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An Efficient Implementation for Kernel-based Regularized System
Identification with Periodic Input Signals

Zhuohua Shen1, Yu Xu1, Martin S. Andersen2, and Tianshi Chen1

Abstract— Efficient implementation of algorithms for kernel-
based regularized system identification is an important issue.
The state of art result is based on semiseparable kernels and a
class of commonly used test input signals in system identification
and automatic control, and with such input signals, the output
kernel is semiseparable and exploring this structure gives rise to
very efficient implementation. In this paper, we consider instead
the periodic input signal, which is another class of commonly
used test input signals. Unfortunately, with periodic input
signals, the output kernel is NOT semiseparable. Nevertheless,
it can be shown that the output kernel matrix is hierarchically
semiseparable. Moreover, it is possible to develop efficient
implementation of algorithms by exploring the hierarchically
semiseparable structure of the output kernel matrix and the
periodic and Toeplitz structure of the regression matrix. The
efficiency of the proposed implementation of algorithms is
demonstrated by Monte Carlo simulations.

I. INTRODUCTION

In the past decade, kernel-based regularized system iden-
tification is the major advance in system identification, has
achieved many important results and become an emerging
new system identification paradigm, see e.g., the survey
papers [1], [2] and the book [3]. The key difference between
this new paradigm and the classical paradigm based on
the maximum likelihood/prediction error methods [4] is two
fold. Firstly, the new paradigm finds a systematic way to
embed the prior knowledge on the underlying system to be
identified in the model structure through a well designed
kernel. Secondly, the model complexity can be tuned through
the hyper-parameter used to parameterize the kernel in a
continuous and more reliable way.

The recent advance on kernel-based regularized system
identification includes the kernel design and analysis [5],
[6], [7], [8], [9], efficient implementation [10], [11], asymp-
totic theory [12], [13], [14], and its application in various
contexts, e.g., spatial temporal data processing [15] and
iterative learning control [16]. In particular, efficient imple-
mentation has been an important issue, because it is the
key for the engineers to apply this emerging new system
identification in the engineering practice. The most widely
used implementation [10] has a computational complexity
of O(Nn2 + n3), where N is the number of data and n
is the order of the finite impulse response (FIR) model,
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and thus is not efficient if n is large, i.e., the underlying
system to be identified has a slow dynamics. Recently, an
efficient implementation was proposed in [11], and based on
semiseparable kernels and a class of commonly used test
input signals in system identification and automatic control.
With such input signals, the output kernel is semiseparable
and exploring this structure gave rise to implementation with
computational complexity of O(Np2 + p3), where p is the
semiseparability rank of the output kernel.

Unfortunately, the implementation proposed in [11] cannot
be applied to periodic input signals, which is another class of
commonly used test input signals, because the output kernel
with general periodic input signals is NOT semiseparable. In
this paper, we consider the case with semiseparable kernels
and periodic input signals. It will be shown that the output
kernel matrix is hierarchically semiseparable. Moreover, it
is possible to develop efficient implementation of algorithms
by exploring the hierarchically semiseparable structure of the
output kernel matrix and the periodic and Toeplitz structure
of the regression matrix. The efficiency of the proposed
implementation of algorithms is demonstrated by Monte
Carlo simulations.

The remaining parts of this paper are organized as follows.
In Section II, we introduce some background materials and
the problem statement. In Section III, we give the details of
our proposed implementations and then in Section IV, we
illustrate our implementation by Monte Carlos simulations.
Finally, we conclude this paper in Section V.

II. BACKGROUND AND PROBLEM STATEMENT

A. Kernel-based Regularized System Identification with Pe-
riodic Inputs and Semiseparable Kernels

In this paper, we consider the identification of linear time-
invariant (LTI), discrete-time, causal, and bounded-input
bounded-ouptut (BIBO) stable systems described by

y(t) = G0(q)u(t) + v(t), t = 1, · · · ,M, (1)

where t is the time index, M ∈ N is the number of data,
y(t), u(t) and v(t) are the measurement output, input and
measurement noise of the system at time t, respectively, and
G0(q) is the unknown transfer function of the system with q
being the forward shift operator such that qu(t) = u(t+ 1),
and v(t) is assumed to be white noise with mean zero and
variance σ2.

Since the system is LTI, causal and BIBO stable, its



transfer function G0(q) has the following expansion

G0(q) =

∞∑
k=1

g0kq
−k, (2)

where g0k, k = 1, · · · ,∞, are the so-called impulse re-
sponse coefficients of G0(q) and absolutely summable, i.e.,∑∞

k=1 |g0k| < ∞. Therefore, the identification of G0(q) is
equivalent to the estimation of the impulse response g0k, k =
1, · · · ,∞, which is, however, an intrinsically ill-conditioned
problem with finite number of data. One way to overcome
this problem is to first propose a parametric model G(q, θ)
with the parameter θ ∈ Rn and then estimate G(q, θ) based
on the data {y(t), u(t)}Nt=1 with N ≥ n.

For the kernel-based regularization method (KRM), it
chooses G(q, θ) as the finite impulse response (FIR) model,
which is obtained by truncating the infinite impulse response
of G0(q) at a sufficiently high order n as follows

G(q, θ) =

n∑
k=1

gkq
−k, θ = [g1, · · · , gn]T , (3)

where gk, k = 1, · · · , n, are called the finite impulse
response coefficients, and then yields

y(t) =

n∑
k=1

gku(t− k) + v(t), t = 1, · · · , N. (4)

More specifically, (4) can be rewritten in the following linear
regression form

YN = ΦNθ + VN (5)

where N = M − n, YN = [y(n + 1), · · · , y(M)]T , ΦT
N =

[ϕ(n)T , · · · , ϕ(M)T ] with ϕ(k) = [u(k), · · · , u(k−n+1)],
k = n, n + 1, · · · ,M , and VN = [v(n + 1), · · · , v(M)]T .
Then θ can be estimated by minimizing the following kernel-
based regularized least squares (RLS) criterion:

θ̂N = argmin
θ
∥YN − ΦNθ∥2 + γθTK(α)−1θ

=
(
ΦT

NΦN + σ2K(α)−1
)−1

ΦT
NYN

(6)

where ∥·∥ is the Euclidean norm, γ > 0 is the regularization
parameter, K(α) ∈ Rn×n is the so-called kernel matrix and
defined through a positive semidefinite kernel [17] κ(t, s;α) :
N × N → R, and α ∈ Rp is the so-called hyper-parameter
used to parameterize the kernel κ(t, s;α).

In practice, one needs to first design a suitable kernel
κ(t, s;α), then estimate both γ and α, and finally, get the
RLS estimate θ̂N . By far the most effective method to
estimate α is the so-called empirical Bayes method. This
method further assumes that the measurement noise v(t) is
Gaussian, θ ∼ N(0,K(α)), and moreover, θ is independent
of v(t), t = 1, · · · , N , and γ = σ2. Under these assumptions,
it is easy to verify that the RLS estimate θ̂N in (6) is also the
maximum a posterior estimate of θ and the hyper-parameter
α is estimated by maximizing the marginal likelihood of α,
i.e., α̂ ≜ argmax

α
p (YN | α) or equivalently,

α̂ = argmin
α

Y T
N H(α)−1YN + log |H(α)|

H(α) = ΦNK(α)ΦT
N + σ2IN ,

(7)

where | · | is the determinant of a matrix, IN is the N -
dimensional identity matrix, and H(α) is often called the
output kernel matrix.

The straightforward computation of θ̂N in (6) and α̂ in
(7) has computational complexity of O(N3). In order to
apply the KRM in practice with large N , several efficient
implementations have been developed over the past decade,
e.g., [18], [10], [11]. In this paper, we focus on this topic
under the following assumption.

Assumption 1. Assume that the input signal u(t) is pe-
riodical with period p ∈ N, and the kernel matrix K(α)
is extended {k}-generator representable semiseparable with
k ∈ N, and moreover, N ≥ n ≥ p.

1) Periodic Input Signals: On the one hand, it is worth
to mention that periodic input signals are one class of most
widely used test signals in system identification and control,
see e.g., [4]. Moreover, due to (4), ΦN in (5) is a Toeplitz
matrix, i.e.,

ΦN (i, j) = ΦN (i+ t, j + t) (8)

for all 1 ≤ i, i + t ≤ N , 1 ≤ j, j + t ≤ n, t ∈ Z, and
under Assumption 1, ΦN in (5) has a periodical structure
with period p ∈ N, i.e.,

ΦN (i, j) = ΦN (i+ t1p, j + t2p) (9)

for all 1 ≤ i, i+t1p ≤ N , 1 ≤ j, j+t2p ≤ n, and t1, t2 ∈ Z,
and ΦN can be rewritten as follows

ΦN =


Φb Φb . . . Φbc

Φb Φb
. . . Φbc

...
...

...
...

Φbr Φbr . . . Φbb

 (10)

where Φb = ΦN (1 : p, 1 : p), Φbr = ΦN (1 : N%p, 1 :
n%p), Φbc = ΦN (1 : p, 1 : n%p),Φbb = ΦN (1 : N%p, 1 :
n%p), ”%” represents the modulo operation, and ΦN (1 :
a, 1 : b) with a, b ∈ N the submatrix of ΦN consisting of the
first a rows and b columns of ΦN .

2) Semiseparable Kernels: On the other hand, most of
the existing kernels proposed in KRM are semiseparable, see
e.g., [11]. As a result, the kernel matrix K(α) is extended
{k}-generator representable semiseparable for some k ∈ N.
Recall that a symmetric matrix K ∈ Rn×n is said to
be extended {k}-generator representable semiseparable [19,
p.304] if there exists k ∈ N, k ≤ n such that

K = S(U, V ) = tril(UV T ) + triu(V UT , 1) (11)

where U, V ∈ Rn×k are called generators of K, tril(UV T )
denotes the lower-triangular matrix generated by UV T by
zeroing all its (i, j) entries with j > i, and triu(V UT , 1) the
upper-triangular matrix generated by V UT by zeroing all its
(i, j) entries with i > j − 1.



B. Problem Statement

In this paper, we study the problem of how to develop
more efficient implementation algorithms for the computa-
tion of α̂ in (7) (and also θ̂N in (6), but it is skipped, because
the space is limited and its computation is a byproduct
of the computation of α̂ in (7)) with lower computational
complexity than the existing ones, e.g., [18], [10], [11], under
Assumption 1 by making use of the structural properties of
ΦN and K(α) as sketched in Sections II-A.1 and II-A.2, and
exploring the structural properties of H(α) defined in (7).

Remark II.1. As can be seen from [11], the computation of
the cost function of the empirical Bayes method (7) shares
some common elements as that of the other hyper-parameter
estimation methods, such as the Stein’s unbiased risk es-
timation (SURE) method and the generalized cross valida-
tion (GCV) method. Therefore, the proposed implementation
algorithms can be used to develop efficient implementation
algorithms also for the SURE and GCV methods.

C. Fundamentals of Efficient Implementation by Exploring
Hierarchically Semiseparable Matrix and Toeplitz Matrix

In this subsection, we introduce some fundamentals of
efficient implementation by exploring the structure of hier-
archically semiseparable matrix and Toeplitz matrix.

1) Hierarchically Semiseparable (HSS) Matrix: As will
be shown shortly in Proposition 2, H(α) in (7) is actually
an HSS matrix. HSS matrices are a generalization of semi-
separable matrices, and also a special case of hierarchically
off-diagonal low-rank (HODLR) matrices[20], [21], [22].
HODLR matrices have low-rank off-diagonal blocks, while
the diagonal blocks can be subdivided into the same form
recursively, i.e., they also have low-rank off-diagonal blocks.
The HSS matrices have the additional property that the off-
diagonal blocks can depend on the off-diagonal blocks in
the deeper level’s diagonal blocks [22]. More specifically, if
A ∈ RN×N is a two-level HODLR matrix, then A can be
represented as

A =

[
A

(1)
1 U

(1)
1 K

(1)
12 V

(1)
2

T

U
(1)
2 K

(1)
21 V

(1)
1

T
A

(1)
2

]
(12)

where the off-diagonal blocks U
(1)
1 K

(1)
12 V

(1)
2

T
and

U
(1)
2 K

(1)
21 V

(1)
1

T
are of low-rank, and A

(1)
1 , A

(1)
2 can

be further divided into

A
(1)
1 =

[
A

(2)
1 U

(2)
1 K

(2)
12 V

(2)
2

T

U
(2)
2 K

(2)
21 V

(2)
1

T
A

(2)
2

]

A
(1)
2 =

[
A

(2)
3 U

(2)
3 K

(2)
34 V

(2)
4

T

U
(2)
4 K

(2)
43 V

(2)
3

T
A

(2)
4

] (13)

which is in the same structure as A until it reaches the
size or rank threshold [23]. For HSS matrices, the matrices
U

(1)
1 , U

(1)
2 , V

(1)
1 , V

(1)
2 can further depend on U

(2)
i and V

(2)
j

recursively through the so-called translation operators. For

example, there are translation operators R
(2)
k ,W

(2)
k , k =

1, 2, 3, 4 such that

U
(1)
i =

[
U

(2)
2i−1R

(2)
2i−1

U
(2)
2i R

(2)
2i

]
, V

(i)
i =

[
V

(2)
2i−1W

(2)
2i−1

V
(2)
2i W

(2)
2i

]
, i = 1, 2

(14)
It is similar for other Ui, Vi’s at each level [20].

Both HODLR and HSS structures have been widely ap-
plied in many fields to design fast algorithms, including
Gaussian Process regression [24], [25], radial basis function
interpolation [26], and sparse linear system solvers [27].
Concerning the specific linear algebra operations, exploring
the structure of HODLR and HSS matrices allows effi-
cient implementation of algorithms for basic arithmetical
operations [28], e.g., addition, matrix-matrix multiplication,
inversion, and decompositions, e.g., QR, LU, Cholesky.

2) Periodic Toeplitz Matrices: The regression matrix ΦN

in (5) is not only Toeplitz but also periodic. As well known,
some operations of Toeplitz matrices can be calculated
efficiently. For example,

• the Toeplitz matrix-vector product can be calculated
efficiently by using Fast Fourier Transform (FFT). Acu-
tally, for a Toeplitz matrix A ∈ Rn×n and a vector
x ∈ Rn×1, direct calculation of Ax has computational
complexity of O(n2), but by using the convolution rule
and FFT, the computation cost is reduced to 9

2n log n =
O(n log n) flops, see e.g., [29].

• the thin QR decomposition of a Toeplitz matrix can also
be calculated efficiently. Let A ∈ Rm×n be a Toeplitz
matrix with m ≥ n, and its thin QR decomposition
denoted by A = QR, where Q ∈ Rm×n with QTQ =
In and R ∈ Rn×n is an upper triangular matrix. Then
the direct calculation of the thin QR decomposition of
A with both Q and R requires 2mn2 flops, but by
exploring the structure of the Toeliptz matrix, Qiao
proposed an algorithm in [30] based on the one in
[31], which requires mn + 6.5n2 flops for R and
13mn+ 6.5n2 flops for both Q and R.

Moreover, as will be shown shortly in Sections III-B and III-
C, it is possible to develop more efficient implementations
of algorithms for both the full and thin QR decompositions
of ΦN by further exploring its periodic structure.

III. HOW TO EXPLORE THE STRUCTURE

We show how to develop efficient implementation algo-
rithms by exploring the structure of (7) and in particular,
the structure of the output kernel matrix H(α) to compute
Y T
N H(α)

−1
YN and log |H(α)| efficiently.

A. Preamble

We will introduce two different routes, whose key ideas
are sketched below.

1) Route 1: First, we can construct the HSS structure for
H(α) by selecting an appropriate level and the order of the
deepest level according to the period p. Then, followed by
the general framework of efficient algorithms to factorize the
HSS H(α), we propose modified Householder and Given



full QR decomposition applying the periodic structure. At
the last (lth) step, for changing α, the semi-separable struc-
ture of K(α) is used to compute the explicit D(α). The
framework and precise costs of computing Y T

N H(α)
−1

YN

and log |H(α)| are discussed.
First, we show that when ΦN is periodic, the output kernel

matrix H(α) has a HSS structure. Then by referring to [20],
[28], we modify a fast full QR decomposition to factorize
H(α) into different levels such that for k = l − 1, l −
2, . . . , 2, 1, we have

H(k)(α) = W (k)P (k)

[
H(k−1)

σ2I2kp

]
P (k)TW (k)T ,

(15)
where k is the level index, l is the deepest level chosen for
optimal computational complexity, W (k) is an orthogonal
transformation, and P (k) is a permutation matrix. Here we
try two methods for orthogonalization: Householder and
Givens QR decompositions. When the factorization is fin-
ished at the lth step,

H(0) = W (0)P (0)

[
D(α)

σ2Ip

]
P (0)TW (0)T ∈ R2p×2p

(16)
where D(α) = R(0)K(α)R(0)T + σ2Ip ∈ Rp×p, for which
the explicit form is computed efficiently using the semi-
separable structure of K(α). In H(α), only D(α) changes
as the parameter α changes. Since YN is fixed, all the
computations in Y T

N H(α)
−1

YN except the one related to
D(α) are only needed to be done once; since the determinant
of orthogonal matrices is zero, log |H(α)| is almost about
|D(α)| . The cost of computations related to the changing
part D(α) is free of N , which is much smaller when N ≫
n, p.

2) Route 2: In the second route, we present the following
steps to compute Y T

N H(α)
−1

YN and log |H(α)|:
i) Adapt the thin QR decomposition algorithm [30] to

compute R ∈ Rp×n with ΦN = QR,Q ∈ RN×p.
ii) Apply the Matrix Inversion Lemma to obtain

H−1 = σ−2(IN − ΦN H̄ΦT
N ) (17)

H̄ = σ−2(K −KRT (σ2Ip +RKRT )−1RKT ),

where for simplicity, we omit the dependence of H,KH̄
of α.

iii) Compute (σ2Ip +RKRT )−1.
iv) Y T

N H(α)
−1

YN : first multiply vector YN and Y T
N from

the right and left of (17) and use FFT to obtain ΦT
NYN ,

and then use semi-separable structure of K to finish the
computation of the other parts.

v) log |H|: rewrite it as

(N − p) log(σ2) + log
∣∣σ2Ip +RKRT

∣∣ . (18)

The second term is computed from step iii).

B. Route 1: Efficient implementation by exploring HSS struc-
ture of H(α) and periodic structure of ΦN

1) HSS Structure: We first show that H(α) is an HSS
matrix. Since ΦN is periodic, let the deepest level be l (the

choice for l will be discussed later), divide it into 2l parts
according to rows:

ΦN =
[
Φ

(l)
1

T
Φ

(l)
2

T
· · · Φ

(l)

2l

T
]T

(19)

where for i = 1, . . . , 2l − 1,

Φ
(l)
i =

Φb · · · Φbc

...
...

...
Φb · · · Φbc

 ∈ Rm×n (20)

Φ
(l)

2l
=

Φb · · · Φbc

...
...

...
Φbr · · · Φbb

 ∈ Rr×n, (21)

m is a multiple of p, r satisfies 2l−1m + r = N , normally
m ≈ r, 2lm ≈ N , and m is not necessarily larger than n.
Then H (α is sometimes omitted for simplicity) becomes

H =


Φ

(l)
1 KΦ(l)T Φ

(l)
1 KΦ

(l)
2

T
· · · Φ

(l)
1 KΦ

(l)

2l

T

Φ
(l)
2 KΦ

(l)
1

T
Φ

(l)
2 KΦ

(l)
2

T
· · · Φ

(l)
2 KΦ

(l)

2l

T

...
...

. . .
...

Φ
(l)

2l
KΦ

(l)
1

T
Φ

(l)

2l
KΦ

(l)
2

T
· · · Φ

(l)

2l
KΦ

(l)

2l

T


+ σ2diag(Im, Im, . . . , Ir),

(22)
which is an HSS matrix, as shown in the proposition below.

Proposition 2. Suppose that Assumption 1 holds. Then H in
(7) or (22) is a HSS matrix with identity translation operator.

According to [21], [22], [28], it is possible to develop fast
factorization of H according to its HSS structure, and the
factorization is based on the full QR decomposition of ΦN .
In the next section, we show that by exploring the periodic
structure of ΦN , it is possible to propose an efficient full QR
decomposition algorithm of ΦN .

2) Efficient QR Decomposition for Periodic ΦN : We first
consider the QR decomposition:

ΦN (1 : N, 1 : p) =


Φb

...
Φb

Φbr

 = Q

[
Rb

0(N−p)×p

]
, (23)

where Q ∈ RN×N with QQT = QTQ = IN , and Rb ∈
Rp×p. Then QT can be applied to the whole ΦN :

QTΦN =

[
Rb .. Rb Rbc

0(N−p)×p .. 0(N−p)×p 0(N−p)×(n%p)

]
≜

[
R
0

]
(24)

where Rbc =

[
Rb(1 : n%p, 1 : n%p)

0(p−n%p)×(n%p)

]
, and R ∈ Rp×n is

dense only in the upper triangular part of each Rb and Rbc.
Then the following proposition shows that Q(1 : N, 1 : p) is
also periodic with period p.

Proposition 3. Suppose that Assumption 1 holds and
rank(Φp) = p. Then it holds that

Q(i, j) = Q(i+tp, j) for 1 ≤ i, i+tp ≤ N, 1 ≤ j ≤ p, t ∈ Z.



Proposition 3 can be applied to efficiently solve the
least-square problems. In the following, we consider the
QR decomposition based on the Householder transformation
because of its nice properties when factorizing periodic ΦN .

By referring to [29, Algorithms 5.1.1 and 5.2.1], we pro-
pose an adapted algorithm to compute the QR decomposition
in (23):

1) Algorithm 1 computes the Householder transforma-
tion of a given periodic vector x ∈ RN . Since the
Householder vector v ∈ RN is periodic except the
first entry, we set vb and constant β as outputs such
that

• ṽb = vb(2 : p+ 1);
• v = [vb(1) ṽT

b · · · ṽT
b︸ ︷︷ ︸

m times

ṽT
b (1 : r)]T , where m =

⌊(N − 1)/p⌋, r = (N − 1)%p.
• The transformation can be expressed as Hv =

IN − βvvT .

2) Algorithm 2 computes the Householder QR decompo-
sition of the given periodic matrix ΦN (1 : N, 1 : p) ∈
RN×p. The outputs are: upper triangular matrix Rb ∈
Rp×p; vectors v

(k)
b and constants β(k), k = 1, . . . , p.

Then the Q in (23) can be represented by following:

• ṽ
(k)
b = v

(k)
b (2 : p+ 1).

• v(k) = [v
(k)
b (1) ṽ

(k)T
b · · · ṽ(k)T

b︸ ︷︷ ︸
m(k) times

ṽ
(k)T
b (1 :

r(k))]T , where m(k) = ⌊(N − k)/p⌋, r(k) =
(N − k)%p.

• Hvk
= IN−k+1 − β(k)(v(k))(v(k))T

• Q =
∏p

k=1 diag(Ik−1, Hvk
), where diag(A,B)

means the diagonal matrix generated by square
blocks A and B.

All the outputs in both algorithms are represented using
their periodic part, as we use Φb to represent ΦN . It is
because (7) can be computed by only using the periodic
part rather than explicitly forming the Q and R in (24). The
computational costs of the two algorithms as well as matrix-
vector product are shown in the following proposition.

Proposition 4. Given a periodic vector v ∈ RN and a
periodic matrix ΦN ∈ RN×n, both having the period p, The
cost of doing Householder QR decomposition with periodic
part-only outputs for ΦN using is about 2p2(p−1) = O(p3)
flops. Besides, given a vector x ∈ RN , QTx costs about
3Np = O(Np) flops,

3) Computational Complexity by Exploring the HSS struc-
ture: According to [21], [22], [28], the computational cost
for computing the factorization of H(α) by exploring the
HSS structure and Householder QR decomposition using
Algorithm 1 and Algorithm 2 is given in the theorem below.

Theorem 5. Suppose that Assumption 1 holds and the deep-
est level of H(α) is l. Then the computational complexity of

Algorithm 1 Householder transformation for a periodic
vector (House)

Input: Periodic part xb = x(1 : p), size N .
Output: First p + 1 elements of Householder vector vb =

v(1 : p+ 1), β.

1: x′
b ←

[
xb(2 : p)
xb(1)

]
;

2: m←
⌊
N−1
p

⌋
; r ← (N − 1)%p;

3: σ ← m(x′
b)

Tx′
b + (x′

b)
T (1 : r)x′

b(1 : r);

4: vb ←
[
1
x′
b

]
;

5: if σ = 0 then
6: β ← σ;
7: else
8: µ←

√
(xb(1))2 + σ;

9: if xb(1) ≤ 0 then
10: vb(1)← xb(1)− µ
11: else
12: vb(1)← −σ

xb(1)+µ ;
13: end if
14: β ← 2(vb(1))

2

σ+(vb(1))2
;

15: vb ← vb

vb(1)
;

16: end if
17: ṽb ← vb(2 : p+ 1);
18: v← [vT

b (1) ṽT
b · · · ṽT

b︸ ︷︷ ︸
m times

ṽT
b (1 : r)]T .

Algorithm 2 Householder QR decomposition for a periodic
matrix
Input: Periodic part Φb = Φtrun(1 : p, 1 : p), size N .
Output: First p + 1 elements of each Householder vector

v
(k)
b = v(k)(1 : p+ 1), β(k), Rb.

1: Φ
(1)
b ← Φb;

2: for k := 1 to p do
3: n(k) ← p− (k − 1);
4: m(k) ←

⌊
N−k
p

⌋
; r(k) ← (N − k)%p;

5: [v
(k)
b , β(k)]← House(Φ(k)

b (1 : p, 1), N − (k − 1));

6: Φ
′(k)
b ←

[
Φ

(k)
b (2 : p, 1 : n(k))

Φ
(k)
p (1, 1 : n(k))

]
;

7: S
(k)
f ← v

(k)
b (1)Φ

(k)
b (1, 1 : n(k));

8: S
(k)
m ← m(k)(v

(k)
b )T (2 : p+ 1)Φ

′(k)
b ;

9: S
(k)
r ← (v

(k)
b )T (1 : r + 1)Φ

′(k)
b (1 : r, 1 : n(k));

10: S(k) ← S
(k)
f + S

(k)
m + S

(k)
r ;

11: T
(k)
b ← β(k)v

(k)
b S(k);

12: Φ̃
′(k)
b ←

[
Φ

(k)
b (1, 1 : n(k))− T

(k)
b (1, 1 : n(k))

Φ
′(k)
b − T

(k)
b (2 : p+ 1, 1 : n(k))

]
;

13: Rb(k, k : p)← Φ̃
′(k)
b (1, 1 : n(k));

14: if k ̸= p then
15: Φ

(k+1)
b ← Φ̃

′(k)
b (2 : p+ 1, 2 : n(k));

16: end if
17: end for



computing both Y T
N H(α)−1YN and log |H(α)| is

[3Np+ (
7

3
+

5

3
l)p3 + (12 · 2l − 2l − 8)p2]︸ ︷︷ ︸
irrespective of α

+ f(n, p, k)︸ ︷︷ ︸
depends on α

(25)
where f(n, p, k) is the cost of computing the part dependent
on α and and the lower-order terms such as O(p) is ignored.
Moreover, the computational complexity (25) is minimized at
l = 0, and the corresponding one becomes

[3Np+
7

3
p3 + 4p2]︸ ︷︷ ︸

irrespective of α

+ f(n, p, k)︸ ︷︷ ︸
depends on α

. (26)

Theorem 5 shows that to have the most efficient implemen-
tation, it is enough to keep H(α) as a whole and just compute
the full Householder QR decomposition for ΦN . As a result,
we propose to compute Y T

N H(α)−1YN and log |H(α)| in
the following four steps:

i) Compute full QR decomposition of ΦN = Q

[
R
0

]
using

Algorithm 2, Q ∈ RN×N , R ∈ Rp×n is periodic. Then

H(α) = Q

[
D(α)

σ2IN−p

]
QT (27)

where D(α) = RK(α)RT + σ2Ip.
ii) Compute ȲN = QTYN . Let

ȲN =

[
Y1

Y2

]
, Y1 = ȲN (1 : p), Y2 = ȲN (p+ 1 : N).

Compute S2 = σ−2Y T
2 Y2.

iii) Compute explicit D(α) using the semiseparable struc-
ture of K(α):

– Compute KRT , each matrix-vector multiplication
of KRT (1 : n, i), i = 1, . . . , p is obtained by [32,
Algorithm 4.1.], which provides an efficient way to
calculate semiseparable matrix-vector product.

– Compute R(KRT ) + σ2Ip using the normal com-
putation way.

Then compute the inverse D(α)
−1. We have

S1(α) = Y T
1 D(α)

−1
Y1 (28)

The result of Y T
N H(α)YN = S1(α) + S2.

iv) Compute

log |H(α)| = (N − p) log(σ2) + log |D(α)| (29)

directly using explicit D(α).

It is worth to note that the first two steps, i.e., i)-ii), are
irrespective of α, but the last two steps depend on α. The
computational cost f(n, p, k) in Theorem 5 of the last two
steps, i.e., iii)-iv), is shown in the next section.

4) Computation Complexity f(n, p, k) of (28) and (29):
Since K changes as α changes, each update of α in the
solution of (7) requires the re-computation of (28) and (29)
with fixed R and their direct computation need O(n2p) flops.
As will be shown in the following theorem, it is possible to
reduce the computational complexity of (28) and (29) by
exploring the semiseparable structure of K in (11).

Proposition 6. Suppose that Assumption 1 holds and let
K ∈ Rn×n be a semiseparable matrix in the form of (11)
with the semiseparability rank k, and R ∈ Rp×n be the QR
decomposition of ΦN . Then, it holds that

• the computation cost of (28) is 8npk + np2 + 4
3p

3;
• the computation cost of (29) is O(p3);

and hence

f(n, p, k) = [8npk + np2 +
4

3
p3] + [O(p3)]. (30)

5) Overall Computational Complexity:

Theorem 7 (Complexity of Route 1). Following (26), the
total cost for both Y −1

N H(α)
−1

YN and log |H(α)| is

[3Np+
7

3
p3 + 4p2]︸ ︷︷ ︸

i), ii): fixed part

+ [8npk + np2 +
4

3
p3] + [O(p3)]︸ ︷︷ ︸

iii), iv): changing part, f(n,p,k)

.

(31)

C. Route 2: Efficient implementation by using FFT and thin
QR decomposition of ΦN

In this section, we show that it is possible to reduce the
computation cost of (7) by using the FFT based Toeplitz
matrix-vector product and thin QR decomposition of ΦN .
In particular, we propose to compute Y T

N H(α)−1YN and
log |H(α)| in the following four steps:

i) Use Algorithm 3 to compute the thin QR decompo-
sition of ΦN (1 : N, 1 : p) = QRb, Q ∈ RN×p,
Rb ∈ Rp×p. We only need to compute Rb and then
compute

R := [Rb Rb · · · Rbc] ∈ Rp×n

where the size is the same as the first p rows of (24),
QTΦN = R. By the relation ΦT

NΦN = RTR, H−1 can
be expressed as

H−1 = σ−2(IN − ΦN H̄ΦT
N )

H̄ = σ−2(K −KRT (σ2Ip +RKRT )−1RKT ).

.
ii) Compute zn := ΦT

NYN using FFT [29], and S1 =
Y T
N YN .

iii) (Changing part for Y T
N H−1YN ) Compute S2(α) =

zTn H̄zn.
– s21(α) := zTnKzn using [32, Algorithm 4.1.];
– ẑn := RKT zn = RKzn;
– Directly compute D′ = RKRT + σ2Ip using [32,

Algorithm 4.1.], which is essentially the same as
D(α) in Route 1;

– s22(α) := ẑTnD
′−1

ẑn.



– Final result of Y T
N H−1YN = σ−2(S1 −

S2(α)), S2(α) = σ−2(s21(α)− s22(α)).
(iv) (Changing part for log-determinant) We have the for-

mula

log |H| = (N − p) log(σ2) + log |D′|

by Sylvester’s determinant theorem. The computation
directly uses explicit D′ which has been obtained in
iii).

Now we analyze the complexity of each step.
1) Cost of step 1 (Algorithm 3): First, before analyzing

the cost of Algorithm 3, we should consider the periodic
Toeplitz matrix-vector multiplication, e.g. zn = ΦT

NYN ,
where zn has period p.

Proposition 8. Let ΦN ∈ RN×n be a periodic Toeplitz
matrix with period p, YN ∈ RN , then zn = ΦT

NYN has
period p, and computing the periodic part zb := zn(1 : p)
costs 9

2N log p flops. Moreover, if YN also has period p, then
the cost is 9p log p.

Since Qiao’s hybrid algorithm achieves both good com-
putational and numerical performance in thin QR decompo-
sition for Toeplitz matrix, we adapt Qiao’s algorithm with
additional periodic structure, to compute ΦN (1 : N, 1 : p) =
QRb [30]. Direct usage of Qiao’s method costs Np+6.5p2,
but the modified version can further reduce the cost.

Proposition 9. The cost for computing Rb ∈ Rp×p in ΦN (1 :
N, 1 : p) = QRb is 9p log p+ 6.5p2 flops.

For details about the notations, see the appendix.

Remark III.1. Similarly, by computing only the periodic
part in the hybrid algorithm, the cost of obtaining thin Q ∈
RN×p, which satisfies T = QRb, can also be reduced from
12Np to 12p2. The total cost is 9p log p+ 18.5p2.

2) Complexity of Route 2:

Theorem 10. The complexity of Route 2 is

[N(
9

2
log p+ 2) + 6.5p2]︸ ︷︷ ︸
i), ii): fixed part

+ [n(8pk + 11k + p2) +
4

3
p3 +O(p3)]︸ ︷︷ ︸

iii), iv): changing part

.
(32)

The order of the fixed part’s complexity is smaller than
Route 1, whereas the flops needed for the changing part are
higher than Route 1.

IV. NUMERICAL SIMULATION

In this section, we run numerical simulations to test
the efficacy of the proposed two routes. In particular, we
compare the performances of route 1 (denoted by RFIR-r1)
and route 2 (denoted by RFIR-r2) with Algorithm 2 in
[10] (denoted by RFIR). We test the KRM with the Tuned-
Correlated (TC) kernel which is extended 1-semiseparable
[11]. In particular, we estimate the hyper-parameters and the

Algorithm 3 (Modification of Qiao’s method) Toeplitz QR
decomposition of a periodic matrix T ∈ RN×p for Rb

Input: Periodic part Tb = T (1 : p, 1 : p), size N .
Output: Rb ∈ Rp×p such that T = QRb;

1: Initialize R−1, R̄,a ∈ Rp−1,Wi, Vi, Ui, i = 1, . . . , p−1;
2: m←

⌊
N
p

⌋
; r ← N%p;

3: Rb(1, 1)← ∥T (1 : N, 1)∥2 using periodic part Tb;
4: η0 ← Rb(1, 1);

5: xb ←
[
Tb(2 : p, 1)
Tb(1, 1)

]
; y← Tb(1, 2 : p)T ;

6: xR ←
[
Tb(2 + r : p, 1)
Tb(1 : r, 1)

]
and reverses the order of

elements;
7: yR

b ← Tb(1, 1 : p) and reverses the order of elements;
8: b← TT

−1x using periodic property, xb and FFT;
9: for k := 1 to p− 1 do

/*Stage 1: Use R(1 : k, k),W1, . . . ,Wk−1 to obtain
R−1(1 : k, k),Wk*/

10: t
(0)
N−k ← xR(k);

11: for i = 1, . . . , k − 1 do
12: r−1

i,k ← (ri,k − swi · t(i−1)
N−k )/cwi;

13: t
(i)
N−k ← −swi · r(−1)

i,k + cwi · t(i−1)
N−k ;

14: end for
15: r

(−1)
k,k ←

√
r2k,k − (t

(k−1)
N−k )2;

16: cwk ← r
(−1)
k,k /rk,k, swk ← t

(k−1)
N−k /rk,k;

/*Stage 2: Use r
(−1)
k , V1, . . . , Vk−1, U1, . . . , Uk−1 to ob-

tain rk+1, Uk, Vk*/
17: r̄1,k ← y(k);
18: for i = 1, . . . , k − 1 do

19:

[
r̄i,k

r̄i+1,k

]
←
[
cvi svi
−svi cvi

][
r̄i,k

r
(−1)
i,k

]
;

20: end for
21: γ ←

√
r̄2k,k + (r−1

k,k)
2;

22: cvk ← r̄k,k/γ; svk ← r
(−1)
k,k /γ; r̄k,k ← γ;

23: a(k)← [b(k)−r(−1)
k

T
(1 : k−1)a(1 : k−1)]/r(−1)

k,k ;

24:

[
āk
âk

]
←
[
cvk svk
−svk cvk

] [
âk−1

ak

]
;

25: η2k+1 ← η2k − ā2k; cuk ← āk/ηk; suk ← ηk+1/ηk;
26: for i = k, k − 1, . . . , 1 do

27:

[
r̄i,k

ri+1,k+1

]
←
[
cui sui

−sui cui

] [
r̄i,k

r̄i+1,k

]
28: end for
29: r1,k+1 ← r̄1,k;
30: end for



(a) Box plot of model fits for RFIR,
RFIR-r1 and RFIR-r2 in the accuracy
test where the averaged model fits are
87.6618, 87.7077 and 87.5742, respec-
tively.
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(b) The averaged computation time by
RFIR (blue line), RFIR-r1 (orange line
with stars) and RFIR-r2 (yellow dashed
line) with respect to n where the time axis
is in a base-10 logarithmic scale.

noise variance σ2 by maximizing the marginal likelihood
(7), which is computed by RFIR, RFIR-r1 and RFIR-r2.
Then the corresponding regularized impulse response esti-
mates (6) are computed.

The input signal is a periodic random Gaussian signal
using the entire frequency range with period p and the output
additive white Gaussian noise v(t) is generated with variance
one tenth of the variance of the noise-free output.

A. Accuracy test

In this test, we run Monte Carlo simulations to test the
accuracy of the two routes. Specifically, we generate 80
discrete-time linear systems of 10th order with the moduli
of all the poles within [0.1, 0.9]. The number of data points
N is chosen to be 600, the FIR model order n is chosen
to be 50 and the period p is chosen to be 40. To assess the
estimation performance, we define the model fit:

fit = 100

(
1−

[∑n
k=1 |g0k − ĝk|∑n
k=1 |g0k − ḡ0|

]1/2)
, ḡ0 =

1

n

n∑
k=1

g0k

(33)
where g0k and ĝk are the true and the estimated impulse
response at the kth order, respectively.

The averaged model fits for RFIR, RFIR-r1 and
RFIR-r2 are 87.6618, 87.7077 and 87.5742, respectively.
The distribution of the model fits is shown in Fig. (a). We

observe that RFIR-r1 and RFIR-r2 give almost the same
accuracy performances as RFIR.

B. Efficiency test

In this test, we generate a data set from a fixed system

G(q) =
0.2163q

(q − 0.9817)(q − 0.9584)
. (34)

The number of data points M is chosen to be 6000 and
the period p is chosen to be 200 while we change the
FIR model order n from 300 to 2400 with the step size
100. For each n, we identify the system for 10 times
and measure the corresponding averaged computation time
for the estimation tasks solved by RFIR, RFIR-r1 and
RFIR-r2. The averaged computation time with respect to
the FIR model n is depicted in Fig. (b), which indicates that
RFIR-r1 and RFIR-r2 are significantly faster than RFIR
as n grows larger.

V. CONCLUSION

In this paper, we proposed an efficient implementation for
kernel-based regularized system identification with semisep-
arable kernels and periodic input signals. The proposed
implementation, as illustrated by the simulation results, is
more efficient than the existing one and thus offers the users
more efficient implementations of algorithms in practice.
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VI. APPENDIX

A. Proof of Proposition 2
In equation (23), the off-diagonal blocks

Φ(l)KΦ(l)T ,Φ
(l)

2l
KΦ(l)T ,Φ(l)KΦ

(l)

2l

T
and Φ

(l)

2l
KΦ

(l)

2l

T
are

of low-rank, since rank(Φ(l)) ≤ p, rank(Φ(l)KΦ(l)T ) ≤ p,
and the other cases are similar. More generally,

rank(


Φ

(l)
i KΦ

(l)T
j Φ

(l)
i KΦ

(l)T
j+1 . . . Φ

(l)
i KΦ

(l)T
k

Φ
(l)
i+1KΦ

(l)T
j Φ

(l)
i+1KΦ

(l)T
j+1

... Φ
(l)
i+1KΦ

(l)T
k

...
...

...
...

Φ
(l)
h KΦ

(l)T
j Φ

(l)
h KΦ

(l)T
j+1 . . . Φ

(l)
h KΦ

(l)T
k

) ≤ p

(35)
where i ̸= j for all i = i, i + 1, ..., h and j = j, j + 1, ..., k
such that all the blocks in (25) are not the diagonal blocks.

Now we use the original notation as (20) for Φ(l)
i for a more

clear illustration.
Now, write H as

H
(0)
1 := H =

[
H

(1)
1 H

(1)
12

H
(1)
21 H

(1)
2

]
(36)

and

H
(k)
i =

[
H

(k+1)
2i−1 H

(k+1)
(2i−1)(2i)

H
(k+1)
(2i)(2i−1) H

(k+1)
2i

]
(37)

for k = 1, . . . , l−1 and i = 1, 2, . . . , 2k−1. Follow the same
notations as (17), (18), write

U
(k)
2i−1 =

[
Φ

(l)T

(2i−2)2l−k+1
· · · Φ

(l)T

(2i−1)2l−k

]T
; (38)

U
(k)
2i =

[
Φ

(l)T

(2i−1)2l−k+1
· · · Φ

(l)T

(2i)2l−k

]T
; (39)

V
(k)
2i−1 = U

(k)
2i−1;V

(k)
2i = U

(k)
2i ; (40)

K
(k)
(2i−1)(2i) = K(2i)(2i−1) = K. (41)

Then the off-diagonal blocks in (27) are expressed as

H
(k+1)
(2i−1)(2i) = U

(k+1)
2i−1 K

(k+1)
(2i−1)(2i)V

(k+1)
2i

T
, (42)

H
(k+1)
(2i)(2i−1) = U

(k+1)
2i K

(k+1)
(2i)(2i−1)V

(k+1)
2i−1

T
. (43)

By (24), rank(H(k+1)
(2i−1)(2i)) ≤ p, rank(H

(k+1)
(2i)(2i−1)) ≤ p. And

the diagonal blocks are

H
(k+1)
2i−1 = U

(k+1)
2i−1 KV

(k+1)
2i−1

T
, (44)

H
(k+1)
2i = U

(k+1)
2i KV

(k+1)
2i

T
. (45)

By construction, H is a HODLR matrix. Furthermore, since

U
(k)
2i−1 =

[
U

(k−1)
4i−3

U
(k−1)
4i−2

]
, U

(k)
2i =

[
U

(k−1)
4i−1

U
(k−1)
4i

]
(46)

for all k and i, V (k)
2i−1, V

(k)
2i are the same, H has translation

property and hence is a HSS matrix.

B. Proof of Proposition 3
The proof uses the well-known property of spanning space

of columns of original matrix and orthogonal transformation
[29]. More specifically, since ΦN (:, 1 : p) has full column
rank p, we have the relationship

ran(ΦN (:, 1 : p)) = ran(Q(:, 1 : p)) (47)

[29]. For convenience, let

ΦN (:, 1 : p) =
[
ϕ1 ϕ2 · · · ϕp

]
Q(:, 1 : p) =

[
q1 q2 · · · qp

]
where ϕk(i) = ϕk(i+ tp) for 1 ≤ i, i+ tp ≤ N, t ∈ Z and
any k = 1, 2, . . . , p by periodicity of ΦN . By (9), for any
j = 1, 2, . . . , p, write

qj =

p∑
k=1

ckjϕk.



We have

qj(i) =

p∑
i=k

ckjϕk(i) =

p∑
i=k

ckjϕk(i+ tp) = qj(i+ tp)

for 1 ≤ i, i + tp ≤ N, t ∈ Z. Finally, we obtain Q(i, j) =
qj(i) = qj(i+ tp) = Q(i+ tp, j), which finishes the proof.

C. Proof of Proposition 4
1) Trivially, the cost of doing a Householder transforma-

tion for v using Algorithm 1 is about 3p = O(p)
flops. To see the cost of Algorithm 2, in the kth

iteration, k = 1, . . . , p, the cost is determined by
(IN−k+1 − β(k)(v(k))(v(k))T )Φ

(k)
N (k : N, k : p),

where Φ
(k)
N (1 : N, 1 : p) denotes the changed ΦN (1 :

N, 1 : p) by Householder transformation after (k − 1)
iterations. The costs are:

• 2p(p− k) for (v(k))TΦ
(k)
N (k : N, k : p): line 7, 8,

9, 10, which is the calculation of S(k).
• p(p− k) for β(k)v(k)(·): line 11.
• p(p−k) for the subtraction Φ

(k)
N (k : N, k : p)−(·):

line 12.
Hence, by counting the cost of 3p flops for House-
holder transformation in each iteration, the total cost
is

p∑
k=1

4p(p− k) + 3p = p2(2p+ 1) (48)

2) Given a vector x ∈ RN and Q ∈ RN×N obtained
in Algorithm 2, QTx costs about 3Np = O(Np)
flops. We can use the Householder vectors v(k) and
parameter β(k), k = 1, . . . , p to compute QTx,x ∈
RN by

QTx =

 ∏
k=p,p−1,...,1

diag(Ik−1, Hvk
)

x

where Hvk
= IN−k+1 − β(k)(v(k))(v(k))T . Comput-

ing diag(Ik−1, Hvk
)xk−1 for a vector xk−1 ∈ RN

costs 3N − 2k + p+ 4 flops, the total cost is 3Np.

D. Proof of Theorem 5
1) Framework: First, compute full QR decomposition of

Φ(l)(1 : m, 1 : p) and Φ
(l)

2l
(1 : r, 1 : p):

Φ(l)(1 : m, 1 : p) = Q(l)

[
R̂(l)

0(m−p)×p

]
, (49)

Φ
(l)

2l
(1 : r, 1 : p) = Q

(l)

2l

[
R̂

(l)

2l

0(r−p)×p

]
(50)

where Q(l) ∈ Rm×m, Q
(l)

2l
∈ Rr×r, R̂(l), R̂

(l)

2l
∈ Rp×p. Let

R(l) =

[
R̂(l) R̂(l) . . . R̂(l) ˆ̂

R(l)

0 0 . . . 0 0

]
m×n

, (51)

R
(l)

2l
=

[
R̂

(l)

2l
R̂

(l)

2l
. . . R̂

(l)

2l
ˆ̂
R

(l)

2l

0 0 . . . 0 0

]
r×n

(52)

where

ˆ̂
R(l) =

[
R̂(l)(1 : n%p, 1 : n%p)

0

]
, (53)

ˆ̂
R

(l)

2l
=

[
R̂

(l)

2l
(1 : n%p, 1 : n%p)

0

]
. (54)

Then
Φ(l) = Q(l)

[
R(l)

0

]
,

Φ
(l)

2l
= Q

(l)

2l

[
R

(l)

2l

0

] (55)

as presented above. Let

W (l) := diag(Q(l), . . . , Q(l)︸ ︷︷ ︸
2l−1

, Q
(l)

2l
), (56)

then
H(l) := H

= W (l)(



[
R(l)KR(l)T 0

0 0

]
· · ·

[
R(l)KR

(l)T

2l
0

0 0

]
...

. . .
...[

R
(l)

2l
KR(l)T 0
0 0

]
· · ·

[
R

(l)

2l
KR

(l)T

2l
0

0 0

]


+ σ2diag(Ip, Im−p, . . . , Ip, Ir−p))W

(l)T

= W (l)P (l)

[
H(l−1) 0

0 σ2IN−2lp

]
P (l)TW (l)T

(57)
where P (l) is a permutation matrix that combines the dense
blocks into

H(l−1) :=


R(l)KR(l)T + σ2Ip · · · R(l)KR

(l)T

2l

...
. . .

...
R

(l)

2l
KR(l)T · · · R

(l)

2l
KR

(l)T

2l
+ σ2Ip


(58)

which is the next level and has 2lp dimension and also has
HSS structure.

Then, we factorize H(l−1) similarly but merge two adja-
cent R(l) or R(l)

2l
to be

R(l−1)
com := R

(l−1)
com,i =

[
R(l)T R(l)T

]T
, i = 1, . . . , 2l−1 − 1

(59)

R
(l−1)

com,2l−1 =
[
R(l)T R

(l)

2l

T
]

(60)

that have the same size 2p×n. Do QR decomposition similar
to (55)

R(l−1)
com = Q(l−1)

[
R(l−1)

0

]
, (61)

R
(l−1)

com,2l−1 = Q
(l−1)

2l−1

[
R

(l−1)

2l−1

0

]
. (62)

We construct W (l−1), P (l−1) ∈ R2lp×2lp and then

H(l−1) = W (l−1)P (l−1)

[
H(l−2)

σ2I2l−1p

]
P (l−1)TW (l−1)T .

(63)



We continuously factorize H(l−1) to H(l−2), . . ., H(1) to
H(0), where the relationship can be expressed as (15),
H(k) ∈ R2k+1p×2k+1p for k = l−1, l−2, . . . , 2, 1. In the last
step (lth step) H(1) is denoted as (16). Note that for k = l,
the size is slightly different, see (57).

In order to compute the first term Y T
N H−1YN =

Y T
N H(l)−1

YN in (7), we firstly observe that

H(l)−1
= W (l)P (l)diag(H(l−1)−1

, σ−2IN−2lp)P
(l)TW (l)T .

(64)
Since it is symmetric, we only need to consider one side.
After applying W (l)T to YN , denoted as ȲN , divide it into

ȲN =
[
Ŷ T
N1 Ỹ T

N1 . . . Ŷ T
N2l Ỹ T

N2l

]T
,

ŶNi = ȲN ((i− 1)m+ 1 : (i− 1)m+ p), i = 1, ..., 2l − 1

ỸNi = ȲN ((i− 1)m+ p+ 1 : im), i = 1, ..., 2l − 1

ŶN2l = ȲN ((2l − 1)m+ 1 : (2l − 1)m+ p),

ỸN2l = ȲN ((2l − 1)m+ p+ 1 : (2l − 1)m+ r).
(65)

By the effect of permutation matrix P (l), here, ỸNi’s are
only used for σ−2Ỹ T

NiỸNi, for i = 1, . . . , 2l, while

Ŷ
(l)
N :=

(
Ŷ T
N1 . . . Ŷ T

N2l

)T ∈ R2lp. (66)

is used in the next step where we calculate
Ŷ

(l)
N

TH(l−1)−1
Ŷ

(l)
N . After applying W (l−1)T to Ŷ

(l)
N ,

denoted as ¯̂
Y

(l)
N , we also divide it into 2l subvectors as (65):

¯̂
Y

(l)
N =

(
¯̂
Y T
N1

¯̂
Y T
N2 . . .

¯̂
Y T
N2l

)T
(67)

where each ¯̂
YNi is of size p. The vectors with an even index

are used for computing dot product and multiplying σ−2,
while the vectors with an odd index are merged into

Ŷ
(l−1)
N =

(
¯̂
Y T
N1

¯̂
Y T
N3 . . .

¯̂
Y T
N(2l−1)

)T
∈ R2l−1p (68)

for the further calculation of Ŷ
(l−1)
N

TH(l−2)Ŷ
(l−1)
N . Repeat

this procedure, after each iteration the size of Ŷ
(k)
N will be

halved until the last iteration,

Ŷ
(1)
N :=

(
Y T
0 Y ′T

0

)T
(69)

where both Y0, Y
′
0 ∈ Rp. Finally, the quadratic form of

inverse D is obtained by

Y T
0 D−1Y0 (70)

and the result of Y T
N H−1YN is the summation of

• All the σ−2 times inner product of vectors as subvectors
of even index in ȲN and Ŷ

(k)
N , k = 1, 2, . . . , l.

• The quadratic form (70).
It is more strightforward to compute the log-determinant

term log |H| in (7) after factorization since all W (i), P (i), i =
1, . . . , l have determinant 1. Hence it only requires

log |H| = (N − p) log(σ2) + log |D| (71)

where the direct calculation of |D| requires O(p3).

2) Complexity:
i) Obtaining W (i), i = 1, . . . , l for factorization costs

(
7

3
+

5

3
l)p3 + (4− 2l)p2 = O(p3) (72)

because we need to do two QR decompostions in each
level to obtain W (l). W (l) costs 2p2(2p+1) by (48), and
W (i), i = 1, . . . , l−1 costs 2p2( 56p−1) since R

(i)
com and

R
(i)
com,2i consist of two upper triangular matrices with

zero entries.
ii) Obtaining ȲN and ¯̂

Y
(i)
N , i = 1, 2, . . . , l after applying

W (l)T to YN and W (i−1)T to Ŷ
(i)
N by Remark III.1

costs

3Np+ 6p2
l∑

i=1

2i = 3Np+ 12p2(2l − 1) = O(Np)

(73)
iii) Dot product term costs 2(N − p) (neglected).
iv) (Changing part) Y T

0 D−1Y0 and log |D| cost f(n, p, k).
By neglecting the lower-order terms, the total cost is approx-
imately

[3Np+(
7

3
+

5

3
l)p3+(12 ·2l−2l−8)p2]+f(n, p, k). (74)

E. Proof of Proposition 6
According to [32], for a vector x ∈ Rn,
• computation of Kx using [32, Algorithm 4.1] takes

11nk flops;
• computation of xT (Kx) takes 2n flops;
• the overall cost for the computation of xTKx is 11nk+

2n flops.
Applying the above result, the procedure and the correspond-
ing costs to compute D are described as follows:

• computation of KRT using [32, Algorithm 4.1] takes
about 8npk + 3nk flops.
Let ri := RT (1 : n, i) ∈ Rn×1, i = 1, ..., p. When
i ≤ n%p, there are ⌈np ⌉(i− 1) zeros in ri; for n%p <
i ≤ p, there are ⌊np ⌋(i − 1) + n%p zeros; especially
when n%p = 0, there are n

p (i − 1) zeros. ⌈np ⌉ is the
smallest integer larger than n

p , while ⌊np ⌋ is the largest
integer smaller than n

p . For Kx with m zeros in x, the
cost is 11nk − 6mk. Therefore, KRT costs

11npk − 6k(

n%p∑
i=1

⌈n
p
⌉(i− 1) +

p∑
i=n%p+1

(⌊n
p
⌋(i− 1) + n%p)

≈ 11npk − (3npk − 3kn)

= 8npk + 3nk
(75)

• R(·) costs about n(p2 + p) flops. We need to calculate
rTi (·) for i = 1, ..., p. The cost is 2p(n−⌈np ⌉(i− 1)) ≈
2n(p−(i−1)), the total cost is

∑p
i=1 2n(p−(i−1)) =

2n
∑p

i=1 p− i+ 1 = n(p2 + p).
• Addition of σ2Ip costs p flops.
• Hence the total cost to compute D is about

n(8pk + 3k + p2 + p) = O(npk). (76)



• For a vector Y0 ∈ Rp, the cost to compute Y T
0 D−1Y0

is

n(8pk + 3k + p2 + p) +
4

3
p3 +

7

2
p2 +

13

6
p

≈ 8npk + np2 +
4

3
p3

(77)

including computing D, inversion of D with cost ( 43p
3+

3
2p

2 − 5
6p), quadratic form with cost (2p2 + 2p).

• The cost for log |D| is O(p3).
Therefore, in (25), we have

f(n, p, k) = [8npk + np2 +
4

3
p3] + [O(p3)]. (78)

F. Proof of Proposition 8
It is trivial that zn has period p. Let the periodic part be

zb = zn(1 : p), that is computed by

zb = ΦT
N (1 : p, 1 : N)YN

=
m∑
i=1

ΦT
b YN ((i− 1)p+ 1 : ip)

+ ΦT
b (1 : p, 1 : r)YN (N − r + 1 : N)

(79)

where m :=
⌊
N
p

⌋
, r := N%p, Φb is defined in (10). By

FFT, each term in the summation costs about 9
2p log p flops,

and hence the total cost is about 9
2N log p flops. If YN is has

period p, the computation cost of ΦT
Nx is still about 9p log p

because the terms in the second line of (79) are the same.

G. Notes on Proposition 9 and Algorithm 3
We firstly present the notations Qiao used:
• ti := T (1, i + 1), i = 1, . . . , N − 1; t−j := T (1, j +

1), j = 1, . . . , p− 1;
• T−1 = T (1 : N − 1, 1 : p− 1),x = T (2 : N, 1);
• T = P

[
RT

b 0T
]T

is the QR decomposition of T , and
ri,j := Rb(i, j), rk := Rb(1 : k, k).

• T−1 = P−1

[
RT

−1 0T
]T

is QR decomposition of T−1,
and r

(−1)
i,j := R−1(i, j), r

(−1)
k = R−1(1 : k, k);

• R̄ ∈ R(p−1)×(p−1) is an upper-triangular matrix, r̄i,j =
R̄(i, j), r̄k = R̄(1 : k, k);

• Wi, Vi, Ui, i = 1, . . . , p − 1 are Givens rotations. Let
cwi.swi be the cosine and sine of Wi, similar notations
cvi, svi, cui.sui are used for Vi, Ui.

For detailed meanings of each notations, see [30]. Com-
pare with Qiao’s algorithm, the main differences appear in
line 3 and 8. In line 3, the 2-norm calculation is similar to
Algorithm 1 line 3 by periodic property. In line 8, the cost
is about 9p log p by Proposition 7. Other lines as well as
the costs are the same as [30].

H. Proof of Theorem 10
First, the fixed part is

(i) Obtain Rb = R(1 : p, 1 : p). Cost: 9p log p + 6.5p2 ≈
6.5p2;

(ii) Compute zn := ΦT
NYN . Cost: 9

2N log p flops
(Proposition 8);

(iii) Compute S1 := Y T
N YN . Cost: 2N flops.

Second, S2(α) = zTn H̄zn changes as α changes.
(iv) s21(α) := zTnKzn. Cost: 11nk + 2n ≈ 11nk flops by

(see proof of Proposition 6);
(v) ẑn := RKT zn. KT zn = Kzn has been computed in

iv); R(·) costs n(1 + p− 2
p ) ≈ np flops (neglected);

(vi) s22(α) := ẑTn (RKRT + σ2Ip)
−1ẑn. The cost is essen-

tially the same as (53), which is

n(8pk + 3k + p2 + p) +
4

3
p3 +

7

2
p2 +

13

6
p

≈ n(8pk + p2) +
4

3
p3

(vii) Final result of Y T
N H−1YN = σ−2(S1 −

S2(α)), S2(α) = σ−2(s21(α) − s22(α)). The cost
is negligible.

(viii) |H| = σ2(N−p)
∣∣σ2Ip +RKRT

∣∣ by Sylvester’s deter-
minant theorem. Cost: O(p3).

The total cost is

[N(
9

2
log p+ 2) + 6.5p2]︸ ︷︷ ︸

(i), (ii), (iii): fixed part

+ [n(8pk + 11k + p2) +
4

3
p3 +O(p3)]︸ ︷︷ ︸

(iv), (vi), (viii): changing part

.
(80)


