for non-stiff systems,
whereas the implicit-explicit solver is suitable for stiff sys-
tems.

We let Φ represent the discretization of the state equation,
(1b), with either the explicit-explicit solver or the implicit-
explicit solver. To compactly describe simulation of closed-
loop systems, we introduce the notation for a discretized
version of (1),

xk+1 = Φ(tk, xk, uk, dk, wk, pf , pσ), (7a)
yk = g(tk, xk, pg) + vk, (7b)
zk = h(tk, xk, ph), (7c)

where vk = v(tk, pv).

C. Controller
The digital discrete-time controller in typical model-based

control applications is represented as the dynamic system

xck = κ(tk−1, x
c
k−1, yk, uk−1, pκ), (8a)

uk = λ(tk, x
c
k, pλ), (8b)

zck = µ(tk, x
c
k, pµ), (8c)

where xck are estimated states, zck are predictions of the
outputs and manipulated inputs, κ(·) is a state estimator, λ(·)
is a regulator, and µ(·) is a predictor.

We consider four controllers of increasing complexity.
1) Open-loop controller (no feedback): The open-loop

controller does not include feedback and outputs a target
value for the inputs

uk = λ(·) = ūk. (9)

The functions κ(·) and µ(·) are not necessary for the open-
loop controller.

2) Proportional–integral–derivative controller: The con-
tinuous PID controller is given by

u(t) = ū(t) +Kpe(t) +Ki

∫ t

t0

e(τ)dτ +Kd
de(t)

dt
, (10)

where Kp, Ki, and Kd are gain constants. The error,
e(t), is the difference between the set point, ȳ(t), and the
measurement, y(t), i.e.,

e(t) = ȳ(t)− y(t). (11a)

Notice, for the PID controller the output is assumed to be
measured, i.e., ȳ(t) = z̄(t). It can be advantageous to let the
derivative term act on the measurements, y(t), rather than
the error, e(t) [15], [16]. We get,

u(t) = ū(t) +Kpe(t) +Ki

∫ t

t0

e(τ)dτ −Kd
dy(t)

dt
. (12)

We discretize the PID controller (12) as

ek = ȳk − yFk , (13a)
Pk = Kpek, (13b)
Ik = Ik−1 + TsKiek, (13c)

Dk = −Kd

Ts
(yFk − yFk−1), (13d)

uk = ūk + Pk + Ik +Dk, (13e)

where Ts is the sampling time and filtered measurements,
yFk , are computed from the discrete-time low-pass filter

yFk = (1− α)yFk−1 + αyk, (14)

with α ∈ [0, 1].
For the PID controller, λ(·) is given by (13e), κ(·) is given

by (14), and µ(·) is not necessary.
3) PID controller with clipping: We incorporate input

bounds with clipping. The PID controller with clipping is,

ũk = ūk + Pk + Ik +Dk, (15a)
uk = max(umin,min(umax, ũk)). (15b)



4) Nonlinear model predictive control: The nonlinear
model predictive controller (NMPC) includes a continuous-
discrete extended Kalman filter (CD-EKF) based on (1) for
state estimation and prediction [17], [18]. Given the filtered
state-covariance pair, x̂k−1|k−1 and Pk−1|k−1, the CD-EKF
obtains a one-step prediction

x̂k|k−1 = x̂k−1(tk), (16a)
Pk|k−1 = Pk−1(tk), (16b)

as the solution to

d

dt
x̂k−1(t) = f(t, x̂k−1(t), uk−1, dk−1, pf ), (17a)

d

dt
Pk−1(t) = Ak−1(t)Pk−1(t) + Pk−1(t)Ak−1(t)′

+ σk−1(t)σk−1(t)′,
(17b)

for tk−1 ≤ t ≤ tk with initial condition

x̂k−1(tk−1) = x̂k−1|k−1, (18a)
Pk−1(tk−1) = Pk−1|k−1, (18b)

and

Ak−1(t) =
∂

∂x
f(t, x̂k−1(t), uk−1, dk−1, pf ), (19a)

σk−1(t) = σ(t, x̂k−1(t), uk−1, dk−1, pσ). (19b)

The CD-EKF obtains a filtered state estimate, x̂k|k, and its
covariance, Pk|k, from the one-step prediction, x̂k|k−1 and
Pk|k−1, and the measurement, yk. The CD-EKF computes
the predicted measurement and derivative,

ŷk|k−1 = g(tk, x̂k|k−1, pg), (20a)

Ck =
∂

∂x
g(tk, x̂k|k−1, pg), (20b)

the innovation and its covariance,

ek = yk − ŷk|k−1, (21a)
Re,k = CkPk|k−1C

′
k +Rk, (21b)

and the Kalman gain,

Kfx,k = Pk|k−1C
′
kR
−1
e,k. (22)

We obtain the estimated state-covariance pair from (20)-
(22) as

x̂k|k = x̂k|k−1 +Kfx,kek, (23a)
Pk|k = Pk|k−1 −Kfx,kRe,kK

′
fx,k. (23b)

The CD-EKF is the state estimator, κ(·), that computes
filtered state estimates, xck = x̂k|k, from measurements yk,
and one-step state prediction, x̂k|k−1.

The NMPC uses a regulator based on a weighted least-
squares objective and regularization of the input rate-of-
movement. This regulator can be expressed in terms of the
optimal control problem (OCP)

min
x,u

ϕk = ϕz,k + ϕ∆u,k, (24a)

s.t. x(tk) = x̂k|k, (24b)
ẋ(t) = f(t, x, u, d, pf ), tk ≤ t ≤ tk + T, (24c)
z(t) = h(t, x, ph), (24d)
u(t) = uk+j , j ∈ N , tk+j ≤ t ≤ tk+j+1, (24e)
d(t) = dk+j , j ∈ N , tk+j ≤ t ≤ tk+j+1, (24f)
ul ≤ uk+j ≤ uu, j ∈ N , (24g)
∆ul ≤ ∆uk+j ≤ ∆uu, j ∈ N , (24h)

with f(t, x, u, d, pf ) = f(t, x(t), u(t), d(t), pf ) and the
objective terms

ϕz,k =
1

2

∫ tk+T

tk

‖Wz (z(t)− z̄(t))‖22 dt, (25a)

ϕ∆u,k =
1

2

N−1∑
j=0

∥∥W̄∆u∆uk+j

∥∥2

2
, (25b)

where W̄∆u = W∆u/Ts. The term ϕz,k is output target
tracking and ϕ∆u,k is input rate of movement penalty.
We use the prediction and control horizon, T , defined as
T = NTs, where Ts is the sampling time and N is the
discrete prediction and control horizon. Additionally, we
define N = {0, 1, ..., N − 1} such that tk+j = tk + jTs for
j ∈ N . We solve the OCP with a simultaneous approach,
where we discretize each control interval with M time steps
using Euler’s implicit method.

We denote the optimal solution
{
x̂k+j+1|k, ûk+j|k

}
j∈N .

The input corresponding to the first control interval, uk =
ûk|k = λ(·), is part of the solution of this optimal control
problem. Only uk is implemented in the system. Further-
more, {ẑk+j+1|k, ûk+j|k}N−1

j=0 = zck = µ(·) is the predicted
output and the predicted manipulated inputs from the con-
troller that can be used for visualization.

D. Simulation of closed-loop systems

We compactly write a closed-loop simulation as

yk = g(tk, xk, pg) + vk, (26a)
zk = h(tk, xk, ph), (26b)
xck = κ(tk−1, x

c
k−1, yk, uk−1, pκ), (26c)

uk = λ(tk, x
c
k, pλ), (26d)

zck = µ(tk, x
c
k, pµ), (26e)

xk+1 = Φ(tk, xk, uk, dk, wk, pf , pσ), (26f)

for k = 0, 1, ..., Ns − 1.

III. MONTE CARLO SIMULATION

Our Monte Carlo simulations are based on the closed-
loop simulation (26). We perform Nmc distinct closed-loop
simulations for different, e.g., process noise realizations.
Algorithm 1 presents an overview of the Monte Carlo simula-
tion scheme. For sufficiently large Nmc, the computed Monte



Algorithm 1: Monte Carlo simulation
Result: Statistics and output data
// Monte Carlo loop
for i = 1, 2, . . . , Nmc do

// Closed loop simulation
for k = 0, 1, . . . , Ns − 1 do

// Measurement

y
(i)
k = g(tk, x

(i)
k , p

(i)
g ) + v

(i)
k

// Output

z
(i)
k = h(tk, x

(i)
k , p

(i)
h )

// State estimation

x
c,(i)
k = κ(tk−1, x

c,(i)
k−1 , y

(i)
k , u

(i)
k−1, p

(i)
κ )

// Regulator

u
(i)
k = λ(tk, x

c,(i)
k , p

(i)
λ )

// Output prediction

z
c,(i)
k = µ(tk, x

c,(i)
k , p

(i)
µ )

// Simulator

x
(i)
k+1 = Φ(tk, x

(i)
k , u

(i)
k , d

(i)
k , w

(i)
k , p

(i)
f , p

(i)
σ )

end
// Final measurement and output

y
(i)
Ns

= g(tNs
, x

(i)
Ns
, p

(i)
g ) + v

(i)
Ns

z
(i)
Ns

= h(tNs , x
(i)
Ns
, p

(i)
h )

end

Carlo data can quantify uncertainties in the closed-loop sys-
tem. Possible applications are; estimation of unknown model
parameters, tuning controllers, and testing performance of
controllers on different noise realizations.

A. Toolbox

We implement a Monte Carlo simulation toolbox for
closed-loop systems in C. The toolbox provides an inter-
face for closed-loop Monte Carlo simulations that currently
includes implementations of
• an explicit-explicit Euler-Maruyama SDE solver,
• an implicit-explicit SDE solver,
• an open-loop controller,
• a single-input single-output (SISO) PID controller with

clipping, and
• an NMPC based on the CD-EKF and a simultaneous

approach combined with IPOPT [19].
The toolbox includes three test examples, and the user can
provide a set of model functions for a system and perform
Monte Carlo simulations with the toolbox. Additionally, the
toolbox allows for user-provided controllers and SDE solvers
with specific interfaces. This allows the user to test and
benchmark controllers and SDE solvers using Monte Carlo
simulations. The toolbox supports perturbations of model
parameters, controller parameters, noise realizations, initial
conditions, and disturbances.

We include a parallelized version with OpenMP for shared
memory architectures. Each worker is assigned distinct
closed-loop simulations. Such parallelization requires that

TABLE I
PARAMETERS FOR FED-BATCH REACTOR.

Variable Value Unit
µmax 0.37 1/h
KS 0.021 kg/m3

KI 0.38 kg/m3
γs 1.777 kg substrate/kg biomass
cS,in 10.0 kg/m3

TABLE II
INITIAL CONDITION AND OPERATIONAL BOUNDS.

Variable Value Unit
V0 1.00 m3

cX,0 2.00 kg/m3

cS,0 0.0893 kg/m3

Vmax 12.39 m3

cX,max 2.00 kg/m3

cS,max 3.00 kg/m3

FS,max 10.00 m3

FW,max 10.00 m3

each worker has access to a local workspace for the SDE
solver and the controller to avoid data races. Additionally,
some controllers utilize information from previous steps, e.g.,
the integral term of a PID controller or the CD-EKF for an
NMPC. Each worker also requires a local version of such
information. The Monte Carlo simulation toolbox distributes
memory blocks to each local worker, such that workers
do not have overlapping cache lines. This consideration is
essential for achieving optimal parallel performance.

We demonstrate some applications of the toolbox in sec-
tion IV.

IV. BIOREACTOR IN FED-BATCH OPERATION

A. Model

We consider the SDE model for a bioreactor in fed-batch
operation [12],

dV = (FS + FW )dt+ σ1dω1(t), (27a)
dmX = (RXV )dt+ σ2dω2(t), (27b)
dmS = (FScS,in +RSV )dt+ σ3dω3(t), (27c)

where mX = cXV , mS = cSV , and

RX = r, r = µ(cS)cX , (28a)

RS = −γr, µ(cS) = µmax
cS

KS + cS + c2S/KI
. (28b)

We represent the system as a stochastic continuous-discrete
model in the form (1), where x(t) = [V (t);mX(t);mS(t)],
y(tk) = cS(tk) + v(tk), and z(t) = cS(t).

Table I presents the parameters of the system and Table II
presents the initial conditions and operational bounds of the
system.

B. Control strategy

We operate the bioreactor with an open-loop input tra-
jectory, ū = [F̄W ; F̄S ]. Additionally, we use a SISO PID



TABLE III
SYSTEM INFORMATION.

Architecture: x86 64
CPU op-mode(s): 32-bit, 64-bit
CPU(s): 32
Thread(s) per core: 1
Core(s) per socket: 16
Socket(s): 2
NUMA node(s): 2
Model name: Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz
CPU MHz: 2900.000
L1d cache: 32 kB
L1i cache: 32 kB
L2 cache: 1024 kB
L3 cache: 22528 kB
RAM: 384 GB

controller with clipping, (15), that manipulate the substrate
inlet, FS , to achieve optimal substrate concentration, c∗S ,
achieved at the maximum of µ(cS),

c∗S =
√
KIKS . (29)

Thus, z̄(t) = c∗S . We use the bang-bang open-loop trajectory
[12]. In the deterministic case, the bang-bang trajectory
was one among infinitely many optimal solutions. However,
it was the least sensitive to uncertainties. The inputs are
computed as,

F̄W =

{
FW,max, 0 ≤ t ≤ tswitch,
0, tswitch ≤ t ≤ tf ,

(30a)

F̄S =
FW c

∗
S + γsβ

∗(t)

cS,in − c∗S
, (30b)

where

β∗(t) = µ(c∗S)cX,maxV0 exp(µ(c∗S)t). (31)

C. Simulation of the true system

We simulate the fed-batch reactor in closed-loop with an
Euler-Maruyama solver. The reactor runs for 10 hours from
time t0 = 0 to tf = 10 h. The sampling time is Ts = 36
seconds resulting in Ns = 1000 steps. At each step, we solve
the SDE with Nk = 10 Euler-Maruyama steps.

D. Monte Carlo simulations of fed-batch reactor

Here, we demonstrate an application of the Monte Carlo
simulation toolbox. The simulations are conducted on a
dual-socket Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz
system (see Table III for CPU details).

1) Scaling: Fig. 1 shows the wall time and the scale-up for
10, 000 Monte Carlo simulations. We observe close to linear
scaling within one non-uniform memory access (NUMA)
node, and slightly decreasing scale-up when exceeding one
socket. We point out that the toolbox is not optimized to
utilize multiple NUMA nodes, so a decrease in performance
on more than one socket is expected.

2) Open-loop controller: We perform Monte Carlo sim-
ulations for the fed-batch reactor in open-loop. Fig. 3(a)
shows a probability density function (PDF) plot for 30, 000
realizations of process noise. The mean produced biomass is
m̄X(tf ) = 20.69 kg.

Fig. 1. Wall time and scale-up plots for 10, 000 Monte Carlo simulations.
The red dashed line is the number of cores on a single NUMA node. We
get a scale-up of 27.3 on 32 cores.

Fig. 2. Tuning of PID gains. Left: locate Kp = 85 as the optimum. Middle:
locate Ki = 3 as the optimum. Right: locate Kd = 0 as the optimum.
Total Monte Carlo simulations: 3 ·101, 000 = 303, 000. Computation time:
∼ 7.50 seconds.

3) Quantification of PID controller performance: Con-
sider a PID controller with Kp = 1.0, Ki = 0.0, and
Kd = 0.0. We perform a Monte Carlo simulation with
30, 000 process noise realizations. Fig. 3(b) presents a PDF
plot of the produced biomass. The PDF follows a long-tailed
distribution towards the lower values of produced biomass
with mean produced biomass m̄X(tf ) = 24.04 kg, i.e.,
a 16.19% increase in biomass production compared to the
open-loop controller. However, low produced biomass, for
some realizations of process noise, indicates poor controller
performance. The computation time of the Monte Carlo
simulation is 0.77s. That is approximately a 2300 times
speed-up compared to a reference serial implementation in
Matlab.

4) Tuning: We apply Monte Carlo simulation to tune the
value of Kp, Ki, and Kd in the PID controller. The tuning
is based on maximizing the average produced biomass,
m̄X(tf ), for 1000 realizations of process noise. We point out
that the tuning could have been based on other factors, e.g.,
maximizing the 10% quantile. We investigate 101 equidistant
values in [0, 100] of Kp, Ki, and Kd. Thus, the tuning of
each gain requires 101, 000 closed loop simulations. Fig. 2
shows the tuning results of the PID controller. The optimal
parameters for the PID gains are Kp = 85, Ki = 3, and
Kd = 0.

Fig. 3(c) shows a PDF plot for 30, 000 noise realizations



(a) Open-loop controller. Computation time: 0.78s.

(b) Sub-optimal PID controller. Computation time: 0.77s.

(c) Optimal PID controller. Computation time: 0.76s.

Fig. 3. Probability density function of biomass production computed from
30, 000 closed-loop simulations with different process noise realizations.
The closed-loop consists of the fed-batch model, the Euler-Maruyama SDE
solver, and a controller specified in the subplot. The red dashed line is the
produced biomass in a simulation without process noise and the orange
dashed line is the 10% quantile.

with the tuned PID controller. The PDF is almost normally
distributed with mean produced biomass, m̄X(tf ) = 24.76.
Compared to the non-optimal PID controller, the tuned
controller results in an 2.98% increased average biomass

Fig. 4. Probability density function of biomass production computed
from 1000 NMPC closed-loop simulations with different process noise
realizations. The red dashed line is the produced biomass in a simulation
without process noise and the orange dashed line is the 10% quantile. The
computation time is ∼ 30 min.

production and reduced risk of low biomass production. It
is evident that the tuning improved the performance of the
PID controller.

5) NMPC: Initial investigation of an NMPC based on the
open source optimization software, IPOPT, does not show the
same scaling as the PID controller. We observe a significant
stall time in the memory allocation with malloc(), when
increasing the number of threads. These calls to malloc()
are located in IPOPT and give reason to believe that IPOPT
has internal memory allocation. Each memory allocation has
a lock that interrupts all activity, i.e., stalling all threads. In
future work, we will expand the toolbox to include an NMPC
based on optimization software that does not have internal
memory allocation. We believe that scaling similar to the PID
case can be achieved with such an NMPC. Fig. 4 presents
a PDF plot for 1000 process noise realizations. The NMPC
and the tuned PID controller show similar performance. The
experiment is conducted on 6 cores as performance decreases
above 6 cores due to the problem mentioned above. The
computation time is ∼ 30 min.

V. CONCLUSION

The paper presents a Monte Carlo simulation approach
for performance quantification and tuning of controllers in
linear and nonlinear systems. The approach is computation-
ally feasible due to the implementation of a parallel high-
performance Monte Carlo simulation toolbox in C for closed-
loop systems. In particular, we demonstrate performance
quantification and tuning of a PID controller for a bioreactor
in fed-batch operation. Our results show that large-scale
Monte Carlo simulations can be performed within seconds.
The computational performance of the toolbox show approx-
imately a 2300 times speed-up compared to a serial reference
implementation in Matlab.

High-performance closed-loop Monte-Carlo simulations,
as illustrated in this paper, has countless applications in
systems and control. Drug dosing, as in treatment of diabetes,



is a very prominent example of this where several dosing
strategies must be compared by their probability density
functions [20], [21].

REFERENCES

[1] D. Boiroux, T. K. S. Ritschel, N. K. Poulsen, H. Madsen, and
J. B. Jørgensen, “Efficient Computation of the Continuous-Discrete
Extended Kalman Filter Sensitivities Applied to Maximum Likelihood
stimation,” 58th Conference on Decision and Control, pp. 6983–6988,
2019.

[2] H. G. Bock, E. Kostina, and J. P. Schlöder, “Numerical Methods for
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Abstract:
We present a preconditioned interior-point algorithm tailored for input constrained quadratic
programmings (QPs) arising in optimal control problems (OCPs). The implicit approach to
OCPs results in large sparse QPs, which we utilized by a tailored Riccati recursion algorithm.
The Riccati recursion algorithm requires the solution of a set of small dense linear sub-systems of
equations. The proposed preconditioner is an easily invertible diagonal matrix, which we apply
in every linear sub-system of equations. We solve a target tracking OCP for a linearized modified
quadruple tank system in Matlab. The computational results indicate that ill-conditioning in
the sub-systems are reduced and that the additional CPU time for preconditioning is negligible.
Additionally, the paper presents a detailed description of the proposed algorithm and serves as
an implementation guide for the algorithm.

Keywords: Interior-point method, Quadratic programming, Optimal Control Problem, Riccati
recursion, Preconditioning

1. INTRODUCTION

Interior-point methods have been an integrated part of
optimization since the 1960s (Forsgren et al., 2002; Wright,
2004). In the 1960s, interior-point methods were mainly
applied in problems with nonlinear constraints. Today,
the applications span many different types of problems
including linear programming (LP), quadratic program-
ming (QP), and nonlinear programming (NLP) (Astfalk
et al., 1992; Vanderbei, 1999; Byrd et al., 1999; Nocedal
and Wright, 1999; Gertz and Wright, 2003). Furthermore,
LPs, QPs, and NLPs are an essential component in de-
velopment of advanced control algorithms such as model
predictive control (MPC) (Rawlings et al., 1994). Interior-
point methods suffer from unavoidable ill-conditioning as
the iterations approach the solution (Murray, 1971). Pre-
conditioning approaches are often proposed in relation to
inexact interior-point methods due to the inherent need
of well-conditioned systems in iterative solvers for linear
systems (Bergamaschi et al., 2004; Shahzad et al., 2010;
Cui et al., 2019). However, proposed preconditioning in
relation to exact methods is sparse.
In linear model predictive control (LMPC), QPs arise in
the form of optimal control problems (OCPs) (Borrelli
et al., 2009). Usually either explicit or implicit approaches
are applied to express OCPs as QPs. Explicit approaches
result in small dense QPs, while implicit methods result
in large sparse QPs (Shahzad et al., 2010). In the im-
plicit case, Riccati recursion has been proposed as an
efficient sparse solver with linear complexity in the control
⋆ Corresponding author: J. B. Jørgensen (E-mail: jbjo@dtu.dk).

horizon (Rao et al., 1998; Frison and Jørgensen, 2013).
The Riccati recursion based interior-point method suffers
from unavoidable ill-conditioning as all other interior-point
methods. We propose a diagonal preconditioner for Ric-
cati recursion based interior-point methods at the cost of
negligible additional CPU time. We suggest that precon-
ditioning at the cost of negligible CPU time improve the
overall quality of the algorithm.
In this paper, we propose a preconditioned interior-point
method for input constrained QPs arising in OCPs. We
introduce the well-known Riccati recursion for solution
of structured linear systems and propose a preconditioner
for the Riccati based interior-point method. We present a
detailed description of the proposed interior-point method,
where we emphasize how to exploit the structure of box-
constraints to reduce CPU time. As such, the paper
serves as an implementation guide for a well-conditioned
Riccati recursion based interior-point method for QPs in
OCPs. The results in the paper are based on a Matlab
implementation of the proposed interior-point method.
We demonstrate applications of the implementation on a
target tracking OCP for a linearized modified quadruple
tank system.
The Matlab implementation is an essential building block
in the development of a Riccati recursion based sequential
quadratic programming (SQP) algorithm for NLPs arising
in nonlinear model predictive control (NMPC). Addition-
ally, it serves as a prototype for an C implementation of
a LMPC, which can be applied for parallel Monte Carlo
simulation of closed loop systems (Wahlgreen et al., 2021).
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Interior-point methods have been an integrated part of
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2004). In the 1960s, interior-point methods were mainly
applied in problems with nonlinear constraints. Today,
the applications span many different types of problems
including linear programming (LP), quadratic program-
ming (QP), and nonlinear programming (NLP) (Astfalk
et al., 1992; Vanderbei, 1999; Byrd et al., 1999; Nocedal
and Wright, 1999; Gertz and Wright, 2003). Furthermore,
LPs, QPs, and NLPs are an essential component in de-
velopment of advanced control algorithms such as model
predictive control (MPC) (Rawlings et al., 1994). Interior-
point methods suffer from unavoidable ill-conditioning as
the iterations approach the solution (Murray, 1971). Pre-
conditioning approaches are often proposed in relation to
inexact interior-point methods due to the inherent need
of well-conditioned systems in iterative solvers for linear
systems (Bergamaschi et al., 2004; Shahzad et al., 2010;
Cui et al., 2019). However, proposed preconditioning in
relation to exact methods is sparse.
In linear model predictive control (LMPC), QPs arise in
the form of optimal control problems (OCPs) (Borrelli
et al., 2009). Usually either explicit or implicit approaches
are applied to express OCPs as QPs. Explicit approaches
result in small dense QPs, while implicit methods result
in large sparse QPs (Shahzad et al., 2010). In the im-
plicit case, Riccati recursion has been proposed as an
efficient sparse solver with linear complexity in the control
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cati recursion based interior-point methods at the cost of
negligible additional CPU time. We suggest that precon-
ditioning at the cost of negligible CPU time improve the
overall quality of the algorithm.
In this paper, we propose a preconditioned interior-point
method for input constrained QPs arising in OCPs. We
introduce the well-known Riccati recursion for solution
of structured linear systems and propose a preconditioner
for the Riccati based interior-point method. We present a
detailed description of the proposed interior-point method,
where we emphasize how to exploit the structure of box-
constraints to reduce CPU time. As such, the paper
serves as an implementation guide for a well-conditioned
Riccati recursion based interior-point method for QPs in
OCPs. The results in the paper are based on a Matlab
implementation of the proposed interior-point method.
We demonstrate applications of the implementation on a
target tracking OCP for a linearized modified quadruple
tank system.
The Matlab implementation is an essential building block
in the development of a Riccati recursion based sequential
quadratic programming (SQP) algorithm for NLPs arising
in nonlinear model predictive control (NMPC). Addition-
ally, it serves as a prototype for an C implementation of
a LMPC, which can be applied for parallel Monte Carlo
simulation of closed loop systems (Wahlgreen et al., 2021).
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conditioning approaches are often proposed in relation to
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relation to exact methods is sparse.
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negligible additional CPU time. We suggest that precon-
ditioning at the cost of negligible CPU time improve the
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method for input constrained QPs arising in OCPs. We
introduce the well-known Riccati recursion for solution
of structured linear systems and propose a preconditioner
for the Riccati based interior-point method. We present a
detailed description of the proposed interior-point method,
where we emphasize how to exploit the structure of box-
constraints to reduce CPU time. As such, the paper
serves as an implementation guide for a well-conditioned
Riccati recursion based interior-point method for QPs in
OCPs. The results in the paper are based on a Matlab
implementation of the proposed interior-point method.
We demonstrate applications of the implementation on a
target tracking OCP for a linearized modified quadruple
tank system.
The Matlab implementation is an essential building block
in the development of a Riccati recursion based sequential
quadratic programming (SQP) algorithm for NLPs arising
in nonlinear model predictive control (NMPC). Addition-
ally, it serves as a prototype for an C implementation of
a LMPC, which can be applied for parallel Monte Carlo
simulation of closed loop systems (Wahlgreen et al., 2021).
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ditioning at the cost of negligible CPU time improve the
overall quality of the algorithm.
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method for input constrained QPs arising in OCPs. We
introduce the well-known Riccati recursion for solution
of structured linear systems and propose a preconditioner
for the Riccati based interior-point method. We present a
detailed description of the proposed interior-point method,
where we emphasize how to exploit the structure of box-
constraints to reduce CPU time. As such, the paper
serves as an implementation guide for a well-conditioned
Riccati recursion based interior-point method for QPs in
OCPs. The results in the paper are based on a Matlab
implementation of the proposed interior-point method.
We demonstrate applications of the implementation on a
target tracking OCP for a linearized modified quadruple
tank system.
The Matlab implementation is an essential building block
in the development of a Riccati recursion based sequential
quadratic programming (SQP) algorithm for NLPs arising
in nonlinear model predictive control (NMPC). Addition-
ally, it serves as a prototype for an C implementation of
a LMPC, which can be applied for parallel Monte Carlo
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where we emphasize how to exploit the structure of box-
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serves as an implementation guide for a well-conditioned
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OCPs. The results in the paper are based on a Matlab
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in the development of a Riccati recursion based sequential
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for the Riccati based interior-point method. We present a
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implementation of the proposed interior-point method.
We demonstrate applications of the implementation on a
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The Matlab implementation is an essential building block
in the development of a Riccati recursion based sequential
quadratic programming (SQP) algorithm for NLPs arising
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We demonstrate applications of the implementation on a
target tracking OCP for a linearized modified quadruple
tank system.
The Matlab implementation is an essential building block
in the development of a Riccati recursion based sequential
quadratic programming (SQP) algorithm for NLPs arising
in nonlinear model predictive control (NMPC). Addition-
ally, it serves as a prototype for an C implementation of
a LMPC, which can be applied for parallel Monte Carlo
simulation of closed loop systems (Wahlgreen et al., 2021).
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1. INTRODUCTION

Interior-point methods have been an integrated part of
optimization since the 1960s (Forsgren et al., 2002; Wright,
2004). In the 1960s, interior-point methods were mainly
applied in problems with nonlinear constraints. Today,
the applications span many different types of problems
including linear programming (LP), quadratic program-
ming (QP), and nonlinear programming (NLP) (Astfalk
et al., 1992; Vanderbei, 1999; Byrd et al., 1999; Nocedal
and Wright, 1999; Gertz and Wright, 2003). Furthermore,
LPs, QPs, and NLPs are an essential component in de-
velopment of advanced control algorithms such as model
predictive control (MPC) (Rawlings et al., 1994). Interior-
point methods suffer from unavoidable ill-conditioning as
the iterations approach the solution (Murray, 1971). Pre-
conditioning approaches are often proposed in relation to
inexact interior-point methods due to the inherent need
of well-conditioned systems in iterative solvers for linear
systems (Bergamaschi et al., 2004; Shahzad et al., 2010;
Cui et al., 2019). However, proposed preconditioning in
relation to exact methods is sparse.
In linear model predictive control (LMPC), QPs arise in
the form of optimal control problems (OCPs) (Borrelli
et al., 2009). Usually either explicit or implicit approaches
are applied to express OCPs as QPs. Explicit approaches
result in small dense QPs, while implicit methods result
in large sparse QPs (Shahzad et al., 2010). In the im-
plicit case, Riccati recursion has been proposed as an
efficient sparse solver with linear complexity in the control
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horizon (Rao et al., 1998; Frison and Jørgensen, 2013).
The Riccati recursion based interior-point method suffers
from unavoidable ill-conditioning as all other interior-point
methods. We propose a diagonal preconditioner for Ric-
cati recursion based interior-point methods at the cost of
negligible additional CPU time. We suggest that precon-
ditioning at the cost of negligible CPU time improve the
overall quality of the algorithm.
In this paper, we propose a preconditioned interior-point
method for input constrained QPs arising in OCPs. We
introduce the well-known Riccati recursion for solution
of structured linear systems and propose a preconditioner
for the Riccati based interior-point method. We present a
detailed description of the proposed interior-point method,
where we emphasize how to exploit the structure of box-
constraints to reduce CPU time. As such, the paper
serves as an implementation guide for a well-conditioned
Riccati recursion based interior-point method for QPs in
OCPs. The results in the paper are based on a Matlab
implementation of the proposed interior-point method.
We demonstrate applications of the implementation on a
target tracking OCP for a linearized modified quadruple
tank system.
The Matlab implementation is an essential building block
in the development of a Riccati recursion based sequential
quadratic programming (SQP) algorithm for NLPs arising
in nonlinear model predictive control (NMPC). Addition-
ally, it serves as a prototype for an C implementation of
a LMPC, which can be applied for parallel Monte Carlo
simulation of closed loop systems (Wahlgreen et al., 2021).
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constraints to reduce CPU time. As such, the paper
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negligible additional CPU time. We suggest that precon-
ditioning at the cost of negligible CPU time improve the
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where we emphasize how to exploit the structure of box-
constraints to reduce CPU time. As such, the paper
serves as an implementation guide for a well-conditioned
Riccati recursion based interior-point method for QPs in
OCPs. The results in the paper are based on a Matlab
implementation of the proposed interior-point method.
We demonstrate applications of the implementation on a
target tracking OCP for a linearized modified quadruple
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The Matlab implementation is an essential building block
in the development of a Riccati recursion based sequential
quadratic programming (SQP) algorithm for NLPs arising
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ally, it serves as a prototype for an C implementation of
a LMPC, which can be applied for parallel Monte Carlo
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efficient sparse solver with linear complexity in the control
⋆ Corresponding author: J. B. Jørgensen (E-mail: jbjo@dtu.dk).

horizon (Rao et al., 1998; Frison and Jørgensen, 2013).
The Riccati recursion based interior-point method suffers
from unavoidable ill-conditioning as all other interior-point
methods. We propose a diagonal preconditioner for Ric-
cati recursion based interior-point methods at the cost of
negligible additional CPU time. We suggest that precon-
ditioning at the cost of negligible CPU time improve the
overall quality of the algorithm.
In this paper, we propose a preconditioned interior-point
method for input constrained QPs arising in OCPs. We
introduce the well-known Riccati recursion for solution
of structured linear systems and propose a preconditioner
for the Riccati based interior-point method. We present a
detailed description of the proposed interior-point method,
where we emphasize how to exploit the structure of box-
constraints to reduce CPU time. As such, the paper
serves as an implementation guide for a well-conditioned
Riccati recursion based interior-point method for QPs in
OCPs. The results in the paper are based on a Matlab
implementation of the proposed interior-point method.
We demonstrate applications of the implementation on a
target tracking OCP for a linearized modified quadruple
tank system.
The Matlab implementation is an essential building block
in the development of a Riccati recursion based sequential
quadratic programming (SQP) algorithm for NLPs arising
in nonlinear model predictive control (NMPC). Addition-
ally, it serves as a prototype for an C implementation of
a LMPC, which can be applied for parallel Monte Carlo
simulation of closed loop systems (Wahlgreen et al., 2021).

The remaining part of the paper is organized as follows.
Section 2 introduces the main parts of the primal-dual
interior-point algorithm. Section 3 presents the proposed
preconditioner. Section 4 presents the Riccati recursion al-
gorithm. Section 5 presents an example application of our
interior-point algorithm. Section 6 presents our conclusion.

2. PRIMAL-DUAL INTERIOR-POINT ALGORITHM

This section presents a detailed description of the primal-
dual interior-point algorithm for general box-constrained
QPs. The algorithm is a predictor-corrector with scaled
KKT-violation convergence criterion. We specialize the
algorithm to OCPs in Section 4.

2.1 Quadratic programming

We consider box-constrained QPs on the form,

min
x

f(x) =
1

2
xTHx+ gTx, (1a)

s.t. ATx = b, (1b)
l ≤ x ≤ u, (1c)

where H ∈ Rn×n, g ∈ Rn, A ∈ Rn×me , b ∈ Rme , l ∈ Rn,
u ∈ Rn, and x ∈ Rn are the decision variables.
The Lagrangian function for (1) is,

L(x, y, zl, zu) =
1

2
xTHx+ gTx− yT (ATx− b)

− zTl (x− l)− zTu (u− x),
(2)

where y ∈ Rme , zl ∈ Rn, and zu ∈ Rn are the Lagrange
multipliers for the equality constraints, lower bound con-
straints, and upper bound constraints, respectively.
The first order KKT-conditions for (1) are,

Hx+ g −Ay − zl + zu = 0, (3a)
b−ATx = 0, (3b)

sl + l − x = 0, su + x− u = 0, (3c)
sl,izl,i = 0, su,izu,i = 0, (3d)

(zl, zu, sl, su) ≥ 0, (3e)
where i = 1, ..., n and the slack variables, sl and su, are

sl = x− l ≥ 0, su = u− x ≥ 0. (4)

We write the KKT-conditions, (3), as the nonlinear system
of equations,



rL
rA
rBl

rBu

rSlZl

rSuZu



=




Hx+ g −Ay − zl + zu
b−ATx
sl + l − x
su + x− u

SlZle
SuZue



= 0, (5a)

(zl, zu, sl, su) ≥ 0, (5b)

where Zl = diag(zl), Zu = diag(zu), Sl = diag(sl), Su =
diag(su), and e is a vector of ones of proper dimension.
We apply Newton’s method to solve (5), which yields the
following linear system of equations for the Newton search
direction,




H −A −I I 0 0
−AT 0 0 0 0 0
−I 0 0 0 I 0
I 0 0 0 0 I
0 0 Sl 0 Zl 0
0 0 0 Su 0 Zu







∆x
∆y
∆zl
∆zu
∆sl
∆su



= −




rL
rA
rBl

rBu

rSlZl

rSuZu



. (6)

We introduce the equivalent system,



H −A −C 0
−AT 0 0 0
−CT 0 0 I
0 0 S Z






∆x
∆y
∆z
∆s


 = −



rL
rA
rC
rSZ


 , (7)

with C = [I,−I], Z = diag([Zl;Zu]), S = diag([Sl;Su]),
∆z = [∆zl; ∆zu], ∆s = [∆sl; ∆su], rC = [rBl

; rBu
],

and rSZ = [rSlZl
; rSuZu

]. We point out that (7) only
serves as notation, while (6) is the preferred form for
implementation as it exploits the identity structure of C.
The solution of (7), (∆x,∆y,∆z,∆s), serves as a step
direction for the algorithm. In each iteration, [l], the
algorithm performs the step,

(x, y, z, s) ← (x, y, z, s) + ηα(∆x,∆y,∆z,∆s), (8)
where η = 0.995 and the step-size, α, ensures (z, s) ≥ 0.

2.2 Predictor-corrector

Our algorithm applies the Mehtrotra predictor-corrector
method (Mehrotra, 1992). The method considers the fol-
lowing form of (7),




H −A −C 0
−AT 0 0 0
−CT 0 0 I
0 0 S Z






∆x
∆y
∆z
∆s


 = −



rL
rA
rC
r̄SZ


 , (9)

where r̄SZ varies in the predictor and corrector phase.
In the predictor phase, we set r̄SZ = rSZ and denote
the solution to (9), (∆xaff ,∆yaff ,∆zaff ,∆saff ). This
direction is called the affine direction. In the corrector
phase, we set r̄SZ = rSZ+∆Saff∆Zaff −σµe and denote
the solution (∆x,∆y,∆z,∆s). We compute the duality
gap, µ, and centering parameter, σ, as,

µaff =
(z + αaff∆z)T (s+ αaff∆saff )

m
,

µ =
sT z

m
, σ =

(
µaff

µ

)3

,

(10)

where m = 2n for box-constrained QPs (1).

2.3 Augmented form

We write (9), i.e., (6), in the augmented form,[
H̄ −A

−AT 0

] [
∆x
∆y

]
= −

[
−r̄L
rA

]
, (11)

where
H̄ = H +Dl +Du, (12)
r̄L =− rL + (S−1

l Zl)(rBl
− Z−1

l r̄SlZl
)

− (S−1
u Zu)(rBu − Z−1

u r̄SuZu),
(13)

with Dl = diag(zl/sl) and Du = diag(zu/su). The
variables r̄SlZl

and r̄SuZu
are,
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Predictor: r̄SlZl
= rSlZl

,
r̄SuZu

= rSuZu
,

(14)

Corrector: r̄SlZl
= rSlZl

+∆Saff
l ∆Zaff

l − σµe,
r̄SuZu

= rSuZu
+∆Saff

u ∆Zaff
u − σµe,

(15)

where ∆Zaff
l = diag(∆zaffl ), ∆Zaff

u = diag(∆zaffu ),
∆Saff

l = diag(∆saffl ), and ∆Saff
u = diag(∆saffu ).

We compute ∆zl, ∆zu, ∆sl, and ∆su as,
∆zl = (S−1

l Zl)(rB,l − Z−1
l r̄SlZl

)− (S−1
l Zl)∆x, (16a)

∆zu = (S−1
u Zu)(rB,u − Z−1

u r̄SuZu) + (S−1
u Zu)∆x, (16b)

∆sl = −Z−1
l r̄SlZl

− Z−1
l Sl∆zl, (16c)

∆su = −Z−1
u r̄SuZu − Z−1

u Su∆zu. (16d)
We point out that the structure of box-constraints result

in cheap diagonal matrix operations exploited as element-
wise vector-vector operations.

2.4 Fraction-to-the-boundary

We compute the step size, 0 < α ≤ 1, after solution of (11)
in both the predictor and corrector phase. We apply the
fraction-to-the-boundary rule,[

z
s

]
+ α

[
∆z
∆s

]
≥ κ

[
z
s

]
, (17)

for 0 ≤ κ << 1 and κ → 0 as the iteration number, [l],
increases. For κ = 0, the fraction-to-boundary rule ensures
(z, s) ≥ 0. With κ > 0, the rule (17) strictly satisfies
(z, s) > 0 with a z or s proportional step-back from the
boundary. The rule, (17), is similar to the rule applied in
IPOPT (Wächter and Biegler, 2006).
In the predictor phase, we set κ = 0 to get maximum
information from the affine step direction. In the corrector
phase, we set κ = min(1 − η, µaff ), which ensures that
κ → 0 as the algorithm reaches the solution.

2.5 Convergence criterion

The algorithm converges once the first order KKT-
conditions, (3), are satisfied. Numerically, we consider the
scaled KKT-violation, ξ,

ξ = max
(
r̃L||rL||∞, r̃A||rA||∞, r̃B ||rBl

||∞,

r̃B ||rBu
||∞, ||rSlZl

||∞, ||rSuZu
||∞

)
,

(18)

where
r̃L = max(1, ||H||∞, ||g||∞, ||A||∞)−1, (19a)
r̃A = max(1, ||AT ||∞, ||b||∞)−1, (19b)
r̃B = max(1, ||l||∞, ||u||∞)−1. (19c)

Convergence is achieved when ξ < ϵ, where ϵ > 0 is the
tolerance.

3. DIAGONAL PRECONDITIONING

We consider the system matrix in augmented form, (11),

M =

[
H̄ −A

−AT 0

]
, (20)

where we recall that H̄ = H +Dl +Du. The elements of
Dl and Du approach either 0 or ∞ as the interior-point

algorithm approaches the solution. As such, M becomes
increasing ill-conditioned towards later iterations of the
algorithm.
We propose a diagonal preconditioning matrix to improve
conditioning of the system matrix, M . Consider the pre-
condition matrix,

Pi,j(A) =

{
Ai,i + γi i = j

0 otherwise , (21)

related to an arbitrary matrix, A ∈ Rn×n, where γi ≥ 0.
The preconditioner, P (A), is easily invertible by inverting
each diagonal element. Additionally, it includes a regu-
lation parameter, γi, intended to avoid 0-division when
inverting P (A). We let P = P (M) denote the precondi-
tioner for M in (20) and choose γi = 1.0 for all i. The
preconditioned system becomes,

(
P−1M

) [∆x
∆y

]
= −P−1

[
−r̄L
rA

]
. (22)

4. OPTIMAL CONTROL

In this section, we introduce the Riccati recursion algo-
rithm for solution of structured linear systems of equa-
tions. We apply the preconditioner, (21), to the sub-
systems of equations solved in the Riccati recursion based
solver.

4.1 Optimal Control Problem

We consider the input box-constrained OCP on the form,

min
{u,x}

ϕ = l0(u0) +

N−1∑
k=1

lk(xk, uk) + lN (xN ), (23a)

s.t. x0 = x̂0, (23b)
xk+1 = AT

k xk +BT
k uk + bk, (23c)

umin,k ≤ uk ≤ umax,k, (23d)
where {u, x} = {uk, xk+1}N−1

k=0 and

l0(u0) =
1

2
uT
0 R0u0 + rT0 u0 + ρ0, (24)

lk(xk, uk) =
1

2

[
xk

uk

]T [
Qk Mk

MT
k Rk

] [
xk

uk

]

+

[
qk
rk

]T [
xk

uk

]
+ ρk,

(25)

lN (xN ) =
1

2
xT
NPNxN + pTNxN + ρN . (26)

The OCP (23) is a QP of the form (1) with,
x = [u0 x1 u1 x2 · · · uN−1 xN ]

T
, (27a)

H =




R0

Q1 M1

MT
1 R1

. . .
QN−1 MN−1

MT
N−1 RN−1

PN



, (27b)

g = [r0 q1 r1 · · · qN−1 rN−1 qN ]
T
, (27c)
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Predictor: r̄SlZl
= rSlZl

,
r̄SuZu

= rSuZu
,

(14)

Corrector: r̄SlZl
= rSlZl

+∆Saff
l ∆Zaff

l − σµe,
r̄SuZu

= rSuZu
+∆Saff

u ∆Zaff
u − σµe,

(15)

where ∆Zaff
l = diag(∆zaffl ), ∆Zaff

u = diag(∆zaffu ),
∆Saff

l = diag(∆saffl ), and ∆Saff
u = diag(∆saffu ).

We compute ∆zl, ∆zu, ∆sl, and ∆su as,
∆zl = (S−1

l Zl)(rB,l − Z−1
l r̄SlZl

)− (S−1
l Zl)∆x, (16a)

∆zu = (S−1
u Zu)(rB,u − Z−1

u r̄SuZu) + (S−1
u Zu)∆x, (16b)

∆sl = −Z−1
l r̄SlZl

− Z−1
l Sl∆zl, (16c)

∆su = −Z−1
u r̄SuZu − Z−1

u Su∆zu. (16d)
We point out that the structure of box-constraints result

in cheap diagonal matrix operations exploited as element-
wise vector-vector operations.

2.4 Fraction-to-the-boundary

We compute the step size, 0 < α ≤ 1, after solution of (11)
in both the predictor and corrector phase. We apply the
fraction-to-the-boundary rule,[

z
s

]
+ α

[
∆z
∆s

]
≥ κ

[
z
s

]
, (17)

for 0 ≤ κ << 1 and κ → 0 as the iteration number, [l],
increases. For κ = 0, the fraction-to-boundary rule ensures
(z, s) ≥ 0. With κ > 0, the rule (17) strictly satisfies
(z, s) > 0 with a z or s proportional step-back from the
boundary. The rule, (17), is similar to the rule applied in
IPOPT (Wächter and Biegler, 2006).
In the predictor phase, we set κ = 0 to get maximum
information from the affine step direction. In the corrector
phase, we set κ = min(1 − η, µaff ), which ensures that
κ → 0 as the algorithm reaches the solution.

2.5 Convergence criterion

The algorithm converges once the first order KKT-
conditions, (3), are satisfied. Numerically, we consider the
scaled KKT-violation, ξ,

ξ = max
(
r̃L||rL||∞, r̃A||rA||∞, r̃B ||rBl

||∞,

r̃B ||rBu
||∞, ||rSlZl

||∞, ||rSuZu
||∞

)
,

(18)

where
r̃L = max(1, ||H||∞, ||g||∞, ||A||∞)−1, (19a)
r̃A = max(1, ||AT ||∞, ||b||∞)−1, (19b)
r̃B = max(1, ||l||∞, ||u||∞)−1. (19c)

Convergence is achieved when ξ < ϵ, where ϵ > 0 is the
tolerance.

3. DIAGONAL PRECONDITIONING
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M =

[
H̄ −A

−AT 0

]
, (20)

where we recall that H̄ = H +Dl +Du. The elements of
Dl and Du approach either 0 or ∞ as the interior-point

algorithm approaches the solution. As such, M becomes
increasing ill-conditioned towards later iterations of the
algorithm.
We propose a diagonal preconditioning matrix to improve
conditioning of the system matrix, M . Consider the pre-
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Pi,j(A) =

{
Ai,i + γi i = j

0 otherwise , (21)
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] [
xk

uk
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H =




R0

Q1 M1

MT
1 R1

. . .
QN−1 MN−1

MT
N−1 RN−1

PN



, (27b)

g = [r0 q1 r1 · · · qN−1 rN−1 qN ]
T
, (27c)

A =




−BT
0 I

−AT
1 −BT

1 I
. . . . . . . . .

−AT
N−1 −BT

N−1 I




T

, (27d)

b =
[
b̃0 b1 · · · bN−1

]T
, (27e)

l = [umin,0 −∞ umin,1 · · · umin,N−1 −∞]
T
, (27f)

u = [umax,0 ∞ umax,1 · · · umax,N−1 ∞]
T
, (27g)

where b̃0 = b0 +AT
0 x0.

4.2 Riccati recursion based interior-point method for
OCPs

We consider the augmented system, (11), in the interior-
point algorithm for the OCP (23) (for N = 3),



R̄0 B0

Q1 M1 −I A1

MT
1 R̄1 B1

Q2 M2 −I A2

MT
2 R̄2 B2

P3 −I

BT
0 −I

AT
1 BT

1 −I

AT
2 BT

2 −I







∆u0

∆x1

∆u1

∆x2

∆u2

∆x3

∆y0
∆y1
∆y2




= −




r̄0
q1
r̄1
q2
r̄2
p3

b̃0
b1
b2




,

(28)

where R̄k = Rk+Dl,k+Du,k, due to (12), (27f), and (27g).
We compute the right hand side of the KKT system, (28),
exactly as the right hand side of (11).
We exploit the sparse structure of (28) with a Riccati re-
cursion based linear equation solver with linear complexity
in the horizon, N (Rao et al., 1998). Algorithm 1 and 2
presents the factorization and solution phase of the Riccati
recursion algorithm (Jørgensen, 2004). Notice that Riccati
recursion requires solution of a set of small dense sub-
systems of linear equations.

4.3 Preconditioned Riccati recursion

Unavoidable ill-conditioning of the interior-point method
arises in R̄k. Consequently, Re,k, becomes increasing ill-
conditioned. We propose to apply the diagonal precondi-
tioner, (21), to improve conditioning of the sub-systems
containing Re,k. Consequently, the preconditioned systems
are,

Kk = −R̃−1
e,k

[
P̃−1
k (MT

k +BkPk+1A
T
k )

]
, (29a)

ak = −R̃−1
e,k

[
P̃−1
k (rk +Bk(Pk+1bk + pk+1))

]
, (29b)

a0 = −R̃−1
e,0

[
P̃−1
0 (r0 +B0(P1b0 + p1))

]
, (29c)

where R̃e,k = P̃−1
k Re,k and P̃k = P (Re,k).

4.4 Algorithm

Algorithm 3 presents an implementation guide of the pre-
conditioned Riccati recursion based interior-point method.

5. RESULTS

This section presents our results based on an example
application. We implement the proposed Riccati recursion

Algorithm 1: Riccati factorization
Input: {R̄k, Qk,Mk, Ak, Bk}N−1

k=0 , PN .
1. Compute,

Re,k = R̄k +BkPk+1B
T
k , (30a)

Kk =−R−1
e,k(M

T
k +BkPk+1A

T
k ), (30b)

Pk = Qk +AkPk+1A
T
k −KT

k Re,kKk, (30c)
for k = N − 1, N − 2, ..., 1 and

Re,0 = R̄0 +B0P1B
T
0 . (31)

Return: {Re,k, Pk+1}N−1
k=0 , {Kk}N−1

k=1 .

Algorithm 2: Riccati solution
Input: {Qk,Mk, Ak, Bk, Re,k, Pk+1}N−1

k=0 , {Kk}N−1
k=1 .

1. Compute,
ak = −R−1

e,k(r̄k +Bk(Pk+1bk + pk+1)), (32a)
pk = qk +Ak(Pk+1bk + pk+1)

+KT
k (r̄k +Bk(Pk+1bk + pk+1)),

(32b)

for k = N − 1, N − 2, ..., 1 and
a0 = −R−1

e,0(r̄0 +B0(P1b̃0 + p1)). (33)
2. Compute the solution, {∆uk,∆xk+1}N−1

k=0 ,
∆u0 = a0, (34a)
∆x1 = BT

0 ∆u0 + b̃0, (34b)
and

∆uk = Kk∆xk + ak, (35a)
∆xk+1 = AT

k∆xk +BT
k ∆uk + bk, (35b)

for k = 1, 2, ..., N − 1.
3. Compute the Lagrange multipliers, {∆yk}N−1

k=0 ,
∆yN−1 = PN∆xN + pN , (36a)
∆yk−1 = Ak∆yk +Qk∆xk +Mk∆uk + qk, (36b)

for k = N − 1, N − 2, ..., 1.
Return: {∆uk,∆xk+1,∆yk}N−1

k=0 .

based primal-dual interior-point algorithm in Matlab and
consider a linearized modified quadruple tank system.

5.1 Modified quadruple tank system

We apply a deterministic nonlinear model for the mass
balances of the quadruple tank system of the form (Azam
and Jørgensen, 2015),

ẋ(t) = f(t, x(t), u(t), d(t), p), (37a)
z(t) = h(x(t)), (37b)

where x ∈ R4 is the four masses, u ∈ R2 is the two flow
rates, d ∈ R2 is the two disturbance flows in the top tanks,
p are the parameters, and z ∈ R2 is the heights in the
bottom tanks. We linearize the model at the steady state,
xs = [2110.2; 1761.2; 680.6; 394.0] [g], achieved for us =
[250; 325] [cm3/s] and ds = [100; 100] [cm3/s]. The output
steady state is zs = [55.51; 46.33] [cm]. Additionally, we
compute the exact discretization of the linear model with
sampling time, Ts = 15 [s]. The result is a linear state
space model,

xk+1 = Akxk +Bkuk + Ekdk, (38a)
zk = Cz,kxk, (38b)
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Algorithm 3: Preconditioned Riccati recursion based
primal-dual interior-point algorithm
Input: H, g, A, b, l, u (as in (27)), x0, ϵ.

• Initialize: y = 0, zl = 1, zu = 1, sl = 1, su = 1.
• Calculate the scaled KKT-violation, ξ, in (18).

while ξ > ϵ do
1. Predictor phase:

• Setup augmented system (11) with (14).
• Compute factorization, {Re,k, Pk+1}N−1

k=0

and {Kk}N−1
k=1 , with Algorithm 1.

• Solve the augmented system, (11), with
Algorithm 2 for ∆xaff and ∆yaff .

• Compute ∆zaffl , ∆zaffu , ∆saffl , and ∆saffu
in (16).

• Compute the affine step size, αaff , with (17).
• Compute the duality gap and centering

parameter in (10).
2. Corrector phase:

• Setup right-hand side of (11) with (15).
• Solve the augmented system (11) with

Algorithm 2 for ∆x and ∆y.
• Compute ∆zl, ∆zu, ∆sl, and ∆su in (16).
• Compute the step size, α, with (17).

3. Update (x, y, zl, zu, sl, su) according to (8).
4. Calculate the scaled KKT-violation, ξ, in (18).

Return: x, y, zl, zu, sl, su.

where

Ak =



0.8659 0 0.1246 0

0 0.8659 0 0.1246
0 0 0.8659 0
0 0 0 0.8659


 , (39a)

Bk =



9.7793 0.3926
0.2944 8.3822

0 5.5882
4.1911 0


 , Ek =



0.9814 0

0 0.9814
13.970 0

0 13.970


 , (39b)

Cz,k =

[
0.0026 0 0 0

0 0.0026 0 0

]
, (39c)

for all k.
We consider the target tracking OCP,

min
x,u

ϕ =
1

2

N∑
k=1

||zk − z̄k||2Qz
+

1

2

N−1∑
k=0

||uk − ūk||2Qu
,

(40a)
s.t. x0 = x̂0, (40b)

xk+1 = Akxk +Bkuk + Ekdk, (40c)
zk = Czxk, (40d)
umin,k ≤ uk ≤ umax,k, (40e)

where k = 0, ..., N − 1. In the general form, (23), we have
Qk = CT

z,kQzCz,k, Mk = 0, Rk = Qu, PN = CT
z,NQzCz,N ,

qk = −(QzCz)
T z̄k, pN = −(QzCz)

T z̄N , rk = −Quūk, and
bk = Ekdk for all k. Additionally, we use Qz = I, Qu = 0,
umin,k = [0; 0], umax,k = [500; 500], and dk = [100; 100] for
all k, with initial condition, x0 = xs, discrete horizon, N =
200, and a variable target, z̄k, over the horizon. We state
the OCP in deviation variables due to the linearization.
Figure 1 shows the solution to the OCP, (40). The OCP
is solved with the proposed interior-point algorithm.

Fig. 1. Solution to target tracking OCP for linearized
modified quadruple tank system with N = 200 and
a variable target, z̄. The controller is able to track
the target in tank 1 and 2 (black line).

Fig. 2. Condition number of the system matrix in each
iteration of the interior-point algorithm with four
modes.

5.2 Condition number

We consider the interior-point algorithm in four modes,
• Baseline, • Preconditioned Baseline,
• Riccati, • Preconditioned Riccati,

where baseline means dense solution of the augmented
system, (11). We compare the condition number of the
system matrix with and without preconditioning at each
iteration. For the Riccati solver, we consider the worst
case condition number of the sub-system matrices. Fig.
2 presents the results. It is evident that the preconditioner
improves the conditioning of the system matrices in both
the baseline and Riccati recursion based interior-point
algorithm.

5.3 CPU time

We apply the interior-point algorithm to solve the OCP
for increasing control horizon, N . Fig. 3 presents the CPU
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||uk − ūk||2Qu
,

(40a)
s.t. x0 = x̂0, (40b)

xk+1 = Akxk +Bkuk + Ekdk, (40c)
zk = Czxk, (40d)
umin,k ≤ uk ≤ umax,k, (40e)

where k = 0, ..., N − 1. In the general form, (23), we have
Qk = CT

z,kQzCz,k, Mk = 0, Rk = Qu, PN = CT
z,NQzCz,N ,

qk = −(QzCz)
T z̄k, pN = −(QzCz)

T z̄N , rk = −Quūk, and
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5.2 Condition number

We consider the interior-point algorithm in four modes,
• Baseline, • Preconditioned Baseline,
• Riccati, • Preconditioned Riccati,

where baseline means dense solution of the augmented
system, (11). We compare the condition number of the
system matrix with and without preconditioning at each
iteration. For the Riccati solver, we consider the worst
case condition number of the sub-system matrices. Fig.
2 presents the results. It is evident that the preconditioner
improves the conditioning of the system matrices in both
the baseline and Riccati recursion based interior-point
algorithm.

5.3 CPU time

We apply the interior-point algorithm to solve the OCP
for increasing control horizon, N . Fig. 3 presents the CPU

Fig. 3. CPU time for quadprog and interior-point algo-
rithm. Top: Baseline and Riccati. Bottom: Riccati.

time for the interior-point method and quadprog. We
observe that the Riccati based algorithm scales linearly in
N and it is evident that the Riccati based algorithm out-
performs the other algorithms for large N as expected. Ad-
ditionally, the preconditioning does not increase CPU time
rather it decreases the CPU time in these experiments.
We point out that the implicit approach to the OCP
results in a large sparse QP. Dense solvers like quadprog
benefit from explicit approaches that produce small dense
QPs. Thus, a fair CPU time comparison would require an
explicit approach for quadprog. Such comparison is out of
scope of this paper.

6. CONCLUSION

The paper presents a preconditioned Riccati recursion
based interior-point algorithm tailored for QPs arising in
input constrained OCPs. We implement the interior-point
algorithm in Matlab and solve an OCP for target tracking
of a linearized modified quadruple tank system. The results
show that the diagonal preconditioner improves condition-
ing of the linear sub-systems of equations in the Riccati
recursion.
This paper contains a detailed description of the proposed
algorithm and serves as an implementation guide.
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Abstract:
We present a numerical case study for modeling and simulation of upstream and downstream
processes for monoclonal antibody (mAb) production. We apply a systematic and intuitive
modeling methodology for an existing upstream process and downstream process. The resulting
models are based on differential mass balances and kinetic expressions for the reactions
and adsorption. Mass balances for the fedbatch reactor yield a model consisting of five
ordinary differential equations (ODEs). The downstream process is conducted batchwise in
a chromatographic column for capture of mAbs. Mass balances of the chromatographic column
yield a system of partial differential equations (PDEs). The chromatographic model applies the
nonlinear shrinking core adsorption isotherm model for transition between the mobile phase
and the stationary phase. We apply a high-order spectral nodal continuous Galerkin scheme
for spatial discretization of the chromatographic column, which result in a semi-discrete ODE
formulation. The resulting simulation model, coupling the upstream and downstream processes
in batchwise mAb production, can be used as a benchmark for numerical estimation, control
and optimization studies.

Keywords: Monoclonal antibody production, fedbatch reactor, capture chromatography,
shrinking core adsorption isotherm, process modeling.

1. INTRODUCTION

Monoclonal antibodies (mAbs) is a class of biopharma-
ceuticals representing the 6 top-selling biopharmaceutical
products in 2017 (Walsh, 2018). There has been a huge
increase in the sale of mAbs the previous years, and the
yearly sale is expected to grow to 130-200 billion US
dollars in 2022 (Grilo and Mantalaris, 2019). As such,
new technology is needed to keep up with the increasing
demand. The emerging need for huge mAb production has
led to recent research in optimization of biotechnological
processes for mAb production (Badr et al., 2021; Gomis-
Fons et al., 2021). Most optimization is related to the
development of mathematical models to support operation
of the processes.
Modeling of upstream and downstream processes is well
developed. However, often the model presentations are
unnecessarily complicated and the chain rule is applied to
the mass balance equations for fedbatch reactor models.
Due to systematic and intuitive modeling and numerical
considerations, we present the differential mass balance
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models in compact forms without using the chain rule.
When used systematically, this modeling methodology has
significant advantages in the modeling phase and in the
numerical implementation phase. Additionally, the models
presented in this paper are well-suited for model based
optimization such as model predictive control (MPC). We
intend to apply the developed models in model based opti-
mization in future work and the key objective of the paper
is to present a well-defined simulation model for batchwise
mAb production, that can be used as a benchmark in
numerical simulation, control and optimization studies.
This paper presents a numerical case study that combines
modeling of an upstream and downstream process for mAb
production. Fig. 1 presents an overview of the reactor
(upstream process) and chromatographic column (down-
stream process). We apply the proposed modeling method-
ology to existing models for the upstream process and
downstream process (Badr et al., 2021). We show that the
methodology allows for easy modeling of fedbatch reactors
for upstream processes. For the downstream process, the
methodology results in a general compact model, which is
even applicable for a wide range of reactions conducted
in columns. We apply a high-order spectral nodal con-
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1. INTRODUCTION

Monoclonal antibodies (mAbs) is a class of biopharma-
ceuticals representing the 6 top-selling biopharmaceutical
products in 2017 (Walsh, 2018). There has been a huge
increase in the sale of mAbs the previous years, and the
yearly sale is expected to grow to 130-200 billion US
dollars in 2022 (Grilo and Mantalaris, 2019). As such,
new technology is needed to keep up with the increasing
demand. The emerging need for huge mAb production has
led to recent research in optimization of biotechnological
processes for mAb production (Badr et al., 2021; Gomis-
Fons et al., 2021). Most optimization is related to the
development of mathematical models to support operation
of the processes.
Modeling of upstream and downstream processes is well
developed. However, often the model presentations are
unnecessarily complicated and the chain rule is applied to
the mass balance equations for fedbatch reactor models.
Due to systematic and intuitive modeling and numerical
considerations, we present the differential mass balance
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Fig. 1. Overview of the fedbatch reactor for fermentation
and the chromatographic column operated batchwise.

tinuous Galerkin method (CGM) for space discretization
of the chromatographic column. The method is based on
Legendre polynomials on a Gauss-Lobatto grid. Recent
results show that high order methods are very suitable
for chromatographic processes as they outperform widely
applied finite volume (FV) methods (Hørsholt et al.,
2019a,b; Meyer et al., 2020). The chromatography model
applies a nonlinear shrinking core adsorption isotherm
model for transition between the mobile phase and the
stationary phase. We demonstrate that the upstream and
downstream model can be applied for simulation of mAb
production and capture of mAbs respectively. The sim-
ulations of the chromatographic column show a trade-off
between the productivity and yield of the column in the
loading phase and a similar trade-off for captured mAbs
and concentration of mAbs in the recovery phase. The
trade-off indicates that optimization of the process can be
advantageous.
The remaining part of the paper is organized as fol-
lows. Section 2 introduces the upstream process. Section 3
presents the downstream chromatographic process. Section
4 describes the applied methods for simulation. Section 5
presents the results. Section 6 presents the conclusion.

2. UPSTREAM PROCESS

We consider an upstream process for monoclonal antibody
production conducted in a fedbatch reactor. The model
was originally presented by Badr et al. (2021). We apply
a systematic modeling methodology that is well-suited
for modeling of the reactor in simulation, control, and
optimization studies.

2.1 General model for fedbatch fermentation

The mass (mole) balance for well-mixed fedbatch fermen-
tation, assuming constant and identical density, can be
compactly states as (Ryde et al., 2021),

dV

dt
= eTF, (1a)

dn

dt
= CinF +RV. (1b)

Let C denote the set of components (molecules) and let S
denote the set of inlet streams. V ∈ R is the medium
volume, e ∈ R|S| is a vector of ones, F ∈ R|S| is the
vector of flow rates in the inlet streams, n ∈ R|C| is the
vector of mole numbers for each component in the reactor,
Cin ∈ R|C|×|S| is a matrix of concentrations in the inlet
streams, and R ∈ R|C| is the production rate vector. The
concentration vector, c ∈ R|C|, is

c =
n

V
. (2)

Let R denote the set of reactions and let S ∈ R|R|×|C|

denote the stoichiometric matrix for the considered reac-
tions and components. r ∈ R|R| denotes the reaction rate
vector. Specification of the stoichiometry and kinetics, i.e.
S and r = r(c), enables computation of the production
rate,

r = r(c), (3a)
R = ST r, (3b)

and completes the model.
In addition, the masses of the components, m ∈ R|C|, may
be of interest. It is computed by

m = Mw ⊙ n, (4)
in which ⊙ denotes elementwise multiplication and Mw ∈
R|C| is the molecular mass vector.

Remark. The model (1)-(4) is a general compact form,
which is easy to implement. Additionally, the model equa-
tions reduce the actual modeling to specification of: C, R,
S, S, r(c), Cin, F , and Mw, together with selection of
initial conditions for (1).
Usual practice is to apply the chain rule to the mass
balance equations (1) to represent the states as concen-
trations, c, rather than mole numbers, n. The result is a
set of equations on the form,

dV

dt
= eTF, (5a)

dc

dt
=

(
Cin − ceT

) F

V
+ ST r(c). (5b)

However, we strongly recommend to apply (1) rather than
(5), as (1) is more intuitive and application of the chain
rule is only valid for an infinitely small, dt. As such, the
formulations (1) and (5) are not numerical equivalent when
solved with numerical solvers. The novelty of this work lies
in the intuitive and compact formulation of the model (1).

2.2 Reaction stoichiometry and kinetics

We demonstrate the application of the general modeling
methodology on a fedbatch fermentation model for mAb
production (Badr et al., 2021). The model consists of four
components,

C = {X,G,L, P}, (6)
where X is viable cells, G is glucose, L is lactate, and P
is the product (mAbs), and five reactions,

R = {1, 2, 3, 4, 5}. (7)
The stoichiometry of the process is,

1. Cell production, α1,GG+X −→ 2X, r1,

2. Cell death, X −→ α2,GG, r2,

3. Cell maintenance, α3,GG+X −→ X, r3,

4. Lactate production, X −→ X + α4,LL, r4,

5. Product formation, X −→ X + α5,PP, r5,

which can be represented by the stoichiometric matrix,

S =

X G L P





1 −α1,G 0 0 1

−1 α2,G 0 0 2

0 −α3,G 0 0 3

0 0 α4,L 0 4

0 0 0 α5,P 5

(8)

The reaction rates, r = [r1 r2 r3 r4 r5]
T , are,

r1 = µX(cG, cL)cX , r2 = µD(cG, cL)cX , (9a)
r3 = µMcX , r4 = µLcX , (9b)
r5 = µP cX , (9c)

where µX(cG, cL) and µD(cG, cL) are governed by Monod
growth kinetics,

µX = µmax

(
cG

KG + cG

)(
KL

KL + cL

)
, (10a)

µD = kd

(
cL

KDL + cL

)(
KDG

KDG + cG

)
, (10b)

and µM , µL, and µP are parameters for estimation.

2.3 Inlet streams

The reactor is operated in fedbatch mode with two inlets;
1) an inlet containing glucose and 2) a pure water inlet.
We denote the flow rate of the water inlet and glucose inlet
FW and FG, respectively. The concentration of glucose in
the glucose inlet is denoted cG,in. Hence,

Cin =




0 0
cG,in 0
0 0
0 0


 , F =

[
FG

FW

]
, S = {SG, SW }. (11)

The split into a water inlet and a substrate inlet makes
the model affine in the inlet flow rates (Ryde et al., 2021).
This is beneficial in optimization studies with the model.

3. DOWNSTREAM PROCESS

We consider a downstream chromatographic process for
capture of the product P , i.e., mAbs. Similarly to the
upstream process, the chromatographic model was origi-
nally presented by Badr et al. (2021). We point out that
P does not distinguish between a product with deficiencies
(from the reactor) and a product of higher quality (after
the chromatographic process). We demonstrate that our
systematic modeling methodology is applicable for the
downstream process and results in a general model for-
mulation for the capture chromatography process.
We assume that the process is conducted in a column with
diameter, dc, packed with a porous media with porosity,
εc. We denote the total volume of the column, V , which
allows for definition of the liquid volume, Vl = εcV , and
the stationary volume, Vs = (1 − εc)V . The stationary
volume, Vs, contains a number of spherical particles,

Np, with porosity, εp. The components of the model are
the mobile phase concentration, c(t, z), the pore phase
concentration of free molecules, cp(t, z), and the pore phase
concentration of bound molecules at different binding sites,
q(t, z). Additionally, we derive the general mass balance
model under the following assumptions (Meyer, 2020),

• The column is homogeneously packed with particles.
• The particles are porous and spherical with constant

diameter.
• The mobile phase density is constant.
• The viscosity is constant.
• Operational conditions are isothermal and adiabatic.
• No convection inside particles.
• No radial dispersion in the mobile phase.
• No diffusion in the pore phase.

3.1 General model for chromatography

The mass balances in the chromatography model are
∂tc = −∂zN +R, (12a)
∂tcp = Rp, (12b)
∂tq = Rq, (12c)

where (12a) is based on the mobile liquid volume and
(12b)-(12c) are based on the pore volume in the particles.
N denotes the flux in the mobile liquid phase and R
denotes the transport (production) rate from the mobile
liquid volume to the particle pore volume. Similarly, Rp

and Rq denote the transport of molecules to the free and
bound particle pore volume, respectively. We impose a
convective flow inlet and outlet boundary condition,

N(t, 0) = vcin(t), (13a)
N(t, L) = vc(t, L), (13b)

together with the following initial condition,
c(0, z) = c0(z), (14a)
cp(0, z) = cp,0(z), (14b)
q(0, z) = q0(z). (14c)

The flux in the mobile liquid phase, N , is governed by
advection (convection) and Fickian diffusion,

N = vc+ J, (15a)
J = −D∂zc, (15b)

where v is the linear mobile liquid phase velocity in the
column, J denotes Fick diffusion, and D is the diffusion
coefficient.
The transport rate from the mobile liquid phase to the
pore volume, R, is based on the open surface area of the
particles. The open particle surface area per liquid volume
in the chromatography column is

ϕl =
NpApεp

Vl
=

Vs

Vp

Apεp
Vl

=
(1− εc)V

(4/3)π(dp/2)3
4π(dp/2)

2

ϵcV
εp =

1− εc
εc

εp
6

dp
,

(16)

where Vp is the volume of a particle and dp is the particle
diameter. The open pore surface area per pore volume is

ϕp =
NpApεp
NpVpεp

=
4π(dp/2)

2

(4/3)π(dp/2)3
=

6

dp
. (17)

Consequently, the transport rates are
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3. Cell maintenance, α3,GG+X −→ X, r3,

4. Lactate production, X −→ X + α4,LL, r4,

5. Product formation, X −→ X + α5,PP, r5,
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The reaction rates, r = [r1 r2 r3 r4 r5]
T , are,
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)(
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)
, (10a)

µD = kd
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KDL + cL
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KDG

KDG + cG

)
, (10b)

and µM , µL, and µP are parameters for estimation.

2.3 Inlet streams

The reactor is operated in fedbatch mode with two inlets;
1) an inlet containing glucose and 2) a pure water inlet.
We denote the flow rate of the water inlet and glucose inlet
FW and FG, respectively. The concentration of glucose in
the glucose inlet is denoted cG,in. Hence,

Cin =
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0 0
cG,in 0
0 0
0 0
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 , F =
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FG

FW

]
, S = {SG, SW }. (11)

The split into a water inlet and a substrate inlet makes
the model affine in the inlet flow rates (Ryde et al., 2021).
This is beneficial in optimization studies with the model.

3. DOWNSTREAM PROCESS

We consider a downstream chromatographic process for
capture of the product P , i.e., mAbs. Similarly to the
upstream process, the chromatographic model was origi-
nally presented by Badr et al. (2021). We point out that
P does not distinguish between a product with deficiencies
(from the reactor) and a product of higher quality (after
the chromatographic process). We demonstrate that our
systematic modeling methodology is applicable for the
downstream process and results in a general model for-
mulation for the capture chromatography process.
We assume that the process is conducted in a column with
diameter, dc, packed with a porous media with porosity,
εc. We denote the total volume of the column, V , which
allows for definition of the liquid volume, Vl = εcV , and
the stationary volume, Vs = (1 − εc)V . The stationary
volume, Vs, contains a number of spherical particles,

Np, with porosity, εp. The components of the model are
the mobile phase concentration, c(t, z), the pore phase
concentration of free molecules, cp(t, z), and the pore phase
concentration of bound molecules at different binding sites,
q(t, z). Additionally, we derive the general mass balance
model under the following assumptions (Meyer, 2020),

• The column is homogeneously packed with particles.
• The particles are porous and spherical with constant

diameter.
• The mobile phase density is constant.
• The viscosity is constant.
• Operational conditions are isothermal and adiabatic.
• No convection inside particles.
• No radial dispersion in the mobile phase.
• No diffusion in the pore phase.

3.1 General model for chromatography

The mass balances in the chromatography model are
∂tc = −∂zN +R, (12a)
∂tcp = Rp, (12b)
∂tq = Rq, (12c)

where (12a) is based on the mobile liquid volume and
(12b)-(12c) are based on the pore volume in the particles.
N denotes the flux in the mobile liquid phase and R
denotes the transport (production) rate from the mobile
liquid volume to the particle pore volume. Similarly, Rp

and Rq denote the transport of molecules to the free and
bound particle pore volume, respectively. We impose a
convective flow inlet and outlet boundary condition,

N(t, 0) = vcin(t), (13a)
N(t, L) = vc(t, L), (13b)

together with the following initial condition,
c(0, z) = c0(z), (14a)
cp(0, z) = cp,0(z), (14b)
q(0, z) = q0(z). (14c)

The flux in the mobile liquid phase, N , is governed by
advection (convection) and Fickian diffusion,

N = vc+ J, (15a)
J = −D∂zc, (15b)

where v is the linear mobile liquid phase velocity in the
column, J denotes Fick diffusion, and D is the diffusion
coefficient.
The transport rate from the mobile liquid phase to the
pore volume, R, is based on the open surface area of the
particles. The open particle surface area per liquid volume
in the chromatography column is

ϕl =
NpApεp

Vl
=

Vs

Vp

Apεp
Vl

=
(1− εc)V

(4/3)π(dp/2)3
4π(dp/2)

2

ϵcV
εp =

1− εc
εc

εp
6

dp
,

(16)

where Vp is the volume of a particle and dp is the particle
diameter. The open pore surface area per pore volume is

ϕp =
NpApεp
NpVpεp

=
4π(dp/2)

2

(4/3)π(dp/2)3
=

6

dp
. (17)

Consequently, the transport rates are
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R = −ϕlrp, (18a)
Rp = ϕprp + ST

p rq, (18b)
Rq = ST

q rq, (18c)
where S = [Sp Sq] is the stoichiometric matrix for the
transport rates (reaction rates) in the pores of the particle.
rp is the kinetic expression for the transport of molecules
from the mobile liquid volume to the pore space of the
particles. The transport, rp, is given per open surface area.
rq is the kinetic expression for the transport of molecules in
the particle pore spaces. These transport (reaction) rates
can be expressed as

rp = rp(c, cp), (19a)
rq = rq(cp, q). (19b)

Remark. The model (12)-(19) is a general and compact
formulation of the chromatographic column under the
given assumptions. The mobile phase transport equation,
(12a), can even be applied to model general reactions
conducted in columns, e.g., reactions conducted in a plug-
flow reactor.
Usual practice is to insert expressions (15)-(18) into (12)
and get

∂tc = −v∂zc+D∂zzc−
1− ϵc
ϵc

ϵp
6

dc
rp, (20a)

∂tcp =
6

dc
rp + ST

q rq, (20b)

∂tq = ST
q rq, (20c)

and even further insert selections of Sp, Sq, rp, and rq.
We strongly recommend to apply the formulation (12)
as it reduces the actual modeling of the chromatographic
column to selection of production rates, R, Rp, and Rq,
i.e., selection of Sp, Sq, rp, and rq, together with selection
of inlet concentration, cin(t), and initial conditions (14).
Also, the model (12)-(19) is a more intuitive formulation
compared to (20). The novelty of this work is the intro-
duction of the very compact model (12).

3.2 Shrinking core adsorption isotherm

We demonstrate the general modeling methodology on a
capture chromatography model (Badr et al., 2021). The
model applies a shrinking core adsorptions isotherm, which
has previously been proposed as a valid model for modeling
of chromatographic processes (Baur et al., 2016a,b). As
such, we select the quantities, Sp, Sq, rp, and rq based on
the shrinking core adsorption model.
The kinetic expression for the transport rate from the
mobile phase to the pore space of the particles are

rp = k(c− cp), (21)
where k is the transport coefficient.
The shrinking core adsorption isotherm assumes two sites
for adsorption, q = [q1, q2]

T . The stoichiometry of the
transport in the pores of the particles is

S = [Sp Sq] =

[
−1 1 0
−1 0 1

]
, (22)

and the corresponding kinetic expression is

rq =



kA,1

(
cp(qsat − q1)−

q1
keq

)

kA,2

(
cp(q1 − q2)−

q2
keq

)


 , (23)

where kA,1 and kA,2 are the adsorption rate constants for
each site, qsat is the saturation capacity, and keq is the
equilibrium constant of the adsorption process.
The transport coefficient, k, is given as a combination of
the two site contributions as,

1

k
=

1

kF
+

1

kS
, (24)

where kF is the film transfer coefficient and kS is the pore
transfer coefficient. The two transfer coefficients can be
computed as,

kF =
1.09usf

εc
, (25)

kS = Ds
(1− α)1/3

1− (1− α)1/3
, (26)

where Ds is a fitting parameter, usf = vεc is the superficial
velocity, and

α =
q1
qsat

1/keq + cin
cin

. (27)

The combination of the shrinking core model and the
general PDE for chromatographic processes, (12), results
in nonlinear chromatography described by a nonlinear
PDE.

3.3 Loading of column

We select a rectangular pulse inlet boundary condition,

cin(t) =



0, t < t1
cf , t1 ≤ t ≤ t2
0, t > t2

, (28)

where cf is the feed concentration, t1 is the start of the
loading phase, and t2 is the end of the loading phase.

3.4 Yield and productivity in loading phase

The capture chromatography process has four phases as
illustrated in Fig. 1; 1) loading of column, 2) washing of
column, 3) recovery of product, and 4) cleaning of column.
We assume constant operation time for phase 2-4 and
denote the time in those phases tc. The time in phase 2-
4 is given as tc = 21CV (column volumes) (Badr et al.,
2021), i.e., the time it takes the liquid to run through the
column 21 times. As such, we consider the yield, Y , and
the productivity, Q, of the column,

Y (t) =
m

min
, (29)

Q(t) =
m

t+ tc
, (30)

where m = m(t) [g] is the total accumulated mass of
captured mAbs in the column at time t, and min = min(t)
is the total accumulated mass of mAbs injected to the
column at time t.

Table 1. Parameters for reactor model.
Parameter Value Unit

KG 0.0 [mmol/L]
KL 7.10 [mmol/L]

KDG 1.54 [mmol/L]
KDL 0.0 [mmol/L]
µmax 5.17× 10−2 [h−1]
kd 2.32× 10−2 [h−1]

µM , µL, µP 1.0 [h−1]
α1,G 7.52× 10−10 [mmol/cell]
α2,G = α1,G [mmol/cell]
α3,G 82.3× 10−12 [mmol/cell]
α4,L 2.76× 10−11 [mmol/cell]
α5,P 5.45× 10−15 [mmol/cell]
MP ≈ 0.15× 103 [g/mmol]
cG,in 130 [g/L]
MG 0.180156 [g/mmol]

Table 2. Parameters for chromatographic process.

Parameter Value (Load/Recover) Unit
L 2.0 [cm]
dc 15.0 [cm]
εc 0.36 [-]
dp 85.0× 10−4 [cm]
εp 0.52 [-]
usf 1.33 [cm/min]
D 5.0× 103 [cm2/min]
cf 2.4847 / 0.0 [g/L]
t1 0 / 0 [min]
t2 180 / 30 [min]
Ds 2.23× 10−3 [cm/min]
kA,1 6.77× 104 [min−1]
kA,2 3.18× 104 [min−1]
keq 61.47 / 0.001 [L/g]
qsat 69.10 [g/L]
tc 45.36 [min]

4. SIMULATION

The reactor model (1) consists of a system of non-stiff
ODEs, which we solve in Matlab with ode45.
We apply a high-order CGM for spatial discretization of
the chromatography model (12) (Hesthaven and Warbur-
ton, 2008). We solve the resulting system of semi-discrete
ODEs in Matlab with an implicit variable step-size solver,
ode15s, as the spatially discretized system is stiff.

5. RESULTS

This section presents simulation results for both models.

5.1 Upstream simulation

We simulate the reactor model (1). Table 1 presents the
model parameters (Badr et al., 2021). Fig. 2 presents the
simulation. The final concentration of the product, mAbs,
is 2.48 [g/L], which we apply as inlet concentration, cf , for
the capture chromatography process.

5.2 Downstream simulation

We simulate the loading phase and recovery phase of the
capture chromatographic model (12). Table 2 provides
the parameters for the simulation adapted from Badr
et al. (2021). Fig. 3 presents the result. Fig. 3a and

Fig. 2. Simulation of upstream process. States at the
final time: cP = 2.48 [g/L], V = 56.44 [L], and
mP = 140.25 [g].

3b presents the loading phase results, where we observe
a breakthrough in the column and a trade-off between
yield and productivity of the column. Fig. 3c and 3d
presents the recovery phase results, where we observe a
trade-off between recovered mAb mass and recovered mAb
concentration.

6. CONCLUSION

The paper presents a systematic methodology for up-
stream and downstream process modeling. The method-
ology simplifies the model presentation and reduces the
actual modeling to selection of stoichiometric matrices
and reaction kinetics for both upstream and downstream
processes. We demonstrate the modeling methodology on
an existing model for mAb production in a fedbatch re-
actor and a chromatography model for capture of mAbs.
The upstream process model is a five component ODE,
while the downstream process is a nonlinear PDE. The
chromatographic model applies a nonlinear shrinking core
adsorption isotherm to model the transition between the
mobile phase and the stationary phase in the chromato-
graphic column. We discretize the nonlinear PDE in space
with a high-order spectral continuous Galerkin scheme
that can be expanded to a multi-element spectral scheme
for better resolution and scalability. Simulation of the
upstream and downstream processes shows that the mod-
eling methodology works as intended. In particular, the
chromatographic process results in a Pareto front for the
yield and productivity in the loading phase and a Pareto
front for the concentration of mAbs and captured mAbs
in the recovery phase.
The proposed modeling methodology is well-suited for
model-based optimization of the upstream and down-
stream processes.
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Table 1. Parameters for reactor model.
Parameter Value Unit

KG 0.0 [mmol/L]
KL 7.10 [mmol/L]

KDG 1.54 [mmol/L]
KDL 0.0 [mmol/L]
µmax 5.17× 10−2 [h−1]
kd 2.32× 10−2 [h−1]

µM , µL, µP 1.0 [h−1]
α1,G 7.52× 10−10 [mmol/cell]
α2,G = α1,G [mmol/cell]
α3,G 82.3× 10−12 [mmol/cell]
α4,L 2.76× 10−11 [mmol/cell]
α5,P 5.45× 10−15 [mmol/cell]
MP ≈ 0.15× 103 [g/mmol]
cG,in 130 [g/L]
MG 0.180156 [g/mmol]

Table 2. Parameters for chromatographic process.

Parameter Value (Load/Recover) Unit
L 2.0 [cm]
dc 15.0 [cm]
εc 0.36 [-]
dp 85.0× 10−4 [cm]
εp 0.52 [-]
usf 1.33 [cm/min]
D 5.0× 103 [cm2/min]
cf 2.4847 / 0.0 [g/L]
t1 0 / 0 [min]
t2 180 / 30 [min]
Ds 2.23× 10−3 [cm/min]
kA,1 6.77× 104 [min−1]
kA,2 3.18× 104 [min−1]
keq 61.47 / 0.001 [L/g]
qsat 69.10 [g/L]
tc 45.36 [min]

4. SIMULATION

The reactor model (1) consists of a system of non-stiff
ODEs, which we solve in Matlab with ode45.
We apply a high-order CGM for spatial discretization of
the chromatography model (12) (Hesthaven and Warbur-
ton, 2008). We solve the resulting system of semi-discrete
ODEs in Matlab with an implicit variable step-size solver,
ode15s, as the spatially discretized system is stiff.

5. RESULTS

This section presents simulation results for both models.

5.1 Upstream simulation

We simulate the reactor model (1). Table 1 presents the
model parameters (Badr et al., 2021). Fig. 2 presents the
simulation. The final concentration of the product, mAbs,
is 2.48 [g/L], which we apply as inlet concentration, cf , for
the capture chromatography process.

5.2 Downstream simulation

We simulate the loading phase and recovery phase of the
capture chromatographic model (12). Table 2 provides
the parameters for the simulation adapted from Badr
et al. (2021). Fig. 3 presents the result. Fig. 3a and

Fig. 2. Simulation of upstream process. States at the
final time: cP = 2.48 [g/L], V = 56.44 [L], and
mP = 140.25 [g].

3b presents the loading phase results, where we observe
a breakthrough in the column and a trade-off between
yield and productivity of the column. Fig. 3c and 3d
presents the recovery phase results, where we observe a
trade-off between recovered mAb mass and recovered mAb
concentration.

6. CONCLUSION

The paper presents a systematic methodology for up-
stream and downstream process modeling. The method-
ology simplifies the model presentation and reduces the
actual modeling to selection of stoichiometric matrices
and reaction kinetics for both upstream and downstream
processes. We demonstrate the modeling methodology on
an existing model for mAb production in a fedbatch re-
actor and a chromatography model for capture of mAbs.
The upstream process model is a five component ODE,
while the downstream process is a nonlinear PDE. The
chromatographic model applies a nonlinear shrinking core
adsorption isotherm to model the transition between the
mobile phase and the stationary phase in the chromato-
graphic column. We discretize the nonlinear PDE in space
with a high-order spectral continuous Galerkin scheme
that can be expanded to a multi-element spectral scheme
for better resolution and scalability. Simulation of the
upstream and downstream processes shows that the mod-
eling methodology works as intended. In particular, the
chromatographic process results in a Pareto front for the
yield and productivity in the loading phase and a Pareto
front for the concentration of mAbs and captured mAbs
in the recovery phase.
The proposed modeling methodology is well-suited for
model-based optimization of the upstream and down-
stream processes.
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(a) Loading phase of the column. 1) The mobile phase concentration
in the outlet of the column, where a breakthrough is observed, and 2)
The total mAbs captured in the column. The red dotted line indicates
a possible operating point for ending the loading phase.

(b) The normalized productivity vs. the yield of the loading phase.
The plot forms a Pareto front. The red dot indicates the operating
point indicated in Fig. 3a.

(c) Recovery phase of the column after the loading operation indi-
cated on Fig. 3a. 1) The concentration of mAbs in the collector, and
2) The total mAbs in the collector. The red dotted line indicates a
possible operating point for ending the recovery phase.

(d) Normalized concentration vs. normalized total product of the
recovery phase. The plot forms a Pareto front. The red dot indicates
the operating point indicated in Fig. 3c.

Fig. 3. Simulation of loading phase and recovery phase of the chromatographic column.
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Performance Quantification of a Nonlinear Model Predictive Controller

by Parallel Monte Carlo Simulations of a Closed-loop System

Morten Wahlgreen Kaysfeld, Mario Zanon, John Bagterp Jørgensen

Abstract— This paper presents a parallel Monte Carlo simu-

lation based performance quantification method for nonlinear

model predictive control (NMPC) in closed-loop. The method

provides distributions for the controller performance in stochas-

tic systems enabling performance quantification. We perform

high-performance Monte Carlo simulations in C enabled by a

new thread-safe NMPC implementation in combination with an

existing high-performance Monte Carlo simulation toolbox in C.

We express the NMPC regulator as an optimal control problem

(OCP), which we solve with the new thread-safe sequential

quadratic programming software NLPSQP. Our results show

almost linear scale-up for the NMPC closed-loop on a 32 core

CPU. In particular, we get approximately 27 times speed-up

on 32 cores. We demonstrate the performance quantification

method on a simple continuous stirred tank reactor (CSTR),

where we perform 30,000 closed-loop simulations with both an

NMPC and a reference proportional-integral (PI) controller.

Performance quantification of the stochastic closed-loop system

shows that the NMPC outperforms the PI controller in both

mean and variance.

I. INTRODUCTION

In closed-loop systems, there exist many unknown or
uncertain quantities, such as parameters, measurement noise,
and process noise, even when simple linear controllers
like proportional–integral–derivative (PID) controllers are
applied. As such, achieving useful closed-loop performance
quantification can be difficult. Previous work has focused on
development of a high-performance Monte Carlo simulation
toolbox for parallel computing on shared memory architec-
tures. The Monte Carlo simulation toolbox has previously
enabled tuning of PID controllers in closed-loop systems
[1], tuning of a model predictive controller (MPC) through
controller matching [2], and been applied for PID closed-
loop insulin dosing in a virtual clinical trial with 1, 000, 000
participants for people with type 1 diabetes [3]. Similar
results have not yet been obtained for more advanced con-
trollers such as nonlinear MPC (NMPC).

Monte Carlo approaches have previously been applied in
relation to NMPC. Sequential Monte Carlo (SMC) has been
applied as a method to find global optimizers in NMPC [4].
Additionally, an SMC filter has been applied as an alternative
to Kalman filtering and moving horizon estimation (MHE)
for state estimation [5]. However, application of Monte
Carlo simulation to quantify the closed-loop performance
of NMPC is novel, likely due to the difficulty of running

*M. W. Kaysfeld and J. B. Jørgensen are with the Department of Applied
Mathematics and Computer Science, Technical University of Denmark,
DK-2800 Kgs. Lyngby, Denmark. Mario Zanon is with IMT School for
Advanced Studies Lucca, IT-55100 Lucca, Italy.

Corresponding author: J. B. Jørgensen (E-mail: jbjo@dtu.dk).

sufficiently many closed-loop simulations with NMPC. We
propose to apply the existing Monte Carlo simulation toolbox
as a performance quantification technique for NMPC closed-
loop systems. Computational feasibility is achieved by full
utilization of multi-core CPUs [6]. To this end, the approach
requires a thread-safe NMPC implementation.

In this paper, we apply parallel Monte Carlo simulation as
a method for performance quantification of NMPC in closed-
loop. The method provides performance distributions of the
stochastic closed-loop and enables performance quantifica-
tion. We achieve parallel scaling by implementation of a new
thread-safe NMPC featuring a continuous-discrete extended
Kalman filter (CD-EKF) for state estimation and a regulator
expressed as an optimal control problem (OCP). We solve the
OCP with a new thread-safe sequential quadratic program-
ming (SQP) software, NLPSQP (nonlinear-programming-
sequential-quadratic-programming), required to achieve par-
allel scaling. Due to thread-safety of the NMPC, we achieve
almost linear parallel scaling and approximately 27 times
speed-up on 32 cores. The efficient parallel framework
enables computationally feasible Monte Carlo simulations
of closed-loop systems with NMPC, which enables novel
performance quantification of NMPC. We consider a well-
known continuous stirred tank reactor (CSTR) example as
a case study [7], [8]. We demonstrate the performance
quantification method by comparing NMPC performance to a
reference proportional-integral (PI) controller. The resulting
performance distributions show that the NMPC outperforms
the PI controller in both mean and variance.

The remaining parts of the paper are organized as follows.
Section II introduces the continuous-discrete system. Section
III introduces our NMPC formulation including the esti-
mator and regulator. Section IV presents the SQP software
NLPSQP. Section V presents the PI controller. Section VI
introduces our case study model. Section VII presents our
results. Section VIII presents our conclusions.

II. CONTINUOUS-DISCRETE SYSTEM

In our closed-loop simulations, we consider stochastic
continuous-discrete systems in the form [1],

dx(t) = f(t, x(t), u(t), d(t), p)dt

+ �(t, x(t), u(t), d(t), p)d!(t),
(1a)

y(ti) = g(ti, x(ti), p) + v(ti, p), (1b)
z(t) = h(t, x(t), p), (1c)

where x(t) are states, u(t) are inputs, d(t) are disturbances, p
are parameters, y(ti) are measurements at discrete time, z(t)
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are outputs, !(t) is a standard Wiener process, and v(ti, p)
is normally distributed measurement noise at discrete time,
i.e.,

d!(t) ⇠ Niid(0, Idt), (2a)
v(ti, p) ⇠ Niid(0, R(ti, p)), (2b)

where R is the measurement covariance. Measurements,
y(ti), are assumed available with sampling time, Ts. We
apply models in the stochastic continuous-discrete form, (1),
for both simulation of the system and in the NMPC.

III. NONLINEAR MODEL PREDICTIVE CONTROLLER

We design an NMPC scheme to regulate continuous-
discrete systems in the form (1). Our NMPC includes a CD-
EKF for state estimation [1], [9] and a regulator expressed
as an OCP.

A. State estimator
The CD-EKF receives a measurement, yi, at time ti. It

computes the state-covariance one-step prediction, x̂i|i�1 and
Pi|i�i, from the previous state-covariance estimate, x̂i�1|i�1

and Pi�i|i�1, and applies the measurement and the one-
step prediction to compute the new filtered state-covariance
estimate, x̂i|i and Pi|i.

1) Prediction: The state and covariance one-step predic-
tion is,

x̂i|i�1 = x̂i�1(ti), Pi|i�1 = Pi�1(ti), (3)

obtained as the solution to,
d

dt
x̂i�1(t) = f(t, x̂i�1(t), ui�1, di�1, p), (4a)

d

dt
Pi�1(t) = Ai�1(t)Pi�1(t) + Pi�1(t)Ai�1(t)

>

+ �i�1(t)�i�1(t)
>,

(4b)

for ti�1  t  ti, where

Ai�1(t) =
@

@x
f(t, x̂i�1(t), ui�1, di�1, p), (5a)

�i�1(t) = �(t, x̂i�1(t), ui�1, di�1, p). (5b)

The initial condition of (4) is the previous filtered state-
covariance pair,

x̂i�1(ti�1) = x̂i�1|i�1, Pi�1(ti�1) = Pi�1|i�1. (6a)

2) Filtering: Given the measurement, yi, and the state-
covariance one-step prediction, x̂i|i�1 and Pi|i�1, the CD-
EKF computes the filtered state estimate, x̂i|i, as

ŷi|i�1 = g(x̂i|i�1, p), Ci =
@

@x
g(x̂i|i�1, p), (7a)

ei = yi � ŷi|i�1, Re,i = Ri + CiPi|i�1C
>
i , (7b)

x̂i|i = x̂i|i�1 +Kiei, Ki = Pi|i�1C
>
i R�1

e,i , (7c)

where Ri = R(ti, p) is the measurement covariance. The
filtered covariance estimate, Pi|i, is

Pi|i = Pi|i�1 �KiRe,iK
>
i

= (I �KiCi)Pi|i�1(I �KiCi)
> +KiRiK

>
i ,

(8)

where (8) is the Joseph stabilizing form [10].

B. Regulator
We express the NMPC regulator in terms of an OCP, which

the NMPC solves at time ti once the filtered state estimate,
x̂i|i, is provided by the estimator. The solution to the OCP is
the input and state trajectories in the finite horizon. However,
the regulator only implements the first input, ui, and resolves
the OCP once the next state estimate is available from the
estimator. Let T be the prediction and control horizon, which
is split into N control intervals of size Ts. As such, T =
NTs. We assume zero-order hold parameterization of inputs,
u, and disturbances, d, in each control interval,

u(t) = ui+k, ti+k  t < ti+k+1, (9a)
d(t) = di+k, ti+k  t < ti+k+1, (9b)

where ti+k = ti + kTs. Let N = {0, 1, ..., N � 1}, then the
regulator OCP is,

min
x,u

'i, (10a)

s.t. x(ti) = x̂i|i, (10b)
ẋ(t) = f(t, x, u, d, p), ti  t  ti + T, (10c)
u(t) = ui+k, k 2 N , ti+k  t  ti+k+1, (10d)
d(t) = di+k, k 2 N , ti+k  t  ti+k+1, (10e)
umin  ui+k  umax, k 2 N , (10f)

where f(t, x, u, d, p) = f(t, x(t), u(t), d(t), p) and 'i =
'i(x(t), u(t)). We apply a direct multiple-shooting dis-
cretization to solve the OCP, (10), which yields a nonlinear
programming (NLP) in the form,

min
⇠

', (11a)

s.t. xk+1 � F (tk, xk, uk, dk, p) = 0, (11b)
umin  uk  umax, (11c)

where k 2 N is relative in time to ti, x0 = x̂0|0 is a
parameter, F (·) is a numerical state integration scheme, and
the decision variables are,

⇠i =
⇥
u0 x1 · · · uN�1 xN

⇤>
. (12)

Note that x0 is not required as a decision variable, but can
be included without loss of generality. We assume that the
NLP objective, ' = '(⇠), is partially separable locally in
time with respect to the decision variables. Additionally, we
denote the number of equality constraints, me, the number
of lower bounds, ml, and the number of upper bounds, mu.

IV. SEQUENTIAL QUADRATIC PROGRAMMING

We solve the NLP, (11), with our SQP software, NLPSQP.
The NLPSQP implementation is dedicated to solve multiple
similar NLPs in parallel applications. The iterative SQP
algorithm performs three steps in each iteration, 1) Obtain
a search direction by solution of a Quadratic Programming
(QP) subproblem, 2) Obtain a step-size by a backtracking
line-search algorithm, and 3) Lagrangian Hessian approx-
imation with a block Broyden–Fletcher–Goldfarb–Shanno
(BFGS) update.



In the following, we let g(⇠) denote the vectorized con-
straint evaluation of (11b) together with �, ⇡l, and ⇡u

denoting Lagrange multipliers for equality constraint, lower
input bound constraints, and upper input bound constraints
respectively. Additionally, we let f(⇠) = '(⇠) for simplicity
and apply [l] as superscript to denote the l’th iteration of the
algorithm.

A. Quadratic Programming subproblem
In iteration l, the QP-subproblem solved in NLPSQP is

min
�⇠

l̄0(�u0) +
N�1X

k=1

l̄k(�xk,�uk) + l̄N (�xN ), (13a)

s.t. �xk+1 = A>
k �xk +B>

k �uk + bk, (13b)
umin � uk  �uk  umax � uk, (13c)

where k 2 N , �x0 = 0 is a parameter, and

l̄0(�u0) =
1

2
�u>

0 R0�u0 + r>0 �u0 + ⇢0, (14a)

l̄k(�xk,�uk) =
1

2


�xk

�uk

�> 
Qk Mk

M>
k Rk

� 
�xk

�uk

�

+


qk
rk

�> 
�xk

�uk

�
+ ⇢k,

(14b)

l̄N (�xN ) =
1

2
�x>

NPN�xN + p>N�xN + ⇢N . (14c)

Due to partial separability of the Lagrangian function,

L(⇠,�,⇡l,⇡u) = L0(u0,�,⇡l,⇡u)

+
N�1X

k=1

Lk(xk, uk,�,⇡l,⇡u) + LN (xN ,�),
(15)

the Lagrangian Hessian is block diagonal with blocks, Wk,
defined as,

W0 = R0, Wk =


Qk Mk

M>
k Rk

�
, WN = PN , (16)

for k = 1, ..., N � 1. The matrices, Qk, Rk, Mk, and
PN , are second order derivatives of the Lagrangian function.
However, NLPSQP applies a BFGS type approximation for
the blocks, Wk [11]. The remaining matrices and vectors in
the QP-subproblem, (13), are given as,

rk = rukLk, k = 0, ..., N � 1, (17a)
qk = rxkLk, k = 1, ..., N � 1, (17b)
pN = rxNLN , (17c)
Ak = rxkFk, k = 1, ..., N � 1, (17d)
Bk = rukFk, k = 0, ..., N � 1, (17e)
bk = Fk � xk+1, k = 0, ..., N � 1, (17f)

where Fk = F (tk, xk, uk, dk, p). The solution to the QP-
subproblem, (14), is the data (�⇠, µ, ⌫l, ⌫u)[l], where

µ[l] = �[l] +��[l], (18a)

⌫[l]l = ⇡[l]
l +�⇡[l]

l , (18b)

⌫[l]u = ⇡[l]
u +�⇡[l]

u . (18c)

Notice that the search direction, (�⇠,��,�⇡l,�⇡u)[l], en-
sures satisfaction of the linear bound constraints, (11c), if the
initial guess is feasible. NLPSQP solves the structured QP-
subproblem, (13), with a Riccati recursion based primal-dual
interior point algorithm [12]–[14].

B. Line-search
Given the search direction, (�⇠,��,�⇡l,�⇡u)[l], NLP-

SQP performs the step,

(⇠,�,⇡l,⇡u)
[l+1] = (⇠,�,⇡l,⇡u)

[l]

+ ↵(�⇠,��,�⇡l,�⇡u)
[l],

(19)

where ↵ is a step-size. NLPSQP applies a backtracking line-
search algorithm to select a step-size, ↵, ensuring sufficient
decrease in Powell’s l1-merit function [13], [15],

P (⇠,�) = f(⇠) + �>|g(⇠)|, (20)

where

�i = max

✓
|µi|,

1

2
(�i + |µi|)

◆
, i = 1, ...,m, (21)

with �i = |µi| in the first iteration. We define

T (↵) = P (⇠[l+1],�) = P (⇠[l] + ↵�⇠[l],�), (22)

and let sufficient decrease be defined from the Armijo
condition,

T (↵)  T (0) + c1↵D�⇠T (0), (23)

where

T (↵) = f(⇠[l] + ↵�⇠[l]) + �>|g(⇠[l] + ↵�⇠[l])|, (24)

T (0) = f(⇠[l]) + �>|g(⇠[l])|, (25)

D�⇠T (0) = rf(⇠[l])>�⇠[l] � �>|g(⇠[l])|. (26)

The backtracking line-search algorithm is,
1) Set ↵ = 1
2) Evaluate (23). If satisfied, break with ↵ as output
3) Compute ↵ = �↵
4) Go to 2)

where 0 < � < 1. We use c1 = 10�4 and � = 0.5 (similarly
to IPOPT [16]).

C. Block BFGS update
NLPSQP estimates the block matrices, Wk, with a block

damped BFGS update [11]. Define

s = ⇠[l+1] � ⇠[l], (27a)

y = r⇠L[l+1] �r⇠L[l], (27b)

where r⇠L[l] = r⇠L(⇠[l],�[l+1],⇡[l+1]
l ,⇡[l+1]

u ), r⇠L[l+1] =

r⇠L(⇠[l+1],�[l+1],⇡[l+1]
l ,⇡[l+1]

u ), and let sk and yk be the
elements of s and y corresponding to Wk, respectively. Let

rk = ✓kyk + (1� ✓k)Wksk, (28)

where

✓k =

(
1 s>k yk � 0.2s>k Wksk

0.8s>k Wksk
s>k Wksk�s>k yk

else
(29)



Then the block BFGS update is given by

Wk+1 =

(
Wk � (Wksk)(Wksk)

>

s>k (Wksk)
+ rkr

>
k

s>k rk
 > ✏m

Wk else
(30)

where ✏m is the machine precision,  = min(1,2) with
1 = s>k Wksk and 2 = s>k rk. The update safeguard is
required as some blocks might converge faster than others
resulting in zero-division. NLPSQP initializes the Hessian
update as identity, W [0] = I . Numerical rounding errors
might cause indefinite BFGS block updates. In this case,
NLPSQP applies the simple strategy to reset the entire
Hessian to identity.

D. Convergence

NLPSQP converges when the KKT conditions are satisfied
to the user-specified tolerance ✏. In practice, we apply a
scaled convergence condition,

||rL[l]/sd||1  ✏, ||g[l]||1  ✏, (31)

where rL[l] = rL(⇠,�,⇡l,⇡u)[l], g[l] = g(⇠)[l], and

sd = max

✓
smax,

||�||1 + ||⇡l||1 + ||⇡u||1
me +ml +mu

◆
/smax, (32)

with smax = 100 (similar to IPOPT [16]).

E. Implementation

NLPSQP is implemented thread-safe in C for parallel
applications, specifically intended for closed-loop Monte
Carlo simulation. NLPSQP is BLAS dependent. In particular,
we apply OpenBLAS [17], [18]. To ensure thread-safety
of OpenBLAS, we compile a single threaded version by
setting USE THREAD=0 and USE LOCKING=1. However,
we have not been able to achieve parallel scaling for the
functions dpotrf, dpotrs, and dgemm. Therefore, we
have implemented our own versions of these functions only
intended for small matrices. In future work, we will consider
other thread-safe BLAS libraries.

V. PROPORTIONAL–INTEGRAL CONTROLLER

We consider a PI controller with input bounds, umin

and umax, and anti-windup mechanism to ensure proper
integrator behavior when the PI response is saturated,

ek = ȳk � yk, (33a)
Pk = kP ek, (33b)

Ik = Îk�1 + TskIek, (33c)
ûk = ū+ Pk + Ik, (33d)
uk = max(umin,min(umax, ûk)), (33e)

Iaw,k = Tskaw(ûk � uk), (33f)

Îk = Ik + Iaw,k. (33g)

We apply the PI controller (33) as a reference for the NMPC.

VI. MODEL

As a simulation case study, we consider an exothermic
chemical reaction conducted in an adiabatic CSTR [7],
[8]. The example is simple yet effective due to the non-
trivial dynamics causing a branch of unstable steady-states
in the operating window [7]. In addition, the model is well-
approximated by a one-state model, well-suited for NMPC.
The stochastic model for the constant volume CSTR is
compactly written as the SDE [2],

dn(t) = (CinF � cF +RV ) dt+ F �̄d!(t), (34)

where

c =
n

V
, R = S>r(c), (35)

and

r(c) = k(cT )cAcB , k(cT ) = k0 exp

✓
�Ea

R

1

cT

◆
, (36)

with Ea/R denoting the activation energy. In the three-state
model, the stoichiometric matrix and inlet stream concentra-
tion matrix is,

Cin =

2

4
cA,in

cB,in

cT,in

3

5 , S =
⇥
�1.0 �2.0 �

⇤
, (37)

and in the one-state model they are,

Cin =
⇥
cT,in

⇤
, S =

⇥
�
⇤
. (38)

The stochastic diffusion term of (34) models inlet concen-
tration variations and we apply

�̄ =

2

4
�A

�B

�T

3

5 , �̄ =
⇥
�T

⇤
, (39)

in the three-state and one-state models, respectively. We refer
to [7] for more details and the parameters of the model. The
output of the model is the temperature cT , i.e., z(t) = cT (t).
Additionally, we assume the temperature to be measured at
discrete times, i.e., y(ti) = cT (ti).

VII. RESULTS

This section presents our simulation results. The simula-
tions are conducted on a dual-socket Intel(R) Xeon(R) Gold
6226R CPU @ 2.90GHz system. See TABLE I for CPU
details.

A. Closed-loop simulation
We simulate the CSTR in closed-loop with the NMPC.

We apply the three-state stochastic model for simulation of
the system and apply the one-state model in the NMPC.
We select a variable set-point, z̄, together with, t0 = 0.0
s, tf = 600.0 s, Ts = 1.0 s, and Ns = 20, where Ns is
the number of Euler-Maruyama steps to integrate the state
equations from ti to ti+1. We initialize the system at

x0 = n0 =

2

4
cA,in

cB,in

cT,in

3

5V. (40)



TABLE I
CPU INFORMATION.

Architecture: x86 64
CPU op-mode(s): 32-bit, 64-bit
CPU(s): 32
Thread(s) per core: 1
Core(s) per socket: 16
Socket(s): 2
NUMA node(s): 2
Model name: Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz
CPU MHz: 2900.000
L1d cache: 32 kB
L1i cache: 32 kB
L2 cache: 1024 kB
L3 cache: 22528 kB
RAM: 384 GB

TABLE II
STATISTICS FOR MONTE CARLO SIMULATION OF NMPC CLOSED-LOOP.

MC simulation time ⇡ 55 [min]
Number of MC simulations 30,000 [-]
Total number of OCPs 18,000,000 [-]
Successful OCPs 17,999,576 [-]
Failed OCPs 424 [-]
Percentage success 99.9976 [%]
Percentage fails 0.0024 [%]

The NMPC has the discrete prediction and control horizon,
N = 60, applies Nc = 5 classical Runge-Kutta steps to
integrate the state dynamics in each control interval in the
OCP, and applies a point-wise weighted least-squares output
objective in the OCP,

'i =
NX

k=1

||z(ti+k)� z̄(ti+k)||2Qz
Ts, (41)

where Qz = 1.0. We initialize the CD-EKF states as,

x̂�1|�1 = cT,inV, P�1|�1 = 10�6, (42)

and apply the input bounds umin = 0.0 mL/min and
umax = 1000.0 mL/min. The PI controller with anti-windup
mechanism, (33), has the hand-tuned gains,

kP = �10�3, kI = �10�4, kaw = �10�1. (43a)

We perform a single closed-loop simulation with the PI
controller and the NPMC. Fig. 1 presents the result. We
observe that both the PI controller and the NMPC are able
to track set-points at both stable and unstable steady-states.
However, the NMPC has better tracking performance at set-
point changes due to its anticipatory action.

B. Parallel scalability

We apply the Monte Carlo simulation toolbox to perform
100 simulations with different process noise in the system.
We compute the 100 simulations with the NMPC on different
numbers of cores to get scale-up data. Fig. 2 presents a scale-
up plot for the simulations. We observe almost linear scale-
up and approximately 27 times speed-up on 32 cores. In
previous work, we showed similar scale-up results for a PID
controller [1].

Fig. 1. Stochastic closed-loop simulation with PI controller and NMPC.
Both controllers are able to track the set-points at both stable and unstable
steady-states. The NMPC has better tracking performance at set-point
changes due to its anticipatory action.

C. Monte Carlo Simulations
We perform Monte Carlo simulations to quantify the

closed-loop performance of the NMPC in presences of
process noise. In particular, we perform 30, 000 simulations
with varying process noise for both the PI controller and the
NMPC. We apply a scaled point-wise squared-2-norm metric
to evaluate the closed-loop performance,

� =
1

N̄ + 1

N̄X

i=0

||z(ti)� z̄(ti)||22, (44)

where N̄ is the number of samplings over the full simulation,
i.e., N̄ = tf�t0

Ts
= 600 in our simulations. Fig. 3 shows

historgams of the distribution of �, (44), over the 30,000
Monte Carlo simulations. The results show that the NMPC
outperforms the PI controller in both mean and variance with
respect to the �-metric. However, due to Fig. 1, we expect
the better NMPC performance to be mainly due to set-point
changes and anticipatory action from the NMPC.

TABLE II shows simulation statistics for the NMPC
closed-loop Monte Carlo simulations. We observe that NLP-
SQP successfully solves 99.9976% of the 18, 000, 000 OCPs
in the 30, 000 closed-loop simulations. In the remaining
0.0024%, NLPSQP reaches the maximum number of itera-
tions set to 100. We suspect that NLPSQP locates an almost
optimal point, but has trouble detecting it. Therefore, we
implement the detected solution in the NMPC. In future
work, we will further investigate the convergence detection
of NLPSQP.



Fig. 2. Scaling plot for Monte Carlo simulations of NMPC closed loop in
parallel. Scaling on 32 cores is approximately 27 times.

Fig. 3. Histograms of the distribution of the �-metric, (44), for the PI
controller and the NMPC in closed-loop. The red dashed line indicates the
performance of the NMPC in the deterministic case. Computation time for
30,000 closed-loop simulations with NMPC is approximately 55 min.

VIII. CONCLUSION

The paper presented a parallel Monte Carlo simulation
based performance quantification method for NMPC in
closed-loop. The method is made computationally feasible by
combining a new thread-safe NMPC implementation with an
existing implementation of a high-performance Monte Carlo
simulation toolbox in C. The toolbox showed almost linear
scale-up for the closed-loop simulations with an NMPC.
We considered a simple CSTR model to demonstrate the
performance quantification method. We performed 30, 000
Monte Carlo simulations of the closed-loop with NMPC in
approximately 55 min and applied the simulations to quantify
the performance of the NMPC in presence of process noise.
We compared the NMPC performance to a hand-tuned PI

controller. Performance distributions provided by the Monte
Carlo simulations showed that the NMPC outperforms the
PI controller in both mean and variance. In addition, the
performance quantification method is well-suited for NMPC
tuning, e.g., tuning of stage cost or constraint back-off.
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Abstract:
This paper presents a dynamic optimization numerical case study for Monoclonal Antibody
(mAb) production. The fermentation is conducted in a continuous perfusion reactor. We
represent the existing model in terms of a general modeling methodology well-suited for
simulation and optimization. The model consists of six ordinary di↵erential equations (ODEs)
for the non-constant volume and the five components in the reactor. We extend the model
with a glucose inhibition term to make the model feasible for optimization case studies. We
formulate an optimization problem in terms of an optimal control problem (OCP) and consider
four di↵erent setups for optimization. Compared to the base case, the optimal operation of the
perfusion reactor increases the mAb yield with 44% when samples are taken from the reactor
and with 52% without sampling. Additionally, our results show that multiple optimal feeding
trajectories exist and that full glucose utilization can be forced without loss of mAb formation.

Keywords: Monoclonal antibody production, optimal control, process modeling, perfusion
reactor, fermentation.

1. INTRODUCTION

Monoclonal antibody (mAb) production in mammalian
cells is a well-known technique for synthesising identi-
cal antibodies. These antibodies are proteins with sig-
nificance in medical applications. In 2017, mAbs repre-
sented the 6 top-selling biopharmaceutical products and
has an expected yearly sale of 130-200 billion US dollars
in 2022 (Walsh, 2018; Grilo and Mantalaris, 2019). This
has resulted in significant e↵orts to increase the synthesis
of mAbs in bioreactors with mammalian cell cultures.
Biopharmaceutical companies increasingly seek for novel
protein production methods to accommodate for an in-
creasing number of protein drug candidates that enter
various phases of research. In today’s competitive market,
it is challenging to retain desirable quality attributes while
shortening time to market, maintaining cost e�ciency, and
enabling manufacturing flexibility.

High cell density and productivity at large scale are key
factors to achieve high process yield. There exist multiple
bioreactor designs to achieve a balance between cell growth
and volumetric productivity (Blunt et al., 2018; Mitra
and Murthy, 2022; Carvalho et al., 2017). Step-wise bolus
injections of the feed solution to the production bioreactor
is the most frequently applied method due to its simplicity
(Maria, 2020). Recently, continuous bioreactor systems
have received increasing attention due to its easy scale-
up, waste minimization, and non-sterile cultivation (Blunt
et al., 2018).

Medium development for a bioreactor system consists of
multiple parts including optimization of feeding strategies,
?

Corresponding author: J.B. Jørgensen (E-mail: jbjo@dtu.dk).

and production of both batch medium and feed concen-
trates. Thus, medium development with statistical design
of experiments type methods requires lots of time, e↵ort,
and cost (Wohlenberg et al., 2022; Luna and Mart́ınez,
2014; Rendón-Castrillón et al., 2021). Therefore, process
models can lead to valuable insights and optimization of
bioreactors without the need of performing expensive and
time consuming experiments. As an example, mechanistic
modeling and optimization has been applied for a U-loop
reactor for single-cell protein production (Ritschel et al.,
2019).

Mechanistic models are extensively implemented for biore-
actor optimization, since the models provide a deeper
understanding of the growth and production of mam-
malian cells (Glen et al., 2018; Sha et al., 2018). Glucose
concentration, lactate concentration, and temperature of
the cellular environment impact their metabolic pathway
(Sissolak et al., 2019; Fan et al., 2015). A higher glucose
concentration results in decreased cellular growth rate
and increased product formation (Vergara et al., 2018),
whereas a higher lactate concentration deteriorates both
cell growth and productivity (Li et al., 2012).

In this paper, we consider an existing mechanistic model
for mAb production and apply advanced optimization
techniques to compute novel optimal feeding strategies for
the process. The model describes a fermentation process
for mAb production conducted in a continuous perfusion
bioreactor (Kumar et al., 2022). We present the model
with a general modeling methodology well-suited for sim-
ulation and optimization (Wahlgreen et al., 2022), and
extend the model with a glucose inhibition term to ensure
that optimization does not exceed physical glucose inhibi-
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tion limits. The model consists of six ordinary di↵erential
equations (ODEs) for the non-constant volume and five
components in the bioreactor. We present an optimization
problem expressed as an optimal control problem (OCP).
The OCP maximizes the final amount of mAb in the
reactor while satisfying a set of operational constraints.
Our results show that optimal process operation improves
the mAb productivity with up to 52%. Additionally, our
results show that there exists multiple feeding trajectories
resulting in the same mAb production. Similar results have
been obtained for fed-batch fermentation with Haldane
growth kinetics (Ryde et al., 2021).

The remaining part of the paper is organized as follows.
Section 2 presents the model for mAb production with a
general modeling methodology. Section 3 introduces the
considered optimization problem formulated as an OCP.
Section 4 presents our optimization and simulation results.
Section 5 presents our conclusions.

2. MONOCLONAL ANTIBODY PRODUCTION

We consider a biotechnological process for mAb produc-
tion (Kumar et al., 2022) and reformulate the model in
terms of a general modeling methodology for chemical
reacting systems (Wahlgreen et al., 2022).

2.1 General model for a continuous perfusion reactor

The biotechnological process is conducted in a continuous
perfusion reactor. We apply a general ODE model,

dV

dt
= e>Fin � Fout � Fper, (1a)

dm

dt
= CinFin � cFout � CpercFper +RV, (1b)

where V is the volume, Fin is a vector with inlet flow
rates, e is a vector of ones of proper dimension, Fout is
a scalar outlet flow rate, Fper is a scalar perfusion flow
rate, m is a vector of masses for each component, Cin is
a matrix with inlet concentrations, c = m/v is a vector
with concentrations (densities), Cper is a diagonal matrix
with elements between 0 and 1 describing the percentage
of each component removed from the bioreactor by the
perfusion stream, and R is a vector with production rates,

R = S>r(c), (2)

with S being the stoichiometric matrix and r(c) being a
vector with reaction rates.

2.2 Reaction stoichiometry and kinetics

The process consists of five components,

C = {Xv, Xd, G, L, P}, (3)

whereXv are viable cells,Xd are dead cells, G is glucose, L
is lactate, and P is mAb (product). We express the process
in terms of six stoichiometric reactions,

1. Cell division, ↵1,GG+Xv �! 2Xv + ↵1,PP, r1,
2. Cell death, Xv �! Xd, r2,
3. Maintenance 1, ↵3,GG+Xv �! Xv + ↵3,PP, r3,
4. Maintenance 2, Xv �! Xv + ↵4,LL, r4,
5. Lactate production 1, Xv �! Xv + ↵5,LL, r5,
6. Lactate production 2, Xv �! Xv + ↵6,LL, r6,

which are compactly written in the stoichiometric matrix,

S =

Xv Xd G L P2

666664

3

777775

1 0 �↵1,G 0 ↵1,P 1

�1 1 0 0 0 2

0 0 �↵3,G 0 ↵3,P 3

0 0 0 ↵4,L 0 4

0 0 0 ↵5,L 0 5

0 0 0 ↵6,L 0 6

(4)

The six reaction rates are given as

r1 = µX(c, T )cXv , r2 = µD(T )cXv , (5a)
r3 = µm1cXv , r4 = µm2cXv , (5b)
r5 = µL,p1(c, T )cXv , r6 = µL,p2(c)cXv , (5c)

where the di↵erent rate functions are

µX = µX,maxflimfinhftemp, (6a)
µD = µD,maxfD,temp, (6b)
µm1 = µ̄m1 , (6c)

µm2 = µ̄m2

Lmax,2 � cL
Lmax,2

, (6d)

µL,p1 = µX
Lmax,1 � cL

Lmax,1
, (6e)

µL,p2 = µ̄L,p2

Lmax,1 � cL
Lmax,1

, (6f)

and

flim =
cG

KGcXv + cG
, (7a)

finh =
KIL

KIL + cL
(1�KIP cP ), (7b)

ftemp = exp

✓
�K1

T

◆
, (7c)

fD,temp = exp

✓
�K2

T

◆
. (7d)

The model, (1)-(7), is identical to the model presented by
Kumar et al. (2022).

2.3 Model extension for optimization

We point out that the model, (1)-(7), does not include
glucose inhibition for cell growth. In addition, the inhibi-
tion term, finh, becomes negative for high product con-
centrations. As such, the model is not directly suitable for
optimization purposes. However, small model extensions
lead to a feasible model well-suited for optimization. We
extend the model with a simple glucose inhibition term,

fG,inh = 1� s�(cG, c̄G), (8)

where s� is a Sigmoid function given as

s�(x, x̄) =
1

1 + exp(��(x� x̄))
. (9)

Note that fG,inh = 1 for small glucose concentrations and
rapidly converges to 0 when cG > c̄G. In addition, we
remove the possibility of negative growth rate by adding a
smooth maximum approximation to the product inhibition
term. By combining the smooth maximum approximation
with the glucose inhibition term, we get the final inhibition
term,

finh =
KIL

KIL + cL
max↵(0, 1�KIP cP )fG,inh, (10)



Fig. 1. Glucose inhibition term, fG,inh. Red line: 7.0 g/L.

where max↵ is a smooth maximum approximation given
as

max↵(x1, ..., xn) =

Pn
i=1 xi exp(↵xi)Pn
i=1 exp(↵xi)

. (11)

We design our glucose inhibition term such that the growth
rate decreases for cG > 7 [g/L] (Vergara et al., 2018). As
such, we select c̄G = 7.5 [g/L] together with � = 10.0.
Fig. 1 shows the activation of the glucose inhibition term,
fG,inh. Fig. 2 presents the smooth maximum approxima-
tion of the product inhibition term for ↵ = 100.0. We
point out that alternative glucose inhibition terms can be
applied without loss of generality.

2.4 Operation of the continuous perfusion reactor

We operate the reactor in continuous perfusion mode. We
feed glucose through an inlet stream with flow rate, FG,
and glucose concentration, cG,in. In addition, we apply a
pure water inlet stream with flow rate, FW , resulting in
the inlet flow vector,

Fin =


FW

FG

�
. (12)

As such, the inlet concentration matrix becomes

Cin =

2

6664

0 0
0 0
0 cG,in

0 0
0 0

3

7775
. (13)

The perfusion outlet has a filter that only lets spend
media pass, i.e., glucose and lactate. As such, the perfusion
matrix becomes,

Cper =

2

6664

0
0
1
1
0

3

7775
. (14)

We apply the outlet stream for sampling.

2.5 General notation

We formulate the model, (1), in terms of the general ODE
system,

ẋ(t) = f(t, x(t), u(t), p), x(t0) = x0, (15)

where p are the parameters, and the states, x, and the
inputs, u, are given as

Fig. 2. Smooth maximum function for product inhibition.

x =


V
m

�
, u =

2

64

Fin

Fper

Fout

T

3

75 . (16)

We apply the general ODE notation, (15), to formulate
optimization problems.

3. OPTIMIZATION

We formulate an optimization problem in terms of an
OCP. The solution is the state and input trajectories
in the finite horizon, Th. We denote the initial time t0
and the final time tf = t0 + Th. We split the prediction
and control horizon, Th, into N control intervals of equal
size Ts. As such, Th = NTs. We assume zero order hold
parameterization of the inputs,

u(t) = uk, k = 0, ..., N � 1, (17)

and consider the following OCP formulation,

min
⇠

', (18a)

s.t. x(t0) = x0, (18b)
ẋ(t) = f(t, x, u, d, p), t0  t  t0 + Th, (18c)
xmin  xk  xmax, k = 1, ..., N, (18d)
umin  uk  umax, k = 0, ..., N � 1, (18e)

where ⇠ = {uk, xk+1}N�1
k=0 are the decision variables and

' = '(⇠) is the objective function. We intent to maximize
the final mAb production while satisfying a set of opera-
tional constraints. This can be formulated in terms of the
following OCP,

min
⇠

' = �mP (tf ), (19a)

s.t. x(t0) = x0, (19b)
ẋ(t) = f(t, x, u, d, p), t0  t  t0 + Th, (19c)
Vmin  Vk  Vmax, k = 1, ..., N, (19d)
mG,min  mG,k k = 1, ..., N, (19e)
mL,min  mL,k k = 1, ..., N, (19f)
Fmin  FW,k  Fmax, k = 0, ..., N � 1, (19g)
Fmin  FG,k  Fmax, k = 0, ..., N � 1, (19h)
Fmin  Fper,k  Fmax, k = 0, ..., N � 1, (19i)
Tmin  Tk  Tmax, k = 0, ..., N � 1. (19j)

We point out that additional non-negativity constraints
could be applied, but have not been required for meaning-
ful optimization.



Table 1. Model parameters.

Parameter Value Unit

µX,max 0.153 [min
�1

]

µD,max 3.955 · 10�5
[min

�1
]

µ̄m1 1.0 [min
�1

]

µ̄m2 1.0 [min
�1

]

µ̄L,p2 1.0 [min
�1

]

K1 1689 [K]

K2 524 [K]

KG 0.85 [g/(cells⇥10
9
)]

KIL 344 [g/L]

KIP 6.88⇥ 10
�1

[L/g]

Lmax,1 628 [g/L]

Lmax,2 0.5 [g/L]

c̄G 7.5 [g/L]

↵1,G 0.4876 [g/(cells⇥10
9
)]

↵1,P 6.62⇥ 10
�8

[g/(cells⇥10
9
)]

↵3,G 1.102⇥ 10
�4

[g/(cells⇥10
9
)]

↵3,P 1.2⇥ 10
�5

[g/(cells⇥10
9
)]

↵4,L 1.89⇥ 10
�5

[g/(cells⇥10
9
)]

↵5,L 0.5504 [g/(cells⇥10
9
)]

↵6,L 1.0249⇥ 10
�5

[g/(cells⇥10
9
)]

4. RESULTS

This section presents our results. We perform a base case
simulation that reproduces the results from Kumar et al.
(2022). Additionally, we perform four di↵erent optimiza-
tions and compare these to the base case. In all simula-
tions, we consider a 14 days fermentation.

4.1 Base case simulation

We simulate the model to reproduce the results presented
by Kumar et al. (2022). As such, we operate the reactor
in three phases, 1) batch phase, 2) fed-batch phase, and 3)
perfusion phase. In the batch phase, no inlets or outlets are
active. In the fed-batch phase, both water and glucose inlet
streams are active in boluses once a day in 30 min intervals
to achieve a total inlet flow rate Ftot = FW + FG = 0.018
L/min with glucose concentration 32.0 g/L. In particular,
this requires FW = 2.7692 · 10�4 L/min and FG = 0.0177
L/min. In the perfusion phase, the perfusion outlet is
active with Fper = 0.0015 L/min and the inlets are active
at FW = 0.0011 L/min and FG = 3.9923 · 10�4 L/min to
achieve a total inlet flow rate of Ftot = 0.0015 L/min at
a glucose concentration of 8.65 g/L. Table 1 presents the
list of model parameters adapted from Kumar et al. (2022)
and Table 2 presents the operation parameters including
initial conditions. Fig. 3 presents the base case simulation
reproducing the results by Kumar et al. (2022).

4.2 Optimization

We solve the OCP, (19), for the full horizon of Th = 14 day
with Ts = 30 min. As such, we get the discrete horizon,
N = 672. We consider four di↵erent optimization setups.
We either apply no sampling or the sampling strategy
from the base case. Additionally, we test the e↵ect of
enforcing almost full glucose utilization in the end of
the fermentation. Table 3 presents the four optimization
setups including the additional OCP constraints in each
setup. We apply a direct multiple shooting discretization
approach of the OCP and solve the resulting nonlinear
programming (NLP) in CasADi (Andersson et al., 2019).

Table 2. Operation parameters.

Parameter Value Unit

V0 5.650 [L]

mXv,0 3.955 [cells⇥10
9
]

mXd,0 0.0 [cells⇥10
9
]

mG,0 34.18 [g]

mL,0 0.678 [g]

mP,0 0.0 [g]

cG,in 32.5 [g/L]

Fmin 0.0 [L/min]

Fmax 0.02 [L/min]

Tmin 308.15 [K]

Tmax 310.15 [K]

Vmin 4.0 [L]

Vmax 8.0 [L]

mG,min 0.0 [g]

mL,min 0.0 [g]

Table 3. Optimization setups.

Setup Description Constraints in OCP

(1) ⇥ sampling • Fout = 0.0 [L/min]

⇥ glucose utilization • mG(tf )  1 [g]

(2) ⇥ sampling • Fout = 0.0 [L/min]

X glucose utilization • mG(tf )  1.0 [g]

(3) X sampling • Fout = F̄out [L/min]

⇥ glucose utilization • mG(tf )  1 [g]

(4) X sampling • Fout = F̄out [L/min]

X glucose utilization • mG(tf )  1.0 [g]

Table 4. mAb production and improvement
relative to the base case.

Simulation mAb [g] Improvement [%]

Base case 15.57 -

Opt. (1) 23.63 52

Opt. (2) 23.63 52

Opt. (3) 22.47 44

Opt. (4) 22.47 44

Fig. 4 compares the base case simulation to the four op-
timal simulations. We observe that optimal cell growth is
achieved by maintaining a constant glucose concentration
of around cG = 7 g/L to avoid glucose inhibition. If
sampling is required, the optimal feeding trajectories com-
pensates for the loss of medium to maintain the optimal
glucose concentration. Once the product concentration
fully inhibits the cell growth, the temperature is decreased
to increase product formation.

Fig. 5 presents the time evolution of mAb in the bioreactor
for the base case simulation and the optimal simulations.
Table 4 presents the total mAb production in the end of
the 14 day fermentation for all five simulations. We observe
that all optimal simulations increase the mAb production
compared to the base case. In particular, the optimal
simulations produces 44% more mAb with sampling and
52% without sampling. We notice that forcing full glucose
utilization does not a↵ect the final production of mAb.
This shows that there are multiple optimal solutions all
resulting in the same mAb production (Ryde et al., 2021).
As such, optimization setup (2) and (4) are preferred under
the assumption that glucose has a cost. This cost can
be included in the optimization problem resulting in an
economic OCP.



Fig. 3. Base case simulation reproducing the results from Kumar et al. (2022).

Fig. 4. The base case simulation and simulations for four di↵erent optimization setups. The blue line is the base case,
the red line is setup (1), the yellow line is setup (2), the purple line is setup (3), and the green line is setup (4).



Fig. 5. Final mAb production for the base case simulation
and the four optimal simulations.

5. CONCLUSION

The paper presented a dynamic optimization numerical
case study for mAb production. We applied a general
modeling methodology to present an existing fermentation
model for mAb production conducted in a continuous
perfusion reactor. We expressed an optimization problem
in terms of an OCP for maximization of mAb production
in the end of the fermentation. Our results showed that
optimal operation of the continuous perfusion reactor im-
proves the mAb production by up to 52% compared to the
base case. Additionally, our results showed that there exist
multiple optimal solutions producing the same amount of
mAb. Therefore, a full glucose utilization constraint in the
OCP is preferred to reduce glucose loss.
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A B S T R A C T
In this paper, we develop an economic nonlinear model predictive controller (ENMPC) for optimal
operation of a monoclonal antibody (mAb) fermentation process. We apply Monte Carlo simulation
for uncertainty quantification of the operation with the ENMPC. The fermentation is conducted in
a perfusion reactor with a pure water inlet stream, a glucose inlet stream, a perfusion stream, an
outlet stream, and a temperature regulation system. We consider an existing mechanistic model for the
fermentation process, which we extend to a stochastic differential equation (SDE) model for simulation
and design of the ENMPC. The ENMPC consists of a continuous-discrete extended Kalman filter
(CD-EKF) for state estimation and an economic regulator based on mAb and glucose prices. A
stochastic simulation of a 14 days fermentation in closed-loop shows that the reactor is operated in
two phases, which we denote the growth phase and the production phase. Additionally, a Monte Carlo
simulation study with 10.000 closed-loop simulations shows that the fermentation process operated
by the ENMPC has a mean mAb production of 23.89 g with a 95% confidence interval [20.78, 27.04]
g. Compared to a base case strategy, the ENMPC increases the mean mAb production with 52% at
the cost of a 56% range (uncertainty) increase. The uncertainty increase is likely due to the ENMPC
operating the perfusion reactor close to a point of glucose inhibition. The study showed no overlap in
the 95% confidence intervals, which indicate that there is a high statistical probability for the ENMPC
to produce more mAb. These results provide valuable uncertainty measures for the mAb fermentation
process, which can be obtained prior to experiments. Finally, we apply insights from the simulation
study to design a simple controller, which has practically identical performance to the ENMPC.

1. Introduction
The first monoclonal antibody (mAb) was developed in

1975 [1], and the first therapeutic mAb, muromonab-CD3
(Orthoclone OKT3 ), was fully licensed and approved by the
United States Food and Drug Administration (FDA) in 1986
[2, 3]. The production of therapeutic mAbs has drastically
increased since then, and mAbs are now valuable pharma-
ceuticals with a market share of 185.50 billion USD in 2021
and an expected share of 494.53 billion USD in 2030 [4].
Treatments involving mAbs have been applied for various
diseases including cancer, autoimmune disorders, and in-
fectious diseases [5–7]. Additionally, during the COVID-19
pandemic [8], mAbs were proposed for both treatment and
prevention of COVID-19 [9–11]. Clearly, efficient, reliable,
and cheap production of mAbs is essential for affordable
treatment of a number of diseases.

Large-scale production of mAbs is usually conducted
in bioreactors. The biotechnological fermentation process
involves the growth of specific cells, which produce mAbs.
The bioreactor forms a controlled environment, where fac-
tors like temperature, pH, dissolved oxygen concentration,
and available nutrients can be controlled to improve cell
growth and mAb production [12]. Bioreactors are commonly
run in batch or fed-batch modes, where pulse injection of
feed solutions is a frequently applied operational strategy
[13]. However, there has been increasing attention towards

∗Corresponding author
jbjo@dtu.dk (J.B. Jørgensen)

ORCID(s):

continuous operation to reduce manufacturing cost, increase
flexibility, and increase product quality [14–16].

Due to the huge value of mAbs, efforts to optimize mAb
fermentation processes have received much attention, e.g.,
by exploring new cell culture systems, optimizing bioreactor
designs and operation, and developing advanced modeling
and control strategies [17–20]. These techniques all strive
to increase cell growth, increase mAb yield, minimize pro-
duction time, and reduce uncertainties in the production
process. One promising control strategy is model predictive
control (MPC), which has been applied as an advanced
model-based process control technique for biotechnological
processes [21–28]. Development of mathematical models
enables improved process understanding through simulation
studies and can be applied for optimization purposes [29–
34]. Simulation studies in both open-loop and closed-loop
provide valuable insights to the process, but single determin-
istic or stochastic simulations provide only limited informa-
tion about the process uncertainty. Furthermore, misleading
or even wrong conclusions about the performance can be
made based on single simulations [35, 36].

There exist various techniques for quantification of mAb
fermentation uncertainties. Techniques such as design of ex-
periments (DoE) and multivariate statistical analysis (MSA)
have been applied for uncertainty quantification of mAb fer-
mentation processes [37]. Also, valuable online monitoring
and continuous feedback have become more available for
biotechnological processes through process analytical tech-
nology (PAT) proposed by the FDA [38]. However, DoE and
MSA require time consuming and expensive experiments
[39–41], and PAT does not provided uncertainty measures
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prior to experiments. We propose a large-scale Monte Carlo
simulation approach to achieve uncertainty quantification of
the mAb fermentation process prior to experiments. The ap-
proach combines mechanistic modeling of the mAb fermen-
tation process, noise sampling, and parallel simulation of the
system [36]. The method has previously been applied for
tuning of simple controllers [36, 42], in a large-scale virtual
clinical trial with 1, 000, 000 participants for people with
type 1 diabetes [43], and for uncertainty quantification of
a nonlinear model predictive controller (NMPC) in closed-
loop [44].

In this work, we consider a previously developed and
verified mechanistic model for mAb fermentation conducted
in a perfusion reactor [34], which was later extended for
optimization and control purposes [45]. The model includes
the influence of temperature, glucose, lactate, and the prod-
uct (mAb) on the metabolic pathway [46–49]. Factors like
oxygen and pH are not included in the model, but are part
of the reactor operation and kept at their specified values
in experiments [34]. We present the model with a generic
modeling methodology, where mass balances in the form of
ordinary differential equations (ODEs) represent the reac-
tor. Specification of stoichiometry and kinetic models for a
specific process completes the model. The generic modeling
methodology has previously been applied for a range of
reactors including fed-batch reactors (FBRs) and continuous
stirred tank reactors (CSTRs) [35, 42, 50]. In later work, we
applied the methodology for the considered mAb fermenta-
tion process conducted in a perfusion reactor [45]. The mAb
fermentation model consists of six ODEs, which we in this
work extend with diffusion terms to express uncertainties in
the number of viable cells, glucose mass, and lactate mass.
The result is a stochastic differential equation (SDE) model
for the mAb fermentation process conducted in a perfusion
reactor. The measured variables are static functions of the
states, corrupted by additive noise, and obtained at discrete
times. The SDE model for the dynamics and the static model
for the observations constitute a continuous-discrete model.
We develop an economic nonlinear model predictive con-
troller (ENMPC) based on this continuous-discrete model
[28, 51–57]. The ENMPC consists of a continuous-discrete
extended Kalman filter (CD-EKF) for state estimation and
an economic regulator based on mAb and glucose prices.
The study consists of 10.000 Monte Carlo simulations of the
closed-loop system. We apply these simulations to quantify
the uncertainty of the fermentation process. Finally, based
on key insights from the ENMPC, we apply the ’from-
simple-via-complex-to-lucid’ approach to develop a simple
controller design with a proportional-integral (PI) controller
that has the same performance as the ENMPC [58].

The remaining parts of the paper are organized as fol-
lows. Section 2 introduces the model for mAb fermentation
in a perfusion reactor. Section 3 presents the developed
ENMPC including the CD-EKF and the regulator. Section
4 introduces the discrete closed-loop system for simulation,
and Section 5 presents a short description of the Monte

Figure 1: Illustration of the perfusion reactor with 𝑁 media
inlet streams, a perfusion stream, and an outlet stream.

Carlo simulation framework. In Section 6, we discuss the
simulation results, and conclusions are made in Section 7.

2. Model for mAb fermentation
We consider a perfusion reactor for mAb fermentation.

The modeled perfusion reactor has a set of inlet streams,
a perfusion stream, an outlet stream, and adjustable reactor
temperature (the reactor has an ideal temperature controller).
The perfusion stream has a filter that only lets spend media
pass such that cells and mAbs are kept in the reactor. Factors
like dissolved oxygen concentration and pH are not included
in the model, but are part of the reactor operation and
kept at their specified values in experiments [34]. Figure
1 presents an overview of the reactor components included
in the model. The considered mAb fermentation model was
originally presented by Kumar et al. [34], and later the model
was introduced using a generic modeling methodology and
adapted for optimization purposes [45]. In this section, we
introduce the mAb fermentation model in terms of the
generic modeling methodology and extend the model with
diffusion terms.
2.1. Model of the perfusion reactor

We let  denote the set of components,  denote the
set of inlet streams, and  denote the set of reactions. We
assume that the density of the well-stirred reactor content is
constant. Then, the mass balances of the perfusion reactor
are [45],

d𝑉
d𝑡

= 𝑒⊤𝐹in − 𝐹out − 𝐹per , (1a)
d𝑚
d𝑡

= 𝐶in𝐹in − 𝑐𝐹out − 𝐶per𝑐𝐹per + 𝑅𝑉 . (1b)

𝑉 ∈ ℝ is the volume, 𝑒 ∈ ℝ|| is a vector of ones,
𝐹in ∈ ℝ|| are the inlet flow rates, 𝐹out ∈ ℝ is the outlet
flow rate, 𝐹per ∈ ℝ is the perfusion flow rate, 𝑚 ∈ ℝ||

are the component masses, 𝐶in ∈ ℝ||×|| contains the inlet
stream concentrations, 𝑐 = 𝑚∕𝑉 ∈ ℝ|| are the component
concentrations, 𝐶per ∈ ℝ||×|| is a diagonal matrix with
perfusion removal percentages, 𝑅 ∈ ℝ|| are the production
rates given as

𝑅 = 𝑆⊤𝑟, (2)
<Kaysfeld and Jørgensen>: Preprint submitted to Elsevier Page 2 of 15
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Table 1
The six stoichiometric reactions in the mAb fermentation model.

1. Cell division, 𝛼1,𝐺𝐺 +𝑋𝑣 ⟶ 2𝑋𝑣 + 𝛼1,𝑃𝑃 , 𝑟1,
2. Cell death, 𝑋𝑣 ⟶ 𝑋𝑑 , 𝑟2,
3. Maintenance 1, 𝛼3,𝐺𝐺 +𝑋𝑣 ⟶ 𝑋𝑣 + 𝛼3,𝑃𝑃 , 𝑟3,
4. Maintenance 2, 𝑋𝑣 ⟶ 𝑋𝑣 + 𝛼4,𝐿𝐿, 𝑟4,
5. Lactate production 1, 𝑋𝑣 ⟶ 𝑋𝑣 + 𝛼5,𝐿𝐿, 𝑟5,
6. Lactate production 2, 𝑋𝑣 ⟶ 𝑋𝑣 + 𝛼6,𝐿𝐿, 𝑟6.

with 𝑆 ∈ ℝ||×|| being the stoichiometric matrix, and
𝑟 = 𝑟(𝑐) ∈ ℝ|| being the reaction rates.

The system of ODEs (1) represents mass balances of the
perfusion reactor. This generic perfusion reactor model is
completed for a specific reaction system by providing the
kinetic and stoichiometric information, 𝑟 and 𝑆. In addition,
to conduct a simulation with the model, we must provide
the operational information, 𝐶in, 𝐶per , and open- or closed-
loop profiles for the flow rates (𝐹in, 𝐹per , and 𝐹out) and the
temperature (𝑇 ).
2.2. Stoichiometry and kinetics for mAb

fermentation
The reactor contains five modeled components,

 = {𝑋𝑣, 𝑋𝑑 , 𝐺, 𝐿, 𝑃 }, (3)
where 𝑋𝑣 are viable cells, 𝑋𝑑 are dead cells, 𝐺 is glucose, 𝐿
is lactate, and 𝑃 is the product (mAb). The process consists
of six reactions,

 = {1, 2, 3, 4, 5, 6}. (4)
Table 1 presents the six reactions, which are represented by
the stoichiometric matrix,

𝑆 =

X𝑣 X𝑑 G L P
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

1 0 −𝛼1,𝐺 0 𝛼1,𝑃 1
−1 1 0 0 0 2
0 0 −𝛼3,𝐺 0 𝛼3,𝑃 3
0 0 0 𝛼4,𝐿 0 4
0 0 0 𝛼5,𝐿 0 5
0 0 0 𝛼6,𝐿 0 6

. (5)

The reaction rates are given as
𝑟1 = 𝜇𝑋(𝑐, 𝑇 )𝑐𝑋𝑣

, 𝑟2 = 𝜇𝐷(𝑇 )𝑐𝑋𝑣
, (6a)

𝑟3 = 𝜇𝑚1
𝑐𝑋𝑣

, 𝑟4 = 𝜇𝑚2
𝑐𝑋𝑣

, (6b)
𝑟5 = 𝜇𝐿,𝑝1 (𝑐, 𝑇 )𝑐𝑋𝑣

, 𝑟6 = 𝜇𝐿,𝑝2 (𝑐)𝑐𝑋𝑣
. (6c)

We define a sigmoid function, 𝑠𝛾 , and a smooth maximum
approximation function, max𝛼 , applied in the specific rate

functions,

𝑠𝛾 (𝑐𝐺, 𝑐𝐺) =
1

1 + exp(−𝛾(𝑐𝐺 − 𝑐𝐺))
, (7a)

max𝛼(𝑥1, 𝑥2) =
𝑥1 + 𝑥2 +

√

(𝑥1 − 𝑥2)2 + 𝛼2

2
. (7b)

𝑐𝐺 is the value of half activation in the sigmoid function, 𝛾
determines the smoothness of the sigmoid function, and 𝛼
determines the smoothness of the maximum approximation.
The specific growth rate, 𝜇𝑋 , is

𝜇𝑋 = 𝜇𝑋,max𝑓𝑙𝑖𝑚𝑓𝐿,𝑖𝑛ℎ𝑓𝐺,𝑖𝑛ℎ𝑓𝑃 ,𝑖𝑛ℎ𝑓𝑡𝑒𝑚𝑝, (8)
where the limiting growth term, 𝑓𝑙𝑖𝑚, depends on the glu-
cose concentration and the cell density, 𝑓𝐿,𝑖𝑛ℎ is a lactate
inhibition term, 𝑓𝐺,𝑖𝑛ℎ is a glucose inhibition term, 𝑓𝑃 ,𝑖𝑛ℎ is
a product inhibition term, and 𝑓𝑡𝑒𝑚𝑝 models the temperature
dependency of the specific growth rate. The terms are

𝑓𝑙𝑖𝑚 =
𝑐𝐺

𝐾𝐺𝑐𝑋𝑣
+ 𝑐𝐺

, (9a)

𝑓𝐿,𝑖𝑛ℎ =
𝐾𝐼,𝐿

𝐾𝐼,𝐿 + 𝑐𝐿
, (9b)

𝑓𝐺,𝑖𝑛ℎ = 1 − 𝑠𝛾 (𝑐𝐺, 𝑐𝐺), (9c)
𝑓𝑃 ,𝑖𝑛ℎ = max𝛼(0, 1 −𝐾𝐼,𝑃 𝑐𝑃 ), (9d)
𝑓𝑡𝑒𝑚𝑝 = exp

(

−
𝐾1
𝑇

)

. (9e)

The specific death rate, 𝜇𝐷, is
𝜇𝐷 = 𝜇𝐷,max𝑓𝐷,𝑡𝑒𝑚𝑝, (10)

where 𝑓𝐷,𝑡𝑒𝑚𝑝 is the specific death rate dependency on the
temperature given as

𝑓𝐷,𝑡𝑒𝑚𝑝 = exp
(

−
𝐾2
𝑇

)

. (11)

The remaining specific rate functions are
𝜇𝑚1

= 𝜇̄𝑚1
, (12a)
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𝜇𝑚2
= 𝜇̄𝑚2

𝐿max,2 − 𝑐𝐿
𝐿max,2

, (12b)

𝜇𝐿,𝑝1 = 𝜇𝑋
𝐿max,1 − 𝑐𝐿

𝐿max,1
, (12c)

𝜇𝐿,𝑝2 = 𝜇̄𝐿,𝑝2
𝐿max,1 − 𝑐𝐿

𝐿max,1
. (12d)

The rate functions (12) are the result of cell metabolism
considerations [34].
Remark 1. In previous work [45], we applied the following
maximum approximation,

max𝛼(𝑥1, ..., 𝑥𝑛) =
∑𝑛

𝑖=1 𝑥𝑖 exp(𝛼𝑥𝑖)
∑𝑛

𝑖=1 exp(𝛼𝑥𝑖)
. (13)

However, we observed that the approximation lead to slight
negativity of max𝛼(0, 1 − 𝐾𝐼,𝑃 𝑐𝑃 ), when 1 − 𝐾𝐼,𝑃 𝑐𝑃 ap-
proaches 0. Consequently, we apply (7b) in this work rather
than (13) as in previous work.

2.3. Operation of the perfusion reactor
We operate the perfusion reactor with two inlet flow

streams, a perfusion stream, and a single outlet stream.
Additionally, the perfusion reactor temperature, 𝑇 , can be
regulated between a lower and an upper bound. We let 𝑆𝑊denote a pure water inlet stream and 𝑆𝐺 denote a glucose
inlet stream. Thus, we define the set of inlet streams as

 = {𝑆𝑊 , 𝑆𝐺}, (14)
and define the inlet stream flow rate vector as

𝐹in =
[

𝐹𝑊
𝐹𝐺

]

. (15)

The water stream contains pure water and the glucose stream
contains dissolved glucose with concentration, 𝑐𝐺,in. Ac-
cordingly, the inlet concentration matrix is

𝐶in =

⎡

⎢

⎢

⎢

⎢

⎣

0 0
0 0
0 𝑐𝐺,in
0 0
0 0

⎤

⎥

⎥

⎥

⎥

⎦

. (16)

The perfusion stream only removes spend media, i.e., glu-
cose and lactate. We assume complete filtration of cells and
product, and no filtration of glucose and lactate. Therefore,
the perfusion matrix is

𝐶per = diag ([0 0 1 1 0
])

. (17)
The two inlet flow rates, 𝐹𝑊 and 𝐹𝐺, the perfusion flow rate,
𝐹per , the outlet flow rate, 𝐹out , and the temperature of the
reactor, 𝑇 , are considered as manipulated variables.

2.4. Stochastic continuous-discrete system
We express stochastic variations in the reactor model

with a diffusion term. The result is an SDE model for the
reactor. We formulate the system as a stochastic continuous-
discrete system in the form
𝑥(𝑡0) = 𝑥0, (18a)

d𝑥(𝑡) =

drift term
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑓 (𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑝)d𝑡+

diffusion term
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜎(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑝)d𝜔(𝑡),

(18b)

𝑦(𝑡𝑖) = 𝑔(𝑡𝑖, 𝑥(𝑡𝑖), 𝑝) + 𝑣(𝑡𝑖). (18c)
𝑥 ∈ ℝ𝑛𝑥 are the states, 𝑥0 ∈ ℝ𝑛𝑥 is the initial condition,
𝑢 ∈ ℝ𝑛𝑢 are the manipulated variables, 𝑝 ∈ ℝ𝑛𝑝 are the
parameters, 𝜎 ∈ ℝ𝑛𝑥×𝑛𝑤 is the diffusion matrix function,
𝜔(𝑡) ∈ ℝ𝑛𝑤 is a standard Wiener process, i.e., d𝜔(𝑡) ∼
𝑁𝑖𝑖𝑑(0, 𝐼d𝑡), 𝑦𝑖 = 𝑦(𝑡𝑖) ∈ ℝ𝑛𝑦 are measurements at discrete
times, and 𝑣𝑖 = 𝑣(𝑡𝑖) ∼ 𝑁𝑖𝑖𝑑(0, 𝑅𝑣(𝑡𝑖)) is measurement
noise. 𝑅𝑣(𝑡𝑖) is the covariance matrix for the measurement
noise.

The drift function, 𝑓 (⋅), is the right hand side of the ODE
model (1) and the diffusion function, 𝜎(⋅), models the effect
of random variations on the states. The SDE formulation of
the reactor model is

d𝑉 (𝑡) = (𝑒⊤𝐹in − 𝐹out − 𝐹per)d𝑡 + 𝜎𝑉 d𝜔𝑉 (𝑡), (19a)
d𝑚(𝑡) = (𝐶in𝐹in − 𝑐𝐹out − 𝐶per𝑐𝐹per + 𝑅𝑉 )d𝑡

+ 𝜎𝑚d𝜔𝑚(𝑡).
(19b)

𝜔𝑉 (𝑡) and 𝜔𝑚(𝑡) are standard Wiener processes such that
d𝜔𝑉 (𝑡) ∼ 𝑁𝑖𝑖𝑑(0, d𝑡) and d𝜔𝑚(𝑡) ∼ 𝑁𝑖𝑖𝑑(0, 𝐼d𝑡). Therefore,
the states and manipulated variables for the mAb fermenta-
tion process are

𝑥 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑉
𝑚𝑋𝑣
𝑚𝑋𝑑
𝑚𝐺
𝑚𝐿
𝑚𝑃

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑢 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐹𝑊
𝐹𝐺
𝐹per
𝐹out
𝑇

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (20)

The units are as follows: 𝑉 [L], 𝑚𝑋𝑣
[cells ×109], 𝑚𝑋𝑑

[cells
×109], 𝑚𝐺 [g], 𝑚𝐿 [g], 𝑚𝑃 [g], 𝐹𝑊 [L/min], 𝐹𝐺 [L/min],
𝐹per [L/min], 𝐹out [L/min], and 𝑇 [K].

We assume that the volume, 𝑉 , the glucose concentra-
tion, 𝑐𝐺, and the lactate concentration, 𝑐𝐿, are measured with
sampling time 𝑇𝑠, i.e., the measurement vector is

𝑦 =
⎡

⎢

⎢

⎣

𝑉
𝑐𝐺
𝑐𝐿

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑉
𝑚𝐺∕𝑉
𝑚𝐿∕𝑉

⎤

⎥

⎥

⎦

, (21)

with diagonal measurement covariance, 𝑅𝑣, given as
𝑅𝑣 = diag

([

𝜎2𝑦,𝑉 𝜎2𝑦,𝐺 𝜎2𝑦,𝐿
])

. (22)
Similarly, we assume independent state diffusion for the
viable cells,𝑚𝑋𝑣

, the glucose mass,𝑚𝐺, and the lactate mass,
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Table 2
Overview of the model equations for the deterministic and stochastic perfusion reactor and the mAb kinetics and stoichiometry.

ODE and SDE model for perfusion reactor

ODE d𝑉
d𝑡

= 𝑒⊤𝐹in − 𝐹out − 𝐹per
d𝑚
d𝑡

= 𝐶in𝐹in − 𝑐𝐹out − 𝐶per𝑐𝐹per + 𝑅𝑉
SDE d𝑉 (𝑡) = (𝑒⊤𝐹in − 𝐹out − 𝐹per)d𝑡 + 𝜎𝑉 d𝜔𝑉 (𝑡)

d𝑚(𝑡) = (𝐶in𝐹in − 𝑐𝐹out − 𝐶per𝑐𝐹per + 𝑅𝑉 )d𝑡 + 𝜎𝑚d𝜔𝑚(𝑡)
Production rate 𝑅 = 𝑆⊤𝑟

Kinetics and stoichiometry for monoclonal antibody fermentation

States 𝑥 =
[

𝑉 𝑚𝑋𝑣
𝑚𝑋𝑑

𝑚𝐺 𝑚𝐿 𝑚𝑃
]⊤

Stoichiometry 𝑆 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 −𝛼1,𝐺 0 𝛼1,𝑃
−1 1 0 0 0
0 0 −𝛼3,𝐺 0 𝛼3,𝑃
0 0 0 𝛼4,𝐿 0
0 0 0 𝛼5,𝐿 0
0 0 0 𝛼6,𝐿 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Kinetics 𝑟 =
[

𝜇𝑋(𝑐, 𝑇 )𝑐𝑋𝑉
𝜇𝐷(𝑇 )𝑐𝑋𝑉

𝜇𝑚1
𝑐𝑋𝑉

𝜇𝑚2
𝑐𝑋𝑉

𝜇𝐿,𝑝1 (𝑐, 𝑇 )𝑐𝑋𝑉
𝜇𝐿,𝑝2 (𝑐)𝑐𝑋𝑉

]⊤

Operation 𝑢 =
[

𝐹𝑊 𝐹𝐺 𝐹per 𝐹out 𝑇
]⊤

𝐶in =
[

0 0 0 0 0
0 0 𝑐𝐺,in 0 0

]⊤

𝐶per = diag
([

0 0 1 1 0
])

Diffusion 𝜎 =
⎡

⎢

⎢

⎣

0 𝜎𝑋𝑣
0 0 0 0

0 0 0 𝜎𝐺 0 0
0 0 0 0 𝜎𝐿 0

⎤

⎥

⎥

⎦

⊤

𝑚𝐿, resulting in the following diffusion matrix

𝜎 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0
𝜎𝑋𝑣

0 0
0 0 0
0 𝜎𝐺 0
0 0 𝜎𝐿
0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (23)

where
𝜎𝑋𝑣

= 𝜎̄𝑋𝑣
𝑐𝑋𝑣

, 𝜎𝐺 = 𝜎̄𝐺𝑐𝐺, 𝜎𝐿 = 𝜎̄𝐿𝑐𝐿, (24)
with 𝜎̄𝑋𝑣

, 𝜎̄𝐺, and 𝜎̄𝐿 being parameters for estimation.
2.5. Model overview

Table 2 presents an overview of the complete model for
the perfusion reactor. The model consists of mass balances
expressed as ODEs and SDEs, stoichiometry, and a kinetic
model.

3. Economic nonlinear model predictive
controller
We develop an ENMPC for closed-loop control of the

mAb fermentation process [27, 28]. The ENMPC consists

of a CD-EKF for state estimation [36, 44, 54, 59, 60] and a
regulator expressed as an economic optimal control problem
(OCP) based on mAb and glucose prices.
3.1. State estimator

At time 𝑡𝑖, the CD-EKF receives the measurement vector,
𝑦𝑖, the previous actual vector of manipulated variables, 𝑢𝑖−1,
and the previous mean-covariance pair, (𝑥̂𝑖−1|𝑖−1, 𝑃𝑖−1|𝑖−1).The CD-EKF consists of a one-step prediction step and a
filtering step. The result of the CD-EKF is the filtered state
estimate, 𝑥̂𝑖|𝑖, and its covariance, 𝑃𝑖|𝑖. In this way, we use
the actually implemented 𝑢𝑖−1 for computation of the one-
step prediction, 𝑥̂𝑖|𝑖−1, and the filtered state, 𝑥̂𝑖|𝑖. In the first
iteration, we specify 𝑥̂−1|−1, 𝑃−1|−1, and 𝑢−1.
3.1.1. Prediction

Given the previous mean-covariance pair, 𝑥̂𝑖−1|𝑖−1 and
𝑃𝑖−𝑖|𝑖−1, the CD-EKF computes the state-covariance one-
step prediction,

𝑥̂𝑖|𝑖−1 = 𝑥̂𝑖−1(𝑡𝑖), 𝑃𝑖|𝑖−1 = 𝑃𝑖−1(𝑡𝑖). (25)
The one-step prediction is obtained by numerical solution of

d
d𝑡
𝑥̂𝑖−1(𝑡) = 𝑓 (𝑡, 𝑥̂𝑖−1(𝑡), 𝑢𝑖−1, 𝑝), (26a)
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d
d𝑡
𝑃𝑖−1(𝑡) = 𝐴𝑖−1(𝑡)𝑃𝑖−1(𝑡) + 𝑃𝑖−1(𝑡)𝐴𝑖−1(𝑡)⊤

+ 𝜎𝑖−1(𝑡)𝜎𝑖−1(𝑡)⊤,
(26b)

for 𝑡𝑖−1 ≤ 𝑡 ≤ 𝑡𝑖 and

𝐴𝑖−1(𝑡) =
𝜕
𝜕𝑥

𝑓 (𝑡, 𝑥̂𝑖−1(𝑡), 𝑢𝑖−1, 𝑝), (27a)
𝜎𝑖−1(𝑡) = 𝜎(𝑡, 𝑥̂𝑖−1(𝑡), 𝑢𝑖−1, 𝑝), (27b)

with initial condition,
𝑥̂𝑖−1(𝑡𝑖−1) = 𝑥̂𝑖−1|𝑖−1, 𝑃𝑖−1(𝑡𝑖−1) = 𝑃𝑖−1|𝑖−1. (28a)

3.1.2. Filtering
From the measurement, 𝑦𝑖, the CD-EKF computes the

filtered state estimate, 𝑥̂𝑖|𝑖, as

𝑦̂𝑖|𝑖−1 = 𝑔(𝑥̂𝑖|𝑖−1, 𝑝), 𝐶𝑖 =
𝜕
𝜕𝑥

𝑔(𝑥̂𝑖|𝑖−1, 𝑝), (29a)
𝑒𝑖 = 𝑦𝑖 − 𝑦̂𝑖|𝑖−1, 𝑅𝑒,𝑖 = 𝑅𝑖 + 𝐶𝑖𝑃𝑖|𝑖−1𝐶

⊤
𝑖 , (29b)

𝑥̂𝑖|𝑖 = 𝑥̂𝑖|𝑖−1 +𝐾𝑖𝑒𝑖, 𝐾𝑖 = 𝑃𝑖|𝑖−1𝐶
⊤
𝑖 𝑅

−1
𝑒,𝑖 , (29c)

where 𝑅𝑖 = 𝑅𝑣(𝑡𝑖) is the covariance matrix for the mea-
surement noise. The filtered covariance estimate, 𝑃𝑖|𝑖, is then
computed as

𝑃𝑖|𝑖 = 𝑃𝑖|𝑖−1 −𝐾𝑖𝑅𝑒,𝑖𝐾
⊤
𝑖 (30a)

= (𝐼 −𝐾𝑖𝐶𝑖)𝑃𝑖|𝑖−1(𝐼 −𝐾𝑖𝐶𝑖)⊤ +𝐾𝑖𝑅𝑖𝐾
⊤
𝑖 , (30b)

where (30b) is the Joseph stabilizing form [61]. The form
(30b) is preferred, since it ensures symmetry and positive
semi-definiteness of the filtered covariance.
3.2. Regulator

The ENMPC solves the regulator OCP at time 𝑡𝑖 using
the filtered state estimate, 𝑥̂𝑖|𝑖, computed by the CD-EKF.
The solution of the OCP is the optimal predicted state and
input trajectories in a finite horizon. The manipulated vari-
ables, 𝑢(𝑡), corresponding to the first period, 𝑡 ∈ [𝑡𝑖; 𝑡𝑖+𝑇𝑠[,is implemented. The ENMPC resolves the OCP once the
estimator provides the next state estimate. We denote the
control and prediction horizon, 𝑇ℎ, and let 𝑡𝑓,𝑖 = 𝑡𝑖 + 𝑇ℎ.
The regulator OCP is,

min
[𝑢(𝑡);𝑥(𝑡)]

𝑡𝑓 ,𝑖
𝑡𝑖

𝜑𝑖 = 𝜑P,𝑖 + 𝜑G,𝑖, (31a)

s.t. 𝑥(𝑡𝑖) = 𝑥̂𝑖|𝑖, (31b)
𝑥̇(𝑡) = 𝑓 (𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑝), 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑓,𝑖, (31c)
𝑥min ≤ 𝑥(𝑡) ≤ 𝑥max, 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑓,𝑖, (31d)
𝑢min ≤ 𝑢(𝑡) ≤ 𝑢max, 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑓,𝑖. (31e)

The terms in the economic objective function are
𝜑P,𝑖 = −𝑃P

(

𝑚𝑃 (𝑡𝑓,𝑖) − 𝑚𝑃 (𝑡𝑖)
)

, (32)
𝜑G,𝑖 = 𝑃G ∫

𝑡𝑓,𝑖

𝑡𝑖
𝑐𝐺,in𝐹𝐺(𝑡)d𝑡, (33)

where 𝑃P [USD/g] is the price of product (mAb) and 𝑃G[USD/g] is the price of glucose. The state and input bound
constraints are given as,

𝑥min =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑉min
𝑚𝑋𝑣,min
𝑚𝑋𝑑 ,min
𝑚𝐺,min
𝑚𝐿,min
𝑚𝑃 ,min

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑥max =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑉max
𝑚𝑋𝑣,max
𝑚𝑋𝑑 ,max
𝑚𝐺,max
𝑚𝐿,max
𝑚𝑃 ,max

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (34a)

𝑢min =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐹𝑊 ,min
𝐹𝐺,min
𝐹per,min
𝐹out,min
𝑇min

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑢max =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐹𝑊 ,max
𝐹𝐺,max
𝐹per,max
𝐹out,max
𝑇max

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (34b)

We split the horizon in 𝑁 equidistant control intervals, i.e.,
𝑇ℎ = 𝑁𝑇𝑠, and assume zero-order-hold parameterization of
the manipulated variables,

𝑢(𝑡) = 𝑢𝑘, 𝑘 = 0, ..., 𝑁 − 1. (35)
We discretize the OCP (31) with a direct multiple shooting
approach, where we apply an explicit classical Runge-Kutta
numerical scheme with 𝑁𝑐 steps for state integration [62].
To solve the discretized OCP, we apply a Riccati recursion
based sequential quadratic programming (SQP) algorithm
implemented in C. The algorithm is thread-safe. Conse-
quently, it can be applied efficiently in parallel Monte Carlo
simulations [44, 63–66]. Thread-safety of the SQP algorithm
ensures that the algorithm can be called in parallel to solve
multiple problems with scaling as observed in previous
work [36, 44]. Lack of thread-safety would result in poor
parallel scaling and make parallel Monte Carlo simulations
using the SQP algorithm computationally inefficient (slow).
We ensure thread-safety by avoiding any parallelism inside
the SQP algorithm and by careful distribution of memory
allocated prior to calling the optimization software. Addi-
tionally, the SQP algorithm is BLAS dependent, and we link
to BLASFEO that is a thread-safe BLAS library [67, 68].

4. Closed-loop simulation procedure
In this section, we describe the procedure for closed-

loop simulation. We consider a sample time, 𝑇𝑠, a simulation
period, 𝑇sim = 𝑁sim𝑇𝑠, the initial time, 𝑡0, and the final time,
𝑡𝑓 = 𝑡0+𝑇sim. In each control interval, [𝑡𝑖, 𝑡𝑖+1 = 𝑡𝑖+𝑇𝑠[with
𝑖 = 0, 1,… , 𝑁sim−1, we apply the Euler-Maruyama method
with 𝑁𝑠 steps of equal size, Δ𝑡, for integration of the SDE
system (18b) [69]. The discretized stochastic continuous-
discrete system (18) is written as

𝑥𝑖+1 = Φ(𝑡𝑖, 𝑥𝑖, 𝑢𝑖, 𝑤𝑖, 𝑝), (36a)
𝑦𝑖 = 𝑔(𝑡𝑖, 𝑥𝑖, 𝑝) + 𝑣𝑖. (36b)

𝑥𝑖 = 𝑥(𝑡𝑖), 𝑢𝑖 = 𝑢(𝑡𝑖), 𝑣𝑖 = 𝑣(𝑡𝑖), and the process noise,
𝑤𝑖, is 𝑁𝑠 realizations of Δ𝜔𝑖 ∼ 𝑁𝑖𝑖𝑑(0, 𝐼Δ𝑡). The operator,
Φ(𝑡𝑖, 𝑥𝑖, 𝑢𝑖, 𝑤𝑖, 𝑝), is defined by the procedure:
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1. Let 𝑤𝑖 = [Δ𝜔𝑖,0; Δ𝜔𝑖,1; ...; Δ𝜔𝑖,𝑁𝑠−1], where Δ𝜔𝑖,𝑘 ∼
𝑁𝑖𝑖𝑑(0, 𝐼Δ𝑡) for 𝑘 = 0, 1,… , 𝑁𝑠 − 1.

2. Set the initial conditions:
𝑡𝑖,0 = 𝑡𝑖, (37a)
𝑥𝑖,0 = 𝑥𝑖. (37b)

3. Compute the next states using the Euler-Maruyama
method for 𝑘 = 0, 1,… , 𝑁𝑠 − 1:

𝑡𝑖,𝑘+1 = 𝑡𝑖,𝑘 + Δ𝑡, (38a)
𝑥𝑖,𝑘+1 = 𝑥𝑖,𝑘 + 𝑓 (𝑡𝑖,𝑘, 𝑥𝑖,𝑘, 𝑢𝑖, 𝑝)Δ𝑡

+ 𝜎(𝑡𝑖,𝑘, 𝑥𝑖,𝑘, 𝑢𝑖, 𝑝)Δ𝜔𝑖,𝑘.
(38b)

4. Compute the next time, 𝑡𝑖+1, and state, 𝑥𝑖+1, by
𝑡𝑖+1 = 𝑡𝑖,𝑁𝑠

, (39a)
𝑥𝑖+1 = 𝑥𝑖,𝑁𝑠

. (39b)
The ENMPC can similarly be expressed as [36]

𝑥𝑐𝑖+1 = 𝜅(𝑡𝑖, 𝑥𝑐𝑖 , 𝑦𝑖+1, 𝑢𝑖, 𝑝𝑐), (40a)
𝑢𝑖 = 𝜆(𝑡𝑖, 𝑥𝑐𝑖 , 𝑝𝑐), (40b)

where 𝑥𝑐𝑖 are estimated states, 𝑝𝑐 are the controller parame-
ters, 𝜅(⋅) is the CD-EKF for state estimation, and 𝜆(⋅) is the
regulator. A closed-loop simulation can be written as [36]

𝑦𝑖 = 𝑔(𝑡𝑖, 𝑥𝑖, 𝑝) + 𝑣𝑖, (Measurement) (41a)
𝑥𝑐𝑖 = 𝜅(𝑡𝑖−1, 𝑥𝑐𝑖−1, 𝑦𝑖, 𝑢𝑖−1, 𝑝𝑐), (Estimation) (41b)
𝑢𝑖 = 𝜆(𝑡𝑖, 𝑥𝑐𝑖 , 𝑝𝑐), (Regulation) (41c)

𝑥𝑖+1 = Φ(𝑡𝑖, 𝑥𝑖, 𝑢𝑖, 𝑤𝑖, 𝑝). (Simulation) (41d)

5. Monte Carlo simulation
We apply a parallelized Monte Carlo simulation toolbox

implemented in C to quantify uncertainties in the mAb
fermentation process [36, 44]. The toolbox is designed for
parallel Monte Carlo simulation of closed-loop systems on
shared memory architectures. We evaluate the performance
of the closed-loop fermentation process by two performance
indicators

Φ1 = 𝑚𝑃 (𝑡𝑓 ) − 𝑚𝑃 (𝑡0), (42a)
Φ2 = 𝑃P

(

𝑚𝑃 (𝑡𝑓 ) − 𝑚𝑃 (𝑡0)
)

− 𝑃G

𝑁sim−1
∑

𝑘=0
𝑐𝐺,in𝐹𝐺,𝑘𝑇𝑠,

(42b)

where Φ1 is the mAb production of the fermentation and Φ2is the profit of the fermentation. We measure the uncertainty
of the fermentation by the range computed by

Range = 𝑥max − 𝑥min. (43)
𝑥max is the largest value in the data set and 𝑥min is the
smallest value.

Figure 2: Illustration of the ENMPC horizon and internal steps.
The control and prediction horizon is 24 h. The ENMPC applies
𝑁𝑐 = 5 classical Runge-Kutta steps for state integration in
every control interval of size 𝑇𝑠 = 1 h.

6. Results
This section presents the results of the simulation case

study. We present a stochastic closed-loop simulation with
the ENMPC and an uncertainty quantification study based
on Monte Carlo simulation for the fermentation process. The
uncertainty quantification study includes a comparison to a
base case strategy [34]. We consider 14 days fermentation in
a small-scale perfusion reactor with an upper volume limit
of 8 L. We assume that measurements are available with
sampling time 𝑇𝑠 = 60 min, and we apply 𝑁𝑠 = 20 Euler-
Maruyama steps for simulation between samples. Table 3
presents a complete overview of the model parameters,
operational parameters, and the simulation parameters for
all simulations conducted in this case study. In the Monte
Carlo simulation study, we generate 10.000 realizations of
the process noise sequence and 1 realization of the mea-
surement noise. These realizations are used to compare the
performance of different controllers.

We conduct the simulations using a standard Linux
workstation with a 6 core Intel® Xeon® W-2235 CPU with
frequency 3.80 GHz.
6.1. Stochastic closed-loop simulations with the

ENMPC
The ENMPC has a discrete control and prediction hori-

zon 𝑁 = 24, and it applies 𝑁𝑐 = 5 classical Runge-Kutta
internal steps for state integration in each control interval
of size 𝑇𝑠. Figure 2 presents an overview of the ENMPC
horizon and internal steps. Since 𝑇𝑠 = 60.0 min, the control
and prediction horizon of the ENMPC is 𝑇ℎ = 24.0 h. In
the ENMPC objective function, we apply the glucose price
𝑃G = 5.8 × 10−4 USD/g [70] and the price for the mAb,
Remicade (infliximab), 𝑃P = 1.239 × 104 USD/g [71].
We point out that these prices can be updated without loss
of generality. We initialize the CD-EKF state information,
𝑥̂−1|−1 and 𝑃−1|−1, using

𝑥̂−1|−1 =
[

5.1150 5.5149 1.0636

36.0652 0.3416 0.1720
]⊤ ,

(44a)

𝑃−1|−1 = diag([1.0; 1.0; 1.0; 10.0; 0.1; 0.1]). (44b)
𝑥̂−1|−1 is a sample from the distribution 𝑁(𝑥0, 𝑃−1,−1),where 𝑃−1|−1 is manually selected. Similarly, we choose
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Table 3
Model parameters, operational parameters, and simulation parameters for the mAb fermentation process in closed-loop.

Model parameters Operational parameters Simulation parameters
Parameters Value Unit Parameters Value Unit Parameters Value Unit
𝜇𝑋,𝑚𝑎𝑥 0.153 [min−1] 𝑐𝐺,in 32.5 [g/L] 𝑡0 0.0 [min]
𝜇𝐷,𝑚𝑎𝑥 3.955 ⋅ 10−5 [min−1] 𝐹min 0.0 [L/min] 𝑡𝑓 20, 160.0 [min]
𝜇̄𝑚1

1.0 [min−1] 𝐹max 0.02 [L/min] 𝑇𝑠 60.0 [min]
𝜇̄𝑚2

1.0 [min−1] 𝑇min 308.15 [K] 𝑁𝑠 20 [-]
𝜇̄𝐿,𝑝2 1.0 [min−1] 𝑇max 310.15 [K] 𝑉0 5.650 [L]
𝐾1 1689 [K] 𝑉min 4.0 [L] 𝑚𝑋𝑣 ,0 3.955 [cells×109]
𝐾2 524 [K] 𝑉max 8.0 [L] 𝑚𝑋𝑑 ,0 0.0 [cells×109]
𝐾𝐺 0.85 [g/(cells×109)] 𝑚𝑋𝑣 ,min −∞ [g] 𝑚𝐺,0 34.18 [g]
𝐾𝐼,𝐿 344 [g/L] 𝑚𝑋𝑣 ,max ∞ [g] 𝑚𝐿,0 0.678 [g]
𝐾𝐼,𝑃 6.88 × 10−1 [L/g] 𝑚𝑋𝑑 ,min −∞ [g] 𝑚𝑃 ,0 0.0 [g]
Lmax,1 628 [g/L] 𝑚𝑋𝑑 ,max ∞ [g] 𝑃P 1.239 × 104 [USD/g]
Lmax,2 0.5 [g/L] 𝑚𝐺,min 0.0 [g] 𝑃G 5.8 × 10−4 [USD/g]
𝑐𝐺 7.5 [g/L] 𝑚𝐺,max ∞ [g] 𝜎2

𝑦,𝑉 3.0 × 10−3 [-]
𝛾 10.0 [-] 𝑚𝐿,min 0.0 [g] 𝜎2

𝑦,𝐺 2.0 × 10−2 [-]
𝛼 0.1 [-] 𝑚𝐿,max ∞ [g] 𝜎2

𝑦,𝐿 2.0 × 10−3 [-]
𝛼1,𝐺 0.4876 [g/(cells×109)] 𝑚𝑃 ,min −∞ [g] 𝜎𝑋𝑣

1.0 × 10−2 [-]
𝛼1,𝑃 6.62 × 10−8 [g/(cells×109)] 𝑚𝑃 ,max ∞ [g] 𝜎𝐺 7.0 × 10−3 [-]
𝛼3,𝐺 1.102 × 10−4 [g/(cells×109)] 𝜎𝐿 3.0 × 10−2 [-]
𝛼3,𝑃 1.2 × 10−5 [g/(cells×109)] 𝑁 24 [-]
𝛼4,𝐿 1.89 × 10−5 [g/(cells×109)] 𝑁𝑐 5 [-]
𝛼5,𝐿 5.504 × 10−1 [g/(cells×109)] 𝑁sim 336 [-]
𝛼6,𝐿 1.0249 × 10−5 [g/(cells×109)]

𝑢−1 = [𝐹𝑊 ; 𝐹𝐺; 𝐹per ; 𝐹out ; 𝑇 ] = [0; 0; 0; 0; 310.15]. We
use this initialization in all simulations.

Figure 3 presents a single stochastic simulation of the
perfusion reactor in closed-loop. The ENMPC operates the
reactor in two phases, which we denote the growth phase
and the production phase. The production phase is initialized
when the ENMPC reduces the temperature to the lower
limit. Throughout the fermentation, the ENMPC operates
the perfusion reactor at the upper volume limit with no
outlet flow, i.e., 𝐹out = 0 L/min. In the growth phase,
the perfusion flow rate, 𝐹per , is kept at its maximum for
almost the entire phase. The ENMPC selects a combination
of the glucose flow rate, 𝐹𝐺, and the water flow rate, 𝐹𝑊 ,
to keep the volume at the upper limit while maintaining an
almost constant glucose concentration. The temperature is
kept constant at the upper limit in the growth phase. The
production phase is initialized after approximately 10 days
when the ENMPC lowers the temperature. Slightly before
the production phase, the flow rates, 𝐹𝑊 , 𝐹𝐺, and 𝐹per ,are decreased to a level sufficient to maintain the optimal
glucose concentration. This results in an increased lactate
concentration. Figure 4 shows the produced mAb over time.
We observe that the fermentation produces 24.82 g mAb
during the 14 days.

The closed-loop operation of the 14 days fermentation
requires 336 calls to the ENMPC. Figure 5 presents the CPU
time for each of the 336 ENMPC calls. We observe that the
worst case CPU time is approximately 0.12 s, which makes

the computation time negligible compared to the sampling
time of 60.0 min for real-time applications. However, the
CPU time is important because large-scale Monte Carlo
simulation studies consist of thousands of simulations that
are only tractable if the the controller computations are
sufficiently fast and efficient.
6.2. Productivity analysis

We analyze the productivity of the mAb fermenta-
tion process. The production of mAb is directly related
to the production of cells due to (5) and (6). Therefore,
the governing reaction rate for mAb production is 𝑟1 =
𝑟1(𝑐𝑋𝑣

, 𝑐𝐺, 𝑐𝐿, 𝑐𝑃 , 𝑇 ), which is a function of the viable
cell density, 𝑐𝑋𝑣

, the glucose concentration, 𝑐𝐺, the lactate
concentration, 𝑐𝐿, the product concentration, 𝑐𝑃 , and the
temperature, 𝑇 . Figure 6 shows the growth rate, 𝑟1, for the
simulation with the ENMPC. We observe that the ENMPC
initializes the production phase when the growth rate is
almost zeroed.

According to (8) and (9), the cell productivity is maxi-
mized for low 𝑐𝐿 and 𝑐𝑃 , and for high 𝑇 . Additionally, there
exist a maximizing trade-off between 𝑐𝑋𝑣

and 𝑐𝐺. We analyze
this trade-off by considering the 𝑐𝑋𝑣

and 𝑐𝐺 dependent terms
of 𝑟1. We define the function

𝑓 (𝑐𝑋𝑣
, 𝑐𝐺) = 𝑓𝑙𝑖𝑚𝑓𝐺,𝑖𝑛ℎ𝑐𝑋𝑣

. (45)
Figure 7 shows a heatmap of 𝑓 (𝑐𝑋𝑣

, 𝑐𝐺). We observe that
there exists an optimal glucose trajectory to maximize
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Figure 3: A single closed-loop simulation with the ENMPC. The blue lines are the simulation of the perfusion reactor, the red
lines are estimates from the CD-EKF together with the red shaded 95% confidence interval for the estimates, and the black
dots are measurements. We observe that the ENMPC operates the reactor in two phases: Growth phase (shaded green) and
production phase (shaded yellow). The production phase is initialized after approximately 10 days, where the controller decreases
the temperature.

𝑓 (𝑐𝐺, 𝑐𝑋𝑣
) depending on the viable cell density, and that the

ENMPC tracks the optimal glucose trajectory throughout the
fermentation.

Figure 3, Figure 6, and Figure 7 provide information
about the operational strategy computed by the ENMPC. In
the growth phase, the ENMPC maintains a high volume to
lower the lactate and mAb concentration. A high perfusion
flow rate also contributes to a low lactate concentration.
Additionally, the ENMPC tracks the optimal glucose con-
centration based on the current viable cell density. In the
production phase, the ENMPC decreases the temperature to
decrease cell death. Since the growth rate, 𝑟1, is zeroed by
product inhibition, the ENMPC lowers 𝐹𝐺, 𝐹𝑊 , and 𝐹per to
reduce the glucose consumption.

6.3. Uncertainty quantification for mAb
production

We perform an uncertainty quantification study for mAb
fermentation conducted in the perfusion reactor and com-
pare the ENMPC results to a base case open-loop strategy
[34]. The uncertainty quantification study is based on Monte
Carlo simulations using 10.000 fermentations for each of the
operating strategies, i.e. ENMPC and the base case.

Each of the 10.000 fermentations has different realiza-
tion of the process noise sequence, i.e., different standard
Wiener process realizations for the process noise, d𝜔(𝑡) ∼
𝑁𝑖𝑖𝑑(0, 𝐼d𝑡).Figure 8 presents distributions for Φ1 and Φ2, (42),
based on 10.000 Monte Carlo simulations. We observe that
the distributions for the mAb production and the profit are
very similar because the glucose price is much smaller
than the price of mAb. Table 4 presents statistical data for
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Table 4
Statistical data for the mAb production and the profit based on 10.000 closed-loop Monte Carlo simulations. The profit numbers
(except percentages) are ×104. The increase in percentage is relative to the base case, i.e., (𝑥ENMPC − 𝑥base case)∕𝑥base case.

mAb production
Mean min max Range Std 95% CI

ENMPC 23.89 [g] 18.83 [g] 31.13 [g] 12.29 [g] 1.59 [g] [20.78, 27.04] [g]
Base case 15.68 [g] 12.69 [g] 20.56 [g] 7.87 [g] 0.99 [g] [13.75, 17.61] [g]
Increase 52 [%] 48 [%] 51 [%] 56 [%] 62 [%] [51, 53] [%]

Profit ×𝟏𝟎𝟒

Mean min max Range Std 95% CI
ENMPC 10.18 [USD] 8.02 [USD] 13.26 [USD] 5.24 [USD] 0.68 [USD] [8.85, 11.51] [USD]
Base case 6.68 [USD] 5.41 [USD] 8.76 [USD] 3.35 [USD] 0.42 [USD] [5.86, 7.50] [USD]
Increase 52 [%] 48 [%] 51 [%] 56 [%] 62 [%] [51, 53] [%]

Figure 4: The mAb production over time for one closed-loop
simulation sample. The blue line is the simulation, the red line
is the CD-EKF estimate, and the red shaded area is a 95%
confidence interval for the CD-EKF estimation. The perfusion
reactor produces 24.82 g mAb in 14 days.

the uncertainty quantification study. We observe that the
ENMPC increases the mean mAb production and profit by
52% at the cost of a 56% range (uncertainty) increase. We
expect the uncertainty increase to be a result of the ENMPC
operating the perfusion reactor close to the point of glucose
inhibition. We observe no overlap in the 95% confidence in-
tervals indicating that there are a high statistical probability
for the ENMPC to produce more mAb than the base case
operational strategy. We point out that the fermentation has
multiple economic factors that are not taken into account in
the current ENMPC, e.g., the price of other components than
glucose in the feed medium. Figure 9 shows the CPU time
distribution for all calls to the ENMPC during the 10.000
Monte Carlo simulation, i.e., 336 ⋅ 10.000 = 3.36 ⋅ 106 calls.
We observe that 0.1% of the CPU times are above 0.35 s and
that the worst case CPU time in 10.000 simulations is 3.2 s.

Figure 10 shows the reaction rates 𝑟1 and 𝑟3 together with
the product production rate, 𝑅𝑃 , and the produced mAb over

Figure 5: CPU time for ENMPC calls in one closed-loop
simulation sample.

time for the 10.000 Monte Carlo simulations. We observe
a period between approximately day 9 and day 11, where
some simulations are in the growth phase and some are in
the production phase. This is explained by 𝑟1 approaching
0 at different points in time. In almost all simulations, 𝑟1 is
almost zeroed after 10 days. We observe uncertainties in the
production rate, 𝑅𝑃 , which results in mAb uncertainties in
the end of the fermentation as observed in Figure 8.

Figure 11 presents distributions for the mAb production
with three different ENMPC horizons, 𝑁 = 12, 𝑁 = 24,
and 𝑁 = 48. We observe that the horizon does not have a
notable impact on the mAb production. This is explained by
the optimal operation strategy, computed by the ENMPC,
following a few simple operational insights. In the next
section, we elaborate on these insights.
6.4. Key insights

The case study with ENMPC provides a number of key
insights for optimal operation of the perfusion reactor. Table
5 provides an overview of the insights, where we point out
that the optimal glucose concentration significantly depends
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Figure 6: The growth rate, 𝑟1, for one ENMPC closed-loop
simulation sample. The shaded green area shows the growth
phase and the shaded yellow area shows the production phase.
We observe that the ENMPC initializes the production phase
when the growth rate is almost zero.

0
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Figure 7: Heatmap of 𝑓 (𝑐𝑋𝑣
, 𝑐𝐺) = 𝑓𝑙𝑖𝑚𝑓𝐺,𝑖𝑛ℎ𝑐𝑋𝑣

. The purple line
is the (𝑐𝑋𝑣

, 𝑐𝐺)-trajectory that maximizes 𝑓 (𝑐𝑋𝑣
, 𝑐𝐺). The blue

line is one ENMPC closed-loop simulation sample. We observe
that the ENMPC attempts to track the optimal 𝑐𝐺 curve as
𝑐𝑋𝑣

increases throughout the fermentation.

on 𝑐𝐺 and 𝛾 in the glucose inhibition term (9c). The observed
key insights have similarities to those observed by Srini-
vasan et al. [72]. We apply the ’from-simple-via-complex-to-
lucid’ approach and use the key insights to develop a simple
controller design [58]. We assume that the production phase
is always initialized after 10 days, which is motivated by
Figure 10. A PI controller selects the glucose inlet flow rate,
𝐹𝐺, to track 𝑐𝐺 = 7.0 g/L. In the growth phase, we select
𝐹𝑊 = 𝐹per − 𝐹𝐺 such that the volume is kept constant,
and similarly in the production phase, we select 𝐹per = 𝐹𝐺to ensure a constant volume. Alternatively, a PI controller
could compute 𝐹𝑊 and 𝐹per to reduce possible variations in
the volume.

We apply the Monte Carlo simulation framework to
quantify the performance of the simple controller. Figure 12
presents distributions for the mAb production in closed-loop
with the ENMPC and the simple controller. We observe that
the two controllers have practically identical performance.

Table 5
Manipulated variables key insights for optimal operation of the
perfusion reactor.

Input Growth phase Production phase
𝐹𝑊 Selected based on 𝐹𝐺

and 𝐹per such that the
volume is constant at
the upper limit.

Set to zero.

𝐹𝐺 Selected such that the
glucose concentration,
𝑐𝐺, is almost constant
at 7.0 g/L.

Same operation as in
the growth phase.

𝐹per Fixed at the upper limit. Selected equal to 𝐹𝐺
such that the volume is
constant at the upper
limit.

𝐹out Set to zero. Set to zero.
𝑇 Fixed at the upper limit. Fixed at the lower limit.

However, the computation time on 6 cores for the two
uncertainty quantification studies are approximately 6.0 h
for the ENMPC and approximately 1.0 s for the simple
controller. To point out the importance of parallel computing
for the Monte Carlo simulation study, we mention that an
identical Monte Carlo simulation study with ENMPC took
approximately 11.9 h on 3 cores.

7. Conclusion
This paper presented a simulation case study for pro-

duction of monoclonal antibodies (mAbs) conducted in a
perfusion reactor. We considered an existing mechanistic
model for the mAb fermentation process. The model con-
sisted of six ordinary differential equations (ODEs) for the
non-constant volume and five components in the reactor. We
extended the model with a diffusion term to model stochastic
variations, which resulted in a stochastic differential equa-
tion (SDE) model. We developed an economic nonlinear
model predictive controller (ENMPC) for optimal operation
of the reactor. The ENMPC consisted of a continuous-
discrete extended Kalman filter (CD-EKF) and an economic
regulator based on mAb and glucose prices. We conducted
a simulation case study showing that the ENMPC operates
the perfusion reactor in two phases, which we denoted the
growth phase and the production phase. The production
phase was initialized when product inhibition zeroed the cell
growth rate and the ENMPC reduced the temperature to the
lower limit. The worst case ENMPC computation time was
approximately 0.12 s, which is negligible compared to the
sampling time of 60.0 min in real-time application. The low
computation time is important for computational tractability
of large-scale Monte Carlo simulation studies. We presented
a Monte Carlo simulation study based on 10.000 closed-
loop simulations, which was conducted in approximately 6.0
h using a standard Linux workstation. This performance is
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(a) Distribution of mAb production for the ENMPC and the base
case. The mean production is 23.89 g for the ENMPC and 15.68 g
for the base case.

(b) Distribution of profit for the ENMPC and the base case. The
mean profit is 10.2×104 USD for the ENMPC and 6.68×104 USD
for the base case.

Figure 8: Distributions for two performance measures, (42), based on 10.000 Monte Carlo simulations of the ENMPC closed-loop
and the base case open-loop. The black dashed lines show 95% confidence intervals.

Figure 9: Distribution of CPU time for ENMPC calls in 10.000
Monte Carlo simulations. The black dashed line shows the
99.9% quantile, i.e., 99.9% of the CPU times are below 0.35 s.
The worst case CPU time is 3.2 s.

due to high-performance parallel computing and advances
in scientific computing. The results showed that the fermen-
tation process, operated by the ENMPC, has a mean mAb
production of 23.89 g, a range of 12.29 g between the highest
and lowest mAb production, and a 95% confidence interval
[20.78, 27.04] g. Compared to a base case strategy, the
ENMPC had a 52% increased mean production at the cost of
a 56% range (uncertainty) increase. The uncertainty increase
is likely due to the ENMPC operating the reactor close
to a point of glucose inhibition. We observed no overlap
between the 95% confidence intervals for the ENMPC and
the base case. Therefore, there is a high statistical probability
that the ENMPC has a larger mAb production compared
to the base case. The results provide valuable uncertainty
quantification of the mAb production, which can be obtained
prior to experiments. Finally, we applied the ’from-simple-
via-complex-to-lucid’ approach to design a simple controller

from key insights obtained from the ENMPC. An uncer-
tainty quantification study showed that the simple controller
and the ENMPC had practically identical performance.
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CHAPTER 1

Introduction

In this part, we introduce the Riccati based primal-dual interior-point software, QPIPM (quadratic-
programming-interior-point-method), for solution of quadratic programming problems (QPs). QPIPM can
solve QPs with 1) equality constraints, 2) box constraints, and 3) soft constraints. We have implemented
QPIPM in both a Matlab version and a C version. Due to time constraints, currently only the Matlab version
of QPIPM supports QPs with soft constraints. The Matlab version provides a non-optimized and simple
implementation that can be useful in a development phase. The C version is implemented thread-safe with
the intention to solve multiple optimal control problems (OCPs) in parallel. The thread-safety is achieved
by QPIPM having no internal memory allocations. The main purpose of QPIPM is to be included in the
sequential quadratic programming algorithm, NLPSQP, introduced in the next part of this report and the
integration of QPIPM and NLPSQP in a previously implemented toolbox for parallel Monte Carlo simulation
of closed-loop systems (Wahlgreen et al. 2021). We also point out that the current version of QPIPM is work
in progress and that the implementation can be optimized for better computational performance.

In this report, we introduce the mathematical details in the QPIPM implementation and introduce the
interfaces of QPIPM in both Matlab and C. QPIPM is stored in a private gitlab-repository QPIPM and is part
of the project SCProject, which is implemented in C and contains a number of other gitlab-repositories.
For the C version, we introduce the other dependencies in SCProject and explain how to allocate the
required memory prior to calling QPIPM.

We point out that the implementation of QPIPM is highly inspired by previous work on the topic (Rao
et al. 1998, Jørgensen 2004, Wächter and Biegler 2006, Frison and Jørgensen 2013, Jørgensen et al. 2012,
Wahlgreen and Jørgensen 2022).
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CHAPTER 2

Mathematical details

We introduce the mathematical details of the QPIPM implementation. The mathematical details of the
Matlab and C implementation are identical. However, the C version does not include the option to apply soft
constraints in the current version. QPIPM is a primal-dual interior-point algorithm, which can both apply
an LDL-factorization and a Riccati based method to solve the system of linear equations for the Newton
search direction. The Riccati based method requires a structured QP, which, e.g., occurs in optimal control
applications.

2.1 Primal-dual interior-point algorithm

In this section, we introduce the mathematical details of the primal-dual interior-point algorithm applied
in QPIPM. The algorithm solves the first order Karush–Kuhn–Tucker (KKT) conditions with Newtons’
method (Karush 1939, Kuhn and Tucker 1951, Kjeldsen 2000). As such, the algorithm is iterative and in
each iteration, l, a system of linear equations is solved for the Newton search direction. We apply Mehrotra’s
predictor-corrector method, as such QPIPM computes both a predictor and corrector step with the same
factorization of the search direction matrix (Mehrotra 1992).

We design QPIPM to solve QPs with bound constraints and general soft constraints. The general soft
constraints include a lower and upper soft bound with slack variables, and the slack variables are penalized
with both a linear and quadratic term in the objective. As such, the QP is in the form

min
x,ϵl,ϵu

1
2x⊤Hx + g⊤x + 1

2ϵ⊤
l Qlϵl + q⊤

l ϵl + 1
2ϵ⊤

u Quϵu + q⊤
u ϵu, (2.1a)

s.t. A⊤x = b, (2.1b)

l ≤ x ≤ u, (2.1c)

ls − ϵl ≤ S⊤x ≤ us + ϵu, (2.1d)

ϵl, ϵu ≥ 0. (2.1e)

H ∈ Rn×n, g ∈ Rn, A ∈ Rn×me , b ∈ Rme , l ∈ Rn, u ∈ Rn, S ∈ Rn×ms , ls ∈ Rms , us ∈ Rms , and
x ∈ Rn are the decision variables. ϵl ∈ Rms are lower soft bound slack variables and ϵu ∈ Rms are upper
soft bound slack variables. Ql ∈ Rms×ms and Qu ∈ Rms×ms are (assumed) diagonal penalty matrices,
and ql ∈ Rms and qu ∈ Rms are penalty vectors. As such, n is the number of decision variables, me is the
number of equality constraints, and ms is the number of upper and lower soft constraints.
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6 CHAPTER 2. MATHEMATICAL DETAILS

2.1.1 Search direction

QPIPM computes a search direction in each iteration. First, we consider the Lagrangian function,
L = L(x, ϵl, ϵu, y, vl, vu, zsl

, zsu
, vϵl

, vϵu
), of (2.1), which is

L = 1
2x⊤Hx + g⊤x + 1

2ϵ⊤
l Qlϵl + q⊤

l ϵl + 1
2ϵ⊤

u Quϵ + q⊤
u ϵu

− y⊤(A⊤x− b)− v⊤
l (x− l)− v⊤

u (u− x)− v⊤
ϵl

ϵl − v⊤
ϵu

ϵu

− z⊤
sl

(S⊤x− ls + ϵl)− z⊤
su

(−S⊤x + us + ϵu).

(2.2)

y are equality constraint (2.1b) Lagrange multipliers, vl and vu are bound constraint (2.1c) Lagrange
multipliers, zsl

and zsu
are soft constraint (2.1d) Lagrange multipliers, and vϵl

and vϵu
are ϵ-bound constraint

(2.1e) Lagrange multipliers. As such, we write up the corresponding first order KKT-conditions,

∇xL = Hx + g −Ay − vl + vu − Szsl
+ Szsu = 0, (2.3a)

∇ϵl
L = Qlϵl + ql − zsl

− vϵl
= 0, (2.3b)

∇ϵu
L = Quϵu + qu − zsu

− vϵu
= 0, (2.3c)

b−A⊤x = 0, (2.3d)

tl + l − x = 0, tu + x− u = 0, (2.3e)

tϵl
− ϵl = 0, tϵu − ϵu = 0, (2.3f)

ssl
− S⊤x + ls − ϵl = 0, ssu

+ S⊤x− us − ϵu = 0, (2.3g)

tl,ivl,i = 0, tu,ivu,i = 0, (2.3h)

tϵl,ivϵl,i = 0, tϵu,ivϵu,i = 0, (2.3i)

ssl,izsl,i = 0, ssu,izsu,i = 0, (2.3j)

(vl, vu, zsl
, zsu

, vϵl
, vϵu

) ≥ 0, (tl, tu, ssl
, ssu

, tϵl
, tϵu

) ≥ 0, (2.3k)

where tl and tu are bound constraint (2.1c) slack variables, ssl
and ssu are soft constraint (2.1d) slack

variables, and tϵl
and tϵu are ϵ-bound constraint (2.1e) slack variables. The slack variables are defined as

ssl
= S⊤x− ls + ϵl, ssu

= −S⊤x + us + ϵu, (2.4a)

tl = x− l, tu = u− x, (2.4b)

tϵl
= ϵl, tϵu

= ϵu. (2.4c)
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We write the KKT-conditions, (2.3), as a system of nonlinear equations in the form



rL

rϵl

rϵu

rA

rSl

rSu

rBl

rBu

rBϵl

rBϵu

rSZsl

rSZsu

rT Vl

rT Vu

rT Vϵl

rT Vϵu



=



Hx + g −Ay − vl + vu − Szsl
+ Szsu

Qlϵl + ql − zsl
− vϵl

Quϵu + qu − zsu
− vϵu

b−A⊤x

ssl
− S⊤x + ls − ϵl

ssu + S⊤x− us − ϵu

tl + l − x

tu + x− u

tϵl
− ϵl

tϵu − ϵu

Ssl
Zsl

e

SsuZsue

TlVle

TuVue

Tϵl
Vϵl

e

TϵuVϵue



= 0, (2.5a)

(vl, vu, vϵl
, vϵu , zsl

, zzu , tl, tu, tϵl
, tϵu , ssl

, ssu) ≥ 0. (2.5b)

Vl = diag(vl), Vu = diag(vu), Vϵl
= diag(vϵl

), Vϵu
= diag(vϵu

), Zsl
= diag(zsl

), Zsu
= diag(zsu

),
Tl = diag(tl), Tu = diag(tu), Tϵl

= diag(tϵl
), Tϵu

= diag(tϵu
), Ssl

= diag(sl), Ssu
= diag(su), and e is

a vector of ones of proper dimension. We apply Newtons’ method to solve the nonlinear system of equations,
(2.5), which results in the following linear system of equations for the Newton search direction,



H 0 0 −A −S S −I I 0 0 0 0 0 0 0 0
0 Ql 0 0 −I 0 0 0 −I 0 0 0 0 0 0 0
0 0 Qu 0 0 −I 0 0 0 −I 0 0 0 0 0 0
−A⊤ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
− S⊤ −I 0 0 0 0 0 0 0 0 I 0 0 0 0 0
S⊤ 0 −I 0 0 0 0 0 0 0 0 I 0 0 0 0
−I 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0
I 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0
0 −I 0 0 0 0 0 0 0 0 0 0 0 0 I 0
0 0 −I 0 0 0 0 0 0 0 0 0 0 0 0 I

0 0 0 0 Ssl
0 0 0 0 0 Zsl

0 0 0 0 0
0 0 0 0 0 Ssu

0 0 0 0 0 Zsu
0 0 0 0

0 0 0 0 0 0 Tl 0 0 0 0 0 Vl 0 0 0
0 0 0 0 0 0 0 Tu 0 0 0 0 0 Vu 0 0
0 0 0 0 0 0 0 0 Tϵl

0 0 0 0 0 Vϵl
0

0 0 0 0 0 0 0 0 0 Tϵu
0 0 0 0 0 Vϵu





∆x
∆ϵl

∆ϵu

∆y

∆zsl

∆zsu

∆vl

∆vu

∆vϵl

∆vϵu

∆ssl

∆ssu

∆tl

∆tu

∆tϵl

∆tϵu



= −



rL

rϵl

rϵu

rA

rSl

rSu

rBl

rBu

rBϵl

rBϵu

rSZsl

rSZsu

rT Vl

rT Vu

rT Vϵl

rT Vϵu



. (2.6)

The solution,

(∆x, ∆ϵl, ∆ϵu, ∆y, ∆zsl
, ∆zsu , ∆vl, ∆vu, ∆vϵl

, ∆vϵu , ∆ssl
, ∆ssu , ∆tl, ∆tu, ∆tϵl

, ∆tϵu), (2.7)
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is the search direction applied in QPIPM. We point out that the system of equations, (2.6), can be compactly
written as 

Ĥ −Â −Ĉ 0
−Â⊤ 0 0 0
−Ĉ⊤ 0 0 I

0 0 Ŝ Ẑ




∆x̂

∆ŷ

∆ẑ

∆ŝ

 = −


r̂L

r̂A

r̂C

r̂SZ

 , (2.8)

where

x̂ =

 x

ϵl

ϵu

 , ŷ = y, ẑ =



zsl

zsu

vl

vu

vϵl

vϵu


, ŝ =



ssl

ssu

tl

tu

tϵl

tϵu


, (2.9a)

r̂L =

rL

rϵl

rϵu

 , r̂A = rA, r̂C =



rSl

rSu

rBl

rBu

rBϵl

rBϵu


, r̂SZ =



rSZsl

rSZsu

rT Vl

rT Vu

rT Vϵl

rT Vϵu


, (2.9b)

Ĥ =

H

Ql

Qu

 , Â =

A

0
0

 , Ĉ =

S −S I −I 0 0
I 0 0 0 I 0
0 I 0 0 0 I

 , (2.9c)

Ẑ =



Zsl

Zsu

Vl

Vu

Vϵl

Vϵu


, Ŝ =



Ssl

Ssu

Tl

Tu

Tϵl

Tϵu


. (2.9d)

However, we exploit the structure of the matrices in (2.9), and elimination of Lagrange multipliers and slack
variables, to reduce the size of the system (2.6) in the following section.

2.1.2 System reduction

The linear system (2.6) can be reduced in size by elimination of the inequality Lagrange multipliers and
corresponding slack variables (i.e., for the lower and upper bound constraint, the soft constraints, and the
ϵ-bound constraints). We define six diagonal matrices from the Lagrange multipliers and corresponding
slack variables,

Dsl
= diag(zsl

/ssl
), Dsu

= diag(zsu
/ssu

), (2.10a)

Dl = diag(vl/tl), Du = diag(vu/tu), (2.10b)

Dϵl
= diag(vϵl

/tϵl
), Dϵu

= diag(vϵu
/tϵu

). (2.10c)
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By elimination of the six Lagrange multipliers and slack variables, we arrive at the following reduced system
H̄ E F −A

E⊤ Q̄l

F ⊤ Q̄u

−A⊤




∆x

∆ϵl

∆ϵu

∆y

 =


r̄L

r̄ϵl

r̄ϵu

r̄A

 (2.11)

where

H̄ = H + Dl + Du + ES⊤ − FS⊤, (2.12a)

E = SDsl
, F = −SDsu , (2.12b)

Q̄l = Ql + Dϵl
+ Dsl

, Q̄u = Qu + Dϵu
+ Dsu

, (2.12c)

and

r̄L = − rL + S(S−1
sl

Zsl
(rSl
− Z−1

sl
rSZsl

))− S(S−1
su

Zsu
(rSu

− Z−1
su

rSZsu
))

+ T −1
l Vl(rBl

− V −1
l rT Vl

)− T −1
u Vu(rBu

− V −1
u rT Vu

),
(2.13a)

r̄ϵl
= − rϵl

+ T −1
ϵl

Vϵl
(rBϵl

− V −1
ϵl

rT Vϵl
) + S−1

sl
Zsl

(rSl
− Z−1

sl
rSZsl

), (2.13b)

r̄ϵu
= − rϵu

+ T −1
ϵu

Vϵu
(rBϵu

− V −1
ϵu

rT Vϵu
) + S−1

su
Zsu

(rSu
− Z−1

su
rSZsu

), (2.13c)

r̄A = − rA. (2.13d)

The eliminated Lagrange multipliers and slack variables are

∆vl = T −1
l Vl(rBl

− V −1
l rT Vl

)− T −1
l Vl∆x, (2.14a)

∆vu = T −1
u Vu(rBu

− V −1
u rT Vu

) + T −1
u Vu∆x, (2.14b)

∆vϵl
= T −1

ϵl
Vϵl

(rBϵl
− V −1

ϵl
rT Vϵl

)− T −1
ϵl

Vϵl
∆ϵl, (2.14c)

∆vϵu = T −1
ϵu

Vϵu(rBϵu
− V −1

ϵu
rT Vϵu

)− T −1
ϵu

Vϵu∆ϵu, (2.14d)

∆zsl
= S−1

sl
Zsl

(rSl
− Z−1

sl
rSZsl

)− S−1
sl

Zsl
(S⊤∆x + ∆ϵl), (2.14e)

∆zsu = S−1
su

Zsu(rSu − Z−1
su

rSZsu
)− S−1

su
Zsu(−S⊤∆x + ∆ϵu), (2.14f)

∆tl = − V −1
l rT Vl

− V −1
l Tl∆vl, (2.14g)

∆tu = − V −1
u rT Vu − V −1

u Tu∆vu, (2.14h)

∆tϵl
= − V −1

ϵl
rT Vϵl

− V −1
ϵl

Tϵl
∆vϵl

, (2.14i)

∆tϵu
= − V −1

ϵu
rT Vϵu

− V −1
ϵu

Tϵu
∆vϵu

, (2.14j)

∆ssl
= − Z−1

sl
rSZsl

− Z−1
sl

Ssl
∆zsl

, (2.14k)

∆ssu = − Z−1
su

rSZsu
− Z−1

su
Ssu∆zsu . (2.14l)

In addition, we eliminate the soft constraint slack variables, ϵl and ϵu, from the system (2.11) to further
reduce the size. The resulting system of linear equations is[

H̃ −A

−A⊤ 0

] [
∆x

∆y

]
=

[
r̃L

r̃A

]
, (2.15)

where

H̃ = H̄ − EQ̄−1
l E⊤ − FQ̄−1

u F ⊤, (2.16a)

r̃L = r̄L − EQ̄−1
l r̄ϵl

− FQ̄−1
u r̄ϵu , (2.16b)

r̃A = r̄A. (2.16c)
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The eliminated slack variables are given as

∆ϵl = Q̄−1
l (r̄ϵl

− E⊤∆x), (2.17a)

∆ϵu = Q̄−1
u (r̄ϵu

− F ⊤∆x). (2.17b)

The search direction (2.7) can be obtained by solution of the system of linear equations, (2.15), to obtain
(∆x, ∆y) and computing first the soft constraint slack variables from (2.17) and finally the remaining
Lagrange multipliers and slack variables from (2.14). QPIPM solves (2.15) with an LDL-factorization and
back substitution.

Applying the compact notation in (2.9a), we define the QPIPM step as

(x̂, ŷ, ẑ, ŝ) = (x̂, ŷ, ẑ, ŝ) + ηα(∆x̂, ∆ŷ, ∆ẑ, ∆ŝ), (2.18)

where η = 0.995 and the step-size, α, ensures (ẑ, ŝ) ≥ 0.

2.1.3 Fraction-to-the-boundary

QPIPM applies a fraction-to-the-boundary rule to avoid the QPIPM step zeroing the Lagrange multipliers
or slack variables (Wahlgreen and Jørgensen 2022). The rule is[

ẑ

ŝ

]
+ α

[
∆ẑ

∆ŝ

]
≥ κ

[
ẑ

ŝ

]
, (2.19)

where 0 ≤ κ≪ 1 and κ→ 0 as the iteration number of QPIPM, l, increases. The rule (2.19) implements a
proportional step-back from the zero-boundary. In the predictor phase, QPIPM uses κ = 0 to compute αaff ,
and in the corrector phase QPIPM uses κ = min(1− η, µaff ) to compute α. The rule (2.19) is similar to
the rule applied in IPOPT (Wächter and Biegler 2006).

2.1.4 Predictor-corrector algorithm

QPIPM applies Mehrotra’s predictor-corrector algorithm (Mehrotra 1992), i.e., QPIPM applies the
factorization of (2.15) twice: 1) in the predictor step and 2) in the corrector step. In the predictor phase, we
solve [

H̃ −A

−A⊤ 0

] [
∆xaff

∆yaff

]
=

[
r̃L

r̃A

]
, (2.20)

and compute the remaining part of the affine search direction from (2.17) and (2.14). From the affine search
direction, we compute the duality gap, µ, and the centering parameter, σ as

µaff = (ẑ + αaff ∆ẑaff )⊤(ŝ + αaff ∆ŝaff )
m̄

, µ = ŝ⊤ẑ

m̄
, σ =

(
µaff

µ

)3

, (2.21)

where we apply the notation in (2.9a) for simplicity and m̄ is the total number of inequality constraints
(bound constraints, soft constraints, and ϵ-bound constraints). In the corrector step, we adapt the right hand
side of (2.15) and consider the system[

H̃ −A

−A⊤ 0

] [
∆x

∆y

]
=

[
˜̄rL

r̃A

]
, (2.22)
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where ˜̄rL is computed according to (2.13a) and (2.16b), with the terms, rT Vl
, rT Vu

, rT Vϵl
, rT Vϵu

, rSZsl
, and

rSZsu
being defined as

rT Vl
← rT Vl

+ ∆T aff
l ∆V aff

l − σµe, rT Vu ← rT Vu + ∆T aff
u ∆V aff

u − σµe, (2.23a)

rT Vϵl
← rT Vϵl

+ ∆T aff
ϵl

∆V aff
ϵl
− σµe, rT Vϵu

← rT Vϵu
+ ∆T aff

ϵu
∆V aff

ϵu
− σµe, (2.23b)

rSZsl
← rSZsl

+ ∆Saff
sl

∆Zaff
sl
− σµe, rSZsu

← rSZsu
+ ∆Saff

su
∆Zaff

su
− σµe. (2.23c)

Then the QPIPM search direction is the solution to (2.22) with the remaining part being computed from
(2.17) and (2.14).

We point out that system matrix in the predictor and corrector phase is identical. Therefore, QPIPM
reuses the factorization from the predictor phase in the corrector phase.

2.1.5 Convergence criterion

QPIPM converges once the KKT-conditions (2.3) are satisfied. In practice, we consider a scaled violation,
ξ, and define convergence as ξ < ϵ, where ϵ > 0 is a user-selected convergence tolerance. The scaled
violation is

ξ = max
(

sH ||rL, rϵl
, rϵu
||∞, sA||rA||∞, sS ||rSl

, rSu
||∞, sB ||rBl

, rBu
||∞, ||rBϵl

, rBϵl
||∞,

||rSZsl
, rSZsu

, rT Vl
, rT Vu

, rT Vϵl
, rT Vϵu

||∞
)

,
(2.24)

where

sH = max(1, ||H||∞, || g||∞, ||A ||∞, ||Ql||∞, ||Qu||∞, ||ql, qu||∞, ||Sl||∞, ||Su||∞)−1, (2.25a)

sA = max(1, ||A⊤||∞, ||b||∞)−1, (2.25b)

sS = max(1, ||S⊤
l ||∞, ||S⊤

u ||∞, ||ls||∞, ||us||∞)−1, (2.25c)

sB = max(1, ||l||∞, ||u||∞)−1. (2.25d)

QPIPM computes ξ after taking the step (2.18) in the end of the corrector phase.

2.1.6 Infinity bound constraints

QPIPM eliminates all infinity bounds, i.e., bounds set to −∞ or∞, before starting the loop. As such,
columns of S are not accessed if both ls and us are infinity.

2.1.7 Algorithm

Algorithm 1 presents a detailed implementation guide for QPIPM.
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Algorithm 1: QPIPM pseudo code
Input: Initial guess, x0, and soft constrained QP,

min
x,ϵl,ϵu

1
2x⊤Hx + g⊤x + 1

2ϵ⊤
l Qlϵl + q⊤

l ϵl + 1
2ϵ⊤

u Quϵ + q⊤
u ϵu,

s.t. A⊤x = b,

l ≤ x ≤ u,

ls − ϵl ≤ S⊤x ≤ us + ϵu,

ϵl, ϵu ≥ 0,

i.e. the matrices and vectors: H , Ql, Qu, g, gl, gu, A, b, l, u, S, ls, and lu.

• Initialize:

x = x0, ϵl = ϵu = 0, y = 0, ẑ = 1, ŝ = 1.

• Compute scaling factors,

r̃L = max(1, ||H, Ql, Qu||∞, ||g, gl, gu||∞, ||A||∞, ||S||∞)−1, r̃A = max(1, ||A⊤||∞, ||b||∞)−1,

r̃B = max(1, ||l||∞, ||u||∞)−1, r̃S = max(1, ||S⊤||∞, ||ls||∞, ||lu||∞)−1

• Compute scaled KKT-violation, ξ,

ξ = max(r̃L||rL, rϵl
, rϵu
||∞, r̃A||rA||∞, r̃S ||rSl

, rSu
||∞, r̃B ||rBl

, rBu
||∞, ||rϵl

, rϵu
||∞,

||rSZsl
, rSZsu

, rT Vl
, rT Vu

, rT Vϵl
, rT Vϵu

||∞)

while ξ > ϵ do

1. Predictor phase:

i. Setup augmented system, [
H̃ −A

−A⊤ 0

]
︸ ︷︷ ︸

M

[
∆x
∆y

]
=

[
r̃L

r̃A

]
(2.26)

ii. LDL factorize: [L, D] = ldl(M)
iii. Solve the system (2.26) to get the affine direction, ∆x = ∆xaff and ∆y = ∆yaff

iv. Compute ∆ϵl and ∆ϵu,

∆ϵl = Q̄−1
l (r̄ϵl

− E⊤∆x), ∆ϵu = Q̄−1
u (r̄ϵu

− F ⊤∆x)

v. Compute ∆zsl
, ∆zsu

, ∆vl, ∆vu, ∆ϵl, ∆ϵu, ∆ssl
, ∆ssu

, ∆tl, ∆tu, ∆tϵl
, and ∆tϵu

,

∆zsl
= S−1

sl
Zsl

(rSl
− Z−1

sl
rSZsl

)− S−1
sl

Zsl
(S⊤∆x + ∆ϵl), ∆ssl

= −Z−1
sl

rSZsl
− Z−1

sl
Ssl

∆zsl
,

∆zsu
= S−1

su
Zsu

(rSu
− Z−1

su
rSZsu

)− S−1
su

Zsu
(−S⊤∆x + ∆ϵu), ∆ssu

= −Z−1
su

rSZsu
− Z−1

su
Ssu

∆zsu
,

∆vl = T −1
l Vl(rBl

− V −1
l rT Vl

)− T −1
l Vl∆x, ∆tl = −V −1

l rT Vl
− V −1

l Tl∆vl,

∆vu = T −1
u Vu(rBu

− V −1
u rT Vu

) + T −1
l Vl∆x, ∆tu = −V −1

u rT Vu
− V −1

u Tu∆vu,

∆vϵl
= T −1

ϵl
Vϵl

(rBϵl
− V −1

ϵl
rT Vϵl

)− T −1
ϵl

Vϵl
∆ϵl, ∆tϵl

= −V −1
ϵl

rT Vϵl
− V −1

ϵl
Tϵl

∆vϵl
,

∆vϵu = T −1
ϵu

Vϵu(rBϵu
− V −1

ϵu
rT Vϵu

)− T −1
ϵu

Vϵu∆ϵu, ∆tϵu = −V −1
ϵu

rT Vϵu
− V −1

ϵu
Tϵu∆vϵu ,

vi. Find αaff such that (ẑ, ŝ) + αaff ∆(ẑ, ŝ) ≥ 0, where ẑ = (zsl
, zsu

, vl, vu, vϵl
, vϵu

) and ŝ =
(ssl

, ssu , tl, tu, tϵl
, tϵu)

vii. Compute the duality gap, µ, and the centering parameter, σ (with m̄ being the total number of
inequality constraints including soft constraints)

µaff = (ẑ + αaff ∆ẑ)⊤(ŝ + αaff ∆ŝ)
m̄

µ = ŝ⊤ẑ

m̄
, σ =

(
µaff

µ

)3

2. Corrector phase:

i. Recompute r̃L with the following definitions

rSZsl
← rSZsl

+ ∆Saff
sl

∆Zaff
sl
− σµe, rSZsu

← rSZsu
+ ∆Saff

su
∆Zaff

su
− σµe,

rT Vl
← rT Vl

+ ∆T aff
l ∆V aff

l − σµe, rT Vu ← rT Vu + ∆T aff
u ∆V aff

u − σµe,

rT Vϵl
← rT Vϵl

+ ∆T aff
ϵl

∆V aff
ϵl
− σµe, rT Vϵu

← rT Vϵu
+ ∆T aff

ϵu
∆V aff

ϵu
− σµe.

ii. Repeat step 1ii-1v from the predictor phase (reapply LDL factorization from predictor phase)

iii. Compute the step size, α, such that (ẑ, ŝ) + αaff ∆(ẑ, ŝ) ≥ κ(ẑ, ŝ), for κ = min(1− η, µaff )

3. Take step: χ = χ̂ + ηα∆χ̂, where χ = (x, ϵl, ϵu, y, zsl
, zsu , vl, vu, vϵl

, vϵu , ssl
, ssu , tl, tu, tϵl

, tϵu) and
η = 0.995

4. Compute scaled KKT-violation,

ξ = max(r̃L||rL, rϵl
, rϵu
||∞, r̃A||rA||∞, r̃S ||rSl

, rSu
||∞, r̃B ||rBl

, rBu
||∞, ||rϵl

, rϵu
||∞,

||rSZsl
, rSZsu

, rT Vl
, rT Vu

, rT Vϵl
, rT Vϵu

||∞)

Return: χ̂ = (x, ϵl, ϵu, y, zsl
, zsu , vl, vu, vϵl

, vϵu , ssl
, ssu , tl, tu, tϵl

, tϵu)
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2.2 Riccati based factorization for optimal control problems

In this section, we introduce QPIPM’s Riccati option to solve structured QPs. QPIPM is intended to
solve QPs arising in OCPs in the form

min
{uk,xk+1,ϵl,k+1,ϵu,k+1}N−1

k=0

ϕ = l0(u0) +
N−1∑
k=1

lk(xk, uk) + lN (xN ) +
N∑

k=1
ls,k(ϵl,k, ϵu,k), (2.27a)

s.t. xk+1 = A⊤
k xk + B⊤

k uk + bk, k = 0, 1, ..., N − 1, (2.27b)

umin,k ≤ uk ≤ umax,k, k = 0, 1, ..., N − 1, (2.27c)

xmin,k − ϵl,k ≤ S⊤
k xk ≤ xmax,k + ϵu,k, k = 1, 2, ..., N, (2.27d)

(ϵl,k, ϵu,k) ≥ 0, k = 1, 2, ..., N, (2.27e)

where x0 = x̂0 is a parameter and

l0(u0) = 1
2u⊤

0 R0u0 + r⊤
0 u0 + ρ0, (2.28a)

lk(xk, uk) = 1
2

[
xk

uk

]⊤ [
Qk Mk

M⊤
k Rk

] [
xk

uk

]
+

[
qk

rk

]⊤ [
xk

uk

]
+ ρk, k = 1, 2, ..., N − 1, (2.28b)

lN (xN ) = 1
2x⊤

N QN xN + q⊤
N xN + ρN , (2.28c)

ls,k(ϵl,k, ϵu,k) = 1
2

[
ϵl,k

ϵu,k

]⊤ [
Qϵl,k

Qϵu,k

] [
ϵl,k

ϵu,k

]
+

[
qϵl,k

qϵu,k

]⊤ [
ϵl,k

ϵu,k

]
, k = 1, 2, ..., N. (2.28d)

The OCP (2.27) can be written as the general soft constrained QP in the form (2.1) with

x =
[
u0 x1 u1 x2 · · · uN−1 xN

]⊤
, (2.29a)

ϵl =
[
ϵl,1 ϵl,2 · · · ϵl,N

]⊤
, (2.29b)

ϵu =
[
ϵu,1 ϵu,2 · · · ϵu,N

]⊤
, (2.29c)

H =



R0

Q1 M1

M⊤
1 R1

. . .

QN−1 MN−1

M⊤
N−1 RN−1

QN


, (2.29d)

Ql =



0
Qϵl,1

0
Qϵl,2

. . .

0
Qϵl,N


, (2.29e)
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Qu =



0
Qϵu,1

0
Qϵu,2

. . .

0
Qϵu,N


, (2.29f)

g =
[
r0 q1 r1 · · · qN−1 rN−1 qN

]⊤
, (2.29g)

ql =
[
0 qϵl,1 0 qϵl,2 · · · 0 qϵl,N

]⊤
, (2.29h)

qu =
[
0 qϵu,1 0 qϵu,2 · · · 0 qϵu,N

]⊤
, (2.29i)

A =


−B⊤

0 I

−A⊤
1 −B⊤

1 I

. . . . . . . . .

−A⊤
N−1 −B⊤

N−1 I


⊤

, (2.29j)

b =
[
b̃0 b1 · · · bN−1

]⊤
, (2.29k)

l =
[
umin,0 −∞ umin,1 −∞ · · · umin,N−1 −∞

]⊤
, (2.29l)

u =
[
umax,0 ∞ umax,1 ∞· · · umax,N−1 ∞

]⊤
, (2.29m)

S =



0
S1

0
S2

. . .

0
SN


, (2.29n)

ls =
[
−∞ xmin,1 −∞ xmin,2 · · · −∞ xmin,N

]⊤
, (2.29o)

us =
[
∞ xmax,1 ∞ xmax,2 · · · ∞ xmax,N

]⊤
, (2.29p)

where b̃0 = b0 + A⊤
0 x0. We point out that QPIPM can solve the OCP (2.27) by applying the definitions

(2.29). However, the Riccati based version utilizes the structure, which will result in better computational
performance.

In the Riccati version, QPIPM utilizes the structure of the QP (2.27) to compute the search direction. As
such, QPIPM does not apply a standard LDL factorization to solve (2.6), but rather a dedicated structure-
utilizing Riccati algorithm.

2.2.1 Search direction

In the Riccati mode, the Newton search direction is on the form (2.6) with the provided matrices in
(2.29). Due to space restrictions, we do not write out the full system matrix. The right hand side of the linear
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system is

rL =
[
rL,u0 rL,x1 rL,u1 rL,x2 · · · rL,uN−1 rL,xN

]⊤
, (2.30a)

rϵl
=

[
rϵl,1 rϵl,2 · · · rϵl,N

]⊤
, (2.30b)

rϵu
=

[
rϵu,1 rϵu,2 · · · rϵu,N

]⊤
, (2.30c)

rA =
[
rA,0 rA,1 · · · rA,N−1

]⊤
, (2.30d)

rSl
=

[
rSl,1 rSl,2 · · · rSl,N

]⊤
, (2.30e)

rSu
=

[
rSu,1 rSu,2 · · · rSu,N

]⊤
, (2.30f)

rBl
=

[
rBl,0 rBl,1 · · · rBl,N−1

]⊤
, (2.30g)

rBu =
[
rBu,0 rBu,1 · · · rBu,N−1

]⊤
, (2.30h)

rϵl
=

[
rϵl,1 rϵl,2 · · · rϵl,N

]⊤
, (2.30i)

rϵu =
[
rϵu,1 rϵu,2 · · · rϵu,N

]⊤
, (2.30j)

rSZsl
=

[
rSZsl

,1 rSZsl
,2 · · · rSZsl

,N

]⊤
, (2.30k)

rSZsu
=

[
rSZsu ,1 rSZsu ,2 · · · rSZsu ,N

]⊤
, (2.30l)

rT Vl
=

[
rT Vl,0 rT Vl,1 · · · rT Vl,N−1

]⊤
, (2.30m)

rT Vu =
[
rT Vu,0 rT Vu,1 · · · rT Vu,N−1

]⊤
, (2.30n)

rT Vϵl
=

[
rT Vϵl

,1 rT Vϵl
,2 · · · rT Vϵl

,N

]⊤
, (2.30o)

rT Vϵu
=

[
rT Vϵu ,1 rT Vϵu ,2 · · · rT Vϵu ,N

]⊤
, (2.30p)

Currently, QPIPM computes the right hand side (2.30) directly from (2.5). However, the algorithm can be
improved further by exploiting the structure of the problem and compute individual elements separately.

2.2.2 System reduction

Similarly as in the general case, we eliminate Lagrange multipliers and slack variables. Diagonal
matrices are defined as in (2.10) and submatrices are defined with k as subscript. By elimination of Lagrange
multipliers and slack variables for inequality constraints and rearranging decision variables, we arrive at the
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KKT system (for N = 3)



R̄0 B1

Q̄1 E1 F1 M1 −I A1

E⊤
1 Q̄ϵl,1

F ⊤
1 Q̄ϵu,1

M⊤
1 R̄1 B1

Q̄2 E2 F2 M2 −I A2

E⊤
2 Q̄ϵl,2

F ⊤
2 Q̄ϵu,2

M⊤
2 R̄2 B2

Q̄3 E3 F3 −I

E⊤
3 Q̄ϵl,3

F ⊤
3 Q̄ϵu,3

B⊤
0 −I

A⊤
1 B⊤

1 −I

A⊤
2 B⊤

2 −I





∆u0

∆x1

∆ϵl,1

∆ϵu,1

∆u1

∆x2

∆ϵl,2

∆ϵu,2

∆u2

∆x3

∆ϵl,3

∆ϵu,3

∆y0

∆y1

∆y2



=



r̄L,u0

r̄L,x1

r̄ϵl,1

r̄ϵu,1

r̄L,u1

r̄L,x2

r̄ϵl,2

r̄ϵu,2

r̄L,u2

r̄L,x3

r̄ϵl,3

r̄ϵu,3

r̄A,0

r̄A,1

r̄A,2



,

(2.31)

where

Ek = SkDsl,k, k = 1, ..., N, (2.32a)

Fk = −SkDsu,k, k = 1, ..., N, (2.32b)

Q̄k = Qk + EkS⊤
k − FkS⊤

k , k = 1, ..., N, (2.32c)

Q̄ϵl,k = Qϵl,k + Dϵl,k + Dsl,k, k = 1, ..., N, (2.32d)

Q̄ϵu,k = Qϵu,k + Dϵu,k + Dsu,k, k = 1, ..., N, (2.32e)

R̄k = Rk + Dl,k + Du,k, k = 0, ..., N − 1. (2.32f)

and

r̄L,xk
= − rL,xk

+ Sk(S−1
sl,kZsl,k(rSl,k − Z−1

sl,krSZsl,k
))

− Sk(S−1
su,kZsu,k(rSu,k − Z−1

su,krSZsu,k
)),

k = 1, ..., N, (2.33a)

r̄ϵl,k = − rϵl,k
+ T −1

ϵl,kVϵl,k(rBϵl
,k − V −1

ϵl,krT Vϵl,k
)

+ S−1
sl,kZsl,k(rSl,k − Z−1

l,k rSZsl,k
),

k = 1, ..., N, (2.33b)

r̄ϵu,k = − rϵu,k
+ T −1

ϵu,kVϵu,k(rBϵu ,k − V −1
ϵu,krT Vϵu,k

)

+ S−1
su,kZsu,k(rSu,k − Z−1

u,krSZsu,k
),

k = 1, ..., N, (2.33c)

r̄L,uk
= − rL,uk

+ Tl,kVl,k(rBl,k − V −1
l,k rT Vl,k

)

− T −1
u,kVu,k(rBu,k − V −1

u,k rT Vu,k
),

k = 0, ..., N − 1, (2.33d)

r̄A,k = − rA,k, k = 0, ..., N − 1. (2.33e)
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The eliminated Lagrange multipliers and slack variables are

∆vl,k = T −1
l,k Vl,k(rBl,k − V −1

l,k rT Vl,k)− T −1
l,k Vl,k∆xk, k = 0, ..., N − 1, (2.34a)

∆vu,k = T −1
u,kVu,k(rBu,k − V −1

u,k rT Vu,k) + T −1
u,kVu,k∆xk, k = 0, ..., N − 1, (2.34b)

∆vϵl,k = T −1
ϵl,kVϵl,k(rBϵl,k

− V −1
ϵl,krT Vϵl,k

)− T −1
ϵl,kVϵl,k∆ϵl,k, k = 1, ..., N, (2.34c)

∆vϵu,k = T −1
ϵu,kVϵu,k(rBϵu,k

− V −1
ϵu,krT Vϵu,k

)− T −1
ϵu,kVϵu,k∆ϵu,k, k = 1, ..., N, (2.34d)

∆zsl,k = S−1
sl,kZsl,k(rSl,k − Z−1

sl,krSZsl,k
)

− S−1
sl,kZsl,k(S⊤

k ∆xk + ∆ϵl,k),
k = 1, ..., N, (2.34e)

∆zsu,k = S−1
su,kZsu,k(rSu,k − Z−1

su,krSZsu,k
)

− S−1
su,kZsu,k(−S⊤

k ∆xk + ∆ϵu,k),
k = 1, ..., N, (2.34f)

∆tl,k = − V −1
l,k rT Vl,k − V −1

l,k Tl,k∆vl,k, k = 0, ..., N − 1, (2.34g)

∆tu,k = − V −1
u,k rT Vu,k − V −1

u,k Tu,k∆vu,k, k = 0, ..., N − 1, (2.34h)

∆tϵl,k = − V −1
ϵl,krT Vϵl,k

− V −1
ϵl,kTϵl,k∆vϵl,k, k = 1, ..., N, (2.34i)

∆tϵu,k = − V −1
ϵu,krT Vϵu,k

− V −1
ϵu,kTϵu,k∆vϵu,k, k = 1, ..., N, (2.34j)

∆ssl,k = − Z−1
sl,krSZsl,k

− Z−1
sl,kSsl,k∆zsl,k, k = 1, ..., N, (2.34k)

∆ssu,k = − Z−1
su,krSZsu,k

− Z−1
su,kSsu,k∆zsu,k, k = 1, ..., N. (2.34l)

We eliminate the soft constraint slack variables. The resulting system is (for N = 3)

R̃0 B0

Q̃1 M1 −I A1

M⊤
1 R̃1 B1

Q̃2 M2 −I A2

M⊤
2 R̃2 B2

Q̃3 −I

B⊤
0 −I

A⊤
1 B⊤

1 −I

A⊤
2 B⊤

2 −I





∆u0

∆x1

∆u1

∆x2

∆u2

∆x3

∆y0

∆y1

∆y2


=



r̃L,u0

r̃L,x1

r̃L,u1

r̃L,x2

r̃L,u2

r̃L,x3

r̃A,0

r̃A,1

r̃A,2


, (2.35)

where

Q̃k = Q̄k − EkQ̄−1
ϵl,kE⊤

k − FkQ̄−1
ϵu,kF ⊤

k , k = 1, ..., N, (2.36a)

R̃k = R̄k, k = 0, ..., N − 1, (2.36b)

r̃L,xk
= r̄L,xk

+ EkQ̄−1
ϵl,kr̄ϵl,k

+ FkQ̄−1
ϵu,kr̄ϵu,k

, k = 1, ..., N, (2.36c)

r̃L,uk
= r̄L,uk

, k = 0, ..., N − 1, (2.36d)

r̃A = r̄A, k = 0, ..., N − 1. (2.36e)

and the eliminated slack variables are

∆ϵl,k = Q̄−1
ϵl,k

(
r̄ϵl,k
− E⊤

k ∆xk

)
, (2.37a)

∆ϵu,k = Q̄−1
ϵu,k

(
r̄ϵu,k

− F ⊤
k ∆xk

)
. (2.37b)

The KKT-system (2.35) can be solved with Riccati recursion, and finally the remaining part of the search
direction can be compute from (2.37) and (2.34).
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2.2.3 Riccati recursion algorithm

We apply a Riccati recursion based algorithm to solve structured systems of linear equations in the form
(2.35). For simplicity of notation, we write the system (2.35) as

R0 B0

Q1 M1 −I A1

M⊤
1 R1 B1

Q2 M2 −I A2

M⊤
2 R2 B2

P3 −I

B⊤
0 −I

A⊤
1 B⊤

1 −I

A⊤
2 B⊤

2 −I





∆u0

∆x1

∆u1

∆x2

∆u2

∆x3

∆y0

∆y1

∆y2


= −



r0

q1

r1

q2

r2

p3

b0

b1

b2


, (2.38)

We point out that the data in (2.38) should not be confused with variables with similar names previously
introduced. Algorithm 2 and 3 introduce the factorization and solution phase of the Riccati recursion
algorithm (Jørgensen 2004, Wahlgreen and Jørgensen 2022). We point out that the Algorithm 2 returns the
cholesky factorization of Re,k, which QPIPM applies in Algorithm 3 to solve the linear systems involving
Re,k.

Note the negation on the right hand side in (2.38). Before calling the Riccati algorithm to solve (2.35),
QPIPM negates the right hand side of the system (2.35) such that it is in the form (2.38).

2.2.4 Algorithm

In Riccati mode, QPIPM follows the steps in Algorithm 1, where the LDL-factorization step and LDL-
solve step are replaced with the the Riccati factorization and Riccati solve algorithms in Algorithm 2 and
3.

2.2.5 A note on bounds

The Riccati recursion part of QPIPM does allow for hard output constraints, i.e., box constraints on
xk (we have not provided these equations here, but they are easily included based on the input, uk, box
constraints). Therefore, if elements corresponding to xk in l and/or u are not set to infinity, QPIPM does
include the bound. On the other hand, QPIPM does not support soft input constraints in Riccati mode.
Therefore, elements corresponding to the inputs, uk, in S will never be accessed even if the corresponding
values of ls and/or lu are not set to infinity. QPIPM does however require the entries in S corresponding
to uk to be set. We have implemented QPIPM in this way such that one can turn Riccati mode on and off
without changing the provided QP formulation.
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Algorithm 2: Riccati factorization

Input: {Rk, Qk, Mk, Ak, Bk}N−1
k=0 , PN .

1. Compute,

Re,k = Rk + BkPk+1B⊤
k ,

Kk =−R−1
e,k(M⊤

k + BkPk+1A⊤
k ),

Pk = Qk + AkPk+1A⊤
k −K⊤

k Re,kKk,

for k = N − 1, N − 2, ..., 1 and

Re,0 = R0 + B0P1B⊤
0 .

Return: {Re,k, chol(Re,k), Pk+1}N−1
k=0 , {Kk}N−1

k=1 .

Algorithm 3: Riccati solution

Input: {Qk, Mk, Ak, Bk, Re,k, chol(Re,k), Pk+1}N−1
k=0 , {Kk}N−1

k=1 .

1. Compute,

ak = −R−1
e,k(rk + Bk(Pk+1bk + pk+1)),

pk = qk + Ak(Pk+1bk + pk+1) + K⊤
k (rk + Bk(Pk+1bk + pk+1)),

for k = N − 1, N − 2, ..., 1 and

a0 = −R−1
e,0(r0 + B0(P1b̃0 + p1)).

2. Compute the solution, {∆uk, ∆xk+1}N−1
k=0 ,

∆u0 = a0,

∆x1 = B⊤
0 ∆u0 + b̃0,

and

∆uk = Kk∆xk + ak,

∆xk+1 = A⊤
k ∆xk + B⊤

k ∆uk + bk,

for k = 1, 2, ..., N − 1.

3. Compute the Lagrange multipliers, {∆yk}N−1
k=0 ,

∆yN−1 = PN ∆xN + pN ,

∆yk−1 = Ak∆yk + Qk∆xk + Mk∆uk + qk,

for k = N − 1, N − 2, ..., 1.

Return: {∆uk, ∆xk+1, ∆yk}N−1
k=0 .
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Implementation of QPIPM in Matlab and C

In this chapter, we introduce how QPIPM can be called in both Matlab and in C. Both versions are part
of a gitlab-repository, which can be cloned with the command line command

git clone https://gitlab.gbar.dtu.dk/SCGroup/QPIPM.git

3.1 Matlab

QPIPM in Matlab has the following interface:

1 function [x, stat] = QPIPM(H, g, A, b, C, d, l, u, options, ls, S, us, Ql, Qu, ql, qu)

Inputs:

The inputs H, g, A, b, l, u, ls, us, S, Ql, Qu, ql, and qu are as in (2.1). The inputs C and d implements
general inequality constraints in the form

C⊤x ≥ d. (3.1)

The general inequality constraints (3.1) have only been included in QPIPM for testing purposes and are
ignored in Riccati mode. The inputs ls – qu can be left empty in which case QPIPM solves a problem
without soft constraints. The options input is a structure with the following fields

print 0 or 1 to print iteration information Default: 1

tol Convergence tolerance Default: 10−8

maxit Maximum iterations Default: 100

riccati 0 or 1 to turn Riccati mode off/on Default: 0

N Horizon. Required if riccati=1 Default: NaN

We point out that QPIPM takes the same inputs and have the same outputs when Riccati mode is off and
on. When applying Riccati mode, QPIPM assumes that the provided matrices are structured as described
in section 2.2. QPIPM will not check that this is the case. Therefore, Riccati mode can be applied for a
non-structured QP, but the result will likely be wrong.

Outputs:

The output x is the solution at convergence or after maximum iterations are reached. QPIPM prints a
warning message in the case that maximum iterations are reached. The stat output is a structure with the

21
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following fields

obj Objective value at solution

conv 0 (not converged) or 1 (converged)

iter Number of iterations

lamEq Lagrange multipliers for equality constraints

lamIneq Lagrange multipliers for inequality constraints

lamBn Lagrange multipliers for bound constraints

lamZs Lagrange multipliers for soft constraints

lamEpsBn Lagrange multipliers for ϵ-bound constraints

eps ϵ-slack variables

3.2 C

As previously mentioned, the C version of QPIPM does currently not have the option to include soft
constraints. QPIPM in C has the following interface:

1 void QPIPM(

2 // Inputs

3 struct mat *H ,

4 struct vec *g ,

5 struct mat *A ,

6 struct vec *b ,

7 struct mat *C ,

8 struct vec *d ,

9 struct vec *l ,

10 struct vec *u ,

11 void *optionsIn ,

12 mem *memory ,

13

14 // Outputs

15 struct vec *x ,

16 void *statIn

17 )

The structures vec, mat, and mem are vector, matrix, and memory structures, respectively. Theses structures
are defined in the dependency SCInterface, which is shortly introduced in section 3.2.2. In the following,
we introduce the inputs and outputs of the C version.
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Inputs:

The inputs H, g, A, b, C, d, l, and u are as in the Matlab version. The optionsIn input is a options
structure of type optionsQPIPM_t, which has the fields

print 0 or 1 to print iteration information Default: 1

tol Convergence tolerance Default: 10−8

maxit Maximum iterations Default: 100

riccati 0 or 1 to turn Riccati mode off/on Default: 0

N Horizon. Required if riccati=1 Default: NaN

bigN Numbers above treated as infinity Default: 1020

The input memory is a structure of type mem, which contains sufficient integer and double memory for
QPIPM (see section 3.2.1).

Outputs:

The output x is the solution at convergence or after maximum iterations are reached. Similarly to the
Matlab version, QPIPM in C prints a warning message if the maximum number of iterations are reached.
The stat structure is of type statQPIPM_t and has the following fields

obj Objective value at solution

conv 0 (not converged) or 1 (converged)

iter Number of iterations

lamEq Lagrange multipliers for equality constraints

lamIneq Lagrange multipliers for inequality constraints

lamBn Lagrange multipliers for bound constraints

3.2.1 Memory allocation

QPIPM requires both integer and double workspace, which should be allocated in the input memory
structure. QPIPM features the function

1 void workspaceQPIPM( int n, int me, int mi, int *iwork, int *dwork )

which given the dimensions of the QP, n (decision variables), me (equality constraints), and mi (inequal-
ity constraints), computes the required workspace for QPIPM. Then the amount of integer workspace,
iwork, and double workspace, dwork, can be use to initialize the memory input with sufficient memory.
Additionally, the stat structure for the output is required to be initialized, which can be done with the
function

1 void createStatQPIPM( const int n, const int me, const int mi, statQPIPM_t

*const stat )

createStatQPIPM allocates the required memory for the output stat structure. Note that when finished
using the stat structure, the memory can be freed with the function

1 void destroyStatQPIPM( statQPIPM_t *stat )
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3.2.2 Dependencies

QPIPM is a part of the private gitlib-repository SCProject, which is a project containing a series of
git repositories. QPIPM is dependent on the following two repositories in SCProject

SCInterface A set of structure and function definitions

linalg A set of vector and matrix linear algebra functions

Additionally, linalg is BLAS dependent and requires linking to a BLAS installation on the system.

3.2.3 Gitlab

The private Gitlab group SCGroup grants access to all projects contained in SCProject. Therefore,
the three projects, QPIPM, SCInterface, and linalg are also included in SCGroup. When access is
granted to SCGroup, one can clone the whole SCProject or parts of it. To apply QPIPM, one has to
clone QPIPM, SCInterface, and linalg (and install a version of BLAS). The C version of QPIPM
includes a settings.mk file where the dependency paths can be set. The three git repositories can be
cloned with the following command line commands (accompanied with a username and password):

git clone https://gitlab.gbar.dtu.dk/SCGroup/SCInterface.git

git clone https://gitlab.gbar.dtu.dk/SCGroup/linalg.git

git clone https://gitlab.gbar.dtu.dk/SCGroup/QPIPM.git

3.2.4 Doxygen documentation

The C version of QPIPM is documented with Doxygen. The Doxygen documentation is available in
QPIPM/C/docs, which can be compiled by typing doxygen in the command line. Afterwards, the
documentation is available in QPIPM/C/docs/results/html/index.html, which will open in a
browser. The documentation includes descriptions of all QPIPM functions and their inputs and outputs.
Note, this requires an installation of Doxygen on the system.

3.3 Examples

Both the Matlab and C version of QPIPM has a few test examples. The Matlab version has a driver to
test the implementation on a linearized four tank system. The C version includes a simple test example and a
few examples showing that the algorithm can be called in parallel to solve multiple QPs. The examples can
be found in the examples folder in the Matlab and C version of QPIPM.

Note: The C version of QPIPM is thread-safe such that it can be called in parallel to solve multiple QPs.
This feature requires linking to a thread-safe BLAS library, e.g., BLASFEO (Frison et al. 2018, 2020).
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Conclusion

In this part, we introduced the Riccati based primal-dual interior-point software, QPIPM, to solve
structured quadratic programming problems (QPs). QPIPM is a software package that is stored in a private
gitlab-repository QPIPM, which is part of the project SCProject. QPIPM has a Matlab version and a
C version, where the Matlab version is intended for testing purposes and have not been implemented for
computational speed. The C version is thread-safe due to internal distribution of memory allocated prior
to calling QPIPM. QPIPM can solve QPs with equality constraints, box constraints, and soft constraints.
However, currently only the Matlab version supports soft constraints. We have provided the mathematical
details of QPIPM and introduced the implementation of QPIPM in both Matlab and C. We have provided the
interfaces of the implementations and described the inputs and outputs. In the C version, we have elaborated
on how to allocate the needed memory and how to link to the introduced dependencies.
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CHAPTER 5

Introduction

We introduce the sequential quadratic programming (SQP) software, NLPSQP (nonlinear-programming-
sequential-quadratic-programming), for solution of nonlinear programming problems (NLPs). NLPSQP
applies an iterative sequential quadratic programming (SQP) algorithm. In each iteration, NLPSQP per-
forms three major steps, 1) solve a quadratic programming problem (QP) subproblem with QPIPM, 2)
apply a line-search algorithm to ensure sufficient decrease in a merit function, and 3) perform a Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) update to avoid the need of evaluating second order derivatives.
NLPSQP supports a Riccati mode for solution of structured problems arising in optimal control problems
(OCPs). NLPSQP is intended for use in nonlinear model predictive control (NMPC) and economic NMPC
(ENMPC) applications. We have implemented NLPSQP in both a Matlab version and a C version. The
Matlab version is intended for testing purposes, while the C version is intended for uncertainty quantification
studies of closed-loop systems with Monte Carlo simulation. To that end, the C version of NLPSQP is
implemented thread-safe to enable parallel scaling in Monte Carlo simulations, i.e., NLPSQP can be called in
parallel to solve different NLPs. The thread-safety of NLPSQP is ensured by internally distributing memory
allocated prior to calling NLPSQP. Similarly to QPIPM, the Matlab version supports soft constraints, while
the C version lacks this feature due to time constraints. The current implementation of NLPSQP is still work
in progress and can likely be optimized for better performance. However, the most computational work is
done in QPIPM.

In this report, we introduce the mathematical details in the NLPSQP implementation and introduce the
interfaces of NLPSQP in both Matlab and C. NLPSQP is stored in a private gitlab-repository NLPSQP

and is part of the project SCProject, which is implemented in C and contains a number of other gitlab-
repositories. For the C version, we introduce the other dependencies in SCProject and explain how to
allocate the required memory prior to calling NLPSQP.

We point out that the implementation of NLPSQP is highly inspired by previous work (Wächter and
Biegler 2006, Kaysfeld et al. 2023).
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CHAPTER 6

Mathematical details

We have developed NLPSQP to solve NLPs with equality constraints, box constraints, and soft constraints
in the form,

min
x,ϵl,ϵu

f(x) + Q(ϵl, ϵu), (6.1a)

s.t. g(x) = 0, (6.1b)

l ≤ x ≤ u, (6.1c)

ls − ϵl ≤ s(x) ≤ us + ϵu, (6.1d)

ϵl, ϵu ≥ 0, (6.1e)

where x ∈ Rn, ϵl ∈ Rms , ϵu ∈ Rms , f : Rn → R, Q : R2ms → R, g : Rn → Rme , l ∈ Rn, u ∈ Rn,
s : Rn → Rms , ls ∈ Rms , and us ∈ Rms . We point out that l and u can have elements set to −∞ and∞ in
which case NLPSQP eliminates these constraints in a pre-computing phase. We let ml and mu denote the
actual number of lower bounds and upper bounds after elimination of∞-bounds, respectively.

The penalty function, Q(·), is a combination of quadratic and linear terms similarly to the penalty term
the QP solved in QPIPM,

Q(ϵl, ϵu) = 1
2ϵ⊤

l Qlϵl + q⊤
l ϵl + 1

2ϵ⊤
u Quϵu + q⊤

u ϵu, (6.2)

where we assume that Ql ∈ Rms×ms and Qu ∈ Rms×ms are diagonal matrices.

NLPSQP is an iterative algorithm that in each iteration goes through the following three major steps,

• Compute the search-direction by solving a QP-subproblem,

• A line-search algorithm to ensure sufficient decrease in a merit function,

• A BFGS update for Lagrangian Hessian approximation.

We let the superscript [l] denote the l’th iteration of NLPSQP. In each iteration NLPSQP takes the step

x[l+1] = x[l] + α[l]∆x[l], (6.3)

where α[l] is a step-size computed by the line-search algorithm to ensure sufficient decrease in a merit
function and ∆x[l] is the search direction computed as the solution to the QP-subproblem.

NLPSQP features a version to solve the general NLP (6.1) and a Riccati recursion based version to solve
structured NLPs arising in OCPs. The non-Riccati version is not optimized and primarily implemented for
testing purposes.
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6.1 Sequential quadratic programming algorithm

In this section, we introduce the SQP algorithm implemented in NLPSQP to solve soft constrained NLPs
in the form (6.1).

6.1.1 Optimality conditions

We define the Lagrangian function for (6.1), which is

L(x, λ, πl, πu, πϵl
, πϵu

, πls
, πus

) = f(x) + Q(ϵl, ϵu)− λ⊤g(x)− π⊤
l (x− l)− π⊤

u (u− x)

− π⊤
ϵl

ϵl − π⊤
ϵu

ϵu − π⊤
ls

(s(x)− ls + ϵl)− π⊤
us

(us + ϵu − s(x)).
(6.4)

λ ∈ Rm are equality constraint Lagrange multipliers, πl ∈ Rn are lower bound Lagrange multipliers,
πu ∈ Rn are upper bound Lagrange multipliers, πϵl

∈ Rms are ϵl-non-negativity Lagrange multipliers,
πϵu
∈ Rms are ϵu-non-negativity Lagrange multipliers, πls

∈ Rms are lower soft constraint Lagrange
multipliers, and πus

∈ Rms are upper soft constraint Lagrange multipliers. The Lagrangian gradient with
respect to the decision variables, x, and the soft constraint Lagrange multipliers, ϵl and ϵu, is then

∇xL = ∇f(x)−∇g(x)λ− πl + πu −∇s(x)πls
+∇s(x)πus

, (6.5a)

∇ϵl
L = ∇ϵl

Q(ϵl, ϵu)− πϵl
− πls

, (6.5b)

∇ϵuL = ∇ϵuQ(ϵu, ϵu)− πϵu − πus , (6.5c)

where L(x, λ, πl, πu, πϵl
, πϵu

, πls
, πus

). The first order KKT-conditions for (6.1) are given as

∇xL = 0, (6.6a)

∇ϵl
L = 0, (6.6b)

∇ϵu
L = 0, (6.6c)

g(x) = 0, (6.6d)

x− l ≥ 0, u− x ≥ 0, (6.6e)

s(x)− ls + ϵl ≥ 0, us + ϵu − s(x) ≥ 0, (6.6f)

ϵl ≥ 0, ϵu ≥ 0. (6.6g)

6.1.2 Quadratic programming subproblem

NLPSQP solves a QP-subproblem in each iteration to get the search direction. For simplicity of notation,
we disregard the iteration superscript [l] in this section (x = x[l], ∆x = ∆x[l], ϵl = ϵ

[l]
l , ϵu = ϵ[l]

u ,
W = W [l]). The QP-subproblem solved in NLPSQP is

min
∆x,ϵl,ϵu

1
2∆x⊤W∆x +∇f(x)⊤∆x + Q(ϵl, ϵu), (6.7a)

s.t. ∇g(x)⊤∆x = −g(x), (6.7b)

l − x ≤ ∆x ≤ u− x, (6.7c)

ls − s(x)− ϵl ≤ ∇s(x)⊤∆x ≤ us − s(x) + ϵu, (6.7d)

ϵl, ϵu ≥ 0. (6.7e)

W is a BFGS approximation of the second order derivative of the Lagrangian. We denote the Lagrange
multipliers of the QP-subproblem (6.7) as: µ for equality constrain, τl and τu for bound constraints, and
τls and τus for soft constraints. We point out that the slack variables ϵl and ϵu in the QP-subproblem (6.7)
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are identical to those in the original NLP (6.1). Therefore, the Lagrange multipliers for the ϵ-bounds in the
QP-subproblem are exactly πϵl

and πϵu
, i.e., the Lagrange multipliers from the original NLP (6.1).

The Lagrange multipliers of the QP-subproblem (6.7) are related to the Lagrange multipliers of the
original NLP (6.1) as

µ = λ + ∆λ, (6.8a)

τl = πl + ∆πl, τu = πu + ∆πu, (6.8b)

τls
= πls

+ ∆πls
, τus

= πus
+ ∆πus

. (6.8c)

Using the relation (6.8), we can compute the search direction for the Lagrange multipliers,

(∆λ, ∆πl, ∆πu, ∆πls , ∆πus). (6.9)

We point out that the solution to the QP-subproblem (6.7) ensures to satisfy the linear constraints in the
original NLP (6.1), i.e., the bound constraints (6.1c) and the ϵ-non-negativity constraints (6.1e). Note also
that the QP-subproblem (6.7) is in the form (2.1) and can be solved with QPIPM.

6.1.3 Line-search

NLPSQP applies a backtracking line-search algorithm to compute the step-size, α, that ensures sufficient
degrees in Powell’s l1-merit function (Powell 1978, Jørgensen 2004). We have adapted the merit function to
include soft constraint

P (x) = f(x) + σ⊤|g(x)|+ κ⊤
l |min(0, s(x)− ls + ϵl)|

+ κ⊤
u |max(0, s(x)− us − ϵu)|.

(6.10)

The j’th element of the vectors, σ, κl, and κu, are defined as

σj = max
(
|µj |,

1
2(σj + |µj |)

)
, j = 1, ..., m, (6.11a)

κl,j = max
(
|τls,j |,

1
2(κl,j + |τls,j |)

)
, j = 1, ..., ms, (6.11b)

κu,j = max
(
|τus,j |,

1
2(κu,j + |τus,j |)

)
, j = 1, ..., ms, (6.11c)

where σj = |µj |, κl,j = |τls,j |, and κu,j = |τus,j | in the first iteration (l = 0). Note, linear constraints
are not included in the merit function since these are satisfied by construction of the QP-subproblem (6.7).
Also, the penalty function, Q(ϵl, ϵu), is not included in the merit function since ϵl and ϵu are not affected by
changes in the step-size, α. We define the following function

T (α) = P (x[l+1]) = P (x[l] + α∆x[l]). (6.12)

We define sufficient decrease with the Armijo condition as

T (α) ≤ T (0) + c1αD∆xT (0), (6.13)



34 CHAPTER 6. MATHEMATICAL DETAILS

where

T (α) = f(x[l] + α∆x[l]) + σ⊤|g(x[l] + α∆x[l])|

+ κ⊤
l |min(0, s(x[l] + α∆x[l])− ls + ϵ

[l]
l )|

+ κ⊤
u |max(0, s(x[l] + α∆x[l])− us − ϵ[l]

u )|

(6.14a)

T (0) = f(x[l]) + σ⊤|g(x[l])|

+ κ⊤
l |min(0, s(x[l])− ls + ϵ

[l]
l )|

+ κ⊤
u |max(0, s(x[l])− us − ϵ[l]

u )|

(6.14b)

D∆xT (0) = ∇f(x[l])⊤∆x[l] − σ⊤|g(x[l])|

− κ⊤
l |min(0, s(x[l])− ls + ϵ

[l]
l )|

− κ⊤
u |max(0, s(x[l])− us − ϵ[l]

u )|

(6.14c)

The backtracking line-search algorithm is (Kaysfeld et al. 2023)

1. Set α = 1

2. Check the Armijo condition (6.13) and if satisfied break with α[l] = α as output

3. Reduce step α← βα

4. Go to 2.

We apply c1 = 10−4 and β = 0.5, which are similar values as chosen in IPOPT (Wächter and Biegler 2006).

Once the step-size, α[l], is computed by the line-search algorithm, NLPSQP performs the step

x[l+1] = x[l] + α[l]∆x[l], λ[l+1] = λ[l] + α[l]∆λ[l], (6.15a)

π
[l+1]
l = π

[l]
l + α[l]∆π

[l]
l , π[l+1]

u = π[l]
u + α[l]∆π[l]

u , (6.15b)

π
[l+1]
ls

= π
[l]
ls

+ α[l]∆π
[l]
ls

, π[l+1]
us

= π[l]
us

+ α[l]∆π[l]
us

. (6.15c)

6.1.4 BFGS update

NLPSQP requires only gradient information. Thus, no second order derivatives are required to apply
NLPSQP. In NLPSQP, we apply a BFGS update for the Lagrange Hessian. Specifically, we apply a damped
version of the BFGS update to ensure positive definiteness of the update (Powell 1978). In the remainder of
this section, we apply the following definitions to ease notation: W = W [l] and W̄ = W [l+1].

We define the following two vectors

s = x[l+1] − x[l], (6.16a)

y = ∇xL+ −∇xL−, (6.16b)

where

∇xL− = ∇xL(x[l], λ[l+1], π
[l+1]
l , π[l+1]

u , π[l+1]
ϵl

, π[l+1]
ϵu

, π
[l+1]
ls

, π[l+1]
us

)

= ∇f(x[l])−∇g(x[l])λ[l+1] − π
[l+1]
l + π[l+1]

u −∇s(x[l])π[l+1]
ls

+∇s(x[l])π[l+1]
us

,
(6.17a)

∇xL+ = ∇xL(x[l+1], λ[l+1], π
[l+1]
l , π[l+1]

u , π[l+1]
ϵl

, π[l+1]
ϵu

, π
[l+1]
ls

, π[l+1]
us

)

= ∇f(x[l+1])−∇g(x[l+1])λ[l+1] − π
[l+1]
l + π[l+1]

u −∇s(x[l+1])π[l+1]
ls

+∇s(x[l+1])π[l+1]
us

.

(6.17b)
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We point out that the πl and πu contributions in L− and L+ can be ignored as these are eliminated in (6.16b).
Now let

r = θy + (1− θ)Ws, (6.18)

where

θ =


1 s⊤y ≥ 0.2s⊤Ws

0.8s⊤Ws

s⊤Ws− s⊤y
s⊤y < 0.2s⊤Ws

(6.19)

The damped BFGS update is then

W̄ = W − (Ws)(Ws)⊤

s⊤(Ws) + rr⊤

s⊤r
. (6.20)

NLPSQP applies W [0] = I , where I is an identity matrix of proper dimensions.

6.1.5 Initialization

NLPSQP requires an initial guess on the decision variables x[0], which the user has to provide. The soft
constraint slack variables, ϵl and ϵu, and all Lagrange multipliers are initialized by NLPSQP to 0.

6.1.6 Convergence

NLPSQP converges when the KKT-conditions (6.6) are satisfied, i.e., a local optimum is located. In
practice, NLPSQP evaluates a scaled convergence criterion based on a user-specified convergence tolerance
ϵ > 0

||∇xL/sd||∞ ≤ ϵ, (6.21a)

||∇ϵl
L||∞ ≤ ϵ, (6.21b)

||∇ϵuL||∞ ≤ ϵ, (6.21c)

||g(x)||∞ ≤ ϵ, (6.21d)

||min(0, s(x)− ls + ϵl)||∞ ≤ ϵ, (6.21e)

||max(0, s(x)− us − ϵu)||∞ ≤ ϵ, (6.21f)

where

sd = max
(

smax,
||λ||1 + ||πl||1 + ||πu||1

m + ml + mu

)
/smax. (6.22)

We apply smax = 100 similarly to IPOPT (Wächter and Biegler 2006). NLPSQP evaluates the criterion
(6.21) after the step (6.15) is computed.

6.1.7 Algorithm

Algorithm 4 presents a detailed implementation guide for NLPSQP.

6.2 Riccati version for optimal control problems

In this section, we introduce the Riccati recursion option for NLPSQP. In this mode, NLPSQP assumes
that the NLP has a specific structure, where the QP-subproblem is in the form (2.27) such that QPIPM can
apply Riccati mode. Therefore, the following is required of the NLP for NLPSQP to apply Riccati mode,
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Algorithm 4: NLPSQP pseudo code
Input: Initial guess, x0, and soft constrained NLP,

min
x,ϵl,ϵu

f(x) + Q(ϵl, ϵu),

s.t. g(x) = 0,

l ≤ x ≤ u,

ls − ϵl ≤ s(x) ≤ us + ϵu,

ϵl, ϵu ≥ 0,

i.e. the functions: f(x), g(x), s(x) and the matrices and vectors: Ql, Qu, gl, gu, l, u, ls, lu.

• Initialize (l = 0):

x[0] = x0, ϵ
[0]
l = ϵ[0]

u = 0, λ[0] = π
[0]
l = π[0]

u = π[0]
ϵl

= π[0]
ϵu

= π
[0]
ls

= π[0]
us

= 0, W [0] = I.

• Check convergence (6.21).

while not converged do

1. Update iteration counter: l← l + 1.

2. Apply QPIPM to solve the QP-subproblem for ∆x[l] = ∆x, ϵ
[l]
l = ϵl, and ϵ[l]

u = ϵu,

min
∆x,ϵl,ϵu

1
2∆x⊤W∆x +∇f(x)⊤∆x + Q(ϵl, ϵu),

s.t. ∇g(x)⊤∆x = −g(x),
l − x ≤ ∆x ≤ u− x,

ls − s(x)− ϵl ≤ ∇s(x)⊤∆x ≤ us − s(x) + ϵu,

ϵl, ϵu ≥ 0,

where W = W [l] and x = x[l]. Note, the Lagrange multipliers for the QP-subproblem are

µ = λ[l] + ∆λ[l],

τl = π
[l]
l + ∆π

[l]
l , τu = π[l]

u + ∆π[l]
u ,

τls = π
[l]
ls

+ ∆π
[l]
ls

, τus = π[l]
us

+ ∆π[l]
us

,

πϵl
= π[l]

ϵl
, πϵu

= π[l]
ϵu

.

3. Compute the step-size, α[l], with the line-search algorithm as descriped in section 6.1.3.

4. Compute the step

x[l+1] = x[l] + α[l]∆x[l], λ[l+1] = λ[l] + α[l]∆λ[l],

π
[l+1]
l = π

[l]
l + α[l]∆π

[l]
l , π[l+1]

u = π[l]
u + α[l]∆π[l]

u ,

π
[l+1]
ls

= π
[l]
ls

+ α[l]∆π
[l]
ls

, π[l+1]
us

= π[l]
us

+ α[l]∆π[l]
us

.

5. Check convergence (6.21) - break if criterion is satisfied.

6. Apply the BFGS update as described in section 6.2.1

W [l+1] = W [l] − (W [l]s)(W [l]s)⊤

s⊤(W [l]s)
+ rr⊤

s⊤r
.

Return: x, y, πl, πu, πϵl
, πϵu , πls , and πus .
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1. The decision variable vector contains two variables, xk and uk, and are structured as follows

ξ =
[
u0 x1 u1 · · · xN−1 uN−1 xN

]⊤
. (6.23)

2. The equality constraints, g(ξ) = 0, are structured such that the gradient has the structure

∇g(ξ) =



−B0

I −A1

−B1

I −A2

−B2

I
. . . −AN−1

−BN−1

I


. (6.24)

3. The soft constraint function, s(ξ), contain no soft constraints on the inputs and its gradient has a block
diagonal structure in the form

∇s(ξ) =



0
S1

0
S2

. . .

0
SN


. (6.25)

4. In addition, NLPSQP in Riccati mode applies a block BFGS update to ensure the block diagonal
Hessian structure for the QP-subproblem. For the update to be a good approximation of the true
Lagrange Hessian, we suggest that the NLP has the following Lagrange Hessian structure,

∇2
ξξL =



W0

W1
. . .

WN−1

WN


, (6.26)

with

W0 = R0, (6.27a)

Wk =
[

Qk Mk

M⊤
k Rk

]
, k = 1, ..., N − 1, (6.27b)

WN = PN . (6.27c)

Under the above assumptions, NLPSQP can apply QPIPM in Riccati mode to efficiently solve the
QP-subproblem. In the following section, we introduce the applied block BFGS update to maintain the
required block diagonal Hessian structure in the QP-subproblem. We point out that the line-search algorithm,
convergence criterion, and algorithm initialization is identical to the non-Riccati mode version of NLPSQP.
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6.2.1 Block BFGS update

In Riccati mode, NLPSQP applies a block BFGS update to maintain a block diagonal Hessian structure
for the QP-subproblem. A usual BFGS update would result in a dense matrix and would therefore not
produce the structure required to apply Riccati recursion in the QP-subproblem. In the remainder of this
section, we apply Wk = W

[l]
k and W̄k = W

[l+1]
k for simplicity of notation.

We define the vectors, s and y, similar to (6.16),

s = ξ[l+1] − ξ[l], (6.28a)

y = ∇ξL+ −∇ξL−, (6.28b)

where L− and L+ is defined as in (6.17). We let sk and yk be sub-vectors in s and y corresponding to the
diagonal block matrices, Wk, in (6.26). Similarly to the normal damped BFGS update, we define

rk = θkyk + (1− θk)Wksk, (6.29)

where

θk =


1 s⊤

k yk ≥ 0.2s⊤
k Wksk

0.8s⊤
k Wksk

s⊤
k Wksk − s⊤

k yk
else

(6.30)

Finally, the BFGS update of each block is

W̄k =

Wk −
(Wksk)(Wksk)⊤

s⊤
k (Wksk)

+ rkr⊤
k

s⊤
k rk

κ > ϵm

Wk else
(6.31)

ϵm is the machine precision of the computer and κ = min(κ1, κ2) with κ1 = s⊤
k Wksk and κ2 = s⊤

k rk.
These update safeguards are implemented to avoid zero-division if some blocks converge faster than others.
NLPSQP initializes the full block diagonal structured Hessian approximation as W [0] = I , where I is an
identity matrix of proper dimensions. Numerical tests have shown that numerical errors might cause indefinite
BFGS block updates. NLPSQP applies the simple strategy to reset the entire Hessian approximation to
identity if an indefinite update is detected.

6.2.2 Application to solve OCPs

In this section, we introduce an OCP and demonstrate that direct multiple shooting discretization
transcribes the OCP to an NLP in the form required for NLPSQP to apply Riccati mode.

We consider continuous OCPs in the form

min
[x(t);u(t)]

tf
t0

ϕ =
∫ tf

t0

l(t, x(t), u(t), p)dt + l̂(x(tf ), p), (6.32a)

s.t. x(t0) = x0, (6.32b)

ẋ(t) = f(t, x(t), u(t), d(t), p), t0 ≤ t ≤ tf , (6.32c)

umin(t) ≤ u(t) ≤ umax(t), t0 ≤ t ≤ tf . (6.32d)

By direct multiple shooting discretization, we transcribe the continuous OCP (6.32) to the following NLP,

min
{uk,xk+1}N−1

k=0

ϕ = Φ̂
(
{uk, xk+1}N−1

k=0
)

, (6.33a)

s.t. Rk = xk+1 − F (tk, xk, uk, dk, p) = 0, k = 0, ..., N − 1, (6.33b)

umin,k ≤ uk ≤ umax,k, k = 0, ..., N − 1, (6.33c)
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where F (·) is a numerical integration scheme and

Φ̂
(
{uk, xk+1}N−1

k=0
)

=
{

N−1∑
k=0

∫ tk+1

tk

l(xk(t), uk, dk, p)dt + l̂(xN , p) :

x0(t0) = x0,

xk(tk) = xk, k = 1, ..., N − 1,

ẋk(t) = f(t, xk(t), uk, dk, p), tk ≤ t ≤ tk+1

}
.

(6.34)

We add soft constraints to the discretized OCP and get a soft constrained OCP in the form

min
{uk,xk+1,ϵl,k+1,ϵu,k+1}N−1

k=0

ϕ = Φ̂
(
{uk, xk+1}N−1

k=0
)

+ Q(ϵl, ϵu), (6.35a)

s.t. Rk = xk+1 − F (tk, xk, uk, dk, p) = 0, k = 0, ..., N − 1, (6.35b)

umin,k ≤ uk ≤ umax,k, k = 0, ..., N − 1, (6.35c)

xmin,k − ϵl,k ≤ sk(xk) ≤ xmax,k + ϵu,k, k = 1, ..., N, (6.35d)

where ϵl =
[
ϵl,1 ϵl,2 · · · ϵl,N

]⊤
, ϵu =

[
ϵu,1 ϵu,2 · · · ϵu,N

]⊤
, and Q(ϵl, ϵu) is as in (6.2). In the

following, we demonstrate that the NLP (6.35) satisfies the requirements for NLPSQP to be called in Riccati
mode.

Equality constraints

We write the equality constraints (6.35b) as

g(ξ) =
[
R0 R1 · · · RN−1

]⊤
, (6.36)

and observe that the gradient has the required form (6.24),

∇g(ξ) =



−∇u0F

I −∇x1F

−∇u1F

I −∇x2F

−∇u2F

I
. . . −∇xN−1F

−∇uN−1F

I



, (6.37)

where we define

Ak = ∇xk
F = ∇xk

F (tk, xk, uk, dk, p), k = 1, ..., N − 1, (6.38)

Bk = ∇uk
F = ∇uk

F (tk, xk, uk, dk, p), k = 0, ..., N − 1. (6.39)

Soft constraints

Similarly, we write the soft constraints (6.35d) as

s(ξ) =
[
s1(x1) s2(x2) · · · sN (xN )

]⊤
(6.40)
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and observe that the gradient has the required form (6.25),

∇s(ξ) =



0
∇x1s1

0
∇x2s2

. . .

0
∇xN

sN


, (6.41)

where we define

Sk = ∇xk
sk = ∇xk

sk(xk), k = 1, ..., N. (6.42)

Lagrangian Hessian block diagonal structure

We notice that the soft constrained NLP (6.35) has a partially separable (in the states, x, and inputs, u)
objective function and constraints. Therefore, the Lagrangian is also partial separable as

L(ξ) = L0(u0) +
N−1∑
k=1
Lk(xk, uk) + LN (xN ), (6.43)

where we leave out the Lagrange multiplier dependencies in L for simplicity. As a result of the partial
separability, the Lagrangian Hessian is given as

∇2
ξξL =



∇2
u0,u0

L0
∇2

x1,x1
L1 ∇2

x1,u1
L1

∇2
u1,x1
L1 ∇2

u1,u1
L1

. . .
∇2

xN−1,xN−1
LN−1 ∇2

xN−1,uN−1
LN−1

∇2
uN−1,xN−1

LN−1 ∇2
uN−1,uN−1

LN−1
∇2

xN ,xN
NN


.

(6.44)

We notice that the Lagrangian Hessian has the required block diagonal structure (6.26), where

R0 = ∇2
u0,u0

L0, (6.45a)[
Qk Mk

M⊤
k Rk

]
=

[
∇2

xk,xk
Lk ∇2

xk,uk
Lk

∇2
uk,xk

Lk ∇2
uk,uk

Lk

]
, (6.45b)

PN = ∇2
xN ,xN

LN . (6.45c)

We point out that the matrices Qk, Rk, Mk, and PN are not required to be evaluated as NLPSQP apply the
block BFGS update described in section 6.2.1.

6.2.3 Algorithm

In Riccati mode, NLPSQP applies the steps in Algorithm 4. However, NLPSQP calls QPIPM in Riccati
mode to solve the QP-subproblem and applies the block BFGS update described in section 6.2.1 to ensure
the required structure of the QP-subproblem.
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6.2.4 A note on bounds

Even though we have not included hard output constraints in the problem (6.32), NLPSQP does have the
option to include these in the OCP.





CHAPTER 7

Implementation of NLPSQP in Matlab and C

In this chapter, we introduce how to call NLPSQP in both Matlab and in C. Both versions are part of a
private gitlab-repository, which can be cloned with the command line command

git clone https://gitlab.gbar.dtu.dk/SCGroup/NLPSQP.git

7.1 Matlab

NLPSQP in Matlab has the following interface:

1 function [x, stat] = NLPSQP(ffun, x0, gfun, hfun, l, u, options, varargin)

Inputs:

The inputs are as follows: ffun is the objective function, f(x), x0 is the user-provided initial condition,
x0, gfun is the equality constraint function, g(x), l is the lower bound vector, u is the upper bound vector,
options is an options structure, and varargin contains a set of variable input arguments for f(x), g(x),
and h(x).

The input hfun is for general inequality constraints,

h(x) ≥ 0, (7.1)

which is only implemented for testing purposes and not optimized in any way. In Riccati mode, general
inequality constraints are not supported and hfun has to be left empty.

The input options contains a number of options and the possibility to enable soft constraints. The
options structure has the following fields

print 0 or 1 to print iteration information Default: 1

tol Convergence tolerance Default: 10−8

tolStep Minimum allowed step-size Default: 10−8

maxit Maximum iterations Default: 100

riccati 0 or 1 to turn Riccati mode off/on Default: 0

N Horizon. Required if riccati=1 Default: NaN

printQP 0 or 1 to print QPIPM iteration information Default: 0

tolQP QPIPM convergence tolerance Default: 10−2 · tol

maxitQP QPIPM maximum iterations Default: 100
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subWarn 0 or 1 to suppress Matlab warnings Default: 0

softLin 0 or 1 to specify linear soft constraints Default: 0

softNonlin 0 or 1 to specify nonlinear soft constraints Default: 0

softProblemLin Structure with linear soft constraints Default: empty

softProblemNonlin Structure with nonlinear soft constraints Default: empty

The two soft constrained problem structures softProblemLin and softProblemNonlin are required
to be set if softLin=1 and softNonlin=1 respectively. Note also that softLin and softNonlin
cannot be set to 1 at the same time. The fields of softProblemLin and softProblemNonlin are

ls Lower soft bound

S/sfun Linear case: Soft constraint matrix - Nonlinear case: Soft constraint function

us Upper soft bound

Ql Quadratic penalty maitrx for lower soft bound - assumed diagonal

Qu Quadratic penalty matrix for upper soft bound - assumed diagonal

ql Linear penalty vector for lower soft bound

qu Linear penalty vector for upper soft bound

We point out that NLPSQP takes the same inputs and have the same outputs when Riccati mode is off and
on. When applying Riccati mode, NLPSQP assumes that the provided NLP has the required structure as
described in section 6.2. NLPSQP does not check that this is the case. Riccati mode can be applied for a
non-structured NLP, but NLPSQP makes assumptions about the structure in the QP-subproblem, which
likely leads to poor search directions. This can cause bad convergence properties of NLPSQP and might
ultimately prevent convergence.

Outputs:

The output x is the solution vector after 1) convergence, i.e., x is a local optimum, 2) the maximum
number of iterations are reached in which case NLPSQP prints a warning, and 3) the computed step-size is
smaller than tolStep in which case NLPSQP prints a warning. The stat output is a structure with the
following fields

obj Objective value at solution

conv 0 (not converged) or 1 (converged)

iter Number of iterations

lamEq Lagrange multipliers for equality constraints

lamIneq Lagrange multipliers for inequality constraints

lamBn Lagrange multipliers for bound constraints

eps ϵ-slack variables

7.2 C

The C version of NLPSQP does not include soft constraints as previously mentioned. The interface for
NLPSQP in C is
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1 void NLPSQP(

2 // Inputs

3 objectiveFunctionNLPSQP_t *ffun ,

4 struct vec *x0 ,

5 void *varargin ,

6 equalityConstraintFunctionNLPSQP_t *gfun ,

7 inequalityConstraintFunctionNLPSQP_t *hfun ,

8 struct vec *l ,

9 struct vec *u ,

10 optionsNLPSQP_t *options ,

11 mem *memory ,

12

13 // Outputs

14 struct vec *x ,

15 statNLPSQP_t *stat

16 )

Inputs:

NLPSQP takes three function inputs ffun, gfun, and hfun similarly to the Matlab version. The
varargin input is a set of variable input arguments required by the three input functions. The vectors
l and u are the lower and upper bounds, respectively. The memory input contains both integer and
double workspace required by NLPSQP (see section 7.2.1). The options inputs is a structure of type
optionsNLPSQP_t which has the following fields

print 0 or 1 to print iteration information Default: 1

tol Convergence tolerance Default: 10−8

tolStep Minimum allowed step-size Default: 10−8

maxit Maximum iterations Default: 100

riccati 0 or 1 to turn Riccati mode off/on Default: 0

N Horizon. Required if riccati=1 Default: idummy

printQP 0 or 1 to print QPIPM iteration information Default: 0

tolQP QPIPM convergence tolerance Default: 10−2 · tol

maxitQP QPIPM maximum iterations Default: 100

bigN Numbers above treated as infinity Default: 1020

where idummy = -11111 is an integer dummy variable defined in NLPSQP. The function types of ffun,
gfun, and hfun are

1 typedef void objectiveFunctionNLPSQP_t(

2 // Inputs

3 struct vec *x ,

4 void *varargin ,

5 int nargout ,

6

7 // Outputs
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8 double *f ,

9 struct vec *df

10 );

1 typedef void equalityConstraintFunctionNLPSQP_t(

2 // Inputs

3 struct vec *x ,

4 void *varargin ,

5 int nargout ,

6

7 // Outputs

8 struct vec *g ,

9 struct mat *dg

10 );

1 typedef void inequalityConstraintFunctionNLPSQP_t(

2 // Inputs

3 struct vec *x ,

4 void *varargin ,

5 int nargout ,

6

7 // Outputs

8 struct vec *h ,

9 struct mat *dh

10 );

The three function types have the same inputs, which are

x Decision variables

varargin A set of variable input arguments

nargout Number of outputs to evaluate

and their outputs are

f Objective value

df Gradient for objective function

g Equality constraints vector

dg Gradient for equality constraints

h Inequality constraints vector

dh Gradient for inequality constraints

Outputs:

The output x is the solution vector after 1) convergence, i.e., x is a local optimum, 2) the maximum
number of iterations are reached in which case NLPSQP prints a warning, and 3) the computed step-size is
smaller than tolStep in which case NLPSQP prints a warning. The stat output is a structure of type
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statNLPSQP_t with the following fields

obj Objective value at solution

conv 0 (not converged) or 1 (converged)

iter Number of iterations

lamBn Lagrange multipliers for bound constraints

lamEq Lagrange multipliers for equality constraints

lamIneq Lagrange multipliers for inequality constraints

7.2.1 Memory allocation

NLPSQP requires both integer and double workspace, which should be allocated in the input memory
structure. NLPSQP features the function

1 void workspaceNLPSQP( int n, int me, int mi, int *iwork, int *dwork )

which given the dimensions of the NLP, n (decision variables), me (equality constraints), and mi (inequal-
ity constraints), computes the required workspace for NLPSQP. Then the amount of integer workspace,
iwork, and double workspace, dwork, can be use to initialize the memory input with sufficient memory.
Additionally, the stat structure for the output is required to be initialized, which can be done with the
function

1 void createStatNLPSQP( const int n, const int me, const int mi,

statNLPSQP_t *const stat )

createStatNLPSQP allocates the required memory for the output stat structure. Note that when
finished using the stat structure, the memory can be freed with the function

1 void destroyStatNLPSQP( statNLPSQP_t *stat )

7.2.2 Dependencies

NLPSQP is a part of the private gitlib-repository SCProject, which is a project containing a series of
git repositories. NLPSQP is dependent on the following three repositories in SCProject:

SCInterface A set of structure and function definitions

linalg A set of vector and matrix linear algebra functions

util A set of utility functions

QPIPM A primal-dual interior-point software to solve QPs

Additionally, linalg is BLAS dependent and requires linking to a BLAS installation on the system.

7.2.3 Gitlab

The private Gitlab group SCGroup grants access to all projects contained in SCProject. Therefore,
the four projects, NLPSQP, QPIPM, SCInterface, and linalg are also included in SCGroup. When
access is granted to SCGroup, one can clone the whole SCProject or parts of it. To apply NLPSQP, one
has to clone NLPSQP, QPIPM, SCInterface, util, and linalg (and install a version of BLAS). The
C version of NLPSQP includes a settings.mk file, where the dependency paths can be set. The five git
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repositories can be cloned with the following command line commands (accompanied with a username and
password):

git clone https://gitlab.gbar.dtu.dk/SCGroup/SCInterface.git

git clone https://gitlab.gbar.dtu.dk/SCGroup/linalg.git

git clone https://gitlab.gbar.dtu.dk/SCGroup/util.git

git clone https://gitlab.gbar.dtu.dk/SCGroup/QPIPM.git

git clone https://gitlab.gbar.dtu.dk/SCGroup/NLPSQP.git

7.2.4 Doxygen documentation

The C version of NLPSQP is documented with Doxygen. The Doxygen documentation is available
in NLPSQP/C/docs, which can be compiled by typing doxygen in the command line. Afterwards,
the documentation is available in NLPSQP/C/docs/results/html/index.html, which opens in a
browser. The documentation includes descriptions of all NLPSQP functions and their inputs and outputs.
Note, this requires an installation of Doxygen on the system.

7.3 Examples

Both the Matlab and C version of NLPSQP has a few test examples. The Matlab version includes a
driver to test NLPSQP on a simple NLP and a few drivers to apply NLPSQP to solve OCPs for both a four
tank system model and a continuous stirred tank reactor (CSTR) model. The drivers show how to apply
NLPSQP and demonstrate NLPSQP with/without Riccati mode and with/without soft constraints.

The C version also includes a test simple test NLP. Additionally, the C version includes test examples that
demonstrate that NLPSQP can solve an OCP for the CSTR model similarly to the Matlab version. Finally,
the C version includes an example that demonstrates that NLPSQP can be called to solve multiple OCPs in
parallel using openMP. This example requires linking to a thread-safe BLAS installation, e.g., BLASFEO
(Frison et al. 2018, 2020).

Furthermore, we refer to previous work, where we have integrated NLPSQP in an NMPC. The NMPC
was applied in large-scale closed-loop Monte Carlo simulations to quantify uncertainties in the closed-loop
system (Kaysfeld et al. 2023).



CHAPTER 8

Conclusion

In this part, we introduced the sequential quadratic programming (SQP) software, NLPSQP, to solve
structured nonlinear programming problems (NLPs). NLPSQP is a software package that is stored in a
private gitlab-repository NLPSQP, which is part of the project SCProject. NLPSQP has a Matlab version
and a C version. In the current version only NLPSQP in Matlab supports soft constraints. We have provided
the mathematical details of NLPSQP and introduced the implementation of NLPSQP in both Matlab and
C. We showed interfaces of the implementations and described the inputs and outputs. In the C version,
we elaborated on how to allocate the needed memory for NLPSQP and how to link to the introduced the
dependencies.

The C version of NLPSQP is intended for application in parallel Monte Carlo simulation of closed-loop
systems containing nonlinear model predictive control (NMPC) algorithms. Due to the thread-safety of the
implementation, NLPSQP can be applied to solve multiple OCPs in parallel with almost linear scaling and is
therefore well-suited for the purpose.
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