Downloaded from orbit.dtu.dk on: May 22, 2024

DTU DTU Library

i

Bifurcation analysis of nephron pressure and flow regulation

Barfred, Mikael; Mosekilde, Erik; Holstein-Rathlou, N.-H.

Published in:
Chaos

Link to article, DOI:
10.1063/1.166175

Publication date:
1996

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Barfred, M., Mosekilde, E., & Holstein-Rathlou, N-H. (1996). Bifurcation analysis of nephron pressure and flow
regulation. Chaos, 6(3), 280-287. https://doi.org/10.1063/1.166175

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.


https://doi.org/10.1063/1.166175
https://orbit.dtu.dk/en/publications/ef9ce512-e2cb-480c-8b0b-9346485a8ab7
https://doi.org/10.1063/1.166175

Bifurcation analysis of nephron pressure and flow regulation

Mikael Barfred and Erik Mosekilde
Center for Chaos and Turbulence Studies, Department of Physics, The Technical University of Denmark,
2800 Lyngby, Denmark

Niels-Henrik Holstein-Rathlou
Department of Medical Physiology, Panum Institute, The University of Copenhagen, 2200 Copenhagen N,
Denmark

(Received 4 March 1996; accepted for publication 25 July 1996

One- and two-dimensional continuation techniques are applied to study the bifurcation structure of
a model of renal flow and pressure control. Integrating the main physiological mechanisms by which
the individual nephron regulates the incoming blood flow, the model describes the interaction
between the tubuloglomerular feedback and the response of the afferent arteriole. It is shown how
a Hopf bifurcation leads the system to perform self-sustained oscillations if the feedback gain
becomes sufficiently strong, and how a further increase of this parameter produces a folded structure
of overlapping period-doubling cascades. Similar phenomena arise in response to increasing blood
pressure. The numerical analyses are supported by existing experimental results on anesthetized
rats. © 1996 American Institute of Physid$§1054-150(06)02503-7

The function of the kidneys plays an essential role for the constant blood flow, the kidneys also dispose of mechanisms
regulation of the blood pressure and hence for the devel- that can compensate for variations in arterial blood pressure.
opment of cardiovascular diseases. At the same time, the It has long been recognized that this ability partly rests with
kidneys dispose of a variety of mechanisms to protect controls in the individual nephron, primarily the so-called
their own function against variations in the blood pres-  tubuloglomerular feedbackrlGF).” This is a negative feed-
sure. Experiments on rats have shown that these mecha- back that regulates the diameter of the afferent arteriole, and
nisms can lead to self-sustained oscillations, period dou- hence the incoming blood flow, in dependence of the chlo-
blings and chaos. Based on a detailed physiological ride concentration of the tubular fluid leaving the loop of
knowledge we have developed a model that can repro- Henle.
duce these findings. A two-parameter bifurcation analysis Early experiments by Leyssac and BaumBaahd by
of the model shows a so-called crossroad structure of Leyssac and Holstein-RathdtP demonstrated that the feed-
overlying period-doubling bifurcations previously ob-  back regulation could become unstable and generate self-
served for one- and two-dimensional mappings. sustained oscillations in the proximal intratubular pressure
with characteristic periods of 30—40 s. While for normal rats
the oscillations had the typical appearance of a limit cycle,
I. INTRODUCTION highly irregular oscillations were found for spontaneously
hypertensive ratfSHR). Oscillations were observed for

Physiological control systems represent an interesting0o—80% of the investigated nephrons. For the individual
area of application for the ideas and techniques of nonlineagephron they could last for half an hour or more. For
science. Investigations performed during the last decadasonoscillatory nephrons, self-sustained oscillations could be
have revealed the existence of a great variety of biologicaélicited by microperfusion with artificial tubular fluid, i.e., by
rhythms with periods ranging from fractions of a second toartificially increasing the rate of flow through the loop of
hours or even weeksand oscillatory and pulsatile phenom- Henle. Already in these early studies, the irregular oscillatory
ena are increasingly recognized as essential for the contr@latterns observed for SHR were suggested to be the result of
and function of normal physiological systemExamples are a chaotic process. It has subsequently been observed that
hormonal regulatior;®> and cell-to-cell signalin§,with the  similar irregular oscillations can develop for normal rats, if
secretion of pituitary and other hormones typically occurringthe arterial pressure is increased by reducing the blood sup-
in pulses with 1-3 h intervals. ply to the other kidney?

The present analysis is concerned with nonlinear phe- By integrating existing but hitherto separate physiologi-
nomena arising through interaction of the main control pro-cal descriptions of glomerular filtration, tubular dynamics,
cesses in the nephron, the functional unit of the kidney. Byand tubuloglomerular feedback, initial modeling studies by
regulating the excretion of salts, water, and metabolic endHolstein-Rathlou and Leyss¥cand by Jenseet al® were
products, the kidneys play an important role in maintaining aable to show that the total feedback system for physiologi-
suitable environment for the cells of the body. In particular,cally realistic parameter values can become unstable and ex-
the kidneys control the composition and volume of the ex-hibit self-sustained oscillations with the experimentally ob-
tracellular fluid and the blood pressure. served period. When introducing a phenomenologically

To protect their own function and secure a relativelymotivated nonlinearity in the response of the afferent
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arteriole!® the model produced a transition to chaos through INCOMING BLOOD
a cascade of period-doubling bifurcations as either the delay DELAYED l
in the feedback or the steepness of the control characteristics 7 | | ArrerenT ARTERIOLE

MACULA
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were increased. DENSA GLOMERULUS PROXIMAL

A subsequent study by Jensenall* included experi-

':. CELLS TUBULE
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mental results on period doubling in the tubular pressure (
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oscillations. This study also provided results for the fractal FILTRATION  ReaBspRPT 10N

dimension of the pressure variations both for normo- and S = /\I\I"“"\.
hypertensive rats. Finally, in the study a model for the inter- =

action of neighboring nephrons was discussed. Experimental Ve

N

<

results on synchronization of nearby nephrons were obtained DISTAL EFFERENT ARTERIOLE SvsTEM
. 5 . . TUBULE

by Holstein-Rathlod® He also observed how microperfusion

of one nephron affected the amplitude of the pressure oscil-

lations in a neighboring nephron, clearly demonstrating the o / HENLE

existence of a coupling between the functional units.

In 1990, Holstein-Rathlou and Mar$tt’ made a num-
ber of new contributions toward a detailed understanding of
the oscillatory TGF mechanism. On the experimental side Lok OF
they succeeded in simultaneously recording data for the
proximal and distal tubular pressure and for the chloride con-
centration of the liquid leaving the loop of Henle. This pro-
V!dEd a clear picture of the relative amp“tUdeS of the varlo_u%G. 1. A schematic drawing of a nephron with its glomerulus, proximal
signals as well as of their phase relations. On the theoreticglpyle, loop of Henle, and distal tubule. The diameter of the tubule is typi-
side they introduced a set of coupled partial differentialcally 20 um. Measurements of the proximal and distal tubular pressure and
equations to describe the propagation of the pressure oscill&t the distal tubular chloride concentration are performed on anesthetized
tions and the associated exchanges of water and salts aloﬁaés'
the tubule. Compared to the model suggested by Jensen

etal,’? the description of the response of the afferent arteripyack mechanism with a detailed account of the response of
ole was simplified, and the model no longer produced perioghe afferent arteriole. Our investigations reveal the existence
doublings and chaos. _ of several overlying sheets of period-doubling cascades.

With this exception, the spatially extended modelpence, when combining the TGF and the nonlinear arteriolar
seemed capable of explaining the experimental findings reresponses, the model again allows for the occurrence of
lated to the self-sustained tubular oscillations. To test if thgn505 as the arterial pressure or the feedback in the TGF
tubuloglomerular feedback could fully account for renal au-yechanism is increased. Now, however, the results are ob-

toregulation at the level of individual nephrons, a series of5ined on a much more satisfactory physiological basis.
experiments were performed in which broadband noise was

applied to the arterial pressu¥éWhen comparing the noise Il NEPHRON PRESSURE AND FLOW REGULATION
response of the model to the response of the rat nephron, it
became clear, however, that while the model correctly pre- Figure 1 illustrates the main structure of the nephron.
dicted the phase and amplitude characteristics at frequenci&ood enters the system through the afferent arteriole, a short
below approximately 70 mHz, the experiments exhibited avessel that is capable of regulating the blood flow by varying
significant peak in the noise response at higher frequenciats diameter. At the glomerulus the blood passes a system of
that was no accounted for in the model. Here, an additiona20—40 parallel capillary loops, where 25%—35% of the water
control mechanism had to be in operation. Holstein-Rathlodogether with blood constituents with molecular weight be-
and Marsh proposéd that this high-frequency regulation low 68 000 is filtered out into the proximal tubule. Blood
was associated with the myogenic response of the afferemells and proteins are retained, and the filtration process satu-
arteriole. rates when the colloid osmotic pressure balances the hydro-
Based onin vitro measurements of the stress—strain re-static pressure difference between the blood and the filtrate
lationship for muscle strips, Feldbefgrecently developed a in the tubule. The blood leaves the glomerulus through the
detailed description of the myogenic regulation and of itsefferent arteriole to pass through a new capillary bed and out
interaction with the TGF mechanism. A characteristic featuranto the venous system. In the second capillary bed, which
of this model is that the afferent arteriole tends to contract irembraces the tubule, a nearly constant fraction of the filtrate
response to increasing hydrostatic pressure in the blood. This reabsorbed.
gives rise to a new potential instability that operates in the  The nephron itself is a hollow tube with a membrane
100 mHz regime. wall formed by a single layer of highly specialized epithelial
The purpose of the present study is, by means of onecells. With its various sections: the proximal tubule, the loop
and two-dimensional continuation techniques, to examine thef Henle, the distal tubule, and the collecting duct, the total
bifurcation structure of a model that combines the TGF feedlength of the nephron is approximately 2 cm. The inner di-
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ameter, however, is only about 20m. The proximal tubule sive rats, with the hypertensive rats displaying the steeper
is located within the outer layer of the kidney, the cortex, andslopes.
is hence accessible for pressure measurements by means of Besides reacting to the TGF signal, the afferent arteriole
glass micropipettes. From the proximal tubule the nephromlso responds to changes in its transmural pressure. A simi-
traverses down through the renal medulla, forming the delar, so-called myogenic, response appears to be involved in
scending and ascending limb of the loop of Henle. Wherthe autoregulation of the blood flow to many other organs.
reentering the cortex, the ascending limb changes tissue typeo protect the capillaries and small vessels against fluctua-
to become the distal tubule. The interesting anatomical feations in blood pressure, and to secure a relatively constant
ture that the terminal part of the ascending limb passes imblood supply, the myogenic response causes the arterioles to
mediately by the afferent arteriole of the same nephron formsontract when the arterial pressure increases. Despite much
the basis for the tubuloglomerular feedback. At the point ofresearch, the detailed mechanisms of this response are still
contact, specialized tubular cell;acula densa cellsnoni-  unknown. Based oin vitro experiments on the strain—stress
tor the composition of the tubular fluid and produce a signarelationship for muscle strips, Feldbeeg al**** have pro-
that acts on the smooth muscle cells in the wall of the afferposed a mathematical model of the reaction of the arteriolar
ent arteriole. wall. This reaction is considered to consist of a passive elas-
Except that there are no large molecules, the composiic component in parallel with an active muscular compo-
tion of the ultrafiltrate in the glomerulus is like that of the nent.
blood plasma. Without changing the composition much, the In the present paper we have used a formulation to de-
proximal tubule reabsorbs approximately two-thirds of thevelop a more satisfactory description of the nonlinear re-
water and salts. As the filtrate flows into the descending limtsponse of the arteriolar wall to the feedback signal from the
of the loop of Henle, the concentration of NaCl in the inter-macula densa cells. One- and two-dimensional continuation
stitial fluid surrounding the tubule increases significantly,techniques have then been applied to study the bifurcation
and osmotic processes cause a reabsorption of water. At tisgructure of the complete model. We show how a Hopf bi-
same time salts and metabolic end products are secreted iffiercation leads the system to perform self-sustained oscilla-
the tubular fluid. The ascending limb, on the other hand, igions when the feedback gain becomes sufficiently strong. A
practically impermeable to water, and its epithelial cells confurther increase of this parameter is found to produce a
tain molecular pumps that transport sodium and chloriddolded structure of overlapping period-doubling cascades
from the tubular fluid into the surrounding interstitium. In much like the swallow tail or shrimp structures observed in
this way the NaCl concentration of the tubular fluid is againthe Chua circuff® and in bimodal one-dimensional mafs’
reduced. Detailed mathematical analyses of such structures have been
Near the terminal part of the loop of Henle, the maculaperformed, for instance, by Carcassgsl.?® by Kuznetsov
densa cells monitor the NaCl concentration of the tubulaet al,?® and by MacKay and Tressét.
fluid and produce a feedback signal to the afferent arteriole.
When the Henle flow is high, the Naand CI” concentra-
tions at the macula densa_will also be high, an_d the feedbacllﬁ_ MODEL OF NEPHRON AUTOREGULATION
causes the afferent arteriole to contract. This reduces the
glomerular filtration pressure and hence the Henle flow. Due  In our dynamic model, the proximal tubule is considered
to a finite transition time through the tubular system, the saltan elastic structure with little or no flow resistance. The tu-
concentration at the macula densa does not change instantaular pressur®, changes in response to differences between
neously upon a change in the Henle flow. An additional lagthe in- and outflows,
is associated with transmission of the signal from the macula
densa cells to the smooth muscle cells in the arteriolar wall, @_ i[F i~ Frear— Frier] 1)
presumably because this transmission involves a cascade of dt  Cy,- ™ = reab T Hen:

rocesses. A characteristic value of this delay for a normal . . ——
P y Here,Fy, is the single nephron glomerular filtration rate

rat is 4-5 st : ;
The steady-state response of the arteriolar resistance ng Cup the elastic compliance of the tubule. The Henle

changes in the Henle flow has been worked out from open-

loop experimenté? In a typical setup a paraffin block is P.— P4
inserted into the middle of the proximal tubule with micropi- FHen:R—
pettes on either side, and the magnitude of the filtration rate Hen
is measured as a function of the externally forced flow ofis determined by the difference between the proxini)) (
artificial tubular fluid into the loop of Henle. The response and the distal P4) tubular pressures and by the flow resis-
typically follows an S-shaped characteriétiexpressing the tanceRy,,in the loop of Henle. This description is clearly a
physiological restrictions on both the maximal and the mini-simplification, since a significant reabsorption of water and
mal arteriolar diameter. Like the delay in the tubuloglomeru-salts occurs during passage of the loop of Henle. The reab-
lar feedback, the steepness of this characteristic plays a maerptionF .., in the proximal tubule and the flow resistance
jor role for the stability of the feedback regulation. This Ry, are assumed to be constant.

parameter varies significantly between normal and hyperten-  The glomerular filtration rate is expressed?s

: 2
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Ffm=<1—Ha>(1—C—:) R tc) 5t = FHen™ T X1 ®
whereH, is the afferent hematocrit.e., the fraction that the dy, 3
blood cells constitute of the total blood volume at the en- gy ~ T (X1~ X2), (€)

trance to the glomerular capillarie<, andC, are the con-
centrations of protein in the afferent and efferent plasma, dxs
respectivelyP, andP are the arterial and glomerular blood at =7 (x27x3), (10
pressures, respectively, afr)}, is the hemodynamic resis-
tance of the afferent arterioleP{—P,)/R, determines the
incoming blood flow. Multiplied by (+H,) this gives the

w

with T being the total delay time. This representation implies
that the delay is represented as a smoothed processyyyith

plasma flow. Finally, the factor (1C,/C,) relates the fil- X2 @ndxs being intermediate variables in the delay chain.

tration rate to the change in protein concentration for the The afferent arteriole is divided into two serially coupled

plasma remaining in the vessel. sections of which the firsfrepresenting a fractio@ of the
The glomerular pressur, is determined by distribut- total length is assumed to have a constant hemodynamic

ing the arterial to venous pressure drop between the afferefgSistance, while the secoridloser to the glomerulysis
and the efferent arteriolar resistance, i.e., as the solution tg2Pable of varying its diameter and hence the flow resistance
the linear equation in dependence of the tubuloglomerular feedback activafion,

Ra= Rao[ﬂ+(l_,3)r74]- (11)

' ) Here, R, denotes a normal value of the arteriolar resis-
) tance andr is the radius of the active part of the vessel,

V\{here the venous pressdﬂ-;; and the efferent arteriolar re- | J.malized relatively to its resting value.

sistanceR,, are considered as constants. Experiments have shown that arterioles tend to perform

The protein concentratio®, in the efferent blood is  jamned, oscillatory contractions in response to external
determined from the assumption that filtration equilibrium is g4, 11 1731 This may be described by means of a second-

gstaplished before the blood leaves the glomerular papillaBrder differential equation of the form
ies, i.e., that the glomerular hydrostatic pressure minus the

efferent colloid osmotic pressurB,, equals the tubular d’r dr Pa—Peq
pressure. By virtue of a nonlinear relation between the os- d2 ' ° dt | @
motic pressure and the protein concentratin

P,—P
aTag_ F it

Pg=P,+Re

0. (12

Here,d is a characteristic time constant describing the damp-
Posmi=aC+bC?, (50  ing of the oscillations and is an effective mass-to-elasticity

. . ratio for the arteriolar wall,
this leads to an expression of the form

1
1 P. ==
Cezﬁ[\/a2—4b(Pt—Pg)—a]. (6) a2
) . is the average pressure in the active part of the arteriole, and

In the computer model the simultaneous equatitd)s Peqis the value of this pressure for which the arteriole is in

(4), and(6) are combined into a single third-order equation g jijibrium with its present radius and the present muscular
for C.. For relevant values of the various parameters, this,tivation.

equation has a single, positive solution. This solution is de-  The reaction of the arterial wall to changes in the blood

termined numerically for each integration step. ~_pressure is considered to consist of a passive, elastic compo-
The glomerular feedback is described by an empiricallyeng in parallel with an active, muscular response. The elas-
based sigmoidal relation between the activawoof the af-  ic component is determined by the properties of the connec-

ferent arteriole and the delayed Henle flgy tive tissue, which consists mostly of collagen and elastin.

Rao
Pa=(Pa=Pg)B 5~ +Pq (13
a

Yrma— Ymin The relation between strakand elastic stress, for homo-
Y= ¢max_1+exd 2(3xa/ TFro—S)]" (7)  geneous soft tissue may be describetf as
en
Te=Cp(e7—1), (14)

Here, ¥inax and ¥ denote, respectively, the maximum
and the minimum values of the activatiam.determines the whereC, and y are constants characterizing the tissue. For
slope of the feedback curve, aithe displacement of the very small values o€ (ye<1), we have a linear strain—stress
curve along the flow axigr 1S @ Normalization value for relation. However, for largee values, the stress rises expo-
the Henle flow. nentially with the strain.

The delay in the tubuloglomerular feedback, arising both ~ The active stress—strain relation due to contraction of the
from the transit time through the loop of Henle and from thevascular smooth muscles appears to be surprisingly sitfiple.
cascaded processes between the macula densa cells and foe somee,,,, the active stress, is maximum, and on both
smooth muscle cells in the arteriolar wall, is represented bgides the stress decreases almost linearly Wéthen,-
means of three first-order coupled differential equations, Moreover, the stress is proportional to the muscle tgnBy
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FIG. 2. Relation between the equilibrium transmural pres®ggand the FIG. 3. Brute force bifurcation diagram for the nephron model for a delay in
normalized arteriolar radiusfor different values of the muscular activation the tubuloglomerular feedbadk=3.0 s. The period-doubling cascade accu-

4. The dotted curves represent the analytic approximation applied in th&ulates approximately ak=12.0. Note the abrupt displacement of the
present study. period-2 solution atv=9.3.

numerically integrating the passive and active contributionsThey have all been adopted from Jenstral.® where the

to the response across the arteriolar wall, one can establishogigin of each parameter is discussed.

relation between the equilibrium preSZ%LZF‘P‘gq, the normal-

ized radiusr, and the activation leval.="<* This relation is

represented by the fully drawn curves in Fig. 2. As an ap—IV' BIFURCATION STRUCTURE

proximation to these curves, represented by dotted lines in  Figure 3 shows a brute force bifurcation diagram ob-

Fig. 2, we have applied an analytic expression of the form tained for the nephron model when scanning the steepness
Pog=2.4% el 144 1 gy 1) of the response characteristics while keeping the Qelay in the

tubuloglomerular feedback constanflat 3.0 s. The integra-

. tion was performed with a fourth/fifth order Runge—Kutta

11 e304 0 " 72Ar+0.9 (15 pair with automatic time step control. For small valuesapf

. i ) the model displays a stable equilibrium solution.4t3.4, a

where Peq is expressed in kPdl kPa10° N/mP=7.5 supercritical Hopf bifurcation takes place, and fex7.5 a

mm Hg. The first two terms in(15) represent the pressure heriod-doubling sequence is initiated, accumulating with the

versus radius relation for the nonactivated arteriole. It COoNgevelopment of chaos aroumd=12.0. Similar results can be

sists of an exponential and a linear term arising from the twqy5i3ined by varying the arterial pressiRe or the feedback

terms in the expressiofi4) for 7,. The terms proportional delayT.

to ¢ represent the active response. This is approximately op 5 qualitative level these results agree both with the

given by a sigmoidal term superimposed onto a linear termopseryation of period doubling in the response of the neph-

The activation from the TGF mechanism is assumed to bgyp, 1o an external disturbané&and with the observation of

given by (7). _ o chaos in normotensive rats made hypertensive by clipping
The above equations complete the description of OUpnhe of the renal arteridd. Genetically hypertensive rats

model. In total we have six coupled ordinary differential (SHR) are supposed to have significantly largervalues

equations, each representing an essential physiological relgsan normal rats, and the model also agrees with the obser-

tion. Because of the need to numerically evalu@gen each  \ation that these rats usually display chaotic pressure
integration step, the model cannot be brought onto an eX;ariations®

T

plicit form. The applied parameters are specified in Table I. Figure 4 shows the phase plot of the chaotic attractor
obtained forT=3.0 s ande=14.5. Here, we have displayed
TABLE I. List of model parameters. the normalized arteriolar radiusagainst the proximal tubu-
lar pressurd®; . With physiologically realistic parameter val-
P,=13.3 kPa Ca=54 g/l ues the model reproduces the observed oscillatory behavior
P,=13 kPa a=2L7Pallg) o1 the tubul ith characteristic periods of 2030
P’ —06 kPa b—0.39 Palig)® or the tubular pressure with characteristic periods of 20—
R,=2.4 kPa(s/n) =20 kPa & s. The amphtude in the pressure variations also correspond to
R.=1.9 kPa(s/nl) d=0.04/s the experimentally obtained values.
Rhen=5.3 kPa(s/nl) B=0.67 At a=9.3, the bifurcation diagram in Fig. 3 shows an
ﬁtub_=o350 ni/kPa :Z'mmjg-ig abrupt displacement of the period-2 solution. Calculation of

the characteristic multipliers shows that one of these comes
close to 1.0, but never reaches the unit circle. Hence, there is
no bifurcation in this point, but the feature arises because the

Freas=0.3 nl/s 1heq=0.38
Fhenc=0.2 nl/s

CHAOS, Vol. 6, No. 3, 1996
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FIG. 4. Phase plot for the chaotic solution obtainedder14.5 andT = 3.0 T/s
s. The normalized arteriolar radiuss displayed versus the proximal tubular
pressureP, .

FIG. 6. Two-dimensional phase diagram illustrating the overlying period-
doubling cascades in the nephron model. The normal operation point is
close toa=7 andT=4.5 s.
scan passes close to the cusp of a saddle-node bifurcation. As
a complement to the brute force bifurcation diagram in Fig.would explain the temporal behavior of the nephrons with
3, Fig. 5 shows the results of a one-dimensional continuatioperiods of self-sustained oscillations interrupted by periods
scan. Here, we have followed the solutions from the equilib-of stable behavior.
rium point through the Hopf bifurcation and three period- In accordance with Fig. 3, a vertical scan in Fig. 6 for
doubling bifurcations to the period-8 solution generated afl =3 s first passes the Hopf bifurcation curveast3.5. At
a=11.7. Stable solutions are shown as full curves and una=7.5 we meet the®D'~2 period-doubling curve in which
stable solutions as broken curves. the stable period-2 solution is born. Hereafter 23 ~* and

A more complete picture of the bifurcation structure of PDg =2 curves follow in which stable period-4 and period-8
our model is provided by the two-dimensional phase diagransolutions are born. We also note how the scan def9.3
in Fig. 6. Starting aroundr=1.3 for T=0, the lowest curve passes very close to the cusp of B saddle-node bifur-
in this diagram is the Hopf bifurcation curve. Below this cation curve.
curve the model displays a stable equilibrium point. The nor-  The details of the bifurcation diagram are more easily
mal operation point around=7 andT=4.5 s is just at the resolved in Fig. 7, which is a magnification of the center part
edge of this Hopf bifurcation. This seems to explain the ex-of Fig. 6. This magnification reveals a variant of the charac-
perimental finding that about 70% of the nephrons in a norteristic structure of crossing fold and flip bifurcations previ-
mal rat perform self-sustained oscillations while the remain-ously observed, for instance, for a variety of one- and two-
ing show stable equilibrium behavior. We can also imagine
that the system is shifted back and forth across the Hopf
bifurcation curve by variations in arterial pressure. This

15 Y T T T

P, / mmHg

10 1 1 | |

FIG. 5. One-dimensional continuation scan for 3 s. This diagram fol-

lows the variation of the equilibrium point and of the period-1, -2, -4, and -8 FIG. 7. Magnification of part of the bifurcation diagram in Fig. 6. Note the
solutions through the regions where they are stéhiik curves as well as  overlying structure of several different period-doubling cascades. This is a
where they are unstableotted curves variant of the so-called crossroad structure.
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14 T V. DISCUSSION

13.5 Tl We have analyzed the bifurcation structure of a rela-
tively detailed model of the tubuloglomerular feedback

13 ".._'_"_':_“_‘"" mechanism in kidney pressure and flow control. Almost all

o0

% h experimental work on this problem relates to rats, and the
E 1251 LT model parameters also pertains specifically to this system. It
v s g is supposed, however, that similar phenomena take place in

the human kidney, and that they play a major role for the

115 k- development of high blood pressure. A better understanding

of these phenomena may therefore be significant for the
11 ' L L L L treatment of some of the cardiovascular diseases that plague

9 10 w1 13 14 our industrialized societies.

: , With physiologically based relations between the various
FIG. 8. One-parameter bifurcation scan fram8, T=4 stoa=14,T=2.5 . . ..
s. Note how the saddle-node bifurcations fold the period-doubling sequence\éanables' and with realistic parameter values, the model re-
on top of one another. produces many of the experimental findings. First of all, the
model can perform self-sustained oscillations with the cor-
rect period and amplitude. Second, by operating close to a
A—jopf threshold the model explains why some nephrons os-
cillate and others do not. Finally, the model can produce
period doubling and chaos as observed in certain experi-
ments. Unfortunately, one cannot determine the parameter
values pertaining to the specific nephron under study, and for
this reason it is not possible directly to relate experimental
results to the theoretical predictions.
From a physical point of view the observed nonlinear

dimensional map% ~?° This structure consists of period-
doubling cascades folded on top of one another by saddl
node bifurcations.

As illustrated in Fig. 8, a linear scan fromr=8, T=4 s
toward a=14, T=2.5 s first takes us across tRD'~?2 bi-
furcation curve at which the first period-doubling occurs. We
hereafter cross the lower branches of BB@2~* and PD2 8
curves at which stable period-4 and period-8 solutions ap

pear. The scan continues through the upper branch of th((jayn

PD4~8 curve to meet the upper branch o8& saddle-node tr?mlc %henomer;la derive front1 thetf;ictt that thte ne}phr?n 'S
bifurcation curve. Here, the stable period-4 solution destapi@ nermodynamically open system that operates far irom

lizes. The period-4 saddle can be followed backward to théhermal equilibrium. The heart cqntinues to pump blood
lower branch of the sam8N* curve, where it again stabi- through the afferent/efferent arteriolar system and hereby

lizes. The stable period-4 solution passes through anothé‘paintains the hydrostatic pressure difference required for fil-

PD*8 flip bifurcation and two reverse flip bifurcations to tration to take place. In addition, the epithelial cells in the
reestablish a stable period-2 solution immediately before ifuular wall depend on a steady supply of metabolic energy

reaches the upper branch of t@\ curve. Here, the to perform their active secretion of foreign chemicals into

period-2 solution is destabilized in a saddle-node bifurcationf"Ind reabsorption of salts from the filtrate. From a control

The unstable period-2 solution can be followed backward t&heoretical point of view, the instability may be ascribed to
the lower branch of th& N’ curve, where it regains stability the steepness of the regulatory characteristics. If the tubulo-

in a new saddle-node bifurcation. The stable period-2 Soluglomerular feedback depended less strongly on the Henle
tion formed in this bifurcation can hereafter be followed upﬂow’ the system W(_)UId be stable._ L
through thePD2~4, PD{~8, and PDE~1® period-doubling The most obvious shortcoming of the model in its
curves into the chaotic regime in the top left corner of thePresent state appears to be the lack of a proper account of the
diagram. On the way it passes the tip of a n8W' saddle myogenic response of the first section of the arteriolar wall.
node an;j crosses anotteb® 16 period-doubling curve It is likely that this response interacts with the tubuloglom-

Besides these period-doubling sequences, the nephrcﬁﬁ""ar response. If, for instance, a TGF-mediated constriction
model exhibits an additional period-doubling Céscﬁddi- as caused the lower part of the afferent arteriole to contract,

cated by indexc). It is observed in Fig. 7 how the period- the hydrostatic pressure in the upper part of the vessel will
doubling curves associated with the cascade cross the increase. This will cause that part of the vessel to contract,

period-doubling curves associated with the other cascadeﬁ?d henr_;e furthgr Increase the hemodynamic .reS|stance of
Hence, there must be additional saddle-node bifurcationS'® artenolg. It is -also likely f[hat the myogenic response
folding these bifurcation cascades on top of one another. It iglays a major role in the coupling of neighboring nephrons.
also noted that th@®DZ~® curve crosses th@D2~* curve.

This implies the existence of é8N* saddle-node bifurcation
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