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Bifurcation analysis of nephron pressure and flow regulation
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One- and two-dimensional continuation techniques are applied to study the bifurcation structu
a model of renal flow and pressure control. Integrating the main physiological mechanisms by w
the individual nephron regulates the incoming blood flow, the model describes the interac
between the tubuloglomerular feedback and the response of the afferent arteriole. It is shown
a Hopf bifurcation leads the system to perform self-sustained oscillations if the feedback
becomes sufficiently strong, and how a further increase of this parameter produces a folded stru
of overlapping period-doubling cascades. Similar phenomena arise in response to increasing
pressure. The numerical analyses are supported by existing experimental results on anesth
rats. © 1996 American Institute of Physics.@S1054-1500~96!02503-7#
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The function of the kidneys plays an essential role for the
regulation of the blood pressure and hence for the devel-
opment of cardiovascular diseases. At the same time, the
kidneys dispose of a variety of mechanisms to protect
their own function against variations in the blood pres-
sure. Experiments on rats have shown that these mecha-
nisms can lead to self-sustained oscillations, period dou-
blings and chaos. Based on a detailed physiological
knowledge we have developed a model that can repro-
duce these findings. A two-parameter bifurcation analysis
of the model shows a so-called crossroad structure of
overlying period-doubling bifurcations previously ob-
served for one- and two-dimensional mappings.

I. INTRODUCTION

Physiological control systems represent an interestin
area of application for the ideas and techniques of nonline
science. Investigations performed during the last decad
have revealed the existence of a great variety of biologic
rhythms with periods ranging from fractions of a second t
hours or even weeks,1 and oscillatory and pulsatile phenom-
ena are increasingly recognized as essential for the cont
and function of normal physiological systems.2 Examples are
hormonal regulation,3–5 and cell-to-cell signaling,6 with the
secretion of pituitary and other hormones typically occurrin
in pulses with 1–3 h intervals.

The present analysis is concerned with nonlinear ph
nomena arising through interaction of the main control pro
cesses in the nephron, the functional unit of the kidney. B
regulating the excretion of salts, water, and metabolic en
products, the kidneys play an important role in maintaining
suitable environment for the cells of the body. In particula
the kidneys control the composition and volume of the ex
tracellular fluid and the blood pressure.

To protect their own function and secure a relativel
CHAOS 6 (3), 1996 1054-1500/96/6(3)/280/8/$10.0
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constant blood flow, the kidneys also dispose of mechanism
that can compensate for variations in arterial blood pressure
It has long been recognized that this ability partly rests with
controls in the individual nephron, primarily the so-called
tubuloglomerular feedback~TGF!.7 This is a negative feed-
back that regulates the diameter of the afferent arteriole, an
hence the incoming blood flow, in dependence of the chlo
ride concentration of the tubular fluid leaving the loop of
Henle.

Early experiments by Leyssac and Baumbach8 and by
Leyssac and Holstein-Rathlou9,10demonstrated that the feed-
back regulation could become unstable and generate se
sustained oscillations in the proximal intratubular pressure
with characteristic periods of 30–40 s. While for normal rats
the oscillations had the typical appearance of a limit cycle
highly irregular oscillations were found for spontaneously
hypertensive rats~SHR!. Oscillations were observed for
50%–80% of the investigated nephrons. For the individua
nephron they could last for half an hour or more. For
nonoscillatory nephrons, self-sustained oscillations could b
elicited by microperfusion with artificial tubular fluid, i.e., by
artificially increasing the rate of flow through the loop of
Henle. Already in these early studies, the irregular oscillatory
patterns observed for SHR were suggested to be the result
a chaotic process. It has subsequently been observed th
similar irregular oscillations can develop for normal rats, if
the arterial pressure is increased by reducing the blood sup
ply to the other kidney.11

By integrating existing but hitherto separate physiologi-
cal descriptions of glomerular filtration, tubular dynamics,
and tubuloglomerular feedback, initial modeling studies by
Holstein-Rathlou and Leyssac12 and by Jensenet al.13 were
able to show that the total feedback system for physiologi
cally realistic parameter values can become unstable and e
hibit self-sustained oscillations with the experimentally ob-
served period. When introducing a phenomenologically
motivated nonlinearity in the response of the afferent
2800 © 1996 American Institute of Physics
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281Barfred, Mosekilde, and Holstein-Rathlou: Bifurcation analysis
arteriole,13 the model produced a transition to chaos throug
a cascade of period-doubling bifurcations as either the de
in the feedback or the steepness of the control characteris
were increased.

A subsequent study by Jensenet al.14 included experi-
mental results on period doubling in the tubular pressu
oscillations. This study also provided results for the fract
dimension of the pressure variations both for normo- an
hypertensive rats. Finally, in the study a model for the inte
action of neighboring nephrons was discussed. Experimen
results on synchronization of nearby nephrons were obtain
by Holstein-Rathlou.15 He also observed how microperfusion
of one nephron affected the amplitude of the pressure os
lations in a neighboring nephron, clearly demonstrating th
existence of a coupling between the functional units.

In 1990, Holstein-Rathlou and Marsh16,17 made a num-
ber of new contributions toward a detailed understanding
the oscillatory TGF mechanism. On the experimental sid
they succeeded in simultaneously recording data for t
proximal and distal tubular pressure and for the chloride co
centration of the liquid leaving the loop of Henle. This pro
vided a clear picture of the relative amplitudes of the variou
signals as well as of their phase relations. On the theoreti
side they introduced a set of coupled partial differenti
equations to describe the propagation of the pressure osc
tions and the associated exchanges of water and salts al
the tubule. Compared to the model suggested by Jen
et al.,13 the description of the response of the afferent arte
ole was simplified, and the model no longer produced peri
doublings and chaos.

With this exception, the spatially extended mode
seemed capable of explaining the experimental findings
lated to the self-sustained tubular oscillations. To test if th
tubuloglomerular feedback could fully account for renal au
toregulation at the level of individual nephrons, a series
experiments were performed in which broadband noise w
applied to the arterial pressure.18 When comparing the noise
response of the model to the response of the rat nephron
became clear, however, that while the model correctly pr
dicted the phase and amplitude characteristics at frequenc
below approximately 70 mHz, the experiments exhibited
significant peak in the noise response at higher frequenc
that was no accounted for in the model. Here, an addition
control mechanism had to be in operation. Holstein-Rathlo
and Marsh proposed19 that this high-frequency regulation
was associated with the myogenic response of the affer
arteriole.

Based onin vitro measurements of the stress–strain r
lationship for muscle strips, Feldberg20 recently developed a
detailed description of the myogenic regulation and of i
interaction with the TGF mechanism. A characteristic featu
of this model is that the afferent arteriole tends to contract
response to increasing hydrostatic pressure in the blood. T
gives rise to a new potential instability that operates in th
100 mHz regime.

The purpose of the present study is, by means of on
and two-dimensional continuation techniques, to examine t
bifurcation structure of a model that combines the TGF fee
CHAOS, Vol.
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back mechanism with a detailed account of the response o
the afferent arteriole. Our investigations reveal the existenc
of several overlying sheets of period-doubling cascades
Hence, when combining the TGF and the nonlinear arteriola
responses, the model again allows for the occurrence o
chaos as the arterial pressure or the feedback in the TG
mechanism is increased. Now, however, the results are ob
tained on a much more satisfactory physiological basis.

II. NEPHRON PRESSURE AND FLOW REGULATION

Figure 1 illustrates the main structure of the nephron.
Blood enters the system through the afferent arteriole, a sho
vessel that is capable of regulating the blood flow by varying
its diameter. At the glomerulus the blood passes a system o
20–40 parallel capillary loops, where 25%–35% of the wate
together with blood constituents with molecular weight be-
low 68 000 is filtered out into the proximal tubule. Blood
cells and proteins are retained, and the filtration process sat
rates when the colloid osmotic pressure balances the hydro
static pressure difference between the blood and the filtrat
in the tubule. The blood leaves the glomerulus through the
efferent arteriole to pass through a new capillary bed and ou
into the venous system. In the second capillary bed, which
embraces the tubule, a nearly constant fraction of the filtrat
is reabsorbed.

The nephron itself is a hollow tube with a membrane
wall formed by a single layer of highly specialized epithelial
cells. With its various sections: the proximal tubule, the loop
of Henle, the distal tubule, and the collecting duct, the tota
length of the nephron is approximately 2 cm. The inner di-

FIG. 1. A schematic drawing of a nephron with its glomerulus, proximal
tubule, loop of Henle, and distal tubule. The diameter of the tubule is typi-
cally 20mm. Measurements of the proximal and distal tubular pressure and
of the distal tubular chloride concentration are performed on anesthetize
rats.
6, No. 3, 1996
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282 Barfred, Mosekilde, and Holstein-Rathlou: Bifurcation analysis
ameter, however, is only about 20mm. The proximal tubule
is located within the outer layer of the kidney, the cortex, a
is hence accessible for pressure measurements by mea
glass micropipettes. From the proximal tubule the neph
traverses down through the renal medulla, forming the
scending and ascending limb of the loop of Henle. Wh
reentering the cortex, the ascending limb changes tissue
to become the distal tubule. The interesting anatomical f
ture that the terminal part of the ascending limb passes
mediately by the afferent arteriole of the same nephron for
the basis for the tubuloglomerular feedback. At the point
contact, specialized tubular cells~macula densa cells! moni-
tor the composition of the tubular fluid and produce a sig
that acts on the smooth muscle cells in the wall of the aff
ent arteriole.

Except that there are no large molecules, the comp
tion of the ultrafiltrate in the glomerulus is like that of th
blood plasma. Without changing the composition much,
proximal tubule reabsorbs approximately two-thirds of t
water and salts. As the filtrate flows into the descending li
of the loop of Henle, the concentration of NaCl in the inte
stitial fluid surrounding the tubule increases significant
and osmotic processes cause a reabsorption of water. A
same time salts and metabolic end products are secreted
the tubular fluid. The ascending limb, on the other hand
practically impermeable to water, and its epithelial cells co
tain molecular pumps that transport sodium and chlor
from the tubular fluid into the surrounding interstitium. I
this way the NaCl concentration of the tubular fluid is aga
reduced.

Near the terminal part of the loop of Henle, the macu
densa cells monitor the NaCl concentration of the tubu
fluid and produce a feedback signal to the afferent arteri
When the Henle flow is high, the Na1 and Cl2 concentra-
tions at the macula densa will also be high, and the feedb
causes the afferent arteriole to contract. This reduces
glomerular filtration pressure and hence the Henle flow. D
to a finite transition time through the tubular system, the s
concentration at the macula densa does not change inst
neously upon a change in the Henle flow. An additional
is associated with transmission of the signal from the mac
densa cells to the smooth muscle cells in the arteriolar w
presumably because this transmission involves a cascad
processes. A characteristic value of this delay for a norm
rat is 4–5 s.21

The steady-state response of the arteriolar resistanc
changes in the Henle flow has been worked out from op
loop experiments.22 In a typical setup a paraffin block is
inserted into the middle of the proximal tubule with microp
pettes on either side, and the magnitude of the filtration r
is measured as a function of the externally forced flow
artificial tubular fluid into the loop of Henle. The respon
typically follows an S-shaped characteristic23 expressing the
physiological restrictions on both the maximal and the mi
mal arteriolar diameter. Like the delay in the tubuloglome
lar feedback, the steepness of this characteristic plays a
jor role for the stability of the feedback regulation. Th
parameter varies significantly between normal and hyper
CHAOS, Vol

Downloaded¬11¬Aug¬2009¬to¬192.38.67.112.¬Redistribution¬subject¬
nd
ns of
ron
de-
en
type
ea-
im-
ms
of

nal
er-

osi-
e
the
he
mb
r-
ly,
t the
into
, is
n-
ide
n
in

la
lar
ole.

ack
the
ue
alt
anta-
lag
ula
all,
e of
al

e to
en-

i-
ate
of
se

ni-
ru-
ma-
is
ten-

sive rats, with the hypertensive rats displaying the steepe
slopes.

Besides reacting to the TGF signal, the afferent arteriole
also responds to changes in its transmural pressure. A sim
lar, so-called myogenic, response appears to be involved in
the autoregulation of the blood flow to many other organs.
To protect the capillaries and small vessels against fluctua
tions in blood pressure, and to secure a relatively constan
blood supply, the myogenic response causes the arterioles
contract when the arterial pressure increases. Despite muc
research, the detailed mechanisms of this response are st
unknown. Based onin vitro experiments on the strain–stress
relationship for muscle strips, Feldberget al.20,24 have pro-
posed a mathematical model of the reaction of the arteriola
wall. This reaction is considered to consist of a passive elas
tic component in parallel with an active muscular compo-
nent.

In the present paper we have used a formulation to de
velop a more satisfactory description of the nonlinear re-
sponse of the arteriolar wall to the feedback signal from the
macula densa cells. One- and two-dimensional continuation
techniques have then been applied to study the bifurcation
structure of the complete model. We show how a Hopf bi-
furcation leads the system to perform self-sustained oscilla
tions when the feedback gain becomes sufficiently strong. A
further increase of this parameter is found to produce a
folded structure of overlapping period-doubling cascades
much like the swallow tail or shrimp structures observed in
the Chua circuit25 and in bimodal one-dimensional maps.26,27

Detailed mathematical analyses of such structures have bee
performed, for instance, by Carcasseset al.,28 by Kuznetsov
et al.,29 and by MacKay and Tresser.30

III. MODEL OF NEPHRON AUTOREGULATION

In our dynamic model, the proximal tubule is considered
an elastic structure with little or no flow resistance. The tu-
bular pressurePt changes in response to differences between
the in- and outflows,

dPt
dt

5
1

Ctub
@Ffilt2F reab2FHen#. ~1!

Here,Ffilt is the single nephron glomerular filtration rate
and Ctub the elastic compliance of the tubule. The Henle
flow,

FHen5
Pt2Pd

RHen
, ~2!

is determined by the difference between the proximal (Pt)
and the distal (Pd) tubular pressures and by the flow resis-
tanceRHen in the loop of Henle. This description is clearly a
simplification, since a significant reabsorption of water and
salts occurs during passage of the loop of Henle. The reab
sorptionF reab in the proximal tubule and the flow resistance
RHen are assumed to be constant.

The glomerular filtration rate is expressed as12
. 6, No. 3, 1996
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283Barfred, Mosekilde, and Holstein-Rathlou: Bifurcation analysis
Ffilt5~12Ha!S 12
Ca

Ce
D Pa2Pg

Ra
, ~3!

whereHa is the afferent hematocrit~i.e., the fraction that the
blood cells constitute of the total blood volume at the e
trance to the glomerular capillaries!. Ca andCe are the con-
centrations of protein in the afferent and efferent plasm
respectively,Pa andPg are the arterial and glomerular blood
pressures, respectively, andRa is the hemodynamic resis-
tance of the afferent arteriole. (Pa2Pg)/Ra determines the
incoming blood flow. Multiplied by (12Ha) this gives the
plasma flow. Finally, the factor (12Ca/Ce) relates the fil-
tration rate to the change in protein concentration for t
plasma remaining in the vessel.

The glomerular pressurePg is determined by distribut-
ing the arterial to venous pressure drop between the affer
and the efferent arteriolar resistance, i.e., as the solution
the linear equation

Pg5Pv1ReS Pa2Pg

Ra
2Ffilt D , ~4!

where the venous pressurePv and the efferent arteriolar re-
sistanceRe are considered as constants.

The protein concentrationCe in the efferent blood is
determined from the assumption that filtration equilibrium
established before the blood leaves the glomerular capil
ies, i.e., that the glomerular hydrostatic pressure minus
efferent colloid osmotic pressurePosm equals the tubular
pressure. By virtue of a nonlinear relation between the o
motic pressure and the protein concentrationC,

Posm5aC1bC2, ~5!

this leads to an expression of the form

Ce5
1

2b
@Aa224b~Pt2Pg!2a#. ~6!

In the computer model the simultaneous equations~3!,
~4!, and ~6! are combined into a single third-order equatio
for Ce . For relevant values of the various parameters, th
equation has a single, positive solution. This solution is d
termined numerically for each integration step.

The glomerular feedback is described by an empirica
based sigmoidal relation between the activationc of the af-
ferent arteriole and the delayed Henle flowx3,

c5cmax2
cmax2cmin

11exp@a~3x3 /TFHen02S!#
. ~7!

Here,cmax andcmin denote, respectively, the maximum
and the minimum values of the activation.a determines the
slope of the feedback curve, andS the displacement of the
curve along the flow axis.FHen0 is a normalization value for
the Henle flow.

The delay in the tubuloglomerular feedback, arising bo
from the transit time through the loop of Henle and from th
cascaded processes between the macula densa cells an
smooth muscle cells in the arteriolar wall, is represented
means of three first-order coupled differential equations,
CHAOS, Vol.
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dx1

dt
5FHen2

3

T
x1 , ~8!

dx2

dt
5
3

T
~x12x2!, ~9!

dx3

dt
5
3

T
~x22x3!, ~10!

with T being the total delay time. This representation implie
that the delay is represented as a smoothed process, withx1,
x2, andx3 being intermediate variables in the delay chain.

The afferent arteriole is divided into two serially coupled
sections of which the first~representing a fractionb of the
total length! is assumed to have a constant hemodynam
resistance, while the second~closer to the glomerulus! is
capable of varying its diameter and hence the flow resistan
in dependence of the tubuloglomerular feedback activation,20

Ra5Ra0@b1~12b!r24#. ~11!

Here,Ra0 denotes a normal value of the arteriolar resis
tance andr is the radius of the active part of the vessel
normalized relatively to its resting value.

Experiments have shown that arterioles tend to perform
damped, oscillatory contractions in response to extern
stimuli.17,31 This may be described by means of a second
order differential equation of the form

d2r

dt2
1d

dr

dt
2
Pav2Peq

v
50. ~12!

Here,d is a characteristic time constant describing the damp
ing of the oscillations andv is an effective mass-to-elasticity
ratio for the arteriolar wall,

Pav5
1

2 S Pa2~Pa2Pg!b
Ra0

Ra
1PgD ~13!

is the average pressure in the active part of the arteriole, a
Peq is the value of this pressure for which the arteriole is in
equilibrium with its present radius and the present muscula
activation.

The reaction of the arterial wall to changes in the blood
pressure is considered to consist of a passive, elastic comp
nent in parallel with an active, muscular response. The ela
tic component is determined by the properties of the conne
tive tissue, which consists mostly of collagen and elastin
The relation between straine and elastic stresste for homo-
geneous soft tissue may be described as32

te5C0~e
ge21!, ~14!

whereC0 andg are constants characterizing the tissue. Fo
very small values ofe ~ge!1!, we have a linear strain–stress
relation. However, for largere values, the stress rises expo-
nentially with the strain.

The active stress–strain relation due to contraction of th
vascular smooth muscles appears to be surprisingly simple33

For someemax the active stressta is maximum, and on both
sides the stress decreases almost linearly withue2emaxu.
Moreover, the stress is proportional to the muscle tonec. By
6, No. 3, 1996
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284 Barfred, Mosekilde, and Holstein-Rathlou: Bifurcation analysis
numerically integrating the passive and active contributio
to the response across the arteriolar wall, one can establi
relation between the equilibrium pressurePeq, the normal-
ized radiusr , and the activation levelc.20,24This relation is
represented by the fully drawn curves in Fig. 2. As an a
proximation to these curves, represented by dotted lines
Fig. 2, we have applied an analytic expression of the form

Peq52.43e10~r21.4!11.6~r21!

1cS 4.7

11e13~0.42r ! 17.2~r10.9! D , ~15!

where Peq is expressed in kPa~1 kPa,103 N/m2>7.5
mm Hg!. The first two terms in~15! represent the pressure
versus radius relation for the nonactivated arteriole. It co
sists of an exponential and a linear term arising from the tw
terms in the expression~14! for te . The terms proportional
to c represent the active response. This is approximat
given by a sigmoidal term superimposed onto a linear ter
The activation from the TGF mechanism is assumed to
given by ~7!.

The above equations complete the description of o
model. In total we have six coupled ordinary differentia
equations, each representing an essential physiological r
tion. Because of the need to numerically evaluateCe in each
integration step, the model cannot be brought onto an
plicit form. The applied parameters are specified in Table

FIG. 2. Relation between the equilibrium transmural pressurePeq and the
normalized arteriolar radiusr for different values of the muscular activation
c. The dotted curves represent the analytic approximation applied in
present study.

TABLE I. List of model parameters.

Pa513.3 kPa Ca554 g/l
Pv51.3 kPa a521.7 Pa~l/g!
Pd50.6 kPa b50.39 Pa~l/g!2

Ra52.4 kPa~s/nl! v520 kPa s2

Re51.9 kPa~s/nl! d50.04/s
RHen55.3 kPa~s/nl! b50.67
Ctub53.0 nl/kPa cmin50.20
Ha50.5 cmax50.44
F reab50.3 nl/s ceq50.38
FHen050.2 nl/s
CHAOS, Vol.
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They have all been adopted from Jensenet al.,13 where the
origin of each parameter is discussed.

IV. BIFURCATION STRUCTURE

Figure 3 shows a brute force bifurcation diagram ob
tained for the nephron model when scanning the steepnessa
of the response characteristics while keeping the delay in th
tubuloglomerular feedback constant atT53.0 s. The integra-
tion was performed with a fourth/fifth order Runge–Kutta
pair with automatic time step control. For small values ofa,
the model displays a stable equilibrium solution. Ata>3.4, a
supercritical Hopf bifurcation takes place, and fora>7.5 a
period-doubling sequence is initiated, accumulating with th
development of chaos arounda512.0. Similar results can be
obtained by varying the arterial pressurePa or the feedback
delayT.

On a qualitative level these results agree both with th
observation of period doubling in the response of the neph
ron to an external disturbance,14 and with the observation of
chaos in normotensive rats made hypertensive by clippin
one of the renal arteries.11 Genetically hypertensive rats
~SHR! are supposed to have significantly largera values
than normal rats, and the model also agrees with the obse
vation that these rats usually display chaotic pressur
variations.9

Figure 4 shows the phase plot of the chaotic attracto
obtained forT53.0 s anda514.5. Here, we have displayed
the normalized arteriolar radiusr against the proximal tubu-
lar pressurePt . With physiologically realistic parameter val-
ues the model reproduces the observed oscillatory behav
for the tubular pressure with characteristic periods of 20–3
s. The amplitude in the pressure variations also correspond
the experimentally obtained values.

At a>9.3, the bifurcation diagram in Fig. 3 shows an
abrupt displacement of the period-2 solution. Calculation o
the characteristic multipliers shows that one of these come
close to 1.0, but never reaches the unit circle. Hence, there
no bifurcation in this point, but the feature arises because th

the

FIG. 3. Brute force bifurcation diagram for the nephron model for a delay in
the tubuloglomerular feedbackT53.0 s. The period-doubling cascade accu-
mulates approximately ata512.0. Note the abrupt displacement of the
period-2 solution ata>9.3.
6, No. 3, 1996

o¬AIP¬license¬or¬copyright;¬see¬http://chaos.aip.org/chaos/copyright.jsp



t
l
d

u

o
a

i
o

i
o

s

t
-

-

-
is

a

285Barfred, Mosekilde, and Holstein-Rathlou: Bifurcation analysis
scan passes close to the cusp of a saddle-node bifurcation
a complement to the brute force bifurcation diagram in F
3, Fig. 5 shows the results of a one-dimensional continua
scan. Here, we have followed the solutions from the equi
rium point through the Hopf bifurcation and three perio
doubling bifurcations to the period-8 solution generated
a>11.7. Stable solutions are shown as full curves and
stable solutions as broken curves.

A more complete picture of the bifurcation structure
our model is provided by the two-dimensional phase diagr
in Fig. 6. Starting arounda51.3 for T50, the lowest curve
in this diagram is the Hopf bifurcation curve. Below th
curve the model displays a stable equilibrium point. The n
mal operation point arounda57 andT54.5 s is just at the
edge of this Hopf bifurcation. This seems to explain the e
perimental finding that about 70% of the nephrons in a n
mal rat perform self-sustained oscillations while the rema
ing show stable equilibrium behavior. We can also imag
that the system is shifted back and forth across the H
bifurcation curve by variations in arterial pressure. Th

FIG. 4. Phase plot for the chaotic solution obtained fora514.5 andT53.0
s. The normalized arteriolar radiusr is displayed versus the proximal tubula
pressurePt .

FIG. 5. One-dimensional continuation scan forT53 s. This diagram fol-
lows the variation of the equilibrium point and of the period-1, -2, -4, and
solutions through the regions where they are stable~full curves! as well as
where they are unstable~dotted curves!.
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would explain the temporal behavior of the nephrons with
periods of self-sustained oscillations interrupted by period
of stable behavior.

In accordance with Fig. 3, a vertical scan in Fig. 6 for
T53 s first passes the Hopf bifurcation curve ata>3.5. At
a>7.5 we meet thePD1–2 period-doubling curve in which
the stable period-2 solution is born. Hereafter thePDb

2–4 and
PDb

4–8 curves follow in which stable period-4 and period-8
solutions are born. We also note how the scan fora>9.3
passes very close to the cusp of theSN2 saddle-node bifur-
cation curve.

The details of the bifurcation diagram are more easily
resolved in Fig. 7, which is a magnification of the center par
of Fig. 6. This magnification reveals a variant of the charac
teristic structure of crossing fold and flip bifurcations previ-
ously observed, for instance, for a variety of one- and two

r

-8

FIG. 6. Two-dimensional phase diagram illustrating the overlying period
doubling cascades in the nephron model. The normal operation point
close toa57 andT54.5 s.

FIG. 7. Magnification of part of the bifurcation diagram in Fig. 6. Note the
overlying structure of several different period-doubling cascades. This is
variant of the so-called crossroad structure.
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dimensional maps.27–29 This structure consists of period
doubling cascades folded on top of one another by sadd
node bifurcations.

As illustrated in Fig. 8, a linear scan froma58, T54 s
towarda514, T52.5 s first takes us across thePD1–2 bi-
furcation curve at which the first period-doubling occurs. W
hereafter cross the lower branches of thePDa

2–4 andPDa
4–8

curves at which stable period-4 and period-8 solutions a
pear. The scan continues through the upper branch of
PDa

4–8 curve to meet the upper branch of aSN4 saddle-node
bifurcation curve. Here, the stable period-4 solution desta
lizes. The period-4 saddle can be followed backward to t
lower branch of the sameSN4 curve, where it again stabi-
lizes. The stable period-4 solution passes through anot
PD4–8 flip bifurcation and two reverse flip bifurcations to
reestablish a stable period-2 solution immediately before
reaches the upper branch of theSN2 curve. Here, the
period-2 solution is destabilized in a saddle-node bifurcatio
The unstable period-2 solution can be followed backward
the lower branch of theSN2 curve, where it regains stability
in a new saddle-node bifurcation. The stable period-2 so
tion formed in this bifurcation can hereafter be followed u
through thePDb

2–4, PDb
4–8, andPDb

8–16 period-doubling
curves into the chaotic regime in the top left corner of th
diagram. On the way it passes the tip of a newSN4 saddle
node and crosses anotherPD8–16 period-doubling curve.

Besides these period-doubling sequences, the neph
model exhibits an additional period-doubling cascade~indi-
cated by indexc). It is observed in Fig. 7 how the period
doubling curves associated with thec cascade cross the
period-doubling curves associated with the other cascad
Hence, there must be additional saddle-node bifurcatio
folding these bifurcation cascades on top of one another. I
also noted that thePDc

4–8 curve crosses thePDc
2–4 curve.

This implies the existence of anSN4 saddle-node bifurcation
curve folding the period-4 solution and ending in a fli
codimension-2 bifurcation point near the minimum of th
PDc

2–4 curve. To the right of this point, the 2–4 period dou
bling is supercritical. To the left the period doubling is sub
critical, and the period-4 solution is born as an unstable
lution.

FIG. 8. One-parameter bifurcation scan froma58,T54 s toa514,T52.5
s. Note how the saddle-node bifurcations fold the period-doubling sequen
on top of one another.
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V. DISCUSSION

We have analyzed the bifurcation structure of a rela
tively detailed model of the tubuloglomerular feedback
mechanism in kidney pressure and flow control. Almost al
experimental work on this problem relates to rats, and th
model parameters also pertains specifically to this system.
is supposed, however, that similar phenomena take place
the human kidney, and that they play a major role for the
development of high blood pressure. A better understandin
of these phenomena may therefore be significant for th
treatment of some of the cardiovascular diseases that plag
our industrialized societies.

With physiologically based relations between the variou
variables, and with realistic parameter values, the model re
produces many of the experimental findings. First of all, the
model can perform self-sustained oscillations with the cor
rect period and amplitude. Second, by operating close to
Hopf threshold the model explains why some nephrons os
cillate and others do not. Finally, the model can produc
period doubling and chaos as observed in certain exper
ments. Unfortunately, one cannot determine the paramet
values pertaining to the specific nephron under study, and fo
this reason it is not possible directly to relate experimenta
results to the theoretical predictions.

From a physical point of view the observed nonlinear
dynamic phenomena derive from the fact that the nephron
a thermodynamically open system that operates far from
thermal equilibrium. The heart continues to pump blood
through the afferent/efferent arteriolar system and hereb
maintains the hydrostatic pressure difference required for fi
tration to take place. In addition, the epithelial cells in the
tubular wall depend on a steady supply of metabolic energ
to perform their active secretion of foreign chemicals into
and reabsorption of salts from the filtrate. From a contro
theoretical point of view, the instability may be ascribed to
the steepness of the regulatory characteristics. If the tubul
glomerular feedback depended less strongly on the Hen
flow, the system would be stable.

The most obvious shortcoming of the model in its
present state appears to be the lack of a proper account of t
myogenic response of the first section of the arteriolar wal
It is likely that this response interacts with the tubuloglom-
erular response. If, for instance, a TGF-mediated constrictio
has caused the lower part of the afferent arteriole to contrac
the hydrostatic pressure in the upper part of the vessel w
increase. This will cause that part of the vessel to contrac
and hence further increase the hemodynamic resistance
the arteriole. It is also likely that the myogenic response
plays a major role in the coupling of neighboring nephrons
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