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Summary
Microbes exist all around us and take part in shaping the world as
we know it. Invisible to the naked eye, they co-inhabit all types of
environmental niches and create vast and complex communities,
termed microbiomes. They are essential for life on earth, where
they play a central role in shaping the ecosystems and have a
great impact on human health. The interplay of the microbes
and our health is directly linked to the specific composition of the
microbiome. To understand their impact it is crucial to be able to
identify the finest-possible granularity, moving from identification
at species-level to strain-level resolution.

By applying metagenomics this becomes possible. Metagenomics
is the study of DNA extracted directly from the environment,
bypassing the need for cultivation of the microbes. With this ap-
proach the entire genetic content of the microbes are analysed,
enabling strain-level analysis. However, due to the complexity
and variability found within the microbial world, this is a task
that remains unsolved.

In this thesis efforts have been made to develop strain-level res-
olution metagenomic methods for accurately profiling the micro-
biome. In the first published work we proposed a method for
selecting a set of signature genes, which can be used for accu-
rate identification and abundance estimates of the bacteria found
within the microbiomes. As the signature genes are unique for
each biological entity, they can be used to profile the microbes
even at very low abundance.

For the second project in this thesis, we use the signature genes
in single nucleotide variant analysis, which facilitates sub-species
level identification. Through this project we created the bioinfor-
matic tool MAGinator, which enables de novo quantification and
taxonomic annotation of the microbes found within the metage-
nomics sample. Through a combination of both gene- and contig-
based techniques it offers insights into the genetic and functional
content along with the bacterial origin.

Subsequently we explored the antimicrobial resistance gene (ARG)
profiles of young adults and infants, to determine differences and
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identify the specific bacteria harbouring them. The analysis re-
vealed that bacterial composition, especially Escherichia coli, crit-
ically influences the ARG profile. Specific ARG clusters were iden-
tified and linked with certain strains of Escherichia and Bifidobac-
terium, highlighting the importance of strain-level identification.

The final project reported in this thesis investigated the spread
and diversity of the opportunistic pathogen Pseudomonas aerugi-
nosa across the globe. The results revealed no evolutionary differ-
ences in the genomes across different environmental niches. The
metabolites produced by the microbes varied between the environ-
ments, however it remains to explore if this can also be found for
the metabolites specific to Pseudomonas aeruginosa.

As a whole, the presented work has covered methods for strain-
level analysis of the microbiome. Being able to identify strains
opens a door to understand the interplay between the microbes,
and also the effects that they have on the environment they oc-
cupy.
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Resumé
Mikrober findes overalt omkring os og er med til at forme verden,
som vi kender den. Usynlige for det blotte øje bebor de alle typer
af miljøer og skaber komplekse samfund, kaldet mikrobiomer. De
er afgørende for livet på jorden, hvor de spiller en central rolle i
at forme økosystemer og har stor indflydelse på menneskers sund-
hed. Samspillet mellem mikroberne og vores sundhed er direkte
knyttet til mikrobiomets specifikke sammensætning. For at forstå
deres indvirkning er det afgørende at kunne identificere med den
højeste detaljeringsgrad og gå fra identifikation på artsniveau til
bakteriestammer.

Ved at anvende metagenomics bliver dette muligt. Metagenomics
er studiet af DNA ekstraheret direkte fra miljøet, hvilket omgår
dyrkning af mikroberne. Med denne tilgang analyseres hele det
genetiske indhold af prøven, hvilket muliggør analyse på stam-
meniveau. På grund af kompleksiteten og variabiliteten der findes
mellem mikroberne, er dette en opgave, der endnu ikke er løst.

I denne afhandling er der blevet gjort bestræbelser på at ud-
vikle metagenomiske metoder på stammeniveau for nøjagtigt at
kortlægge mikrobiomet. I det første projekt foreslår vi en metode
til at vælge et sæt af signaturgener, som kan bruges til nøjagtig
identifikation og kvantificering af de bakterier, der findes inden for
mikrobiomerne. Da signaturgenerne er unikke for hver biologisk
enhed, kan de bruges til at profilere mikroberne, selv ved meget
lav tilstedeværelse.

I det næste projekt bruger vi signaturgenerne og undersøger forskel-
lene i deres nucleotid-varianter (single nucleotide variants), hvilket
muliggør identifikation på underartsniveau. Som en del af dette
projekt skabte vi analyseværktøjet MAGinator, som muliggør de
novo kvantificering og taksonomisk annotation af de mikrober, der
findes i metagenomprøven. Gennem en kombination af både gen-
og contig-baserede teknikker giver det indsigt i det genetiske og
funktionelle indhold sammen med bakteriens oprindelse.

Derefter undersøgte vi de antimikrobielle resistensgen (ARG) pro-
filer af unge voksne og spædbørn for at bestemme forskelle, samt
identificere de specifikke bakterier, der bærer ARG. Analysen viste,
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at bakteriesammensætningen, især Escherichia coli påvirker ARG-
profilen. Specifikke ARG-clustre blev identificeret og knyttet til
bestemte stammer af Escherichia og Bifidobacterium, hvilket fremhæver
vigtigheden af identifikation på stammeniveau.

Det sidste projekt rapporteret i denne afhandling undersøgte spred-
ningen og diversiteten af den opportunistiske patogen Pseudomonas
aeruginosa over hele verden. Ingen evolutionære forskelle i genomet
blev set mellem forskellige miljøer. De metabolitter, der pro-
duceres af mikroberne, varierede mellem miljøerne, men det skal
stadig udforskes, om dette også er tilfædet for specifikke metabolit-
ter produceret af Pseudomonas aeruginosa.

Som helhed har det præsenterede arbejde afdækket metoder til at
bestemme bakteriestammer i mikrobiomer. At kunne identificere
stammer åbner en dør for at forstå samspillet mellem mikroberne
og også de effekter, de har på det miljø, de bebor.
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Introduction

The human microbiome represents a diverse and complex consor-
tium of microbial entities, that inhabits different areas of our bod-
ies. The purpose and influence of the microbes are highly diverse,
and some are performing crucial functions for us influencing our
health. The human gut microbiome has been found to influence
both our physiology and our immunity. The interplay between the
microbes and our health are influenced by the specific composition
of the microbiome. To understand the influence of the microbes,
it is key to gain insights in the highest possible resolution. When
going from species- to strain-level resolution we can identify de-
tailed insights into the microbial phylogeny’s, their adaptations
and their unique metabolic profiles.

To explore the complex microbiomes, metagenomics can be em-
ployed. Metagenomic analysis allows us to bypass the cultivation
of the microbes and investigate the DNA extracted directly from
the sample. It enables the analysis of the genetic content of the
complete microbial community allowing strain-level examinations.
Moreover, microbial environments often display a large variability
between sites and at different time points, which demands robust
bioinformatics techniques to reliably being able to interpret the
data generated from the microbiome studies.

The aim of this thesis was to enhance and expand the existing
methods for microbiome profiling. The goal was to obtain higher
resolution, even for previously unseen microbes, which is key to
unlocking the potential of metagenomics to identify critical mi-
crobes for human health and environmental investigations. This
facilitates precise integration of abundance, taxonomic and func-
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tional annotations, empowering investigations within the micro-
biome field.

The thesis is structured in the following way:

Chapter 1 introduces the theoretical background for the projects
comprised in this PhD. The background is divided into 3 sections:
Section 1.1 covering the fundamentals of microbiomes, their eco-
logical and physiological roles, and the significance of the gut mi-
crobiome and human health. Section 1.2 the fundamental princi-
ples of metagenomics is explained, and how it has revolutionized
the study of microbial communities compared with traditional mi-
crobiological approaches. Section 1.3 briefly bridges the first two
chapters and dives into the metrics used for characterizing the
microbiome.

Chapter 2 covers the first scientific paper describing the use of
signature genes to profile the microbiome. The method, validated
with both simulated and real data, demonstrates that signature
genes enhance species identification and improve abundance esti-
mation.

Chapter 3 is based on the second paper, introducing the tool
MAGinator. The aim of MAGinator is to achieve de novo sub-
species level resolution in microbiome studies, enabling precise in-
tegration of abundance estimates and taxonomic- and functional
annotation.

Chapter 4 briefly discuss the context of antibiotic resistance and
the role of the gut microbiome in this issue. This is elaborated
upon in the third paper, where we studied the variations in an-
tibiotic resistance from infancy to adulthood.

Chapter 5 introducing a fourth project, which is ongoing. The
project concerns the environmental spread of Pseudomonas aerug-
inosa and its associated metabolomic profile, with the hypothesis
that the genomic variability increase in host-associated strains.

Chapter 6 concludes the thesis with an epilogue, discussing the
key points from the presented work as well as future perspective.
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CHAPTER1
Theoretical Background

1.1 Microbiome
Microbes are ubiquitous and are found all around us. Despite their
size, they play an important part in shaping ecosystems, influenc-
ing human health, driving biochemical processes and are essen-
tial for life on earth. The term microbiome covers the microbial
community inhabiting a specific environment, including different
microorganisms such as bacteria, fungi, and virus.

1.1.1 Human microbiome
The human microbiome, also known as the microbiota [1], is di-
verse and each body site harbours a distinct signature of microbes.
The microbes inhabiting our body outnumbers our human cells
with a factor 10, comprising 10-100 trillion microbes [2]. They
live almost everywhere on our body, but most abundant and as-
sorted is the microbiome found in our gut [3]. Collectively the mi-
crobiota comprises about 3.3 million genes, another number that
vastly overshadows the 22,000 protein-coding genes found in the
human genome. Additionally, the human genomes are 99.9% sim-
ilar, where the difference between microbiomes has been found to
be up to 80-90% between individuals. This highlights the huge
diversity within our microbial inhabitants and underlines how,
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CHAPTER 1. THEORETICAL BACKGROUND

through symbiosis, they provide traits that humans have not had
to evolve on their own [1].

Human Gut Microbiome
The intricate ecosystem of the human gut microbiome, residing
in the gastrointestinal tract, hosts thousands of microbial species.
It is constituted predominantly by bacteria, which dependent on
the health status and age of the host is dominated by different
taxonomic groups. Other microbes such as archaea, fungi, viruses
and protozoa also plays a large role in shaping the gut flora and
together they aid the host by food digestion, e.g. by breaking down
otherwise indigestible dietary polysaccharides. The metabolites
produced by the microbes, such as short-chain fatty acids, are
essential for maintaining a healthy gut and contribute to immune
development and modulation [1, 4].

The human gut microbiome is shaped already during the first
hours of our lives and is highly influenced by the mode of delivery.
Once the microbiome has been formed it has a strong signature
throughout the rest of our lifespan. It has been found to be influ-
enced by host factors, such as genotype, lifestyle (including diet)
and physiological status (such as aging) [5].

Impact on Human Health
The human gut microbes play a essential role in human health [1,
3, 6, 7]. When aiding with digestion, they alter the nutritional
gain from the food, e.g., by degrading complex carbohydrates.
They also aid by producing vitamins and facilitates the host with
absorption of minerals. Additionally, the microbes has been found
to play an important role in the energy metabolism of the host and
influence the storage of fat, thus directly linking the microbiome
with metabolic dysfunctions, such as diabetes and obesity [3].

Additionally, the microbial signature has been found to have an
impact on a great variety of diseases, spanning from immune-
related diseases, including allergies and chronic inflammation to
mental disorders, such as autism and depression [3].

Whether the microbiome is the cause or the consequence of the
diseases are still being investigated [8]. For some diseases, such
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1.1. MICROBIOME

as Inflammatory Bowel Disease (IBD) a shift in the microbiome
can be seen before any symptoms appear, hence the disease is a
consequence of the microbiome [4]. Other physiological factors,
such as a shift in temperature or pH can lead to improved condi-
tions for certain microbes leading to an altered microbiome. And
yet for some complex diseases, such as asthma, the intestinal mi-
crobes seem to act as an environmental factor, which is only one
of many factors contributing to the disease status [6]. Other con-
founding factors such as genetics, pH, and nutrient availability are
also highly important to consider when estimating the impacts of
the microbiome on human health.

The microbes constituting the gut microbiome has been found
to be of great importance for human health, however the spe-
cific mechanisms and processes for the systematic diseases are still
largely unknown [8]. Though for gastrointestinal disorders it is
more straightforward to identify the responsible pathogen, such
as Campylobacter jejuni or Salmonella which are known to cause
food poisoning.

1.1.2 Resistome
The term resistome comprises all the Antibiotic Resistance Genes
(ARGs) found in an environment, covering genes originating from
pathogenic and non-pathogenic bacteria and are thus interchange-
ably linked to the microbes that lives in the environment [9].

Antibiotic resistance initially emerged as part of the inherent de-
fense mechanisms of bacteria. Yet, as medicine science advanced,
antibiotics have been used to treat a range of bacterial infections,
including those responsible for food poisoning. ARGs can provide
resistance towards one or more types of antibiotics and can either
be intrinsic to the bacteria or be acquired by Horizontal Gene
Transfer (HGT) [10–12]. External environmental factors have pre-
viously been shown to play a large role in the spread of antibiotic
resistance including pollution, inadequate sanitation, inappropri-
ate waste disposal. And significantly the misuse of antibiotics in
medicine, agriculture and livestock production has accelerated the
spread [13].
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This spread causes a large concern for the public health, as multi-
resistance emerges in pathogens and can be extremely difficult to
treat and control [9, 10].

1.1.3 Tools for Microbial Analysis
The human microbiome has been investigated since the 17th cen-
tury, when initial observations revealed that there was a differ-
ence between the microbiomes in healthy and sick individuals [3].
Though the study of the microbiome is not a new invention, the
bioinformatics methods used for analysing the microbes are.

Traditional methods were cultivation- dependent and allowed only
to study one or a few bacteria at the time [14]. This was a limiting
factor in the study of microbiomes, as many bacteria are 1) not
cultivable under standard laboratory conditions and 2) only grow-
ing in concert with other specific microbes. With the advance of
culture-independent techniques that can analyse the microbiome
as a whole has led to better comprehension and more unbiased
insights into the microbes and their interactions.

One of such methods is metagenomics, which opens the door for
investigating all the DNA present in a microbiome sample.
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1.2. METAGENOMICS

1.2 Metagenomics
By understanding the complex landscape of the microbiome and
its close connection to human health, the need for techniques that
can accurately analyze it becomes apparent. One such powerful
method is metagenomics. With metagenomics direct analysis of
all genetic material from an environmental sample is analysed,
without the need for cultivation or identification of the organisms.
This approach offers an unprecedented window into the microbial
world, providing insights into community structure, functional ca-
pabilities, and dynamic interactions.

Two main categories of metagenomics exist: targeted 16S rRNA
sequencing and untargeted shotgun metagenomic sequencing [15].
In this PhD thesis, the method of analysis used is shotgun se-
quencing. Thus, for the purposes of this thesis, ’metagenomics’
will refer specifically to that method.

1.2.1 Shotgun Sequencing & Data Characteristics
With shotgun metagenomic sequencing, short reads are generated
by random sampling of DNA from the sample. Thereby offering
the potential for the highest taxonomic identification and func-
tional characterization, as no data must be filtered out in advance.

With each sequencing run producing up to billions of reads, shot-
gun sequencing generates significant amounts of data. Despite the
large volumes it is still not certain that all parts of the microbiome
are represented in the sequenced reads. The proportionality of the
different constituents of the environment is often highly skewed,
leading to sparse, overdispersed and heterogeneous data [5, 7, 15].
However, the sparsity can arise for two reasons, by either technical
errors or biological variations. A technical zero could be caused
if the microbe is present in the environment, but not present in
the data due to low sequencing depth or sampling imbalance. A
biological zero would be if the microbe is not present in the envi-
ronment being sequenced [16].

For metagenomics studies it is relevant to be able to compare
the microbiomes across samples. Given the inherent variability
in sequence quantity among these samples, normalization is often

7



CHAPTER 1. THEORETICAL BACKGROUND

employed to adjust the read counts. This process often involves
scaling the reads relative to the total sum of reads within each
sample, thereby generating a relative and compositional measure
that facilitates comparison [15, 16]. This can be done for various
features, such as species or genes predicted in the samples, which
can be stored with the counts of the feature in each sample. As the
number of reads in each sample are dependent on the sequencer,
the count constraint leads to strong dependencies regarding the
abundance of the features in the sample, e.g. if the abundance of
one species increase, this implies a decrease for another species as
the total number of reads in the sample are fixed [15, 17].

1.2.2 Metagenomic Assembly
To gain information from the reads, it is relevant to piece together
the shorter sequences into longer contiguous fragments (contigs).
Assembly is carried out to regenerate the original genomic se-
quences of the microbes found in the sample. This can be chal-
lenging, as some parts of the genomes are very similar or repetitive
and can be difficult to distinguish [18].

Different approaches to assembly exist, however the most common
method is using the de Bruijn graph [19]. The reads are broken
into smaller fragments of length k, termed k-mers. The overlap of
the k-mers are found and linked in a graph, where the paths in
the graph represent the tentative contigs. Depending on the data
the optimal value of k varies. Smaller values will make the graph
more tangled, and it will be hard to determine the optimal path
through it. Larger values can erroneously miss overlaps between
the reads, especially in areas with low coverage, making the graph
more fragmented [19], however it will help with distinguishing very
similar genomes, such as strains. Thus, the optimal approach
would be to have a high k for high coverage regions and a low k
for low coverage regions.

One way to accommodate this trade-off is to use multiple k-mer
values, thus accommodating the complexity of metagenomics sam-
ples. The state of the art within the metagenomics assembly field
include tools such as metaSPAdes[20] and MEGAHIT [21].
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1.2. METAGENOMICS

An example of a de Bruijn graphs i seen in Figure 1.1. As seen
from the figure, de Bruijn graphs of a metagenomics sample can be
complex and not straight-forward to interpret, leading to potential
misassemblies. This occurs due to the presence of repeat regions,
strain variation, uneven coverage across the genomes or errors in
the input reads [19].

Figure 1.1: Assembly graph generated by metaSPAdes [20], showing the
contigs of a metagenomic sample. Each node represents a contig and each
edge represent an overlap between the contigs. Only the largest contigs are
shown.

1.2.3 Metagenomic Binning
The contigs can be grouped together by their genome of origin, a
process called binning. Each bin represents a microbial genome,
termed a Metagenomic Assembled Genome (MAG). The contigs

9



CHAPTER 1. THEORETICAL BACKGROUND

are grouped based on shared characteristics found in the con-
tigs. These characteristics include sequence composition, coverage
across samples [22, 23] or identification of phylogenetic markers
[24].

In general the metagenomics binning approaches can be divided
into two groups, supervised or unsupervised. For the supervised
methods already known information is used to guide the binning
process, such as reference genomes or phylogenetic marker genes.
The disadvantage of supervised binning approaches is that the re-
sults are limited to the information you already have in the refer-
ences. The process is highly accurate in the cases where references
are already available, however when investigating novel entities
with no close relatives found in the references, the results are of-
ten of poor quality. Additionally these approaches also gives am-
biguous results, in cases where closely related organisms have very
similar genomes as they can be hard or impossible to distinguish
[24, 25].

The unsupervised methods are based on complex mathematical
models, leveraging the inherent information found in the data.
They can group the contigs based on the sequence composition
and coverage patterns [14]. The sequence composition is impor-
tant as contigs belonging to the same microbial genome will dis-
play somewhat identical nucleotide frequency. Additionally read
coverage of the contigs, are used to support the binning process,
as genetic components originating from the same organism will
have approximately the same abundance [20]. Multi-sample ap-
proaches have gained dominance, as it includes the strengths of
co-abundance patterns amongst contigs and reads across samples.
MaxBin2 showed that the difference in binning two samples in-
dividually yielded 19 and 26 bins, whereas co-abundance binning
of the two yielded 84 bins [26]. Despite only having two samples,
MaxBin was able to identify more than twice as many bins by
using the co-assembly approach.

Another variant of the multi-sample approach is integrated by
VAMB [23]. It employs a neural network in the form of a vari-
able autoencoder, which learns the complex and high-dimensional
structure of the data, through the sequence composition and co-
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1.2. METAGENOMICS

abundances. This is used for clustering of the contigs into bins.
VAMB creates a bin for each sample in which the MAG is present,
which can be combined across samples into a cluster. That way
it is possible to identify even small differences between the MAGs
of the samples [23].

The complexity, variation and sparsity of the metagenomics data
challenges the precision and accuracy of the binning process. De-
spite the challenges, metagenomics binning provides the most de-
tailed insight into the individual microbial inhabitants of the com-
munities we are examining.
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1.3 Characterizing the Microbiome
Understanding the complexities of a microbial environment re-
quires more than being able to identify its microbial inhabitants.
It also covers the functional profiles of the microbes, their interac-
tions and dynamics affecting each other and their potential host.
When characterizing the microbiome in high resolution, it covers
the microbial diversity, their associated abundances, and func-
tions.

Diversity Metrics
The diversity describes the variation of different microbes found in
the environment. The diversity is traditionally divided into two
categories, alpha- and beta diversity. Alpha-diversity is a mea-
sure of the diversity within a sample, where beta-diversity gives
the difference in diversity between samples [17]. Beta diversity is
calculated as the compositional dissimilarity between the samples,
providing a measure of ecological distance. Beta diversity can be
used to describe the diversity between samples from different en-
vironments or the same environment over time.

A higher diversity is often associated with better health status [27].
A more diverse microbiome implies a larger potential for functions
and gives a higher resilience towards environmental changes and
pressures.

Phylogenetic & taxonomic profiling
A method for characterizing the microbes found in the environ-
ment is by phylogenetic profiling. This covers the systematic ar-
rangement of species based on their evolutionary relationships, de-
termining how closely related certain species or groups are within
a given community [28].

In phylogenetic analysis, the selection of appropriate genes or ge-
netic regions for comparison is paramount, as factors like muta-
tion rates and horizontal gene transfer can influence the observed
relationships. While the accessory genes may provide nuanced
insights for closely related strains, broader comparisons across di-
verse bacteria necessitate the examination of conserved marker
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1.3. CHARACTERIZING THE MICROBIOME

genes. One very conserved gene, the 16S rRNA gene, is commonly
used for phylogenetic classification, due to its universal presence
in prokaryotes [22]. As the 16s rRNA gene is extensively investi-
gated and characterized with reference databases it can be used
for taxonomic profiling. Taxonomic profiling assigns organisms
to various taxonomic ranks (e.g., species, genus, family). Other
genes can also be used for taxonomic assignments. A tool created
specifically for annotation of metagenomic samples is GTDB-tk
[29], which uses a combination of 120 bacterial and 100 archaeal
marker genes for taxonomic classification.

Functional profiling
Beyond the taxonomic characterization of the microbial commu-
nity another important aspect is the functions comprised by the
microbes. From the genes found in the sample, the functions can
be predicted by comparing the sequences with genes of known
functions, with tools such as eggNOG-mapper [30]. This reveals
the metabolic pathways and metabolic pathways that are present
within the sample. This enables comparisons between samples
with different conditions or environments, which can reveal metabolic
functions which are up- or down-regulated. Various diseases has
been examined by examining their microbiomes against healthy
controls, enabling associations between metabolites and microbes
and their impact on human health [4, 6, 31].
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CHAPTER2
Signature Genes used for Microbiome
Profiling

Despite the advances within the metagenomics field, the task of
accurately profiling the microbiome is still unresolved [14]. This is
influenced by several factors, both technical and biological. The
strains that we try to separate have very similar genetic composi-
tion and can therefore be hard to distinguish, even in cases with
high abundance. With traditional reference-based metagenomic
quantification methods, reads may align perfectly to more than
one species, leading to misclassification or crossmapping [18]. Ad-
ditionally, the biological understanding of strains is still develop-
ing. Previously it was believed that one strain would out-compete
other similar strains and that only one would be present within a
sample. This is to a large extend the case for some species such as
Escherichia coli [12], however for other, such as Bifidobacterium
longum we see, that multiple subspecies can coexist in the micro-
biome (described in PAPER II).

A way to overcome these problems is to select a set of representa-
tive genes for each microbial entity, termed signature genes, which
can be used as markers. The genes have to be unique for the en-
tity, and at the same time found within all members. If reads are
present within the sample and mapping to the signature genes, the
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entity is present within the sample. This facilitates quantification
of species even at very low abundance.

PAPER I

In PAPER I we propose a method for identifying a set
of species-specific genes, found de novo for that particular
dataset. These representative genes can be used for iden-
tification of the microbes as well as for abundance estima-
tions. The genes are found using a negative binomial model,
ranking the genes across the samples. The signature gene
set is evaluated according to how many reads that maps to
the entity and how many signature genes we detect within
the samples. Based on these metrics the signature gene set
is iteratively improved by switching the worst performing
genes. For each signature gene set a variant of the ’coupon
collector’s problem’ is applied to calculate the probability
that the full gene set is present within the samples, given
the number of reads that maps to the signature genes. This
process leaves a set of signature genes, which can be used for
precise detection and more reliable abundance estimations
of the microbial entities. The method is validated using a
simulated dataset, which has been binned using MSPminer
[32] and Bäkhed’s First Year of Life dataset [33], which
has been binned using VAMB. MSPminer creates the bins
based on genes and VAMB based on contigs, which shows
the flexibility of the method.

Another set of challenges within microbiome profiling is the tech-
nical complications. The metagenomics data displays bias be-
tween the genetic pool being selected and the actual genetic out-
put from the sequencer, which can occur especially at the PCR-
amplification or at the sequencing steps. The latter occurs is es-
pecially due to extreme values of GC-content [34].

Selecting the initial Signature Gene Set
When interested in identifying a set of signature genes for each mi-
crobial entity it is relevant to take these bias into consideration.
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A practical solution to the problem is to initially filter the genes
found within the biological entity according to their detection rate
across the samples (Figure 2.1). The genes are initially sorted ac-
cording their fit to the median gene abundance profile within the
species (Figure 2.1A). If they display a skewed frequency of detec-
tion, the genes are reordered, so they are found more consistently
and frequently across the samples (Figure 2.1B).

Figure 2.1: The frequency of the 100 initial genes for Dialister sp. identified
in the First Year of Life data set from Bäkhed et al. A) Sorted according
to median gene abundance profile and B) Sorted according to gene frequency
across samples.

Refining the Signature Gene Set
In addition to the filtering across samples, the signature gene sets
can be refined by modelling the read counts using the negative
binomial (NB) distribution. Each gene is evaluated using the NB
distribution to test whether an increase in sequencing depth re-
liably results in an increase in the counts of that gene. It has
previously been described how gene counts follow a NB model [5]
as it allows overdispersion, which is often seen in shotgun data
[16]. The model is applied for each sample, where the read count
of gene i in the jth sample is denoted yij , then

yij ∼ NB (yij |µj , σj) (2.1)

=
Γ (yij + σj)

Γ (σj) yij !

(
σj

µj + σ

)σj
(

µj

µj + σj

)yij

, µj > 0

17



CHAPTER 2. SIGNATURE GENES USED FOR MICROBIOME PROFILING

where µj is the average read count per gene, σj is the sample-
specific dispersion parameter and Γ(·) is the gamma function (ex-
tension of the factorial function). Under this parameterization
of the negative binomial model, the expected read count is de-
noted as E[yij ] = µj = λijNj , where λij is the proportion of reads
mapped to gene i in the jth sample, and Nj is the total number
of reads mapped to sample j. Therefore, µj depends on both the
sequencing depth and the abundance of the species in the sample.
The variance of the read count is given by var(yij) = µj + µ2

j/σj .
The counts of each signature gene are evaluated based on this NB
model and ranked within each sample by comparing the differ-
ence between the expected and observed count. The NB model is
thus enabling us to rank the signature genes, leaving us with the
possibility of changing the worst-performing genes.

Evaluating the signature gene sets
To estimate whether the switch of signature genes leaves a gene set,
which is better for profiling the microbiome, the deviance between
the actual number of detected signature genes versus the expected
are calculated across samples.

Given the size of the signature gene set as n genes, we can calcu-
late the number of expected signature genes, that has reads that
map within a sample, d, by the number of reads mapping to that
sample, kj , as

dj = (1− (
n− 1

n
)kj )n, j = 1, 2, ..,m (2.2)

where m is the number of samples and n has been set to 100 genes.
The function is visualized Figure 2.3 A+B indicated by a blue line.

The optimal size of the signature gene set, n, was found by testing
different gene set sizes in the range from 70-150 genes. Using the
data from PAPER I the performance was estimated by comparing
the relative error from the true abundance of the simulated gene
set with the predicted abundances stemming from these different
gene set sizes (Figure 2.2). From these tests we find a local min-
imum around n = 100. Additionally, it is seen, that the error
is smaller for the refined signature gene sets, indicating that it is
more suitable for abundance estimations.
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Figure 2.2: Using the data from PAPER I, different sizes of the signature
gene set is evaluated. The absolute error between the true and calculated
relative abundance are found with the different sizes of signature gene sets.
This error is shown for the initial/filtered and refined signature gene sets.

In PAPER I a variant of the Coupon Collector’s Problem (CCP)
[35] is applied to estimate the likelihood of sequence reads that
maps to a certain number of signature genes d, in relation to
the quantity of reads k that correspond to the entire gene set.
With this metric the gene set are evaluated within sample and the
chance that the full gene set is present within the sample can be
calculated. As we are interested in identifying signature gene sets,
where all genes are present within all samples, this is a valuable
metric to compare different gene sets.

Performance in simulated and real data
We evaluated the performance of the species-specific signature
gene sets using two different data sets; A simulated gene cata-
logue, created by Borderes et al. [36] and the First Year of Life
data set created by Bäkhed et al. [33].

Benchmarking of the method is possible using the simulated data
set, as the predicted profiling of the environments can be compared
with the truth. We compared the signature genes with the results
from MSPminer, where we saw a significant improvement in how
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well the signature genes followed the expected distribution across
species Wilcoxon signed rank test (p-value of 4.0 × 106, paired).
An example of the improvement of the signature gene set is seen
for one of the Metagenomic Species Pangenome (MSP) predicted
using MSPminer in Figure 2.3, where the refined signature gene
set follows the expected distribution more closely leading to more
samples being accepted by CCP (p-value < 0.05).

Figure 2.3: Major insights using the simulated data set in PAPER I. The
detection of signature genes is displayed for each sample. The number of
identified signature genes by the number of reads mapped to signature genes
of MSP54. Colors indicate the chance of this sample containing 95 unique
signature genes as described in methods. The bar plot indicates the number
of samples that were rejected (P<0.05, CCP) and accepted (P>0.05, CCP).
The expected distribution of samples for a metagenomic entity which contains
100 signature genes is indicated by a blue line. A) signature genes prior to
refinement and B) after signature gene refinement. C) Accepted and rejected
samples by CCP for the two gene sets. Figure adapted from PAPER I.

Another key finding in PAPER I was through the First Year of
Life cohort. Using a combination of binning with VAMB and the
signature genes we were able to identify 1843 MAG clusters, com-
pared with the original study’s 373 meta-Operational Taxonomic
Units (mOTUs), yielding a more fine grained resolution of the mi-
crobiome. Additionally we were able to reproduce the results of
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the original study, where we were able to identify the same pres-
ence/absence patterns of their Signature Taxa, for the taxonomic
ranks where we identified the exact same taxonomies.

Conclusion
To summarize, in PAPER I we presented a method for de novo
identification of signature genes for a dataset enabling more precise
species-identification as well as improved abundance estimations.
We successfully implemented method for both simulated and real
data.
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CHAPTER3
Strain-level profiling of the microbiome

We know that the species composition of the microbiome alone
does not explain the complex mechanisms and processes found
in the microbial environment. For a more comprehensive under-
standing of the microbiome and its phylogenetic and functional
relationships it can be relevant to dive into more detail with sub-
species level resolution, including host associations of genes, lead-
ing to a broader understanding their metabolic fingerprints [36].

When diving into the microbiome at a deeper level than species,
it gives us the ability to characterize specific strains or subspecies
and link them to unique functionalities. This can be exemplified
by Bifidobacterium longum, where a specific subspecies, Bifidobac-
terium longum subspecies infantis (B. infantis), has been shown
to be able to breakdown specific types of human milk oligosaccha-
rides [37, 38], which is the main energy source for breastfed human
infants [39].

Being able to pair the microbial entities with their associated genes
is an essential part of being able to obtain a comprehensive under-
standing of the community. This can be obtained by integrating
contig and gene information. Binned contigs gives information
about the genomic structure and the genes gives insights into the
functional capabilities of the microbes. This can e.g., be used if
the presence of specific genes within a contig indicates functional
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capabilities of a microbe, such as its ability to metabolize certain
substances or its antibiotic resistance.

PAPER II

In PAPER II we introduce our tool MAGinator, which is
created to delve into the fine-scale biological differences
within MAGs by the use of signature genes. MAGinator is
a workflow, which processes the reads, contigs and bins of
a metagenomics dataset. The key features of the tool is its
capacity to identify subspecies-level microbes found de novo
for the data set and additionally providing the user with rel-
ative abundance profiles, SNV-level phylogenetic trees and
synteny clusters. To achieve this information both genome-
and gene-based methods are combined, allowing us to deter-
mine the origin of the genes. Consequently, the functional
profile can be predicted and associated with its host organ-
ism.

The strengths of MAGinator is validated using simu-
lated data originating from the Critical Assessment of
Metagenome Interpretation (CAMI) [40], benchmarked us-
ing data from a case-control study designed by Franzosa et
al [4] and used for exploratory analysis of two infant cohorts
from COPSAC2010 [6] and CHILD [41].

MAGinator is available at GitHub https://github.com/
Russel88/MAGinator.

COPSAC2010 and data preparation
To illustrate the features and analysis created by MAGinator, the
following sections will be based on the results of MAGinator run
on the COPSAC2010 cohort [6, 9, 42].

The data consists of 662 samples collected from 1-year old infants.
The data has been preprocessed, assembled with metaSPAdes [20]
and binned using VAMB [23]. MAGinator has been run using
default settings on the data set identifying 880 MAG clusters.
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Strain tracking
With the context of the COPSAC2010 cohort, we used MAGi-
nator to obtain strain level resolution. We investigated this in
more detail for the subspecies of Bifidobacterium longum, where
we are particularly interested in being able to separate the two
subspecies B. infantis from Bifidobacterium longum subsp. longum
(B. longum) due to their different metabolic capabilities. Within
the MAGinator framework 12 MAG clusters was identified and
annotated within the Bifidobacterium genus including one MAG
cluster for the subspecies B. infantis and one for B. longum. To
benchmark the performance MetaPhlAn [43] was also run on the
data, which produced a single abundance measure for the species
Bifidobacterium longum. We summed the abundances of our B.
infantis and B. longum clusters and compare with the abundance
from the MetaPhlAn cluster and found that 87% of the variation
was explained (PAPER II, Suppl. Figure 4). This indicates a
higher level of stratification using the results from MAGinator.

Additionally, we analysed the samples using StrainPhlAn [31],
which detects stains with predefined marker genes. Two clusters
was identified, which correlates with the relative abundance of
the two Bifidobacterium longum subspecies (Figure 3.1). The two
StrainPhlAn clusters are mutually exclusive and are thus only able
to identify one of the clusters in each sample. From Figure 3.1A we
see that MAGinator is able to detect the subspecies even in sam-
ples with low abundance. This illustrates how MAGinator with de
novo identification of MAG clusters and subsequent identification
of signature genes enables better stratification of the microbiome.

Reusing the signature genes
The signature genes have been found de novo for the deeply se-
quenced COPSAC cohort. But in the case of having a shallower
sequenced data set, would we be able to reuse the signature genes?

A subset of the CHILD cohort consisting of 2846 shallow-sequenced
samples from infants was included in the analysis. We mapped
the reads to the non-redundant gene catalogue found from the
COPSAC2010 cohort, yielding the read counts of the signature
genes. The read mappings of the two cohorts to B. infantis is seen
in Figure 3.2A, where it is clear that the strains from the COP-
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Figure 3.1: Stratification of StrainPhlAn and MAGinator clusters for
COPSAC2010 using data from PAPER II. A) The relative abundance of the
subspecies identified using MAGinator colored by StrainPhlAn cluster B) Ra-
tio of relative abundance of MAGinator subspecies displayed for the Strain-
PhlAn clusters. Figure adapted from PAPER II.

SAC cohort follows the expected distribution (Equation 2.2) more
closely (MSE=103.95 for COPSAC compared to MSE=878.09 for
CHILD). A large subpopulation of the CHILD samples never reach
more than 50 detected signature genes, despite having a large
amount of reads that map to the MAG cluster. This indicates
that part of the signature gene set are not found in the strain seen
in the CHILD cohort, which can also be seen from the heatmap
in Figure 3.2B.

Despite the cohorts having a large resemblance we see that the
signature genes are not as specific for the strains found in the
CHILD cohort. It is thus preferred to run MAGinator and find a
relevant set of signature genes for the data set in question.

SNV-level phylogenetic trees
A method for elucidating genome-variations is by identifying Sin-
gle Nucleotide Variants (SNVs). When applied to closely related
genomes small differences are captured and they will be able to
be distinguished. SNVs can be used for inferring the phyloge-
netic relationship between the samples, thus illuminating evolu-
tionary relations [28]. SNV-profiles of marker genes have pre-
viously been shown to successfully divide strains from different
environments[22] or conditions [31].

SNVs can be found for the signature genes, which can be used to
infer the phylogeny, elucidating the smaller biological differences
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found within the MAG clusters. An alignment for each signature
gene is made for the samples that contain the signature genes. The
clades of the tree can be associated with metadata to reach strain-
level differences. As the SNVs are found based on the sequences of
the signature genes, this allows placement of samples in the tree
of the MAG cluster even when no MAG was found in the sample.
This is illustrated by Faecalibacterium Faecalibacterium identified
in the COPSAC cohort (Figure 3.3). The MAG is identified in 85
samples, and 13 additional samples are placed in the tree.

Gene synteny
Gene synteny refers to the physical co-localization of genes on a
chromosome and are thus genes located adjacent to each other.
Genes found in synteny, referred to as synteny clusters, can be
used to provide a deeper understanding of the genomic organi-
zation of the genes and help us gain insights into their shared

Figure 3.2: Reuse of the signature genes identified from the COPSAC2010 on
the CHILD cohort from PAPER II. Read mappings of B. infantis signature
genes. A) The number of reads mapped to the signature genes presented with
the number of signature genes detected. Each dot is a sample. The red colour
indicates COPSAC2010 samples, the blue color indicates CHILD samples. The
black line indicates the expected distribution (Equation 2.2). B) Heatmap
of the read mappings to B. infantis signature genes. Figure adapted from
PAPER II.
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Figure 3.3: Phylogenetic tree created with output generated by MAGina-
tor using the COPSAC2010 data from PAPER II. A) SNV-level phylogenetic
tree based on the signature gene of the MAG cluster Faecalibacterium Faecal-
ibacterium sp900758465. The tip color indicates whether the sample contains
a MAG. B) Heatmap of number of signature genes detected in the sample
and proportion of signature gene sequence covered by read mappings in the
alignment (%). Figure adapted from PAPER II.28



pathways [44].
MAGinator has been developed to identify synteny clusters. This
is done by creating a weighted graph of the adjacency of the genes
on the contigs. If the genes are close enough in the graph, they
will be categorized to be part of the same synteny cluster. The
clustering of the graph is done using mcl-clustering [45] and only
immediate adjacency is used. As genes found in the same synteny
cluster is believed to be part of the same metabolic pathway [46],
the synteny clusters predicted by MAGinator have been evaluated
by examining the functional annotation of the genes found in syn-
teny. MAGinator was run on the COPSAC2010 cohort, producing
in 746,251 synteny clusters with an average of 3 genes per cluster
(Figure 3.4 B). The predicted synteny clusters were functionally
annotated using eggNOG mapper [30, 47, 48]. For each cluster
the KEGG module [49] with the highest occurrence was identified
and the proportion of the genes within the cluster with this an-
notation was calculated (Figure 3.4 A+C). 92.8% of the clusters
was found to have over 80% agreement in assigned KEGG module,
indicating that the genes of the synteny clusters are part of the
same metabolic pathway.

Software development
While the innovative capabilities of MAGinator are undeniably its
core strength, its design for reproducibility and user-friendliness
ensures that it stands out as an asset in the microbiome research
toolkit. As the field continues to grow, tools like MAGinator,
which prioritize both scientific content and user experience, will
be instrumental in driving forward our understanding of complex
microbial communities.

The software has been setup as a Python module and based on
a set of Snakemake [50] workflows. The dependencies of running
MAGinator is mamba [51] and Snakemake, the rest of the depen-
dencies are installed automatically once MAGinator is run. Addi-
tionally, the database for GTDB-tk [29] has to be downloaded for
taxonomic annotation.

MAGinator has been developed, so that it can be run on a server
or a compute cluster systems such as qsub (torque) and sbatch
(slurm). Additionally, we have implemented the workflow to be
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Figure 3.4: Central result from PAPER II. Synteny clusters and associated
functional annotation created with output generated by MAGinator using the
COPSAC2010 data. A) Graph network of 3 synteny clusters. The colors repre-
sent KEGG modules. Green indicates that no KEGG module was annotated
B) Distribution of synteny cluster size C) Proportion of genes annotated with
the most common KEGG module in the cluster. Only clusters of >=5 genes
are included. Figure adapted from PAPER II.

as versatile as possible, allowing for the user to input parameters
for the different tools and analyses. This ensures that MAGinator
can be tailored to address specific scientific questions.

Conclusion
PAPER II presents the tool MAGinator, which is a freely acces-
sible tool, designed to obtain de novo strain-level resolution of
metagenomics shotgun data sets. It provides precise abundance
estimates, even in samples containing the microbe in low abun-
dance. MAGinator combines information from gene- and contig-
based methods, enabling merge of information about taxonomic
profiles and the origin of the genes and genetic content, which
can be used for functional understanding of the organisms found
within the samples.

We have tested it on several data sets, including the COPSAC2010

cohort. This covered 880 high quality MAG clusters, for which we
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have identified signature genes. We have shown that the signature
genes can be used as a basis for subspecies-level analysis, providing
information regarding their functionality, their internal relatedness
between the samples.
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CHAPTER4
Resistome of different age groups

As described in section 1.1.2, the human gut microbiome contains
a large reservoir of ARGs. They play a crucial role in the response
to pathogens and antibiotics and thereby on human health. The
ARG profile found in the microbiome is highly influenced by the
bacterial composition, as certain genera or species are more prone
to exchange ARGs due to selective or competitive pressure [12,
52]. Some taxonomic groups are also more prone to carry certain
types of ARGs, such as β-lactamases, which is most often found
in Enterobacteriaceae (including E. coli) [53].

Despite the importance for human health, the influence of age on
the ARG profiles and its response to antibiotic exposure remain
largely unknown. We wanted to explore these mechanisms in more
detail by examining the resistome in 1-year-old infants and young
adults.
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PAPER III

In PAPER III we investigated how the resistome change
with age or in response to antibiotic treatment. The ARG
profiles from metagenomics samples from 662 infants and
217 adults were identified. The samples used for the study
originated from the COPSAC2010 and COPSAC2000 cohort,
comprising samples of one-year-old infants and 18-year-old
young adults respectively [42, 54, 55]. A bimodal pattern
is seen in the ARG abundance for both cohorts, with peaks
indicating high and low richness. The duality is mainly
driven by Escherichia coli (E.coli). A significant correla-
tion between the cohort and the ARG profile of E.coli was
seen. Additionally, we found that antibiotic treatment en-
hances ARG and MGE abundance and decrease the bac-
terial richness. The infant gut was found to recover faster
from antibiotic treatment, despite harboring more plasmids
than the adults. For both cohorts an increase of ARGs was
seen after intake of antibiotics. The adult microbiome was
found to harbor a lower diversity and abundance of ARGs
as well as fewer bacteria carrying high abundance of ARGs
such as E.coli compared to the infant cohort.

ARG profiles of Escherichia
Previous findings in the COPSAC2010 cohort, showed that Es-
cherichia and especially E. coli play a crucial role in shaping
the ARG profiles [9]. The same pattern was observed in the
COPSAC2000 cohort. To gain more insights into the ARGs from
the Escherichia genus, we constructed a phylogenetic tree from
the MAGs annotated as Escherichia. 127 MAGs were found in the
young adults and 513 MAGs were found in the infants. The Av-
erage Nucleotide Identity (ANI) was used to assess the similarity
between the genomes (Figure 4.1). We tested whether the MAGs
differed between the cohorts by creating a cophenetic distance
matrix from the tree and testing the cluster-membership of the
cohorts. From a phylogenetic perspective the Escherichia MAGs
differed between the two cohorts (PERMANOVA; P = 0.02).

Additionally we wanted to include the information about the ARG
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Figure 4.1: Phylogenetic tree of Escherichia MAGs in adult and infant gut
based on 99% ANI analysis with data from PAPER III. The Escherichia MAGs
are grouped into four categories using PAM clustering. The colored branches
represent the four ARG profiles (red indicating no ARG in the MAG). The
coloring of the tips indicate the cohort of origin. Figure adapted from PAPER
III.

Figure 4.2: Dividing the ARG profiles (based on presence/absence) into
optimal number of clusters. With PAM-clustering, different cluster-sizes are
tested using wss for the Escherichia MAGs. Clusters between 2-15 are tested.
The figure is created using data from PAPER III.
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profiles in order to examine, whether they differed between the co-
horts. Based on presence/absence of ARGs on the contigs we clus-
tered MAGs with PAM clustering and found the optimal number
of clusters to be 4 using the within-sum-of-squares (wss) method
(Figure 4.2). We tested whether the Escherichia MAGs correlated
with the ARG clusters and found a significant correlation (PER-
MANOVA; P = 0.01) (Figure 4.3 A). No ARG cluster was found
to be exclusive for either adult or infant.

Figure 4.3: Correlation between taxonomy and ARG cluster membership.
PCoA for the ARG cluster and cophenetic distance of the MAGs for A) Es-
cherichia B) Bifidobacterium. Figure is created using data from PAPER III.

ARG profiles of Bifidobacterium
The method was repeated for Bifidobacterium, as this genus is
found to play an important role in human health (described in
Chapter 3). Bifidobacterium is occurring frequently and 2044
MAGs are identified across the two cohorts. From the MAGs
a phylogenetic tree was constructed (Figure 4.4). From a phyloge-
netic perspective, Bifidobacterium MAGs differed between the two
cohorts (PERMANOVA; P = 0.001). We also tested whether the
Bifidobacterium MAGs correlated with the ARG clusters, using
PAM clustering and wss, also resulting in 4 clusters. We found
a significant correlation between MAGs and ARG cluster (PER-
MANOVA; P = 0.001) (Figure 4.3B). Furthermore, we found one
ARG profile (cluster 3) to be almost exclusively present in infants
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that was also predominantly distributed in one specific MAG clus-
ter. Additionally, many MAGs from Bifidobacterium did not carry
any ARGs.

Figure 4.4: Phylogenetic tree of Bifidobacterium MAGs in adult and infant
gut based on 99% ANI analysis using data from PAPER III. The Bifidobac-
terium MAGs are grouped into four categories using PAM clustering. The
colored branches represent the four ARG profiles (red indicating no ARG in
the MAG). The coloring of the tips indicate the cohort of origin. Figure
adapted from PAPER III.

Conclusion
Based on the metagenomics sequencing of infants and young adults
we were able to describe age-related patterns of the ARG profiles
in terms of abundance and distribution in the gut. We were able
to identify ARG clusters for Escherichia that were significantly
correlated to the cohort. From a phylogenetic perspective, the
Escherichia MAGs were also found to differ between the two co-
horts.
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CHAPTER5
Strain level resolution used for environ-
mental profiling

Pseudomonas aeruginosa (P. aeruginosa) is a common and wide-
spread microbe found in various environments, and also an oppor-
tunistic pathogen in humans that can cause a range of different
infections. Its ability to form biofilms [56] and its intrinsic and
acquired resistance to a range of antibiotics makes it a challenging
pathogen to combat [57, 58].

In the environment P. aeruginosa plays a crucial role in nutri-
ent cycling and can be found in various ecological niches, such as
soil, water (fresh and saline) and on plant surfaces. Its versatility
allows it to adapt to a broad range of environments, making it
an important bacterium in many microbial communities. Despite
being found in most environments, the highest abundance of P.
aeruginosa is found in humans or areas associated with human
activity [59]. Some of the mechanisms, which could be influencing
the large spread of the species is firstly its ability to form biofilms.
Other contributing factors include its motility mechanisms such
as flagella, and its ability to utilize a wide range of organic com-
pounds as energy sources [57].

The metabolomic profile of P. aeruginosa is highly diverse and re-
flects its adaptability [59]. However there exists several P. aerugi-
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nosa-specific metabolites (such as phenazines, rhamnolipids, quino-
lones and pyoverdin), which in symphony can be used as a molecu-
lar signature of the species, despite not being exclusively produced
by P. aeruginosa [56, 60]. Additionally certain strains of P. aerug-
inosa produce toxins, which can be used to describe its virulence
and pathogenicity [61].

Ongoing project

The scope of this project is to identify differences between
host-associated and environmental P. aeruginosa strains.
P. aeruginosa is nearly omnipresent in the environment and
an opportunistic pathogen in humans. Our hypothesis sug-
gests that genomic variability increases in host-associated
strains due to the selective pressures exerted by the host
immune system, antibiotic treatments, or competition with
other microbes in host environments. In contrast, environ-
mental strains are exposed to less stress, leading to a more
conserved genome.

To examine the spread of P. aeruginosa we have used
metagenomics, metabolomics and associated metadata from
from the Earth Microbiome Project (EMP) [62, 63]. Addi-
tionally, we downloaded all reference genomes annotated as
aeruginosa from NCBI [64].

MAGinator was used to identify signature genes and rel-
ative abundance of the reference strains in the EMP
data. The bacterial abundance was correlated with the
metabolomics data and corresponding environmental ori-
gin.

The project was carried out in collaboration with University
of California San Diego (UCSD), as part of my external
research stay at the Knight Lab.

Earth Microbiome Project (EMP)
The EMP is a systematic effort to characterize the global micro-
bial world. The project aims at uncovering the taxonomic and
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functional diversity of the microbes for the benefit of the whole
planet. The data has been collected by research groups across
the globe using standard protocols [62]. The data is comprehen-
sive and includes metagenomics 16s rRNA and shogun sequencing,
metabolomics and a broad selection of metadata, such as informa-
tion regarding sampling environment, storage of the sample etc.

In this project 817 samples were included originating from a broad
range of environments (Table 5.1), including 16 controls. The
environments have been collapsed into two categories ”Free-living”
or ”Host-associated” ((Table 5.2).

Environment Sample Count
Animal corpus 67
Animal distal gut 182
Animal proximal gut 30
Animal secretion 20
Fungus corpus 12
Plant corpus 28
Plant surface 57
Sediment (non-saline) 47
Sediment (saline) 66
Soil (non-saline) 215
Subsurface (non-saline) 10
Surface (non-saline) 2
Surface (saline) 2
Water (non-saline) 24
Water (saline) 39

Table 5.1: Sample count for each environment, high stratification (controls
have been removed).

Type Count
Control 16
Free-living 405
Host-associated 396

Table 5.2: Sample count for each environment, low stratification.

The samples contained an average of 7.4 ± 8.8 million reads (Fig-
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PROFILING

ure 5.1). An adequate sequencing depth rely on the taxonomic di-
versity of the community where the sample is extracted. However
even for low-diversity habitats, this will be considered as shallow
sequenced [65, 66].

Figure 5.1: Characteristics for the EMP data included in this analysis. Read
counts for the 817 samples (R1 counts shown).

MAGs in the EMP
Despite the shallow sequencing we tried to assemble and bin the
samples. The samples were assembled using SPAdes [19], leaving a
total of 2,4 million contigs. The contigs were binned using VAMB
run with default settings, however due to the shallow sequencing
and high diversity of the data only 6 MAG clusters were produced.
Various settings for both assembly and binning was tested and
the produced MAGs were examined using CheckM [67] (data not
shown). With the sparse metagenomics data it was not possible
to generate any results, where the spread of P. aeruginosa could
be examined using the MAGs.

Using P. aeruginosa as reference catalogue
To circumvent the issues with the shallow sequencing we decided
to create a reference catalogue of P. aeruginosa. Instead of using
MAGs as input for MAGinator we used the reference catalogue,
thus identifying signature genes for each strain, from which abun-
dance estimates was found.

All 863 reference genomes annotated as aeruginosa were down-
loaded from NCBI [64]. As the signature genes must be unique
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for the strains, the redundant genes were identified using MM-
seqs2 [68] and removed, leaving a nonredundant gene catalogue.
The reads were mapped to the genes using bwa-mem2 [69] and
counted using Samtools [70]. This resulted in an average of 360,580
± 563,699 reads mapping from each sample to the gene catalogue
(Figure 5.2 A). However, 104 samples have fewer than 1,000 reads
that map. Per gene we find an average 3,081 ± 9,049 reads that
map (Figure 5.2 B).

Figure 5.2: Read counts of EMP to the aeruginosa genes A) The number of
reads that map to the genes per sample B) The number of reads that maps to
each gene.

Signature genes of P. aeruginosa in EMP
The signature genes of each strain was found according to the
methods presented in PAPER I. Based on the read mappings to
the signature genes, the relative abundance was found. As the
signature genes have to be unique for the strain, and the cata-
logue consists of 863 strains of the same species, the pool of genes
is limited. We therefore suspected it to be hard to identify 100
unique signature genes for each strain. We tested gene set sizes of
100, 80, 60 and 20 genes. From Table 5.3 we see that the smaller
the signature gene set is, the more strains is captured with more
than 1‰ of the reads mapping. Having more strains identified
could be a sign of noise of the data, indicating that 20 signature
genes might be too few to capture the true presence/absence of
the strains. However, 100 signature genes could be too many,
disqualifying the strains with fewer unique genes.
Evolution of P. aeruginosa in different enviroments
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Gene Set Size Strains > 1‰ abund.
100 75
80 116
60 195
20 696

Table 5.3: Gene Set Size and the resulting number of strains harboring more
than 1‰ of the mapped reads.

Using the relative abundances of the P. aeruginosa strains it is
possible to associate it with the environments where it originated
from (Table 5.1 and Table 5.2). No significant differences were
found in alpha-diversity (data not shown).

The beta diversity and the proportion of variance explained was
found (by scaling of the results, subsequent PCoA and PER-
MANOVA analysis (Figure 5.3 A+B), Table 5.4). None of the
results are significant. However, we see that higher stratification
of the environment yields higher proportion of explained variance.

Figure 5.3: Beta diversity analysis of aeruginosa in the EMP data. PCoA
and PERMANOVA (999 permutations) for A) Low stratification of environ-
ments B) High stratification of environments. Colors indicate environment.

44



Gene Set Size Env. low Env. high
100 R2 0.12% 16.37%

P 0.58 0.80
80 R2 0.16% 1.71%

P 0.29 0.75
60 R2 0.13% 1.78%

P 0.50 0.69
20 R2 0.11% 1.93%

P 0.67 0.52
Table 5.4: Correlation between beta diversity when using different gene set
sizes versus low and high stratification of environmental conditions. Showing
the PERMANOVA results (999 permutations, Bray-Curtis dissimilarity met-
ric).

The algae Microcystis aeruginosa

When inspecting the results one of the MAGs did not be-
long to P. aeruginosa, but was instead the algae Microcys-
tis aeruginosa (Figure 5.4). The algae is found primarily in
fresh and brackish water [71]. When examining the beta di-
versity with the environmental variables ”saline” and ”non-
saline”, the algae is found to be correlated with salinity
(Table 5.5). Interestingly the strongest correlated strains
were 3 clinically isolated strains originating from the same
study [72], which was found to be negatively correlated with
”saline”. Additionally, a strain sampled from the Indian
Ocean [73] was found to be positively correlated with salin-
ity.

Saline Non-saline R2 P
Human strain1 -0.43788 0.89903 0.0090 0.034 *
Human strain2 -0.83996 0.54265 0.0010 0.699
Human strain3 -0.43081 0.90244 0.0021 0.490
Algae 0.02568 -0.99967 0.0026 0.395
Marine strain 0.90529 -0.42480 0.0018 0.543

Table 5.5: Relationship between strains and environmental variables.
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Figure 5.4: Beta diversity analysis displayed with directions of en-
vironmental variables. Microcystis aeruginosa, the algae, is marked
with red.

Despite the algae not being part of the initial investigation,
the observed results serve as a validation of the methodolo-
gies employed.

Metabolomic profile of P. aeruginosa
As part of the EMP collection, the metabolomic profile of the sam-
ples was found with untargeted LC-MS analysis. LC-MS is a com-
bination of liquid chromatography (LC) and mass spectrometry
(MS). Metabolomics is used to determine the products/metabo-
lites that are found in the environment. The metabolites, which
are microbially related have been identified and preprocessed ac-
cording to the methods described by J. Shaffer et al. [63] and are
used for the subsequent analysis.

The metabolite diversity was analyzed by applying identical method-
ology used for the beta-diversity assessment of the metagenomics
data (Figure 5.5). Presence/absence of the metabolites in the
samples have been used. The analysis shows a significant influ-
ence of the environmental origin of the sample, which can aid in
explaining the diversity found within the metabolites.

This analysis is based on all metabolites related to microbes, how-
ever none of the P. aeruginosa-specific metabolites are present
within the data.
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Figure 5.5: Diversity analysis of the EMP metabolomics data. Presence/ab-
sence of the metabolites have been used. PCoA and PERMANOVA (999 per-
mutations) for A) Low stratification of environments B) High Stratification of
environments. Colors indicate environment.

Next steps for uncovering diversity of P. aeruginosa
The initial investigations of the abundance of the P. aeruginosa
did not lead to any conclusions regarding the genomic variability.
This is most likely due to too many similar strains being present
within the reference catalogue. If the reference genomes are too
closely related, it can lead to problems in accurately selecting a set
of signature genes unique for each strain but also lead to cross map-
ping of the reads. The latter was suspected, as the alpha diversity
indicated that most strains was present with similar abundance in
all environments. One approach to solve this is to cluster similar
strains. This can be done based on their phylogeny.

However, we did successfully run MAGinator on a reference cat-
alogue consisting of genomes instead of MAG clusters, which we
believe can be a valuable asset in the future. This also opens for
the possibility of combining the strengths of reference based and
de novo identified MAG clusters for profiling of the metagenomics
data sets.

Additionally, the metabolomic profile of the strains would have to
be inferred by mining other metabolomics data sets, linking with
the metabolites found in the current study. These can be found at
public databases such as GNPS (Global Natural Products Social
Molecular Networking) [74]. However this can pose a challenge as
limited data exists for environmental strains of P. aeruginosa.
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CHAPTER6
Conclusion

The research presented in this thesis was centered around metag-
nomics profiling of the microbiome. The main scope was to refine
and expand the current methods to allow strain-level resolution.
This resolution allows for accurate integration of abundance, tax-
onomic and functional annotation in microbiome studies, which is
needed to empower investigations in the microbiome field.

The initial research objective was to develop a method for selection
of a set of signature genes, which can be used for precise detection
and more reliable abundance estimations of the microbial entities.
This work is demonstrated in PAPER I.

The signature genes was found to accurately profile the species
in the samples. Additionally, by analysing the SNV-profiles of
these genes we are able to further stratify the diversity of the
bacteria in the samples to reach sub-species level identification
as presented in PAPER II. The tool MAGinator was developed,
covering a pipeline for de novo quantification and annotation of
MAGs at sub-species level. It links the information from gene-
and contig-based methods, allowing insights into both taxonomic
profiles and the origin of the genes as well as their genetic content.
This can be used for inference of the functional capabilities linked
to the host organism and their presence within each sample.
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CHAPTER 6. CONCLUSION

In PAPER III the ARG profiles of young adults and infants are ex-
amined and compared using metagenomics. We identified and de-
scribed age-related patterns of the ARG-profiles based on the com-
position and distribution. The bacterial composition was found to
play a pivotal role in shaping the ARG profile. Especially E. coli
was found to influence the ARG composition and certain ARG
clusters was found to corretage with the cohort. This study dis-
played the importance of species and strain-specific profiling of the
genomes found within the cohorts.

Lastly we investigated the spread and diversity of the opportunis-
tic pathogen P. aeruginosa in different ecological niches using the
EMP data. As described in Chapter V, we identified signature
genes from a reference database of genomes, leading to abundance
estimates of the strains in the different types of environments.
The initial analysis did not leave us with any confident conclu-
sion regarding the evolutionary differences of P. aeruginosa across
environments. From the metabolites a clear pattern in diversity
was seen between the environments, however as no P. aeruginosa-
specific metabolites was present within the data it was not possible
to directly link it with this species.

Collectively the research presented in this thesis has explored meth-
ods for profiling and characterizing the microbiome. The profound
diversity and variability among the inhabitants of the microbiome
make this a task that is still not fully solved. An additional avenue
to achieve higher resolution is through the addition of long-read
sequencing. As long-read sequencing can span span entire genomic
regions, in combination with short-reads have been found to yield
high quality hybrid assemblies [75]. Another interesting aspect to
further characterize the microbiome is the presence and functions
of other biological entities, such as vira and archaea, which has
also been shown to influence the bacterial composition [76].
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Abstract

Motivation: Metagenomic binning facilitates the reconstruction of genomes and identification of Metagenomic
Species Pan-genomes or Metagenomic Assembled Genomes. We propose a method for identifying a set of de novo
representative genes, termed signature genes, which can be used to measure the relative abundance and used as
markers of each metagenomic species with high accuracy.

Results: An initial set of the 100 genes that correlate with the median gene abundance profile of the entity is selected. A
variant of the coupon collector’s problem was utilized to evaluate the probability of identifying a certain number of unique
genes in a sample. This allows us to reject the abundance measurements of strains exhibiting a significantly skewed gene
representation. A rank-based negative binomial model is employed to assess the performance of different gene sets
across a large set of samples, facilitating identification of an optimal signature gene set for the entity. When benchmarked
the method on a synthetic gene catalog, our optimized signature gene sets estimate relative abundance significantly closer
to the true relative abundance compared to the starting gene sets extracted from the metagenomic species. The method
was able to replicate results from a study with real data and identify around three times as many metagenomic entities.

Availability and implementation: The code used for the analysis is available on GitHub: https://github.com/trinezac/
SG_optimization.

Contact: trizac@dtu.dk

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Metagenomic binning tools, such as MetaBAT 2 (Kang et al., 2019),
VAMB (Nissen et al., 2021) and MSPminer (Plaza O~nate et al.,
2019), facilitate the reconstruction of genomes and identification of
metagenomic entities, such as Metagenomic Species Pan-genomes
(MSPs) or Metagenomic Assembled Genomes (MAGs), by gathering
groups of genetic components, such as genes or contigs, that are
believed to originate from a clade. The clade is typically at the spe-
cies or subspecies level, where the gene composition is relatively con-
served (Nielsen et al., 2014). The composition of a typical
metagenomic sample is a priori unknown and may contain novel
organisms, new variants of already characterized organisms, and
closely related but distinct organisms. This challenges the metage-
nomic detection and quantification of the microbiome, since se-
quence reads from one species may map perfectly to the reference
sequences of another species (Sangwan et al., 2016). Stringent map-
ping may reduce the cross-species mapping, but this may come at
the expense of robustness in quantifying variants of a species. Genes

that are specific to a given strain, yet present in all members of that
clade, are ideally suited for measuring the abundance of the species
by eliminating cross-mapping of reads while allowing for accurate
and precise measure of a given strain. Additionally, SGs should not
be duplicated within a strain to avoid biasing the abundances of
strains whose genes have high copy numbers. Such a set of genes is
referred to as a signature gene set (Segata et al., 2012). SGs have pre-
viously been identified by comparing reference genomes from
species-level clades (Milanese et al., 2019). This approach works
when sufficiently many reference sequences are available from a
given species as well as from the species from which the reference is
to be distinguished from. However, for species with few available
reference genomes, or few genomes from related species, it is diffi-
cult to define signature gene sets. Additionally, certain genomic
sequences are easier to sequence, yielding more reads and a skewed
read distribution throughout the genome. A selection of signature
genes that does not account for this has the potential to artificially
inflate the relative abundance of certain species. When no references
are available, a set of SGs can be identified based on their ability to
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quantify a species (or any clade of interest) in a given context, e.g.
the human microbiome. We propose a method that relies entirely on
a statistical analysis of the distributions of readmappings to the
genes and that is entirely agnostic to bias in read generation, gene
duplication, etc. This method searches for gene sets that produce ro-
bust and even mapping across natural population variability and
minimize signal noise. Within each sample, the expected number of
mapped reads per gene can be approximated by the discrete negative
binomial (NB) distribution (Zhang et al., 2017), as the reads are
assumed to map in proportion to the gene length and exhibit some
degree of variability. As the gene lengths are known, the total num-
ber of sequence reads that map to a good signature gene set should
predict the number of genes in the set that the reads map to. In other
words, the reads should appear to be drawn randomly from across
the gene set. Large deviance from the expected model could be due
to violations of the aforementioned characteristics of a good signa-
ture gene, i.e. genes that are not omnipresent to a given strain or not
present in all members of that strain. Here, we illustrate the neces-
sity for such an approach and propose a method for defining opti-
mal gene sets and for estimating the likelihood that the observed
read mappings only originate from a population that comprised the
complete SG set in equal quantities. In this article, we propose (i) a
method for selecting optimal signature gene sets and (ii) the use of a
special case of the ‘coupon collector’s problem’ (CCP) to assess the
likelihood that sequence reads will map to a specific number of
genes (d) given the number of reads (k) that map to the entire gene
set.

Binning is typically divided into two major approaches, gene
based and contig based. Contig-based binning is especially useful
when trying to reconstruct whole genomes, while gene-based bin-
ning is useful for identifying and characterizing microbial commun-
ities at a higher taxonomic level. The method has been created to aid
in de novo identification of species, for both gene- and contig-based
methods as well as for profiling of species defined by reference
genomes. The following results stem from the analysis of a simulated
gene catalog (SGC) from Borderes et al. (2021) as well as a case
study performed on the First Year of Life Dataset from Bäckhed
et al. (2015).

2 Methods

2.1 Input data and formatting
The input for our method is a gene count matrix (comprising infor-
mation about the number of mapped reads to each gene within each
sample) as well as information linking the genes to their correspond-
ing biological entity. In this study, we illustrate two different meth-
ods for creating these data structures.

2.1.1 The SGC

The non-redundant SGC used in this study is meticulously designed
by Borderes et al. (2021). The short reads of the SGC are created by
GenSIM (v.1.6) (McElroy et al., 2012) and constructed based on the
genomes of 47 strains belonging to 41 species and theoretical abun-
dance profiles of 40 samples. Borderes et al. mapped the reads using
MOCAT (v.2.0) (Kultima et al., 2012) and SOAPALIGNER2 (Li
et al., 2009) with the ‘allbest’ mapping mode, and to generate gene
abundance profiles for all samples (Kultima et al., 2012; Li et al.,
2009). As the genes of the species and their corresponding abundan-
ces are known in the SGC, a golden standard has been created con-
taining the gene identifiers and their associated species.

2.1.2 The MSPs

MSPminer (v. updated 2018-04-25) (Plaza O~nate et al., 2019) has
been applied to the SGC to identify the MSPs. Each MSP is a collec-
tion of clustered genes belonging to a biological entity. MSPminer is
run with default parameters and the results are summarized in a tab-
separated file, containing the genes and its corresponding MSPid.
MSPminer divides the reads into a total of 54 bins with the number
of clustered genes ranging from 575 to 5957. Each MSP is on

average present in 36 samples, ranging from a minimum of 26 sam-
ples to a maximum of 40.

2.1.3 A case study using Bäkhed’s First Year of Life dataset

The First Year of Life study has been used as a case study, to illus-
trate the SG method in a well-designed study with high-quality data.
The dataset constructed by Bäckhed et al. (2015) comprises a total
of 392 short-read samples from 98 infants [3 different timepoints
(Newborn, 4M, 12M) and a sample from their mother]. The sam-
ples have been shotgun sequenced with an average of 3.99 Gb of
reads per sample.

2.1.4 Creation of VAMB clusters

The samples have been through preprocessing including adapter re-
moval using BBDuk (v. 38.96 http://jgi.doe.gov/data-and-tools/bb-
tools/), removal of low-quality reads and reads shorter than 75 base
pairs using Sickle (v. 1.33) (Joshi and Fass, 2011) and removal of
human contamination (reference UCSC version hg19, GRCh37.p13)
with BBmap (http://jgi.doe.gov/data-and-tools/bb-tools/).

De novo assembly was carried out per sample with Spades (v.
3.15.5) run with the meta-option (15) and kmer sizes of 213 355
and 77. Contigs <1500 bp were discarded. BWA-mem2 (v.2.2.1)
(Vasimuddin et al., 2019) and SAMTOOLS (v.1.10) (17) were used
for mapping the reads to the assemblies. Metabat2’s jgi_summari-
ze_bam_contig_depths (v.2.12) (Kang et al., 2019) was used to as-
sess the depths of the contigs. VAMB (v.3.0.8) (Nissen et al., 2021)
was run with default parameters to bin the contigs. Annotation of
the bins along with gene predictions was done using GTDK-tk
(v.2.1.1) (Chaumeil et al., 2022). The genes were clustered using
MMseqs2 (v. 13.45111) (Steinegger and Söding, 2017) with a se-
quence identity threshold for the clustering of genes of 0.8. The
remaining genes are used for the construction of a gene count matrix
for each VAMB cluster, containing the read counts of each gene
within each sample.

2.2 Data preparation
The statistical analysis and data handling have been performed in R
(v.4.1.2) (R Core Team, 2021). The genes of the entity are sorted
according to co-abundance with the genes with highest intra-species
abundance correlation as the first genes within the entity. Different
sizes of gene sets were evaluated by comparing the absolute differ-
ence in abundance between the predicted and the true abundance
using the SGC. We tested the gene set sizes in the range between 70
and 150 and found a local minimum of 100 genes. A metagenomic
species is considered detected in a sample if it contains reads that
map to three or more signature genes. The read counts, which are
normalized according to gene length, are multiplied by 1000 to
avoid small numbers and rounded to the closest integer.

2.3 Development of benchmark
To assess the chance of identifying d out of n SGs given k reads
assigned to signature genes, we use an analytical solution to a vari-
ant of the CCP described in a 2008 conference summary published
from the 27th International Conference on Technology in Collegiate
Mathematics, by Fowler (2015). The variant of the CCP tackled in
this article is the chance of drawing exactly d different balls out of
an urn containing n different balls given k draws of one ball with re-
placement. The solution to this problem is

P d;k; nð Þ ¼
n
d

� �
nk

S k; dð Þd! (1)

As the generation of Stirling numbers of the second kind S(k, d)
is computationally intensive, pre-computed values of S(k, d) are
obtained from www.planetcalc.com, a resource for solutions to
common mathematical problems. This resource lists solutions for k
¼ f0, 1, 2, . . . 176g, d ¼ f0, 1, 2, . . .kg. Eighty-six percent of P-val-
ues encountered in the dataset can be computed in this manner for
n¼100. For the estimation of P(d, k, n) in cases where k>176 and/
or nk is evaluated as Inf by R, utilization of pre-computed
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bootstrapping results is carried out. Bootstrapping is carried out by
randomly sampling n genes k times and evaluating the number of
different genes obtained, d, 105 times. The chance of obtaining
exactly d out of n genes given k reads is evaluated as the number of
times d unique genes was obtained out of 105 iterations.
Bootstrapping is carried out for k ¼ f0, 1, 2, . . . 3000g, to n ¼ f0, 1,
2, . . .kg for a given value of n. Solutions to P(d, k, n) where
k>3000 are thus approximated as

P d ¼ n; k; nð Þ � 1; k � 3000 (2)

and

P d < n; k; nð Þ � 0; k � 3000; n � 3000 (3)

To assess the degree of accuracy of bootstrapping, P-values
obtained by bootstrapping were compared to P-values obtained by
analytical evaluation across the entire dataset tested, the Pearson
correlation coefficient (PCC) was evaluated as 0.99. Thus, this vari-
ation in the CCP is made to evaluate the performance of a set of SGs
as a whole, ensuring that none of the genes are disproportionately
easy or difficult to identify.

2.4 Signature gene refinement
2.4.1 Introduction

The performance of individual genes is evaluated using an NB
model, which evaluates whether higher sequencing depth also reli-
ably leads to higher read counts. The ranking of the genes enables
the detection and removal of SG, which are found inconsistently
across the samples. As the method utilizes the power across samples,
one limitation to the method is that it requires at least three samples.
Genes are ranked according to how well they fit this model in each
sample and replaced with genes evaluated with CCP. Initially, all
samples that contain three or more reads towards a certain set of
SGs are identified. In the first step, SGs are exchanged if their mean
rank across samples is above a certain threshold, t. In this way, we
only replace genes that consistently underperform across multiple
samples. Genes are ranked by how well they fit the NB model in
each sample by the size of the residual, and the mean is taken across
samples resulting in the mean rank. If the exchanged SG set has a
lower mean squared error (MSE) than the previous set, the SG set is
kept and reruns until the MSE no longer decreases. The method is
repeated, this time assessing whether any genes are outlying in a sub-
set of the samples. If the MSE improves for multiple thresholds, the
refined SG set is selected as the one with the lowest MSE (Fig. 1).

2.4.2 Frequency-based filtering

The ranking of genes using an NB model ensures removal of genes
from the original SG set whose detection is inconsistent across sam-
ples. However, it does not ensure that selected genes have a similar
ease of detection across samples. Ideally, the genes within an SG set
are found with an equal probability; however, it is expected that
biological and technical bias will lead to a skewed sampling of the
genes. This can lead to systemic biases in abundance estimation that
favour the abundances of strains with sensitive SGs. Additionally, a
good set of SGs should be sensitive, i.e. be part of genomic sequences
that are easily sequenced, to detect low-abundant strains in a sam-
ple. To accommodate this prior to the refinement of the SGs, the
genes need to be prescreened and ordered according to their sensitiv-
ity, such that an increase in k will entail an increase in d for the sam-
ples. The over- or undersampling of genes is alleviated using
systematic replacement of genes, implementing a pre-filtering step in
which a set of SGs with similar, high sensitivities were selected for
replacing poorly performing genes, while avoiding genes whose sen-
sitivities were very different from the other SGs. The genes assigned
to the respective metagenomic entity are sorted in order of decreas-
ing frequency of detection across all samples. A set of 700 genes are
selected, which have the highest overall frequency of detection,
excluding genes whose frequencies were outside the 1.2 interquartile
range of the rest of the set. Thereby selecting genes with a high fre-
quency of detection, but at the same time are also found in a

consistent manner, ensuring the SGs that are used for replacement
are all easy to detect. The genes used for the replacement of the SGs
are found within this pool of 700 genes leading to a more heteroge-
neous frequency of detection of the genes included in the final SG
set. In the case of an entity with <700 genes, all genes are used.

2.4.3 Ranking of genes

As part of identification of genes that should be removed, first, we
must evaluate genes based on the consistency of detection. To assess
the performances of each gene, an NB distribution is used to test
whether increased sequencing depth reliably leads to additional
counts of that gene. How consistently a gene is detected has previ-
ously been shown to follow an NB distribution (Zhang et al., 2017)
as the NB model is known to handle overdispersion that is frequent-
ly observed in sequencing data. The mentioned model is applied for
each sample, where the read count of gene i in the jth sample is
denoted yij, then

yij � NB yijjlj; rj

� �
¼ C yij þ rjð Þ=C rjð Þyij! � rj=lj þ r

� �rj � lj=lj þ rj

� �yij ; lj > 0 (4)

where lj is the average read count per gene, rj is the sample-specific
NB dispersion parameter and C ð�Þ denotes the gamma function.
The NB model can be seen as a compounded Poisson-Gamma distri-
bution, in which the rate parameter of the Poisson model itself is a
random variable distributed according to a Gamma distribution
(Zhang et al., 2017). When the distribution approaches the Poisson
distribution with equal mean and variance. From this paramet-
rization of the NB model, the expected read count is given as
E yij½ � ¼ lj ¼ kijNj, where kij is the proportion of reads mapped to
gene i in the jth sample and Nj is the total number of reads mapped
to sample j; thus, lj depends on the sequencing depth as well as the
abundance of the species in the sample. The variance of the read
count is given as var yijð Þ ¼ lj þ lj

21=rj. The counts of each SG are
evaluated according to this NB model and are ranked within each
sample by evaluating the difference between the expected count and
observed count.

2.4.4 Rejection and replacement

We use the mean rank of each gene across the samples to evaluate
the performance of the SG, which enables the detection of SG with
persistent discrepancies according to the NB model. If the genes
have a lower average rank than a given threshold, consequently
underperforming, the genes will be removed from the SG set, there-
by leaving a smaller SG set, in which we have higher confidence that
the genes are consistently found across samples. A range of thresh-
olds are tested to obtain the best possible gene set. If the remaining
SG set maps to <10 samples, the refined SG set will not be consid-
ered for further analysis, as the data are too scarce for reliably rank-
ing of the SGs. The NB model is reapplied to the retained SG set to
exclude potential noise caused by the already removed genes. The
NB distribution is fitted exclusively on the genes, which we believe
to reliably lead to an increase in SG detection as sequencing depth
increases. A subset of the frequency-based filtered pool of genes are
introduced to the SG set, leaving a complete SG set of 100 genes.
The introduced subset is selected as the genes with the highest co-
abundance, which were also accepted in the filtering step and have
not already been included in the SG set. When assuming that each
read has an equal change of mapping to each signature gene and
that the mapping process of each read is independent of the previous
reads, the probability of a gene not being detected can be described
by

P0 ¼
ðn� 1Þk

n
(5)

where n is the number of signature genes and k is the number of
reads that map to the SGs in that sample. By taking the complement
of P0, we can calculate the probability of an SG being detected can
thus be calculated as P1 ¼ 1� P0. This can be utilized to calculate
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the expected number of detected signature genes d, which for each
sample j as

dj ¼ 1� n� 1ð Þkj=n

� �
n; j ¼ 1;2; . . . ;m (6)

where kj is the total number of reads mapped to the SGs and m is
the number of samples. We assume that each read has an equal
chance of mapping to each signature gene (after gene length normal-
ization) and that the mapping process of each read is independent of
the previous reads. The effect of SG replacement is evaluated based
on the deviation from the expected distribution [Equation (5)]. Only
if the deviation has been reduced, the changes to the SG are kept.
The process of ranking, removing and replacing is repeated until the
MSE is reduced by less than 1% from the previous iteration. The re-
sult is kept for the threshold that performs the best. By iteratively
improving the SG set and reevaluating the NB approximation the
gene set are continuously improved, leading to a gene set that is
more reliable for abundance estimation of the species, as the genes
are more often present within the majority of the strains.

The optimum threshold varies between the metagenomic entities,
as each set of SG deviates from the expected distribution [Equation
(5)] differently, leading to a different spread of the mean rankings of
the SG. If the SGs are detected consistently across the samples, the
SGs will have a small spread in average rank. In case the detection
of the SGs is inconsistent, a large spread in the average ranking of
the genes will be observed. In the first step, referred to as mean fil-
tering, all integers in the range 35–60 are tested to identify the

threshold for mean-rank leading to the genes, which are most reli-
ably detected across samples to accommodate the differences of the
metagenomic entities. The range of thresholds is selected, as testing
indicates that the majority of optimal thresholds for obtaining the
best possible SG set falls well within this range.

In some cases, one or more genes will be consistently missing in a
smaller subset of samples, which the mean-based filtering across all
samples cannot alleviate. To capture these genes, the ranking
method is re-implemented, but where the average ranking of the SG
was previously used, we are now evaluating the genes based on the
95th percentile according to adherence to the expected distribution
[Equation (5)]. By selecting the 95th percentile, we are considering
only the 5% of the samples that perform the worst. If SGs are per-
sistently diverging from the NB model in this subset of samples, they
are tried and replaced after which it is examined whether the refined
SG set follows the expected distribution more closely. The optimal
threshold for the removal of SGs based on the rank of the 95th per-
centile is found in the range 90–98.

2.5 Benchmark calibration
The goal of identification of SGs is to obtain a sizable set of genes
that are shared by all members of a strain. Ideally, all 100 SGs are
identified in all samples with high sequencing depth; however, it is
very difficult to select a set of SGs that are all identified synchronis-
tically when many reads are assigned to SGs, indicated by high k val-
ues. Any sample with very high read depth that contains the
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Fig. 1. Two-step signature gene refinement algorithm as described in methods. NB: negative binomial
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metagenomic entity at an adequate abundance would result in a k
that approaches the number of SGs chosen for that strain and at
very high sequencing depths the chance of not finding all n SGs
approaches zero. Any biological variation in SGs in deeply
sequenced samples would be rejected and assigned a very low prob-
ability of occurring due to the assumption that all SGs are present
without biological variation. This limits the applicability of this
method. To allow for a biologically unsubstantial degree of vari-
ation in SGs, we will consider the chances of obtaining d or fewer
unique SGs out if a species contains at least n SGs given k assigned
reads instead of all n. We must arrive at a value of n that does not
unfairly reject samples that are missing an inconsequential amount
of SGs due to unimportant degrees of biological variation, while still
rejecting samples whose metagenomic entity shows a clear lack of
SGs, e.g. due to strain differences. A fair threshold should be able to
distinguish samples in which strain differences show from the SGs
but still allow for smaller biological differences to appear. We select
n¼95, such that for a random distribution, one would expect ap-
proximately 5% of the samples to fall below P<0.05. MSP07 is the
best-performing initial gene set in our catalog with an MSE of 0.7
and setting an n of 95 rejects 1/40 of samples, which we consider to
be a sufficient approximation. The null hypothesis we test against is
that a sample contains 95 different SGs with an equal chance of
finding each SG. The choice of rejecting or accepting a sample will
be evaluated as the chance of obtaining d or fewer different SGs out
of 95 SGs, given k reads assigned to SGs.

3 Results

3.1 Identifying the optimal signature gene sets
Typically, a strong relationship is observed between the number of
reads mapped to the metagenomic entity and the number of detected
genes within the gene set of each sample. However, for some MSPs,
part of the initial gene set is rarely detected despite high coverage of
the remaining genes. The gene set is selected as the 100 genes with
the highest co-abundance correlation (Pearson’s correlation coeffi-
cient) to the median abundance for all genes. An NB model was
used to assess the probability that all of the genes in a given gene set
are present, in exactly one copy per genome, in a sample, given the
observed read mappings. The probability that a sample contains the
complete gene set is dependent on the number of reads that map to
the gene set (k), the number of different genes from the SGs detected
in the sample (d) and the threshold for what is considered a com-
plete SG set (n). Using this statistical framework, we can evaluate
the expected number of detected genes from the set, d, given a num-
ber of mapped reads, k. From this expected distribution, we can
evaluate the performance of an SG set by its MSE between the
observed and expected numbers of identified genes from the set
across a series of samples. During refinement of the gene set, the
MSE was used to reject changes to the SG set that led to an increase
and accept changes that reduced it. During the evaluation of individ-
ual samples, some biological variation is allowed by setting the n to
95; hence, a species, with a given SG, is considered detected in a
sample if the observed reads mapped fit with an SG set with at least
95 genes. When evaluating MSEs, for refinement or otherwise, the
expected distribution is derived from a distribution with n¼100 to
avoid optimizing for an incomplete set of SGs.

Refinement was done using a two-step approach as described in
methods, which relies on replacement of genes that perform consist-
ently poorly across multiple samples. Poor performing genes were
replaced until improvement of MSE was negligible. The performance
of the improved signature gene sets will be assessed on four parame-
ters: model fit (MSE), amount of initial SGs retained, PCC of counts
between the initial and refined SG sets and change in the number of
samples where the observed reads mapped fit with significantly
reduced number of genes in the SG. To allow for a negligible amount
of biologically variation in SG evaluation, samples thought to contain
95 or more different SGs will be accepted as wholly.

The method was applied to the SGC created from 40 simulated
metagenomics samples with reads from 47 reference strains

(Borderes et al., 2021). To assess how close a set of SGs follow the
expected distribution, the MSE between the observed and expected
numbers of different SGs was evaluated for the pre- and post-
refinement SG sets. To clearly illustrate the issues with original sig-
nature gene sets and the changes occurring in each species between
pre- and post-refinement SGs, Buchnera aphidicola (MSP54) will be
used to exemplify the changes, after which summary statistics will
be given for the improvement of all MSPs (Fig. 2). B.aphidicola was
chosen because the original SG set exhibits some of the issues we are
addressing in this article, namely large amounts of samples with a
shifted distribution, indicating a heterogeneous ease of detection of
SGs. MSP54 initially exhibited an MSE of 110.57, which after re-
finement was reduced to 2.13, showing a set of SGs that follow the
expected distribution much closer after refinement. The MSP is
mapped with at least three reads in 23 samples. Prior to refinement,
10 of these samples were accepted (P>0.05, CCP), indicating that
the amount of detected SGs is coherent to the number of reads
mapped to the MSP. After refinement, 13 of the samples are
accepted (P>0.05, CCP), indicating that the replacement genes are
more compliant with the probabilistic model. Across all MSPs, the
MSE was evaluated for the initial and refined SG sets. We observe a
decrease in MSE for 28/54 MSPs (Supplementary Fig. S1). A signifi-
cant lowering of MSE is observed between the initial SG set and the
refined SG set by a Wilcoxon signed rank test (P-value of 4.0e�06
paired).

To assess the degree of SG exchange, the fraction of original
SGs retained and the ratio of MSE before and after SG refinement
were compared (Supplementary Fig. S2). In MSP54, 20 out of the
100 initial signature genes were retained; hence, a large proportion
of the initial SGs were exchanged in favour of other genes. Across
all MSPs, we observed a correlation between the relative MSE
(MSEbefore �MSEafter) and the number of signature genes retained;
however, no significant correlation was found. We observe the
largest improvements in MSE in MSPs in which a large fraction of
SGs have been replaced. The MSPs are having 38 genes replaced
on average, with 18 of the MSPs replacing 75 or more of their
SGs. Conversely, 10 MSPs change between 25 and 75 of its
original SGs, while the remaining 26 MSPs experience no change
in SGs.

A sample is rejected if the chance of obtaining d out of 95 signa-
ture genes given k reads assigned to signature genes is below 5%
(P<0.05, CCP). Samples that contain fewer than three reads (k>3)
assigned to the SGs were not considered as we are not confident in
the detection of this metagenomic entity. Samples with fewer than
three assigned reads were neither accepted nor rejected to avoid in-
fluence of samples that would otherwise not be considered for abun-
dance measurement. For example, 23 samples were found to have
three or more reads for MSP54 prior to refinement, 13 of which
were significantly depleted in SGs. After refinement, 10 out of 23
samples with more than three reads assigned to SGs were significant-
ly (P<0.05, CCP) depleted in SGs. Across all MSPs, prior to refine-
ment, a significant depletion (P<0.05, CCP) in SGs was found in
18% of instances in which three or more of the initial SGs were
mapped and were rejected. This rate is lowered after refinement, as
15% of instances were rejected.

Finally, we wish to evaluate the change in the number of samples
with more than three reads assigned to SGs (k>3), which we con-
sider to be an indicator that the organism is present in the sample.
There were concerns that a reduction in MSE could be achieved by
selection of a set of SGs that were exclusively found in a rare strain
but not present in the vast majority of samples. To assess this, the
degree of change in mapped samples (k>3) was evaluated. This
number was correlated with the degree of change in MSE between
initial and final SGs (Supplementary Fig. S3).

Of the 54 MSPs, only 11 of them display a change in number of
mapped samples after the SG refinement. The average share of genes
found across samples for the MSPs ranges from 0.69 to 0.99, indi-
cating that once an MSP is identified within a sample, most of its
SGs are detected and are thus estimated to be present in higher
abundance. For MSP54, an average of 85 of the 100 initial SGs are
identified in the samples, which are also seen in Figure 2C.

Identification of representative species-specific genes 5

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/3/1/vbad060/7156835 by Faculty of Life Sciences Library user on 15 July 2023



3.2 Relative abundance measures of the initial and

refined signature genes
The sample-specific relative abundance is found by dividing the
reads that map to the SGs by the total number of reads mapping to
the SGs across the MSPs. MSPs with identical taxonomic annota-
tions are collapsed into a single biological entity. The taxonomies
are extracted per gene from the Golden Standard Single Assignment
binning results from Borderes et al. (2021). If the SGs are assigned
conflicting taxonomies, the most abundant taxonomy of the refined
SG set is assigned to the MSP. Of the 47 genomes used to construct
the SGC, 43 of the entities were represented by MSPs, yielding a pre-
cision of 0.81 and a recall of 0.91. The read counts of the genes are
normalized according to the length of the genes. The error between
the calculated relative abundances from the gene set of MSPminer
and the refined SGs are computed (Fig. 3). The error in relative
abundance tends to increase with an increase in the true relative
abundance (Supplementary Fig. S4).

It was examined whether using the full gene set of the MSPs
would yield better relative abundance estimates. When taking the
reads that map to all of the genes comprised in the MSPs and com-
paring with the true relative abundance, the discrepancy is on aver-
age larger than for the initial SG set from MSPminer.

The relative abundance quantifications were compared with the
true relative abundance by subtracting the true versus the calculated.
The closer the abundance prediction is to the ground truth, the
closer the value will be to zero. The differences in predicted and true
abundance for both the initial SGs from MSPminer and the refined
SGs the difference was evaluated (Fig. 4). The relative abundance of
the refined SGs is found to be closest to the true abundance, when
tested with a paired Wilcoxon signed rank test with a P-value of

2:2�10�16 and an effect size of 0.13. Especially the MSPs estimated
by MSPminer to be in higher abundance than the ground truth are
found in abundances closer to the ground truth after refinement.

3.3 Case study using Bäkhed’s First Year of Life dataset
Bäkhed’s dataset was used to demonstrate the applicability of SG in
a real and well-structured metagenomics study. The study comprises
samples obtained from infants and their mothers (Bäckhed et al.,
2015). The data were pre-processed followed by de novo assembly
of contigs. Of the 392 samples, only 389 samples were successfully
assembled after 20 days of runtime on our HPC (40 cores and 180
GB per job). The contigs were binned across samples with VAMB,
and subsequent filtering (discarding bins <200 000 base pairs)
resulted in 9763 bins from 2672 VAMB clusters. For reference,
Bäkhed et al. identify 690 meta Operational Taxonomic Units
(mOTUs). Further annotation of these clusters using GTDB-tk
(v.2.1.1) was successful for 1843 clusters, where the original study
annotated 373 species. Genes were predicted through GTDB-tk
using Prodigal (v.2.6.3) (Hyatt et al., 2010), 763 clusters were found
in fewer than 3 samples or contained less than 100 genes and, conse-
quently, the abundance was set to 0. For this dataset, an improve-
ment in MSE between the SGs from VAMB and the refined SG’s is
obtained for 587 of the 1080 clusters, with an average improvement
of 42.6 6 27.2%. Cluster5004 (annotated as Parabacteroides dista-
sonis) is one of the clusters, which displays a large improvement in
MSE (Fig. 5A), from an MSE of 984.17 to 121.05. In the initial SG
set, 6 samples had above 61 detected signature genes despite a mean
number of reads mapping across the samples of 7581 6 10 851.56.
The detection of the initial SGs is shown as a heatmap, where the

A B C

Fig. 2. Detection of signature genes. (A and B) Distributions of the number of different identified signature genes for a given number of reads mapped to signature genes for

each sample for MSP54. Colours indicate the chance of this sample containing 95 unique signature genes as described in methods. The bar plot indicates the number of samples

that were rejected (P<0.05, CCP) and accepted (P>0.05, CCP). The expected distribution of samples for a metagenomic entity which contains 100 SGs is indicated by a blue

line. Panels (A) and (B) are for SGs prior to and after SG refinement, respectively. Panel (C) indicates the distribution of uniquely identified SGs across samples, red indicating

pre-refinement and blue post-refinement
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genes and samples are grouped using hierarchical clustering (R Core
Team, 2021) (Supplementary Fig. S5). The 6 samples with >61
genes detected cluster together to the left side of the figure. Fifty of
the SGs are seen in less than 50 samples, despite the Cluster being
present in 319 samples (Fig. 5B), with an average of detection of
111 reads per sample. For the refined SG, the average number of
detections is 193 reads per sample (Fig. 5C).

A beta-diversity analysis of the relative abundances was carried
out using Bray–Curtis distances and visualized with a principal co-
ordinate analysis plot (Supplementary Fig. S6).

To demonstrate the use of SG for abundance measurements, a rep-
lication of their Signature Taxa from each stage of the study was per-
formed (Fig. 6). The taxa from their Supplementary Table S5 were
used for the creation of the heatmap. Of the 57 Signature Genera
found for vaginally born infants, 37 were reidentified and annotated.
For the infants born with C-section, 24 of 37 Signature Genera was
reidentified. Three additional Signature Genera were found in our
results; however, GTDB-tk had them classified as ‘Family’ level
(Erysipelotrichaceae, Lachnospiraceae and Ruminococcaceae).

4 Discussion

We utilized a variant of the CCP as a theoretical framework to imple-
ment SG refinement. The CCP appears to be a good approximation
for the majority of refined SG sets, although certain SGs with hetero-
geneous sensitivities do not follow the initial assumptions of this
method, as the CCP assumes uniform probabilities for sampling.

Despite the prescreening and ordering of SG according to sensi-
tivity, we still find certain refined SG sets where samples appear to
detect numbers of SGs deviating from the expected, given the num-
ber of mapped reads, especially samples that have had an inflated
number of identified SGs. This is in accordance with the findings of
Borderes et al. (2021), where MSPminer is found to overestimate the
number of binned genes of the SGC. This could be due to the SGC
representing a simplistic and not necessarily representative version
of the human gut microbiome, being unable to capture nature’s
variability, leading to an underrepresentation of cross-mapping of
reads between species and genes being mapped more often than
expected. We successfully implemented the SG method on the First
Year of Life study, where we were able to reconstruct and annotate
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Fig. 3. Error in relative abundance of species-level taxa. Error from true abundance

predicted by MSPminer and true abundance to the refined SGs. The error is calcu-

lated as the absolute difference from the predicted relative abundance and the true

relative abundance. Each dot represents a species-level taxa. The red line indicates

the linear relationship between the two methods. The blue line indicates the identity

line (y¼x). For visualization purposes the seven taxa with the largest discrepancy

from the true relative abundance has not been included on the figure

A

B

Fig. 5. Read counts of Cluster5004 from the case study using data from Bäkhed

et al. (A) Distributions of detected SGs displayed as a function of number of reads

mapped to the SGs per sample for the initial SG found with VAMB and the refined

SG set. The expected detection of SGs given by the number of mapped reads is indi-

cated by a black line [Equation (6)]. (B) Histogram of the detection of each SG for

the initial and the refined SGs
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1843 clusters, compared to the 373 mOTUs found in the original
study.

While the two-step refinement appears to be very good at detect-
ing genes with low detection rates, outlying SGs with very high de-
tection frequencies were not removed, which could contribute to
this problem. This is to some extent alleviated by pre-filtering of

genes and could potentially be further alleviated by starting with an
alternate set of initial SGs. No explicit criteria were given to select
genes that had similar sensitivities for initial SG sets, as this would
narrow the number of genes that could be searched to an extent
that could end up hampering MSE improvement and complicate the
assessment of improvement between refinement steps. However, for

Fig. 6. Heatmap of relative abundance of the Signature Genera found by Bäkhed et al. in infants born (A) vaginally or (B) by C-section at the stages newborn, 4 months,

12 months, and their mothers. Columns indicate samples. The vertical coloured blocks indicate Signature Genera at each stage
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Cluster5004 from The First Year of Life study, we were able to iden-
tify a suitable gene set, even when only 6 of the samples had >61 of
the initial SGs detected. From the heatmap, it is clear that the six
samples cluster and that there is a clear trend amongst which genes
are consistently being detected. With half of the SGs having reads
mapping in fewer than 50 out of 319 samples, this indicates that
they are not part of the core genome of this cluster but are more like-
ly strain specific. Or that the 6 samples having >61 detected SGs are
part of a higher-level taxa than the rest. However, after the refine-
ment, the SGs are detected more consistently across the samples.

In the absence of a large number of samples with adequate read
counts, it is difficult to select suitable SGs for the metagenomic en-
tity due to the fragmented nature of metagenomic count data. For
rare species found in low abundance, the count data of the metage-
nomic entity will predominantly be zero inflated. The proposed
model is not developed to explicitly deal with zero inflation.
However, if the metagenomic entity is present in low abundance
within a subpopulation of the samples, the model will utilize the in-
formation from the higher abundance samples to optimize the signa-
ture gene set. If the signature genes are truly specific for the species,
they facilitate quantification even at a very low abundance.

We find that treating SG selection as a variant of the CCP allows
us to identify SGs that are easier to detect uniformly across samples.
We can identify genes that do not act as expected using an NB
model, which allows us to replace these with genes that are more
consistently found across samples. This leads to more reliable spe-
cies identification and an improved abundance estimation, since
abundance is less reliant in genes that are not likely to be present or
seems to be oversampled in a majority of samples. When tested on
the simulated data set, the refined SG sets were found to significant-
ly improve the relative abundance estimates compared with the ini-
tial SG sets. The MSE between the distribution that one would
expect from the model was reduced for approximately 52% of all
sets of signature genes. The number of SGs identified in samples
with significant (P<0.05, CCP) depletion in SGs changed between
pre- and post-refinement, rejecting fewer samples that otherwise
showed a large representation of SGs, while still rejecting samples
that had very few SGs in a given sample, which indicates the selec-
tion of a set of SGs that are more likely to be identified in unison.
From the real dataset, it was clear that even in cases of low abun-
dance species, the method was able to identify a set of SGs that are
found more consistently across the samples.
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Steinegger,M. and Söding,J. (2017) MMseqs2 enables sensitive protein se-

quence searching for the analysis of massive data sets. Nat. Biotechnol., 35,

1026–1028.

Vasimuddin,M. et al. (2019) Efficient architecture-aware acceleration of

BWA-MEM for multicore systems. In: 2019 IEEE International Parallel

and Distributed Processing Symposium (IPDPS). IEEE, pp. 314–324.

Zhang,X. et al. (2017) Negative binomial mixed models for analyzing micro-

biome count data. BMC Bioinformatics, 18, 4.

Identification of representative species-specific genes 9

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/3/1/vbad060/7156835 by Faculty of Life Sciences Library user on 15 July 2023



1 
 

Supplementary Data for Identification of representative species-specific genes 

for abundance measurements 

Trine Zachariasen, Anders Østergaard Petersen, Asker Brejnrod, Aron Eklund, Gisle Alberg 

Vestergaard and Henrik Bjørn Nielsen 

 

Table of Contents 
Supplementary	Figure	1	.................................................................................................................................................	2	
Supplementary	Figure	2	.................................................................................................................................................	3	
Supplementary	Figure	3	.................................................................................................................................................	4	
Supplementary	Figure	4	.................................................................................................................................................	5	
Supplementary	Figure	5:	...............................................................................................................................................	6	
Supplementary	Figure	6	.................................................................................................................................................	7	

 
 
 
  



2 
 

 

Supplementary Figure 1 

Improvement in MSE from initial to refined SG sets. MSEs of the number of identified 

SGs, d, for a given number of reads assigned to SGs, k, before and after a two-step 

refinement of all 54 signature gene sets.  
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Supplementary Figure 2 

Relative improvement in MSE as function of initial SG’s retained. Illustrating relative 

MSEs and fraction of original signature genes kept throughout refinement. Each dot is a set 

of SGs that has undergone SG refinement. 26 of the MSPs are not having any SGs replaced 

and are thus not included in the figure. 
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Supplementary Figure 3:  

Change in number of mapped samples A) Combination violin and boxplot of relative 

number of mapped samples for all MSPs. B) Relative change in the number of mapped 

samples on the y-axis and degree of overlap between initial and final set of signature genes. 

A sample is considered mapped if 3 or more total read counts to SGs are observed.  

 

  



5 
 

 

Supplementary Figure 4 
 

Error in relative abundance given the calculated and true abundance of species-level 
taxa. The error of the calculated relative abundances given the true relative abundance for 

both the SGs from MSPminer and the refined set. The error is calculated as the absolute 

difference from the predicted relative abundance and the true relative abundance. Each dot 

represents a species-level taxa in a sample. 
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Supplementary Figure 5 
 
Heatmap of the initial 100 Signature Genes from Cluster5004. Each row is a gene, and 

each column is a sample. The gene detection is binary (present/absent) in each sample. The 

samples and genes are clustered using hierarchical clustering. 
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Supplementary Figure 6 

PCoA plots of beta diversity of the First Year of Life study using the relative abundance 

from the Signature Genes. PCoA was calculated with Bray-Curtis distances. 
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Abstract
Motivation

Metagenomic sequencing has provided great advantages in the characterization of

microbiomes, but currently available analysis tools lack the ability to combine strain-level

taxonomic resolution and abundance estimation with functional profiling of assembled

genomes. In order to define the microbiome and its associations with human health, improved

tools are needed to enable comprehensive understanding of the microbial composition and

elucidation of the phylogenetic and functional relationships between the microbes.

Results

Here, we present MAGinator, a freely available tool, tailored for the profiling of shotgun

metagenomics datasets. MAGinator provides de novo identification of subspecies-level

microbes and accurate abundance estimates of metagenome-assembled genomes (MAGs).

MAGinator utilises the information from both gene- and contig-based methods yielding

insight into both taxonomic profiles and the origin of genes as well as genetic content, used

for inference of functional content of each sample by host organism. Additionally,

MAGinator facilitates the reconstruction of phylogenetic relationships between the MAGs,

providing a framework to identify clade-level differences within subspecies MAGs.

Availability and implementation:MAGinator is available as a Python module at

https://github.com/Russel88/MAGinator
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Introduction
DNA sequencing has revolutionised our ability to gain insight into microbial compositions

without relying on the ability to cultivate organisms. To explore these compositions various

methods have been developed that either rely on databases of marker genes of known

organisms or attempt to reconstruct the chromosomes directly from the short reads by first

assembling into longer contigs and then binning these based on co-occurrences or DNA

composition.

Mapping reads against marker gene databases with tools such as MetaPhlAn1, MetaPhyler2

and mOTUs3 is a fast and effective way of recovering the microbial composition both

because the library depth required can be quite shallow and because the computational

requirements are smaller, but have limitations originating from the reliance on predefined

databases, limited ability to estimate abundances at higher taxonomic resolution4,5, and the

lack of information on the functional repertoire of the identified taxa. Conversely, de novo

binning strategies require high sequencing depth but can recover high-quality metagenome

assembled genomes (MAGs) from which the functional gene content can be directly linked to

a specific organism. Ideally, this can recover genomes of strains that can be used in

downstream analysis to generate more specific hypotheses about associations with outcomes.

One example of this is the capacity of an organism to break down Human Milk

Oligosaccharides (HMOs), the main source of energy for the developing infant gut

microbiome while being breastfed. Especially Bifidobacteria have this functionality, and it is

known that certain strains or subspecies have specific preferences for certain HMO types6–9,

improving the overall utilisation of HMOs and often conferring additional benefits as a

probiotic. Previously, it has been established that specifically the presence of Bifidobacterium

longum subspecies infantis (B. infantis) together with breastfeeding, plays a crucial role in

providing a protective effect to mitigate the impact of antibiotics on the early-life gut

microbiome7. This underlines the significance of being able to accurately profile the

microbiome at higher resolutions than species-level.
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In this work we have developed a pipeline that takes MAGs and original reads as input and

generates output including accurate abundance estimates, strain phylogenies and gene

synteny clusters that can improve insights into the microbiome composition (Figure 1). We

do this by grouping MAGs into clusters that are phylogenetically separated at a higher

resolution than species and estimate the abundances of these. This is done by identifying a set

of signature genes directly from the given data and refining them according to statistical

modelling to pick the ideal set suitable for abundance estimation. The fidelity of our

estimated abundances are demonstrated on the Critical Assessment of Metagenome

Interpretation (CAMI) strain-madness dataset, where we benchmark MAGinator against

similar tools. Additionally we show the functionality of MAGinator on a public dataset of

inflammatory bowel disease (IBD) patients, where we identify differentially abundant taxa

between patients and controls at high phylogenetic resolution.

MAGinator also enables Single Nucleotide Variant (SNV’s) resolution phylogenetic trees,

which are created from the signature genes and used for additional stratification of the MAGs

and can be associated with metadata to obtain subspecies/strain-level differences. We exhibit

MAGinator’s ability to obtain strain-level resolutions for Bifidobacterium from two

real-world infant datasets. In this case the signature genes were found de novo for one dataset

and were then utilised to obtain strain-level resolution in the other cohort.

By combining the information from both contigs and gene content we identify synteny

clusters of genes within strains, yielding information on shared pathways for the genes.

Additionally, we show how we can associate the functional content to the identified clades, to

improve hypotheses-generation on the impact of organisms, illustrated using the COPSAC2010

cohort.

Figure 1: Schematic visualisation of the main functions of the MAGinator workflow.
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Methods

Implementation

Input

The input to the MAGinator workflow comprises a set of samples with (1) shotgun

metagenomic sequenced reads, (2) their sample-wise assembled contigs, and (3) sample-wise

MAGs (groups of contigs from the same genome), clustered across samples, as defined by a

metagenomic binning tool (see below).

Reads should be provided in a comma-separated file giving the location of the fastq files and

formatted as: SampleName,PathToForwardReads,PathToReverseReads. The contigs should

be nucleotide sequences in FASTA format. The MAGs should be given as a tab-separated file

including the MAG identifier and contig identifier. The sample-wise MAGs should be

grouped into MAG clusters representing a taxonomic entity found across the samples, which

will usually be species but can also be at the subspecies level, depending on characteristics of

the input data. MAGinator is flexible regarding which tool is being used for creating the

MAGs, however we recommend using VAMB10.

Dependencies

The dependencies to run MAGinator are mamba11 and Snakemake12 - all other dependencies

are installed automatically by Snakemake through MAGinator. Additionally MAGinator

needs the GTDB-tk database downloaded for taxonomic annotation of MAGs and as a

reference for the phylogenetic SNV-level analysis of the signature genes.

Output generated

MAGinator generates multiple outputs and intermediate files useful for additional

downstream analysis (Suppl. Table 1, Suppl. Figure 1). Importantly, MAGinator outputs the

taxonomy of the MAGs, the signature genes of the MAG clusters, the sample-wise relative

abundances of the MAG clusters, a non-redundant gene matrix with sample-wise mapping

counts, synteny clusters and inferred phylogenies for each MAG cluster. Additionally, a

folder is created containing the log information of all the jobs run by Snakemake.

Application
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MAGinator is written in Python 3 and is based on a set of Snakemake12 workflows, and easily

scalable to work for both single servers and compute clusters. MAGinator is implemented as

a python package and is available on GitHub at https://github.com/Russel88/MAGinator.

The MAGs are filtered based on a minimum size for inclusion, with a default size of

200,000bp. The included MAGs are taxonomically annotated using GTDB-tk (v.2.1.1)13, by

calling genes using Prodigal (v.2.6.3)14, identifying GTDB marker genes and placing them in

a reference tree. As the taxonomic annotation of the MAG clusters are found to be redundant,

clusters with the same taxonomic assignment can be combined into one cluster, with the flag

‘--mgs_collections’ which we identify as a Metagenomic Species (MGS). Redundant genes

are identified by clustering with MMseqs2 (v.13.45111)15 easy-linclust using a default

clustering-coverage and sequence identity threshold of 0.8, creating a list of the

representative genes along with their cluster-members. The redundant genes are filtered away,

leaving a nonredundant gene catalogue. The raw reads are mapped to the gene catalogue

using BWA mem2 (v.2.2.1)16 and counted using Samtools (v.1.10)17, leaving a gene count

matrix, which is used as input for the signature gene refinement and following phylogenetic

clade separation and abundance estimates.

Signature Gene Identification

We previously described the method for identifying the signature genes for the data set18. In

brief, signature genes are selected to ensure that they 1) are unique for the MAG cluster, 2)

are present in all members of the cluster, and 3) are single-copy.

To accomplish this the following steps are taken: Initially the non-redundant gene count

matrix is curated to discard any genes if they have (redundant) cluster-members originating

from more than one MAG cluster, as they are thus not specific for that biological entity.

Subsequently, the remaining genes within each MAG cluster are sorted based on their

co-abundance correlation across the samples. As the genes are unique for the species, if they

are consistently detected in similar abundance across samples, it suggests that they are

single-copy. This step also mitigates differences in read mappings caused by biological or

technical variations. The initial set of signature genes for each biological entity are selected

from the most correlated genes. Subsequently, these signature genes are further refined and

optimised by fitting them to a rank-based negative binomial model that captures the

characteristics of the specific microbial composition in the input data. The signature gene set
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is evaluated across the samples, by calculating the probability of the detected number of

signature genes given the number of reads mapping to the MAG cluster. Finally the

abundance of each MAG cluster is derived from the read counts to the identified signature

genes normalised according to the gene lengths.

SNV-level resolution phylogenetic trees

To elucidate the smaller biological differences within the MAG clusters, MAGinator will

infer a phylogeny based on the sequences of the signature genes. Based on the read mappings

to the signature genes the sample-specific SNVs are called using output from Samtools

mpileup. An alignment for each signature gene is made for all samples containing the

signature genes using MAFFT (v.7)19 run with the offset value of 0.123 as no long indels are

expected. MAGinator allows phylogenetic inference to be calculated with either the fast

method Fast-Tree (v.2)20 (default) or the more accurate but resource intensive method

IQ-TREE (v.2)21 (--phylo ['fasttree', 'iqtree']). In samples where no MAG was found, the

phylogenies can be used to detect rare subspecies-level entities based on just a few reads

mapping to the signature genes and to infer functions and genes from closely related MAGs

from other samples. The criteria for inclusion in the tree can be adjusted by the user. For a

sample to be included in the phylogeny the following three criteria has to be met 1) minimum

fraction of non-N characters in the alignment (default –min_nonN=0.5), 2) minimum number

of GTDB marker genes to be detected (default –min_marker_genes=2), 3) minimum number

of signature genes to be detected (default --min_signature_genes=50). The trees can be

associated with metadata to obtain clade-level differences associated with study design

variables such as disease phenotype, sampling location, or environmental factors.

Gene synteny

Based on the gene clustering with MMSeqs2 a weighted graph is created, which reflects the

adjacency of the genes on contigs. If genes are close enough in the graph they will be

categorised as part of the same synteny cluster and it is assumed that they have related

functionality and/or are part of the same functional module. Clustering is determined using

mcl (v.14)22, where the user has the options to influence the adjacency count and stringency

of the clusters. Only immediate adjacency is considered. By default, genes found adjacent

just once are included in the graph, but this can be tuned to make more strict clusters (default

–synteny_adj_cutoff=1). The inflation parameter for mcl-clustering of the synteny graph are
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important for the size of the gene clusters and are by default set high in order to small and

consistent clusters (default –synteny_mcl_inflation=5).

Taxonomic scope of gene clusters

The taxonomic assignment of the sample-specific MAG is done using GTDB-tk. In some

cases it will not be possible to assign a taxonomy to the MAG, which could be due to

contamination, the MAG originating from a currently undescribed organism or due to too

little information found in the MAG. In these cases an alternative is to assign the gene

clusters, found in the MAG, a taxonomy. The taxonomic scope of the genes are described for

the category they are almost all found in, given by a fraction defined by the user (default

–tax_scope_threshold=0.9). E.g. if run with default options and a gene cluster has the

assignment “Bacteria Firmicutes_A Clostridia Lachnospirales Lachnospiraceae

Anaerostipes NA”, then at least 90% of the genes should be found in Anaerostipes. The

algorithm will find the most specific taxonomic rank which has at least 90% agreement

across the genes in the cluster assigned by GTDB-tk.

Workflow design

The MAGinator workflow has been constructed to make the information flow between the

different modules automatically (Suppl. Figure 1).

The data goes through a series of filtering and processing steps (Figure 1), including:

A: Input MAG clusters, which are composed of one or more MAGs.

B: The genes are clustered and redundant genes are removed.

C: Reads are mapped to the genes, creating a gene count matrix.

D: Signature genes are identified for each MAG cluster, and used for abundance estimations

E: Based on the signature genes, SNV-level resolution phylogenetic trees are created and the

taxonomic scope of gene clusters are identified.

F: Synteny-clusters of genes are identified, reflecting the adjacency of the genes on the

contigs.

Benchmarking with OPAL on CAMI’s stimulated strain-madness data set

The construction of the strain-madness benchmarking dataset was part of the second round of

CAMI challenges5. The data consists of 100 simulated metagenomics samples consisting of

paired-end short reads of 150 bp. The samples were run through a preprocessing workflow

prior to the analysis. This involved the removal of adapters with BBDuk (v. 38.96
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http://jgi.doe.gov/data-and-tools/bb-tools/) run with the following settings ‘ktrim=r k=23

mink=11 hdist=1 hdist2=0 ptpe tbo’, removal of low-quality and short reads (<75 base pairs)

with Sickle (v. 1.33)23 and removal of human contamination (reference version: UCSC hg19,

GRCh37.p13) using BBmap (http://jgi.doe.gov/data-and-tools/bb-tools/) leaving an average

of 6.6 million reads (SD: ±2802 reads) per sample.

To generate de novo assemblies, Spades (v. 3.15.5)24 was utilised with the -meta option, with

kmer sizes of 21, 33, 55 and 77, and contigs shorter than 1500 bp being discarded.

Read-to-assembly mapping was carried out using BWA-mem2 (v.2.2.1)16 and SAMTOOLS

(v.1.10)17. Contig depths were assessed using Metabat2's jgi_summarize_bam_contig_depths

(v.2.12)25, while contigs were binned into MAGs using VAMB (v.3.0.8)10 using default

settings.

The reads, contigs and MAGs were run through the MAGinator workflow (v.0.1.16). For

comparison purposes the VAMB clusters were annotated with a NCBI Taxonomy ID using

CAMITAX26. The profile was created with Python 3 and the lineage found using NCBI’s

lineage taxonomy (https://ftp.ncbi.nlm.nih.gov/pub/taxonomy/new_taxdump/, accessed May

9th 2023). As the strain-identifiers from the gold-standard does not exist in the NCBI

database (e.g. 1313.1), we have assigned an extra number to the Taxonomy ID for the clusters

which had the same species-level annotation, starting at 1 to the number of redundantly

annotated clusters.

The data for the benchmarking was obtained from CAMI second challenge evaluation of

profiles. The profiles used for the benchmarking in this study were selected based on the

best-performing tools found in the CAMI II paper. The top 10 profiles comprise DUDes27

(v.0.08), LSHVec28, MetaPhlAn229 (v.2.9.22), MetaPhyler2 (v.1.25), mOTUs3 (v.2.0.1 and

v.2.5.1) and TIPP30(v.4.3.10). The profiles were compared using OPAL, which was run with

default settings.

Franzosa et al. reanalysis

Processed taxa and metadata tables were obtained from the Franzosa et al.31 supplementary

materials. Raw data were downloaded from ENA using the provided accessions, and run

through the preprocessing, assembly and binning before running the entire MAGinator

pipeline. Four samples failed the assembly (PRISM|7238, PRISM|7445, PRISM|7947,

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2023. ; https://doi.org/10.1101/2023.08.28.555054doi: bioRxiv preprint 



PRISM|8550) and were excluded from all downstream analysis, both in the original and the

MAGinator processed tables.

Statistical methods for abundance matrices

Abundance matrices were analysed in R (v.4.1.2). Sample management and beta diversity

calculations were done in {phyloseq}32, along with PCoA analysis. Differential abundance

testing was done with the {DAtest} R package which uses the Wilcoxon test function

(wilcox.test) from the {stats} package, with p-values adjusted by Benjamini-Hochberg false

discovery rate correction. Corrected p-values less than 0.05 were considered significant.

Subspecies resolution of Bifidobacterium longum

COPSAC dataset - data characteristics and preparation

The COPSAC2010 cohort consists of 700 unselected children recruited during pregnancy week

24 and followed closely throughout childhood with extensive sample collection, exposure

assessments and longitudinal clinical phenotyping33–35. From the cohort, we used 662 deeply

sequenced metagenomics samples taken at 1 year of age. The details of the study and

sequencing protocol have previously been published35. The samples consist of 150-bp

paired-end reads per with mean ± SD: 48 ± 15.5 million reads.

The data was analysed using the same approach as for the strain-madness data set, with the

exception of filtering away reads shorter than 50 bp in the preprocessing step. This workflow

yielded 880 MAG clusters for the samples.

MAGinator was run using the reads, contigs and MAGs from VAMB as input. Thus creating

a set of signature genes for each MAG cluster which has been found de novo for this

particular dataset.

CHILD dataset - data characteristics and preparation

The Canadian Healthy Infant Longitudinal Development (CHILD) study comprises a large

longitudinal birth cohort with stool collection in infancy for microbiome analysis36. Stool

samples used in this analysis were sequenced to an average depth of 4.85 million reads (SD:

1.79 million), and samples which included >1 million reads after preprocessing were kept for

the current analysis7.
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We analysed a subset of the CHILD cohort, consisting of 2846 metagenomic sequenced

faecal samples from infants. To overcome the shallow sequencing, the signature genes of the

COPSAC2010 cohort were used to profile the samples instead of running MAGinator. To

ensure that the process of the read mappings was identical to COPSAC, the read mapping

was carried out using the full gene catalogue. Next the read counts for the signature genes

were extracted and used to derive sample-wise abundances for each MAG cluster.

Examining Bifidobacterium MAG clusters

The detection of signature genes for B. infantis for the COPSAC2010 and CHILD cohorts was

carried out by creating a binary detection matrix and using the standard function (heatmap)

with default values in R. Furthermore, we compared the abundances of all the

BifidobacteriumMAG clusters derived from MAGinator with abundance estimates from

Metaphlan 3 (v.3.0.7) and strain phylogenies from Strainphlan 3 (v.3.0.7) for the species

Bifidobacterium longum. The phylogenetic tree output by Strainphlan was converted into a

distance matrix and clustered using partitioning around medoids into two clusters. The two

clusters were annotated as B. longum subsp. longum (B. longum) and B. infantis based on the

placement of Bifidobacterium longum reference genomes in the phylogenetic tree.

SNV-level phylogenetic trees for COPSAC dataset

For each MAG cluster the sequences of the signature genes were used as a reference to create

an SNV-level phylogenetic tree. The trees for COPSAC2010 were constructed with the default

values of MAGinator, producing a tree in Newick file format and creating statistics for the

alignment. The tree for Faecalibacterium sp900758465 was visualised in R using {ggtree}37.

Gene syntenies and functional annotation for COPSAC dataset

The non-redundant genes were annotated using eggNOG mapper (v.2.0.2)38–40 . Of the 14.7

million non-redundant genes 9.2 million were annotated. The visualisation of the synteny

clusters was done with {igraph}41.

Results

MAGinator can accurately detect strains in simulated data

The performance of MAGinator was evaluated against the top 10 taxonomic profiles found in

the second round of CAMI5 challenges using the simulated short-read ‘strain-madness’
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dataset. This dataset has been selected as it represents a heterogeneous strain environment,

making strain and species detection highly relevant.

Running the MAGinator pipeline on the strain-madness data, 73 MAG clusters were

identified, of these 22 clusters were present with less than 3 reads in 3 samples, so the

abundance was set to 0. Of these 51 remaining entities, 30 were assigned with strain-level

annotation by CAMITAX.

The profiles have been compared with the Open-community Profiling Assessment tooL

(OPAL)42 (Figure 2). For the majority of the tools, the performance decreased as the

taxonomic categories became less inclusive (Figure 2B & Suppl. Figure 2). The L1 norm

measures the total error from the predicted and true abundance at each rank. From genus to

species-level we observed drops in the average completeness 82.7-45.6% and the average

purity 73.6-36.5%. MAGinator had the best average completeness at genus (99.8%) and

species-levels (89.6%) (Suppl. Table 2). At the genus-level MAGinator ranked number 5 for

purity at 92.4% and the best-performing tool for the species-level at 90.1%. The LSHVec gsa

had the best performance for purity at genus-level with 100% however at species-level it has

a purity of 37.5%, ranking number 5 in this group (Suppl. Table 3).
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Figure 2: Benchmark using OPAL for comparing taxonomic profiling results for the

CAMI strain-madness data set. (A) Purity and completeness of the profiles are shown at

genus-level (B) Mean of L1 norm error across samples for all ranks.

MAGinator improves detection of relevant differentially abundant organisms

To demonstrate the advantages of quantifying bacterial taxa at high resolutions we have

re-analysed a well-designed metagenomics study from Franzosa et al31. We chose this

because it has deep sequencing well-suited for de novoMAG construction and a

discovery/replication design with two distinct cohorts. In the absence of ground truth,

replicating discoveries is a compelling strategy for making sure that findings are not false

discoveries.
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Beta diversity analysis of the two abundance matrices (MAGinator vs. their matrix created

using MetaPhlAn2) revealed a similar separation for IBD patients vs healthy controls. For

this study MAGinator produces abundance matrices of much higher dimensionality (2140 vs

201 taxa) because of the higher resolution in taxa identifications, therefore prevalence and/or

abundance filtering might be relevant in MAGinator produced tables for noise reduction

(Figure 3A-C).

To illustrate the improved ability of MAGinator to identify differentially abundant taxa we

performed a regular differential abundance (DA) hypothesis test with Wilcoxon's test (Figure

3D-F). We looked for differentially abundant taxa defined as significant in the discovery

cohort and replicated in the independent validation cohort. In the original analysis, 18 taxa

were successfully validated in the independent cohort. With MAGinator, this increased to 213

taxa (Figure3 D-F).

Figure 3: IBD case study shows similar performance of MAGinator with beta diversity and

improvements in DA analysis. PCoA and PERMANOVA (999 permutations) for beta

diversity analysis with jsd distances and wilcoxon's test for differential abundance analysis.

(A) PCoA of the original Franzosa et al. data (B) MAGinator abundances (C) filtered

MAGinator abundances showing similar separation of IBD and control samples. (D) DA

analysis of Franzosa et al. data, green points are taxa not significant in both cohorts (E)
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similar analysis on MAGinator abundances (F) Summary of validated discoveries using the

two methods.

MAGinator enables tracking of strains across datasets at a high resolution

B. infantis is a gut microbe particularly adapted to the infant gut due to its ability to

metabolise HMOs, which are complex sugars that infants cannot metabolise themselves43.

These capabilities are different from other major subspecies including B. longum . Early-life

colonisation with B. infantis has been linked to beneficial health outcomes which has sparked

interest in its potential as a health-promoting infant probiotic which may even contribute to

protection from asthma7,44. To demonstrate the utility of subspecies abundance estimation in

MAGinator, we identified the signature gene set from one deeply sequenced infant cohort

(COPSAC2010) and used it to track subspecies abundances on another infant cohort (CHILD)

with shallower sequencing but more samples. In the MAGinator pipeline, we identified two

MAG clusters; one annotated as B. infantis and one as B. longum with GTDB-tk. In

MetaPhlAn output we identified only an overall abundance for the species Bifidobacterium

longum. Correlation analysis of these abundances shows that summed abundances of the B.

infantis and B. longumMAG clusters explain 87% of the variance in the MetaPhlAn B.

longum species (Suppl. Figure 3). In addition, we analysed the samples from both cohorts

with StrainPhlAn45 which detects strains in samples using prespecified species-level marker

genes. Here, clustering of the sample-wise consensus sequences of the B. longum marker

genes identified two clusters, one which clustered with reference strains of B. longum and one

which clustered with reference strains of B. infantis. This result was previously shown for the

CHILD cohort7 and here we found similar results for COPSAC2010 (Suppl. Figure 4). We

hypothesised that this apparent duality may actually represent the underlying balance of these

two subspecies in each sample. We confirmed this by comparing the StrainPhlAn-clusters

with the MAGinator relative abundances of all Bifidobacterium species, where we saw that

the StrainPhlAn clusters depended on the ratio of B. infantis to B. longum (Figure 4), but that

more detailed information was accessible using the MAGinator derived relative abundances

of each subspecies. This is an example of how de novo identification of subspecies-level

MAG clusters and subsequent refinement of signature genes allows a higher resolution

depiction of taxa for which the sequence coverage is sufficient in a given set of samples.
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Figure 4: Stratification of StrainPhlAn clusters using the relative abundances of

Bifidobacterium longum subspecies from MAGinator Cluster 1 indicates B. infantis and

Cluster 2 indicates B. longum.

(A) Relative abundance of StrainPhlAn clusters stratified by all Bifidobacterium clusters

identified by MAGinator (B) Relative abundance of B. infantis and B. longum identified with

MAGinator coloured by StrainPhlAn cluster. (C) The ratio of B. infantis to B. longum is

displayed for the StrainPhlAn clusters.

Additionally we used the signature genes identified from the COPSAC cohort to track the

two subspecies in the CHILD cohort. The relative abundances of the MAGinator clusters and

the StrainPhlAn clusters was likewise examined (Suppl. Figure 5). When using the signature

genes as a reference for the CHILD cohort MAGinator was still able to resolve the two

subspecies into more well-defined clusters yielding detailed profiling of the samples.

In order to estimate the fit of the signature genes for the two cohorts we compared the read

mappings and presence of signature genes (Suppl. Figure 6A). As previously described by

us18 the expected number of detected signature genes within a sample can be calculated from

the number of reads that map to those genes using a negative binomial distribution. We find

that the COPSAC2010 cohort deviates with a mean squared error (MSE) of 103.95, whereas

the CHILD cohort deviates with a MSE of 878.09, indicating that the signature genes are
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better suited for profiling of the specific strains found in the COPSAC cohort. To examine the

cause of this large deviation for CHILD we created a heatmap of the read mappings to the

signature genes (Suppl. Figure 6B). In accordance with Suppl. Figure 6A the samples cluster

into two groups, which could be due to strain-differences. Additionally the genes are seen to

cluster into multiple groups, wherefrom a group is seen to be absent in a large proportion of

the samples, indicating that these genes have not been adequately selected for this strain for

this dataset.

MAGinator provides SNV-level phylogenetic trees for each MAG cluster

By using the sequences of the signature genes as a reference it is possible to create a

SNV-level phylogenetic tree of the samples, thus even being able to include samples in the

tree, which do not contain enough reads to contain a MAG. For the MAG cluster

Faecalibacterium sp900758465 we identified MAGs in 85 samples. For the tree 13 additional

samples were included (Suppl. Figure 7), since these samples met the inclusion criteria as

described in methods.

MAGinator identifies synteny clusters used for inference of functions

Genes can be grouped into synteny clusters based on their genomic adjacency. Genes close to

each other in the genome will be grouped into a synteny cluster, and they are usually part of

the same pathway or have a related function. Part of the MAGinator workflow creates these

synteny clusters. For the COPSAC2010 cohort 746,251 synteny clusters were identified with an

average of 3 genes per cluster (Suppl. Figure 8A+B). In order to evaluate the accuracy of the

synteny clusters, functional gene annotations were performed using eggNOG mapper.

Subsequently, the predominant KEGG module within each synteny cluster was determined,

and the proportion of genes sharing this annotation within the cluster was calculated (see

Suppl. Figure 8C). Only synteny clusters with 5 or more genes and at least two annotated

genes were included, leaving 35,798 clusters. For 28,341 clusters all genes in the synteny

cluster were assigned the same KEGG module, and 80.5% of the modules had more than

80% agreement.

Discussion

MAGinator is a novel pipeline for quantifying the abundances of de novo generated MAG

clusters. In contrast to reference-based abundance estimations, this allows extensive
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integration of abundance and functional properties for individual members of the microbial

community. Furthermore, it features generation of signature gene derived phylogenies for

MAG clusters and discovery of gene synteny clusters. It is implemented in Snakemake to

take advantage of the integrated work distribution capabilities necessary for processing large

scale metagenomics data. It features logging for ease of monitoring progress and visualisation

for diagnostic purposes. We have demonstrated the functionality and utility of MAGinator via

several avenues, both simulated and real datasets.

The performance of MAGinator was evaluated in comparison to existing profiling tools. We

benchmarked MAGinator using the simulated strain-madness dataset produced by CAMI II.

We found that MAGinator is capable of profiling samples at a comparable level to the already

established tools. Notably, while many tools performed well at the genus-level, a decline in

performance was observed when focusing on the species-level classification. This drop in

performance is expected from reference-based methods, as they are limited to identify only

what already exists in their database and are thus unable to annotate novel species.

MAGinator demonstrated a notable advantage in this regard, exhibiting the highest average

completeness and purity when classifying samples at the species-level. This indicates that

MAGinator has the ability to achieve a more accurate and precise characterization of

microbial species present in the samples. It should be noted that the high completeness by

MAGinator implies a greater sensitivity in detecting and including less abundant or rare taxa

in the analysis. However, it may also introduce a certain level of noise or misclassification,

which influences the estimation of beta diversity.

When examining the performance of MAGinator on a real dataset the beta diversity was

comparable to the analysis carried out by Franzosa et al. Reanalysing their data demonstrates

how MAGinator can be used for a metagenomic association study. With the higher resolution

of MAGinator when quantifying MAG clusters investigators have the possibility of

discovering differentially abundant taxa in much richer detail without compromising other

parts of a traditional analysis such as PCoA. Depending on the intention of the study, and the

taxonomic composition of the studied microbiomes, the high resolution can also be utilised to

gain deeper insights into the subspecies taxonomies. This is for instance relevant when

analysing the Bifidobacterium longum subspecies.
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B. infantis is highly relevant to investigate, as it is known for its greater capacity to

metabolise HMOs compared with its closely related subspecies, such as B. longum. As their

genomes are very similar, distinguishing them by database-dependent approaches is

challenging. With StrainPhlAn we are able to identify 2 mutually exclusive clusters, each

representing a subspecies, however we see that the two MAG clusters identified with

MAGinator for B. infantis and B. longum yield higher resolution in the form of individual

abundance estimates for each. MAGinator is able to successfully classify samples containing

the subspecies in samples with low abundance and even when a MAG is not produced in that

sample.

These results were reproduced in the CHILD cohort using the signature genes identified in

COPSAC2010 for the two subspecies. As samples from the CHILD cohort used in this study

had lower sequencing depth, still being able to separate the subspecies is valuable.

Importantly, it is worth noticing that the separation would most likely have been stronger if

the signature genes had been found de novo for the specific cohort. This is supported by the

read mappings to the signature genes showing a subset of the signature genes defined in

COPSAC2010 missing in the CHILD cohort, which presumably resulted in underestimation of

the abundance for a subset of the samples. This phenomenon highlights the importance of de

novo dataset-specific discovery of signature genes to yield the best possible abundance

estimates of closely related taxonomic entities. A similar phenomenon would be expected

when using database-derived strain marker genes.

From the COPSAC2010 cohort we demonstrated MAGinators ability to create SNV-level trees

based on the sequences from the signature genes of a MAG cluster, used for more fine

grained stratification of the MAGs. Even in samples where no MAG was found, they are

placed on the tree if they have enough reads that map to the signature genes. By placing these

samples in the tree, information from the closely related MAGs can be utilised and allows

detection of subspecies-level entities even for samples with very low abundance. From the

clusters of the tree it is possible to associate the samples with the gene content of the related

MAGs yielding information about clade-specific genes, leaving us with the ability to pair the

metadata of the study with the clades and their functions.

Additionally the COPSAC2010 cohort was used to illustrate MAGinators ability to group genes

co-localised on the chromosome into synteny clusters, further combining the strengths of

using both genes and contigs. As genes found close together are often part of the same
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genetic pathway or share the same function, this is a valuable insight for associating

organisms with the outcomes of a study. This has been validated by functionally annotating

the genes of the predicted synteny clusters, confirming that the genes found in synteny are

often annotated to be part of the same metabolic pathway.

Conclusion

In conclusion, we have described the development of MAGinator - a pipeline for quantifying

MAG clusters and demonstrated the benefits of this approach to commonly generated data

types in the metagenomics field. Through reanalysis of publicly available data we have

illustrated how new insights can be gained from MAGinator at a higher taxonomic resolution

than available from commonly used tools. We believe that this higher resolution is key to

unlocking the potential of metagenomics to identify critical strains for human health and

environmental investigations. MAG cluster resolution metagenomics allows for accurate

integration of abundance, taxonomic and functional annotation in microbiome studies, which

is needed to empower investigations in the microbiome field.

Data availability

CAMI II strain-madness benchmarking dataset is available at

https://frl.publisso.de/data/frl:6425521/strain/short_read/. The gold standard and benchmark profiles

are found at https://github.com/CAMI-challenge/second_challenge_evaluation/tree/master/profiling.

The dataset from Franzosa et al. used for benchmarking is available as supplementary from their paper

and the raw data is available at ENA accession SAMN08049618.

The raw COPSAC fastq files are available at NCBI BioProject PRJNA715601.

CHILD shotgun metagenomics sequencing data is available at NCBI BioProject PRJNA838575.
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Supplementary Figure 1: MAGinator workflow.

A light green box indicates a snakefile and the darker green box indicates a deliverable
(directory or file). The purple circles indicate user configurable parameters. The arrow
indicates data dependencies, where the flow of information from one file is used to create
the file it points towards.

Supplementary Figure 2: Benchmark using OPAL

Comparing taxonomic profiling results for the CAMI strain-madness data set. Metrics for the
relative abundance of the profiles are calculated across samples for Completeness, Purity,
L1 norm error and Weighted UniFrac error and are shown in a Spider-plot for the taxonomic
ranks between phylum and species-level. The tools indicated with red means no data was
available for that rank.
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Supplementary Figure 3: Strain-resolved tracking of B. infantis metagenomes

The relationship between the relative abundance for the B. longum species in the CHILD

dataset found with MetaPhlAn and MAGinator’s representative clusters for (A) B. longum (B)

B. infantis (C) Both abundances added together. Each dot indicates a sample.
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Supplementary Figure 4: Strain-level analysis of B. longum in COPSAC2010

StrainPhlAn phylogenetic tree of samples based on SNVs of B. longum markers, resulting in
2 clades. Dots represent samples with sufficient marker coverage as well as the 6
references. Cluster 1 indicates B. infantis and Cluster 2 indicates B. longum.
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Supplementary Figure 5: Stratification of StrainPhlAn clusters using relative abundance of

MAGinator clusters - CHILD cohort

Cluster 1 indicates B. infantis and Cluster 2 indicates B. longum.

(A) Relative abundance of StrainPhlAn clusters stratified by all Bifidobacterium clusters

identified by MAGinator (B) Relative abundance of B. infantis and B. longum identified with

MAGinator coloured by StrainPhlAn cluster. (C) The ratio of B. infantis to B. longum is

displayed for the StrainPhlAn clusters.
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Supplementary Figure 6: Read mappings of B. infantis signature genes

(A) The number of reads mapped to the signature genes (defined in COPSAC2010) of the B.
infantis cluster is presented with the number of signature genes detected. Each dot
is a sample. The red colour indicates COPSAC2010 samples, the blue colour indicates
CHILD samples. The black line indicates the expected distribution1. (B) Heatmap of the
read mappings of the B. infantis signature genes for the CHILD samples.

1 Zachariasen, T. et al. Identification of representative species-specific genes for abundance
measurements. Bioinforma. Adv. 3, vbad060 (2023).
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Supplementary Figure 7: SNV-level phylogenetic tree of a MAG cluster based on signature
genes
A) Phylogenetic tree constructed from readmappings to the signature genes of a MAG
cluster annotated as Faecalibacterium sp900758465 from COPSAC2010. Tip colour indicates
if the sample has a MAG. B) Heatmap showing how many of the 100 signature genes that
are detected within the sample and the fraction of bases that are Non-N in the alignment of
the reads to the signature gene sequence in each sample (%).
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Supplementary Figure 8: Synteny clusters and functional annotation of COPSAC2010

A) The graph network of 3 synteny clusters are shown. The colours represent KEGG
modules (green indicates no KEGG module annotation). B) The distribution of synteny
cluster size. C) The proportion of genes in the synteny cluster in agreement with the most
common KEGG module in the cluster. Only synteny clusters with 5 or more genes are
included.
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Supplementary Table 1: Output generated by MAGinator

Directory Content

abundance abundance_phyloseq.RData - Phyloseq object for R, with abundance and taxonomic
data

clusters .fa - Fasta files with nucleotide sequence of bins

genes all_genes.faa - Amino acid sequences of all ORFs

all_genes.fna - Nucleotide sequences of all ORFs

all_genes_nonredundant.fasta - Nucleotide sequences of gene cluster representatives

all_genes_cluster.tsv - Gene clusters

matrix/gene_count_matrix.tsv - Read count for each gene cluster for each sample

synteny/ - Intermediate files for synteny clustering of gene clusters

gtdbtk GTDB-tk taxonomic annotation for each MAG cluster

logs Log files

mapped_
reads

bams/ - Bam files for mapping reads to gene clusters

phylo alignments/ - Alignments for each signature gene

cluster_alignments/ - Concatenated alignments for each MAG cluster

pileup/ - SNV information for each MAG cluster and each sample

trees/ - Phylogenetic trees for each MAG cluster

stats.tab - Mapping information such as non-N fraction, number of signature genes and
marker genes, read depth, and number of bases not reaching allele frequency cutoff

stats_genes.tab - Same as above but the information is split per gene

signature_g
enes

R data files with signature gene optimization
read-count_detected-genes.pdf - Figure for each MAG cluster displaying number of
identified SG's in each sample along with the number of reads mapped.

tabs gene_cluster_bins.tab - Table listing which bins each gene cluster was found in

gene_cluster_tax_scope.tab - Table listing the taxonomic scope of each gene cluster

metagenomicspecies.tab - Table listing which, if any, clusters where merged in MAG
cluster and the taxonomy of those

signature_genes_cluster.tsv - Table with the signature genes for each MAG cluster

synteny_clusters.tab - Table listing the synteny cluster association for the gene
clusters. Gene clusters from the same synteny cluster are genomically adjacent.

tax_matrix.tsv - Table with taxonomy information for MAG cluster
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Supplementary Table 2: OPAL benchmark. Average completeness (%) across taxonomic
ranks.

The mean of the tools are indicated with bold.

superkingdom phylum class order family genus species strain

Mean across
tools 100 90.1 75.1 79.0 83.3 82.7 45.6 0.7

DUDes 100 67 53.6 61.3 55.1 60.2 32.4 0

DUDes cami1 100 98.8 81.6 68.8 95.7 91.8 63.4 0

LSHVec gsa 100 50 40 50 33.3 33.3 15 0

MAGinator 100 99.5 99 99.2 99.6 99.8 89.6 7.4

MetaPhlAn 100 96 76.8 80.7 84.3 89.2 67.1 0

MetaPhlAn_cami1 100 94.8 75.8 79.8 81.8 71.6 29.4 0

MetaPhyler 100 97 80 83.3 94.2 92.2 0 0

mOTUs 2.0.1_1 100 94.2 60 79.5 90.8 85.7 0 0

mOTUs 2.5.1_6 100 97 81.6 84.7 85.9 93.6 84 0

mOTUs cami1 100 97 78 81.7 96 92.9 67.4 0

TIPP cami1 100 100 100 100 100 99.5 53.8 0

Supplementary Table 3: OPAL benchmark. Average purity (%) across taxonomic ranks.

The mean of the tools are indicated with bold.

superkingdom phylum class order family genus species strain

Mean across
tools 95.2 92.4 85.9 79.9 80.0 73.6 36.5 8.8

DUDes 100 100 100 100 98.1 95.3 84.9 0

DUDes cami1 100 100 80.6 61.1 84.3 57.8 34.9 0

LSHVec gsa 100 100 100 100 100 100 37.5 0

MAGinator 100 100 100 100 90.3 92.4 90.1 96.7

MetaPhlAn 100 100 100 100 88.5 92.8 49.5 0

MetaPhlAn cami1 97 100 100 100 99.3 91.1 63.8 0

MetaPhyler 100 100 97.4 72.7 78.9 79.2 0 0

mOTUs 2.0.1_1 100 100 100 100 100 90.9 0 0

mOTUs 2.5.1_6 100 100 60.6 51.5 43 37.3 17.8 0

mOTUs cami1 100 100 93.2 87.4 91.7 69.1 21 0

TIPP cami1 50 16.9 12.6 6.1 5.43 4.21 2.43 0
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Paper III

Differential responses of the gut microbiome
and resistome to antibiotic exposures in in-
fants and adults

Li, X., Brejnrod, A., Thorsen, J., Zachariasen, T., Russel, J.,
Trivedi, U., Vestergaard, G. A., Stokholm, J., Rasmussen, M. A.,
Sørensen, S. J.

Submitted and in second review at Nature Communications, 2023

The results from the work carried out in relation to this thesis
involved the preprocessing, assembly and MAG construction of the
sample of the two cohorts. The work also included a phylogenetic
analysis, which is presented on page 8-9 of the manuscript as well
as in Suppl. figure S3+S4.
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Summary 27 

Despite their crucial importance for human health, little is known about how the gut 28 

resistome changes with age or in response to antibiotic treatment across ages. Here, 29 

we used fecal metagenomic data from Danish infants and young adults to fill this gap. 30 

The gut resistomes were characterized by a bimodal distribution driven by E. coli 31 

composition. The typical profile of the gut resistome differed significantly between 32 

adults and infants, with the latter distinguished by higher gene and plasmid 33 

abundances. However, the predominant antibiotic resistance genes (ARGs) were the 34 

same. Antibiotic treatment reduced bacterial diversity and increased ARG and plasmid 35 

abundances in both cohorts, especially core ARGs. The effects of antibiotic treatments 36 

on the gut microbiome lasted longer in adults than in infants, and different antibiotics 37 

were associated with distinct impacts. Overall, this study broadens our current 38 

understanding of gut resistome dynamics and the impact of antibiotic treatment across 39 

age groups. 40 

 41 

Keywords 42 
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 45 

Introduction 46 

The rampant use of antibiotics has escalated the spread of antibiotic resistance among 47 

bacteria to the point where multi-drug resistant infections have become untreatable, 48 

posing a major challenge for modern medicine1,2. The indigenous bacteria residing in 49 

the human gut3 constitute a large reservoir of antibiotic resistance genes (ARGs) 50 

which they exchange among themselves and with pathogens through horizontal gene 51 

transfer4,5. A comprehensive understanding of antibiotic resistance profiles and the 52 

ARG-carrying bacteria in the human gut is essential for developing novel intervention 53 

strategies to minimize the spread of antibiotic resistance. Metagenomic sequencing 54 

has provided initial characterizations of ARGs in the human gut microbiome6±9, yet the 55 

links between antibiotic use, age, bacterial hosts, and ARGs remain poorly explored, 56 

particularly in large human cohorts. 57 

 58 
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Antibiotic resistance emerges in the infant gut through early colonization by bacteria, 59 

mainly acquired from the mother10,11 and environmental exposures12±15. Previous work 60 

by our group described how the infant gut serves as a reservoir of ARGs, with E. coli 61 

being the largest single contributor16. Through the first years of life, the gut microbiome 62 

gradually comes to resemble that of adults, after which it is believed to be relatively 63 

stable17. Many studies have described the compositional differences in the gut 64 

microbiome between infants and adults18±21, but to date, little is known about the 65 

differences in their ARG profiles. However, this information is necessary to understand 66 

the spread and succession of ARGs and to improve antibiotic stewardship in infants 67 

and adults. 68 

 69 

More generally, the problem of antibiotic resistance can only be addressed through an 70 

improved understanding of the effects of antibiotics on the body, and how these might 71 

differ at different ages and life stages. It is well known that antibiotic treatments can 72 

have negative effects on the gut microbiome22±25. Given the differences in community 73 

composition, stability, and resilience between infant and adult gut assemblages, it is 74 

possible that the manner and extent to which the microbiome responds and recovers 75 

from antibiotic treatment may vary with age. For example, an animal study showed 76 

that the recovery of gut microbes from antibiotic treatment was affected by host diet, 77 

bacterial community structure, and host living environment26. However, with respect 78 

to differences between the infant and adult gut microbiome in humans, the response 79 

variance to conventional antibiotic therapy has not been fully explored, although such 80 

information is critical for understanding how antibiotics remodel the gut. 81 

 82 

In this study, we sequenced fecal metagenomes from a Danish cohort of 217 young 83 

adults, aged 18 years, and used metagenomic bins to associate ARGs with their 84 

bacterial hosts, thus gaining insight into the distribution of ARGs across bacterial 85 

species. Moreover, we comprehensively compared the abundance and community 86 

composition of ARGs (in bacteria as well as plasmids) and ARG-carrying hosts 87 

between these adults and a cohort of 662 one-year-old Danish infants, and explored 88 

the underlying drivers for the differences in resistance gene profiles. Finally, we 89 

investigated and compared the influence of conventional antibiotic treatment on the 90 

infant and adult gut microbiomes, as assessed by changes in microbial composition, 91 

antibiotic resistance, and mobile genetic elements, including plasmids. 92 
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 93 

Results 94 

The distribution of ARG profiles in the adult gut is bimodal and reflects the role 95 

of E. coli as an ARG reservoir 96 

First, we characterized ARGs in the gut microbiome of 217 young adults, aged 18 97 

years, who were members of the COPSAC2000 cohort. A total of 293 ARGs were 98 

detected, which conferred resistance to 33 drug classes. In this assemblage, genes 99 

associated with resistance to tetracycline and fluoroquinolone were the most abundant 100 

(Fig. 1A), followed by those targeting penam, cephalosporin, macrolide, and rifamycin. 101 

The main mechanism of resistance encoded by ARGs was antibiotic efflux pumps (Fig. 102 

S1). Almost half of all ARGs (42.7%) encoded resistance to at least two different drug 103 

classes, and are referred to hereafter as multiple-drug resistance genes (MDR ARGs) 104 

(Fig. S1). The most common type of MDR ARG conferred resistance to 105 

fluoroquinolone and tetracycline. The majority of ARGs (53% in abundance) in the 106 

adult gut originated from Proteobacteria (Fig. S1), specifically from E. coli (§�40%). 107 

The next-largest contribution came from Bacteroidetes, with 31%. Within 108 

Proteobacteria, ARG richness was high in several taxa, such as Escherichia species, 109 

Pseudomonas aeruginosa, Citrobacter braakii, Klebsiella pneumoniae, and 110 

Enterobacter hormaechei (Fig. 1H). The detailed distribution of ARGs in different 111 

bacteria species is shown in Table S1. Different bacterial phyla exhibited distinct 112 

patterns both in terms of the number and type of ARGs present (Fig. S1 and Table 113 

S2). For example, Proteobacteria contained the highest number of unique ARGs (163), 114 

and these were mainl\�ȕ-lactam resistance genes. 115 

 116 

Based on their abundance patterns, ARGs were divided into four non-overlapping 117 

groups (Fig. 1B). Notably, the distribution of ARG richness among samples was 118 

bimodal, with one peak with low richness and another peak with high richness (Fig. 119 

1C). Likewise, clustering based on ARG abundance revealed two distinct groups of 120 

samples (Fig. 1B): cluster 1 high ARG richness (n = 87) and cluster 2 low ARG 121 

richness (n = 130), which was supported by a 'partitioning around medoids' (PAM) 122 

clustering analysis (Fig. 1D-F). Compared to cluster 2, ARGs in cluster 1 were not only 123 

more abundant but also more diverse (Fig. 1E). 124 

 125 
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To investigate the factors underlying the bimodal ARG distribution, we compared the 126 

bacterial composition of the two clusters. We first determined that there were no 127 

differences in sequencing coverage between the samples in the two clusters 128 

(Wilcoxon test; P = 0.21, Fig. S2), ruling out the influence of sequencing depth. We 129 

then characterized bacterial composition using MetaPhlAn27. A significant correlation 130 

was detected between the composition of bacterial communities and that of ARGs 131 

through Procrustes analysis (permutational test; r = 0.77, P < 0.001, Fig. 2B). 132 

Furthermore, the two clusters differed significantly in their bacterial composition 133 

(PERMANOVA; P < 0.001). To identify which bacteria were critical to this difference, 134 

we analyzed differentially abundant bacteria between the two clusters and ranked 135 

them according to their importance in shaping the clustering pattern. Among the 542 136 

bacterial species detected, 16 species were differentially abundant between the two 137 

clusters (Fig. 1G), and the most important of these was clearly E. coli. Indeed, the 138 

mean relative abundance of E. coli in cluster 1 was 66 times higher than that in cluster 139 

2 (mean relative abundance; cluster 1 vs. cluster 2, 4.55% vs. 0.069%). In addition, 140 

random forest analysis demonstrated that E. coli content was a determining factor in 141 

grouping ARGs, and that it was far more important than any other taxon (Fig. S1). 142 

 143 

To investigate this further, we assessed the bacterial origin of ARGs using 144 

metagenome-assembled genomes (MAGs). In total, we detected E. coli MAGs with 145 

ARGs in 112 samples, 86 of which were from cluster 1 and 26 from cluster 2. When 146 

we removed these E. coli±associated ARGs from all samples, we observed an eight-147 

fold reduction in the proportion of variance explained by the two ARG clusters, from 148 

16.4% to 2.1% (Fig. 1F). Without E. coli, ARG abundance and diversity in cluster 1 149 

were significantly lower, to the point that values in the two clusters became 150 

comparable (Fig. 1E). This provided clear evidence of the abundance of ARGs in E. 151 

coli and the effect this has on the overall gut microbiome. Although the mean relative 152 

abundance of E. coli was only around 1.86% in the adult gut, the mean relative 153 

abundance of ARGs in this bacteria accounted for about 32% of the total, with the 154 

majority in cluster 1 (Fig. 1H).  155 

 156 
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Fig. 1 ARG characteristics of different bacteria in the adult gut and bimodal distribution of ARGs 158 
in the adult gut, driven by E. coli. A) The total abundance of ARGs resistant to 33 drug classes. B) 159 
Heatmap depicting the abundance of 293 ARGs across the samples. Samples were clustered with 160 
complete linkage hierarchical clustering based on Euclidean distance. ARGs were clustered into four 161 
categories by PAM clustering based on Euclidean distance; Cluster 4 (core ARGs, N = 15) contained 162 
ARGs that were highly abundant and prevalent across all samples. Cluster 3 (differentially abundant 163 
(DA) ARGs, N = 55) contained ARGs that differed significantly in their abundance among samples. 164 
Cluster 2 (low-abundance (LA) ARGs, N = 80) contained ARGs present at a low abundance in samples. 165 
Cluster 1 (intermediate-abundance (IA) ARGs, N = 143) contained ARGs whose abundance in the 166 
samples fell between those in cluster 4 and those in cluster 2. C) Density plot of ARG richness in the 167 
cohort. D) Average silhouette width of PAM clustering for k = 1 to 10 clusters. The higher the silhouette 168 
width, the stronger the clustering effect. E) Log-transformed total ARG abundance and observed ARG 169 
ULFKQHVV��Į-diversity) before (left) and after (right) the removal of E. coli ARGs from the two ARG PAM 170 
clusters. F) NMDS ordination plot of Bray-Curtis dissimilarity matrix of ARG abundances before (left) 171 
and after (right) the removal of E. coli ARGs from the two ARG PAM clusters. The percent of explained 172 
variance (R2) generated with the PERMANOVA test is shown in the figure. G) Relative abundances of 173 
16 species (of 542 in total) that differed in abundance between the two clusters. Relative abundance 174 
on the x-axis is shown on a logarithmic scale; black dots indicate median value; P-values were 175 
generated by the Wilcoxon rank-sum test, and FDR adjustments are represented as adjusted P-values. 176 
H) Total ARG abundance in the bacterial species in each sample in two clusters (left), mean relative 177 
abundance of ARGs in bacterial species in two clusters (middle), and ARG richness in different bacterial 178 
species (right). For ease of viewing, only the 63 species with the highest ARG abundance are listed. 179 
**P-value < 0.01 and ***P-value < 0.001, obtained from the Wilcoxon test with FDR adjustment.   180 
 181 

ARGs are more abundant in the infant gut than in adults, with E. coli as the 182 

largest single contributor 183 

The distribution of ARGs in the gut has never been systematically compared between 184 

adults and infants. Therefore, we performed a comprehensive comparison of the 185 

ARGs described above and those identified, using the same workflow, in a cohort of 186 

662 one-year-old Danish infants. 187 

 188 

Overall, ARG profiles were significantly different between adults and infants (ȕ-189 

diversity (Bray-Curtis), PERMANOVA; R2 = 8.5%, P < 0.001, Fig. 2A). Procrustes 190 

analysis revealed a significant correlation between the composition of bacterial 191 

communities and that of ARGs in both the adult and infant gut (permutational test; 192 

r_adults = 0.77, r_infants=0.78, both P < 0.001, Fig. 2B), suggesting that ARG 193 

distribution was strongly tied to overall bacterial composition regardless of host age. 194 
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ȕ-diversity analysis also highlighted a significant difference in gut microbial 195 

composition between adults and infants (ȕ-diversity (Bray-Curtis), PERMANOVA; R2 196 

= 10%, P < 0.001, Fig. 2C). Furthermore, of the 896 bacterial species detected, 482 197 

(54%) were differentially abundant between the two cohorts (Wilcoxon test; FDR 198 

adjusted P < 0.05), indicating that the differences between adults and infants were 199 

influenced by the overall bacterial composition. However, considering that E. coli 200 

contains a large proportion of ARGs in both adults and infants16 and that the relative 201 

abundance of E. coli differed between adults and infants (mean relative abundance, 202 

infants vs. adults, 5.4% vs. 1.86%, Fig. S3), we wanted to determine whether these 203 

age-related differences remained even in the absence of E. coli. We thus removed all 204 

E. coli±associated ARGs from the two groups and re-evaluated the overall differences 205 

in ARG composition (Fig. S3). We found that the percentage of variance in ARG 206 

profiles that was explained by the two age groups did not decrease in the absence of 207 

E. coli, indicating that this species is not the only factor shaping age-related differences 208 

(Fig. S3). 209 

 210 

ARGs were more abundant in the infant gut than in the adult gut, as reflected in both 211 

the number of ARGs per million genes and the relative abundance of ARGs (Wilcoxon 212 

test; P < 0.001, Fig. 2D and Fig. 2E). When we removed E. coli±associated ARGs 213 

from the analysis, the difference between adults and infants in the mean number of 214 

ARGs per million genes and the mean relative abundance of ARGs decreased by 53% 215 

and 51%, respectively (Fig. 2D and 2E). These results suggest that, although it is not 216 

the only factor at work, E. coli still plays an important role in the differences in ARG 217 

load between the adult and infant gut.  218 

 219 

Plasmids are important mobile genetic elements that can transfer ARGs between cells. 220 

We therefore specifically investigated mobile ARGs carried on plasmids in the adult 221 

and infant gut. As in the overall analysis, the abundances of plasmids and mobile 222 

ARGs were higher in the infant gut than in the adult gut (Wilcoxon test; P < 0.001, Fig. 223 

2F). However, the proportion of mobile ARGs on plasmids relative to total ARGs did 224 

not differ between cohorts (Wilcoxon test; P = 0.19, Fig. 2F). 225 

 226 

To gain more insight into the ARGs carried by Escherichia species in the two cohorts, 227 

we plotted phylogenetic trees of Escherichia MAGs and clustered MAGs based on 228 
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their ARG profiles; for the sake of comparison, we also carried out the same procedure 229 

for Bifidobacterium MAGs. From a phylogenetic perspective, Escherichia MAGs 230 

differed between the two cohorts (PERMANOVA; P = 0.02, Fig. S4). In addition, 231 

Escherichia MAGs belonging to four main species correlated with ARG profiles 232 

(PERMANOVA; P = 0.01, Fig. S4). However, we did not find an ARG profile in 233 

Escherichia that was exclusive to the adult or infant gut. Instead, in Bifidobacterium 234 

we found one ARG profile almost exclusively in infants that was also predominantly 235 

distributed in one specific MAG cluster (Fig. S5). In addition, many Bifidobacterium 236 

MAGs did not carry ARGs. 237 
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 238 
Fig. 2 ARG profiles differed significantly between the infant and adult gut, with infants 239 
containing a higher abundance of ARGs. A) PCoA plot based on Bray-Curtis dissimilarity matrices 240 
of ARG abundance in the adult and infant gut (values in brackets represent the percentage of variance 241 
explained by the principal coordinates). P-value and R2 were generated with a PERMANOVA test. Box 242 
plots along each axis show the value of each point at the respective coordinates. B) Procrustes analysis 243 
of the association between the composition of ARGs and that of bacterial communities as characterized 244 
by MetaPhlAn in the gut of adults and infants. C) PCoA plot based on Bray-Curtis dissimilarity matrices 245 
of bacterial community composition characterized by MetaPhlAn in the adult and infant gut. P-value and 246 
R2 were generated with a PERMANOVA test. Box plots along each axis show the value of each point 247 
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at the respective coordinates. D&E) Boxplot with jitter points showing the number of ARGs per million 248 
genes (D) and the relative abundance of ARGs out of all genes (E) before and after removing E. coli 249 
ARGs in the adult and infant gut. ***P-value < 0.001, obtained from the Wilcoxon test. F) Boxplot with 250 
jitter points showing the relative abundance of plasmid contigs out of all contigs, the log-transformed 251 
total abundance of ARGs in plasmids, and the ratio of mobile ARGs to total ARGs in the adult and infant 252 
gut. ARGs carried on plasmids are defined as mobile ARGs. ***P-value < 0.001, ns: P-value > 0.05, 253 
obtained from the Wilcoxon test.  254 
 255 
Infants and adults share dominant ARGs and bacterial species carrying them in 256 

the gut microbiome 257 

Although the overall ARG profiles differed between the infant and adult gut, we wanted 258 

to investigate if certain aspects of these assemblages might be shared across age 259 

groups. To evaluate this, we explored commonalities between the infant and adult gut 260 

in terms of six aspects. First, we compared the alpha diversity (observed richness) of 261 

these groups, and found that the number of ARG-carrying bacterial species and the 262 

number of mobile ARGs on plasmids were significantly higher in the adult gut than in 263 

the infant gut (Wilcoxon test; P < 0.001, Fig. S6). When we identified the ARGs and 264 

ARG-carrying bacteria that were shared by both infants and adults, we found that they 265 

included some of the most abundant representatives in both cohorts. Specifically, 266 

infants and adults shared 106 ARG-carrying bacterial species, which contributed 68% 267 

and 53% of the total ARGs in each group (relative abundance), respectively, while 268 

unique species contributed only about 6% of ARGs (relative abundance) (Fig. 3A). 269 

Likewise, 191 ARGs were shared between the two cohorts, accounting for over 98% 270 

of the total ARG abundance in each (Fig. 3B). For the other ARG-related aspects 271 

investigated, the results were similar. ARGs and drug-resistance classes that were 272 

unique to only one cohort tended to be present in lower abundance (Fig. 3C, 3D, 3E 273 

and 3F). Details on the comparison of shared and unique features with respect to 274 

these six ARG-related groups are listed in Table S3.  275 

 276 

Next, we investigated the top ten drug classes to which these ARGs conferred 277 

resistance. For most of these drug classes, infants had a significantly higher 278 

abundance of associated ARGs than adults did (Wilcoxon test; adjusted P < 0.05, Fig. 279 

3G, 3H). In both cohorts, tetracycline and fluoroquinolone ARGs were the most 280 

abundant. Tetracycline and aminoglycoside were the drug classes most commonly 281 
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targeted by mobile ARGs in the infant gut, while mobile ARGs in the adult gut more 282 

often targeted tetracycline and macrolide. 283 

 284 
Fig. 3 ARGs shared by the adult and infant gut accounted for the vast majority of ARG 285 
abundance in each cohort. Analyses of the unique and shared (A) ARG-carrying bacterial species, 286 
(B) ARGs, (C) drug classes targeted by ARGs, (D) MDR ARGs, (E) mobile ARGs, (F) and drug classes 287 
targeted by mobile ARGs in both gut, with respect to the number of individual species/genes/drug 288 
classes (top panel) and their relative abundance in the total population of ARGs (bottom panel). G&H) 289 
Mean abundance of the 10 most commonly targeted drug classes by ARGs (G) and by mobile ARGs 290 
(H) in the adult and infant gut. **P-value < 0.01, ***P-value < 0.001, and ns: P-value > 0.05, from the 291 
Wilcoxon test with Bonferroni adjustment. Seven of the 10 mobile drug classes were shared between 292 
cohorts.  293 
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 294 

Compared to infants, antibiotic treatment in adults had a longer-lasting effect 295 

on microbial composition, ARG and MGE profiles, and plasmid abundance 296 

It is well known that antibiotic therapy changes the gut microbiome23,28, but the extent 297 

to which this effect may differ according to age has not yet been characterized. Here, 298 

we compared the association between antibiotic treatment and alterations in the gut 299 

microbiome in adults and infants. In particular, we examined differences in microbial 300 

composition, ARGs, and mobile genetic elements (MGEs), which here included the 301 

genetic elements related to mobility, such as integrases, transposases, and insertion 302 

sequences. In the adult cohort, the effects of antibiotic treatment persisted up to about 303 

one year. Instead, for infants, the effects of antibiotic treatment were detectable for 304 

about one month. Specifically, ARG profiles and microbial community composition 305 

were significantly different in the gut of adults who had taken antibiotics within 6 306 

months or between 6 months and 1 year before sampling compared to those who had 307 

QRW��ȕ-diversity, PERMANOVA; < 6m, P = 0.02, 0.002, respectively; 6m ± 1y, P = 0.005, 308 

0.03, respectively; Fig. 4A). Instead, MGE profiles differed only in the group that had 309 

taken antibiotics within 6 months of sampling (< 6m, P = 0.03, Fig. 4A). No effects 310 

were detectable for any of these three indicators when the antibiotic use had occurred 311 

more than 1 year prior to sampling (P > 0.05, Fig. 4A). In the infant cohort, ARG and 312 

MGE profiles were different in individuals who had received antibiotic treatment within 313 

15 days of sampling or between 15 days and 1 month before sampling compared to 314 

those who had not (< 15d, P < 0.001; 15d ± 1m, P = 0.03, 0.009, respectively, Fig. 315 

4B). Infants who had taken antibiotics more recently also demonstrated alterations in 316 

microbial community composition (< 15d, P < 0.001, Fig. 4B). None of these effects 317 

were apparent if the antibiotic use had occurred more than 1 month before sampling 318 

(P > 0.05, Fig. 4B). 319 

 320 

The duration of the effect of antibiotics in adults and infants was also reflected in 321 

plasmid abundance. Plasmids can horizontally transfer resistance and virulence 322 

genes between bacterial cells. In the adult gut, the effect of antibiotics on plasmids 323 

lasted up to about 1 year: the total abundance of plasmids was higher in the gut of 324 

adults who had taken antibiotics within 6 months of sampling or between 6 months 325 

and 1 year before sampling than those in the corresponding control groups (Wilcoxon 326 

test; P < 0.001, Fig. 4C). In contrast, there were no differences in plasmid abundance 327 
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between adults who had taken antibiotics more than 1 year before sampling and those 328 

who had not (Wilcoxon test; P > 0.05, Fig. 4C). Similarly, plasmid abundance in the 329 

gut of infants who had taken antibiotics more than 1 month before sampling did not 330 

differ from those who had not (Wilcoxon test; P > 0.05, Fig. 4D). However, plasmids 331 

were more abundant in the gut of infants who had received antibiotics between 15 332 

days and 1 month before sampling or within 15 days of sampling than in individuals in 333 

the corresponding control groups (Wilcoxon test; P = 0.03 (0 ± 15d), P = 0.01 (15d ± 334 

1m), Fig. 4D).  335 



 PAGE| 15 
 

 336 



 PAGE| 16 
 

Fig. 4 Antibiotic treatment had longer-lasting effects on the adult gut microbiome than on the 337 
infant gut microbiome, as reflected in microbial composition, ARG and MGE profiles, and 338 
plasmid abundance. A) Duration of the effect of antibiotic administration RQ� WKH� ȕ-diversity of 339 
microbiome, ARG and MGE compositions in the adult gut. Bray-Curtis distance was used as the 340 
PHDVXUH�RI�ȕ-diversity. Adult subjects were divided into four groups depending on when they had taken 341 
antibiotics: within 6 months of sampling, 6 to 12 months prior, 1 to 2 years prior, or 2 to 6 years prior to 342 
sampling; the corresponding control groups had not received antibiotics in those periods. *P-value < 343 
0.05 and **P-value < 0.01, obtained from the PERMANOVA test. B) Duration of the effect of antibiotic 344 
DGPLQLVWUDWLRQ�RQ�WKH�ȕ-diversity (Bray-Curtis distance) of microbiome, ARG and MGE compositions in 345 
the infant gut. Infant subjects were divided into four groups depending on when they had taken 346 
antibiotics: within 15 days of sampling, 15 to 30 days prior, 1 to 3 months prior, and 3 to 6 months prior; 347 
the corresponding control groups had not received antibiotics in those periods. *P-value < 0.05, **P-348 
value < 0.01, and ***P-value < 0.001, obtained from the PERMANOVA test. C&D) Duration of the effect 349 
of antibiotic administration on total plasmid abundance in the adult gut (C) and in the infant gut (D). The 350 
four studied periods are the same as in panel A or in panel B. "+" represents antibiotics administered in 351 
a given period, and "-" represents antibiotics not administered in a given period. ***P-value < 0.001, ns: 352 
P-value > 0.05, from the Wilcoxon test.  353 
 354 

Antibiotic treatment enhances ARG and MGE abundance and reduces bacterial 355 

richness 356 

In addition to the overall alterations, we also observed differences in total ARG and 357 

MGE abundance, and bacterial richness as a result of antibiotic treatment. Specifically, 358 

ARGs were significantly more abundant in the gut of adults who had taken antibiotics 359 

within 1 year of sampling compared with those who had not (Wilcoxon test; P < 0.001, 360 

Fig. 5A), and the bacterial richness was lower (Wilcoxon test; P = 0.02, Fig. 5A). With 361 

respect to MGEs, total abundance was higher in adults who had taken antibiotics 362 

within 6 months of sampling than in those who had not (Wilcoxon test; P = 0.036, Fig. 363 

5A). For infants, the same phenomenon was observed: compared to the 364 

corresponding control groups, total ARG abundance was higher in the gut of infants 365 

who had taken antibiotics within 1 month of sampling, and gut bacterial diversity was 366 

lower in infants who had taken antibiotics within 15 days of sampling (Wilcoxon test; 367 

P < 0.001, 0.005, respectively, Fig. 5B). 368 

 369 

We then explored the effects of antibiotics on the abundance of different types of ARGs: 370 

specifically, the four groups of ARGs in the adult gut, clustered using the PAM 371 

algorithm (core, DA, IA, and LA; Fig. 1E) and three clusters in the infant gut, obtained 372 
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using the same methodology (Fig. S7). We found that antibiotic treatment enhanced 373 

the total abundance of low-abundance ARGs in adults and intermediate-abundance 374 

ARGs in infants (Wilcoxon test; adjusted P = 0.044, P < 0.001, respectively, Fig. 5C, 375 

5D). Interestingly, the total abundance of core ARGs²resistance genes that are highly 376 

abundant and prevalent overall²also increased in the gut of both adults and infants 377 

after antibiotic treatment (Wilcoxon test; adjusted P < 0.001, 0.015, respectively, Fig. 378 

5C, 5D). The mean abundance of most individual core ARGs was higher in individuals 379 

who had taken antibiotics than in those who had not, although this was not statistically 380 

significant (Wilcoxon test; adjusted P > 0.05, Fig. S8).  381 

 382 

Fifteen core ARGs, mostly associated with tetracycline and MLS resistance (Fig. S8), 383 

were detected in the adult gut and were found in between 54% and 100% of samples 384 

(mean 76.2%). For several of these ARGs²specifically, ErmB/H/G, tet(40)/O/Q/W, 385 

and vanl²more than 20% of these genes were retrieved from plasmids. Two core 386 

ARGs (adeF and tetQ) were detected in 97.7% and 85.8% of the infant gut samples, 387 

respectively, and 36% of the latter appeared on plasmids (Fig. S8).  388 

 389 
Fig. 5 Antibiotic treatment resulted in an elevated abundance of ARGs and MGEs, and a 390 
decrease in observed bacterial richness. A) Changes in ARG abundance and bacterial diversity in 391 
the gut of adults who had taken antibiotics within one year of sampling and changes in MGE abundance 392 
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in the gut of adults who had taken antibiotics within 6 months of sampling. Individuals who had not taken 393 
antibiotics during those periods were used as controls. *P-value < 0.05, ***P-value < 0.001, obtained 394 
from the Wilcoxon test. B) Changes in ARG abundance in the gut of infants who had taken antibiotics 395 
within one month of sampling and changes in bacterial diversity in the gut of infants who had taken 396 
antibiotics within 15 days of sampling. Individuals who had not taken antibiotics during those periods 397 
were used as controls. **P-value < 0.01, ***P-value < 0.001, from the Wilcoxon test. C&D) Changes in 398 
the abundance of ARG clusters in the gut of adults (C) who had taken antibiotics within one year of 399 
sampling and in the gut of infants (D) who had taken antibiotics within one month of sampling. 400 
Individuals who had not taken antibiotics during those periods were used as controls. For adults, the 401 
definitions of these four groups and the methodological basis for clustering are described in the legend 402 
of Fig. 1B. For infants, ARGs were clustered into three categories by PAM clustering based on 403 
Euclidean distance (Fig. S7); Cluster 3 (core ARGs, N = 2) contains highly abundant and prevalent 404 
ARGs. Cluster 2 (differentially abundant (DA) ARGs, N = 55) contains ARGs with significant differences 405 
in abundance between samples. Cluster 1 (intermediate-abundance (IA) ARGs, N = 311) contains 406 
ARGs whose abundance in the samples falls between the ARGs in cluster 3 and those in cluster 2. *P-407 
value < 0.05, ***P-value < 0.001, obtained from the Wilcoxon test with FDR adjustment.  408 
 409 

The influence of different antibiotics on the gut microbiome of adults and infants  410 

In the group of adults who had received antibiotic treatment in the year before sampling, 411 

we examined whether the type of antibiotic taken had a detectable influence on 412 

characteristics of the gut microbiome. With the exception of ȕ-lactam plus sulfonamide, 413 

each type of antibiotic was associated with an increase in the mean abundance of 414 

ARGs, with tetracycOLQH�DQG�ȕ-lactam plus macrolide having a statistically significant 415 

effect (Wilcoxon test; adjusted P = 0.036, 0.029, respectively, Fig. 6A). Each antibiotic 416 

type was also asVRFLDWHG�ZLWK�DQ�LQFUHDVH�LQ�PHDQ�SODVPLG�DEXQGDQFH��ZLWK�ȕ-lactam, 417 

tetracycline, and ȕ-lactam plus macrolide having statistically significant effects 418 

(Wilcoxon test; adjusted P = 0.049, 0.038, 0.0005, respectively, Fig. 6B). Four of the 419 

five antibiotic types were also associated with a reduction in mean bacterial richness 420 

(H[FHSWLRQ� ZDV� ȕ-lactam plus sulfonamide, Fig. S9), and all five antibiotics were 421 

associated with increases in mean MGE abundance (Fig. S9). Finally, treatment with 422 

tetracycline or macrolide resulted in a significant reduction in the relative abundance 423 

of Bifidobacterium adolescentis and Bifidobacterium longum, two of the 20 most 424 

abundant species (Wilcoxon test; adjusted P < 0.05, Fig. 6E). 425 

 426 

In the infant cohort, we evaluated whether treatment with one of three major 427 

antibiotics²macrolide, penicillin, and ampicillin²in the 15 days before sampling had 428 



 PAGE| 19 
 

distinguishable effects on the infant gut microbiome. All antibiotics were associated 429 

with an increase in mean ARG abundance, with macrolide and penicillin having a 430 

statistically significant relationship (Wilcoxon test; adjusted P = 0.028, 0.028, 431 

respectively, Fig. 6C). Furthermore, all antibiotics were associated with non-significant 432 

increases in mean plasmid abundance (Wilcoxon test; adjusted P > 0.05, Fig. 6D) and 433 

reductions in mean bacterial richness (Fig. S9). Macrolide and penicillin were linked 434 

with increases in mean MGE abundance (Fig. S9). None of the antibiotics had a 435 

statistically significant influence on the abundance of the 20 most abundant bacterial 436 

species. When we investigated the effect on the broader bacterial community, we 437 

found that antibiotics were associated with a significant decrease in the relative 438 

abundance of Faecalibacterium prausnitzii and Haemophilus parainfluenzae 439 

(Wilcoxon test; adjusted P < 0.05, Fig. 6E). Additionally, we observed an increase in 440 

the abundance of E. coli, although the adjusted P value was not significant. 441 
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 442 
Fig. 6 The effects of different antibiotics on ARG and plasmid abundance, and on the relative 443 
abundance of bacterial species. A&B) Changes in ARG abundance (A) and plasmid abundance (B) 444 
in the gut of adults who had taken one of five major antibiotics or antibiotic combinations in the year 445 
before sampling. Individuals who had not taken antibiotics in that period were used as controls. *P-446 
value < 0.05, obtained from the Wilcoxon test with FDR adjustment. The black diamond indicates the 447 
mean value. C&D) Changes in ARG abundance (C) and plasmid abundance (D) in the gut of infants 448 
who had taken one of three major antibiotics in the 15 days before sampling. Infants who had not taken 449 
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antibiotics within 15 days of sampling were used as controls. *P-value < 0.05, obtained from the 450 
Wilcoxon test with FDR adjustment. The black diamond indicates the mean value. E) Members of the 451 
20 most abundant bacterial species whose abundance in the gut differed significantly between (top) 452 
adults who had taken tetracycline or macrolide in the year before sampling and those who had not 453 
received antibiotic treatment, and (bottom) infants who had taken antibiotics in the 15 days before 454 
sampling and those who had not within the first year. Relative abundance on the x-axis is shown on a 455 
logarithmic scale; black dots indicate median value; P-values were generated by the Wilcoxon rank-456 
sum test and adjusted using FDR. 457 
 458 

Discussion 459 

Metagenomic sequencing offers the possibility to gain deeper insight into the 460 

distribution and function of ARGs in gut microbes at the species or strain level. Using 461 

this approach, we examined the distribution of ARGs in the gut bacteria of 217 young 462 

Danish adults, aged 18 years. By combining this information with similar data from 662 463 

one-year-old Danish infants, we were able to describe age-related patterns in the 464 

abundance and distribution of ARGs in the gut, as well as associations between 465 

antibiotic use and alterations in the gut microbiome, ARGs, and MGEs, including 466 

plasmids, across age groups. 467 

 468 

In the adult cohort, we obtained evidence that ARGs follow a bimodal distribution that 469 

is driven by the abundance of E. coli. A similar bimodal distribution had been found for 470 

ARGs in the infant gut16, which suggests that this phenomenon is independent of age. 471 

Numerous genomic/molecular studies and in vitro resistance assays have shown that 472 

members of family Enterobacteriaceae possess an extremely broad array of antibiotic 473 

resistance29±33, particularly to beta-lactam, which has largely been attributed to gene 474 

flow under sustained selective pressure resulting from the increase in antibiotic use in 475 

recent decades34,35. In both the adult and infant gut, the ARG profiles on Escherichia 476 

MAGs were quite similar, providing additional evidence for the frequent influx of genes 477 

into the Escherichia genome. Moreover, many studies have shown that this gene 478 

transfer is not unidirectional: the rich pool of resistance elements in 479 

Enterobacteriaceae genomes also flows to other bacteria36±38, thereby exacerbating 480 

the spread of resistance genes. 481 

 482 

Although our study is not longitudinal, it does provide a cross-sectional view of the 483 

differences in gut ARGs between early life and adulthood in the Danish population. 484 
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We discovered that the dominant ARGs, and the bacterial species on which they were 485 

found, were the same in both infants and young adults, which could indicate a 486 

prolonged selective advantage or a shared community reservoir. Such a selective 487 

advantage, i.e., the persistence of certain genes or gene-carrying bacteria throughout 488 

childhood, would likely be due to ongoing selection from external factors such as 489 

repeated antibiotic therapy39±41 and/or a competitive advantage over their bacterial 490 

neighbors.  491 

 492 

Compared to infants, the proportion, number, and abundance of ARGs was lower in 493 

the adult gut, and this was associated with decreased levels of clinically relevant 494 

bacteria that contain abundant resistance genes, such as E. coli. This mirrors previous 495 

findings that infants have a higher load of resistance genes in their gut compared to 496 

their mothers42,43. Similar results have even been reported from cattle and pigs, in 497 

which the abundances of ARGs and resistance-carrying Enterobacteriaceae in the gut 498 

are also high early in life and decline with age44. Importantly, this early-life peak in 499 

Enterobacteriaceae does not seem to be driven by any external factors such as 500 

antibiotic use; instead, its trajectory in the gut may be related to favorable 501 

environmental conditions and host regulation. Facultative anaerobes such as E. coli 502 

can consume oxygen and produce an anaerobic environment, thus favoring 503 

subsequent colonization by and growth of strictly anaerobic bacteria45,46. Previous 504 

studies have highlighted various mechanisms by which a host can manage the 505 

development of the gut microbiome, such as the immune system response47, the 506 

production of nitrogen-rich mucins, and the creation of a more suitable habitat48,49. It 507 

is possible that the natural processes of gut maturation may be altered by the presence 508 

or abundance of ARGs or ARG-carrying bacteria. Indeed, previous work by our group 509 

demonstrated that high ARG abundance was associated with a low degree of 510 

maturation of the infant gut microbial community16. Obviously, such enrichment poses 511 

a threat to infant health by reducing the effectiveness of antibiotic therapy for bacterial 512 

infections50. Our observation that plasmids were abundant in the infant gut also implies 513 

a high frequency of HGT51,52 which can provide an advantage for the dissemination 514 

and persistence of ARGs even in the absence of antibiotics53,54.  515 

 516 

Compared to adults, though, the gut microbiome in infants recovered more quickly 517 

from antibiotic therapy. The infant gut microbiome is very dynamic55 and less diverse 518 
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than that of adults, which may indicate that the ecological processes at play are simpler 519 

and can more easily recover from perturbations. However, this effect is also mediated 520 

by the types and doses of antibiotics used56±58. In Denmark, the type and dose of 521 

common antibiotics vary according to age59. Moreover, the length of the recovery 522 

period after antibiotic treatment has also been found to depend on the disease 523 

targeted. The present study examined the effects of routine antibiotic treatment of 524 

common infections. Instead, in a group of neonates with sepsis who were treated with 525 

broad-spectrum antibiotics, the overall gut microbiome took 12 months to return to 526 

normal24. It is important to note that our analysis examined the mixed effect of all 527 

antibiotics taken, where the effects of additional antibiotics may confound the results. 528 

Furthermore, although our results indicated that the infant gut microbiome typically 529 

returned to baseline levels after about 30 days, we cannot rule out some potential 530 

long-term effects that were not addressed in our analysis, such as alterations in 531 

specific resistance genes and bacteria60, immune maturation61, or metabolic 532 

changes62. In addition, we cannot rule out confounding by indication²that the 533 

antibiotic-treated vs. non-treated infants and adults differed due to factors that 534 

contributed to the condition their treatment was prescribed for. 535 

 536 

The total abundance of core ARGs was significantly elevated in both the infant and 537 

adult gut following antibiotic exposure, implying that they are the primary weapons of 538 

bacteria against antibiotics and thus possess the potential for widespread 539 

dissemination. This was also supported by the patterns we identified in high ARG 540 

prevalence and abundance, as well as plasmid presence. However, different 541 

antibiotics had different effects on the abundance of both ARGs and plasmids. Of the 542 

five major antibiotics used in adults, tetracycline and beta-lactam plus macrolide had 543 

the strongest impact on ARG and plasmid abundance. The effect of the former may 544 

be related to the extreme abundance of tetracycline resistance genes in bacteria and 545 

plasmids in the adult gut. Although the medical use of tetracycline has declined over 546 

the past 20 years and it is no longer used to treat pregnant women and children under 547 

8 years of age63, it remains one of the most widely used classes of antibiotics 548 

worldwide64. With respect to the latter, there may be a synergistic effect of taking 549 

separate courses of beta-lactam and macrolide within the span of a year which 550 

simultaneously calls into action resistance genes against both beta-lactam and 551 

macrolide as well as plasmids carrying relevant genes in the gut. In infants, the 552 
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administration of penicillin or macrolide in the 15 days prior to sampling was 553 

significantly associated with high ARG abundance. In previous work, we found that the 554 

influence of macrolide treatment on macrolide resistance genes in the infant gut could 555 

last for approximately 2 months, whereas the effect of penicillin was much shorter16. 556 

A study on Finnish children (2±7 years, median age 5 years) also confirmed that 557 

macrolide treatment had a stronger impact on the gut microbiome than penicillin did57. 558 

In the adult gut, both tetracycline and macrolide were associated with dramatically 559 

reduced levels of the beneficial bacteria Bifidobacterium adolescentis and 560 

Bifidobacterium longum, which are the most prevalent species in the adult gut65±67 and 561 

are effective degraders of plant-derived fructooligosaccharides68. Similarly, antibiotic 562 

administration in infants was found to reduce gut levels of Haemophilus parainfluenzae, 563 

a conditionally pathogenic bacterium that can cause multiple infections69±71, but 564 

simultaneously reduced levels of Faecalibacterium prausnitzii, which is widely 565 

considered to be beneficial to host health72±74. This reflects the double-edged nature 566 

of antibiotic treatment, which kills pathogenic bacteria to cure disease but can also kill 567 

sensitive beneficial bacteria. Therefore, the type of antibiotic used, and its potential 568 

double-edged effects, should be fully considered in the choice of antibiotic treatment. 569 

 570 

STARմMethods 571 

Key Resources Table 572 
REAGENT or RESOURCE 

 

    SOURCE             IDENTIFIER 

Adult feces samples COPSAC2000 cohort 

(This study) 

http://copsac.com/home/copsac-

cohorts/copsac2000cohort/ 

Infant feces samples COPSAC2010 cohort 

(This study) 

http://copsac.com/home/copsac-

cohorts/copsac2010-cohort/ 

Software and Algorithms   

GNU Parallel version 

20180722 

Tange, 201875 https://www.gnu.org/software/parallel/ 

BBTools v38.19 sourceforge.net/projects

/bbmap/ 

https://jgi.doe.gov/data-and-tools/bbtools/ 

Sickle v1.33 Joshi and Fass, 201176 https://github.com/najoshi/sickle/releases 

Nonpareil v3.30 Rodriguez-R et al., 

201877 

https://nonpareil.readthedocs.io/en/latest/ 

MetaPhlAn v2.7.5 Segata et al., 201227 https://pypi.org/project/MetaPhlAn/ 



 PAGE| 25 
 

SPAdes v3.12.0 Nurk et al., 201778 https://cab.spbu.ru/files/release3.12.0/ma

nual.html 

VAMB Nissen et al., 202179 https://github.com/RasmussenLab/vamb 

GTDB-Tk v1.7.0 toolkit Chaumeil et al., 201880 https://github.com/Ecogenomics/GTDBTk 

Prodigal v2.6.3 Hyatt et al., 201081 https://github.com/hyattpd/Prodigal 

RGI Jia et al., 201782 https://card.mcmaster.ca/analyze/rgi 

HMMER3 v3.1b2 Mistry et al., 201387 http://hmmer.org/ 

Bowtie2 v2.3.5 Langmead et al., 201291 https://bowtie-

bio.sourceforge.net/bowtie2/index.shtml 

Samtools v1.12 Li et al., 200993 http://www.htslib.org/ 

Platon v5.3 Schwengers et al., 

202094 

https://github.com/ideasrule/platon/releas

es 

FastANI v1.33103 Jain et al., 201898 https://github.com/ParBLiSS/FastANI/rele

ases 

R core Team, 2018105 https://www.r-project.org/ 

Deposited Data   

Metagenomics data  

(adults) 

This paper  Sequence Read Archive (SRA) under the 

accession number PRJNA916259 

Metagenomics data  

(infants) 

This paper  Sequence Read Archive (SRA) under the 

accession number PRJNA715601 

Other   

NucleoSpin® 96 Soil DNA 

Isolation Kit optimized for 

epMotion® 

Macherey-Nagel, Düren, 

DE 

https://www.mn-net.com/nucleospin-96-

soil-96-well-kit-for-dna-from-soil-740787.2 

NovaSeq Illumina N/A 

 573 

Resource Availability 574 

Lead contact  575 

Further information and requests for reagents and resources should be directed to and 576 

will be fulfilled by the Lead Contact, Søren J. Sørensen, University of Copenhagen, 577 

(sjs@bio.ku.dk). 578 

 579 

Experimental Model and Subject Details 580 

Human samples 581 

The COPSAC2000 cohort is a mother-child cohort assembled for the primary purpose 582 

of studying asthma. It consists of 411 mothers and their children83. The 217 fecal 583 

samples used for this study were collected as part of the 18-year follow-up visit at the 584 
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research clinic or at home following detailed instructions. All samples were stored at -585 

80°C prior to DNA extraction. The 662 fecal samples were obtained from one-year-old 586 

infants in the COPSAC2010 cohort84,85. 587 

Ethics 588 

The study was designed with the guiding principles of the Declaration of Helsinki in 589 

mind and was approved by the Local Ethics Committee of the Danish Capital Region 590 

(COPSAC2000: KF 01-289/96, COPSAC2010: (H-B-2008-093)) and the Danish Data 591 

Protection Authority (both cohorts: 2015-41-3696).  592 

Covariates 593 

During scheduled visits to COPSAC clinics, information was collected from 594 

participants on the use of antibiotics (including any treatment prior to sampling), the 595 

use and duration of other medications, pet ownership, siblings, living area, income, 596 

alcohol consumption, smoking, and experiences with disease. This information was 597 

verified against registration records. 598 

 599 

Method details 600 

Metagenomic sequencing of fecal samples and data processing 601 

Genomic DNA was extracted from fecal samples (~200±250 mg) using the 602 

NucleoSpin® 96 Soil DNA Isolation Kit optimized for epMotion® (Macherey-Nagel, 603 

Düren, DE) using the epMotion® robotic platform model (Eppendorf) following the 604 

PDQXIDFWXUHU¶V�SURWRFRO� DNA library preparation and data processing was carried out 605 

for adult samples following the same protocol used for infant samples16. In brief, the 606 

DNA library was prepared for Illumina sequencing with the Kapa HyperPrep kit (KAPA 607 

Biosystems, Wilmington, MA, USA). Paired-end (150 bp) sequencing of the samples 608 

in the DNA library was performed with the Illumina NovaSeq platform by Novogene 609 

(China). Bioinformatics analyses were executed in parallel using GUN parallel 610 

v2018072275. Adapters were removed using BBDuk of BBTools v38.19 611 

(sourceforge.net/projects/bbmap/). Sickle v1.33 was used for the removal of low-612 

quality reads76. Human DNA was filtered out using BBMap of BBTools v38.19. In total, 613 

217 gut samples were successfully sequenced, generating between 52.9 and 103 614 

million clean reads per sample (mean ± SD: 58.9 ± 4.5 million reads). The average 615 

metagenomic coverage and sequence diversity for each sample was estimated using 616 

Nonpareil v3.30 in kmer mode77. The mean coverage of adult and infant metagenomic 617 

data was 96.42% and 98.23%, respectively (Fig. S10), which represented 'almost 618 
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FRPSOHWH� FRYHUDJH
� ������ RI� PHDQ� FRYHUDJH��� 7KH� VSHFLHV-level composition of 619 

microbial communities was described using MetaPhlAn v2.7.527. Sequence assembly 620 

was performed with SPAdes v3.12.0 using default metagenomic settings86. Bins were 621 

created using Variational Autoencoders for Metagenomics Binning (VAMB)79, a 622 

method that uses deep learning to bin microbial genomes. All metagenome-623 

assembled genomes (MAGs) at least 200 kbp in length were submitted for taxonomic 624 

assignment with the GTDB-Tk v1.7.0 toolkit, based on the GTDB database (release 625 

202)80. Among them, the taxonomy of 84.4% big MAGs in 1250 clusters was assigned, 626 

which can cover 70% contigs in MAGs. Genes were predicted with Prodigal v2.6.3 in 627 

META mode81.  The reads assigned to E. coli by MetaPhlAn were subdivided into two 628 

main MAGs, one for E. coli and the other for E. flexneri. In the presentation of this 629 

analysis in Fig. 1 and Fig. 2, however, we classified ARGs from both MAGs as coming 630 

from E. coli. 631 

ARG and MGE prediction and gene abundance calculation  632 

Resistance gene identifiers (RGI) were used to annotate ARGs based on the 633 

Comprehensive Antibiotic Resistance Database (CARD v3.0.7)82. ARGs with the strict 634 

and perfect thresholds of the RGIs were kept for further analysis. MGE homologs were 635 

characterized by HMM search in HMMER3 v3.1b287 in combination with the PFAM88 636 

and TnpPred89 databases, with "cut_ga" as a threshold criterion90,92. If multiple MGE 637 

alignments were detected for one gene, only the one with the lowest E value was kept. 638 

 639 

Reference genes were indexed using bowtie2-build of Bowtie2 v2.3.5 before aligning 640 

reads91. Clean reads were aligned against the predicted genes with Bowtie2 aligner. 641 

The number of mapped reads in bam files was calculated with Samtools idxstats of 642 

Samtools v1.1293. Values of gene coverage per million (GCPM)16, which normalize 643 

sequencing depth and gene length, were used to quantify gene abundance. The sum 644 

of the GCPM values for all predicted genes in each sample was one million, making it 645 

comparable across samples. The formula for calculating GCPM for each gene is 646 

�FRXQWV� JHQH�OHQJWK�î���Τ
σ FRXQWV� JHQH�OHQJWK�ΤQ
�

�, where counts is the number of mapped reads, gene length is the 647 

length of the gene, and n is the total number of the predicted gene in each sample. 648 

Plasmid prediction and calculation of contig abundance 649 

Plasmid contigs were identified and characterized with Platon v5.3 using the default 650 

settings94. Reference contigs were indexed using bowtie2-build before aligning reads. 651 
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Clean reads were aligned against the contigs with Bowtie2 aligner. The number of 652 

mapped reads in bam files was calculated with Samtools idxstats. GCPM values were 653 

used to quantify contig abundance as described above.  The sum of the GCPM values 654 

for all contigs in each sample was one million, and the formula for calculating GCPM 655 

for each contig is �FRXQWV� FRQWLJ�OHQJWK�î��
�Τ

σ FRXQWV� FRQWLJ�OHQJWK�ΤQ
�

�, where counts is the number of mapped reads, 656 

contig length is the length of the contig, and n is the total number of the contigs in each 657 

sample. 658 

Relative importance of bacterial species as evaluated by Random Forest   659 

The relative importance of bacterial species in shaping ARG clusters was evaluated 660 

by Random Forest analysis95 using the R-SDFNDJH� µUDQGRP)RUHVW¶� Y�������96. The 661 

number of trees (ntree) and the number of variables per split (mtry) in the random 662 

forest model were set to 500 and 50, respectively, resulting in a stable classifier and 663 

a low error rate of 5.99%. The mean decrease in Gini value associated with a predictor 664 

was used to estimate the importance of a bacterial species; a higher value indicates a 665 

higher importance for that variable. 666 

Comparing ARG and bacterial distributions using Procrustes analysis 667 

Procrustes analysis was used to evaluate the association between the distribution of 668 

microbial species and the distribution of ARGs in each sample97. A Hellinger 669 

transformation was first performed on the ARG matrix and the species abundance 670 

matrix, respectively. Bray-Curtis dissimilarity values were calculated between all 671 

VDPSOHV� LQ� WKH� WZR�PDWULFHV�XVLQJ� WKH�5� IXQFWLRQ� µYHJGLVW¶� LQ� WKH� µYHJDQ¶� SDFNDJH��672 

Y�������3&R$� �µSK\ORVHT¶�SDFNDJH�Y��������ZDV�XVHG� WR�RUGLQDWH�HDFK�GLVVLPLODULW\�673 

matrix. The two ordinated dissimilarity matrics were rotated with the R function 674 

µSURFUXVWHV¶� LQ�WKH� µYHJDQ¶�SDFNDJH��7KH�5�IXQFWLRQ� µSURWHVW¶� LQ� WKH� µYHJDQ¶�SDFNDJH�675 

was used to calculate the symmetric Procrustes correlation coefficient r, the sum of 676 

squared distance, and a P-value with 9999 permutations. The association between 677 

the distribution of microbial species and ARGs was visualized with ggplot2. 678 

Construction of phylogenetic tree of metagenome-assembled genomes (MAGs)  679 

The nucleotide-level similarity between MAGs assigned to Escherichia or 680 

Bifidobacterium was assessed with average nucleotide identity (ANI) values using 681 

FastANI v1.3398. We then used the neighbor-joining method to construct phylogenetic 682 

trees99. Based on the presence or absence of ARGs in the contigs, the PAM clustering 683 

method was used to group Escherichia and Bifidobacterium MAGs into four categories 684 
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each, represented by different colored branches. MAGs assigned to Escherichia and 685 

Bifidobacterium belonged to a total of seven and eight metagenomic species, 686 

respectively. The dissimilarity between MAGs was quantified using the cophenetic 687 

distance. Permutational multivariate analysis of variance (PERMANOVA) was used to 688 

investigate differences in cophenetic distances between MAG clusters based on ARG 689 

profiles or between MAGs (R-SDFNDJH� µYHJDQ¶� Y������ �100. With respect to genus 690 

Escherichia, MAGs from the four main species²E. coli, E. coli_D, E. flexneri, and E. 691 

dysenteriae²were included in the statistical analysis.   692 

Į-diversity and ȕ-diversity 693 

All data processing and statistical analyses were carried out using the open-source 694 

statistical program R. The observed richness of ARGs and bacterial species was used 695 

to assess within-LQGLYLGXDO�GLYHUVLW\��Į-diversity), while the Bray-Curtis index served 696 

as a measure of between-individual diversity (ȕ-GLYHUVLW\���7KH�RUGLQDWLRQ�RI�ȕ-diversity 697 

matrices was performed with NMDS or PCoA (R-SDFNDJH�µSK\ORVHT¶�v1.38.0)101. The 698 

Wilcoxon rank-sum test was used to test for differences in Į-diversity among groups 699 

�5�SDFNDJH� µVWDWV¶� Y��������3(50$129$�ZDV�XVHG� WR� LQYHVWLJDWH�GLIIHUHQFHV� LQ� ȕ-700 

diversity. Adjustments were made for multiple comparisons using the Benjamini-701 

Hochberg correction. 702 

Partitioning Clustering for samples or ARGs based on ARG composition  703 

Cluster analyses of samples or ARGs based on ARG composition were performed 704 

with Partitioning Around Medoids (PAM) clustering102 XVLQJ� WKH�5� IXQFWLRQ� µSDP¶� LQ�705 

SDFNDJH�µFOXVWHU¶�Y�����103. The average silhouette width, which serves as an estimate 706 

of the average distance between clusters, was used to assess the quality of PAM 707 

clustering; a larger value means better clustering. Euclidean distance was applied to 708 

WKH� 3$0� FOXVWHULQJ� DQDO\VLV�� 7KH� 5� IXQFWLRQ� µIYL]BQEFOXVW¶� LQ� SDFNDJH� µIDFWRH[WUD¶�709 

v1.0.7104 was used to determine and visualize the optimal number of PAM clusters. 710 

Differential abundance analysis 711 

Wilcoxon rank-sum tests were used to identify the bacterial taxa that were differentially 712 

abundant between two groups, with multiple tests corrected by FDR. Likewise, ARG, 713 

MGE, and plasmid abundances were compared between two groups using the 714 

Wilcoxon rank-sum test with FDR correction. 715 

Linear regression analysis  716 

$� OLQHDU� PRGHO� �5� IXQFWLRQ� µOP¶�� Zas fitted to investigate the extent to which the 717 

abundance of E. coli explained the variance in the number of ARGs per million genes 718 
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and the relative ARG abundance. The normality assumption of residuals was checked 719 

using the QQ plot.  720 

All statistical analyses were conducted in R version 4.1.2105. 721 

 722 

Data and code accessibility 723 

The COPSAC2010 metagenomics datasets are available in the Sequence Read 724 

Archive (SRA) under the accession number PRJNA715601. The COPSAC2000 725 

metagenomics data have been deposited in the SRA under the accession number 726 

PRJNA916259 and will be publicly accessible with the publication of the paper. 727 

According to Danish and European law, data involving the personal privacy of project 728 

participants cannot be publicly available without a cooperation agreement and data 729 

transfer agreement. All other data that support the results of this study are available 730 

from the corresponding author upon request. The R code used for the data analyses 731 

is available from the authors upon request. 732 
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Fig. S4 Phylogenetic tree of Bifidobacterium metagenome-assembled genomes (MAGs) in adult and 
infant gut based on 99% ANI analysis. Bifidobacterium MAGs are classified into four categories using PAM 
clustering based on the presence/absence of ARGs in MAGs. The different colored branches represent these 
four ARG profiles. ARG cluster 3 in infants is heavily distributed in one MAG cluster, marked with an asterisk.
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Fig. S5 The observed richness of bacterial species carrying ARGs, ARGs, drug classes, MDR ARGs, 
mobile ARGs, and mobile drug classes in the adult and infant gut, as a measure of alpha diversity. 
P-value < 0.001 and P-value > 0.05 obtained from the Wilcoxon test are indicated by three asterisks and ns.



ARG cluster

3

1

−5

0

5

2 Log (AR
G

 abundance) (G
C

PM
)

Samples

ARGs

 core ARGs
     

prevalent ARGs          

   DA ARGs
       

Fig. S6 Heatmap with the abundance of 366 ARGs across infant samples. Samples were clustered with 
Euclidean distance by complete linkage hierarchical clustering. ARGs were clustered into three categories 
with Euclidean distance by PAM clustering; Cluster 3 (core ARGs) contains high abundant and prevalent 
ARGs (N = 2) in the samples. Cluster 2 (DA ARGs) contains ARGs (N = 55) with significant abundance 
differences between samples. Cluster 1 (prevalent ARGs) contains ARGs (N = 311) whose abundance in 
the samples falls between the ARGs in cluster 3 and those in cluster 2. 
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Fig. S7 An overview of core ARGs in the adult and infant gut and the impact of antibiotic treatment on 
core ARGs in both guts. A) Prevalence of core ARGs in the adult gut and the abundance proportion of core 
ARGs on plasmids. B) Effect of antibiotics on the mean abundance of core ARGs in the adult gut, and 
P-values and FDR-adjusted P-values obtained by the Wilcoxon test for comparisons. C) Prevalence of core 
ARGs and the abundance proportion of core ARGs on plasmids in the infant gut, and the effect of antibiotics 
on the mean abundance of core ARGs and P-values and FDR-adjusted P-values obtained by the Wilcoxon 
test for comparisons.
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Fig. S8 The effects of various antibiotic exposures on bacterial observed richness and MGE abundance. 
A & B) Changes in bacterial observed richness (A) and MGE abundance (B) in the gut of adults who had 
taken five major antibiotics and antibiotic combinations in one year before sampling. Controls are those 
samples that had not taken antibiotics within one year. All P-values obtained by the Wilcoxon test adjusted 
with FDR are greater than 0.05, for all pairwise comparisons. C & D) Changes in bacterial observed richness 
(C) and MGE abundance (D) in the gut of infants who had taken three major antibiotics in 15 days before 
sampling. To exclude interactions between antibiotics, only samples that had taken a single antibiotic were 
included. Controls are those samples that had not taken antibiotics within 15 days before sampling. All 
P-values obtained by the Wilcoxon test adjusted with FDR are greater than 0.05, for all pairwise comparisons. 
The black diamond refers to the mean value. 
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Fig. S9 Density plot of average coverage in adult and infant metagenomics samples calculated by 
Nonpareil using a k-mer kernel.
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