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Summary (English)

In recent years, machine learning and artificial intelligence systems have seen great
success across a variety of domains. These systems are fueled by their underlying
training data, which often stem from extensive historical datasets. Inspired by
these advancements, the collection of data has exploded, and significant effort has
been funneled into improving the models. Nonetheless, the data sources used to
train machine learning models are often unstructured, noisy and encode historical
biases. These aspects are frequently neglected during model optimization, and
can seep into the trained model, resulting in poor or biased predictive inference.

The goal of this thesis is to shift the focus towards the data by assessing and
developing data reduction methods for learning summary data representations,
which capture the essential information and are representative of the original
data source. En route to this, an important consideration rests on defining and
evaluating what representative data entail, and how they may be appropriately
extracted.

The thesis is divided into two parts. Firstly, part I presents an overview of
current practises in data reduction, which demonstrate how dimensionality and
numerosity reduction can be used to learn smaller data representations that can
lead to reduced computational burdens and improved inference. Part II of the
thesis presents the research contributions, which highlight and address various
intricacies of the problem by evaluating the ways data can be representative of
a target population, and how such data representations can be learned across
several scientific domains.



Summary (Danish)

Maskinlæring og kunstig intelligens har haft stor succes over de sidste år på tværs
af en række forskellige domæner. Disse systemer er drevet af deres underliggende
træningsdata, som typisk stammer fra omfattende historiske datasæt. Fremskrid-
tet har inspireret en tiltagende indsamling af data, og en betydelig indsats for at
forbedre modellerne. Den indsamlede træningsdata er dog ofte ustruktureret og
indeholder historiske bias. Dette negligeres hyppigt under modeloptimering og
kan resultere i dårlige eller uretfærdige forudsigelser fra den trænede model.

Målet med denne afhandling er at flytte fokus mod data ved at vurdere og
udvikle datareduktionsmetoder til at lære datarepræsentationer, som fanger
den essentielle information og er repræsentative for den originale datakilde.
Dette inkluderer at definere og vurdere, hvad repræsentative data indebærer, og
hvordan de kan udvindes hensigtsmæssigt.

Afhandling er opdelt i to dele. Del I giver et overblik over nuværende praksis i
datareduktion, som viser, hvordan dimensionalitet- og numerositetsreduktion
kan bruges til at lære mindre datarepræsentationer, der kan reducere computer-
mæssige ressourcer og lede til bedre inferens. Del II af afhandlingen præsenterer
forskningsbidragene, som fremhæver og adresserer forskellige problemstillinger
ved at evaluere, hvordan data kan være repræsentative for en population, og hvor-
dan sådanne datarepræsentationer kan læres på tværs af en række videnskabelige
domæner.



Preface

This thesis was prepared at the Section for Statistics and Data Analysis under
the Department of Applied Mathematics and Computer Science at the Technical
University of Denmark (DTU) in partial fulfillment of the requirements for the
degree of PhD. The project was financed by a university alliance scholarship
between the University of Bergen (UiB) and DTU. The project was supervised
by Associate Professor Line Katrine Harder Clemmensen and co-supervised by
Professor Bjarne Kjær Ersbøll from DTU Compute, Denmark and Professor
Saket Saurabh from UiB, Bergen, Norway. The project was conducted at DTU
from September 2020 - September 2023.

The thesis consists of two parts. The first part introduces the background,
methodology and context of the research. The second part presents the research
outcomes and contains 5 research contributions (2 published, 2 submitted for
review and 1 preprint) which evaluate and develop techniques for data reduction
using methods at the intersection of statistics and machine learning. The first
two papers demonstrate techniques for empowering neural network autoencoders
with transparent architectures to reduce the dimensionality of the original data
and learn a compressed data representation imbued with high interpretability.
The third paper concerns data representativity and evaluates what it means for a
data summary to be representative. The final two papers demonstrate sampling
and clustering approaches for learning data representations which can be used
as curated training data to reduce the bias of downstream models.

Lyngby, 31-August-2023

Rune Dodensig Kjærsgaard
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Chapter 1

Introduction

The goal of this thesis is to advance the progress of research within data reduc-
tion and data representativity for machine learning and artificial intelligence
systems. The thesis develops, discusses and evaluates methods for obtaining
representations, which summarize and maintain the characteristics and inherent
information in the original data. These surrogate data representations can be
viewed as curated representative samples or summary representations.

The target audience of this thesis is practitioners who are looking to develop
techniques for data reduction, or to understand and evaluate the connection
between data representativity and appropriate inference. Fundamental under-
standing of machine learning and statistics is recommended, but not required to
understand the thesis.

This chapter gives a summary of the thesis by first outlining the motivation
and background of the research. Next, the primary scientific contributions and
research objectives are specified. Finally, the remaining sections of the thesis are
described.



2 Introduction

1.1 Motivation and Background

In recent years the acquisition of data has exploded, causing large datasets to
appear in almost every industry of our modern society. The value of extracting
information from this data is becoming rapidly apparent, and the insights gained
are increasingly used to guide significant decisions that influence people at
all levels of society. These insights are largely derived from models trained on
extensive datasets, where for the past decade the dominant paradigm has involved
a model-centric view [Unb22]. Under this paradigm, the data are kept mostly
unchanged, while the models are adjusted to increase performance. This has
led to significant improvements on various benchmark problems. However, the
underlying data used to train these models are often polluted by undesired noise,
imbalance, missing values, and data irrelevant to the problem at hand [KS19].
The previous paradigm fails to sufficiently address these issues [ZBL+23a], which
has sparked the advent of a new point of view: data-centric AI, wherein the
focus is shifted towards the data. Data-centric AI may be defined as a systematic
effort towards developing, engineering, and maintaining data for successful AI
systems [ZBL+23a, NG-21, JMG22]. The data-centric perspective encompasses
a wide spectrum of tasks that can be broadly categorized into three objectives:
inference data development, training data development and data maintenance
[ZBL+23b]. Fig. 1.1 illustrates this high-level overview.

Figure 1.1: High-level overview of data-centric AI.
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Inference Data Development: Inference data, also known as test data,
are used by machine learning systems to assess model performance. These
datasets are developed for both in-distribution and out-of-distribution evaluation.
Developing specific inference sets, for instance for sub-populations within the
data, allows practitioners to gain more granular insights into model capabilities.

Training Data Development: Training data form the bedrock of machine
learning systems. For this reason, an important task is to gather or produce rich
training data, which can be leveraged to tune model parameters and ultimately
allow inference. This task spans several sub-categories including data collection,
labeling, transformation, augmentation, and reduction.

Data Maintenance: Data maintenance refers to monitoring the quality and
reliability of data and involves the sub-tasks of data storage and retrieval, data
understanding, and data quality assurance. Data quality assurance may be
supported by quantitative measures which ensure that the data support the
purpose for which they were collected. These tasks act in a supportive role to
assess whether the training and inference data are reliable and of high quality
[JPN+20].

This thesis studies training data development via construction of reduced data
representations. However, in order to evaluate the data quality and down-
stream inferences made from these representations, the topics of inference data
development and data maintenance will also be addressed.

In the modern era we are faced with increasing amounts of data, which accelerate
computational costs and may be highly redundant, imbalanced, and unstructured.
This motivates the need for data reduction techniques, which lower the complexity
by identifying reduced representations that maintain the characteristics and
statistical properties of the original data. These techniques not only reduce
the computational costs of downstream analysis and storage [FHL14], but also
allow models to focus on the essential information, which can enhance accuracy
and interpretability [XLZ+19]. This is critical as the original data volume
is sometimes so large that it becomes impossible to process the entire data
population. Furthermore, while vast amounts of data are generally thought to
be representative by definition, this is not necessarily the case [big19]. As we
draw conclusions from data, it is critical to evaluate what these data represent,
and which inferences they allow us to make. Even large-sized datasets can
be non-representative for specific tasks or sub-groups within the data, which
translates to lower quality results. Identifying balanced reduced representations
may allow us to mitigate these issues [CKLV17].



4 Introduction

Data reduction can be broadly categorized into two regimes: numerosity and
dimensionality reduction [Gho21, ZBL+23b]. Consider n data instances {xi}ni=1

occupying a p-dimensional space ∀i ∈ {1, ..., n} : xi ∈ Rp, where the data in-
stances form the matrix X = [x1, ...,xn] ∈ Rn×p. Numerosity reduction refers
to a reduction in the number of data instances (cardinality) of X from n to
m ∈ (0, n]. That is, we are looking to identify (or generate) informative instances
to construct a new data representation X̃ ∈ Rm×p. Numerosity reduction can
lead to simpler and yet representative samples that not only alleviate compu-
tational costs but can also mitigate inherent data biases [PKDN15]. On the
other hand, dimensionality reduction refers to a mapping from the original data
X in p-dimensional space to a new representation X̃ in a lower dimensional
space r ∈ (0, p], where X̃ ∈ Rn×r. Dimensionality reduction can bring computa-
tional benefits [WBJ+22] while also increasing interpretability [CWY+23] and
addressing the curse of dimensionality [VF05].

Figure 1.2: Data reduction as a sub-field of data-centric AI.
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1.2 Research objectives and contributions

This thesis provides a study on data reduction and data representativity by
assessing current methods and their limitations. We study machine learning as
well as algorithmic based approaches for obtaining summary representations,
which maintain the characteristics and inherent information from the population.
In line with this, the PhD thesis will address the following research objectives:

1. Research, evaluate and develop methods for obtaining surrogate data repre-
sentations, which summarize and represent the original data population in
a smaller form that may be used as curated training data for downstream
models.

2. Evaluate the appropriate application of techniques across different domains
by identifying the distinct types of essential information that data reduction
seeks to distill.

3. Develop dimensionality reduction techniques that infuse the reduction
pipeline and learned representation with high transparency and inter-
pretability.

4. Study data reduction techniques that not only reduce data size, but also
reduce inherent data biases existing in the original data.

The research outcomes align with these objectives and take the form of evaluation
and development of novel data reduction techniques. The following contributions
are a result of the research conducted under this PhD thesis:

1. A highly transparent and interpretable deep learning approach for obtaining
a reduced representation of astrophysical spectral data.

2. Introduction of a volumetric loss used in a deep learning setting to learn
an expressive data representation for a downstream linear model, which
supports and expands current practices in explainable AI.

3. Assessing and expanding the taxonomy of representative samples in machine
learning and AI literature, which aid in evaluating how different reduction
methods may be appropriate for application across various tasks and
domains.

4. Alternative sampling approaches to obtain balanced representations with
various applications.

5. A fair variant of probabilistic clustering and the introduction of algorithmic
approaches for obtaining the fair data representation and solution.
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1.3 Paper Contributions

The thesis includes 5 paper contributions. These papers have varying degrees of
publication statuses listed below.

Paper A:
TAU: A neural network based telluric correction framework [KBAR+23].
R. Kjærsgaard, A. Bello-Arufe, A. Rathcke, L. Buchhave and L. Clemmensen
(2023).
Journal: Astronomy & Astrophysics.
Publication Status: Accepted. Publication forthcoming.

Paper B:
Pantypes: Diverse Representatives for Self-Explainable Models [KBC23].
R. Kjærsgaard, A. Boubekki and L. Clemmensen (2023).
Conference: AAAI 2024.
Publication Status: Submitted for review.

Paper C:
Data Representativity for Machine Learning and AI Systems [CK23].
L. Clemmensen and R. Kjærsgaard (2023).
Journal: ACM Computing Surveys.
Publication Status: In preparation. To be submitted.

Paper D:
Sampling To Improve Predictions For Underrepresented Observations In Imbal-
anced Data [KGC21a].
Conference: NeurIPS 2021 - Workshop on Data-Centric AI.
R. Kjærsgaard, M. Grønberg and L. Clemmensen (2021).
Publication Status: Published.

Paper E:
Fair Soft Clustering [KPS+23].
R. Kjærsgaard, P. Parviainen, S. Saurabh, M. Kundu and L. Clemmensen
(2023).
Journal: Journal of Machine Learning Research.
Publication Status: Submitted for review.

The thesis will discuss the research contribution provided by each paper and put
them into context with the overarching data-centric framework. See Fig. 1.3 for
context.
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Figure 1.3: Overview of the paper contributions in the landscape of data-centric
AI. Feature selection and feature extraction based dimensionality
reduction will be explored in Chapter 2 while sampling and sum-
marization based numerosity reduction will be studied in Chapter
3.
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An additional paper has been prepared under the PhD project but is not included
in the thesis. This paper is an early extended conference abstract, which has
since then been significantly expanded upon. The full work is presented in Paper
A.

Paper F:
Unsupervised Spectral Unmixing For Telluric Correction Using A Neural Network
Autoencoder [KBAR+21].
R. Kjærsgaard, A. Bello-Arufe, A. Rathcke, L. Buchhave and L. Clemmensen
(2023).
Conference: NeurIPS 2021 - Workshop on Machine Learning and the Physical
Sciences.
Publication Status: Published.

1.4 Outline of the Thesis

The thesis is divided into two parts. First, the methodology and context of
the thesis are presented under Part I in chapters 2-3. This part gauges data
reduction through the prism of two concepts: dimensionality reduction and
numerosity reduction. Part II contains chapters 4-10 and outlines open problems
and presents the research outcomes of the thesis. These research contributions
are put into context with the research objectives in Sect. 1.2 and the framework
of data representativity presented in contribution C.

Chapter 2 introduces Part I by presenting the fundamentals of dimensionality
reduction, which targets the variables of the original data to produce compact
data representations. Here we assess various approaches that are employed for a
number of data modalities, and discuss their advantages and limitations. We
identify a common trend across the reviewed methods, that despite the strong
expressive power of the derived representations, the reduction pipeline and
associated learned representations often lack transparency and interpretability,
which hinders their applicability for a number of domains.

Chapter 3 presents numerosity reduction, which directly targets the data
instances to obtain smaller representations. Numerosity reduction includes
traditional tools like sampling and clustering. We review approaches in the
literature and identify a common trend that they are most often used to construct
representative samples1 from the original data, which can alleviate computational
costs of succeeding models.

1This term is ill-defined and obfuscates a web of conflicting ideas. Sect. 4.2 and the
associated research contribution C explores this topic in detail.
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Chapter 4 introduces Part II of the thesis by outlining open problems and
summarizing the research outcomes of the thesis. This section also discusses
how the paper contributions relate to the research objectives and how the
contributions may find practical use.

Chapter 5 presents the conclusion of the thesis.

Chapter 6 contains research contribution A: "TAU: A neural network based
telluric correction framework", which studies data reduction in natural sciences.
The paper presents an approach for reducing an extensive dataset of astrophysical
observations into a compact form of a few underlying components that can be
used for downstream inference. This is enabled by a highly transparent and
interpretable reduction pipeline that fuses ideas from neural network autoen-
coders, factor analysis and hyperspectral unmixing. The approach outperforms
the state-of-the-art in inference and is approximately 10,000 times faster.

Chapter 7 contains research contribution B: "Pantypes: Diverse Representatives
for Self-Explainable Models". This paper is situated in the domain of explainable
AI, which aims to imbue AI systems with higher transparency, interpretability and
explainability. The paper develops and evaluates a diversity inducing volumetric
approach implemented in a variational autoencoder for reducing image data
into a compressed form. The compressed form is used both for visualizing and
understanding the input data but is also fed as input to a downstream linear
classifier to draw inference. The contribution demonstrates how the construction
of the compressed representation affects the performance of the model and
impacts the transparency and interpretability of the overall system.

Chapter 8 contains research contribution C: "Data Representativity for Machine
Learning and AI Systems". This paper investigates notions of data represen-
tativity and concludes that despite a ubiquitous appearance in ML and AI
literature, the term representative sample is ill-defined and encompasses a range
of conflicting perspectives. The paper reviews and surveys the various notions of
representativity existing in the literature, and proposes a unified framework of
measurable concepts, which may help organize and assess the representativity
of existing datasets and derived representations. In light of this, the paper also
suggests a guideline of questions related to data representativity to consider
when publishing datasets.
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Chapter 9 contains research contribution D: "Sampling To Improve Predictions
For Underrepresented Observations In Imbalanced Data". This paper studies
sampling in manufacturing data, where data imbalance is common. The paper
introduces three sampling approaches, which can be used to find smaller balanced
representations of the input data. The paper demonstrates how training a model
on these reduced representations results in better predictive performance for
observations that are underrepresented in the original data space. Such sampling
carries implications for manufacturing and production data, but may also find
use in demographic data, where underrepresented observations could constitute
minority sub-groups of individuals.

Chapter 10 contains research contribution E: "Fair Soft Clustering". This
paper extends a recent line of research studying clustering under notions of
fairness. Various notions of fairness exist, but in clustering the dominant metric
involves a measure of balance, which evaluates if observations in different clusters
exhibit balance of protected attributes such as sex or race. Fair clustering
research is largely focused on hard clustering, where cluster assignments are
fully deterministic. Contribution E aims to extend this line of research into
the soft domain, where assignments are probabilistic. The initial dominant
paradigm in fair clustering involves modifying the original data into a reduced
data representation, which can be fed as input to a traditional clustering algorithm
to achieve a balanced solution. We draw on this idea to construct an algorithm to
achieve a theoretically bounded fair probabilistic cluster solution from a reduced
representation of the data.



Part I

Methodology & Context





Chapter 2

Dimensionality Reduction
and Manifold Learning

Dimensionality reduction reduces the number of dimensions in a dataset to
mitigate various detrimental properties related to high-dimensional data. Again,
consider n data instances {xi}ni=1 occupying a p-dimensional space ∀i ∈ {1, ..., n} :
xi ∈ Rp, where the data instances form the matrix X = [x1, ...,xn] ∈ Rn×p.
Dimensionality reduction transforms the original data X ∈ Rn×p into a new rep-
resentation X̃ ∈ Rn×r by identifying a mapping from the original p-dimensional
feature space to a lower dimensional sub-space or manifold of dimension r ∈ (0, p]
[ZAZ+20].

Dimensionality reduction can help mitigate the curse of dimensionality, which
refers to ubiquitous problems arising from high-dimensional data analysis in
various fields of research [D+00]. For instance, as the dimensionality increases,
the volume of the space expands rapidly causing data sparsity. Typically, the
learning of structure in data relies on identifying groups or clusters of objects
with similar characteristics based on for instance density or distance measures.
In high-dimensional data, all objects tend to exhibit sparsity and dissimilarity
in numerous aspects, rendering conventional data structure learning strategies
inefficient. A range of other problems related to combinatorics, optimization and
sampling also arise in high-dimensional data [BKH+21].



14 Dimensionality Reduction and Manifold Learning

Fortunately, high-dimensional data often lie on a low-dimensional manifold
embedded in the high-dimensional space [GMT20]. Dimensionality reduction
works explicitly from this assumption, called the manifold hypothesis [MK20],
and seeks to uncover the underlying manifold by discarding non-informative
dimensions and thereby identifying (or constructing) relevant features.

Dimensionality reduction is useful for various tasks including visualization, noise
reduction and as a general preprocessing step in data analysis [YZL+06]. Di-
mensionality reduction is especially useful in the context of large unstructured
datasets, where visualization is hard and working on the entire data is compu-
tationally intractable. For this reason, computing a compressed representation
which maintains the most salient information is highly useful. Although di-
mensionality reduction may bring various benefits and decrease computational
complexity, it should not be applied too liberally. It must be ensured that a
loss of important information does not occur during the reduction phase. The
specific type of information that is important to maintain is problem specific and
should be considered in conjunction with the chosen dimensionality reduction
approach.

Figure 2.1: A high-level overview of dimensionality reduction. Note that several
other techniques exist and that additional distinctions can be made
to categorize dimensionality reduction methods. Some of these
additional distinctions involve linear versus non-linear, supervised
versus unsupervised and global versus local methods.
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Dimensionality reduction is a rich field of research, and many approaches exists.
Fig. 2.1 shows a simplified overview of the taxonomy of dimensionality reduction
by broadly distinguishing methods between feature selection based and feature
extraction based approaches. Dimensionality reduction techniques can be further
divided into several subcategories not shown in the figure. These sub-categories
include among others linear versus non-linear, supervised versus unsupervised as
well as global versus local methods.

Linear dimensionality reduction uses a linear mapping of data to a lower di-
mensional space. Non-linear methods attempt to discover non-linear manifolds,
where the data of interest is embedded.

Supervised learning relates to models where structured or labeled data is used
to train a model to infer a function that can be used to map new data. For
supervised learning each example is a pair of input data and desired output data.
In contrast, unsupervised learning refers to methods where no data labels are
used and where minimal human supervision is required. Large datasets, where
dimensionality reduction is especially useful, are often unstructured with no
apriori known labels or patterns in the data.

Global dimensionality reduction tries to preserve geometry at all scales, while
local dimensionality reduction is concerned with preserving the local geometry
of the data [ST02]. Global dimensionality reduction methods generally find
representations that better reflect the global structure of the data but comes
with a cost in computational efficiency, which is often higher than in local
methods.

Feature selection works by selecting the most informative features without trans-
forming existing features. This allows feature selection to retain the original
structure and information of the data [KŁ16]. The most informative features
can for example be selected based on a criterion for maximizing correlation to
a target variable. In settings with large data volume feature selection faces
problems relating to ease of deployment, computational efficiency, non-linearity
and universality [BSDG16],[XLZ+19]. Since feature selection involves a com-
binatorial optimization problem of finding the most informative features, the
computational expense can be prohibitively high if the selection is performed on
the global dataset. For this reason, research has been conducted on performing
feature selection on a local sample space [ARK16]. Feature selection methods
are popular for text classification where features might not be numeric. Feature
selection methods include wrappers, filters, and embedded techniques.

Feature extraction generates new informative features by transforming existing
features to a lower dimensional space. Popular feature extraction methods
include principal component analysis (PCA) and linear discriminant analysis



16 Dimensionality Reduction and Manifold Learning

(LDA) [BG98]. Feature extraction has been found to have higher discriminative
power than feature selection [HG15]. However, feature extraction can cause a
lack of interpretability in the generated features. This is problematic when a
clear interpretation of important features is necessary.

There exists an ever-expanding array of dimensionality approaches designed to
handle various problems. What follows is a description and evaluation of some
of the most well-known and widely applied dimensionality reduction methods.

2.1 Factor Based Dimensionality Reduction

Factor analysis is a family of methods used to explain the variances among
correlated variables by means of a smaller set of latent (unobserved) variables
known as factors. Factor analysis prescribes to the manifold hypothesis by
assuming that the variation in the observed variables predominantly stem from
variations in a smaller set of underlying latent variables [Suh05]. Factor analysis
aims to identify these shared variations and represent them mathematically as
linear combinations of the factors, along with additional terms accounting for
residual discrepancies (errors). The general setup for factor analysis can be
expressed in the following form:

X = FL+ ϵ, (2.1)

where X ∈ Rn×p is the (typically standardized) original data matrix, F ∈ Rn×r

is the factor score matrix, L ∈ Rr×p is the factor loading matrix and ϵ ∈ Rn×p

is an error term. This expresses the original observed variables p through a
smaller set of r common factors which are directly related to the original variables
through the loading matrix L.

2.1.1 Principal Component Analysis

PCA [VLG96] is perhaps the most well-known dimensionality reduction technique
and is closely related to factor analysis. It works in an unsupervised manner
by linearly transforming existing features and thus projecting data onto a lower
dimensional sub-space where variation is maximized. This lower dimensional
sub-space is formed by principal components, which can be computed from an
eigendecomposition of the covariance matrix of X, or from a singular value
decomposition of X:

X = UΣV T , (2.2)
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where the columns of X have been centered, U is a unitary matrix, Σ is a
diagonal matrix containing the singular values and the columns of V are called
principal directions (eigenvectors).

Different from factor analysis, PCA does not distinguish between common and
unique variance, but simply tries to account for variance in the observed variables
[Bro15]. This makes PCA domain-agnostic and highly useful for reducing large
sets of variables into a smaller surrogate set of variables across a variety of
problems. Unfortunately, PCA is computationally intractable on very large
datasets due to a complexity of O(p2n+ p3) [GVL13], where n is the number
of observations and p is the number of variables. Additionally, since PCA is a
linear method, it is not suitable if the data lies on a low-dimensional non-linear
space. In these cases, non-linear adaptions of the PCA like kernel based PCA
can be used. Furthermore, attempts to adapt PCA for large scale dimensionality
reduction are also present in the literature [ZY18].

2.1.2 Other Matrix Factorization Techniques

Factor based dimensionality reduction is utilized in a number of related tech-
niques, which all learn linear mixture representations of the original data under
various constraints. These techniques aim to decompose the original data and
approximate it via a low rank representation. Such techniques include non-
negative matrix factorization (NMF) [LS99], independent component analysis
(ICA) [Com94], sparse coding (SC) [OF96] and PCA. These methods are con-
structed with different constraints on the low rank representation, manifesting
as learned representations imbued with different properties. For instance, the
constraints imposed in PCA allow the model to learn features that account for
the directions of greatest variance in the original data, while the non-negativity
constraint in NMF allows its representation to capture constituent parts of the
data and the constraints in ICA allow its representation to capture underlying
statistically independent components of the data. These matrix factorization
techniques are all highly flexible but lack interpretable features. A related tech-
nique, called archetypal analysis (AA) [CB94a, MH10], merges ideas from matrix
factorization with clustering approaches (see section 3.2) to learn an interpretable
representation, that captures distinct or archetypal corners of the data space.
Some of these matrix factorization methods suffer from lack of a unique solution
by consequence of rotational indeterminacy, as well as an unknown optimal
number of components.
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2.1.3 Tensor Decomposition

Tensors are multi-way generalizations of matrices into many dimensions. These
objects serve as a compact way to represent high-dimensional data. A model
based on tensors can generalize the 2-dimensional view provided by matrix
factorization techniques and is particularly appropriate for real-world data
demonstrating couplings across multiple axes.

Tensor decompositions work by extracting sets of smaller representative factor
matrices and core tensors [Cic14] and thereby reduce the dimensionality of a
dataset. Popular tensor based approaches include the Tucker decomposition
[Tuc66] and the more restrictive PARAFAC decomposition [H+70], which imposes
a super-diagonal core tensor. Higher-order tensors can also be expressed as a
connection of lower-order tensors, called tensor networks [Cic14]. These networks
allow for the exploration of hidden structures in high-dimensional data by super
compressing the original high-dimensional data to low-rank core tensors. Tensor
based data reduction has wide applicability in areas such as anomaly detection,
cluster analysis, feature extraction and predictive modeling. Tensor based
approaches can however suffer from high computational complexity [uRLA+16].

2.2 Neighborhood-graph Based Dimensionality
Reduction

Neighborhood-graph based methods reduce the dimensionality of the original
data through a two-step process [MHM18]. Firstly, they construct a weighted
k-neighbors graph, which describes the distances between points in the original
space and thus captures the underlying topological data structure. Secondly,
they compute a projection to a low-dimensional layout of this graph, which
constitutes the reduced data representation. This family of methods is popular
for visualization of very high-dimensional data. Neighborhood-graph based
approaches include among others, Isomap, t-SNE and Laplacian Eigenmaps
[TSL00, VdMH08, BN01]. The fundamental differences between these methods
lie in the details of how they compute the graph and the lower-dimensional
layout [MHM18].

One of these neighborhood-graph based approaches called Uniform Manifold
Approximation and Projection (UMAP) has garnered popularity in recent years.
UMAP is a general-purpose non-linear manifold learning algorithm for high-
dimensional data. It assumes that data is distributed uniformly on a locally
connected and constant Riemannian manifold [MHM18]. The algorithm is
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primarily used for visualization and is competitive with similar algorithms like
t-SNE but can preserve more of the global data structure with less computational
expense.

While neighborhood-graph based dimensionality reduction methods are power-
ful visualization tools, they suffer from a lack of interpretability compared to
the related factor based approaches like PCA. This is because the embedding
dimensions in for instance UMAP are not imbued with any special meaning.
This is contrary to PCA, where the leading principal axes successively describe
the directions of greatest variance in the original data. Moreover, distance
based methods do typically not directly relate to the original data features,
and as such do not provide the equivalent of factor loadings. Furthermore, as
methods like UMAP do not directly model or intrinsically regularize against
noise, it is possible for them to find manifold structure within the noise. Finally,
neighborhood-graph based dimensionality reduction approaches tend to favor
the preservation of local structure from local distances among data points. This
contrasts with a method like PCA, which tend to prioritize the global structure
of pairwise distances among all data points [MHM18].

2.3 Neural Network Based Dimensionality Reduc-
tion

The exponential growth of unstructured data has increased the complexity of
data analysis and called for methods with strong generalization ability that can
work free from human supervision. Advances in artificial neural network (ANN)
research has provided such methods. Cleverly designed network architectures
can perform dimensionality reduction and help identify and extract the most
salient parts of a dataset. ANN approaches of special interest for dimensionality
reduction include autoencoders and convolutional neural networks (CNN).

2.3.1 Autoencoder

Autoencoders have a long history [BK88, HZ94] and are acknowledged for their
ability to learn efficient data representations through dimensionality reduction
[HS06]. Architecturally, the network consists of an input layer, which feeds the
data through a bottleneck of low dimensionality, called the encoder function
f(x) = z. This function maps the input data x ∈ Rp to a hidden layer describing
an unobserved latent representation z ∈ Rr. To reconstruct the input data, this
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latent representation is then passed through a decoder function g(z) = x̂, which
generates the reconstruction x̂ ∈ Rp.

Autoencoders are part of the ANN family and can be trained through mini-batch
gradient descent; a variant of gradient descent that uses a small portion of the
original data to compute an approximate gradient during tanning. Autoencoders
may therefore gain knowledge from large datasets in a computationally efficient
manner. Moreover, autoencoders are very flexible and can incorporate regular-
ization and architectural constraints to modify the network to learn a specific
representation. For instance, autoencoders are typically restricted to ensure they
do not learn the identity function g(f(x)) = x and may be further restricted to
ensure the representation embodies useful properties [GBCB16]. Autoencoders
are trained by minimizing the reconstruction error between the input and output,
for instance by measuring the squared errors:

Lreconstruction(x) = ||x− x̂||22 (2.3)

The loss can then be minimized through a gradient descent algorithm using back
propagation [RHW86].

A general weakness for autoencoders is the amount of training data needed to
learn robust representations. Additionally, autoencoders also face issues with a
lack of interpretability of their hidden representation. Adaptions of traditional
autoencoders with various properties and constraints have been introduced in the
literature to address some of these concerns [WHWW14, FCMR21, VLL+10].

2.3.2 Varational Autoencoder

A variational autoencoder (VAE) [KW13a] is an adaption to the traditional
autoencoder structure. VAEs use variational inference to create a probabilistic
representation of the input data and to impose a distribution over the latent
space. In this way, a variational autoencoder transforms the functions of the
traditional autoencoder into probability distributions pθ(z|x) and pθ(x|z), where
θ parameterize the distributions. The joint distribution of x and z is defined by:

pθ(x, z) = pθ(x|z)pθ(z), (2.4)

where pθ(z) is the prior assumed over z.

To achieve a model that describes the observed data well, the probability assigned
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to the data can be maximized:

pθ(x) =

∫
z

pθ(x, z)dz, (2.5)

where the optimal parameters are given by θ∗ = argmax pθ(x)
θ

.

Unfortunately, computing pθ(x) by marginalizing over z is computationally
intractable, and similarly computing the true posterior pθ(z|x) is also intractable.
The variational inference framework overcomes this problem by introducing an
approximate posterior qϕ(z|x) ≈ pθ(z|x). Thus, the variational autoencoder
setup involves learning a probabilistic encoder, which computes the approximate
posterior distribution qϕ(z|x), and a probabilistic decoder, which computes the
conditional likelihood distribution pθ(x|z).

To train the network a differentiable loss function is needed. The evidence lower
bound (ELBO) provides this:

Lϕ,θ(x) = Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)||pθ(z)), (2.6)

where DKL is the Kullback–Leibler divergence, which measures the distributional
distance between the approximate posterior distribution qϕ(z|x) and the prior
pθ(z). Typically the prior is chosen to be an isotropic Gaussian. Maximizing
Eq. 2.6 is equivalent to maximizing the quality of the reconstruction and at the
same time minimizing the divergence between the approximate posterior and
prior distribution. The latter ensures that the latent space is well organized. Eq.
2.6 can be maximized using back propagation and the reparametrization trick
[KW13b, RMW14].

The fundamental difference between traditional autoencoders and VAEs is that
the VAE latent space is designed to be continuous, which allow for substantial
control over the latent representation. For example, imposing isotropic Gaussian
distributions can make VAEs useful for finding representations with disentangled
properties [HMG+16]. Additionally, the continuous distribution of the latent
space makes VAEs useful for generative purposes and the extraction of essential
data by allowing sampling from the latent space, which ideally represents the
intrinsic structure of the training data. For instance, in [SWXS18] they propose
a framework for learning sparse representations of the intrinsic structure of the
input space for large-scale and high-dimensional data based on the latent space
of a VAE. The compact data representation is then used for anomaly detection.
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2.3.3 Convolutional Neural Network

A convolutional neural network (CNN) is a feed-forward feature extraction
model consisting of an input and output layer, as well as a number of hidden
layers that perform convolutions [FMI83, LBBH98a]. CNNs work by utilizing
successive convolutional layers to extract global and local features from the
input. The convolutions are typically carried out by taking the dot product of a
convolution kernel with the input matrix of a layer. The kernel is then moved
along the input matrix to generate a feature map, which is used as input to the
proceeding layer. Pooling layers (typically average or max pooling) are often
used following convolutional layers. These layers down-sample the feature maps.
Max pooling can be interpreted as feature selection, while average pooling can
be interpreted as feature extraction. In this way a CNN can combine feature
extraction and feature selection. This results in a powerful framework that
successfully constructs complex patterns by using relevant filters. Similarities
exist between CNNs and the visual cortex of animals and humans, where neurons
only react to stimuli from a restricted part from the visual field [VDKDG21].

ANNs utilizing a mix of feed-forward and convolutions layers have seen great
success when applied to image and pattern recognition tasks. Even further,
these types of layers can be incorporated directly into autoencoder based neural
networks to channel the strengths of the various techniques into a combined
framework.



Chapter 3

Numerosity Reduction

Numerosity reduction reduces the size of a dataset by reducing the number
(numerosity) of data instances. That is, in contrast to dimensionality reduction,
numerosity reduction does not operate on the dimensionality of the data, but
rather on the cardinality [Gho21]. This is typically accomplished by sampling
informative instances, or by summarizing multiple data instances into fewer
objects. Again, consider n data instances {xi}ni=1 occupying a p-dimensional
space, where the data instances form the matrix X = [x1, ...,xn] ∈ Rn×p.
Numerosity reduction refers to a reduction in the number of data points in X
from n to m ∈ (0, n] [GC19]. In short, we are looking for informative instances
that allow us to construct a new representation X̃ ∈ Rm×p.

Numerosity reduction is useful when dealing with large-scale datasets containing
an excessive number of instances. In this setting, numerosity reduction can lead
to smaller representations on which downstream modeling can be performed
to alleviate computational costs of training, inference, and storage [HKP12].
Additionally, large datasets usually contain several noisy or redundant instances,
that are either in-significant to, or may even hinder the learning process. Finally,
data imbalance is common in ML applications and here numerosity reduction
may be used to mitigate inherent data biases [PKDN15].
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Like dimensionality reduction, numerosity reduction is a rich field of research
and encompasses a spectrum of techniques. Numerosity reduction contains
among others sampling based approaches and summarization based approaches
[HKP12, KDS+22]. Some works also consider numerosity reduction methods
that do not directly reduce the number of instances, but rather represents the
data in a compact form. These methods include histograms and parametric
numerosity reduction, where a model or data distribution is assumed and the
parameters of the model are estimated and saved in place of the original data
[KTS+12, HKP12]. In this thesis only instance based numerosity reduction is
considered, where the number of data instances is directly reduced.

Figure 3.1: A high-level overview of instance numerosity reduction. Note that
other types of numerosity reduction methods that do not distinctly
reduce the number of instances also exist. These include methods
like histograms and parametric numerosity reduction.

Sampling based approaches reduce the data size by selecting a representative1

subset of data instances [KTS+13]. This type of numerosity reduction may
be viewed as instance pruning [KDS+22], where non-informative or redundant
instances are removed. Typical sampling based methods include simple random
sampling (SRS) and stratified sampling (see Sect. 3.1). The selection of a subset
of ’natural’ non-modified elements from the original data matrix suggests that
sampling based numerosity approaches share similarities with feature selection
in dimensionality reduction, where an informative subset of the original features
is selected.

On the contrary, summarization based approaches create smaller representations
by summarizing, aggregating, or collapsing multiple data instances into fewer ob-
jects [KDS+22]. This is typically achieved by creating representative prototypes

1Here and throughout this chapter, representative is a vague term which may cover numerous
modalities of representation. The topic of data representativity will be explored further under
the research outcomes presented in Part II in Sect 4.2
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that capture the characteristics of multiple data instances using for example
clustering techniques (see Sect. 3.2). These new objects may be synthetic in
nature and thus not exist in the original data matrix. A typical example of
this includes k-means clustering, where cluster centers are mean values of data
instances. In this way, synthetic numerosity summarization suggests similarities
with feature extraction in dimensionality reduction, where new informative fea-
tures are constructed. However, summarization based approaches can also use
natural data instances from the original data matrix, for instance in k-medoids
clustering, where multiple data instances are collapsed and represented by single
data instances (cluster centers) from the original data matrix [KDS+22].

3.1 Sampling Based Numerosity Reduction

Sampling is the idea of selecting a subset of your data, often with the aim that
the sample can represent the original data. Sampling is immediately useful
for improving computational speed, but optimal sampling has also been found
to improve accuracy in various machine learning algorithms [ZZS13]. In the
context of large datasets, sampling can be crucial as parameter estimation on
the complete dataset is sometimes intractable. For this reason, sampling can
be an essential step in reducing the size of the data to make processing and
downstream modeling possible. Furthermore, in cases where it is possible to
perform analysis on the original dataset, this might not be necessary. The
performance of classification algorithms has been found to be only slightly worse
on sampled data, while the execution time is greatly reduced [Alb16].

Sampling is not a trivial task, and the type of sampling used can alter the results
obtained by introducing different biases and thereby invalidating statistical
inference. The combined errors introduced during sampling are often orders
of magnitude higher than errors associated with subsequent analytical steps
[PME05b]. For this reason, careful steps should be taken to ensure samples are
representative2.

Sampling can be divided into probability and non-probability sampling [Sha17a].
In probability sampling every unit has some well-defined probability of being
selected, while in non-probability sampling, like convenience sampling [Sed13],
this criterion is not met. Probability sampling is generally preferred when
possible [Sha17b].

2Again, this should be coupled with an evaluation of what representative means, and an
estimation of the extent to which the sample meets this requirement (see Sect. 4.2).
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Samples are most often designed to represent or reflect the population distribution
or certain population characteristics [Tho12]. This is for instance the case when
conducting population surveys, where a subset of individuals is selected to
represent the overall population and allow for statistical inference on population
parameters. Here, the goal is often to obtain an unbiased sample, typically
thought of as a sample where all objects share the same selection probability
[PM78, Pat16b]. It should be noted that the definition of an unbiased sample
can be unclear [Pat16b] and can either refer to a sample of unbiased (equal)
selection probability, also known as an equal probability of selection (EPS) sample
[KS10, ABM08], or a sample from which an unbiased estimate of a population
parameter can be obtained [WSGG12]. A parameter estimate ŷ is obtained by
applying a statistic ψ on a sample y:

ŷ = ψ(y). (3.1)

The bias of the estimate relies on the interaction between the sample and
statistic. An estimate is unbiased if its expectation is identical to the true value
of the parameter that is being estimated. An unbiased estimate of a population
characteristic (such as diabetes prevalence) can be directly computed by finding
the corresponding prevalence on a EPS sample [PE95]. While an EPS sample
allow direct inference about population parameters, it is also possible to obtain
unbiased parameter estimates from samples of unequal probability of selection
(UPS samples) [WSGG12]. However, extrapolating findings from a UPS sample
to the population is more complicated and typically requires a form of weighting
[MK17]. Despite this, UPS sampling can have various benefits for downstream
modeling by mitigating data imbalance or by allowing models to focus on certain
informative observations [BKH18, WNC05].

What follows is an overview and evaluation of some of the most popular EPS
and UPS sampling techniques that reduce the original data into a smaller form
which may represent distinct aspects of the original data source.

3.1.1 Equal Probability of Selection Sampling

EPS sampling is useful when the goal is to extrapolate results from a sample to
population [PE95], i.e., the goal is to obtain a sample that acts as a miniature
of the population, and from which population characteristics can be inferred.
The most commonly used EPS sampling technique is simple random sampling
(SRS) [SS03], where each unit is selected with equal probability. This sampling
technique has the advantage that it requires little knowledge of the whole
population and introduces minimal bias [APSN13]. However, other more powerful
sampling techniques have been found to generate comparative or better insights
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on data [RKRD17], particularly if the focus is on analyzing specific characteristics
of the data.

Stratified random sampling involves stratifying the dataset into homogeneous
groups (strata) sharing common traits like race or age and drawing a random
sample from each stratum [APSN13]. This type of sampling can ensure that
all strata are represented in the final sample and can allow estimation and
comparisons across strata. However, stratified random sampling is not well
suited if limited knowledge of such strata exists. Additionally, when using this
sampling scheme, a sampling fraction for each stratum must be defined. If this
sampling fraction is common across all strata, then the stratification generates an
EPS sample, which ensures that the sample mimics the population with respect
to the stratifying factor [PE95].

3.1.2 Unequal Probability of Selection Sampling

Unequal probability of selection (UPS) sampling occurs when units are not
sampled with equal probability. This type of sampling complicates inference
about population characteristics, but can empower downstream models trained
on the sampled data, by mitigating data bias or by focusing on informative
observations. The objective of the sampling should be given careful attention,
whether it is to create a representative unbiased sample for population inference,
or if the sampling is used deliberately to target specific useful data instances.

Data imbalance can manifest both in categorical [HYS+17, KŁ16] and continuous
[BTR17, BTR19] data and can be analyzed from the perspective of the target or
input distribution. The most studied scenario involves imbalance in categorical
targets where the majority class vastly outweigh the minority class, posing
problems for machine learning algorithms. Deliberate use of biased sampling to
counteract the effects of imbalance in large datasets has been studied in [BKH18],
where it was found that random under-sampling techniques could effectively
increase accuracy of models trained on the biased samples as opposed to the full
dataset. Under-sampling randomly discards data from the majority class, while
oversampling randomly over-samples from the minority class. The imbalance
problem is widely studied in the data mining and ML communities and learning
from these imbalanced sets is becoming increasingly important in various fields
such as medical monitoring and fraud detection [CJK04].

Other UPS sampling methods are inspired by the field of active learning, where
informative data points are used in the sampling with the aim of achieving high
accuracy on ML models. These methods have been found more effective than
random sampling especially on imbalanced datasets [WNC05], [ZZS13].
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3.1.2.1 Coresets

Coresets are defined as problem specific small sets of (usually weighted) points
that accurately represent the original (big) data, such that running a model
on the coreset will result in a solution that is provably close to the solution on
the full dataset [FSS20]. This means that for the correct coreset construction,
applying for instance k-means clustering on the coreset will approximate the
results of performing k-means clustering on the full dataset.

Coresets are often designed to be composable, meaning that the union of a pair
of coresets is also a coreset for the underlying input [FSS20]. This means that
these coresets can be constructed on small subsets of the original data indepen-
dently, making the method suitable for distributed algorithms and streaming
environments. Coresets adhere to the data-centric perspective in the analysis of
large data sources, where the focus is moved away from computational efficiency
of existing methods towards the reduction of big data. Coresets have been
demonstrated for various base problems relating to clustering, classification,
and regression, but certain problems have also admitted impossibility results,
demonstrating that the specific task does not admit a strong coreset (a specific
type of coreset that approximates the cost function loss for every query of a
problem, not just the optimal one). One such problem is logistic regression
[MS18, MSSW18].

Coresets can be constructed in several ways, but usually involve non-uniform
importance sampling, where important data instances are assigned weights
and sampled accordingly [Fel20]. However, the first coresets used for covering
problems were based on cluster summarization [AP03].

Coresets are typically not employed to derive insights about population param-
eters or to discover latent patterns in the data, but rather used to reduce the
computational complexity of performing certain base tasks on the original data
source. This means that coresets are very task dependent and the construction
for new tasks can be hard to design [Fel20].

Finally, coresets originate from computational computer science and computa-
tional geometry, where strong theoretical guarantees are customary but where
there is usually no assumption that a given dataset is a set of independent and
identically distributed (i.i.d.) samples from an underlying distribution. This
means that unlike in ML, the topic of generalization error is usually given little
attention in classical coreset research [Fel20], and consequently they are seldom
evaluated on an independent test set. [CGS18] seek to address this gap by
introducing Wasserstein measure coresets, which aim to minimize the general-
ization error on the coreset with respect to the distribution of the original data.
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This is achieved by minimizing the distributional distance from the original
dataset to the coreset via the Wasserstein metric. However, the effectiveness of
the approach is limited to the available statistical knowledge of the underlying
(possibly unknown) data distribution.

3.1.2.2 Determinantal Point Process

A determinantal point process (DPP) [KT+12a] is a sampling based technique,
which describes a probability distribution over subsets of the original data matrix
that can be used to sample diverse sets. DPPs originate from random matrix
theory [MG60] and physics [Mac75], where they were first used to describe the
repulsive forces existing between fermions (a category of elementary particles
containing for instance electrons), which by the Pauli exclusion principle cannot
occupy the same quantum state. This repulsive force is modeled precisely by the
negative correlations expressed by a DPP.

Recently DPPs have gained attention in the ML community due to their ability to
draw highly diverse sets of points across a range of domains and data modalities
including videos, images, documents, recommendations systems and sensors
[GCGS14a, KT+12a, LB12a, ZKL+10a, KSG08a].

More specifically, DPPs describe a distribution over subsets, such that the
sampling probability of a subset is proportional to the determinant (hence
determinantal) of an associated sub-matrix of a positive semi-definite kernel
matrix. The kernel matrix describes the similarity between feature vectors of the
original items through a kernel function Gij = g(vi,vj). The kernel is used to
model negative correlations between items ensuring that items of similar feature
vectors are not likely to co-occur. Various types of kernels are available that each
bring their own advantages. One such kernel is the radial basis function (RBF)
kernel Gij = e−γ||vi−vj ||2 , where γ = 1

σ2 and σ is a free parameter indicating
the length scale of the kernel.

The most popular kernel is the linear kernel, which results in a similarity function
of inner products known as the Gram matrix Gij = ⟨vi,vj⟩. The linear kernel
can be constructed from the original data matrix in the following way [Gha21]:

G = XTX, (3.2)

where G ∈ Rn×n is the Gram matrix and X ∈ Rp×n is the original data
matrix. Note that the data matrix has the n data items as columns in this
setup. The determinant of the Gram matrix expresses the (squared) volume of
the parallelotope (a generalization of parallelograms to arbitrary dimensions)
formed by the feature vector columns of the original data matrix X.



30 Numerosity Reduction

In a DPP, the sampling probability of a subset of items Y from X is proportional
to the determinant of an associated sub-matrix GY in G [KT+12a]:

PG(Y ) ∝ det(GY ), (3.3)

where the sub-matrix GY refers to the restriction of entries in G indexed by
the items in Y . Per definition GY = [Gij ]i,j∈Y and thus det(GY ) is a minor.
Due to the geometric nature of the linear kernel, the sampling probability of the
subset Y is directly proportional to the |Y |-dimensional volume spanned by the
feature vectors of the subset. This causes the sampled items to express a high
volume and thus a high (geometric) diversity.

3.2 Summarization Based Numerosity Reduction

Summarization based numerosity reduction reduces the original data by repre-
senting or collapsing numerous data points into groups, which can be represented
by single entities or prototypes. This is typically achieved through clustering
algorithms, which seek to identify patterns in the data and to partition the datas-
pace into groups or clusters with high similarity based on some notion of distance
[HPT22]. Each of these clusters may then contain a representative object to
which the cluster items are mapped. Each cluster is typically designed to contain
a subset of items, where each item expresses high similarity to other items in the
same cluster, and high dissimilarity towards items in other clusters. Creating
reduced representation in this way can bring benefits related to visualization
and interpretation of complex data but can also be used as a preprocessing step
for downstream modeling [KDS+22, KU12].

3.2.1 Traditional Clustering Methods

Some of the most common clustering techniques include k-means and k-medoids
clustering. These techniques aim to minimize the distances (maximize similarity)
between the original items and their assigned cluster centers. K-means clustering
determines the representative object ϕj for the jth cluster based on the mean
value of items in the cluster, while k-medoids constrains the representative object
to be part of the original dataset. The loss for these algorithms may be expressed
as [CY10]:

Lk =

k∑
j=1

∑
x∈Cj

d(x,ϕj), (3.4)
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where d(·) is a metric (distance function), x is a data point in cluster Cj , and
ϕj denotes the representative object of Cj to which the data point x is mapped
[CY10]. Let D be the set of all data points, then for k-medoids clustering, ϕj ∈ D
and for k-means clustering ϕj ∈ Rm for D ⊆ Rm, m ∈ N. The distance metric
in k-means is the squared Euclidean distance d(x,y) = ||x− y||2 [BGK+18].

These techniques can be used as a preprocessing step to reduce the original
dataset into a representative set of cluster prototypes on which downstream
modeling can be performed. This can significantly reduce the computational load
of for instance power market models [KU12]. However, it should be carefully
evaluated what trade-offs this reduction entails, both in terms of a potential loss
in predictive performance and the efficiency of the reduction.

3.2.2 Fair Clustering

As in sampling, clustering may end up propagating or amplifying inherent
data biases from the original population to the reduced representation. This
can ultimately cause biased inference for models trained on the representation
[CMM21] and is critical if the clustering is performed on demographic data to
determine for instance job or loan applications. Bias mitigation efforts have been
considered for clustering algorithms, where the clustering objective is changed to
incorporate notions of fairness. Various notions exists and are primarily divided
between group-level and individual-level fairness [CMM21]. In group-level fair
clustering a notion of balance is usually adopted as the fairness metric. This
notion considers a given clustering fair if the balance of a protected or sensitive
attribute like race is preserved in the final clustering. In fair clustering these
sensitive attributes are represented by colors p ∈ P assigned to each data point.
To formulate this, consider a set of points D partitioned into a set of clusters C.
Then the balance may be measured by comparing two fractions rD,p and rc,p
indicating the color proportion in the overall dataset D and the color proportion
in a given cluster c ∈ C. These proportions can be used to construct an overall
balance fraction Rc,p =

rD,p

rc,p
used to define the balance of the complete cluster

solution:

B = min
c∈C,p∈P

min
(
Rc,p,

1

Rc,p

)
, (3.5)

where B is the balance and Rc,p =
rD,p

rc,p
is a fraction for a given cluster c and

color p [CMM21]. By construction B ∈ [0, 1] with higher balance being fairer.
Optimal balance (B = 1) is achieved when every cluster share the same color
fraction rc,p = rD,p ∀c, p, and complete imbalance (B = 0) is obtained when a
single cluster becomes monochromatic containing no members of a protected
group rc,p = 0.
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Group-level fairness is considered for k-center and k-median clustering in [CKLV17]
using a notion of balance. They provide a solution to the problem by decompos-
ing the original dataset into a reduced representation of fair micro-clusters called
fairlets. Traditional k-center or k-median clustering can then be performed on
the reduced representation to obtain a final cluster solution that is optimal under
the fairness constraint.

3.2.3 Embedded Clustering

The notion of distance (or dissimilarity) is central to clustering algorithms.
This notion relies both on the choice of distance metric as well as the chosen
representation of the data instances in feature space. A standard choice may
consider the Euclidean distance in the original p-dimensional feature space of
the data X ∈ Rn×p. However, this choice is not necessarily optimal for data
partitioning, as some features may express more discriminative capacity than
others [KU12]. Moreover, as alluded to in Chapter 2 on dimensionality reduction,
high-dimensional data can cause sparsity in the sample space manifesting as
observations that are dissimilar in various ways. These problems can be overcome
through dimensionality reduction as a preprocessing step, where clustering may
then be performed in an embedded feature space [XGF16, KU12] enjoining
numerosity and dimensionality reduction into a combined framework. This
approach can be implemented on a deep neural network foundation to jointly
optimize the embedding space and clustering objective.

In [XGF16] a deep autoencoder neural network is used on image data to learn
an encoding from the original data space X to a lower dimensional latent space
Z. The decoder is then discarded, and the latent space coordinates are used as
the input to a KL divergence based clustering scheme. Other works [GBH+22]
based in explainable AI (XAI) adopt a similar structure in a self-explainable
VAE model and create a reduced representation of similarity scores between
observations and optimized clusters representatives in latent space. This reduced
representation is then fed as input data to a linear classifier in a supervised
classification scheme to corroborate overall model predictions with explanations
based on similarity between input images and learned prototypes. Here the
decoder is not discarded, but rather maintained to provide decoded images of
prototype appearances, increasing the transparency of the model.
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3.2.4 Dataset distillation

Dataset distillation (also referred to as dataset condensation) is a recent domain
of research that has attracted attention in the deep learning community. These
techniques aim to distill the knowledge of a large complex training dataset
(denoted as T) into a smaller dataset of a few informative synthetic training
instances (denoted as S) such that training a model on the distilled data yields
approximately the same results as on the original data.

Dataset distillation is similar to coreset selection but disregards the typical
coreset restriction of uneditable data instances [YLW23], allowing for highly
reduced representations to be learned without significant loss in accuracy for
downstream models. Dataset distillation is typically performed by either treating
the distilled data as a hyperparameter in a data learning network, called the
meta-learner framework, or by matching the influence of the distilled and original
data on trained models, called the data matching framework [LT23].

In the meta-learner framework, an inner learning algorithm is injected into an
outer data learning algorithm. A bilevel optimization scheme is then carried
out to simultaneously i) optimize the parameters of the inner algorithm by
minimizing the (training) loss on the distilled data S in standard supervised
fashion, and ii) update the distilled dataset S learned in the outer algorithm
to minimize the (validation) loss of the inner model on the original dataset T.
The meta-learner framework has demonstrated powerful performance, but the
bilevel optimization is computationally expensive by consequence of the required
second-order derivative computations.

In the data matching framework, the synthetic dataset S is optimized to reflect
the influence of the original training dataset T on model training. This influence
can be measured in various informative spaces such as parameter, gradient
or feature spaces. In [CWT+22] they match the training trajectory on the
distilled and original data by minimizing the distance between learned parameters
at each learning step. This allows them to learn a small set of informative
images that distill popular image datasets such as CIFAR-10 and ImageNet
[KH+09, RDS+15]. However, the learned reduced representation from such
approaches has been found to exhibit large discrepancies to the distribution of
the original data. In light of this, [ZB23] presents an approach to match the
data distribution of T and S in embedded feature spaces.

While dataset distillation techniques remain powerful tools for speeding up neural
network architecture searches [EMH19] and preventing catastrophic forgetting
in neural networks [ZNB22] (continual learning [KPR+17]), they pose certain
limitations.
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Dataset distillation aims to distill knowledge from the original dataset into the
learned synthetic representation. However, knowledge is an abstract concept,
and the difference in expressed knowledge is often measured indirectly through
proxy losses [LT23]. The interpretation of what knowledge entails guides the
choice of proxy loss and ultimately affects the results. Under the meta-learner
framework, the knowledge difference between T and S is measured by the loss
on the original dataset T for a learner trained on S, and in the data matching
framework the knowledge difference is measured through similarity of a series of
informative spaces such as parameters or features. No consistent definition has
been cemented for the concept of knowledge, which remain a limitation for the
underlying theory of the techniques [LT23].
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Research Outcomes





Chapter 4

Summary and Discussion of
Research

This chapter presents and summarizes the research outcomes of the thesis. The
research outcomes fall into the three categories of dimensionality reduction, data
representativity and numerosity reduction. Sect. 4.1 presents papers A and B
studying dimensionality reduction approaches for spectral and image data. Sect.
4.2 present paper C, which concerns data representativity. Sect. 4.3 presents
papers D and E on numerosity reduction in manufacturing and population based
data.

A large portion of current research in data reduction (such as coresets and data
distillation techniques) centers on ideas from the perspective of reducing the
data, while retaining the knowledge, structure, or influence of the original data.
This type of knowledge extraction attaches the performance of models trained
on the reduced data to the performance of models trained on original data
and may not be optimal if the original data is noisy or imbalanced. Here, the
original data may encode hidden information, which could be lost if the reduced
representation is sought matched to the original data. In such settings, the data
reduction pipeline can be imbued with certain properties that accommodate the
dataset and task at hand, such as i) for imbalanced data a diverse representation
and balanced inference for downstream models is preferred or ii) for noisy data,
the data may originate from variations on a few underlying components and
the reduced representation should encapsulate these while disregarding noise
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(similar to factor analysis). Finally, a third general property may be suitable to
address growing concerns against ML transparency; iii) in situations where the
data reduction pipeline modifies the input instances, the modification should be
transparent, and the learned representation should be interpretable. The research
contributions of this thesis aim to develop novel data reduction techniques for
noisy or imbalanced datasets that imbue the data reduction pipeline with those
properties, so as to reduce the data in a more appropriate manner for the given
dataset and situation.

4.1 Dimensionality Reduction Contributions

Dimensionality reduction can be used to encapsulate the original data in a smaller
representation by extracting salient structure that is not readily discernible. Such
reduced representations can aid not only in data visualization but can also be used
as training data for downstream tasks. Dimensionality reduction approaches
have been applied to various problems in the literature with great success,
particularly using powerful deep learning based frameworks such as autoencoders.
Nevertheless, these models have received criticism concerning model opaqueness
and a consequent lack of interpretability of the latent space [FLTW20, LLL+23].
This thesis presents two autoencoder based research contributions addressing
these concerns. These contributions demonstrate how the specific design as well
as the information extracted by the networks differs in accordance with the
scientific domain of the application.

Paper A
TAU: A neural network based telluric correction framework

Dimensionality reduction approaches have spread to various scientific domains
and proved a vital tool in extracting information from large unstructured datasets.
One such field of research is astrophysics, where vast quantities of data are being
gathered every second by powerful instruments. These data often contain faint
signals submerged in a sea of multifaceted noise. Understanding, modeling, and
correcting for this noise is critical in obtaining the precision required to detect the
dim signals emitted by distant celestial objects (such as Earth-like exoplanets).

The majority of astrophysical data is gathered by ground-based telescopes, where
a significant part of the noise budget originates from absorption of photons
(light) in the atmosphere of the Earth. This type of absorption is known as
telluric absorption (or telluric contamination) and acts by obscuring the signal
of interest.
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Sophisticated synthetic approaches based on advanced physical models have been
employed to model and remove the telluric contribution from observed spectra
[SSN+15, KNS+15]. However, these models are based on our current understand-
ing of the underlying physical interactions and are limited by imprecision in the
knowledge we have on external factors to an observation such as molecular line
lists, which are required to compute radiative transfer solutions (solutions for
the propagation of light through a medium such as an atmosphere). Data-driven
empirical initiatives have been explored to circumvent this problem by directly
working on the observed data. One such initiative uses PCA [AADD+14] in
an effort to decompose observed spectra into their underlying noise and signal
components. This approach however has various drawbacks including a lack of
flexibility, computational efficiency, and interpretability.

The first research contribution of this thesis is the introduction of a novel
autoencoder based approach for telluric correction, which addresses the various
intricacies of the problem and outperforms the state-of-the-art synthetic telluric
correction approach at a significantly reduced computational expense. We call
this framework TAU (Telluric AUtoencoder). TAU is inspired by the discipline
of hyperspectral unmixing, where mixed spectral components are disentangled
from hyperspectral data. The network incorporates prior information of the
underlying physics and enforces this on the learned representation with various
constraints to achieve high transparency and interpretability of the latent space
and extracted components.

We train the network on observed solar spectra from the HARPS-N [HAR]
(High-Accuracy Radial-velocity Planet Searcher for the northern hemisphere)
spectrograph mounted on the 3.6 meter telescope Telescopio Nazionale Galileo
(TNG). This instrument has been observing the Sun every 5 minutes of clear skies
for the past 5 years amounting to approximately 75,000 observations [DCS+21].
Each of these observations contain signal across the optical wavelength regime
[3830 Å - 6930 Å] split into 69 spectral orders each containing 4096 pixels. This
amounts to a total of 69× 4096 = 282,624 pixels (or features) per observation.
We operate spectral order wise and compress the data in the autoencoder network
from a dimensionality in the input layer of p = 4096 to a dimensionality in the
latent space of r = 3.

Each observation contains an unknown mix of the inherent solar signal and
additional contamination (absorption) from H2O and O2 molecules in the at-
mosphere of Earth. The network is designed such that the three-dimensional
latent space represents the individual component abundances of the solar, H2O
and O2 components. After network training, the telluric H2O and O2 spectral
signatures can be extracted from the corresponding weights of the decoder.
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The approach thus finds a highly reduced representation by structuring the
mixed signals in the original data into individual disentangled components and
associated abundance weights, which can be used for downstream telluric removal
on new observations. We publish the network code and extracted components as
an open-source code project to aid scholars in applying TAU on their own data.

Paper A mainly addresses research objectives 1 and 3. The paper presents an
approach for data reduction in natural sciences where the essential information
to extract typically relates to physical phenomena governed by physical laws.
We demonstrate how to distill this information by respecting known physical
properties of the system and integrating them directly into the design of the
network to achieve a high transparency and interpretability of the data reduction
pipeline. The H2O and O2 components from the reduced representation can
be used as training data for downstream models to learn the correct telluric
abundances and remove the telluric contamination.

Paper B
Pantypes: Diverse Representatives for Self-Explainable Models

Image classification is another field of research where dimensionality reduction has
proven highly effective. Here dimensionality reduction is typically used to learn
useful representations in a black-box nature through a cascade of encoding layers.
The reduced representation can then be fed as input to a downstream classification
algorithm to obtain the class predictions. Such algorithms are increasingly used
to support important decisions, which has sparked a growing demand for higher
model transparency. To meet this demand, the field of explainable AI (XAI)
has emerged. This field uses a variety of approaches to achieve higher model
interpretability, transparency and trustworthiness. One such approach, known
as a prototypical self-explainable classifier, is based on embedded clustering.
Instead of forming predictions directly from the full latent space, these classifiers
construct a reduced characterization of prototypical class representative objects
and measure the latent space similarity between observations and prototypes.
The class representative objects are designed to capture sub-variations within
the classes such as different styles of handwritten digits in the MNIST dataset
[LBBH98b] or variation in facial features in individuals from facial image datasets.
The similarity scores can then be fed as input to a linear classifier, allowing
the model to derive and explain inference based on the prototype similarities
[GBH+22].

Despite a growing effort in XAI to construct transparent self-explainable models
(SEMs), there is still a lack of attention given to the diversity expressed by the
reduced representation in latent space.
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Diversity is typically ensured by forcing the learned prototypical objects to
capture non-overlapping information [VL20] through latent space orthogonality
constraints. However, non-overlapping orthogonal information can still be learned
in a small region of the input space, leading to reduced interpretability and data
representation by the prototypes. Image classification models have historically
been trained on biased data, where certain majority sub-populations of the
data vastly outweigh minority sub-populations [BG18b]. Without sufficient
bias mitigation efforts, this bias can propagate into the learned prototypes and
ultimately cause biased inference.

Paper B presents the second research contribution of this thesis, which addresses
these issues by introducing a new family of prototypical objects for SEMs
designed with high latent space diversity in mind. We call these objects pantypes
and promote their construction through a novel volumetric loss inspired by the
theory of determinantal point processes. We implement the pantypes in a self-
explainable variational autoencoder model [GBH+22]. Pantypes can empower
prototypical self-explainable models by occupying and representing dissimilar
regions of the latent space leading to better model interpretability and fairness.

Pantypes share a number of similarities with archetypal analysis (AA), which
seek to learn distinct archetypal aspects of the data, such that data instances
can be described by a convex combination of the archetypes. However, the linear
combination part of AA reduces its applicability for explaining feature spaces
generated from non-linear combinations (such as image transformations). Non-
linear reformulations of AA have been presented in the literature [vDBA+19],
which is achieved through an AA regularization in a neural network autoencoder
structure to learn the data geometry from non-linear input data. The archetypes
in this work represent the corners of the data geometry, and the original data
can be described by combining these representative objects. On the other hand,
our pantypes forego the need for combination, and instead describe distinct and
interpretable objects that are directly observed in the data. As such pantypes
not only occupy and directly represent the hull (exterior) of the dataspace, but
also the distinct interior aspects.

Paper B relates to research objectives 1, 3 and 4. The paper presents an
approach for learning a reduced representation of the training image data, where
the objective is to distill information that can be fed to an integrated linear
classifier. This data representation is learned through a transparent network and
is designed to not only allow the classifier to obtain high accuracy, but to also
mitigate inherent data biases by covering the input space (in a geometric sense)
and representing the distinct aspects of the input distribution.
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4.2 Data Representativity Contribution

The various approaches for data reduction share the same overarching goal of find-
ing smaller surrogate data representations which may be used to derive insights
about the original data. The nature of these insights varies and may be extracted
from different representations imbued with certain notions of representativity. At
its core, representativity expresses the capacity for one thing to stand for another.
Claims of representation (or mis-, non-, over-, and under-representation) are
ubiquitous in scientific as well as non-scientific discussions [CL21] and mask a
web of ideas and notions. Ultimately, representativity lie at the heart of inductive
science and inferential statistics, where we are imposed to infer knowledge about
unobserved entities in the broader world by applying mathematical methods
to inevitably finite observed data. We assume the observed may stand for and
represent the unobserved. Thus, representativity becomes a matter of gener-
alizability. However, we must recognize that generalizability is itself a term
packaging a multitude of meanings from inference of population parameters in
samples, generalization of knowledge transferred from one population to another,
and extrinsic generalization of learned concepts from experiments to real-world
phenomena [CL21].

The setup for supervised ML involves a learning algorithm trained on a training
set {x(train)

i , y
(train)
i }. The generalization performance for the learning algorithm

on new unseen data is then evaluated on a test set {x(test)
i , y

(test)
i } assumed to

be drawn from the same probability distribution p(x, y) as the training data
[WLZ+16, GBCB16]. However, in many real-world situations certain examples
may be highly underrepresented or even absent in the training data due to
effects such as sample selection bias or distributional shifts. This distributional
departure can result in biased inference and decreased generalization performance
[CHUK18]. The distribution of the training data may be artificially modified
(as in over- or under-sampling efforts) to accommodate predictive inference on
sub-populations, or a target population assumed to be generated under a different
distribution.

Data representativity and its associated effects on appropriate inference is seldom
given sufficient attention. This issue is as relevant to inference drawn from data
in physical sciences as it is for appropriate inference in social sciences. Moreover,
the problem is particularly prevalent in population sampling and in public
datasets where assertive claims of representative samples are ubiquitous. As we
increasingly harness AI systems to govern important decisions, it is critical to
evaluate what the underlying training data of these systems represent, whether
they originate from historical datasets or derived representations of the same.
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Paper C
Data Representativity for Machine Learning and AI Systems

Paper C presents an overview and survey of data representativity in ML and AI
literature. The paper argues that the term representative sample is overloaded,
and that this term encompasses a range of notions which allow different inferences
to be made. The survey identifies a range of notions of data representativity and
categorizes them into three measurable underlying concepts: reflection, coverage
and representatives. Moreover, the paper links these concepts to mathematical
measures, which may help quantify and asses the representativeness of a given
dataset.

Reflection: A sample or dataset can be considered representative under the
concept of reflection if it reflects, mimics, or matches the distribution of the
target population, or the influence of the target population on trained models.
This may be ensured by matching the proportional sizes of sub-populations
as is done in stratified sampling, or by ensuring that average predictions on
sample and population align, such as in meta-learning dataset distillation. The
representativity may be evaluated under this notion by comparing average
predictions, or the distribution between sample and target with distributional
distance measures, such as the general Wasserstein distance [Vas69, Kan60].

Coverage: A sample or dataset can be considered representative under this
concept if it covers the target population by representing its heterogeneity. As
such, coverage does not require proportions across data partitions between
sample and population to match. Coverage may be assessed mathematically
through diversity measures such as demographic information entropy or geometric
coverage by comparing the data volume expressed by the sample and population.

Representatives: A sample or dataset is representative under this concept
if it captures underlying archetypal objects that represent subgroups of the
overall population. The representativity of this concept may be assessed through
cluster metrics evaluating the average distance to the representative within and
between each subgroup or via reconstruction loss in cases where representatives
are combined and used to reconstruct original data instances.

Paper C argues that it is impossible to talk about general representativeness
and that data collection and representativeness should be considered in tandem
with the purpose of the system. The target distribution may be highly complex
and may evolve over time. This makes general guarantees of representativeness
practically impossible.
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In light of this, we propose a framework of guidelines and questions for evaluating
and monitoring representativity when publishing and documenting datasets.
This framework of questions supports existing efforts like datasheets for datasets
[GMV+21a].

Paper C concerns research objectives 1, 2 and 4. The paper surveys various
notions of representative samples and identifies core measurable concepts of data
representativity. These concepts reflect different objectives in methodology with
different appropriate applications. Finally, the paper argues that training data
development should not be seen in isolation from inference data development
and data maintenance. Rather, these axes should be considered in unison to
align the training data with the intended target population. This alignment
should be explicitly evaluated by monitoring the representativity and the limits
of the same for the given dataset. Just as for published datasets, it is important
to evaluate the representativity of data summaries generated through data
reduction. This means that the construction of the summary and the trade-offs
this entails, should be carefully considered in coherence with the purpose of the
study. Data reduction involves distilling the original data by extracting only
the most essential information. Exactly which information is essential largely
relies on the representativity one aims to achieve. By extracting information in
accordance with a specific concept of representativity, one inevitably enters a
trade-off and restricts the appropriate inferences the summary allows for. The
thesis discussion in Sect. 4.4 explores these concepts further and evaluates how
the different research contributions fit into the framework.

4.3 Numerosity Reduction

Numerosity reduction is traditionally applied to generate smaller data samples,
which can alleviate computational costs without significantly sacrificing pre-
dictive performance [HKP12]. This is usually carried out through the concept
of reflection, where the sample is constructed such that the performance of a
model trained on the sample is similar to the performance of a model trained
on the original data. For many applications this is appropriate. However, the
historical data used to train ML models are often imbalanced and encode vari-
ous biases. Constructing a data summary under the concept of reflection risks
propagating and obfuscating these issues. Alternatively, data summaries can be
constructed under the concept of coverage to deliberately alter the distribution
of the original data, and in turn achieve a more balanced representation and
predictive performance. The thesis addresses this matter by introducing and
evaluating approaches for obtaining balanced data representations using sampling
and clustering based numerosity reduction.
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Paper D
Sampling To Improve Predictions For Underrepresented Observations In
Imbalanced Data

Paper D demonstrates sampling approaches for obtaining balanced reduced
representations. Data imbalance is known to negatively affect the performance
of models on underrepresented observations [HYS+17]. This topic has been
studied extensively for imbalanced categorical target values, but only sparsely
for the input data. In this paper we study data imbalance driven by the input
space and demonstrate three sampling approaches to mitigate the effects of
this imbalance. We demonstrate the sampling approaches on biopharmaceutical
manufacturing data, where data imbalance is common by consequence of the
controlled production settings. We find that an inverse density sampling approach
can systematically increase the performance for observations in low-density
regions without a large reduction in the overall performance. Low-density
observations in the biopharmaceutical manufacturing data stem from observations
in faulty batches resulting in process aberrations. These examples provide
valuable information on the dynamics of the production away from the controlled
environment.

The paper emphasizes that sampling of this nature can provide benefits in a range
of applications where data imbalance is prevalent and that typical evaluations
metrics that only consider overall performance across all observations fail to
address the granularity of the performance across sub-groups of observations.

The paper addresses research objectives 1 and 4 by evaluating alternative sam-
pling approaches, which extract samples that diverge from the original data
distribution. These techniques are appropriate for obtaining more balanced
predictive performance across different input examples and can be used in a
variety of domains where inference for minority observations is of importance.

Paper E
Fair Soft Clustering

Paper D considers sampling based methods for obtaining balanced representations
that cover the heterogeneity of the input data and mitigate inference bias in
supervised models. However, imbalanced data can also be used as training data
for unsupervised algorithms. An instance of this is clustering, which may be
used as a feature engineering tool to supplement points with a cluster signature
ID (label). The cluster IDs can then be used in conjunction with the original
data attributes in downstream models to achieve higher expressive power.
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If the original data is biased, the cluster solution could propagate this bias into
the returned features and lead to biased inference in the resulting model. To
avoid this, the field of fair clustering has emerged in the literature.

Fair clustering exists for a variety of fairness notions and has mainly been studied
for hard clustering like k-means and k-medoids, where cluster assignments are
deterministic [CMM21]. The contribution presented in paper E extends this line
of research into the soft clustering setting, where assignments are probabilistic.
The paper introduces metrics for fair clustering under probabilistic assignments
and demonstrates an approach for learning a fair soft cluster solution from a
modified reduced input data representation.

This paper concerns research objective 1 and 4 by providing an approach for
obtaining a fair soft cluster solution from a reduced input representation, which
mitigates inherent bias encoded in the original data. The reduced representation
can be used as curated training data in a traditional clustering setup to ensure
the fairness of the solution.

4.4 General Discussion

This section provides a discussion of the research contributions and evaluate
how they advance the research objectives introduced in Sect. 1.2. This section
also discusses practical applications and the limitations of the presented research
contributions.

1. Research, evaluate and develop methods for obtaining surrogate data represen-
tations, which summarize and represent the original data population in a smaller
form that may be used as curated training data for downstream models.

The research contributions advance this objective from various angles. Research
contribution A develops a novel technique for obtaining a reduced data represen-
tation for astrophysical data, which can be used as curated training data to learn
and remove the telluric contribution from new observed spectra. Research contri-
bution B advances this objective by presenting an approach for the reduction of
image data in a classification setting from a high-dimensional feature space to a
low dimensional embedded space. Similarities with learned prototypical objects
in the embedded space are then fed as curated training data to a linear classifier
to obtain the class predictions. Paper C advances the objective by evaluating
the opposing inherent qualities different data representations provide. Paper
D presents alternative sampling approaches for reducing the original data and
mitigating the effects of data imbalance on the downstream model.



4.4 General Discussion 47

Finally, research contribution E advances the objective from a soft clustering
viewpoint by presenting a technique for modifying and reducing the original
data into a new representation, which can be fed as input data to a traditional
clustering algorithm such that the learned solution maintains balance of protected
attributes.

2. Evaluate the appropriate application of techniques across different domains by
identifying the distinct types of essential information that data reduction seeks to
distill.

The type of information a data representation encapsulates is studied in Paper C.
This paper largely summarizes the objectives of the remaining paper contributions
into the proposed concepts of representativity. Each of these papers introduce
and evaluate methods for extracting essential information from an original dataset
to produce a reduced summary representation. The specific type of information
the reduced data is representative of is captured by the concepts. For each
paper, the type of representativity guides the appropriate methodologies and
evaluations of the proposed approaches. Fig. 4.1 depicts a graphical abstract
of the concepts of representativity as they relate to the extraction of essential
information from a data source.

The research contributions fit into the proposed framework of representativity as
follows: In paper A, a constrained autoencoder is trained to extract a reduced
representation of astrophysical spectra by decomposing the data into its con-
stituent representative objects. These objects capture the spectral signatures
of the intrinsic solar and the telluric H2O and O2 components. The reduced
representation is thus representative of the original data under the concept of
representatives. In the construction of this representation, no effort is made to
reflect or match the distribution of the original data instances, and no effort is
made to capture the full heterogeneity (diversity) of the original data, as some
of this expressed diversity is assumed to originate from noise artifacts from the
instrument or cosmic particles. Instead, the representation is constructed to
capture a small number of underlying prototypical objects from which the original
data instances are assumed to originate. This restricts the valid inferences that
can be made from the representation to inference about the physical profile of
these objects as observed by the given instrument. The representation is not
designed to be used to draw valid inference about population parameters for the
population of solar observations. The degree of representativity expressed by the
learned components can be assessed with mathematical measures such as the
reconstruction loss in regions of the spectrum where the ground-truth spectral
components are known to exist or by comparing the learned solar component to
the ground-truth solar spectrum as observed by an instrument free from telluric
artifacts, for instance from outside the atmosphere of Earth.
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Figure 4.1: A graphical illustration of the three proposed overarching concepts
of data representativity. The yellow data represent the original data
source while the white data depict reduced representations of the
original data in accordance with the three proposed concepts of data
representativity. Reflection mimics the population distribution,
coverage represents the heterogeneity of the population distribution,
and representatives represent the original data though underlying
prototypical instances. Graphical examples of typical use cases for
each concept of representativity is shown. The reflection concept
is typically employed in demographic data and used to argue
that a data representation acts as a miniature of the population.
The coverage concept is typically used in tandem with notions
of diversity and associated bias mitigation. The representatives
concept is often used to infer underlying archetypal patterns in the
original data, for instance in natural sciences.

In paper B, prototypical objects are learned with the goal of covering the distinct
aspects of the input distribution. Thus, the reduced representation is constructed
under the concepts of representatives and coverage.
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The reduced representation aims to represent underlying prototypical patterns
of variation in the data, but at the same time aims to express the heterogeneity
of the data distribution by capturing its diverse aspects. This allows inference
about the underlying archetypical patterns which exist in the training data,
but also causes inference from the predictive model to be more balanced across
demographic groups. The upside of this type of representativity is met with a
corresponding downside on the predictive performance for individuals in majority
sub-populations. In this paper, the concepts of coverage and representatives
are both assessed with mathematical measures using cluster metrics for the
representatives and measures of data coverage and demographic diversity for the
concept of coverage.

The last two paper contributions on numerosity reduction both adhere to the
coverage concept of representativity. They explore methods for obtaining bal-
anced data representations, which cause models trained on them to achieve more
balanced predictions across various input instances. The quality of balanced
inference is particularly appropriate in applications based on demographic data.

This thesis supports the idea that the reflection concept is not the only valid
option during data reduction. As such, none of the paper contributions in the
thesis adopt the concept of reflection. As an example of a reflection based data
reduction approach we draw attention to Wasserstein measure coresets [CGS18],
which aim to reduce the original data by directly minimizing the distributional
distance between the reduced representation and original data. Similarly, [ZB23]
perform dataset distillation by learning a reduced representation which matches
the data distribution of the original data in various embedded feature spaces.

3. Develop dimensionality reduction techniques that infuse the reduction pipeline
and learned representation with high transparency, and interpretability.

This research objective is advanced by contributions A and B, which both
use autoencoder based frameworks to learn a reduced representation of the
training data. Contribution A addresses concerns in the literature about model
opaqueness by enjoining ideas from the domains of neural networks, hyperspectral
unmixing and factor analysis into a highly transparent and interpretable data
reduction pipeline.

Contribution B empowers transparent self-explainable models by presenting
a novel volumetric loss, which is used to learn a reduced representation that
captures distinct patterns in the input space leading to high interpretability of
the representation.
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4. Study data reduction techniques that not only reduce data size, but also reduce
inherent data biases existing in the original data.

This research objective is addressed by contributions B, D and E, which all study
reduction techniques under the concept of data coverage. Training a model on
the representations proposed in these papers leads to inference that is more
balanced across low- and high-density input instances, which can manifest as
demographic majority and minority instances.

4.4.1 Practical Application

The thesis has presented a number of research contributions, which may be used
in various practical applications outlined in this section.

Paper A presents an empirical data-driven approach, which bridges a multidisci-
plinary gap between hyperspectral unmixing, theoretical astrophysics and the
practical application of machine learning techniques. The data reduction pipeline
presented in this article has been made freely available as an open-source code
base, in the hope that it may aid scholars in applying the technique on their own
data. The computational speed-up over current high-accuracy methods should
make it tractable for practitioners to correct and better analyze thousands of
observed spectra. The presented work has roots in hyperspectral satellite imag-
ing, which aims to analyze Earth facing spectral data. These ideas are adapted
to an outward facing perspective towards the complex domain of astrophysics.
Consequently, the presented work may act as a steppingstone to the transfer of
knowledge from Earth facing spectral techniques towards the astrophysical realm,
allowing us to better peer into our stellar neighborhood and distant celestial
origins.

Paper B introduces a volumetric loss into the fabric of a SEM to induce high
latent diversity of the learned representation, and argues that not only should
the overall model be self-explainable and transparent but the learned reduced
representation should also be thoroughly evaluated in terms of representation
quality and interpretability. The proposed approach can easily be implemented
as a module into any existing SEM to enhance the control over the expressed
diversity of the leaned representation. We hope that this may find practical use
in existing and future SEMs.

Paper C studies the taxonomy of representative data and identifies a conceptual
limitation existing in the literature. We hope that the categorization of existing
ideas into overarching measurable concepts, as well as the proposed guidelines of
questions to consider when publishing datasets, may find practical use under the
design and publishing of datasets.
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Paper D studies sampling approaches for obtaining balanced representations
from imbalanced data, that allow downstream models to make more balanced
predictions across input instances. The density based approach is easily mod-
ifiable to change the focus from high-density to low-density observations, and
may be used to study the effects of the input representation on downstream
inference. These sampling approaches may also find practical use to mitigate
biased inference for various sub-groups within the data, particularly in cases
where sensitive attribute labels are unavailable.

Paper E studies fair clustering in a probabilistic setting. This is a new domain of
research, and as such no measures for soft fairness have been cemented. We hope
that the proposed measures may aid in evaluating existing and future approaches
for fair probabilistic clustering. The proposed algorithm for constructing a fair
probabilistic clustering from a fairlet decomposition is accompanied with theo-
retical fairness bounds and can be applied to any fairlet decomposition, whether
they originate from deterministic or probabilistic clustering algorithms. As such,
this algorithm could find practical use in a number of instances. Nonetheless,
the introduced minimum cost flow approach for finding a fair Gaussian mixture
model fairlet decomposition may not serve much use in practical application by
consequence of the high computational complexity of the algorithm. Nevertheless,
it serves as an interesting theoretical study that may spark ideas for future study
into tractable fairlet decomposition construction for probabilistic clustering.

4.4.2 Limitations

Some of the research contributions in this paper involve bias mitigation and
algorithmic fairness. These contributions adhere to a group-level notion of
fairness derived from the disparate impact doctrine [Rut87] which prohibits
discrimination (disparate predictive accuracy) between different groups cate-
gorized by protected attributes (such as race). This is motivated by the fact
that victims of discrimination in automated decision frameworks are often part
of minority groups [MZP21] that are either affected by historical biases or are
underrepresented in the training data [BG18b]. ML and AI systems are typically
designed with efficiency and profit in mind and this design usually accepts poor
performance for minority groups as a worthy sacrifice of collateral damage to
the benefit of improved performance for majority groups of the population.
Nonetheless, it is important to note that exactly what fairness entails, and how
we may instill these values into our algorithms, is an ongoing scientific and
societal debate. Multiple notions and definitions of fairness exist [MZP21], and
some of them are incompatible [BHN17]. It is critical to evaluate if a given
notion of fairness is suitable for a specific task, as applying an inappropriate
notion may result in undesired discrimination.
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Some of the contributions presented in the thesis provide a significant decrease
in computational expense over existing methods (such as contribution A). How-
ever, other contributions (such as contribution E) provide no such speed-up.
Particularly, contribution E, like many efforts in fair clustering, scales poorly
in the number of data instances and dimensions. However, the proposed soft
cluster fairlet algorithm from paper E can be applied to more scalable fairlet
decompositions obtained either from current work in deterministic clustering
[BIO+19], or in potential future work in probabilistic fairlet decompositions.

Finally, most of the techniques presented in this thesis are not accompanied
by theoretical bounds on their expected deviations from the original data, or
the associated expected theoretical deviation in costs of models trained on the
reduced data. This contrasts with techniques from computational complexity and
geometry, such as coresets, which provide provable bounds on the performance
of the downstream model. However, the research contributions of the thesis are
all empirically evaluated against unseen test data to demonstrate that they have
captured underlying structure and allow generalization.

4.5 Proposed Future Research

This thesis investigates data reduction and data representativity by studying,
evaluating and developing novel approaches that assess and link the learned
summary representations to their intended target population. Nonetheless, the
thesis recognizes several directions of research that requires additional attention
and may prove as potential future research endeavors.

4.5.1 Dimensionality Reduction

• Dimensionality reduction techniques, such as autoencoders, are trained to
represent their training data, but the learned representation is often used to
draw inference about an underlying target distribution which may be highly
complex, adapt to a specific data collection procedure or exhibit temporal
changes. Additional research is required into the effects of applying the
learned compressed representation to draw inference on data from different
sources (out-of-distribution evaluation). This could for instance be the case
in physical sciences, where a representation learned for a specific instrument
is applied to draw inference for data observed by another instrument. In
such settings the link between learned representations for the different
instruments could be guided by transfer learning.
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• Self-explainable models in XAI often use dimensionality reduction based
pipelines to learn input features for downstream models. The connection
between the learned representation and the inference drawn by the suc-
ceeding model needs further study and evaluation. Such evaluation may
reconcile various notions of diversity expressed in the latent space, and
their relation to appropriate inference.

4.5.2 Numerosity Reduction

• Additional research is needed to narrow the gap from algorithmic complexity
and computational geometry to ML and AI based perspectives on data
reduction. This may aid in harmonizing strong theoretical guarantees with
empirical approaches and demonstrations of generalization ability between
reduced representation and unseen target data.

4.5.3 Data Representativity

• Additional research is required into sustained monitoring of the representa-
tion quality of published data sources, or of in use data sources utilized by
deployed AI systems already in production.

• As data complexity increases, we approach a limit for our understanding of
the link between input and target distributions. This narrows the window of
valid inference and complicates AI alignment. This calls for further research
into mathematical measures of data representativity. Particularly measures
which allow modelling of joint distributions, and which are suitable in
high-dimensional data.
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Conclusion

The purpose of this thesis was to complement an emerging data-centric per-
spective in ML and AI literature by studying data reduction techniques that
modify and reduce the original data into summary representations, achieved by
extracting only the most essential information. Data reduction techniques are
widespread and are applied across numerous scientific problems most often with
the aim of reducing computational complexity for downstream tasks.

In dimensionality reduction, the original data is reduced by identifying or con-
structing useful features and discarding the remaining features. This can be
achieved in a number of ways, but recently powerful neural network architectures
have proven especially useful in learning expressive data representations. Never-
theless, neural networks often operate in a black box nature, which obfuscates the
dimensionality reduction procedure and makes it hard to interpret the learned
latent representation. This thesis has presented two research contributions which
address these concerns by proposing neural network architectures that promote
high transparency and interpretability of the learned representation, without
sacrificing expressive power.

Numerosity reduction is another sub-field of data reduction, where the number
of data instances are directly reduced via for instance sampling or clustering
approaches. These techniques are widely used in various settings from production
data to analysis of demographic population data.
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When these data subsets are constructed to match the distribution of the original
data, or to produce similar predictions for downstream tasks, they often end
up propagating or even enhancing inherent biases existing in the original data
population. For certain data sources, this is not problematic. However, for data
where underrepresented observations are particularly informative, or represent
individuals, such bias propagation should be considered with care. This thesis
has presented two research contributions which cause the distribution of the
summary to diverge from the original data source and changes the predictions
made by succeeding models. This complicates causal inference about the data
generating process but allows predictive inference in downstream tasks to be less
biased.

Finally, a core conceptual contribution in this work was the identification that
claims of representativity are ubiquitous and usually unspecified in the literature.
The thesis has addressed this by categorizing data representativity into three
measurable concepts, which capture different underlying perspectives and may
guide appropriate methodologies for practitioners. Published datasets and data
summaries, whether collected or created through numerosity or dimensionality
reduction, are often claimed to be representative of a target population, or
the original data source, without sufficient specification and assessment of this
representativity, or the potential adverse effects this representation may propagate
into downstream trained models. This thesis calls for caution on such implicit
use on statements of data representativity and advises that published datasets
are accompanied by sufficient specification of the intended target population
and an estimation of the extent to which the dataset is representative hereof, in
the hope that this will align the data collection or creation procedure with the
purpose for which the data is later used.
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Abstract: Telluric correction is one of the critically important outstanding
issues for extreme precision radial velocities and exoplanet atmosphere obser-
vations. Thorough removal of small so-called micro tellurics across the entire
wavelength range of optical spectrographs is necessary in order to reach the
extreme radial velocity precision required to detect Earth-analog exoplanets
orbiting in the habitable zone of solar-type stars. Likewise, proper treatment of
telluric absorption will be important for exoplanetary atmosphere observations
with high-resolution spectrographs on future extremely large telescopes (ELTs).
In this work we introduce the Telluric AUtoencoder (TAU). TAU is an accurate
high-speed telluric correction framework built to extract the telluric spectrum
with previously unobtained precision in a computationally efficient manner. TAU
is built on a neural network autoencoder trained to extract a highly detailed
telluric transmission spectrum from a large set of high-precision observed solar
spectra. We accomplished this by reducing the data into a compressed represen-
tation, allowing us to unveil the underlying solar spectrum and simultaneously
uncover the different modes of variation in the observed spectra relating to the
absorption from H2O and O2 in the atmosphere of Earth. We demonstrate the
approach on data from the HARPS-N spectrograph and show how the extracted
components can be scaled to remove H2O and O2 telluric contamination with
improved accuracy and at a significantly lower computational expense than the
current state of the art synthetic approach molecfit. We also demonstrate the
capabilities of TAU to remove telluric contamination from observations of the
ultra-hot Jupiter HAT-P-70b allowing for the retrieval of the atmospheric signal.
We publish the extracted components and an open-source code base allowing
scholars to apply TAU on their own data.

6.1 Introduction

The absorption of photons by constituents in the atmosphere of Earth (telluric
absorption) complicates ground-based observations and is a well-known obstacle
for obtaining precise radial velocities (PRVs) in the near-infrared [BSH+10] at
the m s−1 level. Even in the optical wavelength range, there are several bands of
oxygen lines and numerous micro-tellurics originating from shallow water lines.
These micro-tellurics can constitute a significant amount of the PRV error budget
at the ∼20 cm s−1 level [CSF+14, WLP+22]. To this end, various methods have
been introduced to remove the effects of telluric contamination and the accuracy
of these efforts remain a critical challenge on the path to the 10 cm s−1 radial
velocity (RV) barrier for detecting Earth-like exoplanets [FAA+16].

An acknowledged method, molecfit [SSN+15, KNS+15], relies on computing
a synthetic transmission spectrum of the atmosphere of Earth by combining
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an atmospheric profile from the Global Data Assimilation System (GDAS)
website and a line-by-line radiative transfer code [CSM+05] to fit the observed
spectrum. Molecfit has been found to be more robust than other methods,
for instance using airmass [LMCH21]. While molecfit is a popular and well-
established library, alternative telluric synthesis codes such as TERRASPEC,
Transmissions of the AtmosPhere for AStronomical data (TAPAS), and TelFit
[BMD+12, BLF+14, GDRK14] also exist. These synthetic approaches have been
well-tested, but are inherently reliant on external factors to an observation, such
as atmospheric measurements or molecular line lists for computing radiative
transfer solutions.

Another realm of methods take a data-driven approach to exploit the modes of
variation in a number of observed spectra to uncover the underlying components.
By analyzing such a variation, telluric absorption can be modeled without relying
on external factors. Additionally, given high-precision data, these methods can
uncover the precise spectral location of molecular transitions in the atmosphere,
which are otherwise hard to estimate with synthetic models. One such data-driven
approach is directly based on principal component analysis (PCA) [AADD+14]
while another, the Sys-Rem algorithm [TMZ05], is an extension of PCA which
accounts for unequal uncertainties in the data. PCA methods are however
ineffective on very large datasets, where the entire data cannot be stored in
memory. Additionally, extracted components from PCA can be hard to interpret.
Another approach, wobble [BHFM+19], uses a linear model in log flux with a
convex objective and regularization to model the underlying stellar and telluric
components of high-precision observed spectra from bright stars. Wobble requires
the spectral components to undergo large Doppler shifts with respect to each
other to disentangle their components effectively. This means that wobble
typically requires numerous observations over a large fraction of the year to
perform corrections for stars that do not undergo large RV shifts over short
timescales. Light-weight data-driven initiatives such as the self-calibrating,
empirical, light-weight linear regression telluric (SELENITE) model [LFV19]
also exist. This method uses a linear regression fit to observations of rapidly
rotating B stars in addition to airmass measurements. However, SELENITE
is sensitive to stellar features in the training set and is limited to variation
according to airmass and water vapor column density.

All data-driven approaches ultimately exploit that information about the telluric
spectrum is encoded within the data. To extract this information, current data-
driven initiatives are applied on rather modest sized training sets. We argue that
data-driven models can benefit from the introduction of very large high-precision
datasets of observations, which encode the telluric spectrum with previously
unobtained precision. Inspired by this, we present a novel deep-learning-based
approach fueled by recent releases of large-volume datasets and provide the
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framework as an open-source code base1. The approach is based on a neural
network autoencoder.

Autoencoders have seen use in the literature for decades [BK88, HZ94] and
have long been known to discover effective compressed data representations
through dimensionality reduction [HS06]. Autoencoders can be trained through
mini-batch gradient descent, where only a small portion of the entire training
data is used to compute an approximate gradient. This means that autoencoders
can learn from large datasets. Additionally, autoencoders are highly flexible
enabling nonlinear structures to be captured and can be readily modified through
regularization and architectural constraints to enforce the learned representation
to assume interpretable physical properties.

[PSSU18] present a neural network autoencoder for unmixing of hyperspectral
images based on a linear mixing model (LMM). They show that a hyperspectral
image can be unmixed into its underlying components called endmembers. We
build on this idea by adapting the network architecture to the domain of astro-
physical spectral data. This requires various new constraints on the network as
well as the introduction of a specialized reconstruction of the input data.

To demonstrate our approach we analyze a large number of observed solar
spectra2 [DCS+21] from the high-resolution (R ∼ 115,000) radial velocity cross-
dispersed echelle spectrograph HARPS-N [CLP+12] (High-Accuracy Radial-
velocity Planet Searcher for the northern hemisphere) mounted on the 3.6
meter Telescopio Nazionale Galileo (TNG) on La Palma, Spain, with the goal
of disentangling the observed spectra into their underlying solar and telluric
components. The HARPS-N data covers a wavelength range between 3830 Å
and 6930 Å. By training on the HARPS-N solar spectra, we let the data speak
for itself and through that discover a reduced representation that encapsulates
the overall dataset. Data reduction has many uses, but particularly for this data
a compressed representation can be used as a way to detect patterns relating to
real interpretable physical effects, identified as underlying components (spectra)
across all observations. We choose solar data for training since a large quantity
of these spectra are available. Moreover, solar observations do not take away
observing time from night time observations, and possess high signal-to-noise
ratio (S/N) and resolution, allowing the extracted telluric signal to inherit
these properties. Training on nonsolar data is also possible, but would require
changes to the structural constraints of the network. Finally, by training on
observations from a single spectrograph, we capture inherent information to
the instrument, such as the point spread function (PSF). This means that our
extracted components are specialized for the spectrograph used for training

1Our code is publicly available at https://github.com/RuneDK93/telluric-autoencoder
2https://dace.unige.ch/dashboard/

https://github.com/RuneDK93/telluric-autoencoder
https://dace.unige.ch/dashboard/
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(HARPS-N) but the method can easily be extended to other spectrographs by
training on solar observations from these instruments. The extracted telluric
components could aid in the detection of faint radial velocity signals of planetary
systems by quickly and accurately removing tellurics from observations, leading
to an increase in observation quality and hereby a reduction in observing time
and cost.

The paper is structured in the following way. Sect. 6.2 describes the physical
model of the problem. Sect. 6.3 demonstrates the setup and architecture of
the autoencoder neural network. In Sect. 9.4 we show the results of training
the network on the HARPS-N data and compare the extracted components
with synthetic telluric transmission spectra computed by molecfit. Sect. 10.5
discusses our results and evaluates the advantages and limitations of the approach
while Sect. 10.6 presents the conclusions of the paper.

6.2 Physical model

Each ground-based observed solar spectrum is a combination of the intrinsic
solar spectrum and contamination effects from extrinsic factors like absorption
in the line of sight as well as instrumental perturbations. Absorption in the
line of sight for solar observations is contaminated by telluric absorption in the
Earth’s atmosphere. We can express an observed solar spectrum as a convolution
between the instrumental profile and the profile of the observed object in the
following way [VCR03]:

O(λ) = [S(λ) · T (λ)] ∗ I(λ) ·Q(λ), (6.1)

where O is the observed spectrum, S is the intrinsic solar spectrum, T is the
combined telluric transmission spectrum, I is the instrumental profile, which
acts as a line broadening effect, Q is the instrumental throughput, ∗ indicates a
convolution, and λ is the wavelength of the observed light.

If we assume perfect throughput and an ideal spectrograph, which maps all
light at a particular wavelength to a distinct location on the detector, then we
can simplify Eq. 6.1 by representing an observed solar spectrum as an intrinsic
solar component and an extrinsic component describing the telluric absorbance
occurring in the atmosphere of Earth:

O(λ) = S(λ) · T (λ). (6.2)
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The telluric transmission spectrum T can be described by a combination of a
finite set of molecular species acting as absorbers in the atmosphere of Earth.
The combined telluric transmission spectrum from K absorbing species can be
expressed in the following way:

T =

K∏
k=1

tk, (6.3)

where tk is the transmission spectrum of an individual molecular species k.
Important absorbing species in the atmosphere of Earth include H2O, O2, CO2,
CO, CH4, N2O, and O3.

By observing the solar spectrum through varying atmospheric conditions over an
extended period of time, the telluric transmission spectrum will naturally show
large fluctuations. The overall fluctuation will be comprised of different modes
of variation arising from the constituent molecular species making up the telluric
spectrum. On the other hand, the solar spectrum does not undergo large changes
between observations and can be assumed constant in line depth and shape. This
assumption can however be violated due to slight variations arising from solar
activity effects like sun-spots, which can cause the shape of a line to change over
numerous observations. Such effects are ignored in our analysis and assumed to
average out over a larger number of observations. Another important distinction
between the solar and telluric components is that the telluric lines will always be
positioned at the same location in the wavelength domain (using observer rest
frame calibrated spectra). Contrarily, the solar component will exhibit small
Doppler shifts between observations relating to the motion and rotation of the
Earth during the observation. While this Doppler shift is comparatively small
for observations of the Sun, it remains non-negligible and should be accounted
for to uncover the true underlying components of the observed spectra.

6.3 Proposed method

We aim to disentangle the observed solar spectrum into the underlying telluric
and solar components by using a neural network autoencoder. The autoencoder
provides a reduced representation such that the overall data can be described
using only a few underlying components. To ensure the learned representation
embodies the underlying components, we utilize the physical model of the system
and design the architecture and constraints of the neural network to comply
with this model.

[PSSU18] present an autoencoder neural network architecture for blind unmixing
of hyperspectral images (HSI). These images are a combination of distinct spectra
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called endmembers. Spectral unmixing seeks to unmix the endmember spectra
and their abundances (defined by relative proportion of an endmember in a pixel)
from the observed hyperspectral image by constructing a mixing model of the
problem. Endmember unmixing from spectral data is a rich discipline with many
existing approaches [SATC11, HPG14]. Mixing models are divided into linear
and nonlinear models. The nonlinear variants involve more complicated physical
models and for this reason simple strategies are often implemented to remove
nonlinear effects. One such strategy is the natural logarithm operation [ZZ19].

Drawing inspiration from the discipline of hyperspectral unmixing, we consider
the intrinsic solar spectrum S and the combined telluric spectrum T as endmem-
ber spectra with associated abundance weights and use these components to
construct a linear mixing model (LMM) in log-space describing each observed
solar spectrum:

logOn = ws,n logSn +

K∑
k=1

wk,n log tk, (6.4)

where the nth observed solar spectrum On is described as a combination between
an underlying solar component Sn with weight ws,n and telluric components tk
with weights wk,n. We use that the combined telluric spectrum can be described
as a combination of individual molecular transmission spectra tk from each
included molecular species k (Eq. 6.3). Each telluric component can then be
scaled with an abundance weight wk,n to match the atmospheric conditions for
the nth observation.

We denote the number of endmembers as R, with individual endmembers r =
1, ..., R. Here r = 1 represents the solar endmember and r = 2, ..., R represents
the telluric endmembers. We note that in general R = K+1. Using this notation
and assuming that the input spectra have been preprocessed (see Sect. 6.3.1),
including having the natural logarithm applied to them, we can express the
LMM from Eq. 6.4 in the following matrix form:

xn =

R∑
r=1

wr,nmr + ϵn = Mwn + ϵn, (6.5)

where xn is the nth preprocessed observed spectrum from a finite set of N
observed spectra and mr is the rth endmember spectrum of R endmembers
with individual endmembers r = 1, ..., R. Furthermore, wr,n is the abundance of
endmember r for observation n, M is the endmember matrix having endmembers
as columns, wn is the abundance vector of the nth observation, and ϵn is an
error term accounting for noise artifacts like cosmic rays. The HARPS-N spectra
cover the optical wavelength range and for this reason we consider the combined
telluric spectrum to be comprised of the two strongest absorbing molecules in this
region, namely H2O and O2. From this we get R = 3 with r = 1 representing the
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solar endmember, r = 2 representing the H2O endmember and r = 3 representing
the O2 endmember.

The goal is to extract the endmember matrix M and abundance vector wn by
training the neural network on a set of preprocessed observed solar spectra, with
the purpose of applying the extracted telluric spectrum to nonsolar observations.
The endmember matrix M is extracted for training regions with P pixels. Figure
6.1 shows a graphical representation of the approach.

6.3.1 Data preprocessing

The training data consists of 1257 observer rest frame calibrated observations
of the solar spectrum each split into 69 spectral orders (hereafter orders) with
P = 4096 pixels in each order, totaling 69×4096 pixels per observation. Together
the 69 orders (which we name from 0, ..., 68) span the spectral range from 3830 Å
- 6930 Å. The data are from 2020 spanning a month of observations from October
22 through November 19. We blaze corrected the observations and associated
them with their respective wavelength solutions. We then linearly interpolated
the observations to a common wavelength grid constructed by generating 4096
evenly spaced points between the maximum and minimum wavelength values in
each order. We removed noisy spectra by filtering observations with a mean flux
across the full spectrum 20 per cent lower than the maximum mean flux of the
observations. Additionally, to better reflect ordinary observing conditions, we
removed any observation with an airmass exceeding 2.0. Finally, we applied the
natural logarithm and continuum normalized the observed spectra by iteratively
fitting a first degree polynomial to an asymmetrically sigma clipped subset of
the data until the clipped pixel selection was stable. This concluded the prepro-
cessing procedure, which ensures that the spectra are corrected for variations in
throughput, as required by Eq. 6.2. The described procedure left 838 spectra, of
which 75 per cent were used for training and 25 per cent were used for validation
to reduce the risk of overfitting. The observations were shuffled before being
divided into the training and validation sets.

6.3.2 Neural network autoencoder

Autoencoders are built to reconstruct the input in the output through a low
dimensional representation in the middle of the network. The network consists
of an encoder function hn = f(xn), which maps the input data xn ∈ RP to
a hidden layer describing a latent representation hn ∈ RR of the input data.
This representation is then passed through the decoder function g(hn) = x̂n,
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Figure 6.1: Schematic overview of the autoencoder architecture. Observed
spectra xn are given as input and passed through the encoder
into a lower dimensional latent space, which is subsequently de-
coded into the reconstruction x̂n. After training by minimizing
the reconstruction error through a gradient descent algorithm, the
endmember matrix M is extracted as the weights of the decoder
and the abundance vector wn is extracted as the latent represen-
tation hn. P is the number of pixels for each spectral order in the
observed spectrum. The network is illustrated for R = 3 endmem-
bers representing the solar (orange, top), H2O (blue, middle) and
O2 (green, bottom) endmembers.

which seeks to reconstruct the input data xn with the reconstruction x̂n ∈ RP .
Autoencoders are typically restricted in various ways to ensure they do not learn
the identity function g(f(xn)) = xn. By utilizing appropriate constraints it is
possible to force the latent representation hn to take on useful properties. One
such constraint is to keep hn at a lower dimension than xn. This will make the
autoencoder undercomplete and cause dimensionality reduction, which forces
the latent representation to capture only the most salient features of the training
data [GBCB16].

We designed the dimension of the latent representation in the telluric autoencoder
to match the number of expected endmembers in the trained spectral region
such that hn ∈ RR. For the HARPS-N data we considered regions with either
R = 2 (solar and H2O endmembers) or R = 3 (solar, H2O and O2 endmembers)
where R ≪ P . After the network training is complete and the network has
learned to reconstruct the input signals, the latent representation hn ∈ RR can
be extracted and interpreted as the endmember abundances wn. While the
encoder is responsible for learning the abundances of the underlying components,
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the decoder is responsible for learning the spectral shape of these components.
To enable this interpretation, the decoder must be restricted to perform a single
affine transformation:

x̂n = Whn, (6.6)

where W ∈ RP×R are the weights of the decoder. Thus, we constructed the
decoder without bias terms. With this restriction the decoder weights W can
be extracted and interpreted as the endmember spectra M .

6.3.2.1 Network training

Autoencoders are trained by minimizing a loss function L representing a distance
between the input and reconstruction. We used the squared L2 norm resulting
in the mean squared error (MSE) of the input and reconstructed spectra as loss
function:

L =
1

N

N∑
n=1

||xn − x̂n||22. (6.7)

Training was performed with gradient descent by updating the network weights to
minimize the loss function. Training was carried out for a number of epochs with
early stopping, which has been shown to reduce the risk of overfiting [CLG01].
The network was trained on non-stitched spectra for the 69 orders separately to
retain the high fidelity of the observed spectra and to avoid the complications
involved in stitching spectra. The loss of signal at the edges of each order is
compensated for by information from the high number of observations used to
train the network. Training on all orders took approximately 2 hours on an Intel
6 core i7, UHD 630 CPU laptop.

6.3.2.2 Layer architecture

What follows is a detailed description of the network layers. An overview of the
layer architecture of the entire network can be seen in Tab. 6.1.

Layer 1 is the input of the network with dimensionality xn ∈ RP such that it
matches the number of pixels P in the observed spectra used for training. Layer
2 applies dropout during training by randomly zeroing entries, with a chosen
probability p, according to a Bernoulli distribution. Random dropout has been
shown as an effective regularization technique to reduce overfitting by preventing
complex coadaptations of feature detectors [HSK+12].
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Table 6.1: Summary of autoencoder layers. P is the number of pixels in the
observed spectra used for training and R = 2 or R = 3 is the
expected number of endmembers in the spectral region used for
training.

Layer Description Dimension

1 Input P
2 Dropout P
3 Hidden R
4 Batch Normalisation R
5 Abundance Normalisation R
6 Abundance Lower Bound R
7 Endmember Spectra Clamping P
8 Solar Doppler Shift P
9 Output P

Layer 3 computes a lower dimensional representation by applying the following
transformation:

a(3) = j(W (3)a(2) + b(3)), (6.8)

where a(3) is the activation of layer 3, a(2) is the input given from the previous
layer, W (3) are the weights of the layer, b(3) is the bias of the layer, and j is
the activation function. The encoder uses a leaky rectified linear unit (LReLU)
[XWCL15] as a nonlinear activation function. The encoder can in principle consist
of multiple layers with nonlinear activation functions. Similar to [PSSU18], we
found that the structural constraints of the decoder, which are expanded upon in
the description of layer 9, limits the advantages of a deep encoder with numerous
nonlinear activation functions. We tried various encoder depths and found that
differences in learned representations were negligible, while training time was
increased significantly with a deep encoder structure. For this reason, the final
architecture of our presented network consists of a shallow encoder with a single
nonlinear activation function in layer 3.

Layer 4 applies batch normalisation, which is known to accelerate learning by
reducing internal covariate shift [LBOM12, IS15]. The batch normalisation
operation can be expressed as:

a
(4)
i =

a
(3)
i − E[a(3)]√
V ar[a(3)] + ϵ

γ + β, (6.9)

where a
(4)
i is the activation of unit i in layer 4 for i = 1, ..., R, a

(3)
i is the

activation of unit i from the previous layer, γ and β are learnable parameters,
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and ϵ is a small number. The expectation and variance can be expressed as:

E[a(3)] =
1

R

R∑
i=1

a
(3)
i , (6.10)

V ar[a(3)] =
1

R

R∑
i=1

(a
(3)
i − E[a(3)])2, (6.11)

Layer 5 enforces a nonnegative abundance constraint (ANC):

wr,n ≥ 0 ∀r, ∀n, (6.12)

and normalizes the batch normalized latent abundance tensor a(4) to interval
[0, 1] through the following transformation:

a
(5)
i =

a
(4)
i −min(a(4))

max(a(4))−min(a(4))
, (6.13)

where a
(5)
i is the activation of unit i in layer 5.

Layer 6 enforces a lower abundance bound constraint for each endmember to
ensure the correct physical representation is learned. Since it can be assumed that
the intrinsic solar spectrum remains constant in line depth over the observations
(no abundance variation), the solar endmember abundance w1 is kept fixed:

w1 = 1. (6.14)

The H2O and O2 telluric components described by abundance weights w2 and
w3 change over each observation but are never absent in the observed spectra.
This is problematic, since the main feature allowing disentanglement of the solar
component from the telluric components is the telluric variability. The constant
contribution of each telluric component to the observed spectra complicates
this. To ensure the correct representation is learned, the telluric components are
normalized to different intervals such that:

w2 ∈ [c2, 1], (6.15)

where c2 is a lower bound on the abundance of the H2O component and:

w3 ∈ [c3, 1], (6.16)

where c3 is a lower bound on the abundance of the O2 component. The lower
bounds c2 and c3 on the telluric endmember abundances are defined to represent
their respective line depth variability in the spectrum. The H2O component
exhibits much larger variability in the observed spectrum than the O2 component,
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and as such c2 < c3. The value for c2 was determined by inspecting the relative
difference between a known H2O line at its strongest and weakest instance in
the training set. This was similarly done for a known O2 line. The values used
for the HARPS-N training set are c2 = 0.03 and c3 = 0.69.

To incorporate these lower bounds, the abundance tensors are linearly trans-
formed to interval [cr, 1] in layer 6 of the network using the following transfor-
mation:

a
(6)
i = a

(5)
i (1− cr) + cr, (6.17)

where a
(6)
i is the activation of unit i in layer 6, which are the abundance weights

linearly transformed to interval [cr, 1] with cr being the lower bound on the
abundance for endmember r. This is the final layer in the latent representation
and thus a(6) represents h, which can be extracted as the endmember abundance
vector:

hn = wn = [w1,n, w2,n, w3,n]
T . (6.18)

Layer 7 performs clamping of endmember spectra (decoder weights), which en-
sures the extracted endmembers remain normalized and interpretable in relation
to the continuum normalized input and output spectra. This is achieved by
clamping the weights of the decoder at each forward pass to satisfy:

m1 ∈ [0, 1], (6.19)

m2 ∈ [−1, 0], (6.20)

m3 ∈ [−1, 0], (6.21)

where m1 is the solar endmember spectrum, m2 is the H2O endmember spectrum,
and m3 is the O2 endmember spectrum. The constraint in Eq. 6.19 ensures that
the extracted solar endmember remains continuum normalized. The constraints
in Eqs. 6.20 and 6.21 allow the extracted telluric endmembers to be interpreted
as transmission spectra, which absorb light from the fixed solar endmember at
varying weights controlled by the abundance vector wn from the latent space.
The decoder weight constraints act as regularizers guarding against exploding
gradients for large learning rates, as the decoder weights can never change
significantly between each backward pass.

Layer 8 performs a Doppler shift of the solar component through a shift function.
An underlying assumption in the proposed approach is that both the solar
spectrum and telluric transmission spectrum remain stationary in the wavelength
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domain, such that they can be described by the learned weights of the decoder.
The observed spectra are wavelength calibrated in the observer rest frame and
hence the telluric lines remain stationary. This is however not the case for the
solar component due to a slight Doppler shift of the solar spectrum arising from
Earth’s rotation and motion around the Sun. The relation between the spectral
shift and the velocity is given by:

v

c
=
λshift − λrest

λrest
, (6.22)

where v is the velocity, c is the speed of light, λshift is the shifted wavelength,
and λrest is the rest wavelength.

The network architecture does not allow the Solar endmember to change over
the various observations and thus the Doppler shift of this component in the
observed spectra will be caught in the telluric endmembers and cause noise in the
extracted spectra. Since the aim is to extract detailed endmembers, this Doppler
shift causes an unacceptable amount of noise, especially in regions with strong
solar lines. To account for this, the network performs a Doppler shift of the
solar endmember toward the solar component reference frame for each observed
spectrum. This allows a single solar endmember spectrum to represent the shifted
solar component in each observed spectrum. The shifted solar endmember is
created by learning a stationary solar endmember in the decoder weights and
Doppler shifting it using the barycentric Earth radial velocity (BERV) to match
the solar wavelength reference frame in each observed spectrum. This solution
reflects the physical nature of the problem, decreases model noise and allows for
a better learned representation. To incorporate this solution, a Doppler shifted
wavelength axis is computed for each observation according to:

λshift = λrest

(
1 +

v

c

)
, (6.23)

where λrest is the stationary wavelength axis of the solar endmember from
the decoder weights and λshift is the new wavelength axis matching the solar
component in each observed spectrum. The solar endmember from the decoder
weights is then linearly interpolated to this shifted wavelength axis before being
combined with the remaining endmembers in the last layer of the network.

Layer 9 is the final layer and computes the output of the network. It has
dimensionality x̂n ∈ RP . To ensure that the autoencoder learns a representation
that conforms with our LMM in Eq. 6.5, the decoder function must be restricted
to perform a linear transformation from latent representation to reconstruction
g(hn) : RR → RP . Furthermore, to directly extract endmember spectra from
the decoder weights, the decoder layer neurons are constructed without bias
terms. The decoder thus consists of a single affine transformation:

x̂n = W (9)a(6), (6.24)
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where a(6) is the activation of layer 6 (the latent abundance representation hn)
and W (9) are the weights of the decoder. These weights have dimensionality
W (9) ∈ RP×R and can be extracted as the endmember spectra M .

6.3.2.3 Network initialization

Initialization of weights in neural networks is known to affect both the convergence
time and learned representation [SMDH13]. We initialized the encoder weights
according to the Xavier scheme [GB10]. The weights of the decoder can either be
initialized in a similar fashion, or can be initialized with weights on a scale similar
to the weights the network is expected to learn [GBCB16]. We achieved the latter
by initializing the telluric decoder weights with synthetic transmission spectra
from molecfit. Additionally, the solar decoder weights were initialized from the
observed spectrum in the training set that most closely resembles the intrinsic
solar spectrum absent from telluric absorption. This specific observed spectrum
was identified as the training observation with the largest mean continuum
normalized flux. This is because telluric absorption removes light, and thus the
observed continuum normalized spectrum with the least telluric contribution
has the largest mean flux. Here it is important to emphasize that we operate on
continuum normalized spectra, where non-telluric effects causing differences in
the mean raw flux are mostly removed. These non-telluric effects include changes
in cloud coverage and instrumental response from observation to observation.
Our initialization approach biases the solar decoder weights due to the Doppler
shift of the initialization observation. We accounted for this bias when computing
the Doppler shifted wavelength axis for each observation by using the relative
BERV between the nth observation and the initialization observation. This
ensures that the solar decoder weights match the solar wavelength reference
frame in each observed spectrum. Both Xavier and custom weight initialization
schemes were tested and found to lead to similar learned weights by the end of
training. The described custom decoder initialization scheme was however found
to speed up model convergence over using Xavier initialization.

6.3.2.4 Latent space correlation

Spectral regions with strong telluric signal undergo large variation across the
training data. This allows the encoder to confidently learn to disentangle the
abundance variation of the underlying components. If stitched 1D spectra from
the spectrograph pipeline are used during training, the encoder is able to exploit
regions of strong telluric signal to effectively disentangle the individual abundance
variation of each endmember. However, we chose to train on non-stitched spectra
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for the 69 orders separately to retain the high fidelity of the observed spectra. For
a number of these orders the telluric signal is weak, which reduces the amount
of abundance variation available to learn from the observed spectra. This can
cause latent space abundances to become correlated across various endmembers,
potentially resulting in entanglement of the endmember spectra. Fortunately,
completely disentangling telluric endmembers is not critical for performing
accurate telluric correction, as only the combined telluric spectrum is of interest.
However, to obtain interpretable disentangled endmembers, we explored means
of circumventing the problem. Firstly, the latent space correlation can be avoided
by introducing an orthogonality constraint on the abundance vectors during
training. However, this is not advisable, as the different telluric components
can be naturally correlated through for instance the airmass. Alternatively, it
is possible to exploit strong known telluric bands from key orders, such as the
O2 γ-band in order 60 (spectral range approximately 6270 Å - 6340 Å in air)
or the several orders containing significant H2O absorption, such as order 54
of the HARPS-N data (spectral range approximately 5900 Å - 5970 Å). These
orders contain strong telluric variation and can be stitched on an order with weak
tellurics during training to guide the encoder in finding the correct abundances.
The guiding is exclusively used to encourage the encoder in learning disentangled
abundance vectors, and hence the endmembers are only saved for the spectral
region of interest during training (i.e. the decoder weights of the stitched on
strong telluric order is not saved after training). Exploiting strong telluric
variation from separate orders from the current training order is possible since
the different orders have been observed simultaneously and thus represent the
same atmospheric conditions. We employed this strategy when training on orders
with weak telluric signal to effectively learn the individual abundance variations
of O2 and H2O. The endmember correlation topic is further described in Sect.
6.5.3.

6.3.2.5 Hyperparameters

The hyperparameters of the network including learning rate, dropout, momentum,
weight decay, and batch normalisation parameters were tuned based on 50
iterations of a Tree-structured Parzen Estimator (TPE) optimization approach
carried out with optuna [ASY+19] for the individual orders using the MSE
reconstruction loss as objective function for minimization. Hyperparameters
such as layer dimensions are constrained and were thus not been included in the
hyperparameter tuning procedure.
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6.4 Results

The autoencoder has been trained on all 69 orders of the HARPS-N solar
observations. We show results from orders containing spectral regions of high
interest to the study of exoplanetary atmospheres. These orders exhibit a
combination of micro-tellurics in addition to several deep telluric lines originating
from H2O and O2 absorption and provide an important challenge for telluric
correction frameworks. All results are shown for wavelength measured in air.
We report results firstly by showing the extracted endmembers and secondly by
demonstrating how the extracted components can be applied to new observations
to provide accurate and efficient telluric removal.

6.4.1 Extracted endmembers

Endmembers M were extracted for each order by fully training the autoencoder
on the spectral region of the order and subsequently saving the tensor W ∈ RP×R

representing the final decoder weights. The associated abundance vector wn for
the nth observation was extracted by saving the latent space tensor hn.
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Figure 6.2: Illustration of the extracted endmembers and an observed solar
spectrum for order 60. The extracted endmembers represent from
top to bottom the H2O (blue, top), O2 (green) and solar (orange)
components of the observed spectrum (black, bottom).

Fig. 6.2 shows the endmembers extracted from order 60. This spectral range
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contains a combination of strong telluric lines from the O2 γ-band in addition
to weaker H2O tellurics. The autoencoder has disentangled the signals from the
observed spectrum into its underlying components consisting of the intrinsic
solar spectrum and the telluric absorption from H2O and O2. These molecules
exhibit different modes of variation in the observed spectra. The network has
been allowed to learn their individual abundance variation by using a three-
dimensional latent space (extracting three endmembers). The solar endmember
is constrained at constant abundance and is not scaled between observations. The
telluric components from H2O and O2 are scaled individually by their learned
abundance vectors for each observation to match the atmospheric conditions at
the time of the observation. For visibility, Fig. 6.2 includes an observed spectrum
with strong telluric contamination and the H2O and O2 endmembers have been
scaled with their respective learned abundances from the latent space for the
illustrated observation. Note how the network has learned to disentangle the
observed spectrum into interpretable components even in highly mixed spectral
regions such as 6750 Å - 6850 Å, where significant solar lines are interlaced with
deep O2 tellurics and weaker H2O lines. This is achieved by exploiting how these
spectral components vary individually according to the physical laws that govern
them.
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Figure 6.3: Scatter plots of airmass and the telluric abundances learned by
the autoencoder for order 60 of the HARPS-N solar observations.
The O2 endmember abundances (left, green) show a clear linear
relationship with airmass, while the H2O endmember abundances
(right, blue) show a much weaker correlation with airmass.

We further investigate the interpretability of the extracted components by
inspecting learned endmember abundance correlation with airmass. While
O2 abundance is expected to correlate strongly with airmass, H2O abundance
correlates more strongly with atmospheric water vapor content. Fig. 6.3 shows
scatter plots of the learned abundances with the corresponding airmass for each
observation. As expected from the physical model of the system, the learned
abundance of the O2 component shows a strong linear correlation with airmass,
while the H2O component shows a much weaker correlation.
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Additional extracted endmembers for order 53 and 54 can be found in Appendix
6.7 in Figs. 6.10 and 6.11. Firstly, order 53 contains the prominent Na doublet in
addition to a wealth of micro-tellurics from H2O. The network has disentangled
the observed spectra into a fixed solar endmember and a telluric H2O endmember.
Order 53 contains a number of lines where H2O tellurics are positioned on top
of strong solar lines. This is for instance the case between 5880 Å and 5900 Å,
where strong H2O tellurics occur in the same spectral region as the prominent
solar Na lines. We initially expected such mixed lines to compromise the quality
of the extracted endmembers, but as we demonstrate in Sect. 6.4.2, the extracted
solar and telluric components have been effectively disentangled allowing for
accurate telluric correction even in spectral regions of mixed stellar and telluric
signal. Fig. 6.11 shows endmembers for order 54, which contains numerous water
tellurics as well as strong solar lines.

6.4.2 Telluric correction

Telluric correction removes tellurics by dividing the observed spectrum with a
combined telluric transmission spectrum. In this section we demonstrate how the
extracted endmembers can be applied to new observations to carry out accurate
and efficient telluric correction. We do this by performing telluric correction
on a collection of observations from the HARPS-N spectrograph originating
both from solar observations as well as stellar observations of relevance to the
detection of exoplanetary atmospheric features.

6.4.2.1 Telluric correction on validation observation

We start by demonstrating telluric correction on a validation solar observation
with strong telluric contamination from HARPS-N. The validation observation is
from November 2020 and TAU has not seen the observation during training. As
a baseline for comparison we perform telluric correction of the same observation
using the state-of-the-art synthetic telluric correction approach molecfit. We
computed the molecfit telluric transmission spectrum using version 1.5.9 of
molecfit on an HPC cluster [DTU23] using a 10 core Intel Xeon E5-2660v3,
Huawei XH620 V3 node and utilized atmospheric measurements from the time
of the observation in addition to a fit to the stitched version of the observation
from the HARPS-N pipeline. We computed the TAU correction on an Intel 6
core i7, UHD 630 CPU laptop using the extracted telluric components, which
were converted back from log-space to represent standard transmission spectra.
Autoencoder telluric abundance weights were found using a least squares fit to
known telluric lines in the spectrum. No external atmospheric measurements were
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Figure 6.4: Comparison of corrected spectra around the solar Na doublet
(order 53). The corrections are computed using either autoencoder
extracted tellurics or molecfit.
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Figure 6.5: Comparison of corrected spectra in order 64. The corrections are
computed using either autoencoder extracted tellurics or molecfit
for H2O lines in the spectral region around Hα.
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Figure 6.6: Residuals from telluric correction. The correction is performed on
the validation spectrum with TAU and molecfit for a prominent
H2O telluric close to the Hα solar line shown in Fig 6.5. An ideal
correction would result in no residual (flat line at continuum level).

used during the autoencoder correction. We interpolated the telluric transmission
spectra of TAU and molecfit to the wavelength axis of the observed spectrum to
represent standard telluric correction procedure. The molecfit correction took
approximately 30 minutes to compute (separate from the additional time needed
to optimize molecfit parameters to improve the quality of the fit), while the
autoencoder correction took less than 0.2 seconds.

Fig. 6.4 shows the correction around the solar Na doublet in order 53. This
region contains numerous deep isolated H2O tellurics as well as telluric lines
interwoven with intrinsic solar lines. Both TAU and molecfit have managed to
correct for the telluric contamination by removing most of the telluric lines to
continuum level. For an isolated telluric line, a perfect correction would be to
the continuum level leaving no residual from the correction. In this spectral
region molecfit is clearly over-correcting a H2O line at 5886 Å by correcting
it above continuum level and leaving a large residual. The problem with this
particular line is discussed in the literature [CMW+20], and is possibly caused
by an extra entry in the line list used by molecfit. TAU does not make use of
external factors like molecular line list and has managed to correct this line to
continuum level. A similar, but less significant over-correction by molecfit can
be seen on the H2O line at 5909 Å. While we have observed a number of similar
small over-corrections by molecfit across the spectrum, they are not indicative
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of the general correction performance of molecfit on lines where the correct
external parameters are used.

Fig. 6.5 shows telluric correction around the solar Hα line in order 64. This
particular spectral range is of interest for exoplanetary research and poses a
difficult challenge for telluric correction frameworks due to the large number of
deep telluric lines. Both molecfit and TAU have corrected the observed spectrum
uncovering the intrinsic solar spectrum without indications of over-corrections.
However, as is visible for a number of the deepest telluric lines, molecfit slightly
under-corrects and leaves residuals from the correction, while TAU generally
removes the telluric lines with higher accuracy.

Fig. 6.6 shows a closer look at the fitted telluric transmission spectra and
corresponding corrections of the isolated deep 6543.9 Å telluric line also visible
in Fig. 6.5. This telluric line is particularly challenging due to its significant
depth. Since an ideal correction would leave no residual, we can measure the
residual of the correction and use it as a metric for correction performance. The
residuals are measured as the root mean squared errors (RMSE) from continuum
level. The autoencoder residual (blue) is significantly smaller than the molecfit
residual (red). As can be seen from the overlaid molecfit and autoencoder
transmission spectra, the differences in residuals emerge due to discrepancies
both in the depth as well as the exact wavelength position of the line center in
the transmission spectra used for the correction.

6.4.2.2 Temporal generalizability of correction performance

The validation spectrum has been observed at a point close in time to the
training data of the autoencoder. It is possible that seasonal atmospheric
effects can impact the correction performance of the extracted tellurics. For
this reason we performed numerous corrections on a large number of HARPS-N
solar observations across various observing seasons to demonstrate the general
correction performance of the autoencoder.

We chose 100 random observations from each observing season between 2015-
2018 resulting in 400 observations of the solar spectrum. We then performed
telluric correction on each of them using the autoencoder tellurics. All 400
corrections (across the entire observed spectrum) were computed in a total time
of less than 1 minute on an Intel 6 core i7, UHD 630 CPU laptop. We have
not computed molecfit corrections on these observations due to the significant
computational expense involved in performing molecfit corrections on several
hundred observations (and the additional time for optimizing parameters). Tab.
6.2 shows the mean RMSE of the residuals for various telluric lines across each
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Table 6.2: Correction performance in three spectral regions with strong tellurics.
The order 54 tellurics lie in [5945.1 Å, 5946.3 Å], order 60 in [6289.0
Å, 6290.4 Å] and order 64 in [6543.5 Å, 6544.3 Å] with all wavelengths
in observatory rest frame measured in air. Val Mol and val TAU
are the performances for molecfit and TAU for the single 2020
validation spectrum. 2015 TAU, 2016 TAU, 2017 TAU and 2018 TAU
are the performances for the annual observing seasons computed
as the mean RMSE and standard deviation of the autoencoder
residuals from 100 random solar observations from each year.

Data Order 54 Order 60 Order 64
[10−3 RMSE] [10−3 RMSE] [10−3 RMSE]

Val Mol 6.4 5.8 13.2
Val TAU 3.9 4.5 5.8
2015 TAU 4.0± 0.5 4.8± 0.6 6.7± 1.3
2016 TAU 3.9± 0.4 5.0± 0.6 6.6± 1.4
2017 TAU 4.0± 0.5 5.0± 0.6 6.6± 1.4
2018 TAU 4.2± 0.4 5.4± 0.6 6.7± 1.2

year of observations. The table also shows the residual on the single 2020
validation observation for reference. TAU has smaller residual than molecfit on
the validation observation for all three spectral regions. The mean autoencoder
residual for each annual observing season is also less than the molecfit correction
in each spectral region. TAU generally has a smaller residual on the 2020 validation
observation than the mean residual across the previous observing seasons, this
is however not the case for telluric lines in order 54 (spectral range 5945.1 Å -
5946.3 Å). Overall, the correction performance shows no clear temporal trend.

6.4.2.3 Endmember correlation

Fig. 6.7 shows telluric correction in a region of combined H2O and O2 tellurics in
order 60. The top panel shows the residuals from the correction on the validation
observation, while the bottom panel shows the individual spectra for H2O and
O2 used by TAU. In the left side of the figure a small H2O telluric is positioned
on top of the wing of a stronger O2 telluric. TAU has modeled the combined
observed telluric transmission spectrum in this region by combining the lines.
Weak H2O tellurics are visible under each of the two stronger O2 tellurics. The
location of these weak tellurics could indicate that the autoencoder has not fully
disentangled the H2O and O2 telluric spectra from each other. This is further
discussed in Sect. 6.5.3
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Figure 6.7: Correction of H2O and O2 tellurics. Top: Observed validation spec-
trum and residuals from telluric correction with TAU and molecfit
in a region with H2O and O2 tellurics in order 60. Bottom: Autoen-
coder endmembers for H2O and O2 in the same spectral region.

6.4.2.4 Impact of training data

TAU was trained on solar observations, which are comparatively cheap to obtain.
We also envision the possibility of training the autoencoder on nonsolar data
in situations where a spectrograph is not fed by a solar telescope. Such data
are bound to have larger BERVs, which could aid in disentangling the stellar
and telluric components from each other. On the other hand, nonsolar data also
has lower S/N, which would require a larger number of training observations to
obtain high endmember fidelity. Obtaining nonsolar data is expensive, and it
is important to know how the amount of training data impacts the generated
results. For this reason, we retrained TAU on various amounts of training data
and performed corrections with the resulting extracted tellurics.

Tab. 6.3 shows the impact on correction performance when reducing the size
of the training data. We did this by randomly subsampling the original 838
observations to generate training sets of respectively 400 and 200 observations.
We performed the sampling 5 times for both cases and report the mean RMSE
and standard deviations for corrections on the 400 observations from 2015-2018.
This results in 2000 corrections made from the tellurics extracted from networks
trained on either 400 or 200 observations. The correction performance can be
observed to decrease slightly with the size of the training data. This is expected,
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Table 6.3: Correction performance dependence on training data size. Correc-
tions are performed with tellurics extracted from a network trained
either on the full 838 observations, or with tellurics extracted from
networks trained on random samples of the training observations.
We retrain the network for random samples of size either 400 or
200 observations. We perform the random sampling 5 times for
both cases. Performance is shown in terms of the RMSE of the
residual from corrections made on 400 random observations between
2015-2018 in the same spectral ranges shown in Tab. 6.2. The per-
formance for "838" is the mean and standard deviation of the 400
corrections, while the performance for "400" and "200" is the mean
and standard deviation for 2000 corrections each (5×400). Variance
increases and performance decreases slightly for less training data.

Ntrain Order 54 Order 60 Order 64
[10−3 RMSE] [10−3 RMSE] [10−3 RMSE]

838 4.0± 0.5 5.0± 0.6 6.7± 1.4
400 4.0± 0.5 5.0± 0.7 6.9± 1.5
200 4.0± 0.6 5.2± 0.9 7.0± 1.8

as feeding the autoencoder additional training data allows it to learn a more
detailed telluric spectrum, leading to more accurate corrections. The correction
performance is however quite stable across the training set sizes, indicating
that the salient features of the data can be learned from a modest training set.
Thus, the size of the training set is not directly critical in obtaining an accurate
telluric spectrum. Rather, the critical part is to obtain sufficient abundance
variation within the training data to learn the telluric spectrum across various
atmospheric conditions. Generally, more training data carries more variation,
but this is not necessarily the case. For instance numerous training observations
recorded during the same night may not contain sufficient atmospheric variation
to constitute a good training set.

6.4.2.5 Systematic correction performance

Natural noise artifacts like cosmic rays and photon noise impacts the residual.
We demonstrate the systematic correction performance of TAU in Fig. 6.8, where
telluric correction on a series of tellurics in order 54 is compared between a single
residual from the 2020 validation observation and the combined residual from
numerous corrections. The top panel shows the correction performance on the
validation observation, where small correction artifacts are visible for molecfit
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and autoencoder corrections. The bottom panel shows the combined residual
from averaging residuals at each wavepoint over corrections performed by TAU
on the 400 observations from 2015-2018 in the same spectral region.
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Figure 6.8: Correction of H2O tellurics. Top: Residuals from telluric correction
with TAU and molecfit on the validation observation for tellurics
in order 54. Bottom: Combined residual in the same spectral
region from correction of 400 observations between 2015 and 2018
performed with TAU. Combination is performed by averaging the
residuals for each wave-point. The single observed spectrum from
the top plot is shown for visual comparison.

Small systematic correction artifacts by TAU can be seen close to the 5946 Å
line, where several telluric lines are superimposed on top of each other. In this
region the autoencoder has a slight systematic over-correction effect. Overall the
correction residual is within 1 per cent of the continuum level on all telluric lines
shown in the figure. We found similar systematic correction performance within
1 per cent of the continuum level in telluric lines across the observed spectrum
in the analyzed orders (53, 54, 60 and 64).

6.4.2.6 Telluric correction for exoplanetary atmosphere retrieval

TAU was trained on solar observations but is intended to be used for correction
of night time observations. To demonstrate the ability to perform corrections
on night time data with much lower S/N, we replicated the detection of Na
in the atmosphere of HAT-P-70b [ZHB+19] by [BACM+22], where the authors
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analyzed 40 spectra collected during a transit event of this ultra-hot Jupiter on
18 Dec 2020 between 21:28 and 02:10 UTC. The Na doublet is in a spectral region
particularly sensitive to telluric absorption, so this is a good exercise to test the
applicability of TAU to exoplanet atmospheric retrieval. The 40 spectra were first
corrected for tellurics using either molecfit or TAU. We then followed the same
transmission spectroscopy analysis described in [BACM+22]. The result is shown
in Fig. 6.9. The molecfit corrections were performed in the same manner as
for the solar observations, with a total computational time of approximately
7 hours (excluding additional time for optimizing parameters manually). We
inspected the molecfit input line list and removed the potential source of the
overcorrection near 5886 Å, as already done in [BACM+22]. TAU corrections were
performed using the extracted tellurics without manual parameter optimization
with a total computational time for the 40 corrections of approximately 10
seconds.
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Figure 6.9: Transmission spectroscopy for the Na I doublet. The spectroscopy
is performed using molecfit corrected spectra (top panel, red) and
Autoencoder corrected spectra (middle panel, blue). The unbinned
transmission spectra from either approach is shown in respectively
light red and light blue while the binned master transmission
spectra are shown as solid red and solid blue error bars. Each
master transmission spectrum is fitted with a Gaussian model (solid
red and solid blue lines). The vertical dotted gray lines show the
theoretical location of each spectral line. The bottom panel shows
a direct comparison of the binned master transmission spectra and
the Gaussian models from either molecfit and TAU.

The retrieved Na D1 and Na D2 lines from the observations corrected with either
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Table 6.4: Na D1 line results for the ultra-hot Jupiter HAT-P-70b using
molecfit or TAU for telluric correction.

Type molecfit TAU

Depth [%] 0.58± 0.15 0.60± 0.16
∆vsys [km s−1] −2.2± 1.4 −2.8± 1.2

FWHM [km s−1] 10.9± 3.2 9.5± 2.9

Table 6.5: Na D2 line results for the ultra-hot Jupiter HAT-P-70b using
molecfit or TAU for telluric correction.

Type molecfit TAU

Depth [%] 0.70± 0.14 0.69± 0.14
∆vsys [km s−1] −5.9± 1.2 −5.4± 1.1

FWHM [km s−1] 11.9± 2.8 11.1± 2.7

molecfit or TAU are shown in Tabs. 6.4 and 6.5. Due to the limited S/N of this
data, we observe no significant differences in the results obtained with either
TAU or molecfit corrections.

6.5 Discussion

In this section we discuss the results and touch on the advantages and limitations
of the autoencoder model in addition to laying out the future work for our
approach.

6.5.1 Comparison with molecfit

Our comparisons reveal how the autoencoder extracted spectra closely resemble
the synthetic transmission spectra of H2O and O2 from molecfit. All telluric
lines modelled by molecfit are also present in the autoencoder telluric endmem-
bers. The two approaches however exhibit small differences regarding the depth,
width and spectral location of lines.

The autoencoder telluric endmembers better match the actual width, depth and
spectral position of observed tellurics leading to more accurate correction. Fur-
thermore, corrections with TAU are performed approximately 10,000 times faster
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than molecfit. This difference in compute time is significant and makes TAU
much more feasible for correction of multiple spectra. Finally, the autoencoder
approach can be used as a complementary data-driven validation tool to inspect
the accuracy of synthetic approaches like molecfit, for instance by bringing
attention to over-correction artifacts caused by line lists entry errors, not only in
obvious cases like the 5886 Å telluric line in Fig. 6.4, but also in more subtle
cases like the 5909 Å line in the same figure.

6.5.2 Advantages

The autoencoder approach for extracting telluric transmission spectra has certain
advantages over other methods with the same aim. Firstly, since the approach
is data-driven, it is possible to extract the combined telluric spectrum without
relying on the precision of atmospheric measurements at the time of the ob-
servation, as well as external factors like molecular line lists. This is a major
advantage over synthetic models, which are inherently limited by the precision
of such factors. Furthermore, due to the high S/N and resolution of the training
data from HARPS-N, it is possible to extract the spectral shape and location
of telluric lines with very high accuracy. This type of accuracy on correction of
telluric lines is increasingly important as we get closer to the 10 cm/s RV barrier
for detecting Earth-like exoplanets.

Compared to other data-driven methods the autoencoder approach has the
advantage that it can work and learn from immense datasets by training with
mini-batch gradient descent. Traditionally neural networks have poor inter-
pretability, but the highly constrained nature of the network architecture causes
the learned representation to assume very specific properties, naturally leading to
better interpretability of both the latent representation, as well as the extracted
endmember spectra. The network constraints are highly customizable, allowing
the framework to be adapted to other wavelength intervals or settings of spectral
unmixing.

6.5.3 Limitations

For orders where the telluric components only exhibit minor variation, the
encoder has difficulty learning the abundance variation. This is evident for order
60, where the H2O component is much weaker than the O2 component and
thus constitutes less of the overall flux variation in the region. This caused the
encoder to entangle the telluric abundances of H2O and O2, which lead to the
decoder disentangling their spectra.
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This correlation of features occurring in the encoding stage of an autoencoder
trained with MSE is a known issue, which in the literature has been tackled
by introducing either an orthogonality regularization term to the loss function
[WYC+19] or by modeling the underlying low dimensional manifold as a product
of submanifolds, each modeling a different factor of variation [FCMR21]. With
the physical assumption that the H2O and O2 telluric components share at least
a minor correlation through airmass, we circumvented the issue by stitching on
a spectral region with strong tellurics, causing a disentanglement of the H2O
and O2 endmembers while still allowing them to be correlated. The latent
space correlation between the learned endmember abundances and consequently
spectra, is likely not critical, as the correction of telluric lines in observed spectra
is performed with the combined spectrum from all telluric components. From
Fig. 6.7, we see how the combination of telluric components from H2O and O2

corrects for telluric lines in an unseen observed spectrum. As is evident, the
correction is performed with high accuracy, suggesting the autoencoder can still
accurately represent observed tellurics through a combination of moderately
entangled telluric components. The question of whether the solar component
has been fully disentangled (or to which degree) from the telluric components
however remains.

Another potential limitation lies in the assumption that the components of the
telluric spectrum can be seen as a fixed spectra scaled with an abundance weight.
This assumption is based on the fact that temperature and pressure variations
in the Earth atmosphere are likely small enough that the telluric spectrum can
be represented like this. If the relative shape or spectral location of lines in the
transmission spectrum of a molecular species undergo large temporal changes,
then this assumption is unjustified. This could potentially be caused by large
scale pressure and temperature variations in the Earth atmosphere. To retain
high correction performance, this would mean that extracted endmembers used
for correction would have to be learned from solar spectra observed relatively
closely in time to the observation on which telluric correction is performed.
However, our experiments on corrections across annual observing seasons show
that no significant performance deterioration is apparent from temporal evolution.
Finally, our physical model assumes an ideal spectrograph. If the instrumental
profile changes significantly over time then our physical model is not valid. This
makes TAU most applicable for well-stabilized spectrographs.

6.5.4 Future work

Future work includes extending TAU to other spectrographs and spectral ranges.
This includes testing the approach on regions of saturated telluric lines in
the redder part of the spectrum, which is currently a significant challenge for
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ground-based astrophysics. Furthermore, the telluric weights used during telluric
correction on new observations with the extracted endmembers are currently
found using a least squares fit to known telluric lines in the spectrum. This could
be improved by building TAU into a full forward model which includes stellar and
telluric spectrum, such that these weights can be learned from all telluric lines
simultaneously. This approach would be feasible due to the fast computation
time of TAU.

6.6 Conclusion

We have introduced TAU, an open-source library that demonstrates a novel
approach for extracting a compressed representation of observed solar spectra
from HARPS-N using a highly constrained neural network autoencoder. We have
shown how this representation can be used to extract endmembers that directly
relate to the intrinsic solar spectrum as well as telluric transmission spectra of
H2O and O2. After the autoencoder representation has been computed for a
given spectrograph, the extracted components can be used to perform quick and
accurate telluric correction on any observations from the same spectrograph.
By comparing with molecfit, we have shown that the autoencoder extracted
tellurics can be used as a master telluric spectrum with correction performance
rivaling molecfit in large regions of the spectrum at a significantly reduced
computational expense. TAU is data-driven and is thereby not affected by external
factors like line list precision. This leads to improved correction accuracy over
molecfit in various regions of the spectrum. TAU can be trained on observed
solar spectra from any spectrograph and in this way extract a high-precision
telluric profile for the given spectrograph. The extracted profile can be used
to mitigate the telluric component in new observations, which could aid in the
detection of faint radial velocity signals and atmospheric features of Earth analog
exoplanets observed from ground-based telescopes.

Acknowledgements

We would like to thank HARPS-N for providing the public solar data used to
train TAU. This data is based on observations made with the Italian Telescopio
Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación
Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish
Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de
Canarias. Without this vast quantity of high S/N data our approach would



6.6 Conclusion 87

not be feasible. Furthermore, we would like to thank molecfit for providing
their open-source synthetic telluric correction framework, which we have not
only used for initializing the autoencoder weights, but also for validating our
extracted tellurics. Without a detailed synthetic telluric spectrum computed
based on physical models, it would be significantly more complicated to validate
our data-driven approach. Furthermore, we would like to acknowledge the DTU
HPC cluster, which we have used for computing molecfit corrections. A portion
of this research was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and
Space Administration (80NM0018D0004)



88 TAU: A neural network based telluric correction framework

6.7 Appendix A: Additional extracted endmem-
bers

We provide additional results for extracted endmembers for order 53 and 54 in
Figs. 6.10 and 6.11.
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Figure 6.10: Extracted endmembers and an observed solar spectrum for order
53. The network has been trained using a two-dimensional latent
space resulting in R = 2 endmembers. The extracted endmem-
bers represent the H2O (top, blue) and solar (middle, orange)
components of the observed spectrum (bottom, black).
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Figure 6.11: Extracted endmembers and an observed solar spectrum for order
54. The network has been trained using a two-dimensional latent
space resulting in R = 2 endmembers. The extracted endmem-
bers represent the H2O (top, blue) and solar (middle, orange)
components of the observed spectrum (bottom, black).
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Abstract: Prototypical self-explainable classifiers have emerged to meet the
growing demand for interpretable AI systems. These classifiers are designed to
incorporate high transparency in their decisions by basing inference on similarity
with learned prototypical objects. While these models are designed with diversity
in mind, the learned prototypes often do not sufficiently represent all aspects of
the input distribution, particularly those in low density regions. Such lack of
sufficient data representation, known as representation bias, has been associated
with various detrimental properties related to machine learning diversity and
fairness. In light of this, we introduce pantypes, a new family of prototypical
objects designed to capture the full diversity of the input distribution through
a sparse set of objects. We show that pantypes can empower prototypical self-
explainable models by occupying divergent regions of the latent space and thus
fostering high diversity, interpretability and fairness.

7.1 Introduction

Machine learning (ML) systems are increasingly affecting individuals across
various societal domains. This has put into question the black-box nature of
these systems, and fostered the field of explainable AI (XAI), wherein model
inference is corroborated with justifications and explanations in an effort to
increase transparency and trustworthiness. In this line of research two approaches
have arisen; that of ad-hoc black-box model explanations [SCD+17, YCN+15],
and that of self-explainable models (SEMs) [CLT+19a, AMJ18]. A popular
approach for SEMs substitutes traditional black-box networks with glass-box
counterparts, where class representative prototypes are generated and used
in the decision process [CLT+19a] leading to increased trustworthiness and
interpretability.

The various initiatives emerging in the literature share the same overarching
goals, but there is still a lack of consensus on the exact properties a SEMs should
display [GHH+23]. We adopt three prerequisites properties of a SEM outlined
in [GBH+22], namely transparency, trustworthiness and diversity.

Transparency may be defined by two properties; (i) the learned concepts are used
in the decision making process without the use of a black-box model and (ii) the
learned concepts can be visualized in the input space.

Trustworthiness may be defined by three properties; (i) the predictive performance
of the model matches its closest black-box counterpart, (ii) explanations are
robust and (iii) the explanations directly represent the contribution of the input
features to the model predictions.
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Diversity may be defined as the SEM using non-overlapping information in latent
space to represent its concepts.

While significant work has been put forth in the literature to cement the trans-
parency and trustworthiness axis of SEMs, only limited effort using qualitative
measures exists for the diversity axis. Similarly, the relation between the diversity
axis and appropriate inference remains largely unexplored. Diversity is typically
ensured by introducing model regularization towards learning non-overlapping
concepts [VL20]. However, this condition may not be strong enough, as non-
overlapping concepts can still be learned in a small region of the input space,
causing a lack of representativity for the full data distribution, known as repre-
sentation bias [SLAJ22]. Representation bias can cause smaller sub-populations
to remain hidden in low-density regions and ultimately cause biased inference
[JXS+20]. To provide sufficient coverage and to mitigate the impact of data
bias during model inference, it is critical to capture the full diversity of the
data, and to have this diversity be represented in the prototypes learned by the
SEM. To this end, we introduce pantypes, a new family of prototypical objects
designed to empower SEMs by sufficiently covering the dataspace. Pantype
generation is promoted using a novel volumetric loss inspired by a probability
distribution known as a Determinantal Point Process (DPP) [KT+12a]. This loss
induces higher prototype diversity, enables more fine-grained diversity control,
and at the same time allows prototype pruning wherein the number of prototypes
is determined dynamically dependent on the diversity expressed within each
class. Prototype pruning enables the capacity to learn additional prototypes
for complex classes and to grasp simple classes through a sparser set of objects,
improving the interpretability of the class representatives.

Our contributions can be summarized as follows:

• Introduction of a volumetric loss, which promotes the generation of pantypes,
a highly diverse set of prototypes.

• Quantitative measures for prototype representativity and diversity in SEMs.

• Dynamic class-specific prototype selection.

7.2 PanVAE

The modeling task at hand involves a classification setting on visual image
data, where the SEM learns to classify K > 0 classes from a training set
X = {(xi,yi)}Ni=1, where xi ∈ RP is the ith image and yi ∈ {0, 1}K is a one-hot
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label vector. We implement the pantypes on the foundation of a well-tested
variational autoencoder based SEM, known as ProtoVAE [GBH+22]. This model
uses an encoder function f : Rp → Rd × Rd, to transform the input images into
a posterior distribution (µi,σi). A latent representation zi of the ith image is
then sampled from the distribution N(µi,σi) and passed as input to a decoder
function g : Rd → Rp to generate the reconstructed image g(zi) = x̂i. To
enable transparent predictions, the model does not directly use the feature
vector zi during inference, but rather compares this vector to M prototypes
per class Φ = {ϕkj}k=1..K

j=1,,M via a similarity function sim : Rd → RM . The
resulting similarity vector si ∈ RK×M is then used in a glass-box linear classifier
h : RM → [0, 1]K to generate the class prediction h(si) = ŷi. The similarity
function [CLT+19b] is given by:

si(k, j) = sim(zi,ϕkj) = log

(
||zi − ϕkj ||2 + 1

||zi − ϕkj ||2 + ϵ

)
, (7.1)

where 0 < ϵ < 1. This construction allows the similarity vector to not only
capture the distances to the prototypes, but to also reflect the influence of each
prototype on the final prediction.

7.2.1 Loss Terms

To further enforce the properties of a SEM, we adopt the same prediction and
VAE loss term structure as ProtoVAE:

LProtoVAE = Lpred + LVAE + Lorth, (7.2)

where

Lpred =
1

N

N∑
i=1

CE(h(si);yi) (7.3)

is a cross-entropy (CE) prediction loss term ensuring inter-class diversity in the
prototypes and

LVAE =
1

N

N∑
i=1

||xi − x̂i||2+

K∑
k=1

M∑
j=1

yi(k)
si(k, j)∑M
l=1 si(k, j)

DKL(N(µi,σi)||N(ϕkj , Id))

(7.4)

is the loss for a mixture of VAEs using the same network each with a Gaussian
prior distribution centered on one of the prototypes [GBH+22]. Here Id is a
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d× d identity matrix. Finally, an orthonormality loss term is used:

Lorth =

K∑
k=1

||Φ̄T
k Φ̄k − IM ||2F , (7.5)

where Φ̄k is the mean subtracted prototype vector for all prototypes of class k
and IM is an M ×M identity matrix.

The orthonormality loss is included to foster intra-class prototype diversity and
to uphold the diversity property of a SEM by inducing the learning of non-
overlapping concepts in the latent space and thus avoiding prototype collapse
[WLWJ21, JVLT21]. While this loss causes the prototypes to be orthogonal, it
does not explicitly prevent the prototypes from occupying and representing a
small region (volume) of the full data-space. Moreover, prototype orthonormality
is typically achieved early during training, and further scaling of the orthonor-
mality loss does not significantly alter the diversity of the prototypes (see results
section).

Poor or skewed data representation, known as representation bias, has been asso-
ciated with various detrimental properties related to ML fairness, where under-
represented minority groups are negatively affected during inference [PJN+11a].
To mitigate these issues it is essential to achieve sufficient coverage of the full
diversity represented in the data [SG19a]. We draw on this idea to empower
the ProtoVAE model by exchanging its class-wise orthonormality diversity loss
with a volumetric diversity loss, which causes the model to learn prototypical
objects with various improved qualities, including an improved coverage of the
embedding space. We call these learned objects pantypes. The loss term structure
of our model is:

LPanVAE = Lpred + LVAE + Lvol, (7.6)

where Lvol is the volumetric prototype loss, which not only prevents prevents
prototype collapse, but causes higher prototype diversity, enables more fine-
grained diversity control, and at the same time allows prototype pruning wherein
the number of prototypes is determined dynamically dependent on the diversity
expressed within each class.

7.2.2 Pantypes

Pantypes are prototypical objects learned in an end-to-end manner during
model training. They are inspired by a probability distribution known as a
Determinantal Point Process (DPP) [KT+12a], which can be used to sample
from a population while ensuring high diversity. DPPs have recently garnered
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attention in the ML community, and have been used to draw diverse sets in a
range of ML applications including data from videos, images, documents, sensors
and recommendation systems [GCGS14a, KT+12a, LB12a, ZKL+10a, KSG08a].
DPPs describe a distribution over subsets, such that the sampling probability of
a subset is proportional to the determinant of an associated sub-matrix (a minor)
of a positive semi-definite kernel matrix. The kernel matrix expresses similarity
between feature vectors of observations through a kernel function Gij = g(vi,vj).
This global measure of similarity is then used to sample such that similar items
are unlikely to co-occur. The kernel can be constructed in various ways including
the radial basis function (RBF) kernel Gij = e−γ||vi−vj ||2 or the linear kernel,
leading to a similarity function of inner products known as the Gram matrix
Gij = ⟨vi,vj⟩. When using the Gram matrix, a DPP is equivalent to sampling
with probability proportional to the volume of the paralellotope formed by the
feature vectors of the sampled items. We utilize the linear kernel to construct a
volumetric loss on the prototypes in the following way:

Lvol =
1

K

K∑
k=1

1

|Gk|
1
2

, (7.7)

where Gk ∈ RM×M is the Gram matrix given by Gk = ΦT
kΦk with Φkj as

column vectors in Φk and |Gk| is the Gramian (Gram determinant). |Gk|
1
2

measures the M -dimensional volume of the parallelotope formed by the M
columns of Φk embedded in d-dimensional space. In other words, it expresses
the diversity of the M prototypes of class k through the volume spanned by their
feature vectors. This loss not only prevents prototype collapse by causing the
feature vectors to diverge, but also directly encourages the pantypes to occupy
different sectors of the data domain to express a large volume.

7.2.2.1 Prototype elimination

Increasing the scaling on the volume loss punishes pantypes that express a low
volume and thus directly alters the diversity of the learned objects. With sufficient
scaling, the volumetric loss forces pantypes out-of-distribution (OOD) if they are
not necessary to represent the observed diversity of a class. This allows natural
pruning, wherein the number of pantypes can be dynamically tuned by elimination
of OOD pantypes. This is similar to the discipline of hyperspectral endmember
unmixing, where a number of endmembers (prototypes) are disentangled from
a hyperspectral image and linear combinations of the endmembers are used to
reconstruct the input images. Following training, the learned endmembers can
be associated with purity scores [BKL+04], which express the quality of their
explanations. These scores describe the maximal responsibility proportion of
endmembers for reconstructing the original images. In other words, a high purity
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score indicates that an endmember shares a high similarity with individual input
images, while a low purity score indicates that an endmember is capturing noise
and should be pruned. Such purity scores can be constructed from the similarity
scores used in the linear classifier in our SEM. Thus, as proposed by [BKL+04],
we can initiate the model with a sufficiently large number of pantypes, and use
the similarity scores to prune individual OOD pantypes. We propose a heuristic
for pruning, where a pantype can be pruned if it does not have the maximal
similarity score for any of the training images (i.e. it does not individually
represents any of the training images more than the other pantypes).

7.3 Results

We perform experiments across various real-world datasets to monitor the trans-
parency, diversity and trustworthiness of PanVAE. These datasets are FashionM-
NIST (FMNIST) [XRV17], MNIST [LBBH98b], QuickDraw [HE17] and CelebA
[LLWT15]. We demonstrate the trustworthiness of PanVAE by evaluating the
predictive performance of the overall model and asses the diversity and trans-
parency using qualitative assessments from visualizations of the input space, as
well as quantitative measures of prototype quality and coverage. We compare
PanVAE to the performance of ProtoVAE and ProtoPNet. The hyperparameters
used for the experiments can be found in Appendix A.

Table 7.1: Predictive performance (accuracy) of PanVAE ProtoVAE and Pro-
toPNet on MNIST, FMNIST, QuickDraw and CelebA. The values
are the mean and standard deviation of three runs.

Dataset ProtoPNet ProtoVAE PanVAE

MNIST 98.8 ± 0.1 99.3 ± 0.1 99.4 ± 0.1
FMNIST 89.9 ± 0.5 91.6 ± 0.1 92.2 ± 0.1
QuickDraw 58.7 ± 0.0 85.6 ± 0.1 85.5 ± 0.1
CelebA 98.2 ± 0.1 98.6 ± 0.0 98.6 ± 0.0

7.3.1 Predictive Performance

The results for the predictive performance are shown in Tab. 7.1, which demon-
strates that PanVAE, like ProtoVAE, achieves higher predictive performance
than ProtoPNET on the four datasets. There is no significant predictive perfor-
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mance gap between PanVAE and ProtoVAE on the datasets. This underlines
the trustworthiness of PanVAE.
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15 10 5 0 5 10 15 20 25
UMAP1

15

10

5

0

5

10

15

20

UM
AP

2
0

1

2

3

4

5

6

7

8

9

Cl
as

s

(b) PanVAE.

Figure 7.1: ProtoVAE (a) and PanVAE (b) visualizations of the latent space
and decoded prototypes learned on MNIST after 30 epochs of train-
ing. Top: UMAP representations of the latent space with learned
prototypes overlaid as squares. Bottom: Decoded prototypes of
class ’1’ and ’9’. One of the prototypes from PanVAE does not have
the maximal similarity for any training image, indicated by a red
cross. PanVAE has captured variations in the digit ’1’ pertaining
to right-handedness (first ’1’ from the left), left-handedness (second
’1’ from the left) and a traditional writing style (third ’1’ from the
left).

7.3.2 Prototype Representation Quality

Firstly, we asses prototype representation quality using visual inspection of the
learned prototypes and the associated latent space. This can be seen for the
MNIST dataset on Fig. 7.1, where the prototypes for ProtoVAE and PanVAE
are shown. The diversity of PanVAE is higher than ProtoVAE. The prototypes
from ProtoVAE are mostly orthogonal in latent space, but only occupy a small
region of the space. Contrarily, the volume loss in PanVAE has pushed the
pantypes away from each other allowing them to occupy and represent diverse
regions of the dataspace. This is reflected in the decoded prototypes, which show
high diversity by representing various archetypical ways of drawing digits. For
instance, the pantypes capture variations between left-handed and right-handed
digits of "1" as well as the archetypical "1" with a horizontal base. Moreover,
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PanVAE has found that the digits of "9" express less diversity and has thus
pushed one of the pantypes OOD (indicated by a red cross in the figure). This
form of prototype pruning by PanVAE allows the model to asses and represent
the individual diversity expressed by each class.

sneaker

bag

ankle boot

(a) ProtoVAE Lorth 1.

sneaker

bag

ankle boot

(b) PanVAE Lvol 1.
sneaker

bag

ankle boot

(c) ProtoVAE Lorth 100.

sneaker

bag

ankle boot

(d) PanVAE Lvol 100.

Figure 7.2: Diversity control enabled by ProtoVAE and PanVAE. The figure
shows the change in decoded prototype appearance as the respective
diversity inducing losses are increased. The prototypes are shown
for the FMNIST data of classes "sneaker", "bag" and "ankle boot"
after 10 epochs of training. Figs. 7.2a and 7.2c show the difference
between ProtoVAE prototypes with scale factor of 1 and 100 on
the diversity loss Lorth. Figs. 7.2b and 7.2d show the difference
between PanVAE pantypes with scale factor of 1 and 100 on the
diversity loss Lvol.

Fig. 7.2 demonstrates the diversity control enabled by PanVAE by illustrating
learned prototypes on the FMNIST datasets with different diversity loss scalings.
The objective of the orthonormalization loss in ProtoVAE is to enforce intra-class
diversity, and hence that the prototypes capture different concepts. While the
loss ensures this, it only does so after sufficient training time (see Fig. 7.3
in Appendix 7.7). Fig. 7.2 shows that scaling the orthonormalization loss in
ProtoVAE does not significantly alter the diversity of the representation. On
the other hand, the volumetric loss in PanVAE allows direct control over the
diversity of the representation.

Previous work in the literature on prototype based self-explainable classifiers
often only qualitative asses the prototype diversity axis [GBH+22] (i.e. visual
inspection of the diversity prerequisite of non-overlapping prototypes). We
propose that self-explainable classifiers should not only be assessed with quan-
titative measures on the trustworthiness axis, but should also be evaluated by
quantitative measures on the diversity axis. This includes thorough evaluations
of how well the prototypes represent the dataspace. In order to do this we
make use of measures of prototype quality and representativity by firstly mea-
suring the prototype quality using the Davies-Bouldin (DB) index [DB79] and
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secondly evaluating the diversity of the class representatives by assessing their
data coverage.

7.3.2.1 Davies-Bouldin Index

The DB index is a measure of cluster quality defined by the average similarity
between cluster Ci for i = 1, ..., k and its most similar cluster Cj . The similarity
measure Rij quantifies a balance between inter- and intra-cluster distances. We
adopt this measure and consider the prototypes in a SEM as cluster representa-
tives and assign observations to their closest prototype in latent space according
to maximal similarity scores. The intra-cluster size si is then measured as the
average distance between prototype i and each data point belonging to the
prototype, while the the inter-cluster distance dij is measured by the distance
between prototypes i and j. From this the cluster similarity measure Rij can be
constructed such that it is non-negative and symmetric by:

Rij =
si + sj
dij

. (7.8)

With these definitions in place the DB index may be defined by:

DB =
1

k

k∑
i=1

max
i=j

Rij , (7.9)

where a lower DB scores equates to a better representation of the underlying
data. The DB scores for the different models can be seen in Tab. 7.2. PanVAE
achieves the best DB scores in all cases, demonstrating the ability of the pantypes
to represent the underlying dataspaces.

In addition to achieving higher final DB scores, PanVAE also does so using less
training time. This is illustrated in Fig. 7.3, where the DB score evolution
is shown for ProtoVAE and PanVAE over 100 epochs of training. PanVAE
converges on a lower DB score much quicker than ProtoVAE. This diversity
evolution behavior is also illustrated in latent space in Appendix B in Fig. 7.6.

7.3.2.2 Data Coverage

The DB index provides a measure of prototype quality in terms of prototype
representation quality, but does not sufficiently asses how well the prototypes
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Table 7.2: Davies-Bouldin scores of prototypes from the different models on
the datasets used for our experiments. The values are the mean and
standard deviation over three runs.

Dataset ProtoPNet ProtoVAE PanVAE

MNIST 2.20 ± 0.18 1.21 ± 0.00 1.13 ± 0.03
FMNIST 3.43 ± 1.15 1.35 ± 0.01 1.09 ± 0.01
QuickDraw 2.52 ± 0.62 2.57 ± 0.01 1.82 ± 0.01
CelebA 27.09 ± 27.23 1.58 ± 0.15 1.37 ± 0.01
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Figure 7.3: Evolution of prototype DB scores for PanVAE and ProtoVAE on
MNIST, FMNIST and QuickDraw. Data points indicate mean
values and associated standard deviations over three runs.

cover the diversity in the dataspace. Sufficient coverage of various aspects in the
dataspace has been found critical in obtaining unbiased ML algorithms [JXS+20].

In order to asses prototype data coverage, we compare the volume spanned
by observations represented by the prototypes to the volume of the full data
distribution. Ideally, the prototypes are diverse enough, that they sufficiently
cover a large volume of data they seek to represent. The coverage may be assessed
through the volume of the convex hull of the data. We evaluate our pantypes
on this premise by sampling the 100 nearest observations to each pantype. The
proximity is measured in the full latent space in terms of the similarity score
(Eq. 7.1). We then compute the volume spanned by the represented observations
from their convex hull, and compare this to the volume of the original data. We
illustrate the results of this procedure in Fig. 7.4 using a 2D UMAP projection of
the 256 dimensional latent space for the "Bag" class in FMNIST. An additional
coverage illustration for the "trouser" class is shown in Appendix B in Fig.
7.8. UMAP identifies a low dimensional manifold, where the data is uniformly
distributed. The exact variation represented by this manifold can be hard to
evaluate. Due to this we also demonstrate prototype coverage in PCA space for
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Figure 7.4: Prototype coverage in UMAP space from 20 epochs of training on
FMNIST with 5 prototypes for the "bag" class for ProtoVAE (a)
and PanVAE (b). Top: UMAP representations of the latent space
with learned prototypes overlaid as red squares. The prototype
convex hull in UMAP space is shown as a red outline around
the prototypes and the full class dataspace convex hull is shown
as a blue outline around the data. A sample of the 100 closest
observations to each prototype is shown as black datapoints. The
convex hull of the sampled observations is shown as a black outline.
The PanVAE sample convex hull covers 77% of the volume of the
full class convex hull, whereas the ProtoVAE sample convex hull
covers 33%. Bottom: Decoded prototypes.

the FMNIST classes "dress" and "sneaker" in Appendix B in Figs. 7.9 and 7.10.
We note that PanVAE has captured a severely underrepresented right-facing
sneaker as a pantype in Fig. 7.10. Overall, the increased diversity of the pantypes
allow them to occupy and represent a larger region of the dataspace.

7.3.2.3 Demographic Diversity

Sufficient representation of demographic groups has been found critical in ensuring
ML fairness [JXS+20]. Image data used to train facial recognition algorithms have
historically been biased towards White individuals, which are overrepresented in
the training data, resulting in biased inference [BG18b]. The largest disparity is
found between white skinned and dark skinned individuals.

Demographic diversity may be quantified using a measure of combinatorial
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diversity, also known as diversity index [Sim49]. The combinatorial diversity is
defined as the information entropy of the distribution [CDKV16a]:

H = −
k∑

i=1

pi log pi, (7.10)

where the combinatorial diversity measure H is the entropy, pi is the probability
of event i and

∑
is the sum over the possible outcomes k. This measure quantifies

the information entropy of the demographic distribution over k demographic
groups. A high entropy equates to a more diverse (fair) representation, which is
not particularly biased towards any demographic group.

(a) ProtoVAE. (b) PanVAE.

Figure 7.5: Face prototypes learned on the UTK Face dataset. The learned
prototypes are shown for ProtoVAE in (a) and for PanVAE in (b).
PanVAE has captured variations in race as well as other unseen
features such as facial hair in males. The ProtoVAE males all have
somewhat neutral expressions with shut mouths while most of the
females have slight smiles. The PanVAE males and females all
exhibit large variations in expression from full smiles with visible
teeth to neutral expressions without visible teeth.

We evaluate how the volumetric loss may aid in mitigating demographic data
bias and enhance group level diversity. To do this we train PanVAE on the UTK
Face dataset [ZSQ17], which contain images of about 20,000 individuals with
associated sex and race labels. See Appendix A for the training details. The
decoded facial prototypes from training on the UTK Face dataset can be seen in
Fig. 7.5. To evaluate the demographic diversity, we asses the race of the nearest
test image to each prototype and use this to compute the combinatorial diversity
of the race distribution. The overall accuracy and diversity results are reported
in Tab. 7.3. We also report the accuracy gap between White males and Black
females. This accuracy gap has been identified as a ubiquitous problem in facial
recognition algorithms. White males account for 23 percent of the individuals in
the UTK Face data, while Black females account for 9 percent. PanVAE achieves
a lower accuracy gap between these demographics due to a better accuracy on
Black females. However, this comes at the expense of a lower accuracy on the
majority sub-population of White males as compared to ProtoVAE.
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Table 7.3: UTK results. The values are the mean and standard deviation of
three runs. The overall accuracy is reported along with the individual
accuracy and accuracy gap between White males and Black females.
A positive gap value indicates that the mean accuracy is higher on
White males compared to Black females. Demographic diversity
is the information entropy of the distribution of races represented
by the prototypes. The represented races are determined by the
nearest test image to each prototype.

Metric ProtoVAE PanVAE

Accuracy All 95.08 ± 0.11 95.42 ± 0.37
Accuracy White Male 96.35 ± 0.31 95.21 ± 0.33
Accuracy Black Female 91.67 ± 0.53 94.90 ± 0.39
Accuracy Gap 4.69 ± 0.24 0.32 ± 0.15
Demographic Diversity 1.26 ± 0.06 1.43 ± 0.07

7.4 Discussion

The volumetric loss in PanVAE promotes the generation of diverse prototypes,
which capture the underlying dataspace and represent distinct archetypical
patterns in the data. This leads to increased representation quality and data
coverage and can mitigate data bias. However, pantypes are most useful when
the diversity expressed by the input data aligns with the diversity a study aims
to enforce. This is closely related to the concepts of geometric and combinatorial
diversity [CDKV16a], where geometric diversity expresses the volume spanned
by a number of high-dimensional feature vectors and combinatorial diversity is
related to information entropy of discrete variables. This means that geometric
diversity is useful for ensuring what humans perceive as high visual diversity,
while combinatorial diversity is useful for ensuring high demographic diversity (or
fairness) of human understandable sensitive variables that take on a small number
of discrete values (such as race). The volumetric loss in PanVAE exclusively
ensures a large geometric diversity of the learned pantypes and as such only
enforces visually diversity. This may not necessarily align with the diversity in
unseen protected attributes such as race in facial image data. This misalignment
can occur if features like background color and pose in the facial images exhibit
larger visual variation than features related to demographic diversity such as
skin tone. To enforce high demographic diversity, the images would either
have to be pose aligned and background removed (or at at least background
noise reduced) or the sensitive features would have to be incorporated directly
into the model, if possible. We have trained PanVAE on the cropped and
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aligned version of the UTK Face dataset to demonstrate that geometric and
combinatorial diversity can be obtained simultaneously in noise reduced data
with the volumetric loss. More balanced demographic representation can lead
to better predictive performance for minority sub-populations in the data and
consequently less disparate predictive performance between sub-populations.
However, this usually comes at the expense of a reduction in performance for the
majority group. Thus, the choice of representation should be carefully considered
in coherence with the aim and target population of the trained model.

7.5 Conclusion

We have introduced pantypes, a new family of prototypical objects used in a SEM
to capture the full diversity of the dataspace. Pantypes emerge by virtue of a
volumetric loss and are easily integrated into existing prototypical self-explainable
classifier frameworks. The volumetric loss causes the pantypes to diverge early
in the training process and to capture various archetypical patterns through
a sparse set of objects leading to increased interpretability and representation
quality without sacrificing accuracy.
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7.6 Appendix A

In this appendix we include the training details and the hyperparameters used
for our experiments. The experiments for MNIST, FMNIST, QuickDraw and
UTK Face have been performed on an Intel 6 core i7, UHD 630 CPU laptop.
The experiments for CelebA have been performed on a GPU HPC cluster. For
the MNIST, FMNIST and QuickDraw datasets we train the networks on images
with the original dimensions from the published datasets. For CelebA we rescale
the images from a dimension of 178 × 218 to a dimension of 224 x 224. For UTK
Face we use the aligned and cropped version of the data and rescale the images
from a dimension of 200 x 200 to 32 x 32. The UTK Face dataset contains
images of all ages from 0-116. We filter the dataset to include any individuals
over the age of 18. The UTK Face dataset is trained on 20 prototypes per
class, which causes the initial volume of the randomly initialized prototypes to
be excessively large, leading to computational precision issues. To resolve this,
we downscale the volume loss kernel Gk with a multiplicative factor of c = 0.1
before computing the volume. This results in a volume loss of:

Lvol =
1

K

K∑
k=1

1

|c ·Gk|
1
2

. (7.11)

For the MNIST, FMNIST and QuickDraw datasets we used the standard encoder
and decoder structures reported for these datasets in the ProtoVAE paper
[GBH+22]. For the UTK Face dataset we use the CIFAR-10 structure reported
in the ProtoVAE paper. For CelebA we use a ResNet-34 encoder and the usual
decoder designed to output 224 x 224 images.

The hyperparameters used for the experiments are reported in Tabs. 7.5 and 7.6.
We tested a range of values in interval [0.01-1000] for the loss scaling parameters
reported in Tab. 7.6. The final parameters were chosen to balance accuracy, DB
scores and decoded prototype appearance.
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Table 7.4: Overview of the datasets used for our experiments. K is the number
of classes.

Dataset Ntrain / Ntest Input Size K

MNIST 60,000 / 10,000 28 x 28 10
FMNIST 60,000 / 10,000 28 x 28 10
QuickDraw 80,000 / 20,000 32 x 32 10
CelebA 162,770 / 39,829 224 x 224 2
UTK Face 16,000 / 3,210 32 x 32 2

Table 7.5: Overview of hyperparameters used for our experiments. LR indicates
the learning rate and z Dim is the dimensionality of the latent space.

Dataset LR Epochs Batch Size z Dim

MNIST 1e−3 100 128 256
FMNIST 1e−3 100 128 256
QuickDraw 1e−3 100 128 512
CelebA 1e−3 50 128 512
UTK Face 1e−3 50 128 512

Table 7.6: Overview of number of prototypes pr. class (M) and loss term
scalings used for our experiments. Ldiv indicates the scaling on
the respective diversity inducing loss in ProtoVAE and PanVAE
(orthonormalization or volumetric loss). Lrec is the reconstruction
loss term in LVAE and Lkl is the KL-divergence loss term in LVAE.

Dataset M [Lpred,Lrec,Lkl,Ldiv]

MNIST 5 [1,1,1,1]
FMNIST 5 [1,1,1,1]
QuickDraw 10 [1,1,1,1]
CelebA (Proto) 10 [1,0.1,100,10]
CelebA (Pan) 10 [1,0.1,100,100]
UTK Face (Proto) 20 [1,1,1000,1]
UTK Face (Pan) 20 [1,1,1,0.1]
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7.7 Appendix B

In this appendix we include additional illustrations of the concepts learned by
PanVAE. All UMAP [MHM18] illustrations in this appendix and the paper
throughout have been created using the following UMAP parameters: Minimum
distance of 0.99, learning rate of 1.0, local connectivity of 1 and the number of
neighbors at 25.

Fig. 7.6 shows the evolution of the latent space of MNIST during training. Here
it is evident that PanVAE achieves high prototype diversity early in the training
phase (as soon as 10 epochs), while the orthonormalization loss in ProtoVAE
does not cause significant prototype diversity before 50 epochs of training. This
finding is mirrored in Fig. 7.3, which shows that ProtoVAE uses significantly
more training time to achieve good separation between the prototypes and that
at separation convergence PanVAE achieves the best representation. Fig. 7.7
shows the final decoded prototypes learned on the QuickDraw dataset. Figs. 7.8,
7.9 and 7.10 show prototype data coverage on the FMNIST dataset in UMAP
and PCA space.
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(a) ProtoVAE 10 epochs.
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(b) PanVAE 10 epochs.
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(c) ProtoVAE 30 epochs.
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(d) PanVAE 30 epochs.
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(e) ProtoVAE 50 epochs.
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(f) PanVAE 50 epochs.

Figure 7.6: UMAP representations for the latent space of the MNIST data
with overlaid latent representations of the prototypes (squares)
for ProtoVAE and PanVAE respectively. The figures show the
evolution of prototype latent location with training time. Both
models are initiated with 50 total prototypes, but PanVAE is using
prototype elimination and has eliminated 8 prototypes converging
at 42 total prototypes.
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Figure 7.7: QuickDraw prototypes from ProtoVAE and PanVAE after 100
epochs of training with 10 prototypes per class. For PanVAE the
pantypes that do not have the maximal similarity score with any
training image have been marked with red crosses. In ProtoVAE all
prototypes have maximal similarity score with at least one training
image.

2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0
UMAP1

2

0

2

4

6

8

10

12

UM
AP

2

Data Convex Hull
Sample Convex Hull
Prototypes Convex Hull
Data
Sample
Prototypes

(a) Trouser ProtoVAE
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(b) Trouser PanVAE.

Figure 7.8: Prototype coverage from 20 epochs of training on FMNIST with 5
prototypes for the trouser class. The PanVAE sample convex hull
covers 73% of the volume of the full class convex hull, whereas the
ProtoVAE sample convex hull covers 25%.
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(a) Dress ProtoVAE.
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(b) Dress PanVAE.

Figure 7.9: PCA coverage from 20 epochs of training on FMNIST with 5
prototypes for the dress class. The principal components account
for 54% and 52 % of the variation in the Prototype and PanType
networks respectively. The ProtoVAE sample convex hull covers
3% of the volume of the full class convex hull, whereas the PanVAE
sample convex hull covers 24%.
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(a) Sneaker ProtoVAE
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(b) Sneaker PanVAE.

Figure 7.10: PCA coverage from 20 epochs of training on FMNIST with 5
prototypes for the sneaker class. The principal components ac-
count for 65% and 68% of the variation in the ProtoVAE and
PanVAE networks respectively. The ProtoVAE sample convex
hull covers 2% of the volume of the full class convex hull, whereas
the PanVAE sample convex hull covers 19%.



Chapter 8

Data Representativity for
Machine Learning and AI

Systems
Line K. H. Clemmensen1,†, Rune D. Kjærsgaard1,†

1 Department of Applied Mathematics and Computer Science, Technical University of Denmark
(DTU), Richard Petersens Plads 324, Kgs. Lyngby 2800, Denmark

† These authors contributed equally to this work

Publication Status: Paper is under preparation.

To be submitted to: Association for Computing Machinery (ACM) Computing
Surveys.



8.1 Introduction 111

Abstract: Data representativity is crucial when drawing inference from data
through machine learning models. Scholars have increased focus on unraveling
the bias and fairness in models, also in relation to inherent biases in the input
data. However, limited work exists on the representativity of samples (datasets)
for appropriate inference in AI systems. This paper reviews definitions and
notions of a representative sample and surveys their use in scientific AI literature.
We introduce three measurable concepts to help focus the notions and evaluate
different data samples. Furthermore, we demonstrate that the contrast between
a representative sample in the sense of coverage of the input space, versus a
representative sample mimicking the distribution of the target population is
of particular relevance when building AI systems. Through empirical demon-
strations on US Census data, we evaluate the opposing inherent qualities of
these concepts. Finally, we propose a framework of questions for creating and
documenting data with data representativity in mind, as an addition to existing
dataset documentation templates.

8.1 Introduction

Machine learning and AI systems are increasingly governing important decisions
affecting individuals at all levels of society. These automated decision frameworks
have demonstrated various unwanted consequences as a result of biased data
[PJN+11b, LI16, BG18a, RB19, MAR19, LGM88, ZOM19]. Oftentimes these
systems are trained on samples (datasets) from a larger population. Biased
results can arise if the sample does not accurately represent the target population,
or if there is a lack of sufficient representation for subgroups within the data.
While the literature of data bias in machine Learning and artificial intelligence
(AI) systems is rich [SG19b], there exists only limited work on the connections
between data representativity and AI systems. Terms like representative sample
are used ubiquitously in the literature, often without further specification on
the details or effects of this representativity. This paper analyzes and surveys
data representativity in scientific literature relating to machine learning and AI
systems by investigating how different notions of representativity are used and
what effects adhering to different notions of data representativity has in relation
to appropriate inference.

The term representative sample is an overloaded term and a generally accepted
definition of what constitutes a representative sample (subset of observations) is
hard to find in the literature. A few examples demonstrate that at least a couple
of definitions of representative sample exist. The most general definition we
found is from D’Excelle (2014) and states "“Representative sampling” is a type of
statistical sampling that allows us to use data from a sample to make conclusions
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that are representative for the population from which the sample is taken." [D4].
However, this definition leaves us with the important question of what we mean
by representative. The following two examples of definitions clarify this point.
1) Meriam Websters’ online dictionary says: "Sampling in which the relative
sizes of sub-population samples are chosen equal to the relative sizes of the sub-
populations." [Mer22]. 2) An online portal disseminating elementary statistics to
graduate students writes "A representative sample is where your sample matches
some characteristic of your population, usually the characteristic you’re targeting
with your research." [Sta22]. These examples illustrate that as we unfold the
meaning of representative, questions arise, like what the target population is
and which attributes/characteristics/sub-populations are relevant as well as how
to measure a match between a sample and a population. OECD (Economic Co-
operation and Development)’s definition of a representative sample acknowledges
that several notions exist: "In the widest sense, a sample which is representative
of a population. Some confusion arises according to whether “representative” is
regarded as meaning “selected by some process which gives all samples an equal
chance of appearing to represent the population”; or, alternatively, whether it
means “typical in respect of certain characteristics, however chosen"." [OEC22].
Some of these ambiguities are linked: The definition of representative is linked
to the target of the system/research/analysis and dictates which attributes, sub
populations, and representative measures are of relevance. In this paper, we
review various interpretations and notions of the term representative sample
and link these to mathematical measures. Subsequently, we measure the match
between the notions and the target of the analysis by looking at performance,
diversity, and fairness metrics.

In 1979-1980 Kruskal and Mosteller wrote four papers on the term representative
sampling with the motivation to unravel its ambiguities and imprecision [KM79a,
KM79b, KM79c, KM80]. In addition, they called for caution as well as more
specific expressions when referring to a representative sample. As they noted:
"The reason for so much effort on one term is that the idea of representativeness
is closely related to basic notions of statistical inference". In this paper, we take
a closer look at data representativity for recent machine learning and artificial
intelligence (AI) systems and before advancing, we will dwell on the nature of
studies in AI and what this means for inference. AI systems are built both on
observational data and on data from experiments gathered with the purpose
of training the AI. Whereas randomized controlled experiments/trials are truly
random samples, observational studies need to be carefully designed to tackle
their inherent haphazardness [Ros10]. In observational studies, matching is
performed to make treatment and control groups comparable, but unlike for
experimentation, there is no basis for assuming that this extends to unmeasured
factors [Ros10, Mon19]. Experimental studies are often used to make causal
inferences, a basis which dates back to R.A. Fisher (1935) [Fis35]. However,
causal relations can also be established through observational studies, like for
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example the link between smoking and lung cancer [CHH+09]. We will therefore
not further distinguish between the nature of the data or the AI systems.

As we draw conclusions from data or make predictions in artificial intelligence (AI)
systems trained on data, it is important to understand what these data represent,
and which inferences we can make. AI systems or machine learning (ML) models
for decision making are widely used in industry and research, but care is not
always put to the origin of the data, on which the systems are trained. This is
for example seen in big data, where more data are considered better, and data
often originate from a historical collection performed for e.g., control purposes
or from scraping available internet sources rather than having been collected
for the purpose, which it is later used for [BC11, KFK+20, Hua21, Ber17].
Other examples are more general for ML/AI and include representation bias
stemming from the way we define and sample from a population, evaluation
bias stemming from benchmark datasets with inherent biases, population bias
when the distribution of attributes differ between dataset and target population,
and sampling bias stemming from non-random sampling of subgroups [MMS+21,
OCFK19, SG19c].

Amongst other, Kruskal and Mosteller found that representative sample was used
as an assertive to underline a point without any scientific reasoning. Historically,
the ImageNet competition has had a kind of implicit assertive, where scientists
believed good results on the ImageNet dataset would mean good results for
other image recognition tasks as well [MMS+21, DM20]. Torralba and Efros
empirically illustrated in their paper ’Unbiased Look at Dataset Bias’ (2011)
that generalizations supporting this assertive were not necessarily a given, and
described their findings as "if we add training data that does not match the
biases of the test data this will result in a less effective classifier" [TE11].

Recently, focus has been put on the lack of transparency around dataset design
and collection procedures as well as efforts to unbias existing datasets like e.g.,
the ImageNet [MMS+21, YQFF+20]. We will investigate these initiatives as
well as the notions of a representative sample within the AI community. We
have found sampling theories from the disciplines of analysis of physical material,
design of experiments, as well as surveys in social sciences useful in terms of
analyzing current practices and relating these to the ongoing work within ML
and AI, where the historical emphasis on data representativity has been smaller.

To summarize, our contributions in this paper are:

• We provide an overview of the interdisciplinary topic of data representa-
tivity, organise the various notions of representativity, link mathematical
measures to the notions when possible, and propose the use of three
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measurable concepts.

• We describe and discuss relevant notions of representativity in literature
and review their use in papers introducing datasets from the NeurIPS 2021
Track on Datasets and Benchmarks and ICCV 2021.

• We demonstrate contrasting perspectives on data representativity by em-
pirically comparing two measurable concepts with opposing notions of
representativity.

• We propose a framework of questions for creating and documenting data
with representativity in mind.

• We provide new research directions on data representativity in ML and AI.

The rest of the paper is organized as follows. First, through literature about
representative sampling, we will outline the general notions of a ’representative
sample’ (Section 8.2), give examples of their use in recent ML and AI literature,
add mathematical measures for each notion, when possible, and propose to
use three measurable concepts inn their place. In Section 8.3 we review the
notions of representative sample used in the papers from the datasets and
benchmarks track at NeurIPS 2021 and new benchmark datasets from ICCV
2021. Throughout these investigations, we find opposing opinions of sampling
for coverage of the input space vs. probability sampling mimicking population
distributions, which correspond to two of the measurable concepts. Consequently,
we make empirical investigations demonstrating the qualities these opposing
notions/concepts hold in Section 8.5. Finally, we suggest a framework for
addressing data representativity in datasheets in Section 8.6 and round off with
a discussion in Section 10.5.

8.2 Notions of a ’representative sample’

Since there is no specific, mathematical definition of a representative sample,
and initial investigations identified at least a couple of different notions of what
a representative sample is, we will review differing notions here.

Kruskal and Mosteller identified six notions/usages of a ’representative sample’ in
their first surveys from 1979 [KM79a, KM79b]: An assertive acclaim, absence of
selective forces, a miniature of the population, an observation ’typical’ or ’ideal’
of the (sub)population, coverage of a population by the sample, and a reference
to a sampling method later on specified in details. The sixth is a special notion
in scientific writing, whereas the first five were found in both non-scientific as
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well as scientific writing. We will use this framing here, and link more recent
literature to these and add examples of their use in literature. We add existing
mathematical or formal definitions belonging to the notions in the subsequent
section.

Finally, we also add two novel notions we found in AI literature. We call them
the copycat and no notion. Copycat refers to the creation of synthetic data
representative of a target population. No notion refers to vague or no mentioning
of representativity and likewise also no mentioning of non-representativity or
limitations of the data representativity. The latter may seem harmless when
presenting new datasets, but as the data is re-used, this can become harmful
and an implicit notion of an assertive claim can grow in its place.

8.2.1 The assertive claim (the Emperor’s new clothes)

The assertive claim, as described in the introduction, is used as an assertive to
underline a point without any scientific reasoning and is dangerous both as a
conscious acclaim and a subconscious notion when it comes without specification.
It is recommended to avoid unjustified and unspecified use. We mentioned
ImageNet as a historical example of an assertive claim of a representative sample
[MMS+21, DM20]. Despite the broad acknowledgment of the ImageNet case
as a cautionary tale on data representativity, the assertive notion continues to
appear even in recent literature from acknowledged publication venues. One
example is from the datasheet of a publication from the NeurIPS 2021 Track on
Datasets and Benchmarks regarding time-sensitive questions [CWW21]: "It’s
sampled from large Wikipedia passages, it’s representative of all the possible
temporal-sensitive information."

8.2.2 The miniature (the model train set)

The miniature is best captured by Meriam-Webster’s definition: "the relative
sizes of sub-population samples are chosen equal to the relative sizes of the
sub-populations" [Mer22]. This is a sample of the target population perfectly
mimicking every (relevant) aspect (characteristic/distribution) of the population.

The miniature population has strong ties to the theory of sampling of physical
material also related to chemical or biological analysis [Gy98, PME05a]. One
of the guiding principles in the theory of sampling is to have as homogeneous a
population (lot) as possible in order for a sample anywhere in the lot to mimic
the lot best possible, which in turn minimizes sampling errors.
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In other fields, it is common to subdivide the space into smaller groups, until
each group exhibits homogeneity, and then randomly sample a miniature or a
sample representative of that group with probability equal to the proportion
of that group in the population [BJP13]. This is also referred to as strata
sampling (simple random sampling within mutually exclusive groups of the target
population/strata) or cluster sampling (random sampling of clusters/strata in
the population and inclusion of all samples for the selected clusters) in fields like
survey analysis [HJH12]. Ghojogh et al show that strata sampling always has
lower variance than that of simple random sampling, in particular when strata
have very different characteristics [GNG+20]. However, defining homogeneity in
terms of subgroups may be delicate and constructing meaningful groups/strata
is difficult if the population values/distributions are unknown.

Sampling from distributions is another way to construct miniature samples [Sha06,
Mac05]. Sampling from distributions, and not least joint distributions, gives the
possibility of matching distributions between sample and population rather than
matching simpler characteristics, like e.g. averages. In high dimensions, these
methods do suffer computationally, however. As a non-parametric alternative it
is possible to sample from densities [KGC21b, RG16].

It is also possible to make a sample mimic certain characteristics of the population
by sampling enough random samples to obtain a convergence in the measure of
interest [BMZ21].

Recently, Yang et al (2020) [YQFF+20] proposed a framework to balance the
demographics of ImageNet, but they also stated that this is only possible for one
attribute at a time, as sub-categories will have too few samples if balancing across
multiple attributes (e.g. race and gender). In consequence, the miniature analogy
in itself breaks down, as we cannot account for all factors in the miniature, in
particular not as the miniature decrease in sample size.

A concrete use of the miniature notion is seen in [dSMBC+21] where Machado
et al predict suicide attempts in what they refer to as a representative sample of
the US population. They write: "a representative sample of the adult population
of the United States, oversampling black people, Hispanic individuals, and young
adults aged 18– 24 years. ... Weighted data were adjusted to be representative of
the civilian population ... data were weighted to reflect design characteristics of
the NESARC and account for oversampling." The miniature notion is apparent
in terms of reweighing characteristics to match the distribution of the population
of interest. A certain notion of coverage and absence of selective forces can
also be seen in terms of age and race, for which specific sampling strategies
(oversampling) have been taken. This example illustrates that several notions
are often used together, something we also note in our survey in Section 8.3.
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In ’Understanding the Demographics of Twitter Users’ by Mislove et al (2011) they
conclude that Twitter users are not representative of the US population based on
argumentation of non-matching demographic distributions for geography, gender,
and race/ethnicity [MSLA+11]. This notion is related to that of a miniature, and
we note that a dismissal of the representativity is in essence easier than proving
it holds. However, even a dismissal of a sample as representative is limited to
our understanding of the population. An understanding which for example is
limited as explained by Taleb’s Black Swan theory [Tal07, Tal20] about human’s
rationalization of rare and unpredictable events. Ruths and Pfeffer later on
proposed eight steps to reduce biases and flaws in social media data [RP14],
parts of these relate to the data collection and its documentation (similar to
datasheets for datasets [GMV+21b]), and another part relates to correction for
biases by population matching (miniature notion) or robustness testing across
time and different samples.

8.2.3 Absence or presence of selective forces (justice bal-
ancing the scales)

Absence or presence of selective forces means that the sample is random as no
forces are in play to select or de-select any specific types of observations in the
target population; implying the purpose is to make inference about the target
population, not the sample.

This notion ties to experimental modeling and coverage as follows. In the design
of experiments literature, controllable factors and uncontrollable factors are
distinguished [Mon19]. The controllable ones are indeed controlled to design
as small an experiment as possible, yet with a suitable amount of observations
and an appropriate coverage of the input space in order to make inference and
optimize the response/output as a function of the controllable factors. Too many
controlled factors make it hard to access all cross populations, and in addition
there is no way of exhausting all possibilities.

Selective factors can also be uncontrollable or in the worst case go unnoticed.
Examples of these are time-drifts in a production or non-response in surveys.
These can pose problems to the statistical inference drawn from data. If observ-
able, we can manage through our sampling design or sometimes even through
post processing of data. However, unobserved or even unnoticed factors impose
serious risks of bias and confounding.

In surveys, non-response is considered a substantial source of error caused by
selection, one that is not directly related with the sampling. Selective forces
can also influence survey responders through e.g., an interviewer effect. Errors
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stemming from such selective forces can lead to potential biases, and several
corrective efforts are usually applied to adjust for these [Gid12].

Selective sampling can also be performed on purpose, in survey sampling such
examples are: quota sampling, purposive sampling, and referral sampling. These
sampling designs are non-random and generalizations are therefore challenged,
but sometimes samples of interest are so few, or participation recruitment so
difficult, that convenience sampling designs can come in handy [Gid12].

In Kelly et al’s 2019 opinion paper ’Key challenges for delivering clinical im-
pact with artificial intelligence’ [KKS+19], they mention representative sample
as follows: "The curation of independent local test sets by each healthcare
provider could be used to fairly compare the performance of the various available
algorithms in a representative sample of their population." This notion of a rep-
resentative sample speaks to some absence of selective forces in that it is believed
each healthcare provider is best off providing its own sample, representative for
their population, thus arguing for local models specific for a geographic area
with specific demographics. Furthermore, distribution shifts are mentioned as a
challenge for the AI models in healthcare, not only across healthcare providers,
but also across time. This methodological discussion of whether a population
should be seen as fixed or whether it itself is taken from an underlying stochastic
process has ties all the way back to discussions from the 1903 ISI Berlin meeting
(World Statistical Congress) [KM80].

8.2.4 Typical/ideal (Superman/Superwoman or the aver-
age man/woman)

Typical/ideal refers to typical or ideal exemplars which represent a population or
subgroups of a population. This is not necessarily in a statistical sense, but may
mean close to the average. An example is that in [LTG10], where cluster centers
from Gaussian mixture models are sampled as representative observations of a
larger dataset. In addition, a ML method like archetypal analysis [CB94b] carries
some of this notion: Archetypes in the data are identified as linear combinations
of the observations which describes a convex hull off the observations.

Another example of the notion of typical observations is from NeurIPS 2021,
where typical names are sampled for construction of a dataset: "For each race
and gender, we chose the top ten first names based on their overall frequency
and representation within each group, excluding unisex names and names that
differed by only one character." [LRD+21]. As the authors state: "The names
we selected were derived using real-world data on demographic representations of
first names, however demographic representation does not necessarily correlate
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with implicit stereotypical associations".

We also found a use of a representative sample, meaning a sample representative
of a specific target. In online tracking, this is used to help overcome occlusions
when following a target in a video [OYC18]. This meaning is most related to
that of typical exemplars, here typical of a specific target of interest.

8.2.5 Coverage (Noah’s Ark)

Coverage seeks to include the heterogeneity of the population in the sample. A
strong requirement for coverage would be that the sample should contain at
least one observation from each relevant partition of the population. In contrast
to the miniature, coverage does not require proportions within partitions to
match those of the population. Harry V. Roberts suggested in 1971 sampling
following the coverage notion in order to select a committee and avoid conscious
and unconscious biases from appointing authorities [Rob71]. For the committee
purpose, there is certain overlap with the typical/ideal notion. Along these lines,
coverage is more about producing representativeness than about obtaining a
likeness with the original population.

Density-based sampling approaches have proven useful under the coverage notion
of representative sampling, where density estimates can be used to asses popula-
tion imbalances and use this information for sampling to cover the heterogeneity
of the population in the sample [KGC21b, RG16], or to reduce noise and improve
performance in imbalanced classification settings [HLLL19].

An example where we meet the notion of coverage is in one of the recent proposals
to address the lack of transparency around dataset collection and design in ML/AI,
namely in datasheets for datasets by Gebru et al (2021) [GMV+21b]. One of
the questions they propose concerns data representativity, and says: "Does the
dataset contain all possible instances or is it a sample (not necessarily random)
of instances from a larger set? If the dataset is a sample, then what is the larger
set? Is the sample representative of the larger set (e.g., geographic coverage)? If
so, please describe how this representativeness was validated/verified. If it is not
representative of the larger set, please describe why not (e.g., to cover a more
diverse range of instances, because instances were withheld or unavailable)."
Apart from a clear notion of coverage, the description concerns some of the
historical issues noted by the earliest endeavors of Anders Kiær (Director of
Statistics Norway during 1877-1913) to go from full census to a representative
sample, namely, how do we measure the representativeness? [KM80]. Coverage
may or may not be what we go for, but if we go for it, how do we measure
coverage, in particular considering joint distributions from several attributes? For
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example if mean values or min/max of each attribute match between sample and
population, this does not imply that the distributions of each attribute match
between sample and target population. This only becomes more complex if we
consider the joint distributions of the attributes. Second, we should note that if
we strictly go for coverage, then distributions between sample and population
most likely do not match, and e.g., variance or mean estimates based on the
sample will differ. On the other hand, coverage has an intuitive attraction when
it comes to inclusion and equality. We will demonstrate these aspects empirically
in Section 8.5.

In a benchmark data publication with focus on real-world images [LGR+20],
we additionally see a notion of coverage: "objectives for underwater image
collection: ... a diversity of underwater scenes, different characteristics of quality
degradation, and a broad range of image content should be covered."

Sampling with a notion of coverage in mind often means combining non-random
and random sampling methods, whereas sampling with a miniature in mind
often means using random probability sampling, for example strata sampling.

Coverage is also usually constructed purposefully to not mimic the underlying
population, but rather to include the heterogeneity in the population, and this
is often a preferred notion when fairness is part of the purpose of the modeling.
In literature, some of the closest mathematical measures of coverage are those of
diversity [CDKV16b].

8.2.6 Reference to sampling, later on specified

With this notion, the term ’representative sample’ in itself becomes a ’vague
term’, and the exact meaning is specified in the context. Kruskal and Mosteller
recommended this use of the term representative sample, bearing in mind that
it needs always a specification. In their mind, the specification refers to the
method of sampling, i.e., a description of how the data have been obtained.
Apart from the sampling method/procedure we recommend also specifying the
original population, the purpose of the sampling, and herein the notion (later
refined to measurable concept) under which the sample is taken.

Another question Gebru et al propose to answer in a datasheet refers to the
method of sampling [GMV+21b]: "If the dataset is a sample from a larger
set, what was the sampling strategy (e.g., deterministic, probabilistic with
specific sampling probabilities)?" Underlining the historical recommendations for
a specification of sampling method when referring to a ’representative sample’.
We will add, that any dataset is a sample of a larger set or population. In fact,
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this question may also give some of the answers to the question of how the data is
representative or not, as these answers heavily depend on the sampling strategy.
Hopefully, answers are also well aligned with the first question in the motivation
part of Gebru et al’s datasheet, namely "For what purpose was the dataset
created?" For some purposes, small sets of data, not generally representative of
the entire population in question, can be good enough. Subsets of data may show
that some characteristic thought to be absent or rare is in fact more frequent, or
vice versa, that something thought of as universal is in fact missing to at least
some degree. These subsets may be representative of only a part of the underlying
population and thus form basis to dismiss one of the mentioned hypotheses, but
not to draw any further inference about the entire population, see also [KM79c]
for examples. With open source datasets, we should be careful, as the purpose
or the hypothesis means we have collected specific data to enlighten us, and this
data may not be useful to draw inference for other hypotheses or purposes.

As the method of sampling is specified, the notion of representativeness should
be made clear and the reproduceability of the data/study possible. However, it
is the notion and the purpose of the study that makes way for mathematical
measures of the representativeness.

8.2.7 The copycat (synthetically generated)

This notion is used when real-world data (or parts of it) are copied or mimicked
through synthetic data generation methods. In these settings the synthetic data
are often claimed to represent the real-world data for instance by matching
distributions. Alternatively, the synthetic data can be used to specifically target
underrepresented regions of the original population distribution and thus be
claimed more representative of uncommon instances than the original real-world
data. Thus, synthetic data generation frameworks allow great flexibility and
provide excellent test-beds for the study of data representativity. A recent
example can be found in a paper publishing a novel text dataset [YIN+21]:
"We took advantage of the synthesis pipeline to showcase how datasets can be
constructed with properties that deliberately differ from real world distributions.
Notably, we include samples of individuals with common (e.g., scientist) as well as
uncommon occupations (e.g., spy)... and designed SynthBio to be more balanced
with respect to gender and nationality compared to the original WikiBio dataset.
... Our paper takes the stance that in addition to evaluating on the world as
it is, researchers benefit from having the option to evaluate their models on a
more uniform distribution of the population. Synthesizing novel datasets is one
technique that serves this goal. ... In addition, undesirable bias in real-world
data, especially with respect to underrepresented groups, can be controlled in
synthetic data, enabling evaluation of model performance on comparatively rare
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language phenomena". We note that there are also notions of both a miniature
and coverage in this example.

8.2.8 No notion

This notion, or rather lack thereof, indicates that it is simply not mentioned
how or what the data may be representative of, or that it has no notion by not
mentioning the limitations of the dataset. A newer benchmark dataset (from
ICCV 2019) gives us an example of no notion of representativity [UPH+19].
They describe one of their contributions as: "A new object dataset from meshes
of scanned real-world scene for training and testing point cloud classification".
They indicate that the real-world scans of objects are more representative of
problems expected to occur in vision tasks than computer generated object scans.
This is undoubtedly true, but when it comes to the dataset as a benchmark
of real-world scenes, the data representativity is more unclear. The real world
examples consist of 15 categories of indoor objects; "we manually filter and select
objects for 15 common categories". It is unclear how the categories were chosen
or what they are representative of in terms of a larger population of common
indoor objects. We recommend more explicit descriptions of data representativity,
sampling and its purpose, see also [GMV+21b]. In some circumstances outlining
the limitations of the data representativity may be more sensible than outlining
the target population.

8.2.9 Measurable concepts

The notions do not provide clear definitions and sometimes several notions share
the same underlying concept. Additionally, mathematical measures are not
necessarily applicable to all notions. In this section we relate the notions to
overarching concepts and connect these to mathematical measures that can be
used to assess the concepts. In addition, we provide mathematical measures
which can be used to asses the impact of data representativity on fairness.

We define three operational concepts for data representativity, see Table 8.1. 1)
A sample as a reflection of the target population - mimicking the population
distribution. The representativity can be measured by comparing the distribu-
tions of sample and target or by comparing specific measures (like averages) of
interest. 2) A sample providing coverage of the population. The coverage of the
sample can be measured through existing diversity measures of the sample (like
geometric diversity or entropy). 3) Samples as representatives of subgroups in
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the population, where the representativity e.g., can be measured through cluster
metrics like the average distance to the representative within the subgroup.

The miniature and coverage notions naturally fit into the reflection and coverage
concepts, respectively. Synthetic data (copycat) are often devised according
to a reflection concept, but can in also be devised according to a coverage
concept. The notion of selective forces likewise fits into either the reflection or
coverage concept depending on the aim. The reference to sampling notion is also
context dependent conditional on the specified sampling procedure. This notion
can adhere to any of the three concepts depending on the specified sampling
methodology and aim of the study.
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Table 8.1: Overview of notions, concepts and related mathematical measures.

Concept Notion Description Examples of existing mathe-
matical measures

- Assertive
claim

Claiming representativeness with-
out justification

None - Avoid

- No notion No indication of data representa-
tivity

None - Avoid

- Reference to
sampling

Special notion specified in context
of sampling method

Context dependent

Reflection Miniature Sample mimics population distri-
bution

Averages and average predictions
as well as distributional compar-
isons between sample and popula-
tion

Selective
forces

Truly random sample in observa-
tional studies like e.g. surveys

Copycat Synthetic data created to mimic
real-world data distribution

Coverage Coverage Sample provides coverage by
broadly representing the hetero-
geneity/diversity of the population

Diversity measures of the sample
e.g. geometric coverage

Selective
forces

Truly random samples in experi-
mental studies

Copycat Synthetic data created for bal-
anced coverage of real-world datas-
pace

Representatives Typical/ideal Single observations are representa-
tives of a group in the population

The representatives are e.g. ap-
proximated by the mean, median
or mode of the group
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The notion of a representative sample as an assertive claim, whether explicit or
implicit should be avoided as it is not measurable. Not having a notion is likewise
not recommended as it is not measurable and may lead to an implicit assertive
use of the dataset. While Kruskal and Mosteller preferred to use a notion of a
’representative sample’ as a vague term with the sampling procedure specified
later, we recommend clearly stating a motivation for data representativity and
to subsequently thoroughly document the sampling procedure and methods. We
argue that a more explicit use of one of the measurable concepts of representativity
will make the aim clearer; giving the sampling documentation a context in which
it can be evaluated.

The reflection and coverage concepts often work from contrasting perspectives on
data representativity and carry different inherent advantages and disadvantages.
We will demonstrate these in Section 8.5.

8.2.9.1 Reflection

This concept may be assessed in various ways. As a first approach, statistical
tests on averages and average predictions can give an indication of generalization
between sample and population. Additional central tendency measures like me-
dian and mode and statistical dispersion measures like variance and interquartile
range may also be analyzed. Furthermore, the notion may be examined by
analyzing the distributions, for instance measuring the distributional departure
of the sample from the population. This departure can be measured through the
ℓ∞ norm equivalent to the Kolmogorov-Smirnov (KS) statistic [LRC05]. Most
distributional measures operate in one dimension, but some can be extended to
compare multivariate distributions. For instance the generalization of the KS
two sample statistic for 2D and 3D distributions due to Peacock [Pea83]. Other
tests, like the maximum mean discrepancy (MMD) [GBR+12] are designed for
comparing multidimensional distributions. Generally, the tests for comparing
multidimensional distributions are computationally expensive for large, high-
dimensional samples. Another popular distributional distance measure is the
general Wasserstein distance [Vas69, Kan60] given by:

Wp(µ, ν) =

(
inf

π∈Γ(µ,ν)

∫
M×M

d(x, y)pdπ(x, y)

)1/p

, (8.1)

where p ≥ 1 and Wp is the pth Wasserstein distance, Γ(µ, ν) denote all joint
distributions π that have marginals µ and ν, d is a metric (distance function)
between points x and y that are being matched and M is a given metric space.
When p = 1 the distance is also known as the Earth Mover Distance and carries
a nice intuitive interpretation of visualizing the two distributions as piles of earth
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(soil). The distributional departure is then measured by the work required to
turn one pile into the other through an optimal transport problem.

8.2.9.2 Coverage

Coverage may be quantified through diversity measures. We bring attention
to measures evaluating either combinatorial information, called combinatorial
diversity, C(·) or geometric coverage, called geometric diversity, G(·). To define
these metrics consider a set of observations X and a discrete categorical feature
with k categories. This gives rise to a partition of the dataspace into k parts
X = X1 ∪X2 ∪ .. ∪Xk, leading to a combinatorial measure of diversity. The
combinatorial diversity of a subset S ⊆ X is defined as the Shannon entropy of
the distribution [CDKV16b]:

C(S) = −
k∑

i=1

si log si, (8.2)

where the combinatorial diversity measure C(S) is the Shannon entropy, si =
|S|∩|Xi|

|S| is the probability of event i and
∑

is the sum over the possible outcomes.
Thus combinatorial diversity (also known as diversity index [Sim49]) has roots
in information theory and measures the degree of diversity through the Shannon
entropy of the distribution. High entropy corresponds to high diversity. The
combinatorial diversity measure is useful to quantify diversity in features with a
set of discrete human-interpretable values [CDKV16b] such as race.

On the other hand, geometric diversity is motivated from a volumetric perspective
[CDKV16b]. Each datapoint x ∈ X is represented by a feature vector vx. The
geometric diversity of a subset S ⊆ X is the n-volume of the parallelotope
spanned by the n feature vectors {vx : x ∈ S}, where n = |S| is the size of the
subset. Denoting the data matrix of the subset S as D ∈ Rp×n, the (squared)
n-volume of the n-parallelotope embedded in a p-dimensional space (where p > n)
can be computed by means of the determinant of the Gramian matrix G = DTD
(with feature vectors as columns in D). Thus the geometric diversity can be
measured by:

G(S) =
√
Det(DTD), (8.3)

where G(S) is the geometric diversity of subset S, Det(·) denotes the determinant
and D is the data matrix of the subset S. Geometric diversity is motivated
from a perspective of diverse feature vectors. Intuitively, diverse vectors can
be interpreted as divergent and thus pointing in different directions. The
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diversity of these can be measured by the volume of the parallelotope spanned
by the vectors. Thus, the larger the volume, the higher the geometric coverage.
Geometric diversity is closely related to a type of probability distribution known
as determinantal point process (DPP) [KT+12a], which can be used to draw
samples proportional to their geometric diversity.

While geometric diversity can be a good measure of the coverage for a sample, or
between different samples of the same size from the same population, it does not
directly relate to the degree of coverage in the original population space. As the
metric evaluates n-dimensional volumes, comparing geometric diversity between
sample and population equates to comparing different dimensional volumes. On
the other hand, comparing between different sized samples through combinatorial
diversity is straightforward, as this measure operates intrinsically on normalized
probabilities.

8.2.9.3 Representatives

A typical or ideal observation may be estimated as the mean, centroid or mode
of the group it represents, and the representativeness may be measured by the
variance in the group. Furthermore, in settings where representativeness of an
underlying population is sought through data reconstruction from a combination
of archetypes (ideal exemplars), the representativeness of these archetypes can
be measured through a reconstruction loss between original and reconstructed
data.

8.2.9.4 Fairness measures

Analogous to how the notions of representativity may be measured mathemati-
cally, various measures also exist to quantify the adverse effects of insufficient
representation, known as representation bias. Representation bias occurs when
parts of the input space are underrepresented [SG19b, SLAJ22], for instance a
sampled population which underrepresents and fails to generalize well for parts
of the population, which can manifest as disparate predictive accuracy for these
groups [CJS18, AJJ19, JXS+20]. Common cases include models trained on Ima-
geNet [DDS+09, SHB+17] and commercial facial analysis algorithms [BG18c].
While these models are not intrinsically unfair, they may capture and increase
biases present in the training data. This inherited bias can be measured through
algorithmic fairness metrics.

Algorithmic fairness is often formulated in terms of independence relations
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between model predictions Ŷ and a protected attribute A (typically a binary
feature A ∈ {0, 1}) denoting group membership under a protected category such
as race or sex. A common notion of algorithmic fairness, known as demographic
parity (or statistical parity), is defined to require independence between model
predictions and a protected attribute:

Ŷ ⊥⊥ A (8.4)

In regression settings Ŷ is a real-valued random variable characterized by its
cumulative distribution function (CDF). The departure of the CDF of Ŷ from the
CDF of Ŷ conditional on the protected attribute A can be used as a measure of
demographic parity [ADW19, RD21]. For a binary decision problem Ŷ ∈ {0, 1}
with a binary protected attribute A ∈ {0, 1} the demographic parity constraint
can be expressed by P{Ŷ = 1|A = 0} = P{Ŷ = 1|A = 1} [HPS16], thus
requiring equality of positive rates for subsets of the protected attribute.

The demographic parity criterion has been critiqued on various accounts [DHP+12,
HPS16], which has lead to an alternative formulation of algorithmic fairness
known as equalized odds. Equalized odds formulates the following conditional
independence:

Ŷ ⊥⊥ A | Y, (8.5)

The equalized odds constraint applies to targets and protected attributes in any
space [HPS16]. For binary classification with a binary protected attribute, the
constraint can be formulated as P{Ŷ = 1|A = 0, Y = y} = P{Ŷ = 1|A = 1, Y =
y}, y ∈ 0, 1, where y is the outcome. In this setting Y = 1 is often considered
the advantaged outcome, which leads to a popular relaxation of the equalized
odds measure known as equal opportunity [HPS16]. This measure prohibits
discrimination only within the advantaged outcome group and can be formulated
as P{Ŷ = 1|A = 0, Y = 1} = P{Ŷ = 1|A = 1, Y = 1}. Equal opportunity thus
requires equality of true positive rates.

8.3 Survey of use in AI literature

To provide insight into the use of data representativity in current literature, we
conduct a survey of papers from two typical and highly recognized AI conferences;
The Conference on Neural Information Processing Systems (NeurIPS) and The
International Conference on Computer Vision (ICCV). We restrict our survey to
papers contributing novel datasets at either the NeurIPS 2021 Track on Datasets
and Benchmarks or at the main conference at ICCV. The NeurIPS track has 174
accepted papers contributing either high-quality datasets, new benchmarks or
discussions on data related work; 108 of them contribute novel datasets. These
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papers are required by NeurIPS guidelines to provide dataset documentation
and intended uses. The organizers recommended using documentation such as
datasheets for datasets, which encourages the authors to consider and document
how their work relates to data representativity. The main conference at ICCV
2021 has 1612 accepted papers, of which we identify 32 contributing novel
datasets. We conduct the survey by reviewing which notions each paper uses to
describe the representativity of their dataset. A summary of the survey results
can be found in Table 8.2.

Table 8.2: Summary of notions used in the 108 papers introducing novel
datasets on the NeurIPS 2021 Track on Datasets and Benchmarks
and 32 papers introducing novel datasets from ICCV 2021. For
each paper we document which notion they use to describe the
representativity of their dataset. A paper can use more than one
notion of representativity.

NeurIPS 2021 ICCV 2021
Notion Number of papers Percent Number of papers Percent

No notion 2 1.9 % 1 3.2 %
Assertive 10 9.3 % 2 6.3 %
Miniature 15 13.9 % 10 31.3 %
Selective Forces 41 38.0 % 7 21.9 %
Typical / Ideal 14 13.0 % 4 12.5 %
Coverage 66 61.1 % 27 84.4 %
Reference to sampling 108 100.0 % 30 94 %
Copycat 18 16.7 % 5 15.6 %

8.3.1 Examples

We find that the various notions appear in a wide array of settings and range from
implicit to explicit use. Here we provide noteworthy examples demonstrating
how the authors use the notions to express the representativity of their datasets.

8.3.1.1 Assertive claim

The assertive claim appears in about 9% of surveyed NeurIPS publications and
6% of the surveyed ICCV papers. An example of the notion can be found in the
datasheet of a publication regarding time-sensitive questions [CWW21]: "It’s
sampled from large Wikipedia passages, it’s representative of all the possible
temporal-sensitive information." Further examples include [MNJ+21]: "We select
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16k most representative scenes and exhaustively annotate all the 3D bounding
boxes of 5 categories..." and [MBC+21] "This data contains examples of slang,
acronyms, lack of punctuation, poor orthography, concatenations, profanity,
and poor grammar, among other forms of atypical language usage. This data
is representative of the types of inputs that machine translation services find
challenging."

8.3.1.2 Miniature

The miniature notion appears in roughly 14 % of the surveyed NeurIPS papers
and 31% of the surveyed ICCV papers. It emerges in various settings including
demographic population representativity of people [HWB+21]: "Tab. 1b shows
a statistical summary of the eligible cohort. This cohort broadly reflects the
Tufts student population in terms of age, racial and gender makeup." Likewise
the notion is used in relation to population distribution of animals in a paper
regarding animal pose estimation [YXZ+21]: "... the number of images in each
family of AP-10K has a long-tail distribution, which reflects the true distribution
of animals in the wild due to the commonness or rarity of the animals in some
extent."

The notion also appears in more restricted forms, for instance claiming a miniature
in terms of a specific geographic region [KTR+21]: "The class imbalance provides
a challenge for machine learning algorithms but it is representative of the
geographic region and an imbalance is generally common in real-world crop
type mapping tasks." Furthermore, the notion also appears under the disguise
of ’representative coverage’ [RBM+21]: "By restricting a dataset to only those
tweets matching a pre-defined vocabulary, a higher percentage of hateful content
can be found. However, this sacrifices representative coverage for cost-savings,
yielding a biased dataset whose distribution diverges from the real world we seek
to model and to apply these models to in practice."

Finally, some publications state that their data are not representative in terms of
the miniature notion [BD21]: "Two thirds of the dataset concentrate on as few
as four countries: Germany, France, the UK, and Spain. This distribution is not
representative of the actual distribution of church buildings across Europe but
most likely correlated with the size and level of activity of the local Wikipedia
communities and their propensity to enter information in Wikidata."
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8.3.1.3 Selective forces

The selective forces notion appears in 38 % of the surveyed NeurIPS papers
and 22% of the surveyed ICCV papers. The notion is mostly used to claim
non-representativity due to the presence of selective forces in the sampling
process. Examples include: [HWB+21]: "First, our dataset is limited in whom
it represents. Because we draw from a convenience sample at our university,
ages are skewed toward typical college students and the racial makeup reflects
that our campus community is largely white and Asian." Another example
is [Gil21] "Because our dataset comprises only named and published chaotic
systems, it does not comprise a representative sample of the larger space of all
low-dimensional chaotic systems." Yet another example includes a discussion on
the difficulty of dealing with multiple selective forces [ARZV21]: "... sampling
images randomly from an uncurated large collection removes specific biases
such as search engine selection but not others, for example the geographic bias.
Furthermore, we added one significant bias: there are no people in these pictures,
despite the fact that a large fraction of all images in existence contain people"

On the other hand the absence of selective forces is used as an indication that no
sampling biases exist, and hence that the data is representative of the population
[ANM+21]: "To avoid introducing biases, all comments of the RP have been
considered without further topical filtering. Furthermore, using a broad crowd
to annotate the data should minimize the inclusion of person- specific biases."

8.3.1.4 Typical / Ideal

This notion is used in 13 % of the surveyed papers and also appears in relation
to synthetic data generation, where representativity of the underlying population
is sought modelled through variation on ideal / archetypical patterns or shapes.
For example [KL21]: "The first part of the template specification describes a
base sewing pattern that would then be parametrized and varied to produce new
designs." "The training group of 12 templates aims to cover design spaces of
typical simple garments, including skirts, dresses, tops, pants, jackets, hoodies,
and jumpsuits, and reflect some topological variations among them."

The notion is also used to express representativity of a population through
typical systems or methods [OGB+21]: "We propose four representative physical
systems, as well as a collection of both widely used classical time integrators
and representative data-driven methods (kernel-based, MLP, CNN, nearest
neighbors)".



132 Data Representativity for Machine Learning and AI Systems

8.3.1.5 Coverage

The coverage notion is popular appearing in 61 % of the surveyed NeurIPS papers
and 84% of the surveyed ICCV papers. The notion can be found in a wealth
of settings and often appears as a claim of diversity in the data, for example
[KL21]: "... the motivation was to resemble the variety of designs that exist
within a garment type while covering this diversity uniformly." Another example
is [KSC+21] "A diverse quantity of wild and lab culture mosquitoes is included
in the database to capture the biodiversity of naturally occurring species." The
notion is also use in terms of language coverage in [MCB+21]: "The dataset is
our best effort to extract and represent as much diversity (in terms of various
different languages) from Common Voice as possible." Additionally, the notion
is commonly used in ICCV papers to support that the published image data is
representative of the real world in terms of visual diversity [RRR+21]: "...we
wanted scenes that are as photorealistic and visually diverse as possible."

8.3.1.6 Copycat

The copycat notion can be found in about 16 % of the surveyed papers and
appears mostly in relation to synthetic data generators constructed to copy
or mimic the distribution of real-world data. For instance [LKWN21]: "The
synthetic datasets we release offer a wide variety of parameters that can be
configured to simulate real-world data." Another example is [PSU21]: "Note
that this data captures the behavior of real workers in the target domain modulo
potential differences induced by the use of a synthetic speech generator."

The notion is however also used in tandem with the notion of selective forces
to deliberately synthesize data that diverges from the real-world distribution.
[YIN+21]: "We took advantage of the synthesis pipeline to showcase how datasets
can be constructed with properties that deliberately differ from real world
distributions. Notably, we include samples of individuals with common (e.g.,
scientist) as well as uncommon occupations (e.g., spy) (Table 3) and designed
SynthBio to be more balanced with respect to gender and nationality compared
to the original WikiBio dataset."

8.4 Survey Discussion

We find that the various notions of representative samples are still highly pertinent.
Over 95% of the surveyed papers use at least one notion and all notions appear
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in a wide range of settings. Overall, we observe similar occurrence rates for the
notions across the two conferences, with the largest differences apparent in the
use of miniature, selective forces, and coverage notions. For both conferences
the coverage notion is especially prominent appearing in 61% of the surveyed
NeurIPS paper and 84% of the surveyed ICCV papers. This might partially be
attributed to the backdrop of the cautionary tale on lack of coverage in ImageNet,
bu also partly due to questions in datasheets for datasets using a clear notion of
coverage (e.g. geographic coverage) when inquiring about the representativity of
the dataset. We also bring attention to the the assertive notion, which is rarely
used but still has a somewhat high occurrence rate considering the recognition
of the two conferences.

8.5 Demonstrations using data

To demonstrate contrasting perspectives on representativity, we empirically
evaluate performance, fairness and diversity for samples created with either with
the concept of coverage or reflection in mind. The samples are created from a US
census data collection [DHMS21] through stratified random sampling to obtain
a miniature and through either density based or determinantal point process
(DPP) based sampling to achieve coverage.

The US Census data exhibit significant population skew between minority and
majority groups of protected attributes as well as significant interstate geographi-
cal variation. For this reason the data provides a suitable testing ground to study
the effects of data representativity in relation to representation bias. Models
trained on biased data can result in learned mappings from input to output that
are uncertain for underrepresented regions [SG19b], which may lead to disparate
predictive accuracy for different groups [CJS18, AJJ19, JXS+20], but can also
cause adverse effects on overall performance under distributional shifts between
training and target data.

For instance if models trained on specific states are applied to other states
[DHMS21]. Representation bias can be mitigated by identifying and populating
underrepresented parts of the data distribution [SG19b, JXS+20]. Such mit-
igation efforts could be performed by obtaining additional data, by targeted
data augmentation (eg. SMOTE [CBHK02]) or by probabilistic over-sampling
of underrepresented data regions [KGC21b]. Representation bias can occur in
real-world ML applications, where a systemic bias in the geographical distri-
bution of US cohorts used to train models for clinical applications has been
uncovered [KAL20]. This investigation found that 71% of the analyzed studies
used cohorts from at least 1 of 3 states, namely California, Massachusetts or
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New York, while 34 states did not contribute to any cohorts. California cohorts
appeared in 39% of all analyzed studies. With this in mind, we also investigate
the role of data representativity for drawing inference under distributional shifts,
by comparing performance on in-distribution and out-of-distribution data for
the different sampling strategies.

8.5.1 Data

The UCI Adult dataset from the 1994 Current Population Survey is organized
by the US Census Bureau [KB96] and is a popular dataset in the machine
learning community. This data has been used in hundreds of research papers,
but its external validity has been questioned, and a collection of new datasets
from US Census Bureau data have been proposed [DHMS21]. More specifically,
these datasets are extracted from the American Community Survey Public Use
Microdata Sample (ACS PUMS). They contain data on attributes like age,
income, education, sex, ancestry and employment. The responses to the survey
are controlled by privacy rules seeking to prevent re-identification of responders.
Detailed documentation on the records can be found on the US Census Bureau
websites. One of the proposed datasets is a replacement for the original UCI
Adult dataset containing an income prediction task for a feature subset of the
2018 ACS PUMS data spanning all US states in addition to Puerto Rico.

To generate the dataset the ACS PUMS data are filtered to only include individ-
uals over the age of 16 with at least one working hour per week and an income
of at least 100 USD in the past year. This leaves a total of 1,664,500 individuals.
Like the original UCI Adult dataset, this new dataset has a predefined income
threshold of 50,000 USD used to binarize the targets into a classification set-
ting. Fairness intervention tasks have been shown to be sensitive to the specific
threshold value [DHMS21]. For this reason we create a modified version of the
income dataset and omit the income threshold to form a regression task with the
continuous income as target. We transform the income target using the natural
logarithm to obtain homoscedasticity for the residuals in our regression model.
An overview of the dataset can be seen in Table 8.3.

8.5.2 Methodology

We compare linear regression models fitted to the log transformed income using
all features in Table 8.3 for the state of California (n=195,665). We evaluate
model performances using 5-fold cross validation where for each iteration 20%
(n=39,133) of the California data are used for testing and the remaining 80%
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Table 8.3: Overview of the features in the modified US Census income data
(n=1,664,500). Features COW, SCHL, MAR, POBP and RELP
are modified from the original ACS PUMS data by binarizing into
respectively government / non-government worker (COW), Bache-
lor’s degree / no Bachelor’s degree (SCHL), married / not married
(MAR), US-born / non-US-born (POBP) and reference person /
non-reference person (RELP). See the ACS PUMS dictionary docu-
mentation for full feature descriptions including original category
codes.

Feature Type Feature Name Description Data Type Categories Min/Max

Input AGEP Age Continuous - 17 - 96
Input COW Class of worker Binary 2 -
Input SCHL Educational attainment Binary 2 -
Input MAR Marital status Binary 2 -
Input POBP Place of birth Binary 2 -
Input RELP Relationship Binary 2 -
Input WKHP Hours worked per week Continuous - 1 - 99
Input SEX Sex Binary 2 -
Input RAC1P Race Categorical 9 -
Target PINCP Total income Continuous - 104 - 1,423,000

(n=156,532) are used for training. We compare a model trained using the
full training data (which we denote full census model) to models trained on
samples of the training data following either the reflection or coverage concepts
of representativity. For each iteration a miniature and coverage sample is
drawn from the training data. The sample sizes are 20% (n=31,306) of the full
census training data. We evaluate the concepts of representativity by comparing
performances on a range of metrics including overall performance using the mean
squared errors (MSE) as well as performance in terms of fairness and diversity
criteria. We also evaluate performance on in-distribution and out-of-distribution
data by comparing interstate and intrastate performance. For completeness
we show additional results from logistic regression classification models on the
original binarized income (50,000 USD threshold) in Appendix 8.8.

8.5.2.1 Generating Samples

We generate miniature samples using a population based probability sampling
scheme known as proportional stratified random sampling. Based on various
demographic features the data are subdivided into smaller groups (strata) that
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exhibit homogeneity. Subsequently random samples are drawn from these strata.
To ensure such sampling constitutes a true miniature of the underlying population
requires either a relatively homogeneous population or an increasingly large
sample the more sociodemographic features are considered. This is particularly
the case with sociodemographic data containing minority groups, where strata can
become too finely grained and be represented by statistically insufficient sample
sizes [BJP13]. To sample rare ethnic groups disproportionate sampling (for
instance oversampling of minority groups) can be used [Kal03, KBAW07, CSS21],
but this can lead to adverse affects on overall population estimates. To avoid too
finely grained strata we generate miniature samples by cross stratifying on three
important protected sociodemographic features, namely age, sex and race. The
sex feature contains 2 categories, while the race feature contains 9 categories. We
bin the age feature into three bins containing age groups of [0-33],[33-66],[66-99].
This combines to a total of 54 strata. In section 9.4 we empirically demonstrate
that our stratified random sampling mimics the population and that results on
the miniature samples generalize to the population.

We generate coverage samples using two approaches. Firstly, a density based
coverage approach using density weighted sampling proposed in [KGC21b]. The
density around observations is measured by the mean distance to the nearest
neighbors and the density measures are then used as sampling probabilities in a
weighted random sampling scheme. This approach causes observations in low-
density regions to be sampled with high probability and conversely observations
from high-density regions to be sampled with low probability. In doing so, the
density sampling equally covers the input space regardless of the demographic
proportions in the population.

Secondly, we generate a diverse coverage sample using a determinantal point
process (DPP) probability distribution [KT+12a]. DPPs have been used to create
diverse sets in a number of ML applications ranging from documents, sensors,
videos, images and recommendations systems. [LB12b, KSG08b, GCGS14b,
KT+12a, ZKL+10b]. The DPP is a distribution over subsets S such that the
probability of a subset is proportional to the determinant of a positive semidefinite
kernel matrix known as the L-ensemble P (S) ∝ Det(L). The L-ensemble may be
constructed as the Gramian of the data. Since inference through DPPs rely on
inversion and eigendecomposition of the L-ensemble, this procedure is inefficient
with large N , where typically the dual representation is used for efficient inference
over large sets [KT+12a]. DPPs model not only the content of the subsets, but
also the size. To draw samples of a specific size k-DPPs, a conditional DPP
modeling only subsets of cardinatliy k, was proposed [KT11]. We generate our
DPP samples with the DPPy library [GPBV19] using k-DPPs through the dual
representation.
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8.5.2.2 Out-of-distribution performance

To investigate the role of data representativity for drawing inference under
distributional shifts, we compare performance on in-distribution (the California
test data) and out-of-distribution data (the remaining 49 US states and Puerto
Rico) for the different sampling strategies.

8.5.2.3 Fairness metrics

We measure group level fairness between the overrepresented group of White
individuals (accounting for 62.2% of the California data) and the underrepresented
group of Native American individuals (accounting for 0.9% of the California
data). In the ACS PUMS data Native Americans include both American Indian
and Alaska Native individuals. We measure fairness based on demographic parity
and equalized odds defined in Equations 8.4 and 8.5. We quantify demographic
parity for our regression models by measuring the departure of the CDF of
model predictions to the CDF of model predictions conditional on the protected
attribute. We denote this departure the regression demographic disparity (RDD)
and measure it using the ℓ∞ norm. We measure the equalized odds disparity
using an approach based on resampling of protected attributes [RBC20]. Here
a synthetic resampled version of A is constructed, called fair dummies Ã, such
that the triple (Ŷ , Ã, Y ) obeys equalized odds. The distribution of the fair triple
(Ŷ , Ã, Y ) is then compared to that of the observed test data (Ŷ , A, Y ). We again
measure the distributional departure using the ℓ∞ norm and denote this the
regression equalized odds disparity (REOD). For our classification models we
measure fairness in terms of demographic parity and equal opportunity by the
difference in positive rates and the difference in true positive rates between White
and Native American individuals. We denote these measures the classification
demographic disparity (CDD) and classification equal opportunity disparity
(CEOD).

8.5.2.4 Coverage Metrics

We compare samples on combinatorial diversity C(·) and geometric coverage
G(·) defined in Eqs. 10.2 and 8.3. Typically geometric coverage is computed
from the determinant of the L-ensemble (Gramian), but for the US Census data
p ≪ n, which leads to a determinant and volume of zero. This necessitates
an alternative formulation. We instead compute the diversity from the dual
representation of the L kernel, which carries information about several important
properties of the L-ensemble [KT+12b].
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8.5.2.5 Reflection Metrics

We evaluate the reflection concept of representativity for the samples both
through statistical tests on average predictions between sample and population, as
well as a measure of distance between overall sample and population distributions.
For the distributional measure we report the first Wasserstein distance between
samples and population for two features.

8.5.3 Results

The MSE on the in-distibution California test data can be seen in Table 8.4. The
model trained on the full census training data has the lowest MSE followed by the
miniature and DPP model, while the density model has the highest MSE. Table
8.4 also illustrates how the models score on fairness criteria for demographic
parity and equalized odds between White and Native American individuals.
The density model has the best performance in terms of demographic parity
and equalized odds while the miniature and full census model have the worst
performances. P-values from paired t-tests on sample results can be found in
Appendix 8.8 in Table 8.9. Equivalent results for the classification setting can
be found in Appendix 8.8 in Tables 8.7 and 8.8.

Table 8.4: Regression performance metrics evaluated with 5-fold cross valida-
tion on the California data. For each iteration 80% (n=156,532)
of the California data is used for training a full census model and
the remaining 20% (n=39,133) is used for testing. For each itera-
tion a miniature and coverage sample is drawn from the full census
training data and tested on the test data. The sample sizes are 20%
(n=31,306) of the full census training data. The overall MSE across
the 5 folds is shown in addition to regression demographic disparity
(RDD) and equalized odds disparity (REOD) for White / Native
American individuals in units of 10−2.

Training Data MSE Parity (RDD) Equality (REOD)

Full Census 0.79 ± 0.01 0.23 ± 0.02 0.16 ± 0.02
Miniature Sample 0.79 ± 0.01 0.24 ± 0.01 0.17 ± 0.02
Density Sample 0.83 ± 0.01 0.16 ± 0.01 0.10± 0.03
DPP Sample 0.80 ± 0.01 0.21 ± 0.01 0.15 ± 0.01

We report sample scores in terms of their combinatorial (Eq. 10.2) and geometric
(Eq. 8.3) diversity in Table 8.5.
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Table 8.5: Mean combinatorial diversity C(·) on the race feature and geometric
diversity G(·) in units of ·1027 on all features for the five samples of
each sample type. Standard deviations (SD) are also shown.

Sample Type C(·) G(·)
Miniature 1.18 ± 0.00 0.01± 0.00
Density 1.82 ± 0.00 3.58± 0.20
DPP 1.94 ± 0.00 26.10 ± 0.38

Table 8.6 reports distributional distances to asses the reflection concept of
representativity for the different samples.

Table 8.6: Distributional comparisons to evaluate the reflection concept of
representativity. Comparisons are reported as mean 1D Earth
Mover Distances (EMD) between full census and the respective
samples of each type. Standard deviations (SD) are also shown.
EMD between population and sample is reported for the race and
hours worked feature. The miniature samples where created by
stratifying on the race feature, but not on the hours worked feature.
Lower distance equates to higher evidence toward the reflection
concept of representativity.

Sample Type EMD Race EMD Hours Worked

Miniature 0.00 ± 0.00 0.07 ± 0.01
Density 1.32 ± 0.02 3.71 ± 0.04
DPP 0.82 ± 0.01 1.15 ± 0.05

8.5.3.1 Out-of-distribution results

We demonstrate out-of-distribution performance by applying models trained on
California to the remaining 49 states and Puerto Rico. Figure 8.1 compares MSE
performance of miniature and density coverage models on two states similar and
two states dissimilar to the California training data in terms of demographic
distribution. See Fig. 8.2 in Appendix 8.8 for an out-of-distribution performance
breakdown on the remaining states. MSE performance on in-distribution data
is best for the model trained on miniature samples of the California training
data, while MSE performance on out-of-distribution data is best for the model
trained on coverage samples of the California training data. Overall the model
trained on density coverage samples is on average better on 41 of the 50 states
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and Puerto Rico with an average performance increase of 4% across all states.
Similar results can be found for the classification case in Appendix 8.8, where
the coverage model is better than the miniature model on 43 of the 50 states and
Puerto Rico with an average accuracy increase of 1.5%. Fig. 8.3 in Appendix 8.9
shows results of models trained on a state with different demographic distribution
than California. Here we use Massachusetts as training data and again find a
model trained on miniature samples to achieve better predictive performance on
in-distribution data, but worse performance on out-of-distribution data.

(a) MSE on states dissimilar to the
training data (California).

(b) MSE on states similar to the train-
ing data (California).

Figure 8.1: MSE performance when applying models trained on the California
data to states either demographically dissimilar (a) or similar (b) to
the training data in terms of Pearson product-moment correlation
between all features. The miniature model is trained on stratified
random samples, while the coverage model is trained on density
samples.

8.5.4 Summing up experiments on data

While the coverage sampling has merits such as robustness to distributional shifts
and less disparate predictive performance between under- and overrepresented
parts of the input space, the coverage sampling fails to accurately represent
the distribution of the underlying population, and consequently incurs a loss
in predictive power on the majority of said population, measured by the MSE.
On the contrary, the miniature sampling accurately represents the underlying
demographic distribution of the population allowing a similar interpretation of
relations between sample and population. Consequently the miniature sampling
is particularly appropriate for historical or in-distribution inference on the
majority. This is evident for model performances on in-distribution data, where
the miniature sampling achieves better predictive performance than the coverage
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sample.

While we demonstrate improved race representation for our coverage sampling
and consequently less disparate predictive accuracy between these groups, it
should be noted that coverage procedures cannot be blindly applied to any
dataset with the expectation of improved representation for marginalized groups.
For instance [CDKV16b] shows that sampling for diverse image summaries with
the notion of geometric coverage (DPP sampling) does not necessarily result in
the desired improvement in gender representation in the generated summaries.
This happens when instances of overrepresented and marginalized groups are not
geometrically distinct (for instance with visually similar images of individuals
of different race and gender). Likewise, the density based sampling approach
relies on marginalized groups being positioned in low-density regions of the input
space in order to achieve sufficient coverage of these. This underlines a point
that achieving a representative sample under the concept of coverage should be
seen in the context of the dataset and task at hand. Improved techniques for
identifying and achieving optimal coverage of marginalized groups or regions in
datasets provides an important future research direction.

8.6 Framework for data representativity

This section presents our proposed framework of questions for assessing data
representativity when creating and documenting data. The framework naturally
fits into both datasheets for datasets [GMV+21b] as well as shorter, more general
data descriptions, and our aim here is to make it as concise and manageable
as possible. With this in mind, and based on our literature study, proposed
concepts, and empirical investigations, we propose answering and adhering to
the following questions and guidelines:

8.6.1 Purpose:

What is the purpose of collecting/creating the data, and what/who is the target
population? In addition, when building AI systems; what is the intended aim of
the AI system along side its intended use?
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8.6.2 Sampling methodology:

Which data representativity concept have you used to create your sample (reflec-
tion/coverage/representatives)? What is the sampling method and procedure
used to create the data? The methodology should be specified to a degree that
makes it reproducible. If a code base is used to create the data, we recommend
making it open source.

8.6.3 Evaluation:

Are the collected data representative of the target population or ’good enough’ for
the aim? We recommend making this evaluation in accordance with the purpose
and measurable data representativity concept, and not as a general statement
of representativity. In addition, known limitations of the representativity, in
terms of coverage as well as distributional match to target population, are always
desirable to document for datasets to assess possible limitations, and not least
because open source datasets may be used for purposes not originally anticipated.
Finally, add measures of representativity in accordance with the sampling concept
and to the extend possible.

8.7 Discussion

We found that the notions of what constitutes a ’representative sample’ from
the 1979 reviews by Mosteller and Kruskal are still pertinent. When building
machine learning models and AI systems, particularly two contrasting views of
representativity are of relevance: The concept of coverage vs. that of a reflection.
We find that the two are useful for different purposes. Coverage is useful for
robustness towards distribution shifts as well as mitigation of disparate predictive
accuracy between overrepresented and marginalized groups.

The reflection concept is useful to mimic the target population allowing a similar
interpretation of relations between sample and population as well as to obtain
minimum average errors on the target population. However, we should keep in
mind that average errors indicate that predictions are best for the majority, and
not necessarily equal for population subgroups.

The notion of a ’representative sample’ as an assertive acclaim without specifi-
cation was mainly used in AI related literature as an implicit acclaim, without
explicit mentioning of representativity, but with an indication of an inference
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link (generalization from data) matching that of representativity. We call for
attention on such implicit use, and recommend avoiding it, thus always specifying
the sampling methodology as well as the purpose and target population of the
collected data along with an evaluation of representativity and limits of same
for the given sample. Such specification and evaluation is critical on the path
towards fully transparent and trustworthy AI systems.

Through our investigations we found that we cannot talk about general represen-
tativeness of a sample, but need to consider data collection and representativeness
in coherence with our purpose (and data analysis) whether this is a research
hypothesis or an aim for our AI system.

As we reach limitations from our understanding of the target distributions and/or
from a large number of attributes (and their interactions), it is practically impos-
sible to make guarantees of representativeness. As a consequence, evaluations
based on several datasets as well as ’in use’ data (for deployed ML models or AI
systems) are encouraged. Furthermore, accounting for all possible distribution
shifts that may happen in the future (where our AI system will be in production),
is also practically impossible. As an alternative, or rather addition, we suggest
to perform continuous monitoring of AI systems and their performance while
they are in production. An AI system may also at first be deployed in shadow
mode if risks are too high to use predictions without further (live) testing.

Finally, we propose that further research into measurable concepts of data repre-
sentativity is necessary. There is a need for measures that are computationally
feasible for large high dimensional data and which can model joint distributions
(parametric and non-parametric) as well as a need for further analysis into
existing measures and their limitations.
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8.8 Appendix A: Results for California

We show 5 fold cross validation (CV) results from applying models trained
on California data to all other states. We show regression results from linear
regression models using the continuous income target and classification results
for logistic regression models using the binarized income (50,000 USD threshold).
We compare miniature samples generated with stratified random sampling to
coverage samples produced through density sampling.

Table 8.7 shows in-distribution results for classification models trained using the
binarized income with 50,000 USD threshold. Table 8.8 shows the associated
p-values while Table 8.9 shows the p-values for the regression results in Table
8.4.

Table 8.7: Classification performance metrics evaluated with 5-fold cross vali-
dation of logistic regression models trained on the California data
using the original binarized income (50,000 USD threshold) as target.
The results are generated with the same procedure as in table 8.4.
Accuracy is shown in addition to classification demographic disparity
(CDD) and equal opportunity disparity (CEOD) for White / Native
American individuals.

Training Data Accuracy Parity (CDD) Equality (CEOD)

Full Census 0.77 ± 0.00 0.25 ± 0.02 0.30 ± 0.07
Miniature Sample 0.77 ± 0.00 0.27 ± 0.03 0.32 ± 0.08
Density Sample 0.76 ± 0.00 0.21 ± 0.02 0.25 ± 0.05
DPP Sample 0.76 ± 0.00 0.25 ± 0.02 0.30 ± 0.06

Table 8.8: Paired sample t-test on classification model results shown in Table
8.7. P-values are adjusted for multiple testing by controlling the
FDR using the Benjamini-Hochberg procedure [BH95].

Sample Comparison Accuracy p-value CDD p-value CEOD p-value

Full Census vs. Miniature 0.7200 0.3198 0.3715
Density vs. Miniature 0.0007 0.0096 0.0249
DPP vs. Miniature 0.0023 0.2622 0.3605
DPP vs. Density 0.0031 0.0249 0.0755
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(a) California regression.

(b) California classification.

Figure 8.2: (a) Regression performance improvement on MSE when using
coverage samples created with density sampling compared to using
miniature samples created with proportional stratified sampling
of the California training data. Error bars indicate the standard
deviation. Positive values express that the MSE of the model
trained on the coverage samples is improved over the MSE of the
model trained on miniature samples. Negative values indicate that
the coverage sampling deteriorates the performance compared to
the miniature sampling. The mean MSE improvement across all
states is 3.95%. False Discovery Rate (FDR) adjusted paired t-tests
have been performed on all interstate differences. Grey results
(Illinois and Utah) indicate states where model differences are not
significant to an α = 0.05 level. (b) Same as above for classification
accuracy improvement on the binarized target value. The mean
accuracy improvement across all states is 1.54%. All performance
differences except for Alaska and New York are significant to an
α = 0.05 level when using a FDR adjusted paired sample t-test.
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Table 8.9: Paired sample t-test on regression model results shown in Table 8.4.
P-values are adjusted for multiple testing by controlling the False
Discovery Rate (FDR) using the Benjamini-Hochberg procedure
[BH95].

Sample Comparison MSE p-value RDD p-value REOD p-value

Full Census vs. Miniature 0.0624 0.2962 0.1970
Density vs. Miniature 0.0002 0.0010 0.0102
DPP vs. Miniature 0.0192 0.0617 0.0102
DPP vs. Density 0.0010 0.0044 0.0332

8.9 Appendix B: Results for Massachusetts

We show 5 fold CV results from models trained on the Massachusetts data
(n=40,114) applied to all other states. The Massachusetts data is significantly
different from the California data both in terms of overall data size (n=40,114 vs.
n=195,665), proportion of individuals with Bachelor’s degree (49.1% vs. 38.7%)
and in terms of proportion of White individuals (82.3% vs. 61.8%), but is similar
on several other parameters like average weekly hours worked (37.4 vs. 37.9),
proportion of government workers (12.5% vs. 14.9%), proportion of individuals
aged 10-33 (33.3% vs. 32.4%) and proportion of married individuals (51.6% vs.
52.4%). Results compare performances for models trained on miniature samples
of the training data to models trained on coverage samples created with the
density sampling approach. Both sample types have size 20% of the training data.
We find similar results as with the California data, where for both regression
and classification using coverage samples over miniature samples deteriorates
performance in terms of MSE and accuracy on in-distribution states similar to
the Massachusetts training state (most notably on states CA, CT, MD, MA
and NJ). However, model performance on states dissimilar to Massachusetts
(out-of-distribution) is improved with an average performance increase across
all states (including the training state) of 3.27% for regression and 1.54% for
classification.
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(a) MA regression.

(b) MA classification.

Figure 8.3: (a) Regression performance improvement on MSE when using cov-
erage samples compared to miniature samples of the Massachusetts
training data. Mean MSE performance improvement across all
states is 3.27%. b) Same as above for classification. The mean
accuracy improvement across all states is 1.54%. FDR adjusted
paired t-tests have been performed on all interstate differences.
Grey results indicate states where model differences are not signifi-
cant to an α = 0.05 level.



Chapter 9

Sampling To Improve
Predictions For

Underrepresented
Observations In Imbalanced

Data
Rune D. Kjærsgaard1, Manja G. Grønberg1, Line K. H. Clemmensen1

1 Department of Applied Mathematics and Computer Science, Technical University of Denmark,
Richard Petersens Plads 324, Kgs. Lyngby 2800, Denmark

Publication Status: Paper is published.

Proceedings of Workshop on Data-Centric AI, 35th Conference on Neural Infor-
mation Processing Systems (NeurIPS 2021).
https://datacentricai.org/neurips21/

https://datacentricai.org/neurips21/


9.1 Introduction 149

Abstract: Data imbalance is common in production data, where controlled
production settings require data to fall within a narrow range of variation and
data are collected with quality assessment in mind, rather than data analytic
insights. This imbalance negatively impacts the predictive performance of
models on underrepresented observations. We propose sampling to adjust for
this imbalance with the goal of improving the performance of models trained on
historical production data. We investigate the use of three sampling approaches
to adjust for imbalance. The goal is to downsample the covariates in the training
data and subsequently fit a regression model. We investigate how the predictive
power of the model changes when using either the sampled or the original data
for training. We apply our methods on a large biopharmaceutical manufacturing
data set from an advanced simulation of penicillin production and find that fitting
a model using the sampled data gives a small reduction in the overall predictive
performance, but yields a systematically better performance on underrepresented
observations. In addition, the results emphasize the need for alternative, fair,
and balanced model evaluations.

9.1 Introduction

Production data is often gathered under very controlled settings, driven by
a requirement of the data to fall within a specified range of variation, and
experiments are often expensive leaving data insights to be derived from the
available historical data. For this reason, production data commonly exhibit low
variation expressed by most of the data lying in high-density areas with only few
data points falling outside these areas. This is called imbalanced data and has
been studied extensively for categorical targets ([HYS+17], [Kra16]), but only
sparsely for continuous targets ([BTR17], [BTR19]). Previous works consider
the imbalance to be caused by the target, where we on the other hand consider
the imbalance mainly driven by the input variables. The premature ideas for
this research were developed in [GSMC21].

Imbalance in the response variables is often handled through data-level ap-
proaches like over- or undersampling the classes, or through algorithm-level
approaches like e.g. class priors, or by use of a hybrid of these ([Kra16], [JK19]).
Here, we extend the data-level line of thought to consider sampling with respect
to the input space. The assumption is that a balanced representation of the input
space gives better inference for underrepresented parts of the input space. Thus,
we propose (down)-sampling as a way to adjust for imbalance and demonstrate
its use for production data, where we expect an imbalance due to the controlled
settings.
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In the following, we first discuss our three proposed sampling strategies to select
a balanced training data set. Subsequently, we present our experimental setup
and methods and the production data used for our experiments. Finally, we
describe our results and discuss our findings and their perspectives.

9.2 Sampling approaches

The main idea of this research is to obtain a more balanced data set than the
original one by sampling a more balanced training data set. We will refer to the
resulting data set as the new data set. We investigate three different sampling
methods, where two of them, methods (a) and (b), are based on random sampling,
and the last one, method (c), is density based.

Our random sampling methods (a) and (b) combine a unique sampling approach
(i) with random sampling of the observations from the training set (ii). The idea
is that approach (i) mainly samples points on the edge of the data manifold
(typically low-density areas) whereas approach (ii) mainly samples points in
high-density areas of the manifold. Thus combining (i) and (ii), such that the
new data set consists of a 50/50 combination of samples from (i) and (ii), the
new data set has an almost equal amount of data from high- and low-density
areas and is thus more balanced than the original.

Approach (i) samples points, z, uniformly within the hyper-rectangle spanned
by the data. The sides of the hyper-rectangle are determined by the minimum
and maximum value of each input variable, xi, such that it has dimensions
Z = [min(x1),max(x1)] × ... × [min(xp),max(xp)], where p is the number of
variables. We then either use strategy (a), the nearest neighbour to the points
z, denoted 1point, or strategy (b), the mean of the 5 nearest neighbours to the
points z, denoted mean, as samples in the new data set. The targets for the
samples of mean will be the mean of the targets for the 5 nearest neighbours.
For some types of data, the mean is not necessarily meaningful, and a median
approach would be a feasible alternative. Illustrations of the methods are found
in Figure 9.1a and 9.1b. The filled coloured circles are the sampled points z,
while the coloured rings are the (a) nearest neighbour to the sampled points or
(b) the mean of the 5 nearest neighbours to the sampled points. The dotted
lines represent the hyper-rectangle, within which we sample. Since the majority
of data in imbalanced data sets are concentrated on a small part of the data
manifold, the nearest neighbours to most points in the hyper-rectangle will lie
on the edge of the data manifold. Thus, sampling methods (a-i) and (b-i) result
in a lot of samples on the edge of the data manifold.
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Approach (ii) samples points randomly with equal weight from the original data
set. Due to the imbalance of the data, most of the points sampled by this
approach lie in high-density areas. We sample points from both (i) and (ii)
corresponding to 10% of the original (training) data. Thus, the size of the new
data set for strategy (a) and (b) corresponds to 20% of the size of the original
(training) data set.

(a) Random sampling a-i
(1point).

(b) Random sampling b-i
(mean).

(c) Density based sampling.

Figure 9.1: Illustration of the sampling methods. (a) and (b) illustrate ap-
proach (i) of random sampling. The coloured filled circles are
the sampled points z, while the coloured rings are the (a) nearest
neighbour to the sampled points or (b) the mean of the 5 nearest
neighbours to the sampled points. The dotted lines represent the
hyper-rectangle. (c) illustrates the density based sampling method.
The colours reflect the sampling weights; the scaled mean distance
to the 100 nearest neighbours.

The idea of the density based sampling method (c) is to obtain a more balanced
data set by drawing a weighted random sample of the original data set with
weights that reflect the inverse data density around each point. If a point is in a
low-density area, the probability of drawing this point should be large, whereas
if a point is in a high-density area the probability of drawing this point should
be correspondingly low. We measure the data density around a point, x, as the
mean distance to the 100 nearest neighbours of x. The sampling probabilities
are then the mean distances scaled to sum to 1. The size of the new data set
is 10% of the original data and the sample is drawn with replacement. Figure
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9.1c illustrates how the density based sampling works. The colours reflect the
sampling weights and thereby the measured data density around each point.

9.3 Method and data

We investigate the three sampling approaches by applying them on a large bio-
pharmaceutical data set from an advanced simulation of penicillin production in
a 100,000 litre penicillin fermentation system known as industrial penicillin sim-
ulation (IndPenSim) ([GŞL+15], [GDVJ+19]). The data consist of 100 batches,
where the first 90 are controlled with three different production control methods,
and the last 10 batches contain faults resulting in process deviations. The latter
batches are often few in historical data, but also those that give insights to the
dynamics of the process away from the controlled settings.

The data set contains 113,935 observations of 2,238 variables. Of these variables,
39 are process variables of which one is the penicillin concentration. The
remaining 2,199 are Raman spectroscopy measurements. We disregard the
Raman spectra, 5 process variables containing missing values and two with no
variation and analyse the rest (31 input variables) with the goal of predicting
the penicillin concentration in the tank at each observation. We hold out 20% of
the data for testing and consider the remaining 80% for training. We compare a
linear regression model trained using all of the training data to models trained
using only a sample of the training data.

9.4 Results

The root mean squared errors (RMSE) of the penicillin concentrations are shown
in Figure 9.2. Of the sampling approaches, the density based approach gives
the lowest RMSE on average. Figure 9.2a shows the RMSE on the full test set.
Since the test data is imbalanced, none of the sampling approaches improve the
RMSE over using all of the training data. However, the reduced performance
has a low effect size; approximately a 3% decrease. Figure 9.2b shows the RMSE
on the 10% most underrepresented observations from the test set measured by
the mean distance to the 100 nearest neighbours. Here all sampling approaches
improve the RMSE over using all training data.

Figure 9.3 shows the test set observations projected onto the first two principal
components, which respectively explain 29.3% and 11.5% of the variance. This
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Figure 9.2: Boxplots of the RMSE on the test data after 10 iterations of fitting
the linear model using either the entire training set or samples
from the three sampling approaches. (a) shows the performance
on the full imbalanced test set, while (b) shows the performance
on the 10% most underrepresented observations measured by the
mean distance to the 100 nearest neighbours.

projection illustrates how the majority of the observations lie centralised on the
data manifold in high-density areas, with only few observations lying on the
edges of the manifold. Figure 9.3a displays the test set observations coloured
according to batch number, which shows how the majority of observations in low-
density regions originate from batches with process deviations (batches 91-100).
Figure 9.3b illustrates the performance difference on the test set observations
projected onto the first two principal components. Black data points indicate
observations where the absolute residual from the density sampling approach
is smaller than the absolute residual from using all data. The sampling has
improved the performance for the majority of observations on the edge of the
manifold (low-density, underrepresented areas). This is particularly the case in
the upper part of the figure, where residuals for observations from the lowest
density regions are all improved when using the density sample to train the
model over using all data.

Figure 9.4 shows similar results with the test set observations projected onto
the third and fourth principal components, which explain 9.1% and 6.9% of
the variance. Figure 9.4a shows how the third principal component captures
the variation across batches, with batches 91-100 again occupying the lowest
density regions. Figure 9.4b illustrates the performance difference on the test
set observations from using either all training data or the sample from the
density approach. Again, the sampling has improved the performance for the
underrepresented observations lying in low-density regions.



154
Sampling To Improve Predictions For Underrepresented Observations In

Imbalanced Data

(a) Batch number (b) Residuals

Figure 9.3: The test data on the first two principal components. (a) shows
the data coloured according to batch number. (b) shows the data
coloured according to which approach between the density sampling
method and using all data gives the lowest absolute residual.

(a) Batch number (b) Residuals

Figure 9.4: The test data on principal components three and four. (a) shows
the data coloured according to batch number, while (b) is coloured
according to the approach with the lowest absolute residual.

9.5 Discussion

The three strategies for sampling training data to adjust for imbalance all
deteriorate the overall predictive performance compared to fitting a model on all
the training samples, but only with a small effect size. However, residuals for
underrepresented data have improved, illustrating that sampling can drive value
for underrepresented data points/areas. In this context, we would like to raise
the question of how to make a balanced and fair evaluation, as the RMSE on
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imbalanced test data favours overrepresented inputs.

While we have shown our methods apply on production data, we expect them to
also apply to other types of data, where balanced representative training data
could be of particular importance. This could have a potential broader societal
impact on domains with historical data containing underrepresented minorities.
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Abstract: Scholars in the machine learning community have recently focused
on analyzing the fairness of learning models, including clustering algorithms.
In this work we study fair clustering in a probabilistic (soft) setting, where
observations may belong to several clusters determined by probabilities. We
introduce new probabilistic fairness metrics, which generalize and extend existing
non-probabilistic fairness frameworks and propose an algorithm for obtaining a
fair probabilistic cluster solution from a data representation known as a fairlet
decomposition. Finally, we demonstrate our proposed fairness metrics and
algorithm by constructing a fair Gaussian mixture model on three real-world
datasets. We achieve this by identifying balanced micro-clusters which minimize
the distances induced by the model, and on which traditional clustering can be
performed while ensuring the fairness of the solution.

10.1 Introduction

Decision making systems based on machine learning (ML) applications have
demonstrated unwanted consequences as a result of biased data [PJN+11b,
ZOM19]. This has fostered efforts towards artificial intelligence (AI) alignment,
wherein ML systems are aligned with their intended objectives. This includes
ensuring decisions are fair and do not show bias against or for certain population
sub-groups. Many of these fairness interventions are based on the Disparate
Impact (DI) doctrine [Rut87], which prohibits discrimination between different
groups of protected attributes such as race or sex. For clustering, this type of
non-discrimination is denoted group-level fairness [CMM21].

Clustering algorithms are an unsupervised ML approach used to partition a
dataspace into clusters. These algorithms are widely used, particularly in
settings where data labels are scarce. Here, clustering may be used as a feature
engineering tool to supplement points with cluster assignments in an effort to
increase expressive power of downstream models. If the underlying training data
is unfair, this may propagate into the generated features and ultimately cause
biased predictions. Fair clustering aims to prevent this.

The topic of fairness for clustering was initiated in a seminal work by [CKLV17],
which considered group-level fairness obtained by modifying the input data
for traditional hard clustering algorithms like k-center and k-median. The
literature on fair clustering is largely focused on such non-probabilistic algorithms,
where point assignments are deterministic [CMM21]. However, for a number
of applications soft clustering is more appropriate. In our work, we consider
group-level fair clustering in a probabilistic setting, where equal representation is
ensured for protected groups in clusters found using soft clustering algorithms. As
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an example, a bank might use a dataset containing information about educational
attainment and wages of individuals to train a model with the goal of identifying
potential customers and offering them loans or credit opportunities. The bank
then trains a soft clustering algorithm to group customers into low or high risk
candidates, with the soft assignments implying the probability (risk) that a given
customer will default their loan. It should be pointed out, that a wage gap has
been identified for women and people-of-color, who usually earn lower wages than
White males [Pat16a], and that people-of-color often face additional adversities
that lead to educational disparities as compared to White individuals [Sab16].
Thus, a clustering algorithm trained on this data would be prone to group White
males as better prospective candidates and correspondingly deny people-of-color
and women the potential for improvement, thus propagating the systemic bias
from the training data to downstream decisions. Ensuring group-level fairness
from a probabilistic cluster solution could prevent such decision-making systems
from adversely affecting specific groups and thus ensure that the models adhere
to the DI doctrine.

Fair probabilistic clustering has previously been studied by [EBTD20], where
they considered probabilistic fairness in a setting of imperfect group membership
knowledge. This considers the protected group membership in a probabilistic
setting while considering the cluster assignments in a deterministic setting. We
on the other hand, consider the case of deterministic protected group membership
and probabilistic cluster assignments. In [ABDL20] they consider individual-
level fairness in a probabilistic setting, where no protected groups exist, and
fairness is achieved by ensuring similar individuals are treated similarly by
the algorithm. Corresponding probabilistic assignments have been studied by
[BCD+20] and [BCD+21]. In our work, we consider group-level fairness under
the same conditions as [CKLV17], where protected groups exist and the goal
is to construct a fairlet decomposition of this data, on which a traditional
algorithm can be trained to obtain a balanced cluster solution. We generalize
this to the probabilistic setting. No metrics for group-level fairness under
probabilistic cluster assignments have been established [CMM21]. To this end,
we propose probabilistic fairness metrics, which generalize current definitions for
deterministic cluster assignment. Moreover, we demonstrate an algorithm for
obtaining a fair cluster solution from a fairlet decomposition in the probabilistic
setting. Finally, we demonstrate our metrics and algorithm by applying them on
a fairlet decomposition constructed for a Gaussian mixture model [MB88].

Our contributions are:

• Probabilistic generalizations of metrics for group-level fairness.

• An algorithm for obtaining a fair probabilistic cluster solution from a fairlet
decomposition.
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• An approach for generating a fairlet decomposition for a GMM.

10.2 Cluster Fairness

In most work group-level fair clustering is defined in terms of balance or relax-
ations thereof, but may also be defined in terms of entropy [CMM21]. These
metrics measure the representation equality of protected groups described by an
attribute vector A. In this work, we denote protected groups by colors p ∈ P .

10.2.1 Deterministic Assignment Fairness

Balance measures algorithmic fairness of a cluster solution by considering the
degree of balance between protected groups within each cluster. This fairness
definition complies with the the DI doctrine, and the goal is to obtain a balanced
representation (similar fraction) of all groups within all clusters.

Consider a set of points D partitioned into a set of clusters C. Balance may be
measured by comparing two fractions rD,p and rc,p, where rD,p is the fraction of
a color p in D and rc,p =

|Nc,p|
nc

is the fraction of a color p in cluster c, where nc
is the number of observations in cluster c, and Nc,p is the set of observations in
the dataset belonging to both color p and cluster c. Now construct a fraction
Rc,p =

rD,p

rc,p
and define the balance by:

B = min
c∈C,p∈P

min
(
Rc,p,

1

Rc,p

)
, (10.1)

where B is the balance and Rc,p =
rD,p

rc,p
is a fraction for a given cluster c and color

p [CMM21]. Balance is bounded in B ∈ [0, 1] with higher balance being more
fair. This metric measures the overall fairness of the cluster solution through the
minimum balance across all clusters c ∈ C and colors p ∈ P . Optimal balance
(B = 1) is found when all clusters share the same color fraction rc,p = rD,p ∀c, p,
while worst case balance (B = 0) is found when a cluster contains no members
of a protected group rc,p = 0.

Contrary to the balance metric, entropy does not measure the worst case fairness
of all clusters, but rather quantifies the overall fairness through an information-
theoretic perspective across all clusters simultaneously:

H = min
p∈P

(
−

C∑
c=1

rc,p log rc,p

)
, (10.2)
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where H is the entropy [CMM21]. The entropy fairness is the level of informa-
tion entropy across all clusters. Higher entropy equates to a more fair cluster
solution. Optimal entropy fairness is found when all clusters share the same
color fraction rc,p while worst case entropy fairness is found when all clusters
are monochromatic.

10.2.2 Probabilistic Assignment Fairness

In soft clustering algorithms the point assignments are probabilistic and deter-
mined by a responsibility vector γc for each cluster c. The entries γi,c in this
vector describe the probability that the ith data point is generated by compo-
nent c. We use the responsibilities to construct a measure for weighted color
contribution:

wc,p =

N∑
i=1

γi,cαi,p

N∑
i=1

γi,c

, (10.3)

where wc,p is the weighted contribution of color p to cluster c, γi,c is the ith
entry in the responsibility vector γc and αi,p is the ith entry in a color vector
αp constructed by setting αi,p = 1 if observation xi ∈ p and 0 otherwise. The
numerator represents the total color mass (weighted color contribution) for the
given cluster, while the denominator represents the total mass of the cluster.
Note that the weighted color contribution wc,p reduces to rc,p if γc dictates hard
assignments (probabilities either 1 or 0). Thus wc,p generalizes the unweighted
color contribution rc,p from the deterministic assignment setting.

We propose to substitute the weighted color contribution wc,p into the established
fairness frameworks for deterministic assignment fairness in Eqs. 10.1 and 10.2:

Bsoft = min
c∈C,p∈P

min
(
Wc,p,

1

Wc,p

)
, (10.4)

where Bsoft is the soft assignment balance and Wc,p =
rD,p

wc,p
.

Equivalently we define the soft assignment entropy fairness by:

Hsoft = min
p∈P

(
−

C∑
c=1

wc,p log wc,p

)
, (10.5)
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10.2.3 Entropy Ratio

Unlike balance, entropy is not bounded in H ∈ [0, 1], but we can normalize it by
comparing the information entropy of the cluster solution to the optimal entropy
of the cluster configuration:

Hratio = Hsoft/HOPT, (10.6)

where HOPT is a cluster solution with optimal (largest) entropy under the given
number of clusters. HOPT is found when all clusters share the same color fraction.
Thus Hratio ∈ [0, 1], where Hratio = 1 when wc,p = rD,p ∀c, p and Hratio = 0
when all clusters are monochromatic with respect to color p.

10.3 Obtaining Fair Clusters

Standard cluster algorithms optimize an objective function and ignore the
distribution of protected attributes. This may end up propagating inherent bias
from the training data to the final model solution. To avoid this, the data can
be modified by constructing a balanced representation. Fair cluster solutions can
be found by generating a fair representation through a fairlet decomposition and
subsequently performing clustering with a traditional color blind algorithm on the
decomposition. The decomposition is constructed by identifying micro-clusters,
called fairlets, which preserve balance.

For a binary protected attribute consisting of two colors, a decomposition can
be specified as a (p1, p2)-fairlet decomposition (assuming p1 < p2) with balance
parameters p1 and p2 indicating that all fairlets have a color fraction rc,p ≥ p1

p1+p2
.

For a perfectly balanced dataset (Np1
= Np2

) it is possible to obtain a (1, 1)-
fairlet decomposition, where each fairlet consists of exactly one point of each
color. For this setting rc,p = rD,p ∀c, p in the decomposition, which results in a
balance of B = 1. To construct a fair clustering from the decomposition, centers
are assigned for each fairlet and a traditional clustering is performed on the
centers. Since the union of balanced micro-clusters is necessarily also balanced,
this will ensure a fair clustering.

This procedure has been constructed for deterministic assignments in the litera-
ture. We demonstrate an algorithm for constructing a fair probabilistic clustering
from any fairlet decomposition by modifying existing framework for deterministic
clustering [BIO+19]. This is shown in Algorithm 1. The fair cluster solution is
found by generating a fairlet decomposition, applying a traditional soft clustering
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Algorithm 1 SOFTCLUSTERFAIRLET(Q)
Input: Q = {q1, q2, · · · , qℓ} where every qi is a fairlet with center ci
Output: The algorithm returns a fair probabilistic clustering of D given a fairlet
decomposition Q of D

multiset D̄ ← ∅ (initilization)
for all fairlets qi ∈ Q do

D̄ ← D̄ + {|qi| copies of ci} (sum of two multisets)
end for
C ← Traditional probabilistic clustering of D̄
C∗ ← γi (assign fairlet members the responsibility vector of their center in C)
return C∗

algorithm on the fairlet centers and subsequently assigning appropriate responsi-
bilities to the fairlet members. Algorithm 1 provides the same theoretical fairness
guarantees as previous works in the hard assignment setting (see Appendix 10.7
for details).

However, the algorithm does not ensure optimality of the decomposition and
may result in a sub-optimal cost of the studied clustering objective depending on
the spatial location of the points selected for each fairlet. To obtain a solution
which maintains a fair representation of protected groups and simultaneously
minimizes a clustering objective function, it is necessary to take the cost of
the decomposition into account. Fairlet decompositions are tailored to specific
objective functions like the k-median and k-means objective [BGK+18]:

Lk(D,Q) =
∑
x∈D

d(x, βQ(x)), (10.7)

where d(·) is a metric (distance function) and βQ(x) denotes the center location
of the fairlet to which the data point x is mapped. For k-median clustering
βQ(x) ∈ D and for k-means clustering βQ(x) ∈ Rm for D ⊆ Rm, m ∈ N. The
distance metric in k-means is d(x,y) = ||x− y||2.

[CKLV17] define the total cost of the overall fair clustering assignment from D
to C∗ (Lemma 6) as:

Lk−tot(D,C
∗) = Lk(D,Q) + Lk(D̄, C

∗), (10.8)

where Lk(D,Q) is the fairlet decomposition cost, and Lk(D̄, C
∗) is the cost on a

transformed dataset D̄, where for each fairlet qi the fairlet center ci appears |qi|
times.

The cost on the transformed dataset Lk(D̄, C
∗) is the sum of distances of each
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point in D̄ to their assigned cluster center:

Lk(D̄, C
∗) =

∑
x∈D̄

d(x, αC∗(x)), (10.9)

where αC∗(x) is location of the center for which the data point x is mapped by
the clustering C∗.

The goal of the fair clustering is to construct a fairlet decomposition which
minimizes the cost in Eq. 10.8. [CKLV17] propose solving the problem by
transforming it into a minimum cost flow (MCF) problem, where a directed
graph is constructed. This graph may be modified to suit different cluster
objective functions. To generate a decomposition the weights on the edges
between nodes are represented by a distance function between points. The
objective is to minimize the sum of distances from fairlet members to fairlet
centers. The MCF approach has super-quadratic time in dataset size and
becomes computationally expensive for large datasets. Alternative scalable
approaches have been introduced, where the optimal fairlet decomposition is
approximated and found in nearly linear time in dataset size [BIO+19]. In our
results we illustrate that the scalable k-median fairlet decomposition introduced
by [BIO+19] can be fed as input to Algorithm 1 to produce a fair probabilistic
clustering, which can be assessed by our proposed metrics in Eqs. 10.4 and 10.5.
This clustering may however have sub-optimal cost.

10.3.1 Probabilistic Model Fairlet Decomposition

To demonstrate our metrics and Algorithm, we directly translate the fair cost
defined by [CKLV17] and construct a fairlet decomposition to minimize this cost
for a probabilistic model known as a Gaussian mixture model (GMM).

A GMM describes the data distribution through a mixture of multivariate normal
distributions N (x|µ,Σ) with mean µ, covariance structure Σ and component
weights π. The distribution parameters can be inferred through the expectation
maximization (EM) algorithm [Moo96], which iterates between updating the
parameters (maximization step) and computing the responsibility γi,c for all
i, c (expectation step) until the likelihood converges. The responsibility can be
computed by:

γi,c =
N (xi|µc,Σc)πc∑K
j=1N (xi|µj ,Σj)πj

(10.10)

where γi,c is the probability that the data point xi is generated by component c.

Note that the total mass of a mixture component is Nc =
N∑
i=1

γi,c and that the
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sum of total component masses is the number of data points N =
C∑

c=1
Nc.

To construct a fairlet decomposition which is simultaneously fair and minimizes
the distances between fairlet members in the space modelled by the GMM, we
need a distance metric which takes into account the mixture model. The natural
distance function for data modeled by a single multivariate Gaussian probability
distributionN with covariance matrix Σ and mean µ is the Mahalanobis distance:

d2M(x,N ) = (x− µ)TΣ−1(x− µ), (10.11)

where d2M(x,N ) is the squared Mahalanobis distance of a point x from the
distribution N .

The likelihood of a GMM is directly related to the Mahalanobis distance between
observed points and presumed distributions. The log-likelihood of a data point
belonging to a multivariate normal distribution is given by the logarithm of the
probability density function of distribution N :

log L(x) = −1

2

[
log(|Σ|) + log(d2M(x,N )) +m · log(2π)

]
, (10.12)

where m is the multivariate dimension of N .

When the data are modelled by a mixture of multiple Gaussians the covariance
matrix Σ is not unique. To extend the notion of distance between points to this
setting, the data space can be interpreted as a Riemannian manifold with metric
G(x). This metric can be approximated leading to a model-weighted distance
(MWD) [Tip99]:

d2MWD(xi,xj) = (xi − xj)
TG(xi − xj), (10.13)

where d2MWD(xi,xj) is the model-weighted distance between points xi and xj

and G is given by:

G =

∑K
k=1 Σ

−1
k πk

∫ xj

xi
p(x|k)dx∑K

k=1 πk
∫ xj

xi
p(x|k)dx

, (10.14)

where πk is the mixing proportion of the kth mixture component and
∫ xj

xi
p(x|k) dx

is the unidimensional integral of the probability density of the kth component
along the straight path between point xi and xj .

Computing the distance in this manner assumes a constant metric G along the
path between the points. This metric can be interpreted as a probabilistically-
weighted average of the inverse covariances of the different components in the
mixture model. The integral is analytically tractable and is given by:
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∫ xj

xi

p(x|k) dx =

√
πb2

2
e−Z/2 ×[

erf

(
1− a√
2b2

)
− erf

(
−a√
2b2

)]
,

(10.15)

where erf(x) = 2√
π

∫ x

0
e−t2dt is the error function and

b2 = (v⊺Σ−1
k v)−1, (10.16)

a = b2v⊺Σ−1
k u, (10.17)

Z = u⊺Σ−1
k u− b2(v⊺Σ−1

k u)2, (10.18)

with u = µk − xj and v = xi − xj .

Equipped with a metric for computing distances between points we define the
GMM fairlet decomposition cost by:

LGMM(D,Q) =
∑
x∈D

dMWD(x, βQ(x)), (10.19)

where the metric G describing data manifold is computed from a GMM on the
original dataspace D. Similarly we define the GMM cost on the transformed
dataset as:

LGMM(D̄, C∗) =
∑
x∈D̄

dMWD(x,ΓC∗(x)), (10.20)

where ΓC∗(x) denotes the mean locations µ of the components to which x is
mapped. We restrict the distance of the kth mixture component to be based
on a G metric for the kth component and it thus reduces to a weighted sum
of Mahalanobis distances in the transformed dataspace D̄, where the weights
are dictated by the component responsibilities. This choice gives a more robust
cost measure of the GMM fit. The direct translation of the total cost of the fair
solution defined by [CKLV17] is then:

LGMM−tot(D,C
∗) = LGMM(D,Q) + LGMM(D̄, C∗) (10.21)

We generate a GMM fairlet decomposition by minimizing the GMM cost through
a MCF algorithm1. We utilize the approach described in [CKLV17] for the
k-median cost and change the weights on the edges of the graph to the MWD
between points. Prior to running the algorithm the metric space is instantiated
by fitting a traditional GMM with the desired number of components on the
original data. The distribution parameters of these components are then used to

1Our code is publicly available at https://github.com/RuneDK93/fair-soft-clustering

https://github.com/RuneDK93/fair-soft-clustering
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(d) Fair GMM.

Figure 10.1: Illustration of our approach on simulated data of 500 points in
R2. The original data points are shown colored according to their
protected attribute in (a). A GMM fit on the original data is
shown in (c). (b) shows a (1,1)-fairlet MWD decomposition of
the data, while (d) shows the resulting fair solution from fitting a
GMM on the fairlet centers in (b) and mapping the responsibilities
γi,c according to Algorithm 1. The points in (c) and (d) are colored
according to the cluster index in γi,c with highest probability.
The weighted cluster color fractions wc,p in (c) and (d) are shown
for the red class. Notice that the resulting balance is B = 0.81 for
the traditional GMM fit in (c) and B = 1.00 for the fair GMM
fit in (d).

generate the metric G and compute the model-weighted distances. The fairlet
centers are then generated as the mean of the members in each fairlet.

Fig. 10.1 presents a visualisation of the approach on simulated data of 500
points in R2 with 250 red and 250 blue points. Fig 10.1a illustrates the original
data with points colored according to their protected attribute. We apply a
traditional GMM on the data to obtain a color blind solution shown in Fig.
10.1c. The balance of red and blue points allows us to construct a (1, 1)-fairlet
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decomposition of the data through a perfect matching on the bichromatic graph.
We construct the decomposition using the MCF approach by utilizing the
distribution parameters of the colorblind solution to instantiate the G metric
and use these distances on the edges of the graph. This results in a MWD fairlet
decomposition Q of the data illustrated in Fig. 10.1b. The fairlet decomposition
is then fed as input to Algorithm 1 to obtain the final fair clustering C∗ shown
in Fig. 10.1d. The fairness of both solutions is assessed with our proposed soft
balance fairness metric (Eq. 10.4).

10.4 Results

We demonstrate our approach on real-world data by performing experiments on
three widely used datasets in the fair clustering community. The datasets are
Census2, Bank3 and Diabetes4. We select numerical features for the dimensions
in the data point space and use ’sex’ and ’marital status’ as protected attributes.
See Tab. 10.1 for an overview of the datasets.

Census: The dataset collects records of the 1994 US Census and presents an
income prediction task based on various attributes of individuals. We select
’age’, fnlwgt’, ’education-num’, ’capital-gain’ and ’hours-per-week’ as features
representing the spacial dimensions of the data. We select ’sex’ as the protected
attribute.

Bank: The dataset [MCR14] is from a Portuguese phone call based bank
marketing campaign. We select ’age’, balance’ and ’duration-of-account’ as
features representing the spacial dimensions of the data. We select ’marital-
status’ as the protected attribute.

Diabetes: The dataset [SDG+14] spans 10 years of information and outcomes
of diabetes across 130 US hospitals. We select ’age’ and ’time-in-hospital’ as
features representing the spacial dimensions of the data and select ’sex’ as the
protected attribute.

2https://archive.ics.uci.edu/ml/datasets/adult
3https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
4https://archive.ics.uci.edu/ml/datasets/diabetes+130-us+hospitals+for+years+

1999-2008

https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
https://archive.ics.uci.edu/ml/datasets/diabetes+130-us+hospitals+for+years+1999-2008
https://archive.ics.uci.edu/ml/datasets/diabetes+130-us+hospitals+for+years+1999-2008
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Table 10.1: Overview of the datasets used for our experiments. The table
shows the number of spacial dimensions, the type of protected
attribute and the color fraction for the three datasets.

Dataset Dimension Protected Att. rD,p

Census 5 sex 0.67
Bank 3 marital-status 0.62
Diabetes 2 sex 0.54

Similarly to [CKLV17] we sub-sample each dataset to 500 observations and
preserve the protected attribute fraction from the original data. These fractions
are rD,p = 0.67 (Census), rD,p = 0.62 (Bank) and rD,p = 0.54 (Diabetes). For
each dataset we apply a standard GMM on the original dataset and compare
this to fair probabilistic clustering constructed by first finding a (1,2)-fairlet
decomposition and then applying Algorithm 1 on the decomposition. We conduct
the experiments for a fairlet decomposition generated by the method described
in [BIO+19] (minimizing the k-median Euclidean distance cost) and for a fairlet
decomposition generated by minimizing the MWD cost in a MCF setting. Algo-
rithm 1 ensures that the fairness of both approaches is bounded, but the cost of
the solutions are different.

The final clustering outcome is dependent on the initialization of the GMM. We
initialize the GMM using k-means clustering and repeat the overall clustering and
fairlet decomposition 5 times with different random seeds for the initialization
parameters to generate mean values and associated standard errors.

Fig. 10.2 shows the resulting soft balance (top row) according to Eq. 10.4 and
soft entropy ratio (bottom row) according to Eq. 10.6. For all datasets the
fairness disparity between the traditional and fair solutions increases sharply with
the number of clusters. Observe that for a large number of mixture components,
the colorblind model has a balance of zero for all datasets. The optimal GMM
solution to the data thus requires monochromatic clusters. Additionally, the fair
GMM shows less fairness variance and is thus more robust to the initialization.
This is especially the case for entropy fairness, where the fair GMM is highly
robust while the color blind GMM is much more sensitive to the initialization
parameters. Note that the fair GMM generated from the Euclidean distance
k-median decomposition and MWD decomposition achieve equivalent fairness
scores.
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Figure 10.2: Fairness in terms of soft balance on the three datasets. Data
points are the mean values from 5 iterations of different random
seeds. Error bars indicate standard errors. Observe that the
traditional GMM cluster approach obtains monochromatic cluster
solutions (B = 0) for all datasets. Also note that due to Algorithm
1, the balance of the fair solutions are bounded. For instance
the fair solutions of the Diabetes dataset are bounded at balance
B ≥ 0.62 (see Appendix 10.7 for details).
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Figure 10.3: Fairness in terms of soft entropy ratio on the three datasets.

The price of fairness is quantified by the negative impact on the cost of the
solutions. This is illustrated in Fig. 10.4, where the costs of the different cluster
solutions are shown for the three datasets. The costs for the fair solutions are
computed by Eq. 10.21 while the cost of the traditional solution is computed
by Eq. 10.20 on the original data as LGMM(D,C), where C is a traditional
GMM clustering on D. The traditional GMM solution has the lowest cost,
while the fair MWD GMM has a larger cost, which increases with the number
of cluster components. The fair solution from the Euclidean k-median fairlet
decomposition has the highest cost, which is significantly higher than both the
traditional GMM and fair MWD GMM for large k. Note that for the diabetes
dataset, the cost of the fair and traditional cluster solutions are similar for low
k. Likewise, the difference in cost for this data between the solutions from the
Euclidean and MWD decompositions is small here.
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Figure 10.4: Total cost on the three datasets. The costs for the fair solutions
are computed as LGMM−tot(D,C

∗) according to Eq. 10.21 while
the cost of the standard GMM is computed according to Eq. 10.20
on the original data as LGMM(D,C), where C is a traditional
GMM clustering on D.

For our results we have used a direct translation of the fairlet decomposition cost
from previous work based on minimization of distances induced by the clustering
objective. A GMM cluster fit can also be evaluated in terms of likelihood. In
Appendix 10.8 we present an approach for evaluating the likelihood of a GMM
fairlet decomposition, which supports the results shown in Fig. 10.4.

10.5 Discussion

Our results demonstrate that the generalized fairness metrics can be used to
assess fairness of probabilistic cluster solutions and that such fair solutions can
be obtained through a fairlet decomposition of the data fed as input to Algorithm
1. We observe that the fair GMM ensures high fairness even for a large number
of mixture components, whereas the fairness of the traditional GMM becomes
progressively worse and ultimately dictates monochromatic clusters (B = 0).
Additionally, we note that a fair GMM generated with the Euclidean k-median
objective produces similarly fair solutions as the fair GMM found from a MWD
decomposition. Generally, the fair solutions demonstrate much less variance
on the entropy metric than on the balance metric across the different number
of cluster components. This is because the balance measure is determined by
the least balanced cluster, while the entropy measure takes the fairness of all
clusters into account. However, the balance measure has an intuitive appeal, as
it measures the worst case fairness among all clusters, and consequently it may
be better suited for ensuring adherence to the DI doctrine.

From our experiments we also observe that the fair GMM solutions increase the
cost over a traditional GMM. The cost increase is significantly lower for the MWD
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decomposition than for the Euclidean k-median decomposition, especially for a
large number of mixture components in higher-dimensional spaces. This is due to
the fact that the k-median decomposition is designed to locate data points close
in Euclidean space, which may be located far apart in the non-Euclidean space
induced by the GMM. On the other hand, the MWD decomposition specifically
connects points which lie close on the data manifold dictated by the GMM. Note
that for a low number of mixture components and for data in a low-dimensional
space (like the diabetes dataset), the Euclidean k-median decomposition does not
increase the cost significantly over the MWD decomposition. This indicates than
in such settings the Euclidean k-median decomposition approach introduced by
[BIO+19] can be used as a highly scaleable alternative to the MWD decomposition
for obtaining fair GMM solutions without significantly increasing the cost.

Our GMM fairlet decomposition is constructed from a direct translation of the fair
cost introduced by [CKLV17], which involves generating a fairlet decomposition
through minimization of distances induced by the clustering objective. While the
Mahalanobis distance is directly connected to maximum likelihood estimation
of a GMM, the connection between the likelihood and the MWD is less clear.
Future research directions for GMM fairlet decompositions could involve linking
the decomposition construction directly to the likelihood of the solution, or to
construct a more scaleable GMM fairlet decomposition.

10.6 Conclusion

Previous work on fair clustering has focused on deterministic hard clustering
algorithms like k-means and k-median, where data points belong to specific
clusters in a binary sense. In this work we study fair soft clustering by proposing
generalizations of group-level fairness metrics. These generalizations allow the
fairness metrics to be used in the presence of soft clustering algorithms by re-
flecting the underlying probabilistic nature. Furthermore, we have demonstrated
an approach for obtaining a fair probabilistic cluster solution from a fairlet
decomposition of the data. This approach may be applied on decompositions
tailored specifically to mixture models, but can also be used to modify fairlet
decompositions from previous work on hard clustering algorithms. Ultimately,
the resulting solutions are costlier than their traditional counterparts, but in
turn provide guaranteed bounds on their fairness.
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10.7 Appendix A: Algorithm 1 Fairness Bound

This section explains the theoretical bound on the fairness of the solution C∗

provided by Algorithm 1.

Consider a dataset D with a binary protected attribute. A fairlet decompo-
sition Q of this data can be specified as a (p1, p2)-fairlet decomposition with
parameters p1 and p2 (where p1 < p2) indicating that all fairlets have a color
fraction r ≥ p1

p1+p2
. The color fraction obtained from the union of these fairlets

is bounded according to Lemma 1 (analogous to Lemma 2 from [CKLV17]).

Lemma 1 (Combination):
Let Y1, Y2 ⊆ D be disjoint. If C1 is a clustering of Y1 and C2 is a clustering of
Y2, then r(C1 ∪ C2) ≥ min(r(C1), r(C2)).

Algorithm 1 combines the micro-clusters q1, q2, · · · , qℓ (fairlets) into the proba-
bilistic clustering C∗ through a weighted combination dictated by the responsi-
bilities γ of the fairlet centers. The weighted color fraction w of this combination
is given by Eq. 10.3 and is bounded according to Lemma 2.

Lemma 2 (Weighted combination):
Let Y1, Y2 ⊆ D be disjoint. If C1 is a weighted clustering of Y1 and C2 is a
weighted clustering of Y2, then w(C1 ∪ C2) ≥ min(w(C1), w(C2)).

This means that the weighted color fractions wc of the final mixture components
in C∗ are bounded by wc ≥ p1

p1+p2
∀ c. To take a concrete example consider the

Diabetes dataset from our experiments in Sect. 10.4. We perform a (1, 2)-fairlet
decomposition on the dataset and the weighted color fraction for any of the final
mixture components is thus bounded by wc ≥ 1

3 ∀ c. This dataset has an overall
color fraction of rD = 0.54. The soft balance of the final cluster solution is then
bounded by B ≥ wc

rD
, i.e. B ≥ 1/3

0.54 . This can be verified by inspecting Fig. 10.2,
where the balance for the fair solution on the Diabetes dataset never drops below
1/3
0.54 = 0.62.
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10.8 Appendix B: GMM Decomposition Likeli-
hood

Our GMM fairlet decomposition is constructed by adapting the cost introduced
by [CKLV17], which involves generating a fairlet decomposition through mini-
mization of distances induced by the clustering objective. In our GMM fairlet
decomposition we operate with the Mahalanobis and model-weighted distance.
The cost of a GMM is typically not evaluated based on distances, but rather in
terms of the log-likelihood. The log-likelihood of a data point belonging to a
multivariate normal distribution is directly related to the Mahalanobis distance
and is given by:

log L(x) = −1

2

[
log(|Σ|) + log(d2M(x,N )) +m · log(2π)

]
, (10.22)

where |Σ| is the determinant of the covariance matrix, d2M(x,N ) is the squared
Mahalanobis distance between data point x and distribution N and m is the
multivariate dimension of N .

The model weighted distance is a generalization of the Mahalanobis distance
to the Gaussian mixture setting. The model-weighted distance reduces to the
Mahalanobis distance in settings with a single Gaussian, or in regions of space
where only a single component density p(x|k) is non-zero along the path between
the points [Tip99].

While the Mahalanbis distance is directly related to the likelihood of a GMM
solution, the connection between the model-weighted distance and the likelihood
is less clear, and consequently the likelihood of the fairlet decomposition is harder
to evaluate. However, we propose to estimate the likelihood by substituting the
covariance matrix Σ in Eq. 10.22 with the model-weighted distance metric G,
and consequently the Mahalanobis distance with the model-weighted distance.
The log-likelihood of a data point (fairlet member) belonging to a fairlet is then:

log LFairlet(x) = −
1

2
[log(|G−1|) + log(d2MWD(x, βQ(x))) +m · log(2π)],

(10.23)
where d2MWD(x, βQ(x)) is the model-weighted distance from fairlet member x to
fairlet center βQ(x) and |G−1| is the determinant of the associated inverse model-
weighted distance metric. Under this view Eq. 10.23 evaluates the likelihood
that a fairlet member was generated by the fairlet it is assigned to. Fig. 10.5
shows the log-likelihood of the fairlet decompositions.
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Figure 10.5: Per observation average log-likelihood of the fairlet decompositions
of the three datasets. The log-likelihood is evaluated with Eq.
10.23. Data points are mean values from 5 iterations of different
random seeds. Error bars indicate standard errors.
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