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Summary (English)
Networks are prevalent data structures that naturally express complex systems. They
emerge across a multitude of scientific domains, including physics, sociology, the
science of science, biology, neuroscience, and more. In these disciplines, networks
illustrate diverse interactions and systems: spin glasses in physics, social connec-
tions in sociology, academic collaborations, protein-to-protein interactions in biology,
and both structural and functional brain connectivity in neuroscience, to name a
few. Due to their complexity and inherently high-dimensional discrete nature, accu-
rately characterizing network structures is both non-trivial and challenging. In recent
years, Graph Representation Learning (GRL) has achieved remarkable success in the
study of networks, establishing itself as the leading method for network analysis. In
general, GRL aims to create a function that can successfully map a network to a
low-dimensional latent space through a learning process. Such a mapping defines
representations that can be very useful for conducting various downstream tasks, and
importantly for helping us to further our understanding of complex networks and
their underlying structures.

The primary objective of this thesis is to develop novel algorithmic approaches for
Graph Representation Learning of static and single-event dynamic networks. In such
a direction, we focus on the family of Latent Space Models, and more specifically on
the Latent Distance Model which naturally conveys import network characteristics
such as homophily, transitivity, and the balance theory. Furthermore, this thesis aims
to create structural-aware network representations, which lead to hierarchical expres-
sions of network structure, community characterization, the identification of extreme
profiles in networks, and impact dynamics quantification in temporal networks. Cru-
cially, the methods presented are designed to define unified learning processes, elim-
inating the need for heuristics and multi-stage processes like post-processing steps.
Our aim is to delve into a journey towards unified network embeddings that are
both comprehensive and powerful, capable of characterizing network structures and
adeptly handling the diverse tasks that graph analysis offers.
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Summary (Danish)
Netværk er almindelige datastrukturer, der naturligt udtrykker komplekse systemer.
De opstår på tværs af mange videnskabelige domæner, herunder fysik, sociologi, vi-
denskabens videnskab, biologi, neurovidenskab og mere. I disse discipliner illustrerer
netværk forskellige interaktioner og systemer: spin-glas i fysik, sociale forbindelser i
sociologi, akademisk samarbejde, protein-til-protein interaktioner i biologi, samt både
strukturel og funktionel hjerneforbindelse i neurovidenskab, for blot at nævne nogle
få. På grund af deres kompleksitet og iboende høj-dimensionale diskrete natur er
nøjagtig karakterisering af netværksstrukturer både ikke-trivielt og udfordrende. I de
seneste år har Graf Representation Læring (GRL) opnået bemærkelsesværdig succes
i studiet af netværk, og har etableret sig som den førende metode til netværksanal-
yse. Generelt sigter GRL mod at skabe en funktion, der med succes kan kortlægge
et netværk til et lav-dimensionalt latent rum gennem en læringsproces. En sådan
kortlægning definerer repræsentationer, der kan være meget nyttige til at udføre
forskellige efterfølgende opgaver, og vigtigt for at hjælpe os med yderligere at forstå
komplekse netværk og deres underliggende strukturer.

Hovedformålet med denne afhandling er at udvikle nye algoritmiske tilgange til Graf
Representation Læring af statiske og enkeltbegivenheds dynamiske netværk. I denne
retning fokuserer vi på familien af Latente Rummodeller, og mere specifikt på den
Latente Afstandsmodel, som naturligt formidler vigtige netværksegenskaber såsom
homofili, transitivitet og balance teorien. Yderligere sigter denne afhandling mod at
skabe strukturbevidste netværksrepræsentationer, hvilket fører til hierarkiske udtryk
af netværksstruktur, fællesskabskarakterisering, identifikation af ekstreme profiler i
netværk og kvantificering af påvirkningsdynamik i tidsmæssige netværk. Afgørende er
de præsenterede metoder designet til at definere ensartede læringsprocesser, hvilket
eliminerer behovet for heuristikker og flertrinsprocesser som efterbehandlings trin.
Vores mål er at dykke ned i en rejse mod ensartede netværksindlejringer, der er både
omfattende og kraftfulde, i stand til at karakterisere netværksstrukturer og dygtigt
håndtere de forskelligartede opgaver, som grafanalyse tilbyder.
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CHAPTER1
Introduction

1.1 Networks

Networks are widespread data structures and represent the most natural means of
expressing complex systems. They appear across various scientific domains, encom-
passing fields such as physics, sociology, science of science, biology, and more. Within
these disciplines, networks are used to describe a multitude of interactions and sys-
tems, such as spin glasses in physics, friendship interactions in sociology, scholarly
collaborations in academia, protein-to-protein interactions in biology, and structural
and functional brain connectivity in neuroscience, among many others [1]. Given their
complexity and high-dimensional discrete nature, accurately characterizing the struc-
ture of networks is regarded as a non-trivial and challenging task. Scientists employ
various graph analysis tools to examine these networks, seeking to gain insights into
their underlying structures. These tools are used for several downstream tasks, includ-
ing link/relation prediction [2], node classification and clustering [3,4], and community
detection [5, 6]. Moreover, the importance of network analysis extends beyond scien-
tific research, influencing practical applications in industries like telecommunications,
transportation, healthcare, and finance. Whether optimizing routes in a transporta-
tion network, understanding the spread of diseases within a population, or detecting
fraudulent activities within a financial system, network analysis plays a pivotal role.
The methodologies and techniques developed in network analysis continue to evolve,
pushing the boundaries of our understanding and application of complex systems.
The synergy between theoretical development and practical application ensures that
network analysis remains an integral and dynamic field of study, connecting diverse
domains and contributing to advancements across a broad spectrum of disciplines.

1.1.1 Network science

Towards advancing our understanding of networks, network science emerged. A mul-
tidisciplinary field that focuses on the study of complex networks, searching char-
acterizations for their structure, behavior, evolution, and function. It incorporates
concepts and methodologies from areas such as physics, mathematics, computer sci-
ence, biology, sociology, and economics, allowing for a comprehensive analysis and
understanding of various kinds of networks [7]. Structural analysis for complex sys-
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tems focuses on the examination of the node and edge properties of a given network,
including statistics such as degree distribution, clustering coefficients, and community
structures. Seminal work in this area includes the studies of small-world networks [8]
and scale-free networks [9]. Temporal network analysis under dynamic processes aims
to further our understanding of how networks evolve and change over time, and how
processes such as information spreading, disease propagation, and social influence op-
erate on such structures. Classic models like the Erdős–Rényi model [10] modeling
the evolution of a random network and the SIR model [11] for disease spreading were
the pioneering works. Analysis of multilayer complex networks investigates networks
that have multiple types or layers of connections. This area explores how different
layers interact with each other and contribute to the overall behavior of the network.
Works like the model of interconnected networks [12] have deepened our understand-
ing of these complex systems. Important directions also include network visualization
and data mining where researchers utilize computational and visualization tools to
analyze large-scale network data. This includes discovering patterns, anomalies, and
community structures within big data sets. Identifying influential spreaders in com-
plex networks [13] and designing community detection algorithms [14] are prominent
examples of data mining in network science. Being a multidisciplinary field, net-
work science defines multiple applications across various fields (for a comprehensive
overview please see [15]). Through a combination of mathematical modeling, compu-
tational analysis, and empirical study, network science continues to offer profound
insights into the structures and dynamics that underlie diverse systems.

1.1.2 Classical methods for network analysis

The very first approaches to studying networks focused on node properties and node-
level statistics. These included various centrality measures [16], like node degree,
eigenvector centrality [17], and the clustering coefficient [8], to name a few. Central-
ity measures focus on expressing different formulations for the importance of nodes
in a network, able to capture various properties. Apart from centrality measures,
multiple metrics of similarity in terms of the node neighborhood overlap have also
been proposed and extensively studied. These include local overlap measures [18] like
the Jaccard overlap, the Sorensen index, and the Adamic-Adar index which express
different functions over each node’s local neighborhood and the common neighbors
that two nodes share. Such metrics define node similarity while accounting for the
node degree biases with variations on the expression of importance that each common
neighbor provides to the metric. For example, the Adamic-Adar index gives higher
importance to connections with lower-degree nodes, as they are regarded as more in-
formative than connections with high-degree nodes. Similarly, various global overlap
measures have also been proposed which also take into account the global network
structure (rather than only the local neighborhood). Popular choices include the
Katz Index [19] which counts over the number of paths of all lengths between a pair
of nodes, the Leicht, Holme, and Newman similarity [20] correcting over the Katz
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Index to account for degree biases by normalizing with the number of expected paths
between two nodes, and various random walk methods such as the PageRank [21]
algorithm, expressing stationary probabilities that a random walk starting at node
i has to visit node j at some point. Local and global measures express multiple im-
portant characteristics of networks and often provide competitive performance in the
downstream tasks even against models with advanced learning procedures [22] but
express limitations due to their heuristic nature.

The early algorithmic attempts towards obtaining graph representations relied on
spectral-decomposition approaches under dimensionality reduction frameworks defin-
ing an approximative expression of the Laplacian or adjacency matrices [23,24]. Clas-
sical examples include the Isomap algorithm [25] which uses Multidimensional Scaling
(MDS) [26] in order to translate the k-nearest neighbors-based geodesic distances be-
tween nodes into a lower dimensional Euclidean space. Another type of well-known
methods are the Laplacian Eigenmaps [27–29], where node embeddings are defined
as the k-smallest eigenvectors of the normalized graph Laplacian. Laplacian matrices
have found lots of applications in graph analysis due to the rich cut information [23]
they carry. Matrix factorization approaches have been studied extensively and in-
depth due to their simplicity, with a lot of linear and non-linear variants [30–32].
In contrast to their many advantages, these methods can be expensive when ana-
lyzing large networks due to the computational cost that the matrix decomposition
enforces, a study trying to solve the scalability issues via graph partition and parallel
computation was proposed in [33].

1.2 Graph Representation Learning

Towards the understanding of networks, Graph Representation Learning (GRL) [34,
35] has found incredible success in the past years, regarded as the foremost method for
network analysis. GRL has been so popular since it is composed of approaches out-
performing significantly the prior classical methods in the downstream tasks. Classic
methods usually rely on graph kernels and graph statistics including various graph
centrality measures [34]. Unlike GRL, conventional algorithms exhibit restricted flex-
ibility and capacity as they employ node and graph-level statistics, requiring meticu-
lous heuristic design and often resulting in high time and space complexity [34]. The
main goal of GRL is to construct a function that defines a mapping of the network
into a low-dimensional (usually Euclidean) latent space through a learning process.
Specifically, such a projection has to translate node, edge or even graph similarity
of network(s) into similarity in the latent space, i.e., by positioning related nodes,
edges, or graph representations close in proximity in the latent space [36]. The main
focus of GRL lies in learning continuous vector representations for individual nodes,
edges, or graphs in the graph-defining embeddings. Node representations can be used
for tasks like node classification, link prediction, and clustering. Influential methods
in this area include DeepWalk [22], Node2Vec [4], and LINE [37]. Edge embeddings
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are most often used to predict or infer missing links within a network. Techniques
such as GraphSAGE [38] and SEAL [39] have contributed significantly to this aspect
of GRL. Graph embeddings focus on learning a comprehensive representation of the
entire graph, which can be employed in graph classification or similarity computa-
tion and is considered one of the most complex GRL areas. Graph Kernels [40] and
Graph Neural Networks (GNNs) [41] have shown great success in this domain. A lot
of attention has been given to Graph Neural Networks (GNNs) which define deep
learning models specifically designed to operate on graph data. Convolutional Graph
Neural Networks (GCNs) [42] and Graph Attention Networks (GATs) [43] are promi-
nent examples. Importantly, GNNs focus on combining structural information with
node features, labels, and other metadata to enrich the learning process. This has
been shown to improve results in tasks like node classification, as seen in methods like
HAN [44]. A prominent requirement in GRL are scalability and efficiency aspects.
In particular, a major aim is the developing of algorithms and techniques that can
scale to large graphs while maintaining computational efficiency which we will also
address in this thesis. Techniques like GraphSAGE [38] and FastGCN [45] address
these challenges. Lastly, GRL aims to incorporate higher-order proximity unlike most
traditional approaches; accounting for both direct and indirect relationships among
nodes to provide richer and more nuanced embeddings [46].

1.2.1 Matrix decomposition methods
A notable category for GRL relies on matrix decomposition techniques [35, 46–48]
where node representations are obtained by the decomposition of a target matrix,
constructed in such a way as to convey nodal proximity information, and can poten-
tially include both first and higher-order adjacency information [46, 49]. The core
idea lies in the assumption that the defined target matrix can be represented by
a small number of latent factors that constitute the node embeddings. The main
drawback of such methods is their space and time complexities since they usually
lead to quadratic dependencies with the number of nodes in the graph. Recent stud-
ies aimed to address such computational challenges through techniques like matrix
sparsification tools, hierarchical representations, or fast hashing schemes [47,50–53].

1.2.2 Random walk methods
Pioneering GRL approaches drew inspiration from Natural Language Processing
(NLP) [54] and employed random walks to generate node sequences analogous to
sentences in NLP [4, 22, 37, 55]. Specifically, these works leveraged the Skip-Gram
algorithm [56], to acquire node representations [4, 22, 37, 55, 57] by optimizing the
co-occurrence probability for node pairs based on their distances obtained through
the walks. The initial representatives of the random walk-based methods are Deep-
Walk [22] and Node2Vec [4]. As an extension to the DeepWalk procedure, Node2Vec
introduced a global walk bias which allowed the use of both Breadth-First Sam-



1.2 Graph Representation Learning 7

pling and Depth-First Sampling during training in order to learn both local and
global graph structures. Random walk methods are actually closely related to matrix
factorization approaches as shown in [46]. Lastly, multiple random walk-based meth-
ods [58–60] combine the graph structure with additional node labels and attributes to
achieve more informative embeddings and take advantage of fruitful nodal meta-data
alongside the network structural information.

1.2.3 Deep learning based methods

Relatively recent pioneering works [61] have extended GRL to the deep learning
theory, giving rise to Graph Neural Networks (GNN). Essentially, GNNs perform
iterative message-passing extending convolution operations to graphs demonstrating
remarkable performance by integrating node attributes and network structure during
the embedding learning process. Convolution operations are defined over the local
neighborhood of nodes while embedding aggregation is adopted to generalize the local
structure and learn higher-level proximity. Graph Convolutional Neural Networks
(GCNN) thereby scale linearly in the number of graph edges. Several examples of
the representative power and success of GCNNs are given in [62,63] and [64]. One of
their limitations is usually the necessity for node features or else meta-data to avoid
the over-smoothing pitfall hampering performance [42] when the GNN model defines
deep architectures.

1.2.4 Latent space models

Latent Space Models (LSM) for the representation of graphs have been quite popular
over the past years [65–71], especially for social networks analysis [72,73] facilitating
community extraction [74] and characterization of network polarization [75]. LSMs
utilize the generalized linear model framework to obtain informative latent node em-
beddings while preserving network characteristics. The choice of latent effects in
modeling the link probabilities between the nodes leads to different expressive ca-
pabilities characterizing network structure. In particular, in the Latent Distance
Model (LDM) [76] nodes are placed closer in the latent space if they are similar or
vice-versa. LDM obeys the triangle inequality and thus naturally represents transi-
tivity [77, 78] (”a friend of a friend is a friend”) and network homophily [79, 80] (a
tendency where similar nodes are more likely to connect to each other than dissimilar
ones). Homophily is a very well-known and well-studied effect appearing in social net-
works [77,79,80] and essentially describes the tendency for people to form connections
with those that share similarities with themselves. Similarities can be drawn from
meta-data (observed node attributes) and may refer to shared demographic proper-
ties, political opinions, etc. Homophily has been observed among a broad range of
collaborations (see [78] for a complete overview). Homophily can also be accounted
for based on the unobserved attributes as defined by the LDM as shown in [81].
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Homophily explains prominent patterns as expressed in social networks in terms of
transitivity, as well as, balance theory (“the enemy of my friend is an enemy”) [82].

1.3 Graph Representation Learning for temporal
networks

So far, we have treated networks as static in time. Many networks evolve through time
and are liable to modifications in structure with newly arriving nodes or emerging
connections. GRL methods have primarily addressed static networks, in other words,
a snapshot of the networks at a specific time. However, recent years have seen in-
creasing efforts toward modeling dynamic complex networks, see also [73] for a review.
Whereas most approaches have concentrated their attention on discrete-time tempo-
ral networks, which have built upon a collection of time-stamped networks [83–87]
modeling of networks in continuous-time has also been studied [88–91]. These ap-
proaches have been based on latent class [88–90, 92, 93] and latent feature modeling
approaches [66,73,91,94–96], including advanced dynamic graph neural network rep-
resentations [97,98].

In this thesis, we will focus on a special class of dynamic networks characterized
by a single event occurring between dyads, which we denote as single-event networks
(SEN). I.e., links occur only once. Specifically, we aim to analyze citation networks
which are a prominent example of SEN, as edges can appear only once at the time
of the paper’s publication. However, neither of the existing dynamic network mod-
eling approaches explicitly account for SENs. Whereas continuous-time modeling
approaches are designed for multiple events, thereby easily over-parameterize such
highly sparse networks, static networks can easily be applied to such networks by dis-
regarding the temporal structure but thereby potentially miss important structural
information given by the event time. Despite these limitations, to the best of our
knowledge, existing generative dynamic network modeling approaches do not explic-
itly account for single-event occurrences. In Figure 1.1, we provide an example of
three cases of networks that define static, traditional event-based dynamic networks
as well as single-event networks. We here observe how static networks are completely
blind to the temporal information that single-event networks capture while it is also
evident that they differ from traditional temporal networks where each dyad can have
multiple events across time.

1.4 Graph Representation Learning and network
science

Network Science and GRL are two disciplines that both operate in the realm of
graph-structured data but focus on different aspects and utilize distinct method-



1.5 Contributions 9

Figure 1.1. Examples of three different types of networks based on their temporal structure.
Round points represent network nodes, square points make up the corresponding colored
node dyads, arrows represent directed relationships between two nodes, vertical lines repre-
sent events, and black lines are the timelines while grey bold lines show that a link (event)
appeared once and cannot be observed again. Left panel: Static networks where links oc-
cur once and there is no temporal information available. Middle panel: Temporal networks
where links are events in time and can be observed multiple times along the timeline. Right
panel: Single-event networks where links appear in a temporal manner but they can occur
once, defining edges as single events.

ologies. Network Science focuses on the introduction of heuristics allowing for the
analysis of network topology, clustering, centrality, community detection, and net-
work dynamics. In contrast, GRL focuses on converting graph-structured data into
(usually) continuous vector representations obtained via a learning procedure, and
most importantly it supports predictive modeling. In summary, while both Network
Science and GRL operate on graph-structured data, they differ in their objectives,
methodologies, applications, data focus, and interdisciplinary roots. Network Science
is more concerned with the analysis and understanding of complex networks, whereas
GRL focuses on learning representations to facilitate predictive modeling and ma-
chine learning tasks. The main focus of this thesis will be the development of efficient
GRL methods capable of the analysis of large-scale graphs.

1.5 Contributions

The central aim of this thesis is the development of novel algorithmic approaches for
Graph Representation Learning by utilizing the Euclidean distance metric, under the
Latent Distance Model formulation [76]. As a result, the proposed frameworks will
obey the triangle inequality and naturally represent homophily and transitivity in
the latent space, modeling high-order node proximity. It will be evident that such a
choice leads to ultra-low dimensional graph representations, showcasing surprisingly
superior performance when compared to multiple state-of-the-art models. Further-
more, the thesis will focus on structural-aware embeddings leading to hierarchical
expressions, community characterization, and the discovery of extreme profiles in
networks. Importantly the various presented methods will define unified learning pro-
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cesses avoiding heuristics and multi-stage processes (e.g. post-processing steps). We
will focus on a journey seeking unified network embeddings sufficient and powerful
enough to characterize the structure, as well as, to successfully perform the multiple
and different tasks graph analysis has to offer. This comes contrary to most state-
of-the-art studies where models are designed to perform one or two tasks maximum
without requiring two-level strategies and procedures for performing additional tasks.
Our efforts will initially focus on positive integer weighted graphs, later we will ex-
tend the analysis to signed integer weighted graphs, as well as, single-event temporal
networks.

The main contributions of the work can be summarized as follows:

• We introduce novel representation learning models over graphs for the study of
both signed and unsigned, as well as, single-event networks.

• We learn node embeddings capable of extracting the hierarchical structure of
the network at different scales, accounting for the community discovery, and
extracting distinct profiles of networks.

• We, for the first time, define a likelihood function capable of the principled
analysis of single-event temporal networks, while also quantifying nodal impact
through modeling node receiving edge dynamics.

• We account for the computational costs of modern networks that can have
millions or even billions of nodes. For that, we rely on accurate linearithmic
approximations of the likelihood, unbiased random sampling procedures, and
case-control inferences.

• We consider ultra low-dimensional node embeddings that are learned for moder-
ate and large-scale networks and show high performance in all of the considered
downstream tasks.

• We further highlight how the inferred hierarchical organization, community ex-
traction, archetypal characterization, impact quantification, and low-dimensional
representations can facilitate the visualization of network structures with high
accuracy without requiring additional post-processing tools.

• The proposed frameworks are extended to the case of bipartite networks, where
characterization of structure, hierarchical representations, community detection,
and archetype extraction are considered arduous tasks, especially for signed
networks.

• Extensive experimental evaluations demonstrate that the proposed approaches
generally surpass widely adapted baseline methods in node classification, link
prediction, and network reconstruction tasks.

• Importantly, the proposed frameworks define optimal embeddings that are char-
acterized by the most consistent performance across different downstream tasks
when compared to various prominent baselines.
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• Lastly, this thesis aims to fill a missing part in the GRL literature which is to
extensively position and benchmark the performance of Latent Distance Models
for Graph Representation Learning against state-of-the-art baselines, showcas-
ing their superior performance in multiple settings.

1.6 Organization
In Part I, we started with a brief introduction to Graph Representation Learning
and network analysis as championed in the past years, followed by a methods chap-
ter introducing the developed frameworks to be used throughout this thesis. We
then continue with Part II of the thesis which addresses scalability, hierarchical rep-
resentations, and community extraction in positive integer weighted networks. We
showcase the performance of the proposed frameworks in downstream tasks utiliz-
ing ultra-low dimensions and importantly extend such analysis to positive integer-
weighted bipartite networks. Afterward, Part III focuses on the analysis of signed
integer weighted networks utilizing for the first time the Skellam distribution in net-
work analysis. Specifically, we will propose frameworks able to characterize network
polarization and discover extreme profiles and distinct aspects as present in networks.
This will come as a generalization of Archetypal Analysis (AA) to relational data
under both a defined latent space constrained to the convex hull of the latent embed-
dings, as well as, a Minimum Volume (MV) approach over the latent space. Part IV
aims at the analysis of single-event temporal networks, combining an Inhomogeneous
Poisson Point Process and the Latent Distance Model, defining a Single-Event Pois-
son Process. Lastly, Part V provides a discussion chapter based on the introduced
theory, experiments, and results while the conclusion chapter concludes this thesis.

More detailed the thesis will follow a structure as presented below:

• Part I: Introduction and methods

– Chapter 1: Introduction. This chapter provides a brief introduction to
Graph Representation Learning and network analysis as championed in the past
years.

– Chapter 2: Methods. This chapter introduces the proposed methods for
Graph Representation Learning to be used throughout this thesis.

• Part II: Graph Representation Learning of positive integer weighted
networks

– Chapter 3: ”A Hierarchical Block Distance Model for Ultra Low-Dimensional
Graph Representations”. This chapter is based on the original paper [99] cur-
rently accepted for publication by the journal ”IEEE Transactions on Knowledge
and Data Engineering”.



12 1 Introduction

– Chapter 4: ”HM-LDM: A Hybrid-Membership Latent Distance Model”.
This chapter is based on the original paper [74] published in the proceedings
of ”The 11th International Conference on Complex Networks and their Applica-
tions”.

• Part III: Graph Representation Learning of signed integer weighted
networks

– Chapter 5: ”Characterizing Polarization in Social Networks using the
Signed Relational Latent Distance Model”. This chapter is based on the
original paper [74] published in the proceedings of ”The 25th International Con-
ference on Artificial Intelligence and Statistics, AISTATS”.

– Chapter 6: ”A Hybrid Membership Latent Distance Model for Signed
Integer Weighted Networks”. This chapter is based on the original paper [100]
published in the journal of ”Advances in Complex Systems”.

• Part IV: Graph Representation Learning of Single-event temporal
networks:

– Chapter 6: ”Time to Cite: Modeling Citation Networks using the Dy-
namic Impact Single-Event Embedding Model”. Preprint.

• Part V Discussion and conclusion:

– Chapter 8: Discussion. This chapter discusses the general results, limitations,
and future work of the thesis topic.

– Chapter 9: Conclusion. This chapter concludes the thesis.

1.7 Reproducibility and code release
To enhance openness and reproducibility, the source code for all contributions pre-
sented in this thesis is publicly available and can be accessed in the following reposi-
tories:

• ”A Hierarchical Block Distance Model for Ultra Low-Dimensional Graph Rep-
resentations”: github.com/Nicknakis/HBDM .

• ”HM-LDM: A Hybrid-Membership Latent Distance Model”:
github.com/Nicknakis/HM-LDM .

https://github.com/Nicknakis/HBDM
https://github.com/Nicknakis/HM-LDM
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• ”Characterizing Polarization in Social Networks using the Signed Relational
Latent Distance Model”: github.com/Nicknakis/SLIM_RAA.

• ”A Hybrid Membership Latent Distance Model for Unsigned and Signed Integer
Weighted Networks”: github.com/Nicknakis/HM-LDM .

https://github.com/Nicknakis/SLIM_RAA
https://github.com/Nicknakis/HM-LDM


14



CHAPTER2
Methods

2.1 Notation
Before we start here we will briefly discuss the notation followed throughout the
paper. We denote scalar values as lower-case and non-bold letters {x}, vectors are
represented with lower-case bold letters {x}, and matrices by upper-case bold let-
ters {X}. Single subscripts in lower-case bold letters {xi} represent the i′th vector
while double subscripts in matrices {Xij} denote the i′th row and j′th column single
element of matrix {X}.

2.2 What is a graph?
We will now provide a more formal definition of what we will consider a graph or a
network, while we will use both of these terms interchangeably. Let now G = (V, E)
define a graph with V being the vertex/node set and E ⊆ V × V the edge set. We
define an edge (i, j) ∈ E as the directed relationship having as source node i ∈ V and
node j ∈ V as the target. In the following, we will focus on simple graphs with no
loops and no multiple edges, meaning that there is no edge with the same source and
target node and that every edge is uniquely defined. We will represent a graph by
its adjacency matrix YN×N = (yi,j) where yi,j = 0 if the pair (i, j) ̸∈ E otherwise it
will be a non-zero value yi,j ̸= 0 for all 1 ≤ i ≤ N := |V|, and 1 ≤ j ≤ N := |V| .
The most trivial case considers binary graphs where yi,j = 1 if (i, j) ∈ E , and yi,j = 0
otherwise. We will characterize a graph as undirected when there are no directional
relationships between the vertices, meaning that the edges do not have an inherent
direction or arrow associated with them. In the undirected case, the adjacency matrix
is symmetric, i.e. Y = Y⊺. In this thesis, we will initially focus on binary undirected
graphs and later generalize to signed integer-weighted networks, assuming that the
edge weights or the entries of the adjacency matrix can take any positive or negative
integer value (yij ∈ Z). In the case of the signed graphs, we will further denote E+

as the positive edge set meaning that yi,j > 0 if the pair (i, j) ∈ E+, and accordingly
E− as the negative edge set with yi,j < 0 if the pair (i, j) ∈ E−.

Lastly, as a special case, we will focus on bipartite graphs. A graph G = (V, E) will
be a bipartite graph when the vertex set V can be partitioned into two non-empty and
disjoint subsets V1 and V2 in such a way that every edge in E connects a vertex from
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V1 to a vertex from V2. Formally now, for the vertex set V, there exists a partition
with V = V1 ∪ V2, and V1 ∩ V2 = ∅ where V1,V2 being non-empty and disjoint sets.
In addition, for any (i, j) ∈ E , either i ∈ V1 and j ∈ V2, or i ∈ V2 and j ∈ V1.

2.2.1 Downstream tasks

Machine learning on graphs focuses on characterizing emerging structures, discovering
patterns, and extracting information that is present in graph-structured data [101].
The main goal of such an analysis/modeling of networks is the ability to perform and
solve various important graph-related tasks. The most popular tasks, which will also
be the main focus of this study, include relation/link prediction, node classification,
and community detection.

Relation prediction or link prediction (we will use these terms interchangeably)
refers to the task of predicting the existence or likelihood of certain relationships
(edges) between node pairs in a graph. This task is particularly relevant in network
analysis and has applications in various fields, including social networks [2], biological
networks [102], and recommendation systems [103]. Formally, relation prediction
can be defined as follows: given a graph G = (V, E) the goal is to predict whether
a particular edge (i, j) ∈ E exists in the graph or to score the likelihood of the
existence of different types of relationships between nodes i and j. The goal of
relation prediction is to use the existing structure of the network and potentially
additional features or attributes of nodes and edges to predict which links are most
likely to form in the future or are currently missing from the network. This prediction
task is usually formulated as either a binary classification problem, where the model
predicts the presence or absence of a link between a pair of nodes, or as a ranking
problem, where the model ranks the candidate links based on their likelihood score
of existence. A toy example of such a task can be found in Figure 2.1 (a).

Node classification, also known as node attribute inference, is a fundamental prob-
lem in network analysis and machine learning on graphs [36, 38, 42]. It involves pre-
dicting the class or label of a node in a network based on its structural properties,
attributes, and the labels of its neighboring nodes. The goal of node classification is
to learn a predictive model that can generalize from labeled nodes (nodes with known
classes) to classify unlabeled nodes existing in the network. This is typically done
using supervised learning techniques, where the model is trained on a subset of nodes,
i.e. Vtrain ⊂ V with known labels and then used to predict the labels of a test or
validation set of nodes in the network. Examples of node classification tasks include
research topic prediction in citation networks [104], gene ontology type prediction in
protein-protein interaction networks [105], and more [106]. A simple example of a
node classification task can be found in Figure 2.1 (b).

Community detection, also referred to as node clustering, in the context of graph
analysis, is the task of identifying groups of nodes in a network that are densely
connected among themselves while having sparser connections to nodes in other
groups [5, 107, 108]. These groups are often referred to as ”communities” or ”clus-
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Original Network Observed Network

(a) Link prediction

Original Network Observed Network

(b) Node classification
Community A Community B

(c) Community detection

Figure 2.1. Downstream tasks for Graph Representation Learning. (a) Link prediction: In
this setting, the network is partially observed and the task is to predict the missing links and
regain the original network structure. (b) Node classification: In this setting, each network
node has a label (in the example we have two labels a and b), the task is to infer the node
labels for nodes with missing/unknown labels. (c) Community detection: In this setting,
the whole network is observed and the task is to infer communities existing in the network
(we show an example with two communities A and B).

ters” and their detection is essential for understanding the underlying structure and
organization of complex networks. Community detection is a fundamental problem
in network science and has numerous applications in various domains, such as social
networks [109], opinion dynamics [110], protein-protein interactions [111], disease
dynamics [112], and more [113]. By uncovering communities, researchers can gain
insights into the modular organization and functional units within a network, which
can lead to a better understanding of its behavior and facilitate targeted analyses and
even interventions. Essentially, the task of community detection is to infer underlying
latent structures or ”communities” having only the network G = (V, E) as an input.
A community detection example can be seen in Figure 2.1 (c).

In terms of the ”classical” machine learning theory, node classification and rela-
tion prediction are often categorized as semi-supervised tasks since they work both
with labeled and unlabeled data during inference. Specifically, for the test nodes/n-
ode pairs there exists information in terms of the nodes’ neighborhood in the graph
which differs from the traditional supervised setting where test data are completely
unobserved. Community detection and clustering are considered the unsupervised
extension of classical clustering tasks to network data. One major difference when
working with graph data is that the assumption of independent and identically dis-
tributed data (i.i.d.) does not hold since nodes in any network are interconnected
and thus dependent. It is worth mentioning the existence of inductive biases when
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modeling networks from different domains and disciplines, making the modeling of
graphs more challenging than traditional machine learning problems.

So far, we have discussed node-level downstream tasks since they will be the main
focus of this thesis. Nevertheless, there exist various important and interesting graph-
level tasks. These include graph classification, regression, and clustering [34]. In these
cases, the inputs to the learning procedure can potentially be a set of graphs while
the predictions, rather than focusing on a single graph, are generalized to multiple
different graphs.

2.3 Latent Space Models

Latent Space Models (LSMs) for the representation of graphs have been well es-
tablished over the past years [65–71]. LSMs utilize the generalized linear model
framework to obtain informative latent node embeddings while preserving network
characteristics. The choice of latent effects in modeling the link probabilities between
the nodes leads to different expressive capabilities for characterizing the network
structure. Popular choices include the Latent Distance Model [76] which defines a
probability of an edge based on the Euclidean distance of the latent embeddings, and
the Latent Eigen-Model [114] which generalizes stochastic blockmodels, as well as,
distance models. Various non-Euclidean geometries of LSMs have also been studied
in [71] with the hyperbolic case being of particular interest [115].

Transitivity

Homophily

i

j

k

Figure 2.2. Expression of homophily and transitivity as imposed by the Latent Distance
model. Black lines correspond to network edges. Connected nodes are positioned close to
each other to define a high probability of an edge, e.g. pairs {i, j} and {j, k}. Consequently,
the distance of node pair {i, k} is bounded by the triangle inequality, and thus node pair
{i, k} has to also be positioned in close proximity.
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2.3.1 Latent Distance Models
Here, we will focus on the Latent Distance Model (LDM) [76] where network nodes
are positioned close in the latent space if they are connected or share additional
similarities, such as high-order dependency or proximity. Most importantly, the LDM
obeys the triangle inequality and thus naturally represents transitivity and homophily.
The LDMextends the traditional homophily expression to the case where no node
meta-data exist through the introduction of unobserved attributes as defined by the
LDM [81]. Specifically, we define a D-dimensional latent space (RD) in which every
node of the graph is characterized through the unobserved but informative node-
specific variables {zi ∈ RD}. These variables are considered sufficient to describe
and explain the underlying relationships between the nodes of the network. The
probability of an edge occurring is considered conditionally independent given the
unobserved latent positions and depends on the Euclidean distance. Consequently,
the total probability distribution of the network can be written as:

P (Y |Z,θ) =
N∏

i<j

p(yi,j |zi, zj ,θi,j), (2.1)

where θ denotes any potential additional parameters, such as covariate regressors. A
popular and convenient parameterization of Equation (2.1) for binary data is through
the logistic regression model [76,81,116,117].

For our study, we will focus on an LDM under the Poisson distribution [117]. The
Poisson LDM generalizes the analysis to integer-weighted graphs while the exchange
of the logit to an exponential link function when transitioning from a Bernoulli to
a Poisson model defines nice decoupling properties over the predictor variables in
the likelihood [118, 119]. Importantly, we will also study binary networks where
the use of a Poisson likelihood for modeling such relationships in a network does
not decrease the predictive performance nor the ability of the model to detect the
network structure [120]. Formally now, we define the Poisson rate of the LDM for an
occurring edge based on the Euclidean distance between the latent positions of the
two nodes as:

λij = exp
(
γi + γj − d(zi, zj)

)
. (2.2)

In this formulation, we consider the LDM Poisson rate with node-specific biases
or random effects [81, 117]. In particular, γi ∈ R denotes the node-specific random
effect and dij(zi, zj) = ||zi − zj ||2 denotes the Euclidean distance (or potentially any
distance metric obeying the triangle inequality)

{
dij ≤ dik + dkj , ∀(i, j, k) ∈ V 3}.

Considering variables {zi}i∈V as the latent characteristics, Equation (2.2) shows that
similar nodes will be placed closer in the latent space, yielding a high probability of
an occurring edge and thus modeling homophily and satisfying network transitivity
and reciprocity through the triangle inequality. Essentially, we extend the meaning
of similarity to the unobserved (latent) covariates, i.e., latent embeddings matrix Z.
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Connected or similar nodes define strong relationships that are to be translated by the
LDM into the latent space, defining a high probability of observing connections. As
a result, for two similar nodes {i, j} the pairwise distance ||zi − zj ||2 should be small
which further implies that for a different node {k} we obtain ||zi−zk||2 ≈ ||zj−zk||2.
The latter concludes that nodes {i, j} are similar since they share similar relationships
with the rest of the nodes. For an illustration please visit Figure 2.2. An immediate
result of obeying the triangular inequality is that the LDM successfully models high-
order interactions, as present in complex systems [121, 122]. The node-specific bias
can account for degree heterogeneity, whereas the conventional LDM rate utilizing a
global bias, γg, corresponds to the special case in which γi = γj = 0.5γg.

2.4 The Hierarchical Block Distance Model
The classical LDM, as introduced previously, naturally conveys the main motiva-
tion of Graph Representation Learning where similar nodes are positioned in close
proximity in a constructed latent space. This comes as a direct consequence of the Eu-
clidean metric choice, representing homophily, transitivity, and high-order proximity.
Unfortunately, two equally important properties, scalability (analysis of large-scale
networks is infeasible) and structure characterization are not met by the LDM. Specif-
ically, it scales quadratically in terms of the number of network nodes as O(N2) while
it is agnostic in terms of latent structures that potentially exist in different scales.

Our goal is to design a Hierarchical Block Model preserving homophily and tran-
sitivity properties with a total complexity allowing for the analysis of large-scale
networks. Similar to a classical Poisson LDM, we define the rate of a link between
each network dyad (i, j) ∈ V × V based on the Euclidean distance, as shown in
Equation (2.2). Such a decision guarantees that our model will inherit the natural
properties of the so-effective LDM, and satisfy homophily and transitivity.

Moving to the next two properties, we can define a block-alike hierarchical struc-
ture by a divisive clustering procedure over the latent variables in the Euclidean space.
Incorporating a block structure into the model facilitates the retrieval of underlying
structures, while the integration of a hierarchy accounts for the emergence of these
structures across multiple scales. In addition, we will constrain the total optimization
cost of such a model to a linearithmic upper bound complexity, making large-scale
analysis feasible. We will start such a procedure by initially noticing that a shallow
clustering of the latent space with a number of clusters, K, equal to the number of
nodes, N , leads to the same log-likelihood as of the standard LDM, defining a sum
over each ordered pair of the network, as:

logP (Y|Λ) =
∑
i<j

yij=1

log(λij) −
∑
i<j

(
λij + log(yij !)

)
. (2.3)

where Λ = (λij) is the Poisson rate matrix which has absorbed the dependency over
the model parameters while we presently ignore the linear scaling by dimensionality
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D of the above log-likelihood function. Notably, the first term of Equation (2.3),
which hereby we will refer to as link contribution/term

∑
yi,j=1 log(λi,j), is responsi-

ble for positioning ”similar” nodes closer in the latent space, expressing the desired
homophily. This is straightforward by substituting Equation (2.2) in the link contri-
bution that is maximized when the distance is zero (for fixed random effects and fixed
latent embeddings for all nodes except nodes {i, j}). The second term of Equation
(2.3)

∑
i<j λij , from now on referred to as the non-link contribution/term, acts as the

repelling force for dissimilar nodes, being responsible for positioning nodes far apart,
and in the case of yij = 0 is maximized when dij → +∞ (by fixing again the rest of
parameters).

Focusing on the computational complexity of Equation (2.3), and given that large
networks are highly sparse [15] with the number of edges proportional to the number
of nodes in the network, results in a low computation cost the link contribution. We
empirically showed in Figure 2.3 that it scales linearithmic or sub-linearithmic with
N . Importantly, the link term removes rotational ambiguity between the different
blocks/clusters of the hierarchy (as discussed later). For these reasons, no block
structure is imposed on the calculation of the link contribution.

Moving now to the non-link term, it requires the computation of all node pairs
distance matrix and thus it scales as O(N2) making the evaluation of the above
likelihood infeasible for large networks and being the main overhead for both space
and time complexities. In order to make such a calculation linearithmic, we aim
to enforce a block structure, i.e., akin to stochastic block models [124–126], when
grouping the nodes into K clusters we define the rate between block k and k′ in terms
of their distance between centroids. We initialize such a procedure, by a shallow block
structure obtaining the following non-link expression:

∑
i<j

λij≈
K∑

k=1

(∑
i<j

i,j∈Ck

exp
{(
γi+γj−||zi − zj ||2

)}
+

K∑
k′ >k

∑
i∈Ck

∑
j∈C

k
′

exp
{(
γi + γj − ||µk − µk′ ||2

)})
, (2.4)

where µk, has absorbed the dependency over the variables Z ∈ RN×D, and denotes
the k’th cluster centroid over the set of K total centroids C = {C1, . . . , CK}. Cluster
centroids µk are implicit parameters defined as a function over the latent variables,
as it will be clear later. In general, the clustering procedure is expected to naturally
extend the concept of homophily to the level of clusters via the centroid expressions.
This means that on a node level, closely related nodes will be grouped together in
clusters while on a cluster level interconnected clusters will also be positioned closely
in the latent space, creating an effective block structure representation. Overall, the
clustering technique adheres to ”cluster-homophily” and ”cluster-transitivity” within
the latent space.
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Figure 2.3. Log-Log plot of the number of network edges versus N log N where N the
number of vertices, for 70 datasets of the SNAP library [123].

(a) Hierarchical representation of a distance matrix

(b) Pairwise distance approximation

Figure 2.4. Schematic representation of the distance matrix calculation for a hierarchical
structure of the tree of height L = 3 and for the number of observations N = 64. (a) Hierar-
chical representation of the all-pairs distance matrix. (b) Pairwise distance approximation
based on cluster centroids across different levels of the hierarchy [99].

2.4.1 A Hierarchical Representation
To attain the required hierarchical organization, we utilize hierarchical clustering
via a divisive procedure. In more detail, we organize the embedded clusters into a
hierarchical tree structure, forming a cluster dendrogram. The tree’s root defines a
single cluster containing all latent variable embeddings Z. During the construction of
the tree, clusters (tree-nodes) are divided at each level until every tree-node becomes
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a leaf. A cluster is considered a leaf node if it contains an equal or smaller number
of network nodes than an established threshold, Nleaf. The threshold value is chosen
in such a way that to maintain linearithmic efficiency in terms of complexity and is
set to Nleaf = logN , which leads to roughly K = N/ log(N) total clusters. The tree-
nodes belonging to a specific tree-level are considered the clusters for that specific tree
height. Every new division of a non-leaf node is performed solely on the set of points
assigned to the parent node in the tree (tree-node/cluster). At each level of the tree,
the distance between corresponding cluster centroids is considered as the pairwise
distances of datapoints that belong to different tree-nodes, as shown in Figure 2.4
(ii). Utilizing these distances, we compute the likelihood contribution defined by the
blocks and proceed with binary divisions, moving down the tree, for the nodes that are
not leaf nodes. When every tree-node is regarded as a leaf, we analytically determine
the inner cluster pairwise distances for the corresponding likelihood contribution of
the analytical blocks, as depicted in the final part of Figure 2.4 (ii). This analytical
calculation is carried out at a linearithmic cost of O(KN2

leaf) = O(N logN), and it
reinforces the homophily and transitivity characteristics of the model. Specifically,
for network nodes that are most similar, the model calculates explicitly the latent
distances in the same manner as the standard LDM.

We can thereby define a Hierarchical Block Distance Model with Random Effects
(HBDM-Re) as:

logP (Y |Z,γ) =
∑
i<j

yi,j=1

(
γi + γj − ||zi − zj ||2

)

−
KL∑
k=1

( ∑
i<j

i,j∈C
(L)
k

exp{(γi + γj − ||zi − zj ||2)}

)

−
L∑

l=1

Kl∑
k=1

Kl∑
k′ >k

(
exp
{

(−||µ(l)
k − µ

(l)
k′ ||2)

}

×
( ∑

i∈C
(l)
k

exp{γi}
)( ∑

j∈C
(l)

k
′

exp{γj}
))

, (2.5)

where l ∈ {1, . . . , L} denotes the l’th dendrogram level, kl is the index representing
the cluster id for the different tree levels, and µ(l)

k the corresponding centroid. We also
consider a Hierarchical Block Distance Model (HBDM) without the random effects
which is achieved by setting γi = 0.5γg. For a multifurcating tree that splits into
K clusters and has N/ log(N) terminal nodes or clusters, there are O(N/(K logN))
internal nodes. Each node requires the evaluation of O(K2) pairs, leading to an
overall complexity of O(NK/ logN). Therefore, K must be less than or equal to
logN2 to achieve a scaling of O(N logN) [127]. It’s noteworthy to observe that in
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Equation (2.5), the random effects contributing to the non-link term are independent
of the centroid distance calculations. As a result, the selection of the exponential link
function allows an implicit calculation over the pairwise rates of the approximation
term, facilitating efficient computations.

2.4.2 Divisive partitioning using k-means with a Euclidean
distance metric

The likelihood formula provided by Equation (2.5) can be minimized directly by
allocating nodes to clusters given the tree structure. Unfortunately, performing such
an evaluation for all N nodes results in a scaling that becomes impractical, defining a
O(N2/ logN) complexity. To make this more manageable, we employ a more efficient
method of divisive partitioning, which minimizes the Euclidean norm ||µkl

− µk′
l
||2.

The divisive clustering procedure thus relies on the following Euclidean norm objective

J(r,µ) =
N∑

i=1

K∑
k=1

rik||zi − µk||2, (2.6)

where k denotes the cluster id, zi is the i’th data observation, rik the cluster respon-
sibility/assignment, and µk the cluster centroid.

The given objective function is not supported by existing k-means clustering algo-
rithms that depend only on the squared Euclidean norm. As a result, we now develop
an optimization procedure specifically for k-means clustering under the Euclidean
norm. This approach lies within the auxiliary function framework as developed in
the context of compressed sensing in [128]. We establish an auxiliary function for
(2.6) as follows:

J+(ϕ, r,µ) =
N∑

i=1

K∑
k=1

rik

(
||zi − µk||22

2ϕik
+ 1

2
ϕik

)
, (2.7)

where ϕ are the auxiliary variables. Thereby, minimizing Equation (2.7) with re-
spect to ϕnk yields ϕ∗

ik = ||zi − µk||2 and by plugging ϕ∗
ik back to (2.6) we obtain

J+(ϕ∗, r,µ) = J(r,µ) verifying that (2.7) is indeed a valid auxiliary function for
(2.6). The algorithm proceeds by optimizing cluster centroids as

µk =
(∑

i∈k

zi

ϕik
/
∑
i∈k

1
ϕik

)
, (2.8)

and assigning points to centroids as

arg min
C

=
K∑

k=1

∑
z∈Ck

( ||z − µk||22
2ϕk

+ 1
2
ϕk

)
, (2.9)
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upon which ϕk is updated. The overall complexity of this procedure is O(TKND)
[129] where T is the number of iterations required to converge. As shown in [128],
Equation (2.7) is a special case of a general algorithm for an lp(0 < p < 2) norm
minimization using an auxiliary function with the algorithm converging faster the
smaller p is. For a detailed study of the efficiency of the optimization procedure
under such an auxiliary function, see [128].

Number of splits in each layer of the divisive procedure: A straightforward
approach to constructing the tree structure would be via an agglomerative procedure
where essentially the nodes would be split into K = N/ log(N) followed by binary
merges until only one cluster survives. Despite this being possible under the above
Euclidean k-means procedure, it scales prohibitive and thus does not respect the lin-
earithmic complexity threshold. For that, we turn to a divisive clustering procedure
for constructing the dendrogram. In such a procedure, lies a trade-off between the
number of nodes belonging to each cluster and the distance approximation quality.
It is evident that an initial binary split would be a very crude distance approximation
and as a result we choose in the initial split to create the maximum allowed number
of clusters respecting the linearithmic complexity threshold O(N logN), that is equal
to K = logN . Continuing to divide into logN clusters might seem like an appealing
approach, but for a balanced multifurcating tree that has N/ logN leaf clusters, this
strategy would lead to a height scaling of O(logN/ log logN). Consequently, the
overall complexity of this method would be O(N log2(N)/ log logN) [127]. A bal-
anced binary tree at all levels beneath the root leads to a height scaling of O(logN),
with each level of the tree accounting for O(DN) operations. When including the
linear scaling factor due to dimensionality D, this results in an overall complexity of
O(DN logN). Figure 2.4 (i) depicts the resulting tree for a small problem involving
N = 64 nodes. In this example, the nodes are first divided into 4 clusters (approxi-
mately equal to log(64)), and then binary splits are performed until each leaf cluster
contains 4 nodes (also roughly equivalent to log(64))1.

2.4.3 Hierarchical Block Representations Expressing Homophily
and Transitivity

A crucial aspect in maintaining the homophily and transitivity properties of HBDM-
Re and HBDM is to avoid approximating the link terms at the block level, as is done
in (hierarchical) SBMs. Instead, the link contribution to the log-likelihood across the
entire hierarchy should be calculated analytically, going beyond the leaf/analytical
blocks. Figure 2.5 (a) and (b) depict two leaf clusters connected by a link. Suppose
that the distances within the blocks are computed analytically and that both the
link and non-link contributions of pairs across different clusters are estimated based
on the distance between their centroids. Such an approach would essentially permit
any rotation of each cluster throughout the hierarchy, as neither the inner-block

1For visualization purposes only, we show equally sized clusters.
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(a) Non-optimal rotation over leaf clus-
ters.

(b) Optimal rotation over leaf clusters.

(c) Three latent block structures.

Figure 2.5. The clusters within the dashed circles denote the leaf block structures. The
red circles and blue rhombuses indicate the node embeddings and the centroids, respectively.
Gray lines represent the links and the dashed lines the distance between the cluster centers
[99].

distances (analytical) nor the centroid distances would be altered by these rotations,
resulting in an identical likelihood, showcasing a block-level rotational invariance.
In this scenario, homophily expression would be compromised. For instance, the
distance between nodes c and d might not necessarily be shorter than the distance
between other disconnected inter-cluster pairs (e.g., as shown in Figure 2.5 (a)). This
illustrates how the rotation of the blocks can have a significant effect on the homophily
characteristics of HBDM-Re and HBDM.

Computing the link contributions between different clusters analytically resolves
this ambiguity, as the likelihood is penalized more when nodes c and d are positioned
in a way that is not aware of rotations. The computational cost of taking into account
all the link terms analytically means that the model’s complexity is tied to the number
of network edges contrary to a total block structure where the complexity is strictly
linearithmic. However, we demonstrate empirically in Figure 2.3 that the number of
network edges E scales linearly with N logN , so this analytical term complies with
our complexity boundary. Figure 2.5 (c) illustrates examples of clusters that define
cases of block interconnections between both sparsely connected blocks ({C1, C3},
{C1, C2}) and densely connected blocks ({C2, C3}). The analytical links between
clusters (depicted as blue lines) are instrumental in determining the proper orientation
of the blocks. Furthermore, these inter-cluster links guide the proximities of the
centroids at the cluster level, thus playing a vital role in upholding the properties of
cluster homophily and transitivity.

In the HBDM, pairwise distances remain unaffected by rotation, reflection, and
translation operations of the latent space due to its inheritance from the LDM [76]
(even though the dyad rates λij are uniquely defined). These isometries can be
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addressed through a Singular-Value-Decomposition procedure. Analytically, let Z
denote the embedding of our proposed HBDM(-Re) such that the i’th row (Z)i =
zi. Then, visualizations of the inferred latent space can be uniquely determined by
imposing a centering step Ẑ = Z − Z̄ followed by a singular value decomposition of
the latent positions UΣV T = SVD(Ẑ) to remove rotation ambiguity. Thereby, we
can introduce (Z∗)i = (UΣ)i which determines uniquely identifiable latent positions
as long as the singular values are distinct.

While the analytical calculation of link terms introduces rotational awareness to
the HBDM clusters, we further explore the conditions under which a continuous op-
eration that defines infinitesimal rotations (relative to the cluster centroid) is permis-
sible. This exploration seeks to understand the situations in which the loss function
of Equation (2.5) remains invariant to continuous rotations. In Lemma 2.4.1 (proof
follows), we start our investigation of this problem by showing that blocks with a
unique inter-cluster link connection reduce the clusters’ degree of rotational freedom
by one.

Lemma 2.4.1. Let G = (V, E) be a graph and let C be a cluster with its centroid
located at µ ∈ RD having an edge (i, j) ∈ E for some i ∈ C and j ∈ V\C such that
zi ̸= µ. If z̃i = µ + R(θ)(zi − µ) such that R(θ) is a rotation matrix acting on
the embeddings of nodes in cluster C, then the maximum degree of freedom of any
infinitesimal λij-invariant rotation is defined by θ ∈ RD−2.

Proof. A general rotation matrix, R(θ), for a D-dimensional space is given by a
rotation angle vector θ ∈ RD−1. Define λ̃(θ)ij = exp (γi + γj − ∥z̃i − zj∥) such
that λ̃(0)ij = λij . Then, an infinitesimal rotation leaving λij unchanged must be
along the direction of a non-zero vector v ∈ RD−1 requiring ⟨∂λ̃(θ)ij

∂θ

∣∣∣
θ=0

,v⟩ = 0.

This equation is satisfied either if (i) ∂λ̃(θ)ij

∂θ

∣∣∣
θ=0

= 0, which would require either
||zi−zj || is maximum or minimum on the sphere defined by the rotation such that any
infinitesimal rotation would respectively decrease or increase λ̃ij ; (ii) v is orthogonal
to the gradient ∂λ̃(θ)ij

∂θ

∣∣∣
θ=0

; consequently, this removes a degree of rotational freedom
such that θ ∈ RD−2.

An immediate implication of Lemma 2.4.1 is that in a two-dimensional embed-
ding, continuous rotation of a cluster with only one external edge is not possible. For
connected graphs, there is always a path from one node to all others, and thus every
cluster must possess at least one external link. When considering the more general
scenario of blocks with multiple inter-cluster edges, rotations that preserve the aggre-
gate sum of pairwise distances among node embeddings become highly improbable,
as elaborated in the next paragraph. As a result, for connected networks, we can
generally anticipate the uniqueness of (local) minimum solutions, with no continu-
ous rotations allowed that would leave the HBDM loss function of Equation (2.5)
invariant.
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As previously mentioned, local operations defined on the clusters with respect to
their centroids can potentially leave the loss function value invariant since HBDM(-
Re) calculates the non-link contributions between clusters in the objective function
based on their centroids distances. It can be said that there are almost surely no
infinitesimal local cluster rotations of local minima solutions of Equation (2.5) for
2-dimensional embeddings. We consider infinitesimal rotations on the cluster em-
beddings since our main motivation relies on the uniqueness of embeddings around
the local minima so we also discard the local reflections of the clusters since they
do not provide continuous transformation operations. Specifically, let C be a clus-
ter with multiple external edges and let z̃i = µ + R(θ)(zi − µ) such that R(θ) is
a rotation matrix acting on the embeddings of nodes in cluster C. We first note
that any rotation of the cluster C by R(θ) will leave all terms invariant in Equation
(2.5) except for the sum over external edges S =

∑
(i,j)∈EC,V \C

log λij . For a local
minima, no infinitesimal rotation exists that will reduce the overall sum of distances
between node pairs defining the external edges as such rotation would improve the
solution violating that it is a (local) minima. We can therefore assume that any
rotation will result in either no change of the sum of distances or that the overall
sum will increase. For embeddings in two-dimensional space, the rotations can be
parameterized by the single parameter θ that for a local minimum has the property
∂S
∂θ =

∑
(i,j)∈Er

∂ log λ̃ij

∂θ −
∑

(i,j)∈Ei

∂ log λ̃ij

∂θ = 0. As a result, edges reducing their dis-
tances (Er) will have a positive gradient of θ whereas edges increasing (Ei) will have a
negative gradient, and these parts perfectly cancel out for a local minimum. However,
as the overall sum of distances for the local minima cannot decrease, the overall sum
must remain the same. Therefore, for all node pairs for which (zi−µ)⊤(zj −µ) > 0,
we have that the distance increases for increasing edges more than the reduction for
decreasing edges. Furthermore for node pairs for which (zi−µ)⊤(zj −µ) < 0, we, in
general, expect further distances between edge pairs, thus less impact on the rotation.
As a result, it is highly unlikely that clusters with more than one external edge can be
rotated in two-dimensional space. As the likelihood in Equation (2.5) is defined on a
connected network every cluster will have at least one external edge. In combination
with Lemma 2.4.1, a local minima can therefore not be infinitesimally rotated.

2.4.4 A Hierarchical Block Distance Model for Bipartite Networks

Our proposed frameworks, HBDM and HBDM-Re have straightforward generaliza-
tions to both directed and bipartite graphs. In the following, we provide the math-
ematical extension for the bipartite case (the directed network formulation of our
proposed model can be considered a special case of the bipartite framework in which
self-links are removed and thus omitted from the below log-likelihood).

For a bipartite network with adjacency matrix Y N1×N2 we can formulate the
log-likelihood as:
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logP (Y |Λ) =
∑
i,j

yi,j=1

(
ψi + ωj − ||wi − vj ||2

)

−
KL∑

kL=1

( ∑
i,j∈CkL

exp{(ψi + ωj − ||wi − vj ||2)}

)

−
L∑

l=1

Kl∑
k=1

Kl∑
k′ >k

(
exp
{

(−||µ(l)
k − µ

(l)
k′ ||2)

}

×
( ∑

i∈C
(l)
k

exp{ψi}
)( ∑

j∈C
(l)

k
′

exp{ωj}
))

, (2.10)

where {µ(l)
k }

KL

k=1 are the latent centroids that have absorbed the dependency of both
sets of latent variables {wi,vj} while we define the Poisson rate as:

λij = exp
(
ψi + ωj − d(wi,vj)

)
, (2.11)

where ψi and ωj are the corresponding random effects and {wi, vj} are the latent
variables of the two disjoint sets of the vertex set of sizes N1 and N2, respectively. In
this setting, we use our divisive Euclidean distance hierarchical clustering procedure
over the concatenation Z = [W; V] of the two sets of latent variables. Therefore, we
define an accurate hierarchical block structure for bipartite networks, with each block
including nodes from both of the two disjoint modes. Here, a centroid is considered a
leaf if the corresponding tree-cluster contains less than log(N1) of the latent variables
{wi}N1

i=1 or less than log(N2) of {v}N2
j=1.

2.4.5 Complexity Comparison
TABLE 2.1 offers a comparison of the time complexities for various notable GRL
methods, expressed in Big O notation, akin to [130]. From this comparison, it be-
comes evident that our proposed HBDM model ranks among the most competitive
frameworks. Regarding space complexity, our model exhibits linearithmic complexity,
setting it apart from the majority of the considered baseline methods, which typically
display quadratic space complexity, as shown in [130].

2.5 Hybrid memberships, Matrix Factorization, and
Latent Distance Models

Revisiting our main goal which is to learn a representation in a lower dimensional
space, expressing the property that similar nodes in the network are positioned closer
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Table 2.1. Complexity analysis of methods. N := |V | is the vertex set, |E|: edge set, W:
number of walks, L: walk length, H: height of the hierarchical tree, D: node representation
size, k: number of negative instances, q: order value, c: Chebyshev expansion order, γ:
window size, α1 and α2 constants such as α1, α2 ≪ N .

Method Complexity
DeepWalk [22] O (γN log (N)WLD)

Node2Vec [4] O (γNWLDk)
LINE [37] O (|E|Dk)

NetMF [46] O
(
N2D

)
NetSMF [47] O

(
|E|(γ +D) +ND2 +D3)

RandNE [53] O
(
ND2 + |E|Dq

)
LouvainNE [51] O (|E|H+ND)

ProNE [50] O
(
ND2 + |E|c

)
Verse [130] O (N(W + kD))

HBDM(-Re) O (α2N log (N)D)

in such a space. We here, also aim to define community-aware representations, mean-
ing that each embedding should convey information about the community structure.
Overall, we would like to define a Graph Representation Learning method expressing
the desired properties of homophily and transitivity coupled with latent structure
characterization and under a unique optimization procedure (i.e. no post-processing
steps such as clustering procedures). Under such a direction, we will focus on finding
mappings of the nodes into the unit D-simplex set, ∆D ⊂ RD+1

+ formally defined as

∆D =

{
(x0, . . . , xD) ∈ RD+1

∣∣∣∣∣
D∑

d=0

xd =1, xd ≥ 0, ∀ d ∈ {0, . . . , D}

}
.

In addition, we provide the standard 2-simplex in Figure 2.6 with an example of
an embedding zi. A direct consequence of constraining node representation on the
simplex is that the extracted node embeddings can convey information about latent
community memberships. Numerous GRL methods lack guarantees for identifiable
or unique solutions, making their interpretation heavily reliant on the initial setting of
hyper-parameters. In this chapter, we are also focusing on the issue of identifiability.
We aim to find identifiable solutions, though these can only be realized to the extent
of permutation invariance, as described in Def. 1.

Definition 1 (Identifiabilty). An embedding matrix Z whose rows indicate the cor-
responding node representations is called an identifiable solution up to a permutation
if it holds Z̃ = ZP for a permutation P and a solution Z̃ ̸= Z.
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Figure 2.6. The standard 2-simplex in R3 which is a triangle. Any point zi of the simplex
lies on the affine hyperplane and is denoted with the green-colored area, and can be expressed
as a convex combination of the three corresponding vertices (corners).

(a) Translation invari-
ances.

(b) Rotation invariances. (c) Decreased simplex volume en-
suring identifiability.

Figure 2.7. A 2-dimensional latent space with the 2-simplex given as the green and yellow
triangles, the blue points denote embedding positions of the LDM and δ is the simplex
size [74].

2.5.1 Hybrid memberships under a latent distance model
We will consider a Poisson LDM, defining a log-likelihood over the adjacency matrix Y
of the network as introduced by Equation (2.3). To combine powerful and community-
aware representations, we propose the Hybrid-Membership Latent Distance Model
(HM-LDM) with a log-rate based on the ℓ2-norm as:

log λij =
(
γi + γj − δp · ||zi − zj ||p2

)
, (2.12)

where zi ∈ [0, 1]D+1 are the latent embeddings constrained to the D−simplex, i.e.∑D+1
d=1 wid = 1, δ ∈ R+ is the non-negative value controlling the simplex volume, and

γi ∈ R a bias term of node i ∈ V accounting for node-specific effects such as degree
heterogeneity. Lastly, p is the power of the ℓ2 norm with p ∈ {1, 2} which governs
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the model specification. Specifically, power p modifies the effect of the embedding
distances within the rate functions. In other words, in Equation 2.12 we constrain the
latent space to the D−simplex, and the simplex’s edge lengths (1-faces) are scaled by
the non-negative constant δ, controlling the length of the sides of the simplex, and
consequently, the volume of the simplex itself.

A notable characteristic of Equation (2.12), is that it resembles a positive Eigen-
model with random effects: γ̃i + γ̃j + (w̃iΛw̃⊤

j ) where Λ is a diagonal matrix hav-
ing non-negative elements, i.e. γ̃i = γi − δ2 · ||zi||22, γ̃j = γj − δ2 · ||zj ||22 and
z̃iΛz̃⊤

j = 2δ2 · ziz⊤
j . Therefore, the squared Euclidean distance acts as a bridge be-

tween the traditional LDM and the non-negativity-constrained Eigenmodel. While
not entirely conforming to the definition of a metric, the squared Euclidean distance
still conveys homophily, resulting in an interpretable latent space. Although it doesn’t
precisely satisfy the triangle inequality, it maintains the order of pairwise Euclidean
distances and is often favored in applications due to its nature as a strictly convex
smooth function. By the well-known cosine formula, we have

||zi − zj ||22 = ||zi − zk||22 + ||zk − zj ||22 − 2||zi − zk||2||zk − zj ||2 cos(θ),

where θ ∈ (−π/2, π/2) represents the angle between zi − zk and zk − zj . Note that
the third term also approaches to 0 for θ → π/2. For the case where θ ∈ [π/2, 3π/2],
it satisfies the triangle inequality: ||zi − zj ||22 ≤ ||zi − zk||22 + ||zk − zj ||22.

The embedding vectors, {zi}N
i=1 in Equation (2.12), are constrained to non-negative

values and to sum to one. As a result, they are positioned on a simplex that shows
the participation of node i ∈ V across D + 1 latent communities. Any LDM can
be constrained to the non-negative orthant without diminishing its performance or
expressive power. Non-negative embeddings do not change the distance metric, as
it remains constant under translation, as illustrated in Figure 2.7 (a). Furthermore,
the D-dimensional non-negative orthant can be reconstructed by a large enough D-
simplex. From these considerations, it can be effortlessly shown that for high values of
the δ parameter in Equation (2.12), the sum-to-one constraint on the embeddings Z
results in an unconstrained LDM, since the distances are unbounded when δ → +∞.
In this scenario, the memberships defined by the rows of matrix Z cannot be uniquely
identified due to the distance invariance of rotation, as depicted in Figure 2.7 (b).

Nonetheless, by reducing the volume of the simplex (which is the same as lowering
δ), the D-dimensional space of LDM will eventually cease to fit within the D-simplex,
forcing the nodes to begin occupying the corners of this reduced simplex. A node is
referred to as a champion if its latent representation corresponds to a standard binary
unit vector.

Definition 2 (Community champion). A node for a latent community is called
champion if it belongs to the community (simplex corner) while forming a binary unit
vector.

Champion nodes hold considerable importance for the model’s identifiability. If
each corner of the simplex has at least one node (champion), then the model’s solution
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is identifiable (subject to a permutation matrix) (as per Def. 1). This occurs because
any random rotation no longer maintains the solution’s invariance, as illustrated by
Figure 2.7 (c). It is evident that the scalar, δ, controls important properties, such
as identifiability and the type of community memberships, while also the expressive
capability of the model. Specifically, an HM-LDM with a large value of δ is equivalent
to an unconstrained LDM that includes high expressive capability but also a rotation
invariant space. In contrast, small values of δ result in identifiable solutions and
can ultimately drive hard cluster assignments. Therefore, with very low values of δ,
nodes are exclusively positioned at the corners of the simplex. Lastly, we can also
find regimes of values for δ that offer identifiable solutions, and mixed-memberships
but also performance similar to LDM, defining a silver lining.

A different take on the identifiability of the model for p = 2, can also be given
under the Non-negative Matrix Factorization (NMF) theory. Figures 2.8 (a) and
(b), show both a non-symmetric and a symmetric NMF factorization. Specifically, a
non-negative matrix V is factorized into two matrices Z and W , also non-negative.
If the matrix is symmetric the factorization defines only the non-negative matrix Z.
We will focus on undirected networks and make use of the symmetric NMF while we
will not present extensions to bipartite and directed networks since they are trivial
to obtain by switching to a non-symmetric NMF operation.

We can now easily show a re-parameterization of Equation (2.12) by γ̃i + γ̃j +
2δ2 · (ziz⊤

j ) as described in Equation (2.12). In such a formulation, the product ZZ⊤

defines a symmetric NMF problem which is an identifiable and unique factorization
(up to permutation invariance) when Z is full-rank and at least one node resides solely
in each simplex corner, ensuring separability [131,132].

Under this NMF formulation, the product ziz⊤
j ∈ [0, 1] achieves its maximum

value only when both nodes i and j reside in the same corner of the simplex. The
parameter, δ, acts as a simple multiplicative factor in the first term of the objective
function of HM-LDM, given in Equation (2.1), while in the second term acts as a
power of the exponential function. For small values of δ, the model is biased towards
hard latent community assignments of nodes since similar nodes achieve high rates
only when they belong to the same latent community (simplex corner). On the
other hand, nodes heading towards the simplex corners for large values of δ lead
to an exponential change in the second term of the log-likelihood function given in
Equation (2.1). Thus, a possible hard allocation of dissimilar nodes to the same
community penalizes the likelihood severely. For this reason, high values of δ benefit
mixed-membership allocations.

2.6 Signed integer weighted graphs

We continue now with the analysis of signed integer weighted graphs. Our aim is to
learn representations for signed networks while expressing the properties of homophily,
structure retrieval, and importantly heterophily/animosity as expressed by negative
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(a) Non-Negative Matrix Factorization (b) Symmetric Non-Negative Matrix Factoriza-
tion

Figure 2.8. Factorization of a non-negative matrix V into two non-negative matrices Z
and W . If the matrix is symmetric the factorization defines only the non-negative matrix
Z.

relationships. Animosity or heterophily refers to the tendency for nodes to interact
negatively when they express opposing or dissimilar views or opinions. In this setting,
we would like to generalize transitivity properties to the expression of balance theory, a
socio-psychological theory admitting four rules: “The friend of my friend is my friend”,
“The enemy of my friend is my enemy”, “The friend of my enemy is my enemy”, and
“The enemy of my enemy is my friend”, also presented in Figure 2.9. We can observe
that transitivity is contained in balance theory and corresponds to the first case of
Figure 2.9. We will move to the design of a GRL model able to characterize such
properties and extend LDMs to the analysis of signed networks. In particular, we
will utilize Archetypal Analysis [133, 134] allowing for model specifications allowing
for archetype retrieval of relational data able to characterize network polarization.

2.7 The Skellam Latent Distance Model (SLDM)
We now generalize our main purpose which is to learn latent node representations
{zi}i∈V ∈ RD in a low dimensional space to signed networks G = (V,Y) (D ≪
|V|). Therefore, the edge weights can take any integer value to represent the positive
or negative tendencies between the corresponding nodes. We model these signed
interactions among the nodes using the Skellam distribution [135], which can be
formulated as the difference of two independent Poisson-distributed random variables
(y = N1 −N2 ∈ Z) with respect to the rates λ+ and λ−:

P (y|λ+, λ−) = e−(λ++λ−)
(
λ+

λ−

)y/2

I|y|

(
2
√
λ+λ−

)
,

where N1 ∼ Pois(λ+) and N2 ∼ Pois(λ−), and I|y| is the modified Bessel function
of the first kind and order |y|. As far as we are aware, the Skellam distribution has
not previously been used to model the likelihood of a network. We are introducing a
novel latent space model that employs the Skellam distribution by adapting the latent
distance model, originally devised for undirected and unsigned binary networks as a
logistic regression model [76]. This was subsequently expanded to include various
generalized linear models [117], such as the Poisson regression model tailored for
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Figure 2.9. Graphical representation of the four balance theory properties, where black
dots correspond to network nodes, green arrows as positive directed links, and red arrows
as negative directed links. Dashed lines with arrows denote the inferred relationship under
the balance theory. Analytically the panels show from left to the right, Case 1: The friend
of my friend is my friend, Case 2: The enemy of my friend is my enemy, Case 3: The friend
of my enemy is my enemy, Case 4: The enemy of my enemy is my friend.

integer-weighted networks. The negative log-likelihood of a latent distance model
under the Skellam distribution can be formulated as follows:

L(Y) := log p(yij |λ+
ij , λ

−
ij) =

∑
i<j

(λ+
ij + λ−

ij)− yij

2
log

(
λ+

ij

λ−
ij

)
− log

(
I∗

ij

)
,

where I∗
ij := I|yij |

(
2
√
λ+

ijλ
−
ij

)
. As it can be noticed, the Skellam distribution has two

rate parameters, and we consider them to learn latent node representations {zi}i∈V
by defining them as follows:

λ+
ij = exp

(
γi + γj − ||zi − zj ||2

)
, (2.13)

λ−
ij = exp

(
δi + δj + ||zi − zj ||2

)
, (2.14)

where the set {γi, δi}i∈V denote the node-specific random effect terms, and || · ||2 is
the Euclidean distance function. More specifically, γi, γj represent the ”social” effect-
s/reach of a node and the tendency to form (as a receiver and as a sender, respectively)
positive interactions, expressing positive degree heterogeneity (indicated by + as a su-
perscript of λ). In contrast, δi, δj provides the ”anti-social” effect/reach of a node to
form negative connections and thus models negative degree heterogeneity (indicated
by − as a superscript of λ). The rate formulation for the positive interactions λ+

ij

naturally conveys the homophily property (a high positive rate is achieved when the
distance is small) while negative interaction rate expression λ−

ij models heterophily
(a high negative rate is achieved when the distance is large). In addition, the corre-
sponding rates in Equation (2.13) and Equation (2.14) satisfy balance theory, as it is
a direct consequence of the high-order effects caused by the expression of homophily
and heterophily, as seen by Figure 2.10.

By imposing standard normally distributed priors elementwise on all model pa-
rameters θ = {γ, δ,Z}, i.e., θi ∼ N (0, 1), We define a maximum a posteriori (MAP)
estimation over the model parameters, via the loss function to be minimized (ignoring
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Homophily:

 

Animosity:

Figure 2.10. Expression of homophily and animosity as imposed by the Skellam Latent
Distance model. Green lines correspond to positive interactions and red lines to negative
interactions. Positively related nodes (i.e. pair {a, b}) are positioned close in space in order
for the λ+ rate to be high while negatively interacting nodes (i.e. pair {c, u}) are positioned
far apart in space for the λ− rate to be high.

constant terms):

Loss =
∑
i<j

(
λ+

ij + λ−
ij −

yij

2
log

(
λ+

ij

λ−
ij

))
−
∑
i<j

log I|yij |

(
2
√
λ+

ijλ
−
ij

)
+ρ

2

(
||Z||2F + ||γ||2F + ||δ||2F

)
,

(2.15)

where || · ||F denotes the Frobenius norm. In addition, ρ is the regularization strength
with ρ = 1 yielding the adopted normal prior with zero mean and unit variance.
Importantly, by setting λ+

ij and λ−
ij based on Equation (2.13) and (2.14), the model

effectively makes positive (weighted) links attract and negative (weighted links) deter
nodes from being in proximity of each other.

2.7.1 Archetypal Analysis
Archetypal Analysis (AA) [133, 134] is a technique used in data clustering that iden-
tifies ”archetypes” from a given observational dataset. An archetype is a pure or
idealized form that represents an essential aspect or fundamental pattern within the
data. In other words, archetypes are extreme points or corners of the convex hull of
the data, and they can be thought of as the most representative or ”extreme” exam-
ples of different behaviors or characteristics found in the data. In essence, AA is a
powerful tool for clustering that provides a nuanced view of the data by identifying
and utilizing extreme or ”archetypal” patterns within the dataset. By expressing data
in terms of these fundamental elements, AA offers an insightful perspective on the
underlying structure and relationships within the data, aiding in cluster identification
and interpretation. The definition of the embedded data points is given as follows:

X ≈ XCZ s.t. cd ∈ ∆N and zj ∈ ∆D. (2.16)

The archetypes, represented by the columns of A = XC, define the corners of
the extracted polytope, serving as convex combinations of the observations. Mean-
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while, Z outlines how each observation is reassembled as convex combinations of these
extracted archetypes.

While Archetypal Analysis confines the representation within the convex hull of
the data, alternative methods for modeling pure or ideal forms have included Minimal
Volume (MV) approaches. One advantage of these approaches is that, unlike AA,
they don’t necessitate the existence of pure observations in the data. However, they
come with the disadvantage of needing careful regularization tuning to determine
an appropriate volume [136]. Additionally, the precise calculation of the volume
for general polytopes demands the computation of determinants of the sum of all
simplices that define the polytope [137] which comes with a high computational cost.

Archetypal Analysis and Minimal Volume extraction techniques have been recog-
nized for their ability to uncover latent polytopes that define trade-offs. Within these
polytopes, the vertices symbolize the maximally enriched and distinct aspects, or
archetypes, which allow for the identification of specific tasks or prominent roles that
the vertices represent [138, 139]. Owing to the computational challenges associated
with regularizing high-dimensional volumes and the intricate fine-tuning required for
those regularization parameters, our current focus is centered on polytope extraction
as framed by the AA formulation, rather than adopting an MV approach.

2.7.2 A Generative Model of Polarization

Combining AA with the Skellam Latent Distance Model, i.e. constraining the latent
space into a polytope allows for the modeling of polarization, as present in many
signed networks. Specifically, we extend the Skellam LDM and express polarization
based on defining node positions as convex combinations of the polytope - what we
denote as a sociotope. The corners of the sociotope are considered the different ”poles”
that drive polarization and are sufficient to express the social dynamics of the network.
Essentially, these uncovered ”poles” are the extracted archetypes/extreme profiles as
proposed by AA while every other node representation is a convex combination of
these extremes.

In our generative model of polarization, we further suppose that the bias terms
introduced in the definitions of the Poisson rates, (λ+

ij , λ
−
ij), are normally distributed.

Since latent representations {zi}i∈V according to AA and MV lie in the standard
simplex set ∆D, we further assume that they follow a Dirichlet distribution. Formally,
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we can summarize the generative model as follows:

γi ∼ N (µγ , σ
2
γ) ∀i ∈ V,

δi ∼ N (µδ, σ
2
δ ) ∀i ∈ V,

ad ∼ N (µA, σ
2
AI) ∀d ∈ {1, . . . , D},

zi ∼ Dir(α) ∀i ∈ V,
λ+

ij = exp
(
γi + γj − ∥A(zi − zj)∥2

)
,

λ−
ij = exp

(
δi + δj + ∥A(zi − zj)∥2

)
,

yij ∼ Skellam(λ+
ij , λ

−
ij) ∀(i, j) ∈ V2.

According to the above generative process, positive (γ) and negative (δ) random
effects for the nodes are first drawn, upon which the location of extreme positions A
(i.e., corners of the polytope denoted archetypes) are generated. In addition, as the
dimensionality of the latent space increases linearly with the number of archetypes, i.e.
A is a square matrix, with probability zero archetypes will be placed in the interior
of the convex hull of the other archetypes. Subsequently, the node-specific convex
combinations Z of the generated archetypes are drawn, and finally, the weighted
signed link is generated according to the node-specific biases and distances between
dyads within the polytope utilizing the Skellam distribution. The polarization level
of the generative process can easily be controlled by the concentration parameter α
of the Dirichlet distribution, defining the reconstruction matrix Z.

2.7.3 The Signed Relational Latent Distance Model

For inference, we exploit how polytopes can be efficiently extracted using archetypal
analysis. We, therefore, define the Signed Latent relational dIstance Model (SLIM)
by defining a relational archetypal analysis approach endowing the generative model
a parameterization akin to archetypal analysis in order to efficiently extract polytopes
from relational data defined by signed weighted networks. Specifically, we formulate
the relational AA in the context of the family of LDMs, as:

λ+
ij = exp

(
γi + γj − ∥A(zi − zj)∥2

)
(2.17)

= exp
(
γi + γj − ∥RZC(zi − zj)∥2

)
. (2.18)

λ−
ij = exp

(
δi + δj + ∥A(zi − zj)∥2

)
(2.19)

= exp
(
δi + δj + ∥RZC(zi − zj)∥2

)
. (2.20)

Notably, in the AA formulation X = RZ corresponds to observations formed by
convex combinations Z of positions given by the columns of RD×D. Furthermore, in
order to ensure what is used to define archetypes A = XC = RZC corresponds to
observations using these archetypes in their reconstruction Z, we define C ∈ RN×D



2.8 Directed Case Model Formulations 39

as a gated version of Z normalized to the simplex such that cd ∈ ∆N by defining

cnd = (Z⊤ ◦ [σ(G)]⊤)nd∑
n′(Z⊤ ◦ [σ(G)]⊤)n′d

(2.21)

in which ◦ denotes the elementwise (Hadamard) product and σ(G) defines the logistic
sigmoid elementwise applied to the matrix G. As a result, the extracted archetypes
are ensured to correspond to the nodes assigned the archetype, whereas the loca-
tion of the archetypes can be flexibly placed in space as defined by R. By defining
zi = softmax(z̃i) we further ensure zi ∈ ∆D. Examples of two latent spaces where
archetypes correspond and do not correspond to observations using these archetypes
are displayed in Figure 2.11 with the gate function securing informative polytopes.
Such a formulation is necessary since there is no guarantee that making the polytope
matrix A a free parameter will lead to an informative latent space. This comes as
a consequence of the fact that a large enough volume of the polytope A matrix can
enclose an unconstrained LDM and avoid representing trade-offs that would force the
nodes to use the corners.

Importantly, the loss function of Equation (2.15) is adopted for the relational AA
formulation forming the SLIM, with the prior regularization applied to the corners
of the extracted polytope A = RZC instead of the latent embeddings Z imposing
a standard elementwise normal distribution as prior ak,k′ ∼ N (0, 1). Furthermore,
we impose a uniform Dirichlet prior on the columns of Z, i.e. (zi ∼ Dir(1D), this
only contributes constant terms to the joint distribution, and therefore the maximum
a posteriori (MAP) optimization only constant terms. As a result, the loss function
optimized is given by Equation (2.15) replacing ∥Z∥2

F with ∥A∥2
F .

2.8 Directed Case Model Formulations
As we have discussed, one of the most important properties of signed network models
is the expression of balance theory which naturally describes directed relationships.
In this section, we describe how our proposed frameworks can be extended to the
study of directed networks (which at least for the SLIM formulations is not trivial).
We further explore additional model formulations allowing for more capacity and
expressive power.

2.8.1 The Skellam Latent Distance Model for the Directed Case
(LDM)

Our main purpose here is to learn two latent node representations {zi}i∈V ∈ RD

and {wi}i∈V ∈ RD in a low dimensional space for a given directed signed network
G = (V,Y) (D ≪ |V|). The two sets of the latent embeddings correspond to modeling
directed relationships i→ j of nodes, with zi the source node and wj the target node,
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(a) Non-informative polytope (b) Informative polytope

Figure 2.11. Example of two 2-dimensional polytopes projected into the first two principal
components, defining a loose versus a tight latent space. Left panel: An example of a non-
informative polytope where archetypes are not defined as observations belonging to the data,
Right panel: Informative polytope where archetypes are defined as observations belonging to
the data. Points are colored based on the archetype they express the maximum membership
to.

and vice-versa for an oppositely directed relationship i ← j. Similar to the main
paper, we can formulate the negative log-likelihood of a latent distance model under
the Skellam distribution as:

L(Y) := log p(yij |λ+
ij , λ

−
ij)

=
∑
i,j

(λ+
ij + λ−

ij)− yij

2
log

(
λ+

ij

λ−
ij

)
− log

(
I|yij |

(
2
√
λ+

ijλ
−
ij

))
,

For the directed case, the Skellam distribution has two rate parameters as well, and
we consider them to learn latent node representations {zi}i∈V and {wj}j∈V ∈ RD by
defining them as follows:

λ+
ij = exp

(
βi + γj − ||zi −wj ||2

)
, (2.22)

λ−
ij = exp

(
δi + ϵj + ||zi −wj ||2

)
, (2.23)

where the set {βi, γi, δi, ϵi}i∈V denote the node-specific random effect terms. More
specifically, the sender βi and the receiver γj random effects represent the ”social”
reach of a node and the tendency to form positive interactions, expressing positive
degree heterogeneity (indicated by + as a superscript of λ). In contrast, δi and ϵj
provide the ”anti-social” sender and receiver effect of a node to form negative connec-
tions, and thus model negative degree heterogeneity (indicated by − as a superscript
of λ).

By imposing (as in the undirected case) standard normally distributed priors
elementwise on all model parameters θ = {β,γ, δ, ϵ,Z,W }, i.e., θi ∼ N (0, 1), We
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define a maximum a posteriori (MAP) estimation over the model parameters, via the
loss function to be minimized (ignoring constant terms):

Loss =
∑
i,j

(
λ+

ij + λ−
ij −

yij

2
log

(
λ+

ij

λ−
ij

))
−
∑
i,j

log I|yij |

(
2
√
λ+

ijλ
−
ij

)
+ρ

2

(
||Z||2F + ||W||2F + ||γ||2F + ||β||2F + ||δ||2F + ||ϵ||2F

)
,

(2.24)

where || · ||F denotes the Frobenius norm. In addition, ρ is the regularization strength
with ρ = 1 yielding the adopted normal prior with zero mean and unit variance.

2.8.2 The Signed Relational Latent Distance Model for Directed
Networks

We formulate the relational AA in the context of the family of LDMs and for directed
networks, as:

λ+
ij = exp

(
βi + γj − ∥A(zi −wj)∥2

)
(2.25)

= exp
(
βi + γj − ∥R[Z; W]C(zi −wj)∥2

)
. (2.26)

λ−
ij = exp

(
δi + ϵj + ∥A(zi −wj)∥2

)
(2.27)

= exp
(
δi + ϵj + ∥R[Z; W]C(zi −wj)∥2

)
. (2.28)

Notably, in the AA formulation for directed networks X = R[Z; W] corresponds
to observations formed by the concatenations of the convex combinations Z and W
of positions given by the columns of RD×D. Similar to the undirected case, in order
to ensure what is used to define archetypes A = XC = R[Z; W]C corresponds to
observations using these archetypes in their reconstruction [Z; W], we define C ∈
R2N×D as a gated version of [Z; W] normalized to the simplex such that cd ∈ ∆2N

by defining

cnd = ([Z; W]⊤ ◦ [σ(G)]⊤)nd∑
n′([Z; W]⊤ ◦ [σ(G)]⊤)n′d

. (2.29)

As a result, the extracted archetypes are ensured to correspond to the nodes assigned
the archetype, whereas the location of the archetypes can be flexibly placed in space
as defined by R. By defining zi = softmax(z̃i) and wi = softmax(w̃i) we further
ensure zi,wi ∈ ∆K .

As in the undirected case, the loss function of Equation (2.24) is adopted for
the relational AA formulation forming the SLIM, with the prior regularization ap-
plied to the corners of the extracted polytope A = R[Z; W]C instead of the la-
tent embeddings Z,W imposing a standard elementwise normal distribution as prior
ak,k′ ∼ N (0, 1). Furthermore, we impose a uniform Dirichlet prior on the columns
of Z,W , i.e. (zi,wi ∼ Dir(1K), this only contributes constant terms to the joint
distribution. As a result, the loss function is given by Equation (2.24) replacing ∥Z∥2

F

and ∥W ∥2
F with ∥A∥2

F for the maximum a posteriori (MAP) optimization.
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2.8.3 Model Extensions for Additional Capacity
Directed relationships usually require additional expressive capability than in the
case of modeling unindicted relationships. For that, we will briefly discuss alterna-
tive model formulations, yielding different distances for the positive and negative
rates to define additional expressive capability (as opposed to the standard model
version where latent distances were shared across rates). We consider a formu-
lation such as setting the Skellam rates as, λ+

ij = exp(βi + γj − ||zi −wj ||2) and
λ−

ij = exp(δi + ϵj − ||ui −wj ||2). Under this assumption, a positive directed relation-
ship (i → j) shows that node i ”likes” node j and ”dislikes” node j if it is negative.
The latent embedding wj is then the receiver position for the ”likes” and ”dislikes”
with embeddings zi and ui being the sender positions for positive and negative re-
lationships, respectively. In this case, we introduce three latent embeddings instead
of the conventional two for the undirected case. The disparity of location zi and
ui here can point out how polarity is formed between the two regions of the latent
space. This model specification introduces an additional regularization for the third
embedding matrix U in the loss function of Equation (2.24). For the RAA case, we
thereby define X = R[Z; U; W], i.e., as the concatenation of all three latent positions
and with C ∈ R3N×D.

2.9 The Signed Hybrid-Membership Latent Distance
Model

In the previous chapter, we extended LDMs to the study of signed networks while
characterizing network polarization via the use of Archetypal Analysis and the Skel-
lam distribution.

Whereas in SLIM the network representations were constrained to the convex
hull as defined by the inferred representations, we briefly discussed additional mod-
eling direction for the discovery of pure/ideal forms based on Minimal Volume (MV)
approaches. More formally, such approaches can be defined as

X ≈ AZ s.t. vol(A) = v and zj ∈ ∆D, (2.30)

where A ∈ R(D+1)×(D+1) is the matrix describing the archetypes (extreme points of
the convex hull) of the latent space, and vol(A) is the volume of matrix A which can
be expressed through the determinant as |det(A)| when A is a square matrix [136,139].
A main advantage is that the extraction of distinct aspects/profiles through MV does
not require the existence of “pure” observations defining the convex-hull or else the
extracted polytope/simplex. As the volume decreases, observations are naturally
“forced” to populate the corners of the polytope, yielding archetypal characterization
when the reconstruction of data is defined through convex combinations of these
corners.
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The principal disadvantage of MV procedures lies in the meticulous requirement
for regularization tuning to delineate volumes that both guarantee identifiability and
retain sufficient capacity to represent the data with minimal reconstruction error [136].
Furthermore, analytical and tractable computation of the volume of polytopes re-
quires calculating the sum of determinants for all simplexes used to construct the
inferred polytope [137]. This is computationally expensive (especially in high dimen-
sions) and sometimes unstable when A comes close to singular.

In this chapter, we constrain the columns of matrix A to the D-simplex with
length δ. Thus, by controlling the volume of A, we essentially define a constrained-
to-simplexes MV approach. Calculating the volume for the D−simplex with length δ
is straightforward and computationally efficient. Rather than including regularization
over the volume of A in the loss function during inference, we deterministically control
the simplex length δ which is given as an input to the model and is gradually decreased
until uniqueness guarantees are obtained. Volume minimization can be obtained
trivially by decreasing δ. Such a procedure gives us explicit control over the model
capacity by fixing the volume which is harder to obtain with classical MV approaches
where the volume expression is inserted in the loss function.

Essentially, by defining A as A = δ · I, with I being the (D+ 1)× (D+ 1) identity
matrix, we obtain as a special case of archetypal analysis under a constrained MV
formulation. In addition, if every corner of the introduced simplex is populated
by at least one node champion we obtain unique representations defining hybrid
memberships.

We now introduce the signed Hybrid-Membership Latent Distance Model (sHM-
LDM). The sHM-LDM is able to analyse signed networks, and similar to [75] it
introduces two Skellam rate parameters as:

λ+
ij = exp

(
βi + βj − δp||zi − zj ||p2

)
, (2.31)

λ−
ij = exp

(
ψi + ψj + δp||zi − zj ||p2

)
, (2.32)

where again zi ∈ [0, 1]D+1 and
∑D+1

d=1 zid = 1, δ ∈ R+ and βi, ψj ∈ R denote the node-
specific random-effects. As explained in Section 2.7, βi, βj express positive degree
heterogeneity while ψi, ψj models negative degree heterogeneity. The norm degree
p ∈ {1, 2} controls the power of the ℓ2-norm, and thus the model specification, as in
the unsigned case.

As in [75], we define a maximum-a-posteriori (MAP) estimation, utilizing the
Skellam likelihood over the adjacency matrix Y of the network G = (V, E). We
conditionally assume an independent likelihood given the unobserved latent positions
and random effects. The corresponding loss function excluding constant terms is:

L =
∑
i<j

(
λ+

ij +λ−
ij−

yij

2
log

(
λ+

ij

λ−
ij

))
−
∑
i<j

log I|yij |

(
2
√
λ+

ijλ
−
ij

)
+ ρ

2

(
||β||2F + ||ψ||2F

)
,

(2.33)
where I|y| is the modified Bessel function of the first kind and order |y|, || · ||F
denotes the Frobenius norm. In addition, ρ is the regularization strength where
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ρ = 1 is assumed throughout this paper yielding a normal prior with zero mean and
unit variance for the random effects. For the latent positions, we assume a uniform
Dirichlet distribution as a prior which only adds a constant term in Equation 2.33
and thus is excluded.

Choosing the case where p = 2, meaning that the sHM-LDM utilizes the squared
Euclidean norm, we are able once more to relate the model to an Eigenmodel by
creating the following reparameterizations. For the rate responsible for positive inter-
actions {λ+

ij} as: β̃i+β̃j +(w̃iΛw̃⊤
j ) where Λ is a diagonal matrix having non-negative

elements, i.e. β̃i = βi−δ2 ·||wi||22, β̃j = βj−δ2 ·||wj ||22 and w̃iΛw̃⊤
j = 2δ2 ·wiw⊤

j . Sim-
ilarly, for the rate responsible for expressing animosity {λ−

ij} as: ψ̃i + ψ̃j + (w̃iΛw̃⊤
j )

where Λ is a diagonal matrix having non-positive elements, i.e. ψ̃i = ψi − δ2 · ||wi||22,
ψ̃j = ψj − δ2 · ||wj ||22 and w̃iΛw̃⊤

j = 2δ2 · wiw⊤
j . We witness that homophily in

the case of sHM-LDM is expressed through a non-negative Eigenmodel (as in the
unsigned case) while animosity/heterophily is expressed through a non-positive Eigen-
model able to express stochastic equivalence [114]. These two formulations admit the
same embedding matrix W which balances the expression of “opposing” forces (ho-
mophily and animosity) in the latent space. Lastly, for p = 2 both expressions admit
to an NMF operation, obtaining an identifiable and unique factorization (up to per-
mutation invariance) when W is full-rank and at least one node resides solely in each
simplex corner [131,132] as in the case of HM-LDM for unsigned networks.

2.10 Complexity analysis.

Modern graphs can potentially contain millions of nodes, with even billion-scale net-
works becoming already common in the real world. As a direct consequence, the
computational scaling of GRL models is of vital importance. All of the proposed
methods of this thesis, at their core, are distance models and thus they scale pro-
hibitively as O(N2) since the node pairwise distance matrix needs to be computed.
This does not allow the analysis of large-scale networks. In Section 2.4, we showed
how we can successfully scale LDMs while characterizing for structure at multiple
scales, defining a linearithmic O(N logN) space and time complexity. The HBDM
methodology naturally extends to all of the proposed models in this chapter. Never-
theless, we chose to scale the rest of the models by adopting an unbiased estimation
of the log-likelihood through random sampling [140] (it is an unbiased estimator since
every node is sampled with an equal probability). More specifically, gradient steps
are based on the log-likelihood of the block formed by a sampled (per iteration and
with replacement) set S of network nodes, as:

logP (Y |λ)) =
∑

i<j:yij=1
log(λij)

︸ ︷︷ ︸
Link Term O(S)

−
∑
i<j

λij︸ ︷︷ ︸
Non-Link Term O(S2)

with i, j ∈ S.
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Figure 2.12. A random sampling procedure over an undirected network with eight total
nodes and a sample size of four nodes. The node sample set defines a network block sample
defining an O(S2) space and time complexity.

This makes inference scalable defining an O(S2) space and time complexity allow-
ing for the analysis of large-scale networks. A toy example of a random sampling
procedure is provided in Figure 2.12. More options for scalable inference of distance
models have also been proposed in [141].

2.11 The Single-Event Poisson Process

In many studies, various real networks are represented with static structures, not
taking advantage of the rich temporal information they may offer. In such a direction,
researchers have considered the analysis of temporal networks both in discrete [83–87],
as well as, continuous [69,88–91] time settings. Furthermore, important network types,
with the prominent example of citation networks, are characterized by a temporal
structure with links between a pair of nodes occurring maximum once throughout the
time horizon. Such networks have traditionally been studied as static [4,22,37,74,99].
Contrary to such practices, we here introduce a framework utilizing a new likelihood
formation under a Single-Event Poisson Process, capable of analyzing single-event
networks, capitalizing on the rich temporal information that static models are blind
to. In this regard, we assume that the studied temporal networks are composed
maximally of a single event between a node pair (dyad), and once an event between
two nodes has occurred no more events are admissible between these two nodes, see
also Figure 1.1 (right panel).

Before presenting our modeling strategy for the links of networks, we will first
establish the notations used throughout the sections referring to single-event networks.
We utilize the conventional symbol, G = (V, E), to denote a directed Singe-Event-
Network over the timeline [0, T ] where V = {1, . . . , N} is the vertex and E ⊆ V2 ×
[0, T ] is the edge set such that each node pair has at most one link. Hence, a tuple,
(i, j, tij) ∈ E , shows a directed event (i.e., instantaneous link) from source node j to
target i at time tij ∈ [T ], and there can be at most one (i, j, tij) element for each
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(i, j) ∈ V∈ and some tij ∈ [0, T ].
We always assume that the timeline starts at 0 and the last time point is T , and

we represent the interval by symbol, [T ]. We employ t1 ≤ t2 ≤ · · · ≤ tN to indicate
the appearance times of the corresponding nodes 1, 2, . . . , N ∈ V, and we suppose
that node labels are sorted with respect to their incoming edge times. In other words,
if i < j, then we know that there is a node k ∈ V such that tik ≤ tjl for all l ∈ V.

2.11.1 Inhomogenous Poisson Point Process

The inhomogeneous Poisson Point Process (IPP) has been a prominent method for
modeling the number of events occurring between nodes at different times throughout
the study period of the temporal network [142]. Such a process defines an event
intensity yielding the Poisson process rate function which represents the average event
density. The probability of sampling m event points in a time interval [T ] is given by
as,

pN (M(T ) = m) := [Λ(0, T )]m

m!
exp(−Λ(0, T )), (2.34)

where M(T ) is the random variable showing the number of events occurring over
the interval [T ], and Λ(T ) :=

∫ T

0 λ(t′)dt′ for the intensity function λ : [T ] → R+

(Please visit [143] for an overview). We point here once again, to earlier studies
[99,120] which have demonstrated that adopting the Poisson likelihood for modeling
binary relationships does not degrade the methods’ predictive performance.

We now focus on SENs and more specifically on citation networks, for which
we employ an IPP for characterizing the occurrence time of a link (i.e., a single
event point indicating the publication date and thus the citation time). This is
unlike conventional practice in IPP literature which concentrates on modeling the
occurrence of an arbitrary number of events between a pair of nodes. Consequently,
we assume that a pair can have at most one edge (i.e., link), and we discretize the
probability of sampling m events given in Equation (2.34) as having either one event
or no event cases. More formally, by applying Bayes’ rule, we can write it as a
conditional distribution of M(t) being equal to m ∈ {0, 1} as follows:

pM |M≤1 (M(T ) = m) = pM,M≤1 (M(T ) = m,M(T ) ≤ 1)
pM≤1 (M(T ) ≤ 1)

= pM (M(T ) = m)
pM (M(T ) = 0) + pM (M(T ) = 1)

= exp (−Λ(T )) [Λ(T )]m

exp(−Λ(T )) + exp(−Λ(T ))Λ(T )
(2.35)
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The conditional probability of a single-event occurrence under the proposed Single-
Event Poisson Process is given by:

pM |M≤1 (M(T ) = 1) = Λ(T )
1 + Λ(T )

. (2.36)

Let now (Y,Θ) be a random variable where Y shows whether a link occurred and
Θ indicates the time of the link occurrence. Then together with Eq (2.36), we can
write the likelihood of (Y,Θ) evaluated at (1, t∗) as follows:

pY,Θ (1, t∗) = pY {Y = 1} pΘ|Y {Θ = t∗|Y = 1}

=
(

Λ(T )
1 + λ(T )

)(
Λ(t∗)
Λ(T )

)
= λ(t∗)

1 + Λ(T )
(2.37)

Consequently, the log-likelihood of the whole network, assuming that each dyad
follows the Single-Event Poisson Process, can be written as:

LSE−P P (Ω) := log p(G|Ω) =
∑

1≤i,j≤N

(
yij log λ(tij)− log

(
1 + Λij(ti, T )

))
(2.38)

where Ω is the model hyper-parameters and Λij(ti, T ) :=
∫ T

ti
λij(t′)dt′. Note that for

a homogenous Poisson process with constant intensity λij for each node pair i and
j, the probability of having an event throughout the timeline is equal to Λij(T )/(1 +
Λij(T )) = Tλij/(1 + Tλij) by Equation (2.36). In this regard, the objective function
stated in Equation (2.38) is equivalent to a static Bernoulli model [76]:

LBern(Ω) := log p(G|Ω) =
∑

i,j∈V

(
yij log (λ̃ij)− log

(
1 +λ̃ij

) )
, (2.39)

where we have used the re-parameterization Tλij = λ̃ij .

2.12 Dynamic Impact Characterization
In the realm of impact analysis and risk assessment, characterizing dynamic events is
pivotal in understanding and managing potential consequences. We know that papers
generally undergo the process of aging over time since novel works introduce more
original concepts. In this regard, we model the distribution of the impact of a paper
{i} by the Truncated normal distribution:

fi(t) = 1
σ

ϕ( t−µ
σ )

Φ( κ−µ
σ )− Φ( ρ−µ

σ )
(2.40)

where µ and σ are the parameters of the distribution which lie in (ρ, κ) ∈ R,
ϕ(x) = 1√

2π
exp
{

(− 1
2x

2)
}
, and Φ(·) is the cumulative distribution function Φ(x) =
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1
2

(
1 + erf( x√

2 )
)
. In addition, as an alternative impact function, and similar to [144],

we consider the Log Normal distribution:

fi(t) = 1
tσ
√

2π
exp

(
− ln (t− µ)2

2σ2

)
(2.41)

where µ and σ are the parameters of the distribution. Such distributions are partic-
ularly valuable for capturing the inherent variability and asymmetry in the lifecycle
of a paper.

2.13 Single-Event Network Embedding by the Latent
Distance Model

Our main purpose is to represent every node of a given single-event network in a lowD-
dimensional latent space (D ≪ N) in which the pairwise distances in the embedding
space should reflect various structural properties of the network, like homophily and
transitivity [99]. For instance, in the Latent Distance Model [76], one of the pioneering
works, the probability of a link between a pair of nodes depended on the log-odds
expression, γij , as α−∥zi− zj∥2 where {zi}i∈V are the node embeddings, and α ∈ R
is the global bias term responsible for capturing the global information in the network.
It has been proposed for undirected graphs but can be extended for directed networks
as well by simply introducing another node representation vector {wi}i∈V in order
to differentiate the roles of the node as source (i.e., sender) and target (i.e., receiver).
By the further inclusion of two sets of random effects {αi, βj} describing the in and
out degree heterogeneity, respectively, we can define the log-odds expression as:

γij = αi + βj − ∥zi −wj∥2 (2.42)

We can now combine a dynamic impact characterization function with the Latent
Distance Model, to obtain an expression for the intensity function of the proposed
Single-Event Poisson Process, as:

λij(tij) = fi(tij) exp{αi} exp{βj}
exp{∥zi −wj∥2}

. (2.43)

Combining the intensity function of Equation (2.43) with the log-likelihood expres-
sion of Equation (2.38) yields the Dynamic Impact Single-Event Embedding Model
(DISEE) model. Under such a formulation, we exploit the time information data
indicating when links occur through time, so we can grasp a more detailed under-
standing of the evolution of networks, generate enriched node representations, and
quantify a node’s temporal impact on the network.
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2.13.1 Case-Control Inference
With DISEE being a distance model, it scales prohibitively as O(N2) since the
all-pairs distance matrix needs to be calculated. In order to scale the analysis to
large-scale networks we adopt an unbiased estimation of the log-likelihood similar to
a case-control approach [141]. In our formulation, we calculate the log-likelihood as:

log pij(G|Ω)=
∑

j:yij=1

(
yij log

(
λij(t∗ij)

)
− log

(
1+
∫ T

ti

λij(t′)dt′
))

+
∑

j:yij=0
− log

(
1+
∫ T

ti

λij(t′)dt′
)

= l1 + l0 (2.44)

As already mentioned, large networks are usually sparse so the link (case) likeli-
hood contribution term l1 can be calculated analytically, even for massive networks.
The non-link (control) likelihood contribution term l0 has a quadratic complexity
O(N2) in terms of the size of the network, and thus its computation is infeasible. For
that, we introduce an unbiased estimator for li,0 which is regarded as a population
total statistic [141]. We estimate the non-link contribution of a node {i} via:

li,0 = Ni,0

ni,0

ni,0∑
k=1

− log

(
1+
∫ T

ti

λik(t′)dt′
)
, (2.45)

where Ni,0 is the number of total non-links (controls) for node {i}, and ni,0 is the
number of samples to be used for the estimation. We set the number of samples based
on the node degrees as ni,0 = 5 ∗ degreei. This makes inference scalable defining an
O(cE) space and time complexity.
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networks





CHAPTER3
A Hierarchical Block
Distance Model for

Ultra Low-Dimensional
Graph

Representations
Two of the most important properties that are found in graphs and especially in social
networks are homophily and transitivity, as introduced in Chapter 2 of this thesis.
The ultimate goal of Graph Representation Learning is to find mappings that define
latent spaces where a graph is to be projected on. In such a space, closely related
or connected nodes of a graph should be positioned in close proximity, in terms of
their distance in the latent space. Additional properties of a successful and powerful
method for GRL are firstly the scalability of the method, meaning that a model
should offer competitive space and time computational complexities, and secondly,
the ability to characterize the structure of networks that usually emerge at multiple
scales. We here motivate our work, arguing that a model supporting such properties
can potentially provide expressive and multi-purpose embeddings that can help us
investigate the latent structures and perform downstream tasks on massive graphs.

For such a direction we turn to Latent Space Models, and more specifically to
Latent Distance Models where the use of the Euclidean distance for the construction
of the latent space of the network naturally conveys the main motivation of Graph
Representation Learning. This comes as a direct consequence of the Euclidean metric
choice, naturally representing homophily, transitivity, and high-order nodal proximity.
Unfortunately, the latter two properties, of scalability and structure characterization,
are not expressed by a classical Latent distance model, as it scales prohibitively as
O(N2) both in space and time complexity since it requires the computation of the



54 3 A Hierarchical Block Distance Model for Ultra Low-Dimensional Graph Representations

all-pairs Euclidean distance matrix. Infusing the Latent distance models with the
ability to account for hierarchical representations, as well as, define complexities
allowing for the analysis of modern and large-scale graphs will be the goal of this
chapter. Importantly, we will exploit hierarchical representations in order to define
a linearithmic (in terms of network nodes) space and time complexity, forming the
Hierarchical Block Distance Model (HBDM).

3.1 Contributions
We reconcile hierarchical block structures emerging at multiple scales, scalability,
and network properties such as homophily and transitivity through a new Graph
Representation Learning approach, namely the Hierarchical Block Distance Model.
This comes through the hierarchical approximation of the all-pairs Euclidean distance
matrix that the LDM defines via a novel divisive Euclidean k-means algorithm. The
procedure overview is provided in Figure 3.1. Analytically our contributions are
outlined as:

Figure 3.1. Hierarchical Block Distance Model procedure overview for a small network
containing N = 64 number of nodes. Given a graph as input the model defines a divisive
clustering of the latent space appropriate for a hierarchical approximation of the all-pairs
distance matrix. Layer 1 defines the first divisive step, splitting the network embeddings
into K = log N = log 64 ≈ 4 clusters and the defined centroids µl=1

k are used to approximate
the node pairs belonging to different clusters (pairs inside the blue blocks of the displayed
distance matrix). Then, binary splits are defined until each cluster contains a maximum of
log N = log 64 ≈ 4 points. Centroids of Layer 2 and 3 are used to approximate pair distances
belonging only to the opposing cluster (the cluster that has the same parent cluster) as
denoted with the yellow and green blocks of the displayed distance matrix. Distances for
pairs inside the clusters of Layer 3 are calculated analytically and the clustering procedure
terminates.
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• We combine embedding and hierarchical characterizations for Graph Represen-
tation Learning, imposing a hierarchical block structure akin to stochastic block
modeling (SBM) but explicitly accounting for homophily and transitivity prop-
erties throughout the inferred hierarchy.

• We design a hierarchical approximation of the the all-pairs Euclidean distance
matrix admitting a linearithmic total time and space complexity, in terms of the
number of nodes in the network (i.e., O(N logN)). Moreover, our proposed pro-
cedure is importance-aware meaning that the distance approximation becomes
more accurate the more similar two nodes are.

• We define a novel objective function for an Euclidean k-means clustering al-
gorithm, utilizing an auxiliary function framework to form an alternate least-
squares convex optimization problem.

• We generalize the method for bipartite networks where multi-scale geometric
representations, joint hierarchical structures, and community discovery are ar-
duous tasks.

• We extensively and for the first time benchmark Latent Distance models against
state-of-the-art GRL baselines and large-scale networks.

3.2 Experimental design, results, and key findings

We adopt an extensive experimental evaluation framework that includes eleven promi-
nent GRL and thirteen moderate-sized and large-scale networks, containing networks
with more than one million nodes. We then establish the performance of our model
in terms of multiple downstream tasks that include link prediction, node classifica-
tion, network completion, and visualizations of both unipartite and bipartite net-
works. Furthermore, we make the downstream tasks setting even more challenging
by constraining the embeddings to ultra-dimensions of a maximum of eight dimen-
sions. Finally, we train the model by minimizing the negative log-likelihood via the
Adam [145] optimizer.

The obtained results for the tasks of link prediction, network completion, and
node classification showcase the favorable performance of HBDM against all base-
lines where in most cases the model significantly outperforms most baselines or defines
on-par performance against the most competitive ones. Surprisingly, such a perfor-
mance is achieved while using ultra-low-dimensional embeddings while we observe
performance saturation when we reach D = 8 dimensions. Our results further high-
light that the inferred hierarchical organization can facilitate accurate visualization of
network structure even when using onlyD = 2 dimensional representations. Addition-
ally, we show how our proposed framework extends the hierarchical multi-resolution
structure to bipartite networks and provides the characterization of communities at
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multiple scales, with superior performance in the task of link prediction. For two vi-
sualization examples, please visit Figure 3.2 where a product co-purchase unipartite
Amazon network is provided, and Figure 3.3 where a Github user-product bipartite
network is shown. An extensive study on the sensitivity of the three total hyperpa-
rameters of HBDM (dimension size, learning rate, and number of iterations) showed
robust performance of the proposed frameworks on the downstream tasks. Impor-
tantly, the scalability of the model was studied both theoretically (in terms of the
Big O notation) and experimentally, verifying the desired linearithmic space and
time complexity. (For more details and the full experiment results please visit the
full paper as provided in the Appendix in Section 9)

3.3 Conclusion
Overall, the use of an Euclidean distance metric for projecting complex networks
into a latent space leads to high expressive capabilities even when using ultra-low
dimensions. This allows for high network compression without a significant loss when
performing multiple downstream tasks. The hierarchical approximation and extension
of the LDM respected the so-desired properties of homophily and transitivity which
allowed for high performance in downstream tasks. This came as an additional benefit
to the scaling of LDM where we successfully exchanged a quadratic space and time
complexity for a linearithmic one, allowing for scaling the analysis to large networks.
The importance of accounting for multi-scale structures in complex networks was
evident throughout the experiments where different resolution levels of the hierarchy
led to different network communities and characterizations. All of these properties
are generalized to bipartite networks successfully introducing multi-scale geometric
representations, community discovery, and high downstream task performance even
with ultra-low dimensions. Lastly, we considered multiple downstream tasks in each of
which various baselines were found to be competitive against our HBDM frameworks.
In general, the HBDM is characterized by the most consistent performance across
tasks, making it state-of-the-art.
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Figure 3.2. Amazon network [146] dendrogram, embedding space and ordered adjacency
matrices for the learned D = 2 embeddings of HBDM-Re and various levels (L) of the
hierarchy [99].

4

6

8

10

12

14

16

18

20

Lo
g2

-S
ED

(a) Dendrogram (b) Embedding Space

(c) L=1 (d) L=3 (e) L=6

Figure 3.3. GitHub network [147] dendrogram, embedding space and ordered adjacency
matrices for the learned D = 2 embeddings of HBDM-Re and various levels (L) of the
hierarchy [99].
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CHAPTER4
HM-LDM: A

Hybrid-Membership
Latent Distance Model
Community detection, alongside link prediction, and node classification, is one of the
most notable downstream tasks in network science, and Graph Representation Learn-
ing. Often, graph embedding models are blind to community structures, or require
additional post-processing steps (e.g. clustering procedures) to be able to account
for community characterization. Furthermore, community detection can require soft,
as well as, hard membership assignments to extract overlapping or non-overlapping
communities, respectively. In the GRL literature, most algorithms impose hard com-
munity membership constraints with overlapping community detection (when pos-
sible) requiring careful designing and tuning of these models. Importantly, GRL
models imposing overlapping community structures are usually able to be equally
competitive to additional downstream tasks, such as link prediction, and node clas-
sification. Finally, many GRL approaches also do not provide identifiable or unique
solution guarantees, so their interpretation highly depends on the initialization of the
hyper-parameters, leading to the non-unique characterization of latent structures.

To provide a solution to such problems we here focus on combining a Non-Negative
Matix Factorization with the Latent Distance Model. More specifically, we turn to
the NMF theory and its uniqueness guarantees, under the scope of the LDM, where
we can achieve unique soft and hard community memberships. Importantly, distance
models offer high performance in additional important tasks, such as link predic-
tion, and node classification, which is significantly superior to competing baselines in
ultra-low dimensions [99]. As such, we aim to create an embedding model capable
of characterizing community and latent structure without imposing any constraints
on the type of memberships, providing unique representations but still explicitly ac-
counting for homophily and transitivity, leading to superior performance on the main
downstream tasks for ultra-low dimensions.
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4.1 Contributions

Following the primary objective of modeling complex networks, we effectively learn
graph representations in order to detect structures and predict link and node proper-
ties. In such a direction, we presently reconcile LSMs with latent community detec-
tion by constraining the LDM representation to the D-simplex forming the Hybrid-
Membership Latent Distance Model (HM-LDM). Specifically, the HM-LDM offers
part-based representations of networks relating to a Non-negative matrix factoriza-
tion, while the LDM constructs low-dimensional latent spaces satisfying similarity
properties such as homophily and transitivity. Additionally, we define a method that
permits us to capture the latent community structure of the networks using a simple
continuous optimization procedure over the log-likelihood of the network. Notably,
unlike most existing approaches imposing hard community membership constraints,
the assignment of community memberships in our proposed hybrid model can be
controlled and altered through the simplex volume formed by the latent node rep-
resentations. Specifically, we show that by systematically reducing the volume of
the simplex, the model becomes unique and ultimately leads to hard assignments of
nodes to simplex corners. We validate the effectiveness of the HM-LDM through
extensive experiments, demonstrating accurate node representations and valid com-

Input: An undirected network
Community A
Community B

Community CLatent spaces: 
The 2-simplex with edge

lengths 

Figure 4.1. Hybrid Membership-Latent Distance Model procedure overview, considering
a network with three communities and the 2-simplex. Given as an input an undirected
network with a (latent) community structure decreasing the volume of the latent space starts
characterizing the structure, defining initially mixed memberships while for a sufficiently
shrunk volume, it defines hard assignments. Large simplex edge lengths (i.e. δ1) define a
large enough space that can enclose the whole representation without any decrease in the
expressive capacity of the model. As the simplex edge lengths start being decreased more
and more node representations move toward the corners (i.e. δ1, δ2), where eventually all
node embeddings lie on a simplex corner (i.e. δ4).
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munity extraction in regimes that ensure identifiability. Importantly, we provide a
systematic investigation of trade-offs between hard and mixed membership latent em-
beddings in terms of the model’s ability to execute downstream tasks. We extensively
evaluate the performance of the proposed method in link prediction, as well as, com-
munity discovery over various networks of different types, demonstrating that our
model outperforms recent methods. The procedure overview is provided in Figure
4.1. Analytically our contributions are outlined as:

• We define community-aware latent representations by simply constraining the
LDM to theD-simplex, forming the Hybrid-Membership Latent Distance Model
which is explicitly accounting for homophily and transitivity properties, as well
as, community and latent structure characterization.

• We design and empirically evaluate a continuous optimization procedure over
the log-likelihood of the network by altering the latent space/simplex volume,
allowing for control over soft and hard unique assignments to communities, and
defining hybrid memberships.

• We provide uniqueness guarantees for the embeddings as obtained by the HM-
LDM which is achieved up to permutation invariances.

• We show mathematically how a squared Euclidean LDM constrained to the
D-simplex relates to the Non-Negative Matrix Factorization, defining a non-
negative Latent Eigenmodel, and when such a factorization is unique.

• We systematically analyze the trade-offs that soft and hard community mem-
berships define under the scope of link prediction and community detection
tasks.

• We generalize the method for bipartite networks where structure-aware geo-
metric representations, joint embedding spaces, and community discovery are
arduous tasks.

• We extensively benchmark our proposed model against state-of-the-art GRL
baselines, including models for both overlapping and non-overlapping commu-
nity extraction under various and well-established network data.

4.2 Experimental design, results, and key findings
We adopt an extensive experimental evaluation framework that includes twelve promi-
nent GRL baselines, including methods that use an NMF to learn their representation.
In addition, we make use of four moderate-sized networks without known community
labels to evaluate the model on link prediction and its ability to detect latent struc-
tures; four networks with known community labels to evaluate the model on its ability
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to perform community detection; and two bipartite networks to showcase the gener-
alization of the model. We consider performance comparisons in downstream tasks of
multiple HM-LDM versions defining big, moderate, and small latent space volumes,
to understand the trade-offs that the resulting soft and hard memberships have on
downstream tasks.

The obtained results for the link prediction task, showed that HM-LDM outper-
formed the considered baselines significantly, especially when compared to models
that define mixed memberships under an NMF operation. For the community detec-
tion task, once more the HM-LDM outperformed or provided on par results with
the most competitive baselines. For the study of trade-offs between soft and hard
memberships or equivalently small and large volumes, the HM-LDM results showed
high community detection results when the volume was particularly small and de-
fined hard assignments to communities. Small volumes hampered the link prediction
performance, as expected since such a small space decreases the expressive capability
of the model. For large volumes, we saw a link prediction performance equivalent to
the classical LDM since a large enough volume can absorb the whole non-negative
orthant, making essentially the simplex constraint ”powerless” as the latent distances
can take very large values. These results are highlighted in Figure 4.2. The com-
munity detection results in high simplex volumes show a significant decrease in the
performance as the model now suffers from identifiability issues. Importantly, the
experiments for moderate-sized simplex volumes led to the existence of a silver lining
where the model is identifiable and performed well on community detection while hav-
ing almost an insignificant decrease in link prediction results when compared to the
classical LDM. Identifiability results based on the type of community memberships for
different simplex volumes are given in Figure 4.3 while latent community extraction
examples on two real-world networks are provided in Figure 4.4. Finally, HM-LDM
experiments on the two bipartite networks empirically showed successful latent struc-
ture extraction and identification. (For more details and the full experiment results
please visit the full paper as provided in the Appendix in Section 9)

4.3 Conclusion

In this paper, we propose the HM-LDM, a model that reconciles network embedding
and latent community detection. The approach utilizes normal and squared Euclidean
specifications of the latent distance model. A squared Euclidean specification inte-
grates the non-negativity-constrained Eigenmodel with the Latent Distance Model.
We extensively showed that the model could be constrained to the simplex without
losing expressive power. The reduced simplex provides unique representations, ulti-
mately resulting in the hard clustering of nodes to communities when the simplex is
sufficiently shrunk. Notably, the proposed HM-LDM combines network homophily
and transitivity properties with latent community detection enabling explicit control
of soft and hard assignment through the volume of the induced simplex. We observed
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favorable link prediction performance in regimes in which the HM-LDM provides
unique representations while enabling the ordering of the adjacency matrix in terms
of prominent latent communities. Finally, we showed the ability of the model to
extract valid community structures across multiple networks and showcased how the
analysis extends to bipartite networks.
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Figure 4.2. AUC-ROC scores as a function of δ2 across dimensions for HM-LDM. Top
row: p = 2. Bottom row p = 1 [74].
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Figure 4.3. Total community champions (%) in terms of δ2 across dimensions for HM-
LDM. Top row: p = 2. Bottom row p = 1 [74].

(a) GrQc (p = 2) (b) HepTh (p = 2) (c) GrQc (p = 1) (d) HepTh (p = 1)

Figure 4.4. Ordered adjacency matrices based on the memberships of a D = 16 dimensional
HM-LDM with δ values ensuring identifiability [74].
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CHAPTER5
Characterizing

Polarization in Social
Networks using the
Signed Relational

Latent Distance Model
Unlike traditional networks modeling only positive links or their absence between
entities, signed networks can capture more complex relations, such as cooperative
and antagonistic ties. They are instrumental in modeling more realistic and richer
representations of real social structures. Hence, the analysis of signed networks can
reveal significant insights into understanding how the network structure is actually
formed. The proverb “The enemy of my enemy is my friend” is a very known example
demonstrating that driving forces leading individuals to form connections are not
merely positive inclinations. The balance theory explains these motives by proposing
that individuals have an inner desire to provide balance and consistency in their
relationships. Specifically, it is a socio-psychological theory admitting four rules: “The
friend of my friend is my friend”, “The enemy of my friend is my enemy”, “The friend
of my enemy is my enemy”, and “The enemy of my enemy is my friend”, also presented
in Figure 2.9. In addition, signed networks can help us understand better ideological,
as well as, affective polarization phenomena as present in social networks, as signed
networks capture positive, negative, and neutral relationships between nodes and can
characterize opposing views more accurately than unsigned networks. Ideological
polarization refers to the substantial differences in how certain policies are viewed by
elite or specialized groups, such as politicians, academics, or thought leaders. These
groups might have widely divergent opinions on issues such as economic policies,
social justice, or foreign relations. Essentially, ideological polarization is about the
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”what” of political disagreements. Contrary to ideological polarization which focuses
on differing opinions on policies, affective polarization refers to how ordinary voters
feel about those differences, including strong emotions, such as anger or fear, that
voters may feel towards the policy positions of parties or individuals they oppose.
Affective polarization is more about ”how” people feel about political disagreements
rather than the content of the disagreements themselves. In addition, the media often
presents the differences in policy positions in an extreme light, portraying them as
existential or life-and-death threats. The culmination of these factors can lead to a
divisive mentality (”us-versus-them”) where different sides see each other not just as
opponents with differing views but as existential threats. This binary view can stifle
productive dialogue and compromise, leading to further polarization and possibly
even hostility between different factions within society.

A first necessity to address and understand polarization phenomena is to devise
a powerful framework for the analysis of signed networks. For that, we turn to the
family of Latent Distance Models. Contrary to the case of unsigned networks, we
now require on top of the homophily properties of a model to also be able to express
animosity/heterophily in the latent space. This is necessary in order to extend the so-
important transitivity properties present in the unsigned case with the more general
balance theory. In addition, such a model should provide a valid likelihood function,
describing both positive and negative interactions, as well as, defining a generative
process over signed networks. In such a direction we turn to the Skellam distribution,
a discrete probability distribution of the difference between two independent Poisson
random variables, and extend Latent Distance Models forming the Skellam Latent
Distance Model. In order to address and capture polarization phenomena we turn
to Archetypal Analysis (AA) as introduced for observational data, and extend it
to the analysis of relational data. Specifically, we focus on extreme positions and
argue that the ”us-versus-them” multipolarity, reinforced by homophily, animosity,
and balance theory, can be represented by a latent position model. This model
is applied to networks that are confined to a social space formed by a polytope
akin to Archetypal Analysis, which we refer to as a ”sociotope.” The corners of the
sociotope represent distinct aspects/poles formed by polarized network tendencies,
where positive ties reinforce homophily among similar individuals, and negative ties
repel dissimilar individuals to opposing poles. These multiple poles are important for
defining the corners of the sociotope and revealing the different aspects of the social
network. Thus for the modeling of signed networks and for the characterization of
polarization, we present the Signed Relational Latent Distance Model, a combination
of the Skellam Latent Distance Model and Archetypal Analysis.

5.1 Contributions

We extend Latent Distance Models to the analysis of signed networks, utilizing for
the first time the Skellam distribution as network likelihood forming the Skellam
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D: Dimensions or
Archeypes

Input: A signed
network

Sociotopes/Emdedding Spaces

D=2

D=3

D=8

Signed Relational
Distance Model

Figure 5.1. Signed Relational Latent Distance Model procedure overview. Analytically,
for a given dimensionality and a signed network as inputs, the goal is to find a mapping
function f(·) that projects a network node (e.g. {u}) into a latent space that is constrained
to a polytope/sociotope, with every corner defining an archetype/extreme profile. Any node
representation is characterized as a convex combination of the archetypes as these are the
corner points of the convex hull defined by matrix A. Sociotopes having dimensionality
D = 3, 8 are denoted in a two-dimensional space for visualization purposes only.

Latent Distance Model. We show how such a model naturally conveys balance theory
which comes as a direct consequence of the expression of homophily and heterophily
properties our modeling design offers. We then reconcile Archetypal Analysis with
the Skellam Latent Distance Model forming the Signed Relational Latent Distance
Model and allowing for the characterization of polarization in terms of participation
to extreme views or profiles as uncovered by the model. We extensively evaluate the
performance of our frameworks and on four real social signed networks of polarization,
we demonstrate that the models extract low-dimensional characterizations that well
predict friendship and animosity while the Signed Relational Latent Distance Model
provides interpretable visualizations defined by extreme positions when restricting
the embedding space to polytopes akin to Archetypal Analysis. Furthermore, we
successfully showcase a generative process allowing for the creation of networks with
a controlled level of polarization while we further show how our frameworks generate
accurate network representation when learning from real networks. The procedure
overview is provided in Figure 5.1. Analytically our contributions are outlined as:

• We, for the first time, utilize the Skellam distribution as a network likelihood
forming the Skellam Latent Distance model which satisfies the balance theory.
We further, under the Skellam distribution, provide rate specifications allowing
for different levels of model capacity, performance, latent space interpretation,
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and the modeling of directed and undirected relationships.

• We present the Signed Relational Latent Distance Model, a novel method that
extends Archetypal Analysis to relational data. We discuss how such a model
successfully characterizes network polarization based on the discovery of distinct
and extreme profiles being present in signed networks.

• We, contrary to the state-of-art, define generative models capable of generating
signed networks of different polarization levels. Furthermore, we showcase the
generative capabilities of our model on both real and artificial data, experimen-
tally verifying that our model formulation can distinguish the different levels of
network polarization.

• We extensively benchmark our proposed model against state-of-the-art GRL
baselines designed for the analysis of signed networks. In multiple task settings,
including sign link prediction, as well as, the more challenging task of signed
link prediction, our model returns superior performance in most cases.

• We showcase how sociotope visualizations facilitate the characterization of net-
work polarization, and importantly the successful discovery of influential nodes
behaving as the driving forces of polarization for both directed and undirected
settings.

5.2 Experimental design, results, and key findings
We employ four networks, describing electoral voting records and opinions. We bench-
mark the performance of our proposed frameworks against five prominent signed
Graph Representation Learning methods, including random-walk-based methods and
graph neural networks. We create a test set by removing 20% of the total network
links while preserving connectivity on the residual network. We define two prediction
tasks, Link sign prediction (p@n): In this setting, we utilize the link test set con-
taining the negative/positive cases of removed connections. We then ask the models
to predict the sign of the removed links. Signed link prediction: A more challenging
task is to predict removed links against disconnected pairs of the network, as well as,
infer the sign of each link correctly. For that, the test set is split into two subsets
positive/disconnected and negative/disconnected. We then evaluate the performance
of each model on those subsets. The tasks of signed link prediction between posi-
tive and zero samples are denoted as p@z while the negative against zero is n@z.
Furthermore, as the Signed Relational Latent Distance Model formulation facilitates
the inference of a polytope describing the distinct aspects of networks, we visualize
the latent space across D = 8 dimensions for all of the corresponding networks. To
facilitate visualizations we use Principal Component Analysis (PCA), and project the
space based on the first two principal components of the final embedding matrix. In
addition, we provide circular plots where each archetype of the polytope is mapped
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to a circle every radd = 2π
D radians, with D being the number of archetypes. Such

polytope visualizations can be found in Figure 5.2.
During the evaluation, we focused on certain scoring metrics that are suitable

for highly imbalanced data sets, specifically the AUC-ROC score and the AUC-PR
score. We applied these scores to assess two particular tasks: link sign prediction
and signed link prediction. In these tasks, we found that both the Skellam Latent
Distance Model and the Signed Relational Latent Distance Model performed compet-
itively when measured against all baseline models. Specifically, in most cases, our
frameworks outperformed significantly most baselines or defined on-par performance
against the most competitive ones. What further adds to the appeal of our models
is that they are also designed with generative processes (for an example please visit
Figure 5.3), making them particularly well-suited for the analysis of signed networks.
By visualizing the sociotopes, we illustrate how the polytope method can successfully
identify extreme positional nodes within the network. To put it more clearly, in all
networks, there is at least one archetypal node that functions as a ”dislike” hub, and
at least one that operates as a ”like” hub. These archetypes are characterized by
having high values of either negative or positive interactions, respectively. In some
networks, we also notice archetypes with a very low degree of connection. This phe-
nomenon can be explained by the fact that some nodes, which are only associated
with negative interactions, are pushed away from the main cluster of nodes. These
isolated nodes can be considered ”outliers” within the sociotope. However, such out-
liers are not merely anomalies but are discovered since they provide high expressive
power for the model (allowing for a large volume of the polytope). (For more details
and the full experiment results please visit the full paper as provided in the Appendix
in Section 9)

5.3 Conclusion

The Skellam Latent Distance Model and Signed Latent Relational Distance Model
that we have proposed allow for an easily interpretable visualization of signed net-
works, performing well in link-related prediction tasks when focusing on weighted
signed networks. The Skellam Latent Distance Model extends the representation
power of classical LDMs generalizing homophily and transitivity properties to the
expression of balance theory. In addition, the Signed Latent Relational Distance
Model defines a space that is constrained to polytopes, a feature that enables us
to identify unique characteristics in social networks. This allows for the detection
of extreme positions within the network, a process similar to traditional archetypal
analysis but adapted for graph-structured data. The Skellam distribution is particu-
larly useful for the modeling of signed networks, adding depth to our understanding
of these structures; while the relational extension of Archetypal Analysis can be used
for different likelihood specifications, under general Latent Distance Models. In sum-
mary, this study lays the groundwork for utilizing new likelihood formulations that
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are suitable for analyzing weighted signed networks while it extends concepts similar
to Archetypal Analysis to a broader context, offering a new way to analyze networks.
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(a) WikiElec (b) WikiElec [150] (c) WikiElec

(d) WikiRfa [151] (e) WikiRfa (f) WikiRfa

(g) Reddit [152] (h) Reddit (i) Reddit

(j) Twitter [153] (k) Twitter (l) Twitter

Figure 5.2. Inferred polytope visualizations for various networks. The first column show-
cases the K = 8 dimensional sociotope projected on the first two principal components
(PCA) — second and third columns provide circular plots of the sociotope enriched with
the negative (red) and positive (blue) links, respectively [75].
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(a) Ground Truth: (.003, 78%, 22%) (b) Generated: (.003, 76%, 24%)

Figure 5.3. wikiElec ground truth (left) adjacency matrix and generated (right) adjacency
matrix based on inferred parameters with a SLIM without regularization priors over the
parameters. The parenthesis shows the network statistics as: (density,% of positive (blue)
links,% of negative (red) links). All network adjacency matrices are ordered based on zi, in
terms of maximum archetype membership and internally according to the magnitude of the
corresponding archetype most used for their reconstruction [75].



CHAPTER6
A Hybrid Membership
Latent Distance Model

for Signed Integer
Weighted Networks

Signed networks, unlike traditional networks that model only positive and neutral
connections, capture complex relations like cooperation and antagonism, providing a
more realistic view of social structures. The balance theory with its four rules exempli-
fies the driving forces behind these connections, encompassing positive, negative, and
neutral relationships. These concepts allow for a better understanding of phenomena
such as ideological and affective polarization, which involve significant differences in
how policies are viewed by various groups and the intense emotions voters may feel
towards differing positions. Usually, signed networks contain nodes concentrating a
high degree of both positive and negative ties. Such high-degree nodes act as driving
forces of polarization, forming an archetypal ideology. This can be realized when
considering the properties of balance theory, e.g. ”The enemy of my friend is my
enemy”. In such cases, extreme profiles in networks can be easily uncovered by a
model constraining the network projection into polytopes. Unfortunately, there is no
guarantee that such ”pure” nodes will be always present in polarized networks. For
that, additional approaches have been developed such as Minimum Volume, where
data representations are constrained to a polytope under a minimum volume con-
straint. As the volume decreases nodes are pushed to the corners of the defined
space providing extreme profile characterizations akin to archetypal analysis. Such
procedures are traditionally expressed by a high computational complexity since the
volume calculation of a polytope requires calculating the sum of determinants for all
simplexes used to construct the polytope which is particularly expensive, especially
in high dimensions. Finally, many GRL approaches also do not provide identifiable
or unique solution guarantees, so their interpretation highly depends on the initial-
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ization of the hyper-parameters, leading to the non-unique characterization of latent
structures

To derive an efficient Minumum Volume approach we turn to Latent Distance
models and the Skellam distribution to form the Signed Hybrid-Membership Latent
Distance Model. This new model, inspired by recent advances in Graph Representa-
tion Learning [75], is designed to highlight and uncover the unique characteristics of
signed networks. Specifically, we constrain the latent space to the D-simplex. We
show that the Signed Hybrid-Membership Latent Distance Model relates to archety-
pal analysis for relational data as a minimal volume approach and as a special case
when polytopes are constrained to simplexes. Extraction of distinct aspects/profiles
through MV does not require the presence of “pure” observations defining the convex-
hull or else the extracted polytope/simplex. As the volume decreases, observations
are “forced” to populate the corners of the polytope, yielding archetypal character-
ization when the reconstruction of data is defined through convex combinations of
these corners. Based on the volume size we are able to control the type of member-
ships in these convex combinations. Specifically, we show that large volumes allow
nodes to be expressed through many archetypes but as the volume decreases trade-
offs are emerging, forcing nodes to collapse onto a unique archetype. Furthermore,
constraining the polytope to the D-simplex allows for a trivial volume calculation
which we can control simply by the edge length (1-faces) value of the simplex. We
denote the edge length of the D-simplex as δ which is provided to the model as a
continuously decreasing hyperparameter and as a consequence the model defines a
continuously decreasing simplex volume, yielding archetypal characterization. Under
such a formulation, we provide uniqueness guarantees by extending the Non-Negative
Matrix Factorization theory to the study of signed networks which are achieved up
to a permutation matrix.

6.1 Contributions

We presently derive a Minimum Volume approach for the archetypal characterization
and analysis of signed networks forming the Signed Hybrid-Membership Latent Dis-
tance Model. Specifically, we show that constraining the polytope to the D-simplex
comes with no loss of expressive power when the volume of the simplex is not sig-
nificantly decreased. The model is characterized by high predictive performance in
simplex volumes providing identifiable solutions and uncovering distinct aspects of
signed networks. Importantly, by controlling the simplex volume we are able to con-
trol the type of memberships or participation across the different archetypes/pure
forms. Decreasing sufficiently the volume of the latent space forces nodes to con-
verge to their core ideologies/archetypes allowing for the expression of trade-offs.
Furthermore, we consider different model specifications utilizing both the traditional
Euclidean distance, as well as, the squared Euclidean distance. For the latter, we
show that the Signed Hybrid-Membership Latent Distance Model is the combination
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D: Dimensions or
Archetypes

Input: A signed
network

Sociotopes/Emdedding Spaces

D=2

D=3

D=8

Signed Hybrid-Membership
Latent Distance Model

Figure 6.1. Signed Hybrid-Membership Latent Distance Model procedure overview. An-
alytically, for a given dimensionality D and a signed network as inputs, the model defines
the (D − 1)-simplex with edge length δi. As the length decreases the nodes start to popu-
late the corners uncovering extreme profiles present in the graph data. This corresponds to
the Archetypal Analysis of relational data when the polytope is constrained to the (D − 1)-
simplex and naturally extends hybrid memberships coupled with latent distance models to
the analysis of signed networks.

of a non-negative Eigenmodel expressing homophily and a non-positive Eigenmodel
yielding animosity/heterophily properties able to express stochastic equivalence. We
benchmark the performance of our model against prominent signed network repre-
sentation learning approaches and across four real signed networks, while we extend
the analysis to two real bipartite networks. The procedure overview is provided in
Figure 6.1. Analytically our contributions are outlined as:

• We, successfully derive a Minimum Volume approach for the analysis of signed
networks, offering archetypal characterization. Constraining the polytope to
the D-simplex, alleviates any computational burdens and restrictions that char-
acterize the volume calculation of high-dimensional general polytopes.

• We design and empirically evaluate a continuous optimization procedure over
the log-likelihood of the network by altering the latent space/simplex volume,
allowing for control over the memberships across the different archetypes/pure
forms.

• We provide uniqueness guarantees for the embedding solution as obtained by
the Signed Hybrid-Membership Latent Distance Model which is achieved up to
permutation invariances.

• We show mathematically how a squared Euclidean Skellam Latent Distance
Model constrained to the D-simplex relates to the Non-Negative Matrix Fac-
torization, defining a non-negative and a non-positive Latent Eigenmodels, and
when such these factorizations are unique.
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• We systematically analyze the trade-offs that soft and hard archetypal character-
izations define under the scope of signed link prediction and sign link prediction
tasks.

• We generalize the method for bipartite networks where archetypal-aware geo-
metric representations, joint embedding spaces, and extreme node discovery are
arduous tasks.

• We extensively benchmark our proposed model against state-of-the-art GRL
baselines, including models utilizing graph neural networks and random walk
approaches under various and well-established network data

6.2 Experimental design, results, and key findings
We employ four unipartite and two bipartite networks, describing electoral voting
records and opinions. We benchmark the performance of our proposed frameworks
against five prominent signed Graph Representation Learning methods, including
random-walk-based methods and graph neural networks. We create a test set by re-
moving 20% of the total network links while preserving connectivity on the residual
network. We define two prediction tasks, Link sign prediction (p@n): In this setting,
we utilize the link test set containing the negative/positive cases of removed connec-
tions. We then ask the models to predict the sign of the removed links. Signed link
prediction: A more challenging task is to predict removed links against disconnected
pairs of the network, as well as, infer the sign of each link correctly. For that, the
test set is split into two subsets positive/disconnected and negative/disconnected. We
then evaluate the performance of each model on those subsets. The tasks of signed
link prediction between positive and zero samples are denoted as p@z while the neg-
ative against zero is n@z. Furthermore, as the Signed Relational Latent Distance
Model formulation facilitates the inference of a polytope describing the distinct as-
pects of networks, we visualize the latent space across various dimensions for all of
the corresponding networks. To facilitate visualizations we use Principal Component
Analysis (PCA), and project the space based on the first two principal components
of the final embedding matrix. In addition, we provide circular plots where each
archetype of the polytope is mapped to a circle every radd = 2π

D radians, with D be-
ing the number of archetypes. Polytope visualizations for multiple latent dimensions
can be found in Figure 6.3.

During the evaluation, we focused on certain scoring metrics that are suitable for
highly imbalanced data sets, specifically the AUC-ROC score and the AUC-PR score.
We applied these scores to assess two particular tasks: link sign prediction and signed
link prediction. In these tasks, we found that the Signed Hybrid-Membership Latent
Distance Model performed competitively when measured against all baseline models.
Specifically, in most cases, our framework outperformed significantly most baselines
or defined on-par performance against the most competitive ones. Surprisingly, when



6.3 Conclusion 79

compared to the Skellam Latent Distance Model and the Signed Relational Latent
Distance Model which define a higher model capacity our framework defined on-par
performance. Controlling the volume of the simplex in the Signed Hybrid-Membership
Latent Distance Model showed a small decrease in the predictive performance when
the volume was decreased significantly. The type of memberships and participation
across different archetypes became hard assignments when the volume again decreased
significantly, showcasing a unique archetypal selection for the node reconstruction.
Experiments on the two bipartite networks show that the model uncovered successful
patterns modeling polarization of voting records both in the U.S. Congress and Senate,
as seen by Figure 6.3. (For more details and the full experiment results please visit
the full paper as provided in the Appendix in Section 9)

6.3 Conclusion
The Signed Hybrid-Membership Latent Distance Model allows for the archetypal char-
acterization of signed networks even in the case where pure nodes are not present.
Easily interpretable visualizations of signed networks are achieved by drawing the
inferred latent space which in addition can provide more specialized interpretations
as smaller volumes lead to node reconstructions from a unique archetype. Impor-
tantly, uniqueness guarantees allow for the robust interpretation of the inferred so-
lution. Constraining the polytope to the D-simplex did not hamper the predictive
performance but allowed for control over the type of memberships to the different
archetypes.
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(a) PCA (D = 8) (b) PCA (D = 16) (c) PCA (D = 32) (d) PCA (D = 64)

(e) NCP (D = 8) (f) NCP (D = 16) (g) NCP (D = 32) (h) NCP (D = 64)

(i) PCP (D = 8) (j) PCP (D = 16) (k) PCP (D = 32) (l) PCP (D = 64)

(m) OrA (D = 8) (n) OrA (D = 16) (o) OrA (D = 32) (p) OrA (D = 64)

Figure 6.2. sHM-LDM(p=2): Twitter Network [153]—Inferred simplex visualizations
and ordered adjacency matrices for various dimensions D and with simplex side lengths
δ ensuring identifiability. The first row shows the latent space projection to the first two
Principal Components—The second row provides a Negative Circular Plot (NCP) with red
lines showcasing negative links between nodes—The third row shows a Positive Circular Plot
(PCP) with the blue lines denoting positive links between node pairs—The fourth and final
row shows the Ordered Adjacency (OrA) matrices sorted based on the memberships wi, in
terms of maximum simplex corner responsibility, and internally according to the magnitude
of the corresponding corner assignment for their reconstruction [100].
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(a) NCP U.S.-Senate (b) PCP U.S.-Senate (c) OrA U.S.-Senate

(d) PCP U.S.-House (e) PCP U.S.-House (f) OrA U.S.-House

Figure 6.3. sHM-LDM(p=2): Inferred simplex visualizations and ordered adjacency ma-
trices for a D = 6 dimensional simplex with side lengths δ ensuring identifiability. The first
column provides a Negative Circular Plot (NCP) with red lines showcasing negative links
between nodes—The second column shows a Positive Circular Plot (PCP) with the blue
lines denoting positive links between node pairs—The third and final column shows the Or-
dered Adjacency (OrA) matrices ordered based on the memberships, in terms of maximum
simplex corner responsibility, and internally according to the magnitude of the correspond-
ing corner assignment for their reconstruction. Top row: U.S.-House [154]. Bottom row
U.S.-Senate [154] [100].
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CHAPTER7
Time to Cite: Modeling

Citation Networks
using the Dynamic

Impact Single-Event
Embedding Model

A major focus has been given to the understanding of SciSci through the lens of
complex network analysis, studying the structural properties and dynamics, of nat-
urally occurring graph data describing SciSci. These include collaboration networks
describing how scholars cooperate to advance various scientific fields. In particular,
pioneering works [155–157] have analyzed multiple network statistics such as degree
distribution, clustering coefficient, and average shortest paths. Furthermore, citation
networks define an additional prominent case where graph structure data describe
SciSci. Citation networks, essentially describe the directed relationships of papers
(nodes) with an edge occurring between a dyad if paper A cites paper B, e.g. A→B.
Multiple efforts towards Graph Representation Learning of citation networks have
been made, although treating such networks as static in time. Notably, citation net-
works are dynamic. Whereas dynamic modeling approaches can uncover structures
obscured when aggregating networks across time to form static networks, the dynamic
modeling approaches are in general based on the assumption that multiple links oc-
cur between the dyads in time. Therefore no optimal likelihood formulation has been
explored for such networks defined as single-event networks (SENs). Furthermore,
lots of attention has been given in SciSci to the temporal impact characterization
of papers in terms of their citation dynamics. Importantly, most of these studies
relied on carefully designed heuristics that utilized classical machine learning meth-
ods based on various scholarly features, as well as, paper textual information. Such
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features are used to quantify and predict a paper’s impact included linear/logistic
regression, k-nearest neighbors, support vector machines, random forests, and many
more [158–163]. These studies focused primarily on carefully designing and includ-
ing proper features to be used for the impact prediction task. Unfortunately, no
method has successfully combined a Graph Representation Learning approach under
an appropriate SEN likelihood while also accounting for impact characterization.

Consequently, we here focus on citation networks to alleviate such limitations. It
is worth mentioning, that despite focusing only on citation graphs, our approach is
eligible for the analysis of every network that falls under the SEN umbrella. We
here turn to the Inhomogenous Poisson Point Process for which we constrain to the
modeling of the maximum one event that may appear per dyad, yielding the Single-
Event Poisson Process define for the first time a principled likelihood expression for
single events networks. In order to define powerful ultra-low dimensional network
embeddings we turn to the representation power of the directed network version
LDM. Specifically, for every paper we define static embeddings distinguishing between
source and target roles, i.e. we introduce a different position in the latent space for
the roles of papers when citing or being cited. In addition, we define paper random
effects that can be reparametrized to represent paper masses, again distinguishing
between ”being cited” and ”citing” masses. For the ”being cited” mass we introduce a
temporal impact function that characterizes the incoming citation dynamics. eligible
for impact quantification. The impact function is parameterized through appropriate
probability density functions, including the log-normal, as well as, the truncated
normal distributions.

7.1 Contributions
We presently extend the Latent Distance Model to account for single-event networks
and to accurately characterize paper impact based on citation dynamics. We spec-
ify an Inhomogeneous Poisson Point Process for the analysis of SENs, defining the
Single-Event Poisson Process which provides for the first time an appropriate likeli-
hood for the SEN family of temporal networks. We hereby introduce the Dynamic
Impact Single-Event Embedding Model (DISEE) which characterizes the scientific
interactions in terms of a latent distance model in which forces (strength of the in-
teraction) can be reparameterized to be proportional to the product of the masses of
the interacting entities. To account for the time-varying impact, the mass of a con-
tribution being used is time-dependent based on flexible parametric representations
of scientific impact. The procedure overview is provided in Figure 7.1. Analytically
our contributions are outlined as:

• We, for the first time, derive the single-event Poisson Process (SE-PP). As paper
citation networks (and SENs in general) only include a single event we augment
the Poisson Process likelihood to have support only for single events forming
the single event Poisson Process.
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Single-Event Network

Temporal Impact Function

Target node embedding

Source node embedding

Embedding Space Impact

Time

Mass

Figure 7.1. DISEE procedure overview. Given a Single-Event Network (SEN) as an
input, the model defines an intensity function introducing two sets of static embeddings
distinguishing between source wu and target zv node embeddings. Furthermore, each node
is assigned its own random effect, distinguishing again the source βu and target αv roles.
The random effects can be parameterized to represent source and target masses through the
exponential function. Finally, for each target node of the network, the model further defines
an impact function fv(t) yielding a temporal impact characterization of the nodes’ incoming
link dynamics which controls the nodes’ mass in time as, exp{(αv)}fv(t).

• We propose the Dynamic Impact Single-Event Embedding Model based on the
SE-PP for SENs. We characterize the rate of interaction within a latent distance
model such that citations are generated relative to the degree to which a paper
cites and a paper is being cited at a given time point interpreted as masses of
the citing and cited papers, respectively, augmented by their distance in latent
space.

• We demonstrate how the Dynamic Impact Single-Event Embedding Model rec-
onciles conventional impact modeling with latent distance embedding proce-
dures. Specifically, we show how the model enables accurate dynamic char-
acterization of citation impact similar to conventional paper impact modeling
procedures while at the same time providing low-dimensional embeddings ac-
counting for the structure of citation networks. We highlight this reconciliation
on three real networks covering three distinct fields of science.

7.2 Experimental design, results, and key findings

We evaluate how successfully DISEE reconciles traditional impact quantification ap-
proaches with latent distance modeling. Specifically, we test the proposal the pro-
posed approach’s effectiveness in the link prediction task by comparing it to the
classical LDM which is not time-aware and does not quantify temporal impact. We
also consider multiple model ablations that are either able to characterize a node’s
impact or to account for GRL, i.e. define node embeddings, but not both. For the
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task of link prediction, we remove 20% of network links and we sample an equal
amount of non-edges as negative samples and construct the test set. Notably, these
negative samples are sampled in a time-aware manner, meaning that we consider only
pairs that are possibly to exist as missing links in the network (i.e. we do not consider
node pairs where missing citations refer to papers citing future papers, as the target
paper did not exist the time when the source paper was published). The link removal
is designed in such a way that the residual network stays connected. Analytically, for
each network, we do not consider removing links that make up the minimum span-
ning tree of the graph. For the evaluation, we consider both the Receiver Operator
Characteristic and Precision-Recall Area Under Curve scores, as these are metrics
not sensitive to the class imbalance between links and non-links. We then continue
by evaluating the quality of impact expression of DISEE by visually presenting the
inferred impact functions and comparing them against an Impact Function Model
(IFM) which fits an impact function directly on the citation pattern of each paper.
Finally, we visualize the model’s learned temporal space representing the target pa-
pers, accounting for their temporal impact in terms of their mass at a specific time
point, and characterizing the different papers’ lifespans.

For the link prediction experiments, the best performance is achieved by model
specifications that define an embedding space, i.e. the DISEE and LDM models
while the rest of the model ablations defined significantly lower performance. Com-
paring the two distribution choices for the impact function (Truncated Normal
and Log Normal) we observed very similar link prediction scores. We continued
by addressing the quality of paper impact characterization based on a target paper’s
incoming citation dynamics. In such a direction, we further compared the inferred
impact functions of the DISEE and IFM, under the Truncated normal and Log
Normal distributions, against the true impact dynamics for each one of the corre-
sponding papers. For the Truncated case (Figure 7.2), we observe that DISEE and
IFM provide very similar (and in some cases identical) impact functions that capture
the underlying citation patterns. In the case of the Log-Normal distribution (Fig-
ure 7.3), we witness an agreement between DISEE and IFM models when the paper
lifespan does not exceed the 2 years. For larger lifespans DISEE defines a larger
standard deviation than the IFM returning much heavier tails. Both models when
compared to the true citation histogram provide much heavier tails when the paper
lifespan exceeds the 2-year threshold. The Log-Normal distribution is not invariant
to the scale of the x-axis (contrary to the Truncated normal which is scale-invariant)
and this can be potentially a reason for observing this kind of behavior, meaning that
the choice of the time resolution is not optimal (this is to be further investigated).
Nevertheless, the Truncated normal distribution seems to very accurately represent
the true citation dynamics, defining correct distribution tails, but in some cases, the
Log-Normal heavier tails may be more appropriate for future impact predictions
(as papers stay ”alive” longer). Finally, we provide embedding space visualizations
of the target (cited) papers, accounting for their temporal impact in terms of their
mass at a specific time point, showcasing the evolution of the embedding space for the
domain of Machine Learning. These visualizations showed that as the years progress,
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paper masses reach much larger magnitudes than in the earlier years, defining higher
research significance, and accumulating higher citation numbers and impact which
can be explained by the increase in published Machine Learning works. Embedding
space visualizations are provided in Figures 7.4 and 7.5. (For more details and the full
experiment results please visit the full paper as provided in the Appendix in Section
9)

7.3 Conclusion
We have proposed the Dynamic Impact Single-Event Embedding Model (DISEE),
a reconciliation between traditional impact quantification approaches with a Latent
Distance Model (LDM). We have focused on Single-Event Networks (SENs), and
more specifically in citation networks, where we for the first time derived Single-
Event Poisson Process. Such a process defines an appropriate likelihood allowing for
a principled analysis of single-events networks. In order to define powerful ultra-low
dimensional network embeddings we turn to the representation power of the directed
network version of the LDM. Specifically, for every paper we define static embed-
dings distinguishing between source and target roles, i.e. we introduced a different
position in the latent space for the roles of papers when citing or being cited. In
addition, we defined paper random effects that can be reparametrized to represent
paper masses, again distinguishing between ”being cited” and ”citing” masses. For
the ”being cited” mass we introduced a temporal impact function that characterized
the incoming citation dynamics. eligible for impact quantification. The impact func-
tion is parameterized through appropriate probability density functions, including
the log-normal, as well as, the truncated normal distributions. Through extensive
experiments, we showed that the DISEE had the same link prediction performance
as the powerful LDM. Furthermore, we showed that the temporal impact character-
ization was validated by an Impact Function Model IFM. These results, showcase
that the DISEE successfully reconciles powerful embedding approaches with citation
dynamics impact characterization. Finally, visualizations of the embedding space for
target papers provided accurate representations that described the birth and death
of papers following their impact lifespans as years pass and science moves forward.
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(a) Deep Residual Learning for
Image Recognition [164].

(b) Gradient-based learning ap-
plied to document recognition
[165].

(c) Structural equation model-
ing in practice [166].

(d) LIBSVM: A library for sup-
port vector machines [167].

(e) ImageNet: A large-scale hi-
erarchical image database [?].

(f) Going deeper with convolu-
tions [168].

Figure 7.2. Machine Learning: DISEE Truncated and IFM Trunctated models in-
ferred impact function visualizations compared to the true citation histogram, for six popular
Machine Learning papers with different citation dynamics.

(a) Deep Residual Learning for
Image Recognition.

(b) Gradient-based learning ap-
plied to document recognition.

(c) Structural equation model-
ing in practice.

(d) LIBSVM: A library for sup-
port vector machines.

(e) ImageNet: A large-scale hi-
erarchical image database.

(f) Going deeper with convolu-
tions.

Figure 7.3. Machine Learning: DISEE Log Normal and IFM Log Normal models
inferred impact function visualizations compared to the true citation histogram, for six
popular Machine Learning papers with different citation dynamics.
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Figure 7.4. Machine Learning: DISEE Truncated embedding space visualization for all
target papers published before the year 2023. Node sizes are based on each paper’s current
mass, fi(t) ∗ exp{(αi)}, and thus papers with zero mass are not visible denoting the end
of their scientific relevance or ”lifespan”. Nodes are color-coded based on their publication
year.

(a) 1988 (b) 1998 (c) 2008 (d) 2018

Figure 7.5. Machine Learning: DISEE Truncated embedding space evolution through-
out the years. Node sizes are based on each paper’s mass, fi(t) ∗ exp{(αi)}, showcasing
how papers reach the end of their scientific relevance or ”lifespan” by disappearing from the
embedding space as time progresses. Nodes are color-coded based on their publication year.
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CHAPTER8
Discussion

Our work aimed to create novel Graph Representation Learning approaches, and
most of all we tried to define what constitutes a fine embedding approach for accu-
rate graph representation. We argue the characteristics of a fine embedding approach
should 1) Be interpretable by human perception, similar nodes should be positioned
in close proximity in the latent space, i.e. node similarity on the network should be
translated into similarity in the latent space (one of the main goals, and intuition
behind GRL). 2) Provide insights over the intrinsic structures existing in the net-
work, facilitating interpretation and visualization in a hierarchical/multi-resolutional
manner or even extracting pure network nodes and extreme profiles, characterizing
network polarization. 3) Visualizations should not depend on heuristic dimensional-
ity reduction approaches but provide accurate low-dimensional representations with
maximum D = 3. 4) Return high performance in downstream tasks such as link
prediction/network reconstruction/node classification and community detection. 5)
Scale the analysis to massive and large-scale networks, as billion-node graphs become
more and more common in real scenarios.

We demonstrated how the proposed frameworks provide such fine network rep-
resentations since (1) They operate under the Euclidean distance metric, conveying
homophily and transitivity properties, and thus providing an intuitive human per-
ception of both first and high-order node similarity. (2) Naturally characterizing
network intrinsic structures via the use of multi-scale hierarchical block structures,
or constrained-to-polytopes latent spaces, providing hierarchical community identifi-
cation, hybrid community memberships, and uncovering of extreme node profiles. 3)
All of the frameworks showed very competitive performance under ultra-low dimen-
sion of D = 2, 3, providing direct network visualizations but sufficient capacity to
enable accurate interpretation of network images. 4) High performance was achieved
by all of the proposed methods in multiple downstream tasks, outperforming most
of the state-of-the-art baselines while also enabling generative processes contrary to
most of the competing methods. 5) Our methods accounted for the computational
costs of modern large-scale networks defining accurate linearithmic approximations
of the network likelihood, unbiased random sampling procedures, and case-control
inferences.

The first phase of this thesis focused on the Graph Representation Learning of
positive integer weighted graphs. Most of all we tried to define what constitutes a
fine embedding approach for accurate graph representation. Analytically, we first
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developed the Hierarchical Block Distance Model (HBDM), a scalable reconciliation
of latent distance models and their ability to account for homophily and transitivity
with hierarchical representations of network structures. We demonstrated how the
proposed HBDM provides favorable network representations by (1) Operating with
a Euclidean distance metric providing an intuitive human perception of node simi-
larity. (2) Naturally representing multiscale hierarchical structure based on its block
structure and carefully designed clustering procedure optimized in terms of Euclidean
distances. (3) Directly and consistently operating in D = 2, 3 with high performance.
(4) Performing well on all considered downstream tasks highlighting its ability to
account for the underlying network structure. Importantly, the inferred hierarchi-
cal structure admits community discovery at multiple scales as highlighted by the
inferred dendrograms and ordered adjacency matrices, and naturally extends to the
characterization of communities of bipartite networks. Our discoveries highlight the
existence and importance of hierarchical multi-scale structures in complex networks.
The across hierarchy re-ordered adjacency matrices given by HBDM, manifest sub-
communities inside of what already appears as a strongly connected community. This
points to how delicate the task of defining communities is and the importance of ac-
counting for communities at multiple scales, as enabled by the HBDM. Importantly,
these results generalize for bipartite networks where multi-scale geometric represen-
tations, joint hierarchical structures, and community discovery are arduous tasks. In
conclusion, we proposed the Hierarchical Block Distance Model, a scalable reconcilia-
tion of network embeddings using the latent distance model (LDM) and hierarchical
characterizations of structure at multiple scales via a novel clustering framework. No-
tably, the model mimics the behavior of the LDM where the use of homophily and
transitivity is most important while scaling in complexity by O(DN logN). We an-
alyzed thirteen networks from moderate sizes to large-scale with the HBDM having
favorable performance when compared to existing scalable embedding procedures. In
particular, we observed that the HBDM well predicts links and node classes utilizing
a very low embedding dimension of D = 2 providing accurate network visualizations
and characterization of structure at multiple scales. Our results demonstrate that
favorable performance can be achieved using ultra-low (i.e. D = 2) embedding di-
mensions and a scalable hierarchical representation that accounts for homophily and
transitivity.

In the same direction, we have proposed the Hybrid-Membership Latent Distance
Model (HM-LDM) that reconciles network embedding and latent community detec-
tion. The approach utilizes both the normal and squared Euclidean distance model
where the latter integrated the non-negativity-constrained Eigenmodel with the La-
tent Distance Model. We demonstrated that the model could be constrained to the
simplex without losing expressive power. The reduced simplex provides unique repre-
sentations, ultimately resulting in the hard clustering of nodes to communities when
the simplex is sufficiently shrunk. Notably, the proposed HM-LDM combines net-
work homophily and transitivity properties with latent community detection enabling
explicit control of soft and hard assignment through the volume of the induced sim-
plex. We observed favorable link prediction performance in regimes in which the HM-
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LDM provides unique representations while enabling the ordering of the adjacency
matrix in terms of prominent latent communities. Finally, we showed the ability of
the model to extract valid community structures across multiple networks and show-
cased how the analysis extends to bipartite networks. Future work should compare
the performance of HM-LDM against classical non-embedding methods such as the
Degree Corrected Stochastic Block Model (DC-SBM) [118] or the Mixed Member-
ship Stochastic Block Model (MM-SBM) [169]. Such a comparison is of particular
interest since DC-SBM accounts for degree heterogeneity while MM-SBM for soft
assignments, two important properties of HM-LDM.

In the second phase of the thesis, we focused on the analysis of signed integer-
weighted networks. In that direction, we proposed the Skellam Latent Distance
Model (SLDM) and Signed Latent Relational Distance model (SLIM) to provide
easily interpretable network visualization with favorable performance in the link
prediction tasks for weighted signed networks. In particular, endowing the model
with a space-constrained to polytopes (forming the Signed relational Latent dIstance
Model(SLIM)) enabled us to characterize distinct aspects in terms of extreme posi-
tions in the social networks akin to conventional archetypal analysis but for graph-
structured data. The Skellam distribution is considerably beneficial in modeling
signed networks, whereas the relational extension of AA can be applied for other
likelihood specifications, such as LDMs in general. This work thereby provides a
foundation for using likelihoods accommodating weighted signed networks and repre-
sentations akin to AA in general for analyzing networks.

Later in the second phase, we presented the signed Hybrid-Membership Latent
Distance Model (sHM-LDM) reconciling Graph Representation Learning and latent
community detection in singed networks. Specifically, we extended a hybrid mem-
bership model to account for signed networks and showed that a minimum volume
approach could uncover distinct profiles in social networks while ensuring model iden-
tifiability. The presented framework was formulated to include an Euclidean as well
as a squared Euclidean norm. For the latter, a direct relationship to an Eigenmodel
was shown. Furthermore, by controlling the volume of the simplex by the magnitude
of δ, a sufficiently reduced simplex leads to unique representations. Notably, the gen-
eralization to signed networks facilitated the extraction of distinct network profiles
representing positive interactions and animosity. In regimes where the sHM-LDM
provide unique representations, we observed favorable link prediction performance
and the ability to order the adjacency matrix based on prominent latent communi-
ties and distinct profiles. Importantly, the extended sHM-LDM merges homophily
and heterophily properties to account for positive and negative ties as present in
signed networks, enabling explicit control of soft and hard assignment to extreme
node profiles, through the volume of the induced simplex.

In the third phase, we focused on SEN networks and more specifically on the anal-
ysis of citation networks. We proposed a novel likelihood function for the characteriza-
tion of such single-event networks. Using this likelihood, we defined the Dynamic Im-
pact Single-Event Embedding Model (DISEE) characterizing scientific interactions
and impact, in terms of a latent distance model in which forces were reparameterized
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to be proportional to the product of the masses of the interacting entities. Such a
model successfully reconciled static latent distance network embedding approaches
with classical dynamic impact assessments of citation networks. Extensive experi-
ments in three real citation networks, showcased DISEE as a powerful link predictor,
able to successfully describe papers’ impact and relevance lifespans while visualiza-
tion of the inferred embedding space provided new insights on how different domains
of science evolve through time.

Our finding of ultra-low dimensional accurate characterizations of network struc-
tures supports the findings in [170] in which a logistic PCA model was found to enable
exact low-dimensional recovery of multiple real-world networks. Whereas the work
of [170] focuses on exact network reconstruction we find that generalizable patterns
can be well extracted in ultra-low dimensional representations with performance sat-
urating after just D = 8 dimensions for all networks considered. Whereas [170] found
that their low-dimensional space did not perform well in classification tasks we ob-
served strong node classification performance by the low-dimensional representations
provided by our frameworks. Importantly, in node classification and the HBDM,
we observed better performance using KNN as opposed to simple linear classification
based on logistic/multinomial regression typically used for node classification. This
highlights that whereas most GRL works use linear classifiers there is no guarantee
that the embedding space will be linearly separable and performance should therefore
be compared to non-linear classifiers as they may provide more favorable performance
as observed in this study.

Recent pioneering works [171,172] have drawn significant attention of the research
community by questioning the conventional embedding space preference, as also re-
viewed for the LSM family [71]. It is well known that many real-world networks
show power-law degree distribution, or they can consist of latent hierarchical inner
structures. Therefore, Euclidean space might not always be appropriate to represent
such complex network architectures. It might also require higher-dimensional spaces
to show comparable performance in the GRL tasks. The works of [171, 172] demon-
strated that hyperbolic spaces, such as the Poincare disk model, can provide substan-
tial benefits over the Euclidean space. The presented models, naturally extend to
other distance measures and future studies should explore how they can be extended
to hierarchical representations and polytopes-defined spaces beyond Euclidean geom-
etry.

Covariate information plays an important role in the outstanding performance of
GRL methods, especially GNNs. In the current LSM literature, side information
is accounted for by extra regressors in the logit/log link functions expressing the
likelihood of a dyad being connected. Using the Mahalanobis distance imposing a
block-diagonal covariance matrix, the proposed frameworks can naturally incorporate
covariate information directly into the latent space and notably construct multi-scale
structures and polytope representations via the enriched and concatenated embedding
of the latent variables and the covariate information. In more detail, we can define
a new embedding matrix Z̄ as the concatenation over the latent variables and the
covariate information for node i as: z̄i = [zi;xi] and a Mahalanobis correlation matrix
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as: S =
[
I 0

0T J

]
∈ R(D+R)×(D+R), where I ∈ RD×D the identity matrix, the zero

matrix 0 ∈ RD×R and the covariate coefficient matrix J ∈ RR×R. In this setting,
HBDM is able to construct a covariate information-aware multi-scale latent space by
the use of the Mahalanobis distance dij =

√
(z̄i − z̄j)TS−1(z̄i − z̄j). Our analysis

presently did not explore side information and this is also why we did not include
comparisons to prominent GNN-based approaches as these procedures do not provide
favorable performance when only learning from the graph structure itself. As such, we
observed (not shown) poor performance of GraphSage [38] when only having access
to the graph structure in the present setup. Our presented methods, operate on
static networks and thus are not naturally inductive models. Nevertheless, potential
new emerging nodes can be projected into the inferred latent space by fixing the
embeddings of nodes present in the training set while optimizing the new nodes for
their locations in the learned latent space. We leave a comparison of such a strategy
against naturally inductive models such as GNNs for future work.

Our frameworks, use the LDM and thus are good at characterizing transitivity and
homophily at a node and cluster level, whereas the random effects enable accounting
for degree heterogeneity. Notably, our methods suffer from the limitations of the
LDM and are thus unable to model stochastic equivalence. Future work should
therefore investigate hierarchical structures and polytope representations imposed
on more flexible GRL procedures enabling stochastic equivalence and contrast the
performance when accounting for stochastic equivalence to the existing methods based
on the SBM which as a latent class model is known to express stochastic equivalence
[93,173–177]. In addition, the optimization for our frameworks is a highly non-convex
problem and thus relies on the quality of initialization in terms of convergence speed.
In this regard, we use a deterministic initialization based on the normalized Laplacian.
In addition, for the signed network models we observed that a maximum likelihood
estimation of the model parameters became unstable when the network contained
some nodes having only negative interactions. This is a direct consequence of the
presence of the distance term (exp(+|| · ||2)) for negative interactions, which can lead
to overflow during inference. Nevertheless, we adopted a MAP estimation that was
found to be stable across all networks. For real signed networks, the generative
model created an ”excess” of negative links increasing the overall network sparsity.
For that, a modified SLIM excluding the regularization over the model parameters
was introduced which achieved correct network sparsity (as shown in the main paper).
Assuming priors over the model parameters created a bias over the generated network
when compared to the ground truth network statistics.



100



CHAPTER9
Conclusion

In recent years, there has been a surge in the complexity and volume of data repre-
sented as graphs. In this context, we have presented innovative representation learn-
ing models, based on the Latent Distance Model formulation, specifically tailored for
the examination of networks that involve both signed and unsigned integer weights,
as well as, single-event networks. We have successfully presented multiple frameworks
able to learn informative node representations, expressing homophily and transitivity
properties in unsigned networks while for the case of signed networks, models were
generalized to convey the balance theory. The Hierarchical Block Distance Model
facilitated the extraction of hierarchical structures present in complex networks while
the Hybrid Membership Distance Model accounted for community discovery, explic-
itly controlling both hard and soft community assignments. Furthermore, the family
of Latent Distance Models was extended to the analysis of signed networks via the
Skellam Latent Distance Model which was proved to be a powerful link predictor.
Constraining the latent space to a polytope yielded the Signed Relational Latent
Distance model generalizing Archetypal Analysis to relational data extracting dis-
tinct profiles of networks and characterizing network polarization. When the poly-
tope was constrained to the D-simplex we obtained the signed Hybrid-Membership
Latent Distance Model which a continuously decreasing simplex volume, defined a
Minimum Volume approach for Archetypal Analysis yielding also extreme profile
identification. Importantly, all proposed frameworks defined scalable optimization
approaches via the accurate linearithmic hierarchical approximation of the likelihood
(HBDM), unbiased random sampling procedures (HM-LDM, sHM-LDM, SLDM,
SLIM), and case-control inferences (DISEE). Our frameworks facilitated informative
network visualizations including network hierarchical organization of the adjacency
matrix (HBDM), soft and hard community extraction (HM-LDM), informative poly-
tope visualizations for signed networks (sHM-LDM, SLIM), and impact characteri-
zation and latent space visualizations of single-event networks (DISEE). Importantly,
such valuable visualization analyses were extended to bipartite networks where such
a generalization is not trivial. For all of our proposed models, we included exten-
sive experimental evaluations to demonstrate that the proposed approaches generally
surpass widely adapted baseline methods in node classification, link prediction, and
network reconstruction tasks. Such results were highlighted especially for the ultra-
low dimensions of D = 2, 3 where very few of the competing methods were found to
be competitive. Importantly, the proposed frameworks were validated in multiple set-
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tings and downstream tasks and were found to have the most consistent performance
across tasks (in no task their performance was significantly lower than competing base-
lines). This helps us to characterize embedding approaches relying on the Euclidean
metric as the best choice when it comes to defining low-dimensional embeddings that
are required to perform multiple tasks. Last but not least, we have successfully shed
light on a missing part in the GRL literature which is to extensively position and
benchmark the performance of Latent Distance Models for Graph Representation
Learning against state-of-the-art baselines, showcasing their superior performance in
multiple settings.
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A Hierarchical Block Distance Model for Ultra
Low-Dimensional Graph Representations

Nikolaos Nakis, Abdulkadir Çelikkanat, Sune Lehmann, Morten Mørup

Abstract—Graph Representation Learning (GRL) has become central for characterizing structures of complex networks and
performing tasks such as link prediction, node classification, network reconstruction, and community detection. Whereas numerous
generative GRL models have been proposed, many approaches have prohibitive computational requirements hampering large-scale
network analysis, fewer are able to explicitly account for structure emerging at multiple scales, and only a few explicitly respect
important network properties such as homophily and transitivity. This paper proposes a novel scalable graph representation learning
method named the Hierarchical Block Distance Model (HBDM). The HBDM imposes a multiscale block structure akin to stochastic
block modeling (SBM) and accounts for homophily and transitivity by accurately approximating the latent distance model (LDM)
throughout the inferred hierarchy. The HBDM naturally accommodates unipartite, directed, and bipartite networks whereas the
hierarchy is designed to ensure linearithmic time and space complexity enabling the analysis of very large-scale networks. We evaluate
the performance of the HBDM on massive networks consisting of millions of nodes. Importantly, we find that the proposed HBDM
framework significantly outperforms recent scalable approaches in all considered downstream tasks. Surprisingly, we observe superior
performance even imposing ultra-low two-dimensional embeddings facilitating accurate direct and hierarchical-aware network
visualization and interpretation.

Index Terms—Latent Space Modeling, Complex Networks, Graph Representation Learning.

✦

1 INTRODUCTION

N Etworks naturally arise in a plethora of scientific areas
to model interactions between entities from physics to

sociology and biology, with many instances such as collab-
oration, protein-protein interaction, and brain connectivity
networks [1] to mention but a few. In recent years, Graph
Representation Learning (GRL) approaches have attracted
great interest due to their outstanding performance com-
pared to classical techniques for arduous problems such as
link prediction [2], node classification [3], [4], and commu-
nity detection [5].

Numerous GRL methods have been proposed, see also
[6] for a survey. The leading initial works are the ran-
dom walk-based methods [4], [7]–[10], leveraging the Skip-
Gram algorithm [11] to learn the node representations.
Matrix factorization-based algorithms [6], [12] have also
become prominent, extracting the embedding vectors by de-
composing a designed feature matrix. Furthermore, neural
network models [6], [13] have been proposed for graph-
structured data, returning outstanding performance by com-
bining node attributes and network structure when learn-
ing embeddings. Recent studies [14] aim to alleviate the
computational burden of these algorithms through matrix
sparsification tools [15], hierarchical representations [16],
[17], or by fast hashing schemes [18].

Latent Space Models (LSMs) for the representation of
graphs have been quite popular over the past years [19]–
[25], especially for social networks analysis [26], [27] fa-
cilitating community extraction [28] and characterization
of network polarization [29]. LSMs utilize the generalized
linear model framework to obtain informative latent node
embeddings while preserving network characteristics. The
choice of latent effects in modeling the link probabilities
between the nodes leads to different expressive capabili-

ties characterizing network structure. In particular, in the
Latent Distance Model (LDM) [30] nodes are placed closer
in the latent space if they are similar or vice-versa. LDM
obeys the triangle inequality and thus naturally represents
transitivity [31], [32] (”a friend of a friend is a friend”) and
network homophily [33], [34] (a tendency where similar nodes
are more likely to connect to each other than dissimilar ones).
Homophily is a very well-known and well-studied effect
appearing in social networks [31], [33], [34] and essentially
describes the tendency for people to form connections with
those that share similarities with themselves. Similarities
can be drawn from meta-data (observed node attributes)
and may refer to shared demographic properties, political
opinions, etc. Homophily has been observed among a broad
range of collaborations (see [32] for a complete overview).
Homophily can also be accounted for based on the un-
observed attributes as defined by the LDM as shown in
[35]. Homophily explains prominent patterns as expressed
in social networks in terms of transitivity, as well as, bal-
ance theory (“the enemy of my friend is an enemy”) [36].
More specifically, in an LDM we can extend the meaning
of similarity to some unobserved (latent) covariates, i.e.,
latent embeddings Z. The higher similarity between nodes
translates here to a stronger relationship between the nodes
and thereby a higher probability of observing connections.
As a result, for two similar nodes {i, j} the pairwise distance
|zi − zj |2 should be small which further implies that for a
different node {k} we obtain |zi − zk|2 ≈ |zj − zk|2. The
latter concludes that nodes {i, j} are similar since they share
similar relationships with the rest of the nodes.

The approach has been extended to bipartite networks
in [37] by introducing mode-specific embedding vectors and
community detection by endowing the LDM with a Gaus-
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sian Mixture Model prior to promoting cluster structures
in the latent space forming the latent position clustering
model (LPCM) [35], [38]. However, the LDM is unable to
account for possible stochastic equivalence as defined by
the Stochastic Blockmodels [39], [40], i.e. (”groups of nodes
defined by shared intra- and inter-group relationships”) defining
non positive-semi-definite latent representations. The LSMs
were advanced to characterize such stochastic equivalence
by imposing an Eigenmodel admitting negative eigenvalues
[41]. These latent space methods are attractive due to their
simplicity, as they define well-structured inference problems
and are characterized by high explanatory power [25]. The
time and space complexities are their main drawbacks as the
likelihood function scales by the number of node pairs (i.e.,
quadratically in the number of nodes for a unipartite graph)
typically addressed using subsampling strategies [42].

Many real-world networks are composed of structures
emerging at multiple scales which can be expressed us-
ing hierarchical representations [43]. Several methods have
thus been advanced to such hierarchical representations
including stochastic block model approaches [44]–[49] as
well as agglomerative [50]–[52] and recursive partitioning
[53] procedures relying on various measures of similarity.
Importantly, learning node representations characterizing
structure at multiple scales of the network can facilitate
network visualization and the understanding of the inner
dynamics of networks. Hierarchical representation of bi-
partite networks is of special interest due to the fact that
most unipartite hierarchical clustering algorithms do not
generalize to the bipartite case beyond clustering each mode
separately or transforming the bipartite network into a
unipartite representation. In the work of [54], the authors
used the spectral partitioning algorithm of [55] and then
applied k-means on the spectral space to get initial bi-
clusters which were followed by divisive bi-splits to create
a dendrogram. In this case, the spectral embedding space
was not constructed to reflect explicitly the clustering cri-
terion. In addition to divisive procedures, agglomerative
clustering has also been proposed for bipartite networks.
In the work of [56] a multi-objective function was designed
and combined with classical community construction algo-
rithms. One limitation here is that the network should be
transformed into a unipartite structure.

Despite the many advantages of hierarchical structures
and block models, one major limitation remains to accu-
rately account for homophily [41], which is a key charac-
teristic of social networks. More specifically, block mod-
els have been extended to explicitly impose a community
structure [57], [58] but notable this only provides within-
cluster homogeneity and thus homophily-like properties for
the community relative to the other communities but not a
hierarchy complying with such a structure. Whereas LPCM
accounts for homophily it does not account for hierarchical
structures and cluster structures are not strictly imposed
beyond a prior to promoting the latent positions to form
groups.

In this work, we propose a novel node representation
learning approach, the Hierarchical Block Distance Model
(HBDM)1, as a reconciliation between hierarchical block

1For implementation details please visit: github.com/Nicknakis/HBDM.

structures of different scales and network properties such
as homophily and transitivity. In particular, we propose a
framework combining embedding and hierarchical charac-
terization for graph representation learning. Importantly, we
design a hierarchical structure that respects a linearithmic
total time and space complexity, in terms of the number of
nodes (i.e., O(N logN)), and at the same time provides an
accurate interpretable representation of structure at different
scales. Using the HBDM, we embed moderate-sized and
large-scale networks containing more than a million nodes
and establish the performance of our model in terms of
link prediction and node classification to existing prominent
graph embedding approaches. We further highlight how
the inferred hierarchical organization can facilitate accurate
visualization of network structure even when using only
D = 2 dimensional representations providing favorable per-
formance in all the considered GRL tasks; link prediction,
node classification, and network reconstruction. Addition-
ally, we show how our proposed framework extends the
hierarchical multi-resolution structure to bipartite networks
and provides the characterization of communities at multi-
ple scales.

2 THE HIERARCHICAL BLOCK DISTANCE MODEL

We first concentrate our study on undirected networks and
later generalize our approach to bipartite graphs. We now
provide the necessary definitions required throughout the
paper. Let G = (V,E) be a graph where N := |V | is
the number of nodes and YN×N = (yi,j) ∈ {0, 1}N×N

be the adjacency matrix of the graph such that yi,j = 1
if the pair (i, j) ∈ E otherwise it is equal 0, for all
1 ≤ i < j ≤ N . We denote the latent representations
of nodes by Z = (zi,d) ∈ RN×D where each row vector,
zi ∈ RD , indicates the corresponding embedding of node
i ∈ V in a D-dimensional space.

The most natural choice for modeling homophily and
transitivity can be found in the Latent Space Model (LSM)
which defines an RD-dimensional latent space in which
every node of the graph is characterized through the unob-
served but informative node-specific variables {zi ∈ RD}.
These variables are considered sufficient to describe and
explain the underlying relationships between the nodes of
the network. The probability of an edge occurring is consid-
ered conditionally independent given the unobserved latent
positions. Consequently, the total probability distribution of
the network can be written as:

P (Y |Z,θ) =
N∏
i<j

p(yi,j |zi, zj ,θi,j), (1)

where θ denotes any potential additional parameters, such
as covariate regressors. A popular and convenient param-
eterization of Equation (1) for binary data is through the
logistic regression model [30], [35], [59], [60]. In contrast, we
adopt the Poisson regression model similar to [60] under a
generalized linear model framework for the LSM. The use
of a Poisson likelihood for modeling binary relationships
in a network does not decrease the predictive performance
nor the ability of the model to detect the network structure,
as shown in [61]. It also generalizes the analysis to integer-
weighted graphs. In addition, the exchange of the logit to a
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log link function when transitioning from a Bernoulli to a
Poisson model defines nice decoupling properties over the
predictor variables in the likelihood [62], [63]. Utilizing the
Poisson Latent Distance Model (LDM) of the LSM family
framework, the rate of an occurring edge depends on a
distance metric between the latent positions of the two
nodes. In our formulation, we consider the LDM Poisson
rate with node-specific biases or random-effects [35], [60]
such that the expression for the Poisson rate becomes:

λij = exp
(
γi + γj − d(zi, zj)

)
, (2)

where γi ∈ R denotes the node-specific random-effects and
dij(·, ·) denotes any distance metric obeying the triangle
inequality

{
dij ≤ dik + dkj , ∀(i, j, k) ∈ V 3

}
. Considering

variables {zi}i∈V as the latent characteristics, Equation (2)
shows that similar nodes will be placed closer in the latent
space, yielding a high probability of an occurring edge and
thus modeling homophily and satisfies network transitivity
and reciprocity through the triangle inequality whereas the
node-specific bias can account for degree heterogeneity. The
conventional LDM rate utilizing a global bias, γg , corre-
sponds to the special case in which γi = γj = 0.5γg . As in
[30], we presently adopt the Euclidean distance as the choice
for the distance metric dij(·, ·).

2.1 Designing A Linearithmic Complexity
Our goal is to design a Hierarchical Block Model preserving
homophily and transitivity properties with a total complex-
ity allowing for the analysis of large-scale networks. Our
HBDM, defines the rate of a link between each network
dyad {i, j} ∈ V × V based on the Euclidean distance, as
shown in Equation (2). Therefore, we can define a block-
alike hierarchical structure by a divisive clustering proce-
dure over the latent variables in the Euclidean space. The
total optimization cost of such a model though should have
a linearithmic upper bound complexity to make large-scale
analysis feasible. Introducing a number of clusters K equal
to the number of nodes N in the HBDM, leads to the same
log-likelihood as of the standard LDM, defining a sum over
each ordered pair of the network, as:

logP (Y |Λ) =
∑
i<j

(
yij log(λij)− λij

)
=

∑
i<j:yij=1

log(λij) −
∑
i<j

λij , (3)

For brevity, we presently ignore the linear scaling by di-
mensionality D of the above log-likelihood function. No-
tably, the link contribution

∑
yi,j=1 log(λi,j) is responsible

for positioning ”similar” nodes closer in the latent space,
expressing the desired homophily.

In addition, large networks are highly sparse [64] with
the number of edges being proportional to the number of
nodes in the network. As a result, the computation of the
link contribution is relatively cheap, scaling linearithmic or
sub-linearithmic (as shown in supplementary). Most impor-
tantly, the link term removes rotational ambiguity between
the different blocks of the hierarchy (as discussed later). For
these three reasons, no block structure is imposed on the
calculation of the link contribution. The second term acts
as the repelling force for dissimilar nodes and requires the

computation of all node pairs scaling as O(N2) making the
evaluation of the above likelihood infeasible for large net-
works. By enforcing a block structure, i.e., akin to stochastic
block models [39], [40], [65], when grouping the nodes into
K clusters we define the rate between block k and k′ in
terms of their distance between centroids. A simple block
structure without a hierarchy would lead to the following
non-link expression:

∑
i<j

λij≈
K∑

k=1

( ∑
i<j

i,j∈Ck

exp
(
γi+γj−||zi − zj ||2

)

+
K∑

k′>k

∑
i∈Ck

∑
j∈C

k
′

exp
(
γi + γj − ||µk − µk′ ||2

))
, (4)

where µk denotes the k’th cluster centroid of the set
C = {C1, . . . , CK}, and has absorbed the dependency over
the variables Z ∈ RN×D. More specifically, the cluster
centroids µk are implicit parameters defined as a function
over the latent variables, as we will show later. Overall,
considering the principle that connected and homophilic
nodes will be placed closer in the latent space, this ex-
pression generalizes this principle by introducing a cluster-
ing procedure that obeys ”cluster-homophily” and ”cluster-
transitivity” over the latent space. More specifically, we can
assume that closely related nodes will be positioned in the
same cluster while related or interconnected clusters will
also be positioned close in the latent space, providing an
accurate block structure schema. As opposed to the LPCM
where clustering structures are imposed through a prior, the
above formulation strictly defines the clustering structure as
shared overall proximity between blocks as defined by the
distances between centroids of the formed groups.

2.1.1 A Hierarchical Representation

In order to obtain the desired hierarchical representation,
we define hierarchical clustering via a divisive procedure. In
detail, we organize the embedded clusters into a hierarchy
using a tree structure, defining a cluster dendrogram. The
root of the tree is a single cluster containing the total amount
of latent variable embeddings Z. At every level of the tree,
we perform partitioning until we obtain leaf nodes contain-
ing equal or less than the desired number of nodes, Nleaf .
This number is chosen with respect to our linearithmic
complexity upper bound and set as Nleaf = logN , resulting
in approximately K = N/log(N) total clusters. The tree-
nodes belonging to a specific tree-level are considered the
clusters for that specific tree height. Every novel partition
of a non-leaf node is performed only on the set of points
allocated to the parent tree-node (cluster). For every level
of the tree, we consider the pairwise distances of datapoints
belonging to different tree-nodes as the distance between
the corresponding cluster centroids, as illustrated by Fig. 1
(ii). Based on these distances, we calculate the likelihood
contribution of the blocks and continue with binary splits,
down the tree, for the non-leaf tree-nodes. When all tree-
nodes are considered as leaves, we calculate analytically
the inner cluster pairwise distances for the corresponding
likelihood contribution of analytical blocks, as shown in the
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(i) (ii)

Fig. 1. Schematic representation of the distance matrix calculation for a hierarchical structure of the tree of height L = 3 and for the number of
observations N = 64.

last part of Fig. 1 (ii). The latter analytical calculation comes
at a linearithmic cost of O(KN2

leaf) = O(N logN) while
enforces the homophily and transitivity properties of the
model since for the most similar nodes the HBDM behaves
explicitly as the standard LDM.

We can thereby define a Hierarchical Block Distance
Model with Random Effects (HBDM-RE) as:

logP (Y |Z,γ) =
∑
i<j

yi,j=1

(
γi + γj − ||zi − zj ||2

)

−
KL∑
k=1

( ∑
i<j

i,j∈C
(L)
k

exp (γi + γj − ||zi − zj ||2)
)

−
L∑

l=1

Kl∑
k=1

Kl∑
k′>k

(
exp (−||µ(l)

k − µ
(l)
k′ ||2)

×
( ∑

i∈C
(l)
k

exp (γi)
)( ∑

j∈C
(l)

k
′

exp (γj)
))

, (5)

where l ∈ {1, . . . , L} denotes the l’th dendrogram level, kl
is the index representing the cluster id for the different tree
levels, and µ

(l)
k the corresponding centroid. We also consider

a Hierarchical Block Distance Model (HBDM) without the
random effects setting γi = 0.5γg . For a multifurcating tree
splitting in K clusters and having N/log(N) terminal nodes
(clusters), the number of internal nodes are O(N/(K logN))
and each node needs to evaluate O(K2) pairs providing an
overall complexity of O(NK/ logN), thus K ≤ logN2 to
achieve O(N logN) scaling [66].

2.1.2 Divisive partitioning using k-means with a Euclidean
distance metric
Whereas the likelihood in Equation (5) can be directly min-
imized by assigning nodes to the clusters given by the tree
structure, this evaluation for allN nodes scales prohibitively
as O(N2/ logN). To reduce this scaling, we use a more
efficient divisive partitioning procedure, minimizing the
Euclidean norm ||µkl

−µk′
l
||2. The divisive clustering proce-

dure thus relies on the following Euclidean norm objective

J(r,µ) =
N∑
i=1

K∑
k=1

rik||zi − µk||2, (6)

where k denotes the cluster id, zi is the i’th data observation,
rik the cluster responsibility/assignment, and µk the cluster
centroid.

This objective function is unfortunately not accounted
for by existing k-means clustering algorithms relying on

the squared Euclidean norm. We therefore presently derive
an optimization procedure for k-means clustering with Eu-
clidean norm utilizing the auxiliary function framework of
[67] developed in the context of compressed sensing. We
define an auxiliary function for (6) as:

J+(ϕ, r,µ) =
N∑
i=1

K∑
k=1

rik

(
||zi − µk||22

2ϕik
+

1

2
ϕik

)
, (7)

where ϕ are the auxiliary variables. Thereby, minimizing
Equation (7) with respect to ϕnk yields ϕ∗

ik = ||zi − µk||2
and by plugging ϕ∗

ik back to (6) we obtain J+(ϕ∗, r,µ) =
J(r,µ) verifying that (7) is indeed a valid auxiliary function
for (6). The algorithm proceeds by optimizing cluster cen-
troids as µk =

(∑
i∈k

zi

ϕik
/
∑

i∈k
1

ϕik

)
and assigning points

to centroids as argminC =
∑K

k=1

∑
z∈Ck

(
||z−µk||22

2ϕk
+ 1

2ϕk

)
upon which ϕk is updated. The overall complexity of this
procedure is O(TKND) [68] where T is the number of iter-
ations required to converge. As shown in [67], Equation (7)
is a special case of a general algorithm for an lp(0 < p < 2)
norm minimization using an auxiliary function with the
algorithm converging faster the smaller p is. For a detailed
study of the efficiency of the optimization procedure under
such an auxiliary function, see [67].

A simple approach to construct the tree structure would
be to use the above Euclidean k-means procedure to split
the nodes into K = N/ log(N) clusters and construct the
tree according to agglomeration as in hierarchical clus-
tering. Unfortunately, such a strategy is computationally
prohibitive. For that, in the coarser level (first layer of the
tree), we choose to split to the maximally allowed clusters
of K = logN allowing scaling of O(N logN). It would be
tempting to continue splitting into logN clusters, however,
for a balanced multifurcating tree with N/ logN leaf clus-
ters, it will result in a height scaling as O(logN/ log logN)
and thus an overall complexity of O(N log2(N)/ log logN)
[66]. Whereas a balanced binary tree at all levels below
the root results in a height scaling as O(logN) providing
an overall complexity when including the linear scaling by
dimensionality D of O(DN logN) (as each level of the tree
defines O(DN) operations). Fig. 1 (i), illustrates the result-
ing tree2 for a small problem of N = 64 nodes in which we
first split into 4 (≈ log(64)) clusters and subsequently create
binary splits until each leaf cluster contains 4 (≈ log(64))
nodes.
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2.1.3 Expressing Homophily and Transitivity
A central component to preserve homophily and transitivity
of the HBDM is not to approximate the link terms at the
level of the block as in (hierarchical) SBMs but to calculate
analytically the link contribution of the log-likelihood across
the total hierarchy beyond the leaf/analytical blocks. In Fig.,
2 (i) and (ii), two leaf clusters are illustrated and connected
with a link. Assume that we only calculate the distance
inside the blocks analytically and that both the link and non-
link contributions of pairs belonging to different clusters are
approximated based on their centroids’ distance. This es-
sentially would allow for any rotation of each cluster for all
clusters in the hierarchy since the inner-block distances (an-
alytical), as well as the centroid distances, would not change
by such rotations, yielding exactly the same likelihood
(block-level rotational invariance). In that case, homophily
would be violated as, e.g., the distance between nodes c
and d would not necessarily be smaller than the distance
with other inter-cluster pairs (ex: Fig. 2 (i)), showing that the
rotation of the blocks substantially impacts the homophily
properties of the HBDM. Calculating the link contributions
between the different clusters analytically solves this ambi-
guity since the likelihood is penalized higher when nodes
c and d are positioned in a non-rotational-aware way. The
computational cost imposed by accounting for all the link
terms analytically is that the model complexity depends on
the number of edges of the network (a total block structure
would strictly be linearithmic in complexity). Nevertheless,

(i) Non-optimal rotation over leaf clusters.

(ii) Optimal rotation over leaf clusters.

(iii) Three latent block structures.

Fig. 2. The clusters within the dashed circles denote the leaf block
structures. The red circles and blue rhombuses indicate the node em-
beddings and the centroids, respectively. Gray lines represent the links
and the dashed lines the distance between the cluster centers.

2For visualization purposes only, we show equally sized clusters.

we show empirically in the supplementary that the num-
ber of network edges E scales linearly with N logN and
thus this analytical term respects our complexity bound.
In Fig. 2 (iii), we present clusters defining cases of block
inter-connections of sparsely connected blocks ({C1, C3},
{C1, C2}) and densely connected blocks {C2, C3}. Whereas
the analytical inter-cluster links (blue lines) are responsible
for fixing the block rotation the inter-cluster links also drive
the cluster-level proximities of centroids ensuring cluster
homophily and transitivity.

Pairwise distances in the HBDM stays invariant to rota-
tion, reflection, and translation of the latent space due to its
LDM inheritance [30] these isometries can be resolved via
a Singular-Value-Decomposition procedure as provided in
the supplementary. Whereas the analytical link term calcu-
lations provide rotational awareness to the HBDM clusters,
we continue by investigating the conditions in which a
continuous operation defining infinitesimal rotations (with
respect to the cluster centroid) is admissible leaving the loss
function of Equation (5) invariant to continuous rotations.
In Lemma 2.1 (proof given in the supplementary material),
we start our investigation of this problem by showing that
blocks with a unique inter-cluster link connection reduce the
clusters’ degree of rotational freedom by one.

Lemma 2.1. Let G = (V, E) be a graph and let C be a cluster with
its centroid located at µ ∈ RD having an edge (i, j) ∈ E for some
i ∈ C and j ∈ V\C such that zi ̸= µ. If z̃i = µ+R(θ)(zi−µ)
such that R(θ) is a rotation matrix acting on the embeddings of
nodes in cluster C, then the maximum degree of freedom of any
infinitesimal λij-invariant rotation is defined by θ ∈ RD−2.

A direct consequence of Lemma 2.1 is that for a two-
dimensional embedding, there is no possible continuous ro-
tation of a cluster having only one external edge. Since there
is a path from one node to all others in a connected graph,
every cluster must have at least one external link. For the
general case of blocks having multiple inter-cluster edges,
rotations preserving the total sum of pairwise distances
among node embeddings are highly unlikely, as discussed
in the supplementary. Consequently, we can for connected
networks expect uniqueness of a (local) minima solutions
with no continuous admissible rotations leaving the HBDM
loss function of Equation (5) invariant.

TABLE 1
Complexity analysis of methods. N := |V | is the vertex set, |E|: edge
set, W: number of walks, L: walk length, H: height of the hierarchical
tree, D: node representation size, k: number of negative instances, q:
order value, c: Chebyshev expansion order, γ: window size, α1 and α2

constants such as α1, α2 ≪ N .

Method Complexity

DEEPWALK O (γN log (N)WLD)
NODE2VEC O (γNWLDk)

LINE O (|E|Dk)
NETMF O

(
N2D

)
NETSMF O

(
|E|(γ +D) +ND2 +D3

)
RANDNE O

(
ND2 + |E|Dq

)
LOUVAINNE O (|E|H+ND)

PRONE O
(
ND2 + |E|c

)
VERSE O (N(W + kD))

HBDM O (α2N log (N)D)
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2.1.4 Extension to Bipartite Networks
Our proposed frameworks, HBDM and HBDM-RE gener-
alize to both directed and bipartite graphs. In the following,
we provide the mathematical extension for the bipartite case
(the directed network formulation of our proposed model
can be considered a special case of the bipartite framework
in which self-links are removed and thus omitted from the
below log-likelihood). For a bipartite network with adja-
cency matrix Y N1×N2 we can formulate the log-likelihood
as:

logP (Y |Λ) =
∑
i<j

yi,j=1

(
ψi + ωj − ||wi − vj ||2

)

−
KL∑

kL=1

( ∑
i,j∈CkL

exp (ψi + ωj − ||wi − vj ||2)
)

−
L∑

l=1

Kl∑
k=1

Kl∑
k′>k

(
exp (−||µ(l)

k − µ
(l)
k′ ||2)

×
( ∑

i∈C
(l)
k

exp (ψi)
)( ∑

j∈C
(l)

k
′

exp (ωj)
))

, (8)

where {µ(l)
k }KL

k=1 are the latent centroids which have ab-
sorbed the dependency of both sets of latent variables
{wi,vj} while we define the Poisson rate as:

λij = exp
(
ψi + ωj − d(wi,vj)

)
, (9)

where ψi and ωj are the corresponding random effects and
{wi, vj} are the latent variables of the two disjoint sets
of the vertex set of sizes N1 and N2, respectively. In this
setting, we use our divisive Euclidean distance hierarchical
clustering procedure over the concatenation z = [w;v] of
the two sets of latent variables. Therefore, we define an
accurate hierarchical block structure for bipartite networks,
with each block including nodes from both of the two
disjoint modes. Here, a centroid is considered a leaf if the
corresponding tree-cluster contains less than log(N1) of the
latent variables {wi}N1

i=1 or less than log(N2) of {v}N2
j=1.

2.1.5 Complexity Comparison
TABLE 1 provides a comparison between time complexities
of several prominent GRL methods in terms of their Big
O notation, similar to [69]. We observe that our proposed
HBDM is positioned as one of the most competitive frame-
works. In terms of space complexity, our model defines
a linearithmic complexity contrary to the majority of the
considered baselines which are usually characterized by
a quadratic space complexity [69]. (For a more detailed
discussion please visit the supplementary.)

3 EXPERIMENTS

We extensively evaluate the performance of our method
compared to baseline graph representation learning ap-
proaches on networks of various sizes and structures. We
have conducted all the experiments regarding the HBDM
and HBDM-RE on a 32 GB Tesla V100 GPU machine
with 5120 CUDA cores, and a 1380 MHz clock. For the
HBDM and HBDM-RE models, we optimize the negative

log-likelihood via the Adam [70] optimizer with learning
rate lr ∈ [0.01, 0.1]. For both frameworks, we build the
hierarchical structure by running the k-means procedure
every t = 25 iterations. Experiments regarding the baselines
have been conducted on an Intel Xeon Gold 6342 CPU with
24 cores, 2800 MHz clock, and 512 GB memory. The imple-
mentation for HBDM and HBDM-RE is GPU-focused using
PyTorch 1.12.1, exploiting parallel computations (running
the frameworks on a CPU machine leads to substantially
higher runtimes). We argue, that runtime comparison in
terms of real-time is a biased estimate between different
models since it correlates highly with the programming
language, parallelization schemes, etc. For that, we instead
compare theoretical complexities in terms of their Big O
notation. In all TABLES, we denote with bold digits the best-
performing score while we underline the second-best.

Datasets: We have performed the experiments on ten
undirected networks of various sizes and structures: a ci-
tation network (Cora [71]), social interaction graphs (Face-
book [72], YouTube [73], [74], Flickr [74], Flixster [75]),
product-label network (Amazon [73]) and collaboration net-
works (Dblp [76], AstroPh [77], GrQc [77], HepTh [77]).
Each network is considered as unweighted for the con-
sistency of the experiments. The detailed statistics of the
networks are provided by TABLE 2. All of the considered
networks have been widely adopted and extensively used
as benchmarks in the GRL literature [78].

Baseline Methods: In our experiments, we have run var-
ious graph representation learning methods in order to eval-
uate the performance of our approach. The prominent GRL
frameworks used in this study are: (i) DEEPWALK [7], (ii)
NODE2VEC [4], (iii) LINE [8], (iv) NETMF [79]. In addition,
we consider five scalable graph embedding approaches: (v)
NETSMF [15], (vi) RANDNE [18], (vii) PRONE [14], (viii)
LOUVAINNE [16], (ix) VERSE [69]. For more details see
the supplementary material. In our analysis, we considered
GRAPHSAGE [13] as a prominent member of the family of
Graph Neural Networks (GNNs). Our study focuses on the
setting where node meta-data are not available. In such
a setting, GRAPHSAGE was characterized by a close-to-
random performance and thus not presented.

3.1 Link Prediction
We report results for the area under the curve of the re-
ceiver operator characteristic (AUC). For the experimental
setup, we follow the commonly applied strategy [4], [7]
and remove half of the edges while keeping the residual
network connected. This strategy is not feasible for large-
scale networks since checking if the residual network stays
connected after each removed link results in a high runtime
complexity. For that, we hide 30% of the edges for these
networks and extract the giant component (after the link
removal) which is treated as the residual network. Exten-
sive details for the link prediction experiments, as well as,
Precision-Recall AUC scores are given in the supplementary.
Error bars across 5 re-runs for the following AUC scores
were found to be on the scale of 10−3 and thus negligible.

Effectiveness and Efficiency of the Multi-Scale Approx-
imation: In Fig. 3a, we provide an effectiveness analysis of
the HBDM likelihood when contrasted with its full likeli-
hood estimation evaluated on the moderate-sized network
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TABLE 2
Statistics of undirected networks. N : number of nodes, |E|: number of edges.

Cora Dblp AstroPh GrQc Facebook HepTh Amazon YouTube Flickr Flixster

N 2,708 27,199 17,903 5,242 4,039 8,638 334,868 1,138,499 1,715,255 2,523,386
|E| 5,278 66,832 197,031 14,496 88,234 24,827 925,876 2,990,443 15,555,042 7,918,801

of Facebook (results for more networks are provided in the
supplementary material). We here observe that the HBDM
likelihood essentially approximates the true full likelihood
providing systematically slightly lower likelihood estimates
which we attribute to the small structural differences be-
tween calculating the distances analytically versus in a
hierarchical block manner. A close approximation to the
true likelihood provides evidence for multi-scale structures
that characterize networks, yielding a high effectiveness
of the HBDM framework. In addition, in Fig. 3a we see
fluctuations in the likelihood which is an immediate result
of building the network hierarchy from scratch every 25’th
iteration. Importantly, despite the fact that k-means is no-
toriously known to be an NP-hard problem [80], [81], we
observe that rebuilding the hierarchy has a minimum effect
on the value of the likelihood, highlighting the stability of
the inferred hierarchy in the HBDM. Furthermore, TABLE
3 conveys information about the comparison between an
HBDM (approx) framework where all link distances are
approximated by the centroid distances and the proposed
HBDM where link distances are calculated analytically.
We witness for the Facebook network how the rotational
awareness induced by explicitly accounting for all links in
the likelihood (as explained in subsection 2.1.3) increases
the predictive capability of the model and thus its efficiency
(similar results were obtained for all networks).

Moderate-Sized Networks: Results for the moderate-
sized networks are given in TABLE 4. The symbol ”-”
indicates that the running time of the corresponding model
takes more than 20 hours and ”x” shows that the method
is not able to run due to insufficient memory space. We ob-
serve that the HBDM and HBDM-RE perform significantly
better or on par with the performance of the considered
baseline approaches. In particular, the HBDM and HBDM-
RE perform better than all the non-LDM baselines when
D = 2. It highlights the superiority of LDMs in learning
very low-dimensional network representations that accu-
rately account for the network structure. We further observe
that representing degree heterogeneity with random effects
provides extended representational power as the HBDM-
RE consistently outperforms the HBDM. Comparing our
framework with the classic LDM-RE and LDM, we mostly
see on-par results experimentally which we attribute to
the hierarchical structure well-preserving properties of ho-
mophily and transitivity.

Large-Scale Networks: Results for the large-scale net-
works are given in TABLE 5. Again, we observe that
HBDM-RE was on par with the most competitive baselines
of NETSMF and VERSE while significantly outperforming
the rest across networks. We also here find that the inclu-
sion of random effects in the LDMs improves performance
highlighting the importance of explicitly accounting for
degree heterogeneity also for large networks. Notably, we

again detect very good performance for the HBDM-RE, but
also for NETSMF and VERSE when utilizing the very low
embedding dimension of D = 2.

Bipartite Networks: We validate the performance of
our proposed framework for bipartite structures by re-
porting the AUC score. We perform our experiments on
three bipartite networks: (1) Drug-Gene [82] (N1 = 5, 017,
N2 = 2, 324, |E| = 15, 138), (2) GitHub [83] (N1 = 56, 519,
N2 = 120, 867, |E| = 440, 237), and (3) Gottron-Reuters [84]
(N1 = 21, 557, N2 = 38, 677, |E| = 1, 464, 182) following
the same experimental setting as in the undirected case of
the moderate-sized networks (network details are given in
the supplementary). We provide the results in TABLE 7
where we witness how the random-effects formulation of
HBDM-RE and VERSE outperform all the baselines and in
most cases significantly. Another interesting observation is
that the random-effects model has a notably higher per-
formance than the corresponding global bias model, as the
three studied networks have a high degree of heterogeneity.

3.2 Hyperparemeter sensitivity

We here study the effect of hyperparameters introduced
by the HBDM frameworks. Contrary to many GRL ap-
proaches, our models only define three hyperparameters
which include the embedding dimensionality D, the num-
ber of training iterations, and the learning rate lr for the
optimizer. In Fig. 3b, we view the predictive performance
as a function of latent dimension D and here, in general,
attain modest improvements in the predictive performance
when increasing the embedding dimensions from D = 2 to
D = 8 with no further improvements increasing toD = 128,
highlighting the efficiency in which HBDM and HBDM-
RE utilize very low-dimensional representations. Fig. 3c,
shows the effect that the learning rate has on performance.
We here witness that very small choices lr ≈ 0.001 define
a very slowly increasing performance. Medium magnitude
choices of lr ∈ [0.005, 0.01] define faster convergence while
the optimum choices defining very rapid performance sat-
uration exist in the lr ∈ [0.05, 0.1] regime. In Fig. 3d, we
investigate the convergence of the best performing HBDM-
RE D = 8 for the large networks, and we witness that the

TABLE 3
AUC-ROC scores for varying dimension sizes on the Facebook

network for a model approximating the link terms (top two rows) and for
the proposed model which calculates analytically the link terms (bottom

two rows).

Dimension (D) 2 3 8 32 64 128

HBDM (approx) .656 .797 .946 .943 .940 .945
HBDM-RE (approx) .802 .838 .909 .932 .940 .942

HBDM .980 .986 .986 .987 .986 .985
HBDM-RE .986 .990 .988 .989 .989 .989
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(a) (b) (c) (d)

Fig. 3. (a) NLL comparison between HBDM and LDM for Facebook with D = 2. (b) AUC-ROC performance over various networks for varying
embedding sizes. (c) Performance sensitivity over different learning rate choices for the optimizer in terms of AUC-ROC scores for the Facebook
network. (d) AUC scores of HBDM-RE in terms of iterations sensitivity for large-scale networks.
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Fig. 4. Micro-F1 scores for the classification task considering different low-dimensions and training set ratios for the DBLP network.

TABLE 4
AUC scores for representation sizes of 2 and 8 over moderate-sized

networks.

AstroPh GrQc Facebook HepTh Cora DBLP

Dimension (D) 2 8 2 8 2 8 2 8 2 8 2 8

DEEPWALK .831 .945 .845 .919 .958 .986 .773 .874 .684 .782 .803 .939
NODE2VEC .825 .950 .809 .884 .914 .988 .780 .881 .640 .776 .803 .945

LINE .632 .910 .688 .920 .751 .980 .659 .874 .634 .521 .625 .503
NETMF .800 .814 .830 .860 .872 .935 .757 .792 .629 .739 .838 .858

NETSMF .828 .891 .756 .805 .907 .976 .705 .810 .605 .737 .766 .857
RANDNE .524 .554 .534 .560 .614 .657 .519 .509 .508 .556 .508 .517

LOUVAINNE .798 .813 .861 .868 .957 .958 .774 .874 .767 .747 .900 .904
PRONE .768 .907 .818 .883 .900 .971 .678 .823 .675 .764 .813 .924

VERSE .899 .974 .885 .941 .970 .992 .844 .910 .749 .760 .910 .955
LDM .925 x .915 .943 .989 .991 .855 .919 .780 .786 .918 x

LDM-RE .943 x .925 .944 .990 .992 .869 .917 .770 .787 .926 x

HBDM .920 .960 .917 .944 .980 .986 .853 .915 .786 .792 .919 .956
HBDM-RE .939 .964 .926 .953 .986 .988 .871 .924 .774 .795 .930 .963

model rapidly converges. After a couple of thousand itera-
tions (very-scalable regime), we already obtain competitive
performance for link prediction, which then gently increases
until convergence. Our hyperparameter sensitivity analysis
focuses on the predictive performance in the downstream
task of link prediction. Since our method defines a likeli-
hood over the network, the link predictive performance here
shows how well the proposed framework characterizes gen-
eralizable patterns of network structure and we therefore
focus the analysis on this aspect rather than node classi-
fication. If the network structure complies with the node
classes, we can expect the node classification performance
to follow the same behavior as the link prediction task.
Potential disagreement in classification scores against the

TABLE 5
AUC for varying representation sizes over the large-scale networks.

YouTube Flickr Flixster Amazon

Dimension (D) 2 3 8 2 3 8 2 3 8 2 3 8

DEEPWALK .822 .891 .921 .889 .937 .972 .820 .866 .921 .839 .932 .972
NODE2VEC - - - - - - - - - .813 .880 .968

LINE .660 .832 .878 .685 .889 .812 .523 .868 .936 .626 .501 .500
NETMF x x x x x x x x x .829 .831 .858

NETSMF .939 .940 .949 .974 .977 .980 .987 .987 .987 .768 .786 .835
RANDNE .672 .700 .762 .833 .869 .903 .700 .739 .835 .507 .511 .514

LOUVAINNE .820 .819 .815 .898 .899 .909 .735 .718 .746 .955 .954 .954
PRONE .691 .761 .861 .623 .819 .908 .756 .803 .846 .847 .901 .944

VERSE .957 .964 .971 .880 .884 .858 .988 .988 .988 .951 .977 .988

HBDM .899 .920 .935 .972 .979 .986 .897 .916 .932 .974 .980 .988
HBDM-RE .940 .947 .957 .980 .985 .988 .962 .969 .971 .976 .981 .989
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Fig. 5. YouTube network—HBDM-RE runtime complexity in miliseconds
(ms) as a function of increasing sample sizes of network nodes (in terms
of N logN ) until the sample set becomes the node set of the total graph.
The y-axis showcases the average runtime over 100 iterations of the
forward pass while the shaded areas provide standard deviations, as
a measure of uncertainty. Runtimes are presented across D = 2, 3, 8
dimensions while we also show the runtime when the inferred hierarchy
of the HBDM-RE is created from scratch versus when it is kept static.
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Fig. 6. 2-D true embedding space versus 128D t-SNE constructed space. For TES, we provide AUC-ROC for the network reconstruction (NR) task.

TABLE 6
Micro-F1 scores varying dimension sizes for two moderate and

large-scale networks.

Cora DBLP Amazon YouTube

Dimension (D) 2 3 128 2 3 128 2 3 8 2 3 8

DEEPWALK .502 .712 .838 .519 .605 .822 .231 .596 .929 .293 .351 .413
NODE2VEC .419 .658 .835 .448 .540 .815 .096 .305 .895 - - -

LINE .197 .191 .794 .328 .294 .771 .005 .003 .003 .185 .134 .177
NETMF .389 .653 .835 .654 .707 .742 x x x x x x

NETSMF .554 .705 .842 .622 .732 .829 .387 .649 .845 .317 .361 .397
RANDNE .271 .337 .731 .406 .473 .718 .223 .411 .787 .211 .226 .277

LOUVAINNE .804 .811 .801 .780 .812 .825 .970 .971 .974 .362 .360 .359
PRONE .450 .611 .830 .574 .634 .825 .420 .750 .933 .218 .274 .379

VERSE .471 .719 .828 .518 .565 .757 .078 .416 .949 .243 .305 .393
LDM .810 .802 .774 x x x x x x x x x

LDM-RE .802 .803 .796 x x x x x x x x x

HBDM .789 .807 .816 .812 .814 .772 .970 .971 .931 .320 .366 .414
HBDM-RE .805 .813 .818 .805 .822 .808 .956 .955 .931 .326 .367 .414

link prediction scores implies that the node labels do not
follow the network structure, and such discrepancy would
be network specific rather than a limitation of the method
to be investigated.

3.3 Node classification
We assess the performance of the proposed framework
in the uni/multi-label classification task and provide the
Micro-F1 scores in TABLE 6 (Macro-F1 scores are reported
in the supplementary). Scores are defined as the mean value
over 10 random shuffles defining the training and test sets.
Standard deviations as error bars were found in the scale
of 10−3 and thus not presented. For the experimental setup,
we randomly pick 50% of nodes as the training set and use
the rest as the testing set. For an accurate comparison across
different methods, we used two simple classifiers, a linear
(logistic/multinomial regression classifier) and a non-linear
(linearithmic k-nearest neighbors (kNN ) classifier), and re-
port the highest scores. We found that all methods benefit

from using kNN. The number of neighbors was set to k = 10
(similar results were obtained with higher choices for k as
well). Lastly, we report the average Micro-F1 scores across
10 repeated trials. Results for the uni-labeled Cora and
DBLP networks are reported in the two leftmost columns
of TABLE 6. We observe that HBDM-RE and HBDM signif-
icantly outperform the baselines for the regimes of D = 2, 3
with only LOUVAINNE being competitive. Results for large-
scale and multi-labeled networks Amazon and YouTube
are provided by the two rightmost columns in TABLE 6.
Again, the proposed framework outperforms the baselines
for the low-dimensional regime with LOUVAINNE being on
par. Comparing our framework with the classic LDM-RE
and LDM, we again see an on-par performance which we
attribute to the HBDM well preserving the intrinsic proper-
ties of homophily and transitivity. We further investigate the
effect that the amount of training data has on classification
performance. In Fig. 4 we provide the performance across
multiple training size ratios and consider ultra-low dimen-
sional embeddings of D = 2, 3, 8 for the DBLP network. We
here observe that for the cases of D = 2, 3, our frameworks
significantly outperform all the baselines with only LOU-
VAINNE being competitive. Increasing the dimensionality
to D = 8, the baseline models are defined with enough
capacity to be competitive while HBDM and HBDM-RE
return favorable results.

3.4 Across tasks comparison:

We have considered multiple downstream tasks in each
of which various baselines were found to be competitive
against our HBDM frameworks. In general, the HBDM is
characterized by the most consistent performance across
tasks, especially for low dimensions. NETSMF was most
competitive in the large-scale networks but underperformed



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Lo
g2

-S
ED

(i) Dendrogram (ii) Embedding Space

(iii) L=1 (iv) L=3 (v) L=5 (vi) L=8

Fig. 7. Amazon network dendrogram, embedding space and ordered adjacency matrices for the learned D = 2 embeddings of HBDM-RE and
various levels (L) of the hierarchy.

TABLE 7
AUC scores for varying representation sizes over three bipartite

networks.

Drug-Gene GitHub Gottron-Reuters

Dimension (D) 2 3 8 2 3 8 2 3 8

DEEPWALK .673 .843 .878 .762 .853 .902 .673 .769 .905
NODE2VEC .758 .814 .793 .724 .823 .876 .694 .766 .830

LINE .798 .836 .867 .805 .766 .902 .715 .696 .850
NETMF .576 .598 .742 .711 .711 .708 .747 .747 .730

NETSMF .839 .838 .796 .846 .847 .857 .874 .934 .941
RANDNE .536 .551 .613 .615 .651 .707 .769 .808 .872

LOUVAINNE .760 .767 .779 .694 .702 .735 .654 .648 .679
PRONE .667 .765 .831 .676 .771 .840 .606 .725 .909

VERSE .910 .913 .922 .943 .952 .959 .962 .966 .967

HBDM .798 .836 .889 .849 .869 .905 .941 .949 .950
HBDM-RE .872 .891 .914 .932 .934 .937 .964 .967 .973

in the moderate-sized networks and node classification.
VERSE was the most competitive baseline across tasks but
massively underperformed in node classification for low di-
mensions. Furthermore, LOUVAINNE had high performance
in node classification but underperformed in link prediction.
Models such as NETSMF and VERSE can express struc-
tural (stochastic) equivalence while our HBDM explicitly
expresses homophily and transitivity. This can explain the
occasional higher performance of these baselines in the link
prediction task.

3.5 Runtime complexity:
We assess the runtime complexity of the HBDM-RE frame-
work in terms of increasing network sizes. In Fig. 5, we
consider the YouTube network and show the runtime com-
plexity in milliseconds (ms) as a function of increasing
sample sizes of network nodes (in terms of N logN ) until
the whole network is recovered. Runtimes are presented as

the average across 100 iterations of the forward pass while
the shaded areas provide the standard deviation. Runtimes
are presented across D = 2, 3, 8 dimensions while we also
compare the runtimes when the HBDM-RE builds the hier-
archical structure via the k-means procedure and when the
hierarchical structure is kept fixed. We here observe, that the
runtime increases almost linearly as we increase the number
of nertwork nodes. Comparing the runtime when creating
the hierarchy via the k-means procedure from scratch versus
keeping the dendrogram static from past iterations shows
a significant decrease in runtime for the latter (in the ex-
periments we create the hierarchy every 25’th iteration).
Thus, the main bottleneck of the HBDM-RE approach is the
computations required for the proposed Euclidean k-means
procedure. Despite being deemed outside of the scope of
this paper, such a bottleneck can be addressed by exploring
existing procedures scaling conventional squared Euclidean
k-means by avoiding unnecessary distance calculations [85]
or by the use of binary space partitioning trees [86]. Such
improved scaling would even admit utilization of non-
binary splits beyond the root node improving the accuracy
of the hierarchical approximation.

3.6 Network visualization
The graph representation learning literature mainly focuses
on embeddings with dimensionality greater than D =
2 and 3. As a direct consequence, network visualizations
rely on dimensionality reduction frameworks, typically us-
ing the t-distributed Stochastic Neighbor Embedding (t-
SNE) [87]. In order to verify the quality of the t-SNE
constructed Space (t-SNES), we provide the labeled-colored
True Embedding Space (TES) in Fig. 6 for D = 2, as well
as for D = 128 mapped to D = 2 via the use of t-SNE
for Cora and DBLP. We see that the HBDM-RE frameworks
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provide highly informative embeddings with no need for
dimensionality reduction, unlike the rest of the baselines.
This is also verified from the optimal performance in net-
work reconstruction, HBDM-RE can successfully express
the network structure using just D = 2. In Fig. 7 we
provide the hierarchical block structure constructed by the
HBDM-RE for the Amazon network. For visualization, we
used the average within-cluster Euclidean distance to the
centroid

(
∆{A,B} = 1

NA+NB

∑
i∈CA,CB

∥zi − µA
⋃

B∥2
)

,
as a linkage function to form a post-processing agglom-
erative clustering, for ordering the initial logN centroids.
In Fig. 7 (i), we provide the dendrogram which denotes
the agglomeration result in the top-level with red lines.
The dendrogram continues with the hierarchical splits of
our HBDM-RE where each color indicates the initial logN
blocks. The y-axis of the dendrogram represents the binary
logarithm of the Sum of Euclidean Distances, Log2-SED =

log2

(∑
i∈C

(l)
k

∥zi − µ
(l)
k ∥2

)
. Moreover, Fig. 7 (ii) conveys

the corresponding latent space, colored based on the coarse
logN split, revealing directly interpretable and accurate
network representations. In Fig. 7 (iii), (iv), (v) and (vi) we
showcase the organized adjacency matrices, based on the 2-
dimensional HBDM-RE learned hierarchy for various levels
L of the tree. We here, observe the representation power of
the extracted hierarchy from just a 2-dimensional HBDM-
RE defining communities and their sub-communities at finer
and finer details.

For the bipartite case, we show how HBDM-RE can
enhance our understanding of the bipartite structure at mul-
tiple scales and levels. Similar to the undirected case, Fig.
8 (i), indicates the dendrogram of the imposed hierarchy,
enriched with agglomeration for a coarse level block or-
dering and proximity for the GitHub network. In addition,
Fig. 8 (ii), provides the corresponding latent space, colored
based on the coarse logN split. Notably, no dimensionality-
reduction is necessary to define accurate network represen-
tation in the latent space of the two disjoint populations
and visually access and express node similarity. In Fig. 8
(iii), (iv) and (v), we exhibit how the multi-scale structure
evolves through different levels of the hierarchy defined by
HBDM-RE, showcasing how a joint bi-clustering for com-
plex network embeddings naturally can be obtained, with
no need for post-processing steps. Our HBDM, can thus
accurately characterize bipartite networks and successfully
uncover their hierarchical block structure efficiently.

4 DISCUSSION

We developed the HBDM, a scalable reconciliation of la-
tent distance models and their ability to account for ho-
mophily and transitivity with hierarchical representations
of network structures. We demonstrated how the proposed
HBDM provides favorable network representations by: (1)
Operating with a Euclidean distance metric providing an
intuitive human perception of node similarity. (2) Naturally
representing multiscale hierarchical structure based on its
block structure and carefully designed clustering procedure
optimized in terms of Euclidean distances. (3) Directly and
consistently operating in D = 2, 3 with high performance.
(4) Performing well on all considered downstream tasks

highlighting its ability to account for the underlying net-
work structure. Importantly, the inferred hierarchical struc-
ture admits community discovery at multiple scales as high-
lighted by the inferred dendrograms and ordered adjacency
matrices, and naturally extends to the characterization of
communities of bipartite networks.

Our finding of ultra-low dimensional accurate character-
izations of network structures supports the findings in [88]
in which a logistic PCA model was found to enable exact
low-dimensional recovery of multiple real-world networks.
Whereas the work of [88] focuses on exact network recon-
struction we find that generalizable patterns can be well
extracted in ultra-low dimensional representations with per-
formance saturating after just D = 8 dimensions for all
networks considered. Whereas [88] found that their low-
dimensional space did not perform well in classification
tasks we observed strong node classification performance by
the low-dimensional representations provided by HBDM.
Importantly, for node classification, we observed better per-
formance using KNN as opposed to simple linear classi-
fication based on logistic/multinomial regression typically
used for node classification. This highlights that whereas
most GRL works use linear classifiers there is no guarantee
that the embedding space will be linearly separable and
performance should therefore be compared to non-linear
classifiers as they may provide more favorable performance
as observed in this study.

Recent pioneering works [89], [90] have drawn signifi-
cant attention of the research community by questioning the
conventional embedding space preference. It is well known
that many real-world networks show power-law degree
distribution, or they can consist of latent hierarchical inner
structures. Therefore, Euclidean space might not always be
appropriate to represent such complex network architec-
tures. It might also require higher-dimensional spaces to
show comparable performance in the GRL tasks. The works
of [89], [90] demonstrated that hyperbolic spaces, such as
the Poincare disk model, can provide substantial benefits
over the Euclidean space. The presented HBDM model
naturally extends to other distance measures and future
studies should explore how the HBDM can be extended
to hierarchical representations beyond Euclidean geometry.

Covariate information plays an important role in the
outstanding performance of GRL methods and especially
GNNs. In the current LSM literature, side information
is accounted for by extra regressors in the logit/log link
functions expressing the likelihood of a dyad being con-
nected. Using the Mahalanobis distance imposing a block-
diagonal covariance matrix (see supplementary), the pro-
posed HBDM can naturally incorporate covariate informa-
tion directly to the latent space and notably construct multi-
scale structures via the enriched and concatenated embed-
ding of the latent variables and the covariate information.
Our analysis presently did not explore side information
and this is also why we did not include comparisons to
prominent GNN-based approaches as these procedures do
not provide favorable performance when only learning from
the graph structure itself. As such, we observed (not shown)
poor performance of GraphSage [91] when only having
access to the graph structure in the present setup. The
HBDM operates on static networks and thus is not naturally
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Fig. 8. GitHub network dendrogram, embedding space and ordered adjacency matrices for the learned D = 2 embeddings of HBDM-RE and
various levels (L) of the hierarchy.

an inductive model. Nevertheless, potential new emerging
nodes can be projected into the inferred latent space by
fixing the embeddings of nodes present in the training
set while optimizing the new nodes for their locations in
the learned latent space. We leave a comparison of such a
strategy against naturally inductive models such as GNNs
for future work.

Our discoveries highlight the existence and importance
of hierarchical multi-scale structures in complex networks.
The across hierarchy re-ordered adjacency matrices given by
HBDM, manifest sub-communities inside of what already
appears as a strongly connected community. This points
to how delicate the task of defining communities is and
the importance of accounting for communities at multi-
ple scales, as enabled by the HBDM. Importantly, these
results generalize for bipartite networks where multi-scale
geometric representations, joint hierarchical structures, and
community discovery are arduous tasks.

The HBDM uses the LDM and thus is good at char-
acterizing transitivity and homophily at a node and clus-
ter level, whereas the random effects enable accounting
for degree heterogeneity. Notably, the HBDM suffers from
the limitations of the LDM and is thus unable to model
stochastic equivalence. Future work should therefore inves-
tigate hierarchical structures imposed on more flexible GRL
procedures enabling stochastic equivalence and contrast the
performance when accounting for stochastic equivalence to
the existing hierarchical methods based on the SBM [44],
[45], [47]–[49], [52].

In conclusion, we proposed the Hierarchical Block Dis-
tance Model (HBDM), a scalable reconciliation of network
embeddings using the latent distance model (LDM) and
hierarchical characterizations of structure at multiple scales
via a novel clustering framework. Notably, the model mim-
ics the behavior of the LDM where the use of homophily
and transitivity is most important while scaling in com-
plexity by O(DN logN). We analyzed thirteen networks

from moderate sizes to large-scale with the HBDM having
favorable performance when compared to existing scalable
embedding procedures. In particular, we observed that the
HBDM well predicts links and node classes providing accu-
rate network visualizations and characterization of structure
at multiple scales. Our results demonstrate that favorable
performance can be achieved using ultra-low (i.e. D = 2)
embedding dimensions and a scalable hierarchical represen-
tation that accounts for homophily and transitivity.
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[28] N. Nakis, A. Çelikkanat, and M. Mørup, “Hm-ldm: A hybrid-
membership latent distance model,” 2022. [Online]. Available:
https://arxiv.org/abs/2206.03463
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Abstract. A central aim of modeling complex networks is to accurately
embed networks in order to detect structures and predict link and node
properties. The Latent Space Model (LSM) has become a prominent
framework for embedding networks and includes the Latent Distance
Model (LDM) and Eigenmodel (LEM) as the most widely used LSM
specifications. For latent community detection, the embedding space in
LDMs has been endowed with a clustering model whereas LEMs have
been constrained to part-based non-negative matrix factorization (NMF)
inspired representations promoting community discovery. We presently
reconcile LSMs with latent community detection by constraining the
LDM representation to the D-simplex forming the Hybrid-Membership
Latent Distance Model (HM-LDM). We show that for sufficiently large
simplex volumes this can be achieved without loss of expressive power
whereas by extending the model to squared Euclidean distances, we re-
cover the LEM formulation with constraints promoting part-based rep-
resentations akin to NMF. Importantly, by systematically reducing the
volume of the simplex, the model becomes unique and ultimately leads
to hard assignments of nodes to simplex corners. We demonstrate exper-
imentally how the proposed HM-LDM admits accurate node representa-
tions in regimes ensuring identifiability and valid community extraction.
Importantly, HM-LDM naturally reconciles soft and hard community
detection with network embeddings exploring a simple continuous op-
timization procedure on a volume constrained simplex that admits the
systematic investigation of trade-offs between hard and mixed member-
ship community detection.

Keywords: Latent Space Modeling, Community Detection, Non-negative
Matrix Factorization, Graph Representation Learning.

1 Introduction

Networks naturally arise in the vast majority of scientific domains from physics
to biology in order to model interactions among diverse entities with numerous
instances such as collaboration, protein-protein, and brain connectivity networks
[23]. Hence, graph analysis tools have become crucial to extract and analyze
the underlying meaningful information from networks. In this direction, Graph

132



2 Nikolaos Nakis, Abdulkadir Çelikkanat, and Morten Mørup

Representation Learning (GRL) [36] approaches have become a dominant way to
carry out various downstream tasks such as node classification, link prediction,
and community detection thanks to their superior performance compared to
the classical techniques. GRL models mainly aim to map similar nodes in the
network to close latent positions in a low dimension space by automatically
learning corresponding node features [7].

The initial GRL works aimed to learn representations or features by simulat-
ing random walks over networks, taking inspiration from the Natural Language
Processing field [4, 6, 25, 27, 31]. They mainly extract embeddings by optimizing
the co-occurrence probability of node pairs within a certain distance through
random walks. In recent years, we have witnessed a tremendous increase in the
number of Graph Neural Networks (GNN) [7] methods with their usage in su-
pervised tasks. They primarily rely on iterative message-passing operations of
node attributes and hidden features around the surroundings of nodes for a
given task. The matrix decomposition-based models [26, 27] are also a notable
class of the GRL methods. They learn node embeddings by decomposing a de-
signed target matrix based on first and higher-order proximity. However, few
GRL methods rely on Non-negative Matrix Factorization (NMF), although it is
a popular technique for unsupervised signal decomposition and approximation of
multivariate non-negative data. NMF techniques have gathered lots of attention
since they allow for structure retrieval through the latent factors of the imposed
decomposition providing easy interpretable part-based representations [18].

Applications of NMF include network analysis allowing for efficient, unsuper-
vised, and overlapping community detection, as well as GRL [2,20,33,34]. Within
the NMF formulation, various works have sought to define mixed-membership
frameworks for analysis and community detection purposes. A Mixed-Membership
Stochastic Block Model (MM-SBM) [1] has been linked to the symmetric-NMF
decomposition with uniqueness guarantees [20]. Standard least-squares NMF op-
timization was exchanged to a Poisson likelihood optimization for obtaining the
propensity of nodes belonging to different communities [2]. In addition, a GRL
approach for overlapping communities was presented in [33] where NMF was uti-
lized to discover Poisson distributed mixed-memberships. These works, design
mixed-memberships vectors for part-based representations [18] projected in an
NMF constructed space where node similarity, as well as, position and metric
properties, can be abstract.

The Latent Space Models (LSMs) are also one of the most powerful ways to
learn latent representations [22]. These methods employ generalized linear mod-
els for constructing latent node embeddings which express important network
characteristics. More specifically, the LDM [11] employs the Euclidean norm
for positioning similar nodes closer in the latent space, which comes as a di-
rect consequence of the triangular inequality, naturally representing transitivity
(”a friend of a friend is a friend”) and homophily (a tendency where similar
nodes are more likely to connect to each other than dissimilar ones) properties.
The LDM can be generalized through the Eigenmodel [10] that can account for
stochastic equivalence (”groups of nodes defined by shared intra- and inter-group
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relationships”) akin to the SBM [1] and the mixed membership SBM [1]. Further-
more, LDMs have been endowed with a clustering model imposing a Gaussian
Mixture Model as prior forming the latent position clustering model [8, 29].

In this study, we propose a novel unsupervised representation learning method
over graphs, namely, the Hybrid-Membership Latent Distance Model (HM-
LDM), by bringing together the strengths of LDM and NMF. Specifically, the
HM-LDM offers a reconciliation between part-based representations of networks
and low-dimensional latent spaces satisfying similarity properties such as ho-
mophily and transitivity. The choice of these similarity properties is of high
significance and one of the key characteristics behind GRL since they allow for
easily interpretable discovery of network structure. Additionally, our proposed
method permits us to capture the latent community structure of the networks
using a simple continuous optimization procedure over the log-likelihood of the
network. Notably, unlike most existing approaches imposing hard community
memberships constraints, the assignment of community memberships in our pro-
posed hybrid model can be controlled and altered through the simplex volume
formed by the latent node representations. We extensively evaluate the perfor-
mance of the proposed method in the ability to perform link prediction, as well
as, community discovery over various networks of different types. We demon-
strate that our model outperforms recent methods.
Source code: Hybrid-Membership Latent Distance Model .

2 Problem statement and proposed method

Let G = (V, E) be an undirected graph where V shows the vertex set and E ⊆
V ×V the edge set. We use YN×N = (yi,j) ∈ {0, 1}N×N to denote the adjacency
matrix of the graph where yi,j = 1 if the pair (i, j) ∈ E otherwise it is equal
to 0 for all 1 ≤ i < j ≤ N := |V|. Our main goal is to learn a representation,
wi ∈ RD, for each node i ∈ V in a lower dimensional space (D ≪ N) such that
similar nodes in the network should have close embeddings. More specifically,
we concentrate on mapping the nodes into the unit D-simplex set, ∆D ⊂ RD+1

+ .
Therefore, the extracted node embeddings can convey information about latent
community memberships. Many GRL approaches also do not provide identifiable
or unique solution guarantees, so their interpretation highly depends on the
initialization of the hyper-parameters. In this study, we will also address the
identifiability problem and seek identifiable solutions which can only be achieved
up to a permutation invariance, as reported in Def. 1.

Definition 1 (Identifiabilty). An embedding matrix W whose rows indicating
the corresponding node representations is called an identifiable solution up to a

permutation if it holds W̃ = WP for a permutation P and a solution W̃ ̸= W.

We define a Poisson distribution over the adjacency matrix Y of the network
G = (V, E) to be conditionally independent given the unobserved latent positions,
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and write the log-likelihood function as follows:

logP (Y|Λ) =
∑
i<j

yij=1

log(λij) −
∑
i<j

(
λij + log(yij !)

)
. (1)

where Λ = (λij) is the Poisson rate matrix which has absorbed the dependency
over the model parameters. We here adopted a Poisson regression model similar
to the work in [9]. In this study, we make use of a Poisson likelihood for modeling
binary networks, as validated in [33].

We propose the Hybrid-Membership Latent Distance Model (HM-LDM)
with a log-rate based on the ℓ2-norm as:

log λij =
(
γi + γj − δp · ||wi −wj ||p2

)
, (2)

where wi ∈ [0, 1]D+1 and
∑D+1

d=1 wid = 1, δ ∈ R+ and γi ∈ R denotes the
node-specific random-effects [9, 16] describing essentially the tendency of nodes
to sending and receiving connections, accounting for degree heterogeneity. In
addition, the norm degree p ∈ {1, 2} controls the power of the ℓ2-norm and
combined with the latent embeddings sum-to-one condition constrains the latent
space to the D−simplex with size equal to δ. A remarkable property of Eq.
(2), for p = 2, is that it resembles a positive Eigenmodel with random effects:
γ̃i + γ̃j + (w̃iΛw̃⊤

j ) where Λ is a diagonal matrix having non-negative elements,

i.e. γ̃i = γi− δ2 · ||wi||22, γ̃j = γj − δ2 · ||wj ||22 and w̃iΛw̃⊤
j = 2δ2 ·wiw

⊤
j thus the

squared Euclidean distance reconciles the conventional LDM and non-negativity
constrained Eigenmodel. The squared Euclidean distance is not fully a metric
but it still expresses homophily, leading to an interpretable latent space. Even
though the triangle inequality is not exactly satisfied, it preserves the ordering
of pairwise Euclidean distances, and it is highly preferred in applications since it
is a strictly convex smooth function. By the well-known cosine formula, we have

||wi −wj ||22 = ||wi −wk||22 + ||wk −wj ||22 − 2||wi −wk||2||wk −wj ||2 cos(θ),

where θ ∈ (−π/2, π/2) is the angle betweenwi−wk andwk−wj . Notice that the
third term also converges to 0 for θ → π/2. For the case where θ ∈ [−π/2, π/2],
it holds the triangle inequality: ||wi −wj ||22 ≤ ||wi −wk||22 + ||wk −wj ||22.

The embedding vectors, {wi}Ni=1 in Eq. (2), are constrained to non-negative
values and to sum to one. Thereby, they reside on a simplex showing the par-
ticipation of node i ∈ V over D + 1 latent communities. Any LDM can be
translated to the non-negative orthant without any loss in performance or in
expressive capability. Non-negative embeddings do not affect the distance met-
ric, as it is invariant to translation, as shown by Figure 1 (a). In addition, the
D-dimensional non-negative orthant can be reconstructed by a large enough D-
simplex. Based on these arguments, it is trivial to show that for large values
of the δ parameter in Eq. (2), despite the sum-to-one constraint on the embed-
dings W, we obtain an unconstrained LDM, as distances are unbounded when
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(a) Translation in-
variances.

(b) Rotation invari-
ances.

(c) Decreased simplex volume
ensuring identifiability.

Fig. 1: A 2-dimensional latent space with the 2-simplex given as the green and
yellow triangles, the blue points denote embedding positions of the LDM and δ
is the simplex size.

δ → +∞. In this case, the memberships defined by W are not uniquely identifi-
able due to the distance invariance of rotation, as seen in Figure 1 (b). However,
by shrinking the simplex volume (equivalent to decreasing δ), eventually, the
D-dimensional space of LDM will no longer be enclosed inside the D-simplex,
forcing nodes to start populating the corners of this smaller simplex. We call a
node champion if its latent representation is a standard binary unit vector.

Definition 2 (Community champion). A node for a latent community is
called champion if it belongs to the community (simplex corner) while forming a
binary unit vector.

The champion nodes are of great significance for identifiability because if
every corner of the simplex is populated by at least one node (champion), then
the solution of the model is identifiable (up to a permutation matrix) (Def.
1) as any random rotation does not leave the solution invariant anymore, as
shown by Figure 1 (c). We observe then, that the scalar, δ, controls the type of
memberships of the model and its expressive capabilities. Large enough values
lead to the basic LDM but inherits its rotational invariance. Small values of δ
lead to identifiable solutions and ultimately hard cluster assignments. Thereby,
for very small values of δ, nodes are solely assigned to the simplex corners. Lastly,
we can also find regimes of values for δ that offer identifiable solutions but also
performance similar to LDM, defining a silver lining.

A different take on the identifiability of the model for p = 2, can also be given
under the Non-negative Matrix Factorization (NMF) theory. This is easily shown
by a re-parameterization of Eq. (2) by γ̃i+ γ̃j +2δ2 · (wiw

⊤
j ) as described in Eq.

(2). In this formulation, the product WW⊤ defines a symmetric NMF problem
which is an identifiable and unique factorization (up to permutation invariance)
when W is full-rank and at least one node resides solely in each simplex corner,
ensuring separability [12,20]. Under this NMF formulation, the product wiw

⊤
j ∈

[0, 1] achieves its upper bound only if both nodes i and j reside in the same corner
of the simplex. The parameter, δ, acts as a simple multiplicative factor in the first
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Table 1: Network statistics; |V|: # Nodes, |E|: # Edges, |K|: # Communities.

AstroPh [19] GrQc [19] Facebook [19] HepTh [19] Hamilton [21] Amherst [21] Rochester [21] Mich [21]

|V| 17,903 5,242 4,039 8,638 2,118 2,021 4,145 2,933
|E| 197,031 14,496 88,234 24,827 87,486 87,496 145,305 54,903
|K| - - - - 15 15 19 13

term of the objective function of HM-LDM, given in Eq. (1), while in the second
term acts as a power of the exponential function. For small values of δ, the model
is biased towards hard latent community assignments of nodes since similar nodes
achieve high rates only when they belong to the same latent community (simplex
corner). On the other hand, nodes heading towards the simplex corners for large
values of δ lead to an exponential change in the second term of the log-likelihood
function given in Eq. (1). Thus, a possible hard allocation of dissimilar nodes
to the same community penalizes the likelihood severely. For this reason, high
order of δ benefits mixed-membership allocations.

3 Experimental evaluation

We proceed by evaluating the efficiency and performance of the proposed method.
In our set-up, we make use of networks with unknown community structures, as
well as, with ground-truth communities. We employ the former networks to val-
idate the ability of our framework to discover identifiable latent structures and
predict missing links. The latter networks are used to verify that the HM-LDM
discovers communities successfully. We consider multiple social and scientific col-
laboration networks as shown by Table 1. We treat all networks as unweighted
and undirected.

For the training of HM-LDM we optimize the log-likelihood function of Eq.
(1) via the Adam optimizer [15] with learning rate lr ∈ [0.01, 0.1]. The node-
specific random effects vector γ ∈ RN is randomly initialized and then tuned
alone by optimizing a Poisson log-likelihood with a rate as log λij = γi + γj .
Next, the latent embeddings matrix W is initialized based on the eigenvalues
obtained by the spectral decomposition of the normalized Laplacian matrix of the
network [13,24]. In all experiments, we compare against unsupervised methods,
and we do not include GNNs since they perform poorly in unsupervised tasks
due to the over-smoothing effect [35].

Link prediction: For the link prediction experiments, we follow the well-
established strategy [6, 25] and remove 50% of the network edges while keeping
the residual network connected. The removed edges combined with a sample
of the same number of node pairs (which are not the edges of the original net-
work) construct the negative instances for the testing set. We utilize the residual
network to learn the node embeddings.

We consider four networks with unknown community structures and asses
performance across different dimensions. In Table 2, we compare the results of
our method with other prominent GRL and NMF approaches in terms of the
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Table 2: Area Under Curve (AUC-ROC) scores for varying representation sizes.

AstroPh GrQc Facebook HepTh

Dimension (D) 8 16 32 8 16 32 8 16 32 8 16 32

DeepWalk [25] .945 .950 .952 .919 .916 .929 .986 .986 .984 .874 .867 .873
Node2Vec [6] .950 .962 .957 .897 .913 .930 .988 .988 .987 .881 .882 .881

LINE [31] .909 .938 .947 .920 .925 .919 .981 .987 .983 .873 .886 .882
NetMF [27] .813 .823 .839 .860 .866 .877 .935 .963 .971 .792 .806 .821

NetSMF [26] .891 .901 .919 .837 .858 .886 .975 .981 .985 .809 .822 .836
LouvainNE [3] .813 .811 .819 .868 .875 .873 .958 .961 .963 .874 .867 .873

ProNE [37] .907 .929 .947 .885 .911 .921 .971 .982 .987 .827 .846 .859

NNSED [30] .861 .882 .891 .792 .808 .828 .908 .927 .935 .756 .779 .796
MNMF [32] .893 .925 .943 .911 .928 .937 .965 .978 .982 .857 .880 .891

BigClam [34] .500 .723 .810 .752 .769 .780 .744 .722 .647 .776 .700 .748
SymmNMF [17] .767 .779 .800 .729 .772 .835 .933 .942 .951 .696 .727 .766

HM-LDM(p = 1) .956 .952 .952 .944 .948 .951 .982 .979 .974 .916 .921 .924
HM-LDM(p = 2) .972 .973 .963 .940 .942 .946 .992 .993 .993 .908 .910 .911

Area Under Curve-Receiver Operating Characteristic (AUC-ROC). All base-
lines have been tuned and feature vectors for dyads are constructed based on
binary operators (average, Hadamard, weighted-L1, weighted-L2) [6]. For these
constructed feature vectors we further train a logistic regression model with L2

regularization to make predictions. In particular, for the baselines we choose the
hyperparameter settings for each model, as well as, the binary operator for which
the logistic regression predictions return the maximum AUC-ROC score.

In contrast, for our models, we adopt an unbiased evaluation, and we choose
the first of the considered δ values which keeps the solution identifiable (at least
one champion per community), as δ decreases. We note though, the existence
of identifiable regimes with higher predictive power. Furthermore, predictions
and AUC-ROC scores for HM-LDM, can be obtained directly (without the use
of a logistic regression model) and are based on the learned Poisson rates λij

of the test set pairs {i, j}. The true dimensions for HM-LDM are D + 1 but
reported as D since they express the true number of model parameters, for a fair
comparison with the baselines. For our method, we show the mean performance
over five independent runs (error bars were found to be in the scale of 10−3 and
thus not presented).

Comparing now the results with the non-NMF models, we observe that our
HM-LDM (either p = 1 or p = 2) outperforms the baselines and in most cases
significantly, returning favorable results. For the NMF models, we see mostly a
big performance gap with the HM-LDM, showcasing the existence of regimes for
δ where we can successfully achieve identifiable community memberships while
also exhibiting the link prediction power of the LDM. (AUC Precision-Recall
scores are similar to the AUC-ROC scores and thus not presented)

Performance and simplex sizes: In Figure 2, we provide the link predic-
tion performance as a function of δ2 in terms of the AUC-ROC scores across
various latent dimensions, networks and for both p = 1 and p = 2. We here
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observe that small δ values provide the minimum scores. This phenomenon is
anticipated due to the fact that homophily properties are not sufficiently met
(except within clusters) due to the very small simplex volume that these low δ
values define. Rethinking HM-LDM with p = 2 as a positive Eigenmodel, we
can also notice how the positivity constraint on the Λ diagonal matrix does not
allow for stochastic equivalence properties which would essentially boost perfor-
mance even on low simplex volumes. As we increase the values of δ, we naturally
reach the performance of an unconstrained LDM. Comparing now, the squared
and simple ℓ2-norm metric we observe that the former converges to performance
saturation more rapidly.

Type and quality of latent memberships: In order to understand how
the size of the simplex affects the membership types of HM-LDM, we provide
in Figure 3 the total network percentage of community champions as a function
of δ2 across various latent dimensions. As expected, for very small values of δ al-
most 100% of nodes are assigned solely to a unique simplex corner, yielding hard
cluster assignments. As we increase δ, we observe that more and more nodes are
assigned with mixed-memberships; on the other hand, the number of champions
goes to zero across all dimensions for large values of δ. Contrasting again, the
different powers p of the HM-LDM formulation, we notice that the decrease in
community champions is steeper for p = 2. This also explains why the squared
ℓ2 choice leads to faster convergence in the AUC-ROC, as the model converges
faster to the classic LDM. Overall, it is evident that the p = 2 HM-LDM needs
smaller simplex volumes to be identifiable. We continue with assessing unique
latent structures of HM-LDM. For that purpose, in Figure 4 we provide the
reorganized adjacency matrices with respect to the community allocations of
HM-LDM (for mixed-memberships we assign a node based on the maximum
membership). We witness how HM-LDM successfully discovers latent commu-
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Fig. 2: AUC-ROC scores as a function of δ2 across dimensions for HM-LDM.
Top row: p = 2. Bottom row p = 1.
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Fig. 3: Total community champions (%) in terms of δ2 across dimensions for
HM-LDM. Top row: p = 2. Bottom row p = 1.

(a) GrQc (p = 2) (b) HepTh (p = 2) (c) GrQc (p = 1) (d) HepTh (p = 1)

Fig. 4: Ordered adjacency matrices based on the memberships of a D = 16
dimensional HM-LDM with δ values ensuring identifiability.

nities, facilitating part-based network representations while choosing appropriate
δ regimes ensure identifiability.

Experiments using real ground-truth communities: In order to assess
the ability of HM-LDM to discover informative communities, we make use of
four networks providing ground-truth community labels. For the NMF-based
methods, including ours, we test the ability of the algorithms to detect valid
structures by comparing the inferred memberships with the ground-truth com-
munity labels while we set the latent dimensions to be equal to the total number
of communities. For the GRL approaches which do not define memberships, we
extract latent embeddings and use k-means (average over 20 runs for robustness)
to obtain memberships. We report the Normalized Mutual Information (NMI)
score, as well as, the Adjusted Rand Index (ARI), both measures have been
validated for community quality assessment in [5]. Again, all the baselines have
been tuned individually for each network in terms of their hyperparameters. In
contrast, for our HM-LDM, we do not perform any tuning and we just set δ = 1
for all networks since this choice provides in general informative and mostly hard
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Table 3: Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI)
scores for networks with ground-truth communities.

Amherst Rochester Mich Hamilton

Metric NMI ARI NMI ARI NMI ARI NMI ARI

DeepWalk [25] .498 .347 .348 .205 .207 .157 .447 .303
Node2Vec [6] .535 .375 .364 .223 .217 .161 .481 .348

LINE [31] .549 .452 .365 .217 .249 .192 .499 .411
NetMF [27] .491 .330 .377 .243 .237 .136 .456 .297

NetSMF [26] .562 .408 .381 .228 .242 .169 .494 .391
LouvainNE [3] .562 .395 .347 .204 .175 .114 .475 .334

ProNE [37] .536 .443 .356 .312 .229 .200 .478 .396

NNSED [30] .295 .243 .168 .116 .064 .035 .335 .285
MNMF [32] .542 .362 .324 .171 .188 .102 .466 .287

BigClam [34] .091 .066 .028 .022 .024 .015 .053 .041
SymmNMF [17] .596 .397 .308 .175 .207 .088 .437 .341

HM-LDM(p = 1) .562 .502 .400 .392 .228 .205 .527 .485
HM-LDM(p = 2) .539 .506 .384 .373 .217 .183 .507 .504

cluster assignments. For our method and the classic LDMs, we report scores av-
eraged over five independent runs in each of which we run the algorithm five
times extracting the model with the lowest training loss to remove the effect of
local-minimas. We summarize our findings in Table 3, where we witness mostly
favorable or on-par performance of HM-LDM with all of the competitive base-
lines for the NMI metric. For the ARI metric, we observe that our framework
outperforms significantly the baselines in all of the considered networks.

Comparison with the LDM: We further investigate the performance of
HM-LDM against the LDM, including random effects for a fair comparison and
for both normal and squared ℓ2-norm LDM-Re and LDM-Re-(ℓ2)2, respec-
tively. Towards that aim, in Table 4 and Table 5 we provide the performance
scores for the link prediction and clustering tasks of each model. We here witness
that constraining the latent space in identifiable simplex volumes leads to a minor
decrease in the predictive power, in terms of the AUC-ROC. For the community
detection task, we see favorable NMI scores while the HM-LDM leads to con-
siderably higher ARI scores. Comparing the classical LDM with HM-LDM for
δ2 = 103 provides on-par link-prediction performance but the clustering scores
drop significantly. This is expected as for large simplex volumes the HM-LDM
approximates almost exactly the LDM with the cost of identifiability.

Extension to bipartite networks: Finally, we showcase the extension of
our HM-LDM framework to the analysis of bipartite networks. This is straight-
forward by introducing a different set of latent variables for the two disjoint
sets of nodes, as defined by the bipartite structure. In particular, HM-LDM
for p = 2, simply extends the symmetric NMF formulation, obtained for the
undirected networks, to the non-symmetric NMF specification. In Figure 5, we
provide the re-ordered adjacency matrix with respect to the community allo-
cations defined by the learned embeddings of HM-LDM for a Drug-Gene [19]
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Table 4: HM-LDM and LDM-Re comparison for the link prediction task.

AstroPh GrQc Facebook HepTh

Dimension (D) 8 16 32 8 16 32 8 16 32 8 16 32

LDM-Re .973 .974 .979 .949 .952 .954 .993 .994 .992 .920 .923 .923
HM-LDM(p = 1, δ2 = identifiable) .956 .952 .952 .944 .948 .951 .982 .979 .974 .916 .921 .924
HM-LDM(p = 1, δ2 = 103) .967 .967 .965 .956 .955 .951 .985 .986 .987 .932 .931 .926

LDM-Re-(ℓ2)2 .979 .978 .976 .944 .944 .945 .990 .990 .991 .913 .912 .909
HM-LDM(p = 2, δ2 = identifiable) .972 .973 .963 .940 .942 .946 .992 .993 .993 .908 .910 .911
HM-LDM(p = 2, δ2 = 103) .984 .983 .980 .948 .946 .946 .991 .991 .992 .920 .918 .913

Table 5: HM-LDM and LDM-Re comparison for the clustering task.

Amherst Rochester Mich Hamilton

Metric NMI ARI NMI ARI NMI ARI NMI ARI

LDM-Re .548 .366 .391 .212 .230 .132 .491 .320
HM-LDM(p = 1, δ2 = identifiable) .562 .502 .400 .392 .228 .205 .527 .485
HM-LDM(p = 1, δ2 = 103) .439 .386 .308 .303 .176 .133 .405 .377

LDM-Re-(ℓ2)2 .546 .370 .393 .211 .231 .137 .497 .327
HM-LDM(p = 2, δ2 = identifiable) .539 .506 .384 .373 .217 .183 .507 .504
HM-LDM(p = 2, δ2 = 103) .240 .133 .206 .119 .116 .056 .232 .209

network (|V| = 7, 341|, |E| = 15, 138) where we observe a clear block structure.
Importantly, the HM-LDM offers identifiable joint embedding representations,
mixed memberships, and community discovery for bipartite networks, tasks con-
sidered to be non-trivial and arduous.

Complexity analysis: The HM-LDM framework requires the computa-
tion of the node pairwise distance matrix and consequently scales prohibitively
as O(N2) in time and space. Fortunately, there are various ways of scaling HM-
LDM for the analysis of large-scale networks. One way is through unbiased
estimators of the log-likelihood given by Eq. (1). This is possible through ran-
dom sampling a set of network nodes S (per iteration) and taking a gradient
step based on the log-likelihood of the block defined by the sampled node-set,
returning an O(S2) space and time complexity. Another option is through the
case-control approach [28] scaling on the number of network edges as O(E).

(a) p = 1, δ = 1 (b) p = 2, δ = 1

Fig. 5: Drug-Gene ordered adjacency matrices based on HM-LDM with D = 8.
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Lastly, the Hierarchical Block Distance Model (HBDM) [22] is an attractive
option where gradient steps over the model parameters are based on a hierar-
chical approximation of the likelihood of the whole network. The HBDM model
scales linearithmicly as O(N logN) both in space and time while also offering
hierarchical characterizations of structures at multiple scales.

4 Conclusion and future work

In this paper, we have proposed the HM-LDM that reconciles network embed-
ding and latent community detection. The approach utilizes both the normal and
squared Euclidean distance model where the latter integrated the non-negativity
constrained Eigenmodel with the Latent Distance Model. We demonstrated that
the model could be constrained to the simplex without losing expressive power.
The reduced simplex provides unique representations, ultimately resulting in
hard clustering of nodes to communities when the simplex is sufficiently shrunk.
Notably, the proposed HM-LDM combines network homophily and transitivity
properties with latent community detection enabling explicit control of soft and
hard assignment through the volume of the induced simplex. We observed fa-
vorable link prediction performance in regimes in which the HM-LDM provides
unique representations while enabling the ordering of the adjacency matrix in
terms of prominent latent communities. Finally, we showed the ability of the
model to extract correct community structures across multiple networks and
showcased how the analysis extends to bipartite networks. Future work should
compare the performance of HM-LDM against classical non-embedding meth-
ods such as the Degree Corrected Stochastic Block Model (DC-SBM) [14] or the
Mixed Membership Stochastic Block Model (MM-SBM) [1]. Such a comparison
is of particular interest since DC-SBM accounts for degree heterogeneity while
MM-SBM for soft assignments, two important properties of HM-LDM.
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22. Nakis, N., Çelikkanat, A., Jørgensen, S.L., Mørup, M.: A hierarchical block distance
model for ultra low-dimensional graph representations (2022)

23. Newman, M.E.J.: The structure and function of complex networks. SIAM Review
45(2), 167–256 (2003)

24. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algo-
rithm. In: Proceedings of the 14th International Conference on Neural Information
Processing Systems: Natural and Synthetic. p. 849–856. NIPS’01, MIT Press, Cam-
bridge, MA, USA (2001)

25. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social represen-
tations. In: KDD. p. 701–710 (2014)



14 Nikolaos Nakis, Abdulkadir Çelikkanat, and Morten Mørup
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Abstract

Graph representation learning has become a
prominent tool for the characterization and un-
derstanding of the structure of networks in gen-
eral and social networks in particular. Typically,
these representation learning approaches embed
the networks into a low-dimensional space in
which the role of each individual can be char-
acterized in terms of their latent position. A
major current concern in social networks is the
emergence of polarization and filter bubbles pro-
moting a mindset of ”us-versus-them” that may
be defined by extreme positions believed to ul-
timately lead to political violence and the ero-
sion of democracy. Such polarized networks are
typically characterized in terms of signed links
reflecting likes and dislikes. We propose the
Signed Latent Distance Model (SLDM) utiliz-
ing for the first time the Skellam distribution as
a likelihood function for signed networks. We
further extend the modeling to the characteriza-
tion of distinct extreme positions by constrain-
ing the embedding space to polytopes, form-
ing the Signed Latent relational dIstance Model
(SLIM). On four real social signed networks of
polarization, we demonstrate that the models ex-
tract low-dimensional characterizations that well
predict friendships and animosity while SLIM
provides interpretable visualizations defined by
extreme positions when restricting the embed-
ding space to polytopes.

Proceedings of the 26th International Conference on Artificial
Intelligence and Statistics (AISTATS) 2023, Valencia, Spain.
PMLR: Volume 206. Copyright 2023 by the author(s).

1 INTRODUCTION

For several decades, the origin and influence of political
polarization have been issues receiving considerable at-
tention both within scholarly research and the public me-
dia (Hetherington, 2009). Several studies have demon-
strated an increasing partisan polarization among the po-
litical elites, some of which rely on network science ap-
proaches, for instance, using co-voting similarity networks
and modularity to model and explain the distinct aspects
of the data (Moody and Mucha, 2013). Whereas polariza-
tion has been described in terms of communities and their
boundary properties (Guerra et al., 2013), latent distance
modeling has also been used to extract bipolar structures
(Barberá et al., 2015).

Ideological polarization is the distance between policy
preferences, typically of elites taking extreme stands on is-
sues whereas the electoral behavior is denoted affective po-
larization. When these extremes are portrayed as existen-
tial in the media, they typically form an ”us-versus-them”-
mindset (Dagnes, 2019). From a social network perspec-
tive, the process of polarization has been described to occur
when ”homophily and influence become self-reinforcing
when the attraction to those who are similar and differenti-
ation from those who are dissimilar entail greater openness
to influence. The result is network autocorrelation—the
tendency for people to resemble their network neighbors”
(DellaPosta et al., 2015).

To better capture ideological polarization, we turn to signed
networks. Signed networks reflect complex social polar-
ization better than unsigned networks because they capture
positive, negative, and neutral relationships between enti-
ties. The study of signed networks goes back to the ’50s
and was motivated by friendly and hostile social relation-
ships (Harary, 1953). Since then they have been used to
study networks of Twitter users (Keuchenius et al., 2021)
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and US Congress members (Thomas et al., 2006), two ex-
amples of polarized social networks (Garimella and Weber,
2017; Neal, 2020).

In this paper, we focus on polarization as extreme positions
and argue that the multi-polarity of ”us-versus-them” rein-
forced by homophily and influence can be characterized by
a latent position model (i.e., the latent distance model (Hoff
et al., 2002)) of networks confined to a constrained social
space formed by a polytope, what we denote a sociotope.
As such, the corners of the sociotope define distinct aspects
(i.e., poles) formed by polarized networks’ tendencies to
self-reinforce homophily by positive ties driving those who
are similar close as opposed to those that are negatively
tied being repelled. This can be revealed in terms of the
important multiple poles of social network defining cor-
ners of such sociotope. Within these corners, positive in-
teractions between nodes place them in close proximity in
space thereby accounting for homophily while negative in-
teractions ”push” nodes far apart (towards opposing poles)
yielding the ”us-versus-them” effect.

The conceptual idea of polytopes as formed by pure types
can be traced back to Plato’s forms, which characterize the
physical world as a limited projection of the forms also re-
ferred to as ideal categories. Later, Carl Jung introduced
the concept of universal archetypes, described as a collec-
tive unconscious, in which he related to Plato’s forms by
describing the forms as a Jungian version of the Platonian
archetypes (Williamson, 1985). Employing the theoretical
concept of archetypes to political and ideological polariza-
tion, the archetypes could be interpreted as genuine ideolo-
gies, while the ideological advocates can be expressed as a
mixture of distinct ideologies.

Archetypal Analysis (AA) is a prominent framework for
extracting polytopes in tabular data. AA was originally
proposed by Cutler and Breiman (1994) as an unsupervised
learning method that favors distinct aspects, archetypes, of
the data in which observations are characterized by con-
vex combinations (i.e., mixtures) of these archetypes as op-
posed to clustering procedures extracting prototypical ob-
servations (Mørup and Kai Hansen, 2010). AA has pre-
viously been used to model societal conflicts in Europe
(Beugelsdijk et al., 2022). However, given that AA was
proposed for tabular data, the applications are currently re-
stricted to non-relational data. Thus, whereas the charac-
terization of data in terms of distinct aspects and polytopes
has a long history, such representation learning approaches
have not previously been considered in the context of net-
work analysis for the extraction of polarization by several
extremes.

In the last years, representation learning of signed graphs
has gathered substantial attention, with applications such
as signed link prediction (Chiang et al., 2011), and com-
munity detection (Tzeng et al., 2020). Initial works ex-

tended the prominent random walks framework (Perozzi
et al., 2014; Grover and Leskovec, 2016) to the analysis of
signed networks. SIDE (Kim et al., 2018b) exploits trun-
cated random walks on the signed graph with interaction
signs for each node pair inferred based on balance theory
(Cartwright and Harary, 1956). Balance theory is a socio-
psychological theory admitting four rules: “The friend of
my friend is my friend,” “The friend of my enemy is my
enemy,” “The enemy of my friend is my enemy,” and “The
enemy of my enemy is my friend.” POLE (Huang et al.,
2022), also utilizes balance theory-based signed random
walks to construct an auto-covariance similarity which is
used to obtain the embedding space. Neural networks have
also been adopted for the analysis of signed networks. Both
SINE (Wang et al., 2017) and SIGNET (Islam et al., 2018)
combine balance theory and multi-layer neural networks
to learn the network embeddings while SIGNet uses tar-
geted node sampling to provide scalable inference. In ad-
dition, graph neural networks have also been studied in
the context of signed graphs. More specifically, SIGAT
(Huang et al., 2019) and SDGNN (Huang et al., 2021)
combine balance and status theory with graph attention to
learn signed network embeddings. The status theory is an-
other important socio-psychological theory for directed re-
lationships where for a source and a target node, a positive
directed connection assumes a higher status of the target,
i.e. {status(target) > status(source)}, while the inequal-
ity is opposite for a negative connection. Lastly, SLF (Xu
et al., 2019) learns multiple latent factors of the signed net-
work, modeling positive, negative, and neutral, as well as
the absence of a relationship between node pairs.

A prominent approach for graph representation learning is
the Latent Distance Model (Hoff et al., 2002) in which the
tendency of nodes to connect is defined in terms of their
proximity in latent space. Notably, the LDM can express
the properties transitivity (”a friend of a friend is a friend”)
and homophily (”akin nodes tend to have links”). Re-
cently, it has been shown that LDMs can account for the
structure of networks in ultra-low dimensions (Nakis et al.,
2022, 2023; Çelikkanat et al., 2022). It has further been
demonstrated that an LDM of one dimension can be used
to extract bipolar network properties (Barberá et al., 2015).

For the modeling of signed networks for the characteri-
zation of polarization, we first present the Signed Latent
Distance Model (SLDM). The model utilizes a likelihood
function for weighted signed links based on the Skellam
distribution (Skellam, 1946). The Skellam distribution is
the discrete probability distribution of the difference be-
tween two independent Poisson random variables. It was
introduced by John Gordon Skellam to model the dynamics
of populations (Skellam, 1946). Since then it was used in
medicine to model treatment measurements (Karlis and Nt-
zoufras, 2006), sports results (Karlis and Ntzoufras, 2008),
as well as, econometric studies (Barndorff-Nielsen et al.,
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2010). Furthermore, we introduce the Signed relational La-
tent dIstance Model (SLIM) being able to characterize the
latent social space in terms of extreme positions forming
polytopes inspired by archetypal analysis enabling archety-
pal analysis for relational data, i.e. relational AA (RAA).
We apply SLDM and SLIM on four real signed networks
believed to reflect polarization and demonstrate how SLIM
uncovers prominent distinct positions (poles). To the best
of our knowledge, this is the first work to model signed
weighted networks using the Skellam distribution and the
first time AA has been extended to relational data by lever-
aging latent position modeling approaches for the charac-
terization of polytopes in social networks. The implemen-
tation is available at: github.com/Nicknakis/SLIM RAA.

2 PROPOSED METHODOLOGY

Let G = (V,Y) be a signed graph where V = {1, . . . , N}
denotes the set of vertices and Y : V2 → X ⊆ R is a map
indicating the weight of node pairs, such that there is an
edge (i, j) ∈ V2 if the weight Y(i, j) is different from 0.
In other words, E := {(i, j) ∈ V2 : Y(i, j) ̸= 0} indicates
the set of edges of the network. Since many real networks
consist of only integer-valued edges, in this paper, we set
X to Z, and we will call the graph undirected if the pairs
(i, j) and (j, i) represent the same link. (The directed case
is provided in the supplementary materials.) For simplicity,
yij denotes each edge weight.

2.1 The Skellam Latent Distance Model (SLDM)

Our main purpose is to learn latent node representations
{zi}i∈V ∈ RK in a low dimensional space for a given
signed network G = (V,Y) (K ≪ |V|). Therefore, the
edge weights can take any integer value to represent the
positive or negative tendencies between the correspond-
ing nodes. We model these signed interactions among
the nodes using the Skellam distribution (Skellam, 1946),
which can be formulated as the difference of two indepen-
dent Poisson-distributed random variables (y = N1−N2 ∈
Z) with respect to the rates λ+ and λ−:

P (y|λ+, λ−) = e−(λ++λ−)

(
λ+

λ−

)y/2

I|y|
(
2
√
λ+λ−

)
,

where N1 ∼ Pois(λ+) and N2 ∼ Pois(λ−), and I|y|
is the modified Bessel function of the first kind and order
|y|. To the best of our knowledge, the Skellam distribu-
tion has not been adapted before for modeling the network
likelihood. More specifically, we propose a novel latent
space model utilizing the Skellam distribution by adopting
the latent distance model, which was proposed originally
for undirected, and unsigned binary networks as a logistic
regression model (Hoff et al., 2002). It was later extended
to multiple generalized linear models (Hoff, 2005), includ-
ing the Poisson regression model for integer-weighted net-

works. We can formulate the negative log-likelihood of a
latent distance model under the Skellam distribution as:

L(Y) := log p(yij |λ+
ij , λ

−
ij)

=
∑
i<j

(λ+
ij + λ−

ij)−
yij
2

log

(
λ+
ij

λ−
ij

)
− log(I∗ij),

where I∗ij := I|yij |

(
2
√

λ+
ijλ

−
ij

)
. As it can be noticed,

the Skellam distribution has two rate parameters, and we
consider them to learn latent node representations {zi}i∈V
by defining them as follows:

λ+
ij = exp (γi + γj − ||zi − zj ||2), (1)

λ−
ij = exp (δi + δj + ||zi − zj ||2), (2)

where the set {γi, δi}i∈V denote the node-specific random
effect terms, and ||·||2 is the Euclidean distance function.
More specifically, γi, γj represent the ”social” effects/reach
of a node and the tendency to form (as a receiver and
as a sender, respectively) positive interactions, expressing
positive degree heterogeneity (indicated by + as a super-
script of λ). In contrast, δi, δj provide the ”anti-social” ef-
fect/reach of a node to form negative connections, and thus
models negative degree heterogeneity (indicated by − as a
superscript of λ).

By imposing standard normally distributed priors elemen-
twise on all model parameters θ = {γ, δ,Z}, i.e., θi ∼
N (0, 1), We define a maximum a posteriori (MAP) esti-
mation over the model parameters, via the loss function to
be minimized (ignoring constant terms):

Loss =
∑
i<j

(
λ+
ij + λ−

ij −
yij
2

log

(
λ+
ij

λ−
ij

))

−
∑
i<j

log I|yij |

(
2
√

λ+
ijλ

−
ij

)
+
ρ

2

(
||Z||2F+||γ||2F+||δ||2F

)
,

(3)

where ||·||F denotes the Frobenius norm. In addition, ρ is
the regularization strength with ρ = 1 yielding the adopted
normal prior with zero mean and unit variance. Impor-
tantly, by setting λ+

ij and λ−
ij based on Eq. (11) and (2),

the model effectively makes positive (weighted) links at-
tract and negative (weighted links) deter nodes from being
in proximity of each other.

2.2 Archetypal Analysis

Archetypal Analysis (AA) (Cutler and Breiman, 1994;
Mørup and Kai Hansen, 2010) is an approach developed
for the modeling of observational data in which the data is
expressed in terms of convex combinations of characteris-
tics (i.e. archetypes). The definition of the embedded data
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points is given as follows:

X ≈ XCZ s.t. cd ∈ ∆N and zj ∈ ∆K (4)

where ∆P denotes the standard simplex in (P +1) dimen-
sions such that q ∈ ∆P requires qi ≥ 0 and ∥q∥1= 1 (i.e.∑

i qi = 1). Notably, the archetypes given by the columns
of A = XC define the corners of the extracted polytope as
convex combinations of the observations, whereas Z define
how each observation is reconstructed as convex combina-
tions of the extracted archetypes.

Whereas archetypal analysis constrains the representation
to the convex hull of the data, other approaches to model
pure/ideal forms have been Minimal Volume (MV) ap-
proaches defined by

X ≈ AZ s.t. vol(A) = v and zj ∈ ∆K , (5)

in which vol(A) defines the volume of A. When A is a
square matrix this can be defined by vol(A) = |det(A)|,
see also Hart et al. (2015); Zhuang et al. (2019) for a review
on such end-member extraction procedures. A strength is
that, as opposed to AA, the approach does not require the
presence of pure observations, however, a drawback is a
need for regularization tuning to define an adequate vol-
ume (Zhuang et al., 2019) whereas the exact computation
of the volume of general polytopes requires the computa-
tion of determinants of the sum of all simplices defining
the polytope (Büeler et al., 2000). Importantly, Archetypal
Analysis and Minimal volume extraction procedures have
been found to identify latent polytopes defining trade-offs
in which vertices of the polytopes represent maximally en-
riched distinct aspects (archetypes), allowing identification
of tasks or prominent roles the vertices of the polytope rep-
resent (Shoval et al., 2012; Hart et al., 2015). Due to the
computational issues of regularizing high-dimensional vol-
umes and the need for careful tuning of such regularization
parameters, we presently focus on polytope extraction as
defined through the AA formulation rather than the MV
formulation.

2.3 A Generative Model of Polarization

Considering a latent space for the modeling of polarization,
we presently extend the Skellam LDM and define polar-
ization as extreme positions (pure forms/archetypes) that
optimally represent the social dynamics observed in terms
of the induced polytope - what we denote a sociotope, in
which each observation is a convex combination of these
extremes. In particular, we characterize polarization in
terms of extreme positions in a latent space defined as a
polytope akin to AA and MV.

In our generative model of polarization, we further suppose
that the bias terms introduced in the definitions of the Pois-
son rates, (λ+

ij , λ
−
ij), are normally distributed. Since latent

representations {zi}i∈V according to AA and MV lie in the

standard simplex set ∆K , we further assume that they fol-
low a Dirichlet distribution. Formally, we can summarize
the generative model as follows:

γi ∼ N (µγ , σ
2
γ) ∀i ∈ V,

δi ∼ N (µδ, σ
2
δ ) ∀i ∈ V,

ak ∼ N (µA, σ
2
AI) ∀k ∈ {1, . . . ,K},

zi ∼ Dir(α) ∀i ∈ V,
λ+
ij = exp (γi + γj − ∥A(zi − zj)∥2),

λ−
ij = exp (δi + δj + ∥A(zi − zj)∥2),
yij ∼ Skellam(λ+

ij , λ
−
ij) ∀(i, j) ∈ V2.

According to the above generative process, positive (γ) and
negative (δ) random effects for the nodes are first drawn,
upon which the location of extreme positions A (i.e., cor-
ners of the polytope denoted archetypes) are generated. In
addition, as the dimensionality of the latent space increases
linearly with the number of archetypes, i.e. A is a square
matrix, with probability zero archetypes will be placed in
the interior of the convex hull of the other archetypes. Sub-
sequently, the node-specific convex combinations Z of the
generated archetypes are drawn, and finally, the weighted
signed link is generated according to the node-specific bi-
ases and distances between dyads within the polytope uti-
lizing the Skellam distribution.

2.4 The Signed Relational Latent Distance Model

For inference, we exploit how polytopes can be efficiently
extracted using archetypal analysis. We, therefore, de-
fine the Signed Latent relational dIstance Model (SLIM)
by defining a relational archetypal analysis approach en-
dowing the generative model a parameterization akin to
archetypal analysis in order to efficiently extract polytopes
from relational data defined by signed weighted networks.
Specifically, we formulate the relational AA in the context
of the family of LDMs, as:

λ+
ij = exp (γi + γj − ∥A(zi − zj)∥2) (6)

= exp (γi + γj − ∥RZC(zi − zj)∥2). (7)

λ−
ij = exp (δi + δj + ∥A(zi − zj)∥2) (8)

= exp (δi + δj + ∥RZC(zi − zj)∥2). (9)

Notably, in the AA formulation X = RZ corresponds to
observations formed by convex combinations Z of posi-
tions given by the columns of RK×K . Furthermore, in or-
der to ensure what is used to define archetypes A = XC =
RZC corresponds to observations using these archetypes
in their reconstruction Z, we define C ∈ RN×K as a gated
version of Z normalized to the simplex such that cd ∈ ∆N

by defining

cnd =
(Z⊤ ◦ [σ(G)]⊤)nd∑
n′(Z⊤ ◦ [σ(G)]⊤)n′d

(10)
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in which ◦ denotes the elementwise (Hadamard) product
and σ(G) defines the logistic sigmoid elementwise applied
to the matrix G. As a result, the extracted archetypes are
ensured to correspond to the nodes assigned the archetype,
whereas the location of the archetypes can be flexibly
placed in space as defined by R. By defining zi =
softmax(z̃i) we further ensure zi ∈ ∆K .

Importantly, the loss function of Eq. (13) is adopted for
the relational AA formulation forming the SLIM, with the
prior regularization applied to the corners of the extracted
polytope A = RZC instead of the latent embeddings Z
imposing a standard elementwise normal distribution as
prior ak,k′ ∼ N (0, 1). Furthermore, we impose a uniform
Dirichlet prior on the columns of Z, i.e. (zi ∼ Dir(1K),
this only contributes constant terms to the joint distribu-
tion, and therefore the maximum a posteriori (MAP) opti-
mization only constant terms. As a result, the loss function
optimized is given by Eq. (13) replacing ∥Z∥2F with ∥A∥2F .

Complexity analysis. With SLDM/SLIM being distance
models, they scale prohibitively as O(N2) since the node
pairwise distance matrix needs to be computed. This does
not allow the analysis of large-scale networks. For that, we
adopt an unbiased estimation of the log-likelihood through
random sampling. More specifically, gradient steps are
based on the log-likelihood of the block formed by a sam-
pled (per iteration and with replacement) set S of network
nodes. This makes inference scalable defining an O(S2)
space and time complexity. More options for scalable infer-
ence of distance models have also been proposed in Nakis
et al. (2022); Raftery et al. (2012).

3 RESULTS AND DISCUSSION

We extensively evaluate the performance of our proposed
methods by comparing them to the prominent GRL ap-
proaches designed for signed networks. All experiments
regarding SLDM/SLIM have been conducted on an 8 GB
NVIDIA RTX 2070 Super GPU. In addition, we adopted
the Adam optimizer Kingma and Ba (2017) with learning
rate lr = 0.05 and for 5000 iterations. The sample size
for the node set was chosen as approximately 3000 nodes
for all networks. The initialization of the SLDM/SLIM
frameworks is deterministic and based on the spectral de-
composition of the normalized Laplacian (more details are
provided in the supplementary).

Artificial networks. We first, introduce experiments on
artificial networks, as generated by the generative process
described in Section 2.3. We create two networks express-
ing different levels of polarization. Results are presented
in Fig. 1. More specifically, sub-Figs 1a and 1e show the
ground truth latent spaces generating the networks with ad-
jacency matrices as shown by sub-Figs 1b and 1f, respec-
tively. The inferred latent spaces of the two networks are
provided in sub-Figs 1c and 1g where it is clear that the

Table 1: Network statistics; |V|: # Nodes, |Y+|: # Positive
links, |Y−|: # Negative links.

|V| |Y+| |Y−| Density

Reddit 35,776 128,182 9,639 0.0001
Twitter 10,885 238,612 12,794 0.0021

wiki-Elec 7,117 81,277 21,909 0.0020
wiki-RfA 11,332 117,982 66,839 0.0014

model successfully distinguishes the difference in the level
of polarization of the two networks. We also verify the gen-
erated networks based on the inferred parameters given by
sub-Figs 1d and 1h. We observe that the model success-
fully generates sparse networks accounting for the positive
and negative link imbalance.

Real networks. We employed four networks of varying
sizes and structures. (i) Reddit is constructed based on hy-
perlinks representing the directed connections between two
communities in a social platform (Kumar et al., 2018). (ii)
wikiRfA and (iii) wikiElec are the election networks cov-
ering the different time intervals in which nodes indicate
the users and the directed links show supporting, neutral,
and opposing votes to be selected as an administrator on
the Wikipedia platform (West et al., 2014; Leskovec et al.,
2010). Finally, (iv) Twitter is an undirected social network
built on the corpus of tweets concerning the highly polar-
ized debate about the reform of the Italian Constitution (Or-
dozgoiti et al., 2020).

In our experiments, we consider the greatest connected
component of the networks, and if the original network
is temporal, we construct the static network by summing
the weights of the links through time. For the experiments
performed on undirected graphs, we similarly combine di-
rected links to obtain the undirected version of the net-
works.

Baselines. We benchmark the performance of our pro-
posed frameworks against five prominent graph representa-
tion learning methods, designed for the analysis of signed
networks: (i) POLE (Huang et al., 2022) which learns
the network embeddings by decomposing the signed ran-
dom walks auto-covariance similarity matrix, (ii) SLF (Xu
et al., 2019) learns embeddings that are the concatenation
of two latent factors targeting positive and negative rela-
tions, (iii) SIGAT (Huang et al., 2019) is a graph neural
network approach using graph attention to learn node em-
beddings, (iv) SIDE (Kim et al., 2018b) is another random
walk based method for signed networks, (v) SIGNET (Is-
lam et al., 2018) is a multi-layer neural network approach
constructing a Hadamard product similarity to accommo-
date for signed proximity on the network pairwise relations.
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(a) Ground Truth (b) (.017, 77, 23) (c) Inferred space (d) (.018, 73, 27)

(e) Ground Truth (f) (.012, 63, 37) (g) Inferred space (h) (.014, 59, 41)

Figure 1: Two artificially generated networks with different levels of polarization {zi ∼ Dir(1) (top row), and
zi ∼ Dir(0.1 · 1) (bottom row)}. Both size N = 5000 nodes and K = 3 archetypes. The first column shows the
first two principal components of the original latent space Z̃ = AZ, the second column the original adjacency matrix,
while the parenthesis shows the network statistics as: (density,% of positive (blue) links,% of negative (red) links). The
third column displays the first two principal components of the inferred latent space, and the fourth column is the SLIM
generated network based on inferred parameters. All network adjacency matrices are ordered based on zi, in terms of
maximum archetype membership and internally according to the magnitude of the corresponding archetype most used for
their reconstruction.

Table 2: Area Under Curve (AUC-ROC) scores for representation size of K = 8.

WikiElec WikiRfa Twitter Reddit

Task p@n p@z n@z p@n p@z n@z p@n p@z n@z p@n p@z n@z

POLE .809 .896 .853 .904 .921 .767 .965 .902 .922 x x x
SLF .888 .954 .952 .971 .963 .961 .914 .877 .968 .729 .955 .968

SIGAT .874 .775 .754 .944 .766 .792 .998 .875 .963 .707 .682 .712
SIDE .728 .866 .895 .869 .861 .908 .799 .843 .910 .653 .830 .892

SIGNET .841 .774 .635 .920 .736 .717 .968 .719 .891 .646 .547 .623

SLIM (OURS) .862 .965 .935 .956 .980 .960 .988 .963 .972 .667 .955 .978
SLDM (OURS) .876 .969 .936 .963 .982 .963 .986 .962 .973 .648 .951 .975

Table 3: Area Under Curve (AUC-PR) scores for representation size of K = 8.

WikiElec WikiRfa Twitter Reddit

Task p@n p@z n@z p@n p@z n@z p@n p@z n@z p@n p@z n@z

POLE .929 .922 .544 .927 .937 .779 .998 .932 .668 x x x
SLF .964 .926 .787 .983 .922 .881 .994 .870 .740 .966 .956 .850

SIGAT .960 .724 .439 .969 .646 .497 .999 .861 .582 .965 .692 .232
SIDE .907 .779 .608 .920 .806 .739 .974 .831 .469 .957 .820 .614

SIGNET .944 .670 .298 .950 .572 .417 .998 .647 .248 .956 .510 .083

SLIM (OURS) .953 .956 .785 .973 .969 .907 .999 .962 .813 .958 .960 .850
SLDM (OURS) .960 .963 .787 .977 .971 .912 .999 .963 .809 .954 .955 .846



Nakis, Çelikkanat, Boucherie, Burmester, Djurhuus, Holmelund, Frolcová, Mørup

3.1 Link prediction

We evaluate performance considering the link prediction
task considering the ability of our model to predict links of
disconnected network pairs which should be connected, as
well as, infer the sign of these links (positive or negative).
For this, we remove/hide 20% of the total network links
while preserving connectivity on the residual network. For
the testing set, the removed edges are paired with a sample
of the same number of node pairs that are not the edges of
the original network to create zero instances. To learn the
node embeddings, we make use of the residual network.

Predictions and evaluation metrics. For our methods
we fit a logistic regression classifier on the concatena-
tion of the corresponding Skellam rates and log-rates, as
χij = [λ+

ij , λ
−
ij , log λ

+
ij , log λ

−
ij ]. Since our Skellam like-

lihood formulation relies both on the ratio and products
of the rates, a concatenation can take advantage of a lin-
ear function of the rates, as well as, their ratio or prod-
uct as allowed from the log transformation. For the base-
lines, we use five binary operators {average, weighted L1,
weighted L2, concatenate, Hadamard product} to construct
feature vectors. For each of these feature vectors, we fit a
logistic regression model (except for the Hadamard prod-
uct which is used directly for predictions). Since different
operators provide different performances, for the baselines
we choose the operator that returns the maximum perfor-
mance per individual task. As a consequence of the class
imbalances and the sparsity present in signed networks, we
adopt robust evaluation metrics, such as area-under-curve
of the receiver operating characteristic (AUC-ROC) and
precision-recall (AUC-PR) curves. Lastly, we denote with
”x” the performance of a baseline if it was unable to run
due to high memory/runtime complexity.

Link sign prediction. In this setting, we utilize the link
test set containing the negative/positive cases of removed
connections. We then ask the models to predict the sign
of the removed links. We denote the task of the link sign
prediction task as p@n. In Table 2 we provide the AUC-
ROC scores while in Table 3 the AUC-PR scores for the
undirected case. Here we observe that our proposed mod-
els outperform the baselines in most networks while be-
ing competitive in the Reddit network against SLF. This
specific baseline is the most competitive across networks
showing high and consistent performance similar to SLIM
and SLDM. Comparing now SLIM with SLDM we get
mostly on-par results, verifying that constraining the model
to a polytope still provides enough expressive capability as
the unconstrained model while allowing for accurate ex-
traction of ”extreme” positions.

Signed link prediction. The second and more challeng-
ing task is to predict removed links against disconnected
pairs of the network, as well as, infer the sign of each
link correctly. For that, the test set is split into two sub-

(a) (b)

Figure 2: wikiElec: Performance of SLIM across di-
mensions for different tasks, (a) Area-Under-Curve Re-
ceiver Operating Characteristic scores, (b) Area-Under-
Curve Precision-Recall scores. Both AUC-ROC and AUC-
PR scores are almost constant across different dimensions

sets positive/disconnected and negative/disconnected. We
then evaluate the performance of each model on those sub-
sets. The tasks of signed link prediction between positive
and zero samples are denoted as p@z while the negative
against zero is n@z. We summarize our results by present-
ing AUC-ROC and AUC-PR scores in Table 2 and Table 3
respectively. Once more our models outperform the base-
lines in most networks and for both versions of signed link
prediction. The SLF baseline is again the most competitive
baseline yielding on-par results for Reddit.

Directed networks. Directed network results are provided
in the supplementary. Since SLF has higher modeling
capacity it outperforms the simple model formulation of
SLDM and SLIM. For that, we explore and discuss for-
mulations allowing for more capacity in the SLDM/SLIM
model for the directed case (see supplementary).

Effect of dimensionality. In Figure 2, we provide the per-
formance across dimensions for the different downstream
task and for the wikiElec dataset. We observe that both
AUC-ROC and AUC-PR scores are almost constant across
different dimensions (note that as RK×K dimensions for
the SLIM is given by the number of archetypes), showcas-
ing that increasing the models’ capacity (in terms of dimen-
sions) does not have a significant effect on the performance
of these downstream tasks (similar results were observed
for all networks and most of the baselines).

Visualizations. The RAA formulation facilitates the infer-
ence of a polytope describing the distinct aspects of net-
works. Here, we visualize the latent space across K = 8
dimensions for all of the corresponding networks. To facil-
itate visualizations we use Principal Component Analysis
(PCA), and project the space based on the first two princi-
pal components of the final embedding matrix Z̃ = AZ.
In addition, we provide circular plots where each archetype
of the polytope is mapped to a circle every radk = 2π

K ra-
dians, with K being the number of archetypes. Figure 3
contains three columns with the first denoting the PCA-



Characterizing Polarization in Social Networks using the Signed Relational Latent Distance Model

(a) WikiElec (b) WikiElec (c) WikiElec

(d) WikiRfa (e) WikiRfa (f) WikiRfa

(g) Reddit (h) Reddit (i) Reddit

(j) Twitter (k) Twitter (l) Twitter

Figure 3: Inferred polytope visualizations for various networks. The first column showcases the K = 8 dimensional
sociotope projected on the first two principal components (PCA) — second and third columns provide circular plots of the
sociotope enriched with the negative (red) and positive (blue) links, respectively.
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induced space while the second and third columns corre-
spond to the circular plots enriched by the negative (red)
and positive (blue) links, respectively. We observe how the
polytope successfully uncovers extreme positional nodes.
More specifically, all networks have at least one archetype
which acts as a ”dislike” hub and at least one as a ”like”
hub. Meaning that these archetypes contain high values of
negative/positive interactions. For the wiki-RfA and Twit-
ter networks we observe archetypes of very low degree,
this is explained due to some only ”disliked” nodes being
pushed away from the main node population. These can be
regarded as ”outliers” of the sociotope. Nevertheless, such
outliers are discovered since they provide high expressive
power for the model.

Discussion. The Signed Relational Latent Distance Model
has been presented for the undirected case setting, and
we employed the Euclidean distance for both Skellam
rates λ+

ij , λ
−
ij . The capacity of the current formulation

works well for undirected networks. Nevertheless, there
are alternative model formulations, and keeping the dis-
tance identical for the positive and negative rates constrains
the models’ expressive capability, especially for the di-
rected/bipartite signed network case. We therefore explore
additional model formulations such as setting the Skel-
lam rates as, λ+

ij = exp(βi + βj − ||zi − wj ||2) and
λ−
ij = exp(γi + γj − ||ui − wj ||2) in the supplementary

material. Under this assumption, a positive directed rela-
tionship (i→ j) shows that node i ”likes” node j and ”dis-
likes” node j if it is negative. The latent embedding wj is
then the receiver position for the ”likes” and ”dislikes” with
embeddings zi and ui being the sender positions for pos-
itive and negative relationships, respectively. In this case,
we introduce three latent embeddings instead of the con-
ventional two for the undirected case. The disparity of lo-
cation zi and ui here can point out how polarity is formed
between the two regions of the latent space (Please see the
supplementary material for further discussion and results).

Another important design characteristic for the
SLDM/SLIM frameworks is the choice of the
prior/regularization of the different parameters. So
far, we did not tune any regularization strength of the
priors and simply adopted a normal distribution on the
model parameters and non-informative uniform Dirichlet
prior on Z in the case of SLIM. Potential tuning of
the priors with cross-validation is expected to boost the
performance and results.

A prominent characteristic of signed networks is the spar-
sity or, in other words, the excess of ”zero” weights
among node pairs. An intriguing direction to account for
it might be the zero-inflated version of the Skellam dis-
tribution (Karlis and Ntzoufras, 2008). Here essentially,
we can define a mixture model responsible for the im-
balance between cases (sign-weighted links) and controls
(neutral zero links) in the network. Such zero-inflated

SLDM/SLIM models can thereby define a generative pro-
cess that can straightforwardly address different levels of
network sparsity.

Whereas we consider the generalization of SLDM and
SLIM to directed networks in the supplementary, a pos-
sible future direction should consider generalizations to bi-
partite networks in which we expect the directed general-
izations to be applicable (Kim et al., 2018a; Nakis et al.,
2022). Furthermore, networks of polarization typically
evolve over time. Future work should thus investigate
how the proposed modeling framework can be extended to
characterize dynamic networks leveraging existing works
by exploring dynamic extensions of latent space model-
ing approaches, including the diffusion model of (Sarkar
and Moore, 2005) and approaches reviewed in Kim et al.
(2018a).

4 CONCLUSION AND LIMITATIONS

The proposed Skellam Latent Distance Model (SLDM)
and Signed Latent Relational Distance model (SLIM) pro-
vide easily interpretable network visualization with favor-
able performance in the link prediction tasks for weighted
signed networks. In particular, endowing the model with
a space constrained to polytopes (forming the SLIM) en-
abled us to characterize distinct aspects in terms of ex-
treme positions in the social networks akin to conventional
archetypal analysis but for graph-structured data. The
Skellam distribution is considerably beneficial in modeling
signed networks, whereas the relational extension of AA
can be applied for other likelihood specifications, such as
LDMs in general. This work thereby provides a founda-
tion for using likelihoods accommodating weighted signed
networks and representations akin to AA in general for an-
alyzing networks.

The optimization for the SLDM/SLIM frameworks is a
highly non-convex problem and thus relies on the quality
of initialization in terms of convergence speed. In this re-
gard, we use a deterministic initialization based on the nor-
malized Laplacian. In addition, we observed that a max-
imum likelihood estimation of the model parameters be-
came unstable when the network contained some nodes
having only negative interactions. This is a direct conse-
quence of the presence of the distance term (exp(+||·||2))
for negative interactions, which can lead to overflow during
inference. Nevertheless, the adopted MAP estimation was
found to be stable across all networks. For real networks,
the generative model created an ”excess” of negative links
increasing the overall network sparsity. For that, a modified
SLIM excluding the regularization over the model param-
eters was introduced which achieved correct network spar-
sity (as shown in supplementary). Assuming priors over the
model parameters created a bias over the generated network
when compared to the ground truth network statistics.
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Graph representation learning (GRL) has become a prominent tool for furthering the
understanding of complex networks providing tools for network embedding, link predic-
tion, and node classification. In this paper, we propose the Hybrid Membership-Latent
Distance Model (HM-LDM) by exploring how a Latent Distance Model (LDM) can be
constrained to a latent simplex. By controlling the edge lengths of the corners of the
simplex, the volume of the latent space can be systematically controlled. Thereby com-
munities are revealed as the space becomes more constrained, with hard memberships
being recovered as the simplex volume goes to zero. We further explore a recent likelihood
formulation for signed networks utilizing the Skellam distribution to account for signed
weighted networks and extend the HM-LDM to the signed Hybrid Membership-Latent
Distance Model (sHM-LDM). Importantly, the induced likelihood function explicitly at-
tracts nodes with positive links and deters nodes from having negative interactions. We
demonstrate the utility of HM-LDM and sHM-LDM on several real networks. We find
that the procedures successfully identify prominent distinct structures, as well as how
nodes relate to the extracted aspects providing favorable performances in terms of link
prediction when compared to prominent baselines. Furthermore, the learned soft mem-
berships enable easily interpretable network visualizations highlighting distinct patterns.

Keywords: Signed Networks; Community Detection; Non-negative Matrix Factorization;
Graph Representation Learning; Latent Space Modeling;
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1. Introduction

In various scientific disciplines, including but not limited to physics, sociology,

science-of-science, and biology, networks naturally arise to describe different interac-

tions. These contain spin glasses, friendship interactions, scholarly collaborations,

protein-to-protein interactions, structural and functional brain connectivity, and

many more [50]. In order to study these networks and understand their underlying

structures, scientists turn to graph analysis tools. The most prominent way for an-

alyzing networks lies in Graph Representation Learning (GRL) [67], which includes

approaches capable of performing downstream tasks such as link prediction, node

classification, network reconstruction, and community detection with superior per-

formance when compared to prior classical methods. Contrary to GRL, traditional

algorithms are characterized by limited flexibility and capacity since they utilize

node and graph-level statistics requiring careful design of heuristics and usually

high time complexity [13]. The main goal of GRL is to find a mapping, through a

learning process, projecting a network into a low-dimensional (usually Euclidean)

latent space where node similarity in the graph is translated to node similarity in

the latent space, i.e., by positioning related nodes close in proximity in the latent

space [15].

Early GRL approaches capitalized on Natural Language Processing (NLP)

where they performed random walks to generate node sequences that correspond

to sentences in terms of the NLP terminology [8, 12, 54, 56, 61]. The core idea lies

in simulating random walks over graphs and optimizing the co-occurrence proba-

bility for node pairs based on their obtained distance through the simulated walks.

Relatively recent pioneering works [14] have extended GRL to the deep learning

theory, giving rise to Graph Neural Networks (GNN). Essentially, GNNs perform

iterative message-passing extending convolution operations to graphs. One of their

limitations is usually the need for node features or else meta-data to avoid the

over-smoothing pitfall hampering performance [32] when the GNN model defines

deep architectures. Another major category of approaches for GRL relies on matrix

decomposition tools [55,56]. Such models learn representations based on the decom-

position of a target matrix, which can be constructed to convey first and high-order

nodal proximity information [53, 56]. Despite Non-negative Matrix Factorization

(NMF) being a prevalent technique for unsupervised signal decomposition and ap-

proximation of multivariate non-negative data, few GRL methods utilize such a

decomposition. NMF methods have attracted considerable interest since they can

extract interpretable part-based representations by revealing the latent factors of

the imposed decomposition, which aids in structure retrieval [36].

NMF has been utilized in the context of network analysis and GRL [3,41,64,66],

enabling efficient, unsupervised, and overlapping community detection. This has

been explored in various studies, including a mixed-membership stochastic block

model (MM-SBM) [1] defined based on a symmetric-NMF decomposition [41]. This

method allows for part-based community assignments for networks while provid-
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ing uniqueness guarantees. To obtain the propensity of nodes belonging to different

communities, standard least-squares NMF optimization was replaced with a Poisson

likelihood optimization [3]. Another study used a Poisson distribution to infer mixed

memberships for overlapping community detection [64]. These studies involve the

generation of mixed-membership vectors for part-based representations. These vec-

tors are then projected onto a space generated by an NMF method, which captures

abstract representations of node similarities, positions, and metric properties. An-

other popular application for NMF is the hyperspectral unmixing [6] via variational

minimum volume regularization [17, 69]. A well-known approach is the Minimum

Volume Constrained-Nonnegative Matrix Factorization (MVC-NMF) [42], which

tries to approximate the hyperspectral data matrix with minimum error while in-

cluding a volume constraint on the simplex matrix. MVC-NMF uses an alternating

minimization procedure alternating over a quadratic programming problem and a

nonconvex programming problem.

The Latent Space Models (LSMs) are also one of the most powerful ways to learn

low-dimensional latent representations [49, 70]. These methods employ generalized

linear models for constructing latent node embeddings which express important net-

work characteristics. More specifically, the LDM [20] utilizes the Euclidean norm

for positioning similar nodes closer in the latent space, which comes as a direct con-

sequence of the triangular inequality, naturally representing transitivity (“a friend

of a friend is a friend”) and homophily (a tendency where similar nodes are more

likely to connect to each other than dissimilar ones) properties. An immediate result

of obeying the triangular inequality is that the LDM successfully models high-order

interactions, as present in complex systems [4, 44]. The LDM can be generalized

through the Eigenmodel [19] that can account for stochastic equivalence (“groups of

nodes defined by shared intra- and inter-group relationships”) akin to the SBM [1]

and the mixed membership SBM [1]. Furthermore, LDMs have been endowed with

a clustering model imposing a Gaussian Mixture Model as prior forming the latent

position clustering model [16,58].

Archetypal Analysis (AA) [10] has become a popular tool for extracting poly-

topes in tabular data. AA was originally defined as an unsupervised learning ap-

proach where input data are expressed as linear mixtures (convex combinations) of

archetypes/distinct aspects being present in the data [45]. AA has been recently ex-

tended to the context of network analysis and the modeling of signed networks [48],

characterizing polarization and conflict over graphs.

Unlike traditional networks modeling only positive and neutral links between

entities, signed networks can capture more complex relations, such as cooperative

and antagonistic approaches. They are instrumental in modeling more realistic and

richer representations of real social structures. Hence, the analysis of the signed

networks can reveal significant insights into understanding how the network struc-

ture is actually formed. The proverb “The enemy of my enemy is my friend” is a

very known example demonstrating that driving forces leading individuals to form

connections are not merely positive inclinations. The balance theory [25] explains
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these motives by proposing that individuals have an inner desire to provide balance

and consistency in their relationships. Inspired by the theory, POLE [24] proposes

a novel network embedding method for signed networks based on generating ran-

dom walks. It assigns a sign for each random walk by incorporating the balance

theory. SIDE [30] also utilizes fixed-length random walks to extract the node rep-

resentations of signed networks, but it employs a different optimization strategy.

SIGAT [21], and SDGNN [22] propose approaches leveraging the successful graph

neural network architectures for signed networks. The SLF approach [65] relies on

extracting multiple latent factors to model four relationship types: positive, nega-

tive, non-link, and neutral. Most recently, SLDM [48] combined the latent space

models and archetypal analysis to learn node embeddings reflecting the different

aspects of networks, such as polarized groups or overlapping community structures.

This paper serves as an extension to the HM-LDM: A Hybrid-Membership Latent

Distance Model paper as appeared in [47]. The main contributions of the paper and

its extended version can be summarized as:

• We introduce a novel method for unsupervised representation learning on

graphs called Hybrid-Membership Latent Distance Model (HM-LDM),

which combines the strengths of LDM and NMF. The HM-LDM ap-

proach reconciles part-based network representations with low-dimensional

latent spaces that satisfy similarity properties like homophily and transi-

tivity. These properties play a critical role in GRL because they enable a

straightforward interpretation of network structure. Moreover, the proposed

method captures the latent community structure of the networks using a

simple continuous optimization procedure based on the log-likelihood of

the network. Unlike most existing methods that impose hard constraints

on community memberships, the assignment of community memberships in

our hybrid model can be controlled and altered using the simplex volume

as defined by the latent node representations. We extensively evaluate the

proposed method’s performance in link prediction and community discov-

ery tasks across various network types and demonstrate its superiority over

existing methods.

• We hereby, extend the framework to the analysis of signed networks via

the use of the Skellam distribution forming the signed Hybrid-Membership

Latent Distance Model (sHM-LDM) inspired by recent advances in GRL

[48]. The model characterizes and uncovers distinct aspects of signed net-

works by constraining the latent space to the D-simplex. We show that the

sHM-LDM relates to archetypal analysis for relational data [48] as a mini-

mal volume approach and as a special case when polytopes are constrained

to simplexes. We benchmark the performance of our model against promi-

nent signed network representation learning approaches and across four real

signed networks, as well as two real bipartite networks.

Source code: https://github.com/Nicknakis/HM-LDM .



September 7, 2023 10:35 output

5

2. Problem statement and proposed method

Let G = (V, E) be an undirected graph where V shows the vertex set and E ⊆ V ×V
the edge set. We use YN×N = (yi,j) to denote the adjacency matrix of the graph

where yi,j = 0 if the pair (i, j) ̸∈ E otherwise it is non-zero value for all 1 ≤ i < j ≤
N := |V|. It is worth noting that we will also consider signed weighted networks in

the paper, so the edge weight or the entries of the adjacency matrix can take any

positive or negative integer value (yij ∈ Z). In the latter case, we will further denote

E+ as the positive edge set, and E− as the negative edge set. The detailed list of the

symbols used throughout the manuscript and their corresponding definitions can

be found in Table 1.

Our main goal is to learn a representation, wi ∈ RD, for each node i ∈ V in a

lower dimensional space (D ≪ N) such that similar nodes in the network should

have close embeddings. More specifically, we concentrate on mapping the nodes into

the unit D-simplex, ∆D ⊂ RD+1
+ , which is defined by

∆D =

{
(x0, . . . , xD) ∈ RD+1

∣∣∣∣∣
D∑

d=0

xd=1, xd ≥ 0, ∀d ∈ {0, . . . , D}

}
.

Consequently, for unsigned networks, the inferred node representations carry in-

formation about latent community memberships. While in the case of signed net-

works, node embeddings define memberships over distinct aspects and profiles being

present in the network. Importantly, in contrast with other GRL approaches, in this

study, we seek and construct identifiable solutions which can only be achieved up to

a permutation invariance, as reported in Def. 1. Identifiability guarantees are also

extended to the modeling of signed networks providing embedding spaces that can

Table 1: Table of symbols

Symbol Description

G Graph

V Vertex set

E Edge set

E+ Positive edge set

E− Negative edge set

N Number of nodes

D Dimension size

γi, βi, ψi Bias terms of node i

wi Latent embedding for node i

λij Poisson rate (intensity) of node pair (i, j)

λ+ij Positive interaction Poisson rate (intensity) of node pair (i, j) of the Skellam distribution

λ−ij Negative interaction Poisson rate (intensity) of node pair (i, j) of the Skellam distribution

I|y| Modified Bessel function of the first kind and order |y|
δ Simplex side length with δ ∈ R+

p Power of the ℓ2 norm with p ∈ {1, 2}
∆D The standard D−simplex

Λ Eigenmodel non-negative relational matrix

A The matrix containing the archetypes (extreme points of the convex hull) with A ∈ R(D+1)×(D+1)
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easily be interpreted.

In the following part, we will first introduce the Hybrid-Membership Latent

Distance Model (HM-LDM) focused on unsigned networks, and later we will gen-

eralize the framework to the analysis of signed networks forming the signed Hybrid-

Membership Latent Distance Model (sHM-LDM).

Definition 1. (Identifiability) Let W be an optimal embedding matrix whose

rows indicate the corresponding node representations. We call W an identifiable

solution up to a permutation if there is a matrix P satisfying W̃ = WP for some

optimal solution W̃, then P must be a permutation matrix.

2.1. The Hybrid-Membership Latent Distance Model

For a given unsigned network G = (V, E), we suppose that the random variables

representing the links for a pair of nodes i and j independently follow a Poisson

distribution when conditioned on the latent representations {W ,γ}, as introduced
later. In this section, we consider unweighted networks, so the entries of the ad-

jacency matrix, Y = (yij) ∈ {0, 1}|V|×|V| are binary values, and we can write the

log-likelihood function as follows:

logP (Y|W ,γ) =
∑
i<j

yij=1

log(λij(wi,wj , γi, γj)) −
∑
i<j

(
λij(wi,wj , γi, γj)+log(yij !)

)
.

(1)

Similar to the work in [18], we here employ the Poisson regression approach for

unweighted networks since it successfully generalizes to the modeling of binary

networks [64].

We utilize the rates of the distributions to learn the representations of nodes in

the latent space by defining the Poisson rate λij as follows:

log λij =
(
γi + γj − δp · ||wi −wj ||p2

)
, (2)

where wi ∈ [0, 1]D+1 are the latent embeddings constrained to the D−simplex, i.e.∑D+1
d=1 wid = 1, δ ∈ R+ is the non-negative value controlling the simplex volume,

and γi ∈ R a bias term of node i ∈ V accounting for node-specific effects [18, 33]

such as degree heterogeneity. Lastly, p is the power of the ℓ2 norm with p ∈ {1, 2}
controlling the model specification. Specifically, power p adjusts the influence of the

embedding distances in the rate functions. In other words, in Eq. 2 we constrain

the latent space to the D−simplex, and the simplex’s edge lengths (1-faces) are

scaled by the non-negative constant δ, controlling the simplex side length and thus

the simplex volume. In the rest of the paper, we will call this proposed method by

Hybrid-Membership Latent Distance Model (HM-LDM).

It can be seen that a non-negative Eigenmodel with bias terms (i.e. γ̃i + γ̃j +

(w̃iΛw̃⊤
j )) corresponds to Eq. (2) for p = 2 if Λ is chosen as a diagonal matrix with

constant entries 2δ2, and if the bias terms are reparameterized as γ̃i = γi−δ2 ·||wi||22
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since expression γ̃i + γ̃j + (w̃iΛw̃⊤
j ) turns into:

(γi − δ2||wi||22) + (γj − δ2||wj ||22) + (2δ2wiw
⊤
j ) = γi + γj − δ2∥wi −wj∥2.

Therefore, the squared Euclidean distance incorporates the conventional LDM to

the non-negativity-constrained Eigenmodel. Although the squared Euclidean dis-

tance is not a metric, it still embodies the homophily property, resulting in an

interpretable latent space. Despite not exactly satisfying the triangle inequality, it

preserves the relative ordering of pairwise Euclidean distances. That’s why it is

highly preferred in many applications since it is a strictly convex smooth function.

By using the well-known cosine formula, we can write:

||wi −wj ||22 = ||wi −wk||22 + ||wk −wj ||22 − 2||wi −wk||2||wk −wj ||2 cos(θ),

where θ ∈ (−π/2, π/2) represents the angle betweenwi−wk andwk−wj . Note that

the third term also approaches to 0 for θ → π/2. For the case where θ ∈ [π/2, 3π/2],

it satisfies the triangle inequality: ||wi −wj ||22 ≤ ||wi −wk||22 + ||wk −wj ||22.
Since we learn the node representations in a D−simplex space, each entry of

an embedding vector, in fact, points out a latent community membership, so the

node representations also provide information regarding the community structure

of the network. Note that we can translate the learned embeddings to the non-

negative orthant without any loss in performance or in expressive capability since

the translation is invariant to the distance metric, as shown in Fig 1 (a). A rotation

operation also does not affect the pairwise distance among the embedding vectors

but the node representations must be positioned inside a ball lying in a D−simplex

otherwise, the embeddings cannot be rotated (see Fig 1 (b)).

However, as we mentioned before, the embedding vectors also define the nodes’

community memberships. Therefore, a rotation operation alters the community as-

signments while leaving the distance matrix invariant. As a result, the latent repre-

sentations cannot be used to express community information in this case. It is worth

noticing that we can have identifiable node representations if the corners of the sim-

plex include at least one node because it makes the rotation operation inapplicable.

In this regard, this condition can be satisfied by the distance scaling parameter (i.e.,

δ ∈ R+) introduced in Eq. 2. Since we know that ∥x∥p1/
√
Dp ≤ ∥x∥p2 ≤ ∥x∥p1 for

p ∈ {1, 2}, shrinking the volume of the simplex sufficiently (equivalently decreasing

the δ value) forces nodes to populate around the corners of the simplex. The node

embeddings move towards the corners of the simplex to balance the change in the

term δp∥wi −wj∥p2 since we have ∥wi∥ = 1 for all i ∈ V.
We will name a node champion if it is located in one of the corners of the simplex.

In other words, its latent representation must be a standard binary unit vector in a

D−simplex space. The champion nodes play a crucial role in achieving identifiability

since the learned representations become identifiable (up to a permutation matrix)

if every corner of the simplex is occupied by at least one champion node (please

see the definition below). In this case, any random rotation will no longer leave

the solution invariant, as illustrated in Fig 1 (c). Hence, the scaling parameter,
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(a) Translation in-
variances.

(b) Rotation
invariances.

(c) Decreased simplex volume
ensuring identifiability.

Fig. 1: A 2-dimensional latent space with the 2-simplex given as the green and

yellow triangles, the blue points denote embedding positions of the LDM and δ is

the simplex size.

δ, determines the model’s type of memberships and expressive capabilities. Large

values of δ make the solution rotationally invariant. On the other hand, small values

of δ result in identifiable solutions and hard cluster assignments, where nodes are

exclusively assigned to the corners of the simplex. Moreover, certain regimes of δ

values can provide identifiable solutions with similar performance to LDM.

Definition 2. (Community champion) A node for a latent community is called

champion if it belongs to the community (simplex corner) while forming a binary

unit vector.

We can approach model identifiability for the p = 2 model specification from

a different perspective using the Non-negative Matrix Factorization (NMF) theory.

We achieve this by re-parameterizing Eq. (2) with γ̃i + γ̃j + 2δ2 · (wiw
⊤
j ) as previ-

ously discussed. In this formulation, the product WW⊤ defines a symmetric NMF

problem that is uniquely factorized (up to permutation invariance) and identifiable

when W is full-rank, and at least one node resides solely in each corner of the

simplex, ensuring separability condition [23, 41]. Under this NMF formulation, the

product wiw
⊤
j ∈ [0, 1] reaches its upper bound only if nodes i and j reside in the

same corner of the simplex. When δ is small, the model favors hard latent commu-

nity assignments of nodes since nodes with similar features achieve high values only

when they belong to the same latent community (simplex corner). On the other

hand, when nodes head towards the corners of the simplex for large values of δ, the

second term of the log-likelihood function in Eq. (1) changes exponentially. Hence,

assigning dissimilar nodes to the same community severely penalizes the likelihood.

For this reason, a high value of δ is beneficial for mixed-membership allocations.

2.2. The Signed Hybrid-Membership Latent Distance Model

Recent advances in GRL [48], extended LDMs to the study of signed networks while

characterizing network polarization via the use of Archetypal Analysis (AA) [10,45]
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and the Skellam distribution [59]. The Skellam distribution is the difference of two

independent Poisson-distributed random variables (y = N1 −N2 ∈ Z) with respect

to the rates λ+ and λ−:

P (y|λ+, λ−) = e−(λ++λ−)

(
λ+

λ−

)y/2

I|y|
(
2
√
λ+λ−

)
, (3)

where N1 ∼ Pois(λ+) and N2 ∼ Pois(λ−), and I|y| is the modified Bessel function

of the first kind and order |y|.
Whereas in [48] the network representations were constrained to the convex hull

as defined by the inferred representations, it is discussed that other approaches to

model pure/ideal forms have been Minimal Volume (MV) approaches as defined by

Z ≈ AW s.t. vol(A) = v and wj ∈ ∆D, (4)

where A ∈ R(D+1)×(D+1) is the matrix describing the archetypes (extreme points

of the convex hull) of the latent space, and vol(A) is the volume of matrix A which

can be expressed through the determinant as |det(A)|, when A is a square ma-

trix [17, 69]. Extraction of distinct aspects/profiles through MV does not require

the presence of “pure” observations defining the convex-hull or else the extracted

polytope/simplex. As the volume decreases, observations are “forced” to populate

the corners of the polytope, yielding archetypal characterization when the recon-

struction of data is defined through convex combinations of these corners.

The main disadvantage of MV procedures is the need for careful regulariza-

tion tuning to define volumes ensuring identifiability as well as maintaining enough

capacity to express the data with a small reconstruction error [69]. In addition, an-

alytical and tractable computation of the volume of polytopes requires calculating

the sum of determinants for all simplexes used to construct the inferred polytope [7].

This is computationally expensive (especially in high dimensions) and sometimes

unstable when A comes close to singular.

In this paper, we constrain the columns of matrixA to theD-simplex with length

δ. Thus, by controlling the volume of A, we essentially define a constrained-to-

simplexes MV approach. Calculating the volume for the D−simplex with length δ is

straightforward and computationally efficient. Rather than including regularization

over the volume of A in the loss function during inference, we deterministically

control the simplex length δ which is given as an input to the model and gradually

decreased until uniqueness guarantees are obtained. Volume minimization can be

obtained trivially by decreasing δ. Such a procedure gives us explicit control over the

model capacity by fixing the volume which is harder to be obtained with classical

MV approaches where the volume expression is inserted in the loss function.

Essentially, by defining A as A = δ ·I, with I being the (D+1)×(D+1) identity

matrix, we obtain as a special case of archetypal analysis under a constrained MV

formulation. In addition, if every corner of the introduced simplex is populated

by at least one node champion we obtain unique representations defining hybrid

memberships.
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We now introduce the signed Hybrid-Membership Latent Distance Model

(sHM-LDM). The sHM-LDM is able to analyse signed networks, and similar

to [48] it introduces two Skellam rate parameters for Eq. (3) as:

λ+ij = exp
(
βi + βj − δp||wi −wj ||p2

)
, (5)

λ−ij = exp
(
ψi + ψj + δp||wi −wj ||p2

)
, (6)

where again wi ∈ [0, 1]D+1 and
∑D+1

d=1 wid = 1, δ ∈ R+ and βi, ψj ∈ R denote

the node-specific random-effects. As explained in [48], βi, βj represent the “social”

effects/reach of a node and the tendency to form (as a receiver and as a sender, re-

spectively) positive interactions, expressing positive degree heterogeneity (indicated

by + as a superscript of λ). In contrast, ψi, ψj provides the “anti-social” effect/reach

of a node to form negative connections and thus models negative degree heterogene-

ity (indicated by − as a superscript of λ). The norm degree p ∈ {1, 2} controls the

power of the ℓ2-norm, and thus the model specification, as in the unsigned case.

As in [48], we define a maximum-a-posteriori (MAP) estimation, utilizing the

Skellam likelihood over the adjacency matrix Y of the network G = (V, E). We con-

ditionally assume an independent likelihood given the unobserved latent positions

and random effects. The corresponding loss function excluding constant terms is:

L =
∑
i<j

(
λ+ij+λ

−
ij−

yij
2

log

(
λ+ij

λ−ij

))
−
∑
i<j

log I|yij |

(
2
√
λ+ijλ

−
ij

)
+
ρ

2

(
||β||2F+||ψ||2F

)
,

(7)

where I|y| is the modified Bessel function of the first kind and order |y|, || · ||F
denotes the Frobenius norm. In addition, ρ is the regularization strength where

ρ = 1 is assumed throughout this paper yielding a normal prior with zero mean and

unit variance for the random effects. For the latent positions, we assume a uniform

Dirichlet distribution as a prior which only adds a constant term in Eq. 7 and thus

is excluded.

Choosing the case where p = 2, meaning that the sHM-LDM utilizes the

squared Euclidean norm, we are able once more to relate the model to an Eigen-

model by creating the following reparameterizations. For the rate responsible for

positive interactions {λ+ij} as: β̃i + β̃j + (w̃iΛw̃⊤
j ) where Λ is a diagonal matrix

having non-negative elements, i.e. β̃i = βi − δ2 · ||wi||22, β̃j = βj − δ2 · ||wj ||22 and

w̃iΛw̃⊤
j = 2δ2 ·wiw

⊤
j . Similarly, for the rate responsible for expressing animosity

{λ−ij} as: ψ̃i + ψ̃j + (w̃iΛw̃⊤
j ) where Λ is a diagonal matrix having non-positive

elements, i.e. ψ̃i = ψi− δ2 · ||wi||22, ψ̃j = ψj − δ2 · ||wj ||22 and w̃iΛw̃⊤
j = 2δ2 ·wiw

⊤
j .

We witness that homophily in the case of sHM-LDM is expressed through a

non-negative Eigenmodel (as in the unsigned case) while animosity/heterophily is

expressed through a non-positive Eigenmodel able to express stochastic equiva-

lence [19]. These two formulations admit the same embedding matrix W which

balances the expression of “opposing” forces (homophily and animosity) in the la-

tent space. Lastly, for p = 2 both expressions admit to an NMF operation, obtaining
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Table 2: Network statistics; |V|: # Nodes, |E|: # Edges, |K|: # Communities.

AstroPh [39] GrQc [39] Facebook [39] HepTh [39] Hamilton [43] Amherst [43] Rochester [43] Mich [43]

|V| 17,903 5,242 4,039 8,638 2,118 2,021 4,145 2,933

|E| 197,031 14,496 88,234 24,827 87,486 87,496 145,305 54,903

|K| - - - - 15 15 19 13

an identifiable and unique factorization (up to permutation invariance) when W is

full-rank and at least one node resides solely in each simplex corner [23, 41] as in

the case of HM-LDM for unsigned networks.

3. Experimental evaluation

We continue by assessing the effectiveness and efficacy of the suggested techniques.

We start with the case of unsigned networks, including both latent and ground-

truth community structures, and test HM-LDM based on its capability to detect

identifiable latent structures as well as to perform link prediction. Additionally,

for the networks with known community structures, we assess how the model can

successfully infer the ground-truth community labels. We then continue with the

case of signed networks for evaluating the performance of sHM-LDM in its ability

to perform signed link prediction and discovery of distinct profiles.

For both the training of HM-LDM and sHM-LDM, we make use of the Adam

optimizer [31], minimizing for the two models the log-likelihood function of Eq.

(1) and the MAP expression of Eq. (7), respectively. The learning rate is set as

lr ∈ [0.01, 0.1]. The node-specific random effects vectors for all models are randomly

initialized and then tuned separately (for 1000 iterations) by detaching initially the

gradients from the latent representations W. The latent embeddings matrix W is

initialized based on the eigenvalues obtained by the spectral decomposition of the

normalized Laplacian matrix of the network as expressed for unsigned [27, 51] and

signed [2] networks.

3.1. Unsigned Network Experiments

We consider eight unsigned networks of various sizes and structures. We hereby

supply the reader with additional information for the considered networks. The

four networks with unknown community labels include (i) AstroPh, (ii) GrQc, and

(iii) HepTh [38] are collaboration networks based on papers submitted to the as-

trophysics, general relativity and quantum cosmology, and high energy physics cat-

egories of the e-print ArXiv, respectively. An edge between a pair of nodes (repre-

senting authors) is created if they have co-authored a paper. (iv) Facebook [40] is a

social network based on data obtained by a survey on a Facebook application. The

additional four networks with ground-truth community labels include (v) Hamilton,

(vi) Amherst, (vii) Rochester, and (viii) Mich which are all Facebook networks de-

scribing online friendships/connections of four American universities with the class
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year serving as the ground truth community [43]. Network statistics are summarized

by Table 2. We treat the above networks as unweighted and undirected.

For the experiments, we consider eleven various prominent graph representation

learning methods to evaluate the performance of our proposed approach. These

are: (i) DeepWalk [54], (ii) Node2Vec [12] which are two random-walk based

methods. (iii) LINE [61] learning node embeddings vectors by optimizing the first-

and second-order proximity information. (iv) NetMF [56] that factorizes the point-

wise mutual information matrix of node co-occurrences obtained by random walks.

(v) NetSMF [55] the scalable extension of the NetMF method [56]. (vi) Lou-

vainNE [5] obtaining node representations by aggregating hierarchical embeddings

of extracted network sub-graphs. (vii) ProNE [68] which finds representation based

on a sparse matrix factorization and spectral propagation operations. We also con-

sider four NMF-based embedding approaches able to convey information about com-

munity memberships. These include (viii) NNSED utilizing an encoder-decoder ap-

proach for community detection. (ix) MNMF unifying NMF representation learning

with modularity-based community detection. (x) BigClam defining a model-based

community detection algorithm able to detect overlapping community structures.

(xi) SymmNMF decomposing a pairwise similarity measure matrix between nodes

of the network admitting graph clustering properties.

Link prediction: To conduct the link prediction experiments, we adopt a com-

monly used approach [12, 54], where we eliminate half of the network edges while

ensuring that the remaining network stays connected. The removed edges, together

with the equivalent number of node pairs (that were not part of the original net-

work edges), create the negative instances for the test set. The models learn network

embeddings based on the remaining network.

For the link prediction experiments, we use the four networks with unknown

community structures and compare the performance in Table 3, in terms of the Area

Under Curve-Receiver Operating Characteristic (AUC-ROC) metric. We bench-

mark HM-LDM against other notable GRL and NMF models while considering

the performance across various dimensions. All baselines are fine-tuned, and fea-

ture vectors for dyads are generated using binary operators (average, Hadamard,

weighted-L1, weighted-L2) [12]. For the baselines, we further train a logistic regres-

sion model with L2 regularization and based on the constructed feature vectors

make link predictions. Specifically, we choose the optimal hyperparameters and

binary operator for each baseline model, based on which operator and hyperparam-

eters return the highest AUC-ROC score.

For our frameworks, we follow a different approach leading to an unbiased es-

timation of link prediction performance. More specifically, we report results based

on the first δ value (as we decrease the volume) that makes the solution identi-

fiable, meaning the δ value where at least one community champion resides in a

simplex corner. Importantly, there exist additional values for δ which define iden-

tifiable solutions as well as increased performance with respect to the reported one
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Table 3: Area Under Curve (AUC-ROC) scores for varying representation sizes.

AstroPh GrQc Facebook HepTh

Dimension (D) 8 16 32 8 16 32 8 16 32 8 16 32

DeepWalk [54] .945 .950 .952 .919 .916 .929 .986 .986 .984 .874 .867 .873

Node2Vec [12] .950 .962 .957 .897 .913 .930 .988 .988 .987 .881 .882 .881

LINE [61] .909 .938 .947 .920 .925 .919 .981 .987 .983 .873 .886 .882

NetMF [56] .813 .823 .839 .860 .866 .877 .935 .963 .971 .792 .806 .821

NetSMF [55] .891 .901 .919 .837 .858 .886 .975 .981 .985 .809 .822 .836

LouvainNE [5] .813 .811 .819 .868 .875 .873 .958 .961 .963 .874 .867 .873

ProNE [68] .907 .929 .947 .885 .911 .921 .971 .982 .987 .827 .846 .859

NNSED [60] .861 .882 .891 .792 .808 .828 .908 .927 .935 .756 .779 .796

MNMF [62] .893 .925 .943 .911 .928 .937 .965 .978 .982 .857 .880 .891

BigClam [66] .500 .723 .810 .752 .769 .780 .744 .722 .647 .776 .700 .748

SymmNMF [34] .767 .779 .800 .729 .772 .835 .933 .942 .951 .696 .727 .766

HM-LDM(p = 1) .956 .952 .952 .944 .948 .951 .982 .979 .974 .916 .921 .924

HM-LDM(p = 2) .972 .973 .963 .940 .942 .946 .992 .993 .993 .908 .910 .911

but are disregarded so the evaluation stays unbiased. In addition, predictions for

HM-LDM are based directly on the Poisson rates λij defined for test set pairs {i, j}
with AUC-ROC scores as reported in Table 3. This comes as an advantage of HM-

LDM since it defines a likelihood function over the network connections and thus

has no need for post-processing steps (such as training a logistic regression model)

to make predictions. The true dimensions for HM-LDM are D+1 but reported as

D since this is the true number of model parameters, for a fair comparison with the

baselines. Results for our method are reported based on the average performance

over five independent runs of the model (error bars were found to be in the scale of

10−3 and thus not presented).

Upon contrasting our findings with the non-NMF models, we found that our

HM-LDM (either p = 1 or p = 2) outperforms these baselines and, in most cases,

by a significant margin, producing favorable results. We notice a considerable differ-

ence in performance when comparing HM-LDM with other part-based representa-

tion models, indicating the existence of identifiable regimes based on δ values where

we can successfully obtain community memberships while simultaneously demon-

strating the link prediction abilities of unconstrained LDM. (AUC Precision-Recall

scores are similar to the AUC-ROC scores and thus not presented)

Performance and simplex sizes: Fig 2 displays the AUC-ROC scores in terms

of link prediction performance as a function of δ2 for various latent dimensions, and

networks, and both p = 1 and p = 2. As expected, we here understand that small

δ values provide the minimum scores. This is a direct consequence of the fact that

homophily properties are not adequately met (except within clusters) due to the

very small simplex volumes that these low δ values constrain the latent space to. If

we think of HM-LDM with p = 2 as a positive Eigenmodel, we can also see how the

positivity constraint on the Λ diagonal matrix hinders the expression of stochastic

equivalence, which would boost performance even on low simplex volumes. As we

increase δ values, we naturally approach the performance of an unconstrained LDM.
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Comparing the case of p=2 (squared), and p=1 (simple) for the ℓ2-norm, we observe

that the former reaches performance saturation more rapidly.

Type and quality of latent memberships: We here study how the size of

the simplex affects the membership types of HM-LDM. Fig 3 illustrates how the

percentage of community champions (nodes assigned to simplex corners) for HM-

LDM as a function of δ2 and for different latent dimensions. When δ is small, almost

all nodes are exclusively assigned to a simplex corner, resulting in hard assignments

to clusters. As δ increases, more nodes are assigned with mixed memberships, while

the number of champions decreases to zero for large δ values in all dimension cases.

The decrease in community champions is steeper for p = 2 compared to p = 1.

This also explains why the squared ℓ2 choice leads to faster convergence in AUC-

ROC, as the model converges faster to the classic LDM. It is evident that the

p = 2 HM-LDM requires smaller simplex volumes to be identifiable. In Fig 4,

we provide the reorganized adjacency matrices with community allocations given

by HM-LDM, showing how the model successfully uncovers latent communities

and produces part-based network representations while identifiability is ensured by

choosing appropriate δ values, or equivalently appropriate simplex volumes. (for

mixed-memberships nodes are assigned to the cluster in which they express the

maximum membership)

Experiments using real ground-truth communities: To evaluate the ef-

fectiveness of HM-LDM in identifying meaningful communities, we conduct ex-

periments using four networks with known ground-truth community labels. For

NMF-based methods, including our own, we assess the algorithms’ ability to iden-

tify correct structures by comparing the inferred memberships with the ground-

truth labels. We set the number of latent dimensions equal to the total number of
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Fig. 2: AUC-ROC scores as a function of δ2 (simplex size) across dimensions for

HM-LDM. Increasing δ2 (simplex volume) leads to higher performance as the model

becomes more flexible until saturation (unconstrained LDM regime). Top row: p = 2

model specification. Bottom row p = 1 model specification.
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Fig. 3: Total community champions (%) in terms of δ2 (simplex size) across dimen-

sions for HM-LDM. Decreasing δ2 (simplex volumes) leads to a higher percentage

of nodes positioned on the simplex corners (equivalent to hard clustering) until all

nodes are pushed on the corners for very small volumes. Top row: p = 2 model

specification. Bottom row p = 1 model specification.

(a) GrQc (p = 2) (b) HepTh (p = 2) (c) GrQc (p = 1) (d) HepTh (p = 1)

Fig. 4: Ordered adjacency matrices based on the memberships of a D = 16 di-

mensional HM-LDM with δ values ensuring identifiability, empirically showcasing

community extraction and identification.

communities. For GRL approaches that do not provide memberships, we extract

latent embeddings and use k-means to assign communities. We report the Nor-

malized Mutual Information (NMI) score and Adjusted Rand Index (ARI), which

are well-established measures for community quality assessment [9]. We tune all

baseline methods separately for each network in terms of their hyperparameters. In

contrast, for HM-LDM, we do not perform any tuning and just set δ = 1 for all

networks, resulting in informative and mostly hard cluster assignments. We report

scores averaged over five independent runs of the Adam optimizer, each of which

includes five additional runs, selecting the model with the lowest training loss to

avoid the effect of local minimas. We summarize our findings in Table 4, where

we witness a mostly favorable or on-par performance of HM-LDM with all of the
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Table 4: Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI)

scores for networks with ground-truth communities.

Amherst Rochester Mich Hamilton

Metric NMI ARI NMI ARI NMI ARI NMI ARI

DeepWalk [54] .498 .347 .348 .205 .207 .157 .447 .303

Node2Vec [12] .535 .375 .364 .223 .217 .161 .481 .348

LINE [61] .549 .452 .365 .217 .249 .192 .499 .411

NetMF [56] .491 .330 .377 .243 .237 .136 .456 .297

NetSMF [55] .562 .408 .381 .228 .242 .169 .494 .391

LouvainNE [5] .562 .395 .347 .204 .175 .114 .475 .334

ProNE [68] .536 .443 .356 .312 .229 .200 .478 .396

NNSED [60] .295 .243 .168 .116 .064 .035 .335 .285

MNMF [62] .542 .362 .324 .171 .188 .102 .466 .287

BigClam [66] .091 .066 .028 .022 .024 .015 .053 .041

SymmNMF [34] .596 .397 .308 .175 .207 .088 .437 .341

HM-LDM(p = 1) .562 .502 .400 .392 .228 .205 .527 .485

HM-LDM(p = 2) .539 .506 .384 .373 .217 .183 .507 .504

competitive baselines for the NMI metric. For the ARI metric, we observe that our

framework significantly outperforms the baselines for all of the considered networks.

Comparison with the LDM: We explore the performance of HM-LDM

in comparison to the classical LDM with random effects, considering normal and

squared ℓ2-norms denoted as LDM-Re and LDM-Re-(ℓ2)2, accordingly. We evalu-

ate the models, based on link prediction and clustering tasks and report the scores

in Table 5 and Table 6. The results show that despite constraining the latent space

into the D−simplex with volumes ensuring identifiable solutions, we only observe

a slight decrease in AUC-ROC scores. In contrast, the HM-LDM yields favorable

NMI scores for community detection and considerably higher ARI scores when com-

pared to classic LDM. For sufficiently large δ values (i.e. δ2 = 103), link-prediction

performance for HM-LDM reached the one of the unconstrained LDM, but the

clustering scores of the latter decrease significantly. This is since for large simplex

volumes, the HM-LDM closely approximates the LDM at the expense of model

and structure identifiability.

Extension to bipartite networks: We can trivially extend the HM-LDM

model to account for unsigned bipartite networks [46]. Such an extension is achieved

by defining and introducing a different set of latent variables for the two disjoint

sets of nodes, as present in a bipartite structure. In addition, the HM-LDM(p=2)

model simply extends the symmetric NMF operation, obtained for the undirected

networks, to the non-symmetric NMF specification. In Fig 5, we provide the re-

ordered adjacency matrix with respect to the community allocations defined by

the learned embeddings of HM-LDM for a Drug-Gene [39] network (|V| = 7, 341|,
|E| = 15, 138) where we observe a clear block structure. Importantly, the HM-

LDM offers identifiable joint embedding representations, mixed memberships, and

community discovery for bipartite networks, tasks in general considered to be non-

trivial and arduous.
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Table 5: HM-LDM and LDM-Re comparison for the link prediction task.

AstroPh GrQc Facebook HepTh

Dimension (D) 8 16 32 8 16 32 8 16 32 8 16 32

LDM-Re .973 .974 .979 .949 .952 .954 .993 .994 .992 .920 .923 .923

HM-LDM(p = 1, δ2 = identifiable) .956 .952 .952 .944 .948 .951 .982 .979 .974 .916 .921 .924

HM-LDM(p = 1, δ2 = 103) .967 .967 .965 .956 .955 .951 .985 .986 .987 .932 .931 .926

LDM-Re-(ℓ2)2 .979 .978 .976 .944 .944 .945 .990 .990 .991 .913 .912 .909

HM-LDM(p = 2, δ2 = identifiable) .972 .973 .963 .940 .942 .946 .992 .993 .993 .908 .910 .911

HM-LDM(p = 2, δ2 = 103) .984 .983 .980 .948 .946 .946 .991 .991 .992 .920 .918 .913

Table 6: HM-LDM and LDM-Re comparison for the clustering task.

Amherst Rochester Mich Hamilton

Metric NMI ARI NMI ARI NMI ARI NMI ARI

LDM-Re .548 .366 .391 .212 .230 .132 .491 .320

HM-LDM(p = 1, δ2 = identifiable) .562 .502 .400 .392 .228 .205 .527 .485

HM-LDM(p = 1, δ2 = 103) .439 .386 .308 .303 .176 .133 .405 .377

LDM-Re-(ℓ2)2 .546 .370 .393 .211 .231 .137 .497 .327

HM-LDM(p = 2, δ2 = identifiable) .539 .506 .384 .373 .217 .183 .507 .504

HM-LDM(p = 2, δ2 = 103) .240 .133 .206 .119 .116 .056 .232 .209

3.2. Signed Networks Experiments

For the signed network experiments, we introduce four networks of varying sizes

and structures. (i) Reddit which uses hyperlinks to create directed edges between

communities belonging to the social network platform [35]. (ii) wikiElec and (iii) its

more recent version wikiRfa which follow election procedures carried out through

multiple timelines and convey voting information as links about users to describe

positive, neutral, and opposing views for potential users to be elected administra-

tors on Wikipedia. [37, 63]. (iv) Twitter is an undirected network with positive

and negative links obtained from user tweets about the referendum concerning the

reform of the Italian Constitution back in 2016 [52].

The performance of sHM-LDM is compared against seven graph representation

(a) p = 1, δ = 1 (b) p = 2, δ = 1

Fig. 5: Drug-Gene ordered adjacency matrices based on HM-LDM with D = 8,

empirically showcasing community extraction and identification extended to bipar-

tite networks.
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Table 7: Binary operators considered for designing feature vectors (edge features).

The notation, f(v)d denotes the d’th coordinate of the embedding vector of node v.

Operator Symbol Definition

Average ⊞ [f(u)⊞ f(v)]d = (f(u)d + f(v)d)/2

Hadamard ⊡ [f(u)⊡ f(v)]d = f(u)d · f(v)d
Weighted-L1 ∥ · ∥1 ∥f(u)− f(v)∥1d = |f(u)d − f(v)d|
Weighted-L2 ∥ · ∥2 ∥f(u)− f(v)∥2d = |f(u)d − f(v)d|2
Concatenate ⊕ [f(u)⊕ f(v)]d =

(
f(u)d, f(v)d

)
Table 8: Area Under Curve (AUC-ROC) scores for representation size of D = 8 and

δ values ensuring identifiability. (”x” denotes a baseline that was unable to run due

to high memory/runtime complexity)

WikiElec WikiRfa Twitter Reddit

Task p@n p@z n@z p@n p@z n@z p@n p@z n@z p@n p@z n@z

POLE [24] .809 .896 .853 .904 .921 .767 .965 .902 .922 x x x

SLF [65] .888 .954 .952 .971 .963 .961 .914 .877 .968 .729 .955 .968

SiGAT [21] .874 .775 .754 .944 .766 .792 .998 .875 .963 .707 .682 .712

SIDE [30] .728 .866 .895 .869 .861 .908 .799 .843 .910 .653 .830 .892

SigNet [26] .841 .774 .635 .920 .736 .717 .968 .719 .891 .646 .547 .623

SLDM [48] .876 .969 .936 .963 .982 .963 .986 .962 .973 .648 .951 .975

SLIM [48] .862 .965 .935 .956 .980 .960 .988 .963 .972 .667 .955 .978

sHM-LDM(p=1) .872 .963 .938 .959 .977 .963 .978 .958 .976 .642 .951 .977

sHM-LDM(p=2) .872 .966 .937 .960 .975 .964 .977 .958 .973 .610 .953 .976

learning baselines, eligible for analyzing signed networks: (i) POLE [24] where

embeddings are based on the decomposition of an auto-covariance matrix created

through signed random walks, (ii) SLF [65] that creates representations based on

latent factors capable of describing both positive and negative connections, (iii)

SiGAT [21] a graph neural network model learning node embeddings through a

graph attention mechanism, (iv) SIDE [30] utilizing truncated random walks under

a general likelihood expression for signed relationships modeling both positive and

negative ties, (v) SigNet [26] a deep neural network using a similarity measure

through the Hadamard product able to describe signed proximity between a pair

of nodes, (vi) SLDM and (vii) SLIM models [48] which define an unconstrained

and a constrained to polytopes latent distance model, respectively. Both of these

two models utilize the Skellam distribution as the sHM-LDM which constrains the

model to the D−simplex while SLIM operates on the inferred convex-hull of the

latent space.

3.3. Signed Link prediction

We follow the same evaluation procedure as in [48] and define two settings con-

sidering link prediction, in order to benchmark sHM-LDM’s predictive capability
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against the considered baselines. For that, we randomly choose 20% of the total

network links/cases (both positive and negative) which are then zeroed out with

the constraint that the residual signed network stays connected. Furthermore, an

equal size of disconnected pairs in the original networks is also drawn to act as the

controls in the prediction tasks. The combined samples of removed links and drawn

controls define the test set for each network. All models are trained on the residual

networks for each dataset.

Performance evaluation: For our methods, as well as, for SLDM and SLIM

we learn a logistic regression model with inputs given by both the rates and log-

rates, as defined by the Skellam distribution, i.e. χij =
[
λ+ij , λ

−
ij , log λ

+
ij , log λ

−
ij

]
. It

is argued in [48] that the Skellam distribution operates on both the ratios and prod-

ucts of the rates during inference. Consequently, training a logistic regression based

on rates and log rates allow for learning linear and non-linear mappings based on

both the rates as well as their products and ratios due to the log transformation. For

the performance evaluation of the baselines, we consider five binary operators, as

established in the GRL literature. These include the {average, Hadamard product,

weighted L1, weighted L2, concatenate}, as shown in Table 7. These are utilized

to construct five different feature vectors, used to train multiple logistic regression

models for each task. For every baseline defining multiple feature vectors, we choose

the logistic regression model that returns the maximum performance for each in-

dividual task. Lastly, for each link prediction task, we consider the robust against

class imbalance metric, area-under-curve of the receiver operating characteristic

(AUC-ROC).

Task 1: Link sign prediction. For the first task we consider only the

links/cases of the test set for each network. After training, each model is pro-

vided with the test set link pairs and evaluated in its ability to predict the sign

of the removed links. The AUC-ROC results are summarized in Table 8 where the

link sign prediction is represented as p@n. We mostly observe favorable or on-par

results and performance against the baselines. More specifically, comparing to the

SLDM and SLIM, our models despite defining a more constrained latent space (re-

call that A = δ · I for sHM-LDM) the obtained results shows identical or on-par

performance.

Task 2: Signed link prediction. The second task is more difficult and eval-

uates the performance of a model in its ability to both predict the sign, as well

as, the presence of a link. For that, the whole test set is used to create two test

subsets. The first contains the controls and positive links while the second the con-

trols and the negative links. The models then are asked to distinguish controls from

positive cases and controls from negative cases, respectively. We denote these tasks

accordingly as p@z and n@z and AUC-ROC scores are provided in Table 8. Once

more, the sHM-LDM frameworks provide favorable or on-par performance against

the baselines and especially to the SLDM and SLIM models.

Visualizations: The inferred simplex of sHM-LDM extracts information about
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(a) PCA (D = 8) (b) PCA (D = 16) (c) PCA (D = 32) (d) PCA (D = 64)

(e) NCP (D = 8) (f) NCP (D = 16) (g) NCP (D = 32) (h) NCP (D = 64)

(i) PCP (D = 8) (j) PCP (D = 16) (k) PCP (D = 32) (l) PCP (D = 64)

(m) OrA (D = 8) (n) OrA (D = 16) (o) OrA (D = 32) (p) OrA (D = 64)

Fig. 6: sHM-LDM(p=2): Twitter Network—Inferred simplex visualizations and

ordered adjacency matrices for various dimensions D and with simplex side lengths

δ ensuring identifiability. The first row shows the latent space projection to the

first two Principal Components—The second row provides a Negative Circular Plot

(NCP) with red lines showcasing negative links between nodes—The third row

shows a Positive Circular Plot (PCP) with the blue lines denoting positive links

between node pairs—The fourth and final row shows the Ordered Adjacency (OrA)

matrices sorted based on the memberships wi, in terms of maximum simplex corner

responsibility, and internally according to the magnitude of the corresponding corner

assignment for their reconstruction.
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(a) PCA (D = 8) (b) PCA (D = 16) (c) PCA (D = 32) (d) PCA (D = 64)

(e) NCP (D = 8) (f) NCP (D = 16) (g) NCP (D = 32) (h) NCP (D = 64)

(i) PCP (D = 8) (j) PCP (D = 16) (k) PCP (D = 32) (l) PCP (D = 64)

(m) OrA (D = 8) (n) OrA (D = 16) (o) OrA (D = 32) (p) OrA (D = 64)

Fig. 7: sHM-LDM(p=1): Twitter Network—Inferred simplex visualizations and

ordered adjacency matrices for various dimensions D and with simplex side lengths

δ ensuring identifiability. The first row shows the latent space projection to the

first two Principal Components—The second row provides a Negative Circular Plot

(NCP) with red lines showcasing negative links between nodes—The third row

shows a Positive Circular Plot (PCP) with the blue lines denoting positive links

between node pairs—The fourth and final row shows the Ordered Adjacency (OrA)

matrices sorted based on the memberships wi, in terms of maximum simplex corner

responsibility, and internally according to the magnitude of the corresponding corner

assignment for their reconstruction.
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Fig. 8: sHM-LDM: Twitter Network—Performance characteristics across different

dimensions D in terms of various values δ2 (simplex size). The first column shows

the total community champions (%) across dimensions for sHM-LDM—The sec-

ond column provides the Link Sign Prediction (LSP) performance for the task of

inferring the sign of the test set links (p@n)—The third and fourth columns describe

the performance for the Signed Link Prediction (SLP) tasks, distinguishing between

negatively related and disconnected nodes (n@z), as well as, positively connected to

disconnected nodes (p@z), respectively. Top row: p = 2 model specification. Bottom

row p = 1 model specification.

node memberships to distinct aspects of the network. Similar to [48], we provide

visualizations regarding the latent space as projected to the first two principal com-

ponents and include circular plots describing the simplex and node memberships

in two dimensions. Specifically, each corner of the simplex is positioned to the bor-

der of a circle, every radk = 2π
D radians, with D being the number of the simplex

corners. Furthermore, we provide the re-ordered adjacency matrices based on the

inferred memberships for various dimensions. Visualizations for the Twitter are pro-

vided in Fig. 6 and Fig. 7 for sHM-LDM(p = 2) and sHM-LDM(p = 1) models,

respectively. For both models, visualizations are available for different dimensions

while we see how the model successfully uncovers distinct aspects of the network

when the simplex side length δ ensures identifiability. From the circular plots en-

riched with the corresponding negative (red lines) and positive (blue lines) links,

we observe that the models always uncover simplex corners to act as dislike (high

negative in-degree) and like (high positive in-degree) profiles of the network. We

also observe controversial network profiles, sharing a high degree of both negative

and positive connections. For the ordered adjacency matrices of the two models,

we can observe successful structure extraction and discovery, and as we increase

the dimensionality of the simplex structure it becomes finer and finer. Lastly, we

also obtain simplex corners for the inferred simplex containing not-so-intensely con-

nected nodes. This comes as a validation of stochastic equivalence presence that the
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(a) NCP U.S.-Senate (b) PCP U.S.-Senate (c) OrA U.S.-Senate

(d) PCP U.S.-House (e) PCP U.S.-House (f) OrA U.S.-House

Fig. 9: sHM-LDM(p=2): Inferred simplex visualizations and ordered adjacency

matrices for a D = 6 dimensional simplex with side lengths δ ensuring identifiabil-

ity. The first column provides a Negative Circular Plot (NCP) with red lines show-

casing negative links between nodes—The second column shows a Positive Circular

Plot (PCP) with the blue lines denoting positive links between node pairs—The

third and final column shows the Ordered Adjacency (OrA) matrices ordered based

on the memberships, in terms of maximum simplex corner responsibility, and inter-

nally according to the magnitude of the corresponding corner assignment for their

reconstruction. Top row: U.S.-House. Bottom row U.S.-Senate.

sHM-LDM framework can express.

Simplex size and performance evaluation: In Fig. 8 we provide perfor-

mance characteristics against various dimensions D as a function of δ2 for sHM-

LDM(p=2) and sHM-LDM(p=1) models, respectively. The first column shows the

percentage of champion nodes as defined by the model whereas expected smaller

simplex volumes lead to a higher percentage of hard-clustered nodes. In addition, it

is clear that the dimensionality in sHM-LDM(p=1) has a bigger effect on the node

champions than for the sHM-LDM(p=2) case. The last three columns showcase

the performance across the p@z, n@z, and p@z tasks respectively. Comparing to

the results of theHM-LDM we observe for the signed networks and sHM-LDM

that the performance is not affected to the same degree by the shrinkage of the

latent space (the maximum case is present in the p@n task accounting to just a 4%

decrease).

Extension to signed bipartite networks: Here, similar to the unsigned net-

work study, we extend the analysis to bipartite signed networks for sHM-LDM.

The extension is again trivial by defining two sets of latent variables describing the
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(a) NCP U.S.-Senate (b) PCP U.S.-Senate (c) OrA U.S.-Senate

(d) PCP U.S.-House (e) PCP U.S.-House (f) OrA U.S.-House

Fig. 10: sHM-LDM(p=1): Inferred simplex visualizations and ordered adjacency

matrices for aD = 6 dimensional simplex with side lengths δ ensuring identifiability.

The first column provides a Negative Circular Plot (NCP) with red lines showcasing

negative links between nodes—The second column shows a Positive Circular Plot

(PCP) with the blue lines denoting positive links between node pairs—The third

and final column shows the Ordered Adjacency (OrA) matrices ordered based on

the memberships, in terms of maximum simplex corner responsibility, and inter-

nally according to the magnitude of the corresponding corner assignment for their

reconstruction. Top row: U.S.-House. Bottom row U.S.-Senate.

two disjoint groups of nodes, as present in bipartite structures. In addition, we intro-

duce four sets of random effects defining again node social and antisocial reach but

now respecting target and source roles of the nodes in the corresponding networks

links. We introduce two signed bipartite networks, U.S.-House [11] (|V| = 1796,

|E+| = 61678, |E−| = 52619, Density=0.1734), and U.S.-Senate [11] (|V| = 1201,

|E+| = 14964, |E−| = 12096, Density=0.1769), regarding voting records for pro-

posed bills as made by the U.S. House of Representatives and the U.S. Senate,

accordingly. For these networks, the first (rows) of the disjoint sets of nodes refer to

the bills while the second (columns) to representatives or senators, accordingly. In

Figs 9 and 10, we provide the Positive Circular Plots PCP, Negative Circular Plots

NCP, and Ordered Adjacency Matrices OrA for the corresponding networks and

for both sHM-LDM(p=2) and sHM-LDM(p=1) frameworks, respectively. We wit-

ness how the sHM-LDM framework generalizes to the study of bipartite networks,

successfully uncovering distinct network aspects and profiles, that convey informa-

tion about both homophily, as well as, animosity being present in the network.
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4. Complexity analysis

The proposed HM-LDM and its signed extension sHM-LDM belong to the family

of latent distance models and thus require the calculation of the all-pairs distance

matrix. This scales as O(N2) in time and memory, making large-scale network

analysis infeasible. To alleviate that problem we consider unbiased estimations of

the log-likelihood through a random sampling approach. More specifically, in every

model iteration, a set of network nodes, S ⊆ V, is sampled (with replacement) and

gradient steps are taken based on the log-likelihood of the block defined by the

sampled node set. This effectively reduces the complexity of the models to O(S2)

both in time and memory. Another option is the case-control approach [57] scaling

by the number of network edges as O(E). Lastly, the Hierarchical Block Distance

Model (HBDM) [49] is an attractive alternative option where gradient steps over

the model parameters are based on a hierarchical approximation of the likelihood

of the whole network. The HBDM model scales linearithmicly as O(N logN) both

in space and time while also offering hierarchical characterizations of structures at

multiple scales.

5. Conclusion and future work

In this study, we have presented the HM-LDM reconciling graph representation

learning and latent community detection. We extended the model to account for

signed networks and showed that a minimum volume approach could uncover dis-

tinct profiles in social networks while ensuring model identifiability. Both presented

frameworks were formulated to include a Euclidean as well as a squared Euclidean

norm. For the latter, a direct relationship to an Eigenmodel in both the case of

unsigned and signed networks was shown. Furthermore, by controlling the volume

of the simplex by the magnitude of δ, a sufficiently reduced simplex leads to unique

representations. For unsigned networks, this resulted in the hard clustering of nodes

to communities when the simplex was sufficiently contracted. Notably, the gener-

alization to signed networks facilitated the extraction of distinct network profiles

representing positive interactions and animosity. In regimes where HM-LDM and

sHM-LDM provide unique representations, we observed favorable link prediction

performance and the ability to order the adjacency matrix based on prominent

latent communities and distinct profiles. Notably, the proposed HM-LDM com-

bines network homophily and transitivity properties with latent community detec-

tion enabling explicit control of soft and hard assignment through the volume of

the induced simplex. Importantly, the extended sHM-LDM merges homophily and

heterophily properties to account for positive and negative ties as present in signed

networks. To further evaluate the performance of HM-LDM and sHM-LDM, fu-

ture work should compare them against classical non-embedding methods such as

the Degree Corrected Stochastic Block Model (DC-SBM) [29] or the Mixed Mem-

bership Stochastic Block Model (MM-SBM) [1], as well as, a Stochastic Block

Model accounting for signed networks [28].
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Abstract

Understanding the structure and dynamics of scientific research, i.e., the science
of science (SciSci), has become an important area of research in order to address
imminent questions including how scholars interact to advance science, how dis-
ciplines are related and evolve, and how research impact can be quantified and
predicted. Central to the study of SciSci has been the analysis of citation networks.
Here, two prominent modeling methodologies have been employed: one is to assess
the citation impact dynamics of papers using parametric distributions, and the other
is to embed the citation networks in a latent space optimal for characterizing the
static relations between papers in terms of their citations. Interestingly, citation
networks are a prominent example of what we denote as single-event dynamic
networks, i.e., networks for which each dyad only has a single event (i.e., the
point in time of citation). We presently propose a novel likelihood function for
the characterization of such single-event networks. Using this likelihood, we fur-
ther propose the Dynamic Impact Single-Event Embedding model (DISEE). The
DISEE model characterizes the scientific interactions in terms of a latent distance
model in which forces (strength of the interaction) can be reparameterized to be
proportional to the product of the masses of the interacting entities. To account for
the time-varying impact, the mass of a contribution being used is time-dependent
based on flexible parametric representations of scientific impact. We highlight the
proposed approach on several real networks of scientific collaboration finding that
the DISEE well reconciles static latent distance network embedding approaches
with classical dynamic impact assessments of citation networks.

1 Introduction

Networks are widespread data structures and represent the most natural means of expressing complex
systems. They appear across various scientific domains, encompassing fields such as physics,
sociology, science of science. biology, and more. Within these disciplines, networks are used
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to describe a multitude of interactions and systems, such as spin glasses in physics, friendship
interactions in sociology, scholarly collaborations in academia, protein-to-protein interactions in
biology, and structural and functional brain connectivity in neuroscience, among many others [62].
Given their complexity and high-dimensional discrete nature, accurately characterizing the structure
of networks is regarded as a non-trivial and challenging task with a plethora of methodologies and
tools being developed to examine these networks and seek to gain insights into their underlying
structures. These tools are used for several downstream tasks, including link/relation prediction [56],
node classification and clustering [27, 31], and community detection [22].

The abundance of scientific data has established the science of science (SciSci) as a vital tool in
understanding scientific research, as well as, in predicting future outcomes, research directions,
and the overall evolution of science [23]. More specifically, SciSci studies the methods of science
itself, searching for answers to important questions such as how scholars interact to advance science,
how different disciplinary boundaries are removed, and how research impact can be quantified and
predicted. SciSci is an interdisciplinary field with various prominent research directions including but
not limited to, scientific novelty and innovation quantification [93, 89, 100, 12, 24], analysis of career
success dynamics of scholars [71, 25, 50, 17, 68, 53, 54], characterization of scientific collaborations
[13, 49, 102, 58, 7] as well as citation and research impact dynamics [95, 38, 26, 74, 97, 29, 96].

A major focus has been given to the understanding of SciSci through the lens of complex network
analysis, studying the structural properties and dynamics, of the naturally occurring graph data
describing SciSci. These include collaboration networks describing how scholars cooperate to
advance various scientific fields. In particular, pioneering works [65, 63, 64] have analyzed various
network statistics such as degree distribution, clustering coefficient, and average shortest paths.
Furthermore, citation networks define an additional prominent case where graph structure data
describe SciSci. Citation networks, essentially describe the directed relationships of papers (nodes)
with an edge occurring between a dyad if paper A cites paper B, e.g. A→B. Studies focusing
on citation networks have shown power-law and exponential family degree distributions [76], sub-
field community structures [32], and tree-like backbone topologies [33]. Lastly, bipartite network
structures can emerge by defining networks describing author-paper relationships, including indirect
author connections through a collaboration paper or through their citing patterns [28, 107, 3].

In this paper, we focus on citation networks that allow for paper impact characterization. Notably,
such networks are directed and dynamic ideally having an upper triangular adjacency matrix when
nodes are sorted by time due to the time-causal structure of citations (i.e., new papers can only cite
past papers).

Initial works for paper impact quantification utilized classical machine learning methods on various
scholarly features, as well as paper textual information. Methods used to estimate future citations
included linear/logistic regression, k-nearest neighbors, support vector machines, random forests,
and many more [14, 87, 4, 85, 106, 42]. These studies focused primarily on carefully designing and
including proper features to be used for the impact prediction task. Prominent examples are various
author and venue-based metrics such as the H-index, impact factor (IF), and, some network-based
characteristics such as the centrality of authors and periodicals. In addition, improvements in the
predicting scores were achieved by introducing clusters based on citation patterns of papers in their
initial stage [14], as well as, modeling the interdisciplinarity of venues and authors which was
achieved via the Jensen-Shannon divergence [4]. While these methods attracted lots of attention,
they have a major limitation where papers with very similar features define much different citation
distributions and attention patterns that are not characterized.

Later works tried to define impact on the paper level by treating the accumulation of citations through
time as a time series. In the original work of [77], Redner proposed a log-normal distribution to fit
the cumulative citation distribution for papers published during a 110 year period in Physical Review.
This was followed by [20] using a shifted power-law distribution on the same networks. Furthermore,
another widely used distribution modeling citation dynamics is the Tsallis distribution proposed in
[94]. The log-normal and Tsallis distribution share a lot of similarities but in literature, the log-normal
is preferred due to its simplicity. Later works combined the important characteristic of preferential
attachment with the log-normal distribution [103, 98, 99], as well as, the Poisson process [84, 104].

Many studies have focused on creating detailed maps of science based on citation networks in order to
unfold and visualize underlying structures revealing communities and cross-disciplinary interactions
[8, 79, 6, 9, 88, 69]. These prior works concentrated their attention on citation and interactions
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Figure 1: Examples of three different types of networks based on their temporal structure. Round
points represent network nodes, square points make up the corresponding colored node dyads, arrows
represent directed relationships between two nodes, vertical lines represent events, and black lines
are the timelines while grey bold lines show that a link (event) appeared once and cannot be observed
again. Left panel: Static networks where links occur once and there is no temporal information
available. Middle panel: Temporal networks where links are events in time and can be observed
multiple times along the timeline. Right panel: Single-event networks (SENs) where links appear in
a temporal manner but they can occur only once for each dyad, defining edges as single events.

at a periodical level (or on a subset of papers [81, 98, 79, 86]), meaning that individual papers
alongside their citation statistics are unified under the specific periodical they were published. Such
an aggregation has some merits, such as scalability efficiency (#papers� #periodicals) but leads
to information loss at the paper level, especially for interdisciplinary journals [8, 55].

Various prominent Graph Representation Learning (GRL) methods have also been applied to citation
graphs [82, 52] as they have been very popular network choices for assessing downstream task
performance, such as link prediction and node classification [70, 31, 73]. Recently, Graph Neural
Networks (GNN)s have also been used including GraphSAGE [34], the Adaptive Channel Mixing
GNN [57] and Convolutional Graph Neural Networks [47]. Despite these works defining strong
models, powerful link predictors, and node classifiers they do not explicitly account for impact
characterization, nor for the dynamic way that paper citations appear.

Notably, citation networks are dynamic. Whereas dynamic modeling approaches can uncover
structures obscured when aggregating networks across time to form static networks, the dynamic
modeling approaches are in general based on the assumption that multiple links occur between the
dyads in time. Importantly, for continuous-time modeling this has typically been accounted for
using Poisson Process likelihoods [5, 21, 10] including likelihoods accounting for burstiness and
reciprocating behaviors by use of the Hawkes process [5, 2, 15, 108, 21]. To account for the high
degree of complex interactions in time, advanced dynamic latent representations have further been
proposed considering both discrete-time [43, 37, 36, 70, 31, 18, 19, 45, 80, 83] and continuous-time
dynamics [5, 2, 15, 21, 10], including GNNs with time-evolving latent representations [92, 78]. For
surveys of such dynamic modeling approaches see also [105, 44].

Importantly, citation networks are a class of dynamic networks characterized by a single event
occurring between dyads, which we denote as Single-Event Networks (SEN). I.e., links occur only
once at the time of the paper publication. However, neither of the existing dynamic network modeling
approaches explicitly account for SENs. Whereas continuous-time modeling approaches are designed
for multiple events, thereby easily over-parameterizing such highly sparse networks, static networks
can easily be applied to such networks by disregarding the temporal structure but thereby potentially
miss important structural information given by the event time. Despite these limitations, to the best
of our knowledge, existing dynamic network modeling approaches do not explicitly account for
single-event occurrences. In Figure 1, we provide an example of three cases of networks that define
static, traditional event-based dynamic networks, as well as SENs. We here observe how static
networks are completely blind to the temporal information that single-event networks capture while it
is also evident that they differ from traditional event-based temporal networks where each dyad can
have multiple events across time.

When modeling SENs, the single event occurrence makes the networks highly sparse. To account for
the high degree of sparsity of SENs we use as a starting point the static Latent Distance Modeling
(LDM) approaches proposed in [40] in which static networks are embedded in a low dimensional
space and the relative distance between the nodes used to parameterize the probability of observing
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links between the nodes. Importantly, these modeling approaches have been found to provide
easily interpretable low-dimensional (D = 2 and D = 3) network representations with favorable
representation learning performance in tasks including link prediction and node classification [61, 59].
The LDM has been generalized to distances beyond Euclidean, including squared Euclidean distances
and hyperbolic embeddings [66, 67] as well as to account for degree heterogeneity through the use of
node-specific biases (denoted random effects) [39, 48, 61] which we presently refer to as the mass of
a paper. Notably, we define paper masses based on their citation dynamics through time, regulated
by their distance in a latent space used to embed the structure of the citation network. Specifically,
to account for single-event network dynamics, we endow the cited papers (receiving nodes) with a
temporal profile in which a parametric function as used for traditional paper impact assessment [77]
is employed to regulate the nodes’ citation activity in time forming the Dynamic Impact Single-Event
Embedding Model (DISEE). In particular, our contributions are

• We derive the single-event Poisson Process (SE-PP).
As paper citation networks only include a single event we augment the Poisson Process
likelihood to have support only for single events forming the single event Poisson Process.

• We propose the DISEE model based on the SE-PP for SENs.
We characterize the rate of interaction within a latent distance model augmented such that
citations are generated relative to the degree to which a paper cites and a paper is being cited
at a given time point interpreted as masses of the citing and cited papers in which the mass
of the cited paper is dynamically evolving.

• We demonstrate how DISEE reconciles conventional impact modeling with latent
distance embedding procedures.
We demonstrate how DISEE enables accurate dynamic characterization of citation impact
similar to conventional paper impact modeling procedures while at the same time providing
low-dimensional embeddings accounting for the structure of citation networks. We highlight
this reconciliation on three real networks covering three distinct fields of science.

The paper is organized as follows. In Section 2, we present the single-event Poisson Process (SE-PP)
for the modeling of single-event networks (SENs). In Section 4, we demonstrate how existing
embedding procedures can be reconciled with dynamic impact modeling using the SE-PP by the
proposed Dynamic Impact Single-Event Embedding Model (DISEE). In Section 5, we present
our results on the three distinct citation networks contrasting the performance to the corresponding
conventional impact dynamic modeling, as well as, the powerful static LDM [61]. Section 6
concludes our results and points to future directions of research.

2 The Single-Event Poisson Process

Many real networks continually change over time, with new nodes and connections emerging as the
network evolves. Prominent examples of such networks include citation networks, user-item review
and rating graphs, collaboration graphs, and contact networks. Contact networks and collaboration
networks typically include multiple events between the dyads. However, for user-item review and
rating networks, an individual’s activity history forms new connections between the online profile
and the reviewed/rated products. It can also be argued that the same link typically does not occur
multiple times as a person once reviewing a product does not create additional reviews of the same
product. Importantly, citation networks are characterized by node pairs (i.e., dyads) that can have
only one event defined by the point in time at which a citing paper cites another paper. In this regard,
we assume that the observed networks are composed maximally of single-event node pairs (dyads),
which we call Singe-Event-Networks (SENs) and once an event between two nodes has occurred no
more event are admissible between these two nodes, see also Figure 1 Right panel.

Before presenting our modeling strategy for the links of networks, we will first establish the notations
used throughout the paper. We utilize the conventional symbol, G = (V, E), to denote a directed
Single-Event-Network over the timeline [0, T ] where V = {1, . . . , N} is the vertex and E ⊆
V2× [0, T ] is the edge set such that each node pair has at most one link. Hence, a tuple, (i, j, tij) ∈ E ,
shows a directed event (i.e., instantaneous link) from source node j to target i at time tij ∈ [T ], and
there can be at most one (i, j, tij) element for each (i, j) ∈ v∈ and some tij ∈ [0, T ].

We always assume that the timeline starts at 0 and the last time point is T , and we represent the
interval by symbol, [T ]. We employ t1 ≤ t2 ≤ · · · ≤ tN to indicate the appearance times of the
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Figure 2: DISEE procedure overview. Given a Single-Event Network (SEN) as an input, the model
defines an intensity function introducing two sets of static embeddings distinguishing between source
wu and target zv node embeddings. Furthermore, each node is assigned its own random effect,
distinguishing again the source βu and target αv roles. The random effects can be parameterized
to represent source and target masses through the exponential function. Finally, for each target
node of the network, the model further defines an impact function fv(t) yielding a temporal impact
characterization of the nodes’ incoming link dynamics which controls the nodes’ mass in time as,
exp (αv)fv(t).

corresponding nodes 1, 2, . . . , N ∈ V , and we suppose that node labels are sorted with respect to
their incoming edge times. In other words, if i < j, then we know that there is a node k ∈ V such
that tik ≤ tjl for all l ∈ V .

The Inhomogeneous Poisson Point (IPP) process is a widely employed approach for modeling the
number of events exhibiting varying characteristics depending on the time they occur [30]. They
are parametrized by an intensity or rate function representing the average event density, and the
probability of sampling m event points on the interval [T ] is given by

pM (M(T ) = m) :=
[Λ(0, T )]

m

m!
exp(−Λ(0, T )), (1)

where M(T ) is the random variable showing the number of events occurring over the interval [T ],
and Λ(T ) :=

∫ T
0
λ(t′)dt′ for the intensity function λ : [T ]→ R+. We refer unfamiliar readers to the

work [90] for more details concerning the process. It is worth noting here that earlier studies [101, 61]
have demonstrated that adopting the Poisson likelihood for modeling binary relationships does not
degrade the methods’ predictive performance and its ability to uncover the network structure.

In this regard, we employ a Poisson point process for characterizing the occurrence time of a link (i.e.,
a single event point indicating the publication or citation time), unlike their conventional practice
in modeling the occurrence of an arbitrary number of events between a pair of nodes. Hence, we
suppose that a pair can have at most one interaction (i.e., link), and we discretize the probability of
sampling m events given in Equation (1) as having an event and no event cases. More formally, by
applying Bayes’ rule, we can write it as a conditional distribution of M(t) being equal to m ∈ {0, 1}
as follows:

pM |M≤1 (M(T ) = m) =
pM,M≤1 (M(T ) = m,M(T ) ≤ 1)

pM≤1 (M(T ) ≤ 1)
=

pM (M(T ) = m)

pM (M(T ) = 0) + pM (M(T ) = 1)

=
exp (−Λ(T )) [Λ(T )]

m

exp(−Λ(T )) + exp(−Λ(T ))Λ(T )
(2)

Therefore, the conditional probability of having an event for the proposed Single-Event Poisson
Process is equal to:

pM |M≤1 (M(T ) = 1) =
Λ(T )

1 + Λ(T )
. (3)

It is also not difficult to derive the likelihood function of the process based on Eq (3). Let (Y,Θ) be
random variables where Y shows whether a link exists and Θ indicates the time of the corresponding
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link (if it exists). Then, we can write the likelihood of (Y,Θ) evaluated at (1, t∗) as follows:

pY,Θ (1, t∗) = pY {Y = 1} pΘ|Y {Θ = t∗|Y = 1} =

(
Λ(T )

1 + Λ(T )

)(
λ(t∗)

Λ(T )

)
=

λ(t∗)

1 + Λ(T )
(4)

As a result, we can write the log-likelihood of the whole network by assuming that each dyad follows
the Single-Event Poisson Process as follows:

LSE−PP (Ω) := log p(G|Ω) =
∑

1≤i,j≤N

(
yij log λ(tij)− log

(
1 + Λij(ti, T )

))
(5)

where Ω is the model hyper-parameters and Λij(ti, T ) :=
∫ T
ti
λij(t

′)dt′. Note that for a homogeneous
Poisson process with constant intensity λij for each node pair i and j, the probability of having an
event throughout the timeline is equal to Λij(T )/(1 + Λij(T )) = Tλij/(1 + Tλij) by Equation (3).
In this regard, the objective function stated in Equation (5) is equivalent to a static Bernoulli model
[41]:

LBern(Ω) := log p(G|Ω) =
∑
i,j∈V

(
yij log (λ̃ij)− log

(
1 +λ̃ij

))
, (6)

where we have used the re-parameterization Tλij = λ̃ij .

3 Dynamic Impact Characterization

In the realm of impact analysis and risk assessment, characterizing dynamic events is pivotal in
understanding and managing potential consequences. We know that papers generally undergo the
process of aging over time since novel works introduce more original concepts. In this regard, we
model the distribution of the impact of a paper {i} by the TRUNCATED normal distribution:

fi(t) =
1

σ

φ( t−µσ )

Φ(κ−µσ )− Φ(ρ−µσ )
(7)

where µ and σ are the parameters of the distribution which lie in (ρ, κ) ∈ R, φ(x) =
1√
2π

exp (− 1
2x

2), and Φ(·) is the cumulative distribution function Φ(x) = 1
2

(
1 + erf( x√

2
)
)

. In
addition, as an alternative impact function, and similar to [98], we consider the LOG-NORMAL
distribution:

fi(t) =
1

tσ
√

2π
exp

(
− ln (t− µ)2

2σ2

)
(8)

where µ and σ are the parameters of the distribution. Such distributions are particularly valuable for
capturing the inherent variability and asymmetry in the lifecycle of a paper.

4 Single-Event Network Embedding by the Latent Distance Model

Our main purpose is to represent every node of a given single-event network in a low D-dimensional
latent space (D � N ) in which the pairwise distances in the embedding space should reflect various
structural properties of the network, like homophily and transitivity [61]. For instance, in the Latent
Distance Model [41], one of the pioneering works, the probability of a link between a pair of nodes
depended on the log-odds expression, γij , as α−‖zi−zj‖2 where {zi}i∈V are the node embeddings,
and α ∈ R is the global bias term responsible for capturing the global information in the network.
It has been proposed for undirected graphs but can be extended for directed networks as well by
simply introducing another node representation vector {wi}i∈V in order to differentiate the roles of
the node as source (i.e., sender) and target (i.e., receiver). By the further inclusion of two sets of
random effects {αi, βj} describing the in and out degree heterogeneity, respectively, we can define
the log-odds(Bernoulli) and log-rate (Poisson) [61] expression as:

γij = αi + βj − ‖zi −wj‖2 (9)
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We can now combine a dynamic impact characterization function with the Latent Distance Model, to
obtain an expression for the intensity function of the proposed Single-Event Poisson Process, as:

λij(tij) =
fi(tij) exp (αi) exp (βj)

exp (‖zi −wj‖2)
. (10)

Combining the intensity function of Equation (10) with the log-likelihood expression of Equation
(5) yields the Dynamic Impact Single-Event Embedding Model (DISEE). Under such a formulation,
we exploit the time information data indicating when links occur through time, so we can grasp a
more detailed understanding of the evolution of networks, generate enriched node representations,
and quantify a node’s temporal impact on the network.

4.1 Case-Control Inference

With DISEE being a distance model, it scales prohibitively as O(N2) since the all-pairs distance
matrix needs to be calculated. In order to scale the analysis to large-scale networks we adopt an
unbiased estimation of the log-likelihood similar to a case-control approach [75]. In our formulation,
we calculate the log-likelihood as:

log pij(G|Ω)=
∑

j:yij=1

(
yij log

(
λij(t

∗
ij)
)
− log

(
1+

∫ T

ti

λij(t
′)dt′

))

+
∑

j:yij=0

− log

(
1+

∫ T

ti

λij(t
′)dt′

)
= l1 + l0 (11)

Large networks are usually sparse so the link (case) likelihood contribution term l1 can be calculated
analytically, even for massive networks. The non-link (control) likelihood contribution term l0 has a
quadratic complexityO(N2) in terms of the size of the network, and thus its computation is infeasible.
For that, we introduce an unbiased estimator for li,0 which is regarded as a population total statistic
[75]. We estimate the non-link contribution of a node {i} via:

li,0 =
Ni,0
ni,0

ni,0∑
k=1

− log

(
1+

∫ T

ti

λik(t′)dt′

)
, (12)

where Ni,0 is the number of total non-links (controls) for node {i}, and ni,0 is the number of
samples to be used for the estimation. We set the number of samples based on the node degrees as
ni,0 = 5 ∗ degreei. This makes inference scalable defining an O(cE) space and time complexity.

4.2 Model ablations

We define an Impact Function Model (IFM), where only the impact function is fitted to the target
nodes (cited papers) describing their link (citation) dynamics. Comparing with IFM will allow us
to validate the quality of the impact characterization of DISEE. We further contrast our model to
a Preferential Attachment Model (PAM) setting where the embedding dimension is set as D = 0,
providing a quantification of the importance of including an impact function and an embedding space
in DISEE. In addition, we consider a combination of an Impact Function Model with a Preferential
Attachment Model, defining a Temporal Preferential Attachment Model (TPAM). Compared with the
TPAM we aim to verify the importance of introducing an embedding space characterization in citation
networks. Finally, we systematically contrast the performance of DISEE to conventional static latent
distance modeling (LDM) corresponding to setting the impact function to be constant fi(t) ∝ 1
in DISEE. The LDM is a very powerful link predictor [60, 59] and contrasting its performance
against DISEE will help us showcase the successful reconciliation of static latent space network
embedding approaches with classical dynamic impact assessments of citation networks. In Table 1,
we provide the rate formulation of each of the considered model ablations and the corresponding
model characteristics in terms of impact characterization, definition of an embedding space, and link
prediction.
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Table 1: DISEE model and multiple model ablations. Specifically, we consider 1) An Impact
Function Model (IFM) which characterizes only the impact based on the incoming citation dynamics
of each paper. 2) A Preferential Attachment Model (PAM) which defines citing and cited masses,
yielding essentially a degree-based model. 3) A combination of the Impact Function Model and the
Preferential Attachment Model defining a Temporal Impact Function Model (TPAM). 4) A bipartite
formulation of the classic Latent Distance Model (LDM) [41]. For each model, we provide the rate
formulation, as well as, its capacity in terms of impact characterization, definition of an embedding
space, and link prediction capability.

Model name Rate formulation Impact Embedding space Link prediction

IFM fi(t) X 7 7

PAM exp (αi) exp (βj) 7 7 X

TPAM fi(t) exp (αi) exp (βj) X 7 X

LDM exp (αi) exp (βj)
exp (||zi−wj ||2) 7 X X

DISEE fi(t) exp (αi) exp (βj)
exp (||zi−wj ||2) X X X

Table 2: AUC-ROC scores for varying representation sizes over three citation networks.

ML Phys SoSci

Dimension (D) 2 3 2 3 2 3

PAM 0.810 0.838 0.796
TPAM TRUNCATED 0.806 0.836 0.790

TPAM LOG-NORMAL 0.814 0.839 0.799
LDM 0.969 0.976 0.963 0.973 0.956 0.963

DISEE TRUNCATED 0.968 0.977 0.962 0.973 0.960 0.965
DISEE LOG-NORMAL 0.969 0.976 0.961 0.970 0.957 0.964

5 Results and Discussion

In this section, we will evaluate how successfully DISEE reconciles traditional impact quantification
approaches with latent distance modeling. Specifically, we test the proposed approach’s effectiveness
in the link prediction task by comparing it to the classical LDM which is not time-aware and does
not quantify temporal impact. We also consider multiple model ablations that are either able to
characterize a node’s impact or account for GRL, i.e. define node embeddings, but not both. For
the task of link prediction, we remove 20% of network links and we sample an equal amount of
non-edges as negative samples and construct the test set. Notably, these negative samples are sampled
in a time-aware manner, meaning that we consider only pairs that are possibly to exist as missing
links in the network (i.e. we do not consider node pairs where missing citations refer to papers citing
future papers, as the target paper did not exist the time when the source paper was published). The
link removal is designed in such a way that the residual network stays connected. Analytically, for
each network, we do not consider removing links that make up the minimum spanning tree of the
graph. For the evaluation, we consider both the Receiver Operator Characteristic and Precision-Recall
Area Under Curve scores, as these are metrics not sensitive to the class imbalance between links and
non-links. We then continue by evaluating the quality of impact expression of DISEE by visually
presenting the inferred impact functions and comparing them against the IFM model. Finally, we
visualize the model’s learned temporal space representing the target papers, accounting for their
temporal impact in terms of their mass at a specific time point, and characterizing the different papers’
lifespans.
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Table 3: AUC-PR scores for varying representation sizes over three citation networks.

ML Phys SoSci

Dimension (D) 2 3 2 3 2 3

PAM 0.823 0.841 0.814
TPAM TRUNCATED 0.812 0.836 0.806

TPAM LOG-NORMAL 0.818 0.837 0.812
LDM 0.971 0.977 0.965 0.974 0.961 0.967

DISEE TRUNCATED 0.970 0.977 0.964 0.973 0.963 0.969
DISEE LOG-NORMAL 0.971 0.977 0963 0.972 0.962 0.968

Table 4: Statistics of networks. |V1|: Number of target nodes, |V2|: Number of source nodes, |E|:
Total number of links.

|V1| |V2| |E|
Machine Learning 22,540 148,703 526,226

Physics 20,012 51,996 573,378
Social Science 12,930 100,402 288,012

5.1 Datasets

In our experiments, we employ three real citation networks. Specifically, we use the OpenAlex dataset
[72], exploring highly impactful scientific domains such as (i) Machine Learning, (ii) Physics, and
(iii) Social Science. In order to be able to characterize scientific impact, we initially consider papers
that have been cited at least ten times, defining three directed networks. Since there is no guarantee
that such a filtering approach will define a network made up of nodes with a minimum degree of ten
citations, we define a zero mass for the papers (target nodes) that survive the initial thresholding and
have less than ten citations. This yields a directed bipartite structure where target nodes have at least
ten citations. Analytically, the network statistics are given in Table 4.

5.2 Link prediction

For the link prediction experiments, and for each network, we remove 20% of the edges which are not
the edges that construct the minimum spanning tree. Consequently, the residual network is guaranteed
to stay connected. The removed edges are combined with a sample of the same number of node pairs,
that are not the edges of the original network, to construct the negative instances for the testing set.
We utilize the residual network to learn the node embeddings used for the link prediction experiments.
We compare the results of DISEE with the introduced model ablations in terms of the Area Under
Curve-Receiver Operating Characteristic (AUC-ROC), and the Area Under Curve-Precision Recall
(AUC-PR) scores, as presented in Table 2 and Table 3, respectively. Scores are presented as the
mean value of three independent runs of the Adam optimizer [46] (error bars were found in the
10−4 scale and thus omitted). We here observe, that the best performance is achieved by model
specifications that define an embedding space, i.e. the DISEE and LDM models. The Preferential
Attachment Models in both the static (PAM) and temporal (TPAM) versions are characterized by
an approximately 15% decrease in their link prediction score in both AUC-ROC and AUC-PR. This
highlights the importance and benefits of the predictive performance an embedding space provides.
Contrasting now, the performance of DISEE against the LDM, we witness almost identical scores,
verifying that DISEE successfully inherited the link prediction power of the LDM. Comparing the
two distribution choices for the impact function (TRUNCATED NORMAL and LOG-NORMAL) we
again observe very similar scores.

5.3 Impact quantification

We now continue by addressing the quality of paper impact characterization based on a target paper’s
incoming citation dynamics. In Figure 3 and Figure 4, we provide inferred impact functions of the
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(a) Deep Residual Learning for Im-
age Recognition [35].

(b) Gradient-based learning applied
to document recognition [51].

(c) Structural equation modeling in
practice [1].

(d) LIBSVM: A library for support
vector machines [11].

(e) ImageNet: A large-scale hierar-
chical image database [16].

(f) Going deeper with convolutions
[91].

Figure 3: Machine Learning: DISEE TRUNCATED and IFM TRUNCTATED models inferred impact
function visualizations compared to the true citation histogram, for six popular Machine Learning
papers with different citation dynamics.

(a) Deep Residual Learning for Im-
age Recognition.

(b) Gradient-based learning applied
to document recognition.

(c) Structural equation modeling in
practice.

(d) LIBSVM: A library for support
vector machines.

(e) ImageNet: A large-scale hierar-
chical image database. (f) Going deeper with convolutions.

Figure 4: Machine Learning: DISEE LOG-NORMAL and IFM LOG-NORMAL models inferred
impact function visualizations compared to the true citation histogram, for six popular Machine
Learning papers with different citation dynamics.

DISEE and IFM, under the TRUNCATED normal and LOG-NORMAL distributions, respectively.
We further show the true impact dynamics through the citation histogram for each one of the
corresponding papers. For the TRUNCATED case, we observe that DISEE and IFM provide very
similar (and in some cases identical) impact functions that well capture the underlying citation
histogram. In the case of the LOG-NORMAL distribution, we witness an agreement between DISEE
and IFM models when the paper lifespan does not exceed 2 years. For larger lifespans DISEE defines
a larger standard deviation than the IFM returning much heavier tails. Both models when compared
to the true citation histogram provide much heavier tails when the paper lifespan exceeds the 2-year
threshold. The LOG-NORMAL distribution is not invariant to the scale of the x-axis (contrary to
the TRUNCATED normal which is scale-invariant) and this can be potentially a reason for observing
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this kind of behavior, meaning that the choice of the time resolution is not optimal. Nevertheless,
the TRUNCATED normal distribution seems to very accurately represent the true citation dynamics,
defining correct distribution tails, but in some cases, the LOG-NORMAL heavier tails may be more
appropriate for future impact predictions (as papers stay "alive" longer).

5.4 Space visualization

Finally, we here provide embedding space visualizations of the target papers, accounting for their
temporal impact in terms of their mass at a specific time point. Analytically, Figure 6 shows the
evolution of the embedding space for the domain of Machine Learning from the year 1988 until
2018. We here observe how papers are published in a specific year and after they accumulate a
specific amount of impact/mass they perish in the next years/snapshots of the network. It is also worth
mentioning, that the domain of Machine Learning has undergone a significant increase in the paper
outputs as the years progress. As the years progress, paper masses reach much larger magnitudes than
in the earlier years, defining higher research significance, and accumulating higher citation numbers
and impact which can be explained by the increase in published Machine Learning works. Figure
5 shows the present embedding space image of the domain of Machine Learning. It is evident that
many papers stay active throughout the years but with decreasing masses. It is surprising to see that
the papers with the largest masses are relatively old papers from the early 2000s with a few cases
published in more recent years around 2010s.

6 Conclusion

We have proposed the Dynamic Impact Single-Event Embedding Model (DISEE), a reconciliation
between traditional impact quantification approaches with a Latent Distance Model (LDM). We have
focused on Single-Event Networks (SENs), and more specifically in citation networks, where we to
the best of our knowledge for the first time derived and explored the Single-Event Poisson Process
(SE-PP). Such a process defines an appropriate likelihood allowing for a principled analysis of single-
events networks. In order to define powerful ultra-low dimensional network embeddings, we turn to
the representation power of the directed network version of the LDM. Specifically, for every paper we
define static embeddings distinguishing between source and target roles, i.e. we introduced a different
position in the latent space for the roles of papers when citing or being cited. In addition, we defined
paper random effects that can be reparametrized to represent paper masses, again distinguishing
between "being cited" and "citing" masses. For the "being cited" mass, we introduced a temporal
impact function that characterized the incoming citation dynamics. eligible for impact quantification.
The impact function is parameterized through appropriate probability density functions, including
the log-normal, as well as, the truncated normal distributions. Through extensive experiments, we
showed that the DISEE had the same link prediction performance as the powerful LDM. Furthermore,
we showed that the temporal impact characterization was validated by an Impact Function Model
(IFM). These results showcase that the DISEE model successfully reconciles powerful embedding
approaches with citation dynamics impact characterization. Finally, visualizations of the embedding
space for target papers provided accurate representations that described the birth and death of papers
following their impact lifespans as years pass and science moves forward.
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Figure 5: Machine Learning: DISEE TRUNCATED embedding space visualization for all target
papers published before the year 2023. Node sizes are based on each paper’s current mass, fi(t) ∗
exp (αi), and thus papers with zero mass are not visible denoting the end of their scientific relevance
or "lifespan". Nodes are color-coded based on their publication year.

(a) 1988 (b) 1998 (c) 2008 (d) 2018

Figure 6: Machine Learning: DISEE TRUNCATED embedding space evolution throughout the years.
Node sizes are based on each paper’s mass, fi(t) exp (αi), showcasing how papers reach the end of
their scientific relevance or "lifespan" by disappearing from the embedding space as time progresses.
Nodes are color-coded based on their publication year.
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