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Preface 
 

This thesis represents the culmina5on of my PhD research conducted at DTU Health Tech department 

during June 2020-2023 under the guidance of Associate Professor Ramneek Gupta (DTU Health Tech-

Novonordisk) for the first year and with Associate Professor Elena Papaleo (DTU Health-Tech and 

Danish Cancer Society) as main supervisor during the last two years. Clinical Professor. Kjeld 

Schmiegelow from Julian Marie Center at Rigshospitalet and Associate Professor Cornelius-Jan Hendrik 

Pronk from Lund University acted as co-supervisors.   

 

This PhD thesis consists of an introduc5on followed by four manuscripts, and a final epilogue 

discussing some key aspects of the thesis as well as a summary of the contribu5on of each manuscript. 
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Abstract 
 

This PhD started under the umbrella of iCOPE (Interregional Childhood Oncology Precision Medicine 

Explora5on) project, which aims to improve life of children with cancer in Denmark implemen5ng a 

personalized medicine approach. This thesis contributed by establishing a set of Next Genera5on 

Sequencing (NGS) workflows in a High Performance Computer (HPC) environment that allowed to 

detect, annotate and store efficiently germline and soma5c short variants (SNV) as well as structural 

variants (SV) from Danish children with cancer. With the developed tools, four manuscripts have been 

produced and included in this thesis: Manuscript 1 where germline short variants  iden5fied by our 

first WGS variant calling pipeline were used to inves5gate how frequently children with cancer were 

likely to have a cancer predisposi5on syndrome (CPS); similarly, in the  Manuscript 4  our latest whole 

genome sequencing (WGS) short variant detec5on pipeline was used to report the gene5c varia5on 

and inves5gate the gene5c predisposi5on in children with molecularly classified ependymoma in 

Denmark over the past 20 years; for Manuscript 2, a cohort of 566 WGS samples from Danish children 

with cancer was analyzed and Variants of Uncertain Significance (VUS) from interested genes were 

evaluated using RoseKaDDG framework for structure-based calcula5ons of the free energy changes 

upon amino acid subs5tu5on (ΔΔGs). Finally, in Manuscript 3 we performed germline WGS in siblings 

and parents as well as RNAseq and WGS of DNA from the tumours to iden5fy short nucleo5de variants 

(SNVs) as well as structural variants (SVs) and described mechanisms possibly underlying a previously 

unseen co-occurrence of Philadelphia + Acute Lymphoblas5c Leukaemia (Ph+ ALL) in siblings from a 

Danish family. 
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Resumé 
 

Denne ph.d. startede under paraplyen af iCOPE-projektet (Interregional Childhood Oncology Precision 

Medicine Explora5on), som har 5l formål at forbedre livet for børn med kræf i Danmark ved at 

implementere en personlig medicin5lgang. Denne agandling bidrog ved at etablere et sæt af Next 

Genera5on Sequencing (NGS) arbejdsgange i et High Performance Computer (HPC) miljø, der gjorde 

det muligt at detektere, kommentere og gemme effek5vt germline og soma5ske korte varianter (SNV) 

samt strukturelle varianter (SV) fra danske børn med kræf. Med de udviklede værktøjer er fire 

manuskripter blevet produceret og inkluderet i denne agandling: Manuskript 1, hvor kimlinjekorte 

varianter iden5ficeret af vores første WGS-variant kaldende pipeline blev brugt 5l at undersøge, hvor 

ofe børn med kræf sandsynligvis havde et cancer prædisposi5on syndrom (CPS) ; på samme måde, i 

Manuskript 4 blev vores seneste hele genomsekventering (WGS) korte variantdetek5onspipeline brugt 

5l at rapportere den gene5ske varia5on og undersøge den gene5ske disposi5on hos børn med 

molekylært klassificeret ependymom i Danmark over de sidste 20 år; 5l Manuskript 2 blev en kohorte 

på 566 WGS prøver fra danske børn med cancer analyseret, og Variants of Uncertain Significance (VUS) 

fra interesserede gener blev evalueret ved hjælp af RoseiaDDG framework 5l strukturbaserede 

beregninger af de frie energiændringer ved aminosyresubs5tu5on (ΔΔGs) . Endelig udførte vi i 

Manuskript 3 germline WGS i søskende og forældre samt RNAseq og WGS af DNA fra tumorerne for 

at iden5ficere korte nukleo5dvarianter (SNV'er) såvel som strukturelle varianter (SV'er) og beskrev 

mekanismer, der muligvis ligger 5l grund for en 5dligere uset co- forekomst af Philadelphia + Akut 

Lymfoblas5sk Leukæmi (Ph+ ALL) hos søskende fra en dansk familie.  
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Introduc8on 
 

Childhood cancer is a major public health issue in Europe, affec5ng around 35,000 children every year 

(1). The incidence of childhood cancer has been steadily increasing by 5-10% per decade in Europe, 

and it remains a leading cause of death among children over one year old in western countries, 

accoun5ng for 20% of deaths due to disease (Figure 1). Based on sta5s5cs provided by the Associa5on 

of Nordic Cancer Registries (nordcan.iarc.fr), the age-standardized incidence rate of cancer in children 

under the age of 19 in Denmark is 20.4 for males and 17.8 for females per 100,000 inhabitants (Figure 

1). In Denmark, approximately 280 children and adolescents are diagnosed with cancer annually, with 

acute lymphoblas5c leukemia (ALL) being the most common cancer type with an age-standardized 

incidence rate of 3.8 in males and 2.9 in females per 100,000. (2)(3)   

With remarkable advances in diagnos5cs and treatment (4), the five-year survival afer childhood 

cancer has improved from 30% in the 1960s to more than 80% nowadays in most of Europe (5–7). As 

a result of the increasing survival and lack of primary preven5ve measures, the number of childhood 

cancer survivors in society is growing steadily. This growing popula5on is at risk of long-term health 

consequences such as late effects induced by the cancer or the intensive treatment at a young age (8–

10). Although many survivors are well afer therapy, a wide spectrum of long-term adverse health 

consequences in childhood cancer survivors has been described, indica5ng higher risks of a broad 

range of soma5c and mental late effects, including second cancers (5,10,11), higher overall mortality 

rates (10,11) and severe chronic health condi5ons (5,10,12,13).  

 

Figure 1. Cancer mortality in Europe from 1960-2010 (left, Wolfe et al. 2013). Age-standardized (0-19) incidence of cancer 
per 100 000 in Nordic countries from 2000-2020 (right). 
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Importance of precision medicine in childhood cancer  

 

Precision medicine has emerged as an important approach for the treatment of cancer, and this is 

par5cularly true for childhood cancer pa5ents (14). Childhood cancers are rare and have unique 

biological characteris5cs that differ from adult cancers (15). For instance, childhood cancers arise 

during cri5cal periods of growth and development when cells undergo rapid prolifera5on and 

differen5a5on. The transforma5on of normal cells into cancerous cells during this dynamic 

developmental phase can result in unique tumor types and gene5c altera5ons that differ from those 

seen in adult cancers. Children can inherit certain gene5c muta5ons that increase their suscep5bility 

to developing cancer. Germline muta5ons in specific genes, such as TP53 (Li-Fraumeni syndrome) or 

RB1 (re5noblastoma), contribute to the development of pediatric cancers (16,17). These inherited 

gene5c predisposi5ons play a more prominent role in childhood cancers compared to adult cancers. 

In that sense, childhood cancers ofen exhibit dis5nct biological characteris5cs and molecular profiles 

compared to adult cancers. Therefore, the treatment of childhood cancers requires a different 

approach, one that is tailored to the specific gene5c and molecular characteris5cs of each pa5ent's 

cancer (15). Precision medicine, which u5lizes gene5c and other types of informa5on to tailor 

treatments to individual pa5ents, has emerged as a promising approach for childhood cancer 

treatment (14). 

One of the primary advantages of precision medicine for childhood cancer pa5ents is the ability to 

minimize the side effects of treatment. Conven5onal chemotherapy and radia5on therapy can have 

significant side effects, including damage to healthy 5ssues and organs (18). By tailoring treatment to 

the individual pa5ent, precision medicine can reduce the risk of harmful side effects and improve the 

quality of life for childhood cancer pa5ents. For example, some childhood cancers may respond beier 

to chemotherapy than to radia5on therapy, while others may require a combina5on of both. By using 

gene5c informa5on to iden5fy the most effec5ve treatment op5ons for each pa5ent, precision 

medicine can help to reduce the risk of side effects and improve treatment outcomes. 

Another advantage of precision medicine for childhood cancer pa5ents is the poten5al to iden5fy new 

therapeu5c targets (19). By using genomic and other molecular informa5on to iden5fy the specific 

drivers of childhood cancer, researchers and clinicians can develop new targeted therapies that 

specifically target these drivers. For example, researchers have used next genera5on sequencing (NGS) 

to iden5fy specific muta5ons and gene fusions that drive the development of certain childhood 

cancers, such as pediatric ALL (14,20–23). 
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Precision medicine can also help to improve treatment outcomes for childhood cancer pa5ents. By 

using genomic informa5on to iden5fy the most effec5ve treatment op5ons for each pa5ent, precision 

medicine can improve the chances of success and reduce the risk of relapse (14,24). For example, 

researchers have used NGS to iden5fy gene5c markers that are associated with a poor prognosis in 

certain childhood cancers, such as high-risk neuroblastoma(25). By iden5fying these markers, 

clinicians can develop tailored treatment approaches that may improve outcomes for these pa5ents. 

Moreover, precision medicine has the poten5al to reduce healthcare costs associated with childhood 

cancer treatment. Conven5onal chemotherapy and radia5on therapy can be expensive, and the costs 

associated with these treatments can be a significant burden for childhood cancer pa5ents and their 

families or the administra5on (18). By tailoring treatment to the individual pa5ent, precision medicine 

can reduce the need for unnecessary treatments and minimize the costs associated with side effects 

and complica5ons. 

In order to fully realize the poten5al of precision medicine for childhood cancer pa5ents, it is important 

to con5nue to invest in research and development in this field. This includes the development of new 

genomic and molecular tools for the diagnosis and treatment of childhood cancer, as well as the 

crea5on of large-scale genomic databases for sharing informa5on among researchers and clinicians. 

 

Role of NGS bioinforma7cs in advancing precision medicine for childhood cancer 

pa7ents  

 

NGS is a powerful technology that enables the rapid and cost-effec5ve sequencing of large amounts 

of DNA or RNA. It has revolu5onized the field of genomics by providing a comprehensive view of the 

gene5c landscape of diseases (14,26–29). NGS u5lizes massively parallel sequencing, allowing for the 

simultaneous sequencing of millions of DNA fragments or RNA molecules. The process involves 

fragmen5ng the DNA or RNA, aiaching adapters, amplifying the fragments, and sequencing them. 

Various NGS pla|orms, such as Illumina, Ion Torrent, and Pacific Biosciences, employ different 

sequencing chemistries and workflows, but the general principle remains the same. NGS enables the 

comprehensive profiling of the genomic altera5ons present in biological samples containing DNA or 

RNA. It can detect various types of gene5c altera5ons, including single-nucleo5de variants (SNVs), 

small inser5ons/dele5ons (indels), copy number varia5ons (CNVs), and structural varia5ons (SV, e.g., 

chromosomal rearrangements, gene fusions). By providing a comprehensive genomic picture, NGS 

allows for a more precise understanding of the gene5c drivers and biology of childhood cancers. NGS 
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has transformed the landscape of precision medicine in childhood cancer. By iden5fying specific 

gene5c altera5ons in tumors, such as driver muta5ons or gene fusions, NGS enables the selec5on of 

targeted therapies that specifically inhibit or modulate these altera5ons. This approach allows for 

personalized treatment strategies tailored to the unique genomic profile of each pa5ent's cancer. 

Targeted therapies have shown promising results in certain childhood cancers such as Philadelphia + 

Acute Lymphoblas5c Leukemia (Ph+ ALL), improving outcomes and minimizing treatment-related 

toxici5es (30). NGS helps iden5fy gene5c altera5ons that serve as prognos5c or predic5ve biomarkers 

in childhood cancers. These biomarkers can provide valuable informa5on about a pa5ent's prognosis, 

treatment response, and risk of disease recurrence. For example, specific gene5c altera5ons detected 

by NGS may indicate a higher risk of relapse, allowing for more aggressive treatment or closer 

monitoring (14). Addi5onally, NGS can iden5fy poten5al drug resistance mechanisms (31–33), 

enabling clinicians to make informed treatment decisions. Furthermore, NGS plays a crucial role in 

monitoring minimal residual disease (MRD), which refers to the small number of cancer cells that 

remain afer treatment (34). MRD monitoring is par5cularly important in childhood cancers, as it helps 

assess treatment response, predict relapse, and guide therapeu5c interven5ons. NGS-based 

approaches, such as targeted sequencing of specific cancer-associated muta5ons, can detect and 

quan5fy MRD with high sensi5vity, facilita5ng 5mely interven5ons and personalized treatment 

adjustments. 

NGS generates vast amounts of genomic data. By sharing and integra5ng these data through 

collabora5ve research efforts and data repositories, researchers and clinicians can gain deeper insights 

into any type of cancer. Large-scale ini5a5ves, such as the Pediatric Cancer Genome Project from Saint 

Jude Children Hospital (PeCAN), or more region-oriented ini5a5ves such as The Interregional 

Childhood Oncology Precision Medicine Explora5on (iCOPE), leverage NGS data to accelerate 

discoveries, iden5fy novel targets, and improve treatment strategies for pediatric cancers. This type of 

ini5a5ve is also being implemented in low and middle-income countries due to the reduc5on of the 

sequencing costs (35). 

iCOPE project is a European ini5a5ve aimed at improving the diagnosis and treatment of childhood 

cancer with precision medicine. The project is funded by the European Regional Development Fund 

(ERDF) and involves partners from Denmark's Technical University (DTU) and Lund University in 

Sweden. The iCOPE project aims to improve diagnos5cs, treatment, cure rates, and the overall life 

situa5on of children with cancer by developing and implemen5ng a precision medicine approach for 

the treatment of childhood cancer pa5ents in the Øresund region (Denmark and Southern Sweden). 

This approach involves the use of genomic and other molecular and clinical informa5on to tailor 

treatments to the specific gene5c and molecular characteris5cs of each pa5ent's cancer as well as 
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promote awareness of childhood cancer and the importance of precision medicine in improving 

treatment outcomes. The iCOPE project has several specific objec5ves, including the establishment of 

a regional network of healthcare providers and researchers who specialize in childhood cancer, the 

development of new diagnos5c tools and therapies based on genomic and other molecular 

informa5on, and the implementa5on of a pla|orm for sharing data and informa5on among partners: 

• Build a database and biobank for childhood cancer research. 

• Carry out extensive germline and tumor DNA and transcriptomics analyses to gain insights into 

cancer predisposi5on syndromes, soma5c muta5ons, and tumor biology (NGS) 

• Address ethical issues arising from genome sequencing. 

• Inves5gate e-health as a tool to support healthcare at home. 

• Develop telepresence robots to support children with staying connected to school during 

cancer treatment. 

The iCOPE project is an important ini5a5ve that highlights the growing importance of precision 

medicine in the field of childhood cancer research and treatment. By bringing together researchers 

and healthcare providers from different regions and countries, the project aims to accelerate the 

development of new diagnos5c and therapeu5c approaches and improve outcomes for childhood 

cancer pa5ents across Europe. 

 

Purpose and scope of the thesis (iCOPE) 
 

As part of the iCOPE project, this thesis will focus on establishing and applying a NGS workflow to 

detect germline and soma5c short variants (SNV and indels) as well as SV from Danish children with 

cancer in a High-Performance Computer (HPC) setup. Furthermore, we worked on building a MySQL 

database to store and annotate the extracted variants that would serve as input data to other 

researchers in the consor5um. From that perspec5ve, this thesis can be categorized into two primary 

components. Firstly, the opera5onal component involves se~ng up NGS pipelines to iden5fy germline 

and soma5c gene5c variants in Computerome, and subsequently, store and annotate these variants in 

the MySQL database to facilitate research analysis (Chapter 3). Secondly, the research component 

involves analyzing the gene5c variants iden5fied by the NGS pipelines for specific research projects, 

which will be elaborated in Chapter 4. 
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NGS Bioinforma8cs Pipelines for Childhood Cancer 

Research in iCOPE 
 

The raw data 

Each pa5ent in iCOPE underwent germline paired-end whole genome sequencing (WGS) analysis using 

DNA extracted from peripheral blood samples. In cases of hematologic malignancies, the blood 

samples were collected post-remission or skin biopsies in pa5ents without remission.  The gene5c 

material was sent for sequencing to Beijing Genomic Ins5tute (BGI, Hong Kong, China) using 

BGIseq/HiSeqX (Illumina, San Diego, CA, USA) and resul5ng FASTQ files were subsequently sent back 

in hard drives to Copenhagen. This data was personally handed to Computerome-Support Team and 

transferred to our private folders in the HPC. Furthermore, we also had FASTQ files of Danish children 

with cancer available from the previous study Sequencing Tumor And Germline DNA—Implica5ons for 

Na5onal Guidelines (STAGING) which offered WGS to all children and young people with cancer under 

the age of 18 in Denmark during 2016-2019.  In this project, tumor RNA sequencing (RNAseq) was also 

performed on bone marrow or blood samples obtained before treatment in most pa5ents. Details on 

the sequencing protocols are explained in Byjrialson et al. 2020 (36). By the end of the project, we had 

1023 FASTQ pairs: 730 germline WGS and 293 tumour RNAseq for 744 pa5ents with mul5ple cancer 

types.  

 

The HPC system: Computerome 

Computerome is a high-performance compu5ng (HPC) system and a Danish na5onal supercomputer 

designed specifically for advanced scien5fic research and data-intensive computa5ons. It is a state-of-

the-art infrastructure located at DTU that provides researchers with the computa5onal resources and 

storage capacity necessary for conduc5ng large-scale and complex analyses. Computerome offers a 

wide range of compu5ng resources, including 31,000 high-performance processor cores, 20PB of 

storage and a library of over 3000 different life science applica5ons and reference datasets allowing 

researchers to perform computa5onally demanding tasks efficiently and effec5vely.  

The system is specifically op5mized for handling large-scale data and bioinforma5cs analyses and 

provides a secure and reliable environment for storing and processing sensi5ve genomic informa5on, 

ensuring data integrity, privacy, and compliance with privacy regula5ons by implemen5ng measures 

such as backups and regular valida5on procedures.  Computerome is designed to meet high-security 
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standards by including measurements such as access controls, authen5ca5on mechanisms, data 

encryp5on and undergoes regular audits and assessments to maintain a secure compu5ng 

environment for researchers. It offers advanced features such as parallel processing capabili5es which 

enables researchers to handle the large volume of data generated by NGS technologies, accelera5ng 

the analysis pipelines, and facilita5ng the genera5on of results from large datafiles such as the 

alignment files generated in this project. One of the key advantages of Computerome is its scalability, 

allowing efficient handling of the substan5al volume of data such as the data generated in this project 

as more children are included, thus accommoda5ng the growing demands and ensuring efficient data 

management. In the same way, the sofware provided in Computerome is managed by modules that 

allow to update the version of the required sofware while keeping previous versions to maintain the 

reproducibility.   

 

Structuring the raw data in HPC 

Having a well-defined strategy for storing FASTQ files from a large consor5um that has generated WGS 

and RNA-seq data for approximately 1000 samples of children with cancer is as important as the quality 

of the downstream analysis design and should not be underes5mated. The strategy, which considers 

an effec5ve storage strategy, facilitates data trackability and accessibility within the consor5um and 

should also consider scalability to accommodate the growing volume of data and future expansion, 

ensuring that the consor5um can handle incoming samples and evolving data analysis requirements. 

In STAGING-iCOPE we created a strategy that allowed us to keep track of every sequencing and analysis 

file of the project and facilitated the data management of such a large and constantly growing dataset 

by crea5ng a naming system called the “iCOPE Naming System” (Figure 2). This system consists of 

encoding basic informa5on of the sample such as pa5ent iden5fier, sample type or type of analysis in 

the name of the files and folders with a specific hierarchy-based folder structure as described in Figure 

2. With this system we were able to create a directory tree system where all the different folders/sub-

folders contain informa5on about the process of the sample sequencing.  
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Figure 2. STAGING Dictionary, implemented also for iCOPE in Computerome. 

 

Once we stablished a naming system to efficiently store the fastq files from the sequencing 

experiments of this project, we implemented a bash script (create_tree) that uses a list of FASTQ file 

names that follow the iCOPE naming system and creates a directory-tree based on the provided FASTQ 

file-name containing two symbolic links to the original FASTQ pair, which is stored in a secure non-

writable folder. With this approach we prevent raw data corrup5on and ensure an independent area 

to analyze the raw FASTQ files that does not require any extra storage or data duplica5on.  

Furthermore, we also created a bash script called “sample_track” which taking advantage of our 

naming system it reports a summary of the status of the folders and files for each of the pa5ents 

(Figure 3). For instance, the script checks the presence and syntax of all the subfolders for each pa5ent, 

so they follow the iCOPE naming system, as well as the presence of FASTQ symbolic links poin5ng to a 

healthy original FASTQ file. Furthermore, it also checks for the presence and integrity of the resul5ng 

alignment (BAM) and variant calling (VCF) files as well as the log file to report if an analysis was 

successful or not. Afer checking and displaying all the informa5on about the pa5ent folders 
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individually, it reports a summary of the general amount of FASTQ and analysis files such as BAM and 

VCF files we have in the cohort as well as informa5on about the sequencing types or the biopsy types 

in the en5re dataset. 

 

 

Figure 3. Example of the output produced by "sample_track" for three samples with different issues. Identifiers have been 
blurred for privacy. FASTQ symbolic links are broken (dangling) and BAM files cannot be detected for any of the samples. 

 

Quality Control 

Checking the integrity and quality of raw FASTQ files is of utmost importance in large-scale projects 

involving NGS data such as iCOPE or STAGING. These projects generate massive volumes of sequencing 

data from mul5ple samples, making it crucial to ensure the quality and integrity of the raw data before 

downstream analysis. Raw FASTQ files may contain errors introduced during sequencing, library 

prepara5on, or data transfer processes, which can significantly impact the reliability and accuracy of 

subsequent bioinforma5cs analyses.  

In order to try to minimize these issues and due to the importance of the informa5on contained in the 

FASTQ filenames in iCOPE, first we made sure the sample_track and create_tree scripts implemented 

checkpoints to ensure the FASTQ files were correctly named and placed in the correct folder in the 

directory tree with the correct filename. Furthermore, the sample_track script checks If the fastq files 

are stored in pairs or we are missing any of the files as well as the FASTQ pair file-size ra5o, which is 

used to flag the poten5al corrupted FASTQ pairs.  

Once we have the healthy FASTQ files placed in the correct folder we proceed to evaluate the quality 

of the samples with an in-house quality control script that combines sofware from Picards, Samtools, 

Bedtools and GenomeCov among others to evaluate poten5al errors such as errors introduced during 

the sequencing or library prepara5on. The output metrics of this script were combined and visualized 

using Mul3QC. Germline FASTQ files passed all the filters in most of the cases and data-transfer errors 

were the cause of the files showing low quality metrics. Corrupted files were sent for transfer again 

and all germline FASTQ files were considered as good quality. However, the quality of the RNAseq 

samples was not as good as the germline FASTQ. In this case we observed mul5ple samples showing 

library prepara5on errors and the downstream analysis of these samples was performed very carefully. 
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Re-sequencing of some of the samples was proposed, however 5me and funding limita5ons did not 

allow to accomplish it. 

 

NGS pipelines in Computerome HPC 

In order to build the NGS pipeline for this project we used Sen5eon sofware, a leading provider of 

bioinforma5cs sofware solu5ons for genomic data analysis built upon Genome Analysis Toolkit 

(GATK). The Sen5eon sofware suite offers a comprehensive set of tools and pipelines that enable 

efficient and accurate analysis of NGS data. Sen5eon offers dedicated pipelines for DNA analysis 

(DNAseq) and tumor-normal analysis (TNseq) for germline and soma5c variant detec5on respec5vely. 

DNAseq is designed to process and analyze DNA sequencing data, encompassing best prac5ces steps 

such as data preprocessing, read alignment, duplicate marking, base quality score recalibra5on, variant 

calling, variant filtering, annota5on, and repor5ng. Furthermore, DNAscope from Sen5eon allows to 

iden5fy SV from germline BAM files. On the other hand, TNseq for soma5c variant calling incorporates 

all the steps of the DNA analysis pipeline and includes addi5onal features specifically tailored for paired 

tumor and normal samples. Addi5onally on the tumour-normal analysis, Sen5eon offers the TNscope 

algorithm, a haplotype-based soma5c variant caller with improved accuracy that also allows for 

soma5c SV detec5on. Regarding RNAseq variant calling, Sen5eon provides a pipeline based on DNAseq 

but specifically implemented for RNAseq data. 

 

DNAseq: 

As described in the Figure 4, the process begins with Sen5eon-BWA (BWA-MEM, Burrows-Wheeler 

Aligner - Maximal Exact Match) which creates an index of the reference genome which builds an FM-

index and auxiliary data structures for efficient sequence matching. When aligning paired-end reads, 

BWA-MEM treats each read of the pair independently. It starts by genera5ng short substrings, known 

as seeds, from each read. These seeds act as anchor points and are used to ini5ate the alignment 

search in the reference genome. BWA-MEM employs an efficient algorithmic approach to extend these 

seeds in both direc5ons, searching for poten5al alignments. During the extension process, it takes into 

account the presence of mismatches and gaps (indels) between the reads and the reference genome. 

This allows BWA-MEM to accurately align reads even in the presence of gene5c varia5ons or 

sequencing errors. 
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Afer aligning the paired-end reads independently, BWA-MEM analyzes the rela5ve posi5ons of their 

alignments to determine the proper orienta5on and distance between the read pairs. It considers both 

the mapping coordinates and orienta5on of the aligned reads to infer the actual insert size of the DNA 

fragments in the sample. By accurately determining the read pair orienta5ons and distances, BWA-

MEM enables the iden5fica5on of genomic varia5ons or structural rearrangements. 

Once the alignment process with BWA-MEM for paired-end reads has ended, we sort the aligned read 

pairs based on their genomic coordinates. Sor5ng the read pairs ensures that both ends of the pairs 

are adjacent to each other in the alignment file, facilita5ng subsequent analyses that rely on proper 

read pairing informa5on.  

 

Figure 4. Sentieon DNAseq pipeline for variant calling (v202112.07) 

 

Once the alignment file is ready, we evaluate the alignment looking into sta5s5cal summaries of the 

data quality and the pipeline data analysis results. For instance, the GC bias metrics includes a 

summary file providing an overview of biases in the propor5on of guanine (G) and cytosine (C) bases 

in the sample DNA, as well as detailed metrics iden5fying specific regions with GC bias. Mean quality 

by cycle metrics calculates the average quality scores across different posi5ons in the read, providing 

insights into sequencing quality varia5ons throughout the read length. Quality distribu5on metrics 

analyzes the distribu5on of quality scores, helping iden5fy problema5c regions or ar5facts. Insert size 

metrics assesses the distribu5on of library fragment sizes in paired-end sequencing data and alignment 

sta5s5cs metrics offers comprehensive informa5on, including alignment rate, mapping quality, and 

duplicate rate, providing an overview of quality and poten5al ar5facts in the read alignment. These 

metrics collec5vely provide insights into GC bias, quality scores, insert size distribu5on, and alignment 

quality, assis5ng in the evalua5on and interpreta5on of the sequencing data. 
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Following sor5ng and alignment evalua5on, the next step is to iden5fy and remove PCR or op5cal 

duplicates in the paired-end data. Duplicates can arise during library prepara5on or sequencing and 

may lead to inflated variant calling sta5s5cs or biased downstream analyses. For this purpose, we use 

Sen5eon Dedup and LocusCollector (GATK PicardMarkDuplicates) which consider both ends of the read 

pairs, considering their alignment posi5ons and molecular indices. Duplicate read pairs are removed 

from the dataset, ensuring the removal of redundant or spurious data. 

Afer removing duplicates, we perform an op5onal step, which is indel realignment by Sen5eon 

Realigner algorithm (GATK Indel Realigner). During the alignment process, reads that span indel sites 

may not align perfectly due to the presence of inser5ons or dele5ons in the reference or sample 

genome. This can result in misalignments and mismatches in the aligned reads, which can be 

interpreted as mapping ar5facts. To address this issue, the indel realignment step aims to improve the 

accuracy of the alignment by locally realigning the reads around the indel sites. The goal is to correctly 

align the reads to their most likely posi5ons, considering the presence of indels. By performing this 

realignment, the ar5facts caused by misalignments are minimized, and the accuracy of subsequent 

variant calling and downstream analyses is improved.  

Once the reads are realigned, we apply Base Quality Score Recalibra5on (BQSR) which is a pivotal step 

in the analysis that by construc5ng a sta5s5cal model and recalibra5ng base quality scores to mi5gate 

the impact of systema5c errors, BQSR improves the accuracy and reliability of posterior variant calling. 

The algorithm operates through a mul5-step process that involves construc5ng a sta5s5cal model and 

applying it to adjust base quality scores in aligned sequencing reads. The first step involves the 

construc5on of a sta5s5cal model using a training dataset that includes aligned reads and known 

variants obtained from high-quality reference databases. Various covariates are considered, such as 

sequence context, machine cycle, read group, sequencing pla|orm, and other factors that can 

influence the accuracy of base calls. 

Using Sen5eon QualCal tool (GATK's BaseRecalibrator), the model analyzes the training dataset to 

es5mate the systema5c error rates associated with different combina5ons of covariate values. It 

iden5fies paierns and associa5ons between covariates and the probability of base call errors. This 

sta5s5cal model provides insights into the rela5onship between specific covariates and the quality of 

base calls, allowing for the quan5fica5on of systema5c errors. 

Once the model is constructed, it is applied to adjust the base quality scores in the aligned reads using 

Sen5eon QualCal (GATK's ApplyBQSR). This recalibra5on process involves calcula5ng new base quality 

scores based on the es5mated error rates obtained from the model. The recalibrated scores provide a 

more accurate representa5on of the true likelihoods of variant and non-variant base calls, effec5vely 
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correc5ng for systema5c errors and improving the reliability of downstream variant calling and 

analysis. 

For variant calling we used the Haplotyper from Sen5eon, built upon the principles of HaplotypeCaller 

from GATK. The Haplotyper u5lizes a sophis5cated approach that considers the inherent complexity of 

the genome and incorporates local de novo assembly of haplotypes. The variant calling process begins 

by localizing regions of the genome with poten5al variants. The Haplotyper segments the genome into 

smaller intervals and performs local de novo assembly for each interval, iden5fying possible 

haplotypes present in the data. By using a graph-based approach, the Haplotyper constructs a 

haplotype assembly graph that represents the various poten5al haplotypes in the region. This 

approach is par5cularly useful for regions with complex varia5ons, such as indels or mul5-nucleo5de 

polymorphisms.  

Next, the Haplotyper applies a likelihood-based model to assign probabili5es to each possible 

haplotype and genotypes for each sample in the dataset. The model incorporates informa5on from 

the sequencing data, including read alignments, base quality scores, and mapping quali5es. It also 

takes into account poten5al sequencing errors, mapping biases, and various sta5s5cal factors to 

accurately determine the likelihoods of different genotypes. The Haplotyper employs a local 

deconvolu5on algorithm to refine the likelihoods and genotypes, itera5vely adjus5ng and recalibra5ng 

them based on the assembly graph and the read data. This itera5ve process improves the accuracy 

and robustness of the variant calling, par5cularly for regions with complex varia5ons and low-

frequency variants.  

Finally, Sen5eon DNAseq applies VQSR (Variant Quality Score Recalibra5on) using Sen5eon VarCal and 

ApplyVarCal algorithms (GATK VariantRecalibrator and ApplyVQSR) which u5lizes machine learning 

algorithms and sta5s5cal models to classify variants based on their likelihood of being true posi5ves 

or false posi5ves. VQSR begins with a training phase where a subset of high-quality variants, referred 

to as the truth set, is used to establish the rela5onship between various variant annota5ons and the 

truth status (known variants or novel muta5ons). These annota5ons may include aiributes like base 

quality, mapping quality, strand bias, and more. During the training phase, a machine learning model, 

such as Gaussian mixture models (GMM), is trained using these variant annota5ons. The model learns 

the paierns and distribu5ons of the variant annota5ons for true and false posi5ve variants. It 

es5mates the likelihood of a variant being true posi5ve based on its annota5ons, allowing for 

classifica5on of variants into different categories (e.g., "PASS" or "FAIL"). In the applica5on phase of 

VQSR, the trained model is used to evaluate and recalibrate the variant quality scores of newly called 

variants. The model assigns a new quality score, known as the VQSLOD score (log-odds of being a true 
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variant), to each variant based on its annota5ons and the learned paierns from the training phase. 

Variants with higher VQSLOD scores are more likely to be true posi5ve variants, while those with lower 

scores are more likely to be false posi5ves. Based on the VQSLOD scores, a threshold is applied to filter 

out variants with low confidence, reducing the number of false posi5ves and improving the accuracy 

of the final variant call set.  

 

TNseq pipeline: 

In this pipeline alignment, sor5ng, duplicate removal, indel realignment and BQSR are shared with 

DNAseq pipeline, however, variant calling is performed by TNhaplotyper2 (Mutect2 from GATK4) which 

compares the genomic profiles of tumor and normal samples to iden5fy soma5c variants (Figure 5). 

The algorithm u5lizes recalibrated BAM files for both samples obtained by independent analysis with 

DNAseq, along with op5onal parameters such as a panel of normals and a germline VCF file of known 

germline sites. TNhaplotyper2 ini5ates the process by iden5fying "ac5ve regions" in the genome 

where variants are likely to be present by segmen5ng the genome into smaller intervals and focusing 

computa5onal efforts on regions with poten5al variants. Within these ac5ve regions, TNhaplotyper2 

performs local assembly using a de Bruijn-like graph to reconstruct poten5al haplotypes and capture 

complex genomic varia5ons, such as SNVs and small indels, even in regions with structural varia5ons 

or copy number altera5ons. Afer local assembly, TNhaplotyper2 applies a Bayesian classifier that 

es5mates the probability of variants being present in the tumor sample but absent in the matched 

normal sample. By leveraging read evidence, quality scores, mapping quali5es, and other features and 

by incorpora5ng the contamina5on model and orienta5on bias, TNhaplotyper2 improves the accuracy 

and reliability of soma5c variant calling, ensuring robust analysis in the context of tumor-normal 

matched samples. 

 

Figure 5. Recommended Tumour-Normal variant calling analysis (v202112.07) 
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Once the variant calling is completed, the resul5ng variant calls undergo a posterior filtering step using 

TNfilter from Sen5eon (GATK's FilterMutectCalls). This step further refines the variant call set by 

applying addi5onal filters based on quality metrics and specific thresholds in variables such as low 

tumor allele frac5on, low quality scores, or high strand bias.  

 

RNAseq pipeline: 

While the overall pipeline for RNAseq is very similar to the DNAseq, we must use a different aligner 

(Spliced Transcripts Aligned to a Reference, STAR) to handle the specific requirements of the RNAseq 

experiment such as the presence of splice junc5ons, gene isoforms, and the possibility of transcript 

abundance es5ma5on. STAR (Spliced Transcripts Alignment to a Reference) is designed to accurately 

align RNA-seq reads to a reference genome or transcriptome. It is known for its speed, sensi5vity, and 

ability to handle spliced alignments, making it par5cularly suitable for detec5ng splice junc5ons and 

iden5fying alterna5ve splicing events. STAR aligner u5lizes a two-pass alignment strategy. In the first 

pass, the algorithm builds an index of the reference genome or transcriptome, iden5fying poten5al 

splice junc5ons based on annotated informa5on. This indexing step enables efficient mapping of RNA-

seq reads across exon-exon junc5ons. In the second pass, STAR aligns the reads to the indexed 

reference, considering the poten5al splice junc5ons detected in the first pass. This approach improves 

alignment accuracy and sensi5vity, par5cularly for samples with complex splicing paierns or novel 

splice junc5ons not present in the reference annota5on.  

Similar to the DNAseq pipeline, once the reads are aligned and sorted, we calculate quality metrics to 

evaluate the alignment and we proceed to remove the duplicates. 

During RNA-seq alignment, reads may span mul5ple exons due to alterna5ve splicing or gene fusion 

events, so afer alignment and sor5ng we proceed to split the reads at the splice junc5ons. With this 

step we ensure that each part of the read aligns to the appropriate genomic region, preserving the 

informa5on about the splicing events. Spli~ng the reads at junc5ons allows for more accurate 

quan5fica5on of gene expression levels and iden5fica5on of alterna5ve splicing events. It enables the 

precise mapping of reads to specific exons, facilita5ng downstream analyses such as isoform 

quan5fica5on and detec5on of novel transcript variants. 

Afer that, similar to the DNAseq pipeline, we apply BQSR and we call gene5c variants by Haplotyper. 

For this case, we need to use the op5on to trim the reads and apply a lower the Phred-scaled 

confidence threshold than DNAseq (emit and call confidence of 20) as suggested by Sen5eon. 

 



  

 16 

SV pipeline: 

Sen5eon provides two different op5ons for SV calling:  DNAscope (37) and TNscope (38).   DNAscope 

includes preprocessing and assembly mathema5cs of the GATK’s HaplotypeCaller with a machine-

learned genotyping model and allows for efficient SNV, short variant and SV detec5on in germline 

WGS. TNscope is an haplotype-based variant caller developed for soma5c SV from tumour and normal 

matching WGS. This haplotype-based variant caller incorporates the fundamental principles of 

mathema5cal models employed by GATK’s MuTect2 by leveraging ac5ve region detec5on, de Bruijn-

like graph-based haplotype assembly, pair-HMM for read-haplotype likelihood es5ma5on, and 

subsequent genotype assignment. Notably, TNscope introduces a joint evalua5on of haplotypes in 

tumor and normal samples, when available, which significantly enhances precision in soma5c variant 

detec5on (Figure 6). 

 

 

Figure 6. TNscope pipeline for Tumor-Normal somatic structural variant calling. 

 

Variant storage and annota7on: MySQL and Cura7o 

 

The variants iden5fied by the different pipelines are stored in a private server called “Cura5o” which 

is managed by the HPC specialist from iCOPE-DTU. This server has been designed to ensure data 

security and serves also as backup for the raw FASTQ files. In order to make the data available to other 

researchers in the consor5um, this server hosts a MariaDB (MySQL) database that contains the 

variants iden5fied by some of the pipelines such as the DNAseq, RNAseq or TNseq pipelines. Result 

VCF files from the men5oned pipelines were transferred from Computerome to Cura5o and processed 
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by mySQL to parse the main fields of the VCF file such as genomic posi5on, allele and informa5on for 

the call set of each sample. This informa5on by itself is almost meaningless, so we used different 

annota5on sources such as Combined Annota5on Dependent Deple5on (CADD), REVEL or GnomAD to 

include relevant informa5on about the genomic context and predicted pathogene5c impact of each 

variant. We used chromosomic posi5on along with reference and alternate allele to combine all the 

annota5ons with the gene5c variants from the samples as described in Figure 7. 

 
Figure 7. MySQL DB schema. Gnomad, Revel, CADD and Patients tables are combined into Patients_an for posterior 

querying. 

 
The output table, Pa3ents_an (Figure 7), contains records containing informa5on about the specific 

call of a variant in a sample as well as the predicted genotype, gene5c context, predicted impact scores 
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and popula5on frequency informa5on. We repeated this process for the pipelines DNAseq and TNseq 

with reference genome GCRh38; and for pipelines DNAseq and RNAseq with reference genome 

GCRh37 which were combined in one single table: 

Table Pipeline Genome Nº Variants Size in disk (Gb) Nº Samples 

1 DNAseq and 

RNAseq 

GCRh37 575659635 176,5 116 

2 DNAseq GCRh38 3596502564 959 566 

3 TNseq GCRh38 683103363 16,7 214 

 

Figure 8. Summary of the main tables from the MySQL database. 
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Abstract

PURPOSE: Historically, cancer predisposition syndromes (CPSs) were rarely established

for children with cancer. This nationwide, population-based study investigated how fre-

quently children with cancer had or were likely to have a CPS. METHODS: Children (0–17

years) in Denmark with newly diagnosed cancer were invited to participate in whole-genome

sequencing of germline DNA. Suspicion of CPS was assessed according to Jongmans’/

McGill Interactive Pediatric OncoGenetic Guidelines (MIPOGG) criteria and familial cancer

diagnoses were verified using population-based registries. RESULTS: 198 of 235 (84.3%)

eligible patients participated, of whom 94/198 (47.5%) carried pathogenic variants (PVs) in

a CPS gene or had clinical features indicating CPS. Twenty-nine of 198 (14.6%) patients

harbored a CPS, of whom 21/198 (10.6%) harbored a childhood-onset and 9/198 (4.5%) an

adult-onset CPS. In addition, 23/198 (11.6%) patients carried a PV associated with biallelic

CPS. Seven of the 54 (12.9%) patients carried two or more variants in different CPS genes.

Seventy of 198 (35.4%) patients fulfilled the Jongmans’ and/or MIPOGG criteria indicating

an underlying CPS, including two of the 9 (22.2%) patients with an adult-onset CPS versus

18 of the 21 (85.7%) patients with a childhood-onset CPS (p = 0.0022), eight of the
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additional 23 (34.8%) patients with a heterozygous PV associated with biallelic CPS, and 42

patients without PVs. Children with a central nervous system (CNS) tumor had family mem-

bers with CNS tumors more frequently than patients with other cancers (11/44, p = 0.04),

but 42 of 44 (95.5%) cases did not have a PV in a CPS gene. CONCLUSION: These results

demonstrate the value of systematically screening pediatric cancer patients for CPSs and

indicate that a higher proportion of childhood cancers may be linked to predisposing germ-

line variants than previously supposed.

Author summary

Traditionally pediatric cancer have been thought to be–mostly–caused by pure bad luck.
In recent years, however, this notion has been challenged by novel findings as both mater-
nal environmental exposure and genetic causes have been proven to increase the risk of
certain pediatric cancers. With this study we have investigated a national cohort of
pediatric cancer patients in Denmark. We have mapped family pedigree, made physical
examination of the patients, and sequenced their genome, to get a 360-degree understand-
ing of these patients. This revealed that a tenth of all patients carried a genetic variant
causative of their cancer development. In addition, almost half of all patients were sus-
pected of carrying a causative genetic variant based on tools that evaluate type of cancer,
physical characteristics and family history. It also showed that tools to predict which
patients carried a genetic variant did not identify all patients who in fact carried a genetic
variant. Overall, roughly half of all patients were suspected of carrying an underlying
genetic cause of their cancer, and a tenth had a verified underlying genetic variant predis-
posing to cancer pediatric cancer. This could suggest that the amount of pediatric cancer
cases attributed to genetic factors may be even higher.

Introduction

In Europe, 15,000 children (1 in 300) are diagnosed with cancer each year.[1] Cancer can be
attributed to genetic predisposition, exposure to carcinogens, and/or random mutations dur-
ing cell division. Children are exposed to fewer carcinogens than adults.[2,3] Therefore,
genetic predisposition and randomly acquired mutations are the major causes of most child-
hood cancers.

Cancer predisposition syndromes (CPSs) were previously considered rare among pediatric
cancer patients, but increasing use of whole-exome sequencing (WES) and whole-genome
sequencing (WGS) have identified up to 10% CPS among children, including several cases of
CPS for adult-onset cancers not previously associated with childhood CPS. However, most
studies investigated selected or single institution cohorts and included patients with specific
diagnoses that were frequently associated with CPS.[4–6] Although some studies have
included a broader range of pediatric cancer patients, [7–11] there have currently been no
nationwide population-based studies. Moreover, most studies have focused on single nucleo-
tide variants (SNVs) and few have included the effects of copy number variants (CNVs).[12]

Many clinical criteria have been developed to identify patients with CPS,[13–18] but these
have not been validated in a national cohort.

Here we present the genetic SNV and CNV findings from the first 198 consecutive pediatric
cancer patients included in the Danish, prospective, nationwide study Sequencing Tumor And
Germline DNA—Implications for National Guidelines (STAGING).
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Methods

Ethics statement

Ethical approval was obtained through the regional scientific ethical committee (the Ethical
Scientific Committees for the Capital Region, H-15016782) and the Danish Data Protection
Agency (RH-2016-219, I-Suite no: 04804). All parents/guardians and patients 15 years or older
gave formal written consent to participation in this study.

Inclusion criteria and national setup

CPSs were defined as likely pathogenic or pathogenic variants (PVs) in a gene, predisposing
the carrier to childhood- or adult-onset cancer. Between 1 July and 31 December 2016 we
included 25 patients in the STAGING pilot study at Rigshospitalet (Copenhagen University
Hospital, Denmark). On 1 January 2017, the study was expanded to all four pediatric oncology
departments in Denmark. All patients were enrolled before June 2018.

Patients were eligible for inclusion if aged 0–17 years at diagnosis of a primary cancer
including benign brain tumors, Langerhans cell histiocytosis (LCH), or myelodysplastic syn-
drome and parents spoke and read Danish.

Families were provided with written and oral information about the study by a research
nurse or oncologist. A PhD student from STAGING (AB) or clinical geneticist provided
genetic counselling to families interested in participating. Counselling sessions included pedi-
gree construction (three generations), recording the child’s clinical phenotypic features
according to McGill Interactive Pediatric OncoGenetic Guidelines (MIPOGG)[18] and Jong-
mans’ criteria[13] (Table 1), and explaining the potential consequences of genetic findings.
These consequences included secondary findings, variants of unknown significance (VUS),
implications of pathogenic findings associated with CPSs, and subsequent preventive and sur-
veillance measures. Families choosing to enroll in the study were informed that PVs in ‘action-
able’ genes listed by the American College of Medical Genetics and Genomics (ACMG)[19]
would be disclosed to them. Families could select information regarding:

1: PVs in ACMG ‘actionable’ genes.
2: “1” and PVs in 314 known and putative cancer genes. Heterozygous variants in genes

with solely recessive inheritance patterns were reported only if further familial genetic testing
was warranted, in accordance with clinical guidelines.

3: In addition to “1” and “2”, PVs in genes unrelated to CPSs (Table 2). Variants were only
reported if clinical consequences were anticipated. Findings in these genes are not presented
here.

Pedigrees covering 1st–3rd-generation family members were constructed for all patients. 1st-
degree family members were parents and siblings, 2nd-degree family members were uncles/
aunts and grandparents, and 3rd-degree family members were cousins, grandparents’ siblings
and great-grandparents. Cancer diagnoses were verified using unique civil registration num-
bers, which link family members to medical records, including pathological descriptions of
cancer, in the Danish Pathology Data Bank. Living family members gave consent, whereas
medical records of deceased family members could be retrieved without consent.

DNA sampling and sequencing

Genomic DNA was isolated from peripheral blood samples. For patients with hematologic
malignancies, blood samples were drawn after remission, otherwise skin biopsies were
obtained. Parental blood samples were collected to establish whether variants were paternally
or maternally derived or occurred de novo.
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WGS was performed by the Norwegian Sequencing Center (Oslo, Norway) for the pilot
study and by the Beijing Genomics Institute (Hong Kong, China) for the national study
using the HiSeqX platform (Illumina, San Diego, CA, USA) with paired-end sequencing of

Table 1. Tools to identify patients at risk of a cancer predisposition syndrome. Excerpt from the updated Jong-
mans’ criteria[13] and McGill Interactive Pediatric OncoGenetic Guidelines (MIPOGG)[17].

JONGMANS’ CRITERIA

Criteria 1:
Family history (3 generations)

Cancer history in the family:
- 2 or more malignancies in family members <18 years of age
- Any 1st-degree relative with cancer <45 years of age
- 2 or more 1st- or 2nd-degree relatives in same parental lineage with cancer
<45 years of age
Parents are consanguineous

Criteria 2:
Neoplasm indicating underlying CPS

E.g.,
Hypodiploid ALL, botryoid rhabdomyosarcoma of the urogenital tract,
gastrointestinal stromal tumors, retinoblastoma, schwannoma,
subependymal giant cell astrocytoma

Criteria 3:
Tumor analysis suggesting germline
predisposition

E.g.,
Microsatellite instability in constitutional mismatch repair deficiency, loss
of heterozygosity, other mutational signatures

Criteria 4:
Patient with 2 or more malignancies

Secondary, bilateral, multifocal, or metachronous cancers

Criteria 5:
Congenital or other phenotypic
anomalies

Congenital anomalies (oral clefting, skeletal anomalies, facial
dysmorphism)
Developmental delay
Growth anomalies
Skin aberrations (café-au-lait spots, hypopigmentation, sun sensitivity)
Immune deficiency

Criteria 6:
Excessive toxicity related to cancer
treatment

This criterion is not well defined and, based on an individual assessment by
the pediatric oncologist/researcher, we have chosen not to include this
criterion in this paper

MIPOGG CRITERIA

Universal criteria

Anamnestic criteria - >1 primary tumor
- Bilateral/multifocal primary tumors
- Dysmorphic features/congenital abnormalities that the clinician deems to
be related to cancer predisposition

Family anamnestic criteria - Known cancer predisposition syndrome in the family
- Close relative⇤ with cancer <18 years OR a parent/sibling/half-sibling
with cancer at <50 years
- Close relative⇤ with the same cancer type or same organ affected by cancer
at any age
- Close relative⇤ with multiple primary tumors

Tumors for direct referral

Tumors of the central nervous system
and ocular tumors

Atypical teratoid rhabdoid tumor, choroid plexus carcinoma, dysplastic
cerebellar gangliocytoma, endolymphatic sac tumor, hemangioblastoma,
optic pathway glioma, pineoblastoma, pituitary adenoma, retinoblastoma,
subependymal giant cell astrocytoma, vestibular schwannoma

Renal and neuroblastic tumors Cystic nephroma, renal angiomyolipoma, renal cell carcinoma, renal
rhabdoid tumor

Bone and soft-tissue tumors Desmoid tumor, extrarenal rhabdoid tumor, Gardner fibroma, malignant
periphery nerve sheath tumor, nasal chondromesenchymal hamartoma

Other tumors Adrenocortical carcinoma, cardiac rhabdomyoma, colorectal carcinoma,
gastrointestinal stromal tumor, hepatoblastoma, medullary thyroid cancer,
ovarian Sertoli–Leydig cell tumor, parathyroid tumor, pheochromocytoma,
paraganglioma, pleuropulmonary blastoma, trichilemmoma, small cell
carcinoma of the ovary of hypercalcemic type, carcinoma of the breast,
lung, cervix, uterus, or bladder

https://doi.org/10.1371/journal.pgen.1009231.t001
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150-bp reads and 30× average coverage. Reads were mapped to the hg19 reference genome
sequence (GRCh37.p13; RefSeq assembly accession GCF_000001405.25) using BWA ver-
sion 0.7.12,[20] and biobambam2 version 2.0.27[21] was used to sort and mark duplicate
reads. Germline SNVs and indel variants were called with HaplotypeCaller using GATK
version 3.8[22] or the DNAseq pipeline (Sentieon, San Jose, CA, USA). VarSeq software
(version 2.2.0, Golden Helix, Bozeman, MT, USA) was used to annotate variants. Moreover,
filtration was based on read depth �8, genotype quality �20, and variant allele frequency
(VAF) �0.2, and sequence ontology was used to exclude intronic and intergenic variants
and variants located in the 3’ and 5’ untranslated region (UTR) prior to evaluation. Integra-
tive Genomics Viewer (IGV, version 2.8.2, Boston, MA, USA) was used to visualize read
alignments. Manta and CNVkit were applied for calling larger structural rearrangements.
[23,24] All variants were reported according to HGVS nomenclature guidelines.[25] WGS
data were filtered for PVs in the 59 ACMG ‘actionable’ genes and 314 cancer genes (S1
Data). The cancer gene panel was selected from Zhang et al.,[7] Rahman,[26] and novel
genes recently linked to childhood or adult CPSs. All variants with a minor allele frequency
of <1% in any large population (gnomAD) were tabulated. For CPS genes with higher vari-
ant frequencies in the general population (e.g., ATM, CHEK2), a separate filter was used.
We did not apply a specific variant filter to identify mosaicism. Variants were assessed by a
team of clinical geneticists and molecular biologists based on variant type (e.g., frameshift,
nonsense, missense), computational predictions of effect on protein and RNA function
(e.g., Combined Annotation Dependent Depletion [CADD], PHRED quality score, ADA
splice prediction score),[27] and database searches for published literature on each variant.
Moreover, we used Alamut Visual 2.10 to evaluate variants effect on splicing (https://www.
interactive-biosoftware.com/alamut-visual/). The effects of variants were considered signif-
icant if the scores of at least three programs were reduced �10% or a strong cryptic acceptor
or donor site was generated. Variants were classified as pathogenic (class 5), likely patho-
genic (class 4), VUS (class 3), likely benign (class 2), and benign (class 1).[28] Class 4 and 5
variants were designated ‘PVs’. Class 3 variants, especially those that potentially matched
the child’s diagnosis, were further investigated by segregation analysis and splice predic-
tions, and tumor RNA sequencing was used to assess loss-of-heterozygosity (LOH) if tissue
was available (Fig 1). In addition, we used the machine-learning tool ORVAL to predict
whether combinations of genetic variants were likely to be pathogenic.[29] Variants were
discussed at regular multidisciplinary meetings by pediatric oncologists, clinical geneticists,
and bioinformaticians. PVs were verified by Sanger or next-generation sequencing before
parents were informed.

Table 2. Families could choose to receive one of the following levels of feedback from germline WGS of the
affected child.

Level 1 Information regarding pathogenic or likely pathogenic variants in genes identified by the American
College of Medical Genetics[19]. These genes are ‘actionable’ i.e., there are potential preventive, treatment,
or surveillance modalities available. Half of these genes are related to CPS (primary findings); the others are
related to cardiac disease, metabolic disorders, or familial hypercholesterolemia (secondary findings).

Level 2 In addition to the genes listed at level 1, information regarding pathogenic or likely pathogenic variants in
other known or putative CPS genes (from the list of 314 CPS genes found in S 1A Data). These were
considered primary findings. However, if there was no known correlation between the clinical phenotype
and the gene in question, the variant was considered a secondary finding.

Level 3 In addition to the genes listed at levels 1 and 2, families would also receive information regarding
pathogenic or likely pathogenic variants in other genes not related to CPS (not presented in this paper).
These were considered secondary findings.

https://doi.org/10.1371/journal.pgen.1009231.t002
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Statistical analysis

Patient/parental characteristics were compared using Pearson chi-square test. Two-sided P-
values below 0.05 were considered statistically significant. Statistical calculations were carried
out using the R software version 3.6.0.

Results

Patient characteristics

Of 248 consecutive pediatric cancer patients that fulfilled the inclusion criteria, 198 families con-
sented to participation (Fig 1, Table 3). The included patients did not differ significantly
(p>0.05) from the 35 patients that declined to participate with regard to sex, age, or diagnoses.
Of 198 families, 155/198 (78.3%) opted for feedback on all findings, 24/198 (12.1%) opted for
feedback on PVs in ‘actionable’ genes and 314 cancer genes, and 19/198 (9.6%) opted for feed-
back on PVs in ACMG ‘actionable’ genes only. There were no significant differences (p>0.05) in
parental age, educational level, or income among families opting for the three levels of feedback.

Patients with known and suspected CPSs

Overall, 94/198 (47.5%) patients carried a PV in a CPS gene or were suspected of having an
underlying CPS based on Jongmans’/MIPOGG criteria or family cancer history (Fig 2).

Twenty-nine of 198 (14.6%) patients carried PVs in at least one CPS gene, including four
patients with trisomy 21. Of these, 21/198 (10.6%) had PVs in genes predisposing toward
childhood-onset CPS, including CDC73, DDX41 (biallelic, putative childhood-onset cancer
gene), LTZR1, NF1, RB1, SDHC, SMARCA4, TP53, and TSC2, uniparental disomy (UPD) of
chromosome 11p (clinical analysis), and trisomy 21.[30]

In addition, 9/198 (4.5%) patients had PVs in genes predisposing toward adult-onset CPS,
one of whom also carried a deletion in a childhood-onset CPS gene. Adult-onset CPS variants
were identified in APC, ATM, AXIN2, BARD1, BRCA2, CHEK2, MUTYH, and PALB2, some
conferred a high risk of cancer[31–33] whereas others conferred a moderate risk[34–38]
(Table 4). The specific variants in APC and ATM are only associated with an adult-onset CPS,
had the specific variants been associated with childhood-onset CPS, these genes would have
been listed above.

These 29 patients had 31 PVs in total, including seven frameshift, five nonsense, eight mis-
sense, and three splice-site variants. Three variants were larger deletions of at least one exon,
one patient had UPD 11p, and four patients had trisomy 21.

Some CPSs occurred in several patients (Table 4). Two patients had PVs in two CPS genes:
a patient with LCH had PVs in BRCA2 and AXIN2; a patient with a malignant peripheral
nerve sheath tumor had PVs in NF1 and PALB2. All CPS PVs were monoallelic, except for one
patient with biallelic PVs in DDX41.[39]

Of the 21 childhood-associated CPSs 18 (85.7%) had previously established links between
genotype (e.g., trisomy 21 and leukemia) and cancers (Table 4). This study identified a PV in
eight of the 21 (38.1%) pediatric CPS patients, whereas 13/21 (61.9%) patients had a previously
established genetic predisposition syndrome (e.g., NF1 or trisomy 21). Such a connection was
established through clinical diagnosis and/or genetic testing. Among these 21 patients, only
one had a family member diagnosed with cancer before 18 years of age (Table 5).

Fig 1. Inclusion and sequencing strategy. Variants presented are in genes associated with CPS. All variants of unknown significance have a
CADD-PHRED score>20 and an allele frequency<1%. 1Patients whose parents were not able to give informed consent due to language barriers or
social issues (mainly parental psychiatric/severe somatic disease).

https://doi.org/10.1371/journal.pgen.1009231.g001
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Table 3. Patients distributed according to sex, age at diagnosis, diagnosis, level of feedback and fulfillment of the
Jongmans’ and MIPOGGs criteria.

N (%)

Sex

Male 121 (61.1%)

Female 77 (38.9%)

Age at diagnosis

0–5 years 104 (52.5%)

6–10 years 41 (20.7%)

11–15 years 39 (19.7%)

16–18 years 14 (7.0%)

Diagnosis

Hematologic cancer 105 (53.0%)

Precursor B-ALL 45

Lymphoma 22

AML/CML/other myeloid leukemia 17

Precursor T-ALL 10

Langerhans cell histiocytosis 6

Myelodysplastic syndrome 3

Mixed lineage ALL 2

Tumors of the central nervous system 44 (22.2%)

Low-grade glioma, WHO grade I–II 17

High-grade glioma, WHO grade III–IV 6

Ependymoma 4

AT/RT 3

Medulloblastoma 2

Schwannoma 2

Other 10

Solid tumors 49 (25.0%)

Wilms tumor 8

Neuroblastoma 8

Rhabdomyosarcoma 6

Osteosarcoma 5

Retinoblastoma 5

Ewing’s sarcoma 4

Malignant peripheral nerve sheath tumor 1

Other 12

Level of feedback

Full feedback 155 (78.2%)

Limited feedback 24 (12.1%)

No feedback 19 (9.6%)

Fulfillment of Jongmans’ criteria

Fulfilled one or more criteria 56 (28.3%)

Did not fulfill any criteria 142 (71.7%)

Referral for genetic evaluation recommended by MIPOGG

Referral recommended 64 (32.3%)

Referral not recommended 134 (67.7%)

https://doi.org/10.1371/journal.pgen.1009231.t003
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PVs in biallelic CPS

Twenty-seven of 198 (13.6%) patients carried one (n = 22) or two (n = 1, FANCM and ADA)
PVs predisposing toward CPS through biallelic inheritance, of whom four also had a PV in a
monoallelic CPS gene (Table 6). Variants were found in ADA, ATR, EFL1, ERCC3, FANCA/C/
E/I/L/M, NBN, POLH, RECQL, RECQL4, RINT1, WRAP53, and XPC (Fig 2).

Seven of the 198 (3.5%) patients carried two or more PVs/trisomy 21 (Table 7). Of these seven
patients, one carried variants bioinformatically predicted to be oligogenically pathogenic. This
patient carried biallelic variants in DDX41 and a monoallelic variant in NBN. The digenic combi-
nation of a single DDX41 variant and the NBN variant were also predicted to be pathogenic. No
variant combinations in the six remaining patients were predicted to be oligogenically pathogenic.

Variants of unknown significance

All 198 patients carried VUS in one or more CPS genes. VUS with a frequency <1% and a
CADD/PHRED score >20 are listed in S1 Data. Thirty-nine of 198 (19.7%) patients had a

Fig 2. Triangle of patients with confirmed or suspected underlying cancer predisposition syndrome. Patients fulfilling criteria for more than one level of the triangle
were only counted once, closest to the top of the triangle. The column on the left shows the number of pathogenic variants on each level. The column on the right shows
the number of patients on each level.

https://doi.org/10.1371/journal.pgen.1009231.g002
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Table 4. Pathogenic and likely pathogenic variants in cancer predisposition genes.

Diagnosis Gene Variant Protein Corresponding to
phenotype of the patient

Inherited (M/
P)1 / de novo

CADD-PHRED2

score

Pathogenic/likely pathogenic variants (childhood onset)

Acute myeloid leukemia CDC73 c.358C>T p.(Arg120⇤) – – 37.0

Plasmacytoid dendritic cell
leukemia

DDX413
DDX41

c.962C>T
c.937G>C

p.(Pro321Leu)
p.(Gly313Arg)

+
+

M
P

31.0
32.0

Osteosarcoma LZTR1 c.955C>T p.(Gln319⇤) – – 38.0

Optic nerve glioma NF1 c.5242C>T p.(Arg1748⇤) + M 38.0

Acute myeloid leukemia NF1 c.288+1delG p.(?) + – 34.0

Malignant peripheral nerve
sheath tumor4

NF1 c.61-22171_4110+2458del
(deletion of exon 2–30)

p.
(Leu21_Gln1370del)

+ M –

Pilocytic astrocytoma NF1 c.2033dupC p.(Ile679Aspfs⇤21) + – 34.0

Retinoblastoma RB1 c.1735C>T p.(Arg579⇤) + – 36.0

Retinoblastoma RB1 c.409_412delGAAA p.(Glu137Leufs⇤15) + P 36.0

Retinoblastoma RB1 c.219_220delAG p.(Arg73Serfs⇤36) + De novo 31.0

Retinoblastoma RB1 c.2663+2T>C p.(?) + – 25.2

Acute promyelocytic
leukemia

SDHC c.148C>T p.(Arg50Cys) – – 34.0

Small cell carcinoma5 SMARCA46 c.2002-625_2124-1045del
(deletion of exon 14)

p.(Glu669Cysfs⇤7) + –

Precursor B-cell acute
lymphoblastic leukemia

TP53 c.637C>G p.(Arg213Gly) + P 28.4

Osteosarcoma TP53 c.818G>A p.(Arg273His) + De novo 27.3

Subependymal giant cell
astrocytoma

TSC2 c.4141dupC p.(Leu1382Profs⇤32) + De novo 23.5

Wilms tumor7 Paternal uniparental disomy of chromosome 11, corresponding to
Beckwith–Wiedemann syndrome

+ P –

Acute megakaryoblastic
leukemia8

47,XY,+21 + – –

Acute megakaryoblastic
leukemia8

47,XY,+21 + – –

Hodgkins lymphoma 47,XX,+21 + – –

Acute lymphoblastic
leukemia

47,XX,+21 + – –

Pathogenic/likely pathogenic variants (adult onset)

Wilms tumor APC9, 10 c.3920T>A p.(Ile1307Lys) – – 5.3

Neuroblastoma APC9, 10 c.3920T>A p.(Ile1307Lys) – – 5.3

Rhabdomyosarcoma ATM9, 10 c.9023G>C p.(Arg3008Pro) – – 32.0

Wilms tumor BARD110 g.215591264-215774591
(Deletion of exon 1–11)

p.(?) – – –

Langerhans cell histiocytosis BRCA2
AXIN2

c.5722_5723delCT
c.815+1G>A

p.(Leu1908Argfs⇤2)
p.(?)

–
–

M
M

21.2
24.5

T-cell acute lymphoblastic
leukemia

BRCA2 c.6486_6489delACAA p.(Lys2162Asnfs⇤5) – – 29.1

T-cell acute lymphoblastic
leukemia

CHEK210 c.1100del p.(Thr367Metfs⇤15) – – 35.0

Precursor B-cell acute
lymphoblastic leukemia

MUTYH10 c.536A>G p.(Tyr179Cys) – – 24.7

(Continued)
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VUS in DNA repair pathway genes (ATM, BLM, NBN, MLH1, MSH2, MSH6, ERCC4,
FANCA/E/F/G/I/L, BRCA1, BRCA2, RAD51C, RFWD3, SLX4), 16/198 (8.1%) patients had a
VUS in genes associated with bone marrow failure (RPL5, RPS10, RPS19, CTC1, DKC1, NHP2,
PARN, RTEL1, TERT, SBDS), 12/198 (6.1%) patients had a VUS in the RAS pathway (CBL,
NF1, A2ML1, MAP2K2, PTPN11, RAF1, RRAS, SHOC2), and nine of 198 (4.5%) patients had a
VUS in genes associated with familial leukemia (ETV6, GATA2, IKZF1, RUNX1, PAX5).
Thirty-eight of the 198 (19.2%) patients had a VUS in a gene previously associated with the
cancer diagnosed in the child. When subgroups were separated by diagnoses, 30 of 105
(28.6%) patients with hematologic malignancies had a VUS in a relevant gene associated with
childhood onset (A2ML1, ADA, ATM, BLM, BRCA2, CREBBP, DDX41, DNAJC21, EFL1,
EP300, ERCC6L2, FANCF, MAP2K2, PARN, PAX5, PTPN11, RPL5, RRAS, SH2D2A, SHOC2,
SOS2, TERT, TNFRSF13B). One of the 44 (2.3%) patients with central nervous system (CNS)
tumors had a VUS in a gene predisposing to Fanconi Anemia in which childhood-onset brain
tumors have been described (FANCG), and seven of the 49 (14.3%) patients with solid tumors
had a VUS in a relevant gene associated with childhood onset (BRCA2, CDH23, EP300,
ERCC6L2, FANCI, RB1, RFWD3, XRCC2). Most variants occurred in DNA repair pathway
genes (S1 Data). Four patients had a VUS, but none had a PV, in a mismatch repair pathway
gene.

Fulfillment of clinical criteria indicating an underlying CPS

All patients were evaluated using a phenotype checklist developed for this study (S1 Text), and
116/198 (58.6%) patients had one or more CPS-associated findings.

Overall, 70/198 (35.4%) patients fulfilled Jongmans’ (n = 56, 28.3%) and/or MIPOGG crite-
ria (n = 64, 32.3%) including 17 (81.0%) of the 21 patients with a childhood-onset CPS (Tables
8 and 9). Of the four patients with a PV in a childhood-onset CPS gene who did not fulfill
Jongmans’ criteria, none had excessive chemotherapy-induced toxicity. Patients not identified
by either tool included two with PVs in TP53, and one with a pathogenic SMARCA4 variant.
The patient with a PV in CDC73 was identifies by MIPOGG and not by Jongmans. The
SMARCA4-deletion patient was diagnosed with synovial sarcoma of the ovary, revised to

Table 4. (Continued)

Diagnosis Gene Variant Protein Corresponding to
phenotype of the patient

Inherited (M/
P)1 / de novo

CADD-PHRED2

score

Pathogenic/likely pathogenic variants (childhood onset)

Malignant peripheral nerve
sheath tumor4

PALB2 c.2736G>A p.(Trp912⇤) – P 41.0

– Value not known/applicable (e.g., parents not tested)
1M: maternally inherited, P: paternally inherited
2CADD: combined annotation dependent depletion, PHRED: quality score
3Putative childhood CPS gene
4Same patient carrying the NF1 deletion and PALB2 mutation
5The initial diagnosis (synovial sarcoma) was revised later revised
6Validation in process
7Detected by clinical analysis
8These patients are twin brothers
9The specific variants in APC and ATM are only associated with an adult-onset cancer predisposition syndrome; had the variant been associated with childhood cancer

predisposition syndrome, these genes would have been listed above.
10These variants confer a moderate risk of cancer in adulthood

https://doi.org/10.1371/journal.pgen.1009231.t004
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Table 5. Family history of patients with pathogenic and likely pathogenic variants in childhood-onset and adult-onset cancer genes.

Patient diagnosis Gene Variant Protein Family history

Patients with childhood-onset CPS

Acute myeloid leukemia CDC73 c.358C>T p.(Arg120⇤) 2nd-degree relative (maternal side): grandfather: chronic
lymphoblastic leukemia, 62 years

Plasmacytoid dendritic cell
leukemia

DDX41
DDX41

c.962C>T
c.937G>C

p.(Pro321Leu)
p.(Gly313Arg)

No cancer cases in 1st–2nd-degree relatives
Sister: intellectual disability corresponding to the phenotype of
the syndrome identified in this patient

Osteosarcoma LZTR1 c.955C>T p.(Gln319⇤) 2nd-degree relative (maternal side): grandfather: lymphoma, 68
years

Optic nerve glioma NF1 c.5242C>T p.(Arg1748⇤) No cancer cases in 1st–2nd-degree relatives

Acute myeloid leukemia NF1 c.288+1delG p.(?) No cancer cases in 1st–2nd-degree relatives

Malignant peripheral nerve
sheath tumor1

NF1 c.61-22171_4110+2458del
(deletion of exon 2–30)

p.
(Leu21_Gln1370del)

No cancer cases in 1st–2nd-degree relatives

Pilocytic astrocytoma NF1 c.2033dupC p.(Ile679Aspfs⇤21) 2nd-degree relative (maternal side): grandfather: colon cancer, 84
years

Retinoblastoma RB1 c.1735C>T p.(Arg579⇤) No cancer cases in 1st–2nd-degree relatives

Retinoblastoma RB1 c.409_412delGAAA p.(Glu137Leufs⇤15) 1st-degree relative: father, retinoblastoma, 0 years
2nd-degree relatives (paternal side): father’s sister:
retinoblastoma (0 years), rhabdomyosarcoma (14 years),
melanoma (20 years). Grandfather: melanoma (39 years),
myelofibrosis (48 years)

Retinoblastoma RB1 c.219_220delAG p.(Arg73Serfs⇤36) No cancer cases in 1st–2nd-degree relatives

Retinoblastoma RB1 c.2663+2T>C p.(?) No cancer cases in 1st–2nd-degree relatives

Acute promyelocytic leukemia SDHC c.148C>T p.(Arg50Cys) No cancer cases in 1st–2nd-degree relatives

Small cell carcinoma SMARCA4 c.2002-625_2124-1045del
(Deletion of exon 14)

p.(Glu669Cysfs⇤7) 2nd-degree relative (paternal side): grandfather: lung cancer, 71
years, (maternal side): grandfather: lung cancer, 79 years

Precursor B-cell acute
lymphoblastic leukemia

TP53 c.637C>G p.(Arg213Gly) 1st-degree relative: father: pheochromocytoma, 34 years (not
diagnosed at the time of the child’s diagnosis)
2nd-degree relative (paternal side): grandmother: hepatic
cholangiocarcinoma, 36 years

Osteosarcoma TP53 c.818G>A p.(Arg273His) 2nd-degree relative (paternal side): grandfather: colon cancer, 84
years

Subependymal giant cell
astrocytoma

TSC2 c.4141dupC p.(Leu1382Profs⇤32) 2nd-degree relative (maternal side): grandfather: urothelial
carcinoma, 71 years

Wilms tumor2 Paternal uniparental disomy of chromosome 11, corresponding to
Beckwith–Wiedemann syndrome

2nd-degree relatives (maternal side): grandmother: lung cancer,
64 years, mother’s brother: urothelial carcinoma, 41 years

Acute megakaryoblastic
leukemia (two patients, twins)

47,XY,+21 2nd-degree relative (paternal side): grandmother: lung cancer, 50
years

Hodgkin lymphoma 47,XX,+21 2nd-degree relatives (maternal side): grandmother: ovarian
cancer, 68 years, (paternal side): grandmother: gastrointestinal
stromal tumor, 82 years

Precursor B-cell acute
lymphoblastic leukemia

47,XX,+21 2nd-degree relative: mother’s sister: melanoma, 37 years

Patients with adult-onset CPS

Wilms tumor APC c.3920T>A p.(Ile1307Lys) 2nd-degree relative (paternal side): grandmother: urothelial
carcinoma, 74 years

Neuroblastoma APC c.3920T>A p.(Ile1307Lys) No cancer cases in 1st–2nd-degree relatives

Rhabdomyosarcoma ATM c.9023G>C p.(Arg3008Pro) 2nd-degree relative (maternal side): mother’s brother: tumor on
heart valve,0 years

Wilms tumor BARD1 g.215591264-215774591
(Deletion of exon 1–11)

p.(?) No cancer cases in 1st–2nd-degree relatives

Langerhans cell histiocytosis BRCA2
AXIN2

c.5722_5723delCT
c.815+1G>A

p.(Leu1908Argfs⇤2)
p.(?)

2nd-degree relative (paternal side): grandfather: esophageal
cancer, 59 years

(Continued)
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small-cell carcinoma based on this study, and would have fulfilled both criteria if the initial
diagnosis had been correct. Of the patients with adult-onset CPS, 2/9 (22.2%) fulfilled Jong-
mans’ (n = 2) and MIPOGG (n = 1) criteria, which is significantly fewer than for childhood-
onset CPS (p = 0.0022). Of the additional 23 patients with a heterozygous PV predisposing to
biallelic CPS, eight (34.8%) fulfilled Jongmans’ (n = 5) and MIPOGG (n = 7) criteria.

The number of VUS identified were higher among patients without a CPS and with adult-
onset CPS compared to patients with a childhood-onset CPS, in the first group patients on
average carried 2.5 VUS compared to 1.6 VUS in the latter group. The same was the case when
comparing patients with a childhood-onset CPS to patients who solely fulfilled Jongmans/
MIPOGGs criteria, patients carrying a childhood-onset CPS carried an average of 1.6 VUS
compared to 2.5 VUS among patients fulfilling Jongmans/MIPOGGs criteria alone.

Family histories of cancer

Parents reported cancer diagnoses for 704 family members, 106 of whom resided outside Den-
mark, precluding further verification. Cancer diagnoses were verified for 328 (54.8%) of the
remaining 598 family members, whereas the others did not consent to retrieval of medical rec-
ords (n = 45) or their diagnoses could not be verified (n = 225) due to difficulties identifying
distant/deceased family members or cancer occurrence prior to registration in Danish regis-
tries (before 1943). For 1st-, 2nd-, and 3rd-degree relatives 16 (100.0%), 133 (84.1%), and 179
(42.2%) cases were verified, respectively. The following is based on verified diagnoses and fam-
ily recollection (for 1st to 3rd generation family members) when verification was impossible.

In total, 191/198 (96.5%) participants had a family history of cancer. Seven of 198 (3.5%)
participants had a family member diagnosed with cancer before 18 years of age (two had a
CPS). Fifty-six of 198 (28.3%) participants had at least one relative diagnosed with cancer
between the ages of 18 and 45. Three of 198 (1.5%) participants had two or more relatives
under the age of 45 diagnosed with cancer.

Forty-three of 198 (21.7%) participants had a relative with a cancer of the same organ sys-
tem as the patient. Patients with hematologic malignancies and solid tumors did not have
more family members with cancers of the same organ system than the other two patient
groups. In contrast, patients with a CNS tumor had a family member with a malignancy in the
CNS more frequently than patients with either solid tumors or hematologic malignancies
(p = 0.04). This association also held (p = 0.04) when patients with a CPS were eliminated
(Table 10). Family history for the patients with a confirmed CPS can be found in Table 5.

Table 5. (Continued)

Patient diagnosis Gene Variant Protein Family history

Patients with childhood-onset CPS

T-cell acute lymphoblastic
leukemia

BRCA2 c.6486_6489delACAA p.(Lys2162Asnfs⇤5) 2nd-degree relative (maternal side): grandmother: breast cancer,
63 years

T-cell acute lymphoblastic
leukemia

CHEK2 c.1100del p.(Thr367Metfs⇤15) 2nd-degree relatives (paternal side): grandfather: prostate cancer,
65 years, grandmother: cervical cancer, 54 years

Precursor B-cell acute
lymphoblastic leukemia

MUTYH c.536A>G p.(Tyr179Cys) No cancer cases in 1st–2nd-degree relatives

Malignant peripheral nerve
sheath tumor1

PALB2 c.2736G>A p.(Trp912⇤) No cancer cases in 1st–2nd-degree relatives

1Same patient carrying these two variants.
2Not identified by whole-genome sequencing.

https://doi.org/10.1371/journal.pgen.1009231.t005
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Secondary findings

Two patients had PVs in genes associated with familial hypercholesterolemia (APOB and
LDLR), three had PVs in genes associated with arrhythmic right ventricular cardiomyopathy
(DSC2, DSG2, and PKP2), and one patient had a PV in KCNQ1, which is associated with long
QT syndrome. These six variants are associated with increased risk of disease and families
were informed. Overall, 18 patients (9.1%) had an ACMG ‘actionable’ PV, including 12 PVs in
CPS genes and six PVs in genes associated with other non-malignant diseases (Table 11).

Discussion

In this first nationwide unselected cohort of consecutive pediatric cancer patients, half had a
likely or validated underlying CPS, based on WGS, clinical examination, and pedigree

Table 6. Patients with pathogenic or likely pathogenic variants in biallelic cancer predisposition genes.

Diagnosis Gene Variant Protein CADD-PHRED score

Acute myeloid leukemia1 ADA c.646G>A p.(Gly216Arg) 28.0

Precursor B-cell acute lymphoblastic leukemia ADA c.1078+2T>A p.(?) 22.9

Chronic myeloid leukemia ATR c.2320dupA p.(Ile774Asnfs⇤3) 20.1

Rhabdomyosarcoma EFL1 c.159+3A>G p.(?) 14.84

Precursor T-cell acute lymphoblastic leukemia EFL1 c.2430_2431delCC p.(Leu811Asnfs⇤10) 15.9

Wilms tumor ERCC3 c.1115_1120dupAGCAGT p.(Trp374⇤) 37.0

Astrocytoma FANCA c.3482C>T p.(Thr1161Met) 17.3

Precursor B-cell acute lymphoblastic leukemia FANCA c.3391A>G p.(Thr1131Ala) 23.5

Acute myeloid leukemia FANCC c.535C>T p.(Arg179⇤) 35.0

Yolk sac tumor FANCE c.108delG p.(Pro37Leufs⇤47) 16.7

Precursor B-cell acute lymphoblastic leukemia FANCI c.158-5A>G p.(?) 12.7

Precursor T-cell acute lymphoblastic leukemia FANCL c.540+1G>A p.(?) 23.3

Precursor B-cell acute lymphoblastic leukemia FANCL c.1007_1009delTAT p.(Ile336_Cys337delinsSer) 23.5

Lymphoma FANCL c.1096_1099dupATTA p.(Thr367Asnfs⇤13) 35.0

Acute myeloid leukemia1 FANCM c.681+1G>C p.(?) 25.9

Rhabdomyosarcoma FANCM c.2156_2160delAACCA p.(Lys719Serfs⇤15) 36.0

Plasmacytoid dendritic cell leukemia NBN c.156_157delTT p.(Ser53Cysfs⇤8) 25.6

Wilms tumor NBN c.834dupA p.(Gln279Serfs⇤6) 37.0

Precursor B-cell acute lymphoblastic leukemia POLH c.1600_1610delCA p.(Gln534Glufs⇤11) 40.0

Precursor B-cell acute lymphoblastic leukemia POLH c.491-69_660+30del (deletion of exon 5) p.(Glu164Glyfs⇤37) –

Ganglioglioma RECQL c.1859C>G p.(Ser620⇤) 38.0

Craniopharyngioma RECQL c.1859C>G p.(Ser620⇤) 38.0

Precursor B-cell acute lymphoblastic leukemia RECQL4 c.3072delA p.(Val1026Cysfs⇤18) 21.7

Lymphoma RINT1 c.88+3A>G p.(?) 15.4

Glioma2 TNFRSF13B c.431C>G p.(Ser144⇤) 35.0

Craniopharyngioma WRAP53 c.1192C>T p.(Arg398Trp) 34.0

Precursor B-cell acute lymphoblastic leukemia WRAP53 c.1192C>T p.(Arg398Trp) 34.0

Neurofibroma XPC c.1934delC p.(Pro645Leufs⇤5) 26.6

Three of the patients listed above also had a monoallelic pathogenic germline mutation (fam no. 13, 25 and 51).

Monoallelic variants in RECQL are pathogenic; however, their relationship to cancer is uncertain. Therefore, they are listed here.
1Same patient carrying the ADA and FANCM variants.
2Pathogenic variants (Romberg et al., 2013) may be inherited via an autosomal dominant or autosomal recessive. pattern. Based on the patient’s phenotype, this variant

was considered inherited recessively.

https://doi.org/10.1371/journal.pgen.1009231.t006
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mapping, and 14.6% had a genetically verified CPS. These findings strongly indicate that
genetic predisposition to childhood cancer may be far more common than previously sup-
posed. Furthermore, other modes of inheritance (di-, oligo- and polygenic risk) may play sig-
nificant roles in pathogenesis.

Our childhood-onset CPS results are consistent with previous studies that found a CPS in
7–10% of pediatric cancer patients.[8–11]

The frequency of PVs in our study was significantly higher than that observed in control
cohorts wherein 0.6–1.1% of adult patients in a Genomics England cohort and a cohort of
pediatric and adult patients with autism had PVs in CPS genes.[7] This study, however,
excluded patients with known CPS and included different genes (including genes with fre-
quent somatic variants) and is thus not directly comparable. A study of osteosarcoma patients
found a remarkably high frequency of CPSs in control cohorts (12.1% and 9.3%), probably
because many of the genes included (e.g., PMS1, and COL7A1) were not definitely linked to
cancer.[6] Other studies have included adult-onset CPS genes. For example, Zhang et al. found
only 0.7% of their patients carried an adult-onset CPS variant (BRCA1/2 and PALB2).[7] We
found that 1.5% of our patients carried PVs in BRCA2 and PALB2. Interestingly, another Scan-
dinavian study reported a significantly higher prevalence of childhood cancer in families with
PVs in BRCA2.[40] Similarly, Wilson et al. showed that BRCA2 was one of the most frequently
mutated genes among childhood cancer survivors.[11] Therefore, BRCA2 variants may be
important in childhood cancer etiology,[40] potentially influencing treatment options if defi-
ciencies in homologous repair promote some tumors. Even though a higher frequency of PVs
in BRCA2 than BRCA1 have been found in the general population[41], this does not explain
why multiple studies have identified so few PVs in BRCA1, which, in the Danish population,
are more frequently associated with breast cancer than PVs in BRCA2.[42,43] Overall, WGS
data from ethnically comparable children are lacking making comparisons of genetic findings
in patients difficult. As most children survive cancer; therefore, identifying adult-onset CPSs is
important for future surveillance and counselling.

Table 7. Patients carrying more than one pathogenic/likely pathogenic variant.

Diagnosis of
the patient

Gene Variant Protein Gene Variant Protein Gene Variant Protein

Malignant
peripheral
nerve sheath
tumor

NF1 c.61-22171_4110
+2458del (deletion
of exon 2–30)

p.
(Leu21_Gln1370del)

PALB2 c.2736G>A p.(Trp912⇤) – – –

Optic nerve
glioma

NF1 c.5242C>T p.(Arg1748⇤) XPC c.1934delC p.
(Pro645Leufs⇤5)

– – –

B-cell acute
lymphoblastic
leukemia

47,XX,+21 POLH c.1600_1610delCA p.
(Gln534Glufs⇤11)

– – –

Plasmacytoid
dendritic cell
leukemia

DDX41 c.962C>T p.(Pro321Leu) DDX41 c.937G>C p.(Gly313Arg) NBN c.834dupA p.
(Gln279Serfs⇤6)

Wilms tumor BARD1 g.215591264-
215774591
(deletion of exon
1–11)

p.(?) ERCC3 c.1115_1120dupAGCAGT p.(Trp374⇤) – – –

Langerhans cell
histiocytosis

BRCA2 c.5722_5723delCT p.(Leu1908Argfs⇤2) AXIN2 c.815+1G>A p.(?) – – –

Acute myeloid
leukemia

ADA c.646G>A p.(Gly216Arg) FANCM c.681+1G>C p.(?) – – –

https://doi.org/10.1371/journal.pgen.1009231.t007
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Table 8. Patients with an underlying cancer predisposition syndrome according to Jongmans’ and MIPOGG criteria.

Diagnosis (patient ID) CPS (gene) Jongmans MIPOGG

Precursor B-cell acute lymphoblastic
leukemia (A1)

Li–Fraumeni syndrome (TP53) – –

Osteosarcoma (A2) Li–Fraumeni syndrome (TP53) – –

Acute promyelocyte leukemia (B1) Familial paraganglioma and pheochromocytoma syndrome
(SDHC)

+ +

Acute myeloid leukemia (C1) Hyperparathyroidism-Jaw tumor syndrome (CDC73) – +

Acute myeloid leukemia (E1) Neurofibromatosis type 1 (NF1) + +

Malignant peripheral nerve sheath
tumor1 (E2)

Neurofibromatosis type 1 (NF1) + +

Optic nerve glioma (E3) Neurofibromatosis type 1 (NF1) + +

Pilocytic astrocytoma (E4) Neurofibromatosis type 1 (NF1) + +

Osteosarcoma (F1) Schwannomatosis/Noonan syndrome (LZTR1) + +

Plasmacytoid dendritic cell leukemia
(G1)

Novel putative childhood leukemia cancer predisposition
syndrome (biallelic DDX41)

+ +

Retinoblastoma (H1) Familial retinoblastoma syndrome (RB1) + +

Retinoblastoma (H2) Familial retinoblastoma syndrome (RB1) + +

Retinoblastoma (H3) Familial retinoblastoma syndrome (RB1) + +

Retinoblastoma (H4) Familial retinoblastoma syndrome (RB1) + +

Wilms tumor (I1) Beckwith–Wiedemann syndrome (pUPD chr 11) + +

Subependymal giant cell astrocytoma
(J1)

Tuberous sclerosis complex (TSC2) + +

Small cell carcinoma of the ovary (K1) Rhabdoid tumor predisposition syndrome (SMARCA4) – –

Acute myeloid leukemia (L1) Down syndrome (46,XY+21) + +

Acute myeloid leukemia (L2) Down syndrome (46,XY+21) + +

Hodgkin lymphoma (L3) Down syndrome (46,XX+21) + +

Precursor B-cell acute lymphoblastic
leukemia (L4)

Down syndrome (46,XX+21) + +

Total number of patients with childhood cancer predisposition syndrome 17/21 = 80.9% 18/21 = 85.7%

Precursor B-cell acute lymphoblastic
leukemia (M1)

MUTYH–associated polyposis (MUTYH) – –

T-cell acute lymphoblastic leukemia
(N1)

Familial breast and ovarian cancer (BRCA2) – –

T-cell acute lymphoblastic leukemia
(O1)

Familial breast cancer (CHEK2) – –

Langerhans cell histiocytosis (N2) Familial breast and ovarian cancer (BRCA2), oligodontia-
colorectal cancer syndrome (AXIN2)

– –

Malignant peripheral nerve sheath
tumor 1 (P1)

Familial breast and ovarian cancer (PALB2) + (fulfills due to NF1 variant, not
counted below)

+ (fulfills due to NF1
variant)

Neuroblastoma (Q1) Familial adenomatous polyposis (APC) + –

Wilms tumor (Q2) Familial adenomatous polyposis (APC) + +

Rhabdomyosarcoma (R1) Ataxia telangiectasia (ATM) – –

Wilms tumor (S1) Familial breast and ovarian cancer and familial neuroblastoma
(BARD1)

– –

Total number of patients with adult-onset cancer predisposition syndrome 2/9 = 22.2% 1/9 = 11.1%

+ fulfills the criteria,–does not fulfill the criteria.
1same patient carrying these variants, patient not counted in the adult-onset cancer predisposition syndrome.

Red: childhood cancer predispositions syndrome, Blue: adult-onset cancer predisposition syndrome.

https://doi.org/10.1371/journal.pgen.1009231.t008
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Many of our patients carried PVs in genes involved in DNA repair. Children have high cell-
division rates, and deficiencies in DNA repair may result in accumulation of DNA damage
and ultimately cancer. Fanconi anemia (FA) is associated with many large genes, and the

Table 9. Phenotypes identified using Jongmans’/MIPOGG criteria.

Cancer diagnosis Non-cancer diagnosis Phenotypic finding Genetic findings

Diffuse intrinsic pontine
glioma

Autism spectrum disorder developmental delay, speech delay, learning difficulties Klinefelter syndrome

Neuroblastoma Autism spectrum disorder developmental delay, learning difficulties –

Acute myeloid leukemia Autism spectrum disorder developmental delay (does not speak until age four),
learning difficulties, strabismus

–

Glioblastoma Autism spectrum disorder developmental delay (speech delay), learning
difficulties

–

Acute myeloid leukemia:
monozygotic twin of
patient below

Down syndrome intellectual disability, epicanthus, strabismus,
developmental delay, single palmar crease

47,XY,+21

Acute myeloid leukemia:
monozygotic twin of
patient above

Down syndrome intellectual disability, epicanthus, strabismus,
developmental delay, single palmar crease

47,XY,+21

Hodgkin lymphoma Down syndrome intellectual disability, epicanthus, strabismus,
developmental delay, single palmar crease

47,XX,+21

Precursor B-cell acute
lymphoblastic leukemia

Down syndrome intellectual disability, epicanthus, strabismus, flat-
footed, hearing deficit

47,XX,+21
POLH, c.1600_1610delCA, p.
(Gln534Glufs⇤11)

Acute myeloid leukemia Neurofibromatosis type 1 multiple café-au-lait spots NF1, c.288+1delG, p.(?)

Neurofibroma Neurofibromatosis type 1 multiple café-au-lait spots NF1, c.5242C>T, p.(Arg1748⇤)
XPC, c.1934delC, p.(Pro645Leufs⇤5)

Malignant peripheral
nerve sheath tumor

Neurofibromatosis type 1 multiple café-au-lait spots hearing deficits left ear NF1, c.61-22171_4110+2458del (deletion
of exon 2–30), p.(Leu21_Gln1370del)
PALB2, c.2736G>A, p.(Trp912⇤)

Pilocytic astrocytoma Neurofibromatosis type 1 multiple café-au-lait spots near-sightedness NF1, c.2033dupC, p.(Ile679Aspfs21)

Subependymal giant cell
astrocytoma

Tuberous sclerosis intellectual disability, hypomelanotic macules, seizures TSC2, c.4141dupC, p.(Leu1382Profs⇤32)

T-cell acute lymphoblastic
leukemia

Goldenhar syndrome, craniofacial
microsomia

mild phenotype with skintags in front of both ears,
lack of iris coloring in part of the right eye

EFL1, c.2430_2431delCC, p.
(Leu811Asnfs⇤10)
(no genes are known to cause Goldenhar
syndrome)

Hodgkin lymphoma Behcet’s disease frequent mucocutaneous ulcerations,
hyperpigmentation of the lower back

–
(tissue type: HLA-B7)

Precursor B-cell acute
lymphoblastic leukemia

Suspicion of Charcot–Marie–Tooth,
but no definite molecular genetic
diagnosis

strabismus, delayed motor development, hypotonia,
hyperpigmentation of the head and legs, severe
vincristine toxicity. Mother has a form of skeletal
dysplasia with short fingers and arms, extensions
defect in the elbow joint, flat feet

SH3TC2, c.279G>A (AR)
KIF1B, c.3401CT, p.(Pro1134Leu) (VUS,
parental testing planned)

Wilms tumor Beckwith–Wiedemann syndrome epicanthus, down slanting palpebrae, hypertelorism,
macroglossia, overgrowth

Paternal uniparental disomy of
chromosome 11, corresponding to
Beckwith–Wiedemann syndrome
phenotype

Plasmacytoid dendritic
cell leukemia

Novel childhood predisposition
syndrome associated with leukemia
and intellectual disability

macroglossia, poor mouth motor skills, small milk
teeth, deformed fingers and toes, hypotonia

DDX41, c.962C>T, p.(Pro321Leu)
DDX41, c.937G>C, p.(Gly313Arg)
NBN, c.156_157delTT, p.(Ser53Cysfs⇤8)

T-cell acute lymphoblastic
leukemia

No genetic diagnosis deeply set eyes, hypertelorism, large café-au-lait spots,
right leg

–

Hodgkin lymphoma No genetic diagnosis severe speech delay–speech not understandable age 5
years, macrocephaly

–

– No relevant genetic variants.

https://doi.org/10.1371/journal.pgen.1009231.t009
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frequency of PVs in FA genes was 4.3% in an adult population of 7,578 patients from the
Exome Sequencing Project and the 1000 Genomes Project.[44] This is consistent with our
results, which showed that 13 (6.6%) patients carried a PV in a FA gene. Pathogenic FA vari-
ants are associated with a small increase in lifetime adult-onset cancer risk,[45–47] and this
may also be true for childhood-onset CPS.

Table 10. Family pedigree findings for 1st–3rd degree relatives.

All patients, n
(%)

Patients with pathogenic/likely pathogenic variant in
cancer predisposition gene, n (%)1

Malignancies in family members <18 years 7 (3.5%) 2 (6.9%)

Relatives with cancer aged 18–45 years 55 (27.8%) 9 (31.0%)

Two or more 1st- or 2nd-degree relatives in the same parental lineage with cancer <45 years 4 (2.0%) 1 (3.4%)

Any cancer history in the family 189 (95.5%) 29 (100.0%)

More than one family member with cancer 174 (87.9%) 28 (96.6%)

Any family member with cancer of the same organ as the patient 33 (16.7%) 7 (24.1%)

Any family member with a hematologic malignancy
- To a child with a hematologic tumor
- To a child with a CNS tumor
- To a child with a solid tumor

43 (21.7%)
25 (23.8%)
8 (18.2%)
10 (20.4%)

9 (31.0%)

Any family member with a CNS tumor
- a child with a hematologic tumor
- To a child with a CNS tumor
- To a child with a solid tumor

25 (12.6%)
9 (8.6%)
11 (25.0%)
5 (10.2%)

2 (6.9%)

Any family member with a solid tumor (defined as any kidney tumor, retinoblastoma, bone
tumor, neuroendocrine tumors, gastrointestinal stromal tumor, or rhabdomyosarcoma)

- To a child with a hematologic tumor
- To a child with a CNS tumor
- To a child with a solid tumor

27 (13.6%)
14 (13.3%)
6 (13.6%)
7 (14.3%)

7 (24.1%)

Chi2 test for differences between the groups p = 0.04

Any family member with breast cancer
Two or more family members with breast cancer

76 (38.4%)
29 (14.6%)

11 (37.9%)
2 (6.9%)

Any family member with any gastrointestinal cancer
Two or more family members with any gastrointestinal cancer

74 (37.4%)
20 (10.1%)

12 (41.4%)
4 (13.8%)

1Percentages are fractions of the 29 patients with a cancer predisposition syndrome.

https://doi.org/10.1371/journal.pgen.1009231.t010

Table 11. Pathogenic/likely pathogenic variants in genes deemed ‘actionable’ by the American College of Medical Genetics.

Phenotype Diagnosis Gene/chromosomal
alteration

Variant Protein Events corresponding to carrier status

Familial hypercholesterolemia Burkitt lymphoma APOB c.1013delC p.
(Gln3378Hisfs⇤4)

–

Familial hypercholesterolemia Glioma LDLR c.409G>A p.(Gly137Ser) –

Arrhythmogenic right
ventricular cardiomyopathy

Diffuse intrinsic pontine
glioma

PKP2 c.1643delG p.
(Gly548Valfs⇤15)

–

Arrhythmogenic right
ventricular cardiomyopathy

Precursor B-cell acute
lymphoblastic leukemia

DSC2 c.2508
+5G>A

p.(?) –

Arrhythmogenic right
ventricular cardiomyopathy

Glioma DSG2 c.918G>A p.(Trp306⇤) –

Romano–Ward long QT
syndrome

Anaplastic large-cell
lymphoma

KCNQ1 c.905C>T p.(Ala302Val) Cardiac arrest during treatment, attributed to
large tumor in thorax and subsequent mecha-
nical obstruction

– No known clinical events

https://doi.org/10.1371/journal.pgen.1009231.t011
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Interestingly, we observed one CDC73 VUS and one PV in two patients with hematologic
malignancies. PVs in CDC73 cause ‘hyperparathyroidism-jaw tumor syndrome’ and parathy-
roid carcinoma,[48] and have been linked with hematologic cancer in mouse models.[49]
RNA sequencing of leukemic cells from these patients showed no LOH, making a causal asso-
ciation less likely but not impossible.[50] Furthermore, we identified two patients with hetero-
zygous deleterious variants in ERCC6L2, a gene linked to a bone marrow failure syndrome.
[51] These patients were diagnosed with T-lineage acute lymphoblastic leukemia (ALL) and
rhabdomyosarcoma, respectively. Tumor tissue was not available for further investigation.

Seven patients had more than one PV in CPS genes, suggesting that di-, oligo-, and poly-
genic inheritance can cause predisposition to childhood cancer. Four of these patients exhib-
ited the phenotype associated with the childhood-onset PV. Bioinformatic predictions
suggested that pathogenicity was highly likely in one of the seven patients. Other studies have
also found more than one PV in the same patient, suggesting that digenic/polygenic inheri-
tance may play a role in childhood cancer etiology,[8,52,53] as MUTYH and OGG1 do in colo-
rectal cancer etiology.[54] Kuhlen et al.[55] proposed a model of concomitant digenic
inheritance involving two PVs within the same pathway combining to increase the likelihood
of disease development. Generally, the observations from this and other studies suggest that
the risk of disease development may increase by having more than one PV, even if the corre-
sponding genes function in different pathways.

PVs in genes not previously associated with cancer development were identified. Some of
these genes were ‘actionable’ and their identities were disclosed to the children’s families, in
accordance with ACMG recommendations. It is important to identify genes associated with
increased risk of cardiac disease in pediatric cancer patients due to the increased risk of both
cardiomyopathy[56] and symptoms in patients with long QT syndrome[57] undergoing anti-
cancer treatment. PVs in these genes may also have clinical implications for family members.

We applied Jongmans’ and MIPOGG criteria to assess the risk of underlying childhood
CPSs. The majority of patients (85.7%) with a childhood-onset CPS were identified using these
criteria. However, among the three unidentified patients were the two with Li-Fraumeni syn-
drome (one with ALL and one with osteosarcoma). Li-Fraumeni syndrome is associated with
a high lifetime-risk of cancer, and the risk of a secondary cancer is further increased when the
first cancer occurs during childhood.[58,59] Data suggest that surveillance programs for Li-
Fraumeni patients increase their survival rates.[60] However, in contrast to other studies,
patients with Li-Fraumeni syndrome were not identified here.[8,16] A possible explanation is
that one of our patients carried a de novo TP53 variant that could not be identified from a fam-
ily history of cancer. Additionally, CPSs that are not associated with syndromic features may
not fulfill relevant criteria and will be difficult to identify if the cancer is not pathognomonic of
the CPS. Family history was only rarely the cause of fulfillment of Jongmans’/MIPOGG criteria
in both patients with childhood- and adult-onset CPS. The primary causes of fulfillment of
Jongmans’/MIPOGG criteria were the patient’s diagnosis and clinical characteristics. This is
interesting as family history is believed to be highly indicative of adult-onset CPS like heredi-
tary breast- and ovarian cancer and Lynch syndrome. A possible explanation for this could be
that more variants are de novo in pediatric cancer patients and that the age of pediatric cancer
patient’s parents is lower than parents of adult cancer patients.

We found that a family history of CNS tumors was associated with the case of childhood
CNS tumors. However, only two of 44 patients with a CNS tumor carried a germline variant
(TSC2, NF1), and none of these two patients had a 1st–3rd-degree family member with a CNS
tumor. Therefore, there may be unidentified predisposition genes among CNS tumor patients.
However, recall bias cannot be excluded, because CNS tumors among family members might
be more memorable, especially if a child is diagnosed with a CNS tumor.
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One limitation of this study is the lack of a comparison cohort, because population-based
WGS data from ethnically comparable children are not publicly available. Another problem is
whether PVs in cancer genes of children with cancers that are unassociated with that particular
gene have occurred randomly. Other studies have found similar cases, in which the genotype
and phenotype were not previously reported,[4,8] and it remains uncertain whether PVs in
adult CPSs are driver or passenger mutations.[5,61] Thus, a large international collection of
cases should be investigated to describe the phenotypic spectrum associated with each CPS
variant.

Strengths of our study include the national setup with a consecutive cohort of unselected
pediatric cancer patients, in-depth clinical examinations of children with cancer, and use of
national databases to verify cancer diagnoses in family members. Additionally, we performed
WGS instead of WES or gene panel analyses so that large structural rearrangements and CNVs
could be identified, if present. Moreover, WGS will facilitate future analyses of deep intronic
variants that affect splicing, variants within putative regulatory areas, and novel CPS genes.

These results demonstrate the value of systematically screening pediatric cancer patients for
CPSs and strongly indicate that a higher proportion of childhood cancers may be linked to
predisposing germline variants than previously supposed.
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 3 

Letter 44 

Dear editor: 45 

While acute lymphoblastic leukaemia (ALL) is the most frequent 46 

malignant disease in children and adolescent, the rare subtype, 47 

Philadelphia chromosome (Ph+, (t(9;22) (q34;q11)) ALL, 48 

accounts for only 3-5% of paediatric ALL cases (1) (2) (SF1). 49 

Generally, the incidence of ALL in Danish children under five 50 

years of age is 7/100 000 (https://nordcan.iarc.fr/) 51 

corresponding to just one or two cases of paediatric Ph+ ALL 52 

per year. Considering this rarity of Ph+ ALL in childhood, clinical 53 

suspicion of genetic predisposition was raised when two siblings 54 

were consecutively diagnosed with Ph+ ALL at age 60 and 16 55 

months, respectively. Heritability studies of paediatric 56 

leukaemias are hampered by co-occurrence precipitated not by 57 

two independent tumorigeneses, but rather by placental cross-58 

circulation of a single (pre)malignant leukemic clone, particularly 59 

in monozygotic twins. However, studies of ALL have shown 60 

significantly increased standardized incidence ratio of 3.2 in 61 

siblings (3). Known genetic disposition to ALL may be divided 62 

into syndromic and non-syndromic disposition. The syndromic 63 

disposition consists of well-defined syndromes where 64 

phenotypic traits and risk of other manifestations than ALL are 65 

more prevalent, i.e., Neurofibromatosis type 1, Noonan 66 

syndrome, and Bloom syndrome, while non-syndromic germline 67 

disposition genes such as PAX5, ETV6, IKZF1, RUNX1 and 68 

TP53, have no non-cancer phenotype. Of note, none of these 69 

well-defined monogenic ALL predispositions have a particular 70 
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increased risk of Ph+ ALL. While a single nucleotide 71 

polymorphism in GATA3 (rs3824662) has been associated 72 

specifically with Ph-like ALL phenotype, no SNPs have been 73 

associated with Ph+ ALL. Here, for the first time, we explore the 74 

genomic landscape of a quartet of siblings with paediatric Ph+ 75 

ALL and their parents. We performed germline whole genome 76 

sequencing (WGS) in siblings and parents as well as RNAseq 77 

and WGS of the tumours including mutational signature 78 

analysis. Structural variants (SVs), single nucleotide variants 79 

(SNVs) and short indels were annotated and stored at an in-80 

house mySQL database for posterior analysis (SF3). Overview 81 

of the genetic alterations found in each sister are represented in 82 

the Figure 1b and 1c. 83 

 84 

Firstly, we investigated any possibility of metachronous 85 

transplacental transfer of leukemic clones during each 86 

pregnancy. Leukemic clone transmission from foetus to the 87 

mother and vice versa has been previously reported (4), 88 

however an absence of a clinical impact on maternal health 89 

indicates that infiltrating malignant foetal cells are 90 

immunological cleared. Transplacental transmission between 91 

non-twin siblings have to our knowledge not been reported in 92 

the literature. To assess the origin of the tumoral clone present 93 

in each sister we compared the somatic structural alterations in 94 

the sisters’ tumours obtained by GRIDSS and TNscope (SI2 and 95 

SF3). The major driving translocation forming the Philadelphia 96 

chromosome had disparate breakpoints in the two sisters, 97 
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indicating two independent somatic translocation events. In both 98 

cases translocation occurred within the minor breakpoint cluster 99 

(m-BCR) of chromosome 22, coding for the p190Bcr-Abl subtype 100 

(SF4a and SF4b, ST1). Furthermore, we observed other 101 

structural alterations not shared in the sisters such as ETV6-102 

RUNX1 only in sister1 (SF4a and 4c) and t(9:22:17) only in 103 

sister2 (SF4b), where chromosome 17 has been reported to be 104 

a frequent fusion partner for t(9:22). Interestingly for the sister2, 105 

the variant allele frequency (VAF) of the t(9:17) (VAF=0,38-0,68) 106 

is predicted to be significantly higher than t(9:22) (VAF=0,15-107 

0,26) suggesting the rearrangement between chromosomes 9 108 

and 17 as an earlier event (ST1). Somatically, we also 109 

investigated CDKN2A/B, IKZF1 and PAX5 loci which are 110 

frequently altered in ALL (1), observing deletions in both tumour 111 

samples in CDKN2A/B but not in IKZF1 and PAX5. Deletions of 112 

the CDKN2A locus span different regions in the two sisters, a 113 

471kb deletion covering CDKN2A entirely in sister1, and two 114 

deletions of 34kb and 146kb affecting the first exon in sister2, 115 

respectively (ST1). We observed gene expression of PAX5 and 116 

BLM similar to non-Ph+ ALL samples, however, expression of 117 

GATA3, IKZF1 and CDKN2A is lower in the Ph+ ALL samples 118 

and the sisters than non-Ph+ ALL samples from our ALL cohort 119 

(N=94, Ph+=5 and non-Ph+=89) (Figure2c). We identified 18 120 

smaller somatic variants, such as SNV or indels, that were 121 

shared between both sisters (none were exonic, ST1) and 122 

another 18 non-synonymous SNVs not shared by the sisters 123 

(ST1). 124 
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 125 

In order to evaluate if both sisters have been affected by similar 126 

mutagenesis processes, we investigated COSMIC-v3 127 

Mutational Signatures (SI3). The highest exposures in leukemic 128 

cells from both sisters are found in signatures SBS1, SBS8, 129 

SBS10a, SBS39, SBS43, SBS55, SBS89 as observed in the 130 

Figure 2. SBS1 is found in most cancers and SBS89 appears to 131 

be most active in the first decade of life in concordance with our 132 

data. Interestingly, the leukemic cells from both sisters had high 133 

exposure for SBS10a which is associated with polymerase 134 

epsilon exonuclease domain mutations generating large 135 

numbers of somatic mutations. SBS 8, SBS39, SBS43 and 136 

SBS55 have unknown aetiology or are possible sequencing 137 

artifacts.  138 

For leukemic cells from sister1 we observe a significantly 139 

increased signal for SBS3 which is associated with defective 140 

homologous recombination-based DNA damage repair as well 141 

as SBS26 which is associated with defective DNA mismatch 142 

repair. In leukemic cells from sister2 we observed relatively high 143 

exposures for SBS30 which has been associated with 144 

deficiency in base excision repair due to inactivating mutations 145 

in NTHL1. 146 

 147 

Epidemiological studies have shown that familial cases of ALL 148 

tend to be the same subtype in higher rate than would be 149 

expected by chance, suggesting a genetic susceptibility to the 150 

same subtype of ALL (5). To evaluate the potential genetic 151 
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predisposition in the family we explored germline SV, SNV and 152 

indels shared by the sisters and parents.  We identified 67 153 

potentially deleterious shared germline SNV (ST1) between the 154 

sisters and parents passing population-frequency filters (SI2). 155 

No clear association with cancer was found and non-156 

synonymous rare variants will be further studied in the identified 157 

genes, with no known cancer predisposition to ALL. We 158 

identified 19 de novo SNVs (SI4), of which none were exonic 159 

(ST1).  160 

 161 

The sisters shared 59 (37% of 153 total) structural deletions 162 

covering 98 genes, with 47 deletions covering 92 genes 163 

showing identical start and end breakpoints. All but one deletion 164 

were seen in an in-house database of WGS data (non-cancer 165 

patients), in WGS data on 593 other children with cancer, or 166 

both. The remaining deletion, a Variant of Uncertain 167 

Significance (VUS) spanning 10,159bp in the first exon of BLM 168 

(chr15:90 721 650-90 731 809, c.-5+4210_c.-5+14369del, 169 

GRCh38) (ST1), was not detected in any other samples nor 170 

reported or deciphered in gnomAD. The same deletion was 171 

detected in the maternal germline WGS data (Figure 1a). No 172 

pathogenic SNV alterations were otherwise identified in the BLM 173 

gene, and neither of the sisters harboured a Bloom syndrome 174 

phenotype. 175 

 176 

The major structural somatic differences in the two samples 177 

(also summarized in Figure 1b and 1c) suggest the origins of the 178 

tumours were independent, and any hypothesis of 179 
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transplacental clonal transfer may be rejected. Germline and 180 

somatic SNV analysis did not show any clear evidence of shared 181 

germline Ph+ ALL drivers. However, structural deletion 182 

including the first exon of the BLM gene in both sisters could 183 

potentially explain a higher risk of cancer development in this 184 

family. Biallelic mutation in the BLM gene is associated with 185 

Bloom Syndrome (BS), a syndrome known to cause significantly 186 

increased risk of cancer, particularly childhood and early-onset 187 

acute leukemia of myeloid, lymphocytic, or mixed lineages. 188 

Based on the Bloom Syndrome Registry there are only 40 189 

occurrences of leukemia from which 11 cases are ALL. 190 

However, information on the subtype is not provided (6). Higher 191 

rate of chromosomal rearrangements in cells lacking BLM (7) 192 

and BS patients with haematological malignancies (8)(9) has 193 

been reported, explained by the role of BLM as 3′–5′ ATP-194 

dependent RecQ DNA helicase, one of the most important 195 

genome stabilizers that controls DNA replication, 196 

recombination, and both homologous and non-homologous 197 

processes of double-strand break repair. Furthermore, the BCR-198 

ABL fusion protein has been shown to affect BLM 199 

expression.  Heterozygous carriers of pathogenic BLM variants 200 

retain an increased level of sister chromatid exchange (10), and 201 

heterozygous germline BLM pathogenic variants are linked to 202 

increased risk of adult cancers (11). Several studies point to 203 

monoallelic BLM inactivation playing a role in tumorigenesis 204 

(12)(13) not necessarily involving somatic inactivation of the 205 

wild-type allele (14). This highlights that haploinsufficiency 206 
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of BLM does retain some of the cancer risk phenotype 207 

associated with the fulminant autosomal recessive syndrome 208 

such as deficiencies in the DNA repair mechanisms and higher 209 

rate of chromosomal rearrangements.  210 

 211 

This is the first report of non-twin siblings with Ph+ ALL. 212 

Transplacental transfer of tumour cells between the sisters was 213 

disproved and significant somatic alterations, including BCR-214 

ABL1, ETV6-RUNX1, t(9:22:17), and deletions in the 215 

CDKN2A/B locus have been reported. Germline and somatic 216 

SNV did not show any clear evidence of a common germline 217 

genetic driver in the siblings. However, we hypothesise the 218 

heterozygous VUS deletion of the first exon of the gene as a 219 

potential risk factor, but as 1 out of 900 in the population are 220 

heterozygous pathogenic variant BLM carriers (15), likely yet 221 

unidentified additional genetic or environmental factors are 222 

involved. 223 
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  311 

Figure Legends: 312 

Figure 1a: Integrative Genome Viewer (IGV) alignment 313 

representation of the germline WGS of the sisters and parents 314 

in the BLM region where the deletion was observed. First 4 315 

tracks represent the alignment for sister1, sister2, mother and 316 

father respectively. BLM gene is represented in the bottom 317 
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track. Lower coverage of the deleted region can be observed in 318 

both sisters and the mother within the marked area. 319 

Figure 1b and 1c: Overview circos plot representing each sister 320 

genomic landscape. From inner ring to outer ring: Observed SV 321 

within or between chromosomes (Fusions), Minor Alleles Copy 322 

Number (0-3, expected 1), Purity adjusted copy number 323 

changes (0-6, expected 2), somatic SNV coloured by 324 

substitution-type similar to Alexandrov et al. 2013, 325 

chromosomes and non-accessible regions (grey). 326 

Figure 2a and 2b: Exposure of the COSMIC v3 Mutational 327 

signatures in the sisters.  328 

Figure 2c: Gene expression on Philadelphia+ ALL vs non-329 

Philadelphia+ ALL in CDKN2A, PAX5, IKZF1, GATA3 and BLM. 330 



a)

b) c)

Sister1

Sister2

Mother

Father



COSMIC ID Sister 1 Sister 2
SBS1 394,437 130,832
SBS3 106,260 0,000
SBS6 80,078 96,842
SBS7a 74,389 0,000
SBS8 217,734 217,939

SBS10a 236,754 325,452
SBS17b 29,666 54,073
SBS22 0,000 46,454
SBS26 93,639 0,000
SBS28 39,829 34,296
SBS30 0,000 66,438
SBS32 62,765 0,000
SBS37 80,120 94,852
SBS39 185,903 221,827
SBS43 116,624 111,619
SBS51 88,266 35,784
SBS54 31,595 101,615
SBS55 136,678 292,681
SBS87 54,118 14,535
SBS89 225,544 94,168

b)a)

c)
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Abstract

Reliable prediction of free energy changes upon amino acid substitutions

(ΔΔGs) is crucial to investigate their impact on protein stability and protein–
protein interaction. Advances in experimental mutational scans allow high-

throughput studies thanks to multiplex techniques. On the other hand, geno-

mics initiatives provide a large amount of data on disease-related variants that

can benefit from analyses with structure-based methods. Therefore, the com-

putational field should keep the same pace and provide new tools for fast and

accurate high-throughput ΔΔG calculations. In this context, the Rosetta

modeling suite implements effective approaches to predict folding/unfolding

ΔΔGs in a protein monomer upon amino acid substitutions and calculate the

changes in binding free energy in protein complexes. However, their applica-

tion can be challenging to users without extensive experience with Rosetta.

Furthermore, Rosetta protocols for ΔΔG prediction are designed considering

one variant at a time, making the setup of high-throughput screenings cumber-

some. For these reasons, we devised RosettaDDGPrediction, a customizable

Python wrapper designed to run free energy calculations on a set of amino acid

substitutions using Rosetta protocols with little intervention from the user.

Moreover, RosettaDDGPrediction assists with checking completed runs and

aggregates raw data for multiple variants, as well as generates publication-
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ready graphics. We showed the potential of the tool in four case studies, includ-

ing variants of uncertain significance in childhood cancer, proteins with

known experimental unfolding ΔΔGs values, interactions between target pro-

teins and disordered motifs, and phosphomimetics. RosettaDDGPrediction is

available, free of charge and under GNU General Public License v3.0, at

https://github.com/ELELAB/RosettaDDGPrediction.

KEYWORD S

binding free energy, folding free energy, free energy calculations, Rosetta

1 | INTRODUCTION

Predicting the impact of amino acid substitutions in a
protein or at a protein–protein interface is becoming
more and more relevant as high-throughput sequenc-
ing data reveal a high rate of sequence polymor-
phisms of uncertain functional significance in protein-
coding regions (Federici & Soddu, 2020). In this con-
text, multiplex-based assays provide massive data that
can be complemented by structural studies on the
effects of protein variants (Anderson et al., 2022;
Cagiada et al., 2021; Gasperini et al., 2016; Ollodart
et al., 2021; Weile & Roth, 2018). Furthermore, satura-
tion mutagenesis is experimentally accessible thanks
to the advances in multiplex technologies. Therefore,
molecular modeling approaches must keep the same
pace and continue developing toward high-throughput
applications.

A convenient and quantitative manner for assessing
the impact of amino acid substitutions related to coding
variants is based on estimating the changes in Gibbs free
energy of folding/unfolding or binding. In this context,
several computational approaches based on the analysis
of protein structures are available to predict free energy
changes upon mutation (ΔΔGs) in protein structures
(Barlow et al., 2018; Delgado et al., 2019; Frenz
et al., 2020; Geng et al., 2019; Kortemme & Baker, 2002;
Kumari et al., 2014; Park et al., 2016; Schymkowitz
et al., 2005; Seeliger & de Groot, 2010; Smith &
Kortemme, 2008). These measurements can be used to
classify the effect of disease-related variants on protein
structural stability. As a consequence, they provide pre-
dictions of potential alterations in the protein cellular
level, propensity to aggregation or proteasomal degrada-
tion (Gerasimavicius et al., 2020; Stein et al., 2019). In
addition, they can also pinpoint functional effects due to
local changes in the interactions with other proteins or
biomolecules (Degn et al., 2022; Fas et al., 2020; Jepsen
et al., 2020).

Rosetta provides a variety of protocols to estimate
changes in free energy in terms of binding and folding/
unfolding (Barlow et al., 2018; Frenz et al., 2020; Kellogg
et al., 2011; Kortemme & Baker, 2002; Park et al., 2016).
Most of these protocols estimate the change in free
energy as an average over the free energy changes calcu-
lated in an ensemble of paired wild-type/mutated
structures.

Three features generally characterize Rosetta proto-
cols for the prediction of free energy changes upon muta-
tion: (i) the sampling method employed to generate the
structural ensemble, (ii) the energy function used to
quantify the free energy associated with each structure,
and (iii) the degree of flexibility allowed in the structure
to accommodate the mutation.

Currently, three state-of-the-art strategies are avail-
able in Rosetta to estimate the change in either folding or
binding free energy upon mutation. The first one, pre-
sented by Park and coworkers (Park et al., 2016) and
referred to as cartddg, is designed to work on monomeric
proteins. In this protocol, a sampling in the Cartesian
space (as opposed to internal dihedrals sampling) is car-
ried out, allowing small local backbone movements in a
three-residue window around the mutation site, together
with side-chains movements within a 6 Å radius from the
mutation site. The second protocol, cartddg2020, repre-
sents an updated variant of cartddg (Frenz et al., 2020).
The third protocol, developed by Barlow and coworkers
(Barlow et al., 2018) and named here flexddg, deals with
estimating the changes in binding free energy upon
mutation in a protein complex. It applies the “backrub”
sampling method (Smith & Kortemme, 2008) to recapitu-
late local backbone motions observed in crystal lattices.
The flexddg protocol seems to perform better with the
talaris2014 energy function (Barlow et al., 2018). This
protocol for binding free energies relies on a local sam-
pling of backbone and side chains for residues within an
8 Å radius from the mutation, followed by global optimi-
zation of the side chains.
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Rosetta is a feature-rich software suite under active
development, backed by a sizable community of users,
and built over roughly 20 years. Running the protocols
mentioned above directly with Rosetta requires an exten-
sive computational background and prior exposure to
several Rosetta features. These requirements may dis-
courage users with a more biology-oriented skillset,
despite the benefit that accurate predictions of free
energy changes upon mutations may bring to their
research. Furthermore, Rosetta protocols for ΔΔG predic-
tion are designed to be run considering one mutation at a
time exclusively, making high-throughput screenings
cumbersome to set up. We recently faced a similar chal-
lenge with implementing high-throughput scans based
on the FoldX free energy function to make them paralle-
lizable, more easily approachable, and applicable to
structural ensembles. This led to the development of
MutateX (Tiberti et al., 2022). FoldX, however, is known
to suffer from limitations due to backbone stiffness dur-
ing the sampling (Usmanova et al., 2018) and often low
accuracy in predicting mutations with stabilizing effects,
even though most prediction methods are biased toward
destabilizing mutations (Buß et al., 2018; Usmanova
et al., 2018). Rosetta-based calculations could offer a valu-
able complement to the ΔΔG estimates currently accessi-
ble with MutateX. Thus, we developed
RosettaDDGPrediction, a Python wrapper to perform
Rosetta-based protocols for ΔΔG prediction. Roset-
taDDGPrediction's outputs can also be converted to a for-
mat compatible with the MutateX plotting system,
allowing for an expanded visualization toolkit. Here, we
illustrate the applications and limits of the approach to
four different cases of study, covering both methodologi-
cal and biological applications. We focused on the com-
parison with experimentally determined unfolding ΔΔG
values (Case Study 1). We showed an example of the
application of RosettaDDGPrediction to the study of
protein–protein interactions and posttranslational modi-
fications (PTMs) (Case Study 2). We then evaluated the
influence of using AlphaFold2 models as starting struc-
tures for the calculations (Case Study 3). We then used
models from AlphaFold2 to assess the functional impact
of mutations identified by whole genome sequencing to
address cancer predisposition (Case Study 4).

2 | RESULTS

2.1 | Overview of the package

RosettaDDGPrediction is a pure Python package provid-
ing a uniform and easily accessible command-line inter-
face to flexddg, cartddg, and cartddg2020 protocols for

calculating free energy changes upon mutation. It is
devised to help users unfamiliar with the Rosetta suite
perform mutational scans and collect, aggregate, and
visualize data from those scans in an intuitive fashion. In
RosettaDDGPrediction, a “protocol” is intended as a set
of Rosetta runs and Python-based processing steps. Each
protocol takes as inputs the three-dimensional
(3D) structure of the protein of interest and a list of muta-
tions to be performed, finally returning the predicted free
energy changes associated with each input mutation. The
flexddg protocol consists of only one call to the rosetta_-
scripts executable for each mutation, which performs all
the necessary calculations as defined by Barlow and
coworkers (Barlow et al., 2018). On the other hand, the
cartddg protocol first energetically relaxes the input struc-
ture by using the Rosetta relax program to generate an
ensemble of relaxed conformations, followed by the selec-
tion of the most suitable one. Finally, it uses the carte-
sian_ddg application to relax the structure further and
perform the free energy calculations. The cartddg2020
protocol represents an updated version of the original
cartddg protocol. Here, the relaxation is performed by a
Rosetta script passed to the rosetta_scripts executable,
and then cartesian_ddg is run on the lowest energy struc-
ture produced by the relaxation. It is worth noting that
the relaxation procedure produces only one structure, as
per the original files provided with the work first describ-
ing the cartddg2020 protocol (Frenz et al., 2020). How-
ever, if the user decides to produce several relaxed
structures, the most suitable one (according to user-
selected criteria) will then be passed to cartesian_ddg.
The standard protocols are described in specific YAML
files provided with the package. With these files, expert
users can still tap into the full potential of the Rosetta
interface by providing virtually any Rosetta-compatible
option to the executables used by each protocol.

RosettaDDGPrediction consists of four main execut-
ables (rosetta_ddg_run, rosetta_ddg_check_run, roset-
ta_ddg_aggregate, rosetta_ddg_plot) performing different
tasks (Figure 1). Their behavior is controlled by a set of
configuration files, which can be fully customized to fine-
tune the parameters of each protocol, aggregation
options, and plot aesthetics.

rosetta_ddg_run is the executable responsible for run-
ning a Rosetta protocol to predict free energy changes
upon mutation over a set of selected mutations. Given a
protein structure in PDB format and a set of mutations, it
generates all the data structures and configuration files to
perform several runs in parallel, making them straight-
forward to perform and making the most of modern
many-cores computing infrastructures.

In rosetta_ddg_run, the user can specify the amino
acid substitutions to be performed in two different ways.

SORA ET AL. 3 of 25
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In details, it is possible to provide a list of mutations con-
taining both the positions and the residues to which such
positions should be mutated (i.e., every single mutation is
uniquely identified by the protein chain, the wild-type
residue, the position of the residue in the chain, and the
mutated residue). As an alternative, the user can specify
multiple mutations to be performed simultaneously on
different protein residues. On the other hand, the user
can also pass a list of residues (each one identified by the
protein chain, the wild-type residue, and the position of
the residue in the chain) and a list of residue types. In the
latter case, all the residues specified in the first list will be
mutated, one at a time, to each residue type specified in
the second list. This allows RosettaDDGPrediction to
implement saturation mutagenesis scans alongside scans
of specific mutations.

The rosetta_ddg_run executable can optimize the
workload distribution over the available resources to
ensure efficient scheduling of the runs, thanks to the
Dask Python package operating under the hood. roset-
ta_ddg_run easily handles multistep protocols, requiring
sequential Rosetta calls and possibly processing the out-
put data between the steps. For example, for the afore-
mentioned cartddg and cartddg2020 protocols,
rosetta_ddg_run takes care of both Rosetta calls and the
processing steps.

Once the runs are completed, users can perform a
sanity check on the calculations using rosetta_ddg_-
check_run, which identifies problematic runs by scraping
the Rosetta output files. Finally, rosetta_ddg_aggregate
can aggregate raw data from the large numbers of col-
lected mutation runs into easily readable CSV table files
for successfully completed runs. These aggregate files
contain, together with the calculated differences in free
energy, additional information about each mutation, the
Rosetta energy function used, and the number of struc-
tures generated. rosetta_ddg_aggregate also allows gener-
ating aggregate outputs compatible with the MutateX
plotting system. Indeed, MutateX offers additional visual-
ization tools, including density plots, logo plots, distribu-
tion plots, and summary tables that can be easily
navigated (Tiberti et al., 2022).

Finally, rosetta_ddg_plot provides plotting utilities to
explore the aggregated data through several visualization
types, such as one-dimensional or two-dimensional heat-
maps. The latter is particularly convenient when a satura-
tion mutagenesis scan is run on a set of positions. In
addition, the contribution of each term of the energy
function to the final ΔΔG values can be visualized as
stacked bar plots, where positive and negative contribu-
tions add up on the corresponding semiaxes. Finally,
since all protocols implemented so far in

FIGURE 1 The RosettaDDGPrediction workflow and schematized plot types. The first step consists in running the rosetta_ddg_run
executable to obtain the predicted ΔΔG values for the changes in folding free energy (for monomeric proteins) or binding free energy (for
protein complexes). Then, rosetta_ddg_check can be used to ensure that all runs have been completed successfully. Data aggregation can
then be performed with rosetta_ddg_aggregate, and aggregate data can finally be visualized in different ways (heatmaps, bar plots, swarm
plots) using rosetta_ddg_plot.
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RosettaDDGPrediction determine the ΔΔG value associ-
ated with a mutation by averaging over the values pro-
duced by an ensemble of structures, the user may want to
visualize the distribution of such values to investigate the
source of potential outliers that may bias the average. In
this case, a swarm plot displaying such values as separate
data points constitutes a very insightful overview pro-
vided by rosetta_ddg_plot.

To guide the user on the number of cores and time
required for calculation, depending on the RosettaDDG-
Prediction protocol, energy function, and protein size, we
reported the results for different saturation scans in
Table 1.

2.2 | Case Study 1: Prediction of changes
in folding free energy upon mutations and
comparison with experimental values from
the ThermoMut database

To illustrate the performance of the ref2015 energy func-
tion, we performed folding free energy calculations with
both the cartddg (Figure 2) and the cartddg2020
(Figure S1) protocols and compared them to experimen-
tally determined unfolding ΔΔG values. The following
section illustrates, as an example, our findings when
using the cartddg protocol. We downloaded the Thermo-
Mut database (ThermoMutDB) (Xavier et al., 2021) and
selected four proteins as detailed in Section 4. In particu-
lar, we selected two bacterial enzymes with 117 and
597 mutations, respectively: Enterobacteria phage T4
Endolysin, ENLYS (UniProt ID: P00720), and Staphylo-
coccus aureus Thermonuclease, NUC (P00644). In addi-
tion, we performed the calculations on two human
proteins of interest in health and disease, that is, TP53

(P04637) and FKBP1A (P62942), with 45 and 68 muta-
tions with structural coverage, respectively. We applied
the secondary structure definition of PDBe (Varadi, Any-
ango, Armstrong, et al., 2022) and annotated each posi-
tion as either ɑ-helix, β-sheet, or loop in the wild-type
structures. This case study investigates the relationship
between experimental and predicted values per-mutation
when the data from all four proteins are pooled, allowing
us to achieve better statistical power than considering
each protein separately.

We performed a preliminary data exploration to
understand the agreement between the experimentally
determined and the predicted stability. Interestingly, data
points from the experimental and prediction dataset were
similarly distributed (Figure 2a), as corroborated by the
Kolmogorov–Smirnov test (p = 0.21).

We then investigated the relationship between pre-
dicted and experimental data using a simple linear
regression model (SLM), assuming that a perfect agree-
ment between the experimental and predicted values
would have an intercept of 0 and a coefficient of 1. The
SLM regression line had an intercept of 0.81 and a slope
of 0.719 (Figure 2b). The variance of the linear model (σ2)
is 3.95, and the model produced an R2 of 0.44, a Pearson
correlation coefficient (PCC) of 0.66, and a mean absolute
error (MAE) between the predicted and experimental
ΔΔGs (MAE) of 1.39. The residuals plot for this model
showed how the poor R2 value was at least partially due
to systematic bias (Figure S2). This illustrates that a lin-
ear model does not entirely explain the variance in
the data.

To better understand this behavior, we tried to fit the
data using a generalized additive model (GAM)
(Figure 2d). The resulting model had a roughly linear
behavior in the !0–5 kcal/mol range but becomes less so

TABLE 1 Examples of
performances of RosettaDDGPrediction
for different protein sizes, the number
of cores, and protocols applied

Protein size Number of cores Protocol Time (h)

120 16 cartddg (ref2015) 33

250 24 cartddg (ref2015) 67

250 8 cartddg (talaris2014) 89

340 16 cartddg (ref2015) 160

340 16 cartddg (talaris2014) 70

340 1 Relax 16

600 1 Relax 40

900 1 Relax 65

120; 17a 40 flexddg (talaris2014) 67

Note: In the case of complexes, the “protein size” column includes two values, that is, one value for each
protein/peptide in the complex. Calculations were run on servers equipped with either dual Xeon 6142
processors or dual Xeon 6242 processors. Each processor features 32 cores. The estimate refers to
calculations done with Rosetta version 3.12.
aThe one for which the saturation mutational scan was carried out.
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at lower or larger ΔΔG values. Similarly, the confidence
interval is very narrow in the linear regime interval, and
it is wider for large and small ΔΔG values, for which we
have fewer data points. This observation is in alignment

with Høie et al. (Høie et al., 2022), who found that ΔΔG
predictions made with ref2015 and the cartesian2020 pro-
tocol in 29 proteins correlated with altered protein func-
tions for ΔΔG > 4.5 kcal/mol, but the severity of the

FIGURE 2 Legend on next page.
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impact did not increase remarkably beyond this point.
We then assessed the impact of the secondary structure
on the performance of the prediction by building a SLM
for each of the secondary structure groups, divided into
ɑ-helices, β-sheets, and loops (Figure 2c). Residues
involved in structured regions are more likely to be part
of the protein core, less flexible, and more sensitive to
mutation with respect to solvent-accessible unstructured
loops. According to the PCC, MAE slope, σ2, and R2

values, the prediction was less consistent for the unstruc-
tured regions. Indeed, the loop subset featured a low PCC
score (0.58), indicating a poor linear relationship. On the
other side, the loop subset also resulted in the lowest
MAE value (0.33) between predicted and experimental
data, which could imply a better fit to the model. The low
MAE is, however, an artifact of the comparatively low
ΔΔG values observed in the loop regions. Loop regions
are often flexible and less sensitive to changes in folding/
unfolding ΔΔG upon mutation. This caused all the pre-
dicted or experimentally determined values to be grouped
close together (Figure 2c), which caused lower MAE
values than what observed for the ɑ-helix or β-sheet sub-
sets. In the loop dataset, we noticed several outliers in
which amino acid substitutions are predicted to have a
large destabilizing impact, whereas the experiments
found the same variants to be neutral or mildly destabi-
lizing. The experimental findings mostly align with the
expectation that substitutions in flexible loops have mild
effects on stability. However, some loop substitutions
may extend or create secondary structure elements, for
example, as a result of substitutions from proline (Pires
et al., 2019). The difference witnessed in this dataset was
likely due to Rosetta allowing local main chain flexibility,
which might not be enough to represent the conforma-
tional heterogeneity that disordered regions experience
in solution. We noticed similar behavior in applying

FoldX, which we could mitigate using ensembles of struc-
tures generated, for example, by molecular dynamics sim-
ulations (Fas et al., 2020; Nygaard et al., 2016; Tiberti
et al., 2022). It should be noted that the ɑ-helix mutations
dataset also contains outliers. This dataset, however, had
an overall better correlation with the experimental data-
set, and the coefficient of its regression line is closer to
1. This suggests that changes in loops are more difficult
to predict.

We then evaluated the performance of the predictions
in classifying mutations into destabilizing, neutral, and
stabilizing classes. We did so by classifying all mutations
causing stability changes above 1 kcal/mol as destabiliz-
ing, all mutations causing stability changes between
1 and "1 kcal/mol as neutral, and all mutations causing
stability changes below "1 kcal/mol as stabilizing (Frenz
et al., 2020; Park et al., 2016) and constructing a confu-
sion matrix (Figure 2e). This confusion matrix yielded an
accuracy of 0.74. The prediction accuracy was best for the
destabilizing class (0.76), with high sensitivity (0.83),
while the accuracy of the stabilizing class was only 0.56,
with a sensitivity of 0.17, indicating that the destabilizing
class is more likely to be correctly identified as compared
to the stabilizing class. The low accuracy could also be
expected due to the imbalanced dataset available for the
study, where a low number of stabilizing mutations is
available. While this dataset is not balanced, this may not
explain the bias in full, as the methodology itself could
have been developed on a biased dataset (Bæk &
Kepp, 2022; Pancotti et al., 2022). The neutral class per-
formed similarly to the destabilizing class (Table S1).

We performed the same analyses on the dataset
obtained using the cartesian2020 protocol, which showed
similar trends overall (Figure S1). Additionally, for com-
parison, we used a recent deep learning tool, which aims
at simulating the cartddg protocol, that is, RaSP

FIGURE 2 Comparison of changes in structural stability predicted with the ref2015 cartddg protocol and experiments. (a). Distribution
of the predicted and experimental stability changes in kilocalorie per mole. (b) Scatterplot of the ΔΔG values predicted by the ref2015
cartddg protocol and experimental values for the corresponding mutations. The blue line indicates a perfect correspondence between the
variables. The green line is the fitted simple linear model. The model has an intercept of 0.81, a slope of 0.72, a variance (σ2) of 3.95, and a R2

of 0.44, a Pearson's correlation coefficient (PCC) of 0.66, and a mean absolute error between the predicted and experimental ΔΔGs (MAE) of
1.39. (c) Scatterplots dividing the data by the wild-type secondary structure of the mutated position. The blue line indicates a perfect
correspondence between the variables for each plot. The green line is the fitted simple linear model. Here, it is evident how the structured
sections have a better correlation when compared to the loops. This is likely due to the flexibility of the unstructured sections. ɑ-helices:
PCC = 0.70, slope = 0.68, σ2 = 3.63, R2 = 0.49, MAE = 1.53. β-sheets: PCC = 0.70, slope = 0.99, σ2 = 4.98, R2 = 0.49, MAE = 1.38. Loop:
PCC = 0.58, slope = 0.45, σ2 = 1.99, R2 = 0.33, MAE = 1.22. (d) Generalized additive model (GAM) modeling the response variable, the
experimental ΔΔG value, to a predictive variable, the predicted ΔΔG value, by estimating a smooth function, smooth (predict). The smooth
function has an effective degree of freedom of 6.5, quantifying the complexity of the line. The dotted black lines indicate the confidence
interval, which is sufficiently narrow in the ΔΔG interval 0–5 kcal/mol (indicated with red dotted lines) to indicate that a linear relationship
is present in this interval. (e) Confusion matrix where the experimental values are annotated as the reference values. The threshold used to
define the classes is a ΔΔG of <"1 kcal/mol for stabilizing mutations, "1 < ΔΔG < 1 kcal/mol for neutral mutations and ΔΔG > 1 kcal/
mol for destabilizing mutations. The resulting accuracy is 0.74.
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(Blaabjerg et al., 2022) (Figure S3). Here, we also noticed
a remarkable performance both compared to both the
experimental values and the Rosetta predictions.

In conclusion, the Case Study 1 showed a good linear
correlation between predicted and experimental values,
especially in the range of 0–5 kcal/mol, where the trend
is generally conserved. Outside this range, the relation-
ship between the predicted and the experimental values
is less direct. We also show how predictions are more
reliable for structured regions of the protein while corre-
lation values are lower for unstructured regions.

2.3 | Case Study 2: Prediction of changes
in binding free energy for protein-short
linear motifs interactions

Within the protein–protein interaction landscape, intrin-
sically disordered proteins (IDPs) or regions (IDRs) have
been proven to play an essential role in different biologi-
cal events. IDPs and IDRs include functional motifs
known as short linear motifs (SLiMs) that are important
for the binding between IDPs and their target proteins
(Davey, 2019; Davey et al., 2011; van Roey et al., 2014).
An example is the LC3 interacting region (LIR), that is, a
class of SLiMs involved in selective autophagy (Sora
et al., 2020). One of the main features for regulating LIR
binding to proteins of the LC3 family is through PTMs,
especially through phosphorylation (Sora et al., 2020).
Here, we aim to show an application of the flexddg proto-
col to capture the changes in binding free energy upon
phosphorylation or mutations in the core region of LIR-
containing proteins.

First, we selected two examples of experimentally
characterized phospho-regulated LIRs for which the
structures were available on the Protein Data Bank,
that is, FUNDC1 in complex with LC3B (PDB entry
2N9X; Kuang et al., 2016) and PIK3C3 in complex with
GABARAP (PDB entry 6HOG; Birgisdottir et al., 2019).
Experimental data from isothermal titration calorimetry
(ITC) or peptide arrays are available for these two com-
plexes and include phosphorylations or phospho-
mimetics (Birgisdottir et al., 2019; Kuang et al., 2016;
Lv et al., 2017). We applied the flexddg protocol with
the talaris2014 Rosetta energy function to investigate
the effects of single and multiple phospho-mimetic
mutations at the known phosphosites (see Section 4).
Indeed, Rosetta does not provide parameters for phos-
phorylated residues. In addition, we included a compar-
ison with the estimates provided by FoldX using the
binding free energy protocol implemented in MutateX.
The results are described in detail below and reported
in Figure 3.

FUNDC1 is a mitophagy receptor that mediates the
selective removal of damaged mitochondria. It contains a
canonical LIR (core region, 18-YEVL-21), which is neces-
sary for interacting with LC3 and its role in mitophagy
(Kuang et al., 2016). FUNDC1 presents three experimen-
tally validated phosphosites in the surroundings of its
LIR motif: S13, S17, and Y18 (Figure 3a). ITC experi-
ments with different FUNDC1 LIR peptides and LC3B
reported a Kd of 0.40 ± 0.06 μM for the wild-type variant.
Phosphorylation at the S13 site resulted only in a slight
decrease of the LC3B affinity (Kd = 0.60 ± 0.05 μM) with
respect to the wild type. On the other hand, Y18 phos-
phorylation caused a five-fold Kd increase (Kd = 1.72
± 0.30 μM). This increase is slightly augmented if both
phosphorylations are combined (Kd = 2.00 ± 0.37 μM)
(Kuang et al., 2016). Additionally, another work reported
that S17 phosphorylation has an opposite effect and
increases the binding affinity for LC3B by three folds (Lv
et al., 2017). The flexddg protocol predicted the S13D and
S13E substitutions to have neutral effects on the binding,
in agreement with experiments (i.e., average
ΔΔG < 0.25 kcal/mol). However, the average ΔΔGs for
the S17E and S17D mutations are also low, suggesting
that, in this other case, the prediction cannot capture the
changes in the binding affinity observed experimentally
(Figure 3a). In the case of the single phospho-mimetic
mutations at Y18 and S13, the predicted ΔΔG sign was in
overall agreement with the effect measured experimen-
tally. Although, we noticed that, in this case, to use
trypthophan as a phospho-mimetic residue for phosphor-
ylated tyrosine does not efficiently capture the destabiliz-
ing effects of the PTM.

Surprisingly, the combination of phospho-mimetic
mutations at S13 and Y18 sites (i.e., S13E_Y18E and
S13E_Y18W) resulted in negative ΔΔG values, suggesting
a stabilizing effect in disagreement with what observed
experimentally (Figure 3b). Nevertheless, we observed
that the associated standard deviations are very high not
allowing for quantitative conclusions.

We then studied PIK3C3, a class III phosphoinositide
3-kinase enzyme of the PtdIns3K complexes, involved in
autophagy initiation. PIK3C3 presents a canonical F-type
LIR (250-FELV-253) required for the interaction with
GABARAP and GABARAPL1 (Birgisdottir, et al., 2019).
The effect of a double phosphorylation at S244 and S249
was studied with ITC. In these experiments, the substitu-
tion of both the phosphosites with glutamate caused a
17-fold increase in GABARAP binding (Kd = 2.9
± 0.1 μM) compared to the wild-type variant (Kd = 49.5
± 3.9 μM). Moreover, peptide array experiments showed
an increase in the binding affinity of the LIR peptide with
all the LC3 family members for the S249E variant
(Birgisdottir et al., 2019).
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To assess the potential of the flexddg protocol in cap-
turing the effects induced by the phosphorylations of the
PIK3C3 LIR, we modeled the S249E variant and a variant
including phosphomimetic mutations at both the S244
and S249 sites (i.e., S244E_S249E; Figure 3c). We also
tested the effect of the S249D substitution as a possible
phosphomimetic, even if no experimental data are avail-
able for this mutation. We noticed that using S249D as a
phosphomimetic provides different result than introduc-
ing a glutamate (Figure 3d). This supports the notion that
aspartate and glutamate cannot always be used as

phosphomimetics in an interchangeable manner. The
S249E variant had a slightly stabilizing effect on the bind-
ing (average ΔΔG = "0.59 kcal/mol) and, in general,
values of ΔΔG lower than 0 across the 35 independent
runs (Figure 3d). This is in partial agreement with the
peptide array results mentioned above. The results for
the double mutant variant S244E_S249E are in agree-
ment with the expected increase in binding affinity
observed experimentally, even if with large deviations
across measurements, suggesting that the flexddg proto-
col could provide, in some cases, a qualitative

FIGURE 3 Prediction of changes in binding free energy using the flexddg protocol for protein interactions mediated by short linear
motifs. (a) FUNDC1 LIR peptide (blue) in complex with LC3B (gray) in the structure associated with the PDB entry 2N9X. The S13, Y18, and
S17 phosphosites are shown as sticks and colored in yellow. (b) We report the predicted binding ΔΔGs for the single and double
phosphomimetic mutations for the FUNDC1 LIR phosphosites for which experimental data are available for comparison, along with the
same single mutations predicted with MutateX. For every variant, we also included the ΔΔG values obtained from experimental Kd of the
phosphorylated variants (pS13, pS17, pY18, and pS13_pY18). (c) PIK3C3 LIR peptide (blue) in complex with GABARAP (gray) in the
structure associated with the PDB entry 6HOG. The S244 and S249 phosphosites are shown as sticks and colored in yellow, while the
residues for binding to the GABARAP HP1 and HP2 pockets are shown as red and blue sticks, respectively. (d) We report the predicted
binding ΔΔGs for single and double phosphomimetic mutations, along with mutations to alanine in the core motif of the PIK3C3 LIR, for
which experimental data are available for comparison, along with the same single mutations predicted with MutateX. We also included the
ΔΔG value obtained from the experimental Kd of a S244E_S249E varian.t
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understanding of the effects of multiple amino acid sub-
stitution if they are located at structural proximity. We
noticed that FoldX failed in identifying the stabilizing
effect of the mutation on the binding and predicted
slightly destabilizing effects despite the possibility to
model the phosphorylated variant of the residue.

Furthermore, we evaluated whether the flexddg proto-
col could provide insights into the effects of mutations in
SLiMs where PTMs are not involved. In the case of LIRs,
the interaction between an LIR-containing protein and
an LC3 family member is mainly driven by two residues
of the LIR motif, which bind to the hydrophobic pocket
1 (HP1) and the hydrophobic pocket 2 (HP2) residues of
the LC3 protein, respectively (Sora et al., 2020). Thus, we
tested the capability of the flexddg protocol with the
talaris2014 energy function to predict the impact of the
known detrimental mutations F250A (residue for interac-
tion with HP1 pocket) and V253A (HP2 pocket) of PIK3C
in complex with GABARAP (PDB entry, 6HOG;
Birgisdottir et al., 2019). We observed a good agreement
between Rosetta- and FoldX-based calculations in identi-
fying these mutations as detrimental for binding to
GABARAP (Figure 3d) (Sora et al., 2020).

Overall, Case Study 2 illustrates the potential and lim-
itations of the RosettaDDGPrediction workflow. We iden-
tified as main challenges the prediction of increased
binding affinity (i.e., stabilizing mutations), to study com-
bined mutations and the usage of phosphomimetic muta-
tions instead of phosphorylated residues. Moreover, we
noticed that the results from RosettaDDGPrediction are
more consistent with the ΔΔGs from the ITC experi-
ments with respect to the ones obtained from the Muta-
teX protocol with the FoldX free energy function despite
FoldX allows to include phosphorylated residues. The
estimates provided by FoldX seem to capture variants
destabilizing for the binding to the target protein but
with highest ΔΔG than experimentally measured.

2.4 | Case Study 3: Influence of the
source of initial structures for the
calculations

Using structural models to perform prediction of ΔΔGs is
a tantalizing perspective because of intrinsic limitations
in the availability of experimental structures. This has
been shown to be reliable to a good extent—for instance,
using homology models with Rosetta allowed to achieve
similar performance when comparing predictions with
experimental ΔΔGs, as long as the sequence identity of
the template to the target protein was at least of 40%
(Valanciute et al., n.d.) and results obtained using Rosetta
are relatively robust to the use of models (Blaabjerg

et al., 2022; Valanciute et al., n.d.). The advent of Alpha-
Fold has revolutionized molecular modeling and struc-
tural biology (Jumper et al., 2021), resulting in models of
3D structures of proteins with quality comparable to that
achievable with experimental approaches and useful in
the context of computational biology, including the pre-
diction of changes of free energy (Akdel et al., 2022). The
current version (release 4) of the AlphaFold Protein
Structure Database contains over 214 million predicted
protein structures, corresponding to most proteins in
Uniprot 2021_4 and including 48 complete proteomes
(Varadi, Anyango, Deshpande, et al., 2022), providing a
rich source of structures for in silico mutational scans.

Here, we evaluated the influence of using a model
based on AlphaFold2 with respect to an x-ray structure of
the same protein with good resolution. For this goal, we
used as a case study the DNA binding domain (DBD) of
p53, for which experimental data are also available on
31 mutant variants from ThermoMutDB (Xavier
et al., 2021). We evaluated the agreement between our
calculated and experimentally available data using the
same parameters and energy functions, either the cartddg
or cartddg2020 protocol, and the two different starting
structures. We also included a variant of cartddg in which
we increased the number of runs per mutation up to
10 to determine whether it would improve our results. As
the final ΔΔG depends on the values obtained by the sin-
gle runs, we expect that increasing the number of sam-
ples might lead to better converged final ΔΔG values. We
measured the agreement through several metrics, such as
the Pearson correlation coefficient, MAE, and a ROC
curve. We performed most of our comparison considering
runs performed with the cartddg protocol. Therefore, in
this section, we will refer to the cartddg protocol unless
stated otherwise.

We obtained a similar pattern when comparing pre-
dictions and experiments using the experimental struc-
ture and the Alphafold2 model (Figure 4a) with a
positive linear correlation, as quantified by the Pearson
correlation coefficient (Figure 4b). The highest Pearson
correlation coefficient obtained was 0.79 using the scor-
ing function talaris2014 with the AlphaFold2 model and
10 runs (Figure 4b). However, all runs, including the
ones using the cartddg2020 protocol, achieved a correla-
tion in the range of 0.57–0.79. Values ranging from 0.74
to 0.79 were obtained by all runs using the x-ray structure
and by talaris2014 with AlphaFold2 using 3 or 10 runs.
Using ref2015 with the AlphaFold2 model led to a slightly
worse correlation of 0.57 for 3 runs and 0.68 for 10 runs.
The runs with ref2015 energy function and the cartddg
protocol (x-ray structure) using 10 runs had the smallest
MAE of 0.90 kcal/mol (Figure 4c). This result suggests
that this combination featured the lowest average
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FIGURE 4 Legend on next page.
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distance between predicted and target values among all
the different tested methods. It was closely followed by
talaris2014 with the AlphaFold2 structure using 3 and
10 cycles with 0.92 and 0.91, respectively. The rest of the
combinations had a MAE between 0.95 and 1.28.

Considering the ROC curve, we used the experimen-
tal free energy changes from ThermoMutDB as ground
truth. We partitioned our dataset into destabilizing and
nondestabilizing mutations depending on whether our
prediction or ground truth had ΔΔG > = 1.2 kcal/mol
(Degn et al., 2022). The best area under the curve (AUC)
was achieved by using the scoring function ref2015 using
the cartdgg protocol and the x-ray structure, yielding a
value of 0.97 (Figure 4d). In general, the different scoring
functions and structures behaved similarly.

The usage of the experimental x-ray structure or the
AlphaFold2 model did not affect the prediction perfor-
mance. The only exception was the combination of the
ref2015 energy function and the cartddg protocol with the
AlphaFold2 model, which had a lower correlation and
ROC AUC with respect to the other cases. Increasing the
number of runs also slightly improved the performance,
but with the trade-off of a considerably increased com-
puting time. Finally, we obtained mixed results when
comparing the ref2015 x-ray three-cycles with cartddg
with the corresponding cartddg2020 run. We did not see
any appreciable improvement when using cartddg2020
on the x-ray structure, as the cartddg2020 run has a
slightly lower correlation (0.74 vs. 0.76), higher MAE
(1.25 vs. 0.99 kcal/mol), and lower AUC (0.95 vs. 0.97)
considering the experimental data. Nonetheless, using
cartddg2020 with the AlphaFold2 model rescued the sub-
par performance of ref2015, as all its performance mea-
sures are more similar to those of the other cases.

It should be noted that the DNA-binding domain in
the p53 AlphaFold2 model, ranging from residues 91 to
289, features a good per-residue confidence score
(pLDDT) score, mostly above 70. This implies that more
tests on models or regions with lower quality should be
carried out in the future to determine whether our find-
ings can be generalized. It has been shown that protein
regions predicted with a confidence score lower than
50 are less in agreement with experimental data, possibly

due to the low-confidence regions including more often
disordered regions with a higher tolerance to mutations
affecting stability (Akdel et al., 2022).

2.5 | Case Study 4: Variants predisposing
to childhood cancer

In a recent study, 198 samples from different childhood
cancer types were analyzed in terms of germline variation
and cancer predisposition (Byrjalsen et al., 2020). Among
these, different variants of uncertain significance (VUS)
have been found with a frequency of <1% in the healthy
population. Approximately, 20% of the patients investi-
gated had VUS in DNA repair pathway genes. In addi-
tion, we carried out new analyses on a larger dataset
accounting for more than 550 germline samples from
Danish children. The selection criteria for the proteins
and the variants included in the study are described in
detail in Section 4 and in Figures S4 and S5. We retained
14 proteins, that is, ERCC4, BLM, FANCA, FANCE,
FANCF, FANCG, FANCI, FANCL, MLH1, MSH2,
MSH6, NBN, RAD51C, and RFWD3 for structure-based
calculations of the changes in folding ΔΔGs for the VUS.
All these genes are classified as tumor suppressor genes
in the COSMIC Cancer Gene Census v96 (Sondka
et al., 2018) or from the literature, in the case of FANCI
(Zhang et al., 2016) and RAD51C (Somyajit et al., 2010).

Since mutations in tumor suppressor genes are gener-
ally causing loss-of-function in cancer (Wang
et al., 2018), we were interested in identifying VUS that
could destabilize the protein structure and result in posi-
tive predicted ΔΔG values upon mutation. These variants
could be relevant to investigate further in terms of geno-
mic alterations predisposing to cancer. To this aim, we
retained the variants with structural coverage in Alpha-
Fold2 and high confidence scores for a total of 126 vari-
ants analyzed (Figures 5–7 and Table S2). According to
searches in ClinVar (Landrum et al., 2014, 2020), some of
the variants were annotated as benign or likely benign
but not related to childhood cancer. On the other hand,
only T1131A in FANCA was found as pathogenic. The
remaining were not deposited in ClinVar or annotated as

FIGURE 4 Comparison of experimental and predicted ΔΔGs using p53 as a case study. ΔΔG values were predicted using Rosetta
version 3.12 with the ref2015 and talaris2014 scoring functions, and the cartddg and cartddg2020 protocols (referred to as “C2020” in the
figure). We used the x-ray structure (PDB entry 2XWR) and a model from the AlphaFold2 database for the residues 91–289 of p53 as initial
structures, using our default number of runs (3) or 10 runs. (a) Experimental versus predicted ΔΔG values. (b) Pearson's correlation
coefficient between experimental and predicted values. (c) Mean absolute error (MAE) between experimental and predicted values.
(d) Receiver operator characteristic (ROC) curve. The classification for this curve was done by considering the changes of free energy values
reported in ThermoMutDB as ground truth, using 1.2 kcal/mol as ΔΔG cut-off to distinguish between destabilizing and nondestabilizing
mutations (see Section 4). The same criterion was used for the predicted mutations.
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FIGURE 5 Trimmed AlphaFold structures of the FA (Fanconi Anemia) proteins selected for the Case Study 4. Cartoon representation
of (a) FANCA37–1441, (b) FANCI1–1279, (c) FANCE12–534, (d) FANCF2–369, (e) FANCG12–616, and (F) FANCL1–375. The proteins are colored
according to the AlphaFold2 pLDDT score: very low (orange, pLDDT < 50), low (yellow, 50 < pLDDT < 70), confident (light blue,
70 < pLDDT < 90), and very high (blue, pLDDT > 90). The Cɑ of the residues found mutated in pediatric cancer patients are shown as
spheres and labeled.
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FIGURE 6 Legend on next page.
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uncertain significance or with conflicting evidence,
emphasizing the importance of additional analyses to
understand the effects at the protein level.

In this example, we applied the cartddg2020 protocol,
which considers the ΔΔG value referring to the mutant
structure with the lowest total energy. At first, we
retained, as predicted destabilizing, the variants with
ΔΔG values >1 kcal/mol (see Section 4) and confirmed
destabilizing by calculations with MutateX (Table 2).
Indeed, the foldX5 energy function, which is applied in
the MutateX protocol, is effective in capturing loss-of-
function mutations (Gerasimavicius et al., 2022; Nielsen
et al., 2017; Scheller et al., 2019). Of note, the pathogenic
variant T1131A is not predicted to destabilize the struc-
ture of FANCA by both Rosetta and FoldX calculations.
We hypothesize that the detrimental effects triggered by
this variant could be due to other properties such as
impaired activity, interactions, or PTMs at the cellular
level. Experimental studies at the cellular level confirm
that the T1131A substitution does not affect the protein
levels, in agreement with a neutral effect on the folding
ΔΔGs (Wilkes et al., 2017) and that the phenotype
reflects a functional impairment that has a mild impact
on drug sensitivity and the monoubiquitination of
another protein (Adachi et al., 2002; Wilkes et al., 2017).
T1131A could be further investigated using our recently
proposed multilayered structural framework for variant
annotations in proteins, that is, Multilayered Assessment
of VarIants by Structure for proteins(MAVISp) (Arnaudi
et al., 2022).

We also observed that one variant annotated as
benign in ClinVar (i.e., L605F FANCI) has predicted
changes in folding ΔΔG higher than 3 kcal/mol and is,
therefore, classified as destabilizing for the structural sta-
bility by our analysis. The variant has been characterized
with cellular assays, showing decreased protein levels
when compared to the wild type, which confirms our pre-
diction (Fierheller et al., 2021). On the other hand, the
variant P55L (predicted folding ΔΔG < 2.0 kcal/mol) was
expressed at the same level as the wild-type variant. In
addition, other benign variants in ClinVar resulted in
changes in free energy in the range of 1–2 kcal/mol
(Table 2). This observation suggests that variants for
which the predicted changes in stability are within 1–
3 kcal/mol should be further investigated to evaluate
whether they could result in neutral effects in terms of
protein levels in the cell or propensity for degradation. In

the case of MSH2 and MLH1, for example, it has been
shown that a predicted destabilization of more than
3 kcal/mol is sufficient to cause cellular degradation of
the proteins (Abildgaard et al., 2019; Nielsen et al., 2017).
Similar observations have been recently done in another
recent work on different proteins with benign variants
featuring predicted changes in stability in the range of
0.9–2.7 kcal/mol (Blaabjerg et al., 2022).

According to the results in Table 2 and the observa-
tion above, if we consider folding ΔΔG values higher
than 3 kcal/mol, our analyses suggest a number of VUS
that could predispose to loss-of-function through destabi-
lization of the protein structure and have a high REVEL
score which further support their possible pathogenic
impact (i.e., A797T in BLM, I706T in ERCC4, W410C
and F603S in FANCA, L329P in FANCF, V180G in
MLH1, V606F in MSH2, and G1072D in MSH6). Of note,
L329P in FANCE has been suggested to disrupt the sta-
bility of the catalytic module of the protein in a previous
structural study (Shakeel et al., 2019).

3 | DISCUSSION

We developed RosettaDDGPrediction moved by the need
to provide easy and scalable access to Rosetta-based
approaches to predict free energy changes in proteins
upon mutations. The possibility to perform mutational
scans in an efficient and scalable manner allows to have
a new systematic and large-scale approach at such data.
The fact that other implementations of this process have
been released in recent years (e.g., https://github.com/
KULL-Centre/PRISM/tree/main/software/rosetta_ddG_
pipeline) is a testament to its utility.

RosettaDDGPrediction takes care of the whole pro-
cess by performing a large number of ΔΔG predictions in
an efficient and scalable manner, making a high-
throughput calculations with Rosetta accessible, which is
helpful for both extensive mutational scans and struc-
tured benchmarks.

RosettaDDGPrediction is, to our knowledge, the first
wrapper devised to integrate state-of-the-art Rosetta-
based protocols for the predictions of free energy changes
upon mutation on binding and stability under a uniform
framework.

Furthermore, the software checks the success of the
runs, aggregates the data in CSV tables that are easy to

FIGURE 6 Trimmed AlphaFold structures of the of the DNA mismatch repair proteins selected for the Case Study 4. Cartoon
representation of (a) MLH11–341 and MLH1501–756, (b) MSH21–934 and (c) MSH6362–1360. The proteins are colored according to the
AlphaFold2 pLDDT score: very low (orange, pLDDT < 50), low (yellow, 50 < pLDDT < 70), confident (light blue, 70 < pLDDT < 90), and
very high (blue, pLDDT > 90). The Cɑ of the residues found mutated in pediatric cancer patients are shown as spheres and labeled.
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FIGURE 7 Trimmed AlphaFold structures of the proteins promoting the double-strand break (DBS) repair (RAD51C, RFWD3, ERCC4,
and NBN) and RECQ helicase (BLM) selected for proteins used for the Case Study 4. Cartoon representation of (a) RAD51C13–350,
(b) RFWD3284–774, (c) ERCC412–914, (d) BLM368–1290, and (e) NBN1–749. The proteins are colored according to the AlphaFold2 pLDDT score:
very low (orange, pLDDT <50), low (yellow, 50 < pLDDT < 70), confident (light blue, 70 < pLDDT < 90), and very high (blue,
pLDDT > 90). The Cɑ of the residues found mutated in pediatric cancer patients are shown as spheres and labeled.
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TABLE 2 Summary of predicted ΔΔGs for predicted destabilizing variants in childhood cancer

Variant ClinVar Predicted folding ΔΔG (kcal/mol) REVEL

BLM- L788I Conflicting interpretations of pathogenicity 2.233 0.503

BLM -A797T Entry N.A. 3.045 0.893

BLM - K846T Uncertain significance 1.227 0.136

BLM - Y1024C Uncertain significance 1.776 0.590

ERCC4 - R267C Uncertain significance 1.495 0.470

ERCC4 - P379S Conflicting interpretations of pathogenicity 2.051 0.526

ERCC4 - R576T Uncertain significance 1.012 0.274

ERCC4 - I706T Conflicting interpretations of pathogenicity 3.242 0.609

FANCA - F276I Entry N.A. 1.922 0.160

FANCA - W410C Entry N.A. 4.169 0.622

FANCA - F603S Uncertain significance 6.111 0.631

FANCA - A746S Benign/likely benign 1.696 0.374

FANCA - P1086L Entry N.A. 1.012 0.775

FANCE - A104P Entry N.A. 5.691 0.319

FANCE -L326W Uncertain significance 1.620 0.154

FANCE - M437T Conflicting interpretations of pathogenicity 1.930 0.134

FANCF - L329P Uncertain significance 8.170 0.417

FANCF - Y287C Uncertain significance 2.732 0.195

FANCF - Y274C Uncertain significance 3.526 0.193

FANCF- L129V Uncertain significance 1.086 0.069

FANCF - L80V Entry N.A. 2.001 0.104

FANCG - P545T Entry N.A. 1.918 0.465

FANCI - I275T Uncertain significance 3.041 0.22

FANCI - M363T Entry N.A. 2.593 0.242

FANCI - P471R Uncertain significance 1.730 0.837

FANCI - M525V Conflicting interpretations of pathogenicity 2.137 0.487

FANCI - L605F Benign/Likely benign 3.773 0.238

FANCI - C742S Benign 1.084 0.075

FANCI - Y923C Uncertain significance 3.806 0.391

MLH1 - P285S Uncertain significance 1.373 0.838

MLH1 - K618E Benign/Likely benign 1.296 0.874

MLH1 - V180G Uncertain significance 3.847 0.91

MSH2 - N127S Benign 2.172 0.741

MSH2 - L128V Conflicting interpretations of pathogenicity 2.309 0.613

MSH2 - L513V Uncertain significance 2.595 0.829

MSH2 - I577T Likely benign 2.067 0.928

MSH2 - V606F Entry N.A. 5.096 0.889

MSH2 - I770V Conflicting interpretations of pathogenicity 1.043 0.417

MSH6 - L396V Benign 1.369 0.322

MSH6 - S503C Entry N.A. 1.288 0.413

MSH6 - V878A Benign 2.073 0.155

MSH6 - G1072D Uncertain significance 6.349 0.623

MSH6 - V1253E Uncertain significance 2.986 0.952

(Continues)
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mine, and generates visual reports. As these steps are
independent, the aggregation and visualization tools can
be used on different datasets. In addition, we support
additional output formats compatible with the MutateX
plotting scheme (Tiberti et al., 2022). At the same time,
raw or aggregated data can be easily manipulated exter-
nally. RosettaDDGPrediction also devotes particular
attention to ensuring technical reproducibility by being
controlled through configuration files. Further develop-
ments of RosettaDDGPrediction will focus on integrating
its functionalities within MutateX, to provide a method-
agostic container to perform and collect high-throughput
mutational scans in a reproducible, automatized, and sus-
tainable manner.

In this context, the performances of RosettaDDGPre-
diction and MutateX are only as good as those of the
Rosetta- and FoldX-based methods that they incorporate.
Indeed, Rosetta-based protocols implemented so far rely
on different sampling methods to obtain models of the
mutant variant structures and on scoring the resulting
structures via knowledge-based energy functions to pre-
dict changes in the folding and binding free energy upon
mutation (O'Meara et al., 2015; Park et al., 2016). How-
ever, more rigorous strategies are available to predict
both the effect of mutations on the folding free energy
and the binding free energy (Benedix et al., 2009; Kumari
et al., 2014b; Seeliger & de Groot, 2010; Siebenmorgen &
Zacharias, 2020). For example, approaches leveraging
enhanced sampling along reaction coordinates designed
to study binding and unbinding events are available
(Bertazzo et al., 2021; Raniolo & Limongelli, 2020; Wing-
bermühle & Schäfer, 2020).

The time and computational resources needed by
these methods still prevent their usage for investigations
going beyond a few mutations. In these contexts, which
include, for instance, saturation mutagenesis scans,
Rosetta- and FoldX-based protocols represent a good
trade-off between accuracy and speed.

Nevertheless, Rosetta still presents a challenge when
noncanonical residue types are considered. Indeed, while

most noncanonical amino acids are supported, mutations
to phosphorylated residues cannot be performed in either
protocol to predict free energy changes. For this reason,
including strategies circumventing this issue would
greatly expand the application of RosettaDDGPrediction.

Furthermore, a milestone in structural bioinformatics
has been reached lately, with the release of AlphaFold2
and its outstanding performance in the CASP14 chal-
lenge (Jumper et al., 2021). Originally developed to solve
the long-standing protein folding problem, AlphaFold2
has already seen many spin-off studies to assess its poten-
tial (Evans et al., 2022; Porta-Pardo et al., 2022;
Robertson et al., 2021; Ruff & Pappu, 2021; Tsaban
et al., 2022). So far, evidence suggests that AlphaFold2
cannot effectively predict changes in folding free energy
upon mutation (Buel & Walters, 2022; McBride
et al., 2022; Pak et al., 2021). However, more studies are
needed to explore this possibility fully.

Our wrappers have been devised to be inherently
extensible. As stated earlier, a long-term perspective
may include transforming them into a more general
platform for structure-based methods to predict free
energy changes upon mutation based on freely accessi-
ble, open-source software. This will also allow us to
support other energy functions or schemes for free
energy calculations, as well as to include support to
transmembrane proteins including protocols as the one
developed by Tiemann et al. (Tiemann et al., n.d.).
Moreover, the results obtained here and in the original
publication (Blaabjerg et al., 2022) with the deep-
learning method RaSP pinpoints this approach as an
additional candidate to include in a unified framework
together with the support to FoldX- and Rosetta-based
calculations.

The efforts of centralizing the development of soft-
ware for in silico deep mutational scans using free
energy functions will help to move a step forward
toward a unified framework for high-throughput
structure-based calculations of free energy changes
upon mutation.

TABLE 2 (Continued)

Variant ClinVar Predicted folding ΔΔG (kcal/mol) REVEL

NBN - D95N Conflicting interpretations of pathogenicity 1.448 0.583

NBN - I171V Conflicting interpretations of pathogenicity 1.133 0.398

RFWD3 - Q577H Entry N.A. 1.469 0.162

Note: We did not report RAD51C and FANCL in the table since all the variants analyzed here for these proteins were predicted with neutral effects for stability.
We reported the full list of VUS in Table S2. Here, we included those variants that are predicted destabilizing by both Rosetta- and FoldX-based estimates,
using a threshold of folding ΔΔG of 1 kcal/mol. This is a threshold often used to discuss the effects of mutations on structural stability applying Rosetta- or
FoldX-based methods. We observed that there are variants that resulted in changes of ΔΔG above the threshold but with a benign Clinvar classification. This
suggests that a ΔΔG threshold of approximately 2–3 kcal/mol could be more suited to pinpoint pathogenic variants. NA indicates “not available.”
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4 | METHODS

The data and documentation on the case studies are
reported in the OSF repository, https://osf.io/84kwe/
(10.17605/OSF.IO/84KWE).

4.1 | Case Study 1

The ThermoMut database (Xavier et al., 2021) was
downloaded on April 22, 2022, as a JSON file. We pro-
cessed the database following four main steps: (i) For
each reported protein, we retained only the entries
including single mutations with an experimental value
of ΔΔG discarding entries with multiple mutations with
a combined ΔΔG; (ii) we reversed the sign of all the
ΔΔG values to fit the sign provided by the outputs of
RosettaDDGPrediction, (iii) we retained information on
pH values and experimental methods as metadata, and
(iv) we removed protein entries for which <10 muta-
tions were reported. Upon processing, we identified
133 proteins. We then searched for 3D structures avail-
able for each protein in the Protein Data Bank. In this
step, we retained matches that covered at least one
mutation of interest. We retained only protein structures
in their free state (i.e., not in a complex with other
interactors) for a total of 121 target proteins, effectively
removing 12 proteins where no structure or free state
was found. We selected two enzymes that included a
large number of amino acid substitutions with structural
coverage (i.e., ENLYS and NUC as represented by the
PDB structures 1P7S; Mooers et al., 2003 and 1EY0;
Chen et al., 2000, and two human proteins of interest in
health and disease; p53 and FKB1A as represented by
the PDB structures 2XWR; Natan et al., 2011 and 2PPN;
Szep et al., 2009 as case studies for this work). All are
used as simplistic monomeric structures and chosen
based on the coverage, quality, and lack of interactors.
The experimental values obtained in an acidic or alka-
line experimental setting (pH < 6 and pH > 8) were
excluded, as the ref2015 Rosetta energy function
(Cartesian space version) is simulating an environment
at pH 7.

This leaves 845 observations across the four proteins
for pH values 6, 7, and 8 and three methodologies, two
chemically denaturant-induced protein unfolding experi-
mental protocols, guanidine hydrochloride (GdnHCl),
Urea Denaturation (Urea), and one thermal denaturation
protocol (Thermal). We modeled the experimental and
predicted values using a simple linear model, analyzed
the contribution of secondary structures, and built a gen-
eralized additive model, thereby defining the limitations
of the model. Furthermore, we constructed a confusion

matrix based on the thresholds ΔΔG < "1 kcal/mol for
the stabilizing group, "1 kcal/mol > ΔΔG < 1 kcal/mol
for the neutral group, and ΔΔG > 1 kcal/mol for the
destabilizing group. Calculations were carried out with
Rosetta 3.12.

In addition, we applied the rapid protein stability pre-
diction (RaSP) (Blaabjerg et al., 2022) for comparison. We
used the Colab version of the software (https://colab.
research.google.com/github/KULL-Centre/papers/blob/main/
2022/ML-ddG-Blaabjerg-et-al/RaSPLab.ipynb#scrollTo=
Z8nUmHI5rgjy). We used the resulting score_ml as a
proxy for the ΔΔG values. We applied a simple linear
model to compare RaSP predicted ΔΔG values to the
experimentally derived ΔΔGs and to the ΔΔG values pre-
dicted by the Rosetta-based protocols implemented in
RosettaDDGPrediction. Additionally, to explore the
model limitations, we built a generalized additive model.

4.2 | Case Study 2

We started from the phospho-regulated LIRs reported in
our previous review article (Sora et al., 2020) and other
literature search, and, for each of them, we verified if a
complex with one of the LC3/GABARAP family members
was available to use as starting structure for the muta-
tional scan. We retained for the analyses the following
complexes: LC3B:FUNCD1 (PDB entry 2N9X; Kuang
et al., 2016) and GABARAP: PIK3C3 (PDB entry 6HOG;
Birgisdottir et al., 2019).

We reconstructed missing coordinates in the struc-
tures using MODELER version 10.1 (Webb & Sali, 2016).

We used the flexddg protocol, as implemented in
RosettaDDGPrediction, with the talaris2014 energy func-
tion and Rosetta 3.12. Rosetta energy units (REUs) were
converted to kilocalorie per mole with the conversion fac-
tors provided for this energy function (Park et al., 2016).
We modeled the phosphorylated residues using phospho-
mimetic mutations to aspartic acid and glutamic acid for
each phosphosite and included also tryptophan for
phospho-tyrosine to identify possible effects due to steric
hindrance. In the calculations, we used 35,000 backrub
trials and an absolute score threshold for minimization
convergence of 1 REUs. We generated an ensemble of
35 structures for each mutant variant and calculated the
average ΔΔGs and the standard deviation among the
individual binding free energies.

For the MutateX runs, we calculated changes in bind-
ing free energy using the Build Model and Analyze Com-
plex functions of FoldX5 suite and averaging over five
runs. The standard deviation for the ΔΔG values pre-
dicted with RosettaDDGPrediction and MutateX have
been calculated using the GraphPad Prism 9 software.
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We derived the ΔΔG values for each experimental Kd

by using the following Gibbs free energy and constant
equilibrium equations:

∆∆G¼"RTlnKeq

Keq ¼
1
Kd

We combined the equations in order to compute the
∆G for the mutant and the WT as follows:

∆G¼RTlnKd

The 44G has been calculated subtracting the ∆G of
the WT to the ∆G of the mutant:

∆∆G¼RTlnKd__mutant"RTlnKd__WT

∆∆G¼RTln
Kd__mutant

Kd__WT

The standard deviations associated with the Kd mea-
surement have been propagated for the ΔΔG calculations
by using Uncertainty Calculator (https://
uncertaintycalculator.com) and Propagation-of-Uncer-
tainty-Calculator (https://nicoco007.github.io/
Propagation-of-Uncertainty-Calculator/).

4.3 | Case Study 3

We retrieved experimental ΔΔG values from point muta-
tions of the p53 DNA-binding domain from Thermo-
MutDB. Since ThermoMutDB stores ΔΔGu values, they
were converted to ΔΔGf by changing the sign to make
them easily comparable with Rosetta output values. A
total of 31 mutations were selected, and when multiple
experimental values were reported for the same variant,
the average of their ΔΔGf was used.

We used two different structures. The first one con-
sists of the x-ray crystallography of the PDB entry 2XWR,
with a resolution of 1.68 Å, which covers the DNA-
binding domain from residues 91 to 289 and includes the
zinc ion. The water molecules were removed using
PyMOL (http://www.pymol.org/pymol). We also used
the model from the AlphaFold2 database, which was
trimmed to cover the same residues as the experimental
x-ray structure, from 91 to 289. The missing zinc ion was
added using PyMOL, identifying its coordinates by rigid
body superimposition with the original structure. Before,
we verified that the residues, which coordinate the zinc
ion (C176, H179, C238, and C242), had a good alignment

and similar rotamer conformations between the two
structures.

For the ΔΔG predictions, we mostly used the cartddg
protocol with the ref2015 and talaris2014 scoring func-
tions, each with 3 and 10 sampling runs and Rosetta 3.12.
We also used the cartddg2020 protocol on both struc-
tures, but only using the ref2015 scoring function and
three runs.

The performance was measured by Pearson correla-
tion coefficient, MAE, and area under the curve (AUC) of
the ROC curve. For the ROC curve, we used a threshold
of 1.2 kcal/mol for the ThermoMutDB averaged values,
meaning that mutations associated with a free energy
change higher than 1.2 kcal/mol were considered desta-
bilizing, according to the threshold selection proposed for
p53 in our previous study (Degn et al., 2022). In compari-
son, mutations associated with a free energy change
lower than the threshold were classified as nondestabiliz-
ing. The MAE was calculated using the following
equation:

ξ¼
Pn

i¼1 jyi"byij
n

Here, yi is the experimental values and byi is the predicted
values.

4.4 | Case Study 4

We retrieved relevant VUSs from germline WGS data
on 566 children with cancer included in an in-house
dataset and published, in part, in a previous study
(Byrjalsen et al., 2020). In addition, we analyzed a data-
set including 566 samples from Danish children with
different cancer types and whole genome sequencing
data. An illustration of the workflows for analyzing the
sequencing data and annotating the called variants is
provided in Figures S4 and S5. The sequencing data
have been processed with a pipeline based on Sentieon
using the reference genome reference genome Grch38/
hg38 from GATK resource bundle (ELELAB/sen-
tieon_wgs_pipeline). Reads were aligned with BWA-
MEM to the reference genome, and duplicate reads
were removed. Reads were realigned around indels, and
we applied Base Quality Score Recalibration together
with the Haplotyper algorithm for variant calling
(equivalent to the GATK Haplotype; van der Auwera &
O'Connor, n.d.). Then, as suggested by GATK best prac-
tices, we used Variant Quality Score Recalibration,
which is an advanced filtering technique used on the
variant call set that models the technical profile of vari-
ants in a training set using machine learning and filters
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out potential artifacts from the callset. The filtered vari-
ants were uploaded to an in-house mySQL database
where we linked them with information about genomic
context (ENSEMBL v95), ENSEMBL consequences,
deleteriousness-scores (CADD 1.6, REVEL, SIFT, Poly-
Phen) and variant frequency in the healthy population
(gnomAD v3; Karczewski et al., 2020) based on their
genomic position and alternate allele (Figure S3). To
this purpose, we annotated our variants with the gno-
mAD popmax allele frequency, that is, the maximum
allele frequency in all the the continental populations
(Gudmundsson et al., 2022), along with the allele fre-
quency of the non-Finnish European population.

In particular, we annotated the REVEL
score(Ioannidis et al., 2016) associated with the genomic
mutation by using the publicly available dataset of pre-
computed scores, by matching genomic coordinates,
annotated transcript for the mutation and alternate
nucleotide. We could not annotate a REVEL score for
four of the identified variants, most likely as they were
not missense. Two of them caused early translation ter-
mination by introducing a stop codon in the reference
BRCA2 transcript (13:g.32337185A>T and 13:
g.32398489A>T, corresponding to p.Lys944* and
p.Lys3326* at protein level).The other two (2:
g.47607407G>A and 2:g.47607446G>A, corresponding to
p.Arg923Gln and p.Gly936Asp in MSH2 at protein level
for the reference transcript) were annotated as both mis-
sense and nonsense-mediated decay in our dataset,
meaning they are annotated as nonsense-mediated decay
for at least some of the MSH2 transcripts, and this is
probably the reason they were not available in the
REVEL database.

We retained, as VUS to investigate, those variants
located in the coding regions and found with an allele
frequency in the non-Finnish European population lower
than 1% in gnomAD v3 (build 38) as a proxy for a healthy
population. This threshold has been selected according to
the guidelines for clinical VUS studies (Richards
et al., 2015). An illustration of the workflow for analyzing
the sequencing data is provided in Figure S4.

We searched each variant in the selected 14 genes for
the study in ClinVar (Landrum et al., 2014; Landrum
et al., 2020) and retrieved annotations on them to verify
if they are VUS, variants with conflicting evidence, or not
reported yet in the database. To select the proteins and
variants that can be investigated with RosettaDDGPredic-
tion, we then searched in the AlphaFold2 database
(Varadi, Anyango, Deshpande, et al., 2022) for the corre-
sponding protein structures and retained those that had
structural coverage for the variants in regions with high
confidence (pLDDT > 70) trimming the N-terminal or C-
terminal tails. For MLH1, we used the structure of the

two protein domains, for the other proteins, we retained
cases in which the pLDDT score was low but located in
loops that connect structured regions of folded domains.
These regions are often very flexible in a protein struc-
ture, and it is thus expected that they could have a lower
pLDDT score. We analyzed 14 proteins and 126 variants
in total.

We excluded mutations either not covered by our
trimmed models or derived from an isoform different from
the one available in the AlphaFold2 database. Concerning
MSH2, we did not analyze G936D since our isoform had
934 residues, while R293Q refers to the A0A2R8Y-
G02_HUMAN isoform (Hillier et al., 2005). In the case of
MSH6, T1125M was removed since derived from the
A0A494C0M1_HUMAN transcript (Hillier et al., 2005).
Furthermore, the following seven variants found in
FANCL were also disregarded: S356N, S356N, G322V,
F257C, T229A, I199V, and V181I. These variants were
generated from FANCL isoform 2 (ENST00000402135.8,
Q9NW38–2, 380aa), which did not match the AlphaFold
model for FANCL (ENST00000233741.9, Q9NW38,
375aa).
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Protocol Variable Class: destabilizing Class: neutral Class: stabilizing
Sensitivity 0.8336 0.6109 0.173913
Specificity 0.6879 0.8370 0.961443
Pos Pred Value 0.8258 0.6512 0.114286
Neg Pred Value 0.6997 0.8120 0.976010
Prevalence 0.6397 0.3325 0.027811
Detection Rate 0.5333 0.2031 0.004837
Detection Prevalence 0.6457 0.3120 0.042322
Balanced Accuracy 0.7608 0.7239 0.567678
Sensitivity 0.7316 0.5782 0.304348
Specificity 0.7987 0.7645 0.895522
Pos Pred Value 0.8658 0.5502 0.076923
Neg Pred Value 0.6263 0.7844 0.978261
Prevalence 0.6397 0.3325 0.027811
Detection Rate 0.4680 0.1923 0.008464
Detection Prevalence 0.5405 0.3495 0.110036
Balanced Accuracy 0.7651 0.6713 0.599935

ref2015, cartesian

ref2015, cartesian2020



Table S2. Summary of the variants used in the case study 4 with structural coverage The variants 
analyzed with Rosetta or FoldX are reported in the table, along with the corresponding REVEL scores 
and ClinVar classification. ‘N.A.’ indicates that the entry is not available in Clinvar. In bold we highlighted 
the variants with the consensus prediction between FoldX and Rosetta and changes in folding free 
energy > 1 kcal/mol. 
 
 

gene 
name 

variant uniprot ID CLINVAR CLINVAR ACCESSION ID FoldX 
(kcal/mol)  

Rosetta 
(kcal/mol)  

REVEL 

        

BLM A421T P54132 Uncertain significance VCV000127474.12 0,615 0.23 0,017 

BLM R643H P54132 
Conflicting interpretations of 

pathogenicity VCV000127480.42 0,71 1,073 0,145 

BLM L788I P54132 
Conflicting interpretations of 

pathogenicity VCV000127485.17 2,197 2,233 0,503 

BLM R791C P54132 Uncertain significance VCV000133698.13 1,166 0,8 0,411 

BLM A797T P54132 Entry N.A. Entry N.A. 1,635 3,045 0,893 

BLM K846T P54132 Uncertain significance VCV001327067.1 1,933 1,227 0,136 

BLM T907M P54132 Uncertain significance VCV000127492.13 -0,667 0,766 0,28 

BLM Y1024C P54132 Uncertain significance VCV000317408.9 2,809 1,776 0,59 

BLM A1203V P54132 Uncertain significance VCV000485332.10 0,254 -0,0673 0,141 

          

ERCC4 S253A Q92889 Entry N.A. Entry N.A. 1,18 0,133 0,16 

ERCC4 R267C Q92889 Uncertain significance VCV001060514.4 1,079 1,495 0,47 

ERCC4 K280M Q92889 Entry N.A. Entry N.A. -0,922 -0,355 0,557 

ERCC4 S312A Q92889 Uncertain significance VCV000864133.5 1,18 -0,236 0,143 

ERCC4 P379S Q92889 
Conflicting interpretations of 

pathogenicity VCV000134148.18 3,62 2,051 0,526 

ERCC4 A400V Q92889 Entry N.A. Entry N.A. 0,111 0,274 0,041 

ERCC4 R576T Q92889 Uncertain significance VCV000134158.19 1,366 1,012 0,274 

ERCC4 S662P Q92889 Benign VCV000134134.10 -0,327 3,666 0,015 

ERCC4 I706T Q92889 
Conflicting interpretations of 

pathogenicity VCV000134142.22 3,607 3,242 0,609 

ERCC4 R799W Q92889 
Conflicting interpretations of 

pathogenicity VCV000016580.39 -0,514 -0,573 0,51 

ERCC4 Q849L Q92889 Uncertain significance VCV000943396.5 -1,306 -0,712 0,221 

          

RFWD3 T288I Q6PCD5 Entry N.A. Entry N.A. -0,24 -0,064 0,153 

RFWD3 A297T Q6PCD5 Entry N.A. Entry N.A. -0,299 -0,019 0,175 

RFWD3 S361F Q6PCD5 Benign VCV001050685.1 -0,035 -0,46 0,151 

RFWD3 T443A Q6PCD5 Entry N.A. Entry N.A. 0,688 0,301 0,06 

RFWD3 Q577H Q6PCD5 Entry N.A. Entry N.A. 1,438 1,469 0,162 

         

FANCA S53R O15360 Uncertain significance VCV000237036.20 0,164 -0,356 0,022 

FANCA A181V O15360 
Benign/Likely benign; Uncertain 

Significance VCV000134287.16 -0,34 0,034 0,173 

FANCA N250K O15360 Entry N.A. Entry N.A. -0,19 1,097 0,02 

FANCA T266A O15360 Likely benign; Benign VCV000134294.21 1,228 -0,332 0,084 

FANCA F276I O15360 Entry N.A. Entry N.A. 2,917 1,922 0,16 

FANCA H292D O15360 Uncertain significance VCV000456139.9 1,09 0,969 0,092 

FANCA H322Y O15360 Uncertain significance VCV000456146.3 -1,603 -0,34 0,157 



FANCA W410C O15360 Entry N.A. Entry N.A. 5,549 4,169 0,622 

FANCA S447L O15360 Uncertain significance VCV000237034.10 1,833 -0,432 0,519 

FANCA G501S O15360 Benign VCV000134244.24 -0,015 -0,674 0,261 

FANCA F603S O15360 Uncertain significance VCV000654516.10 5,668 5,804 0,631 

FANCA C625S O15360 
Conflicting interpretations of 

pathogenicity VCV000265136.31 0,8 1,272 0,806 

FANCA P643R O15360 Benign VCV000134248.16 0,292 1,196 0,179 

FANCA A746S O15360 Benign/Likely benign VCV000321349.13 2,007 1,696 0,374 

FANCA S858R O15360 Benign/Likely benign VCV000134256.26 -0,246 0,0761 0,134 

FANCA D953E O15360 Uncertain significance VCV000376974.21 -0,327 -0,487 0,156 

FANCA E1023D O15360 Uncertain significance VCV000550170.6 0,473 0,934 0,459 

FANCA P1086L O15360 Entry N.A. Entry N.A. 1,695 1,011 0,775 

FANCA T1131A O15360 Pathogenic/Likely pathogenic VCV000237048.29 0,52 0,405 0,842 

FANCA R1144W O15360 Uncertain significance VCV000408171.17 1,214 0,189 0,458 

FANCA T1161M O15360 
Conflicting interpretations of 

pathogenicity VCV000435126.8 0,472 0,2812 0,427 

FANCA V1180M O15360 Likely benign VCV000134270.13 -2,514 -1,426 0,225 

FANCA P1213A O15360 Uncertain significance VCV000526331.10 0,797 0,553 0,167 

FANCA V1287I O15360 Benign/Likely benign VCV000134275.16 -0,93 -0,634 0,179 

FANCA R1317Q O15360 Uncertain significance VCV000321329.9 -0,255 0,0309 0,155 

FANCA H1417D O15360 
Conflicting interpretations of 

pathogenicity VCV000134282.26 -0,285 1,335 0,221 

         
RAD51C A126T O43502 Benign/Likely benign VCV000132721.45 1,393 0,232 0,102 

RAD51C E161V O43502 Uncertain significance VCV000496504.5 -0,043 -0,412 0,892 

RAD51C G264S O43502 
Conflicting interpretations of 

pathogenicity VCV000128211.49 -1,038 -0,481 0,202 

         
MSH2 N127S P43246 Benign VCV000036577.32 1,579 2,172 0,741 

MSH2 L128V P43246 
Conflicting interpretations of 

pathogenicity VCV000127644.23 1,776 2,309 0,613 

MSH2 K275Q P43246 Uncertain significance VCV000838497.5 0,077 1,261 0,726 

MSH2 Q397H P43246 
Conflicting interpretations of 

pathogenicity VCV000224575.15 -0,001 0,623 0,51 

MSH2 L432M P43246 Uncertain significance VCV000663232.8 0,397 2,306 0,644 

MSH2 L513V P43246 Uncertain significance VCV000479825.5 2,968 2,595 0,829 

MSH2 I577T P43246 Likely benign VCV000041644.45 1,074 2,067 0,928 

MSH2 N596S P43246 
Conflicting interpretations of 

pathogenicity VCV000041646.44 0,304 0,685 0,385 

MSH2 V606F P43246 Entry N.A. Entry N.A. 4,898 5,095 0,889 

MSH2 I770V P43246 
Conflicting interpretations of 

pathogenicity VCV000090955.21 1,253 1,043 0,417 

         
MSH6 L396V P52701 Benign VCV000036582.33 3,764 1,369 0,322 

MSH6 S503C P52701 Entry N.A. VCV000089198.40 1,077 1,288 0,413 

MSH6 T636S P52701 Uncertain significance VCV000483839.6 0,639 0,681 0,182 

MSH6 V878A P52701 Benign VCV000008931.49 2,192 2,0738 0,155 

MSH6 G1072D P52701 Uncertain significance VCV000234031.15 4,278 6,349 0,623 

MSH6 P1073S P52701 Likely benign VCV000041593.44 0,706 1,116 0,312 

MSH6 P1087A P52701 
Conflicting interpretations of 

pathogenicity VCV000135841.25 1,355 0,962 0,597 

MSH6 E1163V P52701 Likely benign VCV000089400.22 0,392 -0,247 0,84 

MSH6 T1243S P52701 
Conflicting interpretations of 

pathogenicity VCV000127589.37 3,332 0,866 0,587 

MSH6 V1253E P52701 Uncertain significance VCV000127591.22 2,855 2,986 0,952 



MSH6 R1321G P52701 
Conflicting interpretations of 

pathogenicity VCV000089490.41 0,827 1,34 0,672 

MSH6 V1336D P52701 Entry N.A. Entry N.A. 0,495 1,608 0,584 

         
MLH1 V76I P40692 Uncertain significance VCV000237335.17 -0,252 0,852 0,616 

MLH1 V180G P40692 Uncertain significance VCV000090257.30 4,582 3,847 0,91 

MLH1 L272V P40692 Uncertain significance VCV000090385.2 2,134 0,897 0,622 

MLH1 P285S P40692 Uncertain significance VCV000420749.11 2,104 1,373 0,838 

MLH1 K618E P40692 Benign/Likely benign VCV000089903.36 1,536 1,296 0,874 

MLH1 K618T P40692 Benign VCV000089906.37 -0,596 0,425 0,963 

MLH1 V716M P40692 Entry N.A. VCV000041639.42 1,034 0,401 0,523 

MLH1 H718Y P40692 Benign VCV000036547.28 -0,352 -0,456 0,898 

          

NBN D95N O60934 
Conflicting interpretations of 

pathogenicity VCV000127869.57 2,324 1,448 0,583 

NBN V101A O60934 Uncertain significance VCV000185055.26 1,38 0,718 0,298 

NBN I171V O60934 
Conflicting interpretations of 

pathogenicity VCV000006946.49 1,345 1,133 0,398 

NBN R215W O60934 
Conflicting interpretations of 

pathogenicity VCV000006948.52 -0,433 2,541 0,343 

NBN K408E O60934 Benign/Likely benign VCV000127856.29 -0,245 2,816 0,081 

         
FANCF A34V Q9NPI8 Uncertain significance VCV000304208.6 0,215 2,499 0,241 

FANCF R50W Q9NPI8 
Conflicting interpretations of 

pathogenicity VCV000697625.17 1,037 0,917 0,024 

FANCF L80V Q9NPI8 Entry N.A. Entry N.A. 2,681 2,001 0,104 

FANCF P117L Q9NPI8 
Conflicting interpretations of 

pathogenicity VCV000304204.12 1,303 0,908 0,139 

FANCF L129V Q9NPI8 Uncertain significance VCV000134348.13 2,112 1,0863 0,069 

FANCF G150S Q9NPI8 Entry N.A. Entry N.A. 0,25 -0,0768 0,004 

FANCF L222F Q9NPI8 Entry N.A. Entry N.A. -0,168 0,64 0,046 

FANCF Y274C Q9NPI8 Uncertain significance VCV001375139.3 4,051 3,526 0,193 

FANCF Y287C Q9NPI8 Uncertain significance VCV000304201.9 1,599 2,732 0,195 

FANCF L329P Q9NPI8 Uncertain significance VCV000859048.5 6,591 8,17 0,417 

FANCF Q363K Q9NPI8 Entry N.A. Entry N.A. -0,302 0,24 0,03 

  
  

     
FANCI S54F Q9NVI1 Entry N.A. Entry N.A. 6,178 0,289 0,195 

FANCI I132V Q9NVI1 Uncertain significance VCV000456222.2 0,342 0,0034 0,042 

FANCI Q216E Q9NVI1 Entry N.A. Entry N.A. -0,026 0,0748 0,587 

FANCI P260L Q9NVI1 Entry N.A. Entry N.A. 0,456 0,7884 0,39 

FANCI I275T Q9NVI1 Uncertain significance VCV000449021.11 3,656 3,0411 0,22 

FANCI V290M Q9NVI1 Benign VCV000317267.11 -1,566 0,47 0,017 

FANCI M363T Q9NVI1 Entry N.A. Entry N.A. 2,013 2,593 0,242 

FANCI V372I Q9NVI1 Benign VCV000317271.12 -0,403 -0,0904 0,195 

FANCI P471R Q9NVI1 Uncertain significance VCV000408243.6 1,527 1,7306 0,837 

FANCI M525V 
Q9NVI1 Conflicting interpretations of 

pathogenicity VCV000238309.20 3,345 2,137 0,487 

FANCI I671V Q9NVI1 Benign/Likely benign VCV000238312.13 1,255 0,924 0,023 

FANCI I735V Q9NVI1 Uncertain significance VCV000456205.5 0,544 -0,0255 0,092 

FANCI E868D Q9NVI1 Benign/Likely benign VCV000238317.13 0,413 0,0333 0,032 

FANCI Y923C Q9NVI1 Uncertain significance VCV000317288.7 3,832 3,806 0,391 

         

FANCL L38F Q9NW38  

Conflicting interpretations of 
pathogenicity VCV000221092.23 0,678 3,57 0,24 

         



FANCE P77T Q9HB96  Uncertain significance VCV000134330.12 1,064 0,855 0,21 

FANCE A104P Q9HB96  Entry N.A. Entry N.A. 1,914 5,691 0,319 

FANCE R134H Q9HB96  Uncertain significance VCV001027036.2 0,424 0,0619 0,025 

FANCE L326W Q9HB96  Uncertain significance VCV000356449.9 1,019 1,62 0,154 

FANCE M437T Q9HB96  

Conflicting interpretations of 
pathogenicity VCV000414821.13 4,411 1,93 0,134 

FANCE A502T Q9HB96  Benign VCV000134345.17 0,648 1,329 0,05 

         
FANCG A278V O15287 Uncertain significance VCV000847372.3 0,749 4,068 0,079 

FANCG T297I O15287 Benign/Likely benign VCV000134367.20 -0,257 0,069 0,043 

FANCG K430E O15287 Entry N.A. Entry N.A. 0,017 0,198 0,048 

FANCG E481K O15287 Entry N.A. Entry N.A. 0,346 1,208 0,132 

FANCG P545T O15287 Entry N.A. Entry N.A. 2,408 1,918 0,465 
 



Supplementary Figure S4. Schematic representation of NGS bioinformatics pipeline for candidate VUS extraction and
annotation. Fastq pairs for each sample (normal blood) are processed independently (n=566) with Sentieon® software
based on GATK best practices. Reads are aligned to Human Genome build 38 (GATK resource bundle for hg38) with
BWA-MEM algorithm. Duplicate reads are removed and reads are realigned around indels. After that, we perform Base
Quality Score Recalibration to detect systematic errors produced by the sequencing machine. These last two steps are
performed using as reference known SNPs and indels from Mills and 1000G projects (*). Then, variants are called with
Haplotyper algorithm (equivalent to GATK Haplotype Caller (https://doi.org/10.1101/201178)) using SNPs from dbSNP
138 as known resource (**). Finally, Variant Quality Score Recalibration is performed which uses 1000G OMNI 2.5
genotypes, HapMap 3.3 genotypes and Axiom Exome Sample Data Set (***) to model the technical profile of the
variants and filter our potential artifacts from our call set. Per sample call sets are independently uploaded into an in-
house MySQL (MariaDB) database. For each variant, annotation for genomic context from Ensembl v95 is added, as
well as Functional Impact scores (CADD 1.6, REVEL...) and frequency in the cohort and healthy population (GnomAD
v3). Variants affecting the coding region with frequency in the healthy population of <1% were selected as candidate
VUS (n=234).
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Supplementary figure S3. Comparison of stability prediction performance of RaSP. (A) SLM of the RaSP predicted 
values and the experimental values. (B) SLM of the RaSP predicted values and the values predicted by Rosetta with 
the Cartesian protocol. (C) SLM of the RaSP predicted values and the values predicted by Rosetta with the 
Cartesian2020 protocol. The best performance is seen in panel C, the protocol RaSP is build to simulate. (D) a GAM of 
the predicted RaSP values towards the predicted Rosetta Cartesian 2020 values, illustrating how there is a linear 
relationship between the two. (E) a GAM of the predicted RaSP values towards the experimental values illustrating 
how the linear relationship is limited to a similar area, 0-5 as the Rosetta pedictions. 
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Supplementary Figure S2. Residual plots. (A) The difference between the observed and the fitted response values for
the simple linear model from the ref2015 cartesian protocol. (B) The difference between the observed and the fitted 
response values for the simple linear model from the ref2015 cartesian2020 protocol. Both plots illustrate a biased fit, 
as they are not randomly scattered around the identity line y=0. 

0 5 10

−1
5

−1
0

−5
0

5

Fitted values

R
es

id
ua

ls
Residuals vs Fitted

0 5 10

−1
0

−5
0

5
10

Fitted values

R
es

id
ua

ls

Residuals vs Fitted



A B

D E

C
Predicted Values, ΔΔG kcal/mol

E
xp

er
im

en
ta

l V
al

ue
s,

 Δ
Δ

G
 k

ca
l/m

ol
Predicted Experimental

β-sheet ɑ-helix Coil

Va
lu

es
, Δ

Δ
G

 k
ca

l/m
ol

Predicted Values, ΔΔG kcal/mol

E
xp

er
im

en
ta

l V
al

ue
s,

 
Δ

Δ
G

 k
ca

l/m
ol

Predicted Values, ΔΔG kcal/mol Prediction 

R
ef

er
en

ce

Stabilizing Neutral Destabilizing

D
es

ta
bi

liz
in

g
N

eu
tra

l
S

ta
bi

liz
in

g

sm
oo

th
(P

re
di

ct
ed

)

−5

0

5

10

15

20

−5 0 5 10 15

−5

0

5

10

15

SLM=1.258+0.676x

−5 0 5 10 15

−5

0

5

10

15 Ideal = 0 + 1x
SLM = 1.209+0.761x

−5 0 5 10 15

−5

0

5

10

15 Ideal = 0 + 1x
SLM = 1.298+0.892x

−5 0 5 10 15

−5

0

5

10

15 Ideal = 0 + 1x
SLM = 1.061+0.336x

−5 0 5 10 15

−4
−2

0
2

4

38712418

5015966

1067

Supplementary Figure S1. Comparison of stability changes from the ref2015 cartesian2020 protocol and experimentally found values. (A) The 
distribution of the predicted and experimental stability changes in kcal/mol. (B) A scatterplot of the ΔΔG values predicted by the ref2015 cartesian2020 
protocol and experimentally found values for the corresponding mutations. The green line is the fitted simple linear model. The model has an 
intercept=1.26, slope=0.68, σ2=4.06, R2=0.43,  Pearson Correlation Coefficient=0.65, (C) Three scatterplots to illustrate the data as divided by the 
wild-type secondary structure of the mutated position. The green line is the fitted simple linear model. Here it is evident how the structured sections 
have a better correspondence as compared to the coils. ɑ-helices:  Pearson correlation coefficient=0.75, β-sheets: Pearson correlation 
coefficient=0.69, Coil: Pearson correlation coefficient=0.52, (D) A generalized additive model (GAM) modeling the response variable, experimental 
ΔΔG, to a predictive variable, predicted ΔΔG by estimating a smooth function, smooth(Predict). The smooth function has an effective degree of 
freedom of 5.5, quantifying the complexity of the line. The confidence interval is sufficiently narrow in the ΔΔG interval 0-5 kcal/mol to indicate that 
a linear relationship is present in this interval. (E) A confusion matrix where the experimental values are annotated as the reference values. 
The threshold used to define the classes is a ΔΔG of < -1 kcal/mol for stabilizing mutations, -1 < ΔΔG < 1 kcal/mol for neutral mutations and ΔΔG > 1 
kcal/mol for destabilizing mutations. The resulting accuracy is 0.67.
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Rede"ning germline predisposition 
in children with molecularly characterized 
ependymoma: a population-based 20-year 
cohort
Jon Foss-Skiftesvik1,2,4,10,11*†  , Ulrik Kristoffer Stoltze1,3,4†, Thomas van Overeem Hansen3,4, 
Lise Barlebo Ahlborn5, Erik Sørensen6, Sisse Rye Ostrowski4,6, Solvej Margrete Aldringer Kullegaard1, 
Adrian Otamendi Laspiur9, Linea Cecilie Melchior7, David Scheie7, Bjarne Winther Kristensen4,7,8, 
Jane Skjøth-Rasmussen2,4, Kjeld Schmiegelow1,4, Karin Wadt3† and René Mathiasen1† 

Abstract 
Ependymoma is the second most common malignant brain tumor in children. The etiology is largely unknown 
and germline DNA sequencing studies focusing on childhood ependymoma are limited. We therefore performed 
germline whole-genome sequencing on a population-based cohort of children diagnosed with ependymoma in 
Denmark over the past 20 years (n = 43). Single nucleotide and structural germline variants in 457 cancer related 
genes and 2986 highly evolutionarily constrained genes were assessed in 37 children with normal tissue available for 
sequencing. Molecular ependymoma classification was performed using DNA methylation profiling for 39 children 
with available tumor tissue. Pathogenic germline variants in known cancer predisposition genes were detected in 
11% (4/37; NF2, LZTR1, NF1 & TP53). However, DNA methylation profiling resulted in revision of the histopathological 
ependymoma diagnosis to non-ependymoma tumor types in 8% (3/39). This included the two children with patho-
genic germline variants in TP53 and NF1 whose tumors were reclassified to a diffuse midline glioma and a rosette-
forming glioneuronal tumor, respectively. Consequently, 50% (2/4) of children with pathogenic germline variants in 
fact had other tumor types. A meta-analysis combining our findings with pediatric pan-cancer germline sequencing 
studies showed an overall frequency of pathogenic germline variants of 3.4% (7/207) in children with ependymoma. 
In summary, less than 4% of childhood ependymoma is explained by genetic predisposition, virtually restricted to 
pathogenic variants in NF2 and NF1. For children with other cancer predisposition syndromes, diagnostic reconsidera-
tion is recommended for ependymomas without molecular classification. Additionally, LZTR1 is suggested as a novel 
putative ependymoma predisposition gene.

Keywords: DNA methylation profiling, Molecular classification, Genomics, Genetic susceptibility, Pediatrics
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Introduction
Ependymoma is the second most common malignant 
central nervous system (CNS) tumor in children and 
is associated with poor long-term survival [1, 2]. Apart 
from a very limited number of children with neurofi-
bromatosis type-2 associated spinal ependymoma, the 
underlying causes of ependymoma remain unknown [3, 
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4]. Several factors indicate that genetic predisposition 
plays a role including increased population-based famil-
ial risk [5], reports of familial intracranial ependymoma 
[6, 7], genetic ancestry-based risk differences [8] and an 
absence of known environmental risk factors [9].

No systematic germline sequencing investigation of 
genetic predisposition specific to childhood epend-
ymoma has been reported to date. Over the last decade, 
several large pediatric pan-cancer germline sequencing 
studies have been performed, with childhood epend-
ymoma accounting for less than 5% (191/4833) of the 
combined sample size [10–19]. Taken together, these 
whole-exome/-genome sequencing (WES/WGS) studies 
report rare pathogenic germline variants in 4.7% (9/191) 
of children with ependymoma, although individual 
study estimates range from 0 to 21%. Lack of molecular 
tumor classification [10, 11, 13–19], small ependymoma 
sample sizes [11, 12, 14–19], restriction to gene pan-
els [10–19] and lack of population-based study designs 
[10–14, 16–19] further complicate the delineation of the 
nature and extent of genetic predisposition in childhood 
ependymoma.

"e aim of this population-based study was to investi-
gate genetic predisposition in children with molecularly 
classified ependymoma due to rare pathogenic germline 
variants both in and outside known cancer genes. More-
over, we assessed the feasibility of performing germline 
WGS and tumor DNA methylation profiling in a com-
bined retro-/prospective nationwide cohort spanning 
more than 20 years.

Material and methods
Retrospective cohort
Children (< 18 years) diagnosed with ependymoma from 
2000 to 2016 in Denmark were identified through the 
Danish Childhood Cancer Registry (DCCR) [20]. Registry 
data on date of birth, gender, histopathology and tumor 
location was validated by cross-linkage with the National 
Pathology Registry. Living patients aged > 18 years at the 
time of the study were informed and offered inclusion 
both in writing and by telephone. For minors (< 18 years 
at the time of the study) and for deceased patients, par-
ents or legal guardians were contacted. Detailed clinical 
and four-generational pedigrees were retrieved through 
patient health record review for included patients.

Prospective cohort
Since 2016, all children (< 18  years) diagnosed with 
cancer in Denmark have been offered germline WGS 
through the STAGING study, described in detail else-
where [15, 21]. "e prospective cohort consists of chil-
dren with ependymoma included in STAGING from 
2016 to 2021. Similarly to the retrospective cohort, data 

variables were retrieved through patient health record 
and histopathology report review.

Collection of tissue for germline DNA sequencing
Leukocyte DNA was isolated from peripheral blood sam-
ples drawn in parallel with clinical sampling when pos-
sible. For deceased patients, archived blood samples were 
collected from the Copenhagen Hospital Biobank (CHB) 
[22]. For those without obtainable blood samples, dissec-
tion of normal brain tissue was performed on formalin-
fixed paraffin embedded (FFPE) tumor tissue samples.

Germline whole-genome and -exome sequencing
Germline WGS was performed on leukocyte DNA 
using the HiSeqX platform (Illumina, USA) with paired-
end sequencing of 150  bp reads and target 30X aver-
age coverage. Germline WES of healthy brain tissue 
was performed using Novaseq 6000 (Illumina, USA). 
Exomes were sequenced as 2 × 150 bp paired-end reads 
to an average median coverage of 60X. Tissue handling, 
sequencing and bioinformatics procedures including var-
iant filtering are further detailed in the Additional file 1: 
Methods.

Cancer gene panel analysis
For the gene panel analysis, WGS/WES data was limited 
to filtered SNVs and SV deletions identified in a prede-
fined set of 457 genes. "is panel consisted of 390 can-
cer related genes supplemented by 67 genes with either 
established or suggested roles in ependymoma tumori-
genesis selected based on the scientific literature (Addi-
tional file 2: Tables S1 and S2). Variants were reviewed by 
a multidisciplinary team specialized in pediatric cancer 
predisposition. Variants were classified as either “benign”, 
“likely benign”, “likely pathogenic”, “pathogenic”, or as 
“variants of unknown significance” (VUS) in accordance 
with international standards [23]. In the context of this 
study, “likely pathogenic” and “pathogenic” variants are 
referred to simply as “pathogenic”.

Constrained gene analysis
For the constrained gene analysis, all rare, coding SNVs 
and SV deletions, were subsetted to variants predicted to 
cause loss-of-function (pLoF) in 2986 highly constrained 
genes. Based on metadata from 141,456 humans with-
out serious childhood disease, evolutionarily constrained 
genes were defined by a LoF observed/expected upper 
bound fractions (LOEUF) score of ≤ 0.35 which is indica-
tive of depletion of pLoF variation and in line with recent 
recommendations [24, 25]. Curation of resulting variants, 
including use of 586 in-house whole genome sequences 
from children with cancers other than ependymoma, is 
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detailed in the Additional file 1: Methods and Additional 
file 2: Table S3.

Tumor DNA methylation pro"ling and molecular 
classi"cation
Molecular tumor classification was performed using ret-
rospectively collected iDAT files for patients with exist-
ing clinical DNA methylation profiles. For all others, 
archived FFPE or freshly frozen (FF) tumor samples were 
collected and underwent DNA methylation profiling 
using the Infinium MethylationEPIC BeadChip Kit (Illu-
mina, USA). Archived tumor DNA was restored using 
the Infinium HD FFPE DNA Restore Kit (Illumina, USA) 
prior to methylation profiling. Tumor methylation class 
and subclass were predicted using a publicly available 
classifier tool [26]. "e classifier version and employed 
cut-off scores are further detailed in Additional file  1: 
Methods. For an illustrative overview of the cohort and 
methods used, please see Fig. 1).

Statistical analyses
Statistical analyses were performed using R v.3.6.1 and 
IBM SPSS Statistics v.25.

Ethical approvals
"is study was approved by the Capital Region Scientific 
Ethical Committee (H-15016782, prospective cohort) 
and the Danish National Committee on Health Research 

Ethics (2000407). All patients and/or parents/legal guard-
ians provided informed consent.

Results
Patient characteristics
A total of 43 children registered with an ependymoma 
diagnosis were included. Median age at diagnosis (5.3, SD 
4.7), gender distribution (females 44.2%), histopathology 
diagnosis, and tumor location (Table 1) were in line with 
existing population-based reports [27–29]. "e over-
all inclusion rate was 77% (43/56). For the retrospective 
cohort, in which both living and deceased patients were 
eligible for inclusion, a higher rate of inclusion was seen 
for deceased patients compared to living patients (91% 
vs. 66%, Fisher’s exact test, p = 0.067). "e inclusion pro-
cess, including main reasons for exclusion, is illustrated 
in Additional file 1: Fig. S3.

Molecular tumor classi"cation
Molecular tumor (re-)classification based on DNA meth-
ylation profiling was possible for 90% (39/43) of patients. 
Distribution of original histopathological diagnosis and 
resulting tumor methylation class and subclass is listed in 
Table 1 and illustrated in Fig. 2, respectively.

Ultimately, the reclassification rate for patients his-
topathologically diagnosed with ependymoma and 
with available tumor tissue was 7.7% (3/39). Initially, 
tumor methylation class prediction mandated amend-
ment of the registered diagnosis to a non-ependymoma 
entity for four patients (Figs. 2 and 3). Two patients with 

Fig. 1 Graphic overview of the cohort (n = 43 children) and methods employed
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histopathologically diagnosed WHO grade 3 ependymo-
mas located in the pons and thalamus, respectively, were 
both reclassified as H3K27-mutant or EZHIP express-
ing diffuse midline gliomas (DMG_H3K27). Another 
tumor, extending through the aqueduct from the fourth 
ventricle also registered as ependymoma in the DCCR, 
was reclassified as a rosette-forming glioneuronal tumor 
(RGNT) based on DNA methylation profiling. Of note, 
the original histopathology report of this tumor revealed 
a discussion of several differential diagnoses. Finally, an 
ependymoblastoma incorrectly coded as ependymoma 
in the registry was specified as a C19mc-altered embryo-
nal tumor with multilayered rosettes (ETMR). All reclas-
sifications were supported by subsequent review of the 
original histopathology reports by a senior pediatric 
neuropathologist. For one of the molecularly classified 
ependymoma patients, a chart review revealed a previ-
ous alteration of the initial histopathological diagnosis of 
atypical glioblastoma to ependymoma based on clinical 
DNA methylation profiling (Fig. 2).

Germline DNA sequencing
Tissue for germline DNA sequencing was available 
for 86% (37/43; new or prospectively collected blood 
samples n = 28, archived blood samples n = 6, normal 
brain tissue n = 3) of which 34 retained ependymoma 
status following molecular tumor classification. "e six 
patients not undergoing germline sequencing were all 
deceased, part of the retrospective cohort, and without 
available archived blood samples or dissectible healthy 
brain tissue in the FFPE tumor samples.

Cancer panel analysis "ndings
Nine pathogenic variants (eight SNVs, one SV) in nine 
patients were detected across the 457 cancer panel 
genes. Five heterozygous loss-of-function variants in 
the recessive genes FANCM, ERCC3, and SBDS, along 
with relatively common risk allele variants in CHEK2 
and BRIP1, were considered unrelated to ependymoma, 
but are further detailed in Additional file 2: Table S6.

Two of the four pathogenic variants at first assumed 
to be related to ependymoma were found in children 
where the histopathological diagnosis was subse-
quently altered following tumor DNA methylation pro-
filing (Fig.  3). "is included an NF1 nonsense variant 
(p.Arg1947Ter [c.5839C > T]) in a patient with a molec-
ularly confirmed RGNT and a TP53 missense variant 
(p.Arg273Cys [c.817C > T]) in a child with a thalamic 
DMG_H3K27. "us, the likelihood of diagnostic reclas-
sification by DNA methylation profiling to a non-
ependymoma tumor entity was significantly higher for 
children with detected pathogenic germline variants 
(2/4 vs. 0/29, Fisher’s exact test, p = 0.011, analysis lim-
ited to patients with ependymoma confirmed as initial 
histopathology diagnosis and both available tumor and 
germline tissue, n = 33, Additional file 2: Table S4).

A causative 364  bp NF2 deletion (chr22:30067648–
30068012; p.Met334_Leu374del [c.1000-
167_1122 + 75del]) was detected in a young child 
diagnosed with a WHO grade 2 ependymoma (meth-
ylation class spinal ependymoma (SP-EPN)) located 
at the cervicomedullary junction. "e patient was ini-
tially treated with partial surgical resection followed 
by focal radiation and adjuvant chemotherapy, after 
which a minor contrast-enhancing tumor remnant 
has remained stable for more than 10  years. During 
follow-up, the patient developed bilateral vestibular 
schwannomas. Despite a family history with one third 
generation and several fourth generation relatives with 
clinically diagnosed neurofibromatosis type-2, the diag-
nosis had not been suspected until the patient debuted 
with ependymoma.

Table 1 Patient clinical characteristics

* Includes one patient initially diagnosed with atypical glioblastoma for whom 
subsequent clinical tumor methylation pro"ling resulted in an ependymoma 
diagnosis and one patient with ependymoblastoma incorrectly registered as 
ependymoma
** Includes one patient with disseminated ependymoma at diagnosis with 
tumor tissue located adherent to the insular cortex, the ventral surface of the 
brainstem and the caudal spinal cord

SD, standard deviation; y, years; WHO, the World Health Organization histological 
grade

Patient characteristics n (% of total)

Total 43 (100%)

Median age at diagnosis, y (SD) 5.3 (4.7)

 Status

  Alive 27 (62.8%)

  Deceased 16 (37.2%)

 Gender

  Female 19 (44.2%)

  Male 24 (55.8%)

 Cohort

  Retrospective 34 (79.1%)

  Prospective 9 (20.9%)

 Histopathological diagnosis

  Myxopapillary ependymoma, WHO 2 1 (2.3%)

  Ependymoma, WHO 2 14 (32.6%)

  Ependymoma, WHO 3 26 (60.5%)

  Other* 2 (4.7%)

 Tumor location

  Supratentorial 7 (16.3%)

  Posterior fossa 30 (69.8%)

  Spinal 5 (11.6%)

  Multifocal** 1 (2.3%)
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Finally, a pathogenic nonsense variant in LZTR1 
(p.Gln762Ter [c.2284C > T]), a gene not formerly 
linked with ependymoma, was detected in an other-
wise healthy child diagnosed with a WHO grade 3 
ependymoma (methylation class posterior fossa group 
A (PF-EPN-A) ependymoma, subclass 1c), located in 

and around the foramen of Luschka. Of note, the only 
other LZTR1 variant observed in our cohort was a VUS 
(p.Asp703Asn [c.2107G > A]) in another child diag-
nosed with the same molecular ependymoma subclass 
(PF-EPN-A1c) in the same location.

No pathogenic variants were detected in the supple-
mentary panel of 67 ependymoma related genes.

Fig. 2 Sankey plot illustrating original histopathological diagnosis (left) for 43 children registered with ependymoma and corresponding 
tumor methylation class (right). CPS, cancer predisposition syndrome; ANA-EPN, ependymoma WHO 3; EPN, ependymoma WHO 2; MYX-EPN, 
myxopapillary ependymoma WHO 2; GBM, atypical glioblastoma with several differential diagnoses considered; where clinical methylation 
profiling resulted in alteration of the diagnosis; EBLASTOMA, ependymoblastoma incorrectly registered in the Danish Childhood Cancer Registry as 
ependymoma; NA, not available
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Constrained gene analysis "ndings
Sixteen pLoF variants (11 SNVs and five SVs) were 
observed in the same number of constrained genes 
in 12 patients. Both pLoF variants already known to 
cause ependymoma (in NF2 and NF1), were rediscov-
ered. However, the nonsense NF1 variant was found in a 
patient for whom DNA methylation profiling amended 
the ependymoma diagnosis to RGNT (Additional file  2: 
Tables S3 and S5).

Following molecular reclassification, 14 constrained 
gene pLoF variants remained, and were located in the fol-
lowing genes (ordered according to rising LOEUF scores); 
CHD6, NF2, COL1A1, FGD5, BRWD1, UHRF2, ZNFX1, 
FOXO3, CDC42BPA, DHX37, DNAJC2, TRIM67, 
ZMYM2, VPS4A. No significant enrichments were 
detected using the String Database v.11 [30]. However, all 
but one (COL1A1) are expressed in normal brain tissue 

[31]. Interestingly, 6/7 of the constrained genes in which 
pLoF variants were found in patients with posterior fossa 
ependymoma show particularly high expression levels in 
cerebellar tissue (UHRF2, FOXO3, CDC42BPA, ZMYM2, 
CHD6 and DNAJC2) [32].

Other than a 3.4-fold enrichment of non-membrane-
bounded organelles (false discovery rate 3.56e-3) the GO 
PANTHER Cellular Component Overrepresentation Test 
[33] did not reveal any other significant enrichments for 
the detected constrained genes when compared to all 
other genes.

Discussion
In this combined retro- and prospective study, we per-
formed germline WGS/WES and tumor DNA meth-
ylation profiling of a population-based cohort diagnosed 
nationwide over a timespan of 21 years to determine the 

Fig. 3 Overview of resulting molecular tumor classification for the four patients with detected pathogenic germline variants
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role of genetic predisposition in childhood ependymoma. 
Both known cancer genes and genes somatically or epi-
genetically associated with ependymoma were analyzed 
for pathogenic germline variants, as were evolutionar-
ily constrained genes. Our findings establish epend-
ymoma as a disease where germline pathogenic variants 
in known cancer genes only rarely play an underlying 
role, especially when precise molecular (re)classification 
is available. We also identify new putative ependymoma 
predisposition genes. Lastly, we highlight the essen-
tial role of including molecular tumor classification in 
ependymoma studies and the feasibility of using archived 
tumor samples for this purpose.

Pathogenic variants detected in known cancer genes
Of the 37 patients undergoing germline WGS, 11% (4/37) 
were found to harbor pathogenic variants in the cancer 
panel genes (NF1, NF2, TP53, and LZTR1)). By compari-
son, both the carrier frequency and the genes involved 
were similar to the findings of Zhang et  al. from their 
pediatric pan-cancer germline study (n = 1120) which 
included 67 ependymoma patients (4/67 (6%), NF1, NF2, 
TP53) [10]. However, in our cohort, tumor DNA meth-
ylation profiling reclassified two of the patients with 

pathogenic germline variants in NF1 and TP53 to tumor 
types other than ependymoma. Consequently, only two 
pathogenic germline variants were detected among chil-
dren with molecularly confirmed ependymoma (2/34, 
5.9%). In this context, it is worth noting that the reclas-
sification rate in our study (7.7%) is comparable to that 
reported by Capper et al. [26]. In their prospective cohort 
of 101 histopathologically diagnosed ependymoma sam-
ples, 6.0% (6/101) were reclassified based on tumor DNA 
methylation profiling to a non-ependymoma entity, 
including neuroepithelial tumors and two DMGs, simi-
larly to our cohort.

As of this writing, ten large (n > 100) pediatric pan-
cancer germline sequencing studies including children 
with ependymoma have been published (Table 2). Com-
bined, these investigations report pathogenic germline 
variants in 4.7% (9/191) of children with histopathologi-
cally diagnosed ependymoma. Following exclusion of a 
likely benign TP53 variant (detailed below), three vari-
ants likely unrelated to ependymoma (incidental find-
ings from the ACMG v2.0 [34]) and duplicate patients 
(detailed in Table  2), just 2.9% (5/173) of children with 
ependymoma are reported to harbor pathogenic ger-
mline variants in known cancer genes. Of these, all were 

Table 2 Overview of large (> 100 cases) pan-childhood cancer germline sequencing studies with reported findings for ependymoma

ACMG, American College of Medical Geneticists

Author, jr Year Patients w/pathogenic CPS gene variants (n/total 
(%))

Comments

Full childhood 
cancer cohort

CNS subcohort Ependymoma 
subcohort

Zhang, J (NEJM) 2015 95/1120 (8.5%) 21/245 (8.6%) 4/67 (6.0%) NF1 (n = 2), NF2 (n = 1) and TP53 (n = 1). The latter 
has later been assessed as likely benign. Limited to 
intracranial ependymoma

Parsons, DW (JAMA Onc) 2016 13/150 (8.7%) 2/56 (3.6%) 0/9 (0.0%)

Oberg, JA (Genome Med) 2016 18/101 (17.8%) 5/17 (29.4%) 2/3 (66.7%) ACMG secondary findings in BRCA1 (n = 1) and VHL 
(n = 1)

Gröbner, SN (Nature) 2018 69/914 (7.6%) 39/542 (7.2%) 0/59 (0.0%) 14 cases are overlapping with Zhang et al. (incl. the 
patient w the reported TP53 variant). Limited to 
intracranial ependymoma

Wong, N (Nature Med) 2020 40/247 (16.2%) 17/92 (18.5%) 0/8 (0.0%)

Byrjaldsen, A (PLoS Gen) 2020 29/198 (14.7%) 3/44 (6.8%) 0/4 (0.0%) Ependymoma cases (n = 4) overlap with the current 
study

Fiala, EM (Nature Can) 2021 138/751 (18.4%) 30/143 (21.0%) 3/14 (21.4%) NF1 (n = 1), NF2 (n = 1) and an ACMG secondary find-
ing in FANCA (n = 1)

Newmann, S (Cancer Discovery) 2021 55/300 (18.3%) 19/97 (19.6%) 0/11 (0.0%)

Stedingk, KV (Sci rep) 2021 30/790 (3.8%) 8/149 (5.4%) 0/14 (0.0%) Limited to SNV analysis

Wagener, R (EJHG) 2021 11/160 (6.9%) 3/32 (9.4%) 0/2 (0.0%)

Total 509/4833 
(10.5%)

147/1425 
(10.3%)

9/191 (4.7%)

Adjusted total for ependymoma 5/173 (2.9%) Excl. ACMG secondary findings, 14 cases overlap-
ping in Zhang et al./Gröbner et al. and the four cases 
reported by Byrjalsen et al. also in the current cohort

Our study 2/34 (5.9%) Restricted to molecularly confirmed ependymoma

Current best estimate 7/207 (3.4%)
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in NF1 (n = 3) or NF2 (n = 2). "is estimate is strikingly 
similar to our observations, especially when taking into 
consideration the low frequencies and sample size and 
the fact that the gene panels used in the majority of the 
previous studies did not include LZTR1.

Neuro"bromatosis type-2 predisposes both to intraspinal 
and -cranial childhood ependymoma
"e association between neurofibromatosis type-2 and 
spinal ependymoma is well established [35] and somatic 
NF2 variants are recurrently altered in ependymo-
mas with intraspinal location [36]. Yet, several cases 
of intracranial ependymoma (especially located to the 
cervicomedullary junction) have been reported in chil-
dren and young adults with neurofibromatosis type-2 
[37–41]. Combined with our findings of a cervicomed-
ullary located ependymoma in a child with a pathogenic 
germline NF2 variant, there is mounting evidence that 
germline NF2-related ependymomas may be located 
intracranially, as well as intraspinally. While the former 
will often represent SP-EPN located in or around the cer-
vicomedullary junction, cases of PF-EPN-B ependymoma 
have also been reported [37].

Still, pathogenic germline NF2 variants are relatively 
rare in the overall pediatric ependymoma population 
and thus explain only a minority of cases: Among the 
173 children with ependymoma included in the reviewed 
pan-childhood cancer germline sequencing studies [10–
19], only two patients (1.2%) were reported to harbor 
pathogenic NF2 alterations [10, 16] (Table 2), for whom 
neither tumor location nor molecular subclass were 
described.

Questioning Li-Fraumeni Syndrome’s association 
with (molecularly classi"ed) ependymoma
Both somatic and germline TP53 variants have been 
reported in other pediatric CNS tumors, yet such altera-
tions are extremely rare in ependymoma tumor tissue 
[42]. Of all the children with ependymoma included in 
the aforementioned germline predisposition investiga-
tions, only one patient (0.6%, 1/173) was found to carry 
a TP53 variant characterized as pathogenic [10]. "e 
variant (NM_000546:p.Tyr107His, c.319T > C), which 
was detected in a 10-year-old girl with an infratentorial 
ependymoma, has later been classified as benign in Clin-
Var [43] and was not reported as pathogenic by Gröbner 
et al., who included the same patient in their subsequent 
study [13]. Furthermore, the variant has been found 
in 0.1% of healthy adults that self-identified as African/
African American [24]. Apart from the 173 children 
with ependymoma reviewed above, five cases of chil-
dren with ependymoma and pathogenic germline TP53 
variants have been reported in the literature [44–46]. Of 

note, molecular tumor classification was not performed 
in any of these cases. Were it not for DNA methylation 
profiling-based reclassification to DMG, the erroneous 
ependymoma phenotype in our cohort would have been 
reported as associated with the germline TP53 variant. 
"is underscores the importance of molecular classifica-
tion of ependymal tumors.

Pathogenic NF1 germline variants also appear to play 
a role in childhood ependymoma
Pathogenic NF1 germline variants are extremely rare 
among children with ependymoma. No such variants 
were detected among the 34 children with molecularly 
classified ependymoma following diagnostic revision 
to RGNT for the child with a nonsense variant in NF1. 
In comparison, three of the reported 173 germline 
sequenced children with ependymoma (1.7%) have been 
found to carry pathogenic NF1 variants (Table 2). "ese 
include two children with intracranial ependymoma 
reported by Zhang et  al. [10] and one 6-year-old child 
with synchronous schwannoma and CNS ependymoma 
reported by Fiala et al. [16]. Only two additional cases of 
children with (clinically) diagnosed neurofibromatosis 
type-1 and intracranial ependymoma have been reported 
in the literature [47]. Diagnostic confirmation and 
tumor molecular subtyping by DNA methylation profil-
ing was not reported for any of these patients. "is may 
have inflated the reported NF1 carrier rate in patients 
with ependymoma. "is phenomenon is illustrated by 
the diagnostic revision in both our cohort and others, 
where histopathologically diagnosed ependymomas were 
reclassified to pilocytic astrocytomas and neuroepithelial 
tumors based on DNA methylation profiling [26]. Impor-
tantly, both of these tumor types have a much higher rate 
of germline NF1 alterations [48, 49].

LZTR1 might represent a novel putative ependymoma 
predisposition gene
A likely pathogenic LZTR1 variant (p.Gln762Ter 
[c.2284C > T]), undetected among > 125,000 healthy adult 
in gnomAD [24], was found in a child diagnosed with a 
fourth ventricle PF-EPN-A1c ependymoma. Pathogenic 
germline variants in LZTR1 have not previously been 
reported in patients with ependymoma. "e gene, which 
is centromeric to NF2 and SMARCB1 on chromosome 
22q11.21, was recently uncovered as a germline pre-
disposition gene in schwannomatosis [50]. Pathogenic 
LZTR1 germline variants have been reported in children 
with different cancer types, including high-grade glioma 
[13], but have not been evaluated in the majority of the 
existing large pan-childhood cancer germline sequenc-
ing studies [10, 11, 16–18]. Although monozygosity of 
22q has been reported in ~ 40% of RELA-fusion positive 
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supratentorial ependymoma (ST-EPN-RELA) [52], the 
rarity of pathogenic somatic NF2 variants in the majority 
of intracranial ependymoma suggests a different tumor 
suppressor gene to be located on chromosome 22 [51, 
53, 54]. We therefore speculate that pathogenic germline 
LZTR1 variants may play a role in tumorigenesis for a 
limited subset of children with ependymoma, perhaps 
restricted to the PF-EPN-A1c molecular subtype.

Upon review of LZTR1 findings in our childhood 
(non-ependymoma) cancer control cohort, the LZTR1 
missense VUS (p.Asp703Asn [c.2107G > A]) detected 
in another patient with PF-EPN-A1c was observed in a 
child with acute myeloid leukemia. Moreover, this variant 
has been reported in 5/26,128 (0.02%) Swedish individu-
als reported without serious childhood disease in gno-
mAD [24].

Less than 4% of childhood ependymoma is explained 
by pathogenic variants in known cancer genes
Based on the described meta-analysis, the current best 
estimate of germline predisposition in childhood epend-
ymoma suggests that 3.4% (7/207) carry a causative path-
ogenic germline variant, mainly located in NF2 and NF1 
(Fig.  2). "is estimate indicates that germline predispo-
sition is significantly less frequent than what is reported 
for pediatric brain and spinal cord tumors in general 
[3] (Fisher’s exact test, 7/207 vs. 147/1425, OR = 0.30 
[0.11–0.66], p < 0.001). Consequently, one may question 
the need to perform extensive genetic testing in newly 
diagnosed children with ependymoma if no family his-
tory or other signs or symptoms of neurofibromatosis are 
present. Of course, the lack of germline findings in the 
majority of children with ependymoma may reflect limi-
tations in our current knowledge of genetics. Or, perhaps 
more likely, other biological mechanisms including epi-
genetic dysregulation, which has been suggested as the 
main driver for the largest molecular subgroup, PF-EPN-
A [55, 56].

Several factors may, however, have influenced the valid-
ity of the combined risk estimate; Opposite to our study, 
all but one of the germline investigations listed in Table 2 
did not report molecular tumor classification [12]. More-
over, their lack of population-based study design may 
have introduced selection bias. As illustrated by the path-
ogenic NF2 deletion detected in our cohort, limiting bio-
informatic analyses solely to SNVs, as done in one of the 
reviewed sequencing studies [18], may miss pathogenic 
alterations. Also affecting the generalizability of the com-
bined estimate is the fact that the two cohorts contribut-
ing 65% (112/173) of the total ependymoma sample size 
were limited to intracranial ependymoma, likely resulting 
in underreporting of NF2-associated cases [10, 13].

Constrained gene analysis may explain additional genetic 
risk
Focusing on genes exhibiting evolutionary intolerance of 
inactivating alterations has recently emerged as a novel 
approach of investigating genetic predisposition to any 
state that limits reproduction, such as fatal childhood 
diseases [24]. We have previously detailed how a con-
strained gene approach may be useful in investigations of 
genetic predisposition to childhood (CNS) malignancies 
[21].

Constrained gene analysis of children with molecularly 
confirmed ependymoma rediscovered the NF2 deletion 
detected in our cancer gene panel analysis. Apart from 
NF2, none of the 14 constrained genes in which pLoF 
variants were detected have previously been linked with 
ependymoma. Interestingly, several are suggested to 
have tumor suppressor roles (FOXO3 [57], TRIM67 [58], 
UHRF2 [59, 60], CHD6 [61]).

As no single gene was found to harbor pLoF variants in 
more than one patient, further research of the concept is 
needed before a common or broader role for constrained 
genes in ependymoma predisposition can be ascertained. 
In our cohort, the lack of consistent constrained gene 
findings likely reflects the limited sample size and its sub-
type heterogeneity, or, alternatively, the growing notion 
that PF-EPN-A is an epigenetically driven disease. In 
this context, it is worth mentioning that two of the con-
strained genes, in which pLoF variants were detected in 
children with PF-EPN-A, affect epigenetic gene expres-
sion control (UHRF2 [60, 62] and DNAJC2 [63]). As 
neither the detected constrained genes nor LZTR1 have 
been analyzed in the majority of the aforementioned 
pediatric pan-cancer germline sequencing studies, their 
inclusion in future larger ependymoma cohorts will be 
important to confidently suggest any disease-related roles 
and indication for further study.

Strengths and limitations
Key strengths of this study include its population-based 
design, high inclusion rates and molecular tumor classi-
fication based on DNA methylation profiling. Moreover, 
our germline WGS-based SNV and SV and WES SNV 
analysis included not only 390 known cancer genes, but 
also 67 other genes with implied roles in ependymoma 
tumorigenesis and constrained gene analysis. "e com-
prehensive literature review-based meta-analysis further 
strengthens the value of our investigation.

However, even with a nationwide inclusion period of 
more than 20 years, our sample size limits generalizability 
of the observed carrier frequencies. Tumor and germline 
tissue were unavailable for four and six patients, respec-
tively. Finally, the use of a non-ependymoma childhood 
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cancer control cohort in the filtering of germline variants 
might have affected variant filtration in a conservative 
direction. Optimally, an equal or larger control cohort of 
representative and ethnically comparable whole-genome 
sequenced children would have been available.

In summary
"is population-based germline sequencing study of 
childhood ependymoma, including constrained gene 
analysis, establishes that genetic predisposition plays a 
role for less than 4% of patients. "is is significantly lower 
than for pediatric CNS tumors in general. Moreover, 
we show that pathogenic germline variants in children 
with ependymoma are virtually restricted to NF2 and 
NF1. Our results emphasize the importance of molecu-
lar tumor classification, as the likelihood of diagnostic 
reclassification to a non-ependymoma tumor was sig-
nificantly higher for children with detected pathogenic 
germline variants. We therefore advocate diagnostic 
reconsideration in children with non-molecularly classi-
fied ependymoma with cancer predisposition syndromes 
other than neurofibromatosis type-2. In addition, we pre-
sent LZTR1 as a novel putative ependymoma predisposi-
tion gene.
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Epilogue 
 

Due to the nature of the project, where large volumes of data need to be processed, stored, and 

interpreted, a combina5on of very efficient sofware and hardware along with a me5culous data 

management plan is required. 

 

Using Sen7eon in Computerome for childhood cancer research 

As men5oned previously, in this project we used Sen5eon sofware which is built upon GATK's 

founda5on to create a more efficient and accelerated solu5on while achieving the same accuracy 

scores as the GATK Best Prac5ces (Genome Analysis Toolkit) which is considered "Best Prac5ces" 

because it represents a set of well-established guidelines and methodologies for analyzing NGS data. 

It has undergone extensive method development, valida5on, and refinement by a team of experts at 

the Broad Ins5tute, a renowned research ins5tu5on, and is widely recognized and adopted within the 

genomics community. The methods and algorithms implemented in GATK have been thoroughly tested 

and validated using various datasets and benchmarking approaches.  

Sen5eon's op5miza5on of GATK involves several key aspects such as speed, scalability, memory 

efficiency and compa5bility (Figure 9). Sen5eon's sofware is designed to efficiently u5lize 

computa5onal resources, including mul5-core processors and HPC environments. This scalability 

ensures that the analysis can be seamlessly adapted to handle large-scale genomic datasets. 

Furthermore, it has made op5miza5ons to reduce memory usage during data processing, making it 

more memory-efficient compared to the standard GATK pipeline. This op5miza5on allows for the 

analysis of larger datasets without excessive memory requirements. Sen5eon has also implemented 

highly op5mized algorithms and parallel compu5ng techniques to significantly accelerate the 

processing and analysis of NGS data.  
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Stage SenDeon GATK3.8 GATK4.0 GATK4.1 

Alignment 2:42:44 5:38:35 5:49:39 5:45:39 

Dedup 0:06:16 4:04:25 2:11:43 2:06:32 

BQSR 0:10:10 4:17:09 1:39:57 1:40:06 

HaplotypeCaller 0:41:02 3:21:37 6:56:53 5:37:52 

GenotypeGVCFs 0:00:55 2:04:08 2:02:55 2:05:22 

Total 3:41:07 19:25:54 18:41:07 17:15:31 

SenDeon SpeedUp -- 5.3X 5.1X 4.7X 

 

Type TRUTH QUERY METRIC 

TOTAL TP FN TOTAL FP Recall Precision F1_Score 

INDEL 855716 850790 4926 894426 10869 0.994243 0.987848 0.991035 

SNP 3999272 3990379 8893 4006624 11826 0.997776 0.997048 0.997412 

 

Figure 9. Sentieon vs GATK performance summary (github.com/Sentieon/sentieon-dnaseq). Specs of the test: Google 
Compute Engine with n1-standard-32 (32 vCPUs, 120 GB memory), Local SSD Scratch Disk 2x375G and centos-7-

v20190619. 

 

All this op5miza5on allows for faster execu5on 5mes, enabling quicker turnaround in data analysis 

achieving the same precision and accuracy as GATK “Best Prac5ces”. The op5mized performance of 
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Sen5eon sofware enables researchers and clinicians to analyze genomic data more rapidly and 

efficiently, making it par5cularly valuable in large-scale projects and 5me-sensi5ve clinical se~ng. 

Performing genomic analysis with Sen5eon in Computerome offers dis5nct advantages due to the 

cluster's robust infrastructure, which includes a high number of core processors and high-speed 

memory. Sen5eon, known for its op5mized and accelerated algorithms, capitalizes on Computerome's 

capabili5es to deliver efficient and rapid analysis of large-scale genomic datasets. The abundance of 

core processors enables paralleliza5on of computa5onal tasks, allowing for concurrent processing of 

mul5ple samples and reducing analysis 5me significantly. Addi5onally, the high-speed memory 

ensures quick data access and processing, facilita5ng seamless execu5on of Sen5eon's bioinforma5cs 

workflows. The synergy between Sen5eon and Computerome empowers researchers to leverage the 

full poten5al of genomic analysis, enabling insights into gene5c variants, soma5c muta5ons, and 

structural varia5ons with enhanced precision and efficiency.  

For instance, TNscope encompasses several advancements in its mathema5cal model to augment 

recall and precision for soma5c varia5ons. The u5liza5on of Sen5eon tools allows for lower ac5ve 

region triggering thresholds, facilita5ng a comprehensive assessment of poten5al varia5on sites. 

Moreover, the use of sta5s5cal criteria to ini5ate ac5ve regions rather than employing rigid cutoffs 

results in higher-quality ac5ve region iden5fica5on. Local assembly methods are refined to more 

frequently iden5fy the correct variant haplotype. Genotyping accuracy is improved through the 

introduc5on of a novel quality score and modified nonparametric sta5s5cal tests to filter out false-

posi5ve variant candidates. Furthermore, DNAscope uniquely combines the well-established methods 

from haplotype-based variant callers with machine learning to achieve improved accuracy. As a 

successor to GATK HaplotypeCaller, DNAscope uses a similar logical architecture, but introduces 

improvements to ac5ve region detec5on and local assembly for improved sensi5vity and robustness, 

especially across high-complexity regions. When a machine learning model is applied, DNAscope 

outputs candidate variants with addi5onal informa5ve annota5ons. Annotated variant candidates are 

then passed to a machine learning model for variant genotyping, resul5ng in improvements in both 

calling and genotyping accuracy.  

 

NGS Data management challenges in large-scale studies 

The volume of data generated by NGS technologies is substan5al, emphasizing the need for me5culous 

organiza5on to reduce storage costs while ensuring data scalability, accessibility, complete traceability, 

and consistency. This aspect has been crucial in this project. Due to the nature of this type of studies 

where new data is generated constantly, the data management strategy should allow the data to grow 
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while keeping consistency with older data. All the data needs to be stored in an accessible manner and 

other researchers should be able to use it. Furthermore, ensuring complete traceability of the analysis 

performed enables researchers to track and validate the results, suppor5ng scien5fic rigor and data 

integrity.  

 

Conclusion 

In summary, this PhD thesis has contributed to the main goal of iCOPE, improving the clinical life of the 

children with cancer, by providing a set of NGS pipelines matching best prac5ces which allowed to 

generate datasets of gene5c varia5on in Danish children with cancer that served as input for different 

research projects such as the manuscripts presented in this thesis. Manuscript 1 made use of the 

pipelines and the data generated by the pipelines created during this PhD thesis and demonstrated 

the significance of implemen5ng systema5c screening for Cancer Predisposing Syndromes (CPSs) in 

pediatric cancer pa5ents, revealing a notable associa5on between a larger propor5on of childhood 

cancers and underlying predisposing germline variants. Manuscript 2 includes the genomic analysis of 

the first clinical case of a family with a rare subtype of leukemia (Ph+ALL). No clear genomic driver of 

Ph+ ALL was iden5fied, however, due to the singularity of the case the reported variants and findings 

could provide valuable insights for clinicians and researchers, offering poten5al avenues for further 

inves5ga5on on this rare subtype of leukemia. Manuscript 3 u5lized germline variants of unknown 

significance in ERCC4, BLM, FANCA, FANCE, FANCF, FANCG, FANCI, FANCL, MLH1, MSH2, MSH6, NBN, 

RAD51C, and RFWD3 iden5fied by our pipeline as a case study to prove the validity of RoseiaDDG tool 

for predic5on of free energy changes upon amino acid subs5tu5ons. Lastly, gene5c variants obtained 

from samples diagnosed with ependymoma were used to iden5fy germline SNV and help redefine the 

germline predisposi5on of molecularly characterized ependymoma (Manuscript 4). 
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