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Summary in English

Differential geometry is a branch of mathematics that focuses on the study of manifolds
and their properties, through the use of calculus and algebra. In machine learning, various
high-dimensional spaces, including data space and parameter space, can be effectively
treated as manifolds. Gaining insights into the structure of these manifolds is crucial for
addressing numerous machine learning challenges.

This thesis demonstrates how differential geometry can be applied to tackle machine
learning problems. It is divided into two parts, with the first part providing a general
introduction to three subfields of differential geometry, and the second part highlighting
the research conducted during this thesis. The first chapter delves into Riemannian
geometry, offering an intuitive understanding of Riemannian objects and curvature
concepts. This chapter lays the foundation for further investigation into the curvature
of loss landscapes in the context of neural network generalization. The second chapter
sheds light on Finsler geometry, drawing comparisons with Riemannian geometry. Finsler
geometry has proven valuable in comparing expected lengths derived from a stochastic
manifold. The third chapter introduces the Fisher-Rao metric in information geometry.
This metric is employed to explore the latent space of Variational Auto-Encoders decoding
to various distributions.





Resumé

Differentialgeometri er en gren af matematik, der fokuserer på studiet af mangfoldigheder
og deres egenskaber gennem brug af calculus og algebra. I maskinlæring kan forskellige
højdimensionelle rum, inklusive dataspace og parameterspace, effektivt behandles som
mangfoldigheder. At opnå indsigt i strukturen af disse mangfoldigheder er afgørende for
at kunne håndtere adskillige udfordringer inden for maskinlæring.

Denne afhandling demonstrerer, hvordan differentialgeometri kan anvendes til at tackle
problemer inden for maskinlæring. Den er opdelt i to dele, hvor den første del giver en
generel introduktion til tre underfelter af differentialgeometri, og den anden del fremhæver
den forskning, der er udført i løbet af denne afhandling. Det første kapitel dykker ned
i Riemannsk geometri, der tilbyder en intuitiv forståelse af Riemannske objekter og
krumningsbegreber. Dette kapitel lægger grundlaget for yderligere undersøgelse af tab
landskabets krumning i konteksten af neural netværks generalisering. Det andet kapitel
kaster lys over Finsler-geometri og trækker sammenligninger med Riemannsk geometri.
Finsler-geometri har vist sig værdifuld i sammenligningen af forventede længder afledt
fra en stokastisk mangfoldighed. Det tredje kapitel introducerer Fisher-Rao metrikken i
informationsgeometri. Denne metrik bruges til at udforske det latente rum af Variational
Auto-Encoders, der dekoder til forskellige distributioner.
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Part I

Introduction





Prologue, Motivation and Approach 1
1.1 Differential geometry in machine learning

Self-supervised learning and data generation often involve mapping learned low-dimensional
representations back to the original data space, via generative models. If we want to ac-
curately navigate this latent space while preserving the underlying geometrical structure
of the data, we should not assume it to be Euclidean. Instead, we need to draw upon
tools from differential geometry. This statement can be better understood through a
simple example.

Travelling the world: The surface of the Earth, a sphere embedded in R3, can be
represented on a large map, a plane of 2 dimensions. When travelling from one country
to another, we want to follow the shortest path that will lead us to our destination. It
is tempting to draw a straight line on this map that represents our journey. Yet, this
straight line on the map is not the shortest path on Earth. This is because the sphere
cannot be represented, without any deformation, on a plane.

Figure 1.1: The shortest path between Cayenne and Paris is not a straight line on the map.

Whenever we are dealing with a non-Euclidean space, we need to borrow tools from
differential geometry, and non-Euclidean manifolds are present everywhere in machine
learning. They can be a low-dimensional latent space learned through generative models,
the space of probability distributions, or the space of parameters of a neural network.

In this thesis, we study different aspects of differential geometry for machine learning.
Specifically, we use tools from Riemannian geometry, Finsler geometry, and information
geometry to solve both practical and theoretical problems. Each topic form its own
chapter, and serves as an introduction to the research carried out in this thesis.

This research is based on two hypotheses, one that is essential to perform geometry,
and another one that is practical to construct a metric.

1. Our data points should lie on a manifold.
We assume that the data we are working with lie on a smooth surface, which
can be highly complex and non-trivial but shouldn’t have any irregularities. This
condition is called themanifold hypothesis (Fefferman et al. 2016). All the differential
geometry is built upon it and, depending on the data, it can be difficult to prove or
disprove it in practice. As long as our observations have some inherent structure,
the hypothesis is very likely to be true.
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2. Our generative models form an immersion.
To navigate the latent space effectively, we must equip it with a metric. This metric
is obtained through the map that learns the latent space, typically a generative
model. The metric functions as a norm, and for it to be non-degenerate, the map
must be an immersion: a smooth function whose derivatives are injective.

1.2 Outline of this thesis

An accessible introduction of diverse subfields in differential
geometry

This manuscript aims to provide an accessible introduction to three promising fields
that could benefit the machine learning community. It is crafted for any curious reader,
regardless of their background. The chapters are written in a way that tries to convey
both the intuition and the motivations behind the numerous mathematical definitions.

A subfield of geometric deep learning

This research falls within geometric deep learning, is a field focusing on applying deep
learning methods to data with a non-Euclidean structure, such as graphs or manifolds.
As such, it covers many subfields including graph theory, gauge theory, group theory,
and manifold learning. Due to the increasing popularity of graph neural networks, the
term geometric deep learning has often been used interchangeably with graph theory in
deep learning. However, this thesis does not cover graph theory, nor does it cover gauge
theory or group theory.

Yet, these fields are deeply interconnected. In particular, differential geometry and graph
theory share numerous concepts, such as the notion of curvature or the Laplacian operator.
When a graph can be viewed as a mesh - a discrete approximation of a manifold - those
connections deepen.

Such conceptual bridges may enable us to tackle more complex problems that may
not be easily approached through a single mathematical lens. My humble hope is
that this manuscript may provide new perspectives within the geometric deep learning
community.

Thesis layout

To fully comprehend the content of chapters 2 and 3, the readers would benefit from a
basic understanding of Riemannian geometry. The first half of chapter 1 conveniently
provides an overview of essential concepts. While the papers are summarized at the end
of each chapter, they are not extensively discussed. Instead, the reader is encouraged to
refer to the original papers for a more comprehensive understanding.

In Chapter 2, we introduce the basic concepts of Riemannian geometry, where we focus
on the first part on the notion of Riemannian metric and on the second part, the notion
of curvature. In Chapter 3, we introduce the basic concepts of Finsler geometry, where
we motivate the definition of the Finsler metric and compare the Finsler geometry with
Riemannian geometry. In Chapter 4, we introduce the Fisher-Rao metric and look at its
properties.

The papers are summarized at the end of each chapter, and references in Chapter 5,
Chapter 6, and Chapter 7.
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Contributions

This thesis is build upon the following papers, which are summarized at the end of each
chapter, and references as chapters.

1. On the curvature of the loss landscape
Alison Pouplin, Hrittik Roy, Sidak Pal Singh, Georgios Arvanitidis.
Preprint, arXiv:2307.04719, 2023.

2. Identifying latent distances with Finslerian geometry
Alison Pouplin, David Eklund, Carl Henrik Ek, Søren Hauberg.
NeurIPS 2022 Workshop "Symmetry and Geometry in Neural Representations".
Currently, under review at TMLR. Available at arXiv:2212.10010.

3. Pulling back information geometry
Georgios Arvanatidis∗, Miguel González-Duque∗, Alison Pouplin∗, Dimitris Kalatzis∗,
Søren Hauberg∗. ∗ Equal contribution
Published in AISTATS 2022, and available at arXiv:2106.05367.

Besides these, I also participated in the following research projects:

1. PyRelationAL: a python library for active learning research and devel-
opment
Paul Scherer, Thomas Gaudelet, Alison Pouplin, Alice Del Vecchio, Suraj M S,
Oliver Bolton, Jyothish Soman, Jake Taylor-King, Lindsay Edwards.
Preprint, arXiv:2205.11117.

2. Density estimation on smooth manifolds with normalizing flows
Dimitris Kalatzis, Johan Ziruo Ye, Alison Pouplin, Jesper Wohlert, Søren Hauberg.
Preprint, arXiv:2106.03500.

1.3 Before embarking on a journey on curved spaces

The aim of the following section is to give the reader enough intuition to understand the
bases of differential geometry.

Before exploring a manifold of interest, it is essential for it to meet certain requirements
to be considered a smooth manifold. Once these criteria are satisfied, the next step
involves equipping the manifold with geometric tools that enable differentiation through
a connection, and measurements with a metric.

Where can we navigate? A manifold theory

What is a manifold? At its essence, a manifold is like a curve or a surface defined in any
dimension. It needs to have a coherent structure such that, if we divide the manifold into
different pieces, each piece should be well-defined, without peculiarities. Such manifolds
are topological manifolds, and they are extensively studied in topology. In geometry,
additional calculus operations, including differentiation, need to be performed on those
manifolds. We need to be able to smoothly transition from one patch to another, leading
us to define smooth manifolds, the central objects of our study.
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Topological manifolds

At its core, a topological manifold is a topological space. It means that it can be fully
covered using patches, allowing for different possible arrangements. We have three further
requirements: first, we want to be able to count the number of patches used (second
countable). Second, we want to be sure that the space does not fold or overlap on itself
(Hausdorff). Finally, when we zoom in close enough to see a point, then it should look
like the Euclidean space (locally Euclidean).

Being second countable ensures that the manifold is of manageable size. Although
the number of patches can be infinite, it must be countably infinite, establishing a one-
to-one correspondence with the natural numbers. The Hausdorff condition guarantees
the ability to separate distinct points on the manifold, preventing scenarios where, for
example, two points from different lines become indistinguishable at their intersection.
Lastly, when observed at a sufficiently close scale, the manifold should resemble the
Euclidean space, allowing for operations to be conducted locally.

Smooth manifolds

A smooth manifold, also called differentiable manifold, is a topological manifold on which
we can perform calculus. To define a smooth manifold, we introduce the concept of charts
and atlases. A chart is a pair (U , ϕ) consisting of an open subset U (a patch) of the
manifold and a homeomorphism ϕ between that subset and a corresponding subset of
Euclidean space. An atlas is a collection of charts that covers the entire manifold.

To qualify as a smooth, the transition functions between overlapping charts in the atlas
must be smooth. In other words, if we switch from one chart to another, the transition
should be seamless and allow for smooth calculations and differentiability.

Figure 1.2: Understanding what is considered a non-smooth manifold can be easier than
understanding a smooth manifold. The first three figures on the left are not classified as
smooth manifolds because they have critical points. Specifically, the double cone and the line
with a node are not Hausdorff, and so they are not considered as topological manifold. The
cube can be considered as a topological manifold, but we cannot navigate smoothly from one
side to another, so it is not a smooth manifold. The last figure represents the union of two
smooth manifolds, making it a smooth manifold even though the two manifolds are disjoint.

Variations of smooth manifolds

In this manuscript, and very often in differential geometry, unless explicitly stated, the
term smooth manifolds denotes manifolds that are homeomorphic to a designated
modelling space – the Euclidean plane in Rd, with d a finite dimension. Variations to
this modeling space can yield diverse interesting manifolds. Notably, if the manifold
is homeomorphic to a Hilbert, Banach or Frechet space, then we respectively define a
Hilbert, Banach or Frechet manifolds, which have the advantage of being infinite
dimensional, and are used for example in Information geometry. If the manifold is
homeomorphic to a Euclidean plane in Cd, then we obtain a complex manifold, and
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equipped with a compatible hermitian metric, they are called Kähler manifolds. They
are used in mathematics and mathematical physics.

Navigating by sight: The connection approach

Now that we have established what a manifold is, we can equip it with additional
structure to perform differentiation. Yet, extending the notion of directional derivatives
from the Euclidean space to manifolds is challenging: not only do the vectors change from
one point to another, but their bases also vary along the manifold. To ensure consistent
vector differentiation, we must have a way to compare the vectors and connect the bases
as we move along the manifold. In other words, we need a connection.

What is a connection? A connection ∇ is a mathematical operator that generalizes
the usual directional derivatives from the Euclidean space to manifolds. The operator
aims to connect frames on the manifold so that we are able to compare vectors. When
the connection is linear and torsion-free (no line on the manifold can be twisted), the
connection is called an affine connection. The result of the affine connection applied
to vector fields is called a covariant derivative.

Parallel transport

With a connection, we can ensure that the vectors are defined the same way along a
path, by transporting them parallelly along a curve: this is parallel transport.

For a smooth curve γ on the manifold, a vector x is said to be parallel transported along
the curve if ∇γ̇x = 0. For any manifold, parallel transport can be uniquely defined. It is
either characterized directly by a connection, and conversely, we can derive a connection
through parallel transport.

In summary, parallel transport enables a coherent comparison of vectors at distinct
locations on a manifold by moving them along curves. However, this process is not path-
independent: two vectors parallel-transported from and to the same points, but along
different paths will be different. This effect is called holonomy, and it arises directly from
the curvature of the manifold. Studying the holonomy of a manifold enables to quantify
its curvature, and in particular, in Riemannian geometry, its Riemann curvature.

Navigating efficiently: A metric perspective

In the Euclidean space, we can effortlessly calculate the length, volume, and angle
between vectors. The foundation of these computations is the dot product 〈u,v〉 = u>v
that quantifies the interaction between two vectors, and remain unchanged across the
space. We need a similar metric that accommodates for the curvature of the manifold.
This is the idea behind the Riemannian metric.

Riemannian metric

The Riemannian metric is a positive-definite inner product, historically noted g by
physicist studying gravity, defined for each point of the manifold. It is a fundamental
quantity in differential geometry, so that it was previously called the first fundamental
form. For two vectors x1,x2, we have: g(x1,x2) = x>1 G x2, with G the metric tensor
that varies across the manifold. There are two things to note about the metric tensor: (1)
it always needs to be a symmetric positive-definite matrix, for the scalar product to be
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well-defined and (2) because it reflects the local properties of the manifold, the metric
will vary smoothly from point to point.

The Riemannian metric plays the role of the scalar product on the manifold, and it
allows for the definition of length L[γ] =

∫ √
g(γ̇, γ̇)dt, and volume V =

√
detG.

Pullback metric

In theory, any metric that is symmetric positive-definite is a Riemannian metric. If our
goal is to navigate a low dimensional version Z of a high dimensional manifold X learned
via a mapping f : Z → X , a relevant metric can be constructed by pulling back the
vectors through this said mapping. The metric tensor is defined as G = J>J , with J the
Jacobian of f . This metric is called the pullback metric.

To define a pullback metric, we need the function f to be always differentiable, and its
Jacobian J to be injective. Combined, these conditions classify f as an immersion.

Other metrics

By relaxing some conditions, we can define other non-Riemannian metrics. The pseudo-
Riemannian metric is a metric that is not necessarily positive-definite. This means
that the distance between two distinct points can be null or even negative. In general
relativity, such a metric allows for the treatment of relativistic spacetime phenomena.
The Finsler metric is a metric that is defined as a norm that can be asymmetric
and satisfies an additional convexity criterion. We will introduce Finsler geometry in
Chapter 3. Finsler geometry can be seen as a generalization of Riemannian geometry.



Part II

Differential geometry





Riemannian geometry 2
Riemannian geometry is the geometrical exploration of smooth manifolds that are
equipped with a Riemannian metric. It is certainly the oldest and most popular branch
of differential geometry, overly present in the theory of general relativity, and increasingly
prevalent in machine learning. When studying a manifold, two questions arise:

1. How do I perform operations on the manifold?
2. How curved is the manifold?

Those two questions split up the chapter into two parts. In the first part, we will
reintroduce, more formally, the metric and the connection, to compute the geodesic, a
recurring theme of this manuscript. In the second part, we will introduce the notion of
curvatures and its derivatives, via the Riemannian curvature tensor.

2.1 Riemannian metric, connections and volume
forms

Riemannian metrics

A Riemannian metric is a smoothly varying, positive-definite, symmetric bilinear form
on the manifold. Essentially, it is an assignment of an inner product to each tangent
space of the manifold, thereby providing a way to measure lengths and angles locally.

Definition 2.1.1 Riemannian metric
Let M be a differentiable manifold. A Riemannian metric is a map assigning at
each point x ∈ M a scalar product g(·, ·) : TxM× TxM→ R, with G(x) a positive
definite bilinear map, called the metric tensor, which varies smoothly with respect
to x.
A smooth manifold equipped with a Riemannian metric is called a Riemannian
manifold. We usually express the metric as g(u,v) = 〈u,v〉G = u>Gv.
The induced norm is defined as: v ∈ TxM, ‖v‖G =

√
g(v,v).

If the Riemannian metric tensor is the identity, we have the Euclidean metric, and the
inner product becomes the usual dot product. We can construct the Riemannian metric
such that we have distances that suit our goal.

Example 2.1.1 Mahalanobis distance
In statistics, the Mahalanobis distance determines how far a point x is from a distribution
of mean µ and covariance Σ. The Mahalanobis distance is defined as:

d(x,µ) = ‖µ− x‖Σ−1 =
√

(x− µ)>Σ−1(x− µ).

We can see that the Mahalanobis distance is a Riemannian metric, with the metric tensor
G = Σ−1. Note that here, the metric is constant, as the metric tensor does not vary on
the manifold.
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Pullback metric

We can also infer a Riemannian metric on a source manifold M by pulling back the
metric of a target manifold N via a smooth map f :M→N . The pullback operation
provides a mechanism for transferring the geometric structure of one manifold onto
another. The metric induced in the source manifold is called the pullback metric.

Definition 2.1.2 Pullback metric
Let M and N be two smooth manifolds, and f : M → N an immersion. If N is
equipped with a Riemannian metric g, then the pullback metric f∗g onM is defined
as:

f∗g(u,v) = g(f∗u, f∗v), ∀(u,v) ∈ TxM,

where f∗ is the pushforward operation.

In practice, the pushforward operation is the differential of the map f , i.e. f∗ = df = J ,
with J , the Jacobian of f . For example, the pushforward of a vector v ∈ TxM is
Jv ∈ Tf(x)N . When the target manifold is equipped with the Euclidean metric, the
pullback metric tensor is defined as G = J>J .

We can understand where this result comes from with the Taylor expansion of the norm
locally defined on the target manifold. We have f : M → N : x → y. On the target
manifold, we can approximate the surface by its tangent plane: f(x+ ∆x) ≈ f(x) +J∆x
and compute the Euclidean norm of ∆y:

‖∆y‖22 = ‖f(x + ∆x)− f(x)‖22 ≈ ∆x>J>J ∆x = ‖∆x‖2G ,

with the metric tensor G = J>J .

Example 2.1.2 Riemannian metric on the sphere
We consider a sphere parameterized with

f(θ, ϕ) = r(cos(θ) cos(ϕ), cos(θ) sin(ϕ), sin(θ)),

with θ the polar angle and ϕ the azimuth angle. The Jacobian and the metric tensor are:

J = r

− sin(θ) cos(ϕ) − cos(θ) sin(ϕ)
− sin(θ) sin(ϕ) cos(θ) cos(ϕ)

cos(θ) 0

 and G = r2
(

1 0
0 cos2(θ)

)
.

Indicatrices

It is sometimes difficult to get some intuition about the Riemannian metric. The indi-
catrices, which are the set of vectors in the tangent plane such that their Riemannian
norm is 1, provide a way to visualize the metric, and showcase the deformation of the
plane.

Definition 2.1.3 Indicatrices
For a given point x on the Riemannian manifold (M, g), the indicatrix represents the
set of vectors in the tangent space TxM such that the induced norm ‖u‖G =

√
g(u,u)

that equipped the manifold is equal to 1:

indicatrix at x = {v ∈ TxM|‖v‖G = 1}).

In the Euclidean plane in 2-dimensions, the indicatrices represent a circle of radius
1. In a Riemannian manifold, the indicatrices are ellipses, whose semi-axis’s lengths
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and directions are related to the eigenvalues and eigenvectors of G. It represents how
stretched or shrunk is the manifold compared to the Euclidean plane.

Figure 2.1: The plane (φ, θ) parameterizes the sphere, and the deformation of the plane are
illustrated with the ellipses, representing the Riemannian metric. When pushforward to the
sphere, those ellipses become circles, representing the Euclidean norm.

Connections

In curved manifolds, we can’t use ordinary derivatives to differentiate vector fields due to
the coordinates changing along the manifolds. We solve this by introducing a connection
- a mathematical object that compares vectors at different points on the manifold, by
connecting their coordinate’s basis. Let’s imagine that we would like to differentiate a
vector v along another vector u, such that, in a {ei, ej , ek} basis, we have: u = uiei and
v = vjej . Then:

∇uv = ui∂i(vjej)
= ui∂i(vj)ej + uivj∂iej

= ui∂i(vj)ej + uivjΓkijek

The coefficients Γkijek are called the Christoffel symbols. They represent a corrective
term, added on the usual Euclidean derivative ui∂i(vj)ej to differentiate v along u on
the manifold. In general, the derivative of ej along ei depends on another direction ek:
∂iej = Γkijek. On a flat Euclidean plane, the basis vectors ei do not change along any
direction, so we always have Γkij = 0.

Levi-Civita connection

A connection is compatible with a metric if the metric is preserved under parallel
transport along any curve on the manifold. Parallel transport, in differential geometry,
refers to the process of transporting a vector or tensor along a curve while preserving
its direction and orientation. This means that if we take two vectors at a point, and
we transport them along a curve such that their direction stays constant, the metric
properties will remain consistent along the curve. In Riemannian geometry, the Levi-
Civita connection is the unique connection that is compatible with the metric.

Theorem 2.1.1 The fundamental theorem of Riemannian geometry
On a Riemannian manifold (M, g), there exists a unique symmetric connection which is
compatible with the metric g. This connection is called the Levi-Civita connection.
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Proof. Let x,y, z be vector fields onM. We denote xg(y, z) the derivative of the scalar
field g(y, z) in the direction of the vector field x. The Levi-Civita has two desirable
properties:

1. Symmetry: ∇xy−∇yx = [x,y].
2. Metric-compatibility: xg(y, z) = g(∇xy, z) + g(y,∇xz).

We can write the previous properties as:

1. xg(y, z) = g(∇xy, z) + g(y,∇xz) = g([x,y], z) + g(∇yx, z) + g(y,∇xz).
2. yg(z,x) = g(∇yz,x) + g(z,∇yx)
3. zg(x,y) = g(∇zx,y) + g(x,∇zy)

Adding the three equations (1)+(2)-(3), we get the Koszul formula:

2g(∇yx, z) = xg(y, z) + yg(z,x)− zg(x,y)− (g([x,y], z) + g([y, z],x) + g([x, z],y)) .

The right-hand side of the equation does not depend on the connection ∇. If we had
two similar connections ∇1 and ∇2, then g((∇1 −∇2)yx, z) = 0 =⇒ ∇1 = ∇2. So the
Levi-Civita connection exists and is unique.

The Christoffel symbols derived from the Levi-Civita connection can be expressed in
function of the metric gij = g(ei, ej):

∇kgij = ∇k(g)(ei, ej) + g(∇kei, ej) + g(ei,∇kej)
0 = ∇kgij − g(∇kei, ej)− g(ei,∇kej)
0 = ∂kgij − g(Γmikem, ej)− g(ei,Γmkjem)
0 = ∂kgij − Γmikgmj − Γmkjgim

Because the Levi-Civita connection is also torsion-free, we have: ∇iej = ∇jei, which
translates into: Γkij = Γkji. When we permute the index and sum all the equations, we
obtain: Γmik gjm = 1

2 (∂kgij + ∂igjk − ∂jgik), and with gjm the inverse of gjm:

Γmik = 1
2g

jm(∂kgij + ∂igjk − ∂jgik)

The Christoffel symbols are useful to determine the Ricci curvature of a manifold, and
also to find a geodesic, using the geodesic equation. Let’s say that we want to find the
curve γ parameterized by t, such that along the curve, its velocity is constant. We note
γ̇ = ∂γi

∂t ei:

∇γ̇ γ̇ = ∇γ̇
(
∂γi

∂t
ei

)
= ∂

∂t

(
∂γi

∂t

)
ei + ∂γj

∂t

∂γi

∂t
∇j(ei)

=
(
∂2γk

∂t2
+ Γkij

∂γi

dt

∂γj

∂t

)
ek

Which leads to the geodesic equation:

∂2γk

∂t2
+ Γkij

∂γi

dt

∂γj

∂t
= 0,

with γ a geodesic defined as the straightest possible curve.
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Functional on curves

Now that we have defined the Riemannian metric, we can define the length and the
energy of a curve γ(t) parameterized by t ∈ [0, 1] on a manifold.

Definition 2.1.4 Length and energy functional
We consider a curve γ and its derivative γ̇ on a Riemannian manifoldM equipped
with the metric g. Then, we define the length and the energy of the curve:

L(γ) =
∫
‖γ̇(t))‖G dt and E(γ) = 1

2

∫
‖γ̇(t))‖2G dt,

with gt = gγ(t) and ‖·‖G the norm induced by the metric g. Locally length-minimizing
curves between two connecting points are called geodesics.

Two important characteristics stand out when it comes to the length of a curve and its
energy.

First, the length is reparameterization invariant: let ϕ be a diffeomorphism mapping
one basis to another such that γ′ = ϕ(γ). Then L(γ′) = L(γ). This property is quite
important in machine learning, when we will want to compute length-minimizing curves
in the latent space of a generative model. In other words, for two different runs of the
same model, the geodesics γ and γ′ computed in the latent spaces Z and Z ′ will lead to
the same curve in the data space X . We say that it solves the identifiability problem
(Hauberg 2019).

Secondly, using the Cauchy-Schwarz inequality, we have: L(γ)2 ≤ 2E(γ), with equality
when γ minimizes the energy. Because of the reparameterization invariance of the curve
length, a solver can find an infinite number of solutions to minimize it. On the other
hand, the curve energy is convex and will converge to a unique solution. In practice,
when the goal is to compute a geodesic, instead of solving the relevant system of ordinary
differential equations, it can be easier to minimize the curve energy.

The shortest paths are also the straightest ones

When minimizing the energy functional, we are seeking to find the geodesic, defined as
the shortest possible curve. It is interesting to note that the shortest curve is also the
straightest curve when considering the Levi-Civita connection.

To achieve this minimization, we start with the general integral E(γ) =
∫
c
F (γt, γ̇t)dt

where the integrand is given by: F (γt, γ̇t) = 1
2gij γ̇

i
t γ̇
j
t . By applying the Euler-Lagrange

equation, we obtain:
∂

∂t

(
∂F

∂ẋk

)
− ∂F

∂xk = 0,
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with:

∂F

∂ẋk
= 1

2gij
(
∂ẋi

ẋk
ẋj + ∂ẋj

ẋk
ẋi
)

= 1
2gij

(
δikẋj + δjkẋi

)
= 1

2(gijẋj + gijẋi) = gijẋi

∂

∂t

(
∂F

∂ẋk

)
= gij

∂ẋi

∂t
+ ∂gij

∂t
ẋi = gij

∂2xi

∂t2
+ ∂gik
∂xj

∂xj

∂t

∂xi

∂t

= gij
∂2xi

∂t2
+ 1

2

(
∂gik
∂xj + ∂gjk

∂xi

)
∂xj

∂t

∂xi

∂t

∂F

∂xk = 1
2
∂gij
∂xk

∂xj

∂t

∂xi

∂t

Notice that, using the Einstein summation, we have: gijẋj = gijẋi, since gij = gji, and
indices are silent so: gij ∂

2xi
∂t2 = gmk

∂2xk
∂t2 . Then we recover the geodesic equation:

∂

∂t

(
∂F

∂ẋk

)
− ∂F

∂xk = gmk

(
∂2xk

∂t2
+ Γkij

∂xj

∂t

∂xi

∂t

)
= 0

Example 2.1.3 Geodesics on the sphere
We consider a sphere parameterized with f(θ, ϕ) = r(cos(θ) cos(ϕ), cos(θ) sin(ϕ), sin(θ)),
with θ the polar angle and ϕ the azimuth angle. To compute geodesics on the sphere, we
can either we solve the ODE system, or we minimize the curve energy, and both methods
lead to the same result. The curve γ(t) = (γθ(t), γϕ(t)) is parameterized in the plane.
The non-null Christoffel symbols for the sphere are:

Γθφφ = sin θ cos θ and Γϕθϕ = − tan θ.

γ is a geodesic if its energy is minimized or if it satisfies a system of equations:

E(γ) = 1
2

∫
c

(
∂γθ
∂t

)2
+ cos2 θ

(
∂γϕ
∂t

)2
dt or

∂2γθ
∂t2 + sin θ cos θ

(
∂γϕ
∂t

)2
= 0

∂2γϕ
∂t2 − tan θ ∂γϕ∂t

∂γθ
∂t = 0

Figure 2.2: A geodesic is shown in orange and a straight line in blue. In this figure, the
geodesic is obtained by minimizing the energy of a curve. The geodesics on the sphere are the
great circles. Notice that they follow the direction of the indicatrices in the plane.

Volume forms

The determinant of the metric tensor detG quantifies how the metric tensor distorts or
stretches volumes. This determinant defines the volume form on a Riemannian manifold.
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Akin to the change of variables, it is used to integrate a function from one coordinate
system to another, when f :M→N :∫

M
h ◦ f(x)

√
detGdx =

∫
N
h(y)dy

Definition 2.1.5 Volume form
In local coordinates (e1, · · · , ed), the volume form of the Riemannian manifoldM,
equipped with the metric tensor G, is defined as: dVG = VG(x)e1 ∧ · · · ∧ ed, with:

VG(x) =
√

detG.

2.2 Computing geodesics on stochastic manifolds

Often, in machine learning, our data manifold X is composed of random variables
obtained via a stochastic mapping f : Z → X . When we pullback the metric from X to
Z, we obtain a random metric tensor, and so a random Riemannian metric.

Unfortunately, we are not yet equipped to derive geometric objects. A solution is to seek for
a deterministic approximation of the metric. When the mapping f follows either Gaussian
process or a Gaussian distribution, the expected metric tensor can be conveniently
computed, despite some limitations discussed in Section 3.4 and Section 4.3.

Before tackling those issues, let us introduce the notion of random Riemannian metric,
when f outputs a random variable and when f describes a stochastic process. Here, and in
the rest of this manuscript, the terms stochastic and random are used interchangeably.

Random manifolds

A stochastic process is a collection of random variables {X(t, ω), t ∈ T} indexed by
an index set T defined on a sample space Ω, which represents the set of all possible
outcomes. An outcome in Ω is denoted by ω, and a realization of the stochastic process
is the sequence of X(·, ω) that depends on the outcome ω.

When we learn a low-dimensional representation of our data via a stochastic generative
model f : Z → X , the latent manifold is the index set defined above Z = T and the
sample space Ω can be seen as the set of the model evaluations. In other words, for every
point z ∈ Z, every time we run our model, the output x = f(z) is a random variable
following a specific distribution.

Definition 2.2.1 Random Riemannian metric via a stochastic process
A random Riemannian metric tensor is a matrix-valued random field (i.e.: a
collection of matrix-valued random variables {G(z, ω), z ∈ Z}), whose realization for
a specific evaluation ω ∈ Ω is a Riemannian metric tensor. We define the random
Riemannian metric as the metric induced by a random Riemannian metric tensor:
g : (u,v)→ u>G v.

Similarly, if f follows a single distribution (e.g., f(z) ∼ N (µ(z), σ2(z))), instead of a
representation of a distribution over functions (e.g., f ∼ GP(µ, k)), it will still induce a
random Riemannian metric tensor, also defined as a random matrix whose sample paths
are Riemannian metrics.

Because the metric is stochastic, all the functionals derived from the metric are stochastic
as well, including the length of a curve, its energy or even the Christoffel symbols.
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Minimizing a stochastic quantity, or solving a system of stochastic differential equations
is far from trivial. Another solution is to seek for a deterministic approximation of the
metric tensor.

A deterministic approximation of the metric tensor

Definition 2.2.2 Expected Riemannian metric
The expected Riemannian metric is the metric induced by the expected metric
tensor: g : (u,v)→ u>E[G] v.

Let’s consider two cases: when the mapping f is a Gaussian process, and when the
mapping f follows a Gaussian distribution.

When the mapping f ∼ GP(µ, k) is a Gaussian process with the kernel k being differen-
tiable, then its Jacobian exists, and it follows a Gaussian distribution, J ∼ N (E[J ],Σ).
As a consequence, G is a random matrix following a non-central Wishart distribution:
G ∼ Wq(d,Σ,Λ) (Kent and Muirhead 1984, See definition 10.3.1), with a non-centrality
term Λ = E[J ]>Σ−1E[J ]. Then, the expected metric tensor can be computed analytically:
E[G] = E[J ]>E[J ] + dΣ. These results have been first introduced by Tosi et al. (2014) to
compute geodesics on a manifold modelled by a GP-LVM (Lawrence 2003).

Arvanitidis et al. (2018) also used the expectation of the metric pulled back from
the decoder of a Variational Auto-Encoder (Kingma, Welling, et al. 2019). While the
decoder cannot be modelled as a stochastic process, the data still follows a Gaussian
distribution such that: f(z) = µ(z) + σ(z)� ε, with ε ∼ N (0, Id). In that case, E[G] =
Jµ(z)>Jµ(z) + Jσ(z)>Jσ(z), with Jµ(z) = ∇zµ(z) and Jσ(z) = ∇zσ(z).

In both cases, we obtained a closed-form expression of the expected metric tensor that
conveniently helps the computations for different generative models. However, we also
face some limitations: (1) the expected length does not correspond to the length of the
expected metric, so the geodesics obtained with the expected metric do not correspond to
the expectation of the stochastic geodesics; and (2) we don’t have access to closed-form
expressions when decoding to distributions that are not location-scale. The first problem
is addressed in Section 3.4, using Finsler geometry, while the second one is tackled in
Section 4.3, borrowing tools from information geometry.

2.3 Riemannian curvature: from tensors to scalars

Historically, Gauss (1827) and Riemann (1867) introduced two tools to study a curved
surface:

I the first fundamental form, now referred as the Riemannian metric, allows us to
conduct operations on the manifold;

I the second fundamental form, an extrinsic quantity that captures the curvature of
the manifold in an ambient space.

As time passed and particularly with the development of tensor calculus by Ricci and
Levi-Civita (1900) and the theory of connections by Cartan (1926), the understanding of
curvature changed from being extrinsic to intrinsic. This means that the curvature can
be measured independently of the surrounding space.

A primary intrinsic tool that evaluates how much the manifold differs from a flat
Euclidean plane is the Riemannian curvature tensor. However, the 4-dimensional
mathematical object can be challenging to understand intuitively. Therefore, additional
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quantities, matrices and scalar, have been derived to better illustrate specific aspects of
the manifold’s curvature.

The Riemann curvature tensor

The Riemann curvature measures how the manifold deviates from being flat by using
the concept of holonomy. In simple terms, it measures how much a vector changes its
alignment when it is parallel transported around an infinitesimal loop on the manifold.
This measurement tells us how the direction of vectors is affected, and so, how locally
the surface is curved. Equivalently, we can think of the Riemannian curvature tensor as
a way to measure the failure of the second covariant derivative to commute.

Definition 2.3.1 Riemann curvature tensor
Let (M, g,∇) be a Riemannian manifold equipped with ∇ the Levi-Civita connection.
The Riemann curvature tensor is a (1,3)-tensor field onM defined by:

R(x,y; z) = ∇x∇yz−∇z∇yz−∇[x,y]z,

for any vector fields x,y, z ∈ X(M), with [·, ·] the Lie bracket.

The Lie bracket is a way to measure the failure of the commutativity of two vector fields.
It is defined as: [x,y] = ∇xy−∇yx.

Proof. The Riemann curvature R(x,y; z) measures the deviation induced on z when
parallel transported along a loop on a small section spanned by {x,y}. We consider the
loop, denoted π, to be around a small parallelogram of surface area(π). The final vector
transported along the parallelogram is denoted π(z). We define:

R(x,y; z) = lim
π→0

z− π(z)
area(π) .

The parallelogram is spanned by x and y, and the loop can be decomposed in small
loops: π(z) = (π−yπ−xπyπx)(z), with πv(u) the parallel transport of u along v. We
denote area(π) = |πx||πy|, and for any vectors u and v: π−1

v (u) = π−v(u):

z− π(z) = z− (π−yπ−xπyπx)(z)
= π−yπ−x

(
(π−yπ−x)−1(z)− (πyπx)(z)

)
= π−1

y π−1
x (πxπy(z)− πyπx(z))

Then, when the loop becomes infinitesimally small, we have:

lim
π→0

z− π(z)
area(π) = lim

πx→0
lim
πy→0

π−1
y π−1

x

|πy||πx|
((πxπy(z)− z)− (πyπx(z)− z))

= lim
πx→0

lim
πy→0

((πxπy(z)− z)− (πyπx(z)− z))

= ∇x∇yz−∇y∇xz.

This is a simple example, where we considered the vector fields x and y to commute.
We have the Lie brackets [x,y] = 0. In the general case, they don’t commute, and so we
need to take into account this gap, by adding an extra term:

lim
π→0

z− π(z)
area(π) = ∇x∇yz−∇y∇xz−∇[x,y]z.
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Figure 2.3: On the left, we illustrate the concept of holonomy of a connection: a vector
parallel transported around a small loop on a curved manifold will fail to preserve its direction,
unless the manifold is flat. On the right, the figure is a visual aid for the proof of defini-
tion 2.3.1, where we look at an infinitesimally small loop on the tangent space of a manifold,
and we measure the deviation of the vector.

The sectional curvature

Another way to measure how a manifold differs from a flat space is to look at the
deviation of two parallel geodesics on the space. Let’s consider γ and γ′ such that at a
specific point t0, they are next to each other and γ̇(0) = γ̇′(0) = y. Now, we introduce
another vector x with |x|t = γ′(t) − γ(t) measuring the distance between those two
geodesics at a time t. We want to quantify how fast the geodesics diverge from each
other, which is the same as measuring the acceleration of x along y. This is exactly:
∇y∇yx = −R(x,y;y). When projecting this acceleration over x, we get the scalar
quantity κ = −〈∇y∇yx,x〉 = 〈R(x,y;y),x〉.

I If κ = 0, then the geodesics always stay parallel on the manifold, which is the case
in the flat plane.

I If κ ≥ 0, then the norm |x|t becomes smaller as we move along the geodesics. This
happens on the sphere, until the geodesics intersect.

I If κ ≤ 0, the gap |x|t increases between the geodesics. They diverge from one
another, which happens in the hyperbolic manifold.

Figure 2.4: The sectional curvature is represented for the plane, the sphere and the hyperbolic
space.

This deviation measure defines the sectional curvature upon normalization. The sec-
tional curvature offers a way to measure locally the normalized deviation between two
geodesics:

Definition 2.3.2 Sectional curvature
Let (M, g) be a Riemannian manifold with R its Riemann curvature tensor. The
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sectional curvature is defined as:

K(x,y) = 〈R(x,y;y),x〉
|x ∧ y|2 ,

where ∧ is the exterior product between two vectors, and |x∧y|2 = 〈x,x〉〈y,y〉−〈x,y〉2
is the area of the parallelogram spanned by x and y.

As a side note, if we have access to different planes {x,y} on the manifold, one can
actually recover the Riemann curvature tensor from the sectional curvature (Kühnel
2015).

Ricci curvature tensor

Another way to express the curvature is by taking the trace of the Riemann curvature
tensor. This defines the Ricci curvature:

Definition 2.3.3 Ricci curvature
Let (M, g) be a Riemannian manifold with R its Riemann curvature tensor. The Ricci
curvature is defined as:

Rc(x,y) =
∑
i

〈R(ei,x;y), ei〉

Along a unit vector v, the Ricci curvature is linked to the sectional curvature: Rc(v,v) =∑
i〈R(ei,v;v), ei〉 =

∑
iK(v, ei).

The Ricci curvature is also used to compute the Jacobi field, a vector field along a
geodesic γ. We can think of the Jacobi fields as the infinite difference of the volume δV
of a unit ball along γ, enclosed by geodesics abusively noted γ + δγ. Then, the Ricci
curvature appears in the ordinary differential equation to give us the evolution of the
volume of a ball along the geodesic γ:

δV̈ (t) + Rc(γ̇t, γ̇t)δV (t) = 0.

Scalar curvature

The scalar curvature is the contraction of the Ricci curvature tensor.

Definition 2.3.4 Scalar curvature
Let (M, g) be a Riemannian manifold with Rc its Ricci curvature tensor. The scalar
curvature is defined as:

S =
∑
i

Rc(ei, ei)

The scalar curvature can be written with respect to the sectional curvature: S =∑
i6=j K(ei, ej). The Ricci curvature along a vector v is equal to the average of all

the sectional curvatures spanned by planes {v, ei}, with {e1, · · · , en} an orthonormal
basis for the tangent plane of the manifold. The scalar curvature represents the average
of all the sectional curvatures spanned by the pairs {ei, ej}. For a surface in R3, we
actually have: S = 2K(e1, e2)

More intuitively, for each point of the manifold, the scalar curvature approximates the
difference between the Riemannian volume and the Euclidean volume of a ball:

Proposition 2.3.1 Scalar curvature (asymptotic expansion of the volume of
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geodesic balls)
Let (M, g) be a d-dimensional Riemannian manifold. The scalar curvature S is
related to the asymptotic expansion of the Euclidean volume, denoted vol, of a geodesic
ball on the manifold Bg(r) compared to the volume of the ball in the Euclidean space
Be(r), when the radius r tends to 0.

vol(Bg(r)) = vol(Be(r))
(

1− S
6(q + 2)r

2 + o(r2)
)

Proof. The proof, non-trivial, can be found in Loveridge (2004).

Example 2.3.1 Scalar curvature for surfaces in R3

Let us have a look at different surfaces in R3 and their scalar curvature, represented in
Figure 2.5.

1. The sphere parameterized with: f(u,v) = r(sinu cosv, sinu sinv, cosu), with u
the polar angle and v the azimuth angle. The scalar curvature is: S = 2r−2.

2. The torus parameterized with: f(u,v) = ((R+r cosv) cosu, (R+r cosv) sinu, r sinv),
with R is the distance from the center of the tube to the center of the torus, r is
the radius of the tube, u is the angle around the center of the torus, and v is the
angle around the tube. The scalar curvature is S = 2 cos v

r(R+r cos v)
3. The hyperboloid parameterized with: f(u,v) = (coshu cosv, coshu sinv, sinhu),

with u the hyperbolic angle and v the azimuth angle. The scalar curvature is
S = −2(cosh(2u))−2.

4. A surface is parameterized by f(u,v) = (u,v, z), with z = e−cu sin(u) sin(v). The
scalar curvature can be computed, and is: S = (c2−1) cos(2u)−cos(2v)−c(c−2 sin(2u))

e2cu+cos(v) sin(u)2+(cos(u)−c sin(u)) sin(v)2 .

Figure 2.5: The scalar curvature is plotted for different surfaces from the Example 2.3.1 in
R3. The sphere has always a positive scalar curvature, the hyperboloid one is always negative.
For every surface, we can see that the scalar curvature is positive when the surface seems
convex, and it is negative when we are at a saddle point. In those figures, the values of the
scalar curvature have been normalized between −1 and 1.

2.4 Summary: On the curvature of the loss landscape

Generalization properties and flatness

The model’s ability to generalize well to unseen data may be linked to the flatness of its
loss landscape. The flatness hypothesis is based on the observation that flat minima in
the loss function, characterized by wide and shallow dips, promote better generalization
by allowing the use of less precise weights, thereby enhancing the model’s robustness.
This hypothesis is supported by extensive empirical and theoretical evidence from various
studies that have explored different aspects of machine learning. However, within the
community, the various definition of flatness are not always satisfactory.
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In this paper, we treat the loss landscape as a Riemannian manifold and utilize tools
from Riemannian geometry to investigate its curvature. We found that at minima, the
scalar curvature has a straightforward expression related to the norm of the Hessian.
While the norm itself does not always accurately defines flatness, it remains a valuable
measure for understanding optimization. Our results suggest that the scalar curvature
aligns with all the results involving the norm of the Hessian and suggesting that flatter
minima improve generalization, while defining rigorously a measure of flatness.

Metric of the parameters space

The loss function f of a model is a smooth scalar-valued function defined on the parameter
spaceM⊂ Rq, where q is the number of parameters. In order to study the loss landscape
of a model, we can look at the geometry of the graph of the loss function, a hypersurface
embedded in Rq+1.

Definition 2.4.1 Metric of a graph
Let f :M⊂ Rq → R be a smooth function. We call graph of a function the set:

Γf = {(x, y) ∈M× R | y = f(x)}.

The graph Γf is a topological smooth manifold embedded in Rq+1, and it is isometric
to the Riemannian manifold (M, g) withM⊂ Rq and the induced Riemannian metric
tensor:

G = Iq +∇f∇f>, (2.1)

Instead of working in the ambient space Rq+1, it is more convenient to study the intrinsic
geometry of the loss function in the parameter space (M, g). We denote ∇ the Euclidean
gradient operator of the loss function f , and H the Euclidean Hessian of f .

From this metric, we can define the scalar curvature:

Proposition 2.4.1 Scalar curvature
The scalar curvature is given by:

S = β
(
tr(H)2 − tr(H2)

)
+ 2β2 (∇f>(H2 − tr(H)H)∇f

)
, (2.2)

with β = (1 + ‖∇f‖2)−1.

Proof. See Appendix A.2.

This expression simplifies when the gradient is zero, which corresponds to a critical point
of the loss function. In this case, the scalar curvature is given by:

Corollary 2.4.2
When an extremum is reached (∇f = 0), the scalar curvature becomes:

S(xmin) = tr(H)2 − tr(H2)

= ‖H‖2∗ − ‖H‖
2
F ,

with ‖·‖∗ the nuclear norm and ‖·‖F the Frobenius norm.

Proof. This is a direct result of Proposition 2.4.1, when ∇f = 0.
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Comparison with the norm of the Hessian

In this work, we have focused on comparing the scalar curvature with the norm of the
Hessian, often used as a flatness measure. Our findings reveal that the trace of the
Hessian matrix does not accurately assess flatness in some scenarios. Yet, it remains a
valuable tool for demonstrating convergence results in optimization. While the scalar
curvature serves as a better measure of flatness, it can reduce to the norm of the Hessian
and aligns with previous findings in optimization.

The scalar curvature, norm of the Hessian and flatness

The accuracy of the trace of the Hessian in representing flatness can be compromised
for two main reasons. Firstly, a zero trace of the Hessian does not necessarily indicate
a flat region, as it could also signify a saddle point where there is a combination of
positive and negative eigenvalues. In contrast, at a saddle point, the scalar curvature will
be negative, but not zero. Secondly, when the dataset is divided into smaller batches,
averaging the flatness over these batches can result in incorrect assessments of the overall
flatness. Improper partitioning of the dataset may lead to each batch having a zero trace
of the Hessian, falsely indicating that the entire dataset is flat. This is not the case with
the scalar curvature. Therefore, relying solely on the trace of the Hessian may lead to
misinterpretations of the flatness of a region.

The scalar curvature, norm of the Hessian and optimization

The norm of the Hessian is still associated with the optimization process. Notably, at a
convex minimum, if 0 ≤ S(x1) ≤ S(x2), then tr(H(x1)2) ≤ tr(H(x2)2) and tr(H(x1))2 ≤
tr(H(x2))2.

Proposition 2.4.3
Let xmin an extremum, ε, a small scalar (ε� 1) and x a normalized vector (‖x‖ = 1).
The trace of the square of the Hessian is an upper bound to the difference of the loss
functions when perturbed by the weights:

‖f(xmin + εx)− f(xmin)‖22 ≤
1
4ε

4 tr(H2
min) (2.3)

Proof. This is obtained by applying the Taylor expansion, for a very small perturbation
ε� 1. See Appendix A.2 for the full proof.

Proposition 2.4.4
Zhu et al. (2018) used this definition and the expression of the gradient descent process
(Equation 5.10) to approximate the escaping efficiency: E[f(xt)− f(xmin)] ≈ t

2 tr(H2).

Proof. See Zhu et al. (2018) for the full proof.

Proposition 2.4.5
We note H the Hessian of the loss of a model with q parameters, and S the scalar
curvature, obtained in Proposition 2.4.1 and Corollary 5.2.4. When we reach a flat
minimum, supposing the eigenvalues of H are similar, for a high number of parameters
q, we have:

S(xmin) ∼
q→∞

tr(H)2
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Proof. Let us suppose that, at a flat minimum, all the eigenvalues are similar: λ1 =
· · · = λq = λ ≥ 0. Then we, have ‖H‖2∗ = q2λ2 and ‖H‖2F = qλ2. When the number of
parameters increases, ‖H‖2F = o(‖H‖2∗), and as a consequence ‖H‖2∗−‖H‖

2
F ∼ ‖H‖

2
∗.

In this proposition, we assume that all the eigenvalues are similar, hypothesis that is
supported by empirical results (Ghorbani et al. 2019) when the number of parameters
increases.

Conclusion

Our research analyzed the loss landscape as a Riemannian manifold and its connection
to optimization generalization. We examined the scalar curvatures of the loss landscape,
specifically at minima, which are defined as the difference between the nuclear and
Frobenius norm of the Hessian of the loss function.

Motivated by the flatness hypothesis, our study explored the relationship between flat
minima and better generalization. While the commonly used Hessian norm may not
effectively gauge flatness in certain scenarios, the scalar curvature accurately captures
flatness while still satisfying the characteristics associated with the Hessian norm, such
as stability against perturbations and convergence of the optimization algorithm.

Future research could investigate the curvature within stochastic optimization and
explore the scalar curvature as a random variable influenced by the underlying data and
batch distribution. Understanding the relationship between the scalar curvature and the
stochastic process, as well as its connection to implicit regularization in the model, would
also be valuable.





Finsler geometry 3
"Riemannian geometry studies spaces with only black and white colors,

while Finsler geometry studies a colorful world. "
- Shen and Shen (2016)

Finsler geometry is an extension of Riemannian geometry, where the metric is defined as
a more or less restrictive norm instead of an inner product. Chern, who made numerous
contributions to the field, also nicely summarized that "Finsler geometry is Riemannian
geometry without the quadratic assumption" (Chern 1996). In short, using a Finsler
metric allows us to extend our geometrical tools to explore spaces that could not be
studied with the classic inner product while keeping our knowledge close to Riemannian
geometry.

In Section 3.1, we will define the Finsler metric. We will then study this metric as a solu-
tion of an historical example in Section 3.2. In Section 3.3, we will compare and highlight
the differences between Riemannian and Finsler geometry. Finally, in Section 3.4, we will
talk about our research on stochastic manifolds, where we defined the expected lengths
as a Finsler metric.

3.1 Definition

Initially considered by Riemann (1867) himself, Finsler geometry was set aside for half
a century due to the unclear geometrical interpretations of this generalized metric,
coupled with the challenges involved in performing calculations. Surprisingly, it was not
in geometry but in the field of calculus of variations that Hilbert revived this problem as
one of the most significant unsolved mathematical questions of the time (Hilbert et al.
1900). And this research interested Cathedory, who advised his doctoral student, Finsler,
to work on curves and surfaces in general spaces.

The simplest problem in the calculus of variations is to maximize or minimize a functional
L modelled by a function F that depends on the curve γ(t) and its derivative γ̇(t):

L =
∫
F (t, γ(t), γ̇(t))dt.

In geometry, and often in calculus of variations, the functional describes a length to
be minimized. To ensure the existence of extrema, the integrand F must satisfy some
conditions that are later used to define a Finsler metric. As we are interested in the
length of a curve, the integrand F describes a norm defined at each point γ(t) of the
manifold. We will drop the argument γ, and denote F as Ft(γ̇(t)) or equivalently Fx(v)
on a point x and a vector v.

By definition, the distance between two points is a positive quantity that is null only when
those points are equal. This translates with the integrand F being positive definite:
∀γ, Ft(γ̇(t)) ≥ 0 with equality if and only if γ̇(t) = 0. As we want to find the minimum
of the length, the functional should be at least twice differentiable, and the integrand
should be at least C1. We will usually assume that F is C∞, and so, that it is smooth.

We also require the length of any given curve to remain unchanged irrespective of its
reparameterization. This is a vital property in differential geometry, echoing the idea
that the choice of basis should have no influence. Let’s have, for example, a curve γ,
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parameterized in Cartesian coordinates, and γ′, the same curve but parameterized in
polar coordinates, with γ′ = ϕ(γ), and ϕ is a diffeomorphism mapping one basis to
another. Then, we require that L(γ) = L(γ′). L is invariant under reparameterization if
and only if F is homogeneous of degree 1. In other words, to ensure that the length
of a curve is independent of its parameterization, we require the integrand F to satisfy:
∀λ > 0, F (λv) = λF (v).

So far, the previous criteria helped us to produce a set of candidate functions that satisfy
the necessary conditions for an extremum. But this extremum is not guaranteed to
actually be the minimum of the length: it can also be a maximum or a saddle point. In
the calculus of variations, the Legendre criterion is a second-order condition used to
determine whether a solution is a minimum. The condition states that the determinant
of the Hessian matrix of the integrand must be positive at the extremum for it to be
a minimum. Here is a twist, we will not minimize the length functional, which has an
infinity of local minimum since it is invariant under reparameterization. Instead, we
will minimize the energy functional E = 1

2
∫
F 2
t (γ̇(t))dt, that is the lower bound of the

squared length, thanks to Cauchy-Schwarz: 2E ≤ L2, with equality at the minimum.
The Legendre condition is satisfied if:

1
2∂i∂jF

2(γ̇(t)) is positive definite.

In Finsler geometry, the Legendre condition is renamed the strong convexity criterion.
The Hessian gij(v) = 1

2∂i∂jF
2(v), with ∂i = ∂

∂vi , is also called the fundamental tensor,
and is noted g like the Riemannian metric since it also needs to be positive definite. We
can now state the definition of a Finsler metric:

Definition 3.1.1 Finsler metric
Let F : TM→ R+ be a function defined on the tangent bundle TM of a differentiable
manifoldM. We say that F is a Finsler metric if, for each point x ofM and for
any vector v on TxM, the function F satisfies the following conditions:

1. Positive: F (v) ≥ 0, with equality if and only if v = 0.
2. Smooth: F is a C∞ function on the tangent bundle TM \ {0}.
3. Positive homogeneous: ∀λ ∈ R+, F (λv) = λF (v).
4. Strong convexity criterion, or Legendre condition: the fundamental tensor field g

defined as the Hessian of 1
2F (·)2 is positive definite for v away from 0.

A differentiable manifold M equipped with a Finsler metric is called a Finsler
manifold.

With this definition in mind, let’s take a moment to discuss a few observations about
the metric, particularly noting how it almost defines a norm.

The Finsler metric is less restrictive than a norm, since we require positive homogeneity
instead of absolute homogeneity. This means that F does not need to be symmetric:
for any point x inM and for a vector v in TxM, we can have Fx(v) 6= Fx(−v). If F is
symmetric, the metric is called reversed. This asymmetric property becomes incredibly
relevant when working with anisotropic media, which happens in biology and physics
(Antonelli and Miron 2013) and even when studying wildfire (Markvorsen 2016). We
will also see that the Finsler metric is a solution to a navigation problem, described in
Section 3.2.

The Finsler metric is also more restrictive than a norm, since it satisfies the Legendre
condition, a stronger criterion than the triangle inequality. A norm that is smooth,
positive homogeneous, and satisfies the strong convexity criterion is called Minkowski,
and often, we would say that the Finsler metric is a Minkowski norm.
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Adopting the nomenclature of Javaloyes and Sánchez (2011), a Finsler metric that relaxes
the Legendre condition for the triangle inequality is called pseudo-Finsler, and a Finsler
metric that is well-defined on a certain conic domain (open, non-empty, and if v ∈ A,
then λv ∈ A) instead of the tangent bundle is called a conic Finsler metric.

Finally, to prove that a metric satisfies the Legendre condition, we only need its funda-
mental tensor to be definite, instead of being positive definite, since it is already positive,
as shown by Lovas (2007).

3.2 Motivation: Zermelo’s navigation problem

"In an unbounded plane where the wind distribution is given by a vector
field as a function of time and position, a ship moves at a constant speed
relative to the surrounding air mass. How must the ship be steered in order
to come from a starting point to a given destination in the shortest time?"

- Zermelo (1931)

In Prague, Zermelo (1931) gave a lecture on the solution of what is now called the
Zermelo navigation problem. This problem, standard in theory of control, has been solved
in the plane by Zermelo himself. Bao et al. (2004) solved it when the plane becomes a
manifold.

Imagine a ship sailing in a calm sea without any current or wind. The trajectory of the
journey can be obtained using a Riemannian metric, where, in the most simple case,
it would be a geodesic on a 2-sphere (As studied in Example 2.1.3). When a wind or
a current comes into play, the time required to travel in one direction is different from
the time needed to travel in the opposite direction. Without wind, the time taken by
our ship to traverse the direction u is |u|2 = h(u,u), with h a Riemannian metric. This
metric will be perturbed by the wind, whose velocity can be described by a vector field,
w. For a unit of time, we assume that the ship used to traverse u without any hindrance.
Now, the wind will modify its course, and, again for a unit of time, it will now traverse
u + w = v/F (v), with F (·) a norm to define.

Wind direction

Figure 3.1: On the left, we have a Riemannian indicatrix, representing the length crossed
by a ship in a unit of time, without any wind. On the right, we have a Finsler indicatrix,
representing the length crossed by the ship in a unit of time, with a wind component.

We want to find F such that |v/F (v) − w|2 = u2. Using the definition of the inner
product, the equation becomes: |v|2/F 2(v)−2h(v,w)/F (v)+|w|2−|u|2 = 0. Multiplying
by −F 2(v), we obtain:

(|u|2 − |w|2)F 2(v) + 2h(v,w)F (v)− |v|2 = 0.

This second order equation has a solution, if the discriminant is positive, which always
happens when |w| < |u|. Bao et al. (2004) assumed that |u|2 = 1, and noted λ =
|u|2 − |w|2. Then, using those notations, the positive root of the equation is obtained
with:

F (v) =
√
h(v,w)2 + λ|v|2

λ
− h(v,w)

λ
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This norm satisfies all the conditions to be a Finsler metric. It is also asymmetric:
F (v) 6= F (−v). This Finsler metric actually belongs to a specific type of metric called
the Randers metric. It was first introduced by Randers (1941) to describe space-time in
general relativity. The function F is written as F (v) = α(v)+β(v), with α(v) =

√
aijvivj

a Riemannian metric, β(v) = biv
i a function such that b is a one-form, with |b| < 1.

Riemannian Finsler Outbound Finsler Return Wind direction

Figure 3.2: The figure represents three geodesics: the Riemannian, the Finsler inbound and
the Finsler outbound geodesics, for two different wind directions on the sphere. The Finsler
indicatrices (orange) are slightly shifted compared to the Riemannian indicatrices (purple), due
to the wind. From the center of the indicatrices, the geodesics are looking to cover the longest
distance, and as a consequence, the paths will be different for the inbound and outbound.

3.3 Finsler versus Riemann

To better compare Riemannian and Finsler geometry, we will change the usual notations
and define the fundamental tensor Gv

ij the Cartan tensor Cv
ijk, and their respective

bilinear and trilinear form gv and Cv:

Gv
ij(x,v) = 1

2∂vi∂vjF
2
x (v) and gv(x,y) = xiyjgij(x,v)

Cv
ijk(x,v) = 1

4∂vi∂vj∂vkF
2
x (v) and Cv(x,y, z) = xiyjzkCijk(x,v)
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We note gv the Riemannian metric obtained with the fundamental tensor Gv, to not
be confused with g the Riemannian metric associated with its tensor G. While the
Riemannian metric tensor G(x) only depends on the position x ∈M, the fundamental
tensor Gv(x,v) depends on both the position and the direction v ∈ TxM. If the tensor
Gv is independent of the direction v then, it means that the Finsler metric is quadratic
in v and so, Finsler geometry reduces to Riemannian geometry. Any Finslerian object
depends on v, and automatically reduces to their Riemannian counterpart otherwise.

Functionals

Similarly to Riemannian geometry, both the length and energy of the curve are defined
with respect to the norm of the metric.

Definition 3.3.1 Curve length and curve energy
Let γ : [a, b]→M be a smooth curve in a Finsler manifold (M, F ). The curve length
and the curve energy are defined as:

L(γ) =
∫ b

a

F (γ′(t))dt and E(γ) = 1
2

∫ b

a

F 2(γ′(t))dt

By definition, they also share the same properties: the curve length is reparameterization
invariant, and the curve energy is related to the curve length by the Cauchy-Schwarz
inequality: L2(γ) ≤ 2E(γ).

Volume measures

In Riemannian geometry, the volume form is uniquely defined by the metric. In Finsler
geometry, however, there exists a multitude of definitions for the volume form, some being
more justified than others, depending on the metric and the topological manifold (Wu
2011). The most common choices of volume measures are the Busemann-Hausdorff
measure and the Holmes-Thompson measure.

The Busemann-Hausdorff measure acts as a scaling factor correcting the deformation of
the Euclidean unit ball. In Riemannian geometry for example, the Riemannian volume
measure can be defined as:

VG = vol(B)
vol(E) ,

where B is the Euclidean unit ball, E is an ellipse, and vol the euclidean volume. If λi
are the eigenvalues of G, the semi-axis of the ellipse are (λi)−

1
2 . In Finsler geometry,

we don’t necessarily have an ellipse, but a convex indicatrix. The Busemann-Hausdorff
measure is defined as the ratio between the volume of the Euclidean unit ball and the
volume of the convex set, denoted C = {v ∈ TxM | Fx(v) ≤ 1}.

Definition 3.3.2 Busemann-Hausdorff measure
Let (M, F ) be a Finsler manifold. The Busemann-Hausdorff measure is defined as:

dµBH = vol(B)
vol(C)

where B is the Euclidean unit ball, with C = {v ∈ TxM | Fx(v) ≤ 1} the Finsler
indicatrix.

In Riemannian geometry, we also have VG =
√

detG. Similarly, the Holmes-Thompson
measure involves taking the determinant of the fundamental tensor:
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Definition 3.3.3 Holmes-Thompson measure
Let (M, F ) be a Finsler manifold. The Holmes-Thompson measure is defined as:

dµHT =
√

det(Gv)

where Gv is the fundamental tensor of the Finsler metric.

While those two volume measures don’t agree with each other, when the Finsler metric
is a Riemannian metric, they both agree with the Riemannian volume measure.

Connections

In order to study geodesics and curvature, we need a way to compare vectors at different
points on the manifold. And so, just like in Riemannian geometry, we need to define
a connection. However, unlike Riemannian geometry, there is no canonical connection
associated with a Finsler metric. Instead, there are several types of connections that
can be constructed on a specific vector bundle of a Finsler manifold. Some examples
of these connections are the Chern connection, the Cartan connection, the Berwald
connection or the Hashiguchi connection, to name a few. The Chern connection is
the most common one, as it is a natural generalization of the Levi-Civita connection:
it is a linear connection, defined on the pullback bundle, almost compatible with the
fundamental metric tensor, and it has zero torsion:

Theorem 3.3.1 Chern connection
Let (M, F ) be a Finsler manifold, and v a non-vanishing vector field. There exists a
unique linear connection ∇v on the pullback bundle π∗TM such that:

1. ∇v has zero torsion: ∇v
xy−∇v

yx = [x,y],
2. ∇v is almost compatible with the metric gv:

xgv(y, z) = gv(∇v
xy, z) + gv(y,∇v

xz) + 2Cv(∇v
xv,y, z),

with x,y, z vector fields onM and [x,y] the Lie bracket of x and y.

Proof. See Chern and Shen (2005, Theorem 2.1.1).

Using the Chern connection, concepts like geodesics and curvature, which are well-
understood in Riemannian geometry, can be generalized within the Finsler framework.
We will focus on the similarities without delving into the technical details.

In Riemannian geometry, the Christoffel symbols, coefficients of the Levi-Civita connec-
tion, are related to the Riemannian metric. Similarly, in Finsler geometry, the Chern
connection coefficients (Γv) are related to the fundamental tensor (Gv = gv) of the
Finsler metric:

Γvi
jk = 1

2g
vil
(
δgv
lj

δxk
+ δgv

lk

δxj
−
δgv
jk

δxl

)
,

where δxj = ∂xj −N i
j∂vi is a change of basis with N the non-linear connection, which

comes from the fact that the Finslerian objects depend on both the position x ∈M and
the direction of the tangent vector v ∈ TxM, while Riemannian objects only depend on
the position x ∈M. The Chern connection reduces to the Levi-Civita connection if it is
independent of v as we have δxj = ∂xj .
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The geodesic equation of a curve γ is defined as:

∂2γk

∂t2
+ Γvk

ij

∂γi

dt

∂γj

∂t
= 0,

which is similar to the Riemannian case.

Curvature

The Chern curvature is defined similarly to the Riemann curvature:

Definition 3.3.4 Chern curvature
Let (M, F ) be a Finsler manifold, and v a non-vanishing vector field. The Chern
curvature is defined as:

Rv(x,y; z) = ∇v
x∇v

yz−∇v
y∇v

xz−∇v
[x,y]z.

For a flag (v,w) consisting of the pole v ∈ TxM and a vector w describing the flag (a
2-plane P ⊂ TxM), the flag curvature is defined as:

Definition 3.3.5 Flag curvature
Let (M, F ) be a Finsler manifold, and v a non-vanishing vector field. The flag curvature
is defined as:

Kv(v, P ) = Kv(v,w) = gv(Rv(v,w;w),v)
gv(v,v)gv(w,w)− gv(v,w)2 .

When the flag curvature is independent of v, it coincides with the sectional curvature.

Finally, the Ricci curvature is defined as:

Definition 3.3.6 Ricci curvature
Let (M, F ) be a Finsler manifold, and v a non-vanishing vector field. The Ricci
curvature is defined as:

Rcv =
n∑
i=1

Kv(v, ei),

with ei an orthonormal basis of TxM.
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Table 3.1: Comparison of Riemannian and Finslerian geometry

Riemannian Finslerian Objects

M (M, TxM) Domain

inner product Minkowski norm
Metric‖·‖G : v→ (v>G v) 1

2 ‖·‖F : v→ Fx(v)

G Gv = 1
2 Hess(F 2) TensorsMetric tensor Fundamental tensor

Ellipsoid (E) Convex set (C) Indicatrix 1

L(γ) =
∫ 1

0 ‖γ̇(t)‖ dt Length functional
E(γ) = 1

2
∫ 1

0 ‖γ̇(t)‖2 dt Energy functional

σG(x) =
√

detG
= vol(B)

vol(E)

σHT (x) = 1
vol(B)

∫
C det(Gv)dv Volume form 2

σBH(x) = vol(B)
vol(C)

Levi-Civita connection Chern connection Connections
and their

coefficients 3
∇xy = ∂xy + xiyjΓkijek ∇v

xy = ∂xy + xiyjΓvk
ij ek

Γijk = 1
2g
il
(
∂glj
∂xk

+ ∂glk
∂xj −

∂gjk
∂xl

)
Γvi
jk = 1

2g
vil
(
δgv
lj

δxk
+ δgv

lk

δxj −
δgv
jk

δxl

)

R(x,y; z) =
(∇x∇y −∇y∇x −∇[x,y])z

Rv(x,y; z) =
(∇v

x∇v
y −∇v

y∇v
x −∇v

[x,y])z
Riemannian and
Chern curvatures

K(v,u) = g(R(v,u;u),v)
g(v,v)g(u,u)−g(v,u)2 Kv(v,u) = gv(Rv(v,u;u),v)

gv(v,v)gv(u,u)−gv(v,u)2 Sectional and flag
curvatures

Rc(v) =
∑n
i=1 K(v, ei) Rcv(v) =

∑n
i=1 K(v, ei) Ricci curvature

1 We respectively denote E = {v ∈ TxM | ‖v‖G ≤ 1} represents an ellipsoid, and C = {v ∈
TxM | ‖v‖F ≤ 1} represents a convex set. The unit ball, denoted B represents the set of all unit
vectors in the Euclidean space.
2 We have different definitions of the Finsler volume form including the Holmes-Thompson volume
form σHT and the Busemann-Hausdorff volume form σBH . In Riemannian geometry, we have a
unique volume form σG.
3 We have a unique linear connection that is torsion-free and metric-compatible in Riemannian
geometry: the Levi-Civita connection. In Finsler geometry, we have multiple connections. The
Chern connection (∇v) is the unique linear connection that is torsion-free and almost compatible
with the fundamental tensor Gv.
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3.4 Summary: Identifying latent distances with
Finslerian geometry

In machine learning, generative models are useful to learn low-dimensional latent rep-
resentations z of the data x, through a smooth mapping f : Z ⊂ Rq → X ⊂ Rd, with
q ≤ d. To explore this latent space, we equip the manifold with the stochastic pullback
metric G (See Section 2.2).

Manipulating random variables is often unfeasible, and a solution to circumvent this
problem has been to take the expectation of the metric tensor: E[G]. But the geodesics
derived from this expected Riemannian metric do not correspond to the expected length-
minimizing curves. In other terms, we have:

L(γ)|E[G] =
∫
‖γ̇t‖E[G] dt 6= E [L(γ)|G] =

∫
E [‖γ̇t‖G] dt.

Instead of taking the expectation of the metric tensor, which serves as a surrogate to
define a norm, we wanted to take the expectation of the norm directly, and compare
this new norm with the expected Riemannian norm. This research has been described in
details in Pouplin et al. (2022) (Appendix ??).

In our paper, we found that:

I The expected norm defines a Finsler metric.
I When f is a Gaussian process, the stochastic norm obtained through the pullback

metric follows a noncentral Nakagami distribution, so the Finsler metric has a
closed-form expression.

I In data space of high dimensions, for Gaussian processes, the Finsler metric and
the expected Riemannian metric converge to each other at a rate of O( 1

d ).

We conclude that, in practice, when working with high-dimensional data, the Riemannian
metric serves as a good approximation of the Finsler metric, which is theoretically more
grounded. It further justifies the use of the Riemannian metric in practice when exploring
stochastic manifolds.

Notations

The paper tries to use consistent symbols for two fields of geometry that have different
conventions. In Riemannian geometry, the metric is an inner product which can induce a
norm, while in Finsler geometry, we are directly working with norms. We also assume
that all our metric are always defined for a specific point p on our manifold Z, and so
we will drop this index. The following notations will be used:

Stochastic pullback metric tensor G = J>J
Expected Riemannian metric g : (u,v)→ u>E[G] v

Stochastic pullback induced norm ‖·‖G : u→
√
u>G u

Expected Riemannian induced norm ‖·‖R : u→
√
u>E[G] u :=

√
g(u,u) = ‖·‖E[G]

Finsler metric ‖·‖F : u→ E[
√
u>G u] := F (u) = E [‖·‖G]

Results and contributions

Proposition 3.4.1 The expected norm is a Finsler metric
LetG be a stochastic metric tensor, with E[G] its expectation. The norm induced by the
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Riemannian metric tensor defined on the manifold Z is denoted ‖·‖G : z→ (z>G z) 1
2 .

Then, the expected norm ‖·‖E[G] : z→ E
[
z>G z) 1

2

]
is not induced by a Riemannian

metric and defines a Finsler norm.

Proof. If F was induced by a Riemannian metric, then this metric would be defined as:
g : Rq×Rq → R+ : (u,v)→ E[

√
u>Gv]2. A Riemannian metric is an inner product, so it

should be bilinear. Here, we can see that g is not linear: g(u1+u2,v) 6= g(u1,v)+g(u2,v),
so g is not a Riemannian metric. However, we can prove that F : Rq → R : v →
E[
√
v>G v] is positive, homogeneous, and smooth. The difficult part is to prove that F

satisfies the Legendre condition: 1
2 Hess(F 2) is positive definite and non-degenerate. We

prove it, in the full proof of the paper, See Appendix ??.

This proposition states that the expectation of a norm induced by a Riemannian metric
is a non-Riemannian Finsler metric. We were then interested in studying the properties
of this Finsler metric. When the mapping f is a Gaussian process, the induced norm
‖·‖G follows a non-central Nakagami distribution and its expectation has a closed-form
expression.

Proposition 3.4.2 Closed-form expression for Gaussian processes
Let f be a Gaussian process and J its Jacobian, with J ∼ N (E[J ],Σ). The Finsler
norm can be written as:

Fz : TzZ → R+ : ‖v‖F := v →
√

2
√
v>Σv

Γ(d2 + 1
2 )

Γ(d2 ) 1F1

(
−1

2 ,
d

2 ,−
ω

2

)
,

with 1F1 the confluent hypergeometric function of the first kind and ω, a noncentrality
term with: ω = (v>Σv)−1(v>E[J ]>E[J ]v).

Proof. We suppose that f is a Gaussian process, and so is its Jacobian. G follows a non-
central Wishart distribution:G = J>J ∼ Wq(d,Σ,Σ−1E[J ]>E[J ]). v>G v is a scalar and
also follows a non-central Wishart distribution: v>G v ∼ W1(d, σ, ω), with σ = v>Σ v
and ω = (v>Σ v)−1(v>E[J ]>E[J ] v) (Kent and Muirhead (1984, Definition 10.3.1)).
The square-root of a non-central Wishart distribution follows a non-central Nakagami
distribution (Hauberg 2018b). Then, by construction, the stochastic norm ‖·‖G follows a
non-central Nakagami distribution. The expectation of this distribution is known, and it
has a closed-form expression.

Proposition 3.4.3 Convergence of the Riemannian and Finslerian norms
Let f be a Gaussian Process. In high dimensions, the relative ratio between the Finsler
norm ‖·‖F and the Riemannian norm ‖·‖R is:

‖v‖R − ‖v‖F
‖v‖R

= O
(

1
d

)

And, when d tends to infinity: ∀v ∈ TzZ, ‖v‖R ∼+∞ ‖v‖F .

Proof. We arrive at this result by bounding the relative difference between the two
norms, using a sharper version of the Jensen’s inequality (Liao and Berg 2019). The
upper bound is then expressed with respect to the non-central Nakagami distribution
parameters. We also assume the latent manifold to be bounded, so the quantities do not
diverge towards infinity. The full proof can be found in Appendix ??.
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Experiments

We want to illustrate cases where these metrics differ in practice. In one case, we use
synthetic data of low dimension and force the geodesics to go through region of high
variance, and we use a toy dataset, FashioMNIST, of higher dimensions. The latent
representations are learned with a GPLVM.

Experiments with synthetic data showing high variance

In those examples, we are plotting curves that does not follow the data points and so,
go through regions of high variance. Notably, the background of the latent manifold
represents the variance of the posterior distribution in logarithmic scale.

observed data Riemann Finsler Euclid
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−1.5
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A.1. A.2.

B.2.B.1.

Figure 3.3: The Riemannian (purple), Finslerian (orange) and Euclidean (dotted gray)
geodesics obtained by pulling back the metric through the Gaussian processes of a trained
GPLVM. The models, trained on the 3-dimensional synthetic data (Figures A.2, B.2) learned
their latent representations (Figures A.1, B.1)

The Riemannian geodesics avoid area of high variance, at the cost of following longer
paths. The Finsler geodesics are not perturbed by the variance term, and will explore
regions without any data, following shorter paths. This can be explained as the variance
term acts as a regularizer between the Riemannian and Finslerian energy:

ER(γ) = EF (γ) +
∫ 1

0
var(‖γ̇t‖G)dt

Experiments with FashionMNIST

In these experiments, because the difference of the variance of the posterior learned by
the GPLVM is low and because the data is high-dimensional, we cannot see any difference
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between the Finslerian and the Riemannian geodesics. In practice, the Riemannian metric
is a good approximation of the Finslerian metric.

Figure 3.4: The Riemannian (purple) and the Finslerian (orange) geodesics are plotted in
the learned latent space with the images (left) and data points (right) of FashionMNIST.

A note on the asymptotic behavior of Wishart matrices and a
conjecture

It is suspected that the observed result can be considered as a specific case of a more
general result, suggested by the following conjecture:

Conjecture 3.4.4
Let f : Rq → Rd be a noncentral Gaussian process, and J its Jacobian. The entries of
the Jacobian are correlated and non-centered. For the dimension q fixed, the noncentral
Wishart matrix G = J>J converges to its expectation E[G], when d goes to infinity.

To prove this conjecture, one should look at the recent advancements in matrix theory. It
is well known that for a d× q-random matrix X whose entries are independent, centered
(i.e. of mean zero) of unit variance, and stationary, the central Wishart matrix d−1X>X

converges almost surely to the identity matrix, when d goes to infinity. The problem
arises when the entries are simultaneously not independent, not centered, and could be
non-stationary. In our case, we could assume the entries to be stationary, which happens
when the kernel of the Gaussian process is, for example, distance based (Noack and
Sethian 2022). Yet, we can neither assume the entries to be independent nor central,
since we are looking at the Jacobian of a Gaussian process.

Some progress has been made to relax the independence assumption. Nourdin and Zheng
(2018) studied the asymptotic behavior of Wishart matrices, assuming correlation between
rows only and overall correlation. Bourguin and Dang (2022) extended this work further
by studying different asymptotic regimes, and proved some convergence results with
Gaussian entries that are non-stationnary. Yet, in all those cases, the Gaussian entries
are always assumed to be centered. The non-central case is still an open problem.



Information geometry 4
Information geometry is a branch of Riemannian geometry that deals with the study
of the space of probability distributions. It considers the manifold to be the space of
probability distributions and defines the Riemannian metric as the Fisher-Rao metric.
The Fisher-Rao metric was introduced Rao (1945) and further studied by Amari and
Nagaoka (2000). This metric enables us to gain a probabilistic understanding from a
geometric perspective.

The main emphasis of this chapter will be directed towards the Fisher-Rao metric.
In Section 4.1, we will focus on its construction and gain insight into its conceptual
underpinnings from the perspective of information theory. Then, in Section 4.2, we will
analyze its properties and explore how it facilitates the navigation within the space of
probability distributions.

4.1 Fisher-Rao metric

Space of probability measures

So far, we have assumed our Riemannian manifolds to be homeomorphic to Rn, with a
metric defined as an inner product between vectors of the tangent space. In information
geometry, we are working on the space of probability measures. We consider the manifold
to be homeomorphic to an infinite-dimensional Banach space. The inner product
between two real-value functions f and g in the Lebesgue space L2(X,µ), with X a set
and µ a measure, is defined as: 〈f, g〉 =

∫
X
fgdµ. Before defining the Fisher-Rao metric,

we need to introduce some concepts of measure theory and define the space of probability
measures and its tangent space. This part was inspired by Itoh and Satoh (2022).

Let Ω be a manifold, which serves as the support of a distribution, and B(Ω) its Borel
set. We have a volume form λ on Ω, such that the manifold is normalized:

∫
Ω dλ = 1.

λ is also said to be a reference probability measure on Ω. We can now define all the
probability measures as the set of the measures absolutely continuous with respect to λ.
A measure µ is absolutely continuous with respect to another finite measure λ (µ� λ)
if and only if there exists a measurable function f ∈ L2(Ω, λ) such that, for any Borel
set X ∈ B(Ω), we have: µ(X ) =

∫
x∈X f(x)dλ(x), also written as µ = fλ.

The function f is a density function that measures the rate at which µ changes with
respect to λ. In measure theory, f is also called the Radon-Nikodym derivative of µ
with respect to λ and denoted dµ/dλ. We will be working on the space of probability
measures defined as:

P(Ω) =
{
µ = fλ | f ∈ L2(Ω, λ), f ∈ C0(Ω),

∫
Ω
µ = 1

}

We also define the tangent space of the probability measures at µ ∈ P(Ω):

TµP(Ω) =
{
τ = hλ | h ∈ L2(Ω, λ), h ∈ C0(Ω),

∫
Ω
τ = 0

}
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Fisher-Rao metric from a measure theory perspective

Definition 4.1.1 Fisher-Rao metric as an inner product in P(Ω)
Let Ω be a compact bounded manifold, P(Ω) the space of probability measures on Ω
and µ = f(x)λ ∈ P(Ω) a probability measure. τi = hi(x)λ and τj = hj(x)λ are two
elements of the tangent space TµP(Ω).

The Fisher-Rao metric is defined as:

gµ(τi, τj) =
∫

Ω

dτi
dµ

dτj
dµ

dµ =
∫
x∈Ω

hi(x)
f(x)

hj(x)
f(x) f(x)dλ(x)

The Radon-Nikodym derivatives dτi/dλ are also defined as hi ∈ L2(Ω, λ) which is the
density function of τi with respect to µ, and similarly, dµ/dλ is defined as f ∈ L2(Ω, λ).

Now, the probability density functions depend on two parameters: a variable x ∈ Ω,
where the manifold Ω is the support of the distribution, and a parameter η ∈ H
that characterizes the probability density function f . For example, if f is a Gaussian
distribution, then η = {µ, σ2} would be the mean and the variance of the distribution. We
would write f(x;µ, σ2) = (2πσ2)− 1

2 exp− 1
2 (x−µσ )2. H is called the parameter space,

and it is chosen such that the map η → f(·; η) is smooth and injective.

The density function h is the Radon-Nikodym derivative of τ ∈ TµP(Ω). If we consider
hi = ∂if = ∂f

∂ηi
as the derivative of f with respect to the parameter ηi, then, the inner

product can be defined by the probability density function f :

gµ(ηi, ηj) =
∫
x∈Ω

∂if(x, η)
f(x, η)

∂jf(x, η)
f(x, η) f(x, η)dλ(x)

=
∫
x∈Ω

∂i ln f(x, η)∂j ln f(x, η) f(x, η)dλ(x).

A space that is equipped with the Fisher-Rao metric is called a statistical manifold.

Table 4.1: Review of information geometry objects within Riemannian geometry

Objects Riemannian geometry Information geometry

Manifold M P(Ω) = {fη = f(·, η) | η ∈ H }
Space of probability distributions

Homeomorphic to Euclidean space Banach space

Tangent manifold TxM TµP(Ω)

Metric tensor G E[∇η ln f ∇η ln f>]
Riemannian metric Fisher Rao metric

Length 1 L(γ) =
∫ 1

0 ‖γ̇(t)‖ dt L(γ) ≈
√

2
∑T
η=1

√
KL(fη, fη+δη)

Energy E(γ) = 1
2
∫ 1

0 ‖γ̇(t)‖2 dt E(γ) ≈ 2
δη

∑T
η=1 KL(fη, fη+δη)

1 See Section 4.3 for the derivation of length and the energy functional.
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Fisher-Rao metric from an information theory perspective

Before the work of Amari and Nagaoka (2000) in information geometry, the Fisher-Rao
metric was first defined by Rao (1945) as a multidimensional generalization of the Fisher
information, a way to measure how sensitive is a model f when its parameters η vary. It
was used by Fisher (1922) to define the quality of a measurement.

We have a random variable x on which we perform measurements. It could be a set of
observed data points. η, a parameter that we are trying to estimate, such as the mean or
the variance, related to x through a probability density function f(x, η), which specifies
the likelihood of observing x given η. We further call the efficient estimator, the best
unbiased estimate η̂ of the true parameter η after many independent measurements on
a random variable x. In particular, we have E[η̂(x)] =

∫
η̂(x)f(x, η)dx = η. We define

the error of the estimate η̂ as var(η) =
∫
f(x, η)(η̂(x)− η)2dx. The Fisher information,

denoted IF , is related to the error of the estimate var(η) as:

IF var(η) ≥ 1.

This equation is the Cramer-Rao inequality (Rao 1945; Cramér 1946) and expresses the
reciprocity between the mean-square error var(η) and the Fisher information IF in the
intrinsic data. The lowest the error var(η) the more informative is our estimate, and the
more sensitive is the Fisher information.

The Fisher information IF and the Cramer-Rao inequality are obtained by differentiating
the expectation of a class of unbiased estimators:

E[η̂(x)− η] = 0 ⇐⇒
∫

(η̂(x)− η)f(x, η)dx = 0

∂ηE[η̂(x)− η] = 0 ⇐⇒
∫

(η̂(x)− η)∂ηf(x, η)dx−
∫
f(x, η)dx = 0

⇐⇒
∫

(η̂(x)− η)∂η(ln f(x, η))f(x, η)dx = 1

⇐⇒
∫ (

(η̂(x)− η)
√
f(x, η)

)(
∂η ln f(x, η)

√
f(x, η)

)
dx = 1

And using the Cauchy-Schwarz inequality:∫
(η̂(x)− η)2f(x, η)dx

∫
(∂η ln f(x, η))2f(x, η)dx ≥ 1,

with var(η) =
∫
f(x, η)(η̂(x)− η)2dx and IF =

∫
(∂η ln f(x, η))2f(x, η)dx.

The Fisher information measures how sensitive the expected statistics are to changes in
the parameters. If a small change in parameters causes a large change in the expected
statistics, it means that the estimator is informative and the Fisher information will
be large. Another way to see that the Fisher information, and the Fisher-Rao metric
measures the sensitivity of the model f to the parameters η is to consider the small
perturbations of the probability density function f(x, η) around η.

Definition 4.1.2 Fisher-Rao metric as the covariance matrix.
We define the small perturbations ∆ on the probability density function f :

∆i = f(x, η + dηi)− f(x, η)
f(x, η) = ∂if(x, η)

f(x, η) dηi = ∂i ln f(x, η) dηi

The covariance matrix is: Cov(∆i,∆j) = gij dη
idηj , with the Fisher-Rao metric:

gx(∂i, ∂j) =
∫
∂i ln f(x, η) ∂j ln f(x, η)f(x, η)dx.
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Figure 4.1: Three families of probability distribution: a Gaussian distribution, a Gamma
distribution and a Beta distribution. In those figure, the Fisher-Rao metric is represented by
its indicatrix. The geodesics have been plotted such that it minimizes the curve length.

Example 4.1.1 Fisher-Rao metric for a Gaussian, Gamma and Beta distri-
butions

Distributions Probability density function Fisher-Rao matrix

Gaussian(µ, σ2) (2πσ2)− 1
2 exp

(
− (x−µ)2

2σ2

) ( 1
σ2 0
0 2

σ2

)
Gamma(α, β) Γ(α)−1βαxα−1e−βx

(
α
β2 − 1

β

− 1
β Ψ1(α)

)
Beta(α, β) Γ(α)Γ(β)

Γ(α+β) x
α−1(1− x)β−1

(
Ψ1(α)−Ψ1(α+ β) −Ψ1(α+ β)
−Ψ1(α+ β) Ψ1(β)−Ψ1(α+ β)

)

The Fisher-Rao metric is plotted in Figure 4.1 for the three distributions. Notice that
the Fisher-Rao for the Gaussian distribution is similar to the Riemannian metric of a
half-Poincaré plane. To go from one normal distribution to another, we need to increase
the variance first, and so increase the entropy, before reaching the target distribution. In
each case, the geodesics follow the path that locally minimizes the KL-divergence. For
the full derivations of the Fisher-Rao metric, see Paper 7 and Appendix C.

4.2 Statistics and information geometry

In statistics, one typically wishes to estimate some parameters η ∈ H based on random
samples drawn from unknown probability distributions f(x, η). Sometimes, we might
not access the original data x ∈ Ω, but an observable x′ ∈ Ω′, such that x′ = κ(x), with
κ : Ω→ Ω′ a mapping. κ is called a statistic, and we say that κ is sufficient if there is



4.2 Statistics and information geometry 43

no loss of information to compute any estimate of the parameters η, and so we have:

f(x, η) = h(x) · f(κ(x), η),

with h(x) a constant that only depends on x.

Example 4.2.1 Sufficient statistics
Let us assume that we have independent identically distributed variables x = {x1, · · · , xn}
following the exponential law with f(xi, λ) = λe−λxi . Then we have: f(x, λ) =

∏n
i f(xi, λ) =

λne−λ
∑

i
xi .

Instead of observing x, we observe the sum: κ(x) =
∑n
i xi. Then, our probability density

function becomes: f(κ(x), λ) = λne−λκ(x). In this case we can see that:

f(x, λ) = f(κ(x), λ),

the sum is a sufficient statistic for the exponential distribution.

Let g be the Fisher-Rao metric. Then if κ is a sufficient statistic, and h(x) a scaling
factor, we have:

gx(∂i, ∂j) = h(x) · gκ(x)(∂i, ∂j)

Not only the Fisher-Rao metric is invariant under sufficient statistics, it is also the unique
Riemannian metric with this property in the space of probability densities. This result
has been shown by Chentsov (1982) on finite sample spaces who gave his name to the
theorem. It has been extended on infinite sample space by Ay et al. (2015) and Bauer
et al. (2016).

Theorem 4.2.1 Chentsov’s theorem
The Fisher-Rao metric is the unique Riemannian metric that is invariant under
sufficient statistics, up to a scaling factor. We also say that the metric is invariant
under the action of the diffeomorphism group, or Markov morphisms.

Proof. See Chentsov (1982), Ay et al. (2015) and Bauer et al. (2016).

The Fisher-Rao metric is then twice invariant: it is co-invariant under reparameterization
since it is a Riemannian metric, and invariant under sufficient statistics.

The Fisher-Rao metric is also related to the KL-divergence. The KL divergence (Kullback
and Leibler 1951) is a measure of dissimilarity between two probability distributions, and
quantifies the amount of information lost when one distribution is used to approximate
another. It is defines between two probability measures p and q as:

KL(p, q) =
∫
p(x) ln p(x)

q(x)dx

The Fisher-Rao metric actually appears when we compute the Taylor expansion of the
KL-divergence between two distributions locally.

We introduce the score function si(x, η) = ∂i ln p(x, η). We have:

The mean of score function: E[si(x, η)] = 0
The Fisher-Rao metric: E[si(x, η)sj(x, η)] = gij

The Amari-Chentsov tensor: E[si(x, η)sj(x, η)sk(x, η)] = Tijk
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Theorem 4.2.2 Taylor expansion of the KL-divergence
We define KL as being the Kullback Leber divergence, g is our Fisher-Rao metric and
T is the Amari Chentsov tensor. When ‖z‖ = ‖η − η′‖ is small, we have the Taylor
expansion of the canonical divergence:

KL[η : η′] = 1
2gij(η)zizj + 1

6Tijk(η)zizjzk +O(‖z‖4).

Proof. See Felice and Ay (2021, Proposition 6) and Ay et al. (2015, Proposition 2.125)

4.3 Summary: Pulling back information geometry

Generative models such as Variational Auto-Encoders (VAEs) are powerful tools to model
high dimensional data. The data x is assumed to lie on a high-dimensional manifold X ,
and it is parameterized by a low-dimensional latent representation z ∈ Z.

In the specific case of a Gaussian distribution, the decoder f : Z ⊂ Rq → X ⊂ RD, can
be expressed as:

f(z) = µ(z) + σ(z)� ε,

with ε ∼ N (0, ID). We can explore the latent space with the pullback metric: G = J>J ,
with J the Jacobian of f . Since the decoder is stochastic, the metric pulled back from
the ambient space is stochastic as well. A good deterministic approximation is to take
its expectation, which is conveniently computed as:

E[G] = Jµ(z)>Jµ(z) + Jσ(z)>Jσ(z),

with Jµ(z) = ∇zµ(z) and Jσ(z) = ∇zσ(z).

We can see that, when a VAE is equipped with a Gaussian decoder, we can easily access
the expected metric tensor, and compute geodesics. Yet, a major advantage of a VAE is
its ability to handle data from various types of distributions, such as gamma, Poisson,
or categorical, depending on the problem at hand. The difficulty comes when we try to
calculate the expected metric tensor for these distributions - it is not a straightforward
task. We cannot easily treat the random manifold as deterministic in a way that is
convenient for computation.

Instead of focusing on the data manifold itself X , we chose to direct our attention to the
underlying structure that describes the probability distributions D ∈ P(X ) from which
the data is drawn: x ∼ D(z). We can pullback the metric from the space of probability
distributions P(X ) to the parameter space Z. This metric is precisely the Fisher-Rao
metric.

In this work, we borrow tools from information geometry, and we equip the latent
space of a VAE with the Fisher-Rao metric. The contributions are the following:

I We show that the geodesics derived with the Fisher-Rao metric are the KL-
divergence minimizing curves, which greatly simplifies the computation of the
geodesics in practice.

I We illustrate our findings with two real-life examples: one that uses a von Mises
Fisher distribution to model human rigid motion, and one that uses a categorical
distribution to model a recommender system.
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Information geometry and generative models

In information geometry, we often look at the simple case when the data x is drawn from
a parametric distribution p(x|η), with η ∈ H the parameter space. This parameter space,
equipped with the Fisher-Rao metric IH, is called a statistical manifold. For example,
if we assume that the data is drawn from a Gaussian distribution, then η = (µ, σ), with
µ the mean and σ the standard deviation.

In practice, for a VAE, this parameter space H can be parameterized from the latent
space Z, with a non-linear function h such that: h(z) = η. Then, the decoder of a VAE
can be represented in two different ways by a succession of mappings:

z
z∈Z

p(x|z)
−−−−−−−−−−−−−−−→ (x ∼ D(x))

x∈X , D∈P(X )h
−−−−−→ η

η∈H

p(x|η)
−−−−−→

The Fisher-Rao metric IZ directly pulled back from the probability space P(X ) to Z is
equal to the pulled back metric J>h IHJh fromM to Z, with IH equipping the parameter
space H. In other terms, we can equivalently compute geodesics on Z or H.

Efficient geodesic computation

A well known result in information geometry is that the Fisher-Rao metric is the first order
approximation of the KL-divergence between two infinitesimally close distribution:

KL(p(x|η), p(x|η + δη)) = 1
2δ
>I(η)δη + o(δη2),

with I(η) =
∫
p(x|η)∇η log p(x|η)∇η log p(x|η)>dx, the Fisher-Rao metric tensor.

We consider a curve γ(t) and its derivative γ̇(t) on the statistical manifold such that,
∀t ∈ [0, 1], γ(t) = ηt ∈ H. The manifold is equipped with the Fisher-Rao metric. The
length and the energy functionals are defined with respect to the metric I(η):

Length(γ) =
∫ 1

0

√
γ̇(t)>I(η)γ̇(t)dt and Energy(γ) =

∫ 1

0
γ̇(t)>I(η)γ̇(t)dt.

Length-minimizing curves between two connecting points can be found by minimizing the
energy functional. In our case, the geodesics on the statistical manifold locally minimize
the KL-divergence between two distributions.

Proposition 4.3.1 Geodesics on the statistical manifold
The KL-divergence between two close elements of the curve γ is defined as: KL(pt, pt+δt) =
KL(p(x|γ(t)), p(x|γ(t+ δt))). The length L and the energy E functionals can be ap-
proximated with respect to this KL-divergence:

L(γ) ≈
√

2
∑T
t=1
√
KL(pt, pt+δt) and E(γ) ≈ 2

δt

∑T
t=1 KL(pt, pt+δt)

Proof. We replace γ(t+ δt) = γ(t) + δt γ̇(t) in the previous equations. See Appendix C,
for the detailed proof.

As we can directly access the distributions p(x|η) of a VAE, we can conveniently compute
the KL-divergence between two close distributions, and so, compute geodesics on our
latent space.
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Staying within the support of the data

So far, we have described a convenient way to explore the probability space, by computing
geodesics on the statistical manifold. However, we don’t exactly have access to P(X ),
but rather P(Ω), with Ω the set of all the possible outcomes, such that the probability
density function of x satisfies: ∫

Ω
p(x)dx = 1.

The manifold Ω that we are exploring is much larger than the data manifold X ⊂ Ω.
This is also reflected in the latent space Z, and we want to ensure that the geodesics
computed in our latent space stay within the support of the data.

To achieve this, we propose to reparameterize the non-linear map h such that, within the
support of the data, the data is drawn from a chosen distribution D, p(x|h(z)) = DX ,
and outside the support of the data, the uncertainty is maximized: p(x|h(z)) = UΩ\X ,
with U the uniform distribution:

p(x|h(z)) =
{
DX if x ∈ X
UΩ\X if x /∈ X

⇒ h(z) =
{
h(z) if z ∈ Z
u(z) if z /∈ Z

,

with u a function that maximizes the entropy of the distribution:

u(z) =



σ(z)→∞ for a Normal distribution
p(z) = 1

2 for a Bernoulli distribution
(α(z), β(z)) = (1, 1) for a Beta distribution
α(z) = 1 for a Gamma distribution
λ(z)→ 1 for a Poisson distribution

If d is the distance between a latent code z and the support of the data, then h is
reparameterized as: h̃(z) = (1− d(z)) · h(z) + d(z) · u(z).

Dirichlet Gaussian Bernoulli

Figure 4.2: From left to right: Dirichlet, Gaussian and Bernoulli. The geodesics are plotted
for those distributions when the support of the data is a circle. The white areas represent low
entropy of the decoded distribution, while purple areas represent higher entropy.

Experiments: Motion capture data with a von Mises-Fisher
decoder

We consider a model of human motion capture data. Here we observe a time series, where
each time point corresponds to a human pose composed of multiple receptors. Over time,
the individual limbs on the body only change their position and orientation. Each limb
can be seen as a point on a sphere in R3 with radius given by the limb length. We can
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view the entire skeleton representation as a product of spheres. From this, we build a
VAE where the decoder distribution is a product of von Mises-Fisher distributions. In this
case, we do not have easily accessible Fisher-Rao metric tensor, so we plot the geodesics
by minimizing the curve-length obtained with the KL-divergence from Sec. 4.3. While
the KL does not have a closed-form expression for the von Mises-Fisher distribution, we
use a Monte Carlo estimate.

Figure 4.3: The figure shows the latent representation of a motion capture sequence of a
person walking with the shortest paths superimposed. We see that the geodesics reflect the
underlying periodic nature of the observed walking motion. As we traverse the latent space
with a straight line and the geodesic, we sample the data from the decoder, producing new
motion sequences. As can be seen, the straight line ends up creating implausible motions,
while the geodesics from the Fisher-Rao metric generates meaningful poses.
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On the curvature of the loss
landscape 5

The paper On the curvature of the loss landscape, has been written with Hrittik Roy,
Sidak Pal Singh, and Georgios Arvanitidis. The work is currently in progress and available
as a preprint at https://arxiv.org/abs/2307.04719.

Abstract

One of the main challenges in modern deep learning is to understand why
such over-parametrized models perform so well when trained on finite data.
A way to analyze this generalization concept is through the properties of the
associated loss landscape. In this work, we consider the loss landscape as
an embedded Riemannian manifold and show that the differential geometric
properties of the manifold can be used when analyzing the generalization
abilities of a deep net. In particular, we focus on the scalar curvature, which
can be computed analytically for our manifold, and show connections to
several settings that potentially imply generalization.

5.1 Flatness and generalization in machine learning

The relationship between the generalization ability of a model and the flatness of its loss
landscape has been a subject of interest in machine learning. Flatness refers to the shape
of the hypersurface representing the loss function, parametrized by the parameters of
the model. Flat minima are characterized by a wide and shallow basin. Generalization
refers to the ability of a model to perform well on unseen data. A widely accepted
hypothesis, proposed by various research groups (Hochreiter and Schmidhuber 1997;
Hinton and Van Camp 1993; Buntine 1991) several decades ago, suggests that flat
minima are associated with better generalization compared to sharp minima. The basis
of this hypothesis stems from the observation that when the minima of the optimization
landscape are flatter, it enables the utilization of weights with lower precision. This, in
turn, has the potential to improve the robustness of the model.

The notion of flatness has been challenged by Dinh et al. (2017), who argued that
the different flatness measures proposed are not invariant under reparameterization
of the parameter space and questioned the assumption that flatness directly causes
generalization.

Yet, numerous empirical and theoretical studies have presented compelling evidence that
supports the relationship between flatness and enhanced generalization. This relationship
has been observed in various contexts, by averaging weights (Izmailov et al. 2018),
studying inductive biases (Neyshabur et al. 2017; Imaizumi and Schmidt-Hieber 2022),
introducing different noise in gradient descent (Chaudhari et al. 2019; Pittorino et al.
2021), adopting smaller batch sizes (Keskar et al. 2016), and investigating ReLU Neural
networks (Yi et al. 2019).

The exact relationship between flatness and generalization is still an open problem in
machine learning. In this preliminary work, we build upon the flatness hypothesis as a
primary motivation to investigate the curvature of the loss landscape, approaching it
from a differential geometric perspective.

In this preliminary work, we analyze the loss landscape as a Riemannian manifold
and derive its scalar curvature, an intrinsic Riemannian object that characterizes the

https://arxiv.org/abs/2307.04719
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Figure 5.1: On the left, a surface represents a loss function f(u,v) on its parameter space
{u,v}. We can see two minima, a sharp minimum and a flatter minimum. A Brownian motion
navigates the parameter space around those two minima, in blue for the sharp one, and red for
the shallow one. On the right, the upper figure represents the Brownian motion navigating
in the parameter space. The same is used for both minima. The lower figure represents the
perturbations of the loss f in both the sharp (blue) and flat (red) minima. The loss is more
robust to perturbation in the flatter minima.

local curvature of the manifold. We found that the scalar curvature, at minima, has a
straightforward expression and can be related to the norm of the Hessian. While the
norm of the Hessian may not always accurately measure flatness, it remains a valuable
indicator for understanding optimization. Our findings demonstrate that the scalar
curvature possesses all the benefits of the Hessian norm without its limitations.

5.2 Geometry of the loss landscape and curvature

We are interested in finding the parameters x of a model that minimizes the loss function
denoted f . The loss function is a smooth function defined on the parameter space
M ⊂ Rq, where q is the number of parameters. In order to study the loss landscape
of a model, we can look at the geometry of the graph of the loss function, which is a
hypersurface embedded in Rq+1.

Definition 5.2.1 Metric of a graph
Let f : Ω ⊂ Rq → R be a smooth function. We call graph of a function the set:

Γf = {(x, y) ∈ Ω× R | y = f(x)}.

The graph Γf is a topological smooth manifold embedded in Rq+1, and it is isometric
to the Riemannian manifold (M, g) withM⊂ Rq and the induced metric

gij = δij + ∂if∂jf. (5.1)

The metric is obtained by pulling back, in one case, the loss function to the parameter
space (∂if∂jf), and in another case, the parameter space to itself (δij), (Lee 2018).

Instead of working in the ambient space Rq+1, it is more convenient to study the intrinsic
geometry of the loss function in the parameter space (M, g). In particular, knowing
the Riemannian metric, we can compute the associated geometric quantities of the loss
landscape as the Christoffel symbols, the Riemannian curvature tensor, and the scalar
curvature (See Appendix A.1 for an introduction of those quantities). In the following,
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we will denote ∇ the Euclidean gradient operator of the loss function f , and H the
Euclidean Hessian of f .

Gradient(f): (∇f)i = Ji = ∂if = f,i
Hessian(f): (H)ij = ∂i∂jf = f,ij

Curvature in Riemannian geometry

The Christoffel symbols define a corrective term used to compute covariant derivatives
in a curved space. They can be derived from the Riemannian metric.

Proposition 5.2.1 Christoffel symbols
The Christoffel symbols are given by:

Γikl = βf,if,kl, (5.2)

with β = (1 + ‖∇f‖2)−1.

Proof. See Appendix A.2.

Using those Christoffel symbols, we can directly compute the Riemannian curvature
tensor. Using the Einstein summation convention, the Riemannian curvature tensor is
an intrinsic mathematical object that characterizes the deviation of the curved manifold
from the flat Euclidean manifold.

Proposition 5.2.2 Riemannian curvature tensor
The Riemannian curvature tensor is given by:

Rijkm = β(f,ikf,jm − f,jmf,jk)− β2f,if,r(f,rkf,im − f,rmf,jk), (5.3)

with β = (1 + ‖∇f‖2)−1.

Proof. See Appendix A.2.

While those four-dimensional tensor gives us a complete picture of the curvature of a
manifold, it can be difficult to interpret in practice. Instead, a scalar object, the scalar
curvature, can be derived from the Riemannian curvature tensor. The scalar curvature
quantifies locally how curved is the manifold.

Proposition 5.2.3 Scalar curvature
The scalar curvature is given by:

S = β
(
tr(H)2 − tr(H2)

)
+ 2β2 (∇f>(H2 − tr(H)H)∇f

)
, (5.4)

with β = (1 + ‖∇f‖2)−1.

Proof. See Appendix A.2.

This expression simplifies when the gradient is zero, which corresponds to a critical point
of the loss function. In this case, the scalar curvature is given by:

Corollary 5.2.4
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When an extremum is reached (∇f = 0), the scalar curvature becomes:

S(xmin) = tr(H)2 − tr(H2) (5.5)

Proof. This is a direct result of Proposition 5.2.3, when ∇f = 0.

Note that we can also write, at the minimum, S(xmin) = ‖H‖2∗ − ‖H‖
2
F , with ‖·‖∗ the

nuclear norm and ‖·‖F the Frobenius norm.

The scalar curvature as the deviation of the volume of geodesic
balls

This scalar curvature has a simple interpretation, as it corresponds to the difference in
volume between a geodesic ball embedded in the Riemannian manifold and a ball of
reference, the Euclidean ball. In hyperbolic spaces, the Riemannian ball will be bigger
than the Euclidean one, and in spherical spaces, it will be smaller. If the curved space is
flat, they are both equal in volume, and the scalar curvature is null.

Proposition 5.2.5
(Gallot et al. 1990, Theorem 3.98)
The scalar curvature S(x) at a point x ∈M of the Riemannian manifold of dimension
q is related to the asymptotic expansion of the volume of a ball on the manifold Bg(r)
compared to the volume of the ball in the Euclidean space Be(r), when the radius r
tends to 0.

vol(Bg(r)) = vol(Be(r))
(

1− S(x)
6(q + 2)r

2 + o(r2)
)

5.3 Scalar curvature and optimization

Corollary 5.2.4 establishes a connection between the scalar curvature at each peak or
valley in the loss landscape and the magnitude of the Hessian: S(x) = ‖H‖ ∗2 − ‖H‖2F .
Although the Hessian norm plays a key role in optimization tasks, we contend that it
is not the most reliable gauge of flatness in all situations. On one hand, will delve into
some issues that arise from only using the Hessian norm in Section 5.3.1. On the other
hand, we will see how the scalar curvature reduces to the Hessian norm in some cases
and supports theoretical findings in optimization in Section 5.3.2.

5.3.1 Limitations of the trace of the Hessian as a measure of
flatness

The Hessian of the loss function, specifically its trace, has been shown to influence the
convergence of optimization algorithms. For instance, Wei and Schwab (2019) revealed
that stochastic gradient descent (SGD) reduces the trace of the loss function’s Hessian
in the context of over-parametrized networks. In a similar vein, Orvieto et al. (2022)
discovered that SGD with anti-correlated perturbations enhances generalization due to
the induced noise reducing the Hessian’s trace. They also identified that the trace serves
as an upper limit on the mean loss over a posterior distribution. Furthermore, within
Graphical Neural Networks, Ju et al. (2023) demonstrated that the trace of the Hessian
can evaluate the model’s resilience to noise.
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The saddle point problem

Yet, relying solely on the trace of the Hessian may not provide an accurate measure
of flatness. For instance, if half of the eigenvalues are positive and the other half are
negative, with their sum equaling zero, the trace of the Hessian will also be zero. This is
misleading as it suggests a flat region, when in reality it is a saddle point.

Example 5.3.1 Curvature of a parametrized function
Let us imagine that the loss is represented by a function taking in inputs two weights u
and v such that:

f(u, v) = e−cu sin(u) sin(v),

with c a positive constant. We notably have limu→∞ f(u, v) = 0, and so the surface tends
to be flatter with u increasing.

The trace of the Hessian of f and its scalar curvature can be computed analytically, and
we have at a point x = (u, v):

tr(H)(x) =e−cu(−2u cos(u) + (c2 − 2) sin(u)) sin(v)

S(x) = (c2 − 1) cos(2u)− cos(2v)− c(c− 2 sin(2u))
e2cu + cos(v) sin(u)2 + (cos(u)− c sin(u)) sin(v)2

Figure 5.2: In this figure, the loss function is defined as f(u, v) = e−cu sin(u) sin(v), with
c = 0.1. The first two figures represent the surface in 3d, while the two last figures represent
the surface seen from above, in the {u, v}-space. Both the scalar curvature and the trace of
the Hessian are shown through the gradient of color.

The expected flatness over mini-batches

Figure 5.3: The data points fit a si-
nus. The dataset is split into 7 batches
of different colors. If the flatness is de-
fined as tr(H), the flatness over the
entire dataset is equal to the expecta-
tion of the flatness of a batch. Thus,
the curve is considered flat.

Another challenge emerges when the dataset is divided into small batches. If we choose
the Hessian’s trace as the measure of flatness, the overall flatness of the entire dataset
equals the average flatness over these batches (Equation 5.6). This could potentially
induce the wrong conclusion depending on the method used to partition the dataset: In
Figure 5.3, the dataset is split in such a way that the trace of the Hessian is null for each
batch, which means that the curve is considered as flat over the entire dataset.

The dataset, denoted D, is split into k mini-batches: {B1,B2, . . . ,Bk}. By linearity, the
Hessian of the loss function over the entire dataset can be written as the mean of the
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Hessian of mini-batches i.e.:
HD = 1

k

∑
i

HBi

As a consequence, since the trace commutes with a summation, we have: tr(HD) =
tr( 1

k

∑
iHBi) = 1

k

∑
i tr(HBi) = E[tr(HBi)]. The trace of the Hessian of the loss function

over the entire dataset is the expectation of the Hessian over mini-batches:

tr(HD) = E[tr(HBi)] (5.6)

The corresponding result does not hold for the scalar curvature in general.

Proposition 5.3.1
The scalar curvature of the hessian of the full dataset is not equal to the expectation
of the Scalar curvature over mini-batches. That is there exists a dataset, D, and
mini-batches, {B1,B2, . . . ,Bk} such that:

S(HD) 6= E[S(HBi)]

Proof. See Appendix A.2.

5.3.2 The scalar curvature supports previous theoretical
findings through the Hessian norm

Although the two previous given examples suggest that in some cases, the trace of the
Hessian is not a good definition of flatness, it is associated with the optimization process
and the model’s capacity to generalize in various ways. We will observe that under certain
circumstances, the scalar curvature simplifies to the Hessian norm.

Perturbations on the weights

Seong et al. (2018) showed that the robustness of the loss function to inputs perturbations
is related to the Hessian. We similarly show that the resilience of the loss function to
weights perturbations is upper bounded by the norm of the Hessian. Additionally, a
smaller scalar curvature implies stronger robustness.

Proposition 5.3.2
Let xmin an extremum, ε, a small scalar (ε� 1) and x a normalized vector (‖x‖ = 1).
The trace of the square of the Hessian is an upper bound to the difference of the loss
functions when perturbed by the weights:

‖f(xmin + εx)− f(xmin)‖22 ≤
1
4ε

4 tr(H2
min) (5.7)

Proof. This is obtained by applying the Taylor expansion, for a very small perturbation
ε� 1. See Appendix A.2 for the full proof.

Let us assume two minima x1 and x2, and we suppose that the loss function at x1 is
flatter than the one at x2 in terms of scalar curvature so 0 ≤ S(x1) ≤ S(x2). Being
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Figure 5.4: Empirical demonstration of Proposition 5.3.2. We train two identical and dif-
ferently initialized deep nets using the same optimizer (Adam). We then perturb point wise
the learned weights using Gaussian noise N (0, 0.12). As expected the model on the left with
scalar curvature ≈ 430 is more robust to perturbations compared to the right model with
scalar curvature ≈ 610.

at the minimum implies that S(x1) = tr(H1)2 − tr(H2
1) and S(x2) = tr(H2)2 − tr(H2

2)
respectively. Then:

0 ≤ S(x1) ≤ S(x2) ⇐⇒ 0 ≤ tr(H1)2 − tr(H2
1) ≤ tr(H2)2 − tr(H2

2) (5.8)
⇒ tr(H2

1) ≤ tr(H2
2). (5.9)

A flatter minimum S(x1) ≤ S(x2) leads to more robustness of the loss function to weights
perturbations: ‖f(x1 + εx)− f(x1)‖22 ≤ ‖f(x2 + εx)− f(x2)‖22.
In Figure 5.4, we consider ε ∼ N (0, 0.01) to be a small perturbation, and we plotted
the original loss function with the perturbed losses. We computed the trH2 at the
minimum. When the scalar curvature is smaller, the variance across the perturbations at
the minimum is smaller and the perturbations are more centered around the original
loss function.

Efficiency of escaping minima

Stochastic gradient descent can be conceptualized as an Ornstein-Uhlenbeck process
(Uhlenbeck and Ornstein 1930), which is a continuous-time stochastic process that
characterizes the behavior of a particle influenced by random fluctuations (Mandt et al.
2017). By considering the non-linear relationship between the weights and the covariance,
the update rules in gradient descent resemble the optimization approach employed in
the multivariate Ornstein-Uhlenbeck process. When approximating the covariance by
the Hessian (Jastrzebski et al. 2017, Appendix A), the gradient descent can be seen as
an Ornstein-Uhlenbeck process with:

dxt = −Hxtdt+ H
1
2 dWt (5.10)

The escaping efficiency measure is a metric used to evaluate the performance of op-
timization algorithms, including gradient descent, in escaping from local minima and
finding the global minimum of the loss function, and is defined as E[f(xt) − f(xmin)].
Zhu et al. (2018) used this definition and the expression of the gradient descent process
(Equation 5.10) to approximate the escaping efficiency:

E[f(xt)− f(xmin)] ≈ t

2 tr(H2). (5.11)

Similar to the example above, gradient descent will have more difficulties to escape from
a minimum with a small scalar curvature, and so it will converge more quickly to the
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flat minima.

The scalar curvature is the squared norm of the Hessian in
over-parametrized neural networks

Proposition 5.3.3
We note H the Hessian of the loss of a model with q parameters, and S the scalar
curvature, obtained in Proposition 5.2.3 and Corollary 5.2.4. When we reach a flat
minimum, supposing the eigenvalues of H are similar, for a high number of parameters
q, we have:

S(xmin) ∼
q→∞

tr(H)2

Proof. Let us suppose that, at a flat minimum, all the eigenvalues are similar: λ1 =
· · · = λq = λ ≥ 0. Then we, have ‖H‖2∗ = q2λ2 and ‖H‖2F = qλ2. When the number of
parameters increases, ‖H‖2F = o(‖H‖2∗), and as a consequence ‖H‖2∗−‖H‖

2
F ∼ ‖H‖

2
∗.

In this proposition, we assume that all the eigenvalues are similar. This strong assumption
is supported by empirical results (Ghorbani et al. 2019). The empirical results show that
during the optimization process, the spectrum of the eigenvalues becomes entirely flat,
especially when the neural network includes batch normalization.

5.3.3 Reparameterization of the parameter space

The main argument challenging the link between flatness and generalization is that the
flatness definitions, so far, are not invariant under reparameterization. Reparameterization
refers to a change in the parametrization of the model, which can be achieved by
transforming the original parameters (θ) into a new set of parameters (η). Even if we
assume that the models have the same performance: {fθ, θ ∈ Θ ⊂ Rq} = {fϕ(η), η ∈
ϕ−1(Θ)}, this reparameterization alters the shape of the loss function landscape in Rq.
This is the core of the problem: Dinh et al. (2017) compared the flatness of fθ and fϕ(η)
with respect to the same ambient space Rq, while each measure should be defined, and
compared, relative to their respective parameter space, and not to an arbitrary space of
reference.

The scalar curvature is not invariant under reparameterization of the parameter space, and
it should not be. It is, however, an intrinsic quantity, which means that it does not depend
on an ambient space. As a consequence, it is also equivariant under diffeomorphism, and
notably, ifM andM′ are two Riemannian manifolds related by an isometry Ψ :M→M′,
then S(x) = S(Ψ(x)), for all x ∈M.

In the case of the scalar curvature, if we apply a diffeomorphism to the parameters space
with ϕ :M→M′, and f :M′ ⊂ Rq → R the loss function, then:

H(f ◦ ϕ) = J(ϕ)>H(f)J(ϕ) + Jk(f)Hk(ϕ),

with J(ϕ), J(f) the Jacobian of ϕ and f , and H(f ◦ ϕ), H(f) and Hk(ϕ) the Hessian of
f ◦ ϕ and f . We note Hk(ϕ)ij = ∂i∂jϕ

k the Hessian of the k-th component of ϕ.

At the minimum of the loss function, J(f) = 0, with ϕ : M→M′ a diffeomorphism,
and x′ = ϕ(x), the scalar curvatures onM andM′ is derived as:

S(x) = ‖Hf‖2∗ − ‖Hf‖2F ,

S(x′) =
∥∥∥JϕJ>ϕHf

∥∥∥2

∗
−
∥∥∥JϕJ>ϕHf

∥∥∥2

F
.
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5.4 Discussion

Our research focused on analyzing the loss landscape as a Riemannian manifold and its
connection to optimization generalization. We introduced a Riemannian metric on the
parameter space and examined the scalar curvatures of the loss landscape. We found
that the scalar curvature at minima is defined as the difference between the nuclear and
Frobenius norm of the Hessian of the loss function.

The flatness hypothesis forms the basis of our study, suggesting that flat minima lead to
better generalization compared to sharp ones. The Hessian of the loss function is known to
be crucial in understanding optimization. However, analyzing the spectrum of the Hessian,
particularly in over-parametrized models, can be challenging. As a result, the research
community has started relying on the norm of the Hessian. We show that, in certain
scenarios, the Hessian norm doesn’t effectively gauge flatness, whereas scalar curvature
does. Despite this, the Hessian norm is still relevant to theoretical results in optimization,
including the model’s stability against perturbations and the algorithm’s ability to
converge. Similarly, these characteristics are also satisfied by the scalar curvature. In
essence, the scalar curvature combines all the advantages of the Hessian norm while
accurately describing the curvature of the parameter space.

Future research could explore the curvature within stochastic optimization and investigate
the scalar curvature as a random variable affected by the underlying data and batch
distribution. It would also be interesting to understand how the scalar curvature relates
to the stochastic process and whether it is connected to any implicit regularization in
the model.

Overall, our study contributes to the understanding of the loss function’s parameter
space as a Riemannian manifold and provides insights into the curvature properties that
impact optimization and generalization.





Identifying latent distances with
Finslerian geometry 6

The paper Identifying latent distances with Finslerian geometry has been written with
David Eklund, Carl Henrik Ek, and Søren Hauberg. It was presented at the NeurIPS
2022 Workshop "Symmetry and Geometry in Neural Representations". The paper is
currently under review at the Transactions on Machine Learning Research, and it is
available publicly at https://arxiv.org/abs/2212.10010.

Abstract

Riemannian geometry provides us with powerful tools to explore the latent
space of generative models while preserving the underlying structure of the
data. The latent space can be equipped it with a Riemannian metric, pulled
back from the data manifold. With this metric, we can systematically navigate
the space relying on geodesics defined as the shortest curves between two
points.

Generative models are often stochastic causing the data space, the Riemannian
metric, and the geodesics to be stochastic as well. Stochastic objects are at
best impractical, and at worst impossible, to manipulate. A common solution
is to approximate the stochastic pullback metric by its expectation. But the
geodesics derived from this expected Riemannian metric do not correspond
to the expected length-minimizing curves.

In this work, we propose another metric whose geodesics explicitly minimize
the expected length of the pullback metric. We show this metric defines a
Finsler metric, and we compare it with the expected Riemannian metric.
In high dimensions, we prove that both metrics converge to each other at
a rate of O

( 1
D

)
. This convergence implies that the established expected

Riemannian metric is an accurate approximation of the theoretically more
grounded Finsler metric. This provides justification for using the expected
Riemannian metric for practical implementations.

6.1 Introduction

Generative models provide a convenient way to learn low-dimensional latent variables z
corresponding to data observations x through a smooth function f : Z ⊂ Rq → X ⊂ RD,
such that x = f(z). Through this learned manifold, one can generate new data or
compare observations by interpolating or computing distances. However, doing so by
using the Euclidean distance in the latent space is misleading (Hauberg 2018a), because
the latent variables are not statistically identifiable. If our observations are lying near a
manifold (Fefferman et al. 2016), we want to equip our latent space with a metric that
preserves distance measures on it. Figure 6.1 (left panel) illustrates the need for defining
geometric-aware distances on manifolds.

Distances on a manifold can be precisely defined using a norm, which is a mathematical
function that exhibits several desirable properties such as non-negativity, homogeneity,
and the triangle inequality. In particular, a norm can be induced by an inner product
(i.e., a quadratic function) that associates each pair of points on the manifold with a
scalar value.

https://arxiv.org/abs/2212.10010
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To derive the standard Riemannian interpretation of the latent space, we first compute
the infinitesimal Euclidean norm according to the data space. Using the Taylor expansion,
we have: ‖f(z + ∆z)− f(z)‖22 ≈ ‖f(z) + J(z)∆z − f(z)‖22 = ∆z>J(z)>J(z)∆z. As a
first approximation, the norm defined in the latent space locally preserves the Euclidean
norm defined in the data space. The curvature of our data manifold is condensed in
the Riemannian metric tensor Gz = J>(z)J(z), which serves as a proxy to define the
Riemannian metric: gz : (u, v) → u>Gzv. In mathematical jargon, we say that the
Riemannian manifold (Z, g) is obtained by pulling back the Euclidean metric through
the map f .

Riemannian geometry enables the exploration of the latent space in precise geometric
terms, and quantities of interest such as the length, the energy or the volume can be
directly derived from the pullback metric. These geometric quantities are, by construction,
known to be invariant to reparameterizations of the latent space Z, and are thus
statistically identifiable (Hauberg 2018a). While this geometric framework exclusively
handles deterministic objects, generative models are often stochastic. The learned map
f , that mathematically describes those models, is stochastic too. For example, in the
celebrated Gaussian Process Latent Variable Model (GPLVM) (Lawrence 2003), this
function is a Gaussian process. The pullback metric is then stochastic, and standard
differential geometric constructions no longer applies. Navigating the latent manifolds
through geodesics (length-minimizing curves) becomes practically infeasible.

Previous research tried to circumvent this problem by approximating the stochastic
pullback metric with the expected value of the Riemannian metric tensor, but the derived
length are unintuitive quantities that do not correspond to the expected length:

L(γ) |E[G]:=
∫
‖γ(t)‖E[G] dt 6= E [L(γ) |G] :=

∫
E ‖γ(t)‖G dt.

Instead of taking the expectation of the metric tensor, which serves as a surrogate to
define a norm, we propose to take the expectation of the norm directly.

In this paper, we compare our expected norm with the norm induced by the commonly
used expected metric tensor. The main findings are:

1. The expected norm defines a Finsler metric. Finsler geometry is a generalization of
Riemannian geometry.

2. For Gaussian processes, the stochastic norm obtained through the pullback metric
follows a non-central Nakagami distribution, so our Finsler metric has a closed-form
expression.

3. In high dimensions, for Gaussian processes, our Finsler metric and the previously
studied Riemannian metric converge to each other at a rate of O

( 1
D

)
, with D the

dimension of the data space.

We conclude that the Riemannian metric serves as a good approximation of the Finsler
metric, which is theoretically more grounded. It further justifies the use of the Riemannian
metric in practice when exploring stochastic manifolds.

6.1.1 Outline of the paper

The paper explores the geometry of latent spaces learned by generative models, which
encode a latent low-dimensional manifold that represents observed high-dimensional data.
The latent manifold is denoted Z ⊂ Rq and the data manifold is denoted X ⊂ RD.

Assuming the manifold hypothesis holds, we need to define an infinitesimal norm in
the latent manifold to compute distances that respect the underlying geometry of the
data. Such a norm can be constructed by pulling back the Euclidean distance through
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Figure 6.1: In this illustration, we show the 2-dimensional representation (θ, ϕ) of the sphere
parametrized in R3 with f : (θ, ϕ)→ cos(θ) sin(ϕ), sin(θ) cos(ϕ), sin(ϕ). In practice, we don’t
have access to well-parametrized manifolds, but instead those manifolds are being shaped
by data points in RD. The data points are depicted as tiny dots for illustrative purposes.
On the left figure, the map f is deterministic, and on the right figure, we imagine that f is
stochastic. When we pullback, through f , a circle from the sphere to the plane, the circle is
deformed to an ellipse. Those ellipses, called indicatrices, are the fingerprints of the metric,
and they showcase the deformation of the plane. Left figure: In blue, the Euclidean distance,
is represented by the straight line in the plane. It is not identifiable, and it does not represent a
geodesic on the sphere. In orange, the length-minimizing curve obtained through the pullback
metric of the mapping f leads to a great circle on the sphere. Following the great circle is
the fastest way to go from one point to another. Effectively, the pullback metric leads to a
geodesic, contrary to the Euclidean metric. Notice that, in the plane, the orange geodesic
also follows the direction of the indicatrices, since it is length-minimizing. Right figure: We
imagine that a generative model maps latent space to data space to the data space using
a stochastic process f = {f1, f2, . . . }. This leads to a stochastic pullback metric, stochastic
indicatrices, and stochastic paths in the latent space.

the smooth function that maps the latent manifold to the data manifold. This map,
f : Z → X , mathematically describes the decoder of a trained generative model. Those
models being often stochastic, we consider f being a stochastic process. It means that
the pullback metric tensor, G = J>J , and its induced norm, ‖·‖G : u →

√
u>Gu, are

also stochastic. In section 6.2, we mathematically define the notion of stochastic pullback
metric and stochastic manifolds.

To circumvent all the challenges posed by this stochastic component, a deterministic
approximation of the norm is needed. It can be defined by taking the expectation of
the metric tensor. This norm, that we will note ‖·‖R : u → ‖u‖E[G], has been studied
before by Tosi et al. (2014), and is explained in section 6.2.2. In this paper, we propose
instead to directly take the expectation of the stochastic norm. This expected norm,
noted ‖·‖F : u→ E [‖u‖G], is introduced in section 6.2.4. The norm ‖·‖R is defined by a
Riemannian metric, and we show that the norm ‖·‖F defines a Finsler metric. We explain
the general difference between Finsler and Riemannian geometry in section 6.3.

The aim of this paper is to compare those two norms. We first draw absolute bounds in
section 6.3.2, and then relative bounds in 6.3.3. We also investigate the relative difference
of the norms when the dimension of the data space increase, in section 6.3.4. Finally, we
perform some experiments in Section 6.4, that illustrates the Riemannian and Finsler
norm in the same latent space.

6.1.2 Related works

Riemannian geometry for machine learning

When navigating a learned latent space, the geodesics obtained through the pullback
metric not only follow geometrically coherent paths, they also remain invariant under
different representations. While two runs of the same model will produce distinct latent
manifolds, the geodesics connecting the same chosen points should have the same length.
We say that the pullback metric effectively solved the identifiability problem (Hauberg
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2018a). This has led to the growing adoption of Riemannian geometry in machine learning
applications. In robotics, Beik-Mohammadi et al. (2021) used the pullback metric from a
variational autoencoder to safely navigate the space of motion patterns, and Scannell
et al. (2021a) use geodesics under the expected metric in a GPLVM to control quadrotor
robot. In proteins modelling, Detlefsen et al. (2022) showed that the derived geodesics
on the space of beta-lactamase follow their phylogenetic tree structure. In game content
generation, González-Duque et al. (2022) generated game levels more coherent and
reliable by interpolating data along the geodesics. Jørgensen and Hauberg (2021) used
the expected Riemannian metric from observations of pairwise distances through a
GPLVM to build a probabilistic dimensionality reduction model.

Finsler geometry in machine learning

Our work crucially relies on Finslerian geometry, which has been well-studied mathemat-
ically, but has only seen very limited use in machine learning and statistics. We point to
two notable exceptions, which are quite distinct from our work. Lopez et al. (2021) use
symmetric spaces to represent graphs and endow these with a Finsler metric to capture
dissimilarity structure in the observational data. Ratliff et al. (2021) discuss the role of
differential geometry in motion planning for robotics. Along the way, they touch upon
Finslerian geometry, but mostly as a neat tool to allow for generalizations. To the best of
our knowledge, no prior work has investigated the links between stochastic and Finslerian
geometry.

Strategies to deal with stochastic Riemannian geometry

Tosi et al. (2014) and Arvanitidis et al. (2018) introduced approximation of the pullback
metric by taking the expectation of the metric tensor. In those two cases, the map f
is respectively a trained Gaussian process, or the decoder of a VAE. In this paper, the
derivations only hold if f is a smooth stochastic process (Definition 6.2.2), which is
not the case∗ of the VAEs, and hence, our results are not directly applicable to those
models.

In addition to the work of Tosi et al. (2014), a solution to circumvent the randomness of
the metric tensor is to consider that the data follows a specific probability distribution.
Instead of looking at the shortest path on the data manifold, Arvanitidis et al. (2022)
borrow tools from information geometry and consider the straightest paths on the
manifold whose elements are probability distributions.

6.2 Expectation on random manifolds

The metric pulled back by a stochastic mapping is, de facto, stochastic and endows a
random manifold. Unfortunately, we are not yet equipped to derive geometric objects
on a random manifold. Instead, we dodge this problem by seeking a deterministic
approximation of this stochastic metric. As mentioned above, a common solution is to
approximate such a metric by its expectation. In section 6.2.2, we study the expected
Riemannian metric.

∗ The decoder of a VAE, while it decodes to a Gaussian, cannot be considered as a differentiable stochastic
process. One reason is because the independence of the probability of the data: p(x|z) =

∏n

i=1 p(xi|zi).
Let us assume the opposite: the decoder is a Gaussian process. The covariance of the Gaussian
process would be a diagonal matrix because of the independence of the probability of the data. The
covariance would correspond to a Dirac distribution: cov(xi, xj) = δij . However, a stochastic process is
differentiable only if the covariance is differentiable, which is not the case of the Dirac distribution.
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The solution suggested by this paper is to approximate the expectation of the lengths
instead of the random metric itself. In section 6.2.4, we show that this new metric is not
Riemannian but Finslerian (Proposition 6.2.2), and it has a closed-form expression when
the map f is a Gaussian process (Proposition 6.2.3).

6.2.1 Random Riemannian geometry

The pullback metric is defined as a Riemannian metric if and only if the mapping f is an
immersion, which is a differentiable function whose derivatives are injective everywhere
on the manifold (Lee 2013, Proposition 13.9). A manifold equipped with a Riemannian
metric is called a Riemannian manifold.

Definition 6.2.1
The pullback of the Euclidean metric through the immersion f : Z → X is a Rieman-
nian metric. It is defined as the inner product gz : (TzZ, TzZ)→ R+ : (u, v)→ u>Gv,
at a specific point z in the manifold Z. u and v are vectors lying in the tangent plane
TzZ (i.e.: the set of all tangent vectors) of the manifold. G = J>J , with J the Jacobian
of f .

Since a Riemannian metric is an inner product, it induces a norm: ‖·‖G. We can then
define the curve length and curve energy on a manifold: LG(γ) =

∫ 1
0 ‖γ̇(t)‖G dt

and EG(γ) = 1
2
∫ 1

0 ‖γ̇(t)‖2G dt, with γ a curve defined on Z, and γ̇ its derivative. A
locally length-minimizing curve between two connecting points is a geodesic. To obtain
a geodesic, we can minimize the curve length, but in practice minimizing the curve
energy is more efficient. On the manifold, we also define a volume measure in order
to integrate probability functions: for U ⊂ Z,

∫
f(U) h(x) dx =

∫
U h(f(z))VR dz, with

VR(z) =
√
Gz the volume measure.

In addition, we are considering the case where the immersion f is a stochastic process.
The outputs of our trained model, x ∈ X , which represent our data, are random variables.

Definition 6.2.2
A stochastic process is a collection of random variables {X(t, ω), t ∈ T} indexed by
an index set T defined on a sample space Ω, which represents the set of all possible
outcomes. An outcome in Ω is denoted by ω, and a realization of the stochastic process
is the sequence of X(·, ω) that depends on the outcome ω.

In this framework, our index set is our latent manifold T = Z, and our sample space
Ω is defined as the set of the model evaluations. For every point z ∈ Z, every time
we execute our model, the output x = f(z) is a random variable following a specific
distribution. When the data x follow a Gaussian distribution, the stochastic process is
called a Gaussian process. A GP-LVM (Lawrence 2003) is a model that learns how to
map the data from a latent space to a data space through a Gaussian process.

When f is a stochastic immersion, the metric tensor becomes a random matrix. In
this paper, we call a manifold equipped with the stochastic pullback metric a random
manifold, noted (Z, g). As a consequence of the stochastic aspect of the metric, all the
functionals are stochastic themselves, and they are no longer trivial to manipulate.

Definition 6.2.3
A random Riemannian metric tensor is a matrix-valued random field (i.e.: a
collection of matrix-valued random variables {G(z, ω), z ∈ Z}), whose realization for
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a specific evaluation ω ∈ Ω is a Riemannian metric tensor. A random Riemannian
metric is a metric induced by a random Riemannian metric tensor: gz : (TzZ, TzZ)→
R+ : (u, v) → u>Gv. For the rest of the paper, the associated stochastic norm is
noted:

‖·‖G : TzZ → R+ : u→
√
gz(u, u) :=

√
u>Gu

If this stochastic norm is induced by f defined as a Gaussian process, then ‖·‖G follows a
non-central Nakagami distribution. This is explained in the proof of Proposition 6.2.3.

6.2.2 Norm induced by the expected metric tensor

One way to approximate a random metric tensor is to take its expectation with respect
to the collection of random metrics induced by the stochastic process. This has been
introduced before by Tosi et al. (2014) GP-LVMs.

Definition 6.2.4
Let G be a stochastic Riemannian metric tensor on the manifold Z. We refer to E[G]
as the expected metric tensor. It induces a Riemannian metric and a norm on Z.
We will note the norm induced by the expected metric tensor as:

‖·‖R : TzZ → R+ : u→ ‖u‖E[G] :=
√
u>E[G]u

Like any Riemannian metric, we can define the following functionals: LR(γ) =
∫ 1

0
√
γ̇(t)>E[G]γ̇(t) dt,

ER(γ) =
∫ 1

0 γ̇(t)>E[G]γ̇(t) dt = E[ER(γ)], and VR(z) =
√

detE[G].

6.2.3 Expected paths on random manifolds

Approximating the stochastic metric by its expectation seems a natural but also ad-hoc
solution. If we want to explore a manifold, we might prefer to use a representative
quantity, such as the lengths between data points. The expectation of the lengths
can give us an idea about how, on average, two points are connected on a random
manifold. The expected curve length, and its corresponding curve energy on the
random manifold (Z, g) are defined as: LF (γ) =

∫ 1
0 E

[√
γ̇(t)>Gγ̇(t)

]
dt = E[LR(γ)],

and EF (γ) =
∫ 1

0 E
[√

γ̇(t)>Gγ̇(t)
]2
dt.

One observation made by Eklund and Hauberg (2019) is that the length (LR) derived
from the expected Riemannian metric is not equal to the expected curve length (LF ),
and their respective energy curves differ by a variance term:

ER(γ)− EF (γ) =
∫ 1

0
γ̇(t)>E[G]γ̇(t)− E

[√
γ̇(t)>Gγ̇(t)

]2
dt

=
∫ 1

0
E
[
‖γ̇(t)‖2G

]
− E [‖γ̇(t)‖G]2 dt =

∫ 1

0
Var [‖γ̇(t)‖G] dt

This term can be regarded as a regularization term for the Riemannian energy curve:
the curve energy ER might be penalized when the curve goes through regions with
high-variance. In practice, for a Gaussian process with a stationary kernel, this variance
term is upper bounded by the posterior variance that is relatively low next to the training
points and is high outside the support of the data. Later, we will also see that the
functionals agree in high dimensions, leading to the same geodesics (Section 6.3).
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Eklund and Hauberg (2019) also noted that these quantities are bounded by the number
of dimensions:

Proposition 6.2.1
(Eklund and Hauberg 2019) Let f : Rq → RD be a stochastic process such that the
sequence: {f ′1, f ′2, . . . , f ′D} has uniformly bounded moments. There is then a constant
C such that:

0 ≤ LR − LF
LR

≤ C

8D

6.2.4 Expected norm and Finsler geometry

Our work builds on Eklund and Hauberg (2019)’s research. We are interested in ap-
proximating the stochastic norm instead of the metric tensor, and by doing so, the
derived curve length and curve energy are the same ones studied by Eklund and Hauberg
(2019). We go further as we not only compare curve lengths, but the deterministic norms
obtained with the stochastic metric.

Definition 6.2.5
Let G be a stochastic Riemannian metric tensor on the manifold Z. It induces a
stochastic norm, ‖·‖G on Z. We will note the expected norm as:

‖·‖F : TzZ → R+ : u→ E[‖u‖G] := E
[√

u>Gu
]

While it cannot be induced by an inner-product, it is sufficiently convex to be defined as
a Finsler metric.

Definition 6.2.6
Let F : T Z → R+ be a continuous non-negative function defined on the tangent
bundle T Z of a differentiable manifold Z. We say that F is a Finsler metric if, for
each point z of Z and v on TzZ, we have:

1. Positive homogeneity: ∀λ ∈ R+, F (λv) = λF (v).
2. Smoothness: F is a C∞ function on the slit tangent bundle T Z \ {0}.
3. Strong convexity criterion: the Hessian matrix gij(v) = 1

2
∂2F 2

∂vivj (v) is positive
definite for non-zero v.

A differentiable manifold equipped with a Finsler metric is called a Finsler manifold.
Finsler geometry can be seen as an extension of Riemannian geometry, since the require-
ments for defining a metric are less restrictive.

Proposition 6.2.2
Let G be a stochastic Riemannian metric tensor. Then, the function Fz : TzZ → R :
u→ ‖u‖F defines a Finsler metric, but it is not induced by a Riemannian metric.

Proof. If F was induced by a Riemannian metric, then this metric would be defined
as: fz : Rq × Rq → R+ : (v1, v2) → E[

√
v>1 Gv2]2. Since a Riemannian metric is an

inner product, it should be symmetric, positive, definite and bilinear. Here, we can see
that fx is not bilinear, so fz is not a Riemannian metric. However, we can prove that
Fz : Rq → R : v → E[

√
v>Gv] is positive, homogeneous, smooth and strongly convex,

and so Fz is a Finsler metric (Shen and Shen 2016, Definition 2.1). For the full proof,
see Section B.2.1.
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So far, we have assumed that f is an immersion and a stochastic process. If we consider f
to be a Gaussian Process in particular, the Finsler norm can be rewritten in a closed
form expression.

Proposition 6.2.3
Let f be a Gaussian process and J its Jacobian, with J ∼ N (E[J ],Σ). The Finsler
norm can be written as:

Fz : TzZ → R+ : ‖v‖F := v →
√

2
√
v>Σv

Γ(D2 + 1
2 )

Γ(D2 ) 1F1

(
−1

2 ,
D

2 ,−
ω

2

)
,

with ω = (v>Σv)−1(v>E[J ]>E[J ]v) a noncentral term, and 1F1 the confluent hyperge-
ometric function of the first kind.

Proof. We suppose that f is a Gaussian process, and so is its Jacobian. G follows a non-
central Wishart distribution: G = J>J ∼ Wq(D,Σ,Σ−1E[J ]>E[J ]). v>Gv is a scalar and
also follows a non-central Wishart distribution: v>Gv ∼ W1(D,σ, ω), with σ = v>Σv and
ω = (v>Σv)−1(v>E[J ]>E[J ]v) (Kent and Muirhead 1984, Definition 10.3.1). The square-
root of a non-central Wishart distribution follows a non-central Nakagami distribution
(Hauberg 2018b). Then, by construction, the stochastic norm ‖·‖G follows a non-central
Nakagami distribution. The expectation of this distribution is known, and it has a
closed-form expression.

The confluent hypergeometric function of the first kind, also known as the Kummer
function, is a special function that is defined as the solution of a specific second-order
linear differential equation. The term ω appears from the non-central Wishart distribution.
When ω is non-zero, the distribution of the Jacobian shifts away from the origin, and
ω represents the magnitude and the direction of this shift, balanced by the correlation
between the variables. In Section 6.3.4, to prove our results in high-dimensions, we will
assume that our manifold Z is bounded, and so is ω.

6.3 Comparison of Riemannian and Finsler metrics

6.3.1 Theoretical comparison

In geometry, we need to define a metric (a norm) to compute functionals, and the
Riemannian metric is conveniently obtained by constructing an inner product. Because
of its bilinearity, it greatly simplifies subsequent computations, but it is also restrictive.
Relaxing this assumption and defining a metric as a more general† norm has been studied
by Finsler (1918), who gave his name to this discipline.

Finsler geometry is similar to Riemannian geometry without the bilinear assumption,
most of the functionals (curve length and curve energy) are defined similarly to those
obtained in Riemannian geometry. However, the volume measure is different, and there
are at least two definitions of volume measure used in Finsler geometry: the Busemann-
Hausdorff volume and the Holmes-Thomson volume measure (Wu 2011). In this paper,
we decided to focus on the Busemann-Hausdorff definition (Definition 6.3.1), which is
more intuitive and easier to derive. If the Finsler metric is a Riemannian metric, the

† The norm actually needs to be strongly convex, but it is not necessary symmetric. This means that,
for a vector v, we can have a non-reversible Finsler metric: Fx(v) 6= Fx(−v). Intuitively, this means
that the path used to connect two points would be different depending on the starting point. This
asymmetric property becomes valuable when studying the geometry of anisotropic media (Markvorsen
2016), for example. In our case, our Finsler metric is reversible.
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definition of volume naturally coincides with the Riemannian volume measure.

Definition 6.3.1
For a given point z on the manifold, we define the Finsler indicatrix as the set of
vectors in the tangent space such that the Finsler metric is equal to: {v ∈ TzZ|Fz(v) =
1}). We call Bn(1) the Euclidean unit ball, and vol(·) the standard Euclidean volume.
In local coordinates (e1, · · · , ed) on a Finsler manifoldM, the Busemann-Hausdorff
volume form is defined as dVF = VF (z)e1 ∧ · · · ∧ ed, with:

VF (z) = vol(Bn(1))
vol({v ∈ TzZ|Fz(v) < 1}) .

In the definition above, we introduce the notion of indicatrix. An indicatrix is a way to
represent the distortion induced by the metric on a unit circle. If our metric is Euclidean,
we will only have a linear transformation between the latent and the observational spaces,
and the indicatrix would still be a circle. Because the Riemannian metric is quadratic,
it will always generate an ellipse in the latent space. The Finsler indicatrix, however,
would have a convex, even asymmetrical, shape. This difference can be observed in the
indicatrix-field represented in Figure 6.2: The Finsler indicatrices in purple can have
almost rectangular shape, while the Riemannian indicatrices, in orange, are ellipses.

A B

Figure 6.2: Indicatrix field over the latent space of the pinwheel data (in gray) representing
the Riemannian (in orange) and Finslerian (in purple) metrics (See Section B.4). (A) The
indicatrices are computed over a grid in the latent space. (B) The indicatrices are computed
along a geodesic: the Riemannian and Finslerian metrics coincide.

There are also a few observations to note in Figure 6.2. First, in the area of low
predictive variance (where data points lie in the latent space), the Finsler and Riemannian
indicatrices are alike. This follows from the preceding comment that the metrics diverge
by a variance term. If our mapping f was deterministic, both metrics would agree. Second,
for every point, the Riemannian indicatrices are always contained by the Finslerian ones,
illustrating Proposition 6.3.1 on our absolute bounds in the following section.

6.3.2 Absolute bounds on the Finsler metric

The Finsler norm is upper bounded with the Riemannian norm obtained from the
expected metric tensor. It is also lower bounded:

Proposition 6.3.1
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We define α = 2
(

Γ(D2 + 1
2 )

Γ(D2 )

)2
. The Finsler norm: ‖·‖F is bounded by two norms, ‖·‖αΣ

and ‖·‖R, induced by the two respective Riemannian metric tensors: the covariance
tensor αΣz and the expected metric tensor E[Gz].

∀(z, v) ∈ Z × TzZ : ‖v‖αΣ ≤ ‖v‖F ≤ ‖v‖R

Proof. The full proof is detailed in Section B.2.2, and it can be summarized the following
way. The upper bound ‖v‖F ≤ ‖v‖R, also rewritten as: E[

√
v>Gv] ≤

√
v>E[G]v, is

obtained by applying Jensen’s inequality, knowing that the square root x →
√
x is a

concave function. The lower bound ‖v‖αΣ ≤ ‖v‖F , rewritten as
√
v>αΣv ≤ E[

√
v>Gv],

is obtained using the closed form expression of the Finsler function.

The result is illustrated in Figure 6.4 (lower right). Four metric tensors (G1, G2, G3, G4),
each following a non-central Wishart distribution with a specific mean and covariance
matrix, have been computed. For each of them, we have drawn the indicatrices ({v ∈
TzZ | ‖v‖ = 1}) induced by the norms: ‖·‖F , ‖·‖R and ‖·‖αΣ. As expected, we can notice
that the αΣ-indicatrix contains the Finsler indicatrix, itself containing R-indicatrix.

By bounding the Finsler metric, we are able to bound their respective functionals:

Corollary 6.3.2
The length, the energy and the Busemann-Hausdorff volume of the Finsler metric are
bounded respectively by the Riemannian length, energy and volume of the covariance
tensor αΣ (noted LαΣ, EαΣ, VαΣ) and the expected metric E[G] (noted LR, ER, VR):

∀z ∈ Z, LαΣ(z) ≤ LF (z) ≤ LR(z)
EαΣ(z) ≤ EF (z) ≤ ER(z)
VαΣ(z) ≤ VF (z) ≤ VR(z)

Proof. The full proof is detailed in Section B.2.2. From Proposition 6.3.1, we need to
integrate each term of the inequality to obtain the length and the energy. The volume is
less trivial, since we use the Busemann-Hausdorff definition for measuring VF . We have
to place ourselves in hyperspherical coordinates, and show that the Finsler indicatrix is
still bounded.

6.3.3 Relative bounds on the Finsler metric

Proposition 6.3.3
Let f be a stochastic immersion. f induces the stochastic norm ‖·‖G, defined in Section
6.2. The relative difference between the Finsler norm ‖·‖F and the Riemannian norm
‖·‖R is:

0 ≤
‖v‖R − ‖v‖F
‖v‖R

≤
Var

[
‖v‖2G

]
2E
[
‖v‖2G

]2 .

Proof. This proposition is a direct application of the Sharpened Jensen’s inequality (Liao
and Berg 2019).

The previous proposition is valid for any stochastic immersion. We can see that the
metrics become equal when the ratio of the variance over the expectation shrinks to
zero. This happens in two cases: when the variance converges to zero, which is similar to
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having a deterministic immersion, and when the number of dimensions increases. The
latter case is investigated below for a Gaussian process ‡.

Proposition 6.3.4
Let f be a Gaussian process. We note ω = (v>Σv)−1(v>E[J ]>E[J ]v), with J the
Jacobian of f , and Σ the covariance matrix of J .
The relative ratio between the Finsler norm ‖·‖F and the Riemannian norm ‖·‖R is:

0 ≤
‖v‖R − ‖v‖F
‖v‖R

≤ 1
D + ω

+ ω

(D + ω)2 .

Proof. v>Gv follows a one-dimension non-central Wishart distribution: v>Gzv ∼ W1(D,σ, ω),
with σ = v>Σv and ω = (v>Σv)−1(v>E[J ]>E[J ]v). We use the theorem of the moments
to obtain both the expectation and the variance, which leads us to the result.

As we have seen that the metrics are bounded, it is easy to show that the functionals
derived from those metrics are also bounded:

Corollary 6.3.5
When f is a Gaussian Process, the relative ratio between the length, the energy and
the volume of the Finsler norm (noted LF , EF , VF ) and the Riemannian norm (noted
LR, ER, VR) is:

0 ≤LR(z)− LF (z)
LR(z) ≤ max

v∈TzZ

{
1

D + ω
+ ω

(D + ω)2

}
0 ≤ER(z)− EF (z)

ER(z) ≤ max
v∈TzZ

{
2

D + ω
+ 1 + 2ω

(D + ω)2 + 2ω
(D + ω)3 + ω2

(D + ω)4

}
0 ≤VR(z)− VF (z)

VR(z) ≤ 1−
(

1− max
v∈TzZ

{
1

D + ω
+ ω

(D + ω)2

})q

Proof. We directly use Proposition 6.3.4. To obtain the inequalities with the lengths and
the energies, we first multiply all the terms by the Riemannian metric, and we integrate
every term. To obtain the inequality with the volume, similarly to Corollary 6.3.2,
we place ourselves in hyperspherical coordinates and bound the radius of the Finsler
indicatrix. The full proof is in Section B.2.2.
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Figure 6.3: Difference of volume for data embedded in the latent space. (A) Riemannian
volume measure, (B) Finslerian (Busemann-Hausdorff) volume measure, (C) Variance of
the Gaussian process, (D) Ratio between the Riemannian and Finslerian volume: (VR(z)−
VF (z))/VR(z). All heatmaps are computed in logarithm scale.

‡ Interestingly, the term E[ν]2/Var[ν], when ν follows a central Nakagami distribution, is called a shape
parameter. It has been introduced by Nakagami himself to study the intensity of fading in radio wave
propagation (Nakagami 1960). When ν :=

√
ξ with ξ ∼ W1(Σ, D), then m = D/2. This is a particular

result obtained from Proposition 6.3.4, when E[J ] = 0.
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In Figure 6.3, we can compare the volume measures obtained from the Riemannian and
Finsler metrics, and in particular, their ratio in the top right image. When the metrics
are computed next to the data points in area where the variance is very low, we can
see that the ratio of the volume measure is at the order of magnitude 10−4. Further
away from the data points, the variance increases and so does the difference between the
Riemannian and Finsler volume measures.

6.3.4 Results in high dimensions

Proposition 6.3.4 and Corollary 6.3.5 indicate that the metrics become similar when the
dimension (D) of the observational space increases. If we assume that the latent space is
a bounded manifold, the metrics converge to each other at a rate of O

( 1
D

)
, as do their

functionals.

We assume that the latent manifold is bounded. Then, we can deduce that (1) the term
ω, which represents the non-centrality of the data, does not grow faster than the number
of dimensions (See lemma B.2.7, in Section B.2.2) and (2) we that the metrics are finite.

Corollary 6.3.6
Let f be a Gaussian Process. In high dimensions, we have:

LR(z)− LF (z)
LR(z) = O

(
1
D

)
,

ER(z)− EF (z)
ER(z) = O

(
1
D

)
,

and VR(z)− VF (z)
VR(z) = O

( q
D

)
.

When D converges toward infinity: LR ∼+∞ LF , ER ∼+∞ EF and VR ∼+∞ VF .

Proof. This result follows from Corollary 6.3.5, assuming the latent manifold is bounded.
The full proof can be found in Section B.2.2.

Corollary 6.3.7
Let f be a Gaussian Process. In high dimensions, the relative ratio between the Finsler
norm ‖·‖F and the Riemannian norm ‖·‖R is:

‖v‖R − ‖v‖F
‖v‖R

= O
(

1
D

)

And, when D converges toward infinity: ∀v ∈ TzZ, ‖v‖R ∼+∞ ‖v‖F .

Proof. Similarly, from Proposition 6.3.4, in a bounded manifold, both metrics converge
to each other in high dimensions.
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dim: 3 dim: 5 dim: 10 dim: 50

Riemannian indicatrix Finslerian indicatrix

Lower bound metric tensor indicatrix

Figure 6.4: Left: Ratio of volumes (VR − VF )/VR decreasing with respect to the number of
dimensions. The results were obtained from using a collection of matrices {Gi} following a non-
central Wishart distribution. Upper right: The Finsler and Riemannian indicatrices converge
towards each other when increasing the number of dimensions. Lower right: Illustration of the
absolute bounds in Proposition 6.3.1 with the αΣ-indicatrices, Riemannian indicatrices and
Finsler indicatrices.

6.4 Experiments

We want to illustrate cases where these metrics differ in practice. For this, we use two
synthetic datasets, consisting of pinwheel and concentric circles mapped to a sphere,
and four real-world datasets: a font dataset (Campbell and Kautz 2014), a dataset
representing single-cells (Guo et al. 2010), MNIST (LeCun 1998) and fashionMNIST
(Xiao et al. 2017). We trained a GPLVM with and without using stochastic active sets
(Moreno-Muñoz et al. 2022) to learn a latent manifold. From the learned model, we can
access the Riemannian and Finsler metrics, and minimize their respective curve energies
to obtain the corresponding geodesics. All the code has been built using Stochman
(Detlefsen et al. 2021), a python library to efficiently compute geodesics on manifolds.

6.4.1 Experiments with synthetic data showing high variance

The synthetic data correspond to simple patterns – a pinwheel and concentric circles –
that have been projected onto a sphere. In those examples, we are plotting curves that
does not follow the data points and so, go through regions of high variance. Notably, the
background of the latent manifold represents the variance of the posterior distribution
in logarithmic scale. For both cases, we have the 3-dimensional data space and the
corresponding learned latent space. The curves are mapped from the latent space to the
data space using the forward pass of the GPLVM.

observed data Riemann Finsler Euclid
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−3.0

−2.5

−2.0

−1.5

−1.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5A.1. A.2. B.2.B.1.

Figure 6.5: The Riemannian (purple), Finslerian (orange) and Euclidean (dotted gray)
geodesics obtained by pulling back the metric through the Gaussian processes of a trained
GPLVM. The models, trained on the 3-dimensional synthetic data (Figures A.2, B.2) learned
their latent representations (Figures A.1, B.1)

We can see that the Riemannian geodesics tend to avoid area of high variance in both
cases: they are attracted to the data, at the detriment of following longer paths in R3.
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The Finslerian geodesics, on the opposite, are not perturbed by the variance term, and
will explore regions without any data, following shorter paths in R3. The geodesics have
been plotted by computing a discretized manifold, obtained from a 10x10 grid with
Detlefsen et al. (2021). This approach proved to be more effective than minimizing the
energy along a spline, which was prone to getting trapped in local minima. The GPLVM
has been coded in Pyro (Bingham et al. 2019). All the implementation details can be
found in the Appendix B.4.

6.4.2 Experiments with a font dataset and qPCR dataset

Observed dataRiemannian geodesic Finslerian geodesic

B.1. B.2.A.

Figure 6.6: The Riemannian (plain line) and Finslerian (dotted line) geodesics obtained by
pulling back the metric through the GPLVM. The models trained on single-cells data (which
cannot be represented) and font data (Figure B.2) learned their respective 2-dimensional
latent representation (Figures A, B.1).

The font dataset (Campbell and Kautz 2014) represents the contour of letters in various
font, and the qPCR dataset (Guo et al. 2010) represents single-cells stages. We trained a
GPLVM model, also using Pyro (Bingham et al. 2019), to learn the latent space. From
the optimized Gaussian process, we can access the Riemannian and Finsler metric, and
minimize their respective curve energies to obtain geodesics.
Similar to the previous experiment, the background color represents the variance of the
posterior distribution in logarithmic scale. We can notice that the Riemannian and the
Finsler geodesics agrees with each other. This experiment also agrees with our finding
that in high dimensions (the dimensions of the single-cells data is 48, the font data is 256),
both metrics converge to each other. This concludes that, in practice, the Riemannian
metric is a good approximation of the Finsler metric, and Finsler geometry doesn’t need
to be used in high dimensions.

6.4.3 Experiments with MNIST and FashionMNIST

GPLVMs are often hard to train, but they can be scaled effectively using variational
inference and inducing points. Using stochastic active sets has been shown to give reliable
uncertainty estimates, and the model also learn more meaning latent representations, as
shown in the original paper by Moreno-Muñoz et al. (2022). For those experiments, we
used those models on two well-known benchmarks: MNIST and FashionMNIST.

In both experiments, because the difference of the variance of the posterior learned by
the GPLVM across the latent manifold is low, as we can notice in the background of
the plots on the right, and because the data is high dimensional, we cannot see any
difference between the Finslerian and the Riemannian geodesics. Again, in practice, the
Riemannian metric is a good approximation of the Finslerian metric.
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Figure 6.7: The Riemannian (purple) and the Finslerian (orange) geodesics are plotted.
Upper figure: learned latent space with the images (left) and data points (right) of Fashion
MNIST. Lower figure: learned latent space with the images (left) and data points (right) of
MNIST.

6.5 Discussion

Generative models are often used to reduce data dimension in order to better understand
the mechanisms behind the data generating process. We consider the general setting
where the mapping from latent variables to observations is driven by a smooth stochastic
process, and the sample mappings span Riemannian manifolds. The Riemannian geometry
machinery has already been used in the past to explore the latent space.

In this paper, we have shown how curves and volumes can be identified by defining the
length of a latent curve as its expected length measured in the observation space. This
is a natural extension of classical differential geometric constructions to the stochastic
realm. Surprisingly, we have shown that this does not give rise to a Riemannian metric
over the latent space, even if sample mappings do. Rather, the latent representation
naturally becomes equipped with a Finsler metric, implying that stochastic manifolds,
such as those spanned by Latent Variable Models (LVMs), are inherently more complex
than their deterministic counterparts.

The Finslerian view of the latent representation gives us a suitable general solution
to explore a random manifold, but it does not immediately translate into a practical
computational tool. As Riemannian manifolds are better understood computationally
than Finsler manifolds, we have raised the question: How good an approximation of the
Finsler metric can be achieved by a Riemannian metric? The answer turns out to be:
quite good. We have shown that as data dimension increases, the Finsler metric becomes
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increasingly Riemannian. Since LVMs are most commonly applied to high-dimensional
data (as this is where dimensionality reduction carries value), we have justification for
approximating the Finsler metric with a Riemannian metric such that computational
tools become more easily available. In practice, we find that geodesics under the Finsler
the Riemannian metric are near identical, except in regions of high uncertainty.
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Notations

Z,X Smooth differentiable latent (Z) and data (X ) manifold,
f A stochastic immersion f : Z ⊂ Rq → X ⊂ RD,
J Jacobian of the stochastic function f ,
G Stochastic metric tensor defined as the pullback metric through f :

G = J>J ,
TzZ Tangent space of the manifold Z at a point z,
Σ IF f is a Gaussian process, then J ∼

∏D
i=1N (µi,Σ),

‖·‖G Stochastic induced norm: ‖v‖G :=
√
v>Gv,

‖·‖R Riemannian induced norm: ‖v‖R :=
√
v>E[G]v :=

√
g(v, v),

‖·‖F Finsler norm: ‖v‖F := E[
√
v>Gv] = F (v),

LR, ER, VR Length, energy and volume obtained from the Riemannian induced
norm ‖·‖R,

LF , EF , VF Length, energy and Busemann Hausdorff volume obtained from the
Finsler norm ‖·‖F .
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The paper Pulling back information geometry has been written with the co-first au-
thors Georgios Arvanatidis, Miguel González-Duque, Dimitris Kalatzis, and Søren
Hauberg. The paper has been published for the 25th International Conference on Ar-
tificial Intelligence and Statistics (AISTATS 2022). The paper is available at https:
//arxiv.org/abs/2106.05367.

Abstract

Latent space geometry has shown itself to provide a rich and rigorous frame-
work for interacting with the latent variables of deep generative models. The
existing theory, however, relies on the decoder being a Gaussian distribu-
tion as its simple reparameterization allows us to interpret the generating
process as a random projection of a deterministic manifold. Consequently,
this approach breaks down when applied to decoders that are not as easily
reparametrized. We here propose to use the Fisher-Rao metric associated
with the space of decoder distributions as a reference metric, which we pull
back to the latent space. We show that we can achieve meaningful latent
geometries for a wide range of decoder distributions for which the previous
theory was not applicable, opening the door to ‘black box’ latent geometries.

7.1 Introduction

Generative models such as variational autoencoders (VAEs) (Kingma and Welling 2013;
Rezende et al. 2014) and generative adversarial networks (GANs) (Goodfellow et al. 2014)
provide state-of-the-art density estimators for high dimensional data. The underlying
assumption is that data x ∈ X lie near a low-dimensional manifoldM ⊂ X , which is
parametrized through a low-dimensional latent representation z ∈ Z. As data is finite
and noisy, we only recover a probabilistic estimate of the true manifold, which, in VAEs,
is represented through a decoder distribution p(x|z). Our target is the geometry of this
random manifold.

The geometry of the manifold has been shown to carry great value when systematically
interacting with the latent representations, as it provides a stringent solution to the
identifiability problem that plagues latent variable models (Tosi et al. 2014; Arvanitidis
et al. 2018; Hauberg 2018a). For example, this geometry has allowed VAEs to discover
latent evolutionary signals in proteins (Detlefsen et al. 2020), provide efficient robot
controls (Scannell et al. 2021b; Chen et al. 2018a; Beik-Mohammadi et al. 2021), improve
latent clustering abilities (Yang et al. 2018; Arvanitidis et al. 2018) and more. The
fundamental issue with these geometric approaches is that the studied manifold is
inherently a stochastic object, but classic differential geometry only supports the study
of deterministic manifolds. To bridge the gap, Eklund and Hauberg (2019) have shown
how VAEs with a Gaussian decoder family can be viewed as a random projection of a
deterministic manifold, thereby making the classic theories applicable to the random
manifold.

A key strength of VAEs is that they can model data from diverse modalities through
the choice of decoder distribution p(x|z). For discrete data, we use categorical decoders,
while for continuous data we may opt for a Gaussian, a Gamma or whichever distribution
best suits the data. However, for non-Gaussian decoders, there exists no useful approach

https://arxiv.org/abs/2106.05367
https://arxiv.org/abs/2106.05367
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for treating the associated random manifold as deterministic, which prevents us from
systematically interacting with the latent representations without being subjected to
identifiability issues. This limitation motivates the current work.

In this paper, we provide a general framework that allows us to interact with the
geometry of almost any random manifold. The key and simple idea is to reinterpret the
decoder as spanning a deterministic manifold in the space of probability distributions
H, rather than a random manifold in the observation space (see Fig. 7.1). Calling on
classical information geometry (Amari and Nagaoka 2000; Nielsen 2020), we show that
the learned manifold is a Riemannian manifold of H, and provide the corresponding
computational tools. The approach is applicable to any family of decoders for which the
KL-divergence can be differentiated, allowing us to work with a wide range of models
from a single codebase.

7.2 The geometry of generative models

As a starting point, consider the deterministic generative model given by a prior p(z)
and a decoder f : Z = Rd → X = RD, which is assumed to be a smooth immersion.
The latent representation z of an observation x is generally not identifiable, meaning
that one can recover different latent representations that give rise to equally good
density estimates. For example, let g : Z → Z be a smooth invertible function such that
z ∼ p(z) ⇔ g(z) ∼ p(z), then the latent representation g(z) coupled with the decoder
f ◦ g−1 gives the same density estimate as z coupled with f (Hauberg 2018a). Practically
speaking, the identifiability issue implies that it is improper to view the latent space Z as
being Euclidean, as any reasonable view of Z should be invariant to reparameterizations
g.

The classic geometric solution to the identifiability problem is to define any quantity of
interest in the observation space X rather than the latent space Z. For example, the
length of a curve γ : [0, 1]→ Z in the latent space can be defined as its length measured
in X on the manifoldM = f(Z) with N → +∞ as:

L(γ) =
N−1∑
n=1
‖f(γ(tn+1))− f(γ(tn))‖ =

∫ 1

0

∥∥ḟ(γ(t))
∥∥ dt

=
∫ 1

0

√
γ̇(t)>Jf (γ(t))>Jf (γ(t))γ̇(t)dt, (7.1)

where tn = n/N and tn+1 = n+ 1/N, and we used the chain rule ∂tf(γ(t)) = Jf (γ(t))γ̇(t)
with γ̇(t) = ∂tγ(t) being the curve derivative, and Jf (γ(t)) ∈ RD×d the Jacobian of f
at γ(t). This construction shows how we may calculate lengths in the latent space with
respect to the metric of the observation space, which is typically assumed to be the
Euclidean, but other options exist (Arvanitidis et al. 2021). In this way, the symmetric
positive definite matrix Jf (γ(t))>Jf (γ(t)) is denoted by M(γ(t)) ∈ Rd×d�0 and captures
the geometry ofM in Z. This is known as the pullback metric as it pulls the Euclidean
metric from X into Z. As the Jacobian spans the d-dimensional tangent space at the
point x = f(z), we may interpret M(z) as an inner product 〈~u,~v〉M = ~u>M(z)~v over
this tangent space, given us all the ingredients to define Riemannian manifolds:

Definition 7.2.1
A Riemannian manifold is a smooth manifoldM together with a Riemannian metric
M(z), which is a positive definite matrix that changes smoothly throughout space and
defines an inner product on the tangent space TzM.
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Figure 7.1: Traditionally (left), we view the learned manifold as a stochastic manifold in
the observation space. We propose (right) to view the learned manifold as a deterministic
manifold embedded in the space of decoder distributions, which is equipped with a Fisher-Rao
metric based on information geometry.

We see that the decoder naturally spans a Riemannian manifold and the latent space Z
can be considered as the intrinsic coordinates. Technically, we can consider any Euclidean
space as the intrinsic coordinates of an abstractM using a suitable metric M(z), which
is implicitly induced by an abstract f . Since the Riemannian length of a latent curve
(7.1), by construction, is invariant to reparameterizations, it is natural to extend this
view with a notion of distance. We say that the distance between two points z0, z1 ∈ Z is
simply the length of the shortest connecting path, dist(z0, z1) = minγ L(γ). Calculating
distances implies finding the shortest path. One can show (Gallot et al. 2004) that length
minimizing curves also have minimal energy:

E(γ)=
∫ 1

0
‖ḟ(γ(t))‖2dt=

∫ 1

0
γ̇(t)>M(γ(t))γ̇(t)dt, (7.2)

which is a locally convex functional. Shortest paths can then be found by direct energy
minimization (Yang et al. 2018) or by solving the associated system of ordinary differential
equations (ODEs) (Hennig and Hauberg 2014; Arvanitidis et al. 2019) (see supplementary
materials for additional details).

7.2.1 Stochastic decoders

As previously discussed, deterministic decoders directly induce a Riemannian geometry in
the latent space. However, most models of interest are stochastic and there is significant
evidence that this stochasticity is important to faithfully capture the intrinsic structure
of data (Hauberg 2018a). When the decoder is a smooth stochastic process, e.g. as in the
Gaussian Process Latent Variable Model (GP-LVM) (Lawrence 2003), Tosi et al. (2014)
laid the foundations for modeling a stochastic geometry. Most contemporary models,
such as VAEs, assume independent noise, making this theory inapplicable. Arvanitidis
et al. (2018) proposed an extension of this stochastic geometry to VAEs with Gaussian
decoders, which take the form

f(z) = µ(z) + σ(z)� ~ε

=
[
ID diag(~ε)

] [µ(z)
σ(z)

]
= Pε h(z), (7.3)

where ~ε ∼ N (~0, ID). Here we have written the Gaussian decoder in its reparametrized
form. This can be viewed as a random projection of a deterministic manifold spanned by
h with projection matrix P

¯ε
(Eklund and Hauberg 2019), which can easily be given a

geometry. The associated Riemannian metric,

M(z) = Jµ(z)>Jµ(z) + Jσ(z)>Jσ(z), (7.4)

gives the shortest paths that follow the data as distances grow with the model uncertainty
(Arvanitidis et al. 2018; Hauberg 2018a). An example of the shortest path γ(t) ∈ Z
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computed under this metric is shown in Fig. 7.2 and the respective curve on the
corresponding expected manifold µ(γ(t)) ∈M ⊂ X .

Previous work has, thus, focused on pulling back the Euclidean metric from the observation
space to the latent space using the reparameterization of the Gaussian decoder. This is,
however, intrinsically linked with the simple reparameterization of the Gaussian, and
this strategy can only extend to location-scale distributions. We propose an alternative,
principled way of dealing with stochasticity by changing the focus from the observation
space X to the parameter space H associated to the distribution of the decoder, leveraging
the metrics defined in classical information geometry.

7.3 Information geometric latent metric

So far we have seen how we can endow the latent space Z with meaningful distances only
when our stochastic decoders are reparameterizable and their codomain is the observation
space X . Ideally, we would like a more general framework of computing the shortest path
distances for a more general class of distributions.

We first note that the codomain of a VAE decoder is the parameter space H of a
probability density function. In particular, depending on the type of data we specify
a likelihood p(x|η) with parameters η ∈ H, which we can rewrite as p(x|z) using the
mapping h : Z → H.

With this in mind, we can ask what is a natural distance in the latent space Z between
two infinitesimally near points z1 and z2 = z1 + ε when measured in H. Since our
latent codes map to distributions we can define the (infinitesimal) distance through the
KL-divergence:

dist2(z1, z2) = KL(()p(x|z1), p(x|z2)). (7.5)

So we can define the length of a curve γ : [0, 1]→Z as

L(γ) = lim
N→∞

N−1∑
n=1

KL(()p(x|γ(tn)), p(x|γ(tn+1)))
1
2 , (7.6)

and distances could be defined as before. This would satisfy our desiderata of a determin-
istic notion of similarity in the latent space that is applicable to wide range of decoder
distributions.

This construction may seem arbitrary, but in reality it carries deeper geometric meaning.
Information geometry (Nielsen 2020) considers families of probabilistic densities p(x|η)
as represented by their parameters η ∈ H, such that H is constructed as a statistical
manifold equipped with the Fisher-Rao metric, which infinitesimally coincides with the
KL divergence in (7.5). This is known to be a Riemannian metric over H that takes the
following form:

IH(η)=
∫
X

[∇η log p(x|η)∇η log p(x|η)>]p(x|η)dx. (7.7)

When the parameter space H is equipped with this metric, we call it a statistical
manifold.

Definition 7.3.1
A statistical manifold consists of the parameter spaceH of a probability density function
p(x|η) equipped with the Fisher-Rao information matrix IH(η) as a Riemannian metric.
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M⊂ X
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Figure 7.2: A conceptual example of a Riemannian manifoldM = µ(Z) lying in X and the
corresponding latent space Z, together with an associated the shortest paths.

Note that the geometry induced by the Fisher-Rao metric is predefined and can be seen
as a modeling decision, since it is related to the chosen likelihood and does not change
with data.

As previously mentioned, a known result in Information Geometry is that the Fisher-Rao
metric coincides with the KL-divergence locally (Nielsen 2020; Amari and Nagaoka
2000):

Proposition 7.3.1
The Fisher-Rao metric is the second order approximation of the KL-divergence between
perturbed distributions:

KL(()p(x|η), p(x|η + δη)) = 1
2δη

>IH(η)δη + o(δη2). (7.8)

The central idea put forward in this paper is to consider the decoder as a map h : Z → H
instead of f : Z → X , and let H be equipped with the appropriate Fisher-Rao metric.
The VAE can then be interpreted as spanning a manifold h(Z) in H and the latent
space Z can be endowed with the corresponding metric. We detail this approach in the
sequel.

7.3.1 The Riemannian pull-back metric

Our construction implies that the length of a latent curve γ : [0, 1]→ Z when mapped
through h can be measured in the parameter space H using the Fisher-Rao metric therein
as

L(γ) =
∫ 1

0

√
∂th(γ(t))>IH(h(γ(t)))∂th(γ(t))dt, (7.9)

with M the pullback metric:

Proposition 7.3.2
Let h : Z → H be an immersion that parametrizes the likelihood. Then, the latent space
Z is equipped with the Riemannian pull-back metric M(z) = J>h (z)IH(h(z))Jh(z).

Proof. See appendix, Prop. C.3.1.

Note that instead of considering the parameters η ∈ H of the probabilistic density
function p(x|η) that approximates the data, we can consider the latent variable z as
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M⊂ X
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p(x|γ(t)) p(x|c(t))

µ(Z) ⊂ H

Figure 7.3: Left: The optimal γ(t) under M(z) results to distributions that respect the
structure of data, while the curve c(t) with minimal length in H does not as it leavesM. Red
and green signal high and low variance respectively. Right: A part of the spanned manifold
h(Z) = [µ(Z), σ(Z)] ∈ H colored by |M(z)|. Note that we design σ(z) to increase far from
data, which ensures that γ(t) stays within their support.

the actual parameters of the model. This view is equivalent to the one explained above,
and the corresponding pull-back metric is directly the Fisher-Rao metric endowed in the
latent space Z:

Proposition 7.3.3
The pullback metric M(z) is identical to the Fisher-Rao metric obtained over the
parameter space Z as M(z) =

∫
X
[
∇z log p(x|z)∇z log p(x|z)>

]
p(x|z)dx.

Proof. See appendix, Prop. C.3.2.

Therefore, pulling back the Fisher-Rao metric from H into Z enables us to compute
length minimizing curves which are identifiable (see Sec. 7.2). The advantage of this
approach is that it applies to any type of decoders and data, as the actual distance is
measured over the manifold spanned by h in the parameter space H. So the shortest
paths between probability distributions move optimally on this manifold while taking
the geometry of H into account through the Fisher-Rao metric.

Computing the shortest paths directly in H need not result in a sensible sequence of
probability density functions p(x|η). To ensure that the shortest paths computed under
our metric stay within the support of the data, we carefully design our decoder h to
extrapolate to uncertain distributions outside the support of the data (see supplements
for additional details).

In Fig. 7.3 we compare the shortest path γ : [0, 1]→Z under the proposed metric M(z)
against a curve c : [0, 1]→H with minimal length. We consider a Gaussian likelihood
with isotropic covariance. We show the resulting sequence of means for both interpolants
color-coded by the corresponding variances. As expected c(t) does not take into account
the given data, but only respects the geometry of H implied by the likelihood.

7.3.2 Efficient shortest path computation

An essential task in computational geometry is to compute the shortest paths. This can be
achieved by minimizing curve energy (7.2) or solving the corresponding system of ODEs
(see supplementary material). The latter, however, requires inordinate computational
resources, since the evaluation of the system relies on the Jacobian of the decoder and
its derivatives.
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Bearing in mind that the metric is an approximation of the KL divergence between
perturbations (7.8), the energy is directly expressed as a sum of KL divergence terms
along a discretized curve γ:

E(γ) ∝ lim
N→∞

N−1∑
n=1

KL(p(x|γ(tn)), p(x|γ(tn+1))). (7.10)

The proof can be found in the appendix, Prop. C.1.2. A simple algorithm for computing
the shortest paths is to minimize (7.10) with respect to the parameters of the curve γ.
Here we represent γ as a cubic spline with fixed end-points. Then standard free-form
optimization can be applied to minimize this energy.

7.3.3 Example: categorical decoders

The motivation for our approach is that, while several options for decoders exist in VAEs
depending on the type of the given data, we could only capture and use the learned
geometry in a principled way with Gaussian decoders. Our proposed methodology is
more general.

For a constructive example, assume that x is a categorical variable. We can select a
generalized Bernoulli likelihood p(x|z), such that h(z) = (η1, · · · , ηD) where each ηi
represents the probability of xi being 1. Thus, the parameters η lie on the unit simplex
H, and the distance under the corresponding Fisher-Rao metric between points on the
simplex coincides with the spherical distance between the points √η on the unit sphere,

dist(η, η′) = arccos
(√

η
>√

η′
)
. (7.11)

We derive in detail this previously known result in the supplementary materials.

Given a curve γ : [0, 1] → Z we can approximate the energy by using the small angle
approximation cos θ ≈ 1− θ2/2⇔ θ2 ≈ 2− 2 cos θ to give

E(γ) =
N−1∑
n=1

(
2− 2

√
h(γ(tn))

>√
h(γ(tn+1))

)
, (7.12)

for sufficiently fine discretization with tn = n/N and tn+1 = n+ 1/N. This gives a particular
simple expression for the energy, which we can minimize in order to compute the shortest
path.

7.3.4 Black-box random geometry

In general, we can derive suitable expressions for computing metrics and energies for
families of decoders, doing so is tedious, error-prone and time-consuming. This limits the
practical use of the developed theory.

Drawing inspiration from black-box variational inference (Ranganath et al. 2014), we
propose a notion of black-box random geometry. Assume that we have access to a
differentiable KL divergence for our choice of decoder distribution. We can then apply
the methodology presented in Sec. 7.3.2 to compute the shortest paths.

In practice, modern libraries such as PyTorch (Paszke et al. 2019) have this functionality
implemented for several distributions. When we do not have closed-form expression for
the KL divergence, we can resort to Monte Carlo estimates thereof. More specifically,
we can estimate the KL divergence by generating samples from the likelihood based
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Figure 7.4: Pulling back the Euclidean and Fisher-Rao metrics with Gaussian decoders. Left
to right: Euclidean pull-back with regularized uncertainty, Euclidean pull-back with a NN to
model uncertainty, Fisher-Rao pull-back with regularized uncertainty, Fisher-Rao pull-back
with a NN to model uncertainty.

on the re-parametrization trick, which allows us to get derivatives with automatic
differentiation.

Interestingly, apart from finding the shortest path through the KL formulation, we can
also approximate the actual metric tensor M(z). As we have discussed above, evaluating
explicitly this metric is not a trivial task in many cases. One problem is that we need
access to the Jacobian of the parametrization h, which is typically a deep neural network,
so the computation is not always straightforward. Alternatively, one could use that the
Fisher-Rao metric is the Hessian of the KL-divergence (7.8), but such approaches fare
poorly with current tools for automatic differentiation, where higher-order derivatives
are often incompatible with batching. Furthermore, the Fisher-Rao metric itself may be
intractable depending on the chosen likelihood p(x|η). Nevertheless, we show that the
KL formulation (7.8) allows us to approximate the latent metric as:

Proposition 7.3.4
We define perturbations vectors as δei = ε·ei, with ε ∈ R+ a small infinitesimal quantity,
and ei a canonical basis vector in Rd. For better clarity, we rename KL(p(x|z), p(x|z+
δz)) = KLz(δz), and we note Mij = Mji the components of M(z). We can then
approximate by a system of equations the diagonal and non-diagonal elements of the
metric:

Mii ≈ 2 KLz(δei)/ε2

Mji ≈ (KLz(δei+δej)−KLz(δei)−KLz(δej)) /ε2.

See Prop. C.3.4 in the appendix for a proof. Note that this formulation only requires h
to be a smooth immersion. This is particularly useful, as the metric is used for other
purposes on a Riemannian manifold and not exclusively for computing the shortest
paths. For example, relying on M(z) we can compute the exponential map by solving the
corresponding ODE system as an initial value problem. Assuming a fully differentiable
KL divergence, then the approximated metric is also differentiable. This is all that is
required for practical usage of differential geometry, and thus, we have a reasonable
notion of black-box random geometry.

7.4 Experiments

7.4.1 Pulling back Euclidean and Fisher-Rao metric with
Gaussian decoders

We start our experiments by comparing our proposed way of inducing geometry in latent
spaces with the existing theory: pulling back the Euclidean metric using a stochastic
Gaussian decoder (see (7.4)). We also include in this comparison the effect of regularizing
the uncertainty quantification in the learned geometries. In this regularization, we use
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Figure 7.5: Pulling back the metric from different parameter spaces. From left to right:
Normal, Bernoulli, Beta, Dirichlet and Exponential. White areas represent low entropy of
the decoded distribution, while blue areas represent higher entropy. Notice that the Bernoulli
latent space is darker blue (i.e. more entropic) because distributions with parameters around
1/2 are near uniform.

transition networks (Detlefsen et al. 2019) to ensure high uncertainty outside the support
of the data (see Sec. C.3.2 in the supplementary material).

In this experiment, we train four VAEs on a subset of the MNIST dataset composed of
only the digits with label 1. Two of these VAEs implement a standard Gaussian decoder,
and we induce a metric in the latent space by pulling the Euclidean metric back using
the Jacobian of the decoder. In the other two, we consider the output of the decoder as
lying in a statistical manifold and approximate the pullback of the Fisher-Rao metric by
using the KL divergence locally. In each of these two sets, one of the decoders implements
the uncertainty regularization described above.

Fig. 7.4 shows the latent spaces of these four decoders, illuminated by the volume measure.
In each of this latent spaces, we analyze the geometry induced by the respective pullbacks
by computing and plotting several shortest paths. This figure illustrates two key findings:
(1) Our approach is on par with the existing literature in learning geometric structure,
which can be seen by comparing the first and third latent spaces (Euclidean vs. Fisher
Rao, respectively), and (2) Performing uncertainty regularization plays an instrumental
role on learning a sensible geometric structure, which can be seen when comparing the
first and second latent spaces (both coming from the Euclidean pullback, with and
without regularization respectively), and similarly for the third and fourth.

7.4.2 The Fisher-Rao pullback metric for various distributions
with toy data

For our second experiment, we induced a geometry on a known latent space (given by noisy
circular data in Ztoy = R2) by pulling back the Fisher-Rao metric from the parameter
space of different distributions, showcasing the potential for computing the shortest paths
efficiently, even in non-Gaussian settings. The statistical manifolds from which we pull the
metric are associated with multivariate versions of the Normal, Bernoulli, Beta, Dirichlet
and Exponential distributions. For this approximation to follow the support of the data
we need to ensure that our mapping Ztoy → H extrapolates to high uncertainty outside
our training codes (see Fig. 7.4). To do so, we perform uncertainty regularization for
each one of the decoded distributions (see supplementary materials for implementation
details).

In Fig. 7.5 we show the toy latent space alongside several shortest paths computed using
the pullback of the Fisher-Rao metric from the statistical manifolds associated with
the Gaussian, Bernoulli, Beta, Dirichlet and Exponential distributions. We parametrize
the curves as cubic splines and minimize their energy using automatic differentiation
(see Sec. 7.3.2). These results show that the approximated pulled-back metric induces a
meaningful geometry in this latent space, which recovers the true circular structure of the
data. In the case of the Bernoulli distribution, we notice that some paths fail to converge.
We hypothesize that our uncertainty regularization (which decodes to the uniform
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Figure 7.6: Left: Geodesics in the latent space of a von Mises-Fisher decoder. Middle:
Shortest path (green) vs. linear (red). Right: decoding the shortest path (green) vs. the linear
interpolation (red) as poses (i.e. the product of von Mises-Fisher distributions). Our path
follows the trend of the data manifold, while the linear path traverses regions with no data
support.

distribution outside the support) is not strong enough since Bernoulli distributions with
parameters close to 1/2 are already highly entropic.

7.4.3 Motion capture data with products of von Mises-Fisher
distributions

As a further demonstration of our black-box random geometry, we consider a model
of human motion capture data. Here we observe a time series, where each time point
represent a ‘skeleton’ corresponding to a human pose. As only pose, and not shape,
changes over time, individual limbs on the body only change position and orientation,
but not length. Each limb is then a point on a sphere in R3 with radius given by the
limb length. Following Tournier et al. (2009) we view the skeleton representation space
as a product of spheres. From this, we build a VAE where the decoder distribution is a
product of von Mises-Fisher distributions. To ensure a sensible uncertainty estimates
in the decoder, we enforce that the concentration parameter extrapolate to a small
constant.

In this case, we do not have easily accessible Fisher-Rao metrics, so we lean on the KL
formulation from Sec. 7.3.4. Since, the KL does not have a closed-form expression for
the von Mises-Fisher distribution, we resort to a Monte Carlo estimate thereof. This is
realizable with off-the-shelf tools (Davidson et al. 2018).

Fig. 7.6 shows the latent representation of a motion capture sequence of a person walking
(Seq. 69_06 from http://mocap.cs.cmu.edu/) with the shortest paths superimposed.
We see that our paths follow the trend of the data, and reflect the underlying periodic
nature of the observed walking motion. We pick two random points in the latent space, and
traverse both the shortest path and the straight line implied by a Euclidean interpretation
of the latent space. As we traverse, we sample from the decoder distribution, thereby
producing two new motion sequences, which appear in Fig. 7.6. As can be seen, the
straight line traverses uncharted territory of the latent space and end up creating an
implausible motion. This is in contrast to the shortest path, that consistently generates
meaningful poses.

7.4.4 Numerical approximation of the Fisher-Rao pullback
metric

Prop. 7.3.4 provide an approximation to the metric, and we test its accuracy as per
(7.8). We discretize the latent space for the just-described von Mises-Fisher decoder and,
for each z in this grid, we both approximate M(z) and compute the expected value of
‖KL(p(x|z), p(x|z+ δz))− 1

2δz
>M(z)δz‖ for several samples of δz, uniformly distributed

http://mocap.cs.cmu.edu/
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around the circle of radius ε = 0.1. Notice that we do not have a ground truth to compare
against, and that this error will always be off by o(δz2). Fig. 7.7 shows the average error,
where we can see that the approximate metric is well-estimated both within and outside
the support of the data. The error, however, grows at the boundaries of the support,
where the distribution is changing from a concentrated von Mises-Fisher to a uniform
distribution. It is worth mentioning that we observe some approximated metrics have
negative determinant, showing that our numerical approximations are imprecise at the
boundary. These results warrant further research on more stable ways of approximating
pulled back metrics under our proposed approach.

Figure 7.7: Left: Average error of the approximated metric in the von Mises-Fisher latent
space. Darker colors indicate lower error (less than ε2), while higher values are clear. Right:
The LAND density well-adapts to the nonlinear structure of the latent representations due to
the shortest path’s behavior.

7.4.5 Statistical models on manifolds

We demonstrate the usefulness of the approximated metrics, by fitting a distribution to
data in the latent space, which requires normalization according to the measure induced
by the metric. In particular, we fit a locally adaptive normal distribution (LAND) (Ar-
vanitidis et al. 2016), which extends the Gaussian distribution to learned manifolds. The
probability density function is ρ(z) = C(µ,Σ) · exp

(
−0.5 · Logµ(z)>ΓLogµ(z)

)
, where

µ ∈ Rd is the mean, Γ ∈ Rd×d�0 is the precision matrix and C(µ,Γ) the normalization
constant. The operator Logµ(z) returns the scaled initial velocity v = γ̇(0) ∈ Rd of the
shortest connecting path with γ(1) = z and ||v|| = Length(γ). In Fig. 7.7 we show the
LAND density on the learned latent representations under the approximated Riemannian
metric from Sec. 7.4.4. Since shortest paths follow the data, so does the density ρ. See
supplementary material for details.

7.4.6 Movie preferences via latent interpolants

In addition, we explored the latent space of the movie-users rating dataset MovieLens
25M (https://grouplens.org/datasets/movielens/25m/). In particular, we consider
a Bernoulli VAE to model if a user has watched a movie among the 60 most popular
in the dataset. Also, we considered only users who have seen less than 30 movies. The
implementation and preprocessing details can be found in the supplementary material.
Our VAE decodes to 60 Bernoulli parameters that are conditionally independent given
the latent code z, which state the likelihood that a given user has seen these movies.
Latent codes in this space, then, can be seen as individual users with certain movie
preferences.

We then computed the shortest path between two points by considering the pulled-back
Fisher-Rao (see Sec. 7.3.2), and we compare against a straight line interpolation. We
consider the cosine similarity of the decoded outputs. This cosine similarity measures
whether two users (encoded as points in the latent space) have similar preferences

https://grouplens.org/datasets/movielens/25m/
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Figure 7.8: On the left, our path
(green) follows users with similar
preferences, as similarity is only lo-
cally high. Instead, the line (red)
does not respect the learned struc-
ture resulting to users with no spe-
cific preferences. On the right, we
show the cosine similarity of the
decoded outputs, the upper figure
for the linear path, and the bottom
figure for our geodesic.

according to our model. In Fig. ?? we see that our path follows users with similar movie
preferences locally, while the linear interpolation failed to capture a local notion of
preference.

7.5 Related work

The literature is rich on deterministic generative models such as autoencoders (Rumelhart
et al. 1986) and generative adversarial networks (Goodfellow et al. 2014),and a series
of papers have investigated such deterministic decoders (Shao et al. 2018; Chen et al.
2018b; Laine 2018). However, our work is not applicable to this setting. As demonstrated
in Sec. 7.4.1 stochasticity is essential to shape the latent space according to the data
manifold. Hauberg (2018a) argues model uncertainty plays a role much akin to topology
in classic geometry, in that it, practically, allows us to deviate from the Euclidean
topology of the latent space.

Our constructions rely on information geometry and in particular Fisher-Rao metrics
(Nielsen 2020). While our work is within the spirit of information geometry, it does not
represent typical usage of this theory. Information geometry has been widely used in the
context of optimization with natural gradients (Martens 2014; Martens and Grosse 2015),
Markov Chain Monte Carlo methods (Girolami and Calderhead 2011) and hypothesis
testing (Nielsen 2020). The key difference between natural gradients and our work is
the space we wish to explore: in the case of the natural gradients, the shortest path is
obtained on the space of the weights of the neural networks, while we aim to explore
the latent space of a VAE. It can also be noted that Information geometry provides a
rich family of alternative divergences over the here-applied KL-divergence. We did not
investigate their usage in our context.

To make use of the here-developed tools, we may lean on techniques for statistics on
manifolds. These provide generalizations of a long list of classic statistical algorithms
(Zhang and Fletcher 2013; Hauberg 2015; Fletcher 2011). We refer the reader to Pennec
(2006) for a gentle introduction to this line of research.

7.6 Conclusion and discussion

We have proposed a new approach for getting a well-defined and useful geometry in
the latent space of generative models with stochastic decoders. The theory is easy
to apply and readily generalize to a large family of decoder distributions. The latent
geometry gives access to a series of operations on latent variables that are invariant
to reparameterizations of the latent space, and therefore are not subject to a large
class of identifiability issues. Such operational representations have already shown great
value in applications ranging from biology (Detlefsen et al. 2020) to robotics (Scannell
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et al. 2021b). We have here focused on the Fisher-Rao metric, but other geometries over
distributions may apply equally well, e.g. the Wasserstein geometry may be interesting
to explore.

Limitations. The largest practical hurdle with the proposed methodology, is that it
only works well for decoders with well-calibrated uncertainties. That is, the decoder should
yield high entropy in regions of little training data to ensure that shortest paths follow
the trend of the data. This constraint is shared with existing approaches (Arvanitidis
et al. 2018). Some heuristics exist (Detlefsen et al. 2019), but principled approaches are
currently lacking.

Acknowledgements

This work was funded in part by the Novo Nordisk Foundation through the Center for
Basic Machine Learning Research in Life Science (NNF20OC0062606). It also received
funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research, innovation program (757360) and from a research grant (15334) from
VILLUM FONDEN.





Part IV

Conclusion





Summary, discussions and future
work 8

8.1 On the curvature of the loss landscape

In the paper On the curvature of the loss landscape (Chapter 5), we study the
parameter space of the loss function as a Riemannian manifold. Since the notion of
flatness is correlated with generalization in optimization, we are particularly interested
in studying the curvature of the loss landscape. Our contributions are the following: (1)
we derive a Riemannian metric on the parameter space of a model by considering the
graph of the loss function, (2) we derive the Riemannian, Ricci and Scalar curvature of
the loss landscape, (3) the scalar curvature at the minima is related to the Hessian of
the loss function and is easily computed: S = ‖H‖2∗ − ‖H‖

2
F .

This work is motivated by the flatness hypothesis, which states that flat minima generalize
better than sharp minima. This hypothesis is supported by empirical and theoretical
evidence, but the notion of flatness is not well-defined. We know that it should be related
to the Hessian of the loss function, but with an increasing number of parameters, studying
the spectrum of the Hessian becomes computationally expensive. Instead, the research
community looked at the norm of the Hessian as a measure of flatness. The main problem
with using Frobenius norm that it can be null at a saddle point, which is not flat.

The scalar curvature, on the other hand, is a well-studied intrinsic Riemannian quantity
that is derived from the Riemannian curvature, defined as the deviation of the curved
space from the flat Euclidean space. In convex cases, a small scalar curvature implies
a small Hessian’s norm, and with a sufficiently high number of parameters, when the
spectrum of the Hessian eigenvalues becomes flat (Zhang et al. 2021), and the scalar
curvature reduces to the nuclear norm of the Hessian. Since many recent results that
showed improved generalization and optimization using the Hessian’s norm, they are
also satisfied by the scalar curvature.

Yet, the scalar curvature is only a scalar measure of the curvature. While it might provide
an intuitive enough description of the flatness, it will not fully describe the curvature of
the loss landscape, as the Riemannian tensor or the Ricci tensor would. Furthermore,
establishing the exact correlation between flatness and generalization remains an open
problem in machine learning. This problem becomes even more challenging when we
consider the nature of the optimizer, the number of data points and the way we split the
data across training.

A promising direction to this work would be to study the curvature in the context of
stochastic optimization. By considering one batch as a collection of subsets of the data,
the Hessian would become a random matrix. The scalar curvature would transform into
a random variable, whose distribution is related to batch distribution, and it would be
worth investigating how it varies when the scalar curvature is null. Prior studies have
also linked the Hessian norm with noise in gradient descent, raising questions about
potential ties between scalar curvature and stochastic processes. Additionally, it is worth
considering whether the scalar curvature plays a role in implicit model regularization.



94 8 Summary, discussions and future work

8.2 Identifying latent distances with Finslerian
geometry

In the paper Identifying latent distances with Finslerian geometry (Chapter 6),
we compared the geodesics obtained from pulling back the expected metric with the
expected geodesics. We showed that the expected length induced by a stochastic Rie-
mannian metric is a Finsler metric. It has a closed-form expression, when the mapping is
a Gaussian process. In high-dimensions, the expected Riemannian metric and the Finsler
metric converge to each other.

This paper initially attempted to study the difference between the expectation of stochas-
tic lengths and the lengths directly induced by the deterministic approximation of the
stochastic metric. In some particular cases, we can think of the Riemannian lengths as
the Finslerian lengths being regularized with their variance. In practice, we showed that
the difference between the two lengths is negligible, which further justifies to approximate
the pullback metric tensor by its expectation.

What is more interesting though is that this conclusion might stem from a broader, yet
unproven, result suggesting that the stochastic Riemannian metric, when pulled back
from a high-dimensional space, converges to its expectation as the dimension of the space
increases. This claim could potentially be established by building upon existing findings
in random matrix theory, or be a by-product of concentration of measure. The classical
concentration of measure theorem asserts that independently and identically distributed
random points tend to concentrate in a thin layer near a surface. Intuitively, if the points
precisely lie on the manifold, the pullback metric becomes deterministic. If this is proved
to be true, an additional direction would involve examining how deterministic is the
stochastic pullback metric with respect to other parameters, such as the dimension of the
latent space and the curvature of the manifold.

Another aspect is to consider the general strategy adopted to tackle these stochastic
metrics. In this study, we compute geodesics by minimizing an expected metric. Alter-
natively, we could consider the geodesic equation with stochastic Christoffel symbols.
This leaves us with two directions. The first one involves computing their expectation
and solve the corresponding system of ordinary differential equations. Adams (2021) and
Feldager (2022) have explored this approach, but unfortunately, the expected Christoffel
symbols lack a straightforward expression that can be readily utilized. The second path
involves directly solving a set of stochastic differential equations, a considerably more
complex task.

8.3 Pulling back information geometry

In the paper Pulling back information geometry (Chapter 7), we pullback of
the Fisher-Rao metric through a Variational AutoEncoder (VAE) decoding to several
distributions. This method allows us to easily compute the geodesics in the latent space
using the KL-divergence, and it has led to convincing results in practice.

One limitation of this work is that the latent space has to be constrained for the geodesics
stay within the support of the data. This is a consequence of the Fisher-Rao metric being
defined for the entire space of probability distributions, while the VAE only decodes for
a subset of this space. We might wonder if another, more elegant, solution could solve
this problem.

This work raises a more fundamental question: How information geometry compares
to optimal transport?. Both optimal transport and information geometry provide us
with Riemannian metrics to navigate the space of probability distributions. Optimal
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transport focuses on determining the most efficient way to move from one distribution
to another, minimizing the associated cost. In contrast, information geometry is based
on the coordinate invariant properties of statistical inference. This first provides us with
the Wasserstein p-distance, a Finsler metric (Agueh 2012) that reduces to a Riemannian
metric when p = 2 (Otto 2001). The second provides us with the Fisher-Rao metric, a
Riemannian metric.

Khan and Zhang (2022) nicely describes the difference between those distances as
horizontal and vertical. The Wasserstein distance measures the cost of transport for
moving from one distribution to another, and establish a notion of spatial distance. It is
also more sensitive than the KL-divergence to the properties of the underlying space.
The Fisher-Rao metric, in contrast, assumes that both distributions are in the same
place but compares the height of one distribution with respect to another.

Recent research has made progress in comparing both fields from a pseudo-Riemannian
geometric perspective (Wong and Yang 2022) and geometric thermodynamics (Ito 2023).
However, the best approach for navigating the random data space through the space of
probability distributions remains an open question.

8.4 Open problems and general questions

Finally, let us circle back to the two initial hypotheses that are necessary for the
application of all the methods studied so far.

First, the manifold hypothesis assumes that the data space or parameter space can
be represented by a low-dimensional manifold. We might wonder if our data actually lie
on a manifold, prompting us to explore methods for verifying this hypothesis. Fefferman
et al. (2016) have outlined the necessary conditions for developing an algorithm that can
test the manifold hypothesis. Specifically, the manifold itself should exhibit a reasonable
structure, such as being of bounded volume and possessing a minimal reach. In the
presence of noisy data, the requirements become more stringent, necessitating a manifold
with a sufficiently large reach and a certain number of data points (Fefferman et al. 2019).
In practice, however, there is currently no algorithm that can definitively test whether
the data lies on a manifold.

Second, the immersion hypothesis suggests that a map from a latent space to a
higher-dimensional space should function as an immersion. Yet, being an immersion may
not be a sufficient condition when we are also interested in the topological characteristics
of the manifold. To preserve the manifold’s topology, an embedding is required. This
means that, when traversing a close loop the data space, may not exhibit closure through
an immersion, but it will through an embedding. Additionally, it is crucial for the latent
space to possess a minimal dimension in order to maintain the topological characteristics
of the manifold. According to the Whitney embedding theorem, any smooth n-dimensional
manifold can be smoothly embedded in Euclidean 2n-space. Although representing the
data space on a 2-dimensional plane may be convenient, there is a high probability of
disrupting the topology of the data manifold, which is an important consideration to
bear in mind. Finally, assuming the mapping to be an immersion might also be overly
stringent in practice, leading to potential scenarios where the Jacobian is not injective.
This could result in problems associated with a degenerate metric, such as a null distance
between distinct points or a null volume on the manifold. Further study is needed to
understand the circumstances under which the pullback metric degenerates, as many
results of Riemannian geometry would not hold anymore.
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On the curvature of the loss
landscape A

A.1 A primer on curvatures in Riemannian geometry

The key strength of the Riemannian geometry is to allow for calculations to be conducted
independently of the choice of the coordinates. However, this flexibility results in more
sophisticated computations. Specifically, as a vector moves across a manifold, its local
coordinates also change. We must consider this shift, which is accomplished by including
a correction factor, denoted as Γ, to the derivative of the vector. These factors Γ are
known as Christoffel symbols.

Definition A.1.1 Christoffel symbols
Let (M, g) be a Riemannian manifold, and u and v two vector fields onM. On the
manifold, we need to add the Christoffel symbols Γkij to account for the variation
of the local basis represented by ei. The covariant derivative, or connection, is then
defined by:

∇uv = ui∂iv
jej + uivjΓkjiek,

with ∇uv = ui∂iv
jej the covariant derivative of v along u in the Euclidean plane. We

can further compute the Christoffel symbols based on the Riemannian metric tensor
gij :

Γkij = 1
2g

kl (∂igjl + ∂jgil − ∂lgij) ,

Now, we are interested in the concept of curvature. In Riemannian geometry, the curvature
is defined as the deviation of the manifold from the Euclidean plane. The principal intrinsic
tool that assess the curvature of a manifold is the Riemann curvature tensor, denoted
R. It characterises the change of the direction of a vector, when transported along an
infinitesimally small closed loop. The Riemannian curvature tensor is defined the following
way:

Definition A.1.2 Riemann curvature tensor
Let (M, g,∇) be a Riemannian manifold. The Riemannian curvature tensor is
defined by:

R(x,y; z) = ∇x∇yz−∇z∇yz−∇[x,y]z,

for any vector fields x,y, z ∈ X(M), with [·, ·] the Lie bracket. At the local basis
represented by ei, it can be expressed in terms of indices: Rlijk = elR(ej , ek; ei), and
in terms of the Christoffel symbols as:

Rlijk = ∂iΓljk − ∂jΓlik + ΓmjkΓlim − ΓmikΓljm

The Riemann curvature tensor being a fourth order tensor, it can be difficult to interpret.
Instead, we can look at a scalar quantity called the scalar curvature, or equivalently
the scalar Ricci curvature, which is a contraction of the Riemann curvature tensor.

Definition A.1.3 Scalar curvature
Let (M, g) be a Riemannian manifold. The scalar curvature is defined as:

S = gijRkikj ,

using the Einstein summation convention, with gij the inverse of the metric tensor gij ,
and Rkikj the components of the Riemannian curvature tensor.
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Figure A.1: The scalar curvature is plotted for different surfaces in R3. The sphere has
always a positive scalar curvature since it is convex, the hyperboloid is always negative. In
those figures, the values of the scalar curvature have been normalised between −1 and 1.

Just like the Riemannian curvature tensor and the Riemannian metric tensor, the scalar
curvature is defined for every point on the manifold. The scalar curvature is null when
the manifold is isometric to the Euclidean plane. It is be negative when the manifold is
hyperbolic, or positive when the manifold is spherical.

By definition, the scalar curvature is an intrinsic quantity, meaning that it does not
depend on the ambient space. As a consequence, the scalar curvature is equivariant under
diffeomorphisms. If we map a manifold (M, g) to another manifold (M′, g′,∇′) with a
diffeomorphism ϕ :M′ →M, we can express the connection ∇′ as the pullback of ∇:
∇′ = dϕ∗∇. The curvature of the pullback connection is the pullback of the curvature
of the original connection. In other terms: dϕ∗S(∇) = S(dϕ∗∇) (Andrews and Hopper
2010, Proposition 2.59). In particular, if ϕ is an isometry: S(∇) = S(∇′).

A.2 Theoretical results

A.2.1 Definition of the scalar curvature and other curvature
measures

Proposition A.2.1
The Christoffel symbols of the metric G = Iq +∇xf∇xf>, in the parameter space
Ω ⊂ Rq with f the loss function is given by:

Γikl = f,if,kl

1 + ‖∇f‖2

Proof. We use below the Einstein sum notation, and in particular, for the scalar function
f : ∂i∂jf = f,ij . The Christoffels symbols are obtained with the Riemannian metric:

Γikl = 1
2g

im (gmk,l + gml,k − gkl,m)

Our metric is G = Iq +∇f ∇f>. Using the Sherman-Morrison formula: G−1 = Iq −
∇f ∇f>
1+‖∇f‖2

gij = Gij = δij + f,if,j

gij,k = f,ikf,j + f,if,jk

gmk,l + gml,k − gkl,m = 2f,klf,m

gim = G−1
im = δim −

f,if,m

1 + ‖∇f‖2
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Then:

Γikl =
(
δim −

f,if,m

1 + ‖∇f‖2

)
f,klf,m = f,klf,i −

f,klf,if
2
,m

1 + ‖∇f‖2
= f,if,kl

1 + ‖∇f‖2
.

Lemma A.2.2
The metric tensor G = Iq +∇f ∇f> has for eigenvalues: {1, 1, · · · , 1, 1 + ‖∇f‖2}.

Proof. G is a symmetric positive definite matrix, hence it is diagonalisable and all
its eigenvectors ~w are orthogonal. Let’s note v = ∇f . For the eigenvector v: Gv =
(1 + ‖v‖2)v. For all the other eigenvectors, 〈~w,v〉 = 0 and G~w = ~w.

Proposition A.2.3
The contraction of the Christoffel symbols for the metric G = Iq +∇f ∇f>:

Γiki = f,ikf,i

1 + ‖∇f‖2
.

Proof. By definition, we have Γiki = ∂k ln
√

detG. By the previous lemma, we know that
detG = 1 + ‖∇f‖2 = 1 + f2

,i.

Γiki = ∂k ln
√

detG = ∂k ln
√

1 + f,i
2 = 1

2
∂k(1 + f2

,i)
1 + ‖∇f‖2

= f,ikf,i

1 + ‖∇f‖2
.

Another method is to use the general expression of Γikl = f,if,kl
1+‖∇f‖2 , and the result is

obtained for i = l.

Proposition A.2.4
The Riemannian curvature tensor is given by:

Rijkm = β(f,ikf,jm − f,jmf,jk)− β2f,if,r(f,rkf,im − f,rmf,jk)

Proof. The Riemannian curvature tensor is given by: Rijkm = ∂kΓijm−∂mΓijk+ΓirkΓrjm−
ΓirmΓrjk, and we have for Christoffel symbols: Γijm = βf,if,jm. We note β = (1+‖∇f‖2)−1.
We have: ∂k(βf,if,jm) = ∂k(β)f,if,jm + β(f,ikf,jm + f,if,jmk), and ∂k(β) = −2β2fkafa.

∂kΓijm = −2β2f,af,akf,if,jm + β(f,ikf,jm + f,if,jmk)
∂mΓijk = −2β2f,af,akf,if,jm + β(f,imf,jk + f,if,jkm)

ΓirkΓrjm = β2f,if,rkf,rf,jm

ΓirmΓrjk = β2f,if,rmf,rf,jk

Proposition A.2.5
The scalar curvature is given by:

S = β
(
tr(H)2 − tr(H2)

)
+ 2β2 (∇f>(H2 − tr(H)H)∇f

)
,
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with H the Hessian of f .

Proof. We use β−1 = 1 + ‖∇f‖2, H the Hessian of f , and ‖·‖1,1 the matrix norm L1,1.
The Ricci tensor is given by:

Rab = Riaib = β(f,iif,ab − f,bif,ai)− β2f,if,r(f,irf,ab − f,brf,ai)
= β(tr(H)Hab −H2

ab)− β2 ((∇f>H∇f)Hab − (H∇f)a(H∇f)b
)

The scalar is given by gabRab = δabRab − βf,af,bRab, and we notice:

Haa = tr(H)
f,aHabfb = ∇f>H∇f

(H∇f)af,a = ∇f>H∇f

Then, we have:

Rab = Raa − βf,af,bRab
Raa = β(tr(H)2 − tr(H)2)− β2 ((∇f>H∇f) tr(H)−∇f>H2∇f

)
βf,af,bRab = β2 (∇f>H∇f) tr(H)−∇f>H2∇f

)
− β3 ((∇f>H∇f)2 − (∇f>H∇f)2)

Finally:
S = β

(
tr(H)2 − tr(H2)

)
− 2β2 (∇f>(tr(H)H−H2)∇f

)

A.2.2 Perturbations on the weights

Proposition A.2.6
Let xmin an extremum, ε� 1 and x a normalized vector. Then, minimizing the trace of
the square of the Hessian is equivalent to minimizing the influence of the perturbations
on the weights:

‖f(xmin + εx)− f(xmin)‖22 ≤
1
4ε

4 tr(H2
min) (A.1)

Proof. The general Taylor expansion on f at xmin + εx, with ε� 1 is:

f(xmin + εx) = f(xmin) + εx>J + ε2

2 x>Hx + o(ε2 ‖x‖2).

We now assume that x is normalized such that ‖x‖ = 1. Note that, if x is an eigenvector
of H then: x>Hx = tr(H). In general, each element of the vector is inferior to 1: x2

i ≤ 1
and so, λ2

ix4
i ≤ λ2

i . Furthermore, we have J(xmin) = 0. Thus:

‖f(xmin + x)− f(xmin)‖22 = ε4

4
(
x>Hx

)2 + o(ε4) ≤ ε4

4 tr(H2) + o(ε4)
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A.2.3 Curvature over minibatches

Proposition A.2.7
The Scalar curvature of the hessian of the full dataset is not equal to the expectation
of the Scalar curvature over mini-batches. That is there exists a dataset, D, and
mini-batches, {B1,B2, . . . ,Bk} such that:

R(HD) 6= E[R(HBi)]

Proof. Suppose we have a dataset D and mini-batches {B1,B2} such that the Hessians
over the minibatches are given by:[

−2 0
4 1

]
,
[
1 2 1
2 −2

]

They both have equal trace, −1, and their scalar curvatures are −2 and −6 respectively.
The hessian over the full dataset is given by:[

−1 2
6 −1

]
This has the same trace as the minibatches but its scalar curvature is −22 not equal to
the average of the scalar curvatures over minibatches.





Identifying latent distances with
Finslerian geometry B

B.1 A primer on Geometry

The main purpose of the paper is to define and compare two legitimate metrics to
compute the average length between random points. Before going further, it’s important
to formally define the two metrics (Riemannian and Finsler metrics, respectively) which
we do in sections B.1.2 and B.1.3. They are both constructed on topological manifolds,
the definition of which is recalled in section B.1.1. We finally introduce the notion of
random manifold in section B.1.4, which is the last notion needed to frame our problem
of interest: which metric should we use to compute the average distance on a random
manifold?

B.1.1 Topological and differentiable manifolds

This section aims to define core concepts in differential geometry that will be used later
to define Riemannian and Finsler manifolds. Recall that two topological spaces are
called homeomorphic if there is a continuous bijection between them with continuous
inverse.

Definition B.1.1
A d-dimensional topological manifoldM is a second-countable Hausdorff topological
space such that every point has an open neighborhood homeomorphic to an open
subset of Rd.

Let M be a topological manifold. This means that for any x ∈ M there is an open
neighborhood Ux of x and a homeomorphism φUx : Ux → Rd onto an open subset of Rd.
Suppose that x, y ∈M are such that Ux ∩ Uy 6= ∅, let U = Ux, V = Uy and consider the
so-called coordinate change map

φV ◦ φ−1
U |φU (U∩V ) : φU (U ∩ V )→ Rd.

We callM together with an open cover {Ux}x∈M as above a differentiable or smooth
manifold if the coordinate maps are infinitely differentiable.

Beyond these technical definitions, one can imagine a differentiable manifold as a well-
behaved smooth surface that possesses locally all the topological properties of a Euclidean
space. All the manifolds in this paper are assumed to be differentiable and connected
manifolds.

Definition B.1.2
We also define, for a differentiable manifoldM, the tangent space TxM as the set of
all the tangent vectors at x ∈ M, and the tangent bundle TM the disjoint union
of all the tangent spaces: TM = ∪

x∈M
TxM .

So far, we have only defined topological and differential properties of manifolds. In order
to compute geometric quantities, we need to equip those with a metric that helps us
derive useful quantities such as lengths, energies and volumes. A metric is a scalar-valued
function that is defined for each point on the topological manifold and takes as inputs
one or two vectors (depending on the type of metric) from the tangent space at the
specific point. Such a function can either be defined as a scalar product between two
vectors, this is the case of a Riemannian metric or, in the case of a Finsler metric, it
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is defined similarly to the norm of a vector. We will formally define these metrics and
highlight their differences in the following sections.

B.1.2 Riemannian manifolds

Definition B.1.3
LetM be a manifold. ARiemannian metric is a map assigning at each point x ∈M a
scalar product G(·, ·) : TxM×TxM → R, with G a positive definite bilinear map, which
is smooth with respect to x. A smooth manifold equipped with a Riemannian metric is
called aRiemannian manifold. We usually express the metric as a symmetric positive
definite matrixG, where we have for two vectors u, v ∈ TxM :G(u, v) = 〈u, v〉G = u>Gv.
We further define the induced norm: v ∈ TxM, ‖v‖G =

√
G(v, v).

The Riemannian metric here can either refer to the scalar product G itself, or the
associated metric tensor G.

f

u

v

gx(u, v) = 1

M

TxM

df(v)
df(u)

Figure B.1: f is an immersion that maps a low dimensional manifold to a high dimensional
manifold M. On M, a tangent plane TxM is drawn at x. The indicatrix of the Euclidean
metric is plotted in blue. When this metric is pulled-back through f , the low dimensional
space is now equipped with the pullback metric g, which is a Riemannian metric by definition.
The vectors df(u) and df(v) are called the push-forwards of the vectors u and v through f .

Definition B.1.4
We consider a curve γ(t) and its derivative γ̇(t) on a Riemannian manifoldM equipped
with the metric g. Then, we define the length of the curve:

LG(γ) =
∫
‖γ̇(t))‖G dt =

∫ √
gt(γ̇(t), γ̇(t)) dt,

where gt = gγ(t). Locally length-minimizing curves between two connecting points are
called Geodesics.

Definition B.1.5
The curve energy is defined as:

EG(γ) =
∫
‖γ̇(t))‖2G dt =

∫
gt(γ̇(t), γ̇(t)) dt.

There are two interesting properties to note about the length of a curve and the curve
energy. First, the length is parametrization invariant: for any bijective smooth function
η on the domain of γ we have that LG(γ ◦ η) = LG(γ). We also say the Riemannian
metric gives us intrinsic coordinates to compute the length. Secondly, for a given curve
γ, we have: LG(γ)2 ≤ 2EG(γ). Because of the invariance of the curve, when we aim to
minimize it, a solver can find an infinite number of solutions. On the other hand, the
curve energy is convex and will lead to a unique solution. Thus, to obtain a geodesic,
instead of solving the corresponding ODE equations, or directly minimizing lengths, it
is easier in practice to minimize the curve energy, as a minimal energy gives a minimal
length.
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The Riemannian metric also provides us with an infinitesimal volume element that
relates our metric G to an orthonormal basis, the same way the Jacobian determinant
accommodate for a change of coordinates in the change of variables theorem.

Definition B.1.6
In local coordinates (e1, · · · , ed), the volume form of the Riemannian manifoldM,
equipped with the metric tensor G, is defined as: dVG = VG(x)e1 ∧ · · · ∧ ed, with:

VG(x) =
√

det(G).

Remark B.1.1 The symbol ∧ represents the wedge product, and it is used to ma-
nipulate differential k-forms. Here, the basis vectors (e1, · · · , ed) form a d-dimensional
parallelepiped (e1 ∧ · · · ∧ ed) with unit volume.

f

M

VG(x)

γ
f(γ)

Figure B.2: Once the low dimensional manifold is equipped with a metric that captures
the inherent structure of the high dimensional manifold, we can compute a geodesic γ, by
minimizing the energy functional between two points. The geodesic f(γ) will be the shortest
path between two points on the manifoldM. The volume measure VG can also be used to
integrate functions over regions of the manifold, as we would do in the Euclidean space. It can
also be linked to the density of the data: if the data points are uniformly distributed over the
high-dimensional manifold, in the low-dimensional manifold, a low volume would correspond
to a high density of data. It is a useful way to give more information about the distribution of
the data.

B.1.3 Finsler manifolds

Finsler geometry is often described as an extension of Riemannian geometry, since the
metric is defined in a more general way, lifting the quadratic constraint. In particular,
the norm of a Riemannian metric is a Finsler metric, but the converse is not true.

Definition B.1.7
Let F : TM → R+ be a continuous non-negative function defined on the tangent
bundle TM of a differentiable manifold M . We say that F is a Finsler metric if, for
each point x ofM and v on TxM , we have:

1. Positive homogeneity: ∀λ ∈ R+, F (λv) = λF (v).
2. Smoothness: F is a C∞ function on the slit tangent bundle TM \ {0}.
3. Strong convexity criterion: the Hessian matrix gij(v) = 1

2
∂2F 2

∂vivj (v) is positive
definite for non-zero v.

A differentiable manifold M equipped with a Finsler metric is called a Finsler
manifold.

Here, it is worth noting that, for a given point in the manifold, the Finsler metric is
defined with only one vector in the tangent space, while the Riemannian metric is defined
with two vectors. Moreover, from the previous definition, we can deduce that the metric
is:

1. Positive definite: for all x ∈M and v ∈ TxM , F (v) ≥ 0 and F (v) = 0 if and only
if v = 0.
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2. Subadditive: F (v + w) ≤ F (v) + F (w) for all x ∈M and v, w ∈ TxM .

We say that F is a Minkowski norm on each tangent space TxM . Furthermore, if F
satisfies the reversibility property: F (v) = F (−v), it defines a norm on TxM in the usual
sense.

Similarly to Riemannian geometry, lengths, energies and volumes can be defined directly
from the Finsler metric:

Definition B.1.8
We consider a curve γ and its derivative γ̇ on a Finsler manifoldM equipped with the
metric F . We define the length of the curve as follows:

LF (γ) =
∫
F (γ̇(t))dt.

f

u

Fx(u) = 1

M

TxM

Figure B.3: f is an immersion that maps a low dimensional manifold to a high dimensional
manifold M. On M, a tangent plane TxM is drawn at x. Compared to the Riemannian
manifold, the Finsler indicatrix, which represents the all the vectors u ∈ TxM such that
Fx(u) = 1, is not necessarily an ellipse. It can be asymmetric if the metric is asymmetric itself.
It is always convex.

Definition B.1.9
The curve energy is defined as: EF (γ) =

∫
F (γ̇(t))2dt.

Not only are the definitions strikingly similar, they also share the same properties. The
curve length is also invariant under reparameterization, and upper bounded by the curve
energy. Computing geodesics on a manifold is reduced to a variational optimization
problem. These propositions are proved in detail in Lemmas B.2.4 and B.2.5, in the
appendix.

In Riemannian geometry, the volume measure defined by the metric is unique. In
Finsler geometry, different definitions of the volume exist, and they all coincide with
the Riemannian volume element when the metric is Riemannian. The most common
choices of volume forms are the Busemann-Hausdorff measure and the Holmes-Thompson
measure. According Wu (2011), depending on the Finsler metric and the topological
manifold, some choices seem more legitimate than others. In this paper, we decided to
only focus on the Busemann-Hausdorff volume, as its definition is the most commonly
used and leads to easier derivations. We will later show that in high dimensions, our
Finsler metric converges to a Riemannian metric, and thus, the results obtained for the
Busemann-Hausdorff volume measure are also valid for the Holmes-Thomson volume
measure.

Definition B.1.10
For a given point x on the manifold, we define the Finsler indicatrix as the set
of vectors in the tangent space such that the Finsler metric is equal to one: {v ∈
TxM |F (v) = 1}). We denote the Euclidean unit ball in Rd by Bd(1) and for measurable
subsets S ⊆ Rd we use vol(S) to denote the standard Euclidean volume of S. In
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local coordinates (e1, · · · , ed) on a Finsler manifoldM, the Busemann-Hausdorff
volume form is defined as dVF = VF (x)e1 ∧ · · · ∧ ed, with:

VF (x) = vol(Bd(1))
vol({v ∈ TxM |F (v) < 1}) .

We can interpret the volume as the ratio between the Euclidean ball, and a convex ball
whose radius is defined as a unit Finsler metric. If the Finsler metric is replaced by a
Riemannian metric, the volume of the indicatrix will be an ellipsoid whose semi-axis are
equal to the inverse of the square root of the metric’s eigenvalues. The Finsler volume
then reduces to the definition of the Riemannian volume.

B.1.4 Random manifolds

So far, we have only considered deterministic data points lying on a manifold. If we
consider our data to be random variables, we will need to define the associated random
metric and manifold.

M

G1
G2
G3

{ft} = {f1, f2, f3, · · · }

Figure B.4: Usually the immersion f would be deterministic. In the case of most generative
models, where f is described by a GP-LVM, or the decoder of a VAE, the immersion is
stochastic. The pullback metric is stochastic de facto.

As said previously, if we have a function f : Rq → RD that parametrizes a manifold,
then we can construct a Riemannian metric G = J>f Jf , with Jf the Jacobian of the
function f . In the previous cases, we assumed f to be a deterministic function, and so is
the metric. We construct a stochastic Riemannian metric in the same way, with f being
a stochastic process. A stochastic process f : Rq → RD is a random map in the sense
that samples of the process are maps from Rq to RD (the so-called sample paths of the
process).

Definition B.1.11
A stochastic process f : Rq → RD is smooth if the sample paths of f are smooth. We
call a smooth process f a stochastic immersion if the Jacobian matrix of its sample
paths has full rank everywhere. We can then define the stochastic Riemannian
metric G = J>f Jf .

The terms stochastic and random are used interchangeably. The definition of the stochastic
immersion is fairly important, as it means that its Jacobian is full rank. Since the Jacobian
is full rank, the random metric G is positive definite, a necessary condition to define a
Riemannian metric. Another definition of a stochastic Riemannian metric would be the
following:

Definition B.1.12
A stochastic Riemannian metric on Rq is a matrix-valued random field on Rq
whose sample paths are Riemannian metrics. A stochastic manifold is a differentiable
manifold equipped with a stochastic Riemannian metric.
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Any matrix drawn from this stochastic metric would be a proper Riemannian metric.
When using the random Riemannian metric on two vectors u, v ∈ TxM , G(u, v) = u>Gv

is a random variable, but both u, v are deterministic vectors. From this definition, it
follows that the length, the energy and the volume are random variables.

Table B.1: Comparison of Riemannian and Finsler metrics.

Object Riemann Finsler

metric g : TxM × TxM → R F : TM → R+

length structure LG(γ) =
∫ √

gt(γ̇(t), γ̇(t)) dt LF (γ) =
∫
F (γ̇(t)) dt

energy structure EG(γ) =
∫
gt(γ̇(t), γ̇(t)) dt EF (γ) =

∫
F (γ̇(t))2 dt

volume element VG(x) =
√
|detG| VF (x) = vol(Bn(1))/vol({v ∈ TxM |F (x, v) < 1})

Busemann-Hausdorff volume measure

B.2 Proofs

One of the main challenges of this paper is to find coherent notations while respecting
the tradition of two geometric fields. In Riemannian geometry, we principally use a
metric, noted gp : TpM×TpM→ R+, that is defined as an inner product and thus can
induce a norm, but is not a norm. In Finsler geometry, we call interchangeably Finsler
function, Finsler metric or Finsler norm, the norm traditionally noted F : TM→ R+,
with Fp(u) := F (p, u) defined at a point p ∈M for a vector u ∈ TpM. We will assume
that all our metric are always defined for a specific point z (or p) on our manifold Z (or
M), and so we will just drop this index. The following notations will be used:

Stochastic pullback metric tensor G = J>f Jf
Stochastic pullback metric g̃ : (u, v)→ u>Gu

Expected Riemannian metric g : (u, v)→ u>E[G]v
Stochastic pullback induced norm ‖·‖G : u→

√
u>Gu

Expected Riemannian induced norm ‖·‖R : u→
√
u>E[G]u :=

√
g(u, u)

Finsler metric ‖·‖F : u→ E[
√
u>Gu] := F (u)

B.2.1 Finslerian geometry of the expected length

In this section, we will always let f : Rq → RD be a stochastic immersion, Jf
its Jacobian, and G = J>f Jf a metric tensor. We will first prove that the function
F : TM → R : v → E

[√
v>Gv

]
is a Finsler metric. Then, for the specific case where Jf

follows a non-central normal distribution, the Finsler metric F defined as the expected
length follows a non-central Nakagami distribution and can be expressed in closed form.

To prove that the function F is indeed a Finsler metric, we will need to verify the criteria
above, among them the strong convexity criterion is less trivial to prove than the others.
It will be detailed in Lemma B.2.3. Strong convexity means that the Hessian matrix
1
2H(F (v)2) = 1

2
∂2F 2

∂vivj (v) is strictly positive definite for non-negative v. This matrix, when
F is a Finsler function, is also called the fundamental form and plays an important
role in Finsler geometry. To prove the strong convexity criterion, we will need the full
expression of the fundamental form, detailed in Lemma B.2.1.
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Lemma B.2.1
The Hessian matrix 1

2H(F (v)2) of the function F (v) = E
[√

v>Gv
]
is given by

1
2H(F (v)2) = E

[
(v>Gv) 1

2

]
E
[
(v>Gv)− 1

2G− (v>Gv)− 3
2Gvv>G

]
+E

[
(v>Gv)− 1

2G
]2
vv>.

Proof. Let G be a random positive definite symmetric matrix and define g : Rq →
R : v 7→

√
v>Gv, where v is considered a column vector. We would like to know

the different derivatives of g with respect to v. We name by default Jg and Hg, its
Jacobian and Hessian matrix. Using the chain rule, we have: Jg = (v>Gv)− 1

2 v>G and
Hg = (v>Gv)− 1

2G− (v>Gv)− 3
2 (Gvv>G).

For the rest of the proof, we need to show that derivatives and expectation values
commute.

Using the Fubini theorem, we can show that that derivatives and the expectation values
commute.

For F : Rq → R : v 7→ E[
√
v>Gv],

H(F ) = E[Hg] = E
[
(v>Gv)− 1

2G− (v>Gv)− 3
2Gvv>G

]
∇F = E[Jg] = E[(v>Gv)− 1

2Gv].

We now consider the function h : Rq → R : v 7→ E[
√
v>Gv]2 = F (v)2. Using the chain

rule and changing the order of expectation and derivatives, we have its Hessian

Hh = 2F ·H[F ] + 2∇F>∇F = 2E[g]E[Hg] + 2E[Jg]>E[Jg].

Finally, replacing Jg and Hg previously obtained in this expression, we conclude:

1
2Hh(x, v) = E

[
(v>Gv) 1

2

]
E
[
(v>Gv)− 1

2G− (v>Gv)− 3
2Gvv>G

]
+E

[
(v>Gv)− 1

2G
]2
vv>.

Remark B.2.1 Before going further, it’s important to note that G = J>f Jf is a random
matrix that is positive definite: it is symmetric by definition and has full rank. The later
statement is justified by the assumption that the stochastic process f : Rq → RD is an
immersion, then Jf is full rank.

Lemma B.2.2
The function F (v) = E

[√
v>Gv

]
is:

1. positive homogeneous: ∀λ ∈ R+, F (λv) = λF (v)
2. smooth: F (v) is a C∞ function on the slit tangent bundle TM \ {0}

Proof. 1) Let λ ∈ R, then we have: F (λv) = E
[√

λ2v>Gv
]

= |λ|
[√

v>Gv
]
.

2) The multivariate function: Rq\{0} → R∗+ : v → v>Gv is C∞ and strictly positive,
since G = J>f Jf is positive definite. The function R∗+ → R∗+ : x →

√
x is also C∞.

Finally, R∗+ → R∗+ : x→ E[x] is by definition differentiable. By composition, F (v) is a
C∞ function on the slit tangent bundle TM \ {0}.
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Lemma B.2.3
The function F (v) = E

[√
v>Gv

]
satisfies the strong convexity criterion.

Proof. Proving that F satisfies the strong convexity criterion is equivalent to show that
the Hessian matrix H = 1

2H(F (v)2) is strictly positive definite. Thus, we need to prove
that ∀w ∈ Rq\{0}, w>Hw > 0. According to Lemma B.2.1, because the expectation is a
positive function, it’s straightforward to see that ∀w ∈ Rq\{0}, w>Hw ≥ 0. The tricky
part of this proof is to show that w>Hw > 0. This can be obtained if one of the terms
(F ·H(F ) or ∇F>∇F ) is strictly positive.

First, let’s decompose H as the sum of matrices: H = FH(F )+∇F>∇F (Lemma B.2.1),
with:

F ·H(F ) = E
[
(v>Gv) 1

2

]
E
[
(v>Gv)− 3

2
(
(v>Gv)G−Gv(Gv)>

)]
,

∇F>∇F = E
[
(v>Gv)− 1

2G
]2
vv>.

We will study two cases: when w ∈ span(v), and when w /∈ span(v). We will always
assume that v 6= 0, and so by definition: F (v) > 0.

Let w ∈ span(v). We will show that w>∇F>∇Fw > 0. We have w = αv, α ∈ R.
Because F is 1-homogeneous and using Euler theorem, we have: ∇F (v)v = F (v). Then
(αv)>∇F>∇F (αv) = α2F 2, and α2F (v)2 > 0.

Let w /∈ span(v). F being a scalar function, we have: w>FH[F ]w = Fw>H[F ]w. We
would like to show that: w>H[F ]w > 0. The strategy is the following: if we prove that
the kernel of H[F ] is equal to the span(v), then w /∈ span(v) is equivalent to say that w /∈
ker(H[F ]) and we can conclude that: w>H[F ]w > 0. Let’s prove span(v) ∈ ker(H(F )).
We know that H(F )v = 0, since F is 1-homogeneous, so we have span(v) ∈ ker(H(F )).
To obtain the equality, we just need to prove that the dimension of the kernel is equal to
1. Let z ∈ span(v>G)>, which is (Gv)T z = 0. We have dim(span(v>M)) = 1, and thus:
dim(span(v>G)>) = q − 1. Furthermore, z>H[F ]z = z>E

[
M(v>Mv)− 1

2

]
z > 0, so we

can deduce that dim(im(H[F ])) = q − 1. Using the Rank-Nullity theorem, we conclude
that dim(ker(H(F ))) = q − dim(im(H[F ])) = 1, which concludes the proof.

In conclusion, ∀w ∈ Rq\{0}, w> 1
2H(F (v)2)w > 0. The function F satisfies the strong

convexity criterion.

Proposition 6.2.2
Let G be a stochastic Riemannian metric tensor. Then, the function Fz : TzZ → R :
u→ ‖u‖F defines a Finsler metric, but it is not induced by a Riemannian metric.

Proof. Let’s define F as a Riemannian metric: F : Rq×Rq → R : (v1, v2)→ E
[√

v>1 Gv2

]
.

If F were a Riemannian metric, then it would be bilinear, which is clearly not the case.
Thus, F is not a Riemannian metric. According to Lemma B.2.2 and Lemma B.2.2, F is
a Finsler metric.

Proposition 6.2.3
Let f be a Gaussian process and J its Jacobian, with J ∼ N (E[J ],Σ). The Finsler
norm can be written as:

Fz : TzZ → R+ : ‖v‖F := v →
√

2
√
v>Σv

Γ(D2 + 1
2 )

Γ(D2 ) 1F1

(
−1

2 ,
D

2 ,−
ω

2

)
,
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with ω = (v>Σv)−1(v>E[J ]>E[J ]v) a noncentral term, and 1F1 the confluent hyperge-
ometric function of the first kind.

Proof. The objective of the proof is to show that, if the Jacobian Jf follows a non-central
normal distribution, then, ∀v ∈ Rq, the expectation E[v>J>f Jfv] will follow a non-central
Nakagami distribution. This is a particular case of the derivation of moments of non-
central Wishart distributions, previously shown and studied by Kent and Muirhead
(1984) and Hauberg (2018b).

By hypothesis, Jf follows a non-central normal distribution: Jf ∼ N (E[J ], ID⊗Σ). Then,
G = J>f Jf follows a non-central Wishart distribution: G ∼ Wd(D,Σ,Σ−1E[J ]>E[J ]). Ac-
cording to Kent and Muirhead (1984, Theorem 10.3.5.), v>Gv will also follow a non-central
Wishart distribution: v>Gv ∼ W1(D, v>Σv, ω), with: ω = (v>Σv)−1(v>E[J ]>E[J ]v).

To compute E[
√
v>Gv], we shall look at the derivation of moments. Kent and Muir-

head (1984, Theorem 10.3.7.) states that: if X ∼ Wq(D,Σ,Ω′), with q ≤ D, then
E[(det(X))k] = (det Σ)k2qk Γq(D2 +k)

Γq(D2 ) 1F1(−k, D2 ,−
1
2Ω′). We directly apply the theorem to

our case, knowing that v>Gv is a scalar term, so det(v>Gv) = v>Gv, q = 1, and k = 1
2 :

‖v‖F := E[
√
v>Gv] =

√
2
√
v>Σv

Γ(D2 + 1
2 )

Γ(D2 ) 1F1(−1
2 ,
D

2 ,−
1
2ω)

Lemma B.2.4
The length of a curve using a Finsler metric is invariant by reparameterization.

Proof. The proof is similar to the one obtained on a Riemannian manifold (Lee (2013),
Proposition 13.25), where we make use of the homogeneity property of the Finsler metric.

Let (M, F ) be a Finsler manifold and γ : [a, b]→M a piece wise smooth curve segment.
We call γ̃ a reparameterization of γ, such that γ̃ = γ ◦ φ with φ : [c, d] → [a, b] a
diffeomorphism. We want to show that LF (γ) = LF (γ̃).

LF (γ̃) =
∫ d

c

F ( ˙̃γ(t)) dt =
∫ d

c

F ( d
dt

(γ ◦ φ(t))) dt

=
∫ φ−1(b)

φ−1(a)
|φ̇(t)|F (γ̇ ◦ φ(t)) dt =

∫ b

a

F (γ̇(t)) dt = LF (γ)

Lemma B.2.5
If a curve globally minimizes its energy on a Finsler manifold, then it also globally
minimizes its length and the Finsler function F of the velocity vector along the curve
is constant.

Proof. The curve energy and the curve length are defined as: EF (γ) =
∫ 1

0 F
2(γ̇(t))dt and

LF (γ) =
∫ 1

0 F (γ̇(t))dt, with γ : [0, 1]→ Rd. Let’s define f and g two real-valued functions
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such that: f : R→ R : t 7→ F (γ̇(t)) and g : R→ R : t 7→ 1. Applying Cauchy-Schwartz
inequality, we directly obtain:(∫ 1

0
F (γ̇(t))dt

)2

≤
∫ 1

0
F (γ̇(t))2dt ·

∫ 1

0
12dt, which means: LF (γ)2 ≤ EF (γ).

The equality is obtained exactly when the functions f and g are proportional, hence,
when the Finsler function is constant.

B.2.2 Comparison of Riemannian and Finsler metrics

We have defined both a Riemannian (g : (v1, v2)→ v>1 E[G]v2) and a Finsler (F : (x, v)→
E[
√
v>Gv]) metric, in the hope to compute the average length between two points on a

random manifold created by the random field f : G = J>f Jf . The main idea of this section
is to better compare those two metrics and in what extend they differ in terms of length,
energy and volume. From now on, f : Rq → RD will always be defined as a stochastic
non-central Gaussian process. Its Jacobian Jf also follows a non-central Gaussian dis-
tribution, G = J>f Jf a non-central Wishart distribution, and F : (x, v) = E[

√
v>Gv] a

non-central Nakagami distribution (Proposition 6.2.3). The Finsler metric can be written
in closed form.

In section B.2.2, we will see that the Finsler metric is upper and lower bounded by two
Riemannian tensors (Proposition 6.3.1), and we can deduce an upper and lower bound for
the length, the energy and the volume (Corollary 6.3.2). Then, in section B.2.2, we will
show that the relative difference between the Finsler norm and the Riemannian induced
norm is always positive and upper bounded a term that is inversely proportional to the
number of dimensions D (Proposition 6.3.4). Similarly, we will deduce the same for the
length, the energy and the volume (Corollary 6.3.5). From this last results, we can directly
conclude in section B.2.2 that both metrics are equal in high dimensions (Corollary
6.3.7). A possible interpretation is that in high dimensions the data distribution obtained
on those manifolds becomes more and more concentrated around the mean, reducing
the variance term to zero. The manifold becoming deterministic, both metrics become
equal.

Remark B.2.2 Most of the following proofs will be a bit technical, as they rely on the
closed form expression of the non-central Nakagami distribution. Once proving the main
propositions, obtaining the corollaries is straightforward. While we do not have closed
form expression of the indicatrix, we will show that it’s a monotonous function which
can upper and lower bounded.

Bounds on the Finsler metric

Proposition 6.3.1
We define α = 2

(
Γ(D2 + 1

2 )
Γ(D2 )

)2
. The Finsler norm: ‖·‖F is bounded by two norms, ‖·‖αΣ

and ‖·‖R, induced by the two respective Riemannian metric tensors: the covariance
tensor αΣz and the expected metric tensor E[Gz].

∀(z, v) ∈ Z × TzZ : ‖v‖αΣ ≤ ‖v‖F ≤ ‖v‖R

Proof. Let’s first recall that the Finsler function can be written as:

‖v‖F := F (v) =
√

2
√
v>Σv

Γ(D2 + 1
2 )

Γ(D2 )
· 1F1(−1

2 ,
D

2 ,−
1
2ω).
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The confluent hypergeometric function is defined as: 1F1(a, b, z) =
∑∞
k=0

(a)k
(b)k

zk

k! , with
(a)k and (b)k being the Pochhammer symbols. Note that, despite their confusing notation,
they are defined as rising factorials. By definition, we have: (a)k

(b)k = Γ(a+k)
Γ(b+k)

Γ(b)
Γ(a) . We can

use the Kummer transformation to obtain:

1F1(a, b,−z) = e−z1F1(b− a, b, z). Replacing a = − 1
2 , b = D

2 and z = 1
2ω, we finally get:

F (v) =
√

2
√
v>Σv · e−z

∞∑
k=0

Γ(D2 + 1
2 + k)

Γ(D2 + k)
zk

k! .

1) Let’s show that: ∀v ∈ TxM :
√
v>αΣv ≤ F (v), with α = 2

(
Γ(D2 + 1

2 )
Γ(D2 )

)2
.

The Pochhammer symbol is defined as (x)k = x(x + 1) . . . (x + k − 1) = Γ(x+k)
Γ(x) . For

x ∈ R∗+, we have: (x)k ≤ (x + 1
2 )k. Thus,

Γ(D2 +k)
Γ(D2 ) ≤

Γ(D2 + 1
2 +k)

Γ(D2 + 1
2 ) . The Gamma function

being strictly positive on R+, we obtain:

Γ(D2 + 1
2 )

Γ(D2 )
≤

Γ(D2 + 1
2 + k)

Γ(D2 + k)
√

2
√
v>Σv

Γ(D2 + 1
2 )

Γ(D2 )
· e−z

∞∑
k=0

zk

k! ≤
√

2
√
v>Σv · e−z

∞∑
k=0

Γ(D2 + 1
2 + k)

Γ(D2 + k)
zk

k!

√
2

Γ(D2 + 1
2 )

Γ(D2 )
√
v>Σv ≤

√
2
√
v>Σv · e−z

∞∑
k=0

Γ(D2 + 1
2 + k)

Γ(D2 + k)
zk

k!
√
v>αΣv ≤ F (v).

2) Let’s show that: ∀v ∈ TxM : F (v) ≤
√
v>E[G]v.

Wendel (1948) proved: Γ(x+y)
Γ(x) ≤ x

y, for x > 0 and y ∈ [0, 1]. With x = D
2 + k, y = 1

2 , we

obtained Γ(D2 + 1
2 +k)

Γ(D2 +k) ≤
√

D
2 + k, which leads to: F (v) ≤

√
2v>Σv · e−z

∑∞
k=0

√
D
2 + k z

k

k! .

Furthermore,
∑∞
k=0 e

−z zk
k! = 1 and the function x →

√
D
2 + x is concave. Then

by Jensen’s inequality: e−z
∑∞
k=0

√
D
2 + k z

k

k! ≤
√

D
2 + e−z

∑∞
k=0

zk

k! k. Knowing that∑∞
k=0

zk

k! = zez, we have: e−z
∑∞
k=0

√
D
2 + k z

k

k! ≤
√

D
2 + z.

And with z = Ω
2 , we obtain: F (v) ≤

√
v>Σ(D + Ω)v.

From Kent and Muirhead (1984, p. 442), the expectation of a non-central Wishart
distribution (G ∼ Wq(D,Σ,Ω)) is: E[G] = DΣ + ΣΩ. This finally leads to:

F (v) ≤
√
v>E[G]v.

Remark B.2.3 As a side note, the second part of the inequality F (v) ≤
√
v>E[G]v can

be obtained using directly Proposition 6.3.3.

Corollary 6.3.2
The length, the energy and the Busemann-Hausdorff volume of the Finsler metric are
bounded respectively by the Riemannian length, energy and volume of the covariance
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tensor αΣ (noted LαΣ, EαΣ, VαΣ) and the expected metric E[G] (noted LR, ER, VR):

∀z ∈ Z, LαΣ(z) ≤ LF (z) ≤ LR(z)
EαΣ(z) ≤ EF (z) ≤ ER(z)
VαΣ(z) ≤ VF (z) ≤ VR(z)

Proof. From Proposition 6.3.1, we have ∀(x, v) ∈M× TxM :
√
h(v) ≤ F (v) ≤

√
g(v),

with h : v → v>αΣv and g : v → v>E[G]v Riemannian metrics. We also define the
parametric curve: ∀t ∈ R, γ(t) = x and γ̇(t) = v.

1) Let’s show that LΣ(x) ≤ LF (x) ≤ LR(x). Because of the monotonicity of the Lebesgue
integrals, we directly have:

∫ √
h(γ̇(t))dt ≤

∫
F (γ̇(t))dt ≤

∫ √
g(γ̇(t))dt.

2) Let’s show that EΣ(x) ≤ EF (x) ≤ ER(x). Since all the functions are positive, we can
raise them to the power two, and again, with the monotonicity of the Lebesgue integrals,
we have:

∫
h(γ̇(t))dt ≤

∫
F 2(γ(t), γ̇(t))dt ≤

∫ √
g(γ̇(t))dt.

3) Let’s show that VΣ(x) ≤ VF (x) ≤ VR(x). We write the vectors v ∈ TxM in hyperspher-
ical coordinates: v = re, with r = ‖v‖ the radial distance and e the angular coordinates.
With v = re, we have: r ·

√
h(e) ≤ r ·F (e) ≤ r ·g(e) ⇐⇒

√
h(e)−1

≥ F (e)−1 ≥
√
g(e)−1.

We want to identify an inequality between the indicatrices, noted vol(Ih), vol(Ig), vol(IF ),
formed by the functions h, g and F . Let’s define: rg

√
h(e) = rh

√
g(e) = rFF (e) = 1.

For every angular coordinate e, we obtain: rh ≥ rF ≥ rg. Intuitively, this means that the
Finsler indicatrix will always be bounded by the indicatrices formed by h and g. The
Busemann-Hausdorff volume of a function f is defined as: σB(f) = vol(Bn(1))/vol(If ),
with vol(Bn(1)) the volume of the unit ball and vol(If ) the volume of the indicatrix formed
by f . The previous inequality and the definition of the Busemann-Hausdorff volume
implies that: vol(Ih) ≥ vol(IF ) ≥ vol(Ig) ⇒ σB(h) ≤ σB(F ) ≤ σB(g). The functions g
and h being Riemannian, we have: σB(h) =

√
det(αΣ) and σB(g) =

√
det(E[G]), which

concludes the proof.

Relative bounds between the Finsler and the Riemannian metric

Proposition 6.3.3
Let f be a stochastic immersion. f induces the stochastic norm ‖·‖G, defined in Section
6.2. The relative difference between the Finsler norm ‖·‖F and the Riemannian norm
‖·‖R is:

0 ≤
‖v‖R − ‖v‖F
‖v‖R

≤
Var

[
‖v‖2G

]
2E
[
‖v‖2G

]2 .

Proof. We will directly use a sharper version of Jensen’s inequality obtained by Liao
and Berg (2019): Let X be a one-dimensional random variable with mean µ and P (X ∈
(a, b)) = 1, where −∞ ≤ a ≤ b ≤ +∞. Let φ a twice derivable function on (a, b). We
further define: h(x, µ) = φ(x)−φ(µ)

(x−µ)2 − φ′(µ)
x−µ . Then:

inf
x∈(a,b)

{h(x, µ)}Var[X] ≤ E[φ(x)]− φ(E[x]) ≤ sup
x∈(a,b)

{h(x, µ)}Var[X].
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In our case, we will choose φ : z →
√
z with z a one-dimensional random variable defined as

z = v>Gv. a = 0, b = +∞ and µ = E[z]. h(z, µ) = (
√
z−√µ)(z−µ)−2− (2(z−µ)√µ)−1.

Because its first derivative φ′ is convex, the function x → h(x, µ) is monotonically
increasing. Thus:

inf
z∈(0,+∞)

{h(x, µ)} = lim
z→0

= −
√
µ

2µ2 and sup
z∈(0,+∞)

{h(x, µ)} = lim
z→+∞

= 0.

It finally gives:

−
√
µ

2µ2Var[z] ≤ E[
√
z]−

√
E[z] ≤ 0.

Replacing ‖v‖F := F (v) = E[
√
z] and ‖v‖R :=

√
g(v) =

√
E[z] = √µ concludes the

proof.

Lemma B.2.6
Let z ∼ W1(D,σ,Ω) following a one-dimensional non-central Wishart distribution.
Then:

Var[z]
2E[z]2 = 1

D + Ω + Ω
(D + Ω)2

Proof. Kent and Muirhead (1984, Theorem 10.3.7.) states that if z ∼ W1(D,σ, ω) then
E[zk] = σk2k Γ(D2 +k)

Γ(D2 ) 1F1(−k, D2 ,−
1
2Ω). In particular, for k = 1 and k = 2, we have

1F1(−1, b, c) = 1− c
b and 1F1(−2, b, c) = 1− 2c

b + c2

b(b+1) . We also have Γ(D2 +1)
Γ(D2 ) = D

2 and
Γ(D2 +2)

Γ(D2 ) = D
2
(
D
2 + 1

)
, which leads to: E[z] = σ(D + Ω) and E[z2] = σ2(2ω + 2(D + ω) +

(D + ω)2). Finally, we conclude:

Var[z]
E[z]2 = E[z2]

E[z]2 − 1 = 2ω
(D + ω)2 + 2

D + ω
.

Proposition 6.3.4
Let f be a Gaussian process. We note ω = (v>Σv)−1(v>E[J ]>E[J ]v), with J the
Jacobian of f , and Σ the covariance matrix of J .
The relative ratio between the Finsler norm ‖·‖F and the Riemannian norm ‖·‖R is:

0 ≤
‖v‖R − ‖v‖F
‖v‖R

≤ 1
D + ω

+ ω

(D + ω)2 .

Proof. The result is directly obtained using Proposition 6.3.3 and Lemma B.2.6.

Corollary 6.3.5
When f is a Gaussian Process, the relative ratio between the length, the energy and
the volume of the Finsler norm (noted LF , EF , VF ) and the Riemannian norm (noted
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LR, ER, VR) is:

0 ≤LR(z)− LF (z)
LR(z) ≤ max

v∈TzZ

{
1

D + ω
+ ω

(D + ω)2

}
0 ≤ER(z)− EF (z)

ER(z) ≤ max
v∈TzZ

{
2

D + ω
+ 1 + 2ω

(D + ω)2 + 2ω
(D + ω)3 + ω2

(D + ω)4

}
0 ≤VR(z)− VF (z)

VR(z) ≤ 1−
(

1− max
v∈TzZ

{
1

D + ω
+ ω

(D + ω)2

})q

Proof. Let’s call M = maxv∈TxM{ ω
(D+ω)2 + 1

D+ω}.

From Proposition 6.3.4, we have:

0 ≤ ‖v‖R − ‖v‖F ≤M ‖v‖R , with M = max
v∈TxM

{
1

D + ω
+ ω

(D + ω)2

}

1) By the monotonicity of the Lebesgue integral, we can directly integrate the previous
norms along a curve γ, which immediately leads to: 0 ≤ LR(x)− LF (x) ≤MLR(x).

2) Since all the functions are positive: 0 ≤ ‖v‖F ≤ ‖v‖R ≤ M ‖v‖R + ‖v‖F leads
to: ‖v‖2F ≤ ‖v‖

2
R ≤ M2 ‖v‖2R + 2M ‖v‖F ‖v‖R + ‖v‖2F , and replacing ‖v‖F ≤ ‖v‖R

in the right-hand term: ‖v‖2F ≤ ‖v‖
2
R ≤ (M2 + 2M) ‖v‖2R + ‖v‖2F , and finally: 0 ≤

‖v‖2R − ‖v‖
2
F ≤ (M2 + 2M) ‖v‖2R. Again, by continuity of the Lebesgue integral, we

directly obtain: 0 ≤ ER(x)− EF (x) ≤ (M2 + 2M)ER(x).

3) In order to compare the volume between the Finsler and the Riemannian metric, we
need to compare the volume of their indicatrices, noted: vol(Ig) and vol(IF ) respectively.
We write the vectors v ∈ TxM in hypershperical coordinates, with v = re, r = ‖v‖ the
radial distance and e the angular coordinates. The volume of the indicatrices obtained in
dimension q (dimension of the latent space) can be written as: dqV = rq−1drdΦ, with Φ
defining the different angles. We will note rF and rg the radial distances of the Finsler
and Riemann metrics such that: ‖v‖F = rF ‖e‖F = 1 and ‖v‖R = rg ‖e‖R = 1 obtained
for a specific angle e.

vol(IF )− vol(Ig) =
∫

Φ

(∫ rf

0
rq−1dr −

∫ rg

0
rq−1dr

)
dΦ

=
∫

Φ

rqf
q

(
1−

(
rg
rf

)q)
dΦ

≤
∫

Φ

rqf
q
dΦ ·

(
1−

(
rg
rf

)q)

and by definition: vol(IF ) =
∫

Φ(rqf/q)dΦ. Furthermore, for a specific angle e, we have:
rg/rF =

√
g(e)/F (e) ≥ 1−M , from Proposition 6.3.4. We have:

0 ≤ vol(IF )− vol(Ig)
vol(IF ) ≤ ·1−

(
rg
rf

)q
≤ 1− (1−M)q ,

and by the definition of the Busemann Hausdorff volume: VF (x)−VG(x)
VF (x) = vol(IF )−vol(Ig)

vol(IF ) ,
we conclude the proof.
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Implications in High Dimensions

In this section, we want to show that the difference between the Finsler norm and the
Riemannian induced norm, as well as their respective functionals, tend to zero at a rate of
O( 1

D ). We need to be sure that ω doesn’t grow faster than D, in other terms: ω = O(D).
This can be obtained if we assume that every element of the expectation of Jacobian is
upper bounded (∃m ∈ R∗+,∀i, j E[Jij ] ≤ m). This happens in at least two cases: (1) E[f ]
is somehow Lipschitz continuous; or (2) if f is a Gaussian Process and its covariance is up-
per bounded. The latter case happens when the process is defined over a bounded domain.

Lemma B.2.7
Our Finsler metric v → E[

√
v>Gv] is defined with v>Gv ∼ W1(D, v>Σv, ω), and

ω = (v>Σv)−1(v>E[J ]>E[J ]v).

If the Finsler manifold is bounded, then: ω ≤ DM , with M ∈ R+.

Proof. By definition, Σ does not depend on D. We assume the manifold is bounded,
which means that every element of the expected Jacobian is upper bounded: E[J ]ij ≤ m,
with m ∈ R∗+. We call σ = v>Σv ∈ R∗+.

We have:

ω = σ−1
D∑
k=1

q∑
i=1

q∑
j=1

viE[J ]kiE[J ]kjvj ≤ σ−1
D∑
k=1

m2 ‖v‖2 ≤ DM,

with M = σ−1m2 ‖v‖2 ∈ R∗+, and M does not depend on D.

Corollary 6.3.6
Let f be a Gaussian Process. In high dimensions, we have:

LR(z)− LF (z)
LR(z) = O

(
1
D

)
,

ER(z)− EF (z)
ER(z) = O

(
1
D

)
,

and VR(z)− VF (z)
VR(z) = O

( q
D

)
.

When D converges toward infinity: LR ∼+∞ LF , ER ∼+∞ EF and VR ∼+∞ VF .

Proof. From Corollary 6.3.5, we directly obtained the results in high dimensions.

We assume that our latent space is bounded, then by B.2.7, we have: 0 ≤ ω ≤MD, with
M ∈ R+.

For the length, we have:

LG(x)− LF (x)
LG(x) ≤ max

v∈TxM

{
1

D + ω
+ ω

(D + ω)2

}
≤ 1 +M

D
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For the energy functional, we have:

EG(x)− EF (x)
EG(x) ≤ max

v∈TxM

{
2

D + ω
+ 1 + 2ω

(D + ω)2 + 2ω
(D + ω)3 + ω2

(D + ω)4

}
≤ 2 + 2M

D
+ 1 + 2M +M2

D2

lim sup
D→∞

D × EG(x)− EF (x)
EG(x) ≤ lim sup

D→∞
2(1 +M) + M2 + 2M + 1

D2 → 2(1 +M)

For the volume, we have:

VG(x)− VF (x)
VG(x) ≤ 1−

(
1− max

v∈TxM

{
1

D + ω
+ ω

(D + ω)2

})q
≤ 1−

(
1− 1 +M

D

)q

Using Taylor series expansion, when x ∼ 0, we have: 1 − (1− x)q = qx + o(x2). Let’s
call ε� 1, and rewrite the Taylor series:

VG(x)− VF (x)
VG(x) ≤ q 1 +M

D
+ εq

1 +M

D

lim sup
D→∞

D

q
× VG(x)− VF (x)

VG(x) ≤ (1 +M)(1 + ε)

The difference between the functionals can converge to zero if they are similar in high
dimensions, or if they all diverge to infinity. This latter case does not happen as we
assume the latent manifold being bounded, and so the metrics are then finite, which
concludes the proof.

Corollary 6.3.7
Let f be a Gaussian Process. In high dimensions, the relative ratio between the Finsler
norm ‖·‖F and the Riemannian norm ‖·‖R is:

‖v‖R − ‖v‖F
‖v‖R

= O
(

1
D

)

And, when D converges toward infinity: ∀v ∈ TzZ, ‖v‖R ∼+∞ ‖v‖F .

Proof. Similar to the 6.3.6, assuming that our latent space is bounded, from B.2.7, we
have 0 ≤ ω ≤MD. From 6.3.4, we deduce:

0 ≤
‖v‖R − ‖v‖F
‖v‖R

≤ 1
D + ω

+ ω

(D + ω)2

≤ 1 +M

D

In a bounded manifold, the metric are finite. We can deduce that they converge to each
other in high dimensions.
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B.3 Computations

B.3.1 Computing geodesics with Stochman and minimizing the
curve energy functionals

An essential task is to compute the shortest paths, or geodesics, between data points in
the latent space. Those shortest paths can be obtained in two ways: either by solving a
corresponding system of ODEs, or by minimizing the curve energy in the latent space.
The former being computationally expensive, we favor the second approach which consists
in optimizing a parametrized spline on the manifold. This method is already implemented
in Stochman Detlefsen et al. (2021), where we can easily optimize splines by redefining
the curve energy function of a manifold class.

We need two curve-energy functionals: one for the expected Riemannian metric and one
for the Finsler metric.

Curve energy for the Riemannian metric

We know that the stochastic metric tensor Gt defined on a point t follows a non-central
Wishart distribution. Thus, we can compute its expectation E[Gt] knowing the Jacobian
covariance and expectation: E[Jt] and Σ. The next Section B.3.2 explains how to compute
those quantities.

Assuming the spline is discretized into N points, we can compute the curve energy with:

EG(γ(t)) =
∫ 1

0
γ̇(t)>E[Gt]γ̇(t) dt ≈

N∑
i=1

γ̇>i
(
E[Ji]TE[Ji] +DΣi

)
γ̇i.

Curve energy for the Finsler metric

In order to compute of the curve energy E(γ), we must first derive the expectation
E[Jt] and covariance Σ of the Jacobian of f , which should follow a normal distribution:
Ji = ∂fi ∼ N (E[J ],Σ). We assume the points ∂fi are independent samples with the
same variance drawn from a normal distribution. We can then compute the Finsler metric
which follows a non-central Nakagami distribution (See Proposition 6.2.2):

E(γ(t)) =
∫ 1

0
F (t, γ̇(t))2 dt ≈

N∑
i=1

2γ̇>i Σiγ̇i

(
Γ(D2 + 1

2 )
Γ(D2 )

)2

1F1

(
−1

2 ,
D

2 ,−
ωi
2

)2
,

with 1F1 the confluent hypergeometric function of the first kind and ωi = (γ̇>i Σiγ̇i)−1(γ̇>i Ωiγ̇i)
and Ωi = Σ−1

i E[Ji]>E[Ji].

This function has been implemented in PyTorch using the known gradients for the
hypergeometric function: ∂

∂x 1F1(a, b, x) = a
b 1F1(a+ 1, b+ 1, x).

B.3.2 Accessing the posterior derivatives

We assume that the probabilistic mapping f from the latent variables X to the observa-
tional variables Y follows a normal distribution. We would like to obtain the posterior
kernel Σ∗ and expectation µ∗ such that p(∂tf |Y,X) ∼ N (µ∗,Σ∗).
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Furthermore, we make the hypothesis the observed variables are modelled with a Gaussian
noise ε whose variance is the same in every dimension. In particular, for the nth latent
(x) and observed (y) variable in the jth dimension: yn,j = fj(xn,:) + εn. Thus, the output
variables have the same variance, and the posterior kernel Σ∗ is then isotropic with
respect to the output dimensions: Σ∗ = σ2

∗ · ID.

There are two ways of obtaining the posterior variance and expectation:

I We use the Gaussian processes to predict the derivative (∂cf) of the mapping
function f , and we multiply the obtained posterior kernel by the curve derivative
(∂tc), following the chain rule: df(c(t))

dt = df
dc ·

dc
dt (Section: B.3.2)

I We discretize the derivative of the mapping function as the difference of this function
evaluated at two close points. We use a linear operation to obtain the posterior
variance and expectation: ∂tf(c(t)) ∼ f(c(ti+1))− f(c(ti)). (Section: B.3.2)

Closed-form expressions

We assume that f is a Gaussian process. Hence, because the differentiation is a linear
operation, the derivative of a Gaussian Process is also a Gaussian Process Rasmussen
and Williams (2005).

The data Y ∈ RN×D follows a normal distribution, so we can infer the partial derivative
of one data point (JT )ji = ∂yi

∂xj
, with i = 1 . . . D and j = 1 . . . d. We have:

[
Y

(J)>
]

=
D∏
i=1
N
([

µy
µ∂y

]
,

[
K(x, x) ∂K(x, x∗)
∂K(x∗, x) ∂2K(x∗, x∗)

])
,

and J> can be predicted:

p(J>|Y,X) =
D∏
i=1
N (µ∗,Σ∗) ,

with:

µ∗ = ∂K(x∗, x) ·K(x, x)−1 · (y − µy) + µ∂y

Σ∗ = ∂2K(x∗, x∗)− ∂K(x∗, x) ·K(x, x)−1 · ∂K(x, x∗).

Finally, ∂tf is obtained:

p(∂tf(c(t))|f(x), x) =
D∏
i=1
N
(
ċµ∗, ċ

>Σ∗ċ · ID
)
.

Discretization

One can notice that: ∂tf(c(t)) ∼ f(c(ti+1)) − f(c(ti)). We know that f(c(ti+1)) and
f(c(ti)) both follows a normal distribution.

[
f(c(ti))
f(c(ti+1))

]
=

D∏
j=1
N
([

µi
µi+1

]
,

[
σ2
ii σ2

i,i+1
σ2
i+1,i σ2

i+1,i+1

])
.
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If Y = AX affine transformation of a multivariate Gaussian X ∼ N (µ, σ2), then Y is also
a multivariate Gaussian with: Y ∼ N (Aµ,ATσ2A). In our case, we choose AT = [−1, 1].
We have:

f(c(ti+1))− f(c(ti)) ∼ N (µ∗, σ2
∗ · ID),

with:

µ∗ = µi+1 − µi
σ2
∗ = σ2

ii + σ2
i+1,i+1 − 2σ2

i,i+1

Figure B.5: Illustration of the derivatives obtained with a trained GP on a simple
parametrized function: both methods give the correct derivatives if enough points are sampled.

B.4 Experiments

B.4.1 Datasets

Font data

The dataset represents 46 different fonts for each letter (upper and lower case) whose
contour is parametrized by a spline (or two splines, depending on the letter used) obtained
from at least 500 points Campbell and Kautz (2014).

In our case, we choose to learn the manifold of the letter f. The dataset is composed of
46 different fonts, each letter being drawn by 1024 points. We reduce this number from
1024 to 256 by sampling one point every 4. The dimension of the observational space is
then 256.

qPCR

The qPCR data, gathered from Guo et al. (2010), was used to illustrate the training of
a GPLVM in Pyro Pyro (2022) and is available at the Open Data Science repository
Ahmed et al. (2019). It consists of 437 single-cell qPCR data for which the expression
of 48 genes has been measured during 10 different cell stages. We then have 437 data
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points, 48 observations, and 10 classes. Before training the GP-LVM, the data is grouped
by the capture time, as illustrated in the Pyro documentation.

Pinwheel on a sphere

A pinwheel in 2-dimension is created and then projected onto a sphere using a stere-
ographic projection method. The final dataset is composed of 1000 points with their
coordinates in 3-dimensions.

B.4.2 GP-LVM training

We learn our two-dimensional latent space by training a GP-LVM Lawrence (2003) with
Pyro Bingham et al. (2019). The Gaussian Process used is a Sparse GP, defined with a
kernel (RBF, or Matern) composed of a one-dimensional length scale and variance. The
parameters are learned with the Adam optimizer Kingma and Ba (2014). The number of
steps and the initialization of the latent space vary with the dataset.

Table B.2: Description of the datasets trained with a GP-LVM.

Datasets pinwheel font data qPCR
Number of data points 500 46 437
Number of observations 3 256 48
initialization PCA PCA custom
kernel RBF Matern52 Matern52
steps 17000 5000 5000
learning rate 1e-3 1e-4 1e-4
lengthscale 0.24 0.88 0.15
variance 0.95 0.30 0.75
noise 1e-4 1e-3 1e-3

B.4.3 Computing indicatrices

An indicatrix of a function g at a point x is defined such that: v ∈ TxM |gx(v) < 1.
In other terms, the indicatrix is the representation of a unit ball in our latent space.
If we use a Euclidean metric, our indicatrix in our 2-dimensional latent space would
be a unit ball, as we need to solve: v ∈ TxM , ‖v‖ < 1. For a Riemannian metric, our
indicatrix is necessarily an ellipse, whose semi axis are the square-roots of the eigenvalues
of the metric tensor G:: v ∈ TxM , v>Gv < 1. For our Finsler metric, we don’t have an
analytical solution, and so it’s difficult to predict the shape of the convex polygon.

In this paper, the indicatrices are drawn the following way: for a single point in our
latent space, we compute the value of v>Gv and F (x, v) for v varying over the space.
We then extract the contour when v>Gv and F (x, v) are equal to 1. Computing the area
of the indicatrices will be used in the section B.4.4 to compute the volume measures.

B.4.4 Computing the volume forms

For the figures used in this paper, by default, the background of the latent space represents
the volume measure of the expected Riemannian metric (VG =

√
E[G]) on a logarithm

scale. In figure 6.3, the volume measure of the Finsler metric is also computed.
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Finsler metric

To compute the volume measure of our Finsler metric, we choose the Busemann-Hausdorff
definition, which is the ratio of a unit ball over the volume of its indicatrix: V =
vol(Bn(1))/vol({v ∈ TxM |F (x, v) < 1}). While our Finsler function has an analytical
form, its expression doesn’t allow to directly solve the equation: v ∈ TxM,F (x, v) < 1.
Instead, we approximate its indicatrix as describe in B.4.3, using a contour plot and
extracting the paths vertices. We can then compute the area of the obtained polygon,
and divide with the volume of a unit ball: vol(B2(1)) = π.

The volume measure can then be computed for each point over a grid (32 x 32, in figure
6.3), and we interpolate all the other points. Note that this method can only be used
when our latent space is of dimension 2.

Expected Riemannian metric

There are two ways to compute the volume measure of the expected Riemannian metric.
One way is to directly use the metric tensor: VG =

√
E[G]. Another one is to remember

that any Riemannian metric is a Finsler metric, and thus, the Busemann-Hausdorff
definition also applied for our metric: VG = vol(Bn(1))/vol({v ∈ TxM |v>E[G]v < 1}).
Solving v>E[G]v < 1 for v ∈ TxM is equivalent to solving the area of an ellipse.

For the first method, we can either sample multiple times the metric, which is compu-
tationally expensive, or use the fact that our metric tensor is a non-central Wishart
matrix: G = J>J ∼ Wq(D,Σ,Σ−1E[J ]>E[J ]), with Σ the covariance of the Jacobian
J and D the dimension of the observational space. In this case, its expectation is:
E[G] = E[J ]>E[J ] + DΣ. We can access the derivatives of the function f (detailed in
section B.3.2), and compute both quantities E[J ] and Σ needed to estimate the expected
metric and its determinant.

For the second method, we can compute the area of the ellipse in the same way we
compute the Finsler volume measure.

B.4.5 Experiments when increasing the number of dimensions

In Figure 6.4, we computed the volume ratio and draw indicatrices while varying the
number of dimensions, to illustrate that both our Finsler metric and the expected
Riemannian metric seem to converge when D increases.

The main issue with this experiment is to vary only one factor, the number of dimensions
D, while keeping the other factors unchanged. This is difficult for two reasons: 1) Even
with a very low dimensional observational, both metrics are already very similar to each
other. It would be difficult to illustrate a convergence while increasing the number of
dimensions. 2) the function f needs to be learned again each time we increase the number
of dimensions of the observational space, and the parameters of the Gaussian Process
will change too.

Instead, we try to illustrate our results by computing empirically the stochastic metric
tensor G = J>J , using its Jacobian J ∼ N (E[J ],Σ), a D × q matrix. The number of
dimensions is modified by simply truncatenating the Jacobian J . In Figure 6.4, the
volume ratio is computed for 12 Jacobians obtained with different random parameters
E[J ] and Σ. The Finsler and Riemannian indicatrices (lower right) are drawn for only
one Jacobian selected randomly.
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C.1 Additional details for information geometry

In this section we provide additional information regarding information geometry. We
note that many of these propositions are already known in the literature, however, we
include them for completion and for the paper to be standalone.

The Fisher-Rao metric is positive definite only if it is non-singular, and then, defines a
Riemannian metric (Nielsen 2020). In this paper, we assume that the observation x ∈ X
is a random variable following a probability distribution p(x) such that x ∼ p(x|η), and
any smooth changes of the parameter η would alter the observation x. This way, the
Fisher-Rao metric used in our paper is non-singular and the statistical manifold H is a
Riemannian manifold.

A known result in information geometry (Nielsen 2020; Amari and Nagaoka 2000) is that
the Fisher-Rao metric is the first order approximation of the KL-divergence, as recall in
Proposition C.1.1. Using this fact, we can define the Fisher-Rao distance and energy in
function of the KL-divergence, leading to Proposition C.1.2.

Proposition C.1.1
The Fisher-Rao metric is the first order approximation of the KL-divergence between
perturbed distributions:

KL(p(x|η), p(x|η + δη)) = 1
2δη

>IH(η)δη + o(δη2),

with IH(η) =
∫
p(x|η)

[
∇η log p(x|η)∇η log p(x|η)>

]
dx.

Proof. Let’s decompose log p(x|η + δη) using the Taylor expansion:

log p(x|η + δη) = log p(x|η) +∇η log p(x|η)>δη + 1
2δη

>Hη [log p(x|η)] δη + o(δη2),

where the Hessian is Hη [log p(x|η)] = Hη [p(x|η)]
p(x|η) −∇η log p(x|η)∇η log p(x|η)> and the

∇η log p(x|η) = ∇ηp(x|η)
p(x|η) .

Also,
∫
∇ηp(x|η)dx = ∇η

∫
p(x|η)dx = 0 and

∫
Hη[p(x|η)]dx = Hη[

∫
p(x|η)dx] = 0.

Replacing all those expressions to the first equation finally gives:

KL(p(x|η), p(x|η + δη)) =
∫
p(x|η) log p(x|η)dx−

∫
p(x|η) log p(x|η + δη)dx

= −
∫
p(x|η)

(
∇η log p(x|η)>δη + 1

2δη
>Hη[log p(x|η)]δη + o(δη2)

)
dx

= 1
2δη

>
[∫

p(x|η)
[
∇η log p(x|η)∇η log p(x|η)>

]
dx
]
δη + o(δη2).

Definition C.1.1
We consider a curve γ(t) and its derivative γ̇(t) on the statistical manifold such that,
∀t ∈ [0, 1], γ(t) = ηt ∈ H. The manifold is equipped with the Fisher-Rao metric. The
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length and the energy functionals are defined with respect to the metric IH(η):

Length(γ) =
∫ 1

0

√
γ̇(t)>IH(η)γ̇(t)dt and Energy(γ) =

∫ 1

0
γ̇(t)>IH(η)γ̇(t)dt.

Locally length-minimizing curves between two connecting points are called geodesics.
These can be found by minimizing the energy using the Euler-Lagrange equations
which gives the following system of 2nd order nonlinear ordinary differential equations
(ODEs) (Arvanitidis et al. 2018)

γ̈(t) = −1
2I
−1
H (γ(t))

[
2(γ̇(t)>⊗ Id)

∂vec[IH(γ(t))]
∂γ(t) γ̇(t)− ∂vec[IH(γ(t))]

∂γ(t)

>
(γ̇(t)⊗ γ̇(t))

]
.

(C.1)

Proposition C.1.2
The KL-divergence between two close elements of the curve γ is defined as: KL(pt, pt+δt) =
KL(p(x|γ(t)), p(x|γ(t+ δt))). The length and the energy functionals can be approxi-
mated with respect to this KL-divergence:

Length(γ) ≈
√

2
∑T
t=1
√

KL(pt, pt+δt) and Energy(γ) ≈ 2
δt

∑T
t=1 KL(pt, pt+δt)

Proof. On the statistical manifold, we have γ(t+ δt) = γ(t) + δtγ̇(t). The KL-divergence
between perturbed distributions can be defined as: KL(pt, pt+δt) = KL(p(x|γ(t)), p(x|γ(t+
δt))) = KL(p(x|ηt), p(x|ηt + δηt)), with ηt = γ(t) and δηt = δt γ̇(t). Then, we obtain:

KL(pt, pt+δt) = 1
2δt

2 γ̇(t)>IH(ηt)γ̇(t) + o(δt2).

The length and energy terms appear in the following equations:∫ 1

0
KL(pt, pt+δt)dt = δt2

2

∫ 1

0
γ̇(t)>IH(ηt)γ̇(t)dt+ o(δt2) = δt2

2 Energy(γ) + o(δt2),∫ 1

0

√
KL(pt, pt+δt)dt = δt√

2

∫ 1

0

√
γ̇(t)>IH(ηt)γ̇(t)dt+ o(δt2) = δt√

2
Length(γ) + o(δt2).

If we want approximate any continuous function f with a discrete sequence, by partitioning
it in T small segments, such that: δt ≈ 1

T , we have:
∫ 1

0 f(t)dt ≈
∑T
t=1 f(t)δt, which in

our case gives:

Length(γ) ≈
√

2
∑T
t=1
√

KL(pt, pt+δt) and Energy(γ) ≈ 2
δt

∑T
t=1 KL(pt, pt+δt).
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Table C.1: List of distributions

Distributions Probability density functions Parameters Fisher-Rao matrix

Normal 1√
2πσ2 exp− (x−µ)2

2σ2 µ, σ2 IN (µ, σ2)

Bernoulli θx(1− θ)1−x θ IB(θ)

Categorical
∏K
k=1 θ

xk
k θ1, . . . , θK IC(θ1, . . . , θK)

Gamma βαxα−1e−βx

Γ(α) α, β IG(α, β)

von Mises-Fisher, for S2 κ
4π sinhκ exp (κµ>x) κ, µ IS(κ, µ)

Beta Γ(α)Γ(β)
Γ(α+β) x

α−1(1− x)β−1 α, β IB(α, β)

C.1.1 The Fisher-Rao metric for several distributions

With the notations of Table C.1, the Fisher-Rao matrices of the univariate Normal,
Bernoulli and Categorical are:

IN (µ, σ2) =
( 1
σ2 0
0 1

2σ2

)
, IB(θ) = 1

θ(1− θ) , IC(θ1, . . . , θK) =


1/θ1 0 . . . 0
0 1/θ2 . . . 0
...

...
. . .

...
0 0 . . . 1/θK


In addition, the Fisher-Rao matrices of the Gamma, Von Mises-Fisher and the Beta
distributions are:

IG(α, β) =
(

α
β2 − 1

β

− 1
β Ψ1(α)

)
,

IS(κ, µ) =
(
κK(κ)(I− 3µµ>) + κ2µµ> (κK(κ)2 − 2

kK(κ) + 1)µ
(κK(κ)2 − 2

kK(κ) + 1)µ> 3K(κ)2 − 2
κK(κ) + 1

)
,

IB(α, β) =
(

Ψ1(α)−Ψ1(α+ β) −Ψ1(α+ β)
−Ψ1(α+ β) Ψ1(β)−Ψ1(α+ β)

)
,

with Ψ1(α) = ∂2 ln Γ(α)
∂α the trigamma function, and K(κ) = coth κ− 1

κ .

Proof. The univariate Normal, Bernoulli and Categorical have already been studied by
Tomczak (2012), and the Beta distribution by Brigant and Puechmorel (2019). We will
then focus our proof on the Gamma and the von Mises-Fisher distributions.

In order to bypass unnecessary details, we will use the following notations, we redefine
the Fisher-Rao as: I(η) = Ex[g(η, x)g(η, x)>], with g(η, x) = ∇η ln p(x|η) the Fisher
score. We call G = g(η, x)g(η, x)>, and Gij the matrix elements.

Gamma distribution:

We have p(x|α, β) = Γ(α)−1βαxα−1e−βx, which leads to:

ln p(x|α, β) = − ln Γ(α) + α ln β + (α− 1) ln x− βx,
∂ ln p
∂α

= −Ψ(α) + ln β + ln x,

∂ ln p
∂β

= α

β
− x.
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Then:

G11 =
(
∂ ln p
∂α

)2
= (Ψ0(α) + ln β)2 + 2(Ψ(α) + ln β)lnx+ ln2 x,

G22 =
(
∂ ln p
∂β

)2
=
(
α

β

)2
− 2α

β
x+ x2,

G12 = G21 = ∂ ln p
∂α

· ∂ ln p
∂β

= (Ψ(α) + ln β)
(
α

β
− x
)

+ α

β
ln x− x ln x.

We know that E[x] = α
β . We can compute, using your favorite symbolic computation

software, the following moments:

E[ln x] = − ln β + Ψ(α)

E[x ln x] = α

β
(Ψ(α+ 1)− ln β)

E[ln2 x] = (ln β −Ψ(α))2 + Ψ1(α)

Replacing the moments for the following equations: E[G11], E[G22] and E[G12] will finally
give the Fisher-Rao matrix.

Von Mises-Fisher distribution, for S2:

We have p(x|µ, κ) = C3(κ) exp(κµ>x), with C3(κ) = κ(4π sinh κ)−1. Here, µ is a 3-
dimensional vector with ‖µ‖ = 1.

ln p(x|µ, κ) = ln κ− ln 4π − ln sinh(κ) + κµ>x
∇µ ln p = κx
∂ ln p
∂κ

= κ−1 − coth(κ) + µ>x.

Here, the Fisher-Rao matrix IS will be composed of block matrices, such that: IS = E[G],
with G11 a 3× 3-matrix, G22 a scalar, and G12 = G>21 a 3-dimensional vector.

G11 = ∇µ ln p∇µ ln p> = κ2xx>

G22 =
(
∂ ln p
∂κ

)2
= K(κ)2 + 2K(κ)µ>x + (µ>x)2

G12 = G>21 = ∂ ln p
∂κ

· ∇µ ln p =
(
K(κ) + µ>x

)
κx,

with K(κ) = coth(κ)− 1
κ .

We know from Hillen et al. (2016) that the mean and variance of the von Mises-Fisher
distribution in the 3-dimensional case is: E[x] = K(κ)µ and Var[x] = 1

κK(κ)I + (1 −
coth(κ)

κ + 2
κ2 − coth2(κ))µµ>. We can then deduce the following meaningful moments:

E[xx>] = Var[x] + E[x]E[x]> =
(

1− 3
κ
K(κ)

)
µµ> + 1

κ
K(κ)I,

E[µ>x] = µ>E[x] = K(κ)µ>µ = K(κ)

E[(µ>x)2] = µ>Var[x]µ+ E[µ>x]2 = 1− 2
κ
K(κ),

E[µ>xx] = E[µxx>] = E[xx>]µ =
(

1− 3
κ
K(κ)

)
µ+ 1

κ
K(κ)µ.

Replacing those moments in the following expressions: E[G11], E[G22], E[G12] directly
gives the Fisher-Rao metric.



C.2 Curve energy approximation for categorical data 131

C.2 Curve energy approximation for categorical data

In this section we present the details of the example in Section 7.3.3. In particular, we
the steps to derive an approximation to the energy of a latent curve in closed form,
which is suitable for applying automatic differentiation. This is particularly useful for our
setting, since it allows us to consider our framework as a Black Box Random Geometry
processing toolbox.

Let a random variable x ∈ RD that follows a generalized Bernoulli likelihood p(x|η), so
the vector x ∈ RD is of the form x = (0, · · · , 1, · · · , 0) with

∑
i xi = 1. The parameters

η ∈ RD are given as η = h(z), with ηi ≥ 0 ∀i and
∑
i ηi = 1, so we know that

the parameters lie on the unit simplex. Actually, they represent the probability the
corresponding dimension to be 1 on a random draw. Also, the p(x|z) = η

[x1]
1 · · · η[xD]

D ,
where [xi] = 1 if xi = 1 else [xi] = 0 which can be seen as an indicator function.
The log p(x|η) =

∑
i[xi] log(ηi) and ∇η log p(x|η) =

(
[x1]
η1
, . . . , [xD]

ηD

)
. Due to the outer

product we have to compute the following expectations

Ex

[
[xi]
ηi

[xj ]
ηj

]
= 0, if i 6= j, (C.2)

Ex

[(
[xi]
ηi

)2
]

= 1
ηi
, if i = j, (C.3)

because the [xi] and [xj ] cannot be 1 on the same time, while the Ex[[xi]2] = ηi
as it shows the number of times xi = 1. So the Fisher-Rao metric of H is equal to
IH(η) = diag (1/η1, . . . , 1/ηD). Note that the shortest paths between two distributions
must be on the unit simplex in H, while on the same time respecting the geometry of
the Fisher-Rao metric.

We can easily parametrize the unit simplex by [η1, . . . , ηD−1, η̃D] with

η̃D(η1, . . . , ηD−1) = 1−
D−1∑
i=1

ηi. (C.4)

This allows to pullback the Fisher-Rao metric in the latent space [η1, . . . , ηD−1] as we
have described in this paper. Intuitively, the z = [η1, . . . , ηD−1] and the function h is the
parametrization of the simplex. Hence, we are able to compute the shortest path using
the induced metric.

However, there is a simpler way to compute this path. We know that the element-wise
square root of the parameters η gives a point on the positive orthonant of the unit sphere
as yi = √ηi ⇒

∑
i y

2
i =

∑
i

√
ηi

2 = 1. We also know that the shortest path on a sphere
is the great-circle. Therefore, the distance between two distributions parametrized by
η and η′ on the unit simplex in H, can be equivalently measured using the great-circle
distance between their square roots as

dist(η, η′) = arccos√η>
√
η′. (C.5)

In this way, we can approximate the energy of a curve c(t) in the latent space as follows

Energy[c] ≈
N−1∑
n=1

dist2(h(c(n/N)), h(c(n+ 1/N))) =
N−1∑
n=1

arccos2√h(c(n/N))
>√

h(c(n+ 1/N))

=
N−1∑
n=1

(
2− 2

√
h(c(n/N))

>√
h(c(n+ 1/N))

)
, (C.6)
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where we used at the last step the small angle approximation cos θ ≈ 1 − θ2

2 ⇔ θ2 ≈
2− 2 cos θ. Note that this formulation is suitable for our proposed method to compute
the shortest paths (see Section 7.3.2).

The derivation above represents the conceptual strategy, while in general we proposed to
use the KL divergence approximation result (7.8) in place of the great-circle distance.
Intuitively, when the KL divergence has an analytic solution, we can derive an analogous
energy approximation. Even if the solution of the KL is intractable, we can still use
our approach as long as we can estimate the KL using Monte Carlo and propagate the
gradient through the samples using a re-parametrization scheme or a score function
estimator.

C.3 Information geometry in generative modeling

In this section we present the additional technical information related to the pullback
Fisher-Rao metric in the latent space of a VAE.

C.3.1 Details for the pullback metric in the latent space

We call h the non-linear function, typically parametrized as deep neural networks, that
maps the variables from the latent space Z to the parameter space H, such that: h(z) = η,
with z ∈ Z and η ∈ H. Furthermore, the data x ∈ X is reconstructed such that it follows
a specific distribution: x ∼ p(x|η), with p(x|η) being for instance a Bernoulli or Gaussian
distribution. The parameter space H is a statistical manifold equipped with Fisher-Rao
metric: IH(η) ∆=

∫
p(x|η)

[
∇η log p(x|η)∇η log p(x|η)>

]
dx. We denote by Jh the Jacobian

of h.

Proposition C.3.1
The latent space Z is equipped with the Riemannian pullback metric tensor:

M(z) ∆= Jh(z)>IH(h(z))Jh(z).

Proof. The parameter space is a statistical manifold equipped with the Fisher-Rao metric
IH(η), thus the scalar product at η between two vectors dη1, dη2 ∈ H is: 〈dη1, dη2〉IH(η) =
dη>1 IH(η)dη2. For two vectors dz1, dz2 ∈ Z, we have at η = f(z) that: 〈dη1, dη2〉IH(η) =
〈Jh(z)dz1,Jh(z)dz2〉IH(η) = dz>1 (Jh(z)>IH(h(z))Jh(z))dz2.

IH(h(z)) is a Riemannian metric tensor by definition, and it is then positive definite.
Furthermore, h : Z → H is a smooth immersion, and so Jh(z) is full-rank. It follows
that Jh(z)>IH(h(z))Jh(z) is positive definite. Hence, M(z) is a Riemannian metric
tensor.

Proposition C.3.2
Our pullback metric M(z) is actually equal to the Fisher-Rao metric obtained over
the parameter space Z:

M(z) = IZ(z) ∆=
∫
p(x|z)

[
∇z log p(x|z)∇z log p(x|z)>

]
dx
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Proof. We will show that IZ(z) = Jf (z)>IH(η)Jf (z). Let’s consider the definition of the
Fisher-Rao metric in Z :

IZ(z) =
∫
∇z log p(x | z) · ∇z log p(x | z)>p(x | z)dx (C.7)

=
∫

Jf (z)>∇η log p(x|η)∇η log p(x|η)>Jf (z)p(x|η)dx (C.8)

= Jf (z)>
[∫
X
∇η log p(x|η)∇η log p(x|η)>p(x|η)dx

]
Jf (z) (C.9)

= Jf (z)>IH(f(z))Jf (z) = M(z)

where we use the fact that η = f(z) so the ∇z log p(x|f(z)) = Jf (z)> · ∇η log p(x|η)

The same argument can be proved as follows:

〈dη, IH(η)dη〉 = 〈Jf (z)dz, IH(f(z))Jf (z)dz〉 (C.10)

= 〈Jf (z)dz,
∫
∇η log p(x|η)∇η log p(x|η)>p(x|η)dx Jf (z)dz〉 (C.11)

= 〈dz,
∫

Jf (z)> · ∇η log p(x|η) ∇η log p(x|η)> · Jf (z)p(x|η)dx dz〉 (C.12)

= 〈dz,
∫
∇z log p(x|z)∇z log p(x|z)>p(x|z)dx dz〉 = 〈dz, IZ(z)dz〉 (C.13)

In section C.1.1, we have seen how to derive a closed-form expression of the Fisher-
Rao metric for a one-dimensional observation x that follows a specific distribution. In
practice, x ∈ X ⊂ RD is a multidimensional variable where each dimension represents,
for instance, a pixel when working with images or a feature when working with tabular
data. Each feature, xi with i = 1 · · ·D, is obtained for a specific set of parameters {ηi}.
We assume that the features follow the same distribution D, such that: xi ∼ p(xi|ηi),
and p(x|η) =

∏D
i=1 p(xi|ηi).

Proposition C.3.3
If the features follow the same distribution D, such that: xi ∼ p(xi|ηi) and p(x|η) =∏D
i=1 p(xi|ηi), then the Fisher-Rao metric IH(η) is a block matrix where the diagonal

terms are the Fisher-Rao matrices IH,i obtained for each data feature xi:

IH(η) =


IH,1 0 . . . 0

0 IH,2 . . . 0
...

...
. . .

...
0 0 . . . IH,D



Proof. We have xi ∼ p(xi|ηi) and IH,i =
∫
p(xi|ηi)

[
∇ηi log p(xi|ηi)∇ηi log p(xi|ηi)>

]
dxi.

Also, we assumed: p(x|η) =
∏D
i=1 p(xi|ηi). We then have: log p(x|η) =

∑D
i=1 log p(xi|ηi),

and the Fisher score:∇η log p(x|η) = ∇η
∑D
i=1 log p(xi|ηi) = [∇η1 ln p(x1|η1), . . . ,∇ηD ln p(x1|ηD)]>.

The matrix IH(η) is thus a D ×D block matrix, where the (i, j)-block element is:

Iij =
∫
p(xi|ηi)

[
∇ηi log p(xi|ηi)∇ηi log p(xj |ηj)>

]
dxi.
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Let’s note that:∫
p(xi|ηi)∇ηi log p(xi|ηi)dxi =

∫
p(xi|ηi)

∇ηip(xi|ηi)
p(xi|ηi)

dxi = ∇ηi
∫
p(xi|ηi)dxi = 0.

When i = j, we have Iii = IH,i, with IH,i being the Fisher-Rao metric obtained for:
xi ∼ p(xi|ηi).
When i 6= j, we have: Iij = ∇ log p(xj |ηj)>

∫
p(xi|ηi)∇ηi log p(xi|ηi)dxi = 0.

Then, for example, if we are dealing with binary images, and make the assumption that
each pixel xi follows a Bernoulli distribution: p(xi|ηi) = ηxi(1− ηi)1−xi , then according
to Section C.1.1 and Proposition C.3.3, the Fisher-Rao matrix that endows the parameter
space H is:

IH(η) =


1

η1(1−η1) 0 . . . 0
0 1

η2(1−η2) . . . 0
...

...
. . .

...
0 0 . . . 1

ηD(1−ηD)

 .

We have seen that in theory, we can obtain a close form expression for the pullback
metric, if the probability distribution is known. In practice, we can directly infer the
metric using the approximation of the KL-divergence.

Proposition C.3.4
We define perturbations vectors as: δei = ε · ei, with ε ∈ R+ a small infinitesimal
quantity, and (ei) a canonical basis vector in Rd. For better clarity, we rename
KL(p(x|z), p(x|z+δz)) = KLz(δz), and we note Mij the components of M(z). We can
then approximate by a system of equations the diagonal and non-diagonal elements of
the metric:

Mii ≈ 2 KLz(δei)/ε2

Mij = Mji ≈ (KLz(δei + δej)−KLz(δei)−KLz(δej)) /ε2.

Proof. From Proposition C.1.1, we know that:

KLz(δz) = 1
2δz

>M(z)δz + o(δz2).

Let’s take δei = ε · ei. On one hand, we have: δe>i M(z)δei = ε2Mii. On the second hand,
we also have: δe>i M(z)δei ≈ 2KLz(δei), which gives us the equation to infer the diagonal
elements of the metric.

Now, let’s take δei + δej = ε · (ei + ej). Then, we have: (δei + δej)>M(z)(δei + δej) =
ε2(Mii + Mjj + Mij + Mji). We also know that Mji = Mij . Again, we also have:
(δei + δej)>M(z)(δei + δej) ≈ 2KLz(δei + δej).

We can replace the terms Mii and Mjj in the equation obtained above with the KL-
divergence for the diagonal terms. Which finally gives us:

Mij = Mji ≈ (KLz(δei + δej)−KLz(δei)−KLz(δej)) /ε2.
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Table C.2: This table shows the implementations of the decoder and extrapolate functions
in Eq. (C.15) for all the distributions studied in our second experiment (see Sec. 7.4.2). Here
we represent a randomly initialized neural network with fi, where i represents the size of
the co-domain. For example, in the case of the Dirichlet distribution, we use a randomly
initialized neural network to compute the parameters α of the distribution and, since these
have to be positive, we pass the output of this network through a Softplus activation; moreover,
since the Dirichlet distribution is approximately uniform when all its parameters equal 1,
our extrapolation mechanism consists of replacing the output of the network with a constant
vector of ones.

Distribution h : Ztoy → H Extrapolation mechanism
Normal µ(z) = 10 · f3(z), σ(z) = 10 · Softplus(f3(z)) σ(z)→∞
Bernoulli p(z) = Sigmoid(f15(z)) p(z) = 1/2
Beta α(z) = 10 · Softplus(f3(z)), β(z) = 10 · Softplus(f3(z)) (α(z), β(z)) = (1, 1)
Dirichlet α(z) = Softplus(f3(z)) α(z) = 1
Exponential λ(z) = Softplus(f3(z)) λ(z)→ 0

C.3.2 Uncertainty quantification and regularization

As discussed in the main text, we carefully design our mappings from latent space
to parameter space such that they model the training codes according to the learned
decoders, and extrapolate to uncertainty outside the support of the data. This, we refer
to as uncertainty regularization. In this section we explain it in detail. The core idea
of this uncertainty regularization is imposing a “slider” that forces the distribution p(x|z)
to change when z is far from the training latent codes. For this, we use a combination of
KMeans and the sigmoid activation function.

We start by encoding our training data, arriving at a set of latent codes {zn}Nn=1 ⊆ Z.
We then train KMeans(k) on these latent codes (where k is a hyperparameter that we
tweak manually), arriving at k cluster centers {c

¯j
}kj=1. These cluster centers serve as a

proxy for "closeness" to the data: we know that a latent code z ∈ Z is near the support
if D(z) := minj

{
‖z− c

¯j
‖2
}
is close to 0.

The next step in our regularization process is to reweight our decoded distributions such
that we decode to high uncertainty when D(z) is large, and we decode to our learned
distributions when D(z) ≈ 0. This mapping from [0,∞) → (0, 1) can be constructed
using a modified sigmoid function Detlefsen et al. (2020) and Detlefsen et al. (2019),
consider indeed

σ̃β(d) = Sigmoid
(
d− c · Softplus(β)

Softplus(β)

)
, (C.14)

where β ∈ R is another hyperparameter that we manually tweak, and c ≈ 7.

With this translated sigmoid, we have that σ̃β(D(z)) is close to 0 when z is close to
the support of the data (i.e. close to the cluster centers), and it converges to 1 when
D(z) → ∞. σ̃β(D(z)) serves, then, as a slider that indicates closeness to the training
codes. This reweighting takes the following form:

reweight(z) = (1− σ̃β(D(z)))h(z) + σ̃β(D(z)) extrapolate(z), (C.15)

where h(z) = η ∈ H represents our learned networks in parameter space, and extrapolate(z)
returns the parameters of the distribution that maximize uncertainty (e.g. σ →∞ in the
case of an isotropic Gaussian, p→ 1/2 in the case of a Bernoulli, and κ→ 0 in the case
of the von Mises-Fisher).

For the particular case of the experiment in which we pull back the Fisher-Rao metric
from the parameter space of several distributions (see 7.4.2), Table C.2 provides the
exact extrapolation mechanisms and implementations of h(z).
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C.4 Details for our implementation and experiments

In this section we present the technical details that we used in our implementation and
experiments. We are currently implementing an open-source version of our code here.

C.4.1 What we mean when we say black-box random geometry

Before we dive into the specific details of our experiments, it is worth noting that they
were all made using the same interface. This is precisely what we mean when we say
that our results open the doors for black-box random geometry: We can define a curve
energy method that is agnostic to the distribution our models decode to.

To hammer this point home, consider the following interface, written in Python:

1 class StatisticalManifold :
2 def __init__ (self , model: torch.nn. Module ):
3 # A model with regularized uncertainty (see Uncertainty

Quantification )
4 self.model = model
5 assert " decode " in dir(model)
6

7 def curve_energy (self , curve: CubicSpline ) -> torch. Tensor :
8 # An energy function that can be minimized using

autodifferentiation .
9

10 dt = (curve [1] - curve [0])
11 dist1 = self.model. decode (curve [: -1])
12 dist2 = self.model. decode (curve [1:])
13 kl = kl_divergence (dist1 , dist2)
14 energy = kl.sum () * (2 * dt ** -1)
15

16 return energy

Notice that the user need only provide a model that implements a decode function which
is expected to return a distribution with proper uncertainty estimates (as described
in Sec. C.3.2). Line 14 is a direct implementation of our derived expression for the
energy (see Prop. C.1.2). Most distributions of interest are available in the Torch
submodule torch.distributions, and similar implementations could be done for other
frameworks.

C.4.2 Shortest path approximation with cubic splines

As we described in the main paper, we use an approximate solution for the shortest
paths based on cubic splines. Let a cubic spline cψ(t) = [1, t, t2, t3]>[ψ0,ψ1,ψ2,ψ3] with
parameters ψi ∈ Rd×1. Also, in our implementation the actual curve is a piece wise cubic
spline, and we optimize the K control points c

¯k
as well. We optimize the parameters using

the approximation of the curve energy {ψ∗k, c¯
∗
k}Kk=1 = argminψ Energy[cψ]. In general,

we can use Prop. C.1.2 as long as we can propagate the gradient through the KL or as in
(C.6) if an explicit closed form solution exists. In this case, we are able to use automatic
differentiation for the optimization of the parameters (as discussed in Sec. C.4.1).

In practical terms, we compute these shortest paths by creating a uniform grid in latent
space and computing, only once, the curve energy for the edges of this grid. After this
expensive computation (which only needs to be performed once) we can use shortest-paths
algorithms in graphs to create a suitable initialization of the geodesic. We fit a cubic
spline to this initialization and then optimize its parameters further.

https://github.com/MachineLearningLifeScience/stochman/tree/black-box-random-geometry/examples/black_box_random_geometries
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Table C.3: This table shows the Variational Autoencoder used in our first experiment (see Sec.
7.4.1). The network for approximating the standard deviation σ leverages ideas from Arvanitidis
et al. (2018), in which an RBF network is trained on latent codes using centers positioned
through KMeans. The operation PosLinear(a, b) represents the usual Linear transformation
with a inputs and b outputs, but considering only positive weights. To compare between having
and not having uncertainty regularization, we use two different approximations of the standard
deviation in the decoder: σUR when performing meaningful uncertainty quantification, and
σ no UR otherwise.

Pulling back the Euclidean vs. Fisher-Rao (Sec. 7.4.1)
Module MLP

Encoder
µ Linear(728, 2)

Decoder
µ Linear(2, 728)

σUR RBF(), PosLinear(500, 1), Reciprocal(), PosLinear(1, 728)
σno UR Linear(2, 728), Softplus()

Optimizer Adam (α = 1× 10−5)
Batch size 32

C.4.3 Models used

In this section we describe, in detail, the models that we used for our experiments (see
Sec.7.4). All the networks that we used are Multi-Layer Perceptrons implemented in
PyTorch.

First, Table C.3 shows the Variational Autoencoder implemented for the experiment
described in Sec. 7.4.1. In the computations without uncertainty regularization, we used
a simpler model for the uncertainty quantification (namely, a single Linear layer, followed
by a Softplus activation). For our second experiment involving a toy latent space, we
also provide the implementation of the respective MLPs in Table C.4. Finally, Table C.5
and C.6 respectively represents the VAE trained for the experiments related to motion
capture (Sec. 7.4.3) and movie rating (Sec. 7.4.6). For the motion capture experiments,
we are training a VAE that decodes to a von Mises Fisher distribution, and for the movie
rating experiments, we decode to a Bernoulli distribution.

All of these VAEs were trained by maximizing the Evidence Lower Bound with different
values for KL annealing which can be read from the different tables. For example, Table
C.5 shows that the KL annealing constant was chosen to be 0.01.

C.4.4 Metric approximation and KL by sampling

When visualizing our latent space as a statistical manifold, we can obtain a direct
approximation of the metric using the KL-divergence between two close distributions
(Proposition 7.3.4). We will show here, in simple cases, how our metric approximation
compares to closed-form expressions.

In the following experiment, our statistical manifold is the parameter space of known
distributions (Beta and Normal). Their Fisher-Rao matrices are well-known (Sec. C.1.1),
and we approximate them by computing the KL-divergence of sampled distributions.
We call Mt the theoretical metric and Ma the approximated metric, and we note
εr = ‖Mt−Ma‖

‖Mt‖ the relative error between the theoretical and approximated matrices.
Here, ‖·‖ denotes the Frobenius norm. For the Normal distribution, we empirically
obtain: εr = 5.32 · 10−4 ± 9.63 · 10−4, and for the Beta distribution, we have: εr =
1.73 · 10−5 ± 1.17 · 10−5.
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Table C.4: This table describes the neural networks used for the experiment presented in Sec.
7.4.2. Following the notation of PyTorch, Linear(a, b) represents an MLP layer with a input
nodes and b output nodes. In each of these networks, we implement the reweighting operation
described in Sec. C.3.2, and we describe the β hyperparameter present in the modified sigmoid
function (Eq. (C.14)). These networks were not trained in any way, and they were initialized
using the provided seed.

Toy latent spaces (Sec. 7.4.2)
Distribution Module MLP Seed for randomness β in σ̃β

Normal µ Linear(2,3) 1 -2.5
σ Linear(2,3), Softplus()

Bernoulli p Linear(2,15), Sigmoid() 1 -3.5

Beta α Linear(2,3), Softplus() 1 -4.0
β Linear(2,3), Softplus()

Dirichlet α Linear(2,3), Softplus() 17 -4.0
Exponential λ Linear(2,3), Softplus() 17 -4.0

C.4.5 Computational complexity

Proposition C.1.1 shows the system of equations required to approximate the pullback
metric in the latent space. Each KL operation requires 2 forward passes from the decoder
to compute, so first we establish the lower bound on the time complexity of the decoder
forward pass. Ignoring all activation function related operations, for an MLP with H
hidden layers, N -dimensional network output, K-dimensional hidden layer output and
single M -dimensional vector input, this lower bound is:

Ω
(
MK1 +KHN +

H−1∑
i=1

MiMi+1

)
(C.16)

For each diagonal element Mii of the metric tensor we need to compute a single KL
divergence, which will require two forward passes through the decoder network giving us
a (lower bounded) time complexity of Ω

[
2
(
MK1 +KHN +

∑H−1
i=1 MiMi+1

)]
for each

element. For the off-diagonal elements we will need to compute the KL three times which
corresponds to six forward passes through the decoder network, which yields a (lower
bounded) time complexity Ω

[
6
(
MK1 +KHN +

∑H−1
i=1 MiMi+1

)]
per element.

C.4.6 Information for the movie preferences experiment

For this experiment we used the MovieLens 25M dataset (https://grouplens.org/
datasets/movielens/25m/). Each cell of the data matrix represents the rating of a user
(row) from 1 to 5 for the corresponding movie (column). In order to fit a Bernoulli VAE
we considered the matrix as binary i.e. if a user has seen a movie (1) or not (0). We then
selected the 60 most popular movies, as well as, 10000 users who have seen between 2
and 30 of these movies. We also verified that all the movies have been seen from at least
600 users. In this way we reduced the size of the dataset, obtaining a realistic scenario
where: 1) some movies are more popular than the others, and 2) we do not include users
that have seen 0 or almost all the movies. We show in Fig. C.1 the number of views for
each movie and the number of movies each user has seen. In Table C.6 we present the
details for the Bernoulli VAE.

https:// grouplens.org/datasets/movielens/25m/
https:// grouplens.org/datasets/movielens/25m/
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Table C.5: This table shows the Variational Autoencoder used in our last two experiments
(see Sec. 7.4.3, 7.4.4). Our motion capture data tracked 26 different bones, and thus we decode
to a product of 26 different von Mises-Fisher distributions.

Decoding to a von Mises-Fisher Distribution (Sec 7.4.3, 7.4.4, 7.4.5)
Module MLP

Encoder (Normal dist.)
µ Linear(3× 26, 90), Linear(90, 2)
σ Linear(3× 26, 90), Linear(90, 2), Softplus()

Decoder (vMF dist.)
µ Linear(2, 90), Linear(90, 3× 26), Linear(3× 26, 3× 26)
κ Linear(2, 90), Linear(90, 3× 26), Linear(3× 26, 26), Softplus()

Optimizer Adam (α = 1× 10−3)
Batch size 16
β in σ̃β -5.5

KL annealing 0.01
Extrapolation mechanism κ→ 0.1

Figure C.1: The numbers of views for the movies and the users.

C.4.7 Information for fitting the LAND model

The locally adaptive normal distribution (LAND) (Arvanitidis et al. 2016) is the extension
of the normal distribution on Riemannian manifolds learned from data. Pennec (2006)
first derived this distribution on predefined manifolds as the sphere and also showed that it
is the maximum entropy distribution given a mean and a precision matrix. The flexibility
of this probability density relies on the shortest paths. However, the computational
demand to fit this model is relatively high, especially in our case, since we need to use
an approximation scheme to find the shortest paths.

In particular, we compute the logarithmic map v = Logx(y) by first finding the shortest
path between x and y, and then, rescaling the initial velocity as v = ċ(0)

||ċ(0)||Length(c),
which ensures that ||v|| = Length(c). In addition, for the estimation of the normalization
constant we use the exponential map Expx(v) = cv(t), which is the inverse operator
that generates the shortest path with c(1) = y taking the rescaled initial velocity v as
input. Also, we should be able to evaluate the metric. While the logarithmic map can
be approximated using our approach (Section C.4.2), for the exponential map we need
to solve the ODEs system (C.1) as an initial value problem (IVP). Note that we fit the
LAND using gradient descent, which implies that the computation of these operators is
the main computational bottleneck.

We provided a method in Proposition 7.3.4, which enables us to approximate the pullback
metric in the latent space of a generative model using the corresponding KL divergence.
Even if this is a sensible approach, in practice, the computational cost is relatively high
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Table C.6: This table shows the Variational Autoencoder used in the movie rating experiment
(see Sec. 7.4.6). The MovieLens 25M dataset has been preprocessed such that it is composed
of 10000 users rating if they have seen some of 60 selected movies. We only select users that
have seen more than two movies and less than 30 movies, to avoid outliers and aim for a more
realistic scenario. We used the same extrapolation mechanism described in the toy experiments
for the Bernoulli: having the probits be 1/2 (see Sec. C.3.2).

Decoding to a Bernoulli Distribution (Sec 7.4.6)
Module MLP

Encoder (Normal dist.)
µ Linear(60, 16), Tanh(), Linear(16, 16), Tanh(), Linear(16, 2)
σ Linear(60, 16), Tanh(), Linear(16, 16), Tanh(), Linear(16, 2), Softplus()

Decoder (Bernoulli dist.)
p Linear(2, 16), Tanh(), Linear(16, 16), Tanh(), Linear(16, 60), Sigmoid()

Optimizer Adam (α = 1× 10−3, ω = 1× 10−7)
Batch size 256
β in σ̃β -3.0

KL annealing 0.01
Extrapolation mechanism p→ 1/2

as we might need to estimate the KL using Monte Carlo. For example, this is the case
when the likelihood is the von Mises-Fisher. This further implies that fitting the LAND
using this approach is prohibited due to the computational cost. Especially, since we
need to evaluate many times the metric and its derivative for the computation of each
exponential map. Hence, in order to fit the LAND efficiently, we used the following
approximation based on Hauberg et al. (2012).

First we construct a uniformly spaced grid in the latent space. Then, we evaluate the
metric using Proposition 7.3.4 for each point on the grid getting a set {zs,Ms}Ss=1 of
metric tensors. Thus, we can estimate the metric at any point z as

M(z) =
S∑
s=1

w̃s(z)Ms, with w̃s(z) = ws(z)∑S
j=1 ws(z)

and ws(z) = exp
(
−||zs − z||2

2σ2

)
(C.17)

where σ > 0 the bandwidth parameter. This is by definition a Riemannian metric as a
weighted sum of Riemannian metrics with a smooth weighting function. In this way, we
can approximate the pullback of the Fisher-Rao metric in the latent space Z in order to
perform the necessary computations more efficiently.
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