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Abstract

We present GAST, a novel model for realistic building

delineation, trained using noisy, imperfect ortho imagery

and designed for real-life applications. While most popu-

lar methods today rely on some form of semantic segmen-

tation, the core interest is not the building’s interior points

but rather the sequence of points surrounding the outer hull,

i.e., the most sparse set of points encapsulating the geome-

try of the building. Our method works end-to-end, remov-

ing the need for post-processing, while demonstrating gen-

eralization across large geographical differences. We com-

pare our method to state-of-the-art, complementary works

and demonstrate that our model outperforms the baselines

in a variety of circumstances and across all metrics relat-

ing to polygon fidelity. We release our dataset and model

checkpoints at www.huggingface.co/datasets/

pihalf/ERBD

1. Introduction

Various geospatial applications rely on the analysis of

imagery, often stemming from a remotely sensed medium

such as satellite or aerial imagery. In analyses of urban en-

vironments, buildings are frequently of interest. Although

there have been successful attempts to use remote sensing

imagery to capture the geometric attributes of buildings,

several issues remain. The canonical method of extract-

ing building polygons have typically initially conducted se-

mantic segmentation of building objects [7, 11, 22], iden-

tifying pixels that belong to the building including pixels

within the building interior. The resulting semantically seg-

mented map then serves as the basis for post-processing

techniques, which may involve rule-based or learned meth-

ods [7, 22, 25], to create the final representation: a mini-

mal set of vertices that capture the outline of the building.

While working well under many circumstances, these meth-

ods seem to worsen under imperfect image conditions.

Figure 1. The aim of our study is to predict the most compact set of

vertices that produce a geometrically accurate building delineation

from data acquired under real-world conditions. From left to right:

Ground truth, HiSup [22], GAST (ours).

Our study introduces an alternative approach to this

problem, seeking to determine the extent to which we can

learn the geometric polygons of building footprints directly

end-to-end from noisy aerial imagery obtained in real-world

conditions.

To solve this specific challenge, we present GAST, a

novel model for building delineation from aerial imagery.

Unlike prior studies, we trained and tested on public data

sources utilising orthorectified imagery containing a com-

mon flaw: A parallax leaning effect for buildings not ex-

actly under the camera, creating translation artifacts of an-

notated polygons [8]. Furthermore, we test generalization

across multiple countries and conduct an extensive compar-

ison with respect to recent state-of-the-art work [22]. Fi-

nally, we provide our data and model checkpoints to facili-

tate further research. In summary, the main contributions of

our paper are:

• A novel model for single object building delineation

• Extensive evaluations across geospatial datasets

• Qualitative and quantitative comparison against recent

works

• A curated dataset of single buildings spanning multiple

countries with varying complexity

This WACV workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

785

www.huggingface.co/datasets/pihalf/ERBD
www.huggingface.co/datasets/pihalf/ERBD


2. Background

The problem we seek to solve is learning a mapping from

an image to a set of vertices that give the most sparse and

geometrically accurate polygon surrounding the building.

Prior studies have sought to solve this problem using se-

mantic segmentation [4, 7, 11, 12, 22, 25] to classify each

pixel in the image as to whether it is a building or not. Such

techniques present some challenges when applied towards

geospatial planning for buildings due to a number of rea-

sons: The methods will often become uncertain around the

edges of the building, forming ’blob’-like shapes instead

of right-angled structures [23]. Less common textures that

overlap the building roof (such as trees or leaves) may gen-

erally have a higher likelihood of not being assigned to the

building class. Finally, and perhaps most importantly, the

segmentation map is but an intermediary step towards vec-

torization of the building, which is among the most use-

ful data mediums for working with geospatial data due to

its scale-invariant properties, as opposed to raster graphics.

There are a number of studies that aim to mitigate the issues

mentioned above. Several studies have sought to reclassify

pixels of higher uncertainty using methods such as condi-

tional random fields or the Potts model [25]. Similarly, there

have been attempts to use frame-field learning (FFL) [7],

where the predicted segmentation map is refined according

to geometric constraints. In PolyWorld [24], the segmenta-

tion map predicts the corners of the building, which are then

refined by a graph neural network to form the closed graph

encapsulating each building. These methods share the trait

of applying semantic segmentation to the image of interest

(A U-Net style architecture) following either heuristics or

learned post-processing methods.

Another set of methods relies on the prediction of a se-

quence of points directly. This skips the rasterization to-

wards vectorization process otherwise required by the prior

methods above. For this sets of models, popular works in-

clude PolyMapper [13] and Polygon-RNN++ [1], the study

by Zhao et. al [23] as well as a more recent studies known

as Polygonizer [10] and PolyFormer [15]. Common to these

methods is the autoregressive formulation of the polygon

sequence prediction. Most of these studies utilize the same

formulation first devised by Accuna et al. [1], where a single

object vectorization is being modeled as a set of conditional

probabilities p(xt|I, x0, xt−1, xt−2), where xt represents

the t’th polygon coordinates in the form of spatial tokens.

Each spatial token is auto-regressively inferred with a con-

volutional LSTM [18], depending on the input image I , an

initial starting point x0 and the two prior values xt−1, xt−2.

Another recent work introduces the Polygonizer [10], where

the authors demonstrate the ability to solve a vectoriza-

tion problem depending only on the prior predicted tokens

and an LSTM with attention for decoding. This involves

learning a conditional distribution of p(xt|I, x<t) where

(xt)t∈N0
forms the sequence of the building polygon and

I represents the image. Finally, former works exist predict-

ing the polygon directly, but without the use of probabilistic

auto-regressive decoding. These include PolyBuilding [9],

which extends the Deform-DETR object detection model to

predict both the building polygon and corner coordinates. A

complementary study of the HEAT transformer model [5],

which also resembles our work, albeit with two major dif-

ferences: We assume the building polygon can be drawn

with one sequence (i.e., we do not allow for inner poly-

gons); similarly, our model is auto-regressive, which voids

the necessity to fix the length of the polygon a priori. Sim-

ilarly PolyFormer [15] proposes to solve general segmenta-

tion problems using a transformer decoder which regresses

over 2D-coordinate pairs auto-regressively. PolyFormer has

multiple output heads of which one predicts the object class,

while another predicts the polygon coordinate pairs. While

this work has come to our attention upon the writing this

paper, we note that the PolyFormer is a multi-modal model

relying on a text embedding for each image, which pro-

vides additional information to the decoder than is other-

wise the case in our setting. In summary, our work takes

its queues from the Polygonizer [10] as well as the HEAT

transformer [5], with a particular emphasis on residential

geospatial inference from ’in-the-wild’-sourced data.

3. Methods

Our model consists of two components, an image-based

encoder Fenc(I) which transforms the input image I into

a set of patches, which are then flattened and parsed in a

sequence. The output of Fenc(I), the intermediary feature

representation I, is then forwarded to a geometric decoder

Fdec(x, I), which learns to associate the sequence spatial

tokens x to the respective patch on the image I , as shown in

Figure 2. Formally we combine a Vision Transformer [6]

with an auto-regressive decoder transformer [21], which

learns to predict the sequence of points on the image in an

auto-regressive manner. Thus, we assume that we can pa-

rameterize our problem as a function of conditional proba-

bilities of the polygon coordinates x given an image I:

p(x|I) = p(x0|I)p(x1|I, x0)p(x2|I, x1, x0) . . . (1)

=

Nx
∏

t=0

p(xt|I, x<t) (2)

Here x consists of a flattened sequence of tokens contain-

ing the image indices of the polygon in counterclockwise

order, i.e., x = (S, x1, y1, x2, y2, ..., xn, yn,¬S) and Nx is

the number of tokens in the sequence. S and ¬S are two

special tokens, the first representing the start of a sequence,

and the latter representing the end of the sequence. Our

likelihood of the individual tokens, p(xt|I, x<t), is a cate-

gorical distribution over the indices of the input image plus
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Figure 2. GAST Model architecture. From the left hand side, we produce an image embedding which acts as context for the auto-regressive

decoder in the Cross Multi-Head Attention block. For each of the attention blocks in the Decoder we dedicate half of the attention heads

to short-range tokens (ALiBi) and the other half using canonical scaled dot-product attention. During training we mask the tokens with a

random proportion between [0;.35]

the two special tokens coding for the start and the end of

the sequence. We optimize the parameters of our model θ
by minimizing the negative log-likelihood of the model pa-

rameters, which can be expressed using the loss function L:

L = −

Nx
∑

t=0

log pθ(xt = x∗
t |x<t, I), (3)

where x∗
t is the true value at timestep t, Nx is the number

of tokens in the sequence and p(xt|x<t, I) are the predicted

parameters of a categorical distribution defined over the im-

age indices plus start and end tokens. Note that all our co-

ordinates in the study are discretized.

Encoder The ViT encoder [6] takes an image of I ∈

R
H×W×C and splits it into patches, Ip ∈ R

N×(P 2
×C) or-

dered from top left to bottom right, where N = HW/P 2 is

the number of patches, each with dimensions P ×P ×C of

which C is the number of channels, and P is the size of each

patch while H and W are the height and width dimensions

of the input image. It then performs an image embedding

for each of the N image patches of dimension P × P × C,

by means of a learnable linear projection to match the hid-

den dimension H of the multiheaded self-attention layer

(MHA) of the transformer encoder, effectively making N
the sequence length of each patch to the transformer en-

coder. Prior and post projection of the image, we apply the

LayerNorm (LN) elementwise [3], for positional encoding

we learn a vector θpos ∈ R
N×H, which is added to each

embedded image before input into the encoder block layers

F
(l)
enc, where H is the embedding dimension. Following this,

a standard set of transformer encoder blocks entail [21].

Following Lenc layers of transformer encoder blocks, the

image context is formed, producing a tensor of dimensions

B × N × H where N is the number of the image patches,

B is the batch dimension and H is the hidden dimensions

of the encoder Fenc. These form the keys and values for the

multi-head cross-attention in the Decoder.

Decoder The decoder Fdec is a transformer decoder that

follows the original [21] for the most part, although with

some key variations that we found to be beneficial in our en-

vironment. We apply two sets of learned embeddings to our

input sequence x. Epos(x) which applies a positional em-

bedding defined in R
xmax×H where xmax is the maximum

sequence length, and Evtx(x) ∈ R
U×Eh which applies a

token-based embedding for U unique tokens defined over

the image indices plus two special tokens. These embed-

dings are added to form a tensor of dimensions B×Nx×H,

where Nx is the sequence length of the input sequence, B

is the batch dimension and H are the hidden dimensions of

the transformer decoder Fdec.

When designing the transformer decoder, we wanted

to introduce inductive biases for the model to attend

nearby geometric points, as well as making sure we

also attend back towards the very first part of the se-

quence to make sure we learn to close the polygons.

For this, we have included ALiBi [17] which biases
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queries qi and keys kj so that values in close prox-

imity will receive a higher attention score than tokens

further apart. We follow the original implementation,

where we add a different static value to each attention

head as softmax
(

qiK
⊤ +m · [−(i− 1), . . . ,−2,−1, 0]

)

where m is a scalar slope defined for each attention head,

qi is a query ∈ R
1×d for the timestep i in the sequence of

length L ∈ (1 ≤ i ≤ L), and K⊤ ∈ R
i×d are the set of keys

from the first to the ith timestep, while d is the embedding

dimension. The geometric sequence for n attention heads is

defined as starting in 2
−8

n , using that same value as its ratio.

As previously mentioned, we do not only want our model

to focus on nearby tokens, but also on more distant parts of

the sequence. Therefore we dedicate half of our model Fdec

attention heads towards ALiBi [17] biased attention heads,

whilst the rest may attend as normal in a canonical causal

attention way.

In addition to the ALiBi positional embeddings, which

is a relative embedding that enforces local dependencies,

we also use rotary positional embeddings [19] (RoPE). The

rotary positional embeddings are applied by multiplication

prior the attention operations in the queries and keys, where

the sequences of the embedded tokens x̃ = Epos(x) +
Evtx(x) are each rotated at an angle using a rotation ma-

trix, relative to the position of the token in the sequence.

We have found that the incorporation of RoPE embeddings

improve the model performance in our setting, while not

necessarily a conclusive explanation, we argue it is related

to the inductive bias of performing rotations of a represen-

tation inherent to the spatial tokens that exist in two dimen-

sions, further biasing the model to learn the angles present

between the spatial tokens themselves.

Following the embeddings, our transformer decoder fol-

lows the traditional transformer decoder blocks, where we

first perform causal multi-head attention (Causal MHA) us-

ing queries, keys, and values from our target sequence and

a causal lower triangular mask. Following, a second multi-

head attention block performs self-attention into the image

context (Cross MHA), where the queries represent the in-

terim feature representation of the target sequence, and the

keys and values are the outputted image context representa-

tion from the transformer encoder Fenc. At the final layer

of the decoder, we perform a standard linear projection to

the categorical distribution dimensions, forming the logits

of our outputted categorical distribution over the spatial to-

kens.

4. Experimental setup

The images in our datasets are scaled to 224x224x3. For

all our subsequent results, our model has the following hy-

perparameters: each patch has the size of 32x32x3, the hid-

den dimension of the encoder attention is 512 with 8 atten-

tion heads and 6 layers, the feedforward layer has a size of

C N I∆ Tµ Tσ Tmin Tmax

NL 89,362 .25m 12 6 5 153

DK 119,956 .1m 10 4 4 61

Table 1. Summary statistics of the European Residential Building

Dataset (ERBD) sampled from the Netherlands and Denmark. N

represents the number of unique instances, I∆ is the spatial reso-

lution of the image, and T(µ,σ,min,max) represents summary statis-

tics of the polygon lengths in the dataset being the mean, standard

deviation, minima and maxima.

2048, and for the activation function of the encoder, we use

the GELU. The Decoder consists of 12 layers with 16 at-

tention heads in each, the hidden dimension of the attention

is 512 and the feedforward layer is 2048. We set a maxi-

mum sequence length of 400 and project our tokens using

227 unique learned embeddings with an embedding layer

dropout of 0.1. The hidden dimension of the attention is

512 with 16 attention heads, of which 8 are using the ALiBi

(added linear bias) [17] and 8 without. We apply a dropout

of 0.1 following the attention layer and a 0.2 dropout on

the fully-connected layer in each of the decoder transformer

blocks. For the decoder we employ token masking, which

means that we mask at random up to 35% of the tokens in

a sequence at each training step. Our model in this config-

uration consists of 115 million trained parameters. We use

the AdamW optimizer for training the model with a learn-

ing rate 3 · 10−4, β = (0.9, 0.999) and a weight decay of

1 · 10−2. For all training purposes we employ early stop-

ping, in which a consistent rise in the validation loss for

more than two epochs, results in the conclusion of the train-

ing. For inference we utilize the trained model with the

lowest validation loss.

4.1. The European Residential Building Dataset
(ERBD)

Part of our contributions to this study relate to the col-

lection and distribution of our own curated dataset dubbed

the European Residential Building Dataset (ERBD). To mo-

tivate the utility of our dataset, we would like to argue the

limited number of alternative datasets which are 1) provid-

ing annotated polygons (not raster masks), 2) is focused

on single detached residential homes, and 3) span multiple

countries.

We collected datasets from two different countries, with

a particular emphasis on acquiring detached houses. This

is motivated by two reasons. First being detached houses,

it increases the chance that there is but one object in the

image, thus focusing our efforts on the finer details of the

building in question. Second, in a practical application sce-

nario, it is possible to request the user for a bounding box,

or extrapolate a bounding box from the click of a user in-
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teraction. All datasets share the properties of begin very

high-resolution orthorectified imagery, with a ground sam-

pling distance ranging between 10-25cm per pixel. The an-

notation methods across the data vary, as some objects are

represented with the minimal representation of points per

object, and some are annotated with multiple points along

the linear segments of the building. The dataset and the

annotation also vary in quality, representing noise, which

is bound to be encountered when working with realistic

geospatial data. These artifacts include: translation error,

parallax, reflections, and occlusion effects. We believe the

ability to demonstrate models working reliably across large

geographical distances and in spite of common faced arti-

facts is important to advance the field. We present a general

overview and summary statistics in Table 1 and refer to the

supplementary material for additional information.

Denmark We collected our data based on a cross section

of multiple sets of dataset from the danish national cadastral

registers. For this study, we have sampled 119,956 images

from Denmark (uniformly), with a particular emphasis on

buildings classified as detached homes. The dataset is split

into an 68/12/20% train,validation, and test split consecu-

tively.

Netherlands dataset was chosen as the second country

for the dataset. The Dutch dataset is split similarly to the

Danish with 65/15/25% train, validation, and test splits con-

secutively. For additional details on how the examples from

each country were collected, we refer to the supplementary

material.

5. Evaluation metrics

We evaluate our model applying the standard MSCOCO

detection metrics as commonly used in our setting [9,

10, 24], in addition to four metrics which have become

increasingly popular in building delineation problems.

Complexity-aware IoU introduced by Zorzi et. al [24]

which is defined as the Intersection-over-Union weighted

by the number of vertices in each polygon, the maximum

tangent angle error (MTA) introduced by Girard et. al [7]

and PoLiS the polygon distance measure introduced by Av-

belj et. al. [2]. For the MSCOCO-metrics [14] we measure

the performance on the segmentation aspect of our predic-

tions w.r.t. ground truth, this implies a conversion from the

predicted polygon of our method towards a binary mask,

and computing IoU-scores. The most important metrics that

we measure are: mAP, AP50, AP75, mAR, AR50, AP75.

Mean average precision is given as the average precision for

all objects where IoU is at [0.5,0.55,0.60,...,1]

levels of overlap. Similarly for AP50, a prediction counts as

a true positive in all instances where IoU> 0.5, while for

AP75 we count observations with IoU > 0.75. The mean

average recall mAR is computed with threshold levels eval-

uated at [0.0,0.01,0.02,...,1], while AR50 and

AR75 represent recall at IoU thresholds of .50 and .75 re-

spectively. We do not take into account precision or recall

relative to object size, as our dataset is designed with a fairly

similar sized objects. All COCO-measures are related to

the segmentation aspect of our result, which are based on a

raster of our vectorized output, while the additional metrics

chosen are more strongly linked to the actual model output

and intended usecase.

5.1. The principal polygon orientation difference

In addition to these measures, we would like to introduce

an additional metric that would present an additional mea-

sure of the performance of the inference conducted. It is a

fairly simple measure, which allows us to gauge to what ex-

tent the predicted polygon orientation matches the orienta-

tion of the ground truth. Calculating the metric is straight-

forward: For any polygon P ∈ R
Nx2 compute the eigen

vectors eP of Cov(P ) and select the one with the highest

eigen value λP , then we can compute the principal orienta-

tion taking the arctan2(ey, ex). The orientation difference

is then ∆θ = (θGT − θP + 180◦) mod 360◦ − 180◦

6. Results

The results are presented with inference on the test-set

examples in each of the provided datasets. We initialize

with S-tokens and continue inference until the stop tokens

¬S or the maximum length of 400 tokens is reached. The

outputted sequence is then parsed according to the evalua-

tion metrics described above.

6.1. Performance on the ERBD dataset

6.2. Qualitative evaluation

In Figure 3 we observe the qualitative visualization of

our method compared to the HiSup [22] model. From the

columns left to right, we present the ground truth image, the

image with annotations, the HiSup [22], and our model pre-

dictions. On the row levels we present two rows by dataset,

the Danish, Dutch, and combined test splits. All models

seem to capture the object in the image to a fair extent, with

some notable differences: we notice upon higher model un-

certainty, it seems that the HiSup [22] model tends to out-

put many more points than both the ground truth and our

method. Meanwhile, on occasions with high visibility and

less noisy environments, both models perform quite simi-

larly (see the first two rows). Meanwhile, however, in in-

stances of off-nadir/nadir imagery, GAST performs better

than HiSup [22], and generally leads to more visually ap-

peasing results. This is also what seems to be generally

occurring across the different OOD dataset inferences; we

refer to the supplementary material for additional examples

of this.
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Figure 3. Qualitative results from left to right: Ground truth, ground truth with annotation, HiSup prediction, GAST (ours) prediction.

From the top row down, for each two rows the figures correspond to models trained and performing inference on the Danish, Dutch and

Danish and Dutch datasets combined.
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AP↑ AP50↑ AP75↑ AR↑ AR50↑ AP75↑ IoU↑ C-IoU↑ MTA↓ PoLiS↓ ∆θ N-ratio ΘModel Dataset

H
iS

u
p

68.39 89.28 75.27 71.94 91.72 78.73 82.4 52.29 57.87 13.32 26.45 2.84 DK DK

44.83 73.79 47.3 53.87 84.85 58.44 70.97 4.33 58.44 39.42 -12.85 42.78 NL NL

59.62 83.91 67.59 67.97 91.64 77.51 80.1 4.31 59.01 42.16 -18.44 69.97 NL+DK NL+DK

6.97 35.94 0.95 12.33 53.54 1.76 50.96 2.06 57.3 54.6 -18.74 37.98 DK NL

18.7 49.21 10.25 31.33 68.72 23.96 58.48 7.86 58.44 25.75 -12.83 15.49 NL DK

70.87 90.73 78.77 73.95 92.98 81.12 83.5 55.24 57.87 12.45 25.85 2.04 NL+DK DK

55.06 87.07 62.76 61.49 92.74 71.6 76.85 3.94 59.01 35.39 -16.1 50.95 NL+DK NL

G
A

S
T

58.16 96.45 65.12 69.77 99.19 81.93 81.72 58.53 55.92 12.32 -6.24 0.81 DK DK

34.59 82.11 16.78 24.23 78.72 7.00 65.69 58.76 32.41 13.67 -7.18 2.32 NL NL

45.15 89.29 38.00 69.45 99.47 81.42 76.98 58.38 47.78 12.44 -9.64 1.55 NL+DK NL+DK

12.50 52.60 1.49 52.94 97.96 50.44 52.53 59.17 20.29 23.07 -7.61 0.80 DK NL

11.30 45.54 1.37 22.50 67.66 9.93 50.83 46.72 19.99 24.09 -2.49 2.40 NL DK

58.34 95.17 65.31 70.32 99.15 82.48 81.74 58.18 55.45 12.21 -10.83 0.88 NL+DK DK

37.25 84.97 20.73 40.87 89.21 31.20 67.58 58.78 34.30 13.26 -10.40 1.35 NL+DK NL

Table 2. Computed benchmark results across all ERBD dataset splits for both the HiSup [22] model and GAST (ours).

6.3. Quantitative metrics

In Table 2 we present the main results of our paper and

performance metrics in a variety of training and inference

instances, compared to the HiSup [22] model. The metrics

computed correspond to the evaluation metrics described in

Section 5 with a few minor additions: N -ratio measures car-

dinality of the predicted set versus the cardinality of ground

truth, we want this to be as close to 1 as possible. ΘModel

represents the split of the data set on which the model was

trained, while the column of the data set represents the test

set for inference. In the final column, we measure the infer-

ence speed per example (in seconds).

6.3.1 The Danish ERBD set

In summary, both methods perform very well on the Danish

ERBD split, in particular we note that HiSup outperforms

on the AP, AP75 and the AR to some extent. While also

marginally performing better on the IoU score, the average

precision is where the HiSup model beats our method in this

instance. Meanwhile, however, the average recall on the

higher thresholds of AP50 and AP75 our model performs

better. Additionally, on the metrics that are more closely

related to the building coordinates, we exceed the perfor-

mance for the Danish dataset to a minor extent.

6.3.2 The Dutch ERBD set

Somewhat expectedly, we notice a substantially lower per-

formance when training and evaluating the Dutch dataset.

Similarly across the models, we notice larger differences

than what was the case in the prior scenario. The models

perform similarly at the .50 threshold for both the preci-

sion and recall, but at the higher levels we see a clear lead

towards the HiSup model. However, when we start com-

paring geometry specific attributes, we are seeing a similar

pattern as before - GAST shows substantial improvement

on the C-IoU,MTA,PoLiS, and POD measures.

6.3.3 Combining the ERBD dataset

In Table 2 we present results for situation in which either

GAST or HiSup was trained on a combined set of the ERBD

dataset and performing inference on either a combine test

set of the two countries, or each of the respective coun-

tries one by one. For this experiment, we wanted to assess

whether there was any indication of model learning which

would transfer across the datasets. The HiSup model sees

an improvement when performing inference across differ-

ent countries. In fact, the combined model, perform bet-

ter when doing inference on the NL test set, than when

solely trained on the NL itself, indicating the model learned

transferable features. The same holds true for GAST, while

slightly worse in general for the NL+DK versus DK split,

the NL+DK versus the NL dataset performs much better

than if trained on NL alone. When comparing the two mod-

els against each other, we are contiuing to see a clear benefit

towards using GAST if interested in vector-based inference,

while for the segmentation metrics HiSup is performing bet-

ter.

6.4. Country to country

A good model should ideally generalize and, in our set-

ting, this is certainly paramount for any deployment in a

practical setting. Therefore, we present results for infer-

ence performed on a different test-set than what the model

was trained on. We refer to these as Out-of-distribution

inference (OOD). Starting with the model trained on DK,

perform inference on NL. In this situation, we are perform-

ing inference on a more complicated dataset with a model

trained on a more simple one. Therefore, the drop in per-

formance across both methods is to be expected. However,

in this instance, we see a clear indication of better perfor-
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RoPE Mask ALiBi mAP IoU PoLiS

✓ 14.59 37.8 22.01

22.62 45.12 19.76

✓ 25.44 47.51 18.58

✓ ✓ 27.37 52.46 18.64

✓ 31.22 53.89 17.61

✓ ✓ 33.52 56.44 16.56

✓ ✓ 35.17 60.55 15.10

✓ ✓ ✓ 35.73 59.29 15.35

Table 3. Results produced when trained on a subset of the NL

training set, performed doing inference on a subset of the NL test

set.

mance by GAST relative to the [22] model, which is not

only on the geometry-based metrics but also on the raster

segmentation measures. In comparison, when going from

NL to DK, the HiSup model again shows its strengths when

it comes to metrics that are directly linked to the semantic

segmentation raster.

7. Model ablation studies

To assess whether our chosen components in our model

are contributing towards a better, or worse performance, we

train and compute a number of models on a set of metrics

of relevance, focusing on mAP, IoU and the PoLiS distance

measure. In Table 3 we present our findings from train-

ing GAST on a smaller subset of the NL training dataset

using 10.000 random samples, while doing early stopping

as a function of the full validation set. The metrics below

are given by test-set inference on the NL dataset for 210

samples. We find that ALiBi is a significant component

towards the stable training of the model, while RoPE and

Masking does indeed contribute towards a better model, re-

lying solely on RoPE and ALiBi in addition to our existing

learned embeddings, gives us the best results.

8. Discussion

GAST is a deep generative model with limited geomet-

ric constraints, which in our setup means we attempt to di-

rectly learn the patterns of the data through the model it-

self. We argue the benefit of this approach is the improved

ability for generalization. Additionally, modeling proba-

bilities auto-regressively allows for more diverse inference

samples, while providing uncertainties in a deployment sce-

nario, thus improving the applicability of the model in a

production environment. The weakness of this approach

however, it is computationally more expensive and requires

larger amounts of data to achieve good performance com-

pared to alternative models such as [5, 22]. We are, how-

ever, more confident in our thesis that methods relying on

semantic segmentation in a geospatial context are generally

more prone to artifacts stemming from this representation,

as opposed to directly modeling the geometric tokens, as is

the case for [5, 9, 10].

8.1. Limitations & Future work

Our model is unable to process more than one object in a

scene, as it relies on the assumption that only one sequence

exists. This includes objects with holes or multiple parts.

Similarly, due to the auto-regressive nature of our model,

we require multiple forward passes at inference time to pro-

duce a prediction. This is certainly a constraint, but as we

argue above, it is also a possibility towards a more informed

inference sample. In this work, we have only presented

greedy-inference, while improvements such as beam-seach

or nucleus sampling could improve the inferred results.

For future work, we would like to look into parameter-

isations that can handle multiple objects in a scene, while

also considering model improvements that will allow for

stronger inductive biases in the geometric representations

of the model.

9. Conclusion

In this paper we have presented GAST, a novel model

towards the learning of building footprint polygons end-to-

end of residential homes. We show that our model learns

to produce vectorized building polygons when applied to

realistic real-world data, while still having ability to im-

prove. We conduct an extensive comparison towards state-

of-the-art model HiSup [22], and demonstrate superior per-

formance in all metrics relating to polygon fidelity.
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