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Abstract

We study the design of efficient algorithms and data structures for variants of combinatorial pattern matching,
as well as compression of strings and string indices.

String Indexing for Top-k Close Consecutive Occurrences We study the string indexing for top-k
close consecutive occurrences problem, where the goal is to preprocess a given string S into a compact data
structure that efficiently supports the query: given a string P and positive integer k, report the k closest
consecutive occurrences of P in S. Here, a consecutive occurrence is a pair (i, j), i < j, such that P occurs
at positions i and j in S and there is no occurrence of P between i and j, and their distance is defined as
j − i. We present three time-space trade-offs. Let n be the length of S, m the length of P , and ϵ ∈ (0, 1].
Our first result achieves O(n log n) space and optimal query time of O(m+ k). Our second and third results
achieve linear space and query times either O(m+ k1+ϵ) or O(m+ k log1+ϵ n). We also extend our solutions
to several related problems.

Gapped Indexing for Consecutive Occurrences We study a variant of string indexing where the
goal is to compactly represent a string such that given two patterns P1 and P2 and a gap range [α, β], we
can quickly find the consecutive occurrences of P1 and P2 with distances in [α, β], i.e., pairs of subsequent
occurrences of the two patterns that are between α and β characters apart. We present data structures that
use Õ(n) space and Õ(|P1|+|P2|+n2/3) time for existence and counting queries and Õ(|P1|+|P2|+n2/3occ1/3)
time for reporting queries. We complement this with a conditional lower bound based on the set intersection
problem showing that any solution using Õ(n) space must use Ω̃(|P1|+ |P2|+

√
n) query time.

Sliding Window String Indexing We study the streaming sliding window string indexing problem,
where a string S arrives as a stream and the goal is to maintain an index of the last w characters, called
the window. At any point in time a pattern matching query for a pattern P may arrive, also streamed, and
all occurrences of P within the window must be returned. We present a simple O(w) space data structure
that uses O(logw) time with high probability to process each character from either stream, plus additional
worst-case constant time per reported occurrence. Compared to previous work in similar scenarios this result
is the first to achieve an efficient worst-case time per character from the input stream with high probability.
We also consider a delayed variant of the problem, where a query may be answered at any point within
the next δ characters that arrive from either stream. We present an O(w + δ) space data structure for this
problem that improves the above time bounds to O(log(w/δ)). In particular, for a delay of δ = ϵw we obtain
an O(w) space data structure with constant time processing per character.

New Advances in Rightmost Lempel-Ziv The Lempel-Ziv (LZ) 77 factorization for a string S of
length n, over a linearly-sortable alphabet, can be computed in O(n) time. It is unknown whether this
time can be achieved for the rightmost LZ parsing, where each referencing phrase points to its rightmost
previous occurrence. The currently best solution takes O(n(1 + log σ/

√
log n)) time [Belazzougui & Puglisi

SODA2016]. We show that this problem is much easier to solve for the LZ-End factorization [Kreft &
Navarro DCC2010], where the rightmost factorization can be obtained in O(n) time for the greedy parsing
(with phrases of maximal length), and in O(n+ z

√
log z) time for any LZ-End parsing of z phrases. We also
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make advances towards a linear time solution for the general case. We show how to solve several non-trivial
subsets of the phrases of any LZ-like parsing in O(n) time. As a prime example, we can find the rightmost
occurrence of all phrases of length Ω(log6.66 n/ log2 σ) in O(n/ logσ n) time and space.

Fast Compression of Deterministic Finite Automata The delayed deterministic finite automaton
[Kumar et al. SIGCOMM2006] is an effective compressed representation of deterministic finite automata
that forms the basis of numerous subsequent compression results. The compression algorithm, as well as later
algorithms based on the idea, have an inherent quadratic-time bottleneck as they consider every pair of states
to compute the optimal compression. We present a simple, general framework based on locality-sensitive
hashing for circumventing this bottleneck. We apply it to speed up several algorithms and experimentally
evaluate them on real-world regular expression sets. We obtain an order of magnitude improvement in
compression time, with little to no loss of compression, or even significantly better compression in some
cases.
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Chapter 1

Introduction

This dissertation is based on the full versions of the following papers:

Chapter 2: String Indexing for Top-k Close Consecutive Occurrences. Philip Bille, Inge Li Gørtz,
Max Rishøj Pedersen, Eva Rotenberg, and Teresa Anna Steiner. In Proceedings of the 40th Conference
on Foundations of Software Technology, 2020 and Theoretical Computer Science, 2022.

Chapter 3: Gapped Indexing for Consecutive Occurrences. Philip Bille, Inge Li Gørtz, Max Rishøj
Pedersen, and Teresa Anna Steiner. In Proceedings of the 32nd Annual Symposium on Combinatorial
Pattern Matching, 2021 and Algorithmica, 2023.

Chapter 4: Sliding Window String Indexing in Streams Philip Bille, Inge Li Gørtz, Max Rishøj
Pedersen, and Tord Joaking Stordalen. In Proceedings of the 34th Annual Symposium on Combinatorial
Pattern Matching, 2023. Awarded “best student paper”.

Chapter 5: New Advances in Rightmost Lempel-Ziv. Jonas Ellert, Johannes Fischer, and Max Rishøj
Pedersen. Submitted to a conference.

Chapter 6: Fast Compression of Determinstic Finite Automata. Philip Bille, Inge Li Gørtz, and Max
Rishøj Pedersen. Unpublished.

1.1 Chapter Outline

All work in this dissertation relates to strings and string indexing. Chapters 2-4 study variants of string
indexing for pattern matching, and Chapters 5 and 6 study string compression and compressed string in-
dexing, respectively. In this chapter we provide an overview of the work presented in the later chapters. In
Section 1.2 and 1.3 we outline the problems studied and our results. In Section 1.4 we highlight some of the
main techniques used to achieve our results. In Section 1.5 we discuss some of the most interesting open
questions that spring from our work.

1.2 String Indexing

Chapters 2-4 study variants of string indexing problems. Given two strings S and P , often called the text and
the pattern respectively, the classic pattern matching problem is to find all the occurrences of P in S, i.e., the
positions in S where a substring equal to P starts. Optimal solutions to this problem have been known for a
long time, such as the KMP algorithm which solves the problem in worst-case O(n+m) time, where n = |S|
and m = |P | is the length of the text and pattern respectively. In the classic string indexing problem the goal
is to preprocess S such that subsequent pattern matching queries can be quickly answered, i.e., without the
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additional O(n) term. In addition to computing all the occurrences of P (reporting queries), typical queries
include determining if P occurs at all (existence queries) or counting how many times P occurs (counting
queries). In this dissertation we consider the following variants of the string indexing problem:

• Indexing for Top-k Close Consecutive Occurrences: Preprocess a string S into a compact data
structure such that given a pattern P and a positive integer k, we can quickly find the k closest
consecutive occurrences of P in S, that is, the k closest (minimal distance) pairs of occurrences of P
that have no other occurrences of P in between.

• Indexing for Gapped Consecutive Occurrences: Preprocess a string S into a compact data
structure such that given two patterns P1 and P2 and an interval [α, β], we can quickly find the
consecutive occurrences of P1 and P2 in S that are between α and β characters apart, that is, pairs
(i, j) for i < j and α ≤ j− i ≤ β, such that P1 occurs at i, P2 occurs at j and neither P1 nor P2 occurs
between i and j.

• Sliding Window Indexing in Streams: Given a positive integer w and a string S that is streamed
one character at a time, maintain an index over the w most recently arrived characters of S, called
the window, such that given a streamed pattern P we can efficiently find the occurrences of P in the
window.

1.2.1 Indexing for Top-k Close Consecutive Occurrences

In this problem the goal is to preprocess a string S such that we can quickly answer queries of a pattern P
and integer k > 0, finding the k closest consecutive occurrences of P . A consecutive occurrence of P is a
pair (i, j) of occurrences of P in S such that P does not occur between i and j, and we define the distance
to be j − i. Note that, if desired, the non-consecutive occurrences can be constructed from the consecutive
occurrences.

History and Related Work

Though the problem is closely related to several well-studied problems, this specific formulation had not
been studied before our work. There are several related string indexing problems for pattern matching under
various distance constraints [BG14, IR09, BGP16, CPZ20, BGVV14, Lew11,KKL07], as well as indexing of
collections of strings (often called documents) for reporting the top-k documents minimizing some function,
e.g., the shortest distance of a consecutive occurrence within a document [HSTV14,NN17,SSTV13,HSTV14,
NN17,MNN+17]. For an overview see the survey by Navarro [Nav14].

Navarro and Thankachan [NT16] studied a closely related indexing problem, where the goal is to report
consecutive occurrences with distances within a specified interval. Their solution uses O(n log n) space and
reports the consecutive occurrences in O(m+occ) time, where m = |P | is the length of the pattern and occ
is the size of the output. We note that their solution can be extended to solve our problem with optimal
O(m+ k) query time but uses O(n log n) space. The primary aim of our work was simultaneously achieving
linear space and fast queries.

Results

In Chapter 2 we present several trade-offs for the problem. First, we present an O(n log n) space solution with
optimal O(m+ k) query time, matching Navarro and Thankachan while using a simpler reduction. Second,
we present two O(nϵ ) space solutions answering queries in respectively O(m + k1+ϵ) and O(m + k log1+ϵ n)
time, for any ϵ with 0 < ϵ ≤ 1. We extend these solutions to solve the closely related problem of finding the
k furthest consecutive occurrences, and we show both an O(n log n) space and optimal time solution, and an
O(nϵ ) space and O(m+k1+ϵ) time solution. We also extend our solutions to solve special cases of the problem
studied by Navarro and Thankachan [NT16], i.e., finding all consecutive occurrences with distances within
a query interval [α, β]. If either α or β is fixed at indexing time, we obtain an O(nϵ ) space solution with
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O(m+occ1+ϵ) query time. Additionally, if α = 1 is fixed, we also obtain a solution with O(m+occ log1+ϵ n)
query time. Finally we extend our solutions to the problem of finding all the non-overlapping consecutive
occurrences, and obtain an O(nϵ ) space and O(m+ occ1+ϵ) query time solution.

1.2.2 Indexing for Gapped Consecutive Occurrences

In this problem the goal is to preprocess a string S such that we can quickly answer queries of two patterns
P1 and P2, and an interval [α, β], finding all the consecutive occurrences of P1 and P2 with distances between
α and β. That is, pairs (i, j) for α ≤ j − i ≤ β, such that i is an occurrence of P1, j is an occurrence of P2,
and neither P1 nor P2 occurs between i and j.

History and Related Work

The problem is a generalization of related indexing problems. Navarro and Thankachan [NT16] studied the
case where P1 = P2, and presented an O(n log n) space solution that reports the consecutive occurrences
in optimal O(m + occ) time, where m = |P | is the length of the (singular) pattern and occ is the size of
the output. Kopelowitz and Krauthgamer [KK16] gave a linear-space data structure that can compute the
distance of the closest occurrence of two query patterns P1 and P2 in O(|P1|+ |P2|+

√
n logϵ n) time. Note

that this solves the existence version of our problem for α = 0. They also proved a conditional lower bound
for this problem, matching the upper bound up to polylogarithmic factors, which implies that the problem
with two patterns is significantly harder than with one.

Results

In Chapter 3 we present two solutions for the general problem, i.e., with arbitrary query intervals [α, β]. One is
an O(n log n) space data structure that supports reporting queries in O(|P1|+|P2|+n2/3occ1/3 log n log log n)
time, for constant ϵ > 0. The other is a linear-space data structure that supports counting queries (and by
extension existence queries) in O(|P1|+ |P2|+n2/3 logϵ n) time. We also show a conditional lower bound for
the existence problem, by a reduction similar to Kopelowitz and Krauthgamer’s, that holds even for fixed
α = 0 and β. By extending our solution we obtain a matching upper bound, up to polylogarithmic factors,
for this variant of the problem. For the general problem our lower bound leaves a polynomial gap to our
upper bound.

1.2.3 Sliding Window Indexing in Streams

In this problem a string S is being streamed one character at a time, and the goal is to maintain a compact
index over the w most recent characters to arrive, called the window. At any point the streaming of S can be
interrupted by a pattern P , also streamed, and we must report all the occurrences of P in the window. For
maintaining the index and answering queries we want to minimize the time spent per character that arrives
from either stream. We additionally study a variant of the problem where a delay of δ characters is allowed
from either stream before queries must be answered, which can be leveraged to improve indexing and query
time.

History and Related Work

The problem is closely related to several well-studied indexing problems, though we introduced this specific
formulation. There are several results on maintaining the suffix tree over a sliding window, which can solve
this problem. However, the best of these solutions, by Brodnik and Jekovec [BJ18], spends constant amortized
time per character that arrives, and only for constant-sized alphabets. There are also several results for online
string indexing, where the goal is to incrementally construct a string index. The best of these solutions
achieve either constant time per character for constant-sized alphabets [KN17], or O(log log n + log log |Σ|)
time for general alphabets [Kop12]. Both rely on processing the string from right to left, and are therefore
not applicable in a streaming context. It is also unclear if they can be adapted to a sliding window, i.e.,
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use space proportional to the window and not the entire substring so far processed. Recent work on fully
dynamic suffix arrays [SLLM10,AB20,AB21,KK22] could also solve the problem, but due to their generality
have polylogarithmically slower bounds and are significantly more complicated.

Results

In Chapter 4 we present an O(w) space data structure that spends O(logw) time per character that arrives
from either stream, with high probability. Each reported occurrence of a pattern takes additional worst-case
constant time. For the delayed problem variant we present an O(w) space solution that uses O(log(w/δ))
time per character that arrives, with high probability. In particular, for δ = ϵw and constant 0 < ϵ < 1,
we obtain a linear-space data structure that spends constant time per character that arrives. To obtain our
results we introduce a novel, hierarchical structure for suffix trees that might be of independent interest,
inspired by the classic log-structured merge trees [OCGO96b].

1.3 Compression

Chapters 5 and 6 study compression problems related to strings and string indexing. Specifically, we study
the following problems:

• Rightmost Lempel-Ziv: An LZ-like factorization of a string S is a segmentation of S into phrases
f1, . . . , fz, where each phrase fk is either the first occurrence of a character in S or a prefix of fk . . . fz
that occurs at least twice in f1 . . . fk. Given an LZ-like factorization S = f1 . . . fz, compute for each
phrase fk the rightmost previous occurrence of fk.

• Compression of Deterministic Finite Automata: Given a deterministic finite automaton, con-
struct a delayed deterministic finite automaton with the same language and fewer total transitions.

1.3.1 Rightmost Lempel-Ziv

For a string S, the LZ77 factorization [LZ76] is a segmentation of S into z phrases S = f1 . . . fz, such that
each phrase fk is either the first occurrence of a character or the longest prefix of fk . . . fz that occurs at
least twice in f1 . . . fk. The factorization can be compressed by encoding each phrase fk as the pair (dk, |fk|),
where dk is the distance to a previous occurrence of fk. To maximize compression it is beneficial if each dk
is minimal, i.e., points to the rightmost previous occurrence of fk, in which case it is a rightmost parsing.
LZ-End [KN10,KN13] is variant of the classic LZ77 factorization, where each phrase fk must reference a
previous occurrence that is aligned to a phrase boundary, i.e., there must exist a k′ < k such that fk is a suffix
of f1 . . . fk′ . It has applications to string indexing, as accessing the compressed text is made significantly
easier by this additional restriction. Notably, and unlike LZ77, the LZ-End factorization obtained by a
greedy algorithm is not necessarily optimal.

History and Related Work

LZ77 parsings are well-studied and there are several linear-time algorithms using only O(n log σ) bits of work-
ing space (e.g. [FIKS18]), where σ is the size of the alphabet and n = |S| is the length of the uncompressed
text. There are fewer results on computing the rightmost LZ77 parsing, and no linear-time solutions. There
are two algorithms using O(n log n) time and bits of space [ALU02, Lar14]. Ferragina et al. [FNV13] pre-
sented a faster algorithm, using O(n(1+log σ/ log log n))) time and O(n log n) bits of space. The current best
is by Belazzougui and Puglisi [BP16], using only O(n log σ) bits of space and O(n(log log σ + log σ/

√
log n))

deterministic time or O(n(1 + log σ/
√
log n)) time with randomization. The greedy LZ-End parsing can be

computed in linear time, shown by Kempa and Kosolobov [KK17b], and also in O(z + ℓ) space [KK17a].
Bannai et al. [BFK+23] recently proved that computing the optimal LZ-End parsing (with minimal number
of phrases) is NP-hard. There are no previous results on computing rightmost LZ-End parsings, to the best
of our knowledge.
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Results

In Chapter 5 we show that given any LZ-End factorization we can compute its rightmost parsing in O(n+
z
√
log n) time and O(n log n) bits of space, or O(n) time if the factorization is greedy LZ-End. We also

show how to solve several special cases of general rightmost LZ77. Given any LZ-like factorization, we can
in linear time resolve (find the rightmost previous occurrence of) any subset of O(nϵ) distinct phrases, all
phrases that are within O(log n) characters of a previous occurrence, and all phrases that occur at most
O(log n) times in the factorization. Additionally, we can resolve all phrases of length Ω(log6.66 n/ log2 σ) in
sublinear O(n/ logσ n) time and space, using similar techniques as Belazzougui and Puglisi [BP16] used to
resolve all phrases of length Ω(log5 n) in O(n) time and O(n/ logσ n) space.

1.3.2 Compression of Deterministic Finite Automata

Regular expressions are often converted into deterministic finite automata (DFA) to allow fast language
membership queries, i.e., determine if the pattern P is in the language of the regular expression. The primary
downside of DFAs is their space usage, and it is therefore interesting to compress them while maintaining
their fast query speeds. A classic result in this lineage is the delayed deterministic finite automaton (D2FA).
By augmenting the DFA with unlabeled default transitions, it allows the removal of many labeled transitions
without affecting the language of the automaton. Given a DFA, the goal in this problem is to efficiently
construct a D2FA that has the same language but is significantly smaller.

History and Related Work

Compression of DFAs is well-studied (see e.g. surveys [XCS+16, PS17]). Kumar et al. [KDY+06] intro-
duced the deterministic finite automaton (D2FA), and this technique forms the basis of several subsequent
solutions [MPN+10,PLT14,LT14,BC13,KTW06,BC07b,LSL+17,MMK18,MKMK18,GWX+23]. They pre-
sented an O(n2(log n + |Σ|)) time construction algorithm, where n is the number of states in the DFA and
Σ is the alphabet, along with a cubic-time algorithm for constructing D2FAs with specifiable worst-case
query time bounds. Becchi and Crowley [BC07b,BC13] presented an alternative construction algorithm for
D2FAs with worst-case query time bounds, running in quadratic time. Locality-sensitive hashing has been
used extensively for compression for collections [DI03,OMST02,DAS10,KDLT04,PWZ11,SHWH12,KH15,
XJFH11,BGPT23], however, to the best of our knowledge we are the first to use it for DFA compression.

Results

In Chapter 6 we present a simple, general framework for efficiently compressing DFAs using the D2FA
approach, enabling fast compression times for the class of algorithms utilizing default transitions. We apply it
to obtain several fast compression algorithms, and experimentally evaluate them on real-world data sets from
modern intrusion detection systems. We speed up the quadratic-time algorithm of Kumar et al. [KDY+06]
to near-linear time, and in our experiments achieve an order of magnitude improvement in running time
without loss of compression. We present an alternative time algorithm to the cubic-time algorithm by
Kumar et al. [KDY+06] for bounding query time. Experimentally it is up to 50 times faster while achieving
significantly better compression for the same query bound. Finally we speed up the similar algorithm by
Becchi and Crowley [BC07b,BC13] from quadratic to linear time, which in our experiments is up to 37 times
faster with only minor loss of compression.

1.4 Techniques

In this section we highlight some of the common techniques we apply to obtain our results in Chapters 2-6.
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1.4.1 Segmentation

A basic technique we use repeatedly is segmenting the string, or equivalently, sampling text positions.
Combined with precomputation, this can allow for efficient solutions by separate handling of short and long
patterns. If occurrences of a pattern can be restricted to necessarily span certain text positions, finding them
becomes significantly easier. This is widely used in string problems, and a version of it (albeit an advanced
one) has recently been employed to obtain an optimal longest common extension (LCE) data structure in the
word RAM model. For a string S, a longest common extension query asks: ”given positions i, j, what is the
maximum ℓ such that S[i..i+ℓ] = S[j..j+ℓ]?” Kempa and Kociumaka [KK19] presented a data structure with
constant-time queries and O(n/ log|Σ| n) space and construction time. A key idea for their construction is
string synchronizing sets [KK19,Koc19] (similar, but independently developed techniques include partitioning
sets [BGP20b], minimizers [RHH+04], and winnowing [SWA03]), which is a text sampling technique they
combine with precomputation to answer queries that have sufficiently long anwers.

Belazzougui and Puglisi [BP16] used regular text sampling to find previous occurrences of LZ77 phrases
longer than a parameter δ. In Chapter 5 we build on their technique to solve the same problem in sublinear
time, leveraging the LCE data structure of Kempa and Kociumaka. We sample every δth text position, for
δ = Ω(polylog n), akin to sampling the boundary positions of segments of size δ. Any phrase longer than
δ must then span a sampled position. We reduce the problem of finding rightmost previous occurrences
spanning one of the O(n/δ) sampled positions to a geometric problem (see Section 1.4.3) that we can solve
in sublinear O(n/ log|Σ| n) time.

In Chapter 4 we segment the string with exponentially decreasing segment sizes. This allows us to quickly
index new characters as they arrive in the stream, as each new segment to be indexed is small. This technique
can be seen as a novel adaptation of the classic log-structured merge-trees by O’Neil et al. [OCGO96a] to
text indexing. When answering pattern matching queries, we use our constructed indices to find occurrences
that span at most a single segment. Any remaining occurrences are all close to the right window boundary,
due to the geometrically decreasing segment sizes, and we find them in optimal O(m) time by searching only
the O(m) rightmost characters of the window, where m is the length of the pattern.

In Chapter 3 we use segmentation to find consecutive occurrences that are far apart. We segment the
string regularly and observe that consecutive occurrences (pairs of occurrences) that are further apart than
our segment length must span at least one segment boundary. We find such pairs using orthogonal range
successor queries (see Section 1.4.3), by searching for occurrences in both directions from each boundary.
We find the remaining (close) consecutive occurrences using precomputed information.

1.4.2 Decomposition of Suffix Trees

A fundamental construct in stringology is the suffix tree, and we heavily utilize it to achieve our results in
Chapters 2-5. For a set of prefix-free strings (no string in the set is a prefix of another string in the set), a trie
is a rooted tree with single-character edge labels, such that (1) concatenating the edge labels of each root-to-
leaf paths yields the set of strings, (2) common prefixes of strings maximally share root-to-leaf paths, and (3)
the outgoing edges from each node are arranged in the lexicographic order of their labels. To obtain a compact
trie, all non-branching paths are contracted into a single edge. For a string S over alphabet Σ, the suffix tree
of S is the compact trie over the suffixes of S$, where $ /∈ Σ is special terminator symbol lexicographically
smaller than all characters in the alphabet. The suffix tree can be stored in linear space by replacing the edge
labels with pointers into S. It can be constructed in linear time for constant-sized alphabets [Wei73,Ukk95],
and in the word RAM model even for polynomially-sized alphabets [FFM00,KSB06], i.e., |Σ| = O(nc) for
constant c.

The suffix tree supports fast pattern matching, i.e., finding the positions in S where a pattern P occurs.
This is done by finding the minimum-depth node v where P is a prefix of the concatenation of the edge
labels of the root-to-v path. We call v the locus of P in the suffix tree, and the leaves below the locus
correspond to the occurrences of P in S. Naively this takes O(m log |Σ|) time (by binary searching the
outgoing edges in each node), where m = |P |. The suffix tree can be augmented with e.g. FKS perfect
hashing [FKS84] to improve the matching time to optimal worst-case O(m) time, though this requires
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expected linear preprocessing time. To obtain our results in Chapters 2-3 we decompose the suffix tree in a
variety of ways to obtain properties we can exploit for indexing.

To obtain our O(n log n) space solution for the top-k consecutive occurrences problem in Chapter 2, we
use the heavy path decomposition [ST83]. It decomposes a rooted tree of size n into a set of disjoint heavy
paths, with the property that any root-to-leaf path intersects at most O(log n) heavy paths. We apply this
to the suffix tree and construct geometric data structures (see Section 1.4.3) for each heavy path that encode
the consecutive occurrences of the substrings corresponding to nodes on the path. We show that each leaf
contributes a constant amount of space to the data structure of each heavy path above it, so by the heavy
path property the total space contributed by all leaves is O(n log n).

In Chapters 2 and 3 we apply a clustering decomposition [AHdLT97,AHT00,AR02,Fre97] to the suffix
tree. For a tree of size n and a positive integer parameter τ , it decomposes the tree into O(n/τ) connected
subgraphs, called clusters, each containing at most τ nodes. Any pair of clusters overlap in at most a
single node (called a boundary node), and each cluster either has one boundary node (leaf clusters), or two
boundary nodes (path clusters). We call the unique path between the two boundary nodes of a path cluster
a spine. For any tree the decomposition can be constructed in linear time (see Lemma 3). We obtain several
solutions by applying this decomposition and precomputing information for each cluster. When answering
a query for a pattern P , we find the locus of P in the suffix tree and the cluster that contains it. We then
answer using the precomputed information along with the set of leaves contained in the cluster, exploiting
that there are at most τ such leaves.

In Chapter 2 we introduce a recursive cluster decomposition to obtain a linear space solution for the
top-k consecutive occurrences problem. We decompose the suffix tree into clusters of size τ1 =

√
n, and

recursively cluster the off-spine subtrees with τi+1 =
√
τi. When answering a query, either the locus of the

pattern is on a spine with enough precomputed information, or all the leaves below the locus are contained
in a cluster of size k2. This yields a O(n log log n) space and O(m+ k2) time solution. By generalizing the
cluster sizing and appropriately encoding the data structures we obtain a linear-space and O(m+k1+ϵ) time
solution. To obtain our O(n+ k log1+ϵ n) time solution we use similar techniques, though we now compute
log n non-recursive cluster decompositions and use different geometric queries (orthogonal range successor).

In Chapter 3 we introduce the induced suffix tree decomposition. For a substring of S we define its induced
suffix tree to be the tree obtained by removing all leaves in the suffix tree of S that correspond to suffixes
starting outside of the substring, and then contracting all non-branching paths. The induced suffix tree
decomposition is then a balanced binary tree, called the decomposition tree, where the nodes at height i are
the induced suffix trees over the size 2i segments of S. We use the induced suffix tree decomposition to
leverage our solution for existence queries to answer reporting queries. From the root in the decomposition
tree we report close consecutive occurrences using precomputed information, and far consecutive occurrences
using segmentation. We then use our existence solution to determine if there are further occurrences in the
left and right half of the subproblem, i.e., the left and right children in the decomposition tree, and recurse
to report those if there are.

1.4.3 Geometric Data Structures

Common to the problems we study in Chapters 2-5 is searching for occurrences of a pattern with restrictions
on their position in the text. In Chapter 2 we search for pairs that are close together, in both Chapters 2
and 3 we find pairs of occurrences that are consecutive, in Chapter 4 we search for pairs in a specific part
of the string (the window), and in Chapter 5 we are looking for previous occurrences, i.e., occurrences to
the left of a given text position. These kinds of searches often reduce elegantly to geometric problems. A
tool we typically leverage for this reduction is the suffix array [MM93a]. The suffix array of S is the suffixes
of S in lexicographic order and represented by their starting positions, i.e., the ith element is the starting
position of the ith lexicographically least suffix. Equivalently, it is also the leaves of the suffix tree of S in
left-to-right order, and we can obtain one from the other in linear time.1 The lexicographic ranks of the

1Obtaining the suffix tree from the suffix array in linear time requires the longest common prefix array, also computable in
linear time. [KLA+01].
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suffixes of S act as the “dimension” in our geometric queries that represent the pattern. Any occurrence of
a pattern P in S will correspond to a suffix of S that P is a prefix of. The lexicographic ranks of all such
suffixes form a contiguous range, and their starting positions can be read from the suffix array.

In Chapters 2 and 3 we use this to locate consecutive occurrences via orthogonal range successor queries.
For an integer array A, an orthogonal range successor query asks: ”given (a, b, c), what is the minimum
element c′ > c in A[a, b]?” Geometrically, this can be viewed as a three-sided query in a two-dimensional
grid: ”among the points {(i, A[i]) | 1 ≤ i ≤ |A|}, what is the lowest point above the horizontal line at c
and between the vertical lines at a and b?” Given a pattern P and a text position i in S, orthogonal range
successor queries on the suffix array allows us to locate the first occurrence of P after i. In the lexicographic
range of the suffixes prefixed by P we search for the first text position after i. We use this extensively to locate
consecutive occurrences, given either component. Several efficient data structures exist for the problem, and
we use both the linear-space and O(logϵ n) time data structure by Nekrich and Navarro [NN12], and the
O(n log log n) space and O(log log n) time data structure by Zhou [Zho16].

In Chapter 2 we reduce the problem of finding close consecutive occurrences to orthogonal line segment
intersection, which is defined as: preprocess a set of vertical line segments into a data structure such that
given a horizontal line at height y, return the k leftmost line segments intersecting the line. For paths in
the suffix tree (either heavy paths or cluster spines), we encode the consecutive occurrences of substrings
that correspond to nodes on the path. Each consecutive occurrence becomes a vertical line segment, with
the distance of the consecutive occurrence as the first coordinate. After preprocessing, if the locus of the
pattern is on a path, we can in optimal O(k) time find the k closest consecutive occurrences of the pattern.

In Chapter 4 we use range maximum queries to locate the rightmost occurrences of a pattern. For an
integer array A, range maximum queries ask: ”what is largest element in A[a, b]?” Using the classic solution
by Garbon et al. [GBT84] we preprocess the suffix array to answer range maximum queries in constant
time. Again using the lexicographic range of suffixes prefixed by P , we can in constant time obtain the
rightmost occurrence of P . We recursively query to obtain all the occurrences in approximately right-to-left
order, allowing us to report only the occurrences inside the window in optimal time (after obtaining the
lexicographic range).

In Chapter 5 we find previous occurrences of long phrases in sublinear time, by reducing to three-
dimensional range queries. We note this technique is similar to the one employed by Belazzougui and
Puglisi [BP16] to find previous occurrences of long phrases in O(n) time. We regularly sample text positions
and for each sampled position i we construct a three-dimensional point of i, the lexicographic rank of the
suffix starting at i, and the co-lexicographic rank of the prefix ending at i. We use the aforementioned LCE
data structure of Kempa and Kociumaka [KK19] to compute the (co-)lexicographic ranks for all the points in
sublinear time by comparison sorting. As each occurrence of a long phrase must cross a sampled text position,
we can find the rightmost previous ones using geometric queries on the point set. We store the points in
a recent three-dimensional orthogonal range searching data structure by Chan and Tsakalidis [CT18] and
resolve all the long phrases in O(n/ log|Σ| n) time.

1.5 Open Questions

The most interesting open problem to me is computing the rightmost Lempel-Ziv parsing in linear time, or
proving a lower bound. In Chapter 5 we show how to solve several special cases in linear, or even sublinear,
time. The remaining case is factorizations with more than z = O(nϵ) phrases, for any constant 0 < ϵ < 1, and
then only the phrases that are simultaneously shorter than ℓ, are ω(log n) characters from their rightmost
source and appear ω(log n) times in the factorization. Notably, our results hold for any LZ-like parsing and
thus do not exploit the greedy construction of LZ77 phrases. It seems plausible that this could be a direction
for closing the gap to linear time, if it is possible. If that is not necessary, i.e., linear time is achievable for
any LZ-like factorization, that is arguably even more interesting.

Another open problem is extending the functionality of our sliding window index, presented in Chapter 4.
We support reporting queries (and existence via reporting) but not counting. When reporting, we use the time
we spend to report each occurrence to also filter any occurrences that are outside the window. Unfortunately,
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this is not applicable when answering counting queries. Similarly, it would be interesting to support fast
longest common extension queries. This is a classic augmentation to the suffix tree, via lowest common
ancestor data structures, but this breaks down when the string is segmented. Lastly, improving the update
time while retaining fast queries would be exciting.

Finally, in Chapter 3 we provide an upper bound and a lower bound for the gapped indexing for consecu-
tive occurrences problem, with a polynomial time gap between them. We almost match the lower bound for
one-sided intervals, but the general problem seems much harder. It is unclear if our techniques can extend
to close this gap, or a different approach is required.

11



12



Chapter 2

String Indexing for Top-k Close
Consecutive Occurrences

13



String Indexing for Top-k Close Consecutive Occurrences

Philip Bille
phbi@dtu.dk

Inge Li Gørtz
inge@dtu.dk

Max Pedersen
mhrpe@dtu.dk

Eva Rotenberg
erot@dtu.dk

Teresa Anna Steiner
terst@dtu.dk

June 30, 2023

Abstract

The classic string indexing problem is to preprocess a string S into a compact data structure that
supports efficient subsequent pattern matching queries, that is, given a pattern string P , report all
occurrences of P within S. In this paper, we study a basic and natural extension of string indexing
called the string indexing for top-k close consecutive occurrences problem (Sitcco). Here, a consecutive
occurrence is a pair (i, j), i < j, such that P occurs at positions i and j in S and there is no occurrence
of P between i and j, and their distance is defined as j − i. Given a pattern P and a parameter k, the
goal is to report the top-k consecutive occurrences of P in S of minimal distance. The challenge is to
compactly represent S while supporting queries in time close to the length of P and k. We give three
time-space trade-offs for the problem. Let n be the length of S, m the length of P , and ϵ ∈ (0, 1]. Our
first result achieves O(n logn) space and optimal query time of O(m+ k). Our second and third results
achieve linear space and query times either O(m+k1+ϵ) or O(m+k log1+ϵ n). Along the way, we develop
several techniques of independent interest, including a new translation of the problem into a line segment
intersection problem and a new recursive clustering technique for trees.

2.1 Introduction

The classic string indexing problem is to preprocess a string S into a compact data structure that supports
efficient subsequent pattern matching queries, that is, given a pattern string P , report all occurrences of P
within S. An occurrence of P within S is an index i, 0 ≤ i < |S|, such that P = S[i . . . i+ |P | − 1]. In this
paper, we introduce a basic extension of string indexing, where the goal is to report consecutive occurrences
of the pattern P that occur close to each other in S. Here, a consecutive occurrence is a pair (i, j), i < j,
such that P occurs at positions i and j in S and there is no occurrence of P between i and j, and close to
each other means that the distance j − i between the occurrences should be small. More precisely, given a
pattern P and an integer parameter k > 0, define the top-k close consecutive occurrences of P to be the k
consecutive occurrences of P in S with the smallest distances. Given a string S the string indexing for top-k
close consecutive occurrences (Sitcco) problem is to preprocess S into a data structure that supports top-k
close consecutive occurrences queries. The goal is to obtain a compact data structure while supporting fast
queries in terms of the length of the pattern P and the number of reported occurrences k. For an example,
see Figure 2.1.

Surprisingly, the Sitcco problem has not been studied before even though it is a natural variant of string
indexing and several closely related problems have been extensively studied (see related work below).
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Figure 2.1: P occurs at positions 4, 7, 11, 22, 24, 26, 30, 39 and 41 in S. The top 5 close consecutive
occurrences are (22, 24), (24, 26), (39, 41), (4, 7), and (7, 11), with the tie between (7, 11) and (26, 30) broken
arbitrarily.

2.1.1 Results and Techniques

To state the complexity bounds, let n and m denote the lengths of S and P , respectively. An immediate
approach to solve the Sitcco problem is to store the suffix tree of S using O(n) space. To answer a query
on P with parameter k, we traverse the suffix tree to find all occurrences of P , construct the consecutive
occurrences, and then sort these to output the top-k close consecutive occurrences. Naively, this requires two
sorts of size occ, where occ is the total number of occurrences of P , giving a query time of O(m+occ log occ).
Using more advanced data structures [BFGLO09,BFP+73], the query time can be reduced to O(m + occ)
while still using linear space. Note that occ can be much larger than k. Alternatively, we can store at
every node in the suffix tree the set of all consecutive occurrences sorted by distance using O(n2) space. To
answer a query we find the node corresponding to P and simply report the first k of the stored consecutive
occurrences in optimal O(m+ k) time.

To achieve better trade-offs, one might try to use a strategy similar to range minimum query (RMQ),
where the ranges are subsequent ranges in the suffix array and the values are distances between pairs of
suffix indexes in S. However, there are several problems with that idea: first, there are Θ(|S|2) possible pairs
of suffix indexes within S, and it is not immediately clear how many of them can correspond to consecutive
occurrences of a pattern (our arguments from Section 2.3 imply that this number is bounded by O(n log n)).
Secondly, when taking the union of two ranges, the set of closest (consecutive) pairs can change completely:
consider for example the string S = A B A C A B A C D A B D A C D A B D A C. While the string A has
occurrences {0, 2, 4, 6, 9, 12, 15, 18}, the string AB has occurrences {0, 4, 9, 15} and AC has {2, 6, 12, 18}. Note
that for P = A, the top-3 consecutive occurrences are (0, 2), (2, 4) and (4, 6), while for AB they are (0, 4), (4, 9)
and (9, 15) and for AC they are (2, 6), (6, 12) and (12, 18). Both the pairs and the distances are completely
different between A and its extensions. Thus, there is an issue of non-decomposability, which is a main
challenge in this particular problem. However, in the rest of our paper we will show that we can use suffix
tree decompositions and amortized arguments to bound the number of changes that can happen in the set
of consecutive occurrences of substrings corresponding to positions on some paths in the suffix tree.

We obtain the following significantly improved time-space trade-offs:

Theorem 1. Given a string S of length n and ϵ, 0 < ϵ ≤ 1, we can build a data structure that can answer
top-k close consecutive occurrences queries using either

(i) O(n log n) space and O(m+ k) query time or

(ii) O(nϵ ) space and O(m+ k1+ϵ) query time.

(iii) O(nϵ ) space and O(m+ k log1+ϵ n) query time.

Here, m is the length of the query pattern.

Hence, Theorem 1(i) achieves optimal query time using near-linear space. Alternatively, Theorem 1(ii)
and (iii) achieve linear space, for constant ϵ, while supporting queries in near-optimal O(m + k1+ϵ) and
O(m+ k log1+ϵ n) time, respectively.

To achieve Theorem 1 we develop several data structural techniques that may be of independent interest.
First, we translate the problem into a line segment intersection problem on the heavy path decomposition
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of the suffix tree. This leads to the O(n log n) space and optimal query time bound of Theorem 1(i).
We note that Navarro and Thankachan [NT16] used similar techniques for a closely related problem (see
related work below). To reduce space, we introduce a novel recursive clustering method on trees. The
decomposition partitions the tree into a hierarchy of depth O(log log n) consisting of subtrees of doubly
exponentially decreasing sizes. We show how to combine the decomposition with the techniques of the
simple algorithm from Theorem 1(i) to obtain an O(n log log n) space and O(m+ k1+ϵ) query time solution.
Then, we show how to efficiently compress the hierarchy of data structures into rank space leading to the
linear space and O(m + k1+ϵ) query time bound of Theorem 1(ii). Finally, we show how to use O(log n)
cluster decompositions of varying parameters together with an orthogonal range successor data structure to
obtain the O(m+ k log1+ϵ) time bound of Theorem 1(iii).

We apply these techniques to three related problems: Firstly, we address the natural “opposite” problem
of reporting the k consecutive occurrences of largest distance, which can be solved using similar but not
identical techniques. Secondly, we apply our framework to the related problem of reporting consecutive
occurrences with distances within a specified interval, considered by Navarro and Thankachan [NT16], and
give an improvement for a special case. Finally, we show how this allows us to efficiently report all non-
overlapping consecutive occurrences of a pattern.

2.1.2 Related Work

To the best of our knowledge, the Sitcco problem has not been studied before, even though distances
between occurrences is a natural extension for string indexing and several related problems have been studied
extensively.

A closely related problem was considered by Navarro and Thankachan [NT16], who showed how to ef-
ficiently report consecutive occurrences with distances within a specified interval. They gave an O(n log n)
space and O(m + occ) time solution, where occ denotes the number of reported consecutive occurrences.
We note that their result can be adapted to the Sitcco problem to achieve the same bounds as in The-
orem 1(i). However, our solution is simpler and does not rely on heavy word RAM techniques such as
persistent van Emde Boas trees [Cha13]. Our techniques can also be used to solve the problem considered
by Navarro and Thankachan getting the same space and time bounds as they obtain, and we can achieve
improved bounds in a special case (see Section 2.8).

A lot of work has been done on the related problem of string indexing for patterns under various distance
constraints, where the goal is to report occurrences of (one or more) patterns that are within a given distance
or interval of distances of each other [BG14, IR09,BGP16,CPZ20,BGVV14,Lew11,KKL07]. An important
difference between those works and our work is that all those solutions use time proportional to all pairs of
occurrences with distances in the given range, in contrast to only finding consecutive occurrences. Note that
if the goal is to find occurrences of a given maximal distance, one can find the close consecutive occurrences
first and then construct all pairs satisfying the constraint.

Another line of related work is indexing collections of strings, called documents. Here the goal is to find
documents containing patterns subject to various constraints. For a comprehensive overview see the survey
by Navarro [Nav14]. Several results on supporting efficient top-k queries are known [MNST20, SSTV13,
HSTV14,BGST18,HPSW10,HSTV14,NN17,Tsu13,HPS+13,HTSV13,NT14,MNN+17]. In this context the
goal is to efficiently report the k documents of smallest weight. The weights can depend on the query and can
be the distance between the closest pair of occurrences of a given pattern [HSTV14,NN17,SSTV13,HSTV14,
NN17,MNN+17]. The problem can be solved in linear space and optimal O(k) time, in addition to finding
the locus of the pattern in the suffix tree [SSTV13]. While this problem statement resembles ours, there is no
direct translation from those results to our problem, since the documents are considered individually, and for
a single document only the pair of occurrences with minimum distance within the document is considered.

Finally, we note that since the initial publication of the results in this paper, a subset of the authors have
recently considered indexing for consecutive occurrences of two different patterns P1 and P2 [BGPS21].
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2.1.3 Outline

The paper is organized as follows. In Section 2.2 we introduce some notation and recall results on string
indexing. In Section 2.3 we build a simple data structure and prove Theorem 1(i). In Section 2.4 we recall a
method for tree clustering and show how to use it to solve a simplified version of the problem. In Section 2.5
we introduce a recursive clustering method that allows us to use the ideas from Section 2.4 on the actual
problem. This gives an O(n log log n) space and O(m + k2) time data structure. In Section 2.6, we show
how to reduce the space to linear while achieving the same query time, and then generalize the recursion to
get Theorem 1(ii) for any 0 < ϵ ≤ 1. In Section 2.7 we give the linear space solution with O(m+ k log1+ϵ n)
query time. Finally, in Section 2.8 we apply our techniques to related problems.

2.2 Preliminaries

We introduce some notation and recall basic results from string indexing.
A string S of length n is a sequence S[0]S[1] . . . S[n− 1] of characters from an alphabet Σ. A contiguous

subsequence S[i, j] = S[i]S[i + 1] . . . S[j − 1] is a substring of S. The substrings of the form S[i, n] are the
suffixes of S.

The suffix tree [Wei73] is a compact trie of all suffixes of S$, where $ is a symbol not in the alphabet, and
is lexicographically smaller than any letter in the alphabet. Using perfect hashing [FKS84], it can be stored
in O(n) space and solve the string indexing problem (i.e., find and report all occurrences of a pattern P ) in
O(m+occ) time, where m is the length of P and occ is the number of times P occurs in S. The suffix array
stores the suffix indices of S$ in lexicographic order. The suffix tree has the property that the leaves below
any node represent suffixes that appear in consecutive order in the suffix array. Brodal et al. [BFGLO09]
show that there is a linear space data structure that allows outputting all entries within a given range of an
array in sorted order using time linear in size of the output. This data structure on the suffix array together
with the suffix tree can output all occurrences of a pattern sorted by text order in O(n) space and O(m+occ)
time.

For any node v in the suffix tree, we define str(v) to be the string found by concatenating all labels on
the path from the root to v. The locus of a string P , denoted locus(P ), is the minimum depth node v such
that P is a prefix of str(v).

2.3 A Simple O(n log n) Space Solution

In this section, we present a simple solution that solves the Sitcco problem in O(n log n) space and O(m+k)
query time. This solution will be a key component in our more advanced structures in the following sections.
We note that the results by Navarro and Thankachan [NT16] for the related problem of reporting consecutive
occurrences with distances within a specified interval can be modified to achieve the same complexities.
However, our solution is simpler and does not rely on heavy word RAM techniques such as persistent van
Emde Boas trees [Cha13].

Let D(v) denote the set of consecutive occurrences of str(v). Naively, if we store for each node v the
set D(v) in sorted order, we can directly answer a query for the top-k close consecutive occurrences of a
pattern P by reporting the k smallest elements in D(locus(P )). This solves the problem in O(n2) space
and O(m + k) query time. The main idea in our simple solution is to build a heavy path decomposition
of the suffix tree and compactly represent sets on the same path via a reduction to the orthogonal line
segment intersection problem while maintaining optimal time queries. This is similar to the data structure
by Navarro and Thankachan [NT16], but our reduction is different.

Heavy path decomposition A heavy path decomposition of a tree T is defined as follows: Starting from
the root, at every node, we choose the edge to the child with the largest subtree as heavy edge, until we reach
a leaf. Ties are broken arbitrarily. This defines a heavy path, and all edges hanging off the heavy path are

17



light edges. The root of a heavy path h is called the apex of the path, denoted apex(h). We then recursively
decompose all subtrees hanging off the path. The heavy path decomposition has the following property:

Lemma 1 (Sleator and Tarjan [ST83]). Given a tree T of size n and a heavy path decomposition of T , any
root-to-leaf path in T contains at most O(log n) light edges.

Orthogonal line segment intersection Similarly as Navarro and Thankachan [NT16], we are going to
reduce the problem to a geometric problem on orthogonal line segment intersection. Specifically, we are going
to reduce to the following problem: Let L be a set of n vertical line segments in a plane with non-negative
x-coordinates. The orthogonal line segment intersection problem is to preprocess L to support the query:

• smallest-segments(y0, k): return the first k segments intersecting the horizontal line with y-coordinate
y0 in left-to-right order.

We will assume that y0 is an integer, which suffices for our purpose. Let N be the maximum y-coordinate of
a segment in L. The following lemma follows easily from the results on partially persistent data structures
by Driscoll et al. [DSST89].

Lemma 2. We can solve the line segment intersection problem as described above in O(n + N) space and
O(k) time.

Proof. Consider the x-coordinates as the elements of a set X and the y-coordinate as time. The version of
X at a time y0 contains exactly the x-coordinates of the line segments which intersect the horizontal line at
y0. Now, the data structure is a partially persistent sorted doubly linked list L on the elements of X. The
elements are sorted in increasing order. Since we have at most n line segments, the maximum size of X as
well as the maximum number of updates is n. Each update changes only O(1) pointers in the linked list.
Using the node copying technique from Driscoll et al. [DSST89] we can build a partially persistent linked
list using O(n) space. To be able to find version y0 in constant time, we keep an array of size N with a
pointer to the root of the version at each possible time step. For a query (y0, k), use the sorted linked list L
to report the k smallest elements at time y0.

If we use a linear scan to find the place to insert an element or find the element to be deleted we get
a preprocessing time of O(n2). This can be improved to O(n log n) by using a (non-persistent) balanced
binary search tree during the preprocessing holding all elements in the current version of L together with a
pointer to their node in the current version. When performing an update the binary search tree is used to
find the position where the element must be inserted/deleted in O(log n) time. After the preprocessing step
the tree is discarded.

2.3.1 Data Structure

We construct a heavy path decomposition of the suffix tree T of S. Our data structure consists of a line
segment data structure from Lemma 2 for each heavy path of T that compactly encodes the sets D(v) for
each node v on the path.

We describe the contents of the data structure for a single heavy path h = v1, . . . , vℓ, where v1 is the
apex of the path. Consider a consecutive occurrence (i, j) on some node on h and imagine moving down the
heavy path from top to bottom. Either (i, j) is a consecutive occurrence at the apex of h or it will become
a consecutive occurrence as soon as every suffix starting at an index between i and j has branched off the
heavy path. Then it will stay a consecutive occurrence until either the suffix corresponding to i or the suffix
corresponding to j (or both) branch off h. Thus, there exists an interval [d1, d2] of depths on the heavy path
such that (i, j) ∈ D(vd) if and only if d ∈ [d1, d2]. We say that (i, j) is alive in this interval.

We encode the consecutive occurrences by line segments in the plane which describe their distance and
the interval in which they are alive along the heavy path. Conceptually, the x-coordinate in our coordinate
system corresponds to the distance of a consecutive pair, and the y-coordinate corresponds to the depth
on the heavy path. Now, for each consecutive occurrence (i, j), we define a vertical line segment with x-
coordinate set to its distance, and y-coordinate spanning the interval [d1, d2], where [d1, d2] is the interval in
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Figure 2.2: Line segments for a heavy path from the suffix tree for
”BATMAN-AND-ANNA-SING-NANANANA-AND-EAT-BANANAS”. Here, if we have overlapping line segments,
we denote by a number how many consecutive occurrences the current segment corresponds to. At depth
1, we have a line segment corresponding to pairs of consecutive occurrences of string A - there are six pairs
that have a distance of 2, three pairs that have a distance of 3, two pairs that have a distance of 4, and so
on. At depth 2, we encode the consecutive occurrences of string AN. Some of them are the same as for string
A.

which (i, j) is alive. For an example, see Figure 2.2. Our data structure for h stores the above line segments
in the line segment data structure from Lemma 2. For each line segment in the data structure we store a
pointer to the pair of occurrences it represents. The full data structure for T consists of the line segment
data structures for all of the heavy paths in T .

Space analysis For a given heavy path h, a leaf in the subtree of apex(h) can be in at most two consecutive
occurrences in D(apex(h)). Consider a light edge (vd, u) leaving h at depth d. Any leaf in the subtree rooted
at u can be part of at most two consecutive occurrences in D(vd). A single leaf can thus make at most
two consecutive occurrences from D(vd) disappear in D(vd+1) and at most one new consecutive occurrence
appear. If we consider all leaves that leave h, we therefore get at most three changes per leaf. Thus, for
a given heavy path h a leaf in the subtree of apex(h) can be in at most two consecutive occurrences in
D(apex(h)) and can cause at most three changes of line segments in the line segment data structure for h.
Since any root-to-leaf path can intersect at most log n heavy paths, any leaf can contribute O(log n) line
segments. Overall, this means that there are at most O(n log n) line segments in total. For a single heavy
path h the line segment data structure from Lemma 2 uses linear space in the number of segments and the
length of h. The sum of the lengths of the heavy paths is O(n), since the heavy paths are disjoint. Thus the
total space usage is O(n log n).
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2.3.2 Algorithm

Given a pattern P and an integer k we can now answer a query as follows. We begin by finding locus(P ) in
the suffix tree. Let h be the heavy path that the locus is on and let dP be the depth of locus(P ) on h. We do
a smallest-segments(dP , k) query on the line segment data structure stored for h and report the consecutive
occurrences corresponding to the returned line segments.

Correctness By definition, D(locus(P )) contains the consecutive occurrences of P . Thus, every con-
secutive occurrence of P defines a line segment in the data structure for h and the horizontal line with
y-coordinate set to dP intersects exactly those line segments. Since we set the x-coordinate of every line
segment to the distance of its consecutive occurrence, the line segments are sorted left-to-right by increasing
distance. Thus, the first k line segments intersecting the horizontal line at y = dP correspond to the top-k
close consecutive occurrences.

Time analysis The time for finding locus(P ) in the suffix tree is O(m). The time for querying the line
segment data structure from Lemma 2 is O(k), so the total time complexity is O(m + k). This proves
Theorem 1(i).

2.4 A Linear Space Solution for Fixed k

In this section, we present a linear space and O(m + k) time solution for the simpler problem where k is
known at construction time. That is, given a string S and a positive integer k, we preprocess S into a
compact data structure such that given a pattern string P , we can efficiently find the top-k close consecutive
occurrences of P in S. This data structure demonstrates one of the key ideas that our final result builds on.

The main idea behind the data structure is to store the line segment solution from Section 2.3 for some
path segments of the suffix tree, such that all nodes that are not on these paths are within small subtrees.
For nodes within such small subtrees we can find all consecutive occurrences without spending too much
time. Specifically, we will partition the suffix tree into clusters, satisfying some properties. We are going to
define this cluster partition next.

2.4.1 Cluster Partition

For a connected subgraph C ⊆ T , a boundary node v is a node v ∈ C such that either v is the root of
T , or v has an edge leaving C – that is, there exists an edge (v, u) in the tree T such that u ∈ T \ C. A
cluster is a connected subgraph C of T with at most two boundary nodes. A cluster with one boundary
node is called a leaf cluster. A cluster with two boundary nodes is called a path cluster. For a path cluster
C, the two boundary nodes are connected by a unique path. We call this path the spine of C. A cluster
partition is a partition of T into clusters, i.e. a set CP of clusters such that

⋃
C∈CP V (C) = V (T ) and⋃

C∈CP E(C) = E(T ) and no two clusters in CP share any edges. Here, E(G) and V (G) denote the edge
and vertex set of a (sub)graph G, respectively. We need the next lemma which follows from well-known tree
decompositions [AHdLT97,AHT00,AR02,Fre97] (see Bille and Gørtz [BG11] Lemma 5.1 for a direct proof).

Lemma 3. Given a tree T with n nodes and a parameter τ , there exists a cluster partition CP such that
|CP | = O(n/τ) and every C ∈ CP has at most τ nodes. Furthermore, such a partition can be computed in
O(n) time.

2.4.2 Data Structure

For the suffix tree of S, we build a clustering as in Lemma 3 with parameter τ set to k to get O(n/k) clusters
of size at most k. For the spine of every path cluster, we build a line segment data structure similar to
the one from Section 2.3. The difference is that for any depth, we only maintain the line segments that
correspond to the top-k close consecutive occurrences for that depth. Let v1, . . . , vl denote the nodes on the
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Figure 2.3: The suffix tree is divided into clusters (grey loops) of size ≤ k which are either leaf clusters, or
path clusters with spines marked in red. For every spine we store a line segment data structure, also marked
in red.

spine, starting at the top boundary node. Note that for any consecutive occurrence that appears for the first
time in D(vd+1) there is a consecutive occurrence in D(vd) of smaller distance which is no longer present
in D(vd+1). It follows that, when moving down the spine, once a consecutive occurrence (i, j) is amongst
the k closest, it will stay amongst the k closest until suffix i or j branches off the spine. Thus, there exists
an interval [d1, d2] of consecutive depths such that (i, j) is amongst the k closest pairs in D(vd) if and only
if d ∈ [d1, d2]. For a consecutive occurrence (i, j) that is amongst the k closest for any v on the spine, we
define a line segment where the x-coordinate is its distance and the y-coordinate is spanning the interval
[d1, d2], where [d1, d2] is the interval in which (i, j) is amongst the k closest pairs. For these line segments
we store the data structure from Lemma 2. Again, for each line segment we store the pair of occurrences
it represents. We store this data structure for the spine of each cluster and for every node that is on that
spine we store a pointer to the data structure. For boundary nodes that are on multiple spines we store a
pointer to any one of them. See Figure 2.3 for an illustration of this structure. Additionally we store the
suffix array and the sorted range reporting data structure of Brodal et al. [BFGLO09] on the suffix array.

Space analysis We show that for every path cluster there are O(k) line segments: We still have the
property that a line segment only ends if a corresponding leaf branches off the spine. In that case, it might
be replaced either by a new consecutive occurrence or by a consecutive occurrence that was there before but
was not amongst the k closest. Note that at any node on the spine except the boundary nodes, any subtrees
branching off the spine are fully contained within the cluster, and as such have total size at most k. Between
the top boundary node and the next node on the spine, we have no bound as to how many leaves can branch
off — however, since we only store line segments corresponding to the top-k consecutive occurrences, at most
k line segments can be replaced by k other line segments. For the rest of the spine, at most k leaves can
branch off in total. Every leaf that branches off can cause at most two line segments to end and two new
line segments to begin. As such there can be at most O(k) line segments. As the size of the line segment
data structure is linear in the number of line segments and in the length of the spine, any line segment data
structure of a path cluster uses O(k) space. As both the sorted range reporting data structure and the suffix
array have linear space complexity, the complete data structure occupies O((n/k)k + n) = O(n) space.
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2.4.3 Algorithm

Given a pattern P we can now answer the top-k query. We begin by finding locus(P ) in the suffix tree.
If the locus is on a spine, we query the line segment data structure for that spine. Otherwise the locus is
either in a subtree hanging off a spine or in a leaf cluster. In both cases, there are at most k occurrences of
our pattern P . We find all occurrences of P in text order, using the sorted range reporting data structure.
This allows us to report the consecutive occurrences: Let i1, ..., il denote the leaves in text order, then the
consecutive occurrences are (i1, i2), (i2, i3), ...(il−1, il). Note that l ≤ k, since the size of the subtree is at
most k.

Correctness By construction, for any depth on a spine, the top-k close consecutive occurrences of the
corresponding substring will have corresponding line segments present at that depth in the line segment data
structure. If the locus is on a spine, then by the arguments in Section 2.3, the line segment data structure
will report the top-k close consecutive occurrences. If the locus is not on a spine, then there are at most k
occurrences of P in total, since any subtree hanging off a spine and any leaf cluster has at most k leaves.
Thus, by constructing and reporting all consecutive occurrences of P we report the top-k close consecutive
occurrences.

Time analysis We find the locus in O(m) time. If we land on a spine we report in O(k) time. Otherwise,
we are in a subtree of size at most O(k) and thus P has at most k occurrences. Using sorted range reporting
we can find the occurrences in text order using O(k) time. The total time for a query is thus O(m+ k).

We are going to use this data structure with different parameters in Section 2.5. For a general parameter
τ , we have the following lemma:

Lemma 4. For any positive integer τ , there exists a cluster partition of the suffix tree and a linear space
data structure with the following properties:

1. For any k ≤ τ and P such that locus(P ) is on the spine of a cluster, we can report the top-k close
consecutive occurrences in O(m+ k) time.

2. For any P such that locus(P ) is not on a spine, we can report the top-k close consecutive occurrences
in O(m+ τ) time.

Proof. We build the data structure described in this section for parameter τ taking the role of k. In case 1,
we query the line segment data structure for the depth of locus(P ) on the path and k. Since k ≤ τ this will
correctly output the top-k close consecutive occurrences of P . In case 2, we have shown that we can construct
the top-τ close consecutive occurrences. Using the linear time selection algorithm by Blum et al. [BFP+73]
we can find the top-k of those: We use the algorithm to find the consecutive occurrence of kth smallest
distance d; then we traverse all the consecutive occurrences and output those of distance ≤ d. If needed, we
crop the output to report no more than k consecutive pairs.

2.5 An O(n log log n) Space Solution for General k

We now show how to leverage the solution from Lemma 4 to obtain a data structure that can answer queries
for any k. The idea is to recursively cluster the suffix tree, such that we always either land on a spine with
a sufficient number of consecutive occurrences stored, or in a sufficiently small subtree.

2.5.1 Data Structure

Our data structure consists of the suffix tree decomposed into clusters of decreasing size, with the line segment
data structure stored for every spine as before. We build it in the following way. First we build the solution
from Lemma 4 with parameter τ1 =

√
n, resulting in clusters of size at most

√
n. For every subtree hanging

off a spine and every leaf cluster, we apply the solution with parameter τ2 =
√
τ1. We keep recursively
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Figure 2.4: Here, we see the recursive clustering: The black clustering is the coarsest clustering and the
green and blue are finer sub-clusterings.

applying the solution with parameter τi =
√
τi−1 until reaching a constant cluster size. For notational

convenience, additionally define τ0 = n. See Figure 2.4 for an illustration of this data structure. Again we
additionally store the suffix array and the sorted range reporting data structure of Brodal et al. [BFGLO09]
on the suffix array.

Space analysis The suffix array and sorted range reporting structure occupy O(n) space. For a tree of
size ñ and any τ , the data structure from Lemma 4 uses at most O(ñ) space. Since at every recursion level,
we build the data structure from Lemma 4 on non-overlapping subtrees of the suffix tree, every recursion
level uses at most O(n) space. As the cluster size at every level of recursion is the square root of the previous
cluster size, there are at most O(log log n) levels. The complete data structure thus uses O(n log log n) space.

2.5.2 Algorithm

Given a query with pattern P and parameter k, we can now answer in the following way. As before, we
begin by finding the locus of the pattern in the suffix tree. This node is now either on the spine of some
cluster or in a cluster of constant size. If it is on the spine of a cluster of size τi, and if k ≤ τi, then we
query the line segment data structure for that spine, which allows us to report the top-k close consecutive
occurrences. Otherwise, we find all occurrences of P and construct the top-k close consecutive occurrences
by using linear time selection as in the proof of Lemma 4.

Correctness The correctness of the algorithm follows by the same arguments as previous sections.

Time analysis Finding the locus in the suffix tree takes O(m) time. The locus is either on the spine of
a cluster, or within a cluster of constant size. In a constant sized cluster, clearly we can do all operations
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described above in constant time. If the locus is on the spine of a cluster with parameter τi, and k ≤ τi, then
we are in case 1 of Lemma 4 with τ = τi and can report the top-k close consecutive occurrences using a total
of O(m + k) time. If k > τi, then we are in case 2 of Lemma 4 with τ = τi−1. Note that τi−1 = τ2i < k2.
Therefore, we can find the top-k close consecutive occurrences in O(m+ τi−1) = O(m+ k2) time. In total,
the worst case query time is then O(m+ k2). In summary, this gives the following result:

Lemma 5. Given a string S of length n, we can build a data structure that can answer top-k close consecutive
occurrences queries using O(n log log n) space and O(m+ k2) query time. Here, m is the length of the query
pattern.

2.6 A Linear Space Solution

We now show how to reduce the space consumption of the solution presented in Section 2.5. Observe that in
any cluster of level i, we only have O(τi) objects. If we can reduce all objects within a cluster to a “universe
size” of O(τi) instead of O(n), we can use O(τi log τi) bits instead of O(τi log n) bits per cluster. In the
following, consider a cluster C of level i.

Reducing the line segment data structure In the line segment data structure for cluster C, by the
analysis of previous sections, there are at most O(τi) line segments and τi different depths on the path.
Let c be a constant such that there are at most cτi line segments for each cluster. We map every unique
x-coordinate of a line segment to a unique element in {1, . . . , cτi} in a way that preserves order. That is,
map the minimum x-coordinate to 1, the smallest x-coordinate that is bigger than the minimum to 2, and
so on. This gives us a modified line segment data structure that preserves the properties we need but is
restricted to a cτi × τi grid.

Reducing the leaf pointers For any line segment, we have to store pointers that allow us to report the
corresponding pair of consecutive occurrences. Doing so naively uses 2 log n bits per line segment. In the
following, we show how to reduce that to 4 log τi, for a cluster C of level i. The idea is to store the offset
within the suffix array range defined by the top boundary node r of C. More precisely, let [ar, br] be the
range in the suffix array spanning the leaves below r. Then for any leaf l in the subtree rooted at r define
off(l) = SA−1(l)− ar. By the way our recursion is defined, C is fully contained in a subtree of size at most
τ2i , and thus r has at most τ2i leaves below it. It follows that for any leaf l in the subtree of r, off(l) is a
number between in [0, τ2i − 1] and can be stored using 2⌈log τi⌉ bits.

2.6.1 Data Structure

Our data structure is now defined as follows: We have a clustering of the suffix tree as in Section 2.5. For
every spine on level i, we store the line segment data structure reduced to a cτi× τi grid. Every line segment
corresponding to a pair (i, j) stores the pair (off(i), off(j)) as additional information. For every node on the
spine, we store a pointer to the spine data structure and to the top boundary node of the spine. Additionally,
we store the suffix array and the sorted range reporting structure, as well as two integers for every node in
the suffix tree, that define the range of leaves below the node in the suffix array.

Space analysis The suffix array and the sorted range reporting data structure use space O(n). Storing
the range in the suffix array plus at most two pointers per node uses O(n) space. For a cluster C of level
i, we store the line segment data structure from Lemma 2 for a cτi × τi grid. Since the data structure from
Lemma 2 works in the word RAM model (as do all data structures presented in this paper), we can store
the data structure using O(τi log τi) bits. For each of the at most cτi line segments we store 4 log τi bits for
the encoding of the consecutive pair. Thus, we can store the data structure for cluster C using O(τi log τi)
bits. As in the previous section, at every recursion level, we cluster non-overlapping subtrees. The reduced

24



cluster solution of a subtree of size ñ with parameter τi uses O( ñ
τi
τi log τi) = O(ñ log τi) bits. The total space

for all clusters of level i thus becomes O(n log τi). Summing over all recursion levels, we get

⌊log logn⌋∑
i=0

O(n log τi) =

⌊log logn⌋∑
i=0

O
(
n log n(1/2i)

)
=

⌊log logn⌋∑
i=0

1

2i
O(n log n) = O(n log n) bits,

that is, O(n) words.

2.6.2 Algorithm

We query the data structure as follows: If we land on a spine and k ≤ τi, we query the line segment data
structure and get k pairs of the form (off(i), off(j)). We then use the pointer to get to the root of the spine
and use the range in the suffix array to translate each encoding back to the original suffix number, using
constant time per leaf. Otherwise, we proceed as described in Section 2.5. Since the decoding can be done
in constant time per leaf, the time complexities are the same as in Section 2.5. We have shown the following
result:

Lemma 6. Given a string S of length n, we can build a data structure that can answer top-k close consecutive
occurrences queries using O(n) space and O(m+ k2) query time. Here, m is the length of the query pattern.

In order to get Theorem 1(ii), we cluster according to a parameter ϵ, 0 < ϵ ≤ 1, using the following
recursion:

τ0 = nandτi = τ
1

1+ϵ

i−1 .

Hence, the total space in bits is now:

⌊log1+ϵ logn⌋∑
i=0

O
(
n log n1/(1+ϵ)i

)
=

∞∑
i=0

(
1

1 + ϵ

)i

O(n log n) =

(
1 +

1

ϵ

)
O(n log n),

that is, O
(
n
ϵ log n

)
bits, so O

(
n
ϵ

)
words. For the query time, there are again two cases. In the case where

locus(P ) is on a spine with k ≤ τi, we get optimal O(m+ k) time, as before. For the other case, we have at
most τi−1 = τ1+ϵ

i < k1+ϵ occurrences of P , which gives us a time complexity of O(m+k1+ϵ). This concludes
the proof of Theorem 1(ii).

2.7 A Different Tradeoff

In this section we give a solution query time O(m + k log1+ϵ n). The idea is to store a finer set of cluster
decompositions than in the previous section and store sublinear information for each cluster decomposition.
Then we use a bounded number of orthogonal range successor queries in each cluster.

Orthogonal range successor The orthogonal range successor problem is to preprocess an arrayA[0, . . . , n−
1] into a data structure that efficiently supports the following queries:

• RangeSuccessor(a, b, x): return the successor of x in A[a, . . . , b], that is, the minimum y > x such that
there is an i ∈ [a, b] with A[i] = y.

• RangePredecessor(a, b, x): return the predecessor of x in A[a, . . . , b], that is, the maximum y < x such
that there is an i ∈ [a, b] with A[i] = y.

Nekrich and Navarro [NN12] give a linear space data structure such that each range successor query takes
O(logϵ n) time. We will use a range successor data structure on the suffix array to answer the following type
of queries: Given an index i and the suffix array range of a pattern P , find the next position in the text after
i where P occurs.
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2.7.1 Data Structure

We store the linear space range successor data structure from Nekrich and Navarro [NN12] and the sorted
range reporting data structure by Brodal et al. [BFGLO09] on the suffix array of S. Further, we store
the suffix tree of S together with the following cluster decompositions. For each κ = 2, 4, 8, 16, . . . , 2⌊logn⌋

we build the clustering decomposition of Lemma 3 of the suffix tree for cluster size τ = κ log n. For each
boundary node v, we store the top-κ close consecutive occurrences of str(v), sorted by text position. For
each node v in the suffix tree, we additionally store two bit vectors of length log n. The first one is used to
store for which κ node v is a boundary node, that is, the ith bit is set to 1 if v is a boundary node in the
cluster decomposition with κ = 2i and 0 otherwise. Similarly, the other bit vector stores for which κ node v
is on a spine in the cluster decomposition with κ = 2i.

Space analysis The suffix array, the range successor data structure and the sorted range reporting data
structure all uses O(n) space. The suffix tree together with the bit vectors saved in the nodes also uses O(n)
space. By Lemma 3, there are O(n/(κ log n) boundary nodes in the cluster decomposition with cluster size
κ log n. For each boundary node we store κ values and thus the space used for a fixed κ is O(κn/(κ log n)) =
O(n/ log n). There are O(log n) different values of κ and therefore the total space is O(n).

2.7.2 Algorithm

Given a pattern P and parameter k we can now answer the top-k query in the following way. As before,
we begin by finding the locus of P in the suffix tree. Then we find the smallest power of two bigger than
k, i.e. κ = 2⌈log k⌉, and consider the cluster decomposition defined for κ. There are two cases depending on
whether locus(P ) is on a spine in the cluster decomposition for κ or not.

If locus(P ) is not on a spine, then as in case 2 of Lemma 4, there are at most τ = κ log n leaves below
locus(P ), and we can construct the top-k close occurrences in time O(κ log n). If locus(P ) is on a spine,
then we find the lower boundary node b of the cluster (note we can do that by traversing the suffix tree and
checking at most O(κ log n) nodes). We have the following property.

Claim 1. Each of the top-k close consecutive occurrences of P is either

1. stored at b or

2. includes an occurrence of P corresponding to a leaf within the cluster.

Proof. Any top-k consecutive occurrence of P , where both occurrences are below b, is also among the top-k
consecutive occurrences of str(b). This is true because P is a prefix of str(b), so the occurrences of str(b)
is a subset of the occurrences of P . Thus any consecutive occurrence of P where both occurrences are
below b is also a consecutive occurrence of str(b). A consecutive occurrences of str(b) that is not consecutive
occurrences of P must be split by an occurrence of P that is not below b giving rise to a least two closer
consecutive occurrences of P . Thus the i-closest occurrence of str(b) must have distance at least the same
as the i-closest occurrence of P . Every occurrence of P that is not below b is within the cluster.

We find all occurrences of P that are within the cluster in text order using the sorted range reporting
data structure. We can do this using two calls to the sorted range reporting data structure since the
occurrences of P within the cluster correspond to two intervals in the suffix array, namely the range of
locus(P ) minus the range of b. For each such occurrence i, we use an orthogonal range successor query
j = RangeSuccessor(range(locus(P )), i) to find the next occurrence j and then an orthogonal predecessor
query i′ = RangePredecessor(range(locus(P )), j) to find the last occurrence i′ before j. This gives us a
consecutive occurrence (i′, j). To avoid recomputing the same consecutive occurrence we skip through the
list until we get to an occurrence that is after i′.

Now we have the sorted list of the top-κ consecutive occurrences of str(b) stored at b, and a sorted list
of all consecutive occurrences of P that include an occurrence corresponding to a leaf within the cluster.
By Claim 1, any of the top-k consecutive occurrences of P is part of one of these lists. However, some of
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the consecutive occurrences of str(b) might not be consecutive occurrences of P , since P might have extra
occurrences inbetween. Let (i, j) be a consecutive occurrence of str(b), and let i′ be the last occurrence of P
before j. If i′ ̸= i then i′ is wihtin the cluster and thus (i′, j) is part of the consecutive occurrences we already
computed. We merge the two lists, deleting all consecutive occurrences of str(b) that are not consecutive
occurrences of P and all duplicates. We then find the top-k of remaining consecutive occurrences, by using
the linear time selection algorithm as in the proof of Lemma 4.

Time analysis Finding the locus in the suffix tree takes O(m) time. Finding b and takes O(κ log n) time,
and finding the occurrences of P within the cluster using sorted range reporting also takes O(κ log n) time.
We make O(κ log n) calls to the orthogonal range reporting data structure each using O(logϵ n) time. In total
the time for this is O(κ log1+ϵ n). Merging the two lists and using the selection algorithm takes time linear in
the total length of the two lists which is O(κ log n). Since κ < 2k the total time complexity O(m+k log1+ϵ n).
This concludes the proof of the main result.

2.8 Extensions

Our results can be extended to a couple of related problems. In Section 2.8.1, we show how we can modify our
data structure to solve the “opposite” problem of reporting the k consecutive occurrences of largest distance.
The extension is quite natural, though it does require some careful analysis. In Section 2.8.2, we then relate
the solutions from Section 2.8.1 and the solutions to Sitcco to the problem of finding consecutive occurrences
with distances in a specified interval, considered by Navarro and Thankachan [NT16]. We show improved
complexities for the special case where one of the interval bounds is known at indexing time. Finally, we
show how to use those results to efficiently find all pairs of non-overlapping consecutive occurrences.

2.8.1 Top-k Far Consecutive Occurrences

Given a pattern P and an integer parameter k > 0, define the top-k far consecutive occurrences of P to be
the k consecutive occurrences of P in S with the largest distances. Given a string S the string indexing for
top-k far consecutive occurrences problem (Sitfco) is to preprocess S into a data structure that supports
top-k far consecutive occurrences queries. The goal is to obtain a compact data structure while supporting
fast queries in terms of the length of the pattern P and the number of reported occurrences k.

Line segments and an O(n log n) space solution We can solve the Sitfco problem using the same
strategy as for the Sitcco problem, with small modifications. We need a similar data structure from
Lemma 2 to report the line segments with largest x-coordinates. As previously, assume we are given a set L
of n vertical line segments. We need a data structure for the following problem:

• largest-segments(y0, k): return the first k segments intersecting the horizontal line with y-coordinate y0
in right-to-left order.

As before, we can assume integer coordinates and let N be the maximum y-coordinate of any line segment
in L.

Lemma 7. We can build a data structure that can answer largest-segment queries in O(n +N) space and
O(k) time.

Proof. We build the same data structure as in Lemma 2, but keep the partially persistent linked list sorted
in decreasing order. The rest follows as before.

Now, using this data structure in the solution described in Section 2.3, we immediately get an analogous
result for Sitfco:

Lemma 8. Given a string S of length n, we can build a data structure that can answer top-k far consecutive
occurrences queries using O(n log n) space and O(m+ k) query time.
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Figure 2.5: Illustration of a pair defining more than one line segment. To the left are the positions of the
occurrences in S, in the middle is the spine of a cluster and to the right are the corresponding line segments.
The pair (i, j) is amongst the to k farthest until the occurrence x disappears, after which it is pushed out
by the pair (a, b). When b then disappears, (i, j) is again amongst the k farthest.

Modifications to the linear space data structure Now we extend the cluster solutions from Sections
2.5 and 2.6. We build the same recursive clusters as in Section 2.5. For each spine of a cluster of size τi,
we keep the line segments corresponding to the τi consecutive occurrences of largest distance at every depth
on the spine. That is, if a consecutive occurrence (i, j) is among the k farthest within D(vd) for some vd on
the spine, define line segments for all maximal consecutive intervals [d1, d2] such that (i, j) is amongst the k
farthest within D(vd) for any d ∈ [d1, d2]. Again, the x-coordinate of the line segment is the distance j − i,
and the y-coordinate spans [d1, d2]. Note that in this case, a consecutive occurrence might define more than
one line segment. See Figure 2.5 for an illustration of pair defining more than one line segment. We store
these line segments in the data structure from Lemma 7.

Space analysis When moving down a spine from vd−1 to vd, only three different types of changes can
happen to the set of the k farthest consecutive occurrences. We again denote D(vd) to be the set of all
consecutive occurrences of str(vd). The possibles types of changes are then as follows.

• A consecutive occurrence can be removed from the k farthest because a consecutive occurrence of
larger distance is added to D(vd). The consecutive occurrence of larger distance can only appear if an
occurrence in between branched off. This leaf accounts for this change. A leaf can account for at most
one such change, which triggers a line segment ending and a new line segment appearing at depth d.

• A consecutive occurrence (i, j) can disappear because either i or j branched off. Then this leaf accounts
for this change. A leaf can account for at most two such changes.

• A consecutive occurrence that was present in D(vd−1) but not amongst the k farthest can be added
to the k farthest in D(vd). This can only happen if a consecutive occurrence of greater distance
disappeared because one or both of its occurrences branched off. Then this leaf accounts for this new
line segment also, additional to the charge of the disappearing consecutive occurrence(s). A leaf can
account for at most two such changes.
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In total, any leaf can account for at most a constant number of changes. Thus, we get the same space
complexities as in Section 2.5.

Algorithm To answer a query we proceed as in Section 2.5. We first find locus(P ). If it is on a spine of a
cluster of size O(τi) and k < τi, we query the line segment data structure to report the top-k far consecutive
occurrences. Otherwise, we find all occurrences of P in text order, construct the consecutive occurrences
and use linear time selection to output the k consecutive occurrences of largest distance. This is correct by
the same arguments as Section 2.5, and by similar arguments, achieves the same time complexities. The
rank space reduction from Section 2.6 can be applied analogously. This gives us the following result:

Theorem 2. Given a string S of length n and ϵ, 0 < ϵ ≤ 1, we can build a data structure that can answer
top-k far consecutive occurrences queries using either

(i) O(n log n) space and O(m+ k) query time or

(ii) O(nϵ ) space and O(m+ k1+ϵ) query time.

Here, m is the length of the query pattern.

Remark We note that the construction from Section 2.7 does not generalize to the top-k far consecutive
occurrences problem, since the corresponding version of Claim 1 does not hold. A top-k far consecutive
occurrence of P , where both occurrences are below b is not necessarily among the top-k far consecutive
occurrences of str(b). A consecutive occurrence of str(b) can be split by an occurrence of P not below b. This
gives two smaller occurrences, and might cause the (k + 1)th furthest occurrence below b to be among the
top-k far occurrences of P . Each occurrence of P from within the cluster can split a consecutive occurrence
below b, and thus we would need to store Θ(τ) occurrences below b, which no longer gives a linear space
solution.

2.8.2 Consecutive Occurrences with Gaps

Given a string S the string indexing for consecutive occurrences with gaps problem (Sicog) is to preprocess
S into a compact data structure, such that for any pattern P and a range [α, β] we can efficiently find all
consecutive occurrences of P where the distance lies within [α, β]. The Sicog problem was considered by
Navarro and Thankachan [NT16] and they give an O(n log n) space and O(m+occ) time solution, where occ
is the number of consecutive pairs with distance in [α, β]. Using the data structure from Section 2.3, we get
an O(n log n) space and O(m + log n + occ) time solution for the Sicog problem, which can be optimized
using the same strategy as in [NT16] to achieve the same complexities. However, for a special case of the
problem where either α or β is known at indexing time we can get a similar trade-off as for the Sitcco
problem. We first describe our solution for the fixed-α variant using the techniques from Sections 2.5 and
2.6, and then the fixed-β variant follows by applying the same ideas combined with the data structure from
Section 2.8.1.

Data structure We build the same data structure as in Section 2.5, with a slight modification. In the line
segment data structure stored at every spine, instead of storing the τi closest pairs, we store the τi closest
pairs that have distance ≥ α. This clearly occupies no more space than the solution from Section 2.5 and
we can still apply the space optimizations of Section 2.6.

Algorithm Given P and β, we can now answer a query as follows. We begin by finding locus(P ). If it is
in a subtree of constant size, we construct all the consecutive occurrences of P and report those that have
distance within [α, β]. If it is on a spine of a cluster of size τi, we query the line segment data structure. For
every consecutive occurrence we find, we check if the distance is ≤ β. If we encounter a pair with distance
> β, we stop reporting. If all τi consecutive occurrences at locus(P ) have distance ≤ β, we then find all the
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the consecutive occurrences of P , just as in Section 2.5, and scan them once to report all the consecutive
occurrences with distance in [α, β].

For the analysis, define a relevant pair to be a consecutive occurrence with a distance in [α, β]. If there
are less than τi relevant pairs for any locus, then they will all be stored and reported by the line segment
data structure. As they are stored in order of increasing distance, once we reach a pair with distance > β,
no further relevant pairs exist. If there are more than τi relevant pairs, then we consider all occurrences of
the pattern and report from those. Thus we always answer the query correctly.

If there is a consecutive occurrence among the τi line segments with distance > β, we spend time
O(m+occ) finding the locus and querying the line segment data structure. Otherwise we have that occ ≥ τi,
and thus occ1+ϵ ≥ τi−1. As before, P has at most τi−1 occurrences. Therefore, by the same arguments as in
the previous section, we get the following result:

Theorem 3. Given a string S of length n and α > 0, we can build for any ϵ satisfying 0 < ϵ ≤ 1 an O(nϵ )
space data structure that can answer the following query in O(m+occ1+ϵ) time: For a query pattern P and
β ≥ α, report all consecutive occurrences of P in S where the distance lies in [α, β]. Here, m is the length
of the pattern and occ is the number of reported occurrences.

By combining the same arguments with the solution for top-k far consecutive occurrences, we get the
following result for β fixed at indexing time:

Theorem 4. Given a string S of length n and β > 0, we can build for any ϵ satisfying 0 < ϵ ≤ 1 an O(nϵ )
space data structure that can answer the following query in O(m+occ1+ϵ) time: For a query pattern P and
α where 0 < α ≤ β, report all consecutive occurrences of P in S where the distance lies in [α, β]. Here, m
is the length of the pattern and occ is the number of reported occurrences.

We note that the construction from Section 2.7 does not generalize to the problem where α is fixed, as
the corresponding version of Claim 1 do not hold in this case. A consecutive occurrence below b of distance
at least α can be split by an occurrence of P from within the cluster introducing two new consecutive
occurrences that might both have distance less than α.

We can, however, get a solution to the problem when α = 1. Using the data structure from Section 2.7,
we can get all consecutive occurrences that are at most β apart as follows. We query the data structure
for the top-k close consecutive occurrences with k = 1, 2, 4, . . ., each time checking if all the top-k close
consecutive occurrences have distance at most β. As soon as we find a consecutive occurrence that has a
distance more than β among our top-k close consecutive occurrences, we stop and report all the occurrences
found in this last call that have distance at most β. This way we ensure that k ≤ 2 · occ. We only find the

locus once. The total query time is O(m+
∑⌈log occ⌉

i=0 2i log1+ϵ n) = O(m+ occ log1+ϵ n).

Lemma 9. Given a string S of length n we can build an O(n) space data structure that can answer the
following query in O(m + occ log1+ϵ n) time: For a query pattern P and β > 0, report all consecutive
occurrences with distance at most β.

Non-overlapping consecutive occurrences A natural and well-studied variant of string indexing is
the problem of finding sets of non-overlapping occurrences of a pattern P . Here, a set of non-overlapping
occurrences is a set of occurrences {i1, . . . , ik} of P such that the distance between any two of them is at
least |P |. Several papers study the problem of finding the set of non-overlapping occurrences of maximum
size [KKL07,CP09,GST20,HAKT18]. Note that Theorem 4 applied to α = |P | solves a different variant
of finding sets of non-overlapping occurrences: Namely, finding all pairs of non-overlapping consecutive
occurrences. We call this problem the string indexing for non-overlapping consecutive occurrences problem
(Sinoco). The Sinoco problem is inherently different from finding the maximum set of non-overlapping
occurrences: For example, the maximum set of non-overlapping occurrences of the pattern P = NANA in the
string S = NANANANA has size 2. However, there are no non-overlapping consecutive occurrences. To the best
of our knowledge, the Sinoco problem has not been studied before. An immediate corollary of the results
in Navarro and Thankachan [NT16] and Theorem 4 gives the following trade-offs for solving Sinoco:
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Corollary 1. Given a string S of length n and ϵ, 0 < ϵ ≤ 1, we can build a data structure that can find all
non-overlapping consecutive occurrences of a query pattern P using either

(i) O(n log n) space and O(m+ occ) query time or

(ii) O(nϵ ) space and O(m+ occ1+ϵ) query time.

Here, m is the length of the query pattern and occ is the number of reported occurrences.

Proof. Apply the results in [NT16] and Theorem 4 with β = n and α = |P |.

2.9 Conclusion and Open Problems

We have introduced the natural problem of string indexing for top-k close consecutive occurrences, and have
given both a near-linear space solution achieving optimal query time and a linear space solution achieving
a query time that is close to optimal. Using these techniques, we have given new solutions for the problem
of string indexing for consecutive occurrences with gaps (Sicog). Furthermore, we have introduced the
problem of finding all non-overlapping consecutive occurrences of a pattern (Sinoco) and showed that it
can be reduced to a special case of Sicog.

These results open interesting new directions for further research. The most obvious open problem is
to see whether it is possible to further improve the results for the main problem considered in this paper,
especially, achieve linear space and optimal query time simultaneously. Secondly, it is still open whether it
is possible to get an O(m + occ) time and linear space solution for the special case of the Sicog problem
where one of the interval endpoints is fixed, or even o(n log n) space for the general problem. For the Sinoco
problem, one might find better solutions that do not reduce it to Sicog but use additional insights about
the specific structure of the problem.
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Chapter 3

Gapped Indexing for Consecutive
Occurrences

Abstract

The classic string indexing problem is to preprocess a string S into a compact data structure that
supports efficient pattern matching queries. Typical queries include existential queries (decide if the
pattern occurs in S), reporting queries (return all positions where the pattern occurs), and counting
queries (return the number of occurrences of the pattern). In this paper we consider a variant of string
indexing, where the goal is to compactly represent the string such that given two patterns P1 and P2 and
a gap range [α, β] we can quickly find the consecutive occurrences of P1 and P2 with distance in [α, β],
i.e., pairs of subsequent occurrences with distance within the range. We present data structures that use
Õ(n) space and query time Õ(|P1|+|P2|+n2/3) for existence and counting and Õ(|P1|+|P2|+n2/3occ1/3)
for reporting. We complement this with a conditional lower bound based on the set intersection problem
showing that any solution using Õ(n) space must use Ω̃(|P1|+|P2|+

√
n) query time. To obtain our results

we develop new techniques and ideas of independent interest including a new suffix tree decomposition
and hardness of a variant of the set intersection problem.

3.1 Introduction

The classic string indexing problem is to preprocess a string S into a compact data structure that supports
efficient pattern matching queries. Typical queries include existential queries (decide if the pattern occurs
in S), reporting queries (return all positions where the pattern occurs), and counting queries (return the
number of occurrences of the pattern). An important variant of this problem is the gapped string indexing
problem [BG14, IR09, BGP16, CPZ20, BGVV14, Lew11, KKL07, APU11]. Here, the goal is to compactly
represent the string such that given two patterns P1 and P2 and a gap range [α, β] we can quickly find
occurrences of P1 and P2 with distance in [α, β]. Searching and indexing with gaps is frequently used in
computational biology applications [BB94,HBFB99,FG08,HSSSS11,Mye92,MM93b,NR03,BGP16,CPZ20,
BGVW12].

Another variant is string indexing for consecutive occurrences [NT16,BGP+20a,AS09,APS04]. Navarro
and Thankachan [NT16] study the problem of compactly representing the string such that given a pattern
P and a gap range [α, β] we can quickly find consecutive occurrences of P with distance in [α, β], i.e., pairs
of subsequent occurrences with distance within the range.

In this paper, we consider the natural combination of these variants that we call gapped indexing for
consecutive occurrences. Here, the goal is to compactly represent the string such that given two patterns P1

and P2 and a gap range [α, β] we can quickly find the consecutive occurrences of P1 and P2 with distance in
[α, β].

We can apply standard techniques to obtain several simple solutions to the problem. To state the bounds,
let n be the size of S. If we store the suffix tree for S, we can answer queries by searching for both query
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strings, merging the results, and removing all non-consecutive occurrences. This leads to a solution using
O(n) space and Õ(|P1| + |P2| + occP1 + occP2) query time, where occP1 and occP2 denote the number of
occurrences of P1 and P2, respectively

1. However, occP1
+ occP2

may be as large as Ω(n) and much larger
than the size of the output.

Alternatively, we can obtain constant query time for counting queries by precomputing the answer for
each pair of suffix tree nodes and each possible distance in O(n3) space.

In this paper, we introduce new solutions that significantly improve the above time-space trade-offs.
Specifically, we present data structures that use Õ(n) space and query time Õ(|P1|+ |P2|+n2/3) for existence

and counting and Õ(|P1| + |P2| + n2/3occ1/3) for reporting. We complement this with a conditional lower

bound based on the set intersection problem showing that any solution using Õ(n) space must use Ω̃(|P1|+
|P2| +

√
n) query time. To obtain our results we develop new techniques and ideas of independent interest

including a new suffix tree decomposition and hardness of a variant of the set intersection problem.

3.1.1 Setup and Results

Throughout the paper, let S be a string of length n. Given two patterns P1 and P2 a consecutive occurrence
in S is a pair of occurrences (i, j), 0 ≤ i < j < |S| where i is an occurrence of P1 and j an occurrence
of P2, such that no other occurrences of either P1 or P2 occurs in between. The distance of a consecutive
occurrence (i, j) is j− i. Our goal is to preprocess S into a compact data structure that given pattern strings
P1 and P2 and a gap range [α, β] supports the following queries:

• Exists(P1, P2, α, β): determine if there is a consecutive occurrence of P1 and P2 with distance within
the range [α, β].

• Count(P1, P2, α, β): return the number of consecutive occurrences of P1 and P2 with distance within
the range [α, β].

• Report(P1, P2, α, β): report all consecutive occurrences of P1 and P2 with distance within the range
[α, β].

We present new data structures with the following bounds:

Theorem 5. Given a string of length n, we can

(i) construct an O(n) space data structure that supports Exists(P1, P2, α, β) and Count(P1, P2, α, β) queries
in O(|P1|+ |P2|+ n2/3 logϵ n) time for constant ϵ > 0, or

(ii) construct an O(n log n) space data structure that supports Report(P1, P2, α, β) queries in O(|P1|+|P2|+
n2/3occ1/3 log n log log n) time, where occ is the size of the output.

Hence, ignoring polylogarithmic factors, Theorem 5 achieves Õ(n) space and query time Õ(|P1|+ |P2|+
n2/3) for existence and counting and Õ(|P1| + |P2| + n2/3occ1/3) for reporting. Compared to the above
mentioned simple suffix tree approach that finds all occurrences of the query strings and merges them,
we match the Õ(n) space bound, while reducing the dependency on n in the query time from worst-case

Ω(|P1| + |P2| + n) to Õ(|P1| + |P2| + n2/3) for Exists and Count queries and Õ(|P1| + |P2| + n2/3occ1/3) for
Report queries.

We complement Theorem 5 with a conditional lower bound based on the set intersection problem. Specif-
ically, we use the Strong SetDisjointness Conjecture from [GKLP17] to obtain the following result:

Theorem 6. Assuming the Strong SetDisjointness Conjecture, any data structure on a string S of length n
that supports Exists queries in O(nδ + |P1|+ |P2|) time, for δ ∈ [0, 1/2], requires Ω̃

(
n2−2δ−o(1)

)
space. This

bound also holds if we limit the queries to only support ranges of the form [0, β], and even if the bound β is
known at preprocessing time.

1Õ and Ω̃ ignores polylogarithmic factors
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With δ = 1/2, Theorem 6 implies that any near linear space solution must have query time Ω̃(|P1| +
|P2| +

√
n). Thus, Theorem 5 is optimal within a factor roughly n1/6. On the other hand, with δ = 0,

Theorem 6 implies that any solution with optimal Õ(|P1|+ |P2|) query time must use Ω̃(n2−o(1)) space.
Finally, note that Theorem 6 holds even when the gap range is of the form [0, β]. As a simple extension

of our techniques, we show how to improve our solution from Theorem 5 to match Theorem 6 in this special
case.

3.1.2 Techniques

To obtain our results we develop new techniques and show new interesting properties of consecutive occur-
rences. We first consider Exists and Count queries. The key idea is to split gap ranges into large and small
distances. For large distances there can only be a limited number of consecutive occurrences and we show
how these can be efficiently handled using a segmentation of the string. For small distances, we cluster the
suffix tree and store precomputed answers for selected pairs of nodes. Since the number of distinct distances
is small we obtain an efficient bound on the space.

We extend our solution for Exists and Count queries to handle Report queries. To do so we develop a new
decomposition of suffix trees, called the induced suffix tree decomposition that recursively divides the suffix
tree in half by index in the string. Hence, the decomposition is a balanced binary tree, where every node
stores the suffix tree of a substring of S. We show how to traverse this structure to efficiently recover the
consecutive occurrences.

For our conditional lower bound we show a reduction based on the set intersection problem. Along the
way we show that set intersection remains hard even if all elements in the instance have the same frequency.

3.1.3 Related Work

As mentioned, string indexing for gaps and consecutive occurrences are the most closely related lines of work
to this paper. Another related area is document indexing, where the goal is to preprocess a collection of
strings, called documents, to report those documents that contain patterns subject to various constraints.
For a comprehensive overview of this area see the survey by Navarro [Nav14].

A well studied line of work within document indexing is document indexing for top-k queries [MNST20,
SSTV13,HSTV14,BGST18,HPSW10,NN17,Tsu13,HPS+13,HTSV13,NT14,MNN+17]. The goal is to effi-
ciently report the top-k documents of smallest weight, where the weight is a function of the query. Specif-
ically, the weight can be the distance of a pair of occurrences of the same or two different query patterns
[HSTV14,NN17,SSTV13,MNN+17]. The techniques for top-k indexing (see e.g. Hon et al. [HSTV14]) can
be adapted to efficiently solve gapped indexing for consecutive occurrences in the special case when the gap
range is of the form [0, β]. However, since these techniques heavily exploit that the goal is to find the top-k
closest occurrences, they do not generalize to general gap ranges.

There are several results on conditional lower bounds for pattern matching and string indexing [LMNT15,
GKLP17, ACLL14, KPP16, AKL+16, KK16]. Notably, Kopelowitz and Krauthgamer [KK16] consider the
snippets problem, where the goal is to preprocess the text to enable fast reporting of the closest pair of
occurrences of query patterns P1 and P2. They prove a lower bound for that problem based on SetDisjoint-
ness, which is closely related to our lower bound in Theorem 6. Our result uses a similar reduction but
introduces an intermediate step of potential independent interest, where we prove hardness for instances of
SetDisjointness where every element has the same frequency. Ultimately, this leads to a clean proof of the
final lower bound.

Other results also establish a link between indexing for two patterns and set intersection. Ferragina et
al. [FKMS03] and Cohen and Porat [CP10] reduce the two dimensional substring indexing problem to set
intersection (though the goal was to prove an upper, not a lower bound). In the two dimensional substring
indexing problem the goal is to preprocess pairs of strings such that given two patterns we can output the
pairs that contain a pattern each. Larsen et al. [LMNT15] prove a conditional lower bound for the document
version of indexing for two patterns, i.e., finding all documents containing both of the two query patterns.
Goldstein et al. [GKLP17] show that similar lower bounds can be achieved via conjectured hardness of set
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intersection. Our reduction is still quite different from these, since we need a translation from intersection
to distance.

3.1.4 Outline

The paper is organized as follows. In Section 3.2 we define notation and recall some useful results. In
Section 3.3 we show how to answer Exists and Count queries, proving Theorem 5(i). In Section 3.4 we show
how to answer Report queries, proving Theorem 5(ii). In Section 3.5 we prove the lower bound, proving
Theorem 6. Finally, in Section 3.6 we apply our techniques to solve the variant where α = 0.

3.2 Preliminaries

Strings. A string S of length n is a sequence S[0]S[1] . . . S[n − 1] of characters from an alphabet Σ. A
contiguous subsequence S[i, j] = S[i]S[i+1] . . . S[j] is a substring of S. The substrings of the form S[i, n−1]
are the suffixes of S. The suffix tree [Wei73] is a compact trie of all suffixes of S$, where $ is a symbol not
in the alphabet, and is lexicographically smaller than any letter in the alphabet. Each leaf is labelled with
the index i of the suffix S[i, n − 1] it corresponds to. Using perfect hashing [FKS84], the suffix tree can be
stored in O(n) space and solve the string indexing problem (i.e., find and report all occurrences of a pattern
P ) in O(m+ occ) time, where m is the length of P and occ is the number of times P occurs in S.

For any node v in the suffix tree, we define str(v) to be the string found by concatenating all labels on
the path from the root to v. The locus of a string P , denoted locus(P ), is the minimum depth node v such
that P is a prefix of str(v). The suffix array stores the suffix indices of S$ in lexicographic order. We identify
each leaf in the suffix tree with the suffix index it represents. The suffix tree has the property that the leaves
below any node represent suffixes that appear in consecutive order in the suffix array. For any node v in
the suffix tree, range(v) denotes the range that v spans in the suffix array. The inverse suffix array is the
inverse permutation of the suffix array, that is, an array where the ith element is the index of suffix i in the
suffix array.

Orthogonal range successor. The orthogonal range successor problem is to preprocess an arrayA[0, . . . , n−
1] into a data structure that efficiently supports the following queries:

• RangeSuccessor(a, b, x): return the successor of x in A[a, . . . , b], that is, the minimum y > x such that
there is an i ∈ [a, b] with A[i] = y.

• RangePredecessor(a, b, x): return the predecessor of x in A[a, . . . , b], that is, the maximum y < x such
that there is an i ∈ [a, b] with A[i] = y.

3.3 Existence and Counting

In this section we give a data structure that can answer Exists and Count queries. The main idea is to split
the query interval into “large” and “small” distances. For large distances we exploit that there can only be
a small number of consecutive occurrences and we check them with a simple segmentation of S. For small
distances we cluster the suffix tree and precompute answers for selected pairs of nodes.

We first show how to use orthogonal range successor queries to find consecutive occurrences. Then we
define the clustering scheme used for the suffix tree and give the complete data structure.

3.3.1 Using Orthogonal Range Successor to Find Consecutive Occurrences

Assume we have found the loci of P1 and P2 in the suffix tree. Then we can answer the following queries in
a constant number of orthogonal range successor queries on the suffix array:
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• FindConsecutiveP2(i): given an occurrence i of P1, return the consecutive occurrence (i, j) of P1 and
P2, if it exists, and No otherwise.

• FindConsecutiveP1
(j): given an occurrence j of P2, return the consecutive occurrence (i, j) of P1 and

P2, if it exists, and No otherwise.

Given a query FindConsecutiveP2(i), we answer as follows. Compute j = RangeSuccessor(range(locus(P2)), i)
to get the closest occurrence of P2 after i. Compute i′ = RangePredecessor(range(locus(P1)), j) to get the
closest occurrence of P1 before j. If i = i′ then no other occurrence of P1 exists between i and j and they
are consecutive. In that case we return (i, j). Otherwise, we return No.

Similarly, we can answer FindConsecutiveP1
(j) by first doing a RangePredecessor and then a RangeSuccessor

query. Thus, given the loci of both patterns and a specific occurrence of either P1 or P2, we can in a constant
number of RangeSuccessor and RangePredecessor queries find the corresponding consecutive occurrence, if it
exists.

3.3.2 Data Structure

To build the data structure we will use a cluster decomposition of the suffix tree.

Cluster Decomposition A cluster decomposition of a tree T is defined as follows: For a connected
subgraph C ⊆ T , a boundary node v is a node v ∈ C such that either v is the root of T , or v has an edge
leaving C – that is, there exists an edge (v, u) in the tree T such that u ∈ T \ C. A cluster is a connected
subgraph C of T with at most two boundary nodes. A cluster with one boundary node is called a leaf
cluster. A cluster with two boundary nodes is called a path cluster. For a path cluster C, the two boundary
nodes are connected by a unique path. We call this path the spine of C. A cluster partition is a partition
of T into clusters, i.e. a set CP of clusters such that

⋃
C∈CP V (C) = V (T ) and

⋃
C∈CP E(C) = E(T )

and no two clusters in CP share any edges. Here, E(G) and V (G) denote the edge and vertex set of a
(sub)graph G, respectively. We need the next lemma which follows from well-known tree decompositions
[AHdLT97,AHT00,AR02,Fre97] (see Bille and Gørtz [BG11] for a direct proof).

Lemma 10. Given a tree T with n nodes and a parameter τ , there exists a cluster partition CP such that
|CP | = O(n/τ) and every C ∈ CP has at most τ nodes. Furthermore, such a partition can be computed in
O(n) time.

Data Structure We build a clustering of the suffix tree of S as in Lemma 10, with cluster size at most τ ,
where τ is some parameter satisfying 0 < τ ≤ n. Then the counting data structure consists of:

• The suffix tree of S, with some additional information for each node. For each node v we store:

– The range v spans in the suffix array, i.e., range(v).

– A bit that indicates if v is on a spine.

– If v is on a spine, a pointer to the lower boundary node of the spine.

– If v is a leaf, the local rank of v. That is, the rank of v in the text order of the leaves in the
cluster that contains v. Note that this is at most τ .

• The inverse suffix array of S.

• A range successor data structure on the suffix array of S.

• An array M(u, v) of length ⌊n
τ ⌋+1 for every pair of boundary nodes (u, v). For 1 ≤ x ≤ ⌊n

τ ⌋, M(u, v)[x]
is the number of consecutive occurrences (i, j) of str(u) and str(v) with distance at most x. We set
M(u, v)[0] = 0.

Denote M(u, v)[α, β] = M(u, v)[β] −M(u, v)[α − 1], that is, M(u, v)[α, β] is the number of consecutive
occurrences of str(u) and str(v) with a distance in [α, β].
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Space Analysis. We store a constant amount of words per node in the suffix tree. The suffix tree and
inverse suffix array occupy O(n) space. For the orthogonal range successor data structure we use the data
structure of Nekrich and Navarro [NN12] which uses O(n) space and O(logϵ n) time, for constant ϵ > 0. There
are O

(
n2/τ2

)
pairs of boundary nodes and for each pair we store an array of length O (n/τ). Therefore the

total space consumption is O
(
n+ n3/τ3

)
.

3.3.3 Query Algorithm

We now show how to count the consecutive occurrences (i, j) with a distance in the interval, i.e. α ≤ j−i ≤ β.
We call each such pair a valid occurrence.

To answer a query we split the query interval [α, β] into two: [α, ⌊n
τ ⌋] and [⌊n

τ ⌋+ 1, β], and handle these
separately.

3.3.3.1 Handling Distances > n
τ .

We start by finding the loci of P1 and P2 in the suffix tree. As shown in Section 3.3.1, this allows us to
find the consecutive occurrence containing a given occurrence of either P1 or P2. We implicitly partition the
string S into segments of (at most) ⌊n/τ⌋ characters by calculating τ segment boundaries. Segment i, for
0 ≤ i < τ , contains characters S[i · ⌊n

τ ⌋, (i+ 1) · ⌊n
τ ⌋ − 1] and segment τ (if it exists) contains the characters

S[τ ·⌊n
τ ⌋, n−1]. We find the last occurrence of P1 in each segment by performing a series of RangePredecessor

queries, starting from the beginning of the last segment. Each time an occurrence i is found we perform the
next query from the segment boundary to the left of i, continuing until the start of the string is reached.
For each occurrence i of P1 found in this way, we use FindConsecutiveP2

(i) to find the consecutive occurrence
(i, j) if it exists. We check each of them, discard any with distance ≤ n

τ and count how many are valid.

3.3.3.2 Handling Distances ≤ n
τ .

In this part, we only count valid occurrences with distance ≤ n
τ . Consider the loci of P1 and P2 in the suffix

tree. Let Ci denote the cluster that contains locus(Pi) for i = 1, 2. There are two main cases.

At least one locus is not on a spine If either locus is in a small subtree hanging off a spine in a cluster
or in a leaf cluster, we directly find all consecutive occurrences as follows: If locus(P1) is in a small subtree
then we use FindConsecutiveP2

(i) on each leaf i below locus(P1) to find all consecutive occurrences, count
the valid occurrences and terminate. If only locus(P2) is in a small subtree then we use FindConsecutiveP1

(j)
for each leaf j below locus(P2), count the valid occurrences and terminate.

Both loci are on the spine If neither locus is in a small subtree then both are on spines. Let (b1, b2)
denote the lower boundary nodes of the clusters C1 and C2, respectively. There are two types of consecutive
occurrences (i, j):

(i) Occurrences where either i or j are inside C1 resp. C2.

(ii) Occurrences below the boundary nodes, that is, i is below b1 and j is below b2.

See Figure 3.1(a). We describe how to count the different types of occurrences next.

Type (i) occurrences To find the valid occurrences (i, j) where either i ∈ C1 or j ∈ C2 we do
as follows. First we find all the consecutive occurrences (i, j) where i is a leaf in C1 by computing
FindConsecutiveP2

(i) for all leaves i below locus(P1) in C1. We count all valid occurrences we find in
this way. Then we find all remaining consecutive occurrences (i, j) where j is a leaf in C2 by computing
FindConsecutiveP1(j) for all leaves j below locus(P2) in C2. If FindConsecutiveP1(j) returns a valid occurrence
(i, j) we use the inverse suffix array to check if the leaf i is below b1. This can be done by checking whether
i’s position in the suffix array is in range(b1). If i is below b1 we count the occurrence, otherwise we discard
it.
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Figure 3.1: (a) Any consecutive occurrences (i, j) of P1 and P2 is either also a consecutive occurrence of
str(b1) and str(b2), or i or j are within the respective cluster. The suffix array is shown in the bottom with
the corresponding ranges marked. (b) Example of a false occurrence. Here (i′, j′) is a consecutive occurrence
of str(b1) and str(b2), but not a consecutive occurrence of P1 and P2 due to i. The string S is shown in
bottom with the positions of the occurrences marked.

Type (ii) occurrences Next, we count the consecutive occurrences (i, j), where both i and j are
below b1 and b2, respectively. We will use the precomputed table, but we have to be a careful not to
overcount. By its construction, M(b1, b2)[α,min(⌊n

τ ⌋, β)] is the number of consecutive occurrences (i′, j′)
of str(b1) and str(b2), where α ≤ j′ − i′ ≤ min(⌊n

τ ⌋, β). However, not all of these occurrence (i′, j′) are
necessarily consecutive occurrences of P1 and P2, as there could be an occurrence of P1 in C1 or P2 in C2

which is between i′ and j′. We call such a pair (i′, j′) a false occurrence. See Figure 3.1(b). We proceed as
follows.

1. Set c = M(b1, b2)[α,min(⌊n
τ ⌋, β)].

2. Construct the lists Li containing the leaves in Ci that are below locus(Pi) sorted by text order for
i = 1, 2. We can obtain the lists as follows. Let [a, b] be the range of locus(Pi) and [a′, b′] = range(bi).
Sort the leaves in [a, a′ − 1] ∪ [b′ + 1, b] using their local rank.

3. Until both lists are empty iteratively pick and remove the smallest element e from the start of either
list. There are two cases.

• e is an element of L1.

– Compute j′ = RangeSuccessor(range(b2), e) to get the closest occurrence of str(b2) after e.

– Compute i′ = RangePredecessor(range(b1), j
′) to get the closest occurrence of str(b1) before j

′.

• e is an element of L2.

– Compute i′ = RangePredecessor(range(b2), e) to get the previous occurrence i′ of str(b1).

– Compute j′ = RangeSuccessor(range(b1), j
′) to get the following occurrence j′ of str(b2).

If α ≤ j′ − i′ ≤ min(⌊n
τ ⌋, β) and i′ < e < j′ decrement c by one. We skip any subsequent occurrences

that are also inside (i′, j′). As the lists are sorted by text order, all occurrences that are within the
same consecutive occurrence (i′, j′) are handled in sequence.

Finally, we add the counts of the different type of occurrences.
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Correctness. Consider a consecutive occurrence (i, j) where j − i > n
τ . Such a pair must span a segment

boundary, i.e., i and j cannot be in the same segment. As (i, j) is a consecutive occurrence, i is the last
occurrence of P1 in its segment and j is the first occurrence of P2 in its segment. With the RangePredecessor
queries we find all occurrences of P1 that are the last in their segment. We thus check and count all valid
occurrences of large distance in the initial pass of the segments.

If either locus is in a small subtree we use FindConsecutiveP2
(.) or FindConsecutiveP1

(.) on the leaves
below that locus, which by the arguments in Section 3.3.1 will find all consecutive occurrences.

Otherwise, both loci are on a spine. To count type (i) occurrences we use FindConsecutiveP2
(i) for all

leaves i below locus(P1) in C1 and FindConsecutiveP1
(j) for all leaves j below locus(P2) in C2. However, any

valid occurrence (i, j) where both i ∈ C1 and j ∈ C2 is found by both operations. Therefore, whenever we
find a valid occurrence (i, j) via i = FindConsecutiveP1(j) for j ∈ C2, we only count the occurrence if i is
below b1. Thus we count all type (i) occurrences exactly once.

To count type (ii) occurrences we start with c = M(b1, b2)[α,min(⌊n
τ ⌋, β)], which is the number of

consecutive occurrences (i′, j′) of str(b1) and str(b2), where α ≤ j′ − i′ ≤ min(⌊n
τ ⌋, β). Each (i′, j′) is either

also a consecutive occurrence of P1 and P2, or there exists an occurrence of P1 or P2 between i′ and j′.
Let (i′, j′) be a false occurrence and let w.l.o.g. i be an occurrence of P1 with i′ < i < j′. Then i is a
leaf in C1, since (i′, j′) is a consecutive occurrence of str(b1) and str(b2). In step 3 we check for each leaf
inside the clusters below the loci, if it is between a consecutive occurrence (i′, j′) of str(b1) and str(b2) and
if α ≤ j′ − i′ ≤ min(⌊n

τ ⌋, β). In that case (i′, j′) is a false occurrence and we adjust the count c. As (i′, j′)
can have multiple occurrences of P1 and P2 inside it, we skip subsequent occurrences inside (i′, j′). After
adjusting for false occurrences, c is the number of type (ii) occurrences.

Time Analysis. We find the loci in O(|P1| + |P2|) time. Then we perform a number of range successor
and FindConsecutive queries. The time for a FindConsecutive query is bounded by the time to do a constant
number of range successor queries. To count the large distances we check at most τ segment boundaries and
thus perform O(τ) range successor and FindConsecutive queries.

For small distances, if either locus is not on a spine we check the leaves below that locus. There are
at most τ such leaves due to the clustering. To count type (i) occurrences we check the leaves below the
loci that are inside the clusters. There are at most 2τ such leaves in total. To count type (ii) occurrences
we check two lists constructed from the leaves inside the clusters below the loci. There are again at most
2τ such leaves in total. For each of these O(τ) leaves we use a constant number of range successor and
FindConsecutive queries. Thus the time for this part is bounded by the time to perform O(τ) range successor
queries.

Using the data structure of Nekrich and Navarro [NN12], each range successor query takes O(logϵ n) time
so the total time for these queries is O(τ logϵ n). For type (ii) occurrences we sort two lists of size at most τ
from a universe of size τ , which we can do in O(τ) time. Thus, the total query time is O(|P1|+|P2|+τ logϵ n).

Setting τ = Θ(n2/3) we get a data structure that uses O
(
n+ n3/τ3

)
= O(n) space and has query time

O(|P1|+ |P2|+ τ logϵ n) = O(|P1|+ |P2|+ n2/3 logϵ n), for constant ϵ > 0. We answer an Exists query with a
Count query, terminating when the first valid occurrence is found. This concludes the proof of Theorem 5(i).

3.4 Reporting

In this section, we describe our data structure for reporting queries. Note that in Section 3.3, we explicitly
find all valid occurrences except for type (ii) occurrences, where we use the precomputed values. In this
section, we describe how we can use a recursive scheme to report these.

The main idea, inspired by fast set intersection by Cohen and Porat [CP10], is to build a recursive binary
structure which allows us to recursively divide the problem into subproblems of half the size. Intuitively,
the subdivision is a binary tree where every node contains the suffix tree of a substring of S. We use this
structure to find type (ii) occurrences by recursing on smaller trees. We define the binary decomposition of
the suffix tree next. The details of the full solution follow after that.
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Figure 3.2: The suffix tree of NANANANABATMAN$ together with its children trees T [0, 7] and T [8, 14]. The red
crosses show a node in the parent tree and and its successor nodes in the two children trees.

3.4.1 Induced Suffix Tree Decomposition

Let T be a suffix tree of a string S of length n. For an interval [a, b] of text positions, we define T [a, b] to be
the subtree of T induced by the leaves in [a, b]: That is, we consider the subtree consisting of leaves in [a, b]
together with their ancestors. We then delete each node that has only one child in the subtree and contract
its ingoing and outgoing edge. See Figure 3.2.

The induced suffix tree decomposition of T now consists of a higher level binary tree structure, the de-
composition tree, where each node corresponds to an induced subtree of the suffix tree. The root corresponds
to T [0, n − 1], and whenever we move down in the decomposition tree, the interval splits in half. We also
associate a level with each of the induced subtrees, which is their depth in the decomposition tree. In more
detail, the decomposition tree is a binary tree such that:

• The root of the decomposition tree corresponds to T [0, n− 1] and has level 0.

• For each T [a, b] of level i in the decomposition, if b − a > 1, its two children in the decomposition
tree are T [a, c] and T [c+ 1, b] where c = ⌊a+b

2 ⌋; we will sometimes refer to these as “children trees” to
differentiate from children in the suffix tree.

The decomposition tree is a balanced binary tree and the total size of the induced subtrees in the decom-
position is O(n log n): There are at most 2i decomposition tree nodes on level i, each of which corresponds to
an induced subtree of size O

(
n
2i

)
, and thus the total size of the trees on each of the O(log n) levels is O(n).

For each node v in T [a, b], we define the successor node of v in each of the children trees of T [a, b] in the
following way: If v exists in the child tree, the successor node is v. Else, it is the closest descendant which
is present. Note that from the way the induced subtrees are constructed, v has at most one successor node
in each child tree.

The induced suffix tree decomposition of S consists of:

• Each T [a, b] stored as a compact trie.

• For each T [a, b] we store a sparse suffix array SA[a,b], that is, the suffix array of S[a, b] with the original
indices within S.
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• For each node v in T [a, b] we store a pointer from v to its successor nodes in each child tree, if it exists,
and the interval in SA[a,b] that corresponds to the leaves below v.

Since we store only constant information per node in any T [a, b], the total space usage of this is O(n log n).

3.4.2 Data Structure

The reporting data structure consists of:

• The induced suffix tree decomposition for S,

• An orthogonal range successor data structure on the suffix array, and

• The data structure from Section 3.3 for each T [a, b] in the induced suffix tree decomposition with

parameters ni and τi, where ni = ⌊ n
2i ⌋ and τi = Θ(n

2/3
i ), such that ni/τi = ⌊n1/3

i ⌋. The only change
is that we do not store an orthogonal range successor data structure for each of the induced subtrees.

Space Analysis. The data structure from Section 3.3 for each T [a, b] of level i is linear in ni. By the
arguments of Section 3.4.1, the space for the suffix tree decomposition is O(n log n). Since we already have a
space bottleneck of O(n log n), we use a different tradeoff for orthogonal range successor than in Section 3.3,
namely, the O(n log log n) space and O(log log n) time structure by Zhou [Zho16]. The total space of the
data structure is O(n log n).

3.4.3 Query Algorithm

The main idea behind the algorithm is the following: For large distances, as in Section 3.3, we implicitly
segment S to find all consecutive occurrences of at least a certain distance. For small distances, we are
going to use the cluster decomposition and counting arrays to decide whether valid occurrences exist. That
is, if one of the loci is in a small subtree, we use FindConsecutiveP2

(.) resp. FindConsecutiveP1
(.) to find all

consecutive occurrences. Else, we perform a query as in Section 3.3 to decide whether any valid occurrences
exist, and if yes, we recurse on smaller subtrees.

The idea here is, that in the induced suffix tree decomposition, the trees are divided in half by text position
- therefore, a consecutive occurrence either will be fully contained in the left child tree, fully contained in the
right child tree, or have the property that the occurrence of P1 is the maximum occurrence in the left child
tree and the occurrence of P2 is the minimum occurrence in the right child tree. We will check the border
case each time when we recurse.

In detail, we do the following: We find the loci of P1 and P2 in the suffix tree. As in the previous section,
we check τ0 segment boundaries with τ0 = Θ(n2/3) to find all consecutive occurrences with distance within
[max(α, ⌊n1/3⌋), β]. Now, we only have to find consecutive occurrences of distance within [α,min(β, ⌊n1/3⌋)]
in T = T [0, n− 1]. In general, let ni = ⌊ n

2i ⌋ and βi = min(β, ⌊n1/3
i ⌋) and let T [a, b] be an induced subtree of

level i.
To find all consecutive occurrences with distance within [α, βi] in T [a, b] of level i, given the loci of P1

and P2 in T [a, b], recursively do the following:

• If any of the loci is not on a spine of a cluster, we find all consecutive occurrences using FindConsecutiveP2
(.)

resp. FindConsecutiveP1
(.) and check for each of them if they are valid; we report all such, then termi-

nate.

• Else, we use the query algorithm for small distances from Section 3.3 to decide whether a valid occur-
rence with distance within [α, βi] exists in T [a, b].

If such a valid occurrence exists, we recurse; that is, set c = ⌊a+b
2 ⌋. We use RangePredecessor to find

the last occurrence of P1 before and including c, and RangeSuccessor to find the first occurrence of
P2 after c. Then we check if they are consecutive (again using RangePredecessor and RangeSuccessor),
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and if it is a valid occurrence. If yes, we add it to the output. Then, for both S[a, c] and S[c + 1, b],

we implicitly partition them into segments of size ⌊n1/3
i+1⌋ and find and output all valid occurrences of

distance > n
1/3
i+1. Then we follow pointers to the successor nodes of the current loci to find the loci of

P1 and P2 in the children trees T [a, c] and T [c+ 1, b] and recurse on those trees to find all consecutive
occurrences of distance within [α, βi+1]

Correctness. At any point before we recurse on level i, we check all consecutive occurrences of distance

> n
1/3
i+1 by segmenting the current substring of S. By the arguments of the previous section, we will find all

such valid occurrences. Thus, on the subtrees of level i+1, we need only care about consecutive occurrences
with distance in [α, βi+1].

By the properties of the induced suffix tree decomposition, a consecutive occurrence of P1 and P2 that
is present in T [a, b] will either be fully contained in T [a, c], or in T [c + 1, b], or the occurrence of P1 is the
last occurrence before and including c and the occurrence of P2 is the first occurrence after c. We check the
border case each time we recurse. Thus, no consecutive occurrences get lost when we recurse. If we stop
the recursion, it is either because one of the loci was in a small subtree or that no valid occurrences with
distance within [α, βi] exists in T [a, b]. In the first case we found all valid occurrences with distance within
[α, βi] in T [a, b] by the same arguments as in Section 3.3. Thus, we find all valid occurrences of P1 and P2.

Time Analysis. For finding the loci, we first spend O(|P1|+ |P2|) time in the initial suffix tree T [0, n−1];
after that, we spend constant time each time we recurse to follow pointers. The rest of the time consumption
is dominated by the number of queries to the orthogonal range successor data structure, which we will count
next.

Consider the recursion part of the algorithm as a traversal of the decomposition tree, and consider the
subtree of the decomposition tree we traverse. Each leaf of that subtree is a node where we stop recursing.
Since we only recurse if we know there is an occurrence to be found, there are at most O(occ) leaves. Thus,
we traverse at most O(occ logn) nodes.

Each time we recurse, we spend a constant number of RangeSuccessor and RangePredecessor queries to

check the border cases. Additionally, we spend O(n
2/3
i ) such queries on each node of level i that we visit in

the decomposition tree: For finding the “large” occurrences, and additionally either for reporting everything

within a small subtree or doing an existence query. For finding large occurrences, there are O(n
2/3
i ) segments

to check. The number of orthogonal range successor queries used for existence queries or reporting within a

small subtree is bounded by the number of leaves within a cluster, which is also O(n
2/3
i ).

Now, let x be the number of decomposition tree nodes we traverse and let li, i = 1, . . . , x, be the level

of each such node. The goal is to bound
∑x

i=1

(
n
2li

)2/3
. By the argument above, x = O(occ logn). Note

that because the decomposition tree is binary we have that
∑x

i=1
1
2li

≤ log n. The number of queries to the
orthogonal range successor data structure is thus asymptotically bounded by:

x∑
i=1

( n

2li

)2/3
= n2/3

x∑
i=1

(
1

2li

)2/3

· 1

≤ n2/3

(
x∑

i=1

(
1

2li

) 2
3 ·

3
2

)2/3( x∑
i=1

13

)1/3

= n2/3

(
x∑

i=1

1

2li

)2/3

x1/3

= O(n2/3occ1/3 log n)

For the inequality, we use Hölder’s inequality, which holds for all (x1, . . . , xk) ∈ Rk and (y1, . . . , yk) ∈ Rk
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and p and q both in (1,∞) such that 1/p+ 1/q = 1:

k∑
i=1

|xiyi| ≤

(
k∑

i=1

|xi|p
)1/p( k∑

i=1

|yi|q
)1/q

(3.1)

We apply (3.1) with p = 3/2 and q = 3.
Since the data structure of Zhou [Zho16] uses O(log log n) time per query, the total running time of the

algorithm is O(|P1|+ |P2|+ n2/3occ1/3 log n log log n). This concludes the proof of Theorem 5(ii).

3.5 Lower Bound

We now prove the conditional lower bound from Theorem 6 based on set intersection. We use the framework
and conjectures as stated in Goldstein et al. [GKLP17]. Throughout the section, let I = S1, , . . . , Sm be a
collection of m sets of total size N from a universe U . The SetDisjointness problem is to preprocess I into a
compact data structure, such that given any pair of sets Si and Sj , we can quickly determine if Si ∩ Sj = ∅.
We use the following conjecture.

Conjecture 1 (Strong SetDisjointness Conjecture). Any data structure that can answer SetDisjointness

queries in t query time must use Ω̃
(

N2

t2

)
space.

3.5.1 SetDisjointness with Fixed Frequency

We define the following weaker variant of the SetDisjointness problem: the f -FrequencySetDisjointness
problem is the SetDisjointness problem where every element occurs in precisely f sets. We now show that
any solution to the f -FrequencySetDisjointness problem implies a solution to SetDisjointness, matching the
complexities up to polylogarithmic factors.

Lemma 11. Assuming the Strong SetDisjointness Conjecture, any data structure answering f -FrequencySetDisjointness
queries in time O(Nδ), for δ ∈ [0, 1/2], must use Ω̃

(
N2−2δ−o(1)

)
space.

Proof. Assume there is a data structure D solving the f -FrequencySetDisjointness problem in time O(Nδ)
and space O

(
N2−2δ−ϵ

)
for constant ϵ with 0 < ϵ < 1. Let I = S1, . . . , Sm be a given instance of SetDis-

jointness, where each Si is a set of elements from universe U , and assume w.l.o.g. that m is a power of
two.

Define the frequency of an element, fe, as the number of sets in I that contain e. We construct logm
instances I1, . . . , Ilogm of the f -FrequencySetDisjointness problem. The instances are sorted such that I1
handles the least frequent elements in I, while Ilogm handles the most frequent elements. More precisely,
for each j, 1 ≤ j ≤ logm, the instance Ij contains the following sets:

• For each i ∈ [1,m] a set Sj
i containing all e ∈ Si that satisfy 2j−1 ≤ fe < 2j ;

• 2j−1 “dummy sets”, which contain extra copies of elements to make sure that all elements have the
same frequency. That is, we add every element with 2j−1 ≤ fe < 2j to the first 2j − fe dummy sets.
These sets will not be queried in the reduction.

Clearly, Si =
⋃

j S
j
i . Instance Ij has O(m) sets and every element occurs exactly 2j times. Further, the

total number of elements in all the instances is at most 2N . We now build f -FrequencySetDisjointness data
structures Dj = D(Ij) for each of the logm instances.

To answer a SetDisjointness query for two sets Si1 and Si2 , we query Dj for the sets Sj
i1

and Sj
i2
, for each

1 ≤ j ≤ logm . If there exists a j such that Sj
i1

and Sj
i2

are not disjoint, we output that Si and Sj are not
disjoint. Else, we output that they are disjoint.
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Figure 3.3: Instance of f -FrequencySetDisjointness problem reduced to Exists. Alphabet Σ = {0, 1} and
fixed frequency f = 2, resulting in block size B = 2 · 2 + 2 = 6.

If there exists e ∈ Si1 ∩ Si2 , let j be such that 2j−1 ≤ fe < 2j . Then e ∈ Sj
i1
∩ Sj

i2
, and we will correctly

output that the sets are not disjoint. If Si1 and Si2 are disjoint, then, since Sj
i1

is a subset of Si1 and Sj
i2

is
a subset of Si2 , the queried sets are disjoint in every instance. Thus we also answer correctly in this case.

Let Nj denote the total number of elements in Ij . For each j, we have Nj ≤ 2N and thus N2−2δ−ϵ
j ≤

(2N)2−2δ−ϵ. Thus, the space complexity is asymptotically bounded by

⌈logm⌉∑
j=1

N2−2δ−ϵ
j = O(N2−2δ−ϵ logm).

Similarly, we have Nδ
j = O(Nδ) and so the time complexity is asymptotically bounded by

⌈logm⌉∑
j=1

Nδ
j = O(Nδ logm).

This is a contradiction to Conjecture 1.

3.5.2 Reduction to Gapped Indexing

We can reduce the f -FrequencySetDisjointness problem to Exists queries of the gapped indexing problem:
Assume we are given an instance of the f -FrequencySetDisjointness problem with a total of N elements.
Each distinct element occurs f times. Assume again w.l.o.g. that the number of sets m is a power of two.
Assign to each set Si in the instance a unique binary string wi of length logm. Build a string S as follows:
Consider an arbitrary ordering e1, e2, ... of the distinct elements present in the f -FrequencySetDisjointness
instance. Let $ be an extra letter not in the alphabet. The first B = f · logm+ f letters are a concatenation
of wi$ of all sets Si that e1 is contained in, sorted by i. This block is followed by B copies of $. Then, we
have B symbols consisting of the strings for each set that e2 is contained in, again followed by B copies of
$, and so on. See Figure 3.3 for an example.

For a query for two sets Si and Sj , where i < j, we set P1 = wi and P2 = wj , α = 0, and β = B. If the
sets are disjoint, then there are no occurrences which are at most B apart. Otherwise wi and wj occur in
the same block, and wj comes after wi. The length of the string S is 2N logm+ 2N : In the block for each
element, we have logm + 1 letters for each of its occurrences, and it is followed by a $ block of the same
length.

This means that if we can solve Exists queries in s(n) space and t(n)+O(|P1|+ |P2|) time, where n is the
length of the string, we can solve the f -FrequencySetDisjointness problem in s(2N logm + 2N) space and
t(2N logm+ 2N) +O(logm) time. Together with Lemma 11, Theorem 6 follows.
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3.6 Gapped Indexing for [0, β] Gaps

In this section, we consider the special case where the queries are one sided intervals of the form [0, β]. We
give a data structure supporting the following tradeoffs:

Theorem 7. Given a string of length n, we can

(i) construct an O(n) space data structure that supports Exists(P1, P2, 0, β) queries in O(|P1| + |P2| +√
n logϵ n) time for constant ϵ > 0, or

(ii) construct an O(n log n) space data structure that supports Count(P1, P2, 0, β) and Report(P1, P2, 0, β)
queries in O(|P1|+ |P2|+ (

√
n · occ) log log n) time, where occ is the size of the output.

Note that since the results match (up to log factors) the best known results for set intersection, this is
about as good as we can hope for. We mention here that for this specific problem, a similar tradeoff follows
from the strategies used by Hon et al. [HSTV14]. The results from that paper include (among others) a data
structure for documents such that given a query of two patterns P1 and P2 and a number k, one can output
the k documents with the closest occurrences of P1 and P2. Thus, the problem is slightly different, however,
with some adjustments, the results from Theorem 7 follow (up to a log factor). We show a simple, direct
solution.

The data structure is a simpler version of the data structure considered in the previous sections. The
main idea is that for each pair of boundary nodes u and v, we do not have to store an array of distances, but
only one number that carries all the information: the smallest distance of a consecutive occurrence of str(u)
and str(v). Thus, for existence, we can cluster with τ =

√
n to achieve linear space, and we do not need to

check large distances separately. For the reporting solution, we store the decomposition from Section 3.4.1,
and use the matrix M to decide where to recurse. In the following we will describe the details.

Existence data structure. For solving Exists queries in this setting, we cluster the suffix tree with
parameter τ =

√
n. Again, we store the linear space orthogonal range successor data structure by Nekrich

and Navarro [NN12] on the suffix array. For each pair of boundary nodes (u, v), we store at M(u, v) the
minimum distance of a consecutive occurrence of str(u) and str(v). The total space is linear. To query, we
proceed similarly as in Section 3.3 for the “small distances”: We find the loci of P1 and P2. If any of the loci is
not on the spine, we check all consecutive occurrences using FindConsecutiveP2(.) resp. FindConsecutiveP1(.).
If both loci are on the spine, denote b1, b2 the lower boundary nodes of the respective clusters. Find
M(b1, b2). If M(b1, b2) ≤ β, we can immediately return Yes: If a valid occurrence (i′, j′) of str(b1) and
str(b2) exists, then either (i′, j′) is a consecutive occurrence of P1 and P2, or there exists a consecutive
occurrence of smaller distance. Otherwise, that is if M(b1, b2) > β, all valid occurrences (i, j) have the
property that either i is in the cluster of locus(P1) or j is in the cluster of locus(P2), and we check all such
pairs using FindConsecutiveP2(.) resp. FindConsecutiveP1(.). The running time is O(|P1|+ |P2|+

√
n logϵ n).

Reporting data structure. For the reporting data structure, we store the decomposition of the suffix
tree as described in Section 3.4.1 and the O(n log n) space orthogonal range successor data structure by
Zhou [Zho16] on the suffix array. For each induced subtree of level i in the decomposition, we store the
existence data structure we just described.

Reporting algorithm. The algorithm follows a similar, but simpler, recursive structure as in Section 3.4.
We begin by finding the loci of P1 and P2. If either of the loci is not on a spine, we find all consecutive
occurrences using FindConsecutiveP2

(.) resp. FindConsecutiveP1
(.), check if they are valid, report these, and

terminate. If both loci are on a spine, we check M(b1, b2) for the lower boundary nodes b1 and b2. If
M(b1, b2) > β, all valid occurrences (i, j) have the property that either i is in the cluster of locus(P1) or j
is in the cluster of locus(P2). We check all such pairs using FindConsecutiveP2(.) resp. FindConsecutiveP1(.),
report the valid occurrences, and terminate. If M(b1, b2) ≤ β, we recurse on the children trees. That is, we
check the border case and follow pointers to the loci in the children trees.
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Analysis. The space is O(n log n), just as in Section 3.4.
For time analysis, we spendO(

√
n
2li

) orthogonal range successor queries on the nodes in the decomposition
tree of level li where we stop the recursion. For all other nodes we visit in the tree traversal, we only spend a
constant number of queries. In total, we visit O(occ log(n/occ)+occ) decomposition tree nodes (by following
the analysis in [CP10]), and we spend O(

√
n
2li

) orthogonal range successor queries on O(occ) many such
nodes.

We use the same notation as in Section 3.4. By x = O(occ) we now denote the number of nodes where
we stop the algorithm and output. Since each such node can be seen as a leaf in a binary tree,

∑x
i=1

1
2li

≤ 1.
We use the Cauchy-Schwarz inequality (which is a special case of Hölders with p = q = 2). We get as an
asymptotic bound for the number of orthogonal range successor queries:

x∑
i=1

√
n

2li
=

√
n

x∑
i=1

√
1

2li
· 1

≤
√
n

√√√√ x∑
i=1

1

2li

√√√√ x∑
i=1

1

≤
√
nx = O(

√
n · occ).

Note that since occ log(n/occ) = O(occ
√
n/occ) = O(

√
n · occ), this brings the total number of orthogonal

range successor queries to O(occ +
√
n · occ). Using the data structure by Zhou [Zho16], the time bound

from Theorem 7 follows.

3.7 Conclusion

We have considered the problem of gapped indexing for consecutive occurrences. We have given a linear
space data structure that can count the number of such occurrences. For the reporting problem, we have
given a near-linear space data structure. The running time for both includes an O(n2/3) term, which forms
a gap of O(n1/6) to the conditional lower bound of O(

√
n). Thus, the most obvious open question is whether

we can close this gap, either by improving the data structure or finding a stronger lower bound.
Further, we have used the property that there can only be few consecutive occurrences of large distances.

Thus, our solution cannot be easily extended to finding all pairs of occurrences with distance within the
query interval. An open question is if it is possible to get similar results for that problem. Lastly, document
versions of similar problems have concerned themselves with finding all documents that contain P1 and P2

or the top-k of smallest distance; conditional lower bounds for these problems are also known. It would be
interesting to see if any of these results be extended to finding all documents that contain a (consecutive)
occurrence of P1 and P2 that has a distance within a query interval.
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Abstract

Given a string S over an alphabet Σ, the string indexing problem is to preprocess S to subsequently
support efficient pattern matching queries, that is, given a pattern string P report all the occurrences of
P in S. In this paper we study the streaming sliding window string indexing problem. Here the string S
arrives as a stream, one character at a time, and the goal is to maintain an index of the last w characters,
called the window, for a specified parameter w. At any point in time a pattern matching query for a
pattern P may arrive, also streamed one character at a time, and all occurrences of P within the current
window must be returned. The streaming sliding window string indexing problem naturally captures
scenarios where we want to index the most recent data (i.e. the window) of a stream while supporting
efficient pattern matching.

Our main result is a simple O(w) space data structure that uses O(logw) time with high probability
to process each character from both the input string S and any pattern string P . Reporting each
occurrence of P uses additional constant time per reported occurrence. Compared to previous work in
similar scenarios this result is the first to achieve an efficient worst-case time per character from the input
stream with high probability. We also consider a delayed variant of the problem, where a query may
be answered at any point within the next δ characters that arrive from either stream. We present an
O(w+ δ) space data structure for this problem that improves the above time bounds to O(log(w/δ)). In
particular, for a delay of δ = ϵw we obtain an O(w) space data structure with constant time processing
per character. The key idea to achieve our result is a novel and simple hierarchical structure of suffix
trees of independent interest, inspired by the classic log-structured merge trees.

4.1 Introduction

The string indexing problem is to preprocess a string S into a compact data structure that supports efficient
subsequent pattern matching queries, that is, given a pattern string P , report all occurrences of P within
S. In this paper, we introduce a basic variant of string indexing called the streaming sliding window string
indexing (SSWSI) problem. Here, the string S arrives as a stream one character at a time, and the goal is
to maintain an index of a window of the last w characters, for a specified parameter w. At any point in
time a pattern matching query for a pattern P may arrive, also streamed one character at a time, and we
need to report the occurrences of P within the current window. The goal is to compactly maintain the index
while processing the characters arriving in either stream efficiently. We consider two variants of the problem:
a timely variant where each query must be answered immediately, and a delayed variant where it may be
answered at any point within the next δ characters arriving from either stream, for a specified parameter δ.
See Section 4.1.1 for precise definitions.
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The SSWSI problem naturally captures scenarios where we want to index the most recent data (i.e. the
window) of a stream while supporting efficient pattern matching. For instance, monitoring a high-rate data
stream system where we cannot feasibly index the entire stream but still want to support efficient queries.
Depending on the specific system we may require immediate answers to queries, or we may be able to afford
a delay that allows for more efficient queries and updates.

The SSWSI problem has not been explicitly studied before in our precise formulation, but for the timely
variant several closely related problem are well-studied. In particular, the sliding window suffix tree prob-
lem [FG89,Lar99,Sen05,BJ18,NAIP03] is to maintain the suffix tree of the current window (i.e., the compact
trie of the suffixes of the window) as each character arrives. With appropriate augmentation the suffix tree
can be used to process pattern matching queries efficiently, leading to a solution to the timely SSWSI prob-
lem. For constant-sized alphabets, the best of these solutions [BJ18] maintains the sliding window suffix tree
in constant amortized time per character while supporting efficient pattern matching queries. The worst-case
time for updates is Ω(w). The other solutions achieve similar amortized time bounds. This amortization
cannot be avoided since explicitly maintaining the suffix tree after the arrival of a new character may incur
Ω(w) changes.

Another closely related problem is the online string indexing problem [AKLL05, Kop12, BI13, Kos94,
AN08,KN17,FG05,AFG+14]. Here the goal is to process S one character at a time (in either left-to-right
or right-to-left order), while incrementally building an index of the string read so far. The best of these
solutions update the index in either constant time per character for constant-sized alphabets [KN17] or
O(log log n + log log |Σ|) time for any alphabet where each character fits in a constant number of machine
words [Kop12]. These solutions all heavily rely on processing the string in right-to-left order to avoid the
inherent linear time suffix tree updates due to appending, as mentioned above. Therefore they cannot be
applied in our left-to-right streaming setting. Alternatively, we can instead apply these solutions on the
reverse of the string S, but then each pattern must be processed in reverse order, which also cannot be done
in our setting. Also, note that these solutions index the entire string read so far. It is not clear if they can
be adapted to efficiently index a sliding window.

Another line of work shows how to maintain a fully dynamic suffix array under insertions and dele-
tions [AB20,AB21,SLLM10,KK22]. These can also be used to solve SSWSI but are more general and lead
to polylogarithmically slower bounds than our results while being more complicated.

Our main result is an efficient and simple solution to the SSWSI problem in both the timely and delayed
variant. Let w denote the size of the window. For the timely variant, we present a string index that uses
O(w) space and processes a character from the stream S in O(logw) time. Each pattern matching query P
is also supported in O(logw) time per character with additional O(occ) time incurred after receiving the last
character of P , where occ is the number of occurrences of P in the current window. The index is randomized
and both time bounds hold with high probability. Compared to previous suffix tree based approaches for
indexing a sliding window, we improve the worst-case time bounds per character in the stream from Ω(w) to
O(logw) with high probability. This is particularly important in the above mentioned applications, such as
high-rate data stream systems. Our solution generalizes to the delayed variant of the problem. If we allow a
delay of δ before answering each query we achieve O(w+ δ) space while improving the above time bounds to
O(log(w/δ)). In particular, if we allow a delay of δ = ϵw for any constant ϵ > 0, we achieve linear space and
optimal constant time (reporting the occurrences still takes O(occ) time, and we do not count the reporting
time towards the delay). Note that δ ≤ w is sufficient delay for optimal time bounds and we can assume
O(w+ δ) = O(w). The results hold on a word RAM and for any alphabet size, assuming that each character
fits into a constant number of machine words.

The key idea to achieve our result is a novel and simple hierarchical structure of suffix trees inspired
by log-structured merge trees [OCGO96b]. Instead of maintaining a single suffix tree on the window we
maintain a collection of suffix trees of exponentially increasing sizes that cover the current window. We
show how to efficiently maintain the structure as new characters from the stream arrive by incrementally
“merging” suffix trees, while supporting efficient pattern matching queries within the window.

Our solution uses randomization to construct suffix trees in linear time with high probability. Plug-
ging in a deterministic construction algorithm such as the one by Ukkonen [Ukk95], we obtain a solution
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using O(logw log |Σ|) time for both queries and updates. With more recent deterministic suffix tree solu-
tions [FG05, CKL15, BGS17] we can improve this to obtain O(logw log log n) time per character for both
queries and updates. Note that the O(log log |Σ|) in the time bounds of [FG05] has been replaced by
O(log log n) here due to an additional sorting step using [Han02].

4.1.1 Setup and Results

We formally define the problem as follows. Let S be a stream over any alphabet Σ where each character
fits in a constant number of machine words. For given integer parameters w ≥ 1 and δ ≥ 0, the δ-delayed
streaming sliding window string indexing ((w, δ)-SSWSI) problem is to maintain a data structure that, after
receiving the first i characters of S, supports

• Report(P ): report all the occurrences of P in S[i − w + 1, i] before an additional δ characters have
arrived from either stream.

• Update(): process the next character in the stream S.

In the Report(P ) query the pattern string P is also streamed. When P is streamed it interrupts the stream S,
arrives one character at a time, and all characters of P arrive before the streaming of S resumes. Furthermore,
we do not assume that we know the length of P before the arrival of its last character. Although P is streamed
we assume random access to its characters after they arrive, as any pattern that fits in the window is at
most w characters long and we can afford to store it. The delay is counted from after the last character of P
arrives. Characters from S and from new patterns count towards the delay, while reported occurrences do
not (otherwise it would be impossible to answer the query in time if there are more than δ occurrences).

We define the timely streaming sliding window string indexing (w-SSWSI) problem to be (w, 0)-SSWSI,
that is, queries must be answered immediately as the last character of the pattern arrives.

We show the following general main result.

Theorem 8. Let S be a stream and let w ≥ 1 and δ ≥ 0 be integers. We can solve the (w, δ)-SSWSI problem
on S with an O(w+δ) space data structure that supports Update and Report in O(log w

δ+1 ) time per character
with high probability. Furthermore, Report uses additional worst-case constant time per reported occurrence.

Here, with high probability means with probability at least 1 − 1
wd for any constant d. Theorem 8

provides a trade-off in the delay parameter δ. In particular, plugging in δ = 0 in Theorem 8 we obtain a
solution to the timely SSWSI problem that uses O(w) space and O(logw) time per character for both Update
and Report. Compared to the previous work on sliding window stream indexing [FG89,Lar99, Sen05,BJ18,
NAIP03,ISTA04,SD08] this improves the worst-case bounds on the Update operation from Ω(w) to O(logw)
with high probability and also removes the restriction on the alphabet. At the other extreme, plugging in
δ = ϵw for constant ϵ > 0 in Theorem 8 we obtain a solution to the delayed SSWSI problem that uses
O(w) space and optimal constant time per character with high probability. All our results hold on a word
RAM where each machine word has at least logw bits, and where each character of the alphabet fits into a
constant number of machine words.

4.1.2 Techniques

We obtain our result for the timely variant, but without high probability guarantees, as follows. At all times
we maintain at most logw suffix trees that do not overlap and together cover the window. The trees are
organized by the log-structured merge technique [OCGO96b], where the rightmost tree is the smallest and
their sizes increase exponentially towards the left. For each new character that arrives we append its suffix
tree to the right side of our data structure. Whenever there are two trees of the same size next to each other
we “merge” them by constructing a new suffix tree covering them both. Each character from S is involved in
at most logw merges and each merge takes expected linear time, so we spend expected amortized O(logw)
time per character in S. We deamortize the updates by temporarily keeping both trees while merging them
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in the background. Note that for each adjacent pair of suffix trees we also store a suffix tree approximately
covering them both, referred to as boundary trees (see details below).

We find the occurrences of a pattern P in the window by querying each of these trees, which takes
O(logw) time per character in P . For adjacent pairs of trees larger than |P | we find the occurrences of P
crossing from one into the other using the boundary trees. The remaining trees cover a suffix of the window
of length O(|P |), and we grow a suffix tree to answer queries in this suffix at query time. Our data structure
has some “overhang” on the left side of the window, and we use range maximum queries to report only the
occurrences that start inside the window.

This solution is generalized to incorporate a delay of δ as follows. We store the O(log(w/δ)) largest trees
from the timely solution and leave a suffix of size Θ(δ) of the window uncovered by suffix trees. We answer
queries as follows. If |P | > δ/4 we say that P is long, and otherwise it is short. For long patterns we do as in
the timely case; the suffix tree we grow at query time now must also contain the uncovered suffix, but it still
has size O(|P |) since the uncovered part of the window has length O(δ) = O(|P |). We show how to do this
in O(log(w/δ)) time per character in P . For short patterns we utilize that they are smaller than the delay
to temporarily buffer the queries and later batch process them. We buffer up to O(δ log(w/δ)) work and
deamortize it over Θ(δ) characters, obtaining the same bound as for long patterns. Updates run in the same
bound since each character from S is involved in at most O(log(w/δ)) merges before it leaves the window.

Finally, we improve the time bounds by proving that for any substring S′ of our window, we can construct
the suffix tree over S′ in O(|S′|) time with probability 1 − w−d for any constant d > 1. We do so by
reducing the alphabet Σ′ = {c ∈ S′} of S′ to rank-space {1, 2, . . . , |Σ′|} from which the algorithm by Farach-
Colton et al. [FFM00] can construct the suffix tree in worst-case linear time. For large strings (|S′| > w1/5)
we pick a hash function from Σ → [0, wc] that with high probability is injective on S′, and then we use
radix sort to reduce to rank-space in linear time. For small strings (|S′| ≤ w1/5) we pick a hash function
from Σ → [0, w/ logw] that is injective with (almost) high probability, and use this to manually construct a
mapping into rank space in O(S′) time. This mapping algorithm uses additional O(w/ logw) space, but we
construct at most O(logw) suffix trees at any time so the total space is linear.

4.1.3 Outline

In Section 4.2 we cover the preliminaries, including some useful facts about suffix trees. In Section 4.3 we
give a solution to the timely SSWSI problem that supports each operation in expected logarithmic time per
character. In Section 4.4 we show how to generalize this to incorporate delay, and in Section 4.5 we show
how to get good probability guarantees, proving Theorem 8.

4.2 Preliminaries

Given a string X of length n over an alphabet Σ, the ith character is denoted X[i] and the substring starting
at X[i] and ending at X[j] is denoted X[i, j]. The substrings of the form X[i, n] are the suffixes of X.

A segment of X is an interval [i, j] = {i, i + 1, . . . , j} for 1 ≤ i ≤ j ≤ n. We will sometimes refer to
segments as strings, i.e., the segment [i, j] refers to the string X[i, j]. The definition differs from “substring”
by being specific about position; even if X[1, 2] = X[3, 4] we have [1, 2] ̸= [3, 4]. A segmentation of X is a
decomposition of X into disjoint segments that cover it. For instance, x1 = [1, i] and x2 = [i + 1, n] is a
segmentation of X into two parts. The two segments x1 and x2 are adjacent since x2 starts immediately
after x1 ends, and for a pair of adjacent segments we define the boundary (x1, x2) to be the implicit position
between i and i+ 1.

The suffix tree [Wei73] T over X is the compact trie of all suffixes of X$, where $ ̸∈ Σ is lexicographically
smaller than any letter in the alphabet. Each leaf corresponds to a suffix ofX, and the leaves are ordered from
left to right in lexicographically increasing order. The suffix tree uses O(n) space by implicitly representing
the string associated with each edge using two indices into X. Farach-Colton et al. [FFM00] show that the
optimal construction time for T is sort(n, |Σ|), i.e., the time it takes to sort n elements from the universe Σ.
For alphabets of the form Σ = {0, . . . , nc} for constant c ≥ 1 this implies that T can be built in worst-case
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O(n) time using radix sort. For larger alphabets we can reduce to the polynomial case in expected linear
time using hashing, building T in expected linear time (see Section 4.5 for details).

The suffix array L of X is the array where L[i] is the starting position of the ith lexicographically smallest
suffix of X. Note that L[i] corresponds to the ith leaf of T in left-to-right order. Furthermore, let v be an
internal node in T and let sv be the string spelled out by the root-to-v path. The descendant leaves of v
exactly correspond to the suffixes of X that start with sv, and these leaves correspond to a consecutive range
[α, β]v in L.

We augment the suffix tree to support efficient pattern matching queries as follows. First, we use the
well-known FKS perfect hashing scheme [FKS84] to store the edges of the suffix tree, so we can for any node
determine if there is an outgoing edge matching a character a ∈ Σ in worst-case constant time. Note that this
construction takes expected linear time. Furthermore, we also build a range maximum query data structure
over L. This data structure supports range maximum queries, i.e., given a range [α, β] return the j ∈ [α, β]
maximizing L[j]. It also supports range minimum queries, defined analogously. The data structure can be
built in linear time and supports queries in constant time [GBT84]. Finally, we preprocess the suffix tree in
linear time such that each internal node v stores the range [α, β]v into L corresponding to the occurrences
of sv.

We can use this structure to efficiently find all the occurrences of P in O(|P | + occ) time, where occ is
the number of occurrences, or the leftmost and rightmost occurrence of P in O(|P |) time. The locus of a
string P is the minimum depth node v such that P is a prefix of sv. First we find the locus by walking
downwards in the suffix tree, matching each character in P in worst-case constant time using the dictionary.
Once we have found v we can report all the occurrences in [α, β]v in O(occ) time. Alternatively, we can find
the rightmost occurrence of P in constant time by doing a range maximum query on the range [α, β]v in L,
which returns the j ∈ [α, β]v maximizing the string position L[j]. We can also find the leftmost occurrence
by doing a range minimum query.

Finally, note that it is possible to deamortize algorithms with expected running time using the standard
technique of distributing the work evenly. Specifically, if an algorithm runs in expected λn time we can do
λ work for n− 1 steps; by linearity of expectation only expected λ work remains for the last step.

4.3 The Timely SSWSI Problem

Here we present a solution for the timely variant that matches the bounds in Theorem 8 in expectation.
Section 4.5 shows how to get the bounds with high probability. Throughout this section we assume without
loss of generality that w is a power of two. Section 4.3.3 briefly mentions how to generalize to arbitrary w.

The main idea is as follows. We maintain a suffix of S of length at least w. This suffix is segmented into
at most logw segments whose sizes are distinct powers of two, in increasing order from right to left. The
length of the suffix we store is at most 20+ . . .+2logw = 2w−1. When a new character arrives, we append a
new size-one segment to our data structure and merge equally-sized segments until they all have distinct sizes
again. We also discard the largest segment when it no longer intersects the window. For each segment we
store a suffix tree, and for every pair of adjacent segments we store a boundary tree approximately covering
them both (see below). To support queries we query the suffix tree for each individual segment, and also
each boundary tree. For the segments larger than the pattern, the boundary trees are sufficient to find the
occurrences crossing the respective boundary. The remaining trees cover a suffix of S that is O(|P |) long,
and we grow a suffix tree at query time to find the remaining occurrences in this suffix.

4.3.1 Data Structure

At any point, the data structure contains a suffix s of S of length w ≤ |s| ≤ 2w − 1 and a segmentation of
s into at most logw segments. Specifically, if |s| = 2b1 + . . . + 2bk for integers b1 < . . . < bk then we have
the segmentation s1, . . . , sk where |si| = 2bi , and s is the concatenation of the strings sk, sk−1, . . . , s1, in
that order. The set {b1, . . . , bk} is unique and corresponds to the 1-bits in the binary encoding of |s|. Three
different configurations can be seen in Figure 4.1.
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Figure 4.1: Example of updating the data structure with a window size of w = 8. Here we illustrate the
segments by the suffix trees built over them. Characters outside of the window are gray. As the character
s arrives we construct a new suffix tree of size one, which is then immediately merged with the existing
size-one suffix tree over e into a size-two suffix tree over es, which is then merged to into the final size-four
suffix tree over rees. After receiving a we again have a size-one suffix tree. Note that after three more
updates the suffix tree of size eight will no longer overlap the window and will be discarded.

For each segment si we store the suffix tree Ti over si, along with a range maximum query data structure
over the suffix array of si. For each boundary (si+1, si) we store the boundary tree Bi, which is the suffix tree
over the substring centered at the boundary and extending |si| characters in both directions. We augment
Bi with an additional data structure that we will use for reporting occurrences across the boundary. Let
BLi be the suffix array corresponding to Bi. We define the modified suffix array BL′

i as

BL′
i[j] =

{
BLi[j] if BLi[j] corresponds to a suffix starting in si+1

−∞ if BLi[j] corresponds to a suffix starting in in si

We store a range maximum query data structure over BL′
i. Each of the data structures use O(si) space, so

the whole data structures uses O(s) = O(w) space.
We note a few properties of the data structure. Let S[n] be the most recent character to arrive and let

Wn = S[n − w + 1, n] be the current window. Then Wn is a suffix of s since |s| ≥ w. The largest, and
leftmost, segment sk always has size 2logw = w; it is not larger since logw bits are sufficient to represent
|s| ≤ 2w − 1, and it is always there since |s| ≥ w cannot be represented with logw − 1 bits. For the same
reason, sk always intersects at least partially with Wn, and each of s1, . . . , sk−1 are fully contained in Wn.

4.3.2 Queries

The idea is as follows, as exemplified in Figure 4.2. Any occurrence of a pattern P that is fully contained in a
segment is found using the suffix tree over that segment. Similarly, any occurrence that only crosses a single
boundary far enough away from the end of the window is found in the respective boundary tree. Note that
in the leftmost segment we must be careful to not report any occurrences that start before the left window
boundary. The remaining occurrences are not contained in any of the trees in the data structure (either
because they cross multiple boundaries or because they cross a single boundary (si+1, si) but start more than
|si| characters to the left of the boundary). However, these occurrences are all located within a substring of
size O(m) ending at position S[n], so we build, at query time, a suffix tree to find these occurrences.

Let P be the length-m pattern being queried, S[n] be the most recent character to arrive, and let Wn,
the suffix s, the segmentation s1, . . . , sk, and the indices b1 < . . . < bk be defined as above. As mentioned,
any occurrence of P in Wn must either be fully contained within one of the segments, or it must cross the
boundary between two adjacent segments. We will show how to handle each of these cases separately.

Fully Contained in a Segment Fix a specific segment si. As each character of P arrives we match it
in Ti. When the last character arrives we have a (possibly empty) range [α, β] into the suffix array of si
corresponding to the occurrences of P . If si is not the leftmost segment then it is fully contained in Wn and
we report all the occurrences. Otherwise, si = sk is the leftmost segment, which might overlap only partially
with Wn, and it may contain occurrences of P that are not contained in the window. However, note that the
intersection between Wn and sk is a suffix of sk. Therefore, if an occurrence of P in sk starts inside Wn it
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Figure 4.2: Illustration of how we answer queries for a pattern P of length m. The lines denoted a, b, c, and
d indicate occurrences of P . The segmentation is illustrated by the trees over the segments. The leftmost
window boundary is marked with a vertical dashed line. Note that the leftmost segment intersects only
partially with the window. The tree T marks the smallest segment of size at least m. The segments to the
right of T are all smaller than m, so they cover at most m +m/2 + . . . + 1 = O(m) characters. To answer
the query we match P in the tree over each segment and in each boundary tree, and we also build a suffix
tree over the segments smaller than m at query time. We find b because the respective boundary tree is
sufficiently large. We find c because it is fully contained in a segment. We find d in the suffix tree that we
build at query time. Note that a is not contained in the window; we avoid reporting it by recursively using
range maximum queries to find the rightmost occurrence of P in the leftmost segment.

also ends inside Wn. We find all such occurrences as follows. Let Lk be the suffix array of sk. As described
in Section 4.2 we find the index j of the rightmost occurrence of P by doing a range maximum query on the
range [α, β] in Lk. If Lk[j] is not inside Wn then none of the occurrences are, and we are done. Otherwise
we recurse on [α, j − 1] and [β, j − 1]. Matching P in the trees of all the segments takes O(logw) overall
time per character of P . Reporting each occurrence takes constant time since range maximum queries run
in constant time.

Crossing a Boundary We now show how to report the occurrences of P that span a boundary. The main
idea is as follows, as illustrated in Figure 4.3. Let si be the smallest segment where |si| ≥ m. Consider any
boundary (sj+1, sj) to the left of si, i.e., where j ≥ i. Since both of these segments have size at least |si| ≥ m,
the boundary tree Bj extends at least m characters in both directions from the boundary. Therefore, all the
occurrences of P crossing the boundary are contained in Bj , and none of them can cross another boundary
as well. Now consider the suffix R of s containing the m− 1 last characters of si and extending to the end
of s. This substring contains all the other boundary-crossing occurrences. Furthermore, all the occurrences
in R cross at least one boundary since the longest consecutive part of a single segment in R is the m − 1
characters in si. Note that the length of R is at most m−1+ |si−1|+ |si−1|/2+ . . .+1 < m−1+2|si−1| < 3m
since |si−1| < m. Thus, the number of boundary-crossing occurrences of P equals the number of occurrences
in R plus the number of occurrences crossing the boundaries (sk, sk−1), (sk−1, sk−2), . . . (si+1, si).

The algorithm for finding the occurrences in the sufficiently large boundary trees is as follows. Fix a
boundary (sx+1, sx). We match each character of P in Bx as it arrives. When the last character arrives we
know if |sx| ≥ m, and also the range [α, β] corresponding to the occurrences of P in the boundary tree. If
|sx| ≥ m (hence x ≥ i) we report the occurrences as follows. As above we do a range maximum query to find
the j maximizing BL′

x[j]. If BL
′
x[j] = −∞ then all occurrences of P start in sx, and there are no occurrences

crossing the boundary. Otherwise, BL′
x[j] corresponds to the starting position of the rightmost occurrence

of P in sx+1. Since all of P has arrived and we now know m, we know that this occurrence crosses the
boundary if and only if BL′

x[j] ≥ |sx| −m+2 (recall that Bx extends |sx| characters in both directions from
the boundary). If it does not cross the boundary, then none of the other occurrences do either. Otherwise
we report BL′

x[j] and recurse on [α, j − 1] and [j + 1, β] to find the remaining occurrences. Matching P
in all boundary trees takes O(logw) overall time per character, and reporting each occurrence with range
maximum queries takes constant time.

We now show how to find the occurrences of P in R with the same bounds. Assume that we know that
2ℓ ≤ m < 2ℓ+1 for some integer ℓ. We build the suffix tree over the last 3 · 2ℓ+1 characters of s, deamortized
over receiving the first 2ℓ−1 characters of P . Over the next 2ℓ−1 characters we match P in the tree, at a rate
of two characters per new character from P . Then, when the 2ℓth character arrives, we have caught up to
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Figure 4.3: The segment si is the smallest segment where |si| ≥ m. For each boundary (sj+1, sj) where
j ≥ i, the tree Bj is large enough to find all occurrences of P across the boundary. All other occurrences of P
that cross a boundary must be in R, the string covering the m− 1 rightmost characters of si and extending
to the end of the window. The length of R is no more than m− 1 + |si−1|+ |si−1|/2 + . . .+ 1 < 3m.

the stream P , and we match the remaining m−2ℓ characters as they arrive. When the last character arrives
we have matched P in a tree of size at least 3m, and we can start reporting occurrences. Note that we are
overestimating the size of the tree, and it potentially includes some occurrences of P that are contained in
si. To avoid reporting these, we also build a range maximum query data structure over the suffix array such
that we can use recursive range maximum queries. When deamortized, we construct the tree in expected
constant time per character of P . Matching P also takes constant time per character. We know that m ≤ w,
so we run this algorithm simultaneously for each of the logw different choices for ℓ, using expected O(logw)
time per character in P . Note that the trees use O(w) space in total since the sum of the space is a geometric
sum where the largest term is O(w).

4.3.3 Amortized Updates

We show how to support updates in amortized O(logw) time. Let S[n] be the last character to arrive and as
in the description of the data structure let b1 < b2 < . . . < bk be the positions of the 1-indices in the binary
encoding of |s|. When the new character c = S[n+1] arrives, we update s and the segmentation s1 . . . sk to
create the new suffix s′ with the new segmentation s′1, . . . s

′
k′ . See Figure 4.1 for an example.

If |s| < 2w− 1 then we set s′ = sc. The segmentation of s′ corresponds to the unique binary encoding of
|s′| = |s| + 1, so we update the segmentation analogously to a “binary increment”. One way to do so is as
follows. We create a new segment of size one over c. If there was not already a segment of size one, then we
add the new segment and we are done. Otherwise we merge (see below) the two size-one segments to create
a segment of size two. The process cascades until we reach a size 2b that does not exist in the segmentation
of s (i.e., the smallest index b ̸∈ {b1, . . . , bk}). At this point we replace all of the segments sb−1, . . . , s1
with s′1 covering the last 2b characters of s′. The remaining segments for s′ are the same as the segments
sb+1, . . . , sk. If |s| = 2w − 1 then there is a segment of each size 20, 21, . . . , 2logw. Since the segments have
decreasing size from left to right, the logw− 1 rightmost segments cover the last 20 + . . .+2logw−1 = w− 1
characters of s. Thus, after c arrives, the leftmost segment of size 2logw = w no longer intersects the window.
We remove it by setting s′ = s[w + 1, |s|]c, and update the segmentation as above.

Let sa, sb and sc be three adjacent segments, in that order. To merge sb and sc we combine them into
a new segment sd that spans them both, construct the suffix tree over sd, and construct a range maximum
query data structure on the suffix array of sd. Furthermore, since sa and sd are now adjacent we also
construct the boundary-spanning suffix tree for the boundary (sa, sd) that extends |sd| characters in each
direction. The construction of all of these data structures takes expected O(|sd|) time (see Section 4.2).
Thus, it takes expected constant time per character every time it moves into a new, larger segment. Each
character is contained in at most logw segments before it leaves the window, so the amortized update time
is expected O(logw) per character.
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Note that all but the last merge are unnecessary to actually compute s′1; in the amortized setting we can
simply determine where the cascade will end and immediately construct the suffix tree over the corresponding
segment. However, the cascading merges will come into play in the deamortized variant.

Also note that if w is not a power of two we can use a similar scheme where we allow either two
simultaneous trees of size 2⌊logw⌋, or one tree of size 2⌈logw⌉. In both cases, there are some straightforward
edge cases for when to remove the leftmost segment.

4.3.4 Deamortized Updates

We now show how to deamortize the updates. Unfortunately the previous construction cannot be directly
deamortized since the suffix tree construction algorithm by Farach-Colton et al. [FFM00] requires access to
the whole string. Therefore, if a new character c causes a cascade of merges resulting in a new segment of
size 2i we have to build the suffix tree over that segment when c arrives.

Instead, we modify the structure slightly. When two segments of size 2i become adjacent we temporarily
keep both while deamortizing the cost of merging them over the next 2i characters of S, doing expected
constant work per character. Note that queries are unaffected, with one exception for reporting occurrences
across the boundaries; there might now be two adjacent segments si+1 and si of the same size that are both
the smallest segment at least as large as |P |. In this case the suffix R extends only m− 1 characters into the
rightmost segment si. The boundary tree for (si+1, si) is large enough to report all occurrence crossing that
boundary since both segments have size at least |P |. Furthermore, R potentially becomes twice as long, so
we adjust the constants of the trees that we grow at query time.

To bound the time for updates we show that we are constructing at most logw suffix trees at any point,
from which it follows that the update time is expected O(logw). To do so we show the following lemma.

Lemma 12. When the construction of a segment of size 2i finishes there is exactly one segment of each size
2i−1, . . . , 20.

Proof. The proof is by induction on i. For i = 1, when two size-one segments become adjacent we merge
them when the next character c from S arrives. This results in a segment of size two, as well as a size-one
segment containing c, proving the base case.

Inductively, consider the first time two segments of size 2i become adjacent. By the induction hypothesis,
there is one segment of each size 20, 21, . . . , 2i−1 to the right of these two segments. For another segment of
size 2i to be constructed, we must first receive one more character, which triggers a merge that eventually
cascades through all i−1 of these segments. For this to happen, 1+(20+21+. . .+2i−1) = 2i more characters
from S must arrive, where the 1 is for the next character to arrive, and 2j is the amount of characters the
jth merge is deamortized over. However, at this point the merge of the two segments of size 2i is complete,
so we constructed two new segments, one of size 2i+1 and one of size 2i. By the induction hypothesis, there
is also one segment of each size 20, . . . , 2i−1, concluding the proof.

Lemma 12 implies that there are never more than two segments of the same size adjacent to each other,
and therefore at most one merging process for each segment size 20, 21, . . . , 2logw. To see this, consider the
first time two segments a and b of size 2i are adjacent. At this point, there are 20 + 21 + . . .+ 2i−1 = 2i − 1
characters to the right of b. When the next segment c of size 2i arrives there are 2i − 1 characters to the
right of that, too. But then there are |c| + 2i − 1 = 2i + 2i − 1 characters to the right of b. Thus 2i new
characters must have arrived in the meanwhile, and the merging of a and b is done.

We obtain the following theorem.

Theorem 9. Let S be a stream and let w ≥ 1 be an integer. We can solve the w-SSWSI problem on S
with an O(w) space data structure that supports Update and Report in expected O(logw) time per character.
Furthermore, Report uses additional worst-case constant time per reported occurrence.
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4.4 The Delayed SSWSI Problem

In this section we show how to improve the result from Section 4.3 if we are allowed a delay of δ. The main
idea is as follows. As before, we maintain suffix trees of exponentially increasing sizes, although only the
O(log(w/δ)) largest of them. As a result there are fewer trees to query, but also an uncovered suffix of size
Θ(δ) of the window for which we do not have any suffix trees. As in Section 4.3 we denote the part of S
covered by suffix trees by s and we denote the uncovered suffix by t. As above, s is segmented into s1, . . . , sk.

We will first explain how to solve the problem when all patterns are long, that is, |P | > δ/4, and then
when all patterns are short, that is, |P | ≤ δ/4. Finally we show how to combine these solutions. When all
the patterns are long we can afford to construct, at query time, a suffix tree covering t. On the other hand,
when all the patterns are short we can do both updates and queries in an offline fashion; we buffer queries
and updates until we have approximately δ/2 operations to do, at which point we can afford to construct a
suffix tree over t in a deamortized manner. See Figure 4.4 for an example.

Throughout this section we assume without loss of generality that δ is a power of two. Otherwise we
instead use a more restrictive delay of δ′ = 2⌊log δ⌋ and achieve the same asymptotic bounds.

4.4.1 Long Patterns

We first show how to support queries if all patterns have a lengthm > δ/4. We modify the data structure from
Section 4.3 slightly. The smallest tree now has size δ/2 as opposed to 1, so there are Θ(logw − log(δ/2)) =
O(log(w/δ)) segments and boundary trees. The uncovered suffix t has length at most δ.

We answer queries the same way as in Section 4.3.2, with only small modifications. Let P be a pattern
of length m > δ/4. As before, let si be the smallest and rightmost segment with |si| ≥ m. We find any
occurrence within a segment or crossing a single boundary by using the suffix trees over each segment and
the boundary trees to the left of si, as before. The remaining occurrences we again find by growing suffix
trees of exponentially increasing sizes from the right window boundary. The only change is that we now grow
the trees faster, as we must also cover t, and we can afford to let the smallest tree have size δ since we have
m > δ/4 characters in the pattern to deamortize the work over. As above, let R be the string covering the
m−1 last characters of si and extending to the right window boundary, which now also includes t. As |t| < δ
the length of R is |R| < 3m+ δ < 7m. Assuming 2ℓ ≤ m < 2ℓ+1, we build the suffix tree of size 7 · 2ℓ+1 and
match P in it, amortized over the characters of P . As we have m > δ/4 characters to deamortize the work
over, we only do this for each choice of ℓ where 2ℓ+1 ≥ δ, which results in O(logw−log δ) = O(log(w/δ)) work
per character in P . As in Section 4.3.2 we use recursive range maximum queries to avoid double reporting
any occurrences of P that are also in s. As there are also only O(log(w/δ)) segments and boundary trees we
spend O(log(w/δ)) time per character in P . Note that we answer these queries without delay.

Updates are performed as follows. For each segment of δ/2 characters that arrives we construct the suffix
tree over it, deamortized over the next δ/2 characters of S. We merge suffix trees as before, also deamortized
over new characters of S. The induction proof from Section 4.3.4 still works by modifying the base case; the
merging of two trees of size δ/2 takes δ/2 characters, at which point another tree of size δ/2 is constructed.
The inductive step follows from the fact that δ is a power of two. Thus, we spend expected O(log(w/δ))
time per update.

4.4.2 Short Patterns

We now show how to support queries if all patterns have a length m ≤ δ/4. We extend the data structure
with a buffer of size δ. This buffer will contain queries that we have not yet answered and characters for S
that we have not yet processed. The total space is still O(w + δ) = O(w).

Whenever a character from S arrives we append it to both t and to the buffer. When a pattern arrives
we append the full pattern to the buffer, and along with it we store the current position of the right window
boundary. Once the buffer has more than δ/2 characters (patterns and text combined) we immediately
allocate a new buffer of size δ and flush the old buffer as follows. Note that at this point there are strictly
less 3

4δ characters in the buffer since each pattern is short.
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Figure 4.4: Left: Example of a query with a long pattern. Here si is the smallest and rightmost segment
with |si| ≥ m. Note that the non-indexed suffix t is less than δ < 4m characters long. Right: Example
of a query with a short pattern. Note that for short patterns, si is always the rightmost segment. Any
occurrence in s cross at most a single boundary and is found using the constructed trees. Any occurrence in
t is found by the suffix tree over t that we construct when we flush the buffer. Any occurrence that cross the
boundary (s, t) is found by the KMP automaton we build over the substring the extends m − 1 characters
in both directions from the boundary, which is hatched in the figure.

When we flush the buffer, we first answer all the buffered queries, and then we process all the buffered
updates. We deamortize this work over the next δ/4 characters that arrive from either stream. To answer
the buffered queries we do as follows. Let P1, . . . , Pℓ be the patterns in the buffer, let mi = |Pi|, and let
M =

∑
1≤i≤ℓ mi. We have M < δ. We start by building a suffix tree over t, along with a range maximum

query data structure over the suffix array of t. This takes expected O(δ) time. An occurrence of Pi is
either contained in s, or it crosses the boundary (s, t), or it is contained in t. Since Pi is smaller than
each segment sj we can find all the occurrences within s using the suffix trees over the segments and the
boundary trees in O(mi log(w/δ)) time. To find the occurrences crossing the boundary we build the KMP
matching automaton [KJP77] for Pi. In it we match the string that is centered at the boundary (s, t) and
extends mi − 1 characters in each direction. This takes O(mi) time. To find the occurrences in t we match
Pi in the suffix tree over t in O(mi) time. In total, this takes O(M log(w/δ)) = O(δ log(w/δ)) time for all
the patterns, or expected O(log(w/δ)) time per character when deamortized. Note however, that after Pi

arrived more characters from S could have arrived and been appended to t. We must therefore take care
not to report any occurrences of Pi that extend past what was the right window boundary when Pi arrived.
The KMP automaton finds the occurrences in left-to-right order, and in t we avoid reporting too far right
using recursive range minimum queries.

Finally, we process each update in the buffer in the order they arrived, using the same procedure as for
long patterns. This takes O(log(w/δ)) time per update and O(δ log(w/δ)) time in total. Thus flushing the
buffer takes expected O(log(w/δ)) time per character since we deamortize the expected O(δ log(w/δ)) work
over δ/4 characters. Since we allocate a new buffer immediately when we begin flushing, we will complete
the flush before the next flush begins.

4.4.3 Both Long and Short Patterns

We now show how to combine the solutions for short and long patterns, to obtain a solution that handles
patterns of any length. The data structure is the same as for small patterns above. As above, we append
each new character to the buffer. However, whenever we start streaming a pattern we also proceed as if P
were long. If P turns out to fit in the buffer without triggering a flush (which might also happen if P is long),
we simply discard the work we did for the long-pattern case. However, if adding P to the buffer results in
more than 3

4δ characters being in the buffer, then P must be long. We immediately start flushing the buffer
(ignoring the characters related to P ) and also continue processing P as a long pattern. Note that since we
are potentially streaming a long pattern while batch processing the updates in the buffer, the data structure
might change while we are matching in it. However, it only changes when a merge finishes, replacing a pair
of suffix trees by a larger tree. If this happens we keep the old trees in memory until we are done processing
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the pattern, at which point we discard them.
We obtain the following theorem.

Theorem 10. Let S be a stream and let w ≥ 1 and δ ≥ 1 be integers. We can solve the (w, δ)-SSWSI
problem on S with an O(w) space data structure that supports Update and Report in expected O(log(w/δ))
time per character. Furthermore, Report uses additional worst-case constant time per reported occurrence.

4.5 Obtaining High Probability

In this section we show how to improve the time bounds to O(log(w/δ)) with probability 1 − w−d for any
constant d ≥ 1.

The expectation in the time bounds in Section 4.4 comes from the construction of suffix trees (recall
that we also build suffix trees at query time). Below, in Lemma 13, we prove that given a string K of
length k = O(w) we can construct the suffix tree over K in O(k) time with probability 1 − 1/w1+ϵ, using
additional O(w/ logw) space. We use this algorithm to construct suffix trees during updates and queries,
deamortizing them as before and doing O(log(w/δ)) work per character that arrives. When a new character
arrives from S or P , at most O(log(w/δ)) = O(logw) suffix tree constructions will finish. At this point,
we finish constructing those trees that did not finish in time, that is, used more more time than what was
allotted to them. By the union bound, the probability that any of them fail to finish in time (and thus
incurring extra construction cost) is no more than c logw/w1+ϵ for some constant c which is no more than
1/w for large w. Thus, for each character from S or P we spend O(log(w/δ)) time with high probability in
w. We obtain the 1−1/wd probability bound by probability boosting, running d = O(1) independent copies
of the construction algorithm simultaneously. The algorithm from Lemma 13 uses additional O(w/ logw)
space, but we are never constructing more than O(logw) suffix trees, so the space usage is O(w) in total.

Furthermore, as mentioned in Section 4.2, we previously used an FKS dictionary [FKS84] to store the
edges to support reporting queries in worst-case constant time per character in the pattern. The construction
time of this dictionary is expected linear, so it can no longer be used. Instead we use a dictionary by
Dietzfelbinger and Meyer auf der Heide [DadH90]. If there are n elements in the dictionary it supports
searches in worst-case constant time and any sequence of 1

2n updates takes constant time per update with

probability 1 − 1/nd′
for any constant d′ ≥ 1. We store all the edges of all the suffix trees in one such

dictionary. At all times, we keep Θ(w) dummy-elements in the dictionary to ensure that we get good
probability bounds in terms of w, and we choose d′ large enough that any sequence of O(w) operations (e.g.,
the construction of any one of our suffix trees) runs in O(w) time with probability 1− 1/wd+ϵ.

Universal Hashing Before we prove Lemma 13 we restate some basic facts about universal hashing,
introduced by Carter and Wegman [CW79]. LetM,m > 0 be integers, H be a set of functions [0,M ] → [0,m],
and h ∈ H be selected uniformly at random. Then H is universal if P [h(x) = h(y) | x ̸= y] ≤ 1/m. Let
R ⊆ [0,M ] and |R| = r. It follows from the union bound that h has a collision on R with probability at
most

P [h(x) = h(y) for some x ̸= y] ≤
∑

x ̸=y∈R

P [h(x) = h(y)] =
r(r − 1)

2
· 1

m
<

r2

m
. (4.1)

In particular, if m = rc for constant c ≥ 1 then h is injective (i.e., has no collisions) on R with probability
at least 1− 1/rc−2. Carter and Wegman gave several classes of universal hash functions from which we can
sample a function uniformly at random in constant time.

Fast Suffix Tree Construction We now prove Lemma 13, showing how to construct our suffix trees in
linear time with high probability.

Lemma 13. Given a string K of length k ≤ 2w there is an algorithm that uses O(k + w/ logw) space and
constructs the suffix tree over K in O(k) time with probability 1− 1/w1+ϵ for some ϵ > 0.
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Proof. Let σ = {K[i] | i ∈ [1, k]} ⊆ Σ be the alphabet of K. We show how to, in O(k) time, find a function
h : Σ → [1, kO(1)] such that h is injective on σ with probability at least 1 − 1/w1+ϵ. If h is injective on σ,
we can construct the suffix tree over K′ where K′[i] = h(K[i]) in time O(sort(k, kO(1))) = O(k) using radix
sort. After the tree is constructed we can substitute for the original alphabet in linear time. Therefore, the
construction algorithm finishes in O(k) time with probability at least 1 − 1/w1+ϵ (otherwise we make no
guarantee on the construction time and we can build the suffix tree in any way).

For some m to be determined later, let f : Σ → [1,m] be chosen uniformly at random from a class of
universal hash functions. By Equation 4.1, the probability that f has a collision on σ is

P [f has collisions on σ] <
|σ|2

m
≤ k2

m
.

We divide into the cases of large trees (k ≥ w1/5) and small trees (k < w1/5). If k is large then w1/5 ≤ k ≤ 2w,
and we set m = w4 so the probability that f has a collision is at most

k2

m
≤ (2w)2

w4
=

4

w2
≤ 1

w1+ϵ

for some ϵ > 0. We check whether f is injective by sorting the set {(x, f(x)) | x ∈ σ} with respect to the
f(·)-values and checking if two consecutive elements (x, f(x)) and (y, f(y)) have x ̸= y and f(x) = f(y).
This takes time O(sort(k,w4)) = O(k) using radix sort since k ≥ w1/5. If f is injective we set h = f ,
concluding the proof of the large case.

If k is small then we allocate an array A of length w/ logw in constant time. For simplicity we assume that
A is initialized such that A[i] = 0 for all i. This can be avoided using standard constant-time initialization
schemes; assume each entry in A contains an arbitrary value initially. We maintain two other arrays B and
C such that if we have written a value to A[i] at least once then A[i] is a pointer to some B[j], B[j] is a
pointer to A[i], and C[j] stores the value most recently written to A[i]. From this we can determine if A[i]
has been initialized (check if the pointers match), and if it has not we can initialize it in constant time.

Then we set m = w/ logw such that the probability that f has a collision is no more than

k2

m
<

w2/5

w/ logw
=

logw

w3/5
=

logw

w1/2
· 1

w1/10
≤ 1

w1/10

for w ≥ 16. We check if f is injective on σ by for each character x in K setting A[f(x)] = x and seeing if two
distinct characters hash to the same index. If f is injective we then arbitrarily assign the values 1, . . . , |σ| to
the now non-zero indices of A and let h(x) = A[f(x)] (at this point we know σ since it is equal to the number
of entries in A that we modified). To boost the probability of success we run this algorithm up to eleven
times with independent choices for f . The probability that all of them fail is at most 1/w11/10 ≤ 1/w1+ϵ

concluding the proof for the small case.

In conjunction with Theorems 9 and 10, this proves Theorem 8.

4.6 Conclusion and Future Work

We have studied two variants of the streaming sliding window string indexing problem; the timely variant,
where queries must be answered immediately, and the delayed variant where a query may be answered at
any point within the next δ characters received, for a specified parameter δ. For a sliding window of size w
we have given an O(w) space data structure that, in the timely variant, supports updates in O(logw) time
with high probability and queries in O(logw) time with high probability per character in the pattern; each
occurrence is reported in additional constant time. For the delayed variant we improved these bounds to
O(log(w/δ)), where each occurrence is still reported in constant time.

One open problem is whether these bounds can be improved. Another is to find efficient solutions when
queries may be interleaved with new updates to the stream. That is, while you are streaming a pattern, new
characters of S might arrive that move the current window.
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Abstract

The Lempel-Ziv (LZ) 77 factorization of a string is a widely-used algorithmic tool that plays a
central role in compression and indexing. For a length-n string over a linearly-sortable alphabet, e.g.,
Σ = {1, . . . , σ} with σ = nO(1), it can be computed in O(n) time. It is unknown whether this time
can be achieved for the rightmost LZ parsing, where each referencing phrase points to its rightmost
previous occurrence. The currently best solution takes O(n(1 + log σ/

√
logn)) time (Belazzougui &

Puglisi SODA2016). We show that this problem is much easier to solve for the LZ-End factorization
(Kreft & Navarro DCC2010), where the rightmost factorization can be obtained in O(n) time for the
greedy parsing (with phrases of maximal length), and in O(n+ z

√
log z) time for any LZ-End parsing of

z phrases. We also make advances towards a linear time solution for the general case. We show how to
solve multiple non-trivial subsets of the phrases of any LZ-like parsing in O(n) time. As a prime example,
we can find the rightmost occurrence of all phrases of length Ω(log6.66 n/ log2 σ) in O(n/ logσ n) time
and space.

5.1 Introduction

The Lempel-Ziv (LZ) 77 factorization [LZ76] of a string S decomposes it into a series of phrases S =
f1f2 . . . fz. Each phrase is either the leftmost occurrence of an alphabet symbol (a literal phrase), or the
longest substring that can be read at an earlier position in the string (a referencing phrase). Compression
can be achieved by replacing each referencing phrase with an integer pair consisting of the length and the
distance to an earlier occurrence of the phrase. Further compression is possible by encoding the integers,
e.g., by applying a universal code. Variable length codes often assign longer codewords to larger integers,
and thus it is beneficial if every referencing phrase knows not only any of its previous occurrences, but the
rightmost one (at the smallest distance).

In an LZ-like factorization, referencing phrases do not need to be of maximal length. The encoding works
in the same way as for the exact LZ factorization.

Related Work. LZ(-like) parsings are well-studied, and there are fast factorization algorithms in mul-
tiple settings (we only list a few examples for each) including parallel [CR91, FM95, Nao91, SZ13, Shu18],
online [OS08,Sta12,YIB+14] and external memory algorithms [KKP14]. In the sequential setting, there are
several linear-time solutions [GB13, KKP13b, GB14, FIK15], and some that compute the parsing in small
space [OG11,OS08,Sta12,YIB+14,KKP13a,Kos15,KS16,BP16], with the overall best using only O(n log σ)
bits and running in O(n) time [FIKS18] for a string of length n over integer alphabet [0, σ).
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LZ-End, introduced by Kreft and Navarro [KN10, KN13], is a family of LZ-like parsings where each
referencing phrase must have a previous occurrence aligned with the end of a phrase, i.e., for fk there must
be k′ < k such that fk is a suffix of f1f2 . . . fk′ . This has beneficial properties that lead to efficient compressed
text indices (e.g., [KS22]). The uniquely defined greedy LZ-End parsing, in which each referencing phrase
is of maximal length, can be computed in linear time [KK17b], and the number of phrases is within an
O(log2 n) factor of the exact LZ factorization [KS22]. Bannai et al. [BFK+23] proved that computing the
optimal LZ-End parsing (with minimal number of phrases) is NP-hard and gave a lower bound of 2 for the
approximation ratio of optimal LZ-End to greedy LZ-End.

The first theoretical result on computing the rightmost LZ parsing is by Amir et al. [ALU02] and uses
O(n log n) time and working space. Larsson et al. [Lar14] presented an online algorithm in the same time and
space. The first approximation algorithm was by Crochemore et al. [CLM13] and runs in O(n log n) time and
O(n) space, and finds the rightmost equal-cost position for each phrase, meaning it takes the same number of
bits to encode as the rightmost position. Later, Bille et al. [BCFG17] gave an (1+ϵ)-approximation algorithm
of the rightmost parsing in O(n(log z + log log n)) time and linear working space. The first exact algorithm
to achieve o(n log n) time is by Ferragina et al. [FNV13] and runs in O(n(1+ log σ/ log log n)) time and O(n)
words of space. This was improved by Belazzougui and Puglisi [BP16] with an algorithm using only O(n log σ)
bits of space and achieving O(n(log log σ+ log σ/

√
log n)) deterministic time or O(n(1+ log σ/

√
log n)) time

with randomization, which is the current state of the art.

Our Contributions. We present time-efficient deterministic algorithms for rightmost LZ parsings, sum-
marized by Theorems 11 and 12 below.

Theorem 11. Let S ∈ [0, σ)n. Given an LZ-End factorization S = f1 . . . fz, we can compute its rightmost
LZ-End parsing in O(n+ z

√
log z) time and O(n) words of space. For the greedy LZ-End factorization, we

achieve O(n) time.

Theorem 12. Let S ∈ [0, σ)n. Unless explicitly stated otherwise, the space complexity is O(n) words. Given
any LZ-like factorization S = f1 . . . fz, we can compute the rightmost previous occurrence of all referencing
phrases

(a) of length Ω(log6.66 n/ log2 σ) in O(n/ logσ n) time and words of space

(b) fk with k ∈ F ⊆ [1, z] in O(n+ |F | dϵ) time, where d = |{fk′ | k′ ∈ F}| ≤ |F |
(c) fk with |{k′ ∈ [1, z] | fk′ = fk}| = O(log n) in O(n) time

(d) with rightmost previous occurrence at distance O(log n) in O(n) time

We provide the solution for rightmost parsings of LZ-End factorizations (Theorem 11) in Section 5.3. The
algorithms for subsolutions of general rightmost LZ-like parsings (Theorem 12) are presented in Section 5.4.

5.2 Preliminaries

Strings and Model of Computation. For i, j ∈ N, we write [i, j] = [i, j + 1) rather than {k ∈ N+ | i ≤
k ≤ j}. A string S = S[1..n] = S[1]S[2] . . . S[n] of length |S| = n is a sequence of n symbols from an alphabet
Σ. For i, j ∈ [1, n], the substring S[i..j] = S[i..j +1) is the sequence S[i]S[i+1] . . . S[j] (or the empty string
ε if j < i). A substring shorter than S is proper. Substrings S[1..i] and S[i..n] are respectively called prefix
and suffix of S. The reversal of S is rev(S) = S[n]S[n− 1] . . . S[1]. The concatenation of two string S1 and
S2 is S1S2. We only consider alphabets Σ that are totally ordered, which induces a lexicographical order
over the set of all strings in the usual way. We write S1 ≺ S2 to denote that S1 is lexicographically smaller
than S2. We say that S1 is co-lexicographically smaller than S2 if rev(S1) ≺ rev(S2). For strings S and P ,
an occurrence of P in S is a position i such that P is a prefix of S[i.. |S|]. For the occurrence i of substring
S[i..i+ ℓ) in S, a previous occurrence is an occurrence j of S[i..i+ ℓ) in S with j < i. We assume that the
string S[1..n] is over integer alphabet [0, σ) with σ = nO(1), and we use a word RAM of width w = Θ(log n)
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bits (see, e.g., [Hag98]). Each symbol is stored in ⌈log σ⌉ bits, and thus the string occupies O(n/ logσ n)
words of space. From now on, space complexities are given in number of words.

We assume that the reader is familiar with tries [Fre60]. The suffix tree [Wei73] of S is the compact trie
of all suffixes of S$, where $ = −∞ is smaller than all symbols from the alphabet. Each leaf corresponds
to a suffix of S and is labeled with the start position of this suffix. The outgoing edges of each node are
arranged in increasing order of the first symbol of the respective edge label. Hence the leaves are ordered
from left to right in lexicographical order of suffixes. In the present model of computation, the suffix tree
can be computed in O(n) time and space [MM93a]. The suffix array SA of S is the unique permutation of
[1, n] that lexicographically sorts the suffixes, i.e., ∀i ∈ [1, n) : S[SA[i]..n] ≺ S[SA[i+ 1]..n]. Equivalently, it
consists of the leaf-labels of the suffix tree in left-to-right order and can therefore be constructed from the
suffix tree in linear time.

Lempel-Ziv Parsings. The unique LZ (77) factorization S = f1f2 . . . fz decomposes S into z substrings

called phrases. Each phrase fk at destination i = 1 +
∑k−1

j=1 |fj | is either the leftmost occurrence of S[i]
(a literal phrase), or the longest prefix of S[i..n] that has a previous occurrence (a referencing phrase).
A previous occurrence j ∈ [1, i) of a referencing phrase fk is called a source of fk. (This is Storer and
Szymanski’s version of the factorization [SS82].) An LZ-like factorization is defined exactly like the LZ
factorization, but without the requirement that referencing phrases are of maximal length. The rightmost
parsing of an LZ(-like) factorization annotates each referencing phrase with its rightmost source, i.e., fk at
destination i is annotated with the maximal j ∈ [1, i) such that fk is a prefix of S[j..n].

A source j of some phrase fk in an LZ-like factorization is LZ-End aligned if S[1..j + |fk|) = f1f2 . . . fk′

for some k′ ∈ [1, k) (i.e., fk equals the suffix of f1f2 . . . fk′ that starts at position j). An LZ-End factorization
is an LZ-like factorization in which all referencing phrases have an LZ-End aligned source. (This is slightly
different from [KN10] and leads to a simpler description; the presented results can be easily modified to work
for the original definition.) The greedy LZ-End factorization is the unique LZ-End factorization in which
each fk at destination i is the longest prefix of S[i..n] that is a suffix of f1f2 . . . fk′ for some k′ ∈ [1, k). We
could define the rightmost parsing for LZ-End in the same way as for arbitrary LZ-like factorizations (i.e.,
annotate each phrase with its rightmost source), but this is undesirable because the rightmost source might
not be LZ-End aligned. Hence the rightmost parsing of an LZ-End factorization annotates each referencing
phrase with its rightmost LZ-End aligned source.

From now on, we use z (commonly used to denote the number of phrases in the exact LZ 77 factorization)
to denote the number of phrases in the factorization at hand, even if it is an LZ-like or LZ-End factorization.
Instead of saying that we compute the rightmost source of fk, we simply say that we resolve fk.

5.3 Computing Rightmost LZ-End Parsings

In this section, we provide the solutions for Theorem 11. We exploit the fact that an LZ-End phrase only
has to choose from less than z sources, while a general LZ-like phrase has to consider up to Ω(n) possible
sources. This makes the computation significantly easier for LZ-End factorizations.

5.3.0.1 Rightmost Greedy LZ-End Parsing.

We start by computing an arbitrary LZ-End aligned source for each referencing phrase fk. We build the
suffix array of the reversed text rev(S), and use filtering and rank reduction to obtain in O(n) time the
unique permutation co of [1, z] that satisfies ∀k′ ∈ [1, z) : rev(f1f2 . . . fco(k′)) ≺ rev(f1f2 . . . fco(k′+1)). (This
permutation rearranges the prefixes that end at phrase boundaries in co-lexicographical order.) We also
compute its inverse permutation co−1. Any referencing phrase fk has a previous occurrence as a suffix of
f1f2 . . . fk′ , where k′ and k are neighbors in co (because the co-lexicographical order groups together prefixes
that share a long suffix). More precisely, if co−1(k) = 1 then k′ = co(2). If co−1(k) = z then k′ = co(z − 1).
Otherwise, k′ ∈ {k−, k+} with k− = co(co−1(k)−1) and k+ = co(co−1(k)+1). In the latter case, we naively
check if fk is a suffix of f1f2 . . . fk− . If this is the case, then we use k′ = k−. Otherwise, we use k′ = k+.
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Hence we can compute a suitable k′ for each referencing phrase fk in total time O(n+z+
∑z

j=1 |fj |) = O(n).
We then report |f1f2 . . . fk′ | − |fk|+ 1 as an LZ-End aligned source of fk.

The computed sources are already rightmost for all phrases that only have a single LZ-End aligned source.
It remains to correct the sources of phrases that have multiple LZ-End aligned sources, for which we observe
the following.

Proposition 1. Let fk be a referencing phrase in the greedy LZ-End factorization, and let k′, k′′ ∈ [1, k)
with k′′ < k′ be such that fk is a suffix of both f1f2 . . . fk′ and f1f2 . . . fk′′ . Then fk is a suffix of fk′−1fk′ .

Proof. If fk is a suffix of f1f2 . . . fk′ but not of fk′−1fk′ , then fk′−1fk′ is a suffix of fk. Since fk is a suffix
of f1f2 . . . fk′′ , this implies that fk′−1fk′ is a suffix of f1f2 . . . fk′′ . Hence fk′−1fk′ has a previous occurrence
that satisfies the LZ-End property. Thus, fk′−1 is not of maximal length, which contradicts the definition
of the greedy LZ-End factorization.

We compute a compacted trie that contains for each k′ ∈ [2, z] the string rev(fk′−1fk′). Note that the
total length of the strings is less than 2n. We make the respective nodes that spell rev(fk′) and rev(fk′−1fk′)
explicit (if they are not explicit already), and store pointers to these nodes. We will not need fast navigation
on the trie; in fact, we only need the parent operation. Hence we can construct the trie in O(n) deterministic
time using standard techniques (e.g., from the suffix array of rev(f1f2#f2f3# . . . #fz−1fz) where # is a special
separator symbol). Now we process the phrase pairs fk′−1fk′ with k′ ∈ [2, z] from right to left. Whenever
we finish processing a pair, we annotate the node that spells rev(fk′) with k′ (indicating that the rightmost
LZ-End aligned source of fk′ has not been found yet). Before adding this annotation, we first check if
fk′−1fk′ resolves other phrases. For this purpose, we traverse the path from the leaf that spells rev(fk′−1fk′)
to the root of the trie. For each node on the path, we check if it has been annotated with some value k. If
we find such an annotation, then the corresponding node spells rev(fk), and fk is a suffix of fk′−1fk′ . Hence
we store |f1f2 . . . fk′ | − |fk|+ 1 as the maximal LZ-End aligned source of fk, and remove the annotation of
the node. By Proposition 1 and the right-to-left order of processing, we correctly find the rightmost LZ-End
aligned source of any phrase that has multiple LZ-End aligned sources.

A node might spell the reversal of a phrase that has multiple occurrences in the parsing. Nevertheless,
each node has at most one annotation at any given point in time. This is because we annotate the node
that spells rev(fk′) only after we finish processing pair fk′−1fk′ . If the node is already annotated with some
k > k′ (because fk = fk′), then we also find the source |f1f2 . . . fk′ | − |fk| + 1 of fk while processing pair
fk′−1fk′ , and hence we remove annotation k before adding annotation k′.

We need O(n) time for computing the trie. Processing a pair fk′−1fk′ takes time linear in the depth of
the node that spells rev(fk′−1fk′). This is limited by O(|fk′−1fk′ |), which sums to O(n) over all phrase pairs.
The space for the trie is O(n). Hence we have shown Theorem 11 for the greedy LZ-End factorization.

5.3.0.2 Rightmost (Arbitrary) LZ-End Parsing.

If the given LZ-End factorization does not satisfy the greedy property, then Proposition 1 no longer holds.
However, each referencing phrase fk is still a suffix of some f1f2 . . . fk′ with k′ ∈ [1, k), which limits the
number of possible sources. We will again exploit properties of the co-lexicographical order of prefixes.

We compute a compacted trie that contains for each k′ ∈ [1, z] the reversed prefix rev(f1f2 . . . fk′) of the
text. We make the respective nodes that spell rev(fk′) and rev(f1f2 . . . fk′) explicit (if they are not explicit
already), and store pointers to these nodes. We annotate the node that spells rev(f1f2 . . . fk′) with its co-
lexicographical rank co−1(k′) (defined as before). Additionally, we annotate the node that spells rev(fk′)
with its co-lexicographical range, which is given by the respectively smallest and largest co-lexicographical
ranks cmin

k′ and cmax
k′ that were used to annotate any of its descendants (or itself). Again, we do not need

fast navigation on the trie; for writing the annotations, it suffices if we can perform a preorder traversal in
linear time. Hence we can construct the trie and its annotations in O(n) deterministic time using standard
techniques (e.g., from the suffix array of rev(S)).

Now we show how to find the rightmost LZ-End aligned source of referencing phrase fk. We have anno-
tated the node that spells rev(fk) with the co-lexicographical range [cmin

k , cmax
k ]. We store the permutation
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co (defined as before) in an array. Note that, by design of the trie, the range co[cmin
k , cmax

k ] contains exactly
all the k′ for which fk is a suffix of f1f2 . . . fk′ . Hence finding the rightmost LZ-End aligned source of fk is
equivalent to answering the following so-called range predecessor query. Given the range [cmin

k , cmax
k ] ⊆ [1, z]

and the threshold k, find the largest value k′ < k in co[cmin, cmax]. Then, the rightmost LZ-End aligned
source of fk is |f1f2 . . . fk′ | − |fk|+ 1.

Belazzougui and Puglisi show how to compute a data structure in O(z
√
log z) time and O(z) space that

answers range predecessor queries on a permutation of [1, z] in O(logϵ z) time (for any constant 0 < ϵ < 1).
We issue less than z queries, and thus the total construction and query time is O(z

√
log z). The total time

for computing the rightmost parsing (including the construction of the trie) is O(n+ z
√
log z), and the total

space is O(n). Hence we have shown Theorem 11 for an arbitrary LZ-End factorization.

5.4 Partially Solving Rightmost LZ-Like Parsings

In this section, we show how to efficiently compute the rightmost sources for some subsets of the phrases of
an LZ-like factorization (Theorem 12).

5.4.1 Long Phrases

Belazzougui and Puglisi [BP16] find the rightmost sources of all phrases of length Ω(log5 n) in O(n) time

and O(n/ logσ n) space. We show a similar result for resolving all phrases of length Ω(log33/5+ϵ n/ log2 σ)
in O(n/ logσ n) time and space. The main contribution here is that we achieve sublinear time. The solution
works for an arbitrary LZ-like factorization S = f1f2 . . . fz.

Let δ = Ω(log2 n/ log σ) be a parameter to be fixed later. We start by performing a preprocessing as
follows. In O(n/ logσ n) time, we compute the reversed text rev(S) as described in [BP16, Section 6.2]
(essentially, we use a precomputed lookup table to reverse the text one half-word rather than one symbol at
a time). We consider a set D = {d ∈ [1, n] | d ≡ 0 (mod δ)} of m = |D| = O(nδ ) regularly sampled positions.
We construct the respectively unique permutations pref and suf of [1,m] such that for every h ∈ [1,m)
it holds S[suf(h)δ..n] ≺ S[suf(h + 1)δ..n] and rev(S[1..pref(h)δ]) ≺ rev(S[1..pref(h+ 1)δ]) (these are sparse
suffix arrays of the string and its reversal). We use comparison sorting and obtain the permutations with
O(m logm) ⊆ O(nδ log n) ⊂ O(n/ logσ n) lexicographical comparisons between suffixes of either S or rev(S).
With an LCE data structure by Kempa and Kociumaka [KK19] (constructed for both S and rev(S)), each
lexicographical comparison takes constant time. The data structure can be constructed in O(n/ logσ n) time
and space. We use O(m logm) ⊆ O(nδ log n) ⊂ O(n log σ) bits of space to store pref, suf, and their respective
inverse permutations pref-rank and suf-rank.

A long phrase is of length at least γ > δ, where γ is another parameter. When resolving a long phrase
fk with rightmost source j and destination i, we will use the fact that j + q with q = (δ− (j mod δ)) ∈ [1, δ]
is a sample position. For now, assume that we know the value of q in advance (we will later simply try
all the possible values of q). Finding the rightmost source of fk means that we have to find the rightmost
sample position hδ < i + q with S[hδ − q..hδ] = S[i..i + q] and S[hδ..hδ − q + |fk|) = S[i + q..i + |fk|).
Note that the co-lexicographical order groups together prefixes that share a long suffix, and hence all the
values of h for which S[i..i + q] is a suffix of S[1....hδ] form a consecutive interval pref[p1..p2] (we treat
the permutations like arrays). We can find the boundaries p1 and p2 by binary searching in pref for the
respectively co-lexicographically minimal and maximal prefixes of S that have suffix S[i..i + q]. This takes
O(logm) time because we can perform each LCE computation and lexicographical comparison in constant
time using the same LCE data structure as before. Similarly, it takes O(logm) time to compute the interval
suf[s1..s2] that contains exactly the values of h for which S[i+ q..i+ |fk|) is a prefix of S[hδ..n].

We associate a three-dimensional point (pref-rank(h), suf-rank(h), h) with each sample position. For re-

solving the phrase, we have to find the point (p, s, ĥ) with p ∈ [p1, p2], s ∈ [s1, s2], and maximal value

ĥδ < i + q (or equivalently h < i+q
δ ). Given this point, it is easy to compute the rightmost source ĥδ − q

of fk. For solving the geometric query, we use a data structure for three-dimensional orthogonal range
searching [CT18, Theorem 4]. For our m points from [1,m]3, it can be constructed in O(m log8/5+ϵ m) time
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and space (for any constant ϵ ∈ R+). Given a three-dimensional six-sided orthogonal query range, it returns
a point in the range or reports that it is empty in O(log2 m) time (the precise bound is slightly better, but
not needed for our purposes). For our queries, we have to find the point with maximal coordinate in the
third dimension. Thus, we binary search for this point with O(log n) queries to the geometric data structure,
which increases the query time to O(log3 n). Note that this dominates the O(logm) time needed to compute
the query range. Finally, we do not actually know the value of q in advance. Hence we try all the possible
q ∈ [1, δ]. For each of them, we compute the query range and find the rightmost admitted source in O(log3 n)
time. Thus, the time needed per phrase is O(δ · log3 n).

We need O(n/ logσ n) time for computing the (co-)lexicographically sorted permutations of samples,

O(nδ log8/5+ϵ n) time for computing the geometric data structure, and O(nδγ ·log3 n) time for actually resolving
the phrases. We want δ to be small in order to minimize the time for resolving phrases. On the other
hand, the time needed for computing the geometric data structure should become O(n/ logσ n). Hence

we use δ = Θ(log13/5+ϵ n/ log σ), which achieves the desired construction time and implies that we take

O(nγ · log28/5+ϵ n/ log σ) time for resolving phrases. Thus, in order to achieve O(n/ logσ n) time, long phrases

have to be of length at least γ = Ω(log33/5+ϵ n/ log2 σ) ⊂ Ω(log6.66 n/ log2 σ). For all steps (including the
geometric data structure), the space is linear in the time spent, and hence it is O(n/ logσ n). This concludes
the proof of Theorem 12(a).

5.4.2 Arbitrary Subsets of Phrases

Now we show how to solve an arbitrary subset of phrases of any LZ-like factorization S = f1f2 . . . fz. The
subset is given by F ⊆ [1, z], and the time complexity depends on d = |{fk | k ∈ F}| ≤ F , i.e., on the number
of distinct phrases in the subset. In a slight abuse of terminology, we will say that fk is a phrase from F
if k ∈ F . We show how to resolve all phrases from F in O(nϵ + |F | dϵ) time and O(nϵ ) space for arbitrary
ϵ ∈ R+ with ϵ ≤ 1

2 , or O(n+ |F | dϵ) time and O(n) space for constant ϵ. If the string is highly compressible,
say, z = O(n1−ϵ), then the time is O(n). The idea is to use range maximum data structures to find the
rightmost sources. We note that this solution is very similar to [FNV13], and mostly differs in the choice of
the range maximum data structure.

We start with the following preprocessing. We arrange the distinct phrases of F into a tree of d nodes,
and we start using the terms node and phrase interchangeably (even though multiple phrases may refer to
the same node). The parent of phrase fk is the longest phrase fk′ from F that is a proper prefix of fk (or
the artificial root node ϵ if fk′ does not exist), and we call this tree the phrase trie. This is a slight abuse of
terminology, since the tree is only similar to a trie. An example is provided in Figure 5.1. We annotate fk
with its preorder number pk, which is the rank of fk in a preorder traversal of the phrase trie, as well as the
maximal preorder number qk of a descendant of fk. We also annotate each text position i with the preorder
number of the longest phrase from F that is a prefix of S[i..n], if any. This concludes the preprocessing.

In order to resolve the phrases, we traverse S from left to right and track in an array A[1..d] the last
position at which we encountered each preorder number as an annotation. When we reach the destination
i of some phrase fk from F , the rightmost previous occurrence will be at position maxp∈[pk,qk] A[p] (the
solution of a range maximum query), as any occurrence of fk is annotated with either pk or the preorder
number pk′ of a phrase fk′ that is a descendant of fk in the phrase trie. Hence, if we have a dynamic data
structure for range maximum queries, then we can compute each rightmost occurrence with one query.

The phrase trie can be obtained in linear time as follows. We compute the suffix tree for the string
S′ = S#0f1#1f2#2 . . . #z−1fz#z, where each #k is a unique separator symbol. This takes O(n) time. For any
fk from F , the parent of the leaf that spells suffix fk#k . . . is exactly the node that spells fk. Thus, we can
mark the d nodes that spell phrases from F in O(|F |) time. It is then easy to compute the nearest marked
ancestor of each node in O(n) time. The phrase trie is obtained by creating a new tree that contains only
the marked nodes and an artificial root. The new parent of a marked node is its nearest marked ancestor
(or the artificial root node if it does not exist). Finally, we compute the preorder numbers in the phrase
trie, and also annotate the corresponding marked nodes in the suffix tree with these numbers. Then, the
annotation of text position i is the annotation of the nearest marked ancestor of the leaf that corresponds
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Figure 5.1: The phrase trie for the LZ factorization a|b|b|a|ab|ababab|bab|c|abba|baa where F is all
the distinct phrases. Below each node is the preorder number.

to text position i in the suffix tree. Hence we obtain the annotations in O(n) time.
Finally, we solve dynamic range maximum queries (RMQ) for A. The updates are incremental in the

sense that every update is the new global maximum (i.e., the rightmost text position processed so far).
Therefore, we can maintain a dynamic RMQ data structure for A with O( 1ϵ ) time updates and O(dϵ) time
queries using the standard technique of square-root decomposition, generalized to arbitrary ϵ. For ϵ = 1

2 , we

split A into blocks of size Θ(
√
d) and maintain the maximum of each block, which we can update in constant

time whenever we update an entry of A. To answer queries we need to scan at most O(
√
d) elements in

A that are in blocks that are only partially overlapped by the query range. Then, we also scan the O(
√
d)

maxima of blocks that are fully contained in the query range. Thus, we take O(
√
d) time. This generalizes

to smaller ϵ by recursively subdividing the blocks into 1
ϵ layers, leading to O( 1ϵ ) update time and O(dϵ)

query time. Each phrase in F incurs a range query and each text position an update. We perform |F | range
queries and n updates in O(nϵ + |F | dϵ) time. This concludes the proof of Theorem 12(b).

5.4.3 Infrequent Phrases

Given an LZ-like parsing S = f1 . . . fz, we say that a phrase fk is infrequent if |{k′ ∈ [1, z] | fk′ = fk}| =
O(log n), i.e., if it occurs at most O(log n) times in the parsing. We now show how to resolve all infrequent
phrases in O(n) time, and we begin by establishing a data structure that is crucial for our solution.

Lemma 14. Let m,n ∈ [1, 2w]. For a tree of m nodes, labeled with preorder numbers from [1,m], after an
O(m) + o(n) time preprocessing, and in O(m) + o(n) space, we can maintain a data structure for nearest
marked ancestor queries with the following operations.

• mark/unmark a node i ∈ [1,m] with di descendants in O(1 + di/ log n) time

• check if a node i ∈ [1,m] is marked in O(1) time

• check if a node i ∈ [1,m] has a marked ancestor in O(1) time

• output the nearest marked ancestor j of a node i ∈ [1,m] in O(1 + dj/ log n) time, where dj is the
number of descendants of j.

Proof. We compute the balanced parenthesis sequence [Nav16, Chapter 7] (BPS) B[1..2m] of the tree by
re-running the traversal used to obtain preorder numbers (with an artificial parent edge for the root to start
the traversal). When we walk down the edge to node i, we append i’s opening parenthesis to B, when we
walk up the edge from node i we append its closing one. The ith opening parenthesis (in left to right order)
belongs to node i, and between i’s opening and closing parentheses there are exactly all the parentheses
corresponding to descendants of i. We preprocess B such that given node i ∈ [1,m] we can lookup the
positions open(i) and close(i) of its respective opening and closing parentheses in B in constant time. This is
possible with a simply linear scan in O(m) time and space. For open, we also compute the inverse mapping
prenum(open(i)) = i.

We use two additional bitvectors A[1..2m] and R[1..2m], both initialized with zeroes. When asked to
mark node i, we set the bits A[open(i)] and A[close(i)] (marking the respective parentheses in B as active),
and additionally we set the entire range R[open(i) + 1..close(i)] one word at a time (indicating that nodes
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whose opening parentheses lie in this region have a marked ancestor). If i has di descendants, then it holds
close(i)− open(i) = 1+ 2di, and thus the procedure takes O(1 + di/w) time. A node i is marked if and only
if A[open(i)] is set, and it has a marked ancestor if and only if R[open(i)] is set (we do not consider a node
to be its own ancestor). Both can be tested in constant time. Finding the nearest marked ancestor of i is
more involved, and we explain it later.

When unmarking a node i, we unset the bits A[open(i)] and A[close(i)]. If i currently has a marked
ancestor, then there is no need to unset the range in R associated with i. Otherwise, we cannot simply unset
the entire range R[open(i)+1..close(i)] because it may have also been set by descendants of i. Hence we have
to leave segments corresponding to marked nodes untouched. Starting at position k = open(i) + 1, we scan
A[k..close(i)] from left to right and keep track of the excess of opening active parentheses, which is initially
e = 0. We perform the scan in blocks of size w′ = ⌊log n/7⌋. Processing A[k..k + w′) works as follows. We
scan the block from left to right. For each position A[j] in the block, we first check if currently e = 0. If
yes, then we unset bit R[j]. Afterwards, if A[j] = 1, we increment e if B[j] is an opening parenthesis, and
decrement e otherwise. Once we reach the end of the block, we increase k by w′ and continue with the next
block, until we reach position close(i). This way, we avoid unsetting parts of R that have to remain active.
However, the procedure takes O(di) time, or O(w′) time per block.

The processing of block A[k..k + w′) depends only on A[k..k + w′), B[k..k + w′), R[k..k + w′) and
min(e, w′) (if e > w′, then the excess cannot reach 0 while processing the block). Thus it depends on
3w′ + logw′ ≤ log n/2 bits of information, and in principle there are fewer than 2logn/2 =

√
n distinct

instances of the procedure. In a lookup table, we precompute for each possible A[k..k + w′), B[k..k + w′),
R[k..k+w′), and min(e, w′) the result of the procedure, i.e., the total increment or decrement that we have
to apply to e, and the new value of R[k..k + w′). The lookup table has O(

√
n) entries, and each of them can

be computed naively in O(polylog(n)) time. Using the table, an entire block A[k..k + w′) can be processed
in constant time (and handling the last block that is possibly shorter than w′ can be solved with additional
lookup tables for each shorter block length). Thus, we can unmark a node in O(1+di/w

′) = O(1+di/ log n)
time.

We have already shown how to check if i has a marked ancestor in constant time. If we also want to
output the nearest marked ancestor, then we start at position o = open(i). Similarly to the technique for
unmarking nodes, we now scan A[1..o] and B[1..o] from right to left and keep track of the excess of active
closing parentheses. As soon as the excess becomes negative, we have found the opening parenthesis of the
nearest marked ancestor. If this parenthesis is at position o′, then the ancestor is j = prenum(o′). We can
implement this procedure with lookup tables (similar to unmarking nodes), and thus it takes O(1+dj/ log n)
time, where dj is the number of descendants of j.

Resolving the Phrases. Now we are ready to resolve the infrequent phrases. We first build the phrase
trie including only the infrequent phrases, and compute the mapping from phrases to preorder numbers. We
also annotate each text position i with the preorder number corresponding to the longest infrequent phrase
that is a prefix of S[i..n] (this works just like in Section 5.4.2). We prepare the phrase trie for nearest marked
ancestor queries with Lemma 14.

Now we scan S from right to left. For each text position i, we first try to resolve phrases, which we
explain in a moment. After that, if i is the destination of a phrase fk with preorder number pk, we mark
node pk in the phrase trie (indicating that the phrase needs to be resolved). We also store P [pk] = k in an
array of size at most z. This is necessary because the preorder numbers correspond to the distinct infrequent
phrases, and thus the mapping from preorder numbers to phrases is not necessarily injective. Later, we
resolve fk by discovering that node pk is marked, and we will then need to be able to lookup k = P [pk].
Note that we never try to resolve two phrases with the same preorder number at the same time, since the
one further to the left would have already resolved the other one.

For every text position i, with annotation qi, we check if qi has a marked ancestor. If it does, we obtain
the nearest marked ancestor p of qi, corresponding to phrase fP [p]. By the construction of the phrase trie
and the annotations of text positions, fP [p] is a prefix of T [i..n]. Since we have not unmarked the node yet,
and due to the right-to-left processing order, it follows that i is the rightmost source of fP [p]. We unmark p.
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Analyzing the Complexity. The preprocessing for the nearest marked ancestor structure takes O(z) +
o(n) time and space. For each text position, annotated with qi, we check if qi has a marked ancestor in
overall O(n) time. Whenever this is the case, we also find its nearest marked ancestor. However, we will then
also immediately unmark the nearest marked ancestor, and thus the total time for finding marked ancestors
is the same as the time for unmarking nodes, which is bounded by the time for marking them.

Now we analyze the total time for marking nodes. Let m be the number of nodes in the phrase trie
(or equivalently the number of distinct infrequent phrases). We mark nodes O(z) times, and thus the total
time is O(z) plus the sum of all the O(di/ log n) terms. For now, we assume that each node gets marked
exactly once. Then the time is O( 1

logn ·
∑m

i=1 di). Let ai denote the number of ancestors of a node i,

and observe that
∑m

i=1 di =
∑m

i=1 ai (because in both sums each combination of descendant and ancestor
contributes value 1 to the sum). If node i corresponds to a phrase fk, then the number of ancestors of i
is bounded by ai < |fk|, since each ancestor represents a phrase that is a proper prefix of fk. Hence the
time is O( 1

logn ·
∑z

i=1 |fk|) = O(n/ log n). We assumed that each node gets marked exactly once. Since we

only consider infrequent phrases, each node gets marked O(log n) times, and thus the time is O(n). This
concludes the proof of Theorem 12(c).

5.4.4 Close Phrases

Given an LZ-like parsing S = f1 . . . fz, we say that a phrase fk with destination i is close if its rightmost
source is j and i−j = O(log n). We now show how to resolve all close phrases in O(n) time. Let γ = Θ(log n).
If a phrase at destination i is of length at least γ, then we can afford O(log n) time to resolve it. We consider
each j ∈ [i− r, i) with r = O(log n) as a potential source. Checking if j is a source of i takes constant time
with an LCE data structure (e.g., [KK19]). Thus we can resolve all close phrases of length at least γ in O(n)
time.

For the phrases of length less than γ, we extract copies of overlapping segments s0, . . . , s⌊n/2γ⌋ where
∀i ∈ [1, ⌊n/2γ⌋] : si = S[1+2(i− 1)γ . . .min(2(i+1)γ, n)]. We modify each segment si by rank-reducing the
alphabet of si to (a subset of) [1, 4γ], which takes O(n) total time by radix sorting all segments in batch.
Then, we offset the alphabets such that si is over alphabet [1 + 4(i− 1)γ, 4iγ]. We concatenate all segments
si into S′ = s0s1 . . . s⌊n/2γ⌋.

Each phrase of length less than γ is fully contained in the right half of at least one segment (apart from
possible phrases with destination in the first 2γ position of S, which we solve with the LCE data structure
in O(polylog(n)) time). We map each phrase of length less than γ to a corresponding destination in S′ such
that if the destination is within some segment sj then the phrase is fully contained in the right half of sj .
This results in a subset of an LZ-like factorization of S′. Since the segments have disjoint alphabets, all
phrases in the subset are infrequent an can be solved with Theorem 12(c). We only have to map the sources
back to original text positions, which is easily done in linear time. Hence we have shown Theorem 12(d).
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Abstract

Deterministic finite automata (DFA) are a classic tool for high throughput matching of regular ex-
pressions, both in theory and practice. Due to their high space consumption, extensive research has been
devoted to compressed representations of DFAs that still support efficient pattern matching queries. Ku-
mar et al. [SIGCOMM 2006] introduced the delayed deterministic finite automaton (D2FA) which exploits
the large redundancy between inter-state transitions in the automaton. They showed it to obtain up to
two orders of magnitude compression of real-world DFAs, and their work formed the basis of numerous
subsequent results. Their algorithm, as well as later algorithms based on their idea, have an inherent
quadratic-time bottleneck, as they consider every pair of states to compute the optimal compression.

In this work we present a simple, general framework based on locality-sensitive hashing for speeding
up these algorithms to achieve sub-quadratic construction times for D2FAs. We apply the framework
to speed up several algorithms to near-linear time, and experimentally evaluate their performance on
real-world regular expression sets extracted from modern intrusion detection systems. We find an order
of magnitude improvement in compression times, with either little or no loss of compression, or even
significantly better compression in some cases.

6.1 Introduction

Regular expressions are a widely used tool for signature detection and play a key role in modern network
applications such as monitoring, balancing and intrusion detection. The standard solution to achieve high
throughput is converting the regular expressions into deterministic finite automata (DFA), as they are
very efficient in practice and have asymptotically optimal query time. Unfortunately DFAs require a lot
of memory, which makes them unsuitable in many real-world applications where the regular expression
sets are prohibitively large and complex. A key technique to make DFAs feasible for real-word data sets
is to exploit the massive redundancy via compression [BC08, BTC06, KSE08, TSCV04, AFS+12, BC07a,
KDY+06, FGP+08, FPG+11, AFS+15, QWF+11, SLHW17, MPN+10, PLT14, LT14, BC13, KTW06, BC07b,
LSL+17,MMK18,GWX+23].

A classic, well-cited result in this line of work is the delayed deterministic finite automaton [KDY+06],
with several subsequent based on this technique [MPN+10, PLT14, LT14, BC13, KTW06, BC07b, LSL+17,
MKMK18,GWX+23]. The basic observation is that many states share a large number of equivalent tran-
sitions, that is, they have identical labels and destination states. If two states share a significant number
of equivalent transitions, the common transitions can be replaced with single unlabeled default transition.
For real-world DFAs this can achieve compression by two orders of magnitude. To decide which labeled
transitions to replace, current algorithms count the number of equivalent transitions between every pairs of
states. They therefore take Ω(n2) time to compress a DFA of n states. This is infeasible for many modern
data sets where automatons can have thousands or millions of states. In this paper we present a general
framework for circumventing this bottleneck, based on locality-sensitive hashing. Using a simple, efficient
hashing scheme that is locality-sensitive with regards to the similarity of states, i.e., their pair-wise com-
pressibility, we effectively sample a sub-quadratic number of candidate default transitions that each have
high probability of contributing significantly to the compression.
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6.1.1 Our Contribution

We present a simple, general framework for efficient compression of DFAs with default transitions. This
enables faster compression times for the class of algorithms based on the general idea of D2FAs. We apply
our technique to several such compression algorithms, and experimentally evaluate the resulting algorithms
on collections of regular expressions extracted from real-world intrusion detection system. We find an order
of magnitude improvement in compression time, with either no or minor loss of compression. In some cases
we even achieve significantly better compression. Specifically we show the following:

• We speed up the general D2FA construction algorithm [KDY+06] from quadratic to near-linear time.
Experimentally this improves the running time by an order of magnitude without loss of compression,
for all data sets we tested.

• Kumar et al. [KDY+06] presented a variant of the general compression algorithm that bounds the
worst-case query time in the resulting D2FA. Given a positive integer L they construct a D2FA with
a longest delay of L. Here longest delay refers to the maximum number of default transition traversed
when matching any single character in the D2FA. We present an algorithm for constructing D2FAs
with the same guarantees, using our framework. On our tested data sets we construct such D2FAs up
to 50 times faster while obtaining significantly better compression for the same longest delay bound.

• Becchi and Crowley [BC07b,BC13] presented an alternative approach to obtain query time guarantees,
called the A-DFA. They construct D2FAs with bounded matching delay. When matching a pattern P ,
any single character could traverse multiple default transitions, but over the entire pattern at most |P |
are traversed. We apply our technique to obtain a linear-time algorithm for constructing D2FAs with
the same guarantees. In our experiments this improves the running time up to 37 times with only
minor loss of compression.

6.1.2 Related Work

A lot of work has been done on compressing DFAs. For an overview see surveys [XCS+16, PS17]. One
approach is compressing the alphabet and thereby reducing the size of the transition table [BC08,BTC06,
KSE08,BC13,TJD+17]. Here, if some sets of characters always cause the same transitions throughout the
DFA they can be replaced by a single character [BC08,BTC06,BC13], and even if they occasionally diverge in
some states [KSE08]. The alphabet can also be reduced by replacing infrequent characters with sequences of
frequent characters [TJD+17]. Becchi and Cambadi [BC07a] showed how states with similar sets of outgoing
transitions could be merged into one, thereby compressing the set of states. Finally, another popular ap-
proach is compressing the set of transitions [MPN+10,TSCV04,AFS+12,BC07a,KDY+06,KTW06,BC07b,
FGP+08,FPG+11,BC13,PLT14,LT14,AFS+15,QWF+11,LSL+17,MMK18, SLHW17]. A well-cited result
in this line of work is the D2FA [KDY+06] which compresses equivalent transitions between states, with sev-
eral subsequent results utilizing default transitions [MPN+10,PLT14,LT14,BC13,KTW06,BC07b,LSL+17,
MMK18,MKMK18,GWX+23] A significant weakness of the D2FA is the quadratic construction time, which
is the topic of this paper. Patel et al. [PLT14] proposed a framework that circumvents this issue for D2FAs
constructed from sets of regular expressions, where each individual rule produces small DFAs. We note this
technique is orthogonal to ours.

The idea of using locality-sensitive hashing to compress collections is not new [DI03,OMST02,DAS10,
KDLT04,PWZ11, SHWH12,KH15,XJFH11,BGPT23]. To the best of our knowledge, however, we are the
first to apply the technique to the problem of compressing deterministic finite automata.

6.2 Preliminaries

A graph G = (V,E) is a set of nodes V (also called vertices) and a set of edges E : V ×V between nodes. We
call the two nodes of an edge its endpoints. If the edges have direction, i.e. (u, v) ̸= (v, u), then the graph is
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directed, otherwise it is undirected. Edges can have an associated weight, in which case the graph is weighted.
Edges can also have an associated label, in which case the graph is labeled. We denote an edge from u to
v with label c as (u, v)c and say (u, v) is c-labeled. A path of length k between two nodes u0 and uk is a
sequence of nodes u0, . . . , uk such that (ui, ui+1) ∈ E for 0 ≤ i < k. It can also be viewed as the sequence
of edges (u0, u1), . . . , (uk−1, uk). If u0 = uk then p is a cycle. A set of nodes where every pair of nodes have
a path between them is called a connected component. If a graph has only one connected component it is
connected, otherwise it is disconnected.

A tree is a connected graph that contains no cycles. Due to this property, a tree with n nodes has n− 1
edges. A graph consisting of several trees is a forest. If a node has only one incident edge it is called a leaf.
For a node v in a tree its radius is the length of the longest path from v to a leaf. The diameter of a tree is
the length of the longest path between any two nodes in the tree. A spanning tree of a graph is a subgraph
that contains all the nodes and is a tree. If the graph is weighted the value of a spanning tree is the sum of
the weights of the edges in the tree. A maximum spanning tree (MST) is a spanning tree of maximum value.

A family of hash functions is locality-sensitive, for some similarity measure, if the probability of two objects
hashing to the same value is high (lower-bounded for some parameter) when they are similar (similarity above
some threshold) and, conversely, low when they are dissimilar. For simplicity we omit formal definitions,
but see e.g. [HIM12] for details. There are different families of locality-sensitive hash functions for different
distance or similarity measures, with some of the most popular being simhash [Cha02], MinHash [BCFM00]
and sdhash [Rou10]. As an example, the MinHash of a set is the minimum element according to a uniformly
random permutation. The probability that two sets A and B hash to the same value is exactly their Jaccard
similarity (|A∩B|)/(|A∪B|). As the probability of collision can be appropriately upper- and lower-bounded
for chosen similarity thresholds, MinHash is locality-sensitive w.r.t. Jaccard similarity.

6.3 Delayed Deterministic Finite Automata

A deterministic finite automaton (DFA) is a 5-tuple D = (Q,Σ, δ, q0, A) where Q is a set of states, Σ is an
alphabet, δ : Q× Σ → Q is a transition function, q0 ∈ Q is the initial state and A ⊆ Q is a set of accepting
states. Throughout we let n = |Q| denote the number of states. A DFA can be thought of as a labeled
directed graph where Q is the set of nodes and each transition δ(u, c) = v is a labeled, directed edge (u, v)c.
See Figure 6.1 (A) for an example. For simplicity we assume every state has exactly one labeled transition
for each character in the alphabet, i.e., δ is total, as in previous work. Given a pattern string P and a path p
in D we say that p matches P if the concatenation of the labels of p equals P . We say a path that starts in q0
and ends in A is accepting. We say D accepts a string P if there exists an accepting path that matches P .
The language of D is the set of strings it accepts.

A delayed deterministic finite automaton (D2FA) [KDY+06] is a deterministic finite automaton that is
augmented with unlabeled default transitions. Formally a D2FA is a 6-tuple D2 = (Q,Σ, δ, q0, A, F ). Again
Q is the set of states, Σ is the alphabet, δ is the transition functions, q0 ∈ Q is the initial state and A ⊆ Q
is the set of accepting states. Here F : Q → Q is the default transition function. Viewed as a graph, default
transitions are ϵ-labeled directed edges, where ϵ is the empty string, and each state has at most one outgoing
default transition. See Figure 6.1 (C) for an example. To transition from a state u according to a character c
we follow a c-labeled transition if it exists, or otherwise follow the default transition:

δ(u, c) =

{
v if (u, v)c ∈ D2

δ(F (u), c) otherwise

Note that for δ to be well-defined it must always be possible to reach a state from u that has a c-labeled
transition. This implies that any cycle of default transitions must have an outgoing c-labeled transition,
for any character c. To transition from a state u according a string P = c1 . . . cm we recursively transition
according to each character:

δ(u, c1c2 . . . cm) = δ(δ(u, c1), c2 . . . cm).
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Figure 6.1: Example from [KDY+06]. (A) DFA D for regular expression .*((ab+c+)|(cd+)|bd+e). Edges
to q0 are omitted. (B) Space reduction graph for D with edges annotated with similarity. Edges with
similarity less than 4 omitted, except those connecting q2 to avoid disconnecting the graph. (C) D2FA
equivalent to D. All transitions are shown, default transitions are dashed.

Given a character c and a path p = u1, . . . , uk we say p matches c if δ(u1, c) = uk and all but the last
transition is default, i.e., F (ui) = ui+1 for 1 ≤ i < k. Note that then the concatenation of the labels of p
equals c. Given a string P = c1 . . . cm and a path p we say p matches P if p is the concatenation of the paths
matching the individual characters c1, . . . , cm. Note that then the concatenation of the labels of p is P . We
define acceptance as before.

We say two automata are equivalent if the language of both is the same. We say two transitions are
equivalent if they have the same destination and label, i.e., (u,w)c and (v, w)c are equivalent. Given a
DFA we can compress it by replacing sets of equivalent transitions with single default transitions to obtain
an equivalent D2FA with fewer total transitions. We define the similarity of two states u and v, denoted
sim(u, v), to be their number of equivalent transitions, that is, sim(u, v) = |{c ∈ Σ | δ(u, c) = δ(v, c)}|.
See Figure 6.1 (B) for an illustration. Inserting a default transition (u, v) and removing the equivalent
transitions from u does not affect the language but saves sim(u, v) − 1 transitions. Each transition we can
remove without affecting the language we say is redundant.

Following a default transition does not consume an input character which introduces a delay when
matching. We define the longest delay of D2 to be maximum number of default transitions in any path
matching a single character. That is, if the delay is d we must follow at most d default transitions to match
any single character. Given a pattern P we define the matching delay of P in D2 to be the number of default
transitions in the path starting in q0 and matching P .

6.4 Compression of DFAs with Default Transitions

In this section we outline the algorithm of Kumar et al. [KDY+06] that given a DFA D constructs an
equivalent D2FA. Let D2 be an initially empty D2FA with the same set of states as D. The algorithm then
constructs the transitions of D2 as follows.

Step 1: Space Reduction Graph Construct the complete graph over the states of D and to each edge
(u, v) assign weight sim(u, v). This is the space reduction graph (SRG). See Figure 6.1 (B) for an
example.

Step 2: Maximum Spanning Tree Build a maximum spanning tree over the SRG. Root the spanning
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tree in a central node, that is, a node of minimal radius, and direct all edges towards the root to obtain
a directed spanning tree.

Step 3: Transitions For each edge (u, v) in the tree insert the default transition (u, v) into D2. Copy
every labeled transition from D into D2 that is not redundant in D2.

Step 1 takes Θ(n2|Σ|) time as the complete graph over n states has n(n−1)/2 = Θ(n2) edges and for each edge
(u, v) they calculate sim(u, v) by comparing the |Σ| outgoing transitions of u and v. In Step 2 they construct
the maximum spanning tree with Kruskal’s algorithm [Kru56] which takes O(m logm) = O(n2 log n) time
for the m = Θ(n2) edges of the SRG. Step 3 takes O(n|Σ|) time as they consider every transition in D. Thus
the total running time is O(n2(log n+ |Σ|)).1

The space reduction graph exactly captures the amount of transitions we can remove by inserting a
default transition between each pair of states. Therefore it is the natural basis for most algorithms that use
default transitions. Constructing default transitions along leaf-to-root paths in a tree ensures that there are
no cycles and that no state has more than one outgoing default transition. A maximum spanning tree of the
space reduction graph maximizes the number of edges made redundant by the default transitions, and thus
the compression achieved. Directing the default transitions toward a central node reduces the longest delay
of D2 by minimizing the length of paths of default transitions (leaf-to-root paths) in the tree.

6.5 Fast Compression

We now show how to use locality-sensitive hashing to speed up the the above algorithm for constructing
D2FAs. The idea is to reduce the number of edges in the space reduction graph, i.e., sparsifying it.

Let again D be the input DFA. Let r and k be two positive integer constants. We replace Step 1 of
the algorithm (constructing the complete SRG) and instead construct a sparse SRG (explained below) with
m = O(rn) = O(n) edges in O(n(rk + |Σ|) = O(n|Σ|) time. The remainder of the algorithm then takes
O(m logm) = O(n(|Σ| + log n)) time, which is also the total time complexity. The resulting D2FA is not
necessarily as small as the one achieved by constructing the complete SRG, but our experiments show that
it essentially is in practice (see Section 6.8 for details).

6.5.1 Constructing a Sparse SRG

We begin with an initially empty graph G = (Q,E) where the nodes are the states of D. First we add edges
to connect the initial state to all other states, that is E = {(q0, u) | u ̸= v0}. We then add edges to the graph
in r rounds, where a single round is as follows:

We pick k unique random characters c1, . . . , ck ∈ Σ. For each state v ∈ Q we construct the sequence of
k states V = δ(v, c1), . . . , δ(v, ck). We hash V into a single hash value h(v) using a standard vector hashing
scheme of Black et al. [BHK+99]. We insert v into a table with key h(v). For each unique hash value hi,
consider the set of states Ci that hash to hi. For each state u ∈ Ci we pick another state v ∈ Ci uniformly
at random and insert (u, v) into E, if it does not already exist.

After r rounds the algorithm terminates and we assign weights to each edge of G equal to the similarity
of the endpoint states. We call G the sparse space reduction graph.

Hashing a single states takes O(k) time so hashing all states takes O(kn) time. Iterating over each state
and sampling an edge takes O(n) time so the r rounds take O(rkn) time in total. Each round inserts at
most a single edge per state so G has m = O(rn) edges. Calculating similarity between two states takes
Θ(|Σ|) time so assigning weight to all edges takes O(rn|Σ|) time. The total time to construct G is thus
O(rn(k + |Σ|)) = O(n|Σ|).

We note that this hashing scheme is very similar to the scheme of Har-Peled et al. [HIM12] which is
locality-sensitive w.r.t. the Hamming distance between bit-vectors. They hash a bit-vector by uniformly
sampling k bits into a k-bit hash value. We hash a state by uniformly sampling k outgoing transitions into

1We note that the running time is not explicitly stated in their paper, but follows from their description.
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a k-element vector, which is then compressed into a single hash value. By an analysis similar to theirs, this
scheme is locality-sensitive w.r.t. the similarity of states. Any edges we sample are between states that hash
to the same value, in some round, which requires (ignoring collisions in final vector hash) their transitions
to be equivalent for each of the k characters sampled from Σ. The probability of this is high only when they
are they are very similar, and therefore any edge in G is likely of high weight and can contribute significantly
to the compression.

6.6 Compression with Bounded Longest Delay

We now present an efficient algorithm for constructing D2FAs with bounded longest delay. The problem
is: given a DFA D and a positive integer L, construct a D2FA D2 equivalent to D, such that the longest
delay of D2 is at most L. Recall that the longest delay of D2 is at most the length of the longest path
of default transitions in D2. The algorithm we present is based on the similar cubic-time algorithm by
Kumar et al. [KDY+06], which we outline in the following section. After outlining their algorithm we
present ours.

6.6.1 Bounded Longest Delay by Iteratively Constructing Small Trees

We now review the algorithm by Kumar et al. [KDY+06]. It is a modification of the algorithm presented in
Section 6.4, as follows.

They first construct the complete SRG, as before. Then they construct a spanning forest where each tree
has diameter at most ∆ = 2L. To do this they again use Kruskal’s algorithm, but now ignore any edges
that would cause a tree diameter to exceed ∆. Furthermore, among the edges with maximum similarity they
select one that causes a minimum increase to any tree diameter. After constructing the forest they root each
tree in a central node, direct edges toward each root and construct transitions, as before.

Each tree has diameter at most ∆ and is rooted in a central node. Thus any path of default transitions
has length at most ⌈∆/2⌉ = L, and the longest delay is at most L. As before, Kruskal’s algorithm adds
up to n − 1 edges to the forest after sorting the m = O(n2) edges of the SRG. For each edge they check if
the new tree would exceed the diameter constraint. To facilitate this check they maintain the radius of each
node as the spanning forest is constructed. Each time an edge is added, merging two trees, the radius of
every node in the new tree can change. In the worst case, each of the O(n) edge additions causes every radii

to change, so in total it takes O(
∑n−1

i=1 i) = O(n2) time to maintain the radii. We note that in practice each
tree typically remains small and thus fewer updates are necessary. Nonetheless, the total time complexity is
at least quadratic.2

Combining our sparsification technique with this algorithm does not improve the asymptotic running
time. Though a sparse SRG has fewer edges, maintaining the radii still takes quadratic time. In the next
section we present an alternative algorithm that does combine effectively with sparsification.

6.6.2 Fast Compression with Bounded Longest Delay

We now present an algorithm that uses sparsification to efficiently construct D2FAs with bounded longest
delay. Here we also construct a forest where each tree has a bounded diameter, but instead of iteratively
constructing small trees, we instead construct one large maximum spanning tree and then remove (cut) edges
until each tree in the resulting forest is small. Let again D be the input DFA and L be a given positive
integer. The algorithm is then as follows:

Step 1: Construct SRG Construct a sparse SRG for D as in Section 6.5.1.

Step 2: Construct MST Construct a maximum spanning tree T0 over the SRG using Kruskal’s algorithm.
Pick a central node v0 in T0 and then discard T0. Construct a new maximum spanning tree T using

2It is unclear from the description of the algorithm exactly how edge selection is performed, which could affect the time
complexity.
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Prim’s algorithm [Pri57] with v0 as the initial node. When queuing a new edge (u, v), where u is the
node already in T , assign weight w′

u,v = sim(u, v)− 2dv where dv is the distance from v0 to v in T .

Step 3: Cut Edges Cut a minimum number of edges in T to obtain a forest with each tree diameter at
most ∆ = 2L. Then direct the edges in each tree towards the root.

Step 4: Construct Transitions As in Step 3 in Section 6.4, create default transitions along edges in the
trees and then copy in every labeled transitions from D that is not redundant in D2.

After cutting, each tree has diameter at most ∆ = 2L. We orient edges towards each root so the longest
delay of D2 is at most ⌈∆/2⌉ = L.

Step 1 takes O(rn(k + |Σ|)) time, as before, to construct an SRG with m = O(rn) edges. Step 2 takes
O(m logm) = O(rn + log rn) time, as Prim’s algorithm has the same complexity as Kruskal’s. Step 3
takes O(n) time by using the algorithm of Farley et al. [FHP81] to cut the necessary edges in a bottom up
traversal of T . Step 4 takes O(n|Σ|) time as it considers every edge in D. Thus the total construction time
is O(rn(k + |Σ|+ log rn)) = O(n(|Σ|+ log n)).

Each edge (u, v) we cut results in sim(u, v)−1 more labeled transitions in D2, as that default transition is
then not constructed. Intuitively, the lower the diameter of T , the fewer edges we cut to get each tree below
the bound. Therefore we use an edge weight that trades similarity for lower diameter, as the lost similarity
is often outweighed by the fewer cuts. We found the simple heuristic of w′ performed well in practice. A
similar idea was used in the implementation of the algorithm by Kumar et al [KDY+06]. Because T is not
a maximum spanning tree w.r.t. similarity, the choice of initial node v0 affects the total similarity of the
final tree. We found that picking v0 to be a central node in a MST w.r.t. similarity (T0) yielded the best
compression in practice. Note that we cut the minimum number of edges to uphold the diameter constraint.
Alternatively we could cut edges of minimum total similarity, which could result in better compression.
However, the chosen approach is simple and fast in practice, and because each edge in the SRG has near-
maximum weight, the difference in compression is negligible.

6.7 Compression with Bounded Matching Delay

We now show an efficient construction algorithm for D2FAs with bounded matching delay. The problem is:
given a DFA D, construct a D2FA D2 such that matching a pattern P in D2 traverses at most |P | default
transitions. The algorithm is based on the A-DFA [BC07b,BC13] algorithm, which we first outline.

6.7.1 Bounded Matching Delay by the A-DFA Algorithm

We now review the A-DFA algorithm of Becchi and Crowley [BC07b]. Let again D be the input DFA. Let
the depth d(v) of a state v ∈ Q be the length of the shortest path from the initial state q0 to v. That is,
q0 has depth zero, all neighbours of q0 have depth one, all neighbours of those states (that are not also
neighbours of q0) have depth two, etc. The idea is to only add default transitions from higher-depth states
to lower-depth states, i.e. they point towards the initial state.

Let D2 be a D2FA with initially no default transitions. Then the algorithm is as follows:

Step 1: Calculate Depth Calculate the depth d(v) of each state v ∈ Q by a breadth-first traversal of D.

Step 2: Construct Default Transitions For each state u ∈ Q add default transition (u, v) to D2, where
v is the state such that sim(u, v) is maximum and d(v) < d(u).

Step 3: Construct Labeled Transitions Copy in every labeled transition from D that is not redundant
in D2.

Step 1 takes O(n|Σ|) time to traverse D. Step 2 takes O(n2|Σ|) time as it calculates similarity for every
pair of states. Step 3 takes O(n|Σ|) time as it considers every edge in D. Thus the total running time is
O(n2|Σ|).
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Matching a pattern P in D2 requires following at most |P | default transitions. To see why, consider
the depth of the current state as the pattern is matched. Starting in q0 it is zero, and when a character
is matched, i.e., by following a labeled transition, the depth increases by at most one. When a default
transition is followed the depth decreases, as default transitions only go from higher-depth to lower-depth
states. Over the entire pattern the depth can increase at most |P | and therefore decrease at most |P | (states
only have positive depth). Thus we follow at most |P | default transitions and the total delay of D2 is at
most |P |.

Every state has exactly one outgoing default transition after Step 2. Because all default transition point
towards the root, there cannot be any cycles of default transitions, and thus D2 is a valid D2FA. Note
that the algorithm does not construct the complete SRG. However, selecting a maximum-similarity edge in
Step 2 is equivalent to selecting a maximum-weight incident edge in the complete SRG (that also leads to
lower-depth state), and asymptotically takes as much time as constructing the edges beforehand. Therefore
this algorithm can be thought of as implicitly using the SRG.

6.7.2 Fast Compression with Bounded Matching Delay

We now speed up the A-DFA algorithm using sparsification. As the algorithm only implicitly uses the SRG
we do not construct a sparse SRG as before, however, the idea is similar. Let again D be the input DFA,
and let r and k be positive integer constants. We begin with a D2FA D2 that has no default transitions,
i.e., F (u) = u for u ∈ Q. Then the algorithm runs for r rounds, where a single round is as follows:

Pick k unique random characters c1, . . . , ck ∈ Σ. For each state v ∈ Q we construct the sequence
V = δ(v, c1), . . . , δ(v, ck), and hash V into a single hash value h(v). We insert v into a table with key h(v).
For each unique hash value hi we consider the set of states Ci that hash to that value. For each state u ∈ Ci

we pick another state v ∈ Ci uniformly at random. If v has lower depth and the default transition (u, v)
compresses better than the current default transition of u, i.e., d(v) < d(u) and sim(u, v) > sim(u, F (u)), we
update the default transition of u to point to v, otherwise we just continue. After r rounds the algorithm
terminates.

In a single round we spend O(k|Σ|) time per state to combine k transitions and calculate similarity of
the potential new default transition. Therefore the r rounds take O(rkn|Σ|) = O(n|Σ|) time.

6.8 Experimental Evaluation

We implemented the above algorithms and evaluated their performance on regular expression rulesets ex-
tracted from real-world intrusion detection systems. In this section we present the experimental results.

6.8.1 Setup

Experiments were run on a machine with an Intel Xeon Gold 6226R 2.9GHz processor and 128GB of memory.
The operating system was Scientific Linux 7.9 kernel version 3.10.0-1160.80.1.el7.x86 64. Source code was
compiled with g++ version 9.4 with options -Wall -O4. The input to each algorithm is a DFA constructed
from a set of regular expressions. We measured the time for constructing an equivalent D2FA for the input
DFA, using the clock function of the C standard library. Source code and data sets are available upon
request.

6.8.2 Data Sets

We extracted updated versions of the data sets used in prior work from publicly available regular expression
sets in real-world intrusion detection systems. These systems are Snort 3, Suricata 4 and Zeek 5.

3https://www.snort.org/
4https://suricata.io/
5https://zeek.org/
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Name States Rules Average length
of rules

% using wild-
cards (*, +, ?)

% using length
restrictions
({,k,+})

Snort1 9,435 23 34.5 60.9 39.1
Snort2 19,350 60 28.6 40.0 25.0
Snort3 40,012 70 27.9 40.0 21.4
Snort4 6,577,094 99 27.7 51.5 16.2
Suricata1 13,557 32 117.2 90.6 0.0
Suricata2 29,278 37 111.2 89.2 2.7
Suricata3 75,596 49 105.7 85.7 2.0
Suricata4 7,122,336 196 98.5 86.7 1.0
ZeekNet 4,874,200 23 48.0 47.8 26.1
ZeekFile 4,975,198 41 57.8 19.5 34.1

Table 6.1: Input DFAs and characteristics of the corresponding regular expression set.

Algorithm Description
D2FA The algorithm of [KDY+06], described in Section 6.4.
D2FA-Ld The algorithm of [KDY+06] for bounding longest delay, described in Sec-

tion 6.6.1.
D2FA-Ld-Cut The algorithm presented in Section 6.6.2 for bounding longest delay, but using

the complete SRG instead of a sparse SRG.
D2FA-Md The algorithm of [BC13] for bounding matching delay, described in Section 6.7.
Sparse-D2FA The algorithm presented in Section 6.5.
Sparse-D2FA-Ld As D2FA-Ld but using a sparse SRG instead of the complete SRG.
Sparse-D2FA-Ld-Cut The algorithm presented in Section 6.6.2 for bounding longest delay.
Sparse-D2FA-Md The algorithm presented in Section 6.7.2 for bounding matching delay.

Table 6.2: The algorithms included in the experiments.

We filtered out some rules that use advanced regex features, similar to prior work, as well as any rules
that correspond to a DFA of more than 12,000 states. We generated DFAs of varying size by selecting
prefixes of each expression collection, so, for example Snort3 includes all the rules of Snort1 and Snort2.
Table 6.1 lists the input DFAs along characteristics of the corresponding regular expression set. All regular
expressions are ASCII and have alphabet size Σ = 256.

6.8.3 Algorithms Tested

The algorithms we compare are listed in Table 6.2. For all algorithms we ignore SRG edges of low similarity,
as in previous work, as they have minimal impact on the final compression.

We evaluated four locality-sensitive hashing schemes: the scheme presented in Section 6.5.1, with and
without replacement, and MinHash over the set of outgoing transitions, either with one or k random permu-
tations of the universe. The best performing scheme, both in terms of speed and compression, was the one
presented in Section 6.5.1 (without replacement), and we use that in all experiments. We also investigated
the effect of the parameters k and r. We found k = 8 gave the best compression and increasing r resulted
in better compression but increased the running time linearly. All experiments in this section were run with
k = 8 and r = 512.

6.8.4 General Compression

Here we evaluate the impact of sparsification on the general compression algorithm. We compare algorithms
D2FA and Sparse-D2FA. The results are shown in Table 6.3.
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Algorithm Time Comp. Time Comp. Time Comp.

Snort1 Snort2 Snort3

D2FA 2.78 2.82 16.81 2.20 95.14 2.10
Sparse-D2FA 1.69 2.82 4.14 2.20 8.08 2.10

Suricata1 Suricata2 Suricata3

D2FA 6.38 0.93 46.14 0.92 347.15 0.89
Sparse-D2FA 3.00 0.93 7.16 0.92 20.36 0.89

Snort4 Suricata4

Sparse-D2FA 1950.73 2.18 3079.39 0.93

ZeekNet ZeekFile

Sparse-D2FA 1221.08 7.23 858.64 2.85

Table 6.3: Performance of general compression. Time is the number of seconds to construct the D2FA and
Comp. is the ratio between the number of transitions in the input DFA and the resulting D2FA. Experiments
that failed to terminate in at most 12 hours are omitted.

We observe that Sparse-D2FA achieves the same compression but is significantly faster, for all the tested
DFAs. The running time is improved by a factor two for the smallest inputs and up to roughly a factor
17 for the larger inputs. D2FA failed to terminate in 12 hours for any of the large DFAs (and is therefore
omitted from the table) while Sparse-D2FA terminated in around 50 minutes for the largest. As D2FA did
not terminate we can not directly evaluate the impact on compression. However, note that the compression
of Snort4 is very close to that of Snort3, and similarly for Suricata4 and Suricata3.

6.8.5 Compression with Bounded Longest Delay

Here we evaluate the impact of sparsification on algorithms for constructing D2FAs with bounded longest
delay. We set the longest delay bound to L = 2 and compare the algorithms: D2FA-Ld, Sparse-D2FA-Ld,
D2FA-Ld-Cut and Sparse-D2FA-Ld-Cut. The results are shown in Table 6.4.

We observe that Sparse-D2FA-Ld-Cut significantly out-performs D2FA-Ld in both running time and
compression. Compared to D2FA-Ld it is around 14 times faster for the smaller inputs and around 50 times
faster for the largest, while simultaneously obtaining a D2FA that is two to four times smaller. Notably it
achieves compression that is no more than a factor two worse than the D2FA algorithm for D2FAs without
delay bound (see Table 6.3). It is also the only algorithm that terminated in less than 12 hours for the large
inputs. For the largest DFA, with 7 million states, it terminated in 81 minutes and achieved more than 98%
compression.

We note that Sparse-D2FA-Ld obtains worse compression than D2FA-Ld, constructing a D2FA that
is around 10–15% larger for the small Snort data sets and around 250% for the small Suricata data sets.
Here sparsification incurs a loss of compression. We suggest that this approach to bounding longest delay is
particularly sensitive to the set of edges available, requiring more options for each edge than other approaches.
This could also explain why (Sparse-)D2FA-Ld-Cut generally performs better than (Sparse-)D2FA-Ld.

Interestingly Sparse-D2FA-Ld-Cut obtains slightly better compression thanD2FA-Ld-Cut for the two
smallest inputs, even though SRG edges considered by the former is a strict subset of the edges considered
by the latter. We verified this to be Sparse-D2FA-Ld-Cut by chance constructing an initial spanning tree
that requires fewer cuts to satisfy the path bound constraint.
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Algorithm Time Comp. Time Comp. Time Comp.

Snort1 Snort2 Snort3

D2FA-Ld 28.94 10.79 148.22 10.19 502.41 9.74
Sparse-D2FA-Ld 17.47 12.41 76.20 11.44 285.40 10.87
D2FA-Ld-Cut 3.81 4.81 20.97 4.02 98.67 3.81
Sparse-D2FA-Ld-Cut 2.02 4.62 4.69 4.04 10.14 3.89

Suricata1 Suricata2 Suricata3

D2FA-Ld 55.70 4.61 253.19 5.55 1266.20 5.59
Sparse-D2FA-Ld 46.60 12.16 166.79 12.21 990.55 10.83
D2FA-Ld-Cut 7.21 1.49 47.00 1.31 368.94 1.39
Sparse-D2FA-Ld-Cut 3.57 1.20 8.12 1.45 23.48 1.40

Snort4 Suricata4

Sparse-D2FA-Ld-Cut 2182.68 3.91 4880.69 1.39

ZeekNet ZeekFile

Sparse-D2FA-Ld-Cut 934.80 7.94 961.73 3.50

Table 6.4: Performance of algorithms that produce a D2FA with a longest delay of at most L = 2. Time is
the number of seconds to construct the D2FA and Comp. is the ratio between the number of transitions in
the input DFA and the resulting D2FA. Experiments that failed to terminate in at most 12 hours have been
omitted.

6.8.6 Compression with Bounded Matching Delay

Here we evaluate the impact of sparsification on the algorithms for constructing DFAs with bounded matching
delay. We compare algorithms D2FA-Md and Sparse-D2FA-Md. The results are shown in Table 6.5.

We find that Sparse-D2FA-Md is an order of magnitude faster with only minor loss of compression.
For the small inputs Sparse-D2FA-Md compresses slightly worse than D2FA-Md. For the Snort DFAs the
difference is less than 10%, while for the Suricata DFAs it is between 48% and 90%. This suggests that for
some inputs the algorithm is more sensitive to sparsification. However, Sparse-D2FA-Md runs significantly
faster than D2FA-Md. For the smallest inputs it is around twice as fast and for the largest it is 16–38
times faster. We attempted to evaluate the algorithms for the very large DFAs but failed to achieve good
compression, and were unable to determine if it was due to sparsification or the A-DFA algorithm, as only
Sparse-D2FA-Md terminated.

6.9 Conclusion

We have shown that locality-sensitive hashing can be utilized to improve the running time of DFA com-
pression algorithms based on default transitions. This is achieved by sparsifying the space reduction graph
of the DFAs, reducing the number of edges from Θ(n2) to O(rn), where n is the number of states and r
is a constant parameter. We applied this technique to obtain efficient construction algorithms for D2FAs,
as well as D2FAs with bounded longest delay and D2FAs with bounded matching delay. We implemented
and experimentally evaluated the algorithms on real-world regular expression sets, comparing against the
non-sparsified algorithms. For general D2FAs we found up to 17 times improvement in compression time
without any loss of compression. For D2FAs with bounded longest delay our algorithm was up to 50 times
faster while obtaining significantly better compression for the same longest delay bound. For D2FAs with
bounded matching delay we are up to a factor 37 times faster, with only slightly worse compression.

Patel et al. [PLT14] proposed an orthogonal technique for circumventing the quadratic construction time
of D2FAs. An interesting open problem is whether our techniques can be effectively combined.
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Algo. Time Comp. Time Comp. Time Comp.

Snort1 Snort2 Snort3

D2FA-Md 2.32 6.63 15.64 6.77 90.36 6.64
Sparse-D2FA-Md 0.90 6.89 2.36 7.27 5.63 7.18

Suricata1 Suricata2 Suricata3

D2FA-Md 5.57 0.94 45.77 0.94 355.58 0.92
Sparse-D2FA-Md 1.12 1.39 3.43 1.38 9.29 1.74

Table 6.5: Performance of algorithms that construct a D2FA with total delay of at most |P | for a given
pattern P . Time is the number of seconds to construct the D2FA and Comp. is the ratio between the
number of transitions in the input DFA and the resulting D2FA.
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Szabó. Design and optimizations for efficient regular expression matching in DPI systems.
Comput. Commun., 61:103–120, 2015.

[AHdLT97] Stephen Alstrup, Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Minimizing diam-
eters of dynamic trees. In Proc. 24th ICALP, pages 270–280, 1997.

[AHT00] Stephen Alstrup, Jacob Holm, and Mikkel Thorup. Maintaining center and median in dynamic
trees. In Proc. 7th SWAT, pages 46–56, 2000.

[AKL+16] Amihood Amir, Tsvi Kopelowitz, Avivit Levy, Seth Pettie, Ely Porat, and B. Riva Shalom.
Mind the gap: Essentially optimal algorithms for online dictionary matching with one gap. In
Proc. 27th ISAAC, pages 12:1–12:12, 2016.

[AKLL05] Amihood Amir, Tsvi Kopelowitz, Moshe Lewenstein, and Noa Lewenstein. Towards real-time
suffix tree construction. In Proc. 12th SPIRE, volume 3772, pages 67–78. Springer, 2005.

[ALU02] Amihood Amir, Gad M. Landau, and Esko Ukkonen. Online timestamped text indexing. Inf.
Process. Lett., 82(5):253–259, 2002.

[AN08] Amihood Amir and Igor Nor. Real-time indexing over fixed finite alphabets. In Proc. 19th
SODA, pages 1086–1095, 2008.

[APS04] Alberto Apostolico, Cinzia Pizzi, and Giorgio Satta. Optimal discovery of subword associations
in strings. In Proc. 7th DS, volume 3245, pages 270–277, 2004.

[APU11] Alberto Apostolico, Cinzia Pizzi, and Esko Ukkonen. Efficient algorithms for the discovery of
gapped factors. Algorithms Mol. Biol., 6:5, 2011.

87



[AR02] Stephen Alstrup and Theis Rauhe. Improved labeling scheme for ancestor queries. In Proc.
13th SODA, pages 947–953, 2002.

[AS09] Alberto Apostolico and Giorgio Satta. Discovering subword associations in strings in time linear
in the output size. J. Discrete Algorithms, 7(2):227–238, 2009.

[BB94] P Bucher and A Bairoch. A generalized profile syntax for biomolecular sequence motifs and its
function in automatic sequence interpretation. In Proc. 2nd ISMB, pages 53–61, 1994.

[BC07a] Michela Becchi and Srihari Cadambi. Memory-efficient regular expression search using state
merging. In Proc. 26th INFOCOM, pages 1064–1072, 2007.

[BC07b] Michela Becchi and Patrick Crowley. An improved algorithm to accelerate regular expression
evaluation. In Proc. ANCS 2007, pages 145–154, 2007.

[BC08] Michela Becchi and Patrick Crowley. Efficient regular expression evaluation: theory to practice.
In Proc. ANCS 2008, pages 50–59, 2008.

[BC13] Michela Becchi and Patrick Crowley. A-DFA: A time- and space-efficient DFA compression
algorithm for fast regular expression evaluation. ACM Trans. Archit. Code Optim., 10(1):4:1–
4:26, 2013.

[BCFG17] Philip Bille, Patrick Hagge Cording, Johannes Fischer, and Inge Li Gørtz. Lempel-Ziv com-
pression in a sliding window. In Proc. 28th CPM, volume 78, pages 15:1–15:11, 2017.

[BCFM00] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzenmacher. Min-wise
independent permutations. J. Comput. Syst. Sci., 60(3):630–659, 2000.

[BFGLO09] Gerth Stølting Brodal, Rolf Fagerberg, Mark Greve, and Alejandro López-Ortiz. Online sorted
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[FIKS18] Johannes Fischer, Tomohiro I, Dominik Köppl, and Kunihiko Sadakane. Lempel-Ziv factoriza-
tion powered by space efficient suffix trees. Algorithmica, 80(7):2048–2081, 2018.

[FKMS03] Paolo Ferragina, Nick Koudas, S. Muthukrishnan, and Divesh Srivastava. Two-dimensional
substring indexing. J. Comput. Syst. Sci., 66(4):763–774, 2003.

[FKS84] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with 0(1)
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