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Summary

This thesis studies consistent reconstruction for nonlinear inverse problems from
the perspective of regularization theory and the Bayesian approach.

It focuses on three nonlinear inverse problems: the Calderón problem, an in-
verse problem in photoacoustic tomography, and an inverse Robin problem.
These problems have applications across the fields of medical imaging, indus-
trial testing, and, in the case of the latter, even in large-scale ice sheet modeling
for sea level predictions.

The regularization perspective considers consistency as a property attributed to
methods whose reconstructions improve toward the ground truth as the deter-
ministic noise decreases. For a large class of penalized least-squares methods,
consistency is guaranteed, while computability is harder to guarantee. In con-
trast, we offer, in this thesis, a direct, consistent, and computable regularization
strategy for the three-dimensional Calderón problem. It is based on truncated
frequency information under a prior assumption of a smooth ground truth. Fur-
ther, we demonstrate the convergence property numerically on synthetic data.

The Bayesian perspective has become the preferred perspective when it comes
to handling random noise, incorporating prior knowledge, and quantifying un-
certainty. Here, consistency enters as a property of a posterior distribution that
increasingly concentrates around the ground truth as the random data improves.
Guaranteeing consistency is often a first step in reliable estimation and uncer-
tainty quantification for high-dimensional nonlinear inverse problems. We will
review the Bayesian perspective, recent consistency results, and offer parallels
to the perspective of regularization theory.
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Among new contributions, we address consistent Bayesian reconstruction of
piecewise constant parameters: We provide consistent methods for inclusion
detection and apply them to a problem in the photoacoustic tomography set-
ting, demonstrating the consistency in a numerical example. Furthermore, we
address how to consistently and efficiently reconstruct real analytic parameters
with the use of a strong smoothness prior in a Bayesian approach. Here, the
inverse Robin problem serves as motivation and a theoretical case study.



Resumé (summary in Danish)

Denne afhandling undersøger konsistent rekonstruktion for ikkelineære inverse
problemer fra perspektivet af regulariseringssteori og Bayesiansk inferens.

Den fokuserer på tre ikkelineære inverse problemer: Calderón problemet, et
inverst problem inden for fotoakustisk tomografi, og et såkaldt inverst Robin
problem. Disse problemer har anvendelser inden for medicinsk billeddannelse,
industrielle tests og i tilfældet af det sidstnævnte endda i storskala ismodellering
til nytte i langsigtede fremskrivninger af det globale havniveau.

Fra perspektivet af regulariseringsteori er konsistens en egenskab tillagt metoder,
hvis rekonstruktioner forbedres mod den sande parameter, når den determini-
stiske støj aftager. For en stor klasse af metoder baseret på mindste kvadraters
metode er konsistens garanteret, mens beregnelighed er sværere at garantere. I
modsætning hertil præsenterer vi i denne afhandling en direkte, konsistent og
beregnelig regulariseringsstrategi for Calderón problemet i tre dimensioner. Den
er baseret på trunkeret frekvensinformation under en a priori antagelse om en
vis glathed af den sande parameter. Endvidere demonstrerer vi konsistensegen-
skaben af metoden i numeriske eksempler.

Det Bayesianske perspektiv er blevet det foretrukne perspektiv, når det kom-
mer til håndtering af stokastisk støj, indkorporering af a priori antagelser og
kvantificering af usikkerhed. Her optræder konsistens som en egenskab tillagt en
såkaldt a posteriori -sandsynlighedsfordeling, hvis den i stigende grad koncen-
trerer sig omkring den sande parameter, når kvaliteten af den stokastiske data
forbedres. At garantere konsistens er ofte et første skridt i pålidelig estimering
og kvantificering af usikkerhed i højdimensionale ikkelineære inverse problemer.
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Vi vil gennemgå relevante dele af det Bayesianske perspektiv, diskutere nylige
konsistensresultater og fremføre paralleller til regulariseringsteoriens perspektiv.

Blandt nye bidrag adresserer vi konsistent Bayesiansk rekonstruktion af stykvis
konstante parametre: Vi betragter konsistente metoder til inklusionsdetektion
og anvender dem på et inverst problem i fotoakustisk tomografi, hvor vi demon-
strerer konsistensegenskaben i et numerisk eksempel. Ydermere beskæftiger vi os
med, hvordan man konsistent og effektivt rekonstruerer en klasse af analytiske
parametre ved brug af en a priori -sandsynlighedsfordeling, der modellerer stærk
glathed. Her fungerer det inverse Robin problem som den konkrete motivation
og teoretiske ramme.



Preface

This thesis presents the results of my work as a PhD student at the Depart-
ment of Applied Mathematics and Computer Science, Technical University of
Denmark (DTU), in the period September 1 2020 - August 31 2023. The work
was carried out under the supervision of Professor Kim Knudsen, DTU, and
Professor Tanja Tarvainen, University of Eastern Finland.

The obtained results concern reconstruction and consistency for some nonlinear
inverse problems and are detailed in the papers:

Paper A Kim Knudsen and Aksel Kaastrup Rasmussen. Direct regularized
reconstruction for the three-dimensional Calderón problem. Inverse
Probl. Imaging, 16(4):871–894, 2022. See [KR22b].

Paper B Babak Maboudi Afkham, Kim Knudsen, Aksel Kaastrup Rasmussen,
and Tanja Tarvainen. A Bayesian approach for consistent recon-
struction of inclusions. arXiv preprint, arXiv:2308.13673, 2023. In
submission. See [AKRT23].

Paper C Ieva Kazlauskaite, Aksel Kaastrup Rasmussen, and Fanny Seizilles.
The Bayesian approach to inverse Robin problems. In preparation,
2023. See [KRS23].

The papers are summarized in Chapter 2 and 4 in a proper given context,
where in the first summary, I include results from the unpublished technical
report [KR22a]. I remark that Paper C is subject to an ongoing numerical
study and is therefore still in preparation. Some preliminary numerical results
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figure in its summary in Section 4.3. The papers and the report can be found in
Appendix A-D. In Appendix E, a summary of the notation is given. Note there
are discrepancies in notation between the summaries and the corresponding
papers, since the thesis attempts to unify the notation.

I am grateful to my main supervisor Professor Kim Knudsen for his advice, en-
couragement and curiosity, and to my co-supervisor Professor Tanja Tarvainen
for her everlasting support. I had the pleasure of visiting Tanja and the Uni-
versity of Eastern Finland in the Fall of 2021 and extend sincere thanks to
everybody at the Department of Technical Physics who made it a special and
memorable experience.

I would like to give my best thanks to Professor Per Christian Hansen and the
CUQI group for a stimulating and cooperative research environment. I would
also like to thank Babak Maboudi Afkham and Amal Alghamdi, postdoctoral
researchers in the CUQI project, whom I had the pleasure of collaborating with.
I am grateful to the Villum Foundation (grant no. 25893) for funding the CUQI
project and my PhD.

Special thanks to the thesis assessment committee consisting of Professor Jos-
selin Garnier, Assistant Professor Hanne Kekkonen and Associate Professor
Mirza Karamehmedovic for the evaluation of the thesis.

Part of the work was undertaken at an external stay at Cambridge University
in the winter of 2022-2023 under the supervision of Professor Richard Nickl.
I would like to give my sincere thanks to Richard for making this wonderful
experience possible. I am grateful for his expertise, guidance and engaging
discussions. I would like to thank Kweku Abraham for a good office climate,
great mathematics discussions and a memorable introduction to lacrosse. I also
thank Ieva Kazlauskaite and Fanny Seizilles for great collaboration.

The Scientific Computing Section at DTU has provided great work relationships.
In particular, I would like to thank Frederik for his friendship and courage in
trying to learn golf and Silja for being a great office mate.

Finally, I would like to thank Astrid for always being there for me and providing
distractions when I needed them the most.
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Chapter 1

Introduction

Nonlinear inverse problems play a crucial role across many scientific fields. In
the field of medical imaging, for example, we find novel technologies that allow
doctors to look inside the human body - technologies that are based on mathe-
matical methods for solving nonlinear inverse problems. At a much larger scale,
some of the same underlying mathematical methods may be used to learn the
structure of massive glaciers.

In this thesis, we look at nonlinear inverse problems that share the goal of recov-
ering a parameter γ (a cause) indirectly through an observation (the effect) that
depends on the parameter in a nonlinear way. Such problems arise for example
in inverse problems in which the link between cause and effect is modelled by a
partial differential equation (PDE). In many such cases, one seeks to recover a
spatially variant coefficient γ in a PDE from observations of its solution on the
whole or parts of the domain in question. This is the setting of many nonlinear
imaging technologies and, for example, inverse problems in ice sheet modelling
for glaciers.

To formalize this link, we denote by G the forward map that takes γ to the
observation G(γ). For now we define this map on a subset Γ of the normed space
X (parameter space) and consider the normed space Y (observation space) as
the codomain:

G : Γ → Y.
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One can for example think of X as the space of all bounded functions on some
domain, and Γ as the subset of positive such functions.

The nonlinearity of G often adds to the difficulty of inverting it, since the anal-
ysis has to be tailored to the problem at hand. Indeed, most interesting in-
verse problems are already difficult to solve; they are ill-posed in the sense of
Hadamard [Had53]. That is, mathematically speaking, given a set of admissible
observations Z ⊂ Y one of the following properties does not hold:

1. Existence: for all y ∈ Z, there exists γ ∈ Γ such that y = G(γ)

2. Uniqueness: G(γ1) = G(γ2) implies γ1 = γ2, when G(γ1),G(γ2) ∈ Z.

3. Stability: G−1 is continuous on Z.

To make the list concrete, we have to specify Z and in which sense we mean
continuous. The list inspires the following antithesis of questions one usually
poses to an inverse problem when studying it:

1’. Can we characterize the range of G?

2’. For which sets A ⊂ Γ is G|A injective?

3’. For which sets Z ⊂ G(A) is G−1|Z continuous?

Occasionally in this thesis, we will redefine G to its restriction to a set A ⊂ Γ
such that G is both injective and continuous. If such sets exists we call the
corresponding inverse problem conditionally well-posed. Not the least since
Calderón’s emphasis on reconstructing γ from observations in his influential
paper [Cal80], it has been common to add a fourth question:

4’. How do we compute γ from the observations in a stable way?

Here the word ‘stable’ is a call-back to Hadamard’s third property of well-
posedness. Indeed, a violation of this often leaves approximations of G−1 numer-
ically unstable. To make matters worse, measurements are always contaminated
with noise, and so the observation is possibly perturbed outside the range of G.

The classical remedy involves regularization strategies, the use of which ad-
dresses question 4’ head on. This class of methods is well-studied for linear
inverse problems, but less so for nonlinear inverse problems. Often regulariza-
tion strategies are thought of as methods based on minimizing penalized least
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squares functionals. However, in general, a regularization strategy is a map
Rα : Y → Γ dependent on a regularization parameter α > 0, and a success-
ful one should carry three abilities: Rα should be a continuous map, so that
reconstructions arising from it are stable with respect to the observations. Rα

should converge to G−1 pointwise in the range of G as α→ 0, so that it acts like
G−1 for α small enough. Finally, as observed noisy data Y improves in quality,
Rα(Y ) should, for a clever choice of α, approach the ground truth. This last
property is sometimes known as ‘consistency’ in the regularization literature
[KV87, JM12, DDDM04] and often in the statistics literature [Nic23, Pol02].

The strength of a consistent method is that it accepts observations that are
noisy and outside the range of G. It is the mathematical property of a method
that works, and it is the property we are concerned with in this thesis. At the
heart of regularization strategies is also the idea that prior information helps
recovering γ. This often guides the design of Rα.

A more recently introduced approach, the Bayesian approach, models this idea
of prior knowledge in a direct way by probability distributions. Unlike the
approach of regularization, the Bayesian approach does not produce a single
estimate of γ. Instead, it produces a probability distribution, which in principle
can be used to extract all sorts of information on γ. For this reason it is the go-
to approach of the inverse problems community for uncertainty quantification
of γ. One can also extract a single estimate from this probability distribution.
As we shall see the mean can often be thought of as a consistent method.

The Bayesian approach for linear inverse problems is well-studied and shares
certain properties with regularization strategies. However, for nonlinear inverse
problems the connection is more diffuse and consistency for Bayesian methods
are appearing only recently. Such a recent convergence result posed in [MNP21]
makes use of a conditional stability estimate of G, i.e. at least a partial answer
of question 3’: for a subspace A ⊂ X endowed with a norm ∥·∥A and γ1, γ2 ∈ Γ,

∥γ1∥A, ∥γ2∥A ≤M ⇒ ∥γ1 − γ2∥X ≤ f(∥G(γ1)− G(γ2)∥Y), (1.1)

for some increasing function f : R → R, which is continuous at zero with
f(0) = 0. Conditional stability estimates require an in-depth analysis of the
particular inverse problem and serves as a goal for many research projects, here
we mention [Ale88, ARRV09, KRS21]. However, such estimates are not directly
useful in relation to reconstruction; they only concern perfect observations in the
range of G. Their introduction in relation to consistency for Bayesian methods
is therefore of great interest and parallels developments in regularization theory,
see [dHQS12].

Concisely stated, this thesis investigates the following question:
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5’. What prior information and assumptions render a given nonlinear inverse
problem solvable by a consistent method?

We shall study this question both from the (statistical) Bayesian and (determin-
istic) regularization strategy point of view, and come by three different nonlinear
inverse problems in the process.

Chapter 2 contains a brief introduction to classical regularization theory for
inverse problems in which we motivate the definition of a regularization strategy.
We then continue to summarize original research in Paper A that provides a
consistent method for the three-dimensional Calderón problem. In Chapter 3
we give an introduction to the Bayesian approach, when X = Rk and Y = Rm.
Our emphasis is on consistency and the theory that leads up this property.
The finite-dimensional case is significantly easier than the infinite-dimensional
case but contains many of the same properties to serve well as motivation. In
addition, we highlight some parallels to regularization theory. In Chapter 4, we
introduce the Bayesian approach in the infinite-dimensional setting. We focus
on posterior consistency and give some general conditions to obtain this. On
this base we shall summarize Paper B concerning consistent Bayesian inclusion
detection. Here, we shall consider a photoacoustic tomography inverse problem
as a suitable test case, although the approach is not limited to this specific
problem. Finally, in the summary of Paper C we provide a consistent method
for the Bayesian approach applied to an inverse Robin problem. Here, we will
focus on two different prior assumptions and will see a significance in how these
assumptions are addressed.

We conclude this introductory chapter by introducing the inverse problems un-
der consideration in this thesis, along with relevant literature.

1.1 Examples of nonlinear inverse problems

1.1.1 The Calderón problem

Calderón’s paper of 1980 [Cal80] sparked an interest in not only the problem
that would be named after him, but PDE-based inverse problems in general. It is
the problem of recovering the electrical conductivity distribution of a conductor
from surface measurements of currents and voltages. Knowing the conductiv-
ity distribution of an object provides insight into what the object is made of.
This is utilized in the imaging technique known as electrical impedance tomog-
raphy (EIT). Applications range from breast cancer detection [CKK+01] and
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stroke detection [ACL+20, MJA+14] in medical imaging to subsurface geophys-
ical imaging [BHV03] and industrial testing [HSPG14].

In our case the problem takes its starting point at a smooth and bounded domain
O ⊂ Rd, d = 2, 3 filled with a conductor with conductivity distribution γ ∈
L∞(O) with γ > 0. That is, we let

X = L∞(O) and Γ = {γ ∈ L∞(O) : γ > 0 a.e.}
If there are no sinks or sources of current in the domain, applying an electrical
surface potential g ∈ H1/2(∂O) induces an electrical potential u ∈ H1(O), which
uniquely solves

∇ · (γ∇u) = 0 in O,
u = g on ∂O.

In theory we can repeat this experiment for any g ∈ H1/2(∂O) and measure
the corresponding current normal γ∂νu|∂O ∈ H−1/2(∂O). This leads to the
definition of the Dirichlet-to-Neumann map Λγ ,

Λγ : H1/2(∂O) → H−1/2(∂O), Λγg = γ∂νu|∂Ω,
which constitutes the observation for the inverse problem. Then we seek to
invert the nonlinear map

G : γ 7→ Λγ .

In fact, in [Cal80] Calderón asks question 2’ and 4’ of injectivity and recon-
struction for this problem. For d = 2 these questions have been answered in
the affirmative: [Nac96] answers the injectivity question for twice differentiable
conductivities and provides the D-bar reconstruction method. Based on this
method [KLMS09] suggests a modified method that is a regularization strat-
egy. This gives an answer to 4’. Finally, [AP06] upgrades the answer to 2’ for
γ ∈ L∞(O), γ ≥ c > 0.

However, the problem is fundamentally different when d ≥ 3, and theoretical
results are further from a definitive conclusion. [SU88] shows injectivity for
twice differentiable conductivities. This is relaxed to Lipschitz conductivities in
[CR16] and for 3 ≤ d ≤ 6 to W 1,d(O)-conductivities in [Hab15], see also the ref-
erences therein for a more complete review. A reconstruction method was posed
in [Nac88], but any naive numerical realization of this suffers from ‘exponential
instability’. This is the starting point of the research we lay out in Section
2.1. Here we shall return to the point of exponential instability and discuss
a remedy parallel to that of the regularized D-bar method of [KLMS09]. For
now, we remark that exponential instability is folklore for this problem. Indeed,
answers to question 3’ exist in the following form: if ∥γ1∥C2(O), ∥γ1∥C2(O) ≤M
and γ1 = γ2 = 1 near the boundary, then

∥γ1 − γ2∥L∞(O) ≤ f(∥Λγ1 − Λγ2∥Y) (1.2)
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for a logarithmic type continuous function f : R → R dependent on M and with
f(0) = 0, and where ∥ · ∥Y is the operator norm in the space of bounded linear
operators mapping H1/2(∂O) to H−1/2(∂O), see [Ale88]. This is the property
of (1.1) with A = C2(O) ∩ {γ : γ = 1 near ∂O}. This logarithmic stability is
shown to be optimal in [Man01]. Note in two dimensions an estimate in L2-
norm is available for A ∈ Hα(O) α > 0, see [FR13], also of logarithmic kind.
This even allows discontinuous parameters.

The Calderón problem has been posed in a Bayesian framework in [KKSV00]
and [DS16] in finite and infinite dimensions, respectively. The conditional sta-
bility estimate (1.2) and the framework [MNP21] is used in [AN19] to provide
a consistent Bayesian method for conductivities that are at least twice differen-
tiable.

1.1.2 Inverse Robin problems and Hadamard

The inverse Robin problem is a problem for an elliptic PDE of determining a
Robin coefficient on a hidden part of the boundary from Cauchy data on the
observable part.

Let O ⊂ Rd, d = 2, 3, be a bounded and smooth domain with a partition of its
boundary ∂O = M∪M0 ∪Mγ . Then consider the following Laplace equation
for a function u : O → R, h ∈ H−1/2(M) and Robin coefficient β(γ) ∈ L∞(Mγ)

∆u = 0 in O,
∂νu = h on M,

u = 0 on M0,

∂νu+ β(γ)u = 0 on Mγ .

(1.3)

Here, we let the coefficient β(γ) be of the form β(γ) := mβ + eγ with mβ > 0,
which is sufficient to ensure existence and uniqueness of solutions to (1.3) using
Lax-Milgram theory. This is a convenient form of ensuring positivity of β,
especially in a statistical framework. The Robin inverse problem is then to
recover γ given u|M, that is, to invert the nonlinear forward map

G : γ 7→ u|M. (1.4)

When γ ∈ Hd−1(O), then u|M is a continuous function up to the boundary, as
we will show in Paper C. For this reason we let

X = L∞(O) and Γ = Hd−1(O).
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In the context of corrosion detection, O models an electrically conducting body
with a constant conductivity coefficient, where the part M0 is insulated. In-
jecting a current flux h at M leads to an electrical potential inside O. The
question is then whether we gain any knowledge of the surface impedance on
Mγ from measuring the corresponding voltages at M. Knowing γ is equivalent
to knowing β(γ), and this gives information on something we cannot measure
directly, the corrosion at Mγ . The problem finds similar applications in thermal
imaging: with a prescribed heat flux on M, can we determine the heat-exchange
function γ on Mγ from measuring the temperature at M?

The problem was first formulated in [Ing97, CJ99] with the goal of recovering β.
More recently, the problem has gained renewed interest by glaciology communi-
ties for its relation with a problem for a Stokes PDE system of inferring a basal
drag coefficient β of ice sheets from only surface observations of ice velocities
and stresses [AG10].

The inverse Robin problem has its humble beginnings in the Cauchy problem.
Let O be the square (0, π)× (0, 1), and let M be the bottom line segment, M0

be the sides and Mγ be the top segment. Say we prescribe and observe the
sine-series

h =

∞∑

j=1

hj sin(jx), and u|M =

∞∑

j=1

uj sin(jx),

at the bottom. Using separation of variables we can determine the unique
solution u : O → R that gave rise to the measurement u|M as

u(x, y) =

∞∑

j=1

[
uj cosh(jy)−

hj
j

sinh(jy)

]
sin(jx).

In fact, under certain decay condition of hj , this solution is a classical solution
u ∈ C2(O) [LN17]. So u satisfies the Robin condition on (0, π) × {1}, and if
dividing by u(x, 1) is sensible,

β(γ)(x) = −u
′
y(x, 1)

u(x, 1)
= −

∑∞
j=1 [juj sinh(j)− hj cosh(j)] sin(jx)

∑∞
j=1

[
uj cosh(j)− hj

j sinh(j)
]
sin(jx)

. (1.5)

Small perturbations in the observations uj are perturbed by an exponential fac-
tor sinh(j) and cosh(j). This ill-posedness in determining β(γ) comes from the
lack of continuity in determining u(x, 1) and u′y(x, 1) from h and u|M. This was
known by Hadamard in 1923, see [Had53, ARRV09] and the following example.

Example 1.1 Consider h = hn sin(nx) and u|M = 0 such that

u(x, y) =
hn
n

sinh(ny) sin(nx).
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For example setting hn = 1
n , we note h→ 0 uniformly at M as n→ ∞, while

u(x, 1) =
1

n2
sinh(n) sin(nx) and u′y(x, 1) =

1

n
cosh(n) sin(nx)

diverges as n → ∞, hence there is no continuous dependence of u(x, 1) and
u′y(x, 1) on h.

For this example, it is noted in [ARRV09] that an a priori bound such as
∥∇u∥L2(O) ≤M leads to a different outcome. Indeed, then

∥u∥L2((0,π)×(0,1)) → 0

at a logarithmic rate as n → ∞. Essentially, the condition restricts hn to
sequences of fast decay. For y < 1, we even have that

∥u∥L2((0,π)×(0,1)) ≤ |hn|σ

for some 0 < σ < 1. This kind of global logarithmic continuity and interior
Hölder continuity under a priori conditions on u turns out to hold in the general
case as well [ARRV09]. This observation leads to a conditional stability estimate
of the form (1.1) for A = C1(Mγ) and f of logarithmic type, see [ADPR03].
See also [HY15, LN17] for stability results under the a priori condition that γ
is real analytic. We remark that the inverse problem has a unique solution, for
example when γ is positive and continuous, see [CJ99].

Reconstruction for the inverse Robin problem has been studied using classical
regularization methods based on penalized least squares, see [CJ99, LN17, Jin07]
and the references therein. [FI99] provides a direct accurate method provided
the domain is sufficiently thin. The problem has been posed in a Bayesian
framework in [NN22], which determines γ and Mγ simultaneously. The related
inverse Robin problem for the Stokes PDE has been considered in the Bayesian
framework in [Art15, NPK18, BNVP21], where in the two latter the framework
is similar to the general approach in [Stu10].

1.1.3 Inclusion detection and quantitative photoacoustic
tomography

An objective in many inverse problems is to recover inhomogeneities or inclu-
sions in a medium; applications range from cancer detection and stroke detection
in medical imaging to defect detection in material science. We consider an in-
clusion detection problem as an inverse problem of recovering parameters of the
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form γ = κ11A + κ2 for some a priori known constants κ1, κ2 > 0, and a mea-
surable set A ⊂ Rd, d = 2, 3. In Paper B, we shall generalize this to a sum of
multiple indicator functions each with a set Ai and constant κi, i = 1, . . .N .

This can be a hard problem as we do not have any regularity of the parameter
of interest. One the other hand, it is also strong prior information that the
parameter has this form, and this can be utilized. Inclusion detection has been
analyzed extensively in the context of the Calderón problem, see for example
[Gar16] for an overview. Uniqueness, i.e. an answer to question 2’, is proven
in [Isa88], stability is analyzed in [ADC05], which gives conditional stability of
logarithmic type, the condition being that A is sufficiently regular in a uniform
sense. In [DCR03] logarithmic stability was shown to optimal. Monotonocity
methods is considered in [HU13], see also the references therein. When the
inclusions are also known to be small a priori, strong results are available; we
have a characterization of the range of the forward map and stability results
[CFMV98, BHV03]. Inclusion detection problem are often known as inverse
obstacle problems in the context of acoustic or electromagnetic scattering, see
[CK19] for an overview of the reconstruction methods involved.

The level set method is a general method tackling this problem across different
inverse problems, see [San96] and the references therein. This method is applied
in a Bayesian framework in [ILS16, DIS17]. A Bayesian approach for detection of
star-shaped inclusions is considered in [BTG14, DS16]. These are the methods
we will consider in Paper B.

One class of inverse problems shows promise in addressing inclusion detection
with guaranteed success. These are the inverse problems arising in ‘hybrid imag-
ing’ methods that combine advantages of different imaging techniques coming
from the underlying physics, see [Kuc12].

One such example is the inverse problem of quantitative photoacoustic tomogra-
phy (QPAT). The problem of QPAT is the second part of a two-part technique
in photoacoustic tomography. This second part seeks to recover the optical pa-
rameters of a biological object from information on the absorbed energy density
from a given light source. This absorbed energy density is estimated in the first
part of the photoacoustic tomography problem. In the ‘diffusion approximation’
[BRUZ11] light transport is modelled according to the elliptic equation

−∇ · µ∇u+ γu = 0 in O,
u = g on ∂O, (1.6)

where O is the bounded domain that models the biological object and µ, γ ∈
L∞(O) with µ > 0 and γ ≥ 0, are the optical parameters. In this thesis, we
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find the following choice of normed space and subset useful:

X = L2(O) and Γ = L2
Λ(O) := {γ ∈ L2(O) : Λ−1 ≤ γ ≤ Λ a.e.}

for some constant Λ > 0. Note that Γ is a closed subset of L2(O), since L∞(O)-
closed balls are closed in L2(O) as a consequence of the Riesz-Fischer theorem
[RF10, Section 7.3].

We call u the light intensity, and the prescribed Dirichlet boundary condition
u = g defines the source of incoming light. In this setting, the absorbed energy
density H ∈ L∞(O) takes the form

H(x) = G(x)γ(x)u(x),

where the Grüneisen parameter G models the photoacoustic effect. We will
assume this to be known and set for simplicity G = 1. Note the map

(µ, γ) 7→ H

is well-defined, since (1.6) has a unique solution. Likewise, we could consider sev-
eral illuminations g1, g2, . . . and corresponding data H1, H2, . . .. The questions
of injectivity and continuity have been considered in a number of papers for two
illuminations. We mention here [BU10, BRUZ11, ADCFV17, BCT22, Cho21],
which answer such questions under conditions on g1 and g2 and γ. The latter
concludes Hölder continuity of H 7→ (µ, γ) given that ∥µ∥C1,1(O), ∥γ∥C0,1(O) ≤
M .

Our main interest in QPAT stems from the fact that for a fixed and known µ
the forward map

G : γ 7→ H (1.7)

has favorable properties even for non-regular γ. In this case injectivity and
stability can be reduced to choosing g such that u is bounded from above and
away from zero. Indeed, then γ is found by solving

−∇ · µ∇u+H = 0 in O,
u = g on ∂O,

and computing γ = H/u. As well-posed as this seems, the inverse problem can
become harder, when u is close to zero. For example, we do not have uniform
continuity of G−1 defined on all of L∞(O), as is demonstrated in the following.

Example 1.2 Consider µ = 1, O = (0, 1) and the boundary condition u(0) =
u(1) = 1. Then (1.6) takes the form:

u′′ = γu in (0, 1),

u(0) = u(1) = 1,
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Take for n = 1, 2, . . .,

un =





p1,n(x) 0 ≤ x < 1/4,

1/n 1/4 ≤ x ≤ 3/4,

p2,n(x) 3/4 < x ≤ 1,

with u′′n =





32− 2/n 0 ≤ x < 1/4,

0 1/4 ≤ x ≤ 3/4,

32− 2/n 3/4 < x ≤ 1,

.

Here p1,n, p2,n are the second-order polynomials satisfying p1,n(0) = p2,n(1) = 1,
p1,n(1/4) = p2,n(3/4) = 1/n and p′1,n(1/4) = p′2,n(3/4) = 0. Consider now the
function

ũn =





p̃1,n(x) 0 ≤ x < 1/4,

fn(x) 1/4 ≤ x ≤ 3/4,

p̃2,n(x) 3/4 < x ≤ 1,

,

where fn(x) = c1,ne
−nx + c2,ne

nx with c1,n, c2,n such that fn(0) = fn(1) = 1,
and p̃1,n, p̃2,n are the second-order polynomials that connects smoothly with fn(x)
such that p̃1,n(0) = p̃2,n(1) = 1. Straightforward computations show that

ũ′′n =





32− 32fn(1/4) + 8f ′n(1/4) 0 ≤ x < 1/4,

n2fn(x) 1/4 ≤ x ≤ 3/4,

32− 32fn(3/4)− 8f ′n(3/4) 3/4 < x ≤ 1,

.

Note both un and ũn are positive, while H̃n−Hn = ũ′′n−u′′n converges uniformly
to zero. However, γn = Hn/un = 0 on [1/4, 3/4], whereas γ̃n = H̃n/ũn = n2 on
[1/4, 3/4].

In Paper B we show that G satisfies a conditional stability estimate of the form
(1.1) for f(x) = Cx and γi ∈ L2

Λ(O), i = 1, 2. This makes the QPAT inverse
problem a suitable test case for consistent inclusion detection methods in the
Bayesian framework. We will return to this topic in the summary of Paper B
in Section 4.2.

1.1.4 A spherical gravity anomaly

To introduce concepts in infinite-dimensional spaces we occasionally find it con-
venient to give a finite-dimensional example. With this purpose in mind we
pose the following simple inverse problem in geology, see [TGS90, Section 2.7]
for problems of that kind. It is the problem of determining the radius r > 0
and depth z > 0 of a buried sphere of a known material, given measurements
of the gravitational acceleration over it. One can think of it as a simple inclu-
sion detection problem. The gravitational acceleration measured at the surface
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at horizontal distance x away from the center of the sphere is, according to
Newton’s ‘Shell’ theorem,

g(x) = 4Gπρ
r3z

(x2 + z2)3/2
, (1.8)

where ρ is the density contrast and G is the gravitational constant. Let us
say we measure right above the sphere at x = 0 and at some distance away at
x = 100. We argue that we can always measure right above the sphere, since
this is where the signal is the strongest. Then we set γ = (r, z) and define the
forward map

G(γ) := (g(0), g(100)) ∈ R2.

Here we let,

X = R2 and Γ = R2
+ = {y = (y1, y2) ∈ R2 : y1 > 0, y2 > 0}.

We claim that γ is uniquely determined by G(γ). Indeed, assume G(γ1) = G(γ2).
Setting γ1 = (r1, z1) and γ2 = (r2, z2), two equations follow:

r31z
2
2 − r32z

2
1 = 0,

r31z1(z
2
2 + 1002)3/2 − r32z2(z

2
1 + 1002)3/2 = 0,

Isolating r31/r32 from both equations gives us

z31
(z21 + 1002)3/2

=
z32

(z22 + 1002)3/2
,

but z 7→ z3/(z2 + 1002)3/2 is a strictly increasing function and hence z1 = z2.
Then, it follows from the first equation above that r1 = r2.

The Jacobian determinant |JG| : R2 → R of G can be computed (using for
example a computer algebra system) as

|JG(γ)| = C
r5

z2(z2 + 1002)5/2
> 0

for all r, z > 0. Then G is an open mapping, see [Apo74, Theorem 13.5], and
hence G−1 is continuous on its image G(Γ). Using the same approach one may
check that the singular values of (JG)(γ) are uniformly bounded when m <
r, z < M . Hence, for such γ the mean value inequality gives the local Lipschitz
continuity

∥G(γ1)− G(γ2)∥ ≤
∫ 1

0

∥JG(γ2 + t(γ1 − γ2))∥∥γ1 − γ2∥ dt,

≤ C(m,M)∥γ1 − γ2∥. (1.9)

denoting both the Euclidean norm and induced operator norm by ∥ · ∥ and the
fact that this operator norm corresponds to the largest singular value. This
estimate implies that G is continuous in every point γ ∈ Γ.



Chapter 2

Regularization of inverse problems

Regularization strategies are the classical remedy for noisy data in inverse prob-
lems. Its theoretical foundation is solid and has been studied in the last decades,
see the monograph [EHN96] for a Hilbert space setting and [KNS08] for the Ba-
nach space setting. In this chapter, we consider observing Y = Y (ε) that is a
perturbation of G(γ0), i.e.

Y = G(γ0) + εξ,

where ξ ∈ Y with ∥ξ∥ ≤ 1 (in the norm ∥ · ∥ of Y). We call ε > 0 the noise
level. The prospect of a successful regularization strategy is to stably recover
information on γ0 even if Y ̸∈ R(G). In fact, the strategy should improve
recovery when ε decreases. This is the property of consistency. One classical
view on such regularization strategies is the following: solve a penalized least-
squares problem such as

min
γ∈Γ

J(γ), J(γ) := ∥G(γ)− Y ∥2 + α∥γ∥2X , (2.1)

where (X , ∥·∥X ) and (Y, ∥·∥) are suitable function spaces and α > 0 is called the
regularization parameter. In the Hilbert space setting, a solution exists given
that G is continuous and weakly sequentially closed, see [EHN96, Section 10].
When G is also linear and compact, solving (2.1) becomes an instructive exercise.
Then, a singular system (σn, vn, un)

∞
n=1 of G exists, see [EHN96, Section 2.2],
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and the unique minimizer of (2.1) has the form

γα,ε =

∞∑

n=1

σn
σ2
n + α

⟨Y, un⟩vn. (2.2)

for any Y ∈ Y, see [EHN96, Chapter 5]. Here we denote ⟨·, ·⟩ the inner product in
Y. This minimizer is known as the Tikhonov regularizer, see [EHN96, Chapter 5]
for a proper treatment. We introduce it to remark upon three classical properties
of the map Rα : Y → X defined by RαY := γα,ε, where we for simplicity assume
G is injective:

1. Rα is continuous: for any Y ∈ Y, by Parseval’s identity

∥RαY ∥2X =

∞∑

n=1

c2n⟨Y, un⟩2 ≤ sup
n∈N

c2n∥Y ∥2,

and cn(α) := σn

σ2
n+α ≤ 1

2
√
α
, since 2

√
ασn ≤ α+ σ2

n for all α, σn > 0.

2. Rαγ converges to G−1 pointwise on G(Γ): see [Kir11, Theorem 2.6].

3. RαY → γ0 in X , when ε→ 0 for a well-chosen α = α(ε) going to zero: by
the triangle inequality

∥RαY − γ0∥X ≤ ∥RαY −RαGγ0∥X + ∥RαGγ0 − γ0∥X ,
≤ ε

2
√
α
+ ∥RαGγ0 − γ0∥X → 0,

as ε→ 0, where we have used 1. and 2. above.

These are the three properties we seek in regularization strategies: continuity
as in point 1, convergence as in point 2, and consistency as in point 3. The
regularizing nature of (2.1) is intuitive: we should minimize a misfit, while at
the same time keep ∥γ∥X small. However, it is a little misguided to think that
all regularization strategy has the form of penalized least squares. Instead, we
define it to be a map Rα : Y → X that possesses these three properties. This
is the definition an admissible regularization strategy in [Kir11, EHN96] also
presented in [KLMS09] in the nonlinear setting, which we now give here.

Definition 2.1 A family of continuous mappings Rα : Y → X , parametrized
by regularization parameter 0 < α < ∞, is called a regularization strategy for
G : Γ → Y in A ⊂ Γ if

lim
α→0

∥RαG(γ)− γ∥X = 0, (2.3)
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G(γ0)

Y
A

X Y

γ0

γα(ε),ε

G(A)

Rα(ε)

Figure 2.1: Graphical representation of the consistency property (2.4) of ad-
missible regularization strategies.

for each fixed γ ∈ A. Furthermore, a regularization strategy Rα is called ad-
missible if

α(ε) → 0 as ε→ 0,

and for any fixed γ0 ∈ A we have

sup
Y ∈Y:∥Y−G(γ0)∥≤ε

∥Rα(ε)Y − γ0∥X → 0 as ε→ 0. (2.4)

The consistency property of (2.4) is visualized in Figure 2.1. For nonlinear
problems Tikhonov regularization remains relevant. However, in this case J is
not necessarily convex, and so (2.1) does not necessarily have a unique solution.
This makes it difficult to define a map Rα as in the linear case. A related
problem in estimation theory has lead statisticians to ask for the measurability
properties of Y 7→ γ̂α,ε, where γ̂α,ε is a clever choice among the minimizers
of (2.1), see [GN16, Exercise 7.2.3]. This is not a focus in the regularization
literature: stability and convergence properties is often proven for any minimizer
of (2.1) in [EHN96, KNS08]. The spherical anomaly problem in R2 is particularly
simple in the presence of inverse continuity:

Example 2.1 (Tikhonov for spherical anomaly) G : R2
+ → R2 is

continuous by (1.9). Let A be the closed set of elements γ = (r, z) such that
0 < m ≤ r, z < ∞. Then there exists a solution γα,ε to (2.1), see [Ric16,
Theorem 4.1]. Any such solution satisfies (for the Euclidean norm ∥ · ∥ on R2)

∥G(γα,ε)− Y ∥2 + α∥γα,ε∥2 ≤ ε2 + α∥γ0∥2. (2.5)
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The triangle inequality implies

∥G(γα,ε)− G(γ0)∥2 ≤ 2∥G(γα,ε)− Y ∥2 + 2∥Y − G(γ0)∥2,
≤ 4ε2 + 2α∥γ0∥2.

So for a suitable choice α = α(ε) → 0 as ε→ 0, we have

sup
Y ∈R2:∥Y−G(γ0)∥≤ε

∥G(γα,ε)− G(γ0)∥ → 0

as ε → 0. By continuity of G−1 in G(Γ), we conclude γα(ε),ε → γ0. The
same argument works for Y replaced with G(γ), and α → 0 independent of ε.
Continuity of γα,ε with respect to Y is analyzed in for example [EHN96, 10.2].

In general, it is too much to ask for continuity of G−1 in G(Γ). What is becoming
a more standard approach is to understand instead the conditional properties
of the inverse problem, as in the questions 2’ and 3’, and in typical answers of
the form (1.1). Here, ∥ · ∥A is typically a stronger norm than ∥ · ∥X . Penalizing
with this norm instead of ∥ · ∥X in (2.1) and following (2.5), we conclude that

α∥γα,ε∥2A ≤ ε2 + α∥γ0∥2A.

Then ∥γα(ε),ε∥A is bounded when ε2/α(ε) is bounded as ε → 0, which permits
the use of (1.1), when γ0 ∈ A. Hence, γα(ε),ε → γ0 as ε → 0 and we can
even get a rate. To conclude similar statements on consistency without the use
of conditional stability estimates, we often require the stronger condition that
ε2/α(ε) → 0 as ε → 0. This interrelation between ε and the noise dependent
regularization parameter α(ε) is related to our findings in Chapter 4.

2.1 A regularization strategy for the Calderón
problem

In the rest of this chapter, we consider a regularization analysis of the three-
dimensional Calderón problem as introduced in Section 1.1.1. Despite the wide-
spread practical use of Tikhonov-based methods in the context of the Calderón
problem, see for example [Lio04], less is known about their theoretical properties.
Examples include [Dob92, Ron08, Ron16, LMP03, JM12], see also references
therein. In [JM12] continuity and consistency is provided under assumptions
akin to the classical source condition in [EHN96, Theorem 10.4]. Under gen-
eral conditions of injectivity of G, [Ron08] proves consistency of a generalized
Tikhonov method. This includes for example L1-convergence of a total variation
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regularizer to certain discontinuous γ0. This is provided without a convergence
rate. Consistency conditions for iterative regularization methods in the context
of the Calderón problem appear in [Kin22, LR08] and seem hard to verify in
general.

Interestingly, the existence of stability estimates of the form (1.1) with f(x) =
Cxν , ν > 0, is enough to conclude convergence to γ0 ∈ A of the Landweber iter-
ation starting in A. This is exemplified in [dHQS12, Section 5] for the Calderón
problem powered by the stability estimate provided in [ADC05]. Furthermore,
[dHQS12, Remark 4.4] and [SGG+09] show that if ν ≥ 1, then the classical
source condition is satisfied.

For these methods, computing γα(ε),ε involves iteration. In contrast, direct
reconstruction methods for the Calderón problem have been analyzed in [Nac88,
Nac96], since Calderón’s own contribution [Cal80]. Based on the D-bar method
in two dimensions in [Nac96], [KLMS09] suggests a modified method that is an
admissible regularization strategy. Not until recently, a regularization analysis
of the three-dimensional method of [Nac88] was undertaken. This is the content
of Paper A in [KR22b], which we discuss in the following sections.

2.1.1 Nachman’s reconstruction algorithm in three dimen-
sions

Intuitively, the first step of the Nachman’s reconstruction algorithm is to de-
termine the electrical surface potentials that extract useful information from
Λγ0

. Examples of such surface potentials are those who belong in a family of
functions ψζ ∈ H1/2(∂O) called complex geometrical optics (CGO). These were
considered in the context of the Calderón problem first by [SU88]. They are
indexed by a complex frequency ζ ∈ C3 satisfying ζ · ζ :=

∑3
i=1 ζ

2
i = 0 and ap-

proximates in a certain sense the harmonic functions eix·ζ for x ∈ R3. We refer
to [Knu02] for a first introduction to the use of these in the Calderón problem.

The crucial use of ψζ in determining γ0 ∈ C2(O) with γ0 = 1 near ∂O becomes
clear when defining the function q0 := γ

−1/2
0 ∆(γ

1/2
0 ) and the set Vz for some

z ∈ R3 characterized by

ζ = −z
2
+ (κ2 − |z|2

4
)1/2k⊥⊥ + iκk⊥,

where κ ≥ |z|/2, {z, k⊥, k⊥⊥} is an orthonormal real set of vectors in R3, and
|ζ(z)| =

√
2κ. Indeed, for each z ∈ R3 and ζ = ζ(z) ∈ Vz ⊂ C3, [Nac88] shows
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that for |ζ| large enough (see also (11)-(12) [KR22b])
∣∣∣∣
∫

∂O
e−ix·(z+ζ)(Λγ0

− Λ1)ψζ(x)σ(dx)− q̂0(z)

∣∣∣∣ ≤ C|ζ|−1, (2.6)

where σ denotes the surface measure on ∂O, q̂0 is the Fourier transform of q0
and C > 0 is constant depending on q0. This implies that we can approximate
q̂0(z) well by an integral, if we pick |ζ(z)| large enough. That is, if we know the
trace of the CGO solutions. Note if |z| is large, then

|ζ(z)| =
√
2κ ≥ |z|√

2

should be large. This integral is also known as the scattering transform t(z, ζ(z))

t(z, ζ(z)) =

∫

∂O
e−ix·(z+ζ)(Λγ0 − Λ1)ψζ(x)σ(dx).

After performing an inverse Fourier transform to obtain q0, a boundary value
problem is usually solved to obtain γ0. To recap, it is a method of three steps:

Λγ0

(1)−→ t
(2)−→ q0

(3)−→ γ0

However, recovering ψζ on ∂O for |ζ| large is unstable. These are usually com-
puted by solving a boundary integral equation involving a kernel that is expo-
nentially growing in |ζ|, and hence we expect that any error in the data Λγ0

is
multiplied by an exponential factor in its contribution to ψζ |∂O. Even if ψζ |∂O
were recovered perfectly, any error in Λγ0 is multiplied by e−ix·ζ in (2.6). It
stands to reason that this method needs to be modified, ideally, to a regulariza-
tion strategy.

2.2 Paper A: Regularized Calderón problem in
three dimensions

In Paper A, we address the instability of Nachman’s reconstruction algorithm
by proposing an admissible regularization strategy. This regularization strategy
finds its inspiration in numerical realizations of the ideal method. Such examples
count [BKM11, KM11, HIK+21, BKIS09], which approximate t by replacing ψζ

with eix·ζ , and [DHK12, DK14], which solve approximate boundary integral
equations to obtain approximations of ψζ |∂O. Common for all is that they seek
to recover t in a bounded domain |z| < M using |ζ(z)| small. When it comes to
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picking |ζ(z)|, two popular choices are

|ζ(z)| =Mp, p > 0 (fixed),

|ζ(z)| = |z|√
2

(minimal).

While both choices allows admissible ζ(z) ∈ Vz, the fixed choice is natural, since
it ensures convergence of t(z, ζ(z)) to q̂0(z) whenM → ∞ by letting |ζ(z)| → ∞.
However, the minimal choice might provide additional stability. For |z| ≥ M ,
t(z, ζ(z)) is set to zero, and so its inverse Fourier transform is smooth. Note the
choice of M should depend on the noise level of the observation Y = Λγ0

+ εξ.
We summarize the method as follows.

Method 1 Truncated CGO reconstruction in three dimensions

Step 1ε Let M = M(ε) > 0 be determined by a sufficiently small ε. For each
fixed z with |z| < M , take ζ(z) ∈ Vz with an appropriate size determined by
M and solve the boundary integral equation (see (15) [KR22b]) to recover
ψε
ζ |∂O. Compute the truncated scattering transform by

tεM(ε)(z, ζ(z)) :=

{∫
∂O e

−ix·(z+ζ(z))(Y − Λ1)ψ
ε
ζ(x)dσ(x), |z| < M(ε),

0, |z| ≥M(ε),

Step 2ε Set q̂ε(z) := tεM(ε)(z, ζ(z)) and compute the inverse Fourier transform
to obtain qε.

Step 3ε Solve the boundary value problem

(−∆+ qε)(γε)
1/2 = 0 in O,

(γε)
1/2 = 1 on ∂O.

(2.7)

and extract γε.

The boundary integral equation for unperturbed an unperturbed observation is
of the form

Bζ(ψζ) = eix·ζ |∂O,
for a bounded operator Bζ : H1/2(∂O) → H1/2(∂O) in which G(γ0) = Λγ0

enters. When ε > 0 this becomes Bε
ζ . A number of results in Paper A center

around the existence and uniqueness of solutions to equations with Bε
ζ . Using

these we show that Method 1 gives rise to an admissible regularization strategy
in the sense of Definition 2.1, where the regularization parameter is M−1. To
satisfy the definition, technical modifications are made to Method 1 so that it
defines a map Rα on Y and not just an ε-neighborhood of G(A) for sufficiently
small ε > 0.
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2.2.1 Main result

The main theorem of Paper A is the following.

Theorem 2.2 (Theorem 1.1 in [KR22b]) Suppose A is the set of γ in
C2(O) such that ∥γ∥C2(O) ≤ M , γ ≥ M−1 and γ(x) ≡ 1 for dist(x, ∂O) < m
for some M,m > 0. Then there exists ε0 > 0, dependent only on M and m
such that the family Rα defined by (30) in [KR22b] (Rα(ε)Y := γα,ε as defined
by Method 1 for 0 < ε < ε0 and M(ε) = α(ε)−1) is an admissible regularization
strategy with the following choice of regularization parameter:

α(ε) =

{
(−1/11 log(ε))−1/p for 0 < ε < ε0,
ε
ε0
(−1/11 log(ε0))

−1/p for ε ≥ ε0,

with p > 3/2.

This theoretical result is derived from a number of steps, which we give an
overview of here:

1. The unperturbed boundary integral equation Bζ(ψζ) = eix·ζ is uniquely
solvable for |ζ| large enough depending on γ0, i.e. for |ζ| > Dγ0 .

2. In this regime, we conclude that B−1
ζ is bounded: an upper bound on its

operator norm grows exponentially in |ζ|.

3. A Neumann series argument concludes that also Bε
ζ has a bounded inverse

for ε small enough.

4. If |ζ| = − 1
11 log(ε), eventually |ζ| > Dγ0

for ε small enough. In this case,
the distance between the solutions ψε

ζ |∂O are bounded by a term of order
εk for some k > 0.

5. The triangle inequality implies

|tεM(ε)(z, ζ(z))− q̂0(z)| ≤ |tεM(ε)(z, ζ(z))−t(z, ζ(z))|+|t(z, ζ(z))− q̂0(z)|,

where the first term is shown to be of order εk for some k > 0 using the
previous step and the second term is bounded by |ζ|−1 by (2.6).

6. Then also ∥tεM(ε) − q̂0∥L2(R3) goes to zero, when ε → 0, if |ζ| = Mp for
p > 3/2.

7. Continuity of the inverse Fourier transform on L2(R3) and stability of the
elliptic boundary value problem (2.7) implies that γα,ε → γ0 in L∞(O).
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Figure 2.2: Figure 1 in [KR22b]. The piecewise constant heart-lungs phantom
in a three-dimensional view (left image), and in the planar cross
section x3 = 0 (right image). The conductive ball has conductvity
2, while the resistive ellipsoids have conductivity 0.5

2.2.2 Numerical results

The numerical implementation of Method 1 is largely due to [DHK12, DK14]
and can be found on GitHub [DKRH22]. We reconstruct the conductivity from
noisy simulated data arising from two different piecewise constant phantoms.
One is the heart-lungs phantom considered in [KR22b], see Figure 2.2, the other
is a hemorrhagic stroke phantom considered in [KR22a], see Figure 2.3. The
method performs well on data from piecewise constant phantoms, despite the
missing theoretical foundation.

In Figure 2.4, we see regularized reconstructions for noisy simulated data from
the heart-lungs phantom corresponding to approximately 0.1% relative noise
(ε = 10−3), 0.01% relative noise (ε = 10−4), 0.001% relative noise (ε = 10−5)
and 0.0001% relative noise (ε = 10−6) each for a handpicked choice of M . We
clearly see the convergence of the regularized reconstructions to the ground truth
as the noise level decreases and the truncation radius increases.

In Figure 2.5, on the other hand, we see regularized reconstructions for noisy
simulated data from the hemorrhagic stroke phantom corresponding to 0.1%
relative noise. The only parameter that changes between the plots is the trun-
cation radius, which we vary from 7 to 9.25 in steps of 0.25. Also here we see
the regularizing effect of the choice of truncation radius.
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Figure 2.3: The piecewise constant hemorraghic stroke phantom in a three-
dimensional view (left image), and in the planar cross section x3 =
0 (right image). The conductive ball has conductvity 3, while the
resistive ellipsoidal shell has conductivity 0.2
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Figure 2.4: Figure 3 in [KR22b]. Cross sections (x3 = 0) of reconstructions
using the regularized reconstruction algorithm on noisy Dirichlet-
to-Neumann maps. |ζ| = 1
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Figure 2.5: Regularized reconstructions of noisy data for the hemorrhagic
stroke phantom corresponding to 0.1% relative noise. The trun-
cation radius M varies from 7 to 9.25 in steps of 0.25 and |ζ(z)| is
chosen minimally.
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2.2.3 Discussion and outlook

Regularization by truncating high-frequency information is common and related
to the truncated singular value decomposition in which one truncates the sum
(2.2) and sets α = 0. The idea of truncating the scattering transform appears in
[KLMS09] in the context of the related two-dimensional D-bar method. Here,
boundedness of Bζ follows in much the same way as in [KLMS09]. However,
there are fundamental differences to the two-dimensional reconstruction method:
there the admissible set Vz ⊂ C2 for z ∈ R2, reduces to a set of two points:
{−1/2(z+iz⊥),−1/2(z−iz⊥)}, where z⊥ ∈ R2 satisfies z⊥ ·z = 0 and |z⊥| = |z|.
So one does not have the degrees of freedom to approximate q̂(z) for small |z|
by taking |ζ(z)| large. Instead, t enters in the D-bar equation, where also the
small frequency information is utilized, see [KLMS09]. This is viable in two
dimensions, since the boundary integral equation have shown to be solvable for
all ζ ∈ C2 \ {0} with ζ · ζ = 0, [Nac96]. In dimensions higher than two, this
has only been shown for |ζ| large enough, or when γ is small and close to a
constant [CKS06]. So a goal of Paper A is really to ensure |ζ| can be taken
large enough.

Important new steps involves investigating the reconstruction method for real
data. This is related to [IMNS04] for the two-dimensional D-bar method and
[HIK+21, HMI+22] for the three-dimensional so-called texp approximation. An
interesting new direction includes extending the truncation of the scattering
transform using prior information, see [AM16] for an approach for the two-
dimensional D-bar method. In the case of the case of stroke detection, the in-
troduction of a highly resistive skull hampers the ability of the method [KR22a].
We expect this method could benefit from adding a resistive skull as prior in-
formation.



Chapter 3

A Bayesian story in finite
dimensions

In this chapter, we motivate many of the key findings in the Bayesian approach
to inverse problems in infinite-dimensional spaces by considering the finite di-
mensional case. That is, we let X = Rk and Y = Rm. We consider observing Y
that is a perturbation of G(γ0) by random noise, i.e.

Y = G(γ) + εξ, (3.1)

where γ = γ0 ∈ Γ ⊂ Rk, ξ ∼ N(0, I) and I : Rm → Rm is the identity
covariance. We still call ε > 0 the noise level, but to study its effect when it
decreases in a countable way, we let ε = εn := σ/

√
n for n ∈ N and some σ > 0.

The Bayesian approach to inverse problem as advocated for in [KKSV00] cen-
ters around a posterior distribution in Rk. This is a conditional probability
distribution that involves the likelihood function and a prior distribution in the
famous Bayes’ rule

posterior ∝ likelihood× prior.

Whereas the likelihood function is specified through the measurement process,
that is, through our knowledge of the forward map and the noise, the prior
distribution models our information on γ0 prior to performing measurements.
In this chapter and the next, we will see that the prior often plays the role of
regularization in the Bayesian framework.
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In the following sections we will underpin the usefulness of the posterior dis-
tribution in different settings. We shall see how, much akin to Definition 2.1
of an admissible regularization strategy, the posterior distribution gives rise to
a method (the mean of the posterior) that is both continuous and consistent.
We do this under the frequentist assumption that there is a true parameter
γ0 ∈ Γ that gives rise to observed data. We refer to [GvdV17, Chapter 6] for a
discussion on the justification of such studies for dogmatic Bayesians.

3.1 The posterior distribution

The posterior distribution is often regarded as the solution to an inverse problem
in the Bayesian approach. To obtain this probability distribution, we consider
the likelihood function arising from (3.1) with γ0 replaced by some γ ∈ Γ, where
Γ is a Borel subset of Rk endowed with its Borel σ-algebra B(Γ). Indeed, then
Y ∼ N(G(γ), ε2I) is a Gaussian random vector in Rm with density

pγn(y) := C(εn) exp

(
− 1

2ε2n
∥G(γ)− y∥2

)
, (3.2)

where C(εn) = 1/
√
2πε2n is a constant we will not keep track of, and ∥ · ∥ is

used to denote the Euclidean norm of both Rk and Rm. We refer to γ 7→ pγn(y)
as the likelihood function and denote the corresponding measure P γ

n . Given a
prior distribution Π in Γ with density π we can construct the joint probability
density of γ and Y by

π(γ, y) = pγn(y)π(γ),

which indeed is a probability density if (γ, y) 7→ pγn(y) is jointly measurable,
see [Pol02, Theorem 20, Chapter 4]. This is the case, since G is continuous, see
[AB06, Lemma 4.5.1]. The marginal density of Y is

pn(y) =

∫

Γ

π(γ, y) dγ, (3.3)

which satisfies pn(y) ≤ C(εn) by (3.2). Then, Bayes’ rule gives the posterior
density as a conditional density of γ given Y = y, by dividing the marginal
density into the joint density:

πy(γ) =
pγn(y)π(γ)

pn(y)
. (3.4)

The corresponding conditional distribution, the posterior, then takes the form

Π(B|y) =
∫

B

πy(γ) dγ, ∀B ∈ B(Γ). (3.5)
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When we write Y = y we mean that we have observed a realization Y (ω) = y
for some ω ∈ Ω, and we denote by Π(B|Y ) the map ω 7→ Π(B|Y (ω)), which
we also call a posterior. The denominator in (3.4) ensures that πy(γ) is indeed
a probability density that integrates to 1. Practitioners are often not careful
when dividing by this quantity, in fact, it is often not needed: For all γ ∈ Rk

and y ∈ Rm, note that 0 < pγn(y) ≤ C(εn), and so 0 < pn(y) ≤ C(εn). Since
z 7→ 1/z is continuous for z > 0, in fact y 7→ pn(y)

−1 is measurable and hence
(γ, y) 7→ πy(γ) is jointly measurable. It follows that y 7→ Π(B|y) is measurable.

In the more general case, where pγn(y) takes a different form, we can still ensure
a well-defined posterior by the following argument, which we record for future
use. Note that the marginal probability of {y : pn(y) = 0} =: C is zero, i.e.,

∫

C

pn(y) dy = 0.

This also means that πy(γ) is a well-defined conditional density for almost all
y, see [Pol02, Theorem 12, Chapter 5]. We can avoid definitional problems by
setting πy(γ) = 0, when y is such that pn(y) = 0. This is a general trick by
‘arbitrary extension’ that makes (γ, y) 7→ πy(γ) well-defined everywhere and
jointly measurable, see Section E.2.1. Then also y 7→ Π(B|y) is measurable for
all B ∈ B(Rk), see again [Pol02, Theorem 20, Chapter 4]. [GvdV17, Section 1.3]
states that there exists a regular version Π̃(·|Y ) of the distribution (3.5), i.e.,

1. ω 7→ Π̃(B|Y (ω)) is measurable for all B ∈ B(Γ),
2. B 7→ Π̃(B|Y (ω)) is a probability measure for all ω ∈ Ω, and

3. Pr(Π̃(B|Y ) = Π(B|Y )) = 1 for all B ∈ B(Γ).

Then one often talk of the posterior Π̃(·|Y ) and denote it by Π(·|Y ). We go to
this level of detail, since we want to make precise statements about the posterior:
by the second point in the above list, every realization of data gives rise to a
probability measure in Γ. Where this measure gives mass is essential to the
success of algorithms targeting it. On the other hand, the data we observe is
random and our statements on Π(·|Y ) should take this into account. In fact,
ω 7→ Π(B|Y (ω)) is a [0, 1]-valued random variable by the first point of the list.
The statement of posterior consistency is exactly such a statement.

3.2 Posterior consistency

Posterior consistency is a statement about the mass the posterior distribution
assigns neighborhoods of the ground true parameter γ0 as the data improves.
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Natural neighborhoods of γ0 are the sets

Un := {γ ∈ Γ : ∥γ − γ0∥ ≤ Cδn} (3.6)

for some decreasing sequence δn > 0 going to zero and some constant C >
0. Indeed, posterior consistency is a statement about the convergence of the
posterior mass on these sets when n → ∞, i.e. as the noise level goes to zero.
This is called posterior consistency in the small noise limit. Alternatively, one
can consider posterior consistency in a large data limit. We will return to this
in Section 4.1. In any case, if the posterior is consistent at rate δn, the mass
of the posterior is increasingly concentrated in Un. Since Π(Un|Y ) is a random
variable, the sense of convergence must be specified. The sense which seems
the most relevant in terms of results, see [GvdV17, Chapter 6] is convergence in
probability, which we recall now.

For a decreasing sequence tn > 0 going to zero and a sequence of measurable
functions fn : Rm → R we say that the sequence of random variables {fn(Y )}∞n=1

converges to υ ∈ R in P γ0
n -probability with rate tn as n→ ∞ if

Pr(|fn(Y )− υ| > tn) → 0, (3.7)

as n→ ∞, or to be precise,

P γ0
n (y ∈ Rm : |fn(y)− υ| > tn) → 0,

as n → ∞. If (3.7) is only satisfied for any arbitrary constant t > 0 instead
of a specific sequence tn, we say that {fn(Y )}∞n=1 converges to υ ∈ R in P γ0

n -
probability. Then we use the following definition of posterior consistency, see
also [GvdV17, Chapter 6-9] for a general review of posterior consistency and
contraction.

Definition 3.1 (Posterior consistency) We say that the posterior
distribution contracts around or is consistent in γ0 at rate δn if

Π(Un|Y ) → 1 in P γ0
n -probability, (3.8)

If (3.8) is only satisfied for all arbitrary constants δ > 0 instead of a specific
sequence δn in (3.6), we simply say that the posterior distribution is consistent
in γ0.

In the case of a well-posed inverse problem, when G−1 is continuous in G(γ0) ∈
Rm, then for all δ > 0, there exists rδ,γ0 > 0 such that

∥G(γ)− G(γ0)∥ ≤ rδ,γ0
implies ∥γ − γ0∥ ≤ δ, i.e.

{γ ∈ Γ : ∥G(γ)− G(γ0)∥ ≤ rδ,γ0
} ⊂ {γ ∈ Γ : ∥γ − γ0∥ ≤ δ}, and, (3.9)

Π(γ : ∥G(γ)− G(γ0)∥ ≤ rδ,γ0
|Y ) ≤ Π(γ : ∥γ − γ0∥ ≤ δ|Y ).



3.2 Posterior consistency 29

Then it is sufficient for (3.8) to show that

Π(γ : ∥G(γ)− G(γ0)∥ ≤ r|Y ) → 1 in P γ0
n -probability, (3.10)

for all r > 0. This is a central idea in the nonlinear posterior consistency theory,
considered in function spaces in for example [Vol13, MNP21], since it reduces
the analysis from sets of the form (3.6) to sets of the form

V := {γ : ∥G(γ)− G(γ0)∥ ≤ r}. (3.11)

As we shall see, the strength of this approach is that it generalizes posterior
consistency with explicit rates for many conditionally well-posed problems, i.e.
when conditional stability estimates of the form (1.1) are available. When G
is linear, the posterior is Gaussian, and this makes other approaches available,
see [Stu10, Theorem 2.3-2.5]. In the finite-dimensional case, we mention also
that posterior contraction often can be concluded by asymptotic Gaussianity of
the posterior as is provided by the Bernstein-von-Mises theorem, see [GvdV17,
Remark after Example 8.4] and [vdV98, Theorem 10.1].

We take a different approach and show (3.10) for any r > 0 with simple tech-
niques. One way is to realize that Pr(∥ξ∥ > Rn) → 0 as n → ∞ for any
arbitrarily slowly growing sequence Rn → ∞, see for example the standard
inequality [GN16, Theorem 3.1.9]. Then

sup
y:∥y−G(γ0)∥≤εnRn

Π(V c|y) → 0 as n→ ∞ (3.12)

implies for any t > 0 that

Pr(|Π(V |Y )− 1| > t) = Pr(Π(V c|Y ) > t),

≤ Pr(Π(V c|Y ) > t, ∥Y − G(γ0)∥ ≤ εnRn)

+ Pr(Π(V c|Y ) > t, ∥Y − G(γ0)∥ > εnRn),

≤ 1{ sup
y:∥y−G(γ0)∥≤εnRn

Π(V c|y) > t}

+ Pr(∥ξ∥ > Rn) → 0,

as n → ∞, and hence (3.10) is satisfied. The property (3.12) can be handled
by upper bounding the numerator and lower bounding the denominator of the
ratio (3.5), as we do in the following.

Proposition 3.2 If G is continuous and
∫
γ:∥γ−γ0∥≤l

π(γ) dγ > 0 for all l > 0,
then (3.12) is satisfied and hence (3.10) is satisfied. In particular, if G−1 satisfies
(3.9), then the posterior distribution is consistent in γ0.
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Proof. As preparation note y ∈ Rm that satisfy ∥y − G(γ0)∥ ≤ εnRn can be
written as y = G(γ0) + εne for some e ∈ Rm with ∥e∥ ≤ Rn. Inserting this into
the likelihood (3.2) yields

pγn(y) = C(εn) exp

(
− 1

2ε2n
∥G(γ)− y∥2

)
,

= C(εn) exp

(
− 1

2ε2n
∥G(γ)− G(γ0)∥2 +

1

εn
⟨G(γ)− G(γ0), e⟩ −

1

2
∥e∥2

)
,

= C(εn, e) exp

(
− 1

2ε2n
∥G(γ)− G(γ0)∥2 +

1

εn
⟨G(γ)− G(γ0), e⟩

)
.

Note by the Cauchy-Schwartz inequality

|⟨G(γ)− G(γ0), e⟩| ≤ ∥G(γ)− G(γ0)∥Rn.

The rest of the proof is based on upper bounding the numerator and lower
bounding the denominator of the posterior ratio integrated on the set V c. To
upper bound the numerator, note for y = G(γ0) + εne and γ ∈ V c that

pγn(y) ≤ C(εn, e) sup
γ∈V c

exp

(
− 1

2ε2n
∥G(γ)− G(γ0)∥2 +

1

εn
∥G(γ)− G(γ0)∥Rn

)
,

where since V c = {γ : ∥G(γ) − G(γ0)∥ > r} and x 7→ −1/(2ε2n)x
2 + 1/εnRnx

is decreasing for x ∈ (εnRn,∞) it is convenient to set Rn such that r > εnRn.
Indeed, then ∥G(γ)− G(γ0)∥ = r upper bounds the supremum, and

pγn(y) ≤ C(εn, e) exp

(
− r2

2ε2n
+

r

εn
Rn

)
.

Then we have
∫

V c

pγε (y)π(γ) dγ ≤ C(εn, e) exp

(
− r2

2ε2n
+

r

εn
Rn

)
, (3.13)

since π is a probability density integrating to 1. For the lower bound of the
denominator, note first that

∫

γ:∥G(γ)−G(γ0)∥≤l

π(γ) dγ > 0

for all l > 0 by assumption and continuity of G. Then we take a sufficiently
slowly decreasing sequence ln > 0 such that

∫

γ:∥G(γ)−G(γ0)∥≤ln

π(γ) dγ ≥ exp

(
−1

4

r2

ε2n

)
. (3.14)
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This implies
∫

Γ

pγn(y)π(γ) dγ ≥
∫

γ:∥G(γ)−G(γ0)∥≤ln

pγn(y)π(γ) dγ,

≥ C(εn, e) exp

(
−1

4

r2

ε2n

)
exp

(
− 1

2ε2n
l2n − ln

εn
Rn

)
. (3.15)

Collecting the upper bound (3.13) and the lower bound (3.15), we conclude

sup
y:∥y−G(γ0)∥≤εnRn

Π(V c|y) ≤ exp

(
−r

2 − 2l2n
4ε2n

+
r + ln
εn

Rn

)
→ 0, (3.16)

as n→ ∞, since exp(−r2/(4ε2n)) is the dominant factor, when n→ ∞, if we for
example set Rn ∝ 1/

√
εn. □

The prior condition of Proposition 3.2 is a way of saying that γ0 is in the support
of the prior distribution, see Appendix E.1. This is also a necessary condition: if
π(γ) = 0 in some neighborhood of γ0, then the posterior distribution gives mass
0 to this neighborhood, which renders (3.8) impossible. Note that the argument
in the proof above is similar to that of [Vol13, Theorem 3.3]. Here, the proof
is made so that it is straightforward to extend to an explicit contraction rate.
In this case one would replace r with a decreasing sequence rn > 0 satisfying
r2n/ε

2
n → 0. In this case, a stronger condition on the prior is needed: instead of

(3.14), it should satisfy
∫

γ:∥G(γ)−G(γ0)∥≤rn

π(γ) dγ ≥ exp

(
−C r

2
n

ε2n

)
, (3.17)

for some constant C > 0. This causes exp(−Cr2n/ε2n) to be the dominant rate
of the denominator for some new constant C > 0, and not something that
decays faster. This is often called a ‘small ball’ condition, and showing this
often involves requiring Hölder continuity of G. Going to an infinite-dimensional
Hilbert space Y, one can use similar arguments to those above by finding sets
Sn such that Pr(ξ ∈ Sn) → 1 as n → ∞. In this case ξ ∼ N(0, I) needs an
interpretation. This approach is used in [Vol13, Theorem 3.3] for ‘smooth’ noise
ξ, and where the contraction rate is dependent on the level of smoothness.

Example 3.1 (Spherical anomaly) Let γ0 = (r0, z0) = (100, 1000) and
π be the prior density arising as the probability density of the random variable

γ = (1, 1) + exp(θ), θ ∼ N

([
4
8

]
,

[
1 0
0 4

])
=: Πθ

Clearly, there exists θ0 ∈ R2 such that Φ(θ0) := (1, 1) + exp(θ0) = γ0. Now
denote B(θ0, j) := {θ ∈ R2 : ∥θ − θ0∥ ≤ j}. Since the probability density πθ
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Figure 3.1: Plot of samples from Π(·|y) arising for the spherical anomaly in-
verse problem for four realizations y corresponding to ε = 5 ·10−8,
ε = 10−8, ε = 5 · 10−9 and ε = 10−9. These realizations corre-
sponds to approximately 6.93%, 0.87%, 0.72% and 0.06% relative
noise. The red dot marks γ0, whereas the yellow dot marks the
sample mean.

corresponding to Πθ satisfies πθ(θ0) > 0, we have that
∫
B(θ0,j)

πθ(θ) dθ > 0 for
all j > 0. By continuity of Φ, we have for all l > 0

{θ : ∥Φ(θ)− Φ(θ0)∥ ≤ l} ⊃ B(θ0, jl,θ0),

for some jl,θ0 > 0, and hence

Pr(γ ∈ B(γ0, l)) = Pr(θ ∈ Φ−1[B(γ0, l)]) ≥ Pr(θ ∈ B(θ0, jl,θ0)) > 0,

which is to say that the prior condition of Proposition 3.2 is satisfied. Then the
corresponding posterior distribution (3.5) is consistent in γ0. In Figure (3.1) this
property is demonstrated numerically using the Python package CUQIpy, see
[RAU+23]. Samples from the posterior are computed using an out-of-the-box
Metropolis-Hastings sampler implemented in CUQIpy as MH. Note more and
more of the samples are contained in a neighborhood of γ0. Not surprisingly
radius and depth are correlated variables.

In Example 3.1 we used the exponential function to construct a prior whose mass
is contained in [1,∞)× [1,∞). Such transformations of priors can be useful in
guiding the mass to where the user want it to be. Note that the continuity
of this transform is essential in satisfying the prior condition, which is key to
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controlling the posterior denominator. For an explicit contraction rate, Hölder
continuity is sufficient to satisfy (3.17). This is an important point in Paper
B in Section 4.2. In Figure 3.1, we also note that the sample mean seems to
converge to γ0 as n→ ∞.

3.3 Computations and convergence of the mean

Results like Proposition 3.2 indicate the usefulness of the posterior distribution
in inferring γ0 in an abstract way. One way to construct concrete methods from
the posterior distribution is to consider point estimators, see [KS05]. We will
focus on estimators of γ0. Here, an estimator of γ0 is any Borel measurable
map γ̂ : Y → Γ. One such popular estimator of γ0 is the maximum a posteriori
(MAP) estimator defined by

γMAP(y) := argmax
γ∈Γ

πy(γ).

As remarked after Definition 2.1, definitional problems can arise when G is not
linear as in this case the maximization problem does not have a unique solution
in general. However, note (γ, y) 7→ πy(γ) is continuous in its first argument for
all y ∈ Y when π(y) is continuous, and measurable in its second argument for
all γ ∈ Γ. Then, if Γ is a compact metric space, there exists a Borel measurable
function γMAP : Y → X such that

πy(γMAP(y)) = max
γ∈Γ

πy(γ),

see [GN16, Exercise 7.2.3]. For a Gaussian prior π(γ) ∝ exp(−1/(2σ2)∥γ∥2), we
have

γMAP(y) = argmax
γ∈Γ

pγn(y)π(γ),

= argmax
γ∈Γ

exp

(
− 1

2ε2
∥G(γ)− y∥2 − 1

2σ2
∥γ∥2

)
,

= argmin
γ∈Γ

(
∥G(γ)− y∥2 + ε2

σ2
∥γ∥2

)
, (3.18)

which is exactly the Tikhonov regularizer of (2.1) with regularization parame-
ter α = ε2/σ2. This relation has been noted in many works including [KS05].
We also note that the choice of prior decides the penalization term in (3.18),
and hence we can see the MAP estimator is a systematic approach to gener-
alized Tikhonov regularization. But this is just one popular estimator, which
incidentally faces the issue of non-convex optimization. Consistency can still
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be guaranteed theoretically under certain assumptions of G, see [NvdGW20].
Note there are several contributions in consistency of Tikhonov regularizers for
random noise both for linear [KLS14] and nonlinear [BHM04] forward maps, see
also the references therein.

Another popular estimator is the posterior or conditional mean

E[γ|y] =
∫

Γ

γπy(γ) dγ =

∫

Γ

γΠ(dγ|y),

which is well-defined and measurable in y, when γ is integrable, see Section
E.2.2. The posterior mean is integration based and generally computable via
Markov chain Monte Carlo (MCMC) methods. For independent samples γi of
the posterior distribution, the averages

γ̄N =
1

N

N∑

i=1

γi

converges almost surely to E[γ|y] as N → ∞ by the strong law of large numbers
[RC04]. If γ is also square integrable, the root mean square error of γ̄N decays
to zero as N−1/2. As slow as this rate seems, it does not depend on the dimen-
sion k and hence even for high-dimensional problems the mean is computable.
The trick is then to form a Markov chain whose invariant distribution is the
posterior distribution. We refer to the well-known Metropolis-Hastings meth-
ods [MRR+53, Has70], among which preconditioned Crank-Nicolson [CRSW13]
is a well-performing example, as well as to more general MCMC methods in
[RC04, RR04]. Common for these methods is the fact that evaluating πy(γ)
and/or its gradient up to a constant in γ is sufficient, and hence the denomina-
tor in (3.4) is of little importance. Of course these methods are not limited to
the posterior mean; any integration based statistic of the form

∫
Γ
f(γ)Π(dγ|y)

can be approximated in this way.

A second benefit of the posterior mean is that it inherits the convergence proper-
ties of the posterior distribution under mild conditions on the prior distribution,
see [GvdV17, Theorem 6.8] or [Nic23, Theorem 2.3.2].

Proposition 3.3 If the assumptions of Proposition 3.2 are satisfied and fur-
ther if ∫

Γ

∥γ − γ0∥π(γ) dγ <∞, (3.19)

then ∥E[γ|Y ]− γ0∥ → 0 in P γ0
n -probability as n→ ∞.

Proof. We wish to show that for all t > 0

Pr(∥E[γ|Y ]− γ0∥ > t) → 0, (3.20)
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as n→ ∞. By Jensen’s inequality for all y ∈ Y we have that

∥E[γ|y]− γ0∥ ≤ E[∥γ − γ0∥|y] =
∫

Γ

∥γ − γ0∥πy(γ) dγ.

Decomposing this integral into U = {γ : ∥γ − γ0∥ ≤ δ} and U c for δ = t/2, we
find

∥E[γ|y]− γ0∥ ≤
∫

U

∥γ − γ0∥πy(γ) dγ +

∫

Uc

∥γ − γ0∥πy(γ) dγ,

≤ t/2 +

∫

Uc

∥γ − γ0∥πy(γ) dγ. (3.21)

By (3.9), the property that
∫
V c ∥γ − γ0∥πy(γ) dγ → 0 in P γ0

n -probability as
n→ ∞ for any r > 0 implies that the last integral of (3.21) converges to zero in
P γ0
n -probability as n → ∞, which is enough to conclude (3.20). Following the

logic after (3.12), it is sufficient to show that

sup
y:∥y−G(γ0)∥≤εnRn

∫

V c

∥γ − γ0∥πy(γ) dγ → 0,

as n→ ∞. Copying the argument in the proof of Proposition 3.2, we find that
(3.16) is changed to

sup
y:∥y−G(γ0)∥≤εnRn

∫

V c

∥γ − γ0∥πy(γ) dγ

≤ C(n) exp(−r2/(4ε2n))
∫

Γ

∥γ − γ0∥π(γ) dγ, (3.22)

for some large enough constant C(n). This goes to zero as n→ ∞ by (3.19). □

Note that (3.19) is generally not a strong condition. It is trivially satisfied for
any prior densities that are supported on a bounded subset of Γ, but also for
example for Gaussian densities.

Example 3.2 (Spherical anomaly) For the prior given in Example 3.1
note that

∫

Γ

∥γ∥Π(dγ) =

∫

R2

∥Φ(θ)∥Πθ(dθ),

≤ C + C

∫

R2

(eθ1 + eθ2)πθ(θ) dθ,

≤ C + C

2∑

i=1

E[eeiθ],
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using a change of variables and denoting e1 = (1, 0) and e2 = (0, 1). Since θ is
a Gaussian vector, eiθ is a Gaussian random variable and hence the term above
is a sum of the moment generating functions of Gaussian random variables,
which is finite. It follows from Proposition 3.3 that ∥E[γ|Y ] − γ0∥ → 0 in
P γ0
n -probability as n→ ∞. This behavior can be seen numerically in Figure 3.1

3.4 Well-posedness

For a successful algorithm we should not only be concerned with consistency,
but also continuity as in the definition of an admissible regularization strategy,
Definition 2.1. Results of this kind have been considered in [DS17, Stu10] under
the term well-posedness. This is of course a reference to Hadamard: the posterior
exists, is unique (up to null sets of the marginal distribution of Y ), and turns
out to be continuous in a suitable sense. This continuity quantifies the effect of
changes in y on the posterior distribution. To measure the effect most commonly
the Hellinger distance is used. This is defined as

dH(πy, πy′) =

(
1

2

∫

Γ

[√
πy −

√
πy′
]2
)1/2

.

One can also define this distance between measures, in which case the Lebesgue
densities are replaced by densities with respect to a common reference measure,
see [DS17]. Then well-posedness of the posterior is a result like the following.

Proposition 3.4 Assume
∫
Γ
∥G(γ)∥2π(γ) dγ <∞. Then there exists a con-

stant C = C(R) > 0 such that for all y, y′ ∈ Y with ∥y∥, ∥y∥ ≤ R

dH(πy, πy′) ≤ C∥y − y′∥.

Proof. This is due to [DS17, Theorem 16], which is straightforward to apply.
Indeed, let ε = εn and note (γ, y) 7→ ℓ(γ, y) := 1/(2ε2)∥G(γ) − y∥2 is contin-
uous, since γ 7→ G(γ) is continuous. Furthermore, using the Cauchy-Schwarz
inequality

|ℓ(γ, y)− ℓ(γ, y′)| = 1/(2ε2)|⟨2G(γ)− y − y′, y′ − y⟩|,
≤ ε−2(∥G(γ)∥+R)∥y − y′∥.

Then the assumption of the proposition implies
∫

Γ

1 + [ε−2(∥G(γ)∥+R)]2π(γ) dγ <∞,
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which shows that the conditions of Theorem 16 in [DS17] are satisfied. □

Other metrics have been considered as well, see for example [Lat20]. Convenient
for the Hellinger distance is the following result. Lemma 21 in [DS17] states that

∥E[γ|y]− E[γ|y′]∥ ≤ 2

(∫

Γ

∥γ∥2 Π(dγ|y) +
∫

Γ

∥γ∥2 Π(dγ|y′)
)1/2

dH(πy, πy′).

When ∥y∥ ≤ R we can upper bound
∫
Γ
∥γ∥2 Π(dγ|y) if

∫
Γ
∥γ∥2 Π(dγ) <∞. This

is a consequence of a lower bound of pn(y) in Proposition E.1, which we have
already seen in some variant of in the proof of Proposition 3.2. As mentioned
earlier, this condition is satisfied for many reasonable priors including Gaussian
priors. If also the assumption of Proposition (3.4) is satisfied, then the posterior
mean is locally Lipschitz with respect to y.

Example 3.3 (Spherical anomaly) For γ = (r, z) satisfying r, z > m
it is clear from (1.8) that

∥G(γ)∥2 ≤ g(0)2 + g(100)2 ≤ C(m)r6 ≤ C(m)∥γ∥6

Since π(γ) = 0 for all γ = (r, z) satisfying r, z < 1, we have
∫

Γ

∥G(γ)∥2π(γ) dγ ≤ C

∫

Γ

∥γ∥6π(γ) dγ,

which is finite using the same argument as in Example 3.2. Then Proposition
3.4 applies to the effect that y 7→ E[γ|y] is locally Lipschitz continuous.

Forward maps that arise in inverse problems for PDEs naturally satisfy a con-
dition like ∥G(γ)∥ ≤ C(1 + ∥γ∥) typically for a subset of Γ in which the prior
should concentrate. Well-posedness is considered in infinite-dimensional Hilbert
spaces in [DS17, Stu10] and here enters an additional benefit: well-posedness
guarentees robustness of the posterior distribution to finite-dimensional approx-
imations of the likelihood function.

To make a connection with the usual definition of admissible regularization
strategies, Definition 2.1, we consider the map y 7→ Eα[γ|y] = E[γ|y] indexed
by α = εn appearing in the likelihood function. For y that are not realizations
of (3.1), we may still use this map. Of admissible regularization strategies we
required three things: continuity, approximation of G−1 and consistency.

As we noted in the previous setting y 7→ E[γ|y] is often continuous. Moreover,
under the conditions of Proposition 3.2 and 3.3 and for a fixed γ0 in the support
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of the prior which gives rise to Y , E[γ|Y ] is a consistent estimator. We can
see this as a modification of (2.4) to allow random perturbations. Finally, the
condition that y 7→ E[γ|y] approximates G−1 in the sense of (2.3) follows in
much the same way as the consistency condition, in fact, it is easier. Under
the conditions of Proposition 3.2 and 3.3, equation (3.16) and continuity of G−1

implies for all δ > 0

Π(γ : ∥γ − γ0∥ > δ|G(γ0)) → 0,

as α → 0. Equation (3.22) implies
∫
Γ
∥γ − γ0∥πG(γ0)(γ) dγ → 0, as α → 0, and

hence by (3.21)
∥Eα[γ|G(γ0)]− γ0∥ → 0,

as α→ 0.

We conclude that with sufficient alteration of Definition 2.1 and under favorable
conditions of the inverse problem and prior, the Bayesian approach provides an
admissible regularization strategy in the form of the posterior mean. Further-
more, recent theoretical results state that the posterior mean is computable in
polynomial time using gradient-based MCMC [NW22]. We have also seen that
the Bayesian approach provides a MAP estimator, which can be seen as a gen-
eralized Tikhonov regularizer. These results strengthen the foundation of the
Bayesian approach. Adding the versatility of different point estimates in rela-
tion to uncertainty quantification, the attractiveness of the Bayesian approach
becomes clear.



Chapter 4

The Bayesian approach to inverse
problems in function spaces

This chapter details some of the key elements in the Bayesian approach to
inverse problems in infinite-dimensional function spaces, as is motivated in
[Stu10, DS17, Nic23]. This is the case where X or Y are infinite-dimensional
function spaces. The message is to discretize at the latest possible time for at
least three reasons: avoid a prior that is dependent on discretization, see also
[LSS09], gain mathematical insight and gain computational advantages of al-
gorithms that are well-defined in infinite dimensions. An example of valuable
mathematical insight is understanding the contribution of algorithmic param-
eters to the convergence of a method. It is also a first step in understanding
the computational influence of the dimension in discretizations, see [NW22].
Following [Stu10] several MCMC methods have been proposed in the infinite-
dimensional setting and show promise in high-dimensional discretizations, see for
example [CRSW13, CLM16]. In this sense, the infinite-dimensional framework is
also a step towards high-dimensional computational estimation and uncertainty
quantification.

The analysis and development of methods in the infinite-dimensional Bayesian
approach to inverse problems is still in its early stages, but it is a natural and
necessary progression that has seen its parallel in, for example, regularization
theory for inverse problems. One of the key points in this chapter is that the
choice of prior is a choice of regularization. As we shall see, it is great tool for
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giving weight at the subset of Γ, where ill-posed inverse problem are well-posed.
The hope is that this allows reliable recovery if γ0 is in fact in this subset. In
addition, a prior distribution if often chosen for its computational performance.
We shall return to this point in Paper B in Section 4.2.

The results and logic of the previous section generalize for the most part to
Banach spaces X and Y, see [Stu10, DS17, Nic23]. However, the analysis is
more technically demanding for a number of reasons. For example, there is no
Lebesgue measure. Instead, densities (Radon-Nikodym derivatives, see also Ap-
pendix E.1) with respect to a reference measure appear. These can be harder to
intuit with. Furthermore, properties of the prior distributions are harder to ver-
ify. Mostly Gaussian priors have been considered as these are well-understood,
but also ‘uniform’ priors [Vol13] and ‘Besov-type’ priors have been considered,
see [AW21, ADH21, DS17].

In this chapter, we consider a setting in which G−1 is not continuous on all of Y,
but instead satisfy an estimate of the form (1.1). As promised, the framework
we present permits consistency in this setting in a natural way with Gaussian
priors; this is largely due to [Vol13, MNP21]. We then continue by discussing the
application and extension of this framework to the setting of inclusion detection
for the QPAT problem initially discussed in Section 1.1.3 and the recovery of a
Robin coefficient initially discussed in Section 1.1.2.

4.1 Models and posterior consistency

Two convenient observation models for which the aforementioned framework is
well-developed are the white noise model in a small noise limit and the random
design regression model in a large data limit. The former is the most direct
generalization of the setting considered in Chapter 3. Indeed, it provides an
interpretation for ξ ∼ N(0, I) in a separable Hilbert space and consider also the
posterior as εn → 0. However, the latter is perhaps easier to understand, since
it contains elements of the finite-dimensional case. This is where we begin.

Model 1: Random design regression

Let Γ ⊂ X be a closed subset of a separable Banach space X . It inherits its
metric from X and is hence endowed with a Borel σ-algebra B(Γ). We let
Y = L2(V) for some bounded subset V of Rm, m ∈ N, endowed with a Borel
σ-algebra B(V). The random design regression model considers observations of
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the form
Yi = G(γ)(Xi) + εξi, i = 1, . . . , n, (4.1)

where ξi
i.i.d.∼ N(0, 1) independently of Xi that are uniformly distributed on V.

That is, Xi
i.i.d.∼ µ, where µ(B) = vol(B)/vol(V) and vol(B) =

∫
B
dx for all

B ∈ B(V). This means we observe G(γ) in random locations at V and with
added Gaussian noise. Unlike the observation setting of Chapter 3, the noise
level ε > 0 is fixed. However, the number of observations n is not. The random
vectors (Yi, Xi) are identically and independently distributed, and we denote
their distribution Pγ with corresponding density

pγ(y, x) ≡ dP γ

dν
(y, x) = C(ε) exp

(
− 1

2ε2
|G(γ)(x)− y|2

)
, y ∈ R, x ∈ V,

with respect to dν = dλ×dµ, where λ is the Lebesgue measure in R, see [Nic23].
Then the joint distribution of Dn = D := (Yi, Xi)

n
i=1 is the product measure

P γ × . . . × P γ on Dn := (R × V)n. We denote this product measure P γ
n and

note it has a density pγn with respect to νn,

pγn(d) := C exp

(
− 1

2ε2

n∑

i=1

|G(γ)(xi)− yi|2
)
, d = (yi, xi)

n
i=1.

We denote the data generating measure P γ
n in this way, since we wish to study

the posterior when Yi, i = 1, . . . , N , are generated by γ = γ0 and n → ∞.
Now assume that G : Γ → C(V) is continuous. Then (γ, x) 7→ G(γ)(x) is
jointly B(Γ) ⊗ B(V) − B(R) measurable by [AB06, Lemma 4.5.1]. Then, also
(γ, d) 7→ pγn(d) is jointly B(Γ)⊗ B(Dn)− B(R) measurable.

Given a prior distribution Π on Γ, we form then the product measure in Γ×Dn

Q(A×B) =

∫

A

P γ
n (B)Π(dγ) =

∫

A

∫

B

pγn(y) ν(dy)Π(dγ). (4.2)

By Tonelli’s theorem (4.2) is to say that Q has a density with respect to the
product measure ν × Π. We can think of Q as the joint distribution of (γ,D).
Consider the coordinate projection T : (γ, d) 7→ d. The push-forward measure
TQ is then the marginal distribution, the distribution of D = T (γ,D), and
Theorem 12 in [Pol02, Chapter 5] states that it has a density with respect to ν
as

pn(d) :=
dTQ

dν
(d) =

∫

Γ

pγn(d)Π(dγ).

This matches the finite-dimensional case (3.3) of the ‘marginal’. The theorem
also states that the joint density divided by the marginal,

πd(γ) =
pγn(d)

pn(d)
,
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defines a probability measure Π(·|d) on Γ by

Π(A|d) :=
∫

A

πd(γ)Π(dγ), A ∈ B(Γ),

that is the conditional probability distribution of γ givenD = d. As in Chapter 3
we will also use the notation Π(·|D) for ω 7→ Π(·|D(ω)). The essential condition
of this version of Bayes’ rule is that (γ, d) 7→ pγn(d) is jointly measurable. Note
that 0 ≤ |y − G(γ)(x)|2 < ∞ for all (y, x) ∈ R × V and γ ∈ Γ by assumption,
and hence the normalization constant satisfies

0 <

∫

Γ

e−
1
2

∑n
i=1 |yi−G(γ)(xi)|2 Π(dγ) ≤ C(ε)

for all (yi, xi)
n
i=1 ∈ Dn. It follows that A 7→ Π(A|d) is a measure for each

d ∈ (R × V)n and that ω 7→ Π(A|D(ω)) is measurable for every A ∈ B(Γ), as
in the finite-dimensional case. In particular, ω 7→ Π(A|D(ω)) is a [0, 1]-valued
random variable.

Convenience motivates this observation model. Indeed, a main feature is the
following equivalence result in [Nic23, Proposition 1.3.1]: suppose

sup
γ∈Γ′

∥G(γ)∥C(V) ≤ U

for some constant U > 0 and subset Γ′ ⊂ Γ. Then for all γ1, γ2 ∈ Γ′

C∥G(γ1)− G(γ2)∥L2(V) ≤ dH(pγ1 , pγ2) ≤ C∥G(γ1)− G(γ2)∥L2(V), (4.3)

where C = C(U, ε) and C = C(ε). This relates pγ to analytical aspects of G,
even though only point evaluations of G(γ) appear in (4.1). This fact replaces
the need for ideas in approximation theory and conditions on the empirical
distribution of xi in a model where Xi = xi are deterministic and fixed. One
could also consider a different distribution than uniform, which has a density πX
with respect to the Lebesgue measure. Then (4.3) would hold for a πX -weighted
L2(V)-norm instead, which could be more or less convenient than (4.3). We refer
to [Nic23] for further discussion on this model.

Model 2: White noise

Let Y be a separable Hilbert space with norm ∥ · ∥ and inner product ⟨·, ·⟩.
Again we let Γ ⊂ X denote a closed subset of a separable Banach space X . We
consider a white noise model with observations of the form

Y = G(γ) + εnξ, (4.4)
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where εn > 0 is the usual n-dependent noise level and ξ is a Gaussian random
element of distribution N(0, I). This notion requires an interpretation, which
we give in the following. We refer also to [Nic20, Section 7.4] for more details.
Let {eℓ}∞ℓ=1 be an orthonormal basis of Y and define

ξ :=

∞∑

ℓ=1

ξℓeℓ, ξℓ
i.i.d.∼ N(0, 1).

Define also the weighted Hilbert space Y−,

Y− :=

{
f =

∞∑

ℓ=1

fℓeℓ : ∥f∥2− :=

∞∑

ℓ=1

λ2ℓf
2
ℓ <∞

}
,

for λℓ > 0 and {λℓ}∞ℓ=1 ∈ ℓ2(N). Note ξ is a Y−-valued Gaussian random ele-
ment, in the usual sense of [GGvdV00], since it is the Karhunen-Loeve expansion
corresponding to a covariance operatorK : Y− → Y− defined byKeℓ = λ2ℓeℓ, see
Proposition 4.1 below. Note also that ξ converges in Y− almost surely. Indeed,
the deterministic series

∑∞
ℓ=1 fℓeℓ converges in Y− if and only if

∑∞
ℓ=1 λ

2
ℓf

2
ℓ <∞,

and since Tonelli’s theorem provides us with

E

[ ∞∑

ℓ=1

λ2ℓξ
2
ℓ

]
=

∞∑

k=1

λ2ℓE[ξ2ℓ ] =

∞∑

k=1

λ2ℓ <∞, (4.5)

we conclude Pr(
∑∞

k=1 λ
2
ℓξ

2
ℓ <∞) = 1. Also Y is a Y−-valued Gaussian random

element, since it is a translation of εnξ by an element in Y. We denote the
distributions of εnξ and Y in Y− by Pn and P γ

n respectively. The likelihood
function arises as the density of P γ

n with respect to Pn. This is a consequence
of the Cameron-Martin theorem in the Hilbert space Y. The theorem gives the
likelihood function as

pγn(Y ) :=
dP γ

n

dPn
(Y ) = exp

(
1

ε2n
⟨Y,G(γ)⟩ − 1

2ε2n
∥G(γ)∥2

)
,

here evaluated in Y , see [GN16][Proposition 6.1.5] and also [Nic20, Section 7.4].
For y ∈ Y, ⟨Y, y⟩ is the Gaussian random variable defined by

⟨Y, y⟩ := ⟨G(γ), y⟩+ εnW (y),

where W is Gaussian process on Y satisfying E[W (y)] = 0 and E[W (y)W (y′)] =
⟨y, y′⟩. This is process is also known as ‘white noise’ from where this observation
model derives its name, see [GN16][Example 2.1.11]. Since ⟨y,G(γ)⟩ is not well-
defined for all y ∈ Y− it is convenient instead to consider (γ, ω) 7→ pγn(Y (ω))
as a function on Γ × Ω. Indeed, as argued in [Nic20, Section 7.4], it is jointly
Borel measurable, when G : Γ → Y is continuous. Naturally, we then form the
product measure Q on Γ× Ω defined by

Q(A×B) =

∫

A

∫

B

pγn(Y (ω)) Pr(dω)Π(dγ).
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In this setting, Bayes’ rule, see [Pol02, Theorem 12] gives a posterior distribution
of γ given Y (ω)

Π(B|Y (ω)) =

∫
B
pγn(Y (ω))Π(dγ)∫

Γ
pγn(Y (ω))Π(dγ)

, B ∈ B(Γ).

Similar to the trick in Section 3.1, we can set pγn(Y (ω)) = 0, when the denomi-
nator is zero, so that Π(·|Y (ω)) is well-defined everywhere. Since Γ is a closed
subset of a separable Banach space, in particular a Polish space, there exists a
regular version of the posterior distribution, which we denote the same way, see
[GvdV17, Section 1.3].

4.1.1 Prior modelling

The posterior gives no mass to sets that are given no mass by the prior. For
this reason we can at least give an upper bound of the support of the posterior.
Making use of conditional stability estimates of the form (1.1) it then becomes
instrumental to control the regularity properties of samples from the prior. To
construct prior distributions on Γ with such control, we consider Gaussian pri-
ors and push-forwards here of. One of the simplest constructions of Gaussian
elements of function spaces is to consider random expansions, such as Karhunen-
Loeve expansions. These are considered in the separable Hilbert space setting
in [DS17, Section 2.4], which also considers uniform- and Besov-type priors.

For now we will consider priors on X = L2(U) of real-valued function defined on
U . We will take either a bounded Lipschitz domain U ⊂ Rk or a k-dimensional
torus U = Tk := Rk/Zk and take an orthonormal basis {ϕℓ}ℓ∈Zk . Then one
typically maps the prior through a smooth regularity-preserving map Φ : X → Γ,
see for example [NvdGW20]. Consider the joint distribution of the infinite
sequence of independent random variables {λℓξℓ}ℓ∈Zk for a positive sequence
λℓ ∈ ℓ2(Zk) and ξℓ

i.i.d.∼ N(0, 1). This distribution exists on (ℓ2(Zk), B(ℓ2(Zk)))
as the product measure ×ℓ∈ZkN(0, λ2ℓ), as shown in [DP06, Section 1.5] for the
indexing set N. The isomorphism from ℓ2(Zk) to L2(U) defined by,

F : {γ̃ℓ}ℓ∈Zk 7→
∑

ℓ∈Zk

γ̃ℓϕℓ

provides a random element u of L2(U) by

γ̃ := F ({λℓξℓ}ℓ∈Zk) =
∑

ℓ∈Zk

λℓξℓϕℓ, (4.6)

and the corresponding push-forward distribution is a Borel measure, since F :
ℓ2(Zk) → L2(U) is measurable. The following result states that this is indeed a
Gaussian random element of L2(U).
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Proposition 4.1 Let K : L2(U) → L2(U) be the positive, symmetric and
trace-class operator such that Kϕℓ = λ2ℓϕℓ. Then γ̃ in (4.6) is a Gaussian
random element of L2(U) with distribution N(0,K). Moreover, γ̃ converges in
L2(U) almost surely.

Proof. The first assertion follows as in [DPZ14, Proposition 2.18], and the
second assertion follows as in (4.5). □

Note this result holds for any separable Hilbert space as is considered in [DPZ14,
Proposition 2.18]. We have the following example of a Gaussian random element
for a popular choice of K.

Example 4.1 One could for example consider on Tk an orthonormal basis
{ϕℓ}ℓ∈Zk of trigonometric functions and K the covariance operator defined by
Kϕℓ = λ2ℓϕℓ for λℓ = (1+ |ℓ|2)−δ/2 with δ > k/2. By an integral test and change
of variables,

∑

ℓ∈Zk

λ2ℓ ≤ C

∫

Rk

(1 + |x|2)−δ dx = C

∫ ∞

0

(1 + r2)−δrk−1 dr <∞,

and hence λℓ ∈ ℓ2(Zk). We can think of K : L2(Tk) → L2(Tk) as the spectrally
defined operator (1 −∆)−δ. This covariance operator is often called a Matérn
covariance, see for example [RHL14]. It has the benefit that it provides samples
that are Sobolev regular. Indeed, by the characterization of Sobolev spaces defined
on Tk in [Tay11] and Tonelli’s theorem

E[∥γ̃∥2Hβ(Tk)] = E[
∑

ℓ∈Zk

(1 + |ℓ|2)βλ2ℓξ2ℓ ] =
∑

ℓ∈Zk

(1 + |ℓ|2)β−δ <∞

for β < δ − k/2. Hence, γ̃ converges in Hβ(Tk) a.s., i.e. Pr(γ̃ ∈ Hβ(Tk)) = 1.

To avoid confusion of regularity β with the Robin coefficient we use α as regu-
larity index in the summary of Paper C. We end this part with some remarks.

1. Associated with any Gaussian distribution is a Hilbert space called the re-
producing kernel Hilbert space (RKHS). It is determined by the covariance
operator and is essential in many properties of Gaussian distributions. In
the separable Hilbert space setting that L2(U) provides, the RKHS associ-
ated with a N(0,K) random element is nothing but K1/2(L2(U)), i.e. the
elements of the form

∑
ℓ∈Zk λℓγ̃ℓϕℓ for γ̃ℓ ∈ ℓ2(Zk), see [Hai09, Exercise

3.34]. In the case of Example 4.1 above, the RKHS is Hδ(Tk). We will not



46 The Bayesian approach to inverse problems in function spaces

pursue this topic further here, but refer instead to [GvdV17, GN16, Hai09]
for a relevant treatment in Gaussian measure theory.

2. A particularly useful result in Gaussian measure theory is the following. If
X ′ ⊂ X is a continuously embedded Banach space and X is endowed with
a Gaussian measure Π̃ such that Π̃(X ′) = 1, then the restriction of Π̃ to
X ′ is again a Gaussian measure, see [Hai09, Exercise 3.39]. For example,
the continuous Sobolev embedding Hβ(U) ⊂ C(U) for β > k/2 renders
distribution of γ̃ in Example 4.1 a Gaussian measure in C(U). Since this
embedding is also injective, the associated RKHS remains the same, see
[GvdV17, Lemma I.16-I.17].

3. The following argument in the proof of [Nic23, Theorem 2.2.2] makes the
regularity of γ̃ more quantitative in the general case: Fernique’s theorem
[GN16, 2.1.20] states that E[∥γ̃∥Hβ(U)] < U for some U > 0, and gives

Pr(∥γ̃∥Hβ(U) > M) = Pr(∥γ̃∥Hβ(U) − E[∥γ̃∥Hβ(U)] > M − E[∥γ̃∥Hβ(U)]),

≤ Pr(|γ̃ − E[∥γ̃∥Hβ(U)]| > M/2),

≤ e−CM2

, (4.7)

for M > 2E[∥γ̃∥Hβ(U)]. Here C is a constant only dependent on the
distribution of γ̃.

4. A different and perhaps more general viewpoint than that of random series
is the viewpoint of Gaussian processes. Here, the task is to pick a covari-
ance kernel that brings the right properties to the process. For Gaussian
processes with a continuous covariance kernel, there is also an associ-
ated Hilbert space called the (process-)RKHS. See for example [GvdV17,
Lemma 11.14] for a correspondence between the two notions. One can con-
struct an orthonormal basis of this Hilbert space by solving an eigenvalue
problem involving the covariance kernel, and then decompose the process
in this basis, see [AT07, Chapter 3]. One arrives at something of the form
of the right-hand side of (4.6). There are several ways to characterize the
almost sure regularity properties of the Gaussian process directly. Here
we refer to [AT07, Chapter 1] and [DS17, Section 2.5].

4.1.2 Posterior consistency

Definition 3.1 of posterior consistency remains the same, only with Y replaced
by D in the case of the random design regression model. Now, however, the
posterior is defined on Γ, a closed subset of a separable Banach space.
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In this infinite-dimensional setting, posterior consistency for inverse problems
was initially considered in the linear forward map case. Here we mention
[ALS13, FS12, KvdVvZ11, KLS16, Ray13], where all but the last benefits from
Gaussianity of the posterior arising from a Gaussian prior. For nonlinear for-
ward maps we mention [GN20, Kek22, MNP21] in the random design regression
model and [AN19, Nic20, AW21, ASK22] in the white noise model, see also
[Vol13] for posterior consistency for nonlinear inverse problems in a fixed design
regression model.

Early contributions in posterior consistency outside the context of inverse prob-
lems concern identifying the data-generating distribution P γ

n from noisy samples.
This is comparable to an inverse problem setting for the identity forward map,
and is in fact the first step in nonlinear inverse problems. For a general treat-
ment of posterior consistency and also examples of inconsistency, see [GvdV17,
Chapter 6-9]. In the following, we are concerned with consistency at an explicit
rate, i.e. posterior contraction, but discuss not the optimality of the rate. This
is the subject of, for example, [AN19].

In Section 3.2 we saw how, for Vn = V as in (3.11),

Π(Vn|Y ) → 1 in P γ0
n -probability, (4.8)

as n → ∞, implies posterior consistency by virtue of the continuity of G−1. In
contrast, in this section we consider conditional stability estimates. To this end
define the semimetric dG(γ1, γ2) := ∥G(γ1) − G(γ2)∥ on Γ and take Vn of the
form

Vn := {γ ∈ Γ : dG(γ, γ0) ≤ C0rn} ∩ {γ ∈ Γ : ∥γ∥A ≤M}, (4.9)

for some constant C0 > 0, some linear subspace A ⊂ X endowed with a norm
stronger than the norm in X , and a sequence

rn = n−a, with 0 < a < 1/2.

The case a = 1/2 is, in a certain sense, optimal and more than we can hope for,
see [GvdV17, Chapter 8]. The sets in (4.9) have this form for two reasons:

1. It is the contribution of [GGvdV00] to give general conditions for a poste-
rior contraction in distance dG . Then [MNP21] succeeded in applying this
to conditionally stable nonlinear inverse problems for Gaussian priors in
the manner we repeat here. Among these conditions, which we shall make
concrete below, is the condition that the prior gives most of its mass to
a totally bounded set with respect to dG . Convenient candidates for such
sets are of the form {γ ∈ Γ : ∥γ∥A ≤ M} for Sobolev or Hölder spaces
A, see [GN16, Section 4.3.7]. When the prior distribution puts most of its
mass on such sets, so does the posterior. It is therefore natural to intersect
with these sets in (4.9).
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2. This combines well with the second reason, which is that the conditional
stability estimate of the form (1.1) implies

Vn ⊂ {γ ∈ Γ : ∥γ − γ0∥X ≤ f(C0rn)} =: Un. (4.10)

This implies posterior consistency in γ0 at rate f(C0rn), if (4.8) holds.

The conditions for a result like (4.8) can be formulated as follows, where we
recall the notion of covering numbers N in Appendix E.1.

Condition A Let G : Γ → Y be a forward map producing noisy observations
as in Model 1 or Model 2, and denote Π, the prior distribution. Suppose the
following:

A.1 The prior gives enough mass to contracting neighborhoods BG(γ0, rn) of
γ0

Π(BG(γ0, rn)) ≥ e−C1nr
2
n , C1 > 0,

where for Model i we let

BG(γ0, rn) :=

{
{γ : dG(γ, γ0) ≤ rn} ∩ {γ : ∥G(γ)∥C(V) ≤ U}, i = 1,

{γ : dG(γ, γ0) ≤ rn}, i = 2,

for some U > 0. In the case of Model 1, we suppose ∥G(γ0)∥C(V) ≤ U in
addition.

A.2 There exist sets An that are almost the support of Π in the sense that

Π(Γ \An) ≤ e−C2nr
2
n , C2 > C1 + 4,

A.3 and that there exists a constant m0 > 0 such that

logN(An, dG ,m0rn) ≤ C3nr
2
n, C3 > 0.

In the case of Model 1, we suppose supγ∈An
∥G(γ)∥C(V) ≤ U in addition.

The conditions should hold for all n large enough.

Note Condition A enter in [Nic23, Theorem 1.3.2] in the setting of Model 1. A
slight modification of this appear for Model 2 in for example [Nic20, Abr20].
There, additional motivation can be found for the conditions. The extra condi-
tions in the case of Model 2 originates from (4.3), since it allows exchanging dG
with dH .
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The aforementioned modification pertains to the third condition, the metric
entropy condition. This condition implies the existence of certain measurable
functions that takes data (either in Dn or Y depending on the model) and
outputs either 0 or 1. These functions, also known as statistical tests, can
distinguish to a high degree between data arising from γ = γ0, in which case
the test outputs 0, and γ that are in An and sufficiently dG-distant from γ0, in
which case it maps to 1. These tests play a critical role in upper bounding the
numerator of the posterior ratio, which, as we saw in the proof of Proposition
3.2, is a key step. While Condition A.3 implies the existence of such tests, it is
not always necessary. There are some examples of that in [GGvdV00]. However,
it is sufficient for the cases we consider here.

The difficulty in finding sets An that satisfy Condition A.3 is only that they
should satisfy A.2 at the same time, which is clearly an opposing condition;
the better cover An provides of the support of the prior, the larger its covering
number is.

The small ball condition A.1 we have already seen in (3.17). Similar to its
role in the proof of Proposition 3.2, it provides a lower bound of the posterior
denominator. The proof of this relies on tools in Gaussian measure theory,
although we mention it has been generalized to Laplace-type priors in [AW21,
ADH21] corresponding to when ξℓ are distributed according to a Laplace-type
distribution in (4.6).

Under these conditions an analog of Proposition 3.2 is as follows:

Theorem 4.2 Let Π(·|Z) be a sequence of posterior distributions, where we
write Z = D and Z = Y for Model 1 and Model 2, respectively. Let γ0 ∈ Γ, G
and the prior distributions Π = Πn satisfy Condition A for some rate rn. Then,
there exists C0 = C0(C2, C3,m0, ε) such that

Π({γ : ∥G(γ)− G(γ0)∥ ≤ C0rn} ∩An|Z) → 1 in P γ0
n -probability,

with rate e−bnr2n for all 0 < b < C2 − C1 − 4 as n → ∞. In particular, if
An ⊂ {γ : ∥γ∥A ≤M}, and (4.10) holds, then Π(·|Z) is consistent in γ0 at rate
f(C0rn).

Proof. The case of Model 1 is considered in Theorem 1.3.2 in [Nic23]. For
Model 2, the covering argument that leads to tests of favorable properties is
standard and included in [AKRT23, Appendix B], see also [GvdV17, Appendix
D]. Then Theorem 28 in [Nic20] and the modification in [Nic23, Theorem 1.3.2]
of intersection with An give the claim. The final claim follows from (4.10) and
Definition 3.1. Here, we mean that C0 depends on ε only in the case that we
consider Model 1. □
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4.1.3 Rescaling the prior

One apparent choice for An is An = {γ : ∥γ∥A ≤ M} as we have already
mentioned. In this case either Π(An) = 1 or the prior cannot be fixed with
respect to n to satisfy Condition A.2. In fact, in the Gaussian case it must
depend on n for this choice of An. Let for example Γ = L2(U) and A = Hβ(U)
for some β > 0 and Π̃ be some prior such that Π̃(Hβ(U)) = 1. Example 4.1
provides an example of such a prior. Then by (4.7) for γ̃ ∼ Π̃,

Pr(∥γ̃∥A > M) ≤ e−CM2

,

which is clearly not enough for Condition A.2. Instead, we define a prior that
does depend on the observation setting through n. Indeed, take Π as the distri-
bution of

γ = na−1/2γ̃, γ̃ ∼ Π̃.

Then

Π(Γ \An) = Pr(∥na−1/2γ̃∥A > M),

= Pr(∥γ̃∥A > Mn1/2−a),

= e−CM2n1−2a

= e−C(M)nr2n ,

which is sufficient for Condition A.2. There is nothing strange in this rescal-
ing. In fact, we have seen this type of condition in the discussion after Ex-
ample 2.1. For X = Rk and the probability density of Π̃ of the form π̃(γ̃) ∝
exp

(
− 1

2 γ̃
TC−1γ̃

)
for a covariance matrix C : Rk → Rk, we can write the re-

sulting posterior probability density function under the rescaling as

πY (γ̃) ∝ exp

(
− 1

2ε2n
∥G(γ̃)− Y ∥2 − 1

2n2a−1
γ̃C−1γ̃

)
,

∝ exp

(
∥G(γ̃)− Y ∥2 − ε2n

n2a−1
γ̃C−1γ̃

)
,

hence for MAP estimation α(εn) = ε2n/n
2a−1 ∝ n−2a is the regularization pa-

rameter. Clearly α(εn) → 0 as n → ∞ and ε2n/α = n2a−1, which converges to
zero as n → ∞. In this sense the rescaling enforces the prior to go slower to
zero as n→ ∞.

4.1.4 Remarks on the infinite-dimensional setting

We conclude this part of the chapter with remarks on the infinite-dimensional
setting before entering in a summary and discussion of Paper B and C. These
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remarks concern the generalization of the concepts in posterior computation and
well-posedness considered in Chapter 3.

1. To recap, we have already seen one natural choice of Π, A, An and G that
gives rise to posterior consistency. This is the choice of a rescaled Gaussian
prior as Π with support in A = Hβ(U) for some t > 0, An = {γ : ∥γ∥A ≤
M} and a Hölder continuous and conditionally stable G defined on A. In
Paper B we shall see a different choice arising for push-forward priors.

2. Upon concluding posterior consistency, a common corollary is convergence
in probability of the posterior mean, see [Nic23, Theorem 2.3.2]. Here, the
posterior mean is defined in the sense of a Bochner integral

E[γ|Z] =
∫

Γ

γΠ(dγ|Z)

given that γ 7→ γ is Bochner integrable. Also in this setting a sum of
samples γi of the posterior distribution γ̄N = 1

N

∑N
i=1 γi converges in the

mean square sense to E[γ|Z] if γ 7→ γ is also square-integrable in the
Bochner sense, see [KS23]. We refer to Appendix E.2.2 for a definition
and a measurability argument of ω 7→ E[γ|Z(ω)].

3. The MCMC method pCN is well-defined for a posterior distribution in a
separable Hilbert space, see [DS17, Section 5]. However, it is vulnerable to
correlated samples and yields slow exploration of the posterior, when the
discretization is high-dimensional [CLM16]. Remedies, see [CLM16], take
as starting point the Langevin-type algorithms that are also considered in
[NW22] and for which posterior mean estimation is guaranteed in a time
polynomially depending on the discretization size.

4. Well-posedness of the posterior as in Section 3.4 is considered in [DS17].
However, in the case of the white noise model, note [DS17, Theorem 16]
only provides well-posedness of the posterior with respect to y ∈ Y.

We will now consider the application of Theorem 4.2 in the inclusion detection
and inverse Robin problem settings.

4.2 Paper B: Consistent Bayesian reconstruction
of inclusions

In Paper B, we consider a Bayesian approach to the inverse problem of inclu-
sion detection for conditionally well-posed inverse problems with observations
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in the white noise model, i.e. Model 2. We give a Bayesian reconstruction
algorithm (the posterior mean), which is provably consistent. The approach
takes advantage of the fact that indicator functions of regular sets form a subset
of Γ = L2

Λ(O) that has lower ‘complexity’ than arbitrary bounded subsets of
L2
Λ(O). Here, we mean complexity in the sense of covering numbers as in Condi-

tion A.3. Using Gaussian or Laplace-type priors this parameter set is typically
a closed Sobolev or Hölder norm ball, see [Nic23, Theorem 2.2.2], [MNP21] or
[AW21], but such priors do not give sufficient mass to discontinuous parameters
to conclude consistency.

We address this by parametrizing the set of discontinuous parameters from sets
of functions that are sufficiently smooth. More precisely, we aim to recover a
parameter γ in sets of the form Φ(Θ) for some linear space Θ and a continuous
map Φ : Θ → L2

Λ(D) that we call the parametrization, see Figure 4.1. If this
map is Hölder continuous, then we can transfer the metric entropy condition,
Condition A.3, from subsets of L2

Λ(D) to subsets of Θ and see a convergence
rate that reflects this reduction. To obtain posterior consistency with an explicit
rate, we aim to construct a setting that satisfies Condition A, since Theorem
4.2 provides consistency when estimates like (1.1) exist.

4.2.1 Main results

Initially, we consider the general case Θ = Hβ(U), where U is either the k-
dimensional torus or a bounded Lipschitz domain U ⊂ Rk, k ≥ 1 and β >
k/2. We include here the torus in our considerations, since it is a numerically
convenient setting. The following three conditions, which are given in Paper
B, characterizes a setting in which posterior consistency is guaranteed.

Condition 1 For any θi satisfying ∥θi∥Hβ(U) ≤M for some M > 0, i = 1, 2,
let

∥Φ(θ1)− Φ(θ2)∥L2(O) ≤ CΦ∥θ1 − θ2∥ζL∞(U)

for some constant CΦ(M) > 0 and 0 < ζ <∞.

Condition 2 For any γi of the form γi = Φ(θi) with ∥θi∥Hβ(U) ≤ M for
some M > 0, i = 1, 2, let

∥G(γ1)− G(γ2)∥ ≤ CG∥γ1 − γ2∥ηL2(O)

for some constants CG(M) > 0 and 0 < η <∞. In addition, let

∥γ1 − γ2∥L2(O) ≤ f(∥G(γ1)− G(γ2)∥), (4.11)

for some modulus of continuity f : R → R, which is continuous at zero with
f(0) = 0.
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Θ L2
Λ

Φ(Θ)

γ

θ
Φ

Y

G

Figure 4.1: Figure 1 in [AKRT23]. The setup of the parametrization Φ : Θ →
L2
Λ(O) and forward map G : L2

Λ(O) → Y

Condition 3 Let Π′
θ be a centred Gaussian probability measure on Hβ(U),

β > dim(U)/2, with Π′
θ(H

β(U)) = 1. Let the RKHS (H, ∥ · ∥H) of Π′
θ be con-

tinuously embedded into Hδ(U) for some δ > β. Then let Πθ be the distribution
of

θ = na−
1
2 θ′, θ′ ∼ Π′

θ (4.12)

for a as in Condition A and let Π = ΦΠθ.

Here, (4.11) plays the role of the conditional stability estimate of (1.1), and we
already note that (1.7), i.e. the QPAT problem, satisfies this condition for any
Φ mapping into L2

Λ(O). Note we have considered a prior like Π′
θ in Example 4.1

and argued why the rescaling (4.12) is natural in Section 4.1.3. In this setting,
we have the following general result, which makes use of key ideas found in the
proof of Theorem 2.2.2. of [Nic23] to prove that Condition A is satisfied. See
Section 4.2.3 for a discussion on how the theorem below differs.

Theorem 4.3 (Theorem 3.1 in [AKRT23]) Suppose that the Condi-
tion 1, 2 and 3 are satisfied for β > k/2, and γ0 ∈ Φ(H). Let Π(·|Y ) be the
corresponding sequence of posterior distributions arising for the model (4.4).
Then there exists C0 > 0 such that

Π(∥γ − γ0∥L2(O) ≤ f(C0rn)|Y ) → 1 in P γ0
n -probability,

where rn = n−a with

a =
ηζδ

2ηζδ + k
. (4.13)

The corresponding posterior mean E[γ|Y ] in L2(D) satisfies for some constant
C > 0 large enough

∥E[γ|Y ]− γ0∥L2(O) → 0 in P γ0
n -probability

with rate f(Crn) as n→ ∞.

In Paper B we apply this to two parametrizations used in inclusion detection.
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Case 1: The star-shaped set parametrization

First we consider star-shaped inclusions in the plane. More precisely, we consider
Θ = Hβ(T), i.e. U = T and k = 1, where T is the one-dimensional torus and
β > 3/2. We then define the parametrization

Φstar(θ) := κ11A(θ) + κ2. (4.14)

with Λ−1 ≤ κ1, κ2 ≤ Λ/2 and where A(θ) is the star-shaped set characterized
by

∂A(θ) = x+ {exp(θ(ϑ))v(ϑ), 0 ≤ ϑ ≤ 2π}, v(ϑ) := (cosϑ, sinϑ).

for some fixed point x ∈ O, which we assume to be given. We can think of
A(θ) as a deformed disk centered in x. Since Φ should map into L2

Λ(O), we
implicitly always consider Φ = Φstar as the restriction to O of the right-hand
side in (4.14).

For certain inverse problems, which allows the unique identification of elements
in the range of Φstar with stability as in Condition 2, we then have the following
result.

Theorem 4.4 (Theorem 4.1 in [AKRT23]) Suppose that Condition 2
is satisfied for β > 3/2 and Φ = Φstar. Let γ0 = Φstar(θ0) for θ0 ∈ H. Let
Π(·|Y ) be the corresponding sequence of posterior distributions arising for the
model (4.4) and prior Π = ΦstarΠθ satisfying Condition 3. Then there exists a
constant C > 0 such that

∥E[γ|Y ]− γ0∥L2(O) → 0 in P γ0
n -probability

with rate f(Cn−a) as n→ ∞, where

a =
ηδ

2ηδ + 2
. (4.15)

The proof is a straight-forward application of Theorem 4.3, once one has shown
Φstar satisfies Condition 1 for ζ = 1/2. Note by (4.13) that (4.15) corresponds to
the rate of detecting γ0 in H directly using the identity map I : Hβ(U) → Hβ(O)
for U = O. The difference is of course that we detect something that is piecewise
constant with the star-shaped set parametrization.

Case 2: The level set parametrization

Next, we consider inclusions arising from level sets of continuous functions θ :
U → R defined on U = O, i.e. k = dim(O). One possibility is the following
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parametrization:
Φlevel,ϵ(θ) = κ1Hϵ(θ) + κ2,

where Hϵ : R → R is a continuous approximation of the usual Heaviside function

Hϵ(z) =





0 if z < −ϵ,
1
2ϵz +

1
2 if − ϵ ≤ z < ϵ,

1 if ϵ ≤ z,

for some ϵ > 0. With somewhat loose notation we mean by Hϵ(θ) the function
that satisfies Hϵ(θ)(x) = Hϵ(θ(x)). For ϵ = 0, Hϵ coincides with the usual
Heaviside function and in this case we denote Φlevel,0 = Φlevel. To maintain nice
properties of Φlevel we restrict it to functions in the subset

Hβ
⋄ (O) := Hβ(O) ∩ T,

where β > 2 + k/2 and T := {θ ∈ C2(O) : ∃x ∈ O, θ(x) = 0, |(∇θ)(x)| = 0}c.
Note that Hβ(O) embeds continuously into C2(O) by a Sobolev embedding,
see for example [Gri85, Theorem 1.4.4.1]. T is the set of functions that do not
attain critical values on their zero level set. This restriction will be essential in
studying the approximation of Φlevel,ϵ to Φlevel.

However, the level set parametrization Φlevel does not satisfy Condition 1, see
Example 3 in Paper B. The intuition is that if θ flattens out near the set
{x : θ(x) = 0}, then the level set can change rapidly. This is why we make use
of a continuous modification Hϵ of H. Then the approximation properties of
Φlevel,ϵ to Φlevel allows a consistent reconstruction of γ0 = Φlevel(θ0) in a small
noise limit, if ϵ is chosen to dependent on n in the right way.

Theorem 4.5 (Theorem 4.6 in [AKRT23]) Suppose that Condition 2
is satisfied for θi ∈ Hβ

⋄ (O) for f(x) = Cxν , ν > 0, and for Φ = Φlevel,n−l for a
well-chosen l > 0, and where C and CG are independent of n. Let γ0 = Φlevel(θ0)

for θ0 ∈ H ∩ Hβ
⋄ (O). Let Π(·|Y ) be the corresponding sequence of posterior

distributions arising for the model (4.4) and prior Π = Φlevel,n−kΠθ as above.
Then,

∥E[γ|Y ]− γ0∥L2(O) → 0 in P γ0
n -probability

with rate n−aν as n→ ∞ for

a =
ηδ

2kνη + 2ηδ + k
.

See [AKRT23, Section 5] for a result that permits the use of the QPAT problem
in these results. This is also the problem we consider as a test case of the
Bayesian approach for inclusion detection. In Paper B, we have generalized
Theorem 4.4 and Theorem 4.5 to include the case of multiple inclusions, which
is the numerical case we consider.
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Figure 4.2: Figure 2 in [AKRT23] Simulated absorption γ0 (left image) and
diffusion µ (right image) distributions.

4.2.2 Numerical results

In Paper B, we test the Bayesian approach for the two priors arising from
Φstar and Φlevel,ϵ generalized to two inclusions. The following is implemented
in Matlab and available at GitHub [Ras23]. As an approximation to the
continuous observation model (4.4), for the numerical experiments we consider
observing

Yk = ⟨G(γ), ek⟩L2(O) + εξk, k = 1, . . . , Nd (4.16)

for Nd = 351. This observation model approximates (4.4) as Nd → ∞ in a
suitable sense, see [AN19]. As the ground truth we consider two inclusions
depicted in Figure 4.2 of the form

γ0 = κ1 + κ21A1 + κ31A2 ,

where (κ1, κ2, κ3) = (0.1, 0.4, 0.2). The corresponding observation, the projec-
tion of H = G(γ) onto {ek}Nd

k=1, next to a noise realization can be seen in Figure
4.3. To approximate a prior satisfying Condition 3 for Φ = Φstar, we consider
Π as the distribution of

γ = Φstar(θ1, θ2) := κ1 + κ21A(x1,θ1) + κ31A(x2,θ2),

for x1 = (0.37,−0.43), x2 = (−0.44, 0.36), and

θi = θ̄ +
∑

|ℓ|≤12

gℓ,iwℓϕℓ, gℓ,1, gℓ,2
i.i.d.∼ N(0, 1),

for i = 1, 2. Here {ϕℓ}ℓ∈Z is the usual real orthonormal basis of trigonometric
functions on L2(T), θ̄ = −2 and wℓ = q(τ2 + |ℓ|2)−δ/2 with δ = 5/2, τ =
4. We handpick q > 0 for each noise level instead of the rescaling (4.12).
This is comparable to handpicking the regularization parameter in regularization
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Figure 4.3: Figure 2 in [AKRT23] Projection of absorbed optical energy den-
sity H corresponding to (µ, γ0) (left image) and of the white noise
expansion (right image) projected onto the span of {ek}Nd

k=1 and
scaled to 4% relative noise compared to H in L2(O)-norm.

strategies, see (3.18). In the case of the level set parametrization, we choose Π
as the distribution of

γ = Φϵ(θ) =

3∑

i=1

κi[Hϵ(θ − ci−1)−Hϵ(θ − ci)]

restricted to O, with (c0, c1, c2, c3) = (−∞,−1, 1,∞) and

θ =
∑

|ℓ1|≤4,|ℓ2|≤4

gℓwℓϕℓ, gℓ
i.i.d.∼ N(0, 1).

Here {ϕℓ}ℓ∈Z2 is the usual real orthonormal basis of trigonometric functions on
L2([−1.1, 1.1]2) and wℓ = q(τ2 + |ℓ|2)−δ/2 with δ = 1.2 and τ = 10. We choose
q > 0 and ϵ > 0 for each noise level. Note also that we set Hϵ(θ −∞) = 0 and
Hϵ(θ +∞) = 1.

We use MCMC methods to approximate the posterior mean for the two choices
of prior distributions and refer to [AKRT23] for more details. In Figure 4.4 we
see the posterior mean estimates arising for the star-shaped set parametrization
and data realizations of different noise levels. Note the posterior mean converges
to the ground truth as the noise level goes to zero. Since the posterior means are
based on averages of piecewise constant functions, the lack of smooth features
in the mean indicates a small posterior variance. This is what we see in Figure
4.4. We interpret this as a consequence of the fast contraction rate provided by
conditional stability estimate of the QPAT problem, see [AKRT23, Lemma 5.2],
and the star-shaped set parametrization. In Figure 4.5, we see the posterior
mean arising for the smoothened level set parametrization and different noise
levels. Also here, we see some convergence towards the ground truth. Note,
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Figure 4.4: Figure 5 in [AKRT23]. Posterior mean estimates of the absorption
parameter using the star-shaped set parametrization in different
noise regimes. The dotted red line indicates the location of γ0.

in this case, the smoothness of the mean is also provided by the smoothened
level set parametrization. In Paper B, we note that the convergence is not
exact, and it does not match the theoretical rate either. This is also too much
to expect from the projected observation (4.16), since it does not match the
idealized white noise model (4.4).

4.2.3 Discussion and outlook

Theorem 4.4 and 4.5 give theoretical foundation to two Bayesian inclusion de-
tection methods used in literature, see the references in [AKRT23]. Moreover,
the results quantifies the convergence in form of a convergence rate that depends
on the dimension k of U , the Hölder exponent of G ◦ Φ and the (conditional)
modulus of continuity f of G−1.

Theorem 2.2.2 in [Nic23] differs from Theorem 4.3 in that it considers a single
(conditional) Lipschitz map G. In our case, G ◦Φ is Hölder continuous. Further-
more, we can drop an assumption on the uniform boundedness of G ◦ Φ, which
plays a role in [Nic23] in the equivalence (4.3) for the random design regression
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Figure 4.5: Figure 6 in [AKRT23]. Posterior mean estimates of the absorption
parameter using the level set parametrization in different noise
regimes. The dotted red line indicates the location of γ0.

model. Finally, compared to Theorem 2.2.3 of [Nic23] we consider conditional
continuity only of G−1 and not of (G ◦Φ)−1. The novelty of Paper B is to show
that this extension has relevance in the form of Φlevel,ϵ and Φstar.

There are several new directions that this research could continue in. Theorem
4.4 and 4.5 and their generalizations to multiple inclusions hold for any forward
map satisfying Condition 2. Examples of compatible inverse problems include
the Calderón problem in two dimensions, where [CFR10] provides a stability
estimate that is permitted for the star-shaped set parametrization, see also
[AKRT23, Section 7]. In three dimensions and higher, conditional stability for
inclusion detection in the context of the Calderón problem has been considered
and shown to be logarithmic at best [ADC05]. The generalization to three
dimensions and more complex phantoms is left for future work.

In Paper B, we report that the level set parametrization yields sampling diag-
nostics that are under performing compared to the star shaped set parametriza-
tion. An important direction in the numerical optimization of this approach is
to consider gradient based sampling methods. It is also possible that the star-
shaped set method could benefit from a layer potential approach to solving the
governing PDE for precise computations. This is left for future work.
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4.3 Paper C: A Bayesian approach to inverse
Robin problems

In Paper C, we consider the Bayesian approach for two nonlinear inverse Robin
problems in the random design regression model, i.e. Model 1. We are already
familiar with one of them; this is the problem of inverting (1.4). The other is
a similar problem arising in a Stokes PDE system. Solving the latter problem
plays an important role in initializing large-scale ice sheet models used for sea
level predictions, see [AG10]. Further, addressing this problem in a Bayesian
framework that allows uncertainty quantification should be of great interest, as
it would ultimately lead to sea level predictions with ‘error bars’.

In this paper, we aim to show convergence of the posterior mean as the number
of observations increase. We will achieve this through posterior consistency in
a way that will justify and motivate the choice of prior. Our approach will
be to make use of Theorem 4.2. We will restrict ourselves to the prototypical
example of the scalar Laplace equation (1.3) and the forward map (1.4), since
it is the simpler case. Although it is not straightforward to generalize this to
other inverse Robin problems, as we will discuss in Section 4.3.3, we will use
these results to motivate the Bayesian approach for inverse Robin problems in
general. Indeed, it is not uncommon that results and approaches for the inverse
Robin problem for the scalar Laplace equation has been used to motivate an
approach for the inverse Robin problem for the Stokes model, see [AG10]. In
Paper C, we show that the posterior distribution is well-defined for the Stokes
model and thereby show that the Bayesian methodology is at least admissible.

We begin with some assumptions that specifies the setting. These are mostly
needed to obtain conditional stability estimates of the form (1.1), as is needed for
the effective application of Theorem 4.2. Let O ⊂ R2 and consider in addition
the following assumptions.

Assumption 1 (Domain) We assume Mγ = (0, 1) × {0} and define the
set Mγ,ϵ := (ϵ, 1− ϵ)×{0} for some 0 < ϵ < 1. Furthermore, we assume ∂O is
a simple closed curve decomposed into four subarcs oriented as Mγ , M1

0, M,
M2

0, and where M0 = M1
0 ∪M2

0.

We assume Mγ = (0, 1) × {0}, since we want to avoid defining Gaussian pro-
cesses on manifolds. Occasionally, we identify Mγ with (0, 1) ⊂ R. The fol-
lowing positivity condition of h might be avoided as in [ADPR03] and is only
needed for the second part of Theorem 4.7 below.
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Assumption 2 We assume that h is not identical to a constant and that
h ∈ H1 := {h ∈ H1/2(M) : h ≥ 0, ∥h∥H1/2(M) ≤Mh} for some Mh > 0.

Conditional stability

Under these assumptions the story of Paper C is that different a priori insights
lead to different convergence properties if we use the right prior distribution.
We consider two different a priori insights: first, we consider a β(γ) that has
Sobolev regularity. This the case if γ ∈ Γ = H1(Mγ). Second, we consider
β = β(γ) that are real analytic on Mγ . We make this concrete by defining the
following subsets of Γ defined for some M > 0:

A1(M) := {γ ∈ H1(Mγ) : ∥γ∥H1(Mγ) ≤M},
A2(M) := {γ ∈ C∞(Mγ) : ∥γ∥C(Mγ)

≤M, sup
x∈Mγ

|(∂kβ)(x)| ≤M(k!)Mk}.

Note that β is real analytic on Mγ if and only if β ∈ C∞(Mγ) with

sup
x∈Mγ

|(∂kβ)(x)| ≤Mβ(k!)M
k
β

for some Mβ > 0, see [KP02, Chapter 1]. We can think of A2(M) as functions
that are ‘uniformly’ analytic with the added condition ∥γ∥C(Mγ)

≤ M to en-
sure γ 7→ β(γ) is (locally) Lipschitz continuous in both directions. Under the
condition that γ ∈ Aj(M), j = 1, 2, we have the following stability estimates.

Lemma 4.6 (Conditional stability, Lemma 2.4 in [KRS23])
Let O satisfy Assumption 1 and h satisfy Assumption 2.

(i) If γi ∈ A1(M), i = 1, 2, then there exists constants K1 > 0 and 0 < σ1 < 1
such that

∥γ1 − γ2∥L∞(Mγ,ϵ) ≤ K1| log(∥G(γ1)− G(γ2)∥L2(M))|−σ1 ,

where K1 and σ1 depend only on O, h, mβ, M and ϵ.

(ii) If γi ∈ A2(M), i = 1, 2, then there exists constants K2 > 0 and 0 < σ2 < 1
such that

∥γ1 − γ2∥L2(Mγ,ϵ) ≤ K2∥G(γ1)− G(γ2)∥σ2

L2(M),

where K2 and σ2 depend O, Mh, M and ϵ.
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The first estimate is of the form (1.1) for A = H1(Mγ) and is due to [ADPR03].
We can also think of the second estimate is being of the form (1.1) for A =
‘real analytic functions on Mγ ’. This estimate is a modified version of an esti-
mate in [HY15, Theorem 3.1].

Prior distributions

Our next goal is to design prior distributions in Γ that target these two stability
regimes. To this end, we consider the [−π, π)-torus T and a real orthonormal
basis {ϕℓ}ℓ∈Z of L2(T) consisting of ϕℓ(x) = 1/

√
π cos(ℓx) for ℓ > 0, ϕℓ(x) =

1/
√
π sin(ℓx) for ℓ < 0 and ϕ0 = 1/

√
2π. Then the random series

γ̃1 =
∑

ℓ∈Z
gℓ(1 + ℓ2)−δ/2ϕℓ, gℓ

i.i.d.∼ N(0, 1), (4.17)

γ̃2 =
∑

ℓ∈Z
gℓe

− δ
2 ℓ

2

ϕℓ, gℓ
i.i.d.∼ N(0, 1), (4.18)

define Gaussian priors in L2(T) for the right choice of δ > 0. We have already
seen this form of γ̃1 before in Example 4.1 and know it as a Gaussian prior for the
Matérn covariance. Then γ̃1|Mγ

∈ Hα(Mγ) almost surely for all α < δ − 1/2.
Similarly, γ̃2|Mγ is almost surely an element of the space

Aα(Mγ) := {f = g|Mγ
: g ∈ Aα(T)},

with
Aα(T) := {f ∈ L2(T) : ∥f∥2α,T :=

∑

ℓ∈Z
|fℓ|2eαℓ

2

<∞},

for α < δ, where we denote fℓ := ⟨f, ϕℓ⟩L2(T). In Paper C, we establish a rela-
tionship between norm balls in Aδ(Mγ) and the set A2(M). This relationship,
as part of the lore in Fourier analysis, is well-known as a Paley-Wiener theorem.
This allows the use of Lemma 4.6 (ii) in consistency proofs.

We then let Π1 and Π2 be the rescaled Gaussian distributions defined by

Π1 := L
(
n−1/(4δ+2)γ̃1

)
,

Π2 := L
(
log(n)−1γ̃2

)
,

which in the first case is simply the rescaling considered in Section 4.1.3 for
a = δ/(2δ + 1).
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4.3.1 Main results

In Paper C, we prove the following theorem as the main result.

Theorem 4.7 (Theorem 3.1 in [KRS23]) Consider the posterior dis-
tribution Πj( · |Dn) arising from observations (4.1) in the model (1.4) and prior
distributions Πj, j = 1, 2, which are dependent on δ > 0.

(i) If γ0 ∈ Hδ(Mγ), δ > 3/2, then

∥E1[γ|Dn]− γ0∥L∞(Mγ,ϵ) → 0 in Pn
γ0

-probability

with rate | log(Cn−δ/(2δ+1))|−σ for some 0 < σ < 1 and constant C > 0
as n→ ∞.

(ii) If γ0 ∈ Aδ(Mγ), δ > 0, then

∥E2[γ|Dn]− γ0∥L2(Mγ,ϵ) → 0 in Pn
γ0

-probability

with rate n−σ/2 log(n)σ for some 0 < σ < 1 as n→ ∞.

Note the logarithmic convergence rate of (i) above matches the logarithmic
stability of Lemma 4.6 (i), whereas the algebraic rate of (ii) corresponds to
the Hölder estimate of Lemma 4.6 (ii). Both parts of Theorem 4.7 are based
on Theorem 4.2 and therefore on satisfying Condition A. The first result is
an application of a more general result in [MNP21] and [Nic23, Theorem 2.3.2].
They give conditions for the forward map and choice of prior similar to Condition
2 and 3 of Paper B so that Condition A is satisfied. The second result requires
new results, which we provide, see [KRS23, Lemma C.4]. These are based on
[Nic23, Theorem 2.2.2], but for the rate n−1/2 up to a log-factor.

4.3.2 Numerical results

To test the Bayesian approach, we have the following preliminary numerical
results. Note these are not included in the current version of Paper C. We
consider O = (0, 1) × (0, 0.2) with M0 = {0} × (0, 0.2) ∪ {1} × (0, 0.2) and
M = (0, 1) × {0.2}. Here, we consider a prescribed Neumann condition h =
10(sin(12πx) + 1). Given γ ∈ L∞(Mγ), we approximate u|M using Fenics
[LL16]. We consider two triangular finite element meshes: a fine mesh consisting
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Figure 4.6: Ground truth β(γ0) together with the posterior mean and 103

posterior samples from a posterior based on the truncated Matérn
prior.

of 3.2 · 105 elements, and a coarse mesh consisting 4.5 · 103 elements. We aim at
recovering β(γ0) = mβ + eγ0 for

γ0 =
∑

|ℓ|≤2

γ0,ℓϕ̃ℓ,

for mβ = 0, ϕ̃ℓ =
√
2 cos(2πℓx) for ℓ > 0, ϕ̃ℓ =

√
2 sin(2πℓx) for ℓ < 0, ϕ̃0 = 1,

and

(γ0,0, γ0,1, γ0,−1, γ0,2, γ0,−2) = (−0.57496, 0.68064, 2.01914, 0.11381,−0.07831),

which we picked at random.

We deviate from the theoretical setting by considering truncated priors Π̃j ,
j = 1, 2, on the [0, 1)-torus, i.e. (4.17) and (4.18), but with ϕℓ replaced by ϕ̃ℓ
which is set to zero for |ℓ| > 2. We note that this is a favorable setting to
consider this inverse problem in.

We consider observations of the form (4.1) with n = 1000 observations in uni-
formly random locations at M and ε = 5·10−2. We consider a multilevel MCMC
method, Algorithm 2 in [LMS+20], based on the pCN proposal distribution with
the step size chosen as b =

√
2 · 10−3, see [CRSW13]. After a burn-in of 5 · 104

samples we consider 2.4 ·105 samples in total. Then we base the posterior mean
Monte Carlo approximation on 103 equidistant samples from this pool.

The resulting posterior mean approximation and samples can be seen in Figure
4.6 and 4.7. Both choices seem to capture the ground truth well. One can
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Figure 4.7: Ground truth β(γ0) together with the posterior mean and 103

posterior samples from a posterior based on the truncated squared
exponential prior.

even argue that the posterior samples corresponding to the squared exponential
prior are slightly more concentrated than for the Matérn prior. We also note
the increased uncertainty near the end points of the interval, which is due to
Dirichlet condition at M0. We believe this numerical example suggests the
feasibility of the Bayesian approach to inverse Robin problems.

4.3.3 Discussion and outlook

Theorem 4.7 justifies and quantifies, in the form of a convergence rate, the use
of Matérn and squared exponential Gaussian prior distributions in the context
of inverse Robin problems. This is a first step in addressing the inverse Robin
problems in a Bayesian framework with theoretical guarantees.

Yet, the main theorem does not generalize straightforwardly to the Stokes sys-
tem of PDEs, see [AG10], which is often used to model ice dynamics. This
would require new conditional stability estimates of the form (1.1). The current
closest candidate of [BEG13] lacks two things: the right-hand side of the esti-
mate depends on the velocity u|M, but also on the pressure p and its normal
derivative at M. This only entails conditional stability if we observe both the
velocity and the pressure. The second problem enters in the idea (1.5), where
one writes β = −u−1∂νu on Mγ to recover β. Maximum principles for the
scalar Laplace equation can be used to conclude u > 0 on this set. However,
the problem of finding boundary conditions for which this is true for the Stokes
system remains, to our knowledge, open, see also [BEG13]. This is why the
stability of β in [BEG13] is concluded only on a set K ⊂⊂ Mγ on which u does



66 The Bayesian approach to inverse problems in function spaces

not vanish. This set is not a priori known. Whether this estimate can be made
independent of the pressure p and its normal derivative ∂νp|M at M, we leave
as a future challenge.

The use of rescaled Gaussian priors targeting analytic functions in the context
of posterior consistency for nonlinear inverse problems is new. The theoreti-
cal backbone, [KRS23, Lemma C.4], extends straightforwardly to domains Mγ

that are subsets [0, 1)2 ×{0}. Therefore, this result may be of interest in poste-
rior consistency analyses for other inverse problems involving analytic functions.
Another direction left for future work is to generalize this to a larger class of
analytic functions on Mγ using Gaussian processes and a continuous version of
the Paley-Wiener theorem. For ideas in this direction we refer to [vdVvZ09].
Also, in [vdVvZ09] the time-scale parameter of the prior process is adjusted by a
‘hyperprior’ providing a consistent method, which achieves the optimal rate for
a given smoothness of γ0. Whether this hierarchical approach is compatible with
consistency in a nonlinear inverse problem setting remains an interesting ques-
tion. There are some results in this direction, see [GN20], where the truncation
of the prior series (for example (4.17)) is chosen as a random variable.

Finally, completing a numerical example in a less favorable setting and for dif-
ferent choices of n for both the problem in the scalar Laplace model and the
Stokes model is left for future work. We expect to see a difference in the conver-
gence properties of the posterior distributions corresponding to the two different
priors, if we try to infer a larger number of coefficients and consider a prior trun-
cated at a higher level.



Chapter 5

Concluding remarks

This thesis begins with the presentation of nonlinear ill-posed inverse problems.
We have posed question 5′ on what prior information would give rise to consis-
tent reconstruction methods for a given nonlinear inverse problem. This question
has been addressed in three different settings and from two perspectives: the
perspective of regularization theory and the Bayesian perspective.

1. In the context of the three-dimensional Calderón problem, the prior in-
formation of knowing that γ0 is lower bounded away from zero, has a
bounded C2-norm and is 1 near the boundary, is enough to reconstruct
it with a consistent method. In fact, the direct method based on the
truncated CGO reconstruction (Method 1) is an admissible regularization
strategy. Future work includes incorporating additional prior information
in this method.

2. For a given nonlinear inverse problem, the problem of detecting inclu-
sions can be addressed in a Bayesian framework. The prior information
that the inclusions are regular is often enough to reconstruct them with a
consistent and stable method arising as the posterior mean. For success,
we require that the given inverse problem is conditionally well-posed for
inclusions that are sufficiently smooth. This is the case for a number of
inverse problems including a quantitative photoacoustic tomography prob-
lem and Calderón’s problem, where the former was considered in Paper
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B. Future work includes generalizing the setting of Paper B to other
parametrizations and inverse problems.

3. In the Bayesian approach to inverse Robin problems that we consider in
this thesis, we distinguish between two pieces of prior information. For
real analytic Robin coefficients, the posterior mean is consistent with a fast
convergence rate given that a prior distribution that targets analyticity is
used. This rate is better than the logarithmic rate, which is obtained
for Sobolev smooth coefficients. Also, the approach for recovering real
analytic parameters generalize to other inverse problems.

In this thesis, we have noted parallels between the regularization theory perspec-
tive and the Bayesian perspective. There is the classical relationship of MAP
estimation and generalized Tikhonov regularization. Also, we can often consider
the posterior mean as an admissible regularization strategy. Conditional stabil-
ity estimates become relevant in consistency with explicit rates in both worlds
as we have noted in Section 2.1. Studying further the relationship between the-
oretical conditions for posterior consistency and computation, see [NW22], and
classical conditions for convergence of regularization strategies, such as [EHN96,
Theorem 10.4], pose a great challenge for future work.

Constructing consistent methods that ‘adapts’, see [vdVvZ09], to the smooth-
ness of γ0 in convergence rate is a formidable new challenge in consistency anal-
ysis for nonlinear inverse problems. It is possible that a hierarchical Bayesian
approach in the direction of [vdVvZ09] and [GN20] can achieve this. This would
bridge a gap between theory and the popular use of hierarchical Bayesian meth-
ods in practice.

The development of consistency analysis in nonlinear Bayesian inverse problems
is still in its early stages. Yet, great strides have been made towards general and
‘easily’ verifiable conditions for consistency. Continuing this progress towards
prior distributions and models used by the inverse problems community continue
to be a worthy and important objective.
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Abstract. Electrical Impedance Tomography gives rise to the severely ill-

posed Calderón problem of determining the electrical conductivity distribution

in a bounded domain from knowledge of the associated Dirichlet-to-Neumann
map for the governing equation. The uniqueness and stability questions for

the three-dimensional problem were largely answered in the affirmative in the
1980’s using complex geometrical optics solutions, and this led further to a

direct reconstruction method relying on a non-physical scattering transform.

In this paper, the reconstruction problem is taken one step further towards
practical applications by considering data contaminated by noise. Indeed, a

regularization strategy for the three-dimensional Calderón problem is presented

based on a suitable and explicit truncation of the scattering transform. This
gives a certified, stable and direct reconstruction method that is robust to

small perturbations of the data. Numerical tests on simulated noisy data il-

lustrate the feasibility and regularizing effect of the method, and suggest that
the numerical implementation performs better than predicted by theory.

1. Introduction. Electrical Impedance Tomography (EIT) provides a noninva-
sive method of obtaining information on the electrical conductivity distribution of
electric conductive media from exterior electrostatic measurements of currents and
voltages. There are many applications in medical imaging including early detection
of breast cancer [13, 58], hemorrhagic stroke detection [40, 24], pulmonary function
monitoring [2, 22, 38] and targeting control in transcranial brain stimulation [52].
Applications also include industrial testing, for example, crack damage detection
in cementitious structures [28, 25], and subsurface geophysical imaging [57]. The
mathematical problem of EIT is called the Calderón problem and was first for-
mulated by A.P. Calderón in 1980 [10] as follows: Consider a bounded Lipschitz
domain Ω ⊂ R3 filled with a conductor with a distribution γ ∈ L∞(Ω), γ ≥ c > 0.
Under the assumption of no sinks or sources of current in the domain, applying an
electrical surface potential f ∈ H1/2(∂Ω) induces an electrical potential u ∈ H1(Ω),
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Key words and phrases. Calderón problem, ill-posed problem, electrical impedance tomogra-

phy, regularization, direct reconstruction algorithm.
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which uniquely solves the conductivity equation

∇ · (γ∇u) = 0 in Ω,

u = f on ∂Ω.
(1)

The Dirichlet-to-Neumann map Λγ : H1/2(∂Ω) → H−1/2(∂Ω) is defined as

Λγf = γ∂νu|∂Ω,
and associates a voltage potential on the boundary with a corresponding normal
current flux. All pairs (f, γ∂νu|∂Ω), or equivalently the Dirichlet-to-Neumann map,
constitute the available data.

The forward problem is the problem of determining the Dirichlet-to-Neumann
map given the conductivity, and it amounts to solving the boundary value problem
(1) for all possible f . The Calderón problem now asks whether γ is uniquely de-
termined by Λγ , and how to stably reconstruct γ from Λγ , if possible. Uniqueness
and reconstruction were considered and solved for sufficiently regular conductivity
distributions in dimension n ≥ 3 in a series of papers [46, 44, 47, 56, 12]. The
results are based on complex geometrical optics (CGO) solutions to a Schrödinger
equation derived from (1). The first step of the reconstruction method is to recover
the CGO solutions on ∂Ω by solving a weakly singular boundary integral equation
with an exponentially growing kernel. The second step is obtaining the so-called
non-physical scattering transform, which approximates in a large complex frequency
limit the Fourier transform of γ−1/2∆γ1/2. Applying the inverse Fourier transform
and solving a boundary value problem yields γ in the third step. Numerical algo-
rithms following the scattering transform approach in dimension n ≥ 3 have been
developed by approximating the scattering transform [7, 36, 26, 8], by approximat-
ing the boundary integral equations [16], and for the full theoretical reconstruction
algorithm [17]. A reconstruction algorithm for conductivity distributions close to a
constant has been suggested, but not implemented [15].

A similar scattering transform approach combined with tools from complex anal-
ysis enables uniqueness and reconstruction [45] for the two-dimensional Calderón
problem. More recently, a final affirmative answer was given to the question of
uniqueness for a general bounded conductivity distribution in two dimensions [6].
Numerical algorithms and implementation for the two-dimensional problem have
been considered [33, 34, 42, 43, 53, 54] and a regularization analysis and full im-
plementation was given in [35]. We stress that in any practical case the Calderón
problem is three-dimensional, since applying potentials on the boundary of a planar
cross section of Ω leads to current flow leaving the plane.

The Calderón problem is known to be severely ill posed. Conditional stability
estimates exist [3, 4] of the form

∥γ1 − γ2∥L∞(Ω) ≤ f(∥Λγ1 − Λγ2∥Z),
for an appropriate function space Z and continuous function f with f(0) = 0 of
logarithmic type. Furthermore, logarithmic stability is optimal [41]. While this is
relevant for the theoretical reconstruction, there is no guarantee that a practically
measured Λε

γ of a perturbed Dirichlet-to-Neumann map is the Dirichlet-to-Neumann
map of any conductivity. We emphasize that in any practical case we can not have
infinite-precision data, but rather a noisy finite approximation. Consequently, any
computational algorithm for the problem needs regularization.

Classical regularization theory for inverse problems is given in [20, 32] with a
focus on least squares formulations. A common approach to regularization for the



DIRECT REGULARIZED RECONSTRUCTION IN 3D EIT 873

Calderón problem is based on iterative regularized least-squares, and convergence of
such methods is analyzed in [18, 49, 50, 37, 30] in the context of EIT. A quantitative
comparison of CGO-based methods and iterative regularized methods is given in
[26]. Reconstruction by statistical inversion is developed in [31, 19], where in the
latter, the problem is posed in an infinite-dimensional Bayesian framework. A
different statistical approach to the Calderón problem shows stable reconstruction
of the surface conductivity on a domain given noisy data [11]. Convergence estimates
in probability of a statistical estimator (posterior mean) to the true conductivity
given noisy data with a sufficiently small noise level are considered in [1].

In this paper we provide a direct CGO-based regularization strategy with an ad-
missible parameter choice rule for reconstruction in the three-dimensional Calderón
problem under the following assumptions:

Assumption 1. For simplicity of exposition, we assume the domain of interest Ω
is embedded in the unit ball in R3. Furthermore, we assume ∂Ω is smooth.

Assumption 2 (Parameter and data space). We consider the forward map F :
D(F ) ⊂ L∞(Ω) → Y , γ 7→ Λγ with the following definition of D(F ). Let Π > 0
and 0 < ρ < 1, then γ ∈ D(F ) ⊂ L∞(Ω) satisfies

∥γ∥C2(Ω) ≤ Π,

γ(x) ≥ Π−1 for all x ∈ Ω,

γ(x) ≡ 1 for dist(x, ∂Ω) < ρ,

where we assume knowledge of Π and ρ. We continuously extend γ ≡ 1 outside Ω.
The data space Y ⊂ L(H1/2(∂Ω), H−1/2(∂Ω)) consists of bounded linear operators
Λ : H1/2(∂Ω) → H−1/2(∂Ω) that are Dirichlet-to-Neumann alike in the sense

Λ(1) = 0,
∫

∂Ω

(Λf)(x) dσ(x) = 0 for every f ∈ H1/2(∂Ω).

We equip D(F ) and Y with the inherited norms ∥ · ∥D(F ) = ∥ · ∥L∞(Ω) and ∥ · ∥Y =
∥ · ∥H1/2(∂Ω)→H−1/2(∂Ω).

There is no reason to believe that the regularity assumptions of γ is optimal,
in fact, we expect that the strategy generalizes to the less regular setting of [12].
We recall the adaptation of the definitions in [20, 32] presented in [35] of a reg-
ularization strategy in the nonlinear setting. A family of continuous mappings
Rα : Y → L∞(Ω), parametrized by regularization parameter 0 < α < ∞, is called
a regularization strategy for F if

lim
α→0

∥RαΛγ − γ∥L∞(Ω) = 0, (2)

for each fixed γ ∈ D(F ). We define the perturbed Dirichlet-to-Neumann map as

Λε
γ = Λγ + E ,

with E ∈ Y and ∥E∥Y ≤ ε for some ε > 0. We call ε the noise level, since we
eventually simulate perturbations E as random noise. Furthermore, a regularization
strategy Rα : Y → L∞(Ω), 0 < α <∞, is called admissible if

α(ε) → 0 as ε→ 0, (3)
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and for any fixed γ ∈ D(F ) we have

sup
Λε

γ∈Y
{∥Rα(ε)Λ

ε
γ − γ∥L∞(Ω) | ∥Λε

γ − Λγ∥Y ≤ ε} → 0 as ε→ 0. (4)

The topology in which we require convergence is essential; we require convergence
in strong operator topology, but not in norm topology. The main result of this paper
is then as follows.

Theorem 1.1. Suppose Π > 0 and 0 < ρ < 1 are given and let D(F ) be as in
Assumption 2. Then there exists ε0 > 0, dependent only on Π and ρ such that the
family Rα defined by (30) is an admissible regularization strategy for F with the
following choice of regularization parameter:

α(ε) =

{
(−1/11 log(ε))−1/p for 0 < ε < ε0,
ε
ε0
(−1/11 log(ε0))

−1/p for ε ≥ ε0,
(5)

with p > 3/2.

This gives theoretical justification for practical reconstruction of the Calderón
problem in three dimensions. This is the first deterministic regularization analysis
for the three-dimensional Calderón problem known to the authors. Similar results
have been shown for the related two-dimensional D-bar reconstruction [35], and we
will in fact adopt the spectral truncation from there to our setting. This extension is
non-trivial in part because there are no existence and uniqueness guarantees for the
CGO solutions that are independent of the magnitude of the complex frequency in
the three-dimensional case. In addition, while the two-dimensional D-bar method
enjoys the continuous dependence of the solution to the D-bar equation on the
scattering transform, it is not obvious when the frequency information of γ is stably
recovered from the scattering transform corresponding to a perturbed Dirichlet-to-
Neumann map in the three-dimensional case.

We denote the set of bounded linear operators between Banach spaces X and Y
by L(X,Y ) and use L(X) := L(X,X). We denote the Euclidean matrix operator
norm by ∥·∥N := ∥·∥C(N+1)2→C(N+1)2 . The operator norm of A : Hs(∂Ω) → Ht(∂Ω)
is denoted by ∥A∥s,t. We reserve C for generic constants and C1, C2, . . . for constants
of specific value. Finally, exponential functions of the form eix·ζ , x ∈ R3, ζ ∈ C3, is
denoted eζ(x).

In Section 2, the full non-linear reconstruction algorithm for the three-dimensional
Calderón problem is given. Section 3 gives technical estimates regarding the bound-
ary integral equation and the scattering transform and provides a regularizing
method for perturbed data with ε sufficiently small. Then Section 4 extends con-
tinuously the method to a regularization strategy Rα defined on Y and proves
Theorem 1.1. In Section 5, the necessary numerical details concerning the repre-
sentation of the Dirichlet-to-Neumann map and computation of the relevant norm
are given. In addition, a noise model is given. Section 6 presents and discusses
numerical results of noise tests with a piecewise constant conductivity distribution
using an implementation given in [17], which is available from the corresponding
author by request.

2. The full non-linear reconstruction method. Let v = γ1/2u, then v is a
solution to the Schrödinger equation

(−∆+ q)v = 0 in Ω,

v = g on ∂Ω,
(6)
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with q = γ−1/2∆γ1/2 if and only if u is a solution to (1) with f = γ−1/2g. Note in
our setting q = 0 near ∂Ω and q ≡ 0 is extended continuously outside Ω and further
Λqg = ∂νv = Λγf . The reconstruction method considered here is based on CGO
solutions ψζ to (6), which take the form

(−∆+ q)ψζ = 0 in R3, (7)

satisfying ψζ(x) = eix·ζ(1 + rζ(x)). Here the complex frequency ζ ∈ C3 satisfies
ζ ·ζ = 0 making eix·ζ harmonic, and the remainder rζ belongs to certain weighted L2

spaces. In the three-dimensional case, existence and uniqueness of CGO solutions
have been shown for large complex frequencies,

|ζ| > C0∥q∥L∞(Ω) =: Dq (8)

for some constant C0 > 0, or alternatively for |ζ| small [56, 15]. The analysis
involves the Faddeev Green’s function

Gζ(x) := eiζ·xgζ(x) gζ(x) :=
1

(2π)3

∫

R3

eix·ξ

|ξ|2 + 2ξ · ζ dξ,

where gζ is defined in the sense of the inverse Fourier transform of a tempered distri-
bution and interpretable as a fundamental solution of (−∆− 2iζ ·∇). Boundedness
of convolution by gζ on Ω is well known [56, 9, 51]:

∥gζ ∗ f∥L2(Ω) ≤ C|ζ|s−1∥f∥L2(Ω), s ∈ {0, 1, 2}, (9)

where |ζ| is bounded away from zero, and C is independent of ζ and f .
The non-physical scattering transform is defined for all those ζ that give rise to

a unique CGO solution ψζ as

t(ξ, ζ) =

∫

R3

e−ix·(ξ+ζ)ψζ(x)q(x) dx, ξ ∈ R3. (10)

It is useful to see the scattering transform as a non-linear Fourier transform of the
potential q. Indeed, for |ζ| > Dq we have

|t(ξ, ζ)− q̂(ξ)| ≤ C∥q∥2L∞(Ω)|ζ|−1, (11)

for all ξ ∈ R3, where C is independent of ζ and q. Whenever (ζ + ξ) · (ζ + ξ) = 0,
integration by parts in (10) yields

t(ξ, ζ) =

∫

∂Ω

e−ix·(ξ+ζ)(Λγ − Λ1)ψζ(x) dσ(x), (12)

where dσ denotes the surface measure on ∂Ω. For fixed ξ ∈ R3 this gives rise to the
set Vξ = {ζ ∈ C3 \ {0} | ζ · ζ = 0, (ζ + ξ) · (ζ + ξ) = 0} parametrized by

ζ(ξ) =

(
−ξ
2
+

(
κ2 − |ξ|2

4

)1/2

k⊥⊥
)

+ iκk⊥, (13)

with κ ≥ |ξ|
2 and k⊥, k⊥⊥ ∈ R3 are unit vectors and {ξ, k⊥, k⊥⊥} is an orthogonal

set [17]. Note that for ζ(ξ) ∈ Vξ and k ≥ |ξ|
2 we have |ζ(ξ)| =

√
2κ; consequently

limκ→∞ |ζ(ξ)| = ∞.
For each fixed ζ the trace of the CGO solution ψζ |∂Ω is recoverable from the

boundary integral equation

ψζ |∂Ω + Sζ (Λγ − Λ1) (ψζ |∂Ω) = eζ |∂Ω, (14)
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where Sζ : H−1/2(∂Ω) → H1/2(∂Ω) is the boundary single layer operator defined
by

(Sζφ) (x) =

∫

∂Ω

Gζ(x− y)φ(y)dσ(y), x ∈ ∂Ω.

With S0 we denote the boundary single layer operator corresponding to the usual
Green’s function G0 for the Laplacian. Occasionally we use the same notation when
x ∈ R3 \ ∂Ω and note it is well known that S0φ and hence Sζφ is continuous in R3

[14]. We let

Bζ := [I + Sζ (Λγ − Λ1)],

denote the boundary integral operator and we note the boundary integral equation
(14) is a uniquely solvable Fredholm equation of the second kind for |ζ| > Dq [45].
This gives a method of recovering the Fourier transform of q in every frequency
through the scattering transform (12) as |ζ| → ∞. This method of reconstruction
for the Calderón problem in three dimensions was first explicitly given in [44, 47].
We summarize the method in three steps.

Method 1. CGO reconstruction in three dimensions

Step 1: Fix ξ ∈ R3 and solve the boundary integral equation (14) for all ζ(ξ) ∈ Vξ.
Compute t(ξ, ζ(ξ)) by (12).

Step 2: Compute q̂(ξ) by

lim
|ζ(ξ)|→∞

t(ξ, ζ(ξ)) = q̂(ξ), ξ ∈ R3,

and q(x) by the inverse Fourier transform.
Step 3: Solve the boundary value problem

(−∆+ q)γ1/2 = 0 in Ω,

γ1/2 = 1 on ∂Ω,

and extract γ.

We remark that it is sufficient to solve the boundary integral equation in step 1
for a sequence {ζk(ξ)}∞k=1 of complex frequencies in Vξ that tends to infinity.

3. Regularized reconstruction by truncation. We continue by mimicking
Method 1 with Λγ replaced by Λε

γ with ε small. We note that, in any case, us-
ing ψζ with |ζ| large is impractical. Indeed, when using perturbed measurements
naively in (12), the propagated perturbation of t is ε multiplied with a factor expo-
nentially growing in |ζ|. This factor originates from the solution of the perturbed
boundary integral equation

Bε
ζ(ψ

ε
ζ |∂Ω) := ψε

ζ |∂Ω + Sζ

(
Λε
γ − Λ1

)
(ψε

ζ |∂Ω) = eζ |∂Ω, (15)

and in multiplication with e−ix·(ξ+ζ(ξ)), see Lemma 3.3. We will show below that
(15) is solvable for sufficiently small ε. To mitigate this exponential behavior we
propose a reconstruction method that makes use of two coupled truncations: one of
the complex frequency ζ and one of the real frequency of the signal qε, the perturbed
analog of q. As we shall see, an upper bound of the magnitude |ζ(ξ)| determines an
upper bound of the proximity of t to q̂, when using perturbed data. From (13) we
have

|ζ(ξ)| ≥ |ξ|√
2
,
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and hence fixing |ζ(ξ)| gives a bounded region in R3, |ξ| < M for some M > 0, in
which t can be computed. This gives the following method.

Method 2. Truncated CGO reconstruction in three dimensions

Step 1ε: LetM =M(ε) > 0 be determined by a sufficiently small ε. For each fixed
ξ with |ξ| < M , take ζ(ξ) ∈ Vξ with an appropriate size determined byM and
solve (15) to recover ψε

ζ |∂Ω. Compute the truncated scattering transform by

tεM(ε)(ξ, ζ(ξ)) :=

{∫
∂Ω
e−ix·(ξ+ζ(ξ))(Λε

γ − Λ1)ψ
ε
ζ(x)dσ(x), |ξ| < M(ε),

0, |ξ| ≥M(ε),

Step 2ε: Set q̂ε(ξ) := tεM(ε)(ξ, ζ(ξ)) and compute the inverse Fourier transform to

obtain qε.
Step 3ε: Solve the boundary value problem

(−∆+ qε)(γε)1/2 = 0 in Ω,

(γε)1/2 = 1 on ∂Ω.

and extract γε.

We call M the truncation radius and note it should depend on ε. Truncation
of the scattering transform with truncation radius M is well known in regulariza-
tion theory for the two-dimensional D-bar reconstruction method [35]. We can see
the real truncation as a low-pass filtering in the frequency domain; this leads to
additional smoothing in the spatial domain. Note that M determines the level of
regularization and poses as a regularization parameter α =M−1 in the sense of (4).

In the following section we derive the required properties of Sζ , B
−1
ζ and (Bε

ζ)
−1.

The invertibility of Bε
ζ depends on the invertibility of the unperturbed boundary

integral operator Bζ , which is well known due to the mapping properties of Sζ .

Although boundedness of Sζ and B−1
ζ in the three-dimensional case follows by

similar arguments to that of the two-dimensional [35], it is not immediately clear
when (Bε

ζ)
−1 exists in the absence of existence and uniqueness guarantees of ψζ

for small |ζ|. Neither is it clear under which circumstances qε approximates q as
the noise level goes to zero. This is dealt with in Lemma 3.4 below by choosing a
suitable rate, at which |ζ| and M goes to infinity as ε goes to zero.

3.1. The perturbed boundary integral equation. When |ζ| is bounded away
from zero we can bound Sζ using the mapping properties (9) of convolution with
gζ between Sobolev spaces defined on Ω. We note that one can give better bounds
for arbitrarily small |ζ| < 1 than the following result by considering the integral
operator Sζ − S0 with a smooth kernel, see [15, 35].

Lemma 3.1. Let φ ∈ H−1/2 (∂Ω) such that
∫
∂Ω
φ(x) dσ(x) = 0 and let ζ ∈ C3 with

ζ · ζ = 0 and |ζ| > β > 0. Then for the boundary single layer operator, Sζ , we have
that

∥Sζφ∥H1/2(∂Ω) ≤ C1(1 + |ζ|)e2|ζ|∥φ∥H−1/2(∂Ω),

where the constant C1 is independent of ζ.

Proof. We follow [35]. Letting x ∈ R3 \Ω and introducing u ∈ H1(Ω) with ∆u = 0
and ∂νu = φ we write
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(Sζφ)(x) =

∫

∂Ω

Gζ(x− y)φ(y) dσ(y),

=

∫

Ω

∇yGζ(x− y) · ∇u(y)dy,

= −∇ · (Gζ ∗ (∇u)) (x),
= −∇ ·

[
eix·ζ

(
gζ ∗ (e−iy·ζ∇u)

)]
(x),

using integration by parts, the chain rule and the fact that Gζ(x− ·) is smooth in
Ω. By the continuity of Sζ the above holds for x ∈ ∂Ω as well. Note from (9) and
Leibniz’ rule that

∥∇ ·
[
eix·ζ

(
gζ ∗ (e−iy·ζ∇u)

)]
∥L2(Ω) ≤ Ce2|ζ|∥∇u∥L2(Ω),

and

∥∂xi∇ ·
[
eix·ζ

(
gζ ∗ (e−iy·ζ∇u)

)]
∥L2(Ω) ≤ C|ζ|e2|ζ|∥∇u∥L2(Ω),

for i = 1, 2, 3. This yields

∥Sζφ∥H1/2(∂Ω) ≤ ∥∇ ·
[
eix·ζ

(
gζ ∗ (e−iy·ζ∇u)

)]
∥H1(Ω),

≤ C(1 + |ζ|)e2|ζ|∥∇u∥L2(Ω),

≤ C(1 + |ζ|)e2|ζ|∥φ∥H−1/2(∂Ω),

using the trace theorem and stability of the Neumann problem for u. Here C is
dependent on β since |ζ| > β.

We have the following estimate of B−1
ζ . The main idea of the proof is to consider

a solution f ∈ H1/2(∂Ω) to Bζf = h for some h ∈ H1/2(∂Ω) and then control
the exponential component of f by creating a link to the CGO solutions of the
Schrödinger equation.

Lemma 3.2. For ζ ∈ C3\{0} with ζ · ζ = 0 and |ζ| > Dq as in (8), the operator
Bζ is invertible with

∥B−1
ζ ∥1/2 ≤ C2(1 + |ζ|)e2|ζ|, (16)

where C2 is a constant depending only on the a priori knowledge Π and ρ.

Proof. We follow [35]. Using integration by parts note that Bζf = f + Gζ ∗ (qvf )
on ∂Ω, where vf ∈ H1(Ω) is the unique solution to

(−∆+ q)vf = 0 in Ω,

vf = f on ∂Ω.

To bound f we bound vf by writing vf = v − uexp with

∆v = 0 in Ω,

v = Bζf on ∂Ω,

and uexp := Gζ ∗ (qvf ). From the stability property of the Dirichlet problem it
is sufficient to bound uexp in terms of v. Note (−∆ + q)uexp = qv and hence
conjugating with exponentials yields the equation in R3,

(−∆− 2iζ · ∇+ q)u = qve−ix·ζ , (17)
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where we set u = e−ix·ζuexp. It is well known that u is the unique solution among
functions in certain weighted L2(R3)-spaces satisfying

∥u∥L2(Ω) ≤ C∥q∥L∞
e|ζ|

|ζ| ∥v∥L2(Ω),

whenever |ζ| > Dq, see [56]. Indeed, convolution with gζ on both sides of (17) gives

u = gζ ∗ (−qu+ qve−ix·ζ),

which upgrades the estimate to

∥u∥H1(Ω) ≤ C∥q∥L∞e|ζ|∥v∥L2(Ω),

using (9). Now the estimate (16) follows straightforwardly from the trace theorem.

We note that a main difference between the boundary integral equation in two
dimensions and three dimensions is the possible existence of a certain ζ for which
there exists no unique CGO solutions to (7). The next result shows that Lemma
3.1 and Lemma 3.2 implies solvability of the perturbed boundary integral equation
using a Neumann series argument on the form

Bε
ζ = I + Sζ(Λ

ε
γ − Λγ) + Sζ(Λγ − Λ1) = [I +Aε

ζ ]Bζ ,

where Aε
ζ := SζEB−1

ζ is a bounded operator in H1/2(∂Ω). It is clear from Lemma

3.2 that q fixes a lower bound for |ζ|, for which Bζ is certain to be invertible. When
the noise level is sufficiently small such that Dq < |ζ| < R(ε), for some R, we may
invert Bε

ζ . We have the following result.

Lemma 3.3. Let R = R(ε) := − 1
6 log ε, and suppose Dq < |ζ| < R(ε1) for some

0 < ε1 < 1. Then there exists 0 < ε2 ≤ ε1 for which Bε
ζ is invertible whenever

0 < ε < ε2. Furthermore we have the estimate

∥ψε
ζ − ψζ∥H1/2(∂Ω) ≤ C3ε(1 +R)4e7R,

where C3 is a constant depending only on the a priori knowledge of Π and ρ.

Proof. Since E ∈ Y , it maps onto trace functions that have zero mean on the
boundary. Then from Lemma 3.1 and Lemma 3.2 we find

∥Aε
ζ∥1/2 = ∥SζEB−1

ζ ∥1/2 ≤ C1C2ε(1 +R)2e4R,

≤ Cεe5R, (18)

where we have absorbed the polynomial in R into the exponential and thereby
obtained a new constant. By the definition of R, we note the right-hand side of
(18) goes to zero as ε goes to zero, and hence there exists a 0 < ε2 ≤ ε1 such
that ∥Aε

ζ∥1/2 < 1
2 . Then by a Neumann series argument, I + Aε

ζ is invertible with

∥(I + Aε
ζ)

−1∥1/2 < 2, and (Bε
ζ)

−1 = B−1
ζ [I + Aε

ζ ]
−1. From the boundary integral

equations we have ψζ = B−1
ζ (eζ |∂Ω) and ψε

ζ = (Bε
ζ)

−1(eζ |∂Ω). Then with the use of
Lemma 3.2 we have for 0 < ε < ε2

∥ψε
ζ∥H1/2(∂Ω) ≤ ∥(Bε

ζ)
−1(eζ |∂Ω)∥H1/2(∂Ω),

≤ 2∥B−1
ζ ∥1/2∥eix·ζ∥H1/2(∂Ω), (19)

≤ C(1 + |ζ|)2e3|ζ|. (20)
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With the use of Lemma 3.2 we have for 0 < ε < ε2

∥(Bε
ζ)

−1 −B−1
ζ ∥1/2 = ∥B−1

ζ [(I +Aε
ζ)

−1 − I]∥1/2,
≤ ∥B−1

ζ ∥1/2∥(I +Aε
ζ)

−1[I − (I +Aε
ζ)]∥1/2,

≤ ∥B−1
ζ ∥1/2∥(I +Aε

ζ)
−1∥1/2∥Aε

ζ∥1/2,
≤ 2C1C

2
2ε(1 +R)3e6R.

Finally we obtain

∥ψε
ζ − ψζ∥H1/2(∂Ω) = ∥[(Bε

ζ)
−1 −B−1

ζ ]eζ∥H1/2(∂Ω),

≤ ∥(Bε
ζ)

−1 −B−1
ζ ∥1/2∥eix·ζ∥H1/2(∂Ω),

≤ 2C1C
2
2ε(1 +R)4e7R, (21)

for 0 < ε < ε2.

3.2. Truncation of the scattering transform. We now show that fixing the
magnitude of the complex frequency |ζ(ξ)| = (M(ε))p with p > 3/2, enables control
over the proximity of the truncated scattering transform tεM (·, ζ) to q̂ for small noise
levels. This choice is justified from the following result.

Lemma 3.4. Let M(ε) = (−1/11 log(ε))1/p be a truncation radius depending on ε
and some exponent p > 3/2. Fix ξ ∈ R3 with |ξ| < M(ε), suppose ζ(ξ) ∈ Vξ with

|ζ(ξ)| = (M(ε))p = − 1

11
log(ε)

and let ε2 be defined as in the proof of Lemma 3.3. Further fix q ∈ L∞(Ω) corre-
sponding to a γ ∈ D(F ). Then tεM is well defined by (29) for 0 < ε < ε2 and

lim
ε→0

∥tεM(ε) − q̂∥L2(R3) = 0.

Proof. For (i) fix first |ξ| < M(ε) and note first by the triangle inequality that

|tεM(ε)(ξ, ζ(ξ))− q̂(ξ)| ≤ |tεM(ε)(ξ, ζ(ξ))− t(ξ, ζ(ξ))|+ |t(ξ, ζ(ξ))− q̂(ξ)|. (22)

By Lemma 3.3 there exists a unique solution ψε
ζ to the perturbed boundary integral

equation and hence tεM is well defined. Using (20) and (21), we find the following,
in which we set R = R(ε), M =M(ε) and ζ = ζ(ξ) for simplicity of exposition,

|tεM (ξ, ζ)− t(ξ, ζ)| =
∣∣∣∣
∫

∂Ω

e−ix·(ξ+ζ)[(Λε
γ − Λ1)ψ

ε
ζ(x)− (Λγ − Λ1)ψζ(x)]dσ(x)

∣∣∣∣ ,

≤ ∥e−ix·(ξ+ζ)∥H1/2(∂Ω)∥Λγ − Λ1∥Y ∥ψε
ζ − ψζ∥H1/2(∂Ω)

+ ∥e−ix·(ξ+ζ)∥H1/2(∂Ω)∥Λε
γ − Λγ∥Y ∥ψε

ζ∥H1/2(∂Ω), (23)

≤ C(1 + |ζ|)e|ζ|
[
ε(1 + |ζ|)4e7|ζ| + ε(1 + |ζ|)2e3|ζ|

]
,

where we use the fact that ∥Λγ − Λ1∥Y ≤ C, where C depends only on Π by the
continuity of the forward map γ 7→ Λγ . Then,

|tεM (ξ, ζ)− t(ξ, ζ)| ≤ Cεe9|ζ|.

Using (22) and the property (11) we conclude for |ξ| < M(ε) that

|tεM (ξ, ζ)− q̂(ξ)| ≤ Cεe9|ζ| + C|ζ|−1. (24)
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Then for (ii), using the triangle inequality and (24) we find

∥tεM − q̂∥L2(R3) ≤ ∥tεM − q̂∥L2(|ξ|<M) + ∥q̂∥L2(|ξ|≥M),

≤ C(εe9|ζ| +M−p)

(∫ M

0

r2 dr

)1/2

+ ∥q̂∥L2(|ξ|≥M),

≤ C(εe10|ζ| +M3/2−p) + ∥q̂∥L2(|ξ|≥M),

≤ Cε1/11 + C(−1/11 log(ε))3/2−p + ∥q̂∥L2(|ξ|≥M),

for 0 < ε < ε2. Since q ∈ L∞(Ω) is compactly supported in Ω, we have q ∈ L2(R3),
and hence the energy of the tail of q̂ converges to zero as M(ε) goes to infinity. The
result follows as p > 3/2.

One may obtain an explicit decay of q̂ by assuming a certain regularity of q.
Notice the proof above works fine with the choice |ζ| = K1M

p + K2 for some
0 < K1 < 1, K2 > 0 and p > 3/2. A user may choose among such |ζ| freely, with
p = 3/2 being the critical choice. We now prove that γε exists and is unique and
that the propagated reconstruction error tends to zero if ε→ 0, given ∥qε− q∥L2(Ω)

is sufficiently small. This is possible in H2(Ω) by a Neumann series argument and
elliptic regularity. For the boundary value problem

(−∆+ qε)u = f in Ω,

u = 0 on ∂Ω,

with f ∈ L2(Ω), we introduce the notation Lε : H1
0 (Ω)∩H2(Ω) → L2(Ω), Lε : u 7→

f , defined for any qε ∈ L2(Ω) and then note

γε = [(Lε)−1(−qε) + 1]2,

whenever (Lε)−1 exists.

Lemma 3.5. Let q = ∆γ1/2γ−1/2 be a potential with γ ∈ D(F ). Then there exists
a 0 < ε3 < 1 such that for 0 < ε < min(ε2, ε3) =: ε0 the boundary value problem

(−∆+ qε)(γε)1/2 = 0 in Ω,

(γε)1/2 = 1 on ∂Ω,
(25)

has a unique solution in H2(Ω). Furthermore the following inequality holds

∥γ1/2 − (γε)1/2∥H2(Ω) ≤ C4∥q − qε∥L2(Ω), (26)

where C4 is dependent only on Π and ρ.

Proof. Note (−∆+ q)−1 exists and is bounded for L2(Ω) into H1
0 (Ω)∩H2(Ω) with

∥u∥H2(Ω) ≤ C∥f∥L2(Ω), (27)

by elliptic regularity [21]. Here C is dependent only on Π. We construct

Lεu = (−∆+ q)[I + (−∆+ q)−1(qε − q)]u,

and seek boundedness of (−∆+q)−1(qε−q) inH2(Ω) as our goal. For any u ∈ H2(Ω)

∥(−∆+ q)−1(qε − q)u∥H2(Ω) ≤ C∥qε − q∥L2(Ω)∥u∥H2(Ω),

using (27) and Sobolev embedding theory. By Lemma 3.4, there exists a 0 < ε3 < 1
such that for all 0 < ε < min(ε2, ε3)

∥(−∆+ q)−1(qε − q)∥H2(Ω)→H2(Ω) ≤ C∥qε − q∥L2(Ω) <
1

2
.
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Hence (Lε)−1 exists and is uniformly bounded with respect to 0 < ε ≤ ε0. Finally,
since γ ∈ L∞(Ω) we have (qε − q)γ1/2 ∈ L2(Ω), and by solving

Lε(γ1/2 − (γε)1/2) = (qε − q)γ1/2 in Ω

γ1/2 − (γε)1/2 = 0 on ∂Ω,

we obtain the estimate (26).

We conclude that γε of Method 2 exists uniquely and approximates γ in the
H2(Ω)-norm, whenever ε < ε0.

4. Extending the method to a regularization strategy. From the definition
of an admissible regularization strategy it is clear Rα must be defined on Y and not
only an ε0-neighborhood of F (D(F )). However, (Bε

ζ)
−1 and (Lε)−1 exists only for

small enough ε. We confront this by extending these operators to (Bε
ζ)

†
α and (Lε)†α

coinciding with (Bε
ζ)

−1 and (Lε)−1 for ε < ε0, such that Rα is continuous and well
defined on Y . There are several ways to obtain such extensions, however we will
follow [35] and construct explicit pseudoinverses by means of functional calculus.
Define the normal operator

Sε
ζ := (Bε

ζ)
∗(Bε

ζ) ∈ L(H1/2(∂Ω)),

where (Bε
ζ)

∗ is the adjoint operator of (Bε
ζ) ∈ L(H1/2(∂Ω)). Similarly we define

T ε
ζ := (Lε)∗(Lε) ∈ L(L2(Ω)).

Let h1α and h2α be two real functions defined for 0 < α <∞ as

hiα(t) :=

{
t−1 for t > κi(α),

κi(α)
−1 for t ≤ κi(α),

for i = 1, 2 with κi(α) =
1
4ri(α)

2, where we will see below the estimates (26) and
(31) motivates the definition

ri(α) :=

{
1

C2(1+α−p)e2α
−p for i = 1,

1
C4

for i = 2,

with p > 3/2. We define the α-pseudoinverses (Bε
ζ)

†
α
of Bε

ζ and (Lε)
†
α of Lε for any

0 < α <∞ as

(Bε
ζ)

†
α := h1α(S

ε
ζ )(B

ε
ζ)

∗,

(Lε)†α := h2α(T
ε)(Lε)∗,

where the operators h1α(S
ε
ζ ) in L(H1/2(∂Ω)) and h2α(T

ε) in L(L2(Ω)) are defined in

the sense of continuous functional calculus (see for example [48, 55]) and depend
continuously on Sε

ζ and T ε, respectively (see for example [35, Lemma 3.1]). This

implies Λε
γ 7→ (Bε

ζ)
†
α and qε 7→ (Lε)†α are continuous mappings. Explicitly, for a

self-adjoint operator S : H → H for a Hilbert space H we set

hiα(S) =

∫

σ(S)

hiα(λ) dP (λ), (28)

where σ(S) ⊂ C denotes the spectrum of S, and P is a spectral measure on σ(S).

Method 3. Regularized CGO reconstruction in three dimensions
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Step 1α: Given α > 0, set M = α−1. For each |ξ| < M take ζ(ξ) ∈ Vξ with
|ζ(ξ)| =Mp for p > 3/2 and define

ψ̃α := (Bε
ζ)

†
α(eζ |∂Ω)

and compute the truncated scattering transform tα(ξ, ζ(ξ)) for ζ(ξ) in Vξ by

t̃α(ξ, ζ(ξ)) =

{∫
∂Ω
e−ix·(ξ+ζ(ξ))(Λε

γ − Λ1)ψ̃α(x)dσ(x) |ξ| < M,

0 |ξ| ≥M
(29)

Step 2α: Define q̂α(ξ) := t̃α(ξ, ζ(ξ)) and compute the inverse Fourier transform to
obtain qα.

Step 3α: Solve the boundary value problem (25) by computing (Lε)†α(−qα) and
set

RαΛ
ε
γ := [(Lε)†α(−qα) + 1]2 (30)

Proof of Theorem 1.1. Given Λε
γ in Y we have

|t̃α(ξ, ζ(ξ))| ≤
∣∣∣∣
∫

∂Ω

e−ix·(ξ+ζ)[(Λε
γ − Λγ)ψ̃α(x) + (Λγ − Λ1)ψ̃α(x)]dσ(x)

∣∣∣∣ ,

≤ ∥e−ix·(ξ+ζ)∥H1/2(∂Ω)∥Λε
γ − Λγ∥Y ∥ψ̃α∥H1/2(∂Ω)

∥e−ix·(ξ+ζ)∥H1/2(∂Ω)∥Λγ − Λ1∥Y ∥ψ̃α∥H1/2(∂Ω),

<∞,

for all ξ ∈ R3, since (Bε
ζ)

†
α is bounded in H1/2(∂Ω). Then by compact support

t̃α ∈ L2(R3). It follows the inverse Fourier transform of this object is well defined
and hence the family of operators Rα is well defined. Using the continuity of the
maps Λε

γ 7→ (Bε
ζ)

†
α and qα 7→ (Lε)†α, a parallel estimation to (23) and the linearity

and boundedness of the inverse Fourier transform in L2(R3), it is clear that Rα is
a family of continuous mappings. Now recall from Lemma 3.2 and (19) that for
0 < ε < ε0 we have that

∥(Bε
ζ)∥−1

1/2 ≤ ∥(Bε
ζ)

−1∥1/2 ≤ 2C2(1 + |ζ|)e2|ζ|. (31)

Set |ζ| = α−p and note

Sε
ζ ≥ 1

4
r1(α)

2I.

By definition of the α-pseudoinverse and (28) we have that (Bε
ζ)

†
α = (Bε

ζ)
−1 for

0 < ε < ε0, and hence ψ̃α = ψε
ζ is unique. It follows by Lemma 3.4 that t̃(·, ζ(·)) is

well defined and qα = qε converges to q as ε goes to zero. Conversely, for 0 < ε < ε0
we have (Lε)†α = (Lε)−1, and hence by Lemma 3.5 and the Sobolev embedding
H2(Ω) ⊂ C0(Ω), (4) is satisfied. Note also the weaker requirement (2) follows
analogously. The property (3) is satisfied by (5).

A direct consequence of the truncation of the scattering transform is the following
property of the reconstruction Rα(ε)Λ

ε
γ for sufficiently small ε. The regularized

reconstructions are as regular as Ω.

Proposition 1. Suppose Λε
γ = Λγ + E with ∥E∥Y ≤ ε < ε0. Then Rα(ε)Λ

ε
γ ∈

C∞(Ω).

Proof. Since t̃α(·, ζ(·)) ∈ L1(R3) has compact support, it follows qα is smooth.
Since ∂Ω is smooth, it follows RαΛ

ε
γ ∈ C∞(Ω) by elliptic regularity [21].
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5. Computational methods. In this section we outline methods of representing
and computing the Dirichlet-to-Neumann map numerically and consider the dis-
cretization of the boundary integral equations. We assume Ω = B(0, 1) in order to
utilize spherical harmonics in representation of functions on ∂Ω.

5.1. Representation and computation of the Dirichlet-to-Neumann map.
We consider the Hilbert space Hs(∂Ω), s > 0, defined as the space of all functions
f in L2(∂Ω) that satisfy

∥f∥2L2(∂Ω) + ∥(−∆S)
s/2f∥2L2(∂Ω) <∞, (32)

where (−∆S)
s/2 is the fractional order spherical Laplace operator on the unit sphere.

Since spherical harmonics, say {Y m
n }n∈N0,|m|≤n, constitute an orthonormal basis of

L2(∂Ω) (see for example [14]), we may expand f ∈ L2(∂Ω) as

f =
∞∑

n=0

n∑

m=−n

⟨f, Y m
n ⟩Y m

n , ⟨f, Y m
n ⟩ =

∫

∂Ω

f(x)Y m
n (x) dσ(x).

The spherical harmonics are eigenvectors of (−∆S), in particular,

(−∆S)
s/2

Y = (n(n+ 1))s/2Y,

for any spherical harmonic Y of degree n. Then the requirement (32) gives rise to
a characterization of Hs(∂Ω) suitable for s ∈ R as those functions f ∈ L2(∂Ω) that
satisfy

∞∑

n=0

n∑

m=−n

(1 + n2)s|⟨f, Y m
n ⟩|2 <∞.

See [39, Chapter 1.7] for a more general treatment and the case s < 0. Thus we
define the Hs(∂Ω) inner products as

⟨f, g⟩s := ⟨f, g⟩Hs(∂Ω) =
∞∑

n=0

n∑

m=−n

ws(n)⟨f, Y m
n ⟩ws(n)⟨g, Y m

n ⟩,

where the multiplier functions are defined as

ws(n) := (1 + n2)s/2, for n ∈ N0, s ∈ R,

and hence ∥f∥Hs(∂Ω) = ⟨f, f⟩1/2s . We build an orthonormal basis {ϕsn,m}n∈N0,|m|≤n

of Hs(∂Ω) with

ϕsn,m = w−s(n)Y
m
n .

and hence any g ∈ Hs(∂Ω) has the expansion

g =
∞∑

n=0

n∑

m=−n

⟨g, ϕsn,m⟩sϕsn,m.

Consider the L2(∂Ω) orthogonal projection PN to the space spanned by spherical
harmonics of degree less than or equal to N , as

PNg =
N∑

n=0

n∑

m=−n

⟨g, Y m
n ⟩Y m

n .
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Note ⟨g, Y m
n ⟩ as an integral over the unit sphere may be approximated by coeffi-

cients cn,m(g) using Gauss-Legendre quadrature in 2(N + 1)2 appropriately cho-

sen quadrature points {xk}2(N+1)2

k=1 on the unit sphere as in [17]. Here we denote
g = (g(x1), . . . , g(x2(N+1)2)). Define

LNg :=
N∑

n=0

n∑

m=−n

cn,m(g)Y m
n .

We may approximate any operator Λ : Hs(∂Ω) → H−s(∂Ω) using Q, a matrix in

C2(N+1)2×2(N+1)2 defined by

(Λg)(xk) ≃ [Qg]k :=
N∑

n=0

n∑

m=−n

cn,m(g)(ΛY m
n )(xk), k = 1, . . . , 2(N + 1)2. (33)

From here it is clear we can write Q as

Q = Q̃A, (34)

where A : g 7→ (c0,0(g), . . . , cN,N (g)), and [Q̃]kℓ = ΛYℓ(xk), where Yℓ is the ℓ′th
spherical harmonic in the natural order. We can think of A as the matrix that takes
a point-cloud representation of a function on ∂Ω and gives the spherical harmonic
representation.

Similarly to [35], an approximation of the operator norm then takes the form

∥Λ∥s,−s ≃ sup
f

∥Qf∥C(N+1)2

∥f∥C(N+1)2

= ∥Q∥N , (35)

where [Q]ij = ⟨Λϕsn,m, ϕ−s
n′,m′⟩−s with i = n′2 +n′ +m′ +1 and j = n2 +n+m+1.

We may approximate

⟨Λϕsn,m, ϕ−s
n′,m′⟩−s = w−s(n)w−s(n

′)⟨ΛY m
n , Y m′

n′ ⟩,
≃ w−s(n)w−s(n

′)cn′,m′(ΛY m
n ). (36)

With B we denote the map that takes the matrix Q and gives the approximation
of Q defined by (36). For Λ = Λγ we denote the approximation (33), Qγ .

From (33) it is clear that to represent Λγ we need only to compute (ΛγY
m
n )(xk)

in the quadrature points xk. In this paper we compute (ΛγY
m
n )(xk) efficiently by

the boundary integral approach for piecewise constant conductivities given in [17],
an approach which despite the lack of reconstruction theory has shown to perform
well.

5.2. Noise model. We simulate a perturbation of the Dirichlet-to-Neumann map
by adding Gaussian noise to Qγ . We let

Qε
γ = Qγ + δE, (37)

where δ > 0 and the elements of the 2(N + 1)2 × 2(N + 1)2 matrix E are indepen-
dent Gaussian random variables with zero mean and unit variance. We modify E
such that BE has a first row and column as zeros, such that we may consider BE
as an approximation of a linear and bounded operator E ∈ Y . Furthermore, we
approximate ∥E∥Y using (35) and (36) and note we can specify an absolute level of
noise ∥E∥Y ≈ ε by choosing δ appropriately. The relative noise level is then

δ
∥E∥Y
∥Λγ∥Y

≈ δ
∥BE∥N
∥BQγ∥N

.
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Note the noise model in [17] scales each element of E with the corresponding element
of Qγ . Noise models for electrode data simulation typically takes the form

V ε
j = Vj + δjEj ,

as in [26], where Vj is the voltage vector corresponding to the j’th current pattern,
δj > 0 is a scaling parameter dependent on Vj and Ej is a Gaussian vector indepen-
dent of Ej′ for j ̸= j′. For our case such a noise model corresponds best to adding

to Q̃γ in (34) a matrix Ẽ whose columns are δjEj . One may check by vectorizing

AT ẼT that the corresponding E of (37) consists of independent and identically
distributed Gaussian vectors as rows. However, the elements of each row are now
correlated with covariance matrix ATdiag(δ)A.

Finally, we define the signal-to-noise ratio as

SNR =
1

(N + 1)2

N∑

n=0

n∑

m=−n

∥QγY
m
n ∥C2(N+1)2

δ∥EY m
n ∥C2(N+1)2

.

5.3. Solving the boundary integral equations. Following [17] we discretize the
perturbed boundary integral equations (15) by

[
I + (S0LN +HN

ζ )(Λε
γ − Λ1)LN

]
((ψN

ζ )ε|∂Ω) = eζ |∂Ω, (38)

where HN
ζ is the approximation of the integral operator Sζ − S0 using the Gauss-

Legendre quadrature rule of order N + 1 on the unit sphere in the aforementioned

quadrature points {xk}2(N+1)2

k=1 . We find the following result regarding the conver-
gence of the perturbed solutions (ψN

ζ )ε of (38) analogously to [16, 17].

Theorem 5.1. Suppose D < |ζ(ξ)| < − 1
6 log ε2 and E is a linear bounded operator

from Hs(∂Ω) to Ht(∂Ω) for all s ≥ 1/2 and t > s. Then for all s > 3/2, there
exists N0 ∈ N such that for all N ≥ N0 the operator I +(S0LN +HN

ζ )(Λε
γ −Λ1)LN

is invertible in Hs(∂Ω). Furthermore we have,

∥(ψN
ζ )ε − ψε

ζ∥Hs(∂Ω) ≤
C

Ns−3/2
∥eζ∥Hs(∂Ω).

Proof. The result follows from a Neumann series argument as in Lemma 3.1 and
Theorem 3.2 of [17] as for D < |ζ(ξ)| < − 1

6 log ε2, there exists a bounded inverse

(Bε
ζ)

−1 by Lemma 3.3.

This result ensures that the solutions of the discretized perturbed boundary
integral equations are unique and converge to the solutions of (15).

5.4. Choice of |ζ(ξ)| and truncation radius. It is clear from Method 3 that we
should set |ζ(ξ)| = Mp for some exponent p > 3/2. Due to the high sensitivity
of the CGO solutions with respect to |ζ(ξ)|, we may choose |ζ(ξ)| differently in
practice, although we will not necessarily have a regularization strategy in theory.
One idea of [16] is to set |ζ(ξ)| minimal in the admissible set (13), that is

|ζ(ξ)| = M√
2
.

A different idea is to choose |ζ(ξ)| independently for each ξ such that |ζ(ξ)| is

minimal with |ζ(ξ)| = |ξ|√
2
. We take the critical choice |ζ(ξ)| = K1M

3/2 for some

constant 0 < K1 < 1 to maintain the smallest |ζ| within the boundaries of the
theory.
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In practice we compute tM(ε)(ξ, ζ(ξ)) in a ξ-grid of points |ξ| ≤ M as in [17].
The Shannon sampling theorem ensures we can recover uniquely the inverse Fourier
transform if we sample densely enough. We use the discrete Fourier transform in
equidistant ξ- and x-grids in three dimensions.

ξjk = −M + k
2M

K − 1
and xjn = −xmax + n

2xmax

K − 1
,

for n, k = 0, . . . ,K − 1, j = 1, 2, 3 and some xmax determined by K and M . Indeed
the discrete Fourier transform requires

M =
π(K − 1)2

2Kxmax
.

to recover qε(xjn) for all n = 0, . . . ,K − 1, j = 1, 2, 3. In practical applications, we
do not know the noise level, in which case we choose M and K and consequently
determine xmax. Then we recover qε in an appropriate finite element mesh of the
unit ball using trilinear interpolation. The discrete Fourier transform is computed
efficiently with the use of FFT [23] with complexity O(K3 logK3).

The problem of finding the optimal truncation radius given noisy data Λε
γ is

largely open and is related to the problem of systematically choosing a regularization
parameter of regularized reconstruction for an inverse problem. In this paper, we
choose the truncation radius by inspection for the simulated data. For further
details on the implementation of the reconstruction algorithm we refer to [16, 17].

6. Numerical results. We test Method 2 as a regularization strategy. We are
interested in whether the reconstruction converges to the true conductivity distri-
bution as the noise level goes to zero, and likewise as the regularization parameter
α goes to zero for a non-noisy Dirichlet-to-Neumann map. To this end, we simulate
a Dirichlet-to-Neumann map for a well-known phantom.

6.1. Test phantom. The piecewise constant heart-lungs phantom consists of two
spheroidal inclusions and a ball inclusion embedded in the unit sphere with a back-
ground conductivity of 1. The phantom is summarized in Table 1. We compute
and represent the Dirichlet-to-Neumann map and noisy counterparts as described in
Section 5.1. In particular, the forward map is computed using 2(N +1)2 boundary
points on the unit sphere and using maximal degree N of spherical harmonics with
N = 25.

Inclusion Center Radii Axes Conductivity

Ball (−0.09,−0.55, 0) r = 0.273 2

Left spheroid 0.55(− sin( 5π12 ), cos(
5π
12 ), 0)

r1 = 0.468,
r2 = 0.234,
r3 = 0.234

(cos( 5π12 ), sin(
5π
12 ), 0),

(− sin( 5π12 ), cos
5π
12 ), 0),

(0, 0, 1)
0.5

Right spheroid 0.45(sin( 5π12 ), cos(
5π
12 ), 0)

r1 = 0.546,
r2 = 0.273,
r3 = 0.273

(cos( 5π12 ),− sin( 5π12 ), 0),
(sin( 5π12 ), cos(

5π
12 ), 0),

(0, 0, 1)
0.5

Table 1. Summary of piecewise constant heart-lungs phantom
consisting of three inclusions
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(a) (b)

Figure 1. The piecewise constant heart-lungs phantom in a three-
dimensional view (a), and in the planar cross section x3 = 0 (b).

6.2. Regularization in practice. We now consider the regularization strategy,
Method 2, in practice. Alluding to (2), we test the reconstruction algorithm by
keeping the test data fixed and varying the regularization parameter. In Figure
2, we see cross-sectional plots of reconstructed conductivities for different trun-
cation radii M = α−1. We use |ζ(ξ)| = 1

4M
3/2 as the critical choice such that

ζ(ξ) ∈ Vξ for M ≥ 8, and use the accurate Dirichlet-to-Neumann map with no
added noise. The figure shows increasing accuracy and contrast for increasing trun-
cation radii. Similar to the findings of [17], we experience failing reconstructions for
large enough truncation radii as the frequency data is dominated by exponentially
amplified noise inherent to the finite-precision representation of Λγ . This happens
since there is noise present in the representation of the Dirichlet-to-Neumann map,
no matter how accurately it represents the true infinite-precision data. We see the
effect of truncation in practice: low resolution, smaller dynamical range and more
smoothness caused by the missing high frequency data. Though not immediately
clear from this figure, the reconstructions slightly overshoot the conductivity of the
resistive spheroidal inclusions with conductivities as small as 0.38. In addition,
the reconstruction algorithm seems to work well in practice on piecewise constant
conductivity distributions.

In Figure 3, we see cross-sectional plots of reconstructed conductivities using
Dirichlet-to-Neumann maps with added noise and for fixed |ζ(ξ)| = 1

3
√
2
M3/2. Here,

K1 is chosen such that ζ(ξ) is small and admissible forM ≥ 9. The truncation radii
are chosen optimally by visual inspection. The figure shows reconstructions in the
presence of noise of levels ranging from ε = 10−6 to ε = 10−3 in the Dirichlet-
to-Neumann map. We see improving quality of reconstruction as the noise level
decreases in accordance with Definition 1. Beyond noise levels of 10−3, reconstruc-
tion is still feasible without the corruption of unstable noise, although, they need
heavy regularization and start to lack visible features of the phantom. In Figure 4,
we see the conductivity reconstruction using noisy data with ε = 10−2 correspond-
ing to approximately 1% relative noise. The resistive spheroidal inclusions start
to connect and the conductive spherical inclusion is not as accurately placed. The
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Figure 2. Cross sections (x3 = 0) of reconstructions using the
regularized reconstruction algorithm with different choices of trun-
cation radius M , K = 12 and |ζ(ξ)| = 1

4M
3/2. There is no added

noise.

remaining intensity in the signal compared to the case M = 9.7 in Figure 4 could
suggest that additional regularization is needed.

The truncation radii of reconstructions in Figure 3 and 4 chosen by visual in-
spection are plotted and compared to the theoretically predicted truncation radius
in Figure 5. This comparison suggests the prediction is somewhat pessimistic and
that the practical algorithm allows for lighter regularization in comparison to what
the theoretical estimates portend. However, the prediction and practical recon-
structions are not directly comparable, since we should pick |ζ(ξ)| = K1M

p with p
strictly larger than 3/2 according to theory. Finally, we note the noise model uti-
lized by [17] and [26] give somewhat different results compared to our unnormalized
perturbation. The results also raise the question of how practical the reconstruction
method is for more realistic data. Had we decreased the resolution of the basis of
spherical harmonics to which voltages and currents are projected, the approximation
error of highly oscillatory functions would increase. In this case we can expect to
pick the truncation radius smaller to get a stable reconstruction. Investigating the
reconstruction method for electrode data is subject to further study and is related
to [29] for the two-dimensional D-bar method and [26] for the three-dimensional
so-called texp approximation. Possible improvements to the truncation strategy
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Figure 3. Cross sections (x3 = 0) of reconstructions using the reg-
ularized reconstruction algorithm on noisy Dirichlet-to-Neumann
maps. The noise levels correspond to relative noise levels ε ≈ 0.1%
with SNR = 12 · 103 (top left), ε ≈ 0.01% with SNR = 123 · 103
(top right), ε ≈ 0.001% with SNR = 1172 · 103 (bottom left) and
ε ≈ 0.0001% with SNR = 11299 · 103 (bottom right). The param-
eters used are K = 11 and |ζ(ξ)| = 1

3
√
2
M3/2.

include extending the support of t with prior information using the forward map as
in [5]. In addition, one could experiment with a truncation by thresholding as in
[27].

7. Conclusions. In this paper we provide and investigate a regularization strat-
egy for the Calderón problem in three dimensions. The main result of the paper
is Theorem 1.1, which shows that the algorithm defined by Method 3 yields recon-
structions approximating the true conductivity, when using data corrupted by a
sufficiently small perturbation. The proof relies on a gap of the magnitude of the
complex frequency in which the existence of unique CGO solutions is guaranteed
and the noise level allows a stable and unique solution to the boundary integral
equation. The reconstructions from this strategy are regular as a result of the spec-
tral filtering. Numerical results show the regularizing behavior of the reconstruction
algorithm in practice and suggests one can utilize higher frequency information in
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Figure 4. Regularized reconstruction using noisy Dirichlet-to-
Neumann maps with ε = 10−2, which corresponds to approxi-
mately 1% relative noise and SNR = 1.17 · 103. Plot (a) shows
the cross sections x3 = 0, x2 = −0.6, x2 = −0.05 and x2 = 0.6,
whereas plot (b) shows the plane corresponding to x3 = 0. The
parameters used are M = 9, K = 11 and |ζ(ξ)| = 1
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Figure 5. The truncation radii as predicted by theory M =
(−1/11 log(ε))−1/p for p = 3/2, and the chosen truncation radii
for the noisy reconstructions of Figure 3 and 4.

the data than suggested by the theory. The reconstructions of piecewise constant
conductivity data show promise even in the case of 1% relative noise.
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Abstract. This paper considers a Bayesian approach for inclusion detection
in nonlinear inverse problems using two known and popular push-forward prior
distributions: the star-shaped and level set prior distributions. We analyze the
convergence of the corresponding posterior distributions in a small measurement
noise limit. The methodology is general; it works for priors arising from any
Hölder continuous transformation of Gaussian random fields and is applicable to
a range of inverse problems. The level set and star-shaped prior distributions
are examples of push-forward priors under Hölder continuous transformations
that take advantage of the structure of inclusion detection problems. We show
that the corresponding posterior mean converges to the ground truth in a
proper probabilistic sense. Numerical tests on a two-dimensional quantitative
photoacoustic tomography problem showcase the approach. The results highlight
the convergence properties of the posterior distributions and the ability of the
methodology to detect inclusions with sufficiently regular boundaries.

Keywords: inverse problems, Bayesian inference, inclusion detection, Gaussian prior,
posterior consistency

1. Introduction

The Bayesian approach to inverse problems has in recent decades generated consider-
able interest due to its ability to incorporate prior knowledge and quantify uncertainty
in solutions to inverse problems, see [1, 2]. A commonly recurring objective in inverse
problems for imaging science is to recover inhomogeneities or inclusions, i.e. piecewise
constant features, in a medium; applications range from cancer detection in medical
imaging [3, 4] to defect detection in material science [5, 6]. In a Bayesian framework,
this can be tackled by designing a prior distribution that favors images with these
features.

An optimization-based approach can address this by parametrizing the relevant
subset of the image space and minimizing a functional over the preimage of this
parametrization, see for example [7]. This is visualized in Figure 1, where we consider

‡ Corresponding author
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the parametrization Φ defined on a linear space Θ and giving rise to the subset Φ(Θ)
of the image space

L2
Λ(D) = {γ ∈ L2(D) : Λ−1 ≤ γ ≤ Λ a.e.},

where D is a bounded and smooth domain in Rd, d = 2, 3 and Λ > 0 is a constant.
Such approaches benefit computationally from the fact that the set of images with
inclusions, i.e. Φ(Θ), form a low-dimensional subset of the image space L2

Λ(D). In
the Bayesian framework, a related approach makes use of a push-forward distribution
as the prior distribution, i.e. the distribution of a transformed random element of Θ.
This often leads to strong a priori assumptions, as the prior only gives mass to the
range of the parametrization. More classical prior distributions including Laplace-
type priors, see for example [8], and other heavy-tailed distributions often fail to take
advantage of the low dimension of such images.

In this paper, we consider a Bayesian approach that captures this idea for two
parametrizations used in detection of inclusions for nonlinear inverse problems: the
star-shaped set and level set parametrizations. These parametrizations are studied
rigorously in [9, 10, 11] and remain popular to Bayesian practitioners: we mention
[1, 12, 13, 14, 15, 16] in the case of the star-shaped inclusions and [17, 18, 19, 20, 12, 21]
for the level set inclusions, see also references therein.

The solution to the inverse problem in the Bayesian setting is the conditional
distribution of the unknown given data, referred to as the posterior distribution.
The posterior distribution has proved to be well-posed in the sense of [2] for such
parametrizations. This means that the posterior distribution continuously depends
on the data in some metric for distributions. This property implies, for example, that
the posterior mean and variance are continuous with respect to the data, see [8]. How-
ever, such results give no guarantee as to where the posterior distribution puts its mass.

A more recent framework provided in [22] using ideas from [23], see also [24],
gives tools to analyze the convergence of the posterior distribution for nonlinear in-
verse problems. Such results, known as ‘posterior consistency’, address whether the
sequence of posterior distributions arising from improving data (in a small noise or
large sample size limit) gives mass approximating 1 to balls centered in the ground true
parameter γ0 generating the data. Nonlinearity in the forward map and parametriza-
tion makes consistency results for Gaussian posterior distributions, as in [25], inappli-
cable. Currently, the setting of [22] and similar approaches require smoothness of the
parameter of interest. A crucial condition is that the parameter set that is given most
of the mass by the prior, has small ‘complexity’ in the sense of covering numbers, see
[23, Theorem 2.1] or [24, Theorem 1.3.2]. Using Gaussian priors, this parameter set is
typically a closed Sobolev or Hölder norm ball, see [24, Theorem 2.2.2] or [22]. How-
ever, such priors do not give sufficient mass to discontinuous parameters to conclude
consistency. In this paper, we aim to address this, at least partially, by parametrizing
the set of discontinuous parameters from a linear space Θ of sufficiently smooth func-
tions.

We aim to recover an element γ, which we call the image or the physical parame-
ter, in a subset Φ(Θ) of L2

Λ(D) for some continuous map Φ : Θ → L2
Λ(D). We consider

a nonlinear forward map G : L2
Λ(D) → Y mapping into a real separable Hilbert space
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Θ L2
Λ

Φ(Θ)

γ

θ
Φ

Y

G

Figure 1: A visiualization of the parametrization Φ : Θ → L2
Λ(D) and forward map

G : L2
Λ(D) → Y.

Y with inner product ⟨·, ·⟩ and norm ∥·∥. We refer again to Figure 1 for an overview of
this setup. This setting allows us to make use of the framework provided in [22], but
transfer the complexity condition from subsets of L2

Λ(D) to subsets of Θ, see Section
3.2. In the context of inclusion detection, this means we can detect inclusions with
sufficiently smooth boundaries.

Our contributions can be summarized as follows:

• We present a posterior consistency result for the general setting mentioned above,
when the parametrization Φ satisfies mild conditions in regularity. We use the
framework provided by [22] extending to Hölder continuous G and push-forward
priors. In particular, this gives an estimator, the posterior mean, which converges
in probability to the true physical parameter in the small noise limit. Formally,
this means there is an algorithm γ̂ defined for noisy measurements Y depending
on the noise level ε > 0 such that

∥γ̂(Y )− γ0∥L2(D) → 0

in probability as ε → 0. This statement will be made precise in Section 2.
Furthermore, the rate of convergence is determined in part by the smoothness of
elements in Θ and the regularity of the parametrization.

• We show that two parametrizations for inclusion detection, a star-shaped
set parametrization and a smoothened level set parametrization, satisfy the
conditions for this setup. This verifies and quantifies the use of such
parametrizations.

• We numerically verify the approach based on the two parametrizations in a
small noise limit for a nonlinear PDE-based inverse problem using Markov chain
Monte Carlo (MCMC) methods. We consider a two-dimensional quantitative
photoacoustic (QPAT) problem of detecting an absorption coefficient. We derive
a new stability estimate following [26, 27].

We note that the framework of [22] in e.g. [28] and [29] shows consistency for ‘reg-
ular link functions’ Φ (defined in [30]), which are smooth and bijective. The archetypal
example is Φ = exp or a smoothened version to ensure positivity of the physical pa-
rameter γ. As we shall see, injectivity and inverse continuity are not necessary for the
proofs when we want to show consistency in L2

Λ(D). One novelty of our work is to
show that this observation has relevance: we seek to recover the physical parameter γ
instead of a non-physical parameter in Θ that generated it. As we shall see, a natural
parametrization for star-shaped inclusions is Hölder continuous from a suitable space
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Θ to L2
Λ(D). The same holds true for a smoothened level set parametrization, which

we will encounter in Section 4.2.

The structure of the paper can be summarized as follows. In Section 2, we recall
a few key elements of the Bayesian framework in a ‘white noise’ model as outlined
in [2] and [31, Section 7.4], including the notion of posterior consistency with a rate.
In Section 3, we show that Hölder continuity of Φ, some smoothness of elements in
Φ(Θ) and conditional continuity of G−1, suffice to show that the posterior mean con-
verges to the ground truth γ0 in L2(D) as the noise goes to zero. Section 4 considers
these conditions for the level set and star-shaped set parametrizations, which are well-
known in the literature. In Section 5, we consider the two-dimensional quantitative
photoacoustic tomography problem suited for piecewise constant parameter inference.
Then, Section 6 gives background to our numerical tests and results that emulate the
theoretical setting of Section 3. We present conclusive remarks in Section 7.

In the following, we let random variables be defined on a probability space
(Ω,F ,Pr). For a metric space Z1 the Borel σ-algebra is denoted by B(Z1). If
F : Z1 → Z2 is a measurable map between the measure space (Z1,B(Z1),m) and the
measurable space (Z2,B(Z2)), then Fm denotes the push-forward measure defined by
Fm(B) = m(F−1(B)) for all B ∈ B(Z1). We denote by L2(Ω,Pr) the space of real-
valued square integrable measurable functions from (Ω,F ,Pr) to (R,B(R)). When Pr
is the Lesbegue measure on R, we simply write L2(Ω). We call probability measures
defined on B(Z1) Borel distributions.

2. The Bayesian approach to inverse problems

Bayesian inference in inverse problems centers around a posterior distribution. This
is formulated by Bayes’ rule once a prior distribution in L2

Λ(D) has been specified
and the likelihood function has been determined by the measurement process. In this
paper, we consider a ‘continuous’ model of indirect observations

Y = G(γ) + εnξ, (1)

for a continuous forward map G : L2
Λ(D) → Y, where the separable Hilbert space Y

has an orthonormal basis {ek}∞k=1. Here ξ is ‘white noise’ in Y defined below in (4).
We denote the noise level by εn := σ√

n
for some σ > 0 and n ∈ N, which has this

convenient form to study a countable sequence of posterior distributions in decreasing
noise, i.e. for growing n. When we write Y , it is understood that this depends on n
and γ. The rate n−1/2 is natural: if Y is a subspace of Hölder continuous functions on
a bounded domain, this observation model is equivalent to observing n discrete point
evaluations of G(γ) with added standard normal noise as n → ∞, see [31] and [32,
Section 1.2.3].

Given a Borel prior distribution Π on L2
Λ(D), the posterior distribution Π(·|Y )

is proportional to the product of the likelihood and prior. Indeed, according to
Bayes’ rule, if Y is finite-dimensional, the posterior distribution has a density (Radon-
Nikodym derivative) of the form

dΠ(·|y)
dΠ

(γ) =
1

Z
exp

(
− 1

2ε2n
∥G(γ)− y∥2

)
, ∀y ∈ Y
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where Z > 0 is a constant, see for example [8, 33]. This is well-defined for almost all
y under the marginal distribution of Y . The relevance of this object emerges, when
evaluating it in a realization Y (ω) = y. Using inner product rules we can rewrite this
as

Π(B|Y ) =
1

Z

∫

B

exp

(
1

ε2n
⟨Y,G(γ)⟩ − 1

2ε2n
∥G(γ)∥2

)
Π(dγ), B ∈ B(L2

Λ(D)), (2)

where the contribution of Y is absorbed in the constant Z > 0. The purpose of the
following paragraphs is to argue that this formula remains valid, when Y is infinite-
dimensional with the interpretation that ⟨Y,G(γ)⟩ is a Gaussian random variable
defined by

⟨Y, y⟩ := ⟨G(γ), y⟩+ εnW (y), (3)

where W is a white noise process on Y satisfying E[W (y)] = 0 and E[W (y)W (y′)] =
⟨y, y′⟩, see [32][Example 2.1.11]. To this end, let

ξ :=
∞∑

k=1

ξkek, ξk
i.i.d.∼ N(0, 1), (4)

which is convergent in Y− in the mean square sense, see [8, Section 2.4], where Y− is
the Hilbert space Y−, see also [31, Section 7.4], defined by

Y− :=

{
f =

∞∑

k=1

fkek : ∥f∥2− :=
∞∑

k=1

λ2kf
2
k <∞

}

for λk > 0 and {λk}∞k=1 ∈ ℓ2. Note ξ is a Gaussian random element of Y−, since
it is the Karhunen-Loeve expansion of a mean zero Gaussian random element with
covariance operator K : Y− → Y− defined by Kek = λ2kek, see [8]. Then Y is also
a Y−-valued Gaussian random element, since it is a translation of εnξ by an element
in Y. We denote the distributions of εnξ and Y in Y− by Pn and P γ

n , respectively.
We can think of P γ

n as the data-generating distribution indexed by γ, the physical
parameter generating the data, and n, which controls the noise regime.

The likelihood function arises as the density (Radon-Nikodym derivative) of P γ
n

with respect to Pn. This is a consequence of the Cameron-Martin theorem in the
Hilbert space Y. The theorem gives the likelihood function as

pγn(Y ) :=
dP γ

n

dPn
(Y ) = exp

(
1

ε2n
⟨Y,G(γ)⟩ − 1

2ε2n
∥G(γ)∥2

)
,

here evaluated in Y , see [32][Proposition 6.1.5]. See also a derivation in [31, Section
7.4], for which it suffices that γ 7→ G(γ) is continuous from (the standard Borel space)
L2
Λ(D) with the L2(D)-topology into Y.

Then Bayes’ rule [33, p. 7] formulates a posterior distribution as a measure
in L2

Λ(D) as in the right-hand side of (2), well-defined for almost all Y . According
to [33], this equals almost surely a Markov kernel, which we will call the posterior
distribution and also denote it by Π(·|Y ). That is to say that B 7→ Π(B|Y (ω)) is a
measure for every ω ∈ Ω and ω 7→ Π(B|Y (ω)) is measurable for every B ∈ B(L2

Λ(D)).
In particular, ω 7→ Π(B|Y (ω)) is a [0, 1]-valued random variable.
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Convergence in probability In preparation for the subsequent section, we recall the
notion of convergence in probability. Let tn > 0 be a decreasing sequence going to
zero. For a fixed γ0 ∈ L2

Λ(D) and a sequence of measurable functions fn : Y− → R
we say that the sequence of random variables {fn(Y )}∞n=1 converges to υ ∈ R in
P γ0
n -probability with rate tn as n→ ∞ if there exists a constant C > 0 such that

P γ0
n (y ∈ Y− : |fn(y)− υ| ≤ Ctn) → 1, (5)

as n→ ∞. We consider the following two cases, where we recall that both the posterior
distribution and Y depend tacitly on n.

(i) For a sequence of sets {Bn}∞n=1 in B(L2
Λ(D)), we could claim that

Π(Bn|Y ) → 1 in P γ0
n -probability,

with rate tn as n→ ∞. That is, fn(Y ) = Π(Bn|Y ) and υ = 1. If this is the case
for Bn := {γ : ∥γ − γ0∥L2(D) ≤ C0rn} for some decreasing sequence rn > 0 going
to zero and constant C0 > 0, we say that the posterior distribution contracts
around or is consistent in γ0 at rate rn.

(ii) Denote by E[γ|Y ] the mean (‘posterior mean’) with respect to Π(·|Y ). This is
defined in the sense of a Bochner integral,

E[γ|Y ] :=

∫

L2
Λ(D)

γΠ(dγ|Y ),

which is well-defined by [34, Theorem 2], since for all ω ∈ Ω
∫

L2
Λ(D)

∥γ∥L2(D) dΠ(dγ|Y (ω)) ≤ Λ
√

vol(D) <∞.

Then ω 7→ E[γ|Y (ω)] is an L2(D)-valued random element by the definition of
the Bochner integral and by the measurability of pointwise limits of measurable
functions, see [35, Theorem 4.2.2]. We could claim that

∥E[γ|Y ]− γ0∥L2(D) → 0 in P γ0
n -probability,

with rate tn as n→ ∞. That is, fn(Y ) = ∥E[γ|Y ]− γ0∥L2(D) and υ = 0.

2.1. Posterior consistency

In this section we recall sufficient conditions posed in [22], see also [24], such that the
posterior distribution in our specific setup is consistent. More specifically, we recall
for which ground truths γ0 ∈ L2

Λ(D), forward models G and prior distributions Π

Π(γ : ∥γ − γ0∥L2(D) ≤ Cr̃n|Y ) → 1 in P γ0
n -probability, (6)

as n → ∞ for some positive decreasing sequence r̃n going to zero. A consequence
of this result, under additional assumptions on the prior, is that the posterior mean
converges to γ0 in P γ0

n -probability, see [24, Theorem 2.3.2] or [33, Theorem 8.8],

∥E[γ|Y ]− γ0∥L2(D) → 0 in P γ0
n -probability, (7)

with rate rn as n→ ∞. This is the case of (ii) above. In the nonlinear inverse problem
setting, posterior consistency in the sense of (6) follows from a two-step procedure with
the use of conditional stability estimates.
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Step 1 The first step reduces convergence of {Π(B̃n|Y )}∞n=1 from sets of the form

B̃n = {γ ∈ L2
Λ(D) : ∥γ − γ0∥L2(D) ≤ Cr̃n}

to sets of the form

Bn = {γ ∈ L2
Λ(D) : ∥G(γ)− G(γ0)∥ ≤ Crn, γ ∈ An}.

Indeed, for specially chosen subsets An ⊂ L2
Λ(D) which may depend on n,

assume we have the estimate

∥γ1 − γ2∥L2(D) ≤ ∥G(γ1)− G(γ2)∥ν , (8)

for all γ1, γ2 ∈ An and some ν > 0. Then Bn ⊂ B̃n and hence

Π(Bn|Y ) ≤ Π(B̃n|Y ), (9)

where r̃n = rνn.

Step 2 The second step involves showing that Π(Bn|Y ) converges to 1 in P γ0
n -

probability as n→ ∞. This is posterior consistency on the ‘forward level’.

Combining Step 1 and Step 2, we find that Π(B̃n|Y ) converges to 1 in P γ0
n -

probability as n → ∞. The ‘conditional’ stability estimate of the first step is of
independent interest for many inverse problems in literature and usually requires an
in-depth analysis of the inverse problem at hand. In this paper we treat first (8)
as an assumption, see Condition 2. Although any modulus of continuity will do for
the first step in this two-step procedure, for our concrete example in photoacoustic
tomography we will show a Lipschitz stability estimate that holds for all γ ∈ L2

Λ(D),
see Section 5. Our main motivation for including An in the analysis is to keep the
exposition generally applicable.

One of the contributions of [22, 24] is to address Step 2 for a random design
regression observation model using Theorem 2.1 in [23] and the equivalence between
the distance (semi-metric)

dG(γ1, γ2) := ∥G(γ1)− G(γ2)∥
and the Hellinger distance, see [24], of the data-generating distributions (corresponding
to our pγn). Theorem 28 in [31], see also [32, Theorem 7.3.5], adapts the proof to the
observation model (1), which is what we will use. One can see this second step as
showing posterior consistency in G(γ0) at rate rn for the push-forward GΠ(·|Y ) as in
[36]. Below, we use the covering number N(A, d, ρ) for a semimetric d, which denotes
the minimum number of closed d-balls of radius ρ > 0 needed to cover A, see Appendix
A for a precise definition. Then the condition to complete Step 2 is as follows.

Condition A. Let Π = Πn be a sequence of prior distributions in L2
Λ(D). Let G be

the forward model G : L2
Λ(D) → Y and γ0 ∈ L2

Λ(D) the ground truth. Let rn satisfy
rn = n−a for some 0 < a < 1/2. Suppose that,

A.1 the prior gives enough mass to contracting balls BG(γ0, rn) := {γ : dG(γ, γ0) ≤
rn}.

Π(BG(γ0, rn)) ≥ e−C1nr
2
n , C1 > 0, (10)

A.2 there exist sets An that are almost the support of Π in the sense that

Π(L2
Λ(D) \An) ≤ e−C2nr

2
n , C2 > C1 + 4, (11)

A.3 and that there exists a constant m0 > 0 such that

logN(An, dG ,m0rn) ≤ C3nr
2
n, C3 > 0, (12)



Consistent reconstruction of inclusions 8

all for n large enough.

Condition A.1 is a sufficient condition such that the denominator of the posterior
distribution cannot decay too fast as n → ∞. This is helpful when showing
Π(Bc

n|Y ) → 0 in P γ0
n -probability as n → ∞. On the other hand Condition A.2

and A.3 are conditions that give control over the numerator in a sense that is made
precise in the proof of Theorem 2.1 in [23] (or for example Theorem 28 in [31]). It
is also a trade-off; the sets An should be large enough such that they are almost
the support of the prior, but small enough such that the covering number increases
sufficiently slowly when n → ∞. In the general case, Step 2 is completed by the
following result proved in Appendix B.

Theorem 2.1. Let Π(·|Y ) be the sequence of posterior distributions arising for the
model (1) with γ0 ∈ L2

Λ(D), G and prior distributions Π = Πn satisfying Condition A
for some rate rn. Then, there exists C0 = C0(C2, C3,m0, σ) such that

Π(BG(γ0, C0rn) ∩An|Y ) → 1 in P γ0
n -probability, (13)

with rate e−bnr2n for all 0 < b < C2 − C1 − 4 as n→ ∞.

Given the preceding result, we can conclude posterior consistency in γ0 at rate
r̃n as in Step 1, if we have a conditional stability estimate as (8).

2.2. Markov chain Monte Carlo

While Section 2.1 concludes in an abstract way the usefulness of the posterior
distribution, in this section we briefly recall methods to approximate it. We consider
MCMC methods that approximate E[γ|Y ] (or other statistics) from averages of
samples from a Markov chain that has the posterior distribution as its stationary
distribution. Since the composition G ◦Φ maps Θ into Y continuously by assumption,
given a prior distribution Πθ in Θ, there exists a posterior distribution Πθ(·|Y ) in Θ
of the form

Πθ(B|Y ) :=
1

Z

∫

B

exp

(
1

ε2n
⟨Y,G(Φ(θ))⟩ − 1

2ε2n
∥G(Φ(θ))∥2

)
Πθ(dθ), B ∈ B(Θ). (14)

Naturally, if Π = ΦΠθ, then by a change of variables

Π(·|Y ) = ΦΠθ(·|Y ),

see for example [36, Theorem B.1], i.e. θ ∼ Πθ(·|Y ) implies Φ(θ) ∼ Π(·|Y ). This gives
rise to the following ‘high-level’ algorithm: given a realization y ∈ Y− of Y ,

1. choose θ(0) ∈ Θ and K > 0,

2. generate {θ(k)}Kk=1 in Θ using θ(0) as initial condition with an MCMC method
targeting Πθ(·|y), and

3. return {Φ(θ(k))}Kk=1.

For our numerical examples, we use the preconditioned Crank-Nicolson (pCN) MCMC
method, see [37]. This method uses only single evaluation of the log-likelihood function
every iteration and is hence attractive for expensive PDE-based forward maps. It is
well-defined when Θ is a Hilbert space and possesses favorable theoretical properties,
see [37, 38]. The idea to generate samples from Π(·|y) by pushing forward samples
also appears in certain reparametrizations of posterior distributions for the use of
hyperparameters, see [39].
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3. Posterior consistency using parametrizations

In this section, we follow [22, 24] in their approach to satisfy Condition A. In the
case where Π = ΦΠθ for Πθ Gaussian and G ◦ Φ Lipschitz continuous, the approach
is the same. We give a brief recap for the case where G ◦ Φ is Hölder continuous for
the convenience of the reader. We tackle this by introducing three new conditions
convenient for an inverse problem setting. We oppose this to Condition A, which is
general and applicable in many statistical inference problems. As our base case, we
assume Θ = Hβ(X ), where X is either the d′-dimensional torus or a bounded Lipschitz
domain X ⊂ Rd′

, d′ ≥ 1 and β > d′/2. We include here the torus in our considerations,
since it is a numerically convenient setting. For more general parametrizations for
inclusion detection, we shall need small deviations from this setting. However, these
cases will take the same starting point of Hβ(X ) in Section 4. We begin by stating
conditions on Φ, G and Π so that Condition A is satisfied. To do this, we introduce
the following subset of Θ.

Sβ(M) = {θ ∈ Θ : ∥θ∥Hβ(X ) < M}.
We then require the following conditions of Φ.

Condition 1 (On the parametrization Φ). For any θ1, θ2 ∈ Sβ(M) for some M > 0,
let

∥Φ(θ1)− Φ(θ2)∥L2(D) ≤ CΦ∥θ1 − θ2∥ζL∞(X ) (15)

for some constant CΦ(M) > 0 and 0 < ζ <∞.

That is, we require at least conditional Hölder continuity of the parametrization
map Φ. The L∞(X ) topology is not necessary for what follows and can be generalized
to any Lp, p ≥ 1 or Hs-norm, s < β. Similarly, we require conditional forward and
inverse Hölder continuity of the forward map G.
Condition 2 (On the forward map G). For any γ1, γ2 ∈ Φ(Sβ(M)), let

∥G(γ1)− G(γ2)∥ ≤ CG∥γ1 − γ2∥ηL2(D)

for some constants CG(M) > 0 and 0 < η <∞. In addition, let

∥γ1 − γ2∥L2(D) ≤ f(∥G(γ1)− G(γ2)∥),
for some increasing function f : R → R, which is continuous at zero with f(0) = 0.

We have the following condition on the prior distributions Π we consider. They
should be push-forward distributions of a scaled Gaussian prior distribution in Θ.

Condition 3 (Prior Π). Let Π′
θ be a centred Gaussian probability measure on Hβ(X ),

β > d′/2, with Π′
θ(H

β(X )) = 1. Let the reproducing kernel Hilbert space (RKHS), see
[33], (H, ∥ · ∥H) of Π′

θ be continuously embedded into Hδ(X ) for some δ > β. Then
Πθ is the distribution of

θ = na−
1
2 θ′, θ′ ∼ Π′

θ (16)

for a as in Condition A. Then let Π = ΦΠθ.

This gives the following structure

H ⊂ Hδ(X ) ⊂ Hβ(X ) = Θ. (17)

If one chooses for example a Matérn covariance, see [40], such that Π′
θ(H

β(X )) = 1,
then H = Hδ(X ) with δ = β + d′/2, see Example 11.8 and Lemma 11.35 in [33] or
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[24, Theorem 6.2.3]. The scaling in (16) essentially updates the weight of the prior
term to go slower to zero. Indeed, dividing through by the factor ε−2

n appearing in the
data-misfit term, the prior term scales as ε2nn

1−2a ∼ r2n. This term play the role of the
‘regularization parameter’ in [41]. Note that limn→∞ rn = 0 and limn→∞ ε2n/r

2
n = 0,

as is needed for the convergence of Tikhonov regularizers for example, see [41, Theorem
5.2]. The scaling (16) is also common in the consistency literature, see for example
[22]. In our setting, it ensures that samples are with high probability in a totally
bounded set An, as was called for in Condition A.2 and A.3. We note for β > d′/2
that Π′

θ is also a Gaussian measure on the separable Banach space C(X ) endowed
with the usual supremum norm ∥f∥∞ := supx∈X |f(x)|. This is a consequence of a
continuous Sobolev embedding and [42, Exercise 3.39].

Under Condition 1, 2 and 3, the lemmas in the subsequent sections ensure that
Condition A is satisfied. Then we have the following theorem for posterior consistency
at γ0 ∈ Φ(H) using the push-forward prior Π = ΦΠθ for Πθ a Gaussian distribution
satisfying Condition 3.

Theorem 3.1. Suppose Condition 1, 2 and 3 are satisfied for β > d′/2, and
γ0 ∈ Φ(H). Let Π(·|Y ) be the corresponding sequence of posterior distributions arising
for the model (1). Then there exists C0 > 0 such that

Π(∥γ − γ0∥L2(D) ≤ f(C0rn)|Y ) → 1 in P γ0
n -probability,

where rn = n−a with

a =
ηζδ

2ηζδ + d′
. (18)

The rate of convergence in probability is e−bnr2n for any b > 0 choosing C0 > 0 large
enough.

Proof. Note first that Lemma 3.4 shows that Condition A.1 is satisfied for some
C1 = C1(CΦ, CG , ζ, η, d′, δ, θ0,Π′

θ). Given b > 0, Lemma 3.2 states that we can
choose M > C(C2,Π

′
θ, δ, d

′) such that Condition A.2 is satisfied and 0 < b <
C2 − C1 − 4. For this choice of M , Lemma 3.3 gives m0 = m0(CΦ, CG , ζ, η,M)
and C3 = C3(δ,M, d′,X ) such that Condition A.3 is satisfied. Then, by Theorem 2.1,
there exists C0(C2, C3,m0)

Π(BG(γ0, C0rn) ∩An|Y ) → 1 in P γ0
n -probability,

with rate e−bnr2n as n→ ∞. Then the wanted result is a consequence of (9).

Posterior consistency with a rate as in the preceding theorem often leads to
the convergence of related estimators with the same rate, see [33]. Here, we repeat
an argument found in [24] to conclude that the posterior mean converges in P γ0

n -
probability to γ0 as n→ ∞.

Corollary 1. Under the assumptions of Theorem 3.1, the posterior mean E[γ|Y ] in
L2(D) satisfies for some constant C > 0 large enough

∥E[γ|Y ]− γ0∥L2(D) → 0 in P γ0
n -probability

with rate f(Crn) as n→ ∞.
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Proof. The proof of Theorem 2.3.2 in [24] applies here, since Φ maps into L2
Λ(D) by

assumption and hence
∫

L2
Λ(D)

∥γ − γ0∥2L2(D) Π(dγ) =

∫

Θ

∥Φ(θ)− Φ(θ0)∥2L2(D) Πθ(dθ) ≤ 4Λ2|D|.

3.1. Excess mass condition A.2

To motivate more precisely the scaling of the prior and the form of An, we recall [22,
Lemma 5.17]:

Π′
θ(∥θ′∥Hβ(X ) > M) ≤ e−CM2

,

for all M large enough and some fixed C > 0 depending on Π′
θ. Then

Πθ(∥θ∥Hβ(X ) > M) = Π′
θ(∥θ′∥Hβ(X ) > Mn1/2−a) ≤ e−CM2n1−2a

= e−CM2nr2n . (19)

Hence, Πθ charges Sβ(M) with sufficient mass in relation to Condition A.2. However,
we can consider a smaller set with the same property. Define

An := Φ(Θn), Θn := {θ = θ1 + θ2 : ∥θ1∥∞ ≤Mr̄n, ∥θ2∥H ≤M} ∩ Sβ(M), (20)

for r̄n := r
1
ηζ
n .

Lemma 3.2. If Condition 3 is satisfied and rn = n−a for

a =
ηζδ

2ηζδ + d′
, (21)

then condition A.2 is satisfied for An defined by (20).

Proof. [24, Theorem 2.2.2 and exercise 2.4.4] shows that for M > C(C2,Π
′
θ, δ, d

′)

Πθ(Θ \Θn) ≤ e−C2nr
2
n ,

for any given C2 > 0, since (r̄nn
1/2−a)−b = nr2n for b = 2d′/(2δ − d′). Then,

Π(L2
Λ(D) \An) = Πθ(Φ

−1(L2
Λ(D) \An)),

= Πθ(Θ \Θn) ≤ e−C2nr
2
n , (22)

as follows from (19).

3.2. Metric entropy condition A.3

Now we show that the sets on the form An defined by (20) satisfy Condition A.3.
This is straight-forward, when Φ is Hölder continuous by Lemma A.1. We also recall
that an upper bound on the covering number of Sobolev norm balls is well-known, see
Lemma A.2.

Lemma 3.3. Suppose Condition 1 and 2 are satisfied. Then Condition A.3 is satisfied
for An as in (20) and a as in (21).
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Proof. Define for θ′ ∈ C(X ) and ρ > 0 the norm ball B∞(θ′, ρ) := {θ ∈ C(X ) :
∥θ − θ′∥∞ ≤ ρ} and denote by B∞(ρ) the ball centered in θ′ = 0. Recall (20), for
which we note Θn ⊂ (B∞(Mr̄n) + Sδ(CM)) ∩ Sβ(M) for some constant C > 0 by
Condition 3. Then applying Lemma A.3 for ρ = rn

N(Θn, ∥ · ∥∞, 2Mrn) ≤ N(Sδ(CM), ∥ · ∥∞,Mrn),

Now using Lemma A.1 (i) and the Hölder continuity of G ◦ Φ on Sδ(M), there exists
a constant m0 = m0(η, ζ, CΦ, CG ,M) such that for any n > 0 large enough,

logN(An, dG ,m0rn) ≤ logN(Θn, ∥ · ∥∞, 2Mr̄n),

≤ logN(Sδ(CM), ∥ · ∥∞,Mr̄n),

≤ C3r̄
− d′

δ
n = C3nr

2
n, (23)

where C3 = C3(δ,M, d′, C,X ) and where we used Lemma A.2 and (21).

3.3. Small ball condition A.1

In this section, we consider the strong assumption that γ0 ∈ Φ(H). We refer the
reader to [43] for a more general case where θ0 is only in the closure of H in Θ.
However, this extension is not immediately compatible with the scaling (16). What
follows in this section is based on the work [24]. We extend this to the case of Hölder
continuous maps G ◦Φ in a straight-forward manner. Below we need the scaled RKHS
Hn := na−1/2H = {na−1/2h : h ∈ H}, see Condition 3, with norm

∥h∥Hn
= n1/2−a∥h∥H.

This is the RKHS associated with Πθ, see [42] or [32, Exercise 2.6.5].

Lemma 3.4. Let Π satisfy Condition 3 and let γ0 = Φ(θ0) for some θ0 ∈ H. If
Condition 1 and 2 are satisfied, then Condition A.1 is satisfied for a as in (21).

Proof. For R > 0 large enough depending on θ0 and Π′
θ, we have by Condition 1 and

2,

{θ ∈ Θ : dG(Φ(θ),Φ(θ0)) ≤ rn}
⊃ {θ ∈ Θ : dG(Φ(θ),Φ(θ0)) ≤ rn} ∩ Sβ(R),

⊃ {θ ∈ Θ : ∥Φ(θ)− Φ(θ0)∥L2(D) ≤ Cr1/ηn , ∥θ∥Hβ(X ) ≤ R}
⊃ {θ ∈ Θ : ∥θ − θ0∥∞ ≤ Cr̄n, ∥θ − θ0∥Hβ(X ) ≤ R̃}, (24)

where C = C(η, ζ, CG , CΦ, R) and R̃ = R−∥θ0∥Hβ(X ), and where we used the triangle

inequality. Note also Π̃θ(·) = Πθ(·+θ0) is a Gaussian measure in the separable Hilbert
space Hβ(X ). In addition, a closed norm ball in Hβ(X ) is a closed subset of Hβ(X )
and so is {θ ∈ Hβ(X ) : ∥θ∥∞ ≤ Crn} by a Sobolev embedding. Then we can apply
the Gaussian correlation inequality [24, Theorem 6.2.2] to (24) so that

Πθ(dG(Φ(θ),Φ(θ0)) ≤ rn) ≥ Πθ(∥θ − θ0∥∞ ≤ Crn, ∥θ − θ0∥Hβ(X ) ≤ R̃),

= Π̃θ(∥θ∥∞ ≤ Crn, ∥θ∥Hβ(X ) ≤ R̃),

≥ Π̃θ(∥θ∥∞ ≤ Cr̄n)Π̃θ(∥θ∥Hβ(X ) ≤ R̃). (25)
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To each of the factors in the right-hand side of (25) we apply [32, Corrollary 2.6.18]
to the effect that for large n

Πθ(dG(Φ(θ),Φ(θ0)) ≤ rn)

≥ e−∥θ0∥2
HnΠθ(∥θ∥∞ ≤ Cr̄n)Πθ(∥θ∥Hβ(X ) ≤ R̃),

≥ e−C′n1−2a

Π′
θ(∥θ′∥∞ ≤ Cr̄nn

1/2−a),

for C ′ = C ′(θ0,Π′
θ) using also that Πθ(∥θ∥Hβ(X ) ≤ R̃) ≤ 1/2 for R large enough as

follows from (19). The rest of the argument follows [28, Lemma 11] and uses [44,
Theorem 1.2], see also Lemma A.2, and the continuous embedding H ⊂ Hδ(X ) to
conclude

Π′
θ(∥θ′∥∞ ≤ Cr̄nn

1/2−a) ≥ e−C′′(r̄nn
1/2−a)−b

,

= e−C′′nr2n

with C ′′ = C ′′(C,C ′) and b = 2d′

2δ−d′ , which fits the choice (21) of a.

4. Parametrizations for inclusions

In this section, we make use of Theorem 3.1 for two specific parametrizations suited for
inclusion detection: a star-shaped set parametrization and a level set parametrization.
These are parametrizations on the form

Φ(θ) =
N∑

i=1

κi1Ai(θ) (26)

for some Lebesgue measurable subsets Ai(θ) of Rd and constants κi > 0 for
i = 1, . . . ,N , which we denote collectively as κ = {κi}Ni=1. Since we consider
parametrizations that map into L2

Λ(D), we will implicitly consider Φ(θ) as the
restriction of the right-hand side of (26) to D. Note that recovering parameters on
this form requires that we know a priori the parameter values κi. However, this could
further be modelled into the prior. In the following, we construct Ai(θ) as star-shaped
sets and level sets.

4.1. Star-shaped set parametrization

We start by considering the parametrization for a single inclusion, i.e. N = 1.
For simplicity of exposition, we consider the star-shaped sets in the plane, although
it is straight-forward to generalize to higher dimensions. Let φ be a continuously
differentiable 2π-periodic function. We can think of θ : T → R as a function defined
on the 1-dimensional torus T := R/2πZ. The boundary of the star-shaped set is a
deformed unit circle: for a point x in D it takes for v(ϑ) := (cosϑ, sinϑ) the form

∂A(θ) = x+ {exp(θ(ϑ))v(ϑ), 0 ≤ ϑ ≤ 2π},
Then we write

A(θ) = x+ {s exp(θ(ϑ))v(ϑ), 0 ≤ s ≤ 1, 0 ≤ ϑ ≤ 2π}. (27)

Let κ1, κ2 > 0 and define

Φ(θ) := κ11A(θ) + κ2. (28)

We have the following conditional continuity result, where we for simplicity fix x ∈ D.
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Lemma 4.1. Let θ1, θ2 ∈ Hβ(T) and ∥θi∥Hβ(T) ≤M with β > 3/2 for i = 1, 2. Then

∥Φ(θ1)− Φ(θ2)∥L2(D) ≤ C∥θ1 − θ2∥1/2L∞(T),

where C only depends on M and κ1.

Proof. By the translation invariance of the Lebesgue measure, it is sufficient to bound
the area of the symmetric difference A(θ1)∆A(θ2) := (A(θ1) \A(θ2))∪ (A(θ2) \A(θ1))
for x = 0. We parameterize this planar set using K : [0, 1]× [0, 2π] → R2, defined by

K(s, ϑ) = [s exp(θ1(ϑ)) + (1− s) exp(θ2(ϑ))]v(ϑ).

Note that ∥θi∥Hβ(T) ≤ M implies ∥θi∥C1(T) ≤ CM by a continuous Sobolev
embedding. We have

∂K

∂s
(s, ϑ) = [exp(θ1(ϑ))− exp(θ2(ϑ))]v(ϑ),

∣∣∣∣
∂K

∂ϑ
(s, ϑ)

∣∣∣∣ ≤ C(M),

and the well-known change of variables formula,

vol(A(θ1)∆A(θ2)) =

∫ 1

0

∫ 2π

0

|JK(s, ϑ)| dϑ ds,

≤ C(|(∂sK(s, ϑ))1||(∂ϑK(s, ϑ))2|+ |(∂sK(s, ϑ))2||(∂ϑK(s, ϑ))1|),
≤ C(M)|eθ1(ϑ) − eθ2(ϑ)|,
≤ C(M)∥θ1 − θ2∥L∞(T),

where |JK(s, ϑ)| is the determinant of the Jacobian of the map K. In the last line, we
used that z 7→ exp(z) is locally Lipschitz as follows from the mean value theorem.

Using the triangle inequality for the symmetric difference and the main result of
[45], we would also have an estimate on the continuity of Φ as defined on D×Hβ(T),
i.e. on elements (x, θ). We could then endow D ×Hβ(T) with a product prior which
straight-forwardly satisfies Condition A.1. For simplicity we skip this extension.
Instead, we gather the following conclusion that follows directly from Theorem 3.1
and Corollary 1.

Theorem 4.2. Suppose Condition 2 is satisfied for β > 3/2. Let γ0 = Φ(θ0) for
θ0 ∈ H. Let Π(·|Y ) be the corresponding sequence of posterior distributions arising
for the model (1) and prior Π = ΦΠθ satisfying Condition 3. Then there exists C > 0
such that

∥E[γ|Y ]− γ0∥L2(D) → 0 in P γ0
n -probability (29)

with rate f(Cn−a) as n→ ∞, where

a =
ηδ

2ηδ + 2
.

Note that this is the rate of (18) with ζ = 1/2 and d′ = 1. Clearly this
convergence rate takes into account that a smooth star-shaped inclusion belongs to
a low-dimensional subset of L2

Λ(D). One can think of this fast convergence rate
(compared to Gaussian priors directly in L2(D)) as an expression of uncertainty
reduction. Parameters γ ∈ L2

Λ(D) on the form (28) carry some regularity. Indeed,
using results in [46, 47] showing α-Sobolev regularity for 0 < α < 1/2 reduces to giving
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an upper bound of the area of the ε-tubular neighborhood of ∂A(θ) with respect to
ε. This is provided by Steiner’s inequality, see [48], for d = 2, or more generally
by Weyl’s tube formula, see [49], when d ≥ 2. Then ∥Φ(θ)∥Hα(D) ≤ C(M,D,α) for
∥θ∥Hβ(T) ≤M .

Multiple inclusions The case of multiple star-shaped inclusions is a straight-forward
generalization using the triangle inequality. We consider for N ≥ 1, the map

Φ : (Hβ(T))N → L2
Λ(D)

as in (26) with Ai(θ) = A(θi) + xi from A in (27) with x = 0, xi ∈ D, and where we
set θ = (θ1, . . . , θN ). We denote ∥ · ∥N the direct product norm associated with the
norm on L∞(T), i.e.

∥θ∥N = max
(
∥θ1∥L∞(T), . . . , ∥θN ∥L∞(T)

)
.

We have the following continuity result.

Lemma 4.3. Let θi, θ̃i ∈ Hβ(T) with ∥θi∥Hβ(T) ≤ M , ∥θ̃i∥Hβ(T) ≤ M for i =

1, . . . ,N . For θ = (θ1, . . . , θN ) and θ̃ = (θ̃1, . . . , θ̃N ) we have

∥Φ(θ)− Φ(θ̃)∥L2(D) ≤ C∥θ − θ̃∥1/2N ,

where C only depends on M , κ and N .

Proof. Using the triangle inequality and Lemma 4.1,

∥Φ(θ)− Φ(θ̃)∥2L2(D) =

∥∥∥∥∥
N∑

i=1

κi(1Ai(θ) − 1Ai(θ̃)
)

∥∥∥∥∥

2

L2(D)

,

≤ C

( N∑

i=1

∥1Ai(θ) − 1Ai(θ̃)
∥L2(D)

)2

,

≤ C

( N∑

i=1

∥θi − θ̃i∥1/2L∞(T)

)2

,

≤ C∥θ − θ̃∥N ,
by the equivalence of the p-norms p > 0 on RN .

Parallel to the remark before Lemma 4.1, we mention that a statement similar to
Lemma 4.3 holds true for a map Φ defined on (D ×Hβ(T))N , if we in addition wish
to infer x1, . . . , xN . In preparation for the main result of this section let us change
notation to suit the current setting. Let

Θ = Hβ(T)N and Sβ(M) = {θ ∈ Θ : ∥θi∥Hβ(T) < M, i = 1, . . . ,N}. (30)

We then endow Θ with a (product) prior distribution of Πθ satisfying Condition 3:

Π̃θ = ⊗N
i=1Πθ satisfying Π̃θ(B) = Πθ(B1) . . .Πθ(BN ), (31)

for B = B1 × . . . × BN ∈ B(Hβ(T))N = B(Hβ(T)N ). The last equality is found in
for example [50, Lemma 1.2]. For this prior, we have the following result, which is
accounted for in Appendix C.
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Theorem 4.4. Suppose Condition 2 is satisfied for Sβ(M) as in (30) for β > 3/2.
Let γ0 = Φ(θ0) = Φ(θ0,1, . . . , θ0,N ) for θ0,i ∈ H, i = 1, . . . ,N . Let Π(·|Y ) be the
corresponding sequence of posterior distributions arising for the model (1) and prior
Π = ΦΠ̃θ for (31). Then there exists C > 0 such that

∥E[γ|Y ]− γ0∥L2(D) → 0 in P γ0
n -probability (32)

with rate f(Cn−a) as n→ ∞, where

a =
ηδ

2ηδ + 2
.

Note that this is the rate as of Theorem 4.2, i.e. the rate does not depend on the
number of inclusions; this dependence appears in the constant C.

4.2. Level set parametrization

In this section, we consider the level set parametrization of piecewise constant
functions. The simplest case is to compose a given continuous function θ : X → R,
for X ⊃ D, i.e. d = d′ = 2, 3, with the Heaviside function H(z) = 1z≥0(z) as

γ(x) = Φ(θ)(x) = κ1H(θ(x)) + κ2,

for κ1, κ2 > 0. However, Φ : Hβ(X ) → L2
Λ(D) is not uniformly Hölder continuous

on Sβ(M) for any β,M > 0 and hence does not satisfy Condition 1. Indeed, if |∇θ|
is small near the set {x : θ(x) = 0}, small changes in θ can lead to big changes in
γ. A lower bound on |∇θ| near this set suffices, as can be seen from the implicit
function theorem, see Lemma C.1. This type of condition also appears in level set
estimation of probability densities, see [51]. We illustrate this phenomenon by the
following two-dimensional example.

Example 1. Let X = D = B(0, 1/2) the two-dimensional disc of radius 1/2. Take
as θ(n) the radially symmetric functions θ(n)(r, ϑ) = 1

n + r2n and θ̃(n) = −θ(n) for

0 ≤ r ≤ 1 and 0 ≤ ϑ ≤ 2π. It is clear that θ(n), θ̃(n) ∈ S1(M) for all n ∈ N, and that

∥θ(n) − θ̃(n)∥L∞(X ) ≤ 2∥n−1∥L∞(X ) + 2∥r2n∥L∞((0,1/2)),

≤ 2n−1 + 21−2n → 0

as n → ∞. However Φ(θ(n)) = κ1 and Φ(θ̃(n)) = κ2 so ∥Φ(θ(n)) − Φ(θ̃(n))∥L2(D) =
|κ2 − κ1|.

The example is easy to extend to the more general case where the L∞-norm is
replaced with the Ck-norm. Note also that for fixed θ(n) = θ, we have continuity of Φ
in this particular example. This fact generalizes to continuity of Φ in functions θ that
do not have critical points on {x : θ(x) = 0}. However, for the stronger Condition
1, it is not obvious how much mass Gaussian distributions give to functions whose
gradient is lower bounded away from zero near {x : θ(x) = 0}. For this reason, we
take a different approach. We define an approximation Φϵ of Φ for which Condition
1 is satisfied. This gives an approximate posterior distribution that contracts around
γϵ0 = Φϵ(θ0). We shall see that if we take ϵ = n−k for some k ∈ (0, 1), then the
approximation properties of Φϵ to Φ and a triangle inequality argument ensure we
have consistency at γ0 = Φ(θ0). To this end, consider the continuous approximation
Hϵ of the Heaviside function

Hϵ(z) :=





0 if z < −ϵ,
1

2ϵ
z +

1

2
if −ϵ ≤ z < ϵ,

1 if ϵ ≤ z.

(33)
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We want to note two straight-forward properties of Hϵ:

|Hϵ(z)−Hϵ(z̃)| ≤
1

2ϵ
|z − z̃|, for all z, z̃ ∈ R, (34)

and

|Hϵ(z)−H(z)| ≤ 1

2
1(−ϵ,ϵ)(z), for all z ∈ R. (35)

We could even consider a smooth approximation for Hϵ, as in [21], but this is not
necessary for our case. To construct the continuous level set parametrization, take
constants c = {ci}Ni=1 satisfying

−∞ = c0 < c1 < . . . < cN = ∞
for some N ∈ N. Given a continuous function θ : D → R define

Ai(θ) := {x ∈ D : ci−1 ≤ θ(x) < ci}, i = 1, . . . ,N ,

and let Φ be of the form (26). The corresponding approximate level set
parametrization is then

Φϵ(θ) :=
N∑

i=1

κi[Hϵ(θ − ci−1)−Hϵ(θ − ci)], (36)

where we define Hϵ(z − c0) = 1 and Hϵ(z − cN ) = 0 for any z ∈ R. One can check
that Φϵ coincides with Φ, when ϵ = 0. Motivated by Example 1 and the property that
stationary Gaussian random fields have almost surely no critical points on their level
sets, we define the admissible level set functions as

Hβ
⋄ (X ) := Hβ(X ) ∩

N−1⋂

i=1

Tci , β > 2 +
d′

2
,

where

Tc := {θ ∈ C2(X ) : ∃x ∈ X , θ(x) = c, |(∇θ)(x)| = 0}∁.
Indeed, according to [52, Proposition 6.12], for each fixed c ∈ R we have

Π′
θ(Tc) = 1 and hence Π′

θ(H
β
⋄ (X )) = 1 (37)

if Π′
θ(C

2(X )) = 1 and the covariance function associated with (θ(x) : x ∈ X ) for
θ ∼ Π′

θ is stationary. This is permitted since ((θ(x), ∂1θ(x), . . . , ∂d′θ(x)) : x ∈ X ) is
a Gaussian process, see for example [53, Section 9.4]. Note also that it is known that
Tc ∈ B(C2(D)) since {θ ∈ C2(D) : |θ(x) − c| + |(∇θ)(x)| ≥ 1/n,∀x ∈ D} is a Borel
set.

Lemma 4.5. We have the following:

(i) If θ0 ∈ Hβ
⋄ (X ), then for β > 1 + d′/2 and ϵ > 0 sufficiently small

∥Φϵ(θ0)− Φ(θ0)∥L2(D) ≤ C(θ0,X , D, c)ϵ1/2.
(ii) For any θ, θ̃ ∈ H2(X ),

∥Φϵ(θ)− Φϵ(θ̃)∥L2(D) ≤ C(κ,N , D)ϵ−1∥θ − θ̃∥L∞(D).
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Proof. (i) Note first

Φϵ(θ0)− Φ(θ0) =

N∑

i=1

κi[(Hϵ(θ0 − ci−1)−H(θ0 − ci−1))−

(Hϵ(θ0 − ci)−H(θ0 − ci))].

By the triangle inequality and (35)

∥Φϵ(θ0)− Φ(θ0)∥L2(D) ≤
N∑

i=1

κi(∥1(−ϵ,ϵ)(θ0 − ci−1)∥L2(D) + ∥1(−ϵ,ϵ)(θ0 − ci)∥L2(D))

It is clear that 1(−ϵ,ϵ)(θ0(x)− ci−1) = 1Vϵ(x) with

Vϵ := {x ∈ X : |θ0(x)− ci−1| < ϵ}. (38)

By Lemma C.1 |Vϵ| ≤ C(θ0, ci−1,X )ϵ, and hence the wanted result follows by repeated
application.
(ii) Again by the triangle inequality and now (34) we have

∥Φϵ(θ)− Φϵ(θ̃)∥L2(D) =
N∑

i=1

κi∥Hϵ(θ − ci−1)−Hϵ(θ̃ − ci−1)∥L2(D)

+
N∑

i=1

κi∥Hϵ(θ − ci)−Hϵ(θ̃ − ci)∥L2(D),

≤ ϵ−1
N∑

i=1

κi∥θ − θ̃∥L2(D),

≤ C(κ,N , D)ϵ−1∥θ − θ̃∥L∞(D).

For the following consistency result we let

Θ = Hβ
⋄ (X ), Sβ(M) := {θ ∈ Hβ

⋄ (X ) : ∥θ∥Hβ(X ) ≤M}. (39)

We endow Θ with a prior distribution Πθ that satisfies Condition 3 for β > 2 + d′/2
such that the covariance kernel associated with the random field is stationary. For
simplicity we assume f(x) = xν for some 0 < ν < 1 in Condition 2. Then we have the
following result proved in Appendix C.

Theorem 4.6. Suppose Condition 2 is satisfied for Sβ(M) as in (39) for f(x) = Cxν ,
Φ replaced by Φn−k for a well-chosen k, and where C and CG are independent of n.
Let γ0 = Φ(θ0) for θ0 ∈ H ∩Θ. Let Π(·|Y ) be the corresponding sequence of posterior
distributions arising for the model (1) and prior Π = Φn−kΠθ as above. Then,

∥E[γ|Y ]− γ0∥L2(D) → 0 in P γ0
n -probability (40)

with rate n−aν as n→ ∞ for

a =
ηδ

2dνη + 2ηδ + d
. (41)

Note that for weak inverse stability estimates, i.e. ν small, the obtained
contraction rate approaches the usual rate (18).
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5. Quantitative photoacoustic tomography problem

To test the convergence of the inclusion detection methods, we consider the following
test problem in quantitative photoacoustic tomography, see [54, 27, 55]. The diffusion
approximation in QPAT models light transport in a scattering medium according to
an elliptic equation

−∇ · µ∇u+ γu = 0, in D,

u = g, on ∂D,
(42)

where µ ∈ L2
Λµ

(D), Λµ > 0, and γ ∈ L2
Λ(D) are the optical diffusion and absorption

parameters, respectively. The prescribed Dirichlet boundary condition u = g defines
the source of incoming radiation. It is well-known that (42) has a unique solution
u ∈ H1(D) for each g ∈ H1/2(∂D) and for any nonzero source function h ∈ H−1(D)
of (42). Furthermore, we have the estimate

∥u∥H1(D) ≤ C(Λµ, D)(∥g∥H1/2(∂D) + ∥h∥H−1(D)), (43)

see for example [56, Chapter 6]. QPAT aims to reconstruct the optical parameters
given the absorbed optical energy density map H, which equals the product γu up to
some proportionality constant that models the photoacoustic effect. In our simplified
approach, we aim to invert the forward map

G : γ 7→ H := γu, G : L2
Λ(D) → L2(D),

for a fixed µ ∈ L2
Λ(D). For smoothness and physical accuracy we assume

g ∈ H3/2(∂Ω) and 0 < gmin ≤ g ≤ gmax. (44)

This setting allows a simple inverse stability estimate. First we have the following
continuity result of G.
Lemma 5.1. Let H1 := γ1u1 and H2 := γ2u2 for solutions u1 and u2 of (42)
corresponding to γ = γ1, γ = γ2 in L2

Λ(D) and g satisfying (44). Then there exists a
constant C such that

∥H1 −H2∥L2(D) ≤ C∥γ1 − γ2∥L2(D),

where C depends on Λµ, D and gmax.

Proof. We note that u1 − u2 solves

−∇ · µ∇(u1 − u2) + γ1(u1 − u2) = u2(γ2 − γ1) in D,

u1 − u2 = 0 on ∂D.

Then by (43) and the maximum principle [57, Theorem 8.1]

∥u1 − u2∥H1(D) ≤ ∥u2(γ2 − γ1)∥H−1(D) ≤ gmax∥γ1 − γ2∥L2(D).

Since H1 −H2 = γ1(u1 − u2) + (γ1 − γ2)u2 we have

∥H1 −H2∥L2(D) ≤ ∥γ1(u1 − u2)∥L2(D) + ∥(γ1 − γ2)u2∥L2(D),

≤ gmax(1 +M)∥γ1 − γ2∥L2(D).

Lemma 5.2. Under the same assumptions of Lemma 5.1, there exists a constant
C > 0 such that

∥γ1 − γ2∥L2(D) ≤ C∥H1 −H2∥L2(D). (45)
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Proof. See also [27, Theorem 3.1] and [26, Theorem 1.2]. Note u1−u2 ∈ H1
0 (D) solves

−∇ · µ∇(u1 − u2) = H2 −H1 in D,

u1 − u2 = 0 on ∂D,

hence by elliptic regularity

∥u1 − u2∥L2(D) ≤ C(Λµ, D)∥H1 −H2∥L2(D). (46)

Note by the trace theorem, see [58], for g as in (44) there exists v ∈ H2(Ω) such that
u2 − v ∈ H1

0 (Ω). By a Sobolev embedding v ∈ C0,α0(D) for some α0 > 0 depending
on d = 2, 3. Theorem 8.29 and the remark hereafter in [57] states that u2 ∈ Cα(D)
for some α = α(d,Λµ,Λ, D, α0) > 0 and that

∥u2∥Cα(D) ≤ U1(sup
x∈D

|u(x)|+ U2) =: U,

where U1 = M1(d,Λµ,Λ, D, α0) > 0 and U2 = U2(D, g). By the maximum
principle [57, Theorem 8.1] we can collect the right-hand side to one constant
U = U(U1, U2, gmax) > 0. Now using the argument in [26, Lemma 12], which in
return uses the Harnack inequality [57, Corollary 8.21] we conclude

u2 ≥ m, (47)

where m = m(d,Λµ,Λ, D, U, α, gmin) is a constant. Note

γ1 − γ2 = γ1(1−
u1
u2

) +
1

u2
(γ1u1 − γ2u2),

=
γ1
u2

(u2 − u1) +
1

u2
(H1 −H2).

Combining this with (46) and (47) we have

∥γ1 − γ2∥L2(D) ≤ C(m,Λ,Λµ, D)∥H1 −H2∥L2(D).

We note that G satisfies Condition 2 for η = 1 and f(x) = x. We also note
that Y = L2(D) is a separable Hilbert space with an orthonormal basis consisting of
the eigenfunctions of the Dirichlet Laplacian on D. We conclude that this problem
is suitable as a test problem, and that Theorem 4.4 and 4.6 apply. In Section 7 we
discuss other suitable inverse problems.

6. Numerical results

We discuss our numerical tests in detecting inclusions for the QPAT tomography
problem using the pCN algorithm of Section 2.2 and the parametrizations of Section
4. For simplicity we assume D = B(0, 1), the two-dimensional unit disk.
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6.1. Observation model

As an approximation to the continuous observation model (1) for the numerical
experiments we consider observing

Yk = ⟨G(γ), ek⟩L2(D) + εξk, k = 1, . . . , Nd (48)

where {ek}∞k=1 is an orthonormal basis of L2(D) consisting of the eigenfunctions of
the Dirichlet Laplacian on D and Nd ∈ N is a suitable number. This observation
Y = {Yk}Nd

k=1 is the sequence of coefficients of the projection of Y from (1) to the span

of {ek}Nd

k=1. As Nd → ∞ observing Y is equivalent to observing Y , see for example
[28, Theorem 26]. Besides being a convenient approximation, this model has numerical
relevance: there exists closed-form reconstruction formulas for ⟨G(γ), ek⟩L2(D) in the
first part of the photoacoustic problem, see [59, 60]. The likelihood function then
takes the form

pγε (Y) := exp

(
− 1

ε2

Nd∑

k=1

(Yk − ⟨G(γ), ek⟩L2(D))
2

)
.

6.2. Approximation of the forward map

We approximate the forward map using the Galerkin finite element method (FEM)
with piecewise linear basis functions {ψk}Nm

k=1 over a triangular mesh of Nm vertices
and Ne elements, see [54, 61]. When γ ∈ L2

Λ(D) is discontinuous and continuous, we
approximate it by

γ̃Ne =

Ne∑

k=1

γ̃k1Ek
, and γ̄Nm =

Nm∑

k=1

γ̄kψk,

respectively. Here Ek denotes the k’th element of the triangular mesh. That gives us
two approximations of the forward map:

G̃Ne(γ) := γ̃Ne ũ and ḠNm(γ) := γ̄Nm ū,

where ũ is the FEM solution corresponding to γ̃Ne
and ūNm

is the FEM solution
corresponding to γ̄. For the smooth level set parametrization we use ḠNm

with
Nm = 12708 nodes, while for the star-shaped set parametrization we use G̃Ne

with
Ne = 25054 elements.

We compute {ek}Nd

k=1 by solving the generalized eigenvalue problem arising from
the FEM formulation of the Dirichlet eigenvalue problem with the Matlab function
sptarn. Then ⟨G(γ), ek⟩L2(D) is approximated using the mass matrix for k = 1, . . . , Nd

with Nd = Nfreq(Nfreq + 1) and Nfreq = 13.

6.3. Phantom, noise and data

The phantom we seek to recover consists of two inclusions:

γ0 = κ1 + κ21A1
+ κ31A2

,

where (κ1, κ2, κ3) = (0.1, 0.4, 0.2) and A1, A2 are two star-shaped sets described by
their boundaries:

∂A1 = (−0.4, 0.4) + {0.18(cos(ϑ) + 0.65 cos(2ϑ), 1.5 sin(ϑ)), 0 ≤ ϑ ≤ 2π},

∂A2 = (0.4,−0.4) + {φ(ϑ)(cos(ϑ), sin(ϑ))},
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Figure 2: Simulated absorption γ0 (left image) and diffusion µ (right image)
distributions.

Figure 3: Projection of absorbed optical energy density H corresponding to phantom
of Section 6.3 (left image) and of the white noise expansion (right image) projected
onto the span of {ek}Nd

k=1.

where φ(ϑ) = 0.12
√

0.8 + 0.8(cos(4ϑ)− 1)2, see Figure 2. We compute and fix the
optical diffusion parameter to µ = 1

2
1

γ0+µs(1−0.8) following [61]. Here the scattering

parameter µs equals 100γ0 smoothed with a Gaussian smoothing kernel of standard
deviation 15 using the Matlab function imgaussfilt. We choose an illumination g
that is smooth and positive on ∂D defined by

g(x) = wm1,s1(x) + wm2,s3(x) + wm2,s3(x),

where

wm,s(x) = s exp
(
−2∥x−m∥2

)

and m1 = 0.5(
√
2,
√
2), m2 = 0.5(−

√
2,
√
2), m3 = −m1, s1 = 10, s2 = 2 and

s3 = 5. This is a superposition of three Gaussians, which illuminates the target well.
We simulate data Y as in (48) by computing G̃Ne0

(γ0) on a fine mesh of Ne0 = 75624
elements and Nm0

= 38127 nodes. The corresponding projection can be seen in Figure
3. We choose ε > 0 such that the relative error

relative error =
ε
√∑Nd

k=1 ξ
2
k√∑Nd

k=1⟨G(γ0), ek⟩2L2(D)

is in the range (1, 2, 4, 8, 16) · 10−2. See Figure 3 for a realization of the white noise
expansion (3) projected to the Nd first orthonormal vectors {ek}Nd

k=1 and scaled so
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that it accounts for 4% relative noise.

To estimate the approximation error, we compute the vector

Vj = [⟨G̃N0(γj), ek⟩L2(D) − ⟨G̃Ne(γj), ek⟩L2(D)]
Nd

k=1

for γj , j = 1, . . . , 200, samples of the prior for the level set parametrization introduced

in Section 6.4 below. We then compute εlevel =
√

tr(C)
Nd

, where tr(C) is the trace of the

sample covariance matrix C of the vectors Vj . For this choice N(0, ε2levelI) minimizes
the Kullback-Leibler distance to N(0, C), see [37]. We compute εstar in the same way
using ḠNm0

, ḠNm and samples of the prior for the star-shaped set parametrization in
Section 6.4.

6.4. Choice of prior

Star-shaped sets To mirror the theoretical results of Theorem 4.4 for the phantom
above, we consider a product distribution in Hβ(T) × Hβ(T). To this end, consider
the usual L2([0, 2π]) real orthonormal basis of trigonometric functions {ϕℓ}ℓ∈Z, i.e.
ϕ1(x) = cos(2πx) and ϕ−1(x) = sin(2πx). Consider the Karhunen-Loeve expansion

θi = θ̄ +
∑

ℓ∈Z
gℓ,iwℓϕℓ, gℓ,1, gℓ,2

i.i.d.∼ N(0, 1), (49)

for i = 1, 2 with wℓ = q(τ2 + |ℓ|2)−δ/2 for δ > 1/2, τ ∈ R, q > 0 and some constant
θ̄ ∈ R. Note θi has a Laplace-type covariance operator, and (49) can be interpreted
as the solution of a stochastic PDE [62]. Then θ1, θ2 ∈ Hβ(T) almost surely, see [8].
According to Theorem I.23 in [33] and the definition of Sobolev spaces [63, Section
4.3], H = Hδ(T) with equivalent norms, i.e. the prior distribution of (49) satisfies
Condition 3. We take as Π the distribution of

γ = Φ(θ1, θ2) = κ1 + κ21A(x1,θ1) + κ31A(x2,θ2), (50)

for (κ1, κ2, κ3) = (0.1, 0.2, 0.4), x1 = (0.37,−0.43) and x2 = (−0.44, 0.36). In practice,
we compute (49) truncated at |ℓ| ≤ N = 12. We do not rescale as the theoretical
estimates demand. Instead, we handpick a suitable q for each noise level. We use
inpoly [64] to efficiently project γ to {1Ek

}Ne

k=1. We refer to Figure 4 for an example
of a sample from this prior.

Level sets For the level set parametrization, we consider a prior distribution in
Hβ(T̃2). Here T̃2 is the torus corresponding to the square [−m,m]2, where we choose
m = 1.1, since it is recommended in for example [65] to embed D in a larger domain
to avoid boundary effects. Here, we consider the usual L2([−m,m]2) real orthonormal
basis of trigonometric functions {ϕℓ}ℓ∈Z2 . We let

θ =
∑

ℓ∈Z2

gℓwℓϕℓ, gℓ
i.i.d.∼ N(0, 1), (51)

with wℓ = q(τ2 + |ℓ|2)−δ/2 for δ > 1, τ ∈ R and q > 0. Similar to above, the series
exists almost surely as an element in Hβ(T̃2), see [8]. The corresponding RKHS is
H = Hδ(T̃2), see [33]. We choose X = D and consider the linear, bounded and
surjective restriction r : Hβ(T̃2) → Hβ(D), see [63, Section 4.4]. Then r(θ) is a
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Figure 4: Samples from the star-shaped and level set priors. From left to right: Sample
of θ1 and θ2 in (49) for |ℓ| ≤ 12, δ = 2.5, τ = 4, q = 103/2/5 and θ̄ = −2 (first image).
Sample of Π corresponding to Φ(θ1, θ2) in (50) (second image). Sample of θ in (51) for
max(|ℓ1|, |ℓ2|) ≤ 4, δ = 1.2, τ = 10, q = 5 (third image). Sample of Π corresponding
to Φϵ(θ) in (52) for ϵ = 0.1 (fourth image).

Gaussian random element inHβ(D), and its RKHS is r(H) = Hδ(D), see [32, Exercise
2.6.5]. We take as Π the distribution of

γ = Φϵ(θ) =
3∑

i=1

κi[Hϵ(θ − ci−1)−Hϵ(θ − ci)] (52)

for (κ1, κ2, κ3) = (0.3, 0.1, 0.5) and (c1, c2) = (−1, 1). In practice, we truncate (51)
at max(|ℓ1|, |ℓ2|) ≤ 4. Also, we hand-pick ϵ > 0 and q > 0 for each noise level. See
Figure 4 for a sample of this prior.

6.5. Results

In this section we present the numerical results using the star-shaped and level set
parametrizations in different noise regimes. We use the algorithm described in Sec-
tion 2.2 with the pCN method implemented with an adaptive stepsize targeting a
30% acceptance rate. The initial stepsize is denoted by b. For an example of an
implementation of this sampling method, we refer to the Python package CUQIpy,
see [66]. For the star-shaped set parametrization, we choose the following prior and
algorithm parameters in the order (16, 8, 4, 2, 1) · 10−2 of the relative noise levels:
b = (0.1, 0.045, 0.035, 0.025, 0.015), q = 103/2 · (7/20, 6/20, 5/20, 4/20, 3/20), δ = 2.5,
θ̄ = −2, τ = 4 and θ(0) = (1, 1) corresponding to inclusions of constant radius. In
the same order, we choose for the level set parametrization the following prior and
sampling parameters: b = (0.05, 0.01, 0.006, 0.003, 0.002), q = 5 · (5/2, 2, 3/2, 1, 3/4),
δ = 1.2, τ = 10 and θ(0) = 2ϕ(0,−1) ∝ sin(2π/2.2y).

For the star-shaped set parametrization, we obtain K = 106 samples after a burn-
in of 5 · 105, whereas for the level set parametrization, we take K = 106 after 1.2 · 106
samples as burn-in. We find this choice suitable, since the truncation in Section 6.4
leaves us with a higher dimensional sampling problem in the level set case. We base
our posterior mean approximations on Monte Carlo estimates using 102 equally spaced
samples of the chain.

In Figure 5, we see the posterior mean of arising from the star-shaped set
parametrization and observations with different noise levels. The posterior mean
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Figure 5: Posterior mean estimates of the absorption parameter using the star-shaped
set parametrization in different noise regimes. The dotted red line indicates the
location of γ0.

approximates the ground truth well for all noise levels. Note that the posterior mean
varies only slightly for each noise level and is approximately piecewise constant. This
indicates little posterior variance. This is due to a small noise level and the fast
contraction rate that this inverse problem provides by virtue of (45). The estimates
are not exact, but note that the exact data is not available due to projection and
discretization. Taking Nd large improves the data but also causes the likelihood
function to attain larger values. This, in return, requires a smaller step size b. This
means there is a computational trade-off between Nd and b. Even for 16% relative
noise, the reconstruction is fairly good, and the variance of the posterior samples is
visibly larger. It is a strength of this method that it is robust for large noise levels. The
mixing of the sample chains in the trace plots in Figure 7 indicates that the sampling
algorithm is performing well. The convergence of the posterior mean is also evident
in L2-distance as computed numerically, see Figure 8. This rate does not match the
theoretical; but this is too much to expect for the observation (48), as this does not
match the continuous observation (1) for which the rate is proved. Note we do not
numerically scale the priors as the theoretical results require.

Figure 6 suggests that the posterior mean converges as the noise level goes to
zero, as is also evident from its L2-loss in Figure 8. Note that the reconstructions are
continuous, not only because we take an average, but also because we use a continuous
level set parametrization. Here, the sampling is initialized at θ(0) = 2ϕ(0,−1), since
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this guess captures some of the low frequency information of possible θ0 that can give
rise to γ0. We report that chains with small step-size and the natural starting guess
θ(0) = 0 often get stuck in local minima due to the number of levels in (52) and due to
the fact that the pCN method does not require the gradient of either the parametriza-
tion or the forward map.

The sample diagnostics of Figure 7 indicate that sampling is harder for the level
set parametrization compared to the star-shaped set parameterization. This is hard
for at least two likely reasons: the first is due to the large number of coefficients
θℓ, max(|ℓ1|, |ℓ2|) ≤ 4. This was also noted in [10]. The second likely reason is
that θ 7→ Φϵ(θ) is not injective for any ϵ ≥ 0. Therefore, the prior could be multi-
modal, and this can lead to correlated samples in the Markov chain. Other work
suggests that the pCN method shows an underwhelming performance when applied to
a correlated and multi-modal posterior, see [67] which also provides a gradient-based
remedy. The level set method has found success in optimization-based approaches,
in for example [68], where a descent step is taken in each iteration of an iterative
algorithm. A Bayesian maximum a posteriori approach [21] has also been shown to
find success for a smoothened level set. We expect that using gradient information
in gradient-based MCMC methods would improve the performance significantly. A
benefit of the level set parametrization is that we do not need to know a priori the
number of inclusions as in the case of the star-shaped set parametrization. One
could also combine the two methods as in [12]. Note in Figure 8 that, for both
parametrizations, the posterior mean is stable to different noise realizations. This
mirrors the convergence in probability we expect from Theorem 4.4 and 4.6.

7. Conclusions

In this paper, we provide and investigate a Bayesian approach to consistent inclusion
detection in nonlinear inverse problems. The posterior consistency analysis is
performed under general conditions of Hölder continuity of the parametrization
and conditional well-posedness of the inverse problem. Furthermore, it gives an
explicit rate. We showcase the convergence of the posterior mean in a small
noise limit for a photoacoustic problem, where we note that the star-shaped set
parametrization outperforms the level set parametrization. We highlight that Theorem
4.2 and 4.6 hold for any forward map satisfying Condition 2 and can be applied to
other parametrizations. A different parametrization could for example arise in the
related problem of crack detection. Interesting future work includes applying the
inclusion detection method to other inverse problems. Similar stability estimates
to that of Lemma 5.2 exist for the mathematically closely related problems of
determining the absorption coefficient in acousto-optic imaging and the permittivity
in microwave imaging, see [26]. This is also the case for conductivity imaging in
quantitative thermoacoustic tomography, where [69] employed complex geometrical
optics solutions. For the Calderón problem in two dimensions, [70] provides a
stability estimate that is permitted for the star-shaped set parametrization, see
also the comments after Theorem 4.2 on the regularity of γ. There is a natural
Hilbert space observation setting for the Calderón problem, see [28]. Also in three
dimensions and higher, conditional stability for inclusion detection in the context of
the Calderón problem has been considered and shown to be logarithmic at best [71].
The generalization to three dimensions and more complex phantoms is left for future
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Figure 6: Posterior mean estimates of the absorption parameter using the level set
parametrization in different noise regimes. The dotted red line indicates the location
of γ0.

work. An important direction in the numerical optimization of this approach is to
consider gradient-based sampling methods.
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A. Covering numbers

Consider a compact subset A of a space X endowed with a semimetric d. The covering
number N(A, d, ρ) denotes the minimum number of closed d-balls {x ∈ X : d(x0, x) ≤
ρ} with center x0 ∈ A and radius ρ > 0 needed to cover A, see for example [33,
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Figure 7: Plot (a) shows trace plots of the first 6 Fourier coefficients of samples θ1
(left) and θ2 (right) from the posterior for the star-shaped set parametrization with
observations subject to 4% relative noise. Plot (b) shows trace plots of the first 12
Fourier coefficients of samples θ from the posterior for the level set parametrization
with observations subject to 4% relative noise.

10
-6

10
-5

10
-4

0.03

0.04

0.05

0.06

0.07

Figure 8: L2-error of 5 realized posterior means for each noise level εapp and both
parametrizations. The solid markers represent the mean of the 5 error estimates.
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Appendix C] or [32, Section 4.3.7]. Then the metric entropy is logN(A, d, ρ). When
d is replaced by a norm, we mean the metric induced by the norm.

Lemma A.1. Let (X, dX) and (Y, dY ) be two linear spaces endowed with semimetric
dX and dY .

(i) If f : X → Y satisfies

dY (f(x), f(x
′)) ≤ CdX(x, x′)η, ∀x, x′ ∈ A

for some A ⊂⊂ X and some η > 0, then for any ρ > 0 we have

N(f(A), dY , Cρ
η) ≤ N(A, dX , ρ). (53)

(ii) For A ⊂⊂ X and B ⊂⊂ Y ,

N(A×B, d∞, ρ) ≤ N(A, dX , ρ)N(B, dY , ρ),

where d∞((x, y), (x′, y′)) = max(dX(x, x′), dY (y, y′)) is the product metric.

Proof. (i) We denote by BX(x′, ρ) and BY (y
′, ρ) the ball in X with center x′ ∈ X and

radius ρ > 0 and the ball in Y with center y′ ∈ Y and radius ρ > 0, respectively. For
any ρ > 0,

f(BX(x′, ρ)) ⊂ BY (f(x
′), Cρη).

Then it follows that

N(f(A), dY , Cρ
η) ≤ N(A, dX , ρ). (54)

(ii) Let CA be a finite set in A and CB be a finite set in B such that

A ⊂
⋃

x∈CA

BX(x, ρ) and B ⊂
⋃

y∈CB

BY (x, ρ).

Take z = (x, y) ∈ A × B, then there exists x0 ∈ CA such that x ∈ BX(x0, ρ) and
y0 ∈ CB such that y ∈ BY (y0, ρ). Hence z ∈ BX×Y ((x0, y0), ρ) := {z ∈ X × Y :
d∞(z, (x0, y0)) ≤ ρ}. It follows that

A×B ⊂
⋃

z∈CA×CB

BX×Y (z, ρ),

and hence the wanted property follows.

Lemma A.2. Let X be a bounded Lipschitz domain in Rd′
or the d′-dimensional torus

and β > d′/2, then

logN(Sβ(M), ∥ · ∥∞, ρ) ≤ Cρ−d′/β ,

where C = C(β,M, d′,X ) and ∥f∥∞ := supx∈X |f(x)|.

Proof. Corollary 4.3.38 and the remark hereafter in [32] states that the norm ball
Bβ(M) of the Sobolev space Hβ([0, 1]d

′
) of radius M satisfies for β > d′/2,

logN(Bβ(M), ∥ · ∥L∞([0,1]d′ ), ρ) ≤ C(β,M, d′)ρ−d′/β . (55)

If X is the d′-dimensional torus, we identify Hβ(X ) with the corresponding periodic
Sobolev space, which is a subset of Hβ([0, 1]d

′
), hence the wanted result follows. Now,

if X is a bounded Lipschitz domain in Rd′
, we assume without loss of generality that

X ⊂ [0, 1]d
′
. Indeed, if X is not a subset of [0, 1]d

′
, we identify f ∈ Hδ(X ) with
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f̃ ∈ Hδ(X̃ ) for some X̃ ⊂ [0, 1]d
′
by a scaling and update M accordingly. Since X

is Lipschitz, we let E : Hβ(X ) → Hβ([0, 1]d
′
) be a continuous extension operator

satisfying

∥Ef∥Hβ([0,1]d′ ) ≤ C(d′, β,X )∥f∥Hβ(X ),

see for example [72]. We denote the restriction R : Hβ([0, 1]d
′
)) → Hβ(X ), which

is a contraction in supremum norm and the left-inverse of E. Then Sβ(M) =
R(E(Sβ(M))) and E(Sβ(M)) ⊂ Bβ(CM), and hence

N(Sβ(M), ∥ · ∥∞, ρ) = N(R(E(Sβ(M))), ∥ · ∥∞, ρ)
≤ N(E(Sβ(M)), ∥ · ∥L∞([0,1]d′ ), ρ),

≤ N(Bβ(CM), ∥ · ∥L∞([0,1]d′ ), ρ),

≤ C(β,M, d′,X )ρ−d′/β , (56)

using also Lemma A.1 (i) and (55).

Lemma A.3. With the notation defined in Section 3, we have for all ρ > 0

N(B∞(Mρ) + Sδ(CM), ∥ · ∥∞, 2Mρ) ≤ N(Sδ(CM), ∥ · ∥∞,Mρ).

Proof. By Lemma A.2 there exists N > 0 for which there is a sequence {θi}Ni=1 in
Sδ(CM) such that

Sδ(CM) ⊂ ∪N
i=1B∞(θi,Mρ).

By the triangle inequality,

B∞(Mρ) + Sδ(CM) ⊂ ∪N
i=1B∞(θi, 2Mρ), (57)

since if θ = θ(1) + θ(2) for θ(1) ∈ B∞(Mρ) and θ(2) ∈ Sδ(CM), then there exists a θi
such that ∥θ(2) − θi∥∞ ≤Mρ, and hence

∥θ − θi∥∞ ≤ ∥θ(1)∥∞ + ∥θ(2) − θi∥∞ ≤ 2Mρ.

Then the property follows from (57).

B. On maximum likelihood composite testing

We denote by En and Eγ
n the expectation with respect to Pn and P γ

n respectively.

Lemma B.1. Suppose for a non-increasing function N(ρ), some ρ0 > 0 and all
ρ > ρ0, we have

N({γ ∈ An : ρ < dG(γ, γ0) < 2ρ}, dG , ρ/4) ≤ N(ρ).

Then for every ρ > ρ0, there exist measurable functions Ψn : Y− → {0, 1} such that

Eγ0
n (Ψn) ≤ N(ρ)

e−
1

8σ2 nρ2

1− e−
1

8σ2 nρ2
,

sup
γ∈An:dG(γ,γ0)>ρ

Eγ
n(1−Ψn) ≤ e−

1
32σ2 nρ2

.
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Proof. To construct the measurable functions Ψn we use the maximum likelihood test,
see [33, Lemma D.16] and the covering argument of [23, Theorem 7.1], see also [32,
Theorem 7.1.4]. Choose a finite set Sj of points in each shell

Sj = {γ ∈ An : ρj < dG(γ, γ0) ≤ ρ(1 + j)}, j ∈ N,

so that every γ ∈ Sj is within distance jρ
4 of a point in S′

j . For ρ > ρ0, there
are at most N(jρ) such points. For each γjl ∈ S′

j , define the measurable function,
Ψn,j,l : Y− → {0, 1}, known as the maximum likelihood test,

Ψn,j,l(y) := 1An,j,l
(y),

where

An,j,l := {y ∈ Y− :
p
γjl
n

pγ0
n

(y) > 1}.

By [33, Lemma D.16] we have

Eγ0
n (Ψn,j,l) ≤ e−

1
8σ2 n(ρj)2

and

sup
{γ∈An:dG(γ,γjl)≤ ρj

4 }
Eγ

n(1−Ψn,j,l) ≤ e−
1

32σ2 n(ρj)2 .

Now, set Ψn(y) := 1∪j,lAn,j,l
(y). This is also a measurable function, since a countable

union of measurable sets is measurable. Then by the union bound

Eγ0
n (Ψn) ≤

∑

j∈N

N(jρ)∑

l=1

Eγ0
n (Ψn,j,l) ≤

∑

j∈N
N(jρ)e−

1
8σ2 n(ρj)2 ≤ N(ρ)

e−
1

8σ2 nρ2

1− e−
1

8σ2 nρ2

On the other hand, for any j ≥ 1,

sup
γ∈∪i≥jSi

Eγ0
n (1−Ψn) = sup

i≥j,l
sup

γ:dG(γ,γi,l)≤ ρi
4

P γ0
n (∩j′,l′A

c
n,j′,l′),

≤ sup
i≥j,l

sup
γ:dG(γ,γi,l)≤ ρi

4

Eγ0
n (1−Ψn,i,l),

≤ sup
i≥j

e−
1

32σ2 n(ρi)2 .

For j = 1 we get the wanted result.

There are other ways to prove the existence of suitable measurable functions Ψn

used in the proof of Theorem 2.1. We mention here the approximation argument of
[28, Lemma 8] that requires smoothness properties of G.

Proof of 2.1. For the convenience of the reader, we provide what is a standard testing
argument for our setting in Lemma B.1, see also [23, Theorem 7.1], implied by
Condition A.3. Indeed, since the covering number decreases, when increasing the
‘radius’, we have for all ρ > ρ0 := 4m0rn,

N(An, dG ,
ρ

4
) ≤ N(ρ) := eC3nr

2
n .
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Given any C2 > C1 + 4, we set ρ := 4mrn for m > m0 large enough (depending also
on C2, C3 and σ2 by the following) and apply Lemma B.1: there exists measurable
functions Ψn : Y− → {0, 1} such that

Eγ0
n (Ψn) ≤ eC3nr

2
n

e−2σ−2mnr2n

1− e−2σ−2mnr2n
≤ e−C2nr

2
n .

In addition, choosing m such that (4m)2/(32σ2) ≥ C2 we note

sup
γ∈An:dG(γ,γ0)>4mr2n

Eγ
n(1−Ψn) ≤ e−C2nr

2
n .

Then Theorem 28 in [31] and modifications as in the proof of Theorem 1.3.2 in [24]
give the claim.

C. Proofs of section 4

Proof of Theorem 4.4. The proof relies on satisfying Condition A.1, A.2 and A.3 for
the choice An = Φ(Θn) for

Θn := {θ = ϕ1 + ϕ2 : ∥ϕ1∥∞ ≤Mr̄n, ∥ϕ2∥H ≤M}N ∩ Sβ(M), (58)

where Sβ(M) is defined in (30). To satisfy Condition A.1 we follow Lemma 3.4 and
note for θ = (θ1, . . . , θN ) and θ0 = (θ0,1, . . . , θ0,N ) that

{θ ∈ Θ : dG(Φ(θ),Φ(θ0)) ≤ rn}
⊃ {θ ∈ Θ : ∥θ − θ0∥N ≤ Cr̄n, ∥θi − θ0,i∥Hβ(T) ≤ R̃, i = 1, . . . ,N},
⊃ {θ ∈ Θ : ∥θi − θ0,i∥N ≤ Cr̄n, ∥θi − θ0,i∥Hβ(T) ≤ R̃, i = 1, . . . ,N},
⊃ ⊗N

i=1

(
{θi : ∥θi − θ0,i∥L∞(T)} ∩ {θi : ∥θi − θ0,i∥Hβ(T) ≤ R̃}

)
,

for some R̃ > 0 chosen sufficiently large. Then (31) together with the argument
in Lemma 3.4 implies that Condition A.1 is satisfied. Note Θn in (58) is the N -
product set of (20). Then repeated use of the standard set relation A2 \ B2 =
[A × (A \ B)] ∪ [(A \ B) × A] and the argument of Lemma 3.2 implies there exists
M > C(C2,Π

′
θ, δ,N ) such that

Πθ(Θ \Θn) ≤ e−C2nr
2
n ,

for any given C2 > 0, hence Condition A.2 is satisfied. Condition A.3 is satisfied
as in Lemma 3.3 using Lemma A.1 (ii). Then the result follows as in the proof of
Theorem 3.1 and Corollary 1.

Lemma C.1. Let Vϵ be defined as in (38) for θ0 ∈ Hβ
⋄ (X ), β > 1 + d′/2 and some

c = ci−1 ∈ R. Then for ϵ > 0 sufficiently small

|Vϵ| ≤ C(θ0, c,X )ϵ.

Proof. Note for c = c0 = −∞ and c = cN = ∞ this is trivially satisfied. Next, the
inverse function theorem implies that any point x0 ∈ θ−1(c) has a neighborhood Nx0

that is a diffeomorphic image φx0(Qϵx0
) of a box

Qϵx0
:= {(s, t) : |s| ≤ ϵx0

, |t| ≤ ϵx0
}, 0 < ϵx0

< 1,



Consistent reconstruction of inclusions 33

such that

θ0(φx0(s, t)) = s|(∇θ0)(x0)|+ c,

(one should find the inverse of g(x1, x2) = ( θ0(x1,x2)−c
|∇θ0(x0)| , x2) in a neighborhood of x0).

Note we have a C1 parametrization of an intersection of Vϵ with a small neighborhood
of x0,

Vϵ ∩Nx0 = {φx0(s, t) : |s| ≤
ϵ

|∇θ0(x0)|
, |t| ≤ ϵx0},

for all ϵ ≤ |∇θ0(x0)|ϵx0
. By the classical area formula, we have

|Vϵ ∩Nx0
| =

∫

|s|≤C(x0,θ0)ϵ

∫

|t|≤ϵx0

|Jφx0
(s, t)| ds dt ≤ C(x0, θ0)ϵ,

since the continuous function Jφx0 (it is a polynomial of zero’th and first order
derivatives of φx0

), is integrated on a compact domain. Note ∪x0∈INx0
is an open

cover of θ−1
0 (c) for some finite set I ⊂ θ−1

0 (c) depending on X and θ0. Take ϵ such
that Vϵ ⊂ ∪x0∈INx0

. This ϵ exists since θ0 as defined on X is a closed function, and
hence there exists in R a neighborhood U of c such that θ−1

0 (U) ⊂ ∪x0∈INx0
, see [73,

Theorem 1.4.13]. Then,

|Vϵ| ≤
∑

x0∈I
|Vϵ ∩Nx0

| ≤ C(θ0, c,X )ϵ.

This is true for any i = 1, . . . ,N − 1 for which the estimate is only updated by a new
constant.

Proof of Theorem 4.6. Let γn0 = Φn−k(θ0) and γn = Φn−k(θ) for some 0 < k < 1,
which we will choose later. For any r̂n > 0, the triangle inequality gives
{
γ : ∥γ − γ0∥L2(D) ≤ C0r̂n

}

⊃
{
γ : ∥γ − γn0 ∥L2(D) ≤

1

2
C0r̂n, ∥γn0 − γ0∥L2(D) ≤

1

2
C0r̂n

}
,

hence

Π(γ : ∥γ − γ0∥L2(D) ≤ C0r̂n|Y ) ≥ Π(γ : ∥γ − γn0 ∥L2(D) ≤
1

2
C0r̂n|Y )

× 1∥γn
0 −γ0∥L2(D)≤ 1

2C0r̂n . (59)

We shall consider the two factors of the right-hand side in separate parts below:
1) We check that ConditionA.2, A.3, andA.1 are satisfied for the choice An = Φ(Θn)
with

Θn := {θ = θ1 + θ2 : ∥θ1∥∞ ≤Mr
1
η
n n

−k, ∥θ2∥H ≤M} ∩ Sβ(M), (60)

and k to be chosen below. For A.2 it is clear from (37) that for each n,

Πθ(Θ) = 1.

As in the proof of Lemma 3.2 there exists M > C(C2,Π
′
θ, δ) such that Condition A.2

is satisfied, if a = a(k) is such that

(r
1
η
n n

−kn1/2−a)−b = nr2n, (61)



Consistent reconstruction of inclusions 34

for b = 2d
2δ−d . This is satisfied when

a = a(k) =
η(δ − dk)

2δη + d
, and 0 < k <

δ

d
, (62)

so that 0 < a < 1/2. Condition A.3 follows as in the proof of Lemma A.1 with r̄n

replaced with r
1
η
n n−k. Again it reduces to the covering number of the norm-ball in

Hδ(X ) for which we need a such that

(r
1
η
n n

−k)−d/δ = nr2n

as in (23). This is indeed satisfied by (62). For Condition A.1 we proceed as in the
proof of Lemma 3.4 and use Lemma 4.5 to obtain

{θ ∈ Θ : dG(γ
n, γn0 ) ≤ rn} ⊃ {θ ∈ Θ : ∥θ − θ0∥∞ ≤ Cn−kr

1
η
n } ∩ Sβ(R),

where C = C(η, CG , CΦ, R). Continuing the argument and using (37), Condition A.1
is satisfied for some C1 > 0 if again a satisfies (61). By Theorem 2.1

Π(BG(γ
n
0 , Crn) ∩An|Y ) → 1 in P γ0

n -probability,

as n→ ∞ for some constant C > 0. It follows that

Π(γ : ∥γ − γn0 ∥L2(D) ≤ Crνn|Y ) → 1 in P γ0
n -probability,

with rate e−bnr2n , 0 < b < C2 − C1 − 4 as n→ ∞ as in Theorem 3.1.
2) For the second factor, note that θ0 ∈ Hβ

⋄ (X ) and Lemma 4.5 (i) implies

∥γn0 − γ0∥L2(D) ≤ C ′(θ0,X , D, c)n−k/2.

Since rνn = n−a(k)ν is a strictly increasing function of k (the rate becomes worse
for larger k) and n−k/2 is strictly decreasing in k, the optimal choice of k satisfies
rνn = n−k/2, which is solved by

k =
2δην

2dην + 2δη + d
, (63)

which also satisfies the condition on k in (62), since δ > d. Inserting this back into
(62) yields (41). Finally, take C0 = 2max(C,C ′) and r̂n = rνn and note by (59) that

Π(γ : ∥γ − γ0∥L2(D) ≤ C0r
ν
n|Y ) ≥ Π(γ : ∥γ − γn0 ∥L2(D) ≤

1

2
C0r

ν
n|Y ) → 1,

in P γ0
n -probability as n→ ∞. Then the wanted result follows as in Corollary 1.
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Abstract. In this paper, we investigate the Bayesian approach to inverse

Robin problems. These are problems for certain elliptic boundary value prob-
lems of determining a Robin coefficient on a hidden part of the boundary from

Cauchy data on the observable part. Such a nonlinear inverse problem arises

naturally in the initialisation of large-scale ice sheet models that are crucial
in climate and sea-level predictions. We motivate the Bayesian approach for a

prototypical Robin inverse problem by showing that the posterior mean con-

verges in probability to the data-generating ground truth as the number of
observations increase. Related to the stability theory for inverse Robin prob-

lems, we establish a logarithmic convergence rate for Sobolev-regular Robin

coefficients, whereas for analytic coefficients we can attain an algebraic rate.
The use of rescaled analytic Gaussian priors in posterior consistency for non-

linear inverse problems is new and may be of separate interest in other inverse

problems.

1. Introduction

The Bayesian approach has in recent years gained traction as a powerful and
flexible framework for solving inverse problems by allowing the user to model prior
knowledge, regularize reconstructions and quantify uncertainty, see [48]. In this pa-
per, we investigate the Bayesian approach to an emerging class of nonlinear inverse
problems known as inverse Robin problems.

Inverse Robin problems appear in boundary value problems for partial differen-
tial equations (PDEs), where the boundary is partitioned into at least two parts: a
hidden and an observable part. The hidden part carries information of a boundary
effect modelled by a Robin boundary condition. Then the Robin inverse problem is
the inverse problem of recovering the Robin coefficient from Dirichlet and Neumann
data on the observable part of the boundary. Our focus will be on the inverse Robin

2020 Mathematics Subject Classification. 35R30, 62G20, 62F15.
Key words and phrases. nonlinear inverse problems, Bayesian inference, Gaussian processes,

posterior consistency.
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problem for a scalar Laplace equation and a Stokes’ system of equations. The for-
mer is an inverse problem also known as corrosion detection and was considered in
the early contribution [29]. The latter appears when initialising ice sheet models for
climate and sea-level predictions. This inverse problem asks for the unknown basal
drag coefficient of the ice sediment from observations of ice velocity at the surface,
see [5]. Addressing this inverse problem in a statistical framework is a crucial step
in improving the robustness and accuracy of ice sheet models for future sea-level
projections.

Reconstruction for the inverse Robin problem for the Laplace equation has been
studied using classical regularization methods based on penalized least squares, see
[14, 37, 30] and the references therein. In [29, 21] accurate direct methods are pro-
vided given that the domain is sufficiently thin. The problem has been posed in a
Bayesian framework in [39], which determines the Robin coefficient and the hidden
boundary simultaneously. The related inverse Robin problem for the Stokes PDE
has been considered in the Bayesian framework in [4, 40, 6], whereas in the two
latter works the framework is similar to the general approach in [48].

Despite the success of the Bayesian approach to inverse problems, different paths
of theoretical guarantees have been explored only recently. Statistical convergence
analysis for the posterior distribution in nonlinear inverse problems has seen a re-
cent interest with the framework devised in [38] based on the work in [22], see also
[41]. In this approach, the main conditions of the forward map are that of forward
regularity: the data should be uniformly bounded and depend continuously on the
parameter given that it is sufficiently smooth, and conditional (inverse) stability:
the inverse of the forward map is continuous when restricted to a sufficiently small
subset of the range. For forward regularity, we require a certain smoothness of
solutions of the governing equation near the observable part of the boundary. This
can be achieved by classical techniques in PDEs. Inverse stability results, however,
rarely come cheap and require in-depth knowledge of the inverse problem at hand.
For the Stokes model we consider, some conditional stability results have been
developed, see Theorem 1.5 and Remark 3.7 in [10], which quantifies the unique
continuation result of [20]. Common for the inverse Robin problems is the fact that
the spatially varying Robin coefficient β enters in a Robin condition of the form
∂νu + βu = 0 at the hidden boundary, where ν is the outgoing unit normal and u
is the solution of the governing equation. So if u is known and nonzero here, the
reconstruction is a matter of algebra: β = −u−1∂νu. However, determining con-
ditions for which u in a Stokes’ model is nonzero on the hidden boundary remains
a largely unsolved problem, see [10]. For this reason we motivate our approach
for general Robin-type inverse problems by the prototypical model for the scalar
Laplace equation, see [14]. It is not uncommon that methods used in solving the
Robin inverse problem for the Laplace equation have stimulated the development
of approaches for solving the corresponding problem for the Stokes model, see [5]
which makes use of the Kohn-Vogelius functional [31].

Inverse Robin problems are related to the Cauchy problem of determining a so-
lution to a Laplace equation in a domain from Cauchy data on parts or the whole of
the boundary. This is because the ‘known’ in our inverse Robin problems consists of
Cauchy data on a part of the boundary. The global Cauchy problem of determining
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the solution in the entire domain is known to be severely ill-posed since [26]. Con-
ditional stability estimates of logarithmic kind exist for this global problem [2, 13,
Theorem 1.9], while for stability in the interior, Hölder estimates can be obtained,
see Theorem 1.7 and Remark 1.8 of [2]. Combining the latter with analytic contin-
uation for ‘uniformly’ analytic (in the sense of R2(M) defined below) solutions near
the hidden boundary, one obtains conditional Hölder stability for the inverse Robin
problem. This is essentially the content of [28], which we modify to our setting
below in Lemma 2.4. We note that in [47] a Hölder stability estimate is obtained
for the scalar Laplace equation, when the Robin coefficient is piecewise constant
on a priori known sets. Using properties of the derivative of the forward map, a
Lipschitz stability for the inverse problem in Stokes’ model has been established
in [18] given that the Robin coefficient belongs to compact and convex subset of a
finite dimensional vector space. Unlike [10] it provides an estimate independent of
observations of the pressure.

For inverse problems with regular forward maps and conditional stability esti-
mates, guaranteeing the statistical convergence of the posterior distribution reduce
to the choice of prior [38]. In this paper, we consider two classes of numerically
tractable and popular choices of Gaussian process priors that fit the stability regimes
of the inverse problem. Our theoretical results are two-fold: For a Matérn type
Gaussian prior we show that as the number of observations increases, the posterior
mean converges in probability to the true Robin coefficient given this has some
Sobolev smoothness. Not surprisingly the convergence rate is logarithmic. On the
other hand, if the Robin coefficient is analytic, the squared exponential Gaussian
prior provides an algebraic rate of convergence. This is the content of Theorem
3.1 below. Our approach for the set of analytic parameters follows the approach
in [38, 22, 41] using results in [50]. Unlike [50], which considers analytic Gauss-
ian processes with a change at time scale, we consider ‘rescaled’ (in the sense of
(9)) Gaussian processes. In Lemma C.4 we show that such priors satisfy the usual
conditions for posterior consistency. This result is new and may be of independent
interest in other inverse problems when modelling analytic functions. This seems
to be a useful a priori class of functions to consider for some stability estimates,
see for example [33].

In Section 2 we give the setting of two inverse Robin problems in the context of a
Stokes system of PDEs and a Laplace equation in two dimensions. We state results
on the regularity properties of the forward maps as well as conditional stability es-
timates. When not relying on existing results, these are proved in Appendix A and
B. In Section 3 we recap the Bayesian approach to inverse problems, describe the
observation model, and present the Matérn-type and squared exponential Gaussian
priors. Here we also give the main result, Theorem 3.1, which is proved in Appendix
C.

In the following, we let random variables be defined on a probability space
(Ω,F ,Pr). For a metric space X the Borel σ-algebra is denoted by B(X ). Given
a random element X : Ω → X , i.e. F − B(X ) measurable, we denote its law or
distribution by the probability measure L(X) defined by L(X)(B) = Pr(X−1(B))
for all B ∈ B(X ).
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2. Inverse Robin problems

2.1. Stokes’ model. We consider the constant viscosity Stokes ice sheet model for
a velocity field u : O → Rd and pressure p : O → R in a bounded and smooth
domain O ⊂ Rd, d = 2, 3,

(1)

−∆u+∇p = ρg in O,
∇ · u = 0 in O,

∂νu− pν = h on Γs,

∂νu− pν + βu = 0 on Γβ ,

where ν is the outward unit normal, ρ is a constant density of the ice, g is the
gravitational field and h is the prescribed boundary stress. Here Γs and Γβ are

disjoint and connected open subsets of the boundary such that ∂O = Γs ∪ Γβ . We
denote by Γ an open subset of Γs, where we make our measurements. The Robin
inverse problem is then to recover β given u|Γ, that is, to invert the nonlinear
forward map

G : β 7→ u|Γ.
For physical accuracy, we assume β is a positive function, β ≥ mβ > 0. We
reparametrize the forward map to

G(θ) := G(mβ + eθ) = u|Γ

defined on our parameter space

Θ := H1(Γβ).

The choice of the parameter space Θ makes θ 7→ G(θ) continuous into (C(Γ))2,
which, as we shall see in Section 3, leaves us with a well-defined posterior distri-
bution. It follows from Lax-Milgram theory in the Hilbert space of divergence-free
(H1(O))d-functions that there exists a unique solution u ∈ (H1(O))d to (1) for any
positive and bounded β, hence the forward map is well-defined. Further, when β
is continuous, unique continuation results [10, Corollary 1.2] imply injectivity of G,
see for example [9, Proposition 3.3]. These facts are proven in the following lemma
for the case d = 2. For d = 3 this follows in the same way, but for example for the
choice Θ = H2(Γβ).

Lemma 2.1. Let h ∈ (L2(Γs))
2, ρg ∈ (L2(O))2 and θ, θ1, θ2 ∈ L∞(Γβ). We have

the following:

(i) Set β = β(θ) := mβ + eθ. Then there is a unique solution u ∈ H1(O)2 to
(1).

(ii) If ∥θ1∥H1(Γβ), ∥θ2∥H1(Γβ) ≤ M and Γ ⊂⊂ Γs, then there exists α̃ > 0 such
that

∥G(θ1)− G(θ2)∥(C(Γ))2 ≤ C(O,mβ , h, ρ, g)∥θ1 − θ2∥α̃H1(Γβ)
.

(iii) Θ ∋ θ 7→ G(θ) ∈ (C(Γ))2 is injective.

2.2. Scalar Laplace equation. Consider the following Laplace equation for a po-
tential u : O → R, surface normal current h ∈ H−1/2(Γ) and Robin coefficient
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β ∈ L∞(Γβ),

(2)

∆u = 0 in O,
∂νu = h on Γ,

u = 0 on Γ0,

∂νu+ βu = 0 on Γβ ,

where ∂O = Γ∪Γ0 ∪Γβ . Here a homogeneous Dirichlet condition is introduced for
the stability estimate in [1], which we use in Lemma 2.4 below. As before our goal
is to invert the reparametrized forward map

(3) G(θ) := G(mβ + eθ) = u|Γ,
where we with a slight misuse of notation keep the notation G and G for this model.

Assumption 1 (Domain). We assume Γβ = (0, 1)×{0} and define Γβ,ϵ := (ϵ, 1−
ϵ)× {0} for some 0 < ϵ < 1. Furthermore, we assume ∂O is a simple closed curve
decomposed into four subarcs oriented as Γβ, Γ

1
0, Γ, Γ

2
0, and where Γ0 = Γ1

0 ∪ Γ2
0.

We assume Γβ = (0, 1)×{0} since we want to avoid defining Gaussian processes
on manifolds. We will often tacitly identify Γβ with (0, 1) ⊂ R. For the two
stability estimates in Lemma 2.4 we could generalize the setting to a C2 or analytic
Γβ , respectively. To analyze the stability of the forward map we find it useful to
restrict it to two well-chosen bounded and closed subsets of Θ.

Assumption 2. Assume first β = β(θ) := mβ + eθ for θ ∈ Θ with

Θ := H1(Γβ).

Depending on the setting we accept either of the two following assumptions for some
M > 0:

(i) Assume θ ∈ R1(M) with

R1(M) := {θ ∈ H1(Γβ) : ∥θ∥H1(Γβ) ≤M}
(ii) Assume θ ∈ R2(M) with

R2(M) := {θ ∈ C∞(Γβ) : ∥θ∥C(Γβ)
≤M, sup

x∈Γβ

|(∂kβ)(x)| ≤M(k!)Mk}

It is well-known that β is analytic on Γβ if and only if β ∈ C∞(Γβ) with

sup
x∈Γβ

|(∂kβ)(x)| ≤Mβ(k!)M
k
β

for some Mβ > 0, see [32, Chapter 1]. We can think of R2(M) as functions that
are ‘uniformly’ analytic with the added condition ∥θ∥C(Γβ)

≤M to ensure θ 7→ β is

(locally) Lipschitz continuous in both directions. The sets R1(M) and R2(M) are
exactly the ‘regularization sets’ for which stability results for the inverse problem
are available, see Lemma 2.4. To this end, we make the following assumption.

Assumption 3. We assume that h is not identical to a constant and that h ∈
H1 := {h ∈ H1/2(Γ) : h ≥ 0, ∥h∥H1/2(Γ) ≤Mh} for some Mh > 0.

The positivity assumption is only needed for the stability estimate stated in
Lemma 2.4 (ii), and it might be avoided as in [1]. In the following we prove a
number of auxiliary results, where we specify sufficient conditions on θ and β. First,
we note that the forward map is well-defined.
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Lemma 2.2. For β = β(θ) with θ ∈ L∞(Γβ) and h ∈ H−1/2(Γ), there exists a
unique solution u ∈ H1(O) of (2) with

(4) ∥u∥H1(O) ≤ C∥h∥H−1/2(Γ),

for some constant C = C(O,mβ) > 0.

Secondly, the forward map is Lipschitz continuous on certain bounded sets of Θ
and the observations are uniformly bounded.

Lemma 2.3. Let h ∈ H1 and θ1, θ2 ∈ L∞(Γβ). Then,

(i) if β = β(θ1) and ∥β(θ1)∥H1(Γβ) ≤M we have

∥G(θ1)∥C(Γ) ≤ U(O,mβ ,M,Mh),

(ii) if βi = β(θi) for i = 1, 2 with ∥θ1∥L∞(Γβ), ∥θ2∥L∞(Γβ) ≤M then

∥G(θ1)− G(θ2)∥L2(Γ) ≤ K(O,mβ ,M)∥θ1 − θ2∥L∞(Γβ).

(iii) if θ1, θ2 ∈ R1(M) then there exists α̃ > 0 such that

∥G(θ1)− G(θ2)∥C(Γ) ≤ C(O,mβ ,M)∥θ1 − θ2∥α̃L∞(Γβ)
.

The following result is that of conditional (inverse) stability, where the condition
is either θ ∈ R1(M) or θ ∈ R2(M).

Lemma 2.4 (Conditional stability). Let O satisfy Assumption 1 and h satisfy
Assumption 3.

(i) If θi ∈ R1(M), i = 1, 2, then there exists constants K1 > 0 and 0 < σ1 < 1
such that

∥θ1 − θ2∥L∞(Γβ,ϵ) ≤ K1| log(∥G(θ1)− G(θ2)∥L2(Γ))|−σ1 ,

where K1 and σ1 depend only on O, h, mβ, M and ϵ.
(ii) If θi ∈ R2(M), i = 1, 2, then there exists constants K2 > 0 and 0 < σ2 < 1

such that

∥θ1 − θ2∥L2(Γβ,ϵ) ≤ K2∥G(θ1)− G(θ2)∥σ2

L2(Γ),

where K2 and σ2 depend only on O, Mh, M and ϵ.

The stability result (ii) generalizes to three dimensions. In this case, one technical
obstacle is to analyze the smoothness of the solutions near the corner singularities.

3. The Bayesian approach

Central in the Bayesian framework is the posterior distribution, which is the
normalized product of the prior distribution and the likelihood-function modelling
the measurement process. In this paper we take the natural viewpoint of [41]
that the measurements are discrete, taken at uniformly random locations on the
observable part of the boundary, and are contaminated with Gaussian noise. In
the context of Stokes’ model, we let V = R2 and d = 2, whereas for the Laplace
equation we set V = R and d = 1. In both cases we let | · |V denote the Euclidean
norm. Our observations arise as the sequence of random vectors DN := (Yi, Xi)

N
i=1

in (V × Γ)N of the form

(5) Yi = G(θ)(Xi) + εi, εi
i.i.d.∼ N(0, 1), i = 1, . . . , N,

where Xi
i.i.d.∼ λ, the uniform distribution on Γ independent of the noise εi. More

precisely, we endow Γ with a Borel σ-algebra B(Γ) generated by the open sets in Γ
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with respect to arc length metric. We have µ(B) = |Γ|−1
∫
B
dS, where dS is the

usual length measure and |Γ| =
∫
Γ
dS.

The random vectors (Yi, Xi) are i.i.d., and we denote their law Pθ with corre-
sponding probability density (Radon-Nikodym derivative)

pθ(y, x) ≡
dPθ

dµ
(y, x) =

1

(2π)d
exp

(
−1

2
|y − G(θ)(x)|2V

)
, y ∈ V, x ∈ Γ,

with respect to dµ = dy × dλ, where dy is the Lebesgue measure on V , see [41].
We call θ 7→ pθ(y, x) the likelihood function, and denote by PN

θ the joint law of
the random variables (Yi, Xi)

N
i=1. The likelihood function is suitable to enter in

the Bayesian approach: Lemma 2.1 and 2.3 imply that x 7→ G(θ)(x) is continuous
and that Θ ∋ θ 7→ G(θ) ∈ C(Γ)d, where d = 2 for Stokes’ model and d = 1 for
the Laplace equation. This implies (θ, x) 7→ G(θ)(x) is jointly B(Θ)⊗B(Γ)−B(V )
measurable by Lemma 4.5.1 in [3], which is enough for a well-defined posterior
distribution, see [41].

Given a prior distribution Π supported in Θ, Bayes’ formula, see [23, p. 7] or [41],
updates Π by the likelihood function to obtain the posterior distribution Π(·|DN )
of θ given DN ,

(6) Π(B|DN ) =

∫
B
eℓN (θ) Π(dθ)∫

Θ
eℓN (θ) Π(dθ)

, B ∈ B(Θ),

where

ℓN (θ) := −1

2

N∑

i=1

|Yi − G(θ)(Xi)|2V .

Note that 0 ≤ |y − G(θ)(x)|2 < ∞ for all (y, x) ∈ V × Γ and θ ∈ Θ, and hence the
normalization constant satisfies

0 <

∫

Θ

e−
1
2

∑N
i=1 |yi−G(θ)(xi)|2V Π(dθ) ≤ 1

for all (yi, xi)
N
i=1 ∈ (V × Γ)N . It follows that B 7→ Π(B|DN ) is a measure for each

DN ∈ (V × Γ)N and that ω 7→ Π(B|DN (ω)) is measurable for every B ∈ B(Θ). In
particular, ω 7→ Π(B|Y (ω)) is a [0, 1]-valued random variable. Before we state our
main theorem on the convergence features of the posterior distribution, we specify
our choice of prior distributions.

3.1. Choice of prior. In this section we recall well-known prior distributions that
are supported in Rj(M), j = 1, 2, allowing us to make use of the stability estimates
in Lemma 2.4. Our focus will be on the Matérn-type and squared exponential
Gaussian priors. For simplicity we define the Gaussian priors on the [−π, π)-torus
T and restrict to Γβ when necessary. Note any torus in which Γβ is embedded is
relevant and can be used. In the case of the Matérn priors, as we shall see, this
allows us to recover any sufficiently regular Sobolev function defined on Γβ . On the
other hand, the squared exponential Gaussian processes allows us to recover analytic
functions defined on Γβ whose extension is 2π-periodic. This setting benefits from
the fact that properties of Sobolev regularity and analyticity of periodic functions
are straightforwardly characterized by a decay of the Fourier coefficients. We can
think of this setting as an implicit choice of approximation of the ground truth by
the periodic trigonometric functions. One could instead define a prior distribution
on R with exponentially decaying spectral measure, and show that it is supported
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in R2(M), see [50]. This can be more technical due to the non-compactness of R
and is unnecessary for our case.

Consider the L2(T) real orthonormal basis of the usual trigonometric functions
{ϕk}k∈Z and for j = 1, 2 the random series

(7) θ̃j =
∑

k∈Z
gkwk,jϕk, gk

i.i.d.∼ N(0, 1)

with

wk,1 = (1 + k2)−α/2, α > 1/2,

wk,2 = e−
r
2k

2

, r > 0,

where α > 0 and r > 0 are parameters to be chosen. We consider for example
ϕk(x) = 1/

√
π cos(kx) for k > 0, ϕk(x) = 1/

√
π sin(kx) for k < 0 and ϕ0 = 1/

√
2π.

Since wk,j ∈ ℓ2(Z) for j = 1, 2, the series (7) converges for each x ∈ T in the
mean-square sense. In fact it is a Gaussian random variable, see [23, p. 13], and
the limit uj(x) exists almost surely. The choice of wk,j is here motivated by the
span of {wk,jϕk}k∈Z. Indeed, {wk,1ϕk}k∈Z is an orthonormal basis of

Hα(T) := {f ∈ L2(T) : ∥f∥2Hα,T :=
∑

k∈Z
|fk|2(1 + k2)α <∞}.

Here fk := ⟨f, ϕk⟩L2(T) denotes the coefficients in the orthonormal basis. Note we

can write f =
∑
fkϕk in a standard complex Fourier expansion

∑
f̂ke

ikx with the

usual Fourier coefficients f̂k expressed in terms of fk. Conversely, any real function
in the standard complex Fourier expansion can be written as

∑
fkϕk. Then H

α(T)
is the usual periodic Sobolev space of regularity α, see [49]. Similarly, {wk,2ϕk}k∈Z
is an orthonormal basis of

Ar(T) := {f ∈ L2(T) : ∥f∥2r,T :=
∑

k∈Z
|fk|2erk

2

<∞}.

A closed ball in any space of functions with exponentially decaying Fourier coeffi-
cients is in R2(M) for someM > 0, see Lemma C.1, and so the choice of the ‘square’
here is only in honor of the squared exponential prior. Note both spaces are Hilbert
spaces as closed subspaces of L2(T) with their respective obvious inner products.
Note also that Ar(T) embeds continuously into Hα(T) for any r, α > 0, which in
return embeds continuously into C(T) for α > 1/2 by a Sobolev embedding, see
[49].

3.1.1. RKHS and support. The random series (7) converges almost surely in Ht(T)
with t < α − 1

2 and Aq with q < r for j = 1 and j = 2, respectively. Indeed, by
Fubini’s theorem

E[∥θ̃1∥2Ht,T] = E[
∑

k∈Z
g2kw

2
k,1(1 + k2)t] =

∑

k∈Z
(1 + k2)t−α <∞,

and similarly for θ̃2. Then also θ̃2 ∈ Ht(Γβ) almost surely. Likewise we define

Ar(Γβ) := {f = g|Γβ
: g ∈ Ar(T)},

endowed with the quotient norm

(8) ∥f∥r = inf
g∈Ar(T):g=f in Γβ

∥g∥r,T = ∥f∥r,T,
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where the last equality holds because f has a unique analytic continuation to T.
Then θ̃2 ∈ Aq(Γβ), q < r almost surely.

The series (7) is the Karhunen-Loeve expansion of a Gaussian random element
of Ht(T) and Aq(T) for j = 1 and j = 2, respectively, see [15]. We set α > 3/2

and r > 0 such that the laws of θ̃1 and θ̃2 define Gaussian probability measures in
Θ. By a Sobolev embedding θ̃1 and θ̃2 are almost surely in C(Γβ), the separable

Banach space of continuous functions on Γβ endowed with the usual supremum

norm, which we denote by ∥ · ∥∞. Then the laws of θ̃j , j = 1, 2, define Gaussian

probability measures on C(Γβ), see [27, Exercise 3.39]. We denote

Π̃j := L(θ̃j), j = 1, 2.

The reproducing kernel Hilbert space (RKHS) of the Gaussian random element θ̃j
is Hα(T) for j = 1 and Ar(T) for j = 2, see Theorem I.23 [23]. Since the restriction
Hα(T) → Hα(Γβ) is onto, see [49, Section 4.4], the RKHS of the restricted Gaussian
random element is H1 := Hα(Γβ) in the case j = 1 and H2 := Ar(Γβ), see [24,
Exercise 2.6.5]. See also an argument in the process setting [41, Theorem 6.2.3].

3.1.2. Covariance function. Since θ̃j(x) is a Gaussian random variable for each x ∈
T and j = 1, 2, it is in fact a Gaussian process. The covariance function Kj :
T× T → R of the process takes the form, for j = 1, 2,

Kj(x, x
′) = E[θ̃j(x)θ̃j(x

′)] =
∑

k∈Z
w2

k,jϕk(x)ϕk(x
′),

see for example [23, p. 586]. Choosing for example ϕk(x) = 1/
√
π cos(kx) for

k > 0, ϕk(x) = 1/
√
π sin(kx) for k < 0 and ϕ0 = 1/

√
2π, and using the identity

cos(a) cos(b) + sin(a) sin(b) = cos(a− b) we find

Kj(x, x
′) =

w2
0,j

2π
+

1√
π

∞∑

k=1

w2
k,jϕk(x− x′),

=
1

2π

∑

k∈Z
w2

k,je
ik(x−x′),

=
∑

k∈Z
mj(x− x′ + 2πk),

using the Poisson summation formula with

m1(s) = F−1[(1 + 4π2ξ2)−α](s) = Csα−1/2Kα− 1
2
(s),

m2(s) = F−1[e−4π2rξ2 ](s) = Ce−
s2

4r2 ,

where Kν , ν > 0 is a modified Bessel function, see [44, Section 4.2.1]. Thus Kj is
the 2π-periodization of the usual Matérn covariance function on R when j = 1 and
the squared exponential covariance function on R when j = 2, which justifies our
naming convention.

3.1.3. Rescaling. Take α > 1 and r > 0 such that Π̃j(Θ) = 1 for j = 1, 2. We then
let Πj be the ‘rescaled’ Gaussian distribution for j = 1, 2,

(9) Πj := L
(
κN,j θ̃j

)
, θ̃j ∼ Π̃j ,
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for some decreasing sequence in N , κN,j defined as

κN,1 := N−1/(4α+2),

κN,2 := log(N)−1.

Letting the covariance of the prior depend on the observation regime is natural: it
updates the weight of the prior term in the posterior (6) formally as

Π1(dθ) ∝ exp

(
−N

1/(2α+1)

2
∥θ∥2H1

)
dθ

in the case of j = 1. In this way we penalize large values of ∥θ∥H1 more. This is
common in the consistency literature, see [38], and in fact sufficient for convergence
of regularized least-square procedures, see [19, Section 5]. In our setting this rescal-
ing is needed so that the prior distributions concentrate sufficiently on the totally
bounded regularization sets R1(M) and R2(M).

3.2. Convergence of the posterior mean. Before we state the main result, the
convergence of the posterior mean to the ground truth as N → ∞, we recall some
preparatory definitions. In the following we let Πj(·|DN ) denote the posterior dis-
tribution (6) in Θ arising from the prior distribution Πj defined in (9) for j = 1, 2.
The posterior mean Ej [θ|DN ] is defined in the sense of a Bochner integral, see for
example [16, p. 44]. Indeed, for all DN ∈ (V × Γ)N

∫

Θ

∥θ∥Θ Πj(dθ|DN ) ∝
∫

Θ

∥θ∥ΘeℓN (θ) Πj(dθ) ≤
∫

Θ

∥θ∥Θ Πj(dθ) <∞,

by Fernique’s theorem [27, Theorem 3.11], since Πj is supported in Θ for j =
1, 2. Then DN 7→ Ej [θ|DN ] is a Θ-valued random element by the definition of the
Bochner integral and since the pointwise limit of a sequence of measurable functions
is measurable, see [17, Theorem 4.2.2]. Let ϵN > 0 be some decreasing sequence
in N converging to zero. We say that a sequence of real-valued random variables
{fN (DN )}∞N=1 converges to zero in PN

θ0
-probability with rate ϵN as N → ∞ if there

exists a constant C > 0 such that

lim
N→∞

PN
θ0 (DN : |fN (DN )| > CϵN ) = 0

Then we have the following convergence results for the reconstruction error of the
posterior mean, where we take fN (DN ) = ∥Ej [θ|DN ] − θ0∥ for j = 1, 2, and a
suitable norm.

Theorem 3.1. Consider the posterior distribution Πj( · |DN ) arising from obser-
vations (5) in the model (3) and prior distributions Πj, j = 1, 2.

(i) If θ0 ∈ Hα(Γβ), α > 3/2, then

∥E1[θ|DN ]− θ0∥L∞(Γβ,ϵ) → 0 in PN
θ0 -probability

with rate | log(CδN )|−σ as N → ∞ for some 0 < σ < 1 and constant C > 0
and where δN = N−α/(2α+1).

(ii) If θ0 ∈ Ar(Γβ), r > 0, then

∥E2[θ|DN ]− θ0∥L2(Γβ,ϵ) → 0 in PN
θ0 -probability

with rate δσN for some 0 < σ < 1 as N → ∞, and where δN = N−1/2 log(N).
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Proof. (i) This is the result of Theorem 2.3.2 [41] and [41, Exercise 2.4.4] whose
conditions are satisfied by Lemma 2.3, 2.4 (i) and by the choice of prior (9) for
α > 3/2.
(ii) This fact is proven in Appendix C, since we deviate slightly from the setting of
Theorem 1.3.2 in [41]. □

Remark 1. By the local Lipschitz continuity of z 7→ ez, the case of (i) generalizes
to convergence at the level of β, i.e. β(E1[θ|DN ]) converges to β(θ0) in probabil-
ity with rate | log(CδN )|−σ as N → ∞. This is not as easy in the case of L2-
convergence in (ii). One straightforward remedy is to upgrade the L2-convergence
to L∞-convergence using Sobolev interpolation. A different strategy is to replace
θ 7→ β(θ) = mβ + eθ with a smoothened ‘regular link function’ in the sense of [42].

This theorem justifies and quantifies the use of the Bayesian methodology for
the two inverse problems. Note the theorem does not generalize immediately to
the problem for Stokes’ model with for example an L2-norm on a set K ⊂⊂ Γβ in
which u ̸= 0 as in [10, Remark 3.7]. Indeed, the estimate includes the pressure p
and its normal derivative ∂νp|Γ at Γ. Improving this estimate to be independent of
observations of the pressure remains largely open to the authors knowledge.

4. Concluding remarks

In this paper we have considered a Bayesian approach to two inverse Robin
problems with theoretical convergence guarantees as the number of observations
increases. We have motivated to popular and numerically tractable Gaussian priors
and show under appropriate rescaling that each lead to a convergent posterior mean.
If the ground true Robin coefficient is a priori known to be analytic, then the
logarithmic convergence rate can be upgraded to a rate on the form N−τ for some
τ > 0. Interesting future work includes generalizing Theorem 3.1 to the inverse
problem for Stokes’ model. In its current form, Theorem 3.1 allows recovering
analytic functions in the space Ar(Γβ). Another interesting future direction is to
generalize this to a larger class of analytic functions on Γβ using Gaussian processes
and a continuous version of Lemma C.1. For ideas in this direction we refer to [50].

A. Forward regularity

Proof of Lemma 2.1. (i) Consider the general Stokes’ equation for f ∈ (L2(O))2,

h ∈ (H−1/2(Γ))2 and h̃ ∈ (H−1/2(Γβ))
2,

(10)

−∆u+∇p = f in O,
∇ · u = 0 in O,

∂νu− pν = h on Γs,

∂νu− pν + βu = h̃ on Γβ .

The corresponding variational form is

(11)

∫

O
∇u : ∇v +

∫

Γβ

βu · v =

∫

O
f · v + ⟨h, v⟩− 1

2 ,
1
2 ,Γs

+ ⟨h̃, v⟩− 1
2 ,

1
2 ,Γβ

,

where ∇u : ∇v denotes the double dot product of the two matrices, ⟨·, ·⟩− 1
2 ,

1
2 ,Γs

denotes the (H−1/2(Γs))
2, (H−1/2(Γs))

2 dual pairing, and where v ∈ Vs := {v ∈
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(H1(O))2 : ∇ · v = 0}. By the generalized Poincaré inequality, see for example [12,
Proposition 5.3.4],

∫

O
|∇ui|2 +

∫

Γβ

u2i ≥ C(O)∥ui∥2L2(O),

for each i = 1, 2, where ui is the i
′th component of the vector field u. It follows that

∫

O
∇u : ∇u+

∫

Γβ

βu · u ≥ C(mβ ,O)
2∑

k=1

∥ui∥2H1(O),

and hence the bilinear form is coercive. It is straightforward to check that it is also
bounded, and likewise that the right-hand side is a bounded linear functional on
Vs. By standard Lax-Milgram theory, there is a unique weak solution u ∈ Vs to
(10) satisfying

(12) ∥u∥(H1(O))2 ≤ C(O,mβ)(∥f∥(L2(O))2 + ∥h∥(H−1/2(Γs))2 + ∥h̃∥(H−1/2(Γβ))2).

Note (10) is in the form that Theorem IV.7.1 in [11] considers with the compatibility
condition being satisfied by (11) for v = 1. The theorem then states that there is
also a unique solution p ∈ L2(O) to (10). In the following we take some care in
bounding this function. Initially de Rhams’ theorem [11, Theorem IV2.4] gives
a pressure term p̃ ∈ L2

0(O) = L2(O)/R unique up to a constant and satisfying
−∆u+∇p̃ = f . Take then the mean-zero solution satisfying

∥p̃∥L2(O) ≤ C(O)∥∇p̃∥H−1(O),

= C(O)∥∆u∥H−1(O) + ∥f∥H−1(O),

≤ C(O,mβ)(∥f∥(L2(O))2 + ∥h∥(H−1/2(Γs))2 + ∥h̃∥(H−1/2(Γβ))2)(13)

using [11, Lemma IV.1.9] and (12). The proof of Theorem IV.7.1 in [11] shows that
p = p̃ + C0 is the unique solution to (10) matching the boundary conditions. If

h ∈ (L2(Γs))
2 and h̃ ∈ (L2(Γβ))

2, this constant can be bounded as

|C0| ≤ C(O)(∥h∥(L2(Γs))2 + ∥h̃∥(L2(Γβ))2 + ∥β∥L∞(Γβ)∥u∥L2(O)

+ ∥∂νu∥H−1/2(∂O) + ∥p̃∥L2(O)),

hence if ∥β∥L∞(Γβ) ≤M , then

(14) ∥p∥L2(O) ≤ C(O,mβ ,M)(∥f∥(L2(O))2 + ∥h∥(L2(Γs))2 + ∥h̃∥(L2(Γβ))2)

using both (12) and (13).
(ii) The difference (v, q) for v = u1−u2 and q = p1−p2 of solutions (u1, p1), (u2, p2)
of (1) corresponding to β1 = β(θ1), β2 = β(θ2) is the unique solution of

−∆v +∇q = 0 in O,
∇ · v = 0 in O,

∂νv − qν = 0 on Γs,

∂νv − qν + β1v = u2(β2 − β1) on Γβ .

Note that [9, Lemma 2.3] implies

∥u2(β2 − β1)∥(L2(Γβ))2 ≤ ∥u2∥(L2(Γβ))2∥β2 − β1∥H1(Γβ),
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and hence by (i) above,

∥v∥(H1(O))2 ≤ C(O,mβ)∥u2(β2 − β1)∥(H−1/2(Γβ))2 ,

≤ C(O,mβ , h, ρ, g)∥β1 − β2∥H1(Γβ).(15)

To upgrade this we prove additional smoothness of v near Γ as follows. Define an
open set V ⊂ O that meets Γ, i.e. Γ ⊂ V . Define then the larger set U ⊂ O with
V ⊂ U and U ∩ ∂O ⊂ Γs. We then define the smooth cutoff function η ∈ C∞(U)
with η ≡ 1 in V and supp η ⊂ U (hence η is zero near Γβ). Then (ηv, ηq) solves the
system

−∆(ηv) +∇(ηq) = f̃ in U,

∇ · (ηv) = ∇η · v in U,

∂ν(ηv)− (ηq)ν = η(∂νv − qν) + v∂νη on ∂U,

for f̃ = v∆η + 2∇v · ∇η + q∇η ∈ L2(O). Note η(∂νv − qν) + v∂νη = v∂νη ∈
(H1/2(∂U))2. Then Theorem IV.7.1 of [11] states that

∥ηv∥(H2(U))2 ≤ C(U)(∥f̃∥(L2(U))2 + ∥∇η · v∥H1(U) + ∥v∂νη∥(H1/2(∂U))2).

Since η ≡ 1 in V , using (15) and (14) gives us

∥v∥(H2(V ))2 ≤ C(O,mβ ,M, h, ρ, g)

By Sobolev interpolation, there exists ᾱ, α̃ > 0 such that (denoting vi the i′th
component of v)

2∑

i=1

∥vi∥(H7/4(V ))2 ≤
2∑

i=1

∥vi∥α̃(H1(V ))2∥vi∥ᾱ(H2(V ))2 ,(16)

≤ C(O,mβ ,M, h, ρ, g)

2∑

i=1

∥vi∥α̃(H1(V ))2 ,

≤ C(O,mβ ,M, h, ρ, g)∥β1 − β2∥α̃H1(Γβ)
.

Now we argue that θ 7→ eθ is locally Lipschitz continuous in H1(Γβ), i.e.

(17) ∥β1 − β2∥H1(Γβ) ≤ C(Γβ ,M)∥θ1 − θ2∥H1(Γβ).

Note first by the mean value theorem that

∥eθ1 − eθ2∥L∞(Γβ) ≤ eM∥θ1 − θ2∥L∞(Γβ).

If Γβ ⊂ R it is clear that

∥β1 − β2∥H1(Γβ) ≲ ∥eθ1 − eθ2∥L2(Γβ) + ∥∇(eθ1)−∇(eθ2)∥L2(Γβ),

≤ ∥eθ1 − eθ2∥L2(Γβ) + ∥eθ1∇θ1 − eθ2∇θ2∥L2(Γβ),

≤ ∥eθ1 − eθ2∥L2(Γβ) + ∥∇θ1∥L2(Γβ)∥eθ1 − eθ2∥L∞(Γβ)

+ ∥eθ2∥L∞(Γβ)∥∇θ1 −∇θ2∥L2(Γβ),

≤ C(M)∥θ1 − θ2∥H1(Γβ),

using also the continuous Sobolev embedding H1(Γβ) ⊂ C(Γβ). By the definition
of Sobolev spaces on boundaries, see [25, (1,3,3,2)], the case where Γβ is a smooth
curve follows in the same way. Indeed, this amounts to showing

∥β1 ◦ ϕ− β2 ◦ ϕ∥H1(I) ≤ C∥θ1 ◦ ϕ− θ2 ◦ ϕ∥H1(I)
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for any smooth parametrization ϕ : I → R2 of a section of Γβ with I an open subset
of R. In this case we just repeat the argument above. Finally, combining (16) with
(17) and a Sobolev embedding it follows that

∥u1 − u2∥(C(Γ))2 ≲
2∑

i=1

∥vi∥C(Γ) ≤ C(O,mβ , h, ρ, g,M)∥θ1 − θ2∥α̃H1(Γβ)
.

(iii) This is proved in Proposition 3.3 of [9] for a stationary Neumann condition
g(x, t) = h(x) in (H1/2(Γs))

2.
□

Proof of Lemma 2.2. Consider more generally the equation (2) for an inhomoge-

neous Robin condition ∂νu + βu = h̃ ∈ H1/2(Γβ). The corresponding variational
form is

(18)

∫

O
∇u · ∇v +

∫

Γβ

βuv =

∫

Γ

hv +

∫

Γβ

h̃v,

for v ∈ V := {u ∈ H1(O) : u|Γ0
= 0}. By the generalized Poincaré inequality, see

for example [12, Proposition 5.3.4],
∫

O
|∇u|2 +

∫

Γβ

u2 ≥ C(O)∥u∥2L2(O),

hence the left-hand side of (18) is a coercive bilinear form on V . Since h and

h̃ are H1/2-functions, the right-hand side is a bounded linear functional on V .
By standard Lax-Milgram theory, there is a unique weak solution u ∈ V to (18)
satisfying

(19) ∥u∥H1(O) ≤ C(O,mβ)(∥h∥H−1/2(Γ) + ∥h̃∥H−1/2(Γβ)).

In particular, (4) is satisfied. □

Lemma A.1. For β ∈ H1(Γβ) with ∥β∥H1(Γβ) ≤ M , h as in Assumption 3, and

any 0 < s < 1
2 there exists a constant C = C(O,mβ ,M,Mh, s) such that

∥u∥H1+s(O) ≤ C,

where u solves (2).

Proof. Far away from the ‘corners’ (where different boundary conditions meet) the
estimate is straightforward using standard techniques. Near the corners the estimate
is essentially due to [25], although we are aided by [7] in particular. Since βu ∈
H1/2(Γβ) by Lemma 2.3 in [9] (u ∈ H1/2(Γβ) by Lemma 2.2 and β ∈ H1(Γβ) by
assumption), the trace theorem in [7, Theorem 2.1] provides a function v ∈ H2(O)
such that ∂νv = h on Γ, v = 0 on Γ0 and ∂νv = −βu on Γβ , i.e. w = u− v solves

(20)

∆w = −∆v in O,
∂νw = 0 on Γ,

w = 0 on Γ0,

∂νw = 0 on Γβ .

Indeed this trace operator T : H2(O) → H1/2(Γ) ×H3/2(Γ0) ×H1/2(Γβ), defined
by u 7→ (∂νu|Γ, u|Γ0 , ∂νu|Γβ

), is bounded [35] and surjective [7, Theorem 2.1], so
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there exists a continuous right-inverse, see the general remark after Theorem 8.3 in
[35]. Then by [9, Lemma 2.3]

∥v∥H2(O) ≤ C(∥h∥H1/2(Γ) + ∥βu∥H1/2(Γβ)),(21)

≤ C(∥h∥H1/2(Γ) + ∥β∥H1(Γβ)∥u∥H1/2(Γβ)),

The regularity decomposition of [7, Theorem 3.1.1] decomposes the unique solution
w ∈ H1(O) for some J ∈ N as

w = wr +
J∑

j=1

cjSj ,

where wr ∈ D2 := {w ∈ H2(O) : ∂νw = 0 on Γ ∪ Γβ , w = 0 on Γ0}, cj = cj(f) are
functionals of f = −∆v in L2(O), see [7, Remark 3.1.2] and Sj are certain ‘singular’
functions supported near the corners. They depend only on the geometry of O, see
(3.2.26) and Proposition 3.2.3 in [7], and satisfy ∆Sj ∈ L2(O) and Sj ∈ H1+s(O) if
and only if s < 1/2. Since ∆ : D2 → L2(O) is injective by uniqueness of solutions
to (20), it is bijective onto its image. The open mapping theorem then states that
there exists a constant C > 0 such that ∥wr∥H2(O) ≤ C∥∆wr∥L2(O), and hence

∥wr∥H2(O) ≤ C∥∆wr∥L2(O),

≤ C(∥∆v∥L2(O) +
J∑

j=1

|cj |∥∆Sj∥L2(O)),

≤ C(O)∥v∥H2(O).(22)

Combining (22) with (21) and using the standard estimate of ∥u∥H1(O) we have

∥u∥H1+s(O) ≤ C(O)∥v∥H2(O) + ∥
J∑

j=1

cjSj∥H1+s(O),

≤ C(O, s)∥v∥H2(O) ≤ C.

with C = C(O,Mh,M,mβ). □

Proof of Lemma 2.3. (i) is an immediate consequence of a Sobolev embedding and
Lemma A.1.
(ii) The difference v = u1−u2 of solutions u1, u2 corresponding to β1 = β(θ1), β2 =
β(θ2) is the unique solution to the equation

∆v = 0 in O,
∂νv = 0 on Γ,

v = 0 on Γ0,

∂νv + β1v = u2(β2 − β1) on Γβ .

Since u2(β2 − β1) ∈ H−1/2(Γβ), we use the estimate (19) with h = 0 and h̃ =
u2(β2 − β1) to the effect that

∥v∥H1(O) ≤ C(O,mβ)∥u2(β2 − β1)∥H−1/2(Γβ),(23)

≤ C(O,mβ)∥β1 − β2∥L∞(Γβ),

≤ C(O,mβ ,M)∥θ1 − θ2∥L∞(Γβ),
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using a simple mean value theorem argument. Boundedness of the trace operator
implies (ii).
(iii) By Sobolev interpolation, there exists ᾱ, α̃ > 0 such that

∥v∥H1+1/8(O) ≤ ∥u1 − u2∥α̃H1(O)∥u1 − u2∥ᾱH1+1/4(O),

≤ C(O,mβ ,M,Mh)∥θ1 − θ2∥α̃L∞(Γβ)
,

where we used (23) and Lemma A.1. Then boundedness of the trace operator and
a Sobolev embedding give the wanted result. □

B. Conditional stability estimates

Proof of Lemma 2.4. Notice first that the mean value theorem for a function θ̃(x) ∈
[θ1(x), θ2(x)] implies

β1 − β2 = eθ1 − eθ2 = eθ̃(θ1 − θ2),

and hence

∥θ1 − θ2∥Lq(Γβ) ≤ C(M)∥β1 − β2∥Lq(Γβ),

for any 1 ≤ q ≤ ∞, since ∥θ̃∥L∞(Γβ) ≤ M in either case of our assumptions. It is
then sufficient to consider stability estimate on the level of β.
(i) Theorem 2.2 of [1] states that

(24) ∥β1 − β2∥L∞(Γβ,ϵ) ≤ K̃| log(∥G(θ1)− G(θ2)∥L∞(Γ))|−σ

for some K̃ > 0 and 0 < σ < 1 dependent on O, h, M1 and ϵ. Sobolev embedding
and interpolation results gives for some 0 < δ < 1

4

∥G(θ1)− G(θ2)∥L∞(Γ) ≤ ∥G(θ1)− G(θ2)∥
H

1
2
+δ(Γ)

,

≤ ∥G(θ1)− G(θ2)∥pL2(Γ)∥G(θ1)− G(θ2)∥1−p

H
1
2
+2δ(Γ)

,

≤M(O,mβ ,Mβ ,Mh, δ)∥G(θ1)− G(θ2)∥pL2(Γ),

where p = 2δ
1+4δ , and where we used Lemma A.1. Inserting this into (24) for some

fixed δ gives (i) for K = K(K̃,M).
(ii) We follow the argument of [28, Section 3], which relies on two auxiliary results:

(1) minx∈Γβ,ϵ
u(x) ≥ η, where η > 0 is a constant dependent on ϵ, but indepen-

dent of the imposed boundary condition on Γ.
(2) the solution u to (2) can be analytically extended in a fixed neighborhood

U of Γβ with ∥u∥H2(U) ≤ C(M), where it is also harmonic.

In the presence of these two results, the estimate follows exactly as in [28, Theorem
3.1] with K > 0 and 0 < σ < 1 depending only on M , ϵ, O, Mh, M , and we will
not repeat it here.

(1) Note first that u(x) ≥ η for any x ∈ Γβ,ϵ, where η > 0 is some constant

depending on ϵ, but independent of h. This follows from continuity of u on O and
maximum principles for harmonic functions as in [28, Lemma 3.2]. Indeed, one can
conclude that u ≥ 0 everywhere on O by a standard contradiction argument as in
[43, Theorem 9, Chap. 2]. Then [14, Lemma 2] concludes positivity on Γβ using
Hopf’s lemma. The compactness argument of [28, Lemma 3.2] is then adapted to
our case to show u(x) ≥ η for any x ∈ Γβ,ϵ.
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(2) Corollary 1.1 in [36, Chapter 8] shows that the solution u to (2) is analytic

near and up to Γβ . For δ small and Ũ := O∩ ((0, 1)× (−δ, δ)) it further states that
for k = (k1, k2) ∈ N2

0

sup
z∈Ũ

|∂ku(z)| ≤ C(M)(k!)C(M)|k|,

for |k| = k1 + k2 ∈ N0 and where k! = k1!k2!. Then the Taylor series of u in (α, 0)
for any α ∈ (0, 1) has a convergence radius of at least r = C(M)−1. Indeed, for any
(x, y) with distance at most r to (α, 0) we have

u(z) = u(x, y) =

∞∑

n1=0

∞∑

n2=0

∂nu(α, 0)

n!
(x− α)n1yn2 ,

≤ C(M)

∞∑

n1=0

∞∑

n2=0

C(M)|n|(x− α)n1yn2 ,

≤
∞∑

n1=0

∞∑

n2=0

(C(M)r)|n|(25)

where we denoted n = (n1, n2). Since a power series is analytic in the interior
of its region of convergence, u is analytic in sufficiently small balls centered in
(α, 0). A covering argument then gives a unique analytic extension in for example

(0, 1)×(−δ̃, δ̃)) with δ̃ = min(δ, (2C(M))−1). Repeating (25) for ∂ku(z) for k = 1, 2,
we note that

∥u∥C2((0,1)×(−δ̃,δ̃)) ≤ C(M).

We also conclude ∆u = 0 in O ∪ ((0, 1) × (−δ̃, δ̃)). Indeed, ∆u is analytic in O ∪
((0, 1)×(−δ̃, δ̃)) and coincides with 0 on O and hence is zero in O∪((0, 1)×(−δ, δ))
by uniqueness of analytic functions. □

Using the general property of uniform analyticity up to the boundary we avoid
the argument in [28, Theorem 3.1], which uses a reflection formula provided by [8].
Inspection of this reflection formula reveals that we do need a condition like θi ∈
R2(M), i = 1, 2, to reflect the solution to a possible small but fixed neighborhood.
We can generalize our proof to stability estimates for any analytic Γβ for d = 2 and
d = 3.

C. Consistency for analytic functions

The result of Theorem 3.1 is derived from the property of posterior consistency,
see [23, Chapter 8] for a general treatment. In the following we address posterior
consistency for analytic functions. We start by establishing a relationship between
the space Ar(Γβ) and the set of functions R2(M). We prove a result, which is
well-known and particularly simple in the setting of the m-dimensional [−π, π)-
torus Tm. Analogously, it generalizes to function spaces defined by the decay of
the Fourier transform by the Paley-Wiener theorem, see [45, Theorem IX.13]. We
consider m ≥ 1, since it follows in much the same way as m = 1. To this end, let Γβ

be an open compactly embedded subset of [−π, π)m for m ∈ N. Let {ϕk}k∈Zm be
a real orthonormal Fourier basis and define for fk = ⟨f, ϕk⟩L2(Tm) the more general
space

Ar,m(Γβ) := {f = g|Γβ
: g ∈ Ar(Tm)}
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with

Ar(Tm) = {f ∈ L2(Tm) : ∥f∥2r,Tm :=
∑

k∈Zm

|fk|2er|k| <∞}

and the corresponding quotient norm of (8), denoted ∥ · ∥r,m. Note we write |k| :=
|k1| + . . . + |km| and not for example ∥k∥2 to make a sharper result. We keep the
definition of R2(M) as in Assumption 2, and note that the condition

sup
x∈Γβ

|(∂kβ)(x)| ≤M(k!)M |k|

should be understood in multi-index notation (i.e. ∂k = ∂k1
x1
. . . ∂km

xm
and k! =

k1! . . . km!) for each k ∈ N2
0. Again this is closely related to the usual character-

ization of analytic functions on Γβ , see [32, Proposition 2.2.10]. We also denote
d∞(x, S) := infy∈S ∥x− y∥∞, the sup-norm distance of the point x to the set S.

Lemma C.1. Suppose f ∈ Ar,m(Γβ), r > 0 with ∥f∥r ≤M0. Then,

(i) there exists an analytic extension of f to Gr := {z ∈ C : d∞(z,Γβ) ≤ r
4}

with

sup
z∈Gr

|f(z)| ≤M1

for some M1 =M1(r,M0,m).

(ii) supx∈Γβ

∣∣(∂kf)(x)
∣∣ ≤M2(k!)M

|k|
2 for some M2 =M2(M1, r) and k ∈ Nm

0 .

(iii) f ∈ R2(M) for some M =M(M1).

Proof. We complete the proof for m = 2 and note that the case for other m ∈ N
follows in the same way.

(i) By assumption f is the restriction of a function in Ar(T2) with ∥f∥r,T2 ≤ M0,

which implies for the usual Fourier coefficients f̂k := 1
2π ⟨f, eik·x⟩L2(T2)

|f̂k| ≤M0e
− r

2 |k|.

Define the ‘polycylinder’

Pρ = {w ∈ C2 : |w1| < eρ/2, |w2| < eρ/2}.

Take a compact setK ⊂ Pr, then for any w ∈ K, the family of functions {f̂kwk}k∈N2
0

(where wk = wk1
1 w

k2
2 ) is bounded. Then by the argument of [46, Corollary 1.5.9.2],

the function w 7→ ∑
k∈N2

0
f̂kw

k is complex analytic in Pr. In fact, by the same

argument the four power series

(26) w 7→
∑

k∈N2
0

f̂±k1,±k2w
k

are complex analytic in Pr. Further, for all w ∈ P r/2

(27)

∣∣∣∣∣∣
∑

k∈N2
0

f̂±k1,±k2
wk

∣∣∣∣∣∣
≤
∑

k∈N2
0

|f̂±k1,±k2
||w|k ≤ C(M0, r)
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Now decompose the following Laurent series into four similar power series as

∑

k∈Z2

f̂kw
k =

∞∑

k1=1

∞∑

k2=0

f̂−k1,k2w
−k1
1 wk2

2 ,

+
∞∑

k1=1

∞∑

k2=1

f̂−k1,−k2
w−k1

1 w−k2
2 ,

+
∞∑

k1=0

∞∑

k2=0

f̂k1,k2
wk1

1 w
k2
2 ,

+

∞∑

k1=0

∞∑

k2=1

f̂k1,−k2w
k1
1 w

−k2
2 .

Consider first the first term. This has the form w 7→ g(w−1
1 , w2) for a function g1

on the form (26) complex analytic in Pρ. The function w 7→ (w−1
1 , w2) is complex

analytic in for example {w ∈ C2 : w1 > e−r/2, w2 < er/2}, since w 7→ wi is complex
analytic everywhere and w 7→ w−1

i is complex analytic for wi away from zero,

i = 1, 2, see [46, Proposition 1.2.2]. Then also w 7→ g1(w
−1
1 , w2) is complex analytic

in {w ∈ C2 : w1 > e−r/2, w2 < er/2}, since compositions of analytic functions are
analytic, see again [46, Proposition 1.2.2]. Continuing this argument for each term
above, we find that

g(w) :=
∑

k∈Z2

f̂kw
k

is complex analytic in the ‘polyannulus’ {w ∈ C2 : e−r/2 < wi < er/2, i = 1, 2}.
Using that z 7→ ez is entire on C and again the composition rule, we find that

z 7→ g(eiz1 , eiz2) =
∑

k∈Z2

f̂ke
ik·z

is complex analytic in {z ∈ C2 : |Im(zi)| < r/2, i = 1, 2}. Moreover, since (27) is a
bound for each of the four power series which make up f and Gr is a subset of the
strip of where it is defined, we conclude

(28) sup
z∈Gr

|f(z)| ≤M1(r,M0).

(ii) The Cauchy integral inequality in [46, Theorem 1.3.3] gives the estimate

sup
|zi|<r/4,i=1,2

|(∂kf)(z)| ≤ (k!)(r/4)|k| sup
|zi|=r/4,i=1,2

|f(z)|.

Since Γβ is compact, we can cover it by real translations of {z ∈ C2 : |zi| < r/4, i =
1, 2} and conclude by (28) that there exists a constant M2 =M2(M1, r) such that

sup
x∈Γβ

|(∂kf)(x)| ≤M2(k!)M
|k|
2 .

(iii) Since z 7→ ez is entire, also z 7→ ef(z) is complex analytic in Gr with a bound
supz∈Gr

|ef(z)| ≤ eM1 . Repeating the same arguments as of (ii) we conclude that
f ∈ R2(M) for some M =M(M1). □

We now return to the question of consistency, which involves precise statements
on the prior we use. Since Π̃2 is a Gaussian measure in C(Γβ), a covering number
bound of the unit norm-ball in the RKHS H2 = Ar(Γβ), yields a bound on the
measure of small norm balls, see [34]. To make use of this, we define the notion
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of covering numbers as follows. Let the covering number N(A, d, ρ) for A ⊂ X of
some space X endowed with a semimetric d, denote the minimum number of closed
d-balls {x ∈ X : d(x0, x) ≤ ρ} with center x0 ∈ A and radius ρ > 0 needed to cover
A, see for example [23, Appendix C] or [24, Section 4.3.7]. When d is replaced by a
norm, we mean the metric induced by the norm. The following consequence of [23,
Proposition C.9] allows us to bound the unit norm ball of Ar(Γβ).

Lemma C.2. The class A(M1) of all functions f : [0, 1]m → R that can be extended
to a complex analytic function on Gr with supz∈Gr

|f(z)| ≤ M1 for some M1 > 0
and r > 0, satisfies for all ρ > 0 sufficiently small

(29) logN(A(M1), ∥ · ∥∞, ρ) ≤ C(r,m,M1) log(ρ
−1)1+m.

Proof. Proposition C.9 in [23] states that

logN(A(1), ∥ · ∥∞, ρ) ≤ C(m)r−m log(ρ−1)1+m

for all 0 < ρ < 1/2. Since ∥ · ∥∞ ≤ ∥ · ∥C([0,1]m), [24, eq. (4.172)] gives

logN(A(1), ∥ · ∥∞, ρ) ≤ logN(A(1), ∥ · ∥C([0,1]m), ρ).

Then, combining the two last displays with [24, eq. (4.171)] we have

logN(A(M1), ∥ · ∥∞, ρ) = logN(A(1), ∥ · ∥∞, ρM−1
1 ),

≤ logN(A(1), ∥ · ∥C([0,1]m), ρM
−1
1 ),

≤ C(r,m) log(M1ρ
−1)1+m.

By the convexity of x 7→ x1+m, m ≥ 1, we have the inequality (x + y)m+1 ≤
2m(xm+1 + ym+1) for x, y ∈ R. Then for ρ small enough,

log(M1ρ
−1)1+m ≤ C(M1,m) log(ρ)1+m,

and hence (29) is satisfied. □

Since we constructed Π2 form = 1, we consider from now only this case, although
everything generalizes to higher dimensions. See also Remark 2 below. To this end,
denote the unit norm ball of H2 = Ar(Γβ) by

BH2
:= {f ∈ H2 : ∥f∥H2

≤ 1}.
Note that BH2

⊂ A(M1) for some M1 =M1(r) by Lemma C.1 (i).

Lemma C.3. Let ϕ(ρ) := − log Π̃2(θ ∈ C(Γβ) : ∥θ∥∞ ≤ ρ) where Π̃2 is dependent
on r > 0. For all ρ > 0 sufficiently small,

(30) ϕ(ρ) ≤ C(r) log(ρ−1)2.

Proof. We follow [50, Lemma 4.6]. Theorem 1.2 of [34] initially gives the rough
estimate

(31) ϕ(ρ) ≤ C(r,M1)ρ
−2,

for all ρ > 0 sufficiently small, since

logN(BH2 , ∥ · ∥∞, ρ) ≤ C(r)ρ−1,

for all ρ > 0 sufficiently small by Lemma C.2 for m = 1. The first display of the
proof of Lemma 4.6 in [50] provides the inequality

ϕ(2ρ) ≤ logN(BH2 , ∥ · ∥∞, 2ρ[2ϕ(ρ)]−1/2).

Inserting (31) into this and using Lemma C.2 again, then gives (30). □
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The following result corresponds to Theorem 2.2.2 of [41] for rescaled Gaussian
priors for analytic functions. We define dG(θ1, θ2) := ∥G(θ1) − G(θ2)∥L2(Γ) for all
θ1, θ2 ∈ Θ.

Lemma C.4. Let θ0 ∈ H2 = Ar(Γβ), r > 0, and Π2 be as defined in (9). Set,

(32) δN = N−1/2 log(N).

Let U > 0 be large enough depending on Π̃2, r and such that ∥G(θ0)∥C(Γ) ≤ U .

Then, there exists Borel measurable sets ΘN such that

(i) Π(θ : dG(θ, θ0) ≤ δN , ∥G(θ)∥C(Γ) ≤ U) ≥ e−C1Nδ2N for some C1 > 0,

(ii) Π2(Θ
c
N ) ≤ e−C2Nδ2N for C2 > C1 + 2.

(iii) logN(ΘN , dG ,m0δN ) ≤ C(C2, r)Nδ
2
N for m0 > 0 large enough

for all N sufficiently large.

Proof. First we give the form of ΘN . Define BH2
(δ) and B∞(δ) to be the closed

norm balls of radius δ > 0 in H2 and C(Γβ), respectively. That is,

BH2
(δ) := {f ∈ H2 : ∥f∥H2

≤ δ},
B∞(δ) := {f ∈ C(Γβ) : ∥f∥∞ ≤ δ},

Recall, also that BH2
(M0) ⊂ A(M1) for some M1 = M1(r,M0) by Lemma C.1 (i).

Then we take

(33) ΘN := (BH2
(M) +B∞(MδN )) ∩R2(M).

for M > 0 sufficiently large determined by (ii) below.

We also recall the following triangle inequality fact needed for (ii) below: a CδN -
covering of BH2(M) is a (M + C)δN -covering of BH2(M) +B∞(MδN ) so that

N(BH2
(M) +B∞(MδN ), ∥ · ∥∞, (M + C)δN ) ≤ N(BH2

(M), ∥ · ∥∞, CδN ).

This implies for C̃ large enough that

(34) N(ΘN , ∥ · ∥∞, C̃δN ) ≤ N(BH2(M), ∥ · ∥∞, (C̃ −M)δN ).

In addition, we will use repeatedly below that

κN,2 =
1√
NδN

.

Finally, we need the scaled RKHS H2,N := κN,2H2 = {κN,2h : h ∈ H2} with

norm ∥h∥H2,N
= κ−1

N,2∥h∥H2
. This is the RKHS associated with Π2, see [27] or [24,

Exercise 2.6.5].

(i) We proceed as in [41, Theorem 2.2.2]. Recall that Π̃2(Aq(Γβ)) = 1 for any
0 < q < r. Hence also Π2(Aq(Γβ)) = 1. Fernique’s theorem [24, Theorem 2.1.20]

initially gives that E[∥θ̃2∥q] ≤ D for some constant D depending only on the prior

Π̃2, and next

Π2(θ : ∥θ∥q > M0) = Π̃2(θ̃ : ∥θ̃∥q > M0

√
NδN ),(35)

≤ Π̃2(θ̃ : ∥θ̃∥q − E[∥θ̃∥q] >
1

2
M0

√
NδN ),

≤ e−CM2
0Nδ2N ,
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for some sufficiently large constant M0 = M0(D) and some constant C = C(Π̃2).
By Lemma C.1, this implies

(36) Π2(θ : ∥θ∥H1(Γβ) > M1) ≤ e−CM2
0Nδ2N ≤ 1

2
,

for M0 large enough depending on C and M1 =M1(M0, r). Note we have

∥θ − θ0∥H1(Γβ) ≤M1 ⇒ ∥θ∥H1(Γβ) ≤M1 + ∥θ0∥H1(Γβ) ≡ M̄,

which by Lemma 2.3 implies ∥G(θ)∥C(Γ) ≤ U = U(M̄), since

∥eθ∥H1(Γβ) ≲ ∥eθ∥∞(1 + ∥θ∥H1(Γβ)).

Using again Lemma 2.3 and Corollary 2.6.18 [24] permitted since θ0 ∈ H2 and
Π2(Θ) = 1, we get

Π2(dG(θ, θ0) ≤ δN , ∥G(θ)∥C(Γ) ≤ U)

≥ Π2(dG(θ, θ0) ≤ δN , ∥θ − θ0∥H1(Γβ) ≤M1),

≥ Π2(∥θ − θ0∥∞ ≤ K−1δN , ∥θ − θ0∥H1(Γβ) ≤M1),

≥ e
− 1

2∥θ0∥2
H2,N Π2(∥θ∥∞ ≤ K−1δN , ∥θ∥H1(Γβ) ≤M1),

≥ e−C(θ0)κ
−2
N,2Π2(∥θ∥∞ ≤ K−1δN )Π2(∥θ∥H1(Γβ) ≤M1),

where we used the Gaussian correlation inequality, see [41, Theorem 6.2.2], and the
relation ∥θ0∥H2,N

= κ−1
N,2∥θ0∥H2

for the last line. We also note that K depends on
M1. Lemma C.3 implies

− log Π2(θ : ∥θ∥∞ ≤ K−1δN ) = − log Π̃2(θ̃ : ∥θ̃∥∞ ≤ κ−1
N,2K

−1δN )

≤ C(r) log

(
KκN,2

δN

)2

,

= C(r) log
(
K
√
N log(N)−2

)2
,

≤ C(r)

[
log(K) +

1

2
log(N)− 2 log(log(N))

]2
,

≤ C(K, r) log(N)2,

≤ C(K, r)Nδ2N ,(37)

for a sufficiently large constant C = C(K, r). Equation (36) shows

Π2(θ : ∥θ∥H1(Γβ) ≤M1) ≥ 1− 1

2
=

1

2
.

The three last displays shows (i) for (32) and a constant C1 = C1(θ0,K,M1, r).
(ii) Lemma C.1 implies there exists M =M(q,M0) such that

{f ∈ Aq(Γβ) : ∥f∥q ≤M0} ⊂ R2(M),

and hence by (35) we can pick M0 large enough dependent on C2 such that

Π2(R2(M)c) ≤ 1

2
e−C2Nδ2N .

We simply pick q = r/2 to fix constants. Then it suffices to prove

Π2(BH2(M) +B∞(MδN )) ≥ 1− 1

2
e−C2Nδ2N .
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We prove the stronger bound

Π2(BH2
(M) +B∞(MδN )) ≥ 1− e−2C2Nδ2N .

By similar computations as with (37) for M ≥ 1, we find

− log Π2(θ : ∥θ∥∞ ≤MδN ) ≤ C(r) log(δ−1
N ),

≤ C(r)(1/2 log(N)− log log(N)),

≤ 2C2 log(N)2,

≤ 2C2Nδ
2
N ,

for any given C2 > 0 and N sufficiently large. As in [41, Theorem 2.2.2] we denote

BN = −2Φ−1(e−2C2Nδ2N ),

where Φ is the standard normal cumulative distribution function. Then by [23,
Lemma K.6] we have

BN ≤ 2

√
2 log(e2C2Nδ2N ) ≤ 4

√
C2

√
NδN .

Then for M > 4
√
C2 such that BN ≤M

√
NδN we use the isoperimetric inequality

[24, Theorem 2.6.12] to conclude that

Π2(BH2
(M) +B∞(MδN )) = Π̃2(BH2

(M
√
NδN ) +B∞(M

√
Nδ2N )),

≥ Π̃2(BH2
(BN ) +B∞(M

√
Nδ2N )),

≥ Φ(Φ−1[Π̃2(B∞(M
√
Nδ2N ))] +BN ),

≥ Φ(Φ−1[e−2C2Nδ2N ] +BN ),

= Φ(−Φ−1[e−2C2Nδ2N ]),

= 1− Φ(Φ−1[e−2C2Nδ2N ]),

= 1− e−2C2Nδ2N ,

using also Φ(−x) = 1− Φ(x).
(iii) We recall that BH2

(M) ⊂ A(M1) for some M1 = M1(M, r) by Lemma C.1 so
that Lemma C.2 gives

logN(BH2(M), ∥ · ∥∞, δN ) ≤ C(r,M) log(δ−1
N )2,

≤ C(r,M) (1/2 log(N)− log log(N))
2
,

≤ C(r,M)Nδ2N ,

for N large enough. Then using Lemma 2.3 with m0 = m0(K,M) sufficiently large
and (34) we get

logN(ΘN , dG ,m0δN ) ≤ logN(ΘN , ∥ · ∥∞,K−1m0δN ),

≤ logN(BH2
(M), ∥ · ∥∞, (K−1m0 −M)δN ),

≤ C(r,M)Nδ2N ,

Note M depends only on r and C2 through M0. □
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Remark 2. Extending Lemma C.3 and C.4 to m > 1 and other exponential decay is
straightforward. Indeed, define a Gaussian prior by the restriction to Γβ ⊂ [−π, π)m
of the random series

θ̃2 =
∑

k∈Zm

gke
− r

2 |k|ϕk, gk
i.i.d.∼ N(0, 1).

This is an element of Aq,m(Γβ) a.s for q < r and its RKHS is H2 = Ar,m(Γβ). Then
Lemma C.3 follows in the same way by noting BH2

⊂ A(M1) for some M1 =M1(r)
by Lemma C.1 (i). Given a Lipschitz continuous forward map G, Lemma C.4 follows
for δN = N−1/2 log(N)ζ for some exponent ζ dependent on m.

Proof of 3.1 (ii). By Lemma C.4, conditions (1.32) and (1.33) of Theorem 1.3.2
[41] are satisfied for the choice (33) of ΘN . Lemma C.4 (ii) and the bound on the
Hellinger distance h(pθ, pϑ) ≤ 1

2dG(θ, ϑ), see [41, Proposition 1.3.1], implies

(38) N(Θ̃N , h,
1

2
m0δN ) ≤ N(ΘN , dG ,m0δN ) ≤ eC(C2,r)Nδ2N

hence for all ε > 2m0δN

N(Θ̃N , h,
ε

4
) ≤ eC(C2,r)Nδ2N ,

with

Θ̃N := {pθ : θ ∈ ΘN}.
Note the right-hand side of (38) is independent of such ε. Setting ε = mδN for
m > 2m0, Theorem 7.1.4 of [24] gives the existence of statistical tests ΨN : (R ×
Γ)N → {0, 1} satisfying

PN
θ0 (ΨN = 1) → 0,

as N → ∞, and for the expectation EN
θ with respect to PN

θ

sup
θ∈ΘN :h(pθ,pθ0

)>mδN

EN
θ (1−ΨN ) ≤ e−κNδ2N

for m large enough also depending on C(C2, r) and κ. Then the proof of The-
orem 1.3.2 [41] implies that for all 0 < b < C2 − C1 − 2 we can choose C0 =
C0(C1, C2, r,m0, b, U) large enough such that

PN
θ0

(
ΠN (θ ∈ ΘN : dG(θ, θ0) ≤ C0δN |DN ) ≤ 1− e−bNδ2N

)
→ 0.

Lemma 2.4 (ii) implies

{θ ∈ ΘN : dG(θ, θ0) ≤ C0δN} ⊂ {θ ∈ ΘN : ∥θ − θ0∥L2(Γβ,ϵ) ≤ KCσ
0 δ

σ
N}

so that we also have

PN
θ0

(
ΠN (θ ∈ ΘN : ∥θ − θ0∥L2(Γβ,ϵ) ≤ KCσ

0 δ
σ
N |DN ) ≤ 1− e−bNδ2N

)
→ 0.

Then the argument of Theorem 2.3.2 [41] applies in the same way here to the effect
that

∥E2[θ|DN ]− θ0∥L2(Γβ,ϵ) → 0 in PN
θ0 -probability

with rate δσN as N → ∞. □
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Boston, Inc., Boston, MA, second edition, 2002.

[33] Christophe Labreuche. Stability of the recovery of surface impedances in inverse scattering.
J. Math. Anal. Appl., 231(1):161–176, 1999.

[34] Wenbo V. Li and Werner Linde. Approximation, metric entropy and small ball estimates for

Gaussian measures. Ann. Probab., 27(3):1556–1578, 1999.
[35] J.-L. Lions and E. Magenes. Non-homogeneous boundary value problems and applications.

Vol. I, volume Band 181 of Die Grundlehren der mathematischen Wissenschaften. Springer-

Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth.
[36] J.-L. Lions and E. Magenes. Non-homogeneous boundary value problems and applications.

Vol. III, volume Band 183. Springer-Verlag, New York-Heidelberg, 1973. Translated from the
French by P. Kenneth.

[37] Jijun Liu and Gen Nakamura. Recovering the boundary corrosion from electrical potential

distribution using partial boundary data. Inverse Probl. Imaging, 11(3):521–538, 2017.
[38] François Monard, Richard Nickl, and Gabriel P. Paternain. Consistent inversion of noisy

non-Abelian X-ray transforms. Comm. Pure Appl. Math., 74(5):1045–1099, 2021.

[39] Ruanui Nicholson and Matti Niskanen. Joint estimation of Robin coefficient and domain
boundary for the Poisson problem. Inverse Problems, 38(1):Paper No. 015008, 23, 2022.
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Technical report

The following appendix is the technical report titled Direct method for stroke
detection with electrical impedance tomography in three dimensions authored by
Kim Knudsen and Aksel Kaastrup Rasmussen in 2023.



DIRECT METHOD FOR STROKE DETECTION WITH

ELECTRICAL IMPEDANCE TOMOGRAPHY IN THREE

DIMENSIONS

Kim Knudsen and Aksel Kaastrup Rasmussen∗

Technical University of Denmark
Department of Applied Mathematics and Computer Science

DK-2800 Kgs. Lyngby, Denmark

Abstract. In this paper we revisit the regularized, direct reconstruc-
tion method for three dimensional Electrical Impedance Tomography
(EIT) based on complex geometrical optics solutions and a non-physical
scattering transform. The method solves the full non-linear problem di-
rectly without relying on iterations or linearization. We demonstrate via
computational experiments that the method applies to the challenging
situation of stroke detection, where the weakly conducting skull is a bar-
rier. Our results suggest that detecting a hemorrhagic stroke is possible
and robust to noise perturbations, while detecting an ischemic stroke is
highly challenging. Further, our results suggest that the direct method
is a promising candidate for a portable and nearly real-time stroke-EIT
system.

1. Introduction

Electrical Impedance Tomography (EIT) is a non-invasive medical imag-
ing modality that aims to recover a body’s electrical conductivity based on
surface measurements of currents and voltages through electrodes attached
to the skin. Applications are diverse: lung EIT has shown great promise (see
[1] and references therein), but also for the monitoring of fast electrical brain
activity [2] and stroke detection, EIT seems feasible [3, 4]. A great challenge
in brain EIT is the weakly conducting skull: It is difficult to get the electric
energy to pass beyond the skull and propagate information about the brain’s
inner structures to the surface measurements.

The mathematical problem behind EIT was formulated by Calderón in
1980 [5] as follows: consider a bounded and smooth domain Ω ⊂ R3 repre-
senting the electrically conducting body. We assume the conductivity distri-
bution is isotropic and hence described by a bounded and strictly positive
function γ. The experiment consists of applying an electrical potential to
the boundary of Ω and measuring the corresponding current flux through

Key words and phrases. electrical impedance tomography, stroke detection, ill-posed
problem, regularization, direct method.

∗ Corresponding author.

1



2 KIM KNUDSEN AND AKSEL KAASTRUP RASMUSSEN

the boundary. Indeed, under conservation of charge, the boundary poten-
tial, as modelled by a continuous function f on the boundary ∂Ω, induces an
electrical potential u inside Ω that solves uniquely the conductivity equation

(1)
∇ · (γ∇u) = 0 in Ω,

u = f on ∂Ω.

The corresponding current field is γ∇u, and on the boundary the nor-
mal component g = ν · (γ∇u)|∂Ω can be measured. Here ν denotes the
outward unit normal to ∂Ω. The Dirichlet-to-Neumann map (Voltage-to-
Current map) Λγ takes any voltage f to the corresponding current g = Λγf ;
it models and encodes all possible boundary experiments.

The inverse problem in EIT is two-fold: it asks whether the boundary
measurements represented by Λγ determines uniquely the conductivity dis-
tribution γ, and assuming this is the case, it asks for a stable reconstruction
of the conductivity γ given the boundary measurements Λγ . This is the
so-called Calderón problem.

The Calderón problem is non-linear and known to be severely ill-posed.
The uniqueness question for the full 3D problem was answered in the affir-
mative in [6] using complex geometrical optics (CGO) solutions, and a the-
oretical reconstruction method was developed by Nachman [7] and Novikov
[8] using a non-physical scattering transform. The method was implemented
as a computational algorithm in [9, 10, 11], and finally stabilized via rigorous
regularization analysis in [12]. See also [13] for a closely related study using
a simplified CGO-based method with the complete electrode model.

The aim of this paper is to investigate computationally whether the al-
gorithm applies to the situation of stroke-EIT. Theoretically this is already
guaranteed with mild smoothness assumptions on γ, but since the inverse
problem is severely ill-posed and stroke-EIT needs to deal with the weakly
conducting skull, difficulties are expected to occur. To this end we develop
two numerical phantoms modelling a hemorrhagic and an ischemic stroke.
We simulate the electrode measurements by numerically solving (1), and use
this data for solving the inverse problem in different noise regimes.

The outline of the paper is as follows: In section 2 we outline the the-
oretical method and a regularized adaptation for the case of noisy data.
In section 3 we detail the numerical scheme for the reconstruction method.
Then in section 4 we describe the method for solving the forward problem,
and finally in section 5 we give the numerical results.

2. Full nonlinear reconstruction

The full nonlinear reconstruction of γ is a method of three steps. It builds
on a certain family of functions ψζ (CGO) for which γ−1/2ψζ solves (1) with
γ = 1 near ∂Ω [6]. These solutions are indexed by a complex frequency
ζ ∈ C3 which satisfy ζ · ζ = 0. Construction of such solutions involves the
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Fadeev Green’s function

Gζ(x) := eiζ·xgζ(x) gζ(x) :=
1

(2π)3

∫

R3

eix·ξ

|ξ|2 + 2ζ · ξ dξ,

which share the same singularity as the usual Green’s function G0 for the
negative Laplacian. That is, Hζ := Gζ −G0 is a harmonic function.

The first step involves recovering the trace of CGO solutions ψζ for a
sequence of large frequencies ζ. This is possible by solving the boundary
integral equations

(2) ψζ |∂Ω + Sζ(Λγ − Λ1)(ψζ |∂Ω) = eiζ·x|∂Ω,

where Sζ : H−1/2(∂Ω) → H1/2(∂Ω) is the boundary single-layer operator
corresponding to the kernel Gζ . That is,

(Sζφ)(x) :=
∫

∂Ω
Gζ(x− y)φ(y) dσ(y), x ∈ ∂Ω.

There is a unique solution to (2) if the complex frequency is of large magni-
tude, namely

(3) |ζ| > C0∥γ∥C2(Ω),

for some positive constant C0 depending on a lower bound on γ ∈ C2(Ω),
see for example [7]. Intuitively, one can think of this step as identifying
the surface potentials that extract the right current information from the
relative measurements Λγ − Λ1.

The second step involves a non-physical scattering transform, which we
can compute if we restrict ζ to the subset Vξ of C3 on the form

Vξ = {ζ ∈ C3 | ζ · ζ = (ζ + ξ) · (ζ + ξ) = 0}.
Then the scattering transform takes the form

(4) t(ξ, ζ(ξ)) =

∫

∂Ω
eix·(ξ+ζ(ξ))(Λγ − Λ1)ψζ(x) dσ(x).

Integration by parts in (4) reveals a relationship with q := γ−1/2∆(γ1/2)
under the assumption that γ ∈ C2(Ω). In fact, the scattering transform
resembles the Fourier transform of q in the sense that

lim
|ζ(ξ)|→∞

t(ξ, ζ(ξ)) = q̂(ξ)

for all ξ in R3. We note Vξ is sufficiently large to contain a sequence tending
to infinity [14]. We can then recover q from the inverse Fourier transform
and in the last step γ by solving a boundary value problem.

The method is summarized as follows:

Λγ
(1)−→ t

(2)−→ q
(3)−→ γ

Step 1: For each fixed ξ in R3, solve the boundary integral equation (2) for
all ζ(ξ) ∈ Vξ. Compute t(ξ, ζ(ξ)) by (4).

Step 2: Compute q̂(ξ) and then q(x) by the inverse Fourier transform.
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Step 3: Solve the boundary value problem

(−∆+ q)γ1/2 = 0 in Ω,

γ1/2 = 1 on ∂Ω.

and extract γ.

We consider now the case of inexact data. Say we measure a perturbed
Dirichlet-to-Neumann map

Λεγ = Λγ + E ,
where E is a bounded linear operator from H1/2(∂Ω) to H−1/2(∂Ω) with
some operator norm bounded by ε > 0 of small size. In this case, [11, 12]
proposes an adaptation of the direct method as follows.

Step 1ε: Let M = M(ε) > 0 be determined by a sufficiently small ε. For
each fixed ξ with |ξ| < M , take ζ(ξ) ∈ Vξ and recover ψεζ |∂Ω from

ψεζ |∂Ω + Sζ(Λεγ − Λ1)(ψ
ε
ζ |∂Ω) = eiζ·x|∂Ω.

Compute the truncated scattering transform by

tεM (ξ) =

{∫
∂Ω e

−ix·(ξ+ζ)(Λεγ − Λ1)ψ
ε
ζ(x)dσ(x) |ξ| < M,

0 |ξ| ≥M,

Step 2ε: Set q̂ε(ξ) := tεM (ξ) and compute the inverse Fourier transform to
obtain qε.

Step 3ε: Solve the boundary value problem

(−∆+ qε)(γε)1/2 = 0 in Ω,

(γε)1/2 = 1 on ∂Ω.

and extract γε.

We shall refer to this as the regularized method.

Remark 1. There are several several strategies for picking ζ(ξ). One sug-
gestion is to pick ζ(ξ) such that |ζ(ξ)| =Mp for p > 3/2. This is a sufficient
condition to show that the method is a convergent regularization scheme
given M is sufficiently slowly growing in ε [12]. In practice, one may choose

ζ in a pragmatic fashion and take for example |ζ(ξ)| =M or ζ(ξ) = ξ√
2
such

that |ζ| is minimal in the admissible set.

3. Implementation of the method

For simplicity we let Ω = B(0, 1). The unit ball setting allows a simple
orthonormal basis of L2(∂Ω) consisting of spherical harmonics

Y m
n (θ, ϕ) = Pn(cos(θ))e

imϕ, n ∈ N0, |m| ≤ n,

where Pn is the associated Legendre polynomial of degree n. This particular
basis is useful for a Nyström type discretization of the boundary integral
equation [10, 11].
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We aim to recover γε everywhere in Ω from frequency information in
a ball of radius M . By Shannon sampling it is sufficient to sample q̂ε in
an equidistant grid Ξ sufficiently dense in [−M,M ]3. Each ξ ∈ Ξ defines
together with a strategy for picking |ζ(ξ)| an admissible ζ(ξ) ∈ Vξ on the
form

ζ(ξ) = ζ1 + iζ2,

where ζ1 = − ξ
2 + ξ⊥, |ζ1| = |ζ2| = κ for some κ ≥ |ξ|

2 , and {ξ, ξ⊥, ζ2} is an
orthogonal set.

For each ζ(ξ), ξ ∈ Ξ we solve a discretized boundary integral equation
following [11] for which we briefly recall the setup. We let LN denote an
approximated projection onto the space HN spanned by the spherical har-
monics of degree less than or equal to N . Indeed, for any f ∈ C0(∂Ω)

LNf =

N∑

n=0

n∑

m=−n
cn,m(f)Y

m
n ,

for a suitable quadrature rule on ∂Ω approximating the inner products as

cn,m(f) =
K∑

k=0

αkf(xk)Y
−m
n (xk),

for weights αk and quadrature points xk on ∂Ω. A natural choice is a com-
bination of a Gauss-Legendre quadrature rule of order N + 1 and a trapez
rule of order 2N +2 resulting in K = 2(N +1)2, see for example [11]. Here,
we denote f the vector of elements fk = f(xk).

We can then approximate the action of Λγ−Λ1 on any continuous function
f by (Λγ − Λ1)LNf and evaluate as

(Λγ − Λ1)f(xk) ≃ [Qγf ]k :=
N∑

n=0

n∑

m=−n
cn,m(f)(Λγ − Λ1)Y

m
n (xk).

Based on LN and a matching quadrature approximation of the boundary
integral operator corresponding to the regular kernel Hζ , [11] proposes the
discretization

(I+ SζQγ)ψζ = eζ ,

where the k’th element of the right-hand side is eiζ·xk and

[Sζ ]kk′ = αk′Hζ(xk − xk′) +
αk′

4π

N∑

n=0

Pn(xk · xk′).

We use a one-dimensional integral formula for the Fadeev Green’s function
based on [15, Chapter 6] to compute Hζ(x) = Gζ(x)−G0(x) as

Hζ(x) =
e−κ|x|

4π|x| −
κ

4π

∫ 1

ζ2
κ
· x
|x|

e−κ|x|u
J1(κ|x|

√
1− u2)√

1− u2
du− 1

4π|x| ,

where J1 is the first order Bessel function of the first kind.
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From ψζ we compute tεM (ξ) using the quadrature rule on ∂Ω and compute
the inverse FFT to obtain qε sampled in an equidistant grid. In the final
step we solve the boundary value problem using the finite element method.
See [11] for more details and [16] for an implementation.

4. Data simulation

To simulate data we compute (Λγ − Λ1)Y
m
n (xk) using the finite element

method [17] in a unit ball mesh. We rewrite the conductivity equation (1)
with Dirichlet condition f = Y m

n to

∇ · (γ∇w) = −∇ · (γ∇vmn ) in Ω,

w = 0 on ∂Ω,

where u = w + vmn with

vmn (r, θ, ϕ) = rnY m
n (θ, ϕ).

A stable way of recovering the HN basis coefficients of (Λγ − Λ1)Y
m
n is to

consider the weak formulation

⟨(Λγ − Λ1)Y
m
n , Y m′

n′ ⟩L2(∂Ω) =

∫

Ω
(γ − 1)∇(w + vmn ) · ∇vm′

n′ dx.

We approximate this integral using a Gauss-Legendre-Jacobi quadrature rule
on Ω, see [10]. Note it is possible to compute the gradients ∇vmn accurately
by computing the derivatives of the associated Legendre polynomials [18].
Then

(Λγ − Λ1)Y
m
n (xk) ≃

N∑

n′=0

n′∑

m′=−n′
⟨(Λγ − Λ1)Y

m
n , Y m′

n′ ⟩L2(∂Ω)Y
m′
n′ (xk),

which gives the matrix representation Qγ . We simulate noisy measurements
by adding to each element in the matrix representation Qγ a Gaussian ran-
dom variable. This means we simulate

Qε
γ = Qγ + δE,

where [E]ℓ,ℓ′ are independent Gaussian random variables of zero mean and

unit variance, and δ > 0 is chosen such that δ∥E∥
∥Qγ∥ is the specified relative

noise level for a suitable matrix norm ∥ · ∥. See [12] for the choice of norm
and a small discussion on noise models.

5. Numerical experiments

We model a simple head phantom in B(0, 1) by considering a weakly
conducting ellipsoidal shell representing the skull. In the interior we place a
either a highly or a weakly conductive ball inclusion representing the stroke.
We let a constant background γ = 1 represent the scalp and the interior of
the brain. Our experiments consists of two specific phantoms summarized in
table 1 and visualized in figure 1. The parameters are chosen in agreement
with existing stroke-EIT simulations [3]. We simulate Qγ for each phantom
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setting N = 25 and test further the regularized method on the hemorrhagic
stroke phantom in the presence of noise.

Width Outer radius Center γ

Skull 0.04 (0.9, 0.95, 0.95) (0, 0, 0) 0.2
Hemorrhagic
stroke

0.15 (0.3, 0.3, 0) 3

Ischemic
stroke

0.15 (0.3, 0.3, 0) 0.7

Table 1. Summary of piecewise constant stroke phantoms

Figure 1. Piecewise constant stroke phantoms in a 3D view
and the planar cross section x3 = 0.

Figure 2 and 3 show reconstructed conductivities from Qγ for the hem-
orrhagic and ischemic stroke phantoms. For both phantoms, the truncation
radius M and complex frequency magnitude |ζ(ξ)| was chosen optimally
in terms of visual similarity with the true conductivity distribution. The
hemorrhagic stroke is accurately recovered. Here, M = 13.8 is chosen with
ζ(ξ) minimal in the admissible set to increase stability of the reconstruction
as indicated in [11]. In contrast, a more conservative M = 10 and fixed
|ζ| = 1.2M√

2
is chosen for the ischemic stroke phantom to promote the is-

chemic stroke inclusion. Looking hard at figure 3 there is some indication of
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a weaker conductivity signal at the location of the ischemic stroke, but it is
insignificant in the presence of the weakly conductive skull for this method.
Note also, there are some visible ’donut’-type artefacts in the interior of the
ellipsoidal shell in both cases. We believe this is a Gibbs-type behavior from
the truncation of the high frequency signal.

(a)

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

0.8

1

1.2

1.4

1.6

1.8

(b)

Figure 2. Reconstruction of the hemorrhagic stroke from
the simulated Λγ without added noise using the regularized
method. (a) shows the cross sections x3 = 0, x2 = 0.35
and x2 = 0.35, whereas (b) shows the plane corresponding
to x3 = 0. The parameters used are M = 13.8, L = 11 and
ζ(ξ) = ξ√

2
as was determined by visual inspection.

Recovering a high-frequency signal demands the choice of a large |ζ(ξ)|
by (3), which in return amplifies the noise, see [12]. In figure 4 we see
cross-sectional plots of reconstructed conductivities from Qε

γ corresponding

to 0.1% and 0.5% relative noise. For both data sets we choose ζ(ξ) = ξ√
2
and

M small. In the 0.1% case a truncation radius of 8.2 allowed a reasonable
reconstruction, where a hemorrhagic stroke is recovered. For the 0.5% case, a
smaller truncation radius is chosen for a stable reconstruction. In both cases
this yields low resolution and a low frequency reconstruction, but allows an
identification of the stroke and its location.

Computationally, the steps 2ε and 3ε of the regularized method consisting
of an inverse FFT and solving a linear system are almost negligible. This
makes approximations to this method fast and popular alternatives [13].
See also [11] for a comparison of different approximations suggesting the full
reconstruction method is the most accurate. In its current implementation,
which is not optimized, the main computational challenge is assembling and
solving the boundary integral equations. As an example, the reconstruction
in figure 4 (left) was completed on an Intel Xeon Processor 2660v3 (2.60GHz)
in 3915 seconds CPU time. Parallelization on 20 cores gave a speed-up to
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(a)
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1.8

(b)

Figure 3. Reconstruction of the ischemic stroke from the
simulated Λγ without added noise using the regularized
method. (a) shows the cross sections x3 = 0, x2 = 0.35
and x2 = 0.35, whereas (b) shows the plane corresponding
to x3 = 0. The parameters used are M = 10, L = 9 and
|ζ(ξ)| = 1.2M√

2
.
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Figure 4. Cross sections (x3 = 0) of reconstructions of the
hemorrhagic stroke using the regularized method on noisy
Dirichlet-to-Neumann maps. The relative noise levels are
0.1% (left) and 0.5% (right) for which M = 8.2 and M = 6.5
(resp.) was chosen. To increase stability ζ(ξ) was chosen

minimally as ξ√
2
.

583 seconds in wall time. We believe this can be optimized considerably
giving near real-time reconstructions.
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6. Conclusions

In this paper we have investigated a direct regularized EIT reconstruction
method for the challenging problem of stroke detection. Our computational
experiments suggest that detecting a hemorrhagic stroke is possible and ro-
bust to noise. Separating an ischemic stroke from the background in the
presence of a weakly conductive skull remains a challenge for future work.
The method serves as a promising candidate for a near real-time hemorrhagic
stroke detection.
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Appendix E

Notation and notes

E.1 Notation

In this section, we comment on the notation used in this thesis. The notation is
standard and consistent with [GN16, GvdV17], but included here for reference.

For definitions related to Sobolev spaces, we refer to [Gri85] and [Tay11]. For
basic notation and definitions related to probability theory, some of which we
repeat below, we refer to [Kah85, Chapter 1] or [Dud02].

For a metric space (Z1, d) the Borel σ-algebra is denoted by B(Z1). If f :
Z1 → Z2 is a measurable map between the measure space (Z1,B(Z1),m) and
the measurable space (Z2,B(Z2)), then fm denotes the push-forward measure
defined by fm(B) = m(f−1(B)) for all B ∈ B(Z1). This is slightly unusual
notation, but for example found in [Pol02].

Unless stated otherwise, we let random variables and elements be defined on
a probability space (Ω,F ,Pr). A random element Z1 is a Borel measurable
function Z : Ω → Z1. In the special case where Z1 = R, we call Z a random
variable. We call ZPr the law or distribution of Z. Writing Pr(Z ∈ B) for some
B ∈ B(Z1), we simply mean

Pr(Z ∈ B) = Pr(ω ∈ Ω : Z(ω) ∈ B) = (ZPr)(B).
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When Z ∈ B is defined by a relation R(Z), we write Pr(R(Z)) instead of
Pr(Z ∈ B). We sometimes call probability measures defined on B(Z1) Borel
distributions.

For a Borel measurable function f : Z1 → R, we denote by E[f(Z)] the expec-
tation of the random variable f(Z) : ω → R defined by

E[f(Z)] =

∫

Ω

f(Z(ω)) Pr(dω) =

∫

Z1

f(z) (ZPr)(dz).

For remarks on the expectation of more general random elements, we refer to
Appendix E.2.2. For two measurable spaces (Z1,Σ1) and (Z2,Σ2), the σ-algebra
for the product space Z1 ×Z2 is called the product σ-algebra and defined by

Σ1 ⊗ Σ2 = σ({B1 ×B2 : B1 ∈ Σ1, B2 ∈ Σ2}),

i.e. the intersection of all σ-algebras containing {B1 ×B2 : B1 ∈ Σ1, B2 ∈ Σ2}.
The support of the measure m on (Z1,B(Z1)) we define as the set of all points
in z ∈ Z1 for which every open neighborhood of z has positive measure under
m. Given two σ-finite measures m1,m2 on (Z1,B(Z1)), if there is a Borel
measurable function f : Z1 → [0,∞) such that for any B ∈ B(Z1)

m2(B) =

∫

B

f(z)m1(dz),

then we write f = dm2

dm1
and call f the Radon-Nikodym derivative. We will often,

somewhat loosely, say that m2 has a density f with respect to m1.

Consider a compact subset A of a space Z1 endowed with a semimetric d̃. The
covering number N(A, d̃, ρ) denotes the minimum number of closed d̃-balls {z ∈
Z1 : d̃(z0, z) ≤ ρ} with center z0 ∈ A and radius ρ > 0 needed to cover A, see for
example [GvdV17, Appendix C] or [GN16, Section 4.3.7]. We call logN(A, d̃, ρ)
the metric entropy of A. When d̃ is replaced by a norm, we mean the metric
induced by the norm.

Generic constants are denoted C. We denote dependence of a constant on certain
parameters a, b, c, . . . by C = C(a, b, c, . . .).
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E.2 Notes

E.2.1 Measurability of posterior ratios

Note first the following general property. If f : (Ω,F) → (R,B(R)) is a measur-
able function, then

g(ω) :=

{
1

f(ω) if f(ω) ̸= 0,

0 if f(ω) = 0,

is also a measurable function. Indeed, take A ∈ B(R) and consider the following
cases. If {0} ̸∈ A, then

g−1(A) = {ω : 1/f(ω) ∈ A} = f−1(h−1(A)),

where h(z) = 1/z. Note h is continuous on the open set {z : z ̸= 0}, and hence
h−1(A) is measurable. Then f−1(h−1(A)) ∈ F by measurability of f . If {0} ∈
A, then g−1(A) = g−1({0}) ∪ g−1(A \ {0}), where g−1({0}) = {ω : f(ω) = 0}.
Then g−1(A) ∈ F by repetition of the previous argument and since countable
unions and intersections of measurable sets are measurable. This concludes that
g : Ω → R is measurable.

In the setting of Section 3.1, this property implies that g : (Y,B(Y)) → (R,B(R))
defined by

g(y) :=

{
1

pn(y)
if pn(y) ̸= 0,

0 if pn(y) = 0,

is Borel measurable. In fact, (γ, y) 7→ 1/pn(y) jointly B(Γ) ⊗ B(Y) − B(R)
measurable. Since products of measurable functions are measurable, also

πy(γ) :=

{
pγ
n(y)π(γ)
pn(y)

if pn(y) ̸= 0,

0 if pn(y) = 0,

is jointly Borel measurable. Then also y 7→ Π(B|y) is measurable for all B ∈
B(Γ), see [Pol02, Theorem 20, Chapter 4]. This also holds for (Y,B(Y)) replaced
with (Ω,F) and y 7→ Π(B|y) replaced with ω 7→ Π(B|Y (ω)) in the white noise
setting of Section 4.1.

E.2.2 Measurability of posterior means

We initially consider a Borel subset Γ of X = Rk. For any non-negative measur-
able function f : Γ → R, there exists an increasing sequence of simple functions
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such that sn → f pointwise [RF10]. Simple means that each sn has the form
sn =

∑Kn

k=1 αk,n1Ak,n
for measurable sets Ak,n ∈ B(Γ) that are disjoint for each

fixed n and constants αk,n. By definition of the Lebesgue integral,

∫

Γ

f(γ)Π(dγ|y) = lim
n→∞

∫

Γ

sn(γ)Π(dγ|y) = lim
n→∞

Kn∑

k=1

αk,nΠ(Ak,n|y),

and hence the integral is measurable in y, since y 7→ Π(Ak,n|y) is measurable and
pointwise limits of measurable functions are measurable. Then each component
of the vector E[γ|y] ∈ Rk is Borel measurable in y by decomposing each function
γ 7→ γi into a positive and negative part. Then also E[γ|y] is Borel measurable.
We can also see this fact directly from Theorem 20 [Pol02, Chapter 4].

When Γ is as general as a Borel subset of a Banach space X endowed with a σ-
algebra B(Γ), we define the posterior mean as a Bochner integral, the notion of
which we obtain from [DU77, p. 44]. A Borel measurable function f : Γ → X is
called Bochner integrable (with respect to Π(·|Z(ω))) if there exists a sequence
of simple functions sn : Γ → X such that

lim
n→∞

∫

Γ

∥sn(γ)− f(γ)∥X Π(dγ|Z(ω)) = 0.

Here, we mean simple by functions on the form sn(γ) =
∑Kn

k=1 γk,n1Ak,n
for

measurable sets Ak,n ∈ B(Γ) that are disjoint for each fixed n and elements
γk,n ∈ X . For Bochner integrable functions f , the Bochner integral is defined
as

∫

Γ

f(γ)Π(dγ|Z(ω)) = lim
n→∞

∫

Γ

sn(γ)Π(dγ|Z(ω)),

= lim
n→∞

Kn∑

k=1

γk,nΠ(Ak,n|Z(ω)),

where the limit is in X . Note that ω 7→ Π(Ak,n|Z(ω)) is measurable and that
pointwise limits of measurable functions are measurable, even when they take
values in Banach spaces, see [Dud02, Theorem 4.2.2]. Then also ω 7→ E[γ|Z(ω)]
is measurable.

E.2.3 Lower bound of the posterior denominator

Proposition E.1 Let y ∈ Bm(r) := {y ∈ Rm, ∥y∥ ≤ r}, and π(B) > 0 for
some bounded set B ⊂ Γ. Then

C(r,B,G, εn) ≤ pn(y) ≤ C(εn).
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Proof. Note

pn(y) =

∫

Rm

pγn(y)π(γ) dγ ≤ C(εn)

∫

Rm

π(γ) dγ = C(εn).

On the other hand,

inf
(γ,y)∈B×Bm(r)

pγn(y) = C(εn) inf
(γ,y)∈B×Bm(r)

exp

(
− 1

2ε2n
∥G(γ)− y∥2

)
,

≥ C(εn) inf
(γ,y)∈B×Bm(r)

exp

(
− 1

ε2n
∥G(γ)∥2 − 1

ε2n
∥y∥2

)
,

≥ C(r,B,G, εn),

by continuity of G on B. This implies

pn(y) ≥ C(εn, r, B,G)
∫

B

π(γ) dγ ≥ C(εn, r, B,G).

□
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