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Thesis summary 

Cutting-edge, systems-level approaches to study the physiology and metabolism of 
microorganisms can bridge the gap between fundamental scientific knowledge and 
practical biotechnological applications. Such technologies utilize advanced methods 
and interdisciplinary strategies that integrate fields as diverse as synthetic and 
systems biology, multi-omics, big data, and computational biology. Through the 
application of these tools, researchers can gain a comprehensive understanding of a 
biological systems and their underlying mechanisms. This knowledge can then be 
translated into tangible solutions, including therapeutics, enhanced bioprocessing 
techniques, and sustainable biotechnological applications. In the intersection of 
fundamental and applied knowledge, systems biology and multi-omics analysis play 
a pivotal role in unraveling the complexity of biological systems. Pseudomonas putida 
is a robust microbial chassis endowed with metabolic versatility, adaptability, and 
genetic tractability, making it an ideal model organism for studying complex 
biological networks and developing biotechnological applications. Integrating 
systems biology and multi-omics approaches in P. putida research will provide 
valuable insights into cellular functions and will support the design of tailored 
metabolic engineering strategies for several biotechnological purposes. The work 
reported in this thesis builds on the versatile metabolism of P. putida and describes a 
multi-omics workflow developed to explore the physiology and metabolism of this 
model bacterium. Hence, a multi-omics platform was established to enable the 
analysis of the metabolome, proteome, and fluxome of P. putida. Furthermore, to 
extend the utility of the platform, a quantitative proteomic approach incorporating 
QconCATs was integrated into the workflow. This platform in combination with 
physiological analysis, adaptive laboratory evolution approaches and genomics was 
able to explore P. putida metabolism in multi-substrate environments (glycolytic and 
gluconeogenic), toxic conditions involving acetate, genetic perturbations in oxidative 
and phosphorylative pathways, and the introduction of novel functionalities―i.e. 
synthetic metabolic modules―to the system. Overall, this thesis deepens our 
understanding of central carbon metabolism in P. putida, and provides insights and 
tools for the development of robust microbial factories based on this bacterium.  
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Dansk resumé 

Avancerede bioteknologiske tilgange udvikles for at formidle kløften mellem 
grundlæggende videnskabelig viden og praktiske anvendelser. Disse tilgange 
udnytter avancerede teknologier og tværfagligt samarbejde til at integrere områder 
som syntetisk og systembiologi, multi-omics, big data og beregningsbiologi. Ved 
hjælp af disse værktøjer kan forskere opnå en omfattende forståelse af biologiske 
systemer og deres underliggende mekanismer. Denne viden kan derefter omsættes til 
konkrete løsninger, herunder banebrydende terapier, forbedrede 
bioprocesseringsteknikker og bæredygtige bioteknologiske anvendelser. 
I krydsfeltet mellem grundlæggende og anvendt viden spiller systembiologi og multi-
omics-analyse en afgørende rolle i afklaringen af kompleksiteten i biologiske 
systemer. Pseudomonas putida er en robust mikrobiel chassis med metabolisk 
alsidighed, tilpasningsevne og genetisk håndterbarhed, hvilket gør det til en ideel 
modelorganisme til undersøgelse af komplekse biologiske netværk og udvikling af 
bioteknologiske anvendelser. Integration af systembiologi og multi-omics-tilgange i 
P. putida-forskning giver værdifulde indsigter i cellulære funktioner og hjælper med 
at designe skræddersyede metaboliske ingeniørstrategier til adskillige 
bioteknologiske formål. 
Arbejdet, der rapporteres i denne afhandling, udnytter P. putida alsidige metabolisme 
ved at anvende en multi-omics-workflow udviklet inden for rammerne af denne 
undersøgelse. En multi-omics-platform blev etableret for at muliggøre analyse af P. 
putida metabolom, proteom og fluxomer. Ydermere blev en kvantitativ proteomisk 
tilgang med brug af QconCATs integreret for at forbedre platformens kapaciteter. 
Denne platform i kombination med fysiologisk analyse, adaptive 
laboratorieudviklingsmetoder og genetik var i stand til at udforske P. putida 
metabolisme i multisubstratmiljøer (glukose og citrat), toksiske betingelser med 
acetat, genetiske forstyrrelser i oxidagtige og phosphorylative veje samt indførelsen 
af nye funktionaliteter, f.eks. syntetiske moduler, til systemet. 
Samlet set strækker denne afhandling grænserne for P. putida metabolisme for at 
dykke dybere ned i vores forståelse af central kulstofforbrænding med det formål at 
levere værdifulde indsigter og værktøjer til udviklingen af robuste mikrobielle 
fabrikker. 
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Thesis outline 

Systems biology has emerged as a promising discipline capable of disentangling 
intricate biological networks by integrating diverse types of data, including genomics, 
transcriptomics, proteomics, metabolomics, fluxomics and other "omics" approaches. 
Similarly, the combination of existing methodologies poses a substantial difficulty in 
terms of experimental complexity and data analysis. The vast volume of data and 
conditions that need to be tested in omics experiments can be complex to integrate 
and examine in a controllable manner. Adopting standardized methods, which 
involve a straightforward workflow starting from sample collection, processing and 
culminating in data analysis, integration, and visualization, can be a valuable resource 
in gaining a system biology perspective of the biological entity. The implementation 
of an appropriate workflow into the Design-Build-Test-Learn cycle (DBTLc) context has 
the potential to improve the development of novel products and technologies, 
accelerate the testing and validation of hypotheses, and facilitate the translation of 
research into practical applications. 
 
The objective of this Ph.D. is to create a multi-omics platform that can be used to 
systematically study metabolic processes in the model bacterium Pseudomonas putida 
KT2440 under relevant conditions for biotechnology purposes. The ultimate goal is to 
provide valuable insights into the functioning of the microbial system from a systems 
biology perspective and identify potential biotechnological applications as well as 
expand the knowledge about bacterial physiology. On this background, the Ph.D. 
thesis is divided into the following eight chapters. 
 
Chapter 1 furnishes a comprehensive overview of modern biotechnology, along with 
the tools that have been developed over the last two decades, forming the building 
blocks for a more sophisticated field. The chapter also encompasses an exposition of 
how these tools can be integrated into the DBTLc in a more standardized manner. A 
comprehensive examination of the metabolic profile of Pseudomonas putida concludes 
the chapter, elucidating its distinctive metabolic attributes that warrant deeper 
investigation through the implementation of a metabolism-centric methodology, 
exemplifying this approach in practice. 
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Chapter 2 introduces the multi-omics strategy and the experimental set-up 
implemented in this thesis. The methodological steps allow capturing the dynamic at 
different metabolic levels comprising metabolites, proteins and metabolic fluxes. This 
approach is combined with a synchronized sampling procedure, which ensures that 
data from each of the omics levels is collected at the same time. This multi-omics 
integration and synchronized sampling provide a more comprehensive and accurate 
understanding of the metabolic system under investigation. The chapter also 
describes the analytical techniques carried out to obtain the multi-omics data and it is 
demonstrated by performing an exploratory analysis of P. putida metabolism under 
glycolytic regimen.  
 
Chapter 3 details the developed methodology for an absolute quantification of P. 
putida proteins enabling more precise quantitative measurements of central carbon 
metabolism proteins. This chapter provides a thorough description of the 
experimental procedures used to achieve this absolute quantification, including 
sample preparation, protein extraction, and mass spectrometry-based analysis. 
 
Chapter 4 shows a comprehensive multi-omic analysis of P. putida while growing in 
a dual gluconeogenic-glycolytic regimen that utilizes citrate and glucose as carbon 
sources. To enhance the time-shift from the gluconeogenic substrate to the glycolytic, 
a fluctuating adaptive laboratory evolution approach was implemented to identify 
mutations that contributed to an improvement in the final phenotype. Whole-genome 
sequencing revealed the appearance of mutations in the RNA polymerase α and the 
regulatory subunit of the two-component system GacS/GacA. The identified 
mutations were retro engineered into the parental strain in order to analyze the effects 
at systems-level from a multi-omic perspective.  
 
Chapter 5 highlights the potential of P. putida to tolerate high acetate concentrations 
and provides a detailed understanding of its metabolic capabilities for surmounting 
this stressful condition. Acetate metabolism was in depth studied applying TALE 
(Tolerance Adaptive Laboratory Evolution) approach coupled with an extensive 
multi-omic analysis in order to disentangle the metabolic dynamic under toxic 
concentration of the organic acid. The sequencing outcomes revealed a relevant 
mutation in the GacA two-component system and the FabB synthase of the fatty acid 
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synthesis II pathway. Through retro engineering, the strain exhibited an improved 
growth performance in high acetate concentrations compared to the non-evolved 
strain. Further analysis through proteomics and metabolic flux analysis revealed 
notable alterations in various metabolic processes at different levels. In addition, 
structure predictions offered valuable information about the conformation that 
resulted from the mutations examined in this section. 
 
Chapter 6 presents a comprehensive investigation into the alterations observed in the 
central carbon metabolism of P. putida, triggered by genetic perturbation in the 
peripheral glucose pathway. The study specifically examines the impact on 
phosphorylation and oxidation processes, aiming to gain a deeper understanding of 
the global changes that emerge in the metabolic network. Several knock-outs were 
analyzed and the impact of the genetic disturbances were assessed using 
metabolomics, proteomics and metabolic flux analysis. This study exposes the 
metabolic flexibility and robustness of P. putida architecture, thus making it an ideal 
model for exploring complex biological networks. 
 
Chapter 7 presents a systematic study of an E. coli linear glycolytic graft implanted in 
P. putida and its functional characterization at different metabolic levels under glucose 
as main carbon source. The methodology encompasses several key tools, namely 
adaptive laboratory evolution, genomics, physiological analysis, quantitative 
proteomics and fluxomics. Growth on glucose of the engineered strain was 
significantly improved after an adaptation process of the engineered and the evolved 
strain was analyzed as mentioned before. Sequencing results identified a key mutation 
in the topoisomerase I that was further analyzed from a systems biology point of view. 
 
Chapter 8 presents the overall conclusions drawn from the research presented in the 
thesis, as well as offering a prospective outlook for potential future studies that could 
not only expand but also build upon the findings outlined in the current work. 
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Chapter 1 - Leading-edge biotechnology as a bridge between 
fundamental and applied knowledge 
 
The following chapter is based on the review article and opinion letter: 

 
1) Gurdo, N., Volke, D.C., McCloskey, D. & Nikel, P.I. Automating the design-

build-test-learn cycle towards next-generation bacterial cell factories. New 
Biotechnology 74, 1-15 (2023). 
 

2) Gurdo, N., Volke, D.C. & Nikel, P.I. Merging automation and fundamental 
discovery into the design–build–test–learn cycle of nontraditional microbes. 
Trends in Biotechnology 40, 1148-1159 (2022). 

 

1.1 Unleashing the power of life: exploring the foundational pillars 
of modern biotechnology 
 
Modern biotechnology has revolutionized the fields of medicine, agriculture, and 
environmental science, leading to significant advancements in various industries 
(Clark and Pazdernik, 2015). To expand the boundaries of science, biotechnology has 
laid down the foundational pillars that have transformed the way researchers 
approach scientific challenges. The fundamental aspect of modern biotechnology 
resides in the capability to manipulate and modify DNA, which serves as the primary 
basis for further advancements in the field. Techniques such as recombinant DNA 
technology, polymerase chain reaction (PCR), and gene editing have enabled scientists 
to modify genes in living organisms and even create entirely new organisms (Adrio 
and Demain, 2010). Along the same pillar, synthetic biology is a growing field, which 
involves the design and construction of biological systems from scratch using 
standardized biological parts and engineering principles (Benner and Sismour, 2005). 
The second pillar is the development of advanced analytical tools such as mass 
spectrometry and next-generation sequencing (NGS) that have allowed scientists to 
study and understand complex interactions between biological molecules in 
unprecedented detail (Wiechert, 2001, Domon and Aebersold, 2006, Dettmer, et al., 
2007, Goodwin, et al., 2016). The third pillar is the field of bioinformatics, which 
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involves the use of computational methods to analyze and interpret large-scale 
biological data sets, enabling scientists to identify patterns and correlations that would 
be difficult to discern using traditional analytical methods (Kanehisa and Bork, 2003, 
Bansal, 2005). The fourth pillar is the development of high-throughput screening 
techniques that allow for the rapid screening of large numbers of compounds or 
molecules, facilitating drug discovery and development (Lee, et al., 2005, Zeng, et al., 
2020). Lastly, the incorporation of machine learning and artificial intelligence (AI) into 
the core principles of modern biotechnology has facilitated the emergence of novel 
tools and methodologies for bioproduction. For example, machine learning 
algorithms have been developed to optimize fermentation processes, enabling the 
production of high-value compounds such as bioplastics and biofuels at lower costs 
and higher yields. AI algorithms have been developed to predict the performance of 
engineered biological systems, allowing for the rapid optimization of these systems 
for industrial and medical use. Together, these foundational pillars have paved the 
way for a new era in modern biotechnology, enabling scientists to tackle some of the 
most pressing challenges facing humanity, from developing new treatments for 
diseases to engineering sustainable solutions for food and energy production (Figure 
1.1). 
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Figure 1.1. Foundational pillars in modern biotechnology. Building on the foundations of DNA 
manipulation and synthetic biology, modern biotechnology stands tall with the support of analytical 
tools, bioinformatics, high-throughput techniques, and the power of AI and machine learning.  

 

1.2 The “knowledge wheel” in systems biotechnology: the Design-
Build-Test-Learn cycle 

In recent times, the scientific community has devised an innovative approach to 
seamlessly incorporate the cutting-edge tools offered by modern biotechnology into a 
streamlined and efficient workflow. The DBTL cycle, which stands for Design-Build-
Test-Learn, is a systematic framework used in biotechnology, synthetic and systems 
biology. The integration of software tools, high-throughput DNA sequencing, omics 
technologies, and ML approaches has propelled the frontiers of the field, surpassing 
conventional boundaries and fostering unprecedented progress (Carbonell, et al., 
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2018, Gurdo, et al., 2023). The methodologies employed as part of the DBTL cycle are 
exposed in Figure 1.2. The upcoming sections illustrate the core phases of the DBTL 
cycle, encompassing the design of cell factories, followed by the implementation of 
genetic circuits in suitable hosts as the building phase. After the candidate strain 
undergoes rigorous testing, the subsequent phase involves extracting valuable 
insights from the data accumulated in the preceding stage, thereby facilitating the 
learning process.  
 

Design 

Computational tools play a crucial role in generating novel designs for metabolic 
pathways (Wang, et al., 2017). Repository databases are useful for selecting and 
assembling pathways of interest, with KEGG, BRENDA, and MetaCyc among the 
most prominent examples (Kanehisa and Goto, Karp, 2002, Schomburg, et al., 2002). 
Specialized software packages such as OptKnock, RetroPath, and Selenzyme help 
identify feasible metabolic designs by applying different strategies and algorithms 
(Burgard, et al., 2003, Carbonell, et al., 2014, Maia, et al., 2016, Carbonell, et al., 2018). 
EnzymeMiner provides computational solutions for acquiring suitable unmapped 
enzyme sequences for biocatalysis (Hon, et al., 2020). Various software packages have 
been developed for the efficient design and synthesis of DNA in metabolic 
engineering. GeneDesigner allows for fast design of synthetic DNA, including the 
addition, editing, and combination of structural and regulatory elements (Villalobos, 
et al., 2006). Standardization efforts, such as BioBricks and SEVA, enable the modular 
assembly of DNA parts with standardized functions (Knight, 2003, Silva-Rocha, et al., 
2013, Martínez-García, et al., 2022). Tools like RBS Calculator aid in optimizing protein 
production by predicting translation initiation rates and optimizing ribosome binding 
sites (Salis, et al., 2009). SBOL serves as a standardized language for representing and 
visualizing synthetic biology designs, while CELLO provides a hardware description 
language for designing complex genetic circuits (Galdzicki, et al., 2012, Nielsen, et al., 
2016, Madsen, et al., 2019). 
 
 
 
 



Chapter 1 
Introduction 

 
15 

 

Build 

Building microbial cell factories require efficient and versatile incorporation of novel 
functions into the host of choice (Ko, et al., 2020, Luo and Lee, 2020). In the least two 
decades, the conventional approach for modifying a biological chassis has involved the 
utilization of plug-in and plug-out genetic elements. For example, one of the strategies 
for gene disruption in E. coli utilizes λ Red recombinase functions with PCR products 
containing an antibiotic marker (Datsenko and Wanner, 2000). Alongside the same 
line, DNA fragment insertion in E. coli could also employ homologous recombination 
(Zhang, et al., 2000). The KEIO collection is an E. coli knock-out library with mutants 
for 303 genes, enabling large-scale loss-of-function phenotype studies (Baba, et al., 
2006, Yamamoto, et al., 2009). Oligonucleotide-based λ Red recombination can be 
combined with multiplex automated genome engineering (MAGE) to enhance 
recombination efficiency (Court, et al., 2002, Wang, et al., 2009). A breakthrough in 
molecular biology has been the discovery of clustered regularly interspaced short 
palindromic repeats (CRISPR) and associated Cas proteins, repurposed for gene and 
genome editing protocols (Jinek, et al., 2012). Multiplex-editing techniques enable 
simultaneous engineering of multiple sites in eukaryotic genomes (Cong, et al., 2013). 
The same principles were combined with recombineering or homologous 
recombination to adapt CRISPR/Cas methodologies in prokaryotes (Hoang, et al., 
1998), lacking non-homologous end joining (Pyne, et al., 2015, Ronda, et al., 2016, 
Garst, et al., 2017, Blombach, et al., 2021). Base-editors based on CRISPR/Cas allow 
precise single-base manipulations (Komor, et al., 2016, Gaudelli, et al., 2017, Volke, et 
al., 2022) while synthetic small regulatory RNAs can control gene expression by 
inhibiting translation (Na, et al., 2013). Other CRISPR variations encompasses: 
CRISPR interference (CRISPRi) that blocks gene transcription as well as CRISPR 
activation (CRISPRa) which boosts gene expression (Cong, et al., 2013, Qi, et al., 2013, 
Jakočiūnas, et al., 2017, Batianis, et al., 2020). Numerous additional enhanced 
CRISPR/Cas procedures are consistently arising, and novel approaches for DNA 
assembly that are more effective have been devised (Vo, et al., 2021). USER cloning 
incorporates deoxyuridine and excision for seamless assembly (Geu-Flores, et al., 
2007). Gibson assembly synthesizes DNA blocks using exonuclease, DNA 
polymerase, and ligase in a single step (Gibson, et al., 2008). Ligase chain reaction 
(LCR) and Golden Gate assembly enable high-throughput assembly of DNA 
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constructs (Engler, et al., 2008, Kok, et al., 2014). These advancements have paved the 
way for automation and large-scale DNA molecule construction (Smanski, et al., 
2014). 
 

Test  

The advent of multi-omics methodologies has brought about a revolutionary 
transformation in the analysis of regulatory layers within cellular systems (Becker and 
Wittmann, 2018). The integration of whole genome sequencing, cellular metabolite 
measurements, and the identification of interconnections between regulatory levels is 
of utmost importance in the field of systems metabolic engineering. 

Genomics 

Next-generation sequencing (NGS) technologies, such as Sanger sequencing and 
pyrosequencing, have played a pivotal role in genomics, improving throughput, 
coverage, and accuracy (Sanger, et al., 1977, Margulies, et al., 2005, Bentley, et al., 2008, 
Rothberg, et al., 2011, Goodwin, et al., 2016). NanoPore sequencing has also provided 
an advanced and robust technology, offering high-throughput, real-time, long-read, 
and large-scale DNA sequencing (Cherf, et al., 2012). 

Transcriptomics 

Transcriptomics emerged alongside DNA microarrays for studying gene expression 
changes (Taub E, et al., 1983). It enabled the investigation of global mRNA abundance 
changes, such as in E. coli under different stresses (Khodursky, et al., 2000). RNA 
sequencing (RNA-Seq) subsequently emerged as a deep-sequencing approach to 
deduce and quantify the transcriptome (Bainbridge, et al., 2006, Nagalakshmi, et al., 
2008, Wang, et al., 2009). These methodologies find applications in ensuring the 
quality control of DNA designs, engineered pathways, and strains. However, it is 
important to note that continuous mRNA decay can introduce distortions in 
quantification and differential expression transcriptome analyses (Robles, et al., 2012, 
Herzel, et al., 2022). High-resolution transcriptomic profiling can combine RNA-Seq 
and DNA microarrays (Kogenaru, et al., 2012). Recent studies employed poly(A)-
independent single-cell RNA sequencing to capture growth-dependent expression 
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patterns in individual bacteria across all RNA classes and genomic regions (Imdahl, 
et al., 2020). 

Proteomics 

In proteomics, mass spectrometry (MS) has greatly improved protein detection and 
quantification (Aebersold and Mann, 2003, Silva, et al., 2006). Targeted proteomics, 
employing selected- and multiple-reaction monitoring (SRM/MRM) after liquid 
chromatography (LC) separation, enables absolute protein quantification (Picotti, et 
al., 2009, Redding-Johanson, et al., 2011, Picotti and Aebersold, 2012). Data-dependent 
analysis (DDA) and data-independent acquisition (DIA) have been used for effective 
spectra acquisition, with DIA providing higher sensitivity and reproducibility (Stahl, 
et al., 1996, Venable, et al., 2004). OpenSWATH utilizes Sequential Window 
Acquisition of All Theoretical Mass Spectra (SWATH-MS) for automated and high-
throughput analysis (Gillet, et al., 2012). Deep neural networks combined with DIA 
enhance peptide identification and coverage when paired with rapid 
chromatographic methods (Demichev, et al., 2020). Single-cell proteomics has 
emerged as an attractive development in transcriptomics; however, it faces limited 
sensitivity (Kelly, 2020). To address this, novel approaches with higher sensitivity and 
multiplexing capacity have been proposed for single-cell proteomic analysis. A 
pioneering study explored the single-cell transcriptome and proteome of E. coli, 
demonstrating the applicability of these approaches (Taniguchi, et al., 2010). These 
methods can also be applied to more complex systems, as demonstrated by mapping 
query datasets onto a reference proteome atlas (Lotfollahi, et al., 2022). 

Metabolomics 

Metabolomics provides essential information about overall physiology, including 
metabolite accumulation and depletion in response to genetic and environmental 
perturbations. Historically, high-pressure liquid chromatography (HPLC) has 
replaced thin-layer chromatography (TLC), and tandem MS has replaced ultraviolet 
and flame-ionization detection, driving advancements in metabolomics (Brotherton 
and Yost, 1983). Improvements in LC and MS technologies have led to faster 
separation, higher sensitivity, resolution, and dynamic detection ranges (Miggiels, et 
al., 2019). Dedicated methodologies, such as LC, hydrophilic interaction LC, reversed-
phase ion pairing chromatography, gas chromatography (GC) coupled to MS, nuclear 
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magnetic resonance (NMR), and flow-injection MS, are used to measure the 
metabolome space (Bajad, et al., 2006, Coulier, et al., 2006, Wishart, 2008, Fuhrer, et al., 
2011, Koek, et al., 2011, Beale, et al., 2018). Metabolomics can be targeted or non-
targeted, each with advantages and disadvantages. Non-targeted metabolomics 
detects all measurable metabolites but generates complex datasets, while targeted 
metabolomics selects analytes of interest for higher sensitivity and precision 
(Ribbenstedt, et al., 2018). Technical advances in high-resolution tandem MS (HRMS) 
have enabled the integration of target and non-targeted metabolomics, facilitating 
metabolite discovery, identification, and quantification (Ramanathan, et al., 2011, 
Zhou, et al., 2016). Big data repositories and improved algorithms have also aided 
identification in untargeted metabolomics (Haug, et al., 2013, Teoh, et al., 2015, 
Blaženović, et al., 2018). The combination of metabolomics methodologies accelerate 
the DBTL cycle by providing fundamental information about the host metabolome 
landscape and its response to perturbations (Calero, et al., 2022). 

Fluxomics 

Metabolic fluxes cannot be measured directly, but they can be assessed through 
changes in metabolite concentrations or by detecting isotope distribution upon 
feeding isotopic labeled precursors (e.g. 13C-labelled substrates). Fluxomics, based on 
the same detection methods as metabolomics, involves quantifying isotopologues. 
Flux balance analysis (FBA) and isotope tracer experiments have contributed to the 
development of fluxomics (Varma and Palsson, 1994, Marx, et al., 1996, Vallino and 
Stephanopoulos, 2000). Access to fluxomics protocols has been facilitated by publicly-
available software, leading to wider implementation (Antoniewicz, et al., 2007, 
Zamboni, et al., 2009, Young, 2014). High-throughput approaches have been made 
possible through automated and downscaled fluxomics (Heux, et al., 2014). Fluxomics 
has the potential to become a central analytical approach for exploring cell factory 
performance in the DBTLc (Kohlstedt, et al., 2010). Figure 1.2 (Test) provides an 
overview of the main technologies developed in the omics field. 

 
Learn 

SynBio utilizes both mechanistic and ML models to analyze omics data and enhance 
strain engineering in the DBTLc. Mechanistic models represent biological components 
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and interactions, promoting interpretability and transparency. ML techniques identify 
differentiating features among strains and conditions, improving the accuracy of 
mechanistic models by addressing missing or inaccurate components. They also assist 
in experimental design based on data, model topology, and simulations. While ML 
models may lack interpretability and complete explainability, they aid in 
understanding omics data and advancing biological knowledge. Figure 1.2 (Learn) 
provides a visual summary of key advancements in mechanistic modeling and ML in 
SynBio. The inclusion of enzyme production costs in mass balance calculations 
enhances the accuracy of pathway utilization predictions, but it also presents 
computational challenges. Metabolic flux analysis derives fluxes from isotope labeling 
experiments, guiding engineering strategies. Recent advancements in MFA include 
enhanced analytics, model reduction, and genome-wide atom transfer prediction 
algorithms (Zamboni, et al., 2005, Ravikirthi, et al., 2011, Crown and Antoniewicz, 
2012, Buescher, et al., 2015, McCloskey, et al., 2016). 
 
DBTLc was developed as part of the bio-based industry's efforts to expedite the 
development of cell factories. The primary objective of this methodological 
framework, both in industry and academia, is to optimize workflows for creating 
efficient and robust microbial platforms capable of sustainable chemical production. 
Additionally, the process of reprogramming cells not only provides valuable insights 
into the intricacies of living systems but also stimulates subsequent cycles of 
engineering. This approach aims to establish overarching principles for biodesign, 
applicable across different organisms, enabling the reprogramming of cells for various 
biotechnological and biomedical applications. 
 
On the other hand, this cycle offers an incredible capability of generating fundamental 
knowledge that can be employed to improve and establish novel cell factories. 
However, a significant constraint arises as this knowledge is not directly transferred 
into the final prototype. There is a need for a more rational integration process to 
ensure coherence within the different datasets, particularly when the final phenotype 
relies on a faithful representation of the system-level interconnections among various 
cellular layers. The field of systems biology offers promising approaches to bridge the 
gap between the knowledge gathered, for instance, in the DBTLc and, the practical 
biological application. Based on the latter fact, we decided to develop an integrative 
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platform for system-biology analysis (Chapter 2 and Chapter 3) which aims to 
provide a comprehensive understanding of biological systems, thereby enhancing the 
DBTLc workflow and facilitating the translation of this knowledge into practical 
applications. 



Chapter 1 
Introduction 

 
21 

 

 



Chapter 1 
Introduction 

 
22 

 

Figure 1.2. DBTL cycle timeline. Selected technologies and approaches developed in the design-build-
test-learn cycle of Synthetic Biology over the past 30 years (from left to right). The diagram illustrates 
some key breakthroughs in each stage of the design-build-test-learn cycle (DBTLc): Design (blue), Build 
(green), Test (orange) and Learn (purple). Each methodology is referred to (and explained in detail) in 
the text. Note that the list of examples is non-exhaustive due to space constraints; abbreviations are 
provided in the text.  

 

1.3 Metabolism-centric approach concept as an integral component of 
the DBTLc  

Expanding our understanding of microbial metabolism is crucial to broaden the range 
of microbial organisms that can be effectively utilized as cell factories. Many questions 
surrounding the impact of DNA modifications on phenotype and the intricate 
interactions within metabolic networks across different regulatory levels remain 
unresolved for most nontraditional microorganisms. To unravel the relationships 
between genotype and phenotype, two essential approaches are required.  
Firstly, the utilization of synthetic biology tools that enable deliberate and targeted 
DNA modifications is necessary. Secondly, a comprehensive exploration of the 
dynamic behavior of metabolism is needed to establish links between 
physicochemical or biochemical disturbances and resulting changes in phenotype. 
 
Currently, the primary focus of addressing these challenges lies in the development 
of innovative tools for engineering non-model microorganisms (Riley and Guss, 2021). 
There is a growing momentum in employing in-depth multi-omic analysis for 
microbial prototyping in model organisms, enabling the exploration of multiple layers 
of regulation within the cell with unprecedented detail (Robinson, et al., 2021). While 
these strategies are indispensable, they often fall short in fully investigating the 
potential of nontraditional microorganisms as platforms for bioproduction due to the 
lack of a comprehensive understanding of the entire biological system (Roy, et al., 
2021).  
 
Hence, a smart combination of rational design, integration of multi-omic data, 
predictive models, and automation is pivotal in constructing efficient cell factories 
while simultaneously expanding our fundamental knowledge while providing 
guidance for metabolic engineering endeavors. 
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Nontraditional hosts have emerged as viable alternatives for microbial candidates due 
to their unique or additional advantageous properties. These hosts exhibit improved 
performance in the production of specific compounds or demonstrate resilience in the 
face of harsh conditions commonly encountered in industrial-scale production. In 
Chapter 5 of this thesis, we delved into the utilization of acetate as a carbon source by 
Pseudomonas putida under toxic conditions, investigating the mechanisms employed 
by this bacterium to overcome the challenges posed by this organic acid. Through this 
study, significant insights were gained into the metabolic response to acetate, thereby 
contributing to the fundamental understanding of its adaptive strategies in the face of 
acetate-induced stress.  
 
Furthermore, nontraditional hosts offer the advantage of utilizing a wide range of 
conventional carbon sources, as glucose, xylose, fructose, lactose, cellobiose, acetate 
or alternative feedstocks, such as C1 compounds like CO2 (Dvořák and de Lorenzo, 
2018, Liew, et al., 2022), thereby avoiding competition with other industrial processes 
and food production. Among the numerous promising microorganisms, several 
bacterial species including Streptomyces coelicolor, Clostridium acetobutylicum, Bacillus 
subtilis, Corynebacterium glutamicum, and Rhodococcus spp., as well as eukaryotes such 
as Aspergillus sp. and Rhodotorula toruloides, can be classified within the broad category 
of nontraditional bioproduction platforms.  
 
The primary challenge in utilizing non-model organisms as chassis for bioproduction 
lies not only in the limited availability of genetic engineering tools but also in the lack 
of comprehensive information regarding their metabolic architectures and regulatory 
mechanisms. Therefore, in-depth analysis of metabolism under various 
environmental conditions, including genetic or chemical perturbations, is essential to 
gain insights into these metabolic architectures and their regulation. This information 
can then be used to determine the feasible metabolic landscape relevant to 
biotechnology applications. 
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Similar to how automation and synthetic biology synergistically enhance the speed 
and efficiency of constructing cell factories, the combination of automation and multi-
omics analysis can significantly expand our knowledge of metabolic networks (Amer 
and Baidoo, 2021). Substantial progress has been achieved in the field of multi-omics 
as was explained in the previous Section 1.2. Figure 1.3 illustrates the central concept 
of metabolism-centric analysis which couple accelerated genome engineering, multi-
omics analysis, and automation to drive the DBTL (Design-Build-Test-Learn) cycle 
while addressing fundamental questions regarding microbial metabolism. This type 
of comprehensive multi-omic analysis is exemplified in certain applications that adopt 
a metabolism-centric view in different microorganisms. Notably, Pseudomonas putida 
has been employed as an ideal example in two cases. These examples involve a multi-
omic exploration of (i) the utilization of δ-valerolactam (piperidin-2-one) as the sole 
carbon source and the catabolism of ε-caprolactam (azepan-2-one), and (ii) the 
intricate metabolism of fatty acids and alcohols (Thompson, et al., 2019, Thompson, et 
al., 2020). 

 
 

Figure 1.3. Metabolism-centric approach to the design–build–test–learn cycle of synthetic biology as 
supported by deep multi-omic analysis. The illustration depicts – from left to right – the general strategy 
to guide engineering steps while exploring fundamental aspects of metabolic architectures in 
nontraditional hosts as supported by fast genome engineering, multi-omics analyses, and automation. 
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1.4 Pseudomonas putida: Metabolic architecture and carbon 
metabolism  

Given the increasing demand of more complex bioproducts as well as the appearance 
of novel microbial cell platforms with unique functionalities, there is a necessity to 
gather scientific insights and explore the metabolic capabilities of the host. This will 
enable the development of a systematic and well-organized approach for the efficient 
bioproduction of desired compounds. One example of these platforms, is the non-
traditional Gram-negative host Pseudomonas putida, which is acknowledged for its 
adaptable and complex metabolic capabilities. Its unique cyclic core metabolism, 
regulated by redox demand, plays a crucial role in enabling high metabolic activity 
and tolerance (Nikel, et al., 2015). The core metabolic pathways of this microorganism 
have recently come under investigation, revealing its potential for the synthesis of 
new-to-nature compounds (Wirth and Nikel, 2021). A brief overview of the P. putida´s 
central carbon metabolism is presented, providing a general outline of its metabolic 
processes when consuming glucose as carbon source (Figure 1.4).  
 
Glucose is transported into the cytoplasm or oxidized in the periplasm, leading to the 
formation of gluconate (Glnc) and 2-ketogluconate (2-KGA). These organic acids can 
enter the cytoplasm and be phosphorylated to form 6-phosphogluconate (6PG) and 6-
phospho-2-ketogluconate (2-KGA-6P), which converge into 6PG (Castillo, et al., 2007). 
These oxidation pathways allow P. putida to bypass direct glucose uptake and 
partially decouple ATP production from NADH formation. Each oxidation step 
releases two electrons, coupled to ATP generation (Ebert, et al., 2011). When cells 
grown on glucose, it is observed that there is an excess production of ATP, wherein 
the oxidation pathway plays a substantial role in this process. P. putida has an 
incomplete glycolysis pathway due to the absence of 6-phosphofructo-1-kinase (Pfk). 
The central intermediate, 6PG, is mainly metabolized through the Entner-Doudoroff 
(ED) pathway, resulting in pyruvate (Pyr) and glyceraldehyde-3-P (G3P). A portion 
of pyruvate is recycled back to hexoses through the gluconeogenic EMP pathway, 
forming the EDEMP cycle. Hence, cyclic sugar catabolism in P. putida leads to a slight 
surplus generation of NADPH in cultures utilizing glucose as the carbon source. 
Although most of the studies on the EDEMP cycle has been conducted using model 
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carbon sources, it serves as the intrinsic metabolic hub in P. putida, being essential for 
the hierarchical consumption of sugars and aromatic substrates.  
The most relevant characteristics of P. putida where exploited in this thesis and are 
summarized as follows: 
a) P. putida exhibits rapid growth, high biomass yields, minimal to no secretion of by-
products, and low maintenance demands. Moreover, the bacterium naturally 
maintains an excess production of ATP and high rates of NAD(P)H regeneration 
through the EDEMP (Entner-Doudoroff, Embden-Meyerhof-Parnas and PP 
pathways) overflow metabolism on hexoses. Furthermore, metabolic pathways can be 
rewired to support the EDEMP cycle and enable NAD(P)H overproduction from other 
gluconeogenic substrates, such as glycerol. 
b) P. putida exhibits a regulatory system that endows it with remarkable adaptability 
to promptly react to dynamic circumstances, including external environmental factors 
or internal perturbations. As studied in Chapter 6, physiological analysis combined 
with fluxomics, metabolomics and proteomics elucidated a regulatory mechanism 
governing the perturbation in energy metabolism resulting from genetic disruptions 
in glucose phosphorylation and oxidation peripheral pathways. This integrative 
analysis provides valuable insights into the regulatory networks that orchestrate and 
modulate the impact of genetic disturbances on energy metabolism, shedding light on 
the underlying mechanisms that govern these processes.  In Chapter 7 of this thesis, 
we introduced a glycolytic module from E. coli into P. putida to reshape the bacterium 
metabolic identity. Through the utilization of adaptive laboratory evolution and 
systems biology methodologies, the rewiring of the central carbon metabolism (CCM) 
in the bacterium was comprehensively investigated. We showed how P. putida 
successfully accommodated the artificially implanted glycolytic device by regulating 
the level of CCM´s proteins and metabolic fluxes. 
c) It exhibits a versatile catabolism of carbon sources: the substrate range of P. putida 
has been successfully expanded including sucrose, L-arabinose, D-cellobiose, D-
xylose, phenol, ethylene glycol, and C1 compounds such as formate and CO2, among 
others. In Chapter 4 of this thesis, we conducted an in-depth investigation into the 
mechanism that leads to the diauxic shift phenomenon resulting from the exposure of 
bacteria to two distinct carbon sources: glucose, representing a glycolytic substrate, 
and citrate, representing a gluconeogenic substrate. Through this comprehensive 
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exploration, we enhanced our understanding of the metabolic pathways and 
mechanisms employed by the bacteria for the utilization of these two substrates.  
d) P. putida demonstrates high tolerance to physicochemical stresses, chemical stresses 
(e.g., heavy metals and organic acids), solvents, and oxidative stress. This tolerance is 
attributed to an efficient regulatory machinery, secretion systems, trans-isomerization 
of the cell membrane. In Chapter 5, we focused our attention in the organic acid 
acetate where we explored how the bacterium can overcome the toxicity effects after 
being exposure upon high concentration of the C2-molecule. Once again, a systems 
biology approach was adopted to unravel the underlying mechanisms of tolerance. 
e) Lastly, P. putida naturally possesses an elevated GC content (~62%), making it 
suitable for the heterologous expression of genes from GC-rich microbes that harbor 
gene clusters responsible for secondary metabolite biosynthesis, such as 
Actinobacteria and Myxobacteria. In summary, owing to its numerous characteristics, 
P. putida is considered an excellent microbial host for industrial biotechnology 
applications. 
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Figure 1.4. Architecture of Pseudomonas putida KT2440 central carbon metabolism. Metabolic blocks 
are identified using different colors: Peripheral pathways (Orange), EDEMP (Purple), PPP-Pentose 
Phosphate Pathway (Vermillion), ED-Entner-Doudoroff Pathway (Green), TCA cycle (Blue) and 
Anaplerosis (Grey). Abbreviation of metabolites are as follows: G6P, glucose-6-P; F6P, fructose-6-P; 
FBP, fructose-1,6-P2; DHAP, dihydroxyacetone-P; 6PG, 6-phosphogluconate; KDPG, 2-keto-3-deoxy-6-
phosphogluconate; Ru5P, ribulose-5-P; R5P, ribose-5-P; Xu5P, xylulose-5-P; S7P, sedoheptulose-7-P; 
E4P, erythrose-4-P; G3P, glyceraldehyde-3-P; 2PG, glycerate-2-P; PEP, phosphoenolpyruvate; Pyr, 
pyruvate; AcCoA, acetyl-coenzyme A; OAA, oxaloacetate; 2-KGA-6P, 2-ketogluconate-6-phosphate; 
Cit, citrate; Icit, isocitrate; AKG, 2-oxoglutarate; Succ, succinate; Fum, fumarate; Mal, malate; Glx, 
glyoxylate. Abbreviations for enzymes: EDEMP enzymes: Glucose kinase (Glk); Glucose-6-P 
isomerase-1 (Pgi-1); Glucose-6-P isomerase-2 (Pgi-2); 6-phosphogluconate dehydratase (Edd); 2-
dehydro-3-deoxy-6-phosphogluconate aldolase (Eda); Fructose-1,6-P2 phosphatase (Fbp); Fructose-1,6-
P2 aldolase (Fda); Triosephosphate isomerase (TpiA); Glyceraldehyde-3-P dehydrogenase-1 (Gap-1); 
Glyceraldehyde-3-P dehydrogenase-2 (Gap-2); Phosphoglycerate kinase (Pgk); Phosphoglycerate 
mutase (Pgm); Enolase (Eno); Pyruvate kinase (PykA); Pyruvate kinase complex (PykAF). PP pathway 
enzymes: Glucose-6-P dehydrogenase-1 (Zwf); Glucose-6-P dehydrogenase-2 (ZwfA); Glucose-6-P 
dehydrogenase-3 (ZwfB); Phosphogluconolactonase (Pgl); Phosphogluconate dehydrogenase (Gnd); 
Ribose-5-P isomerase (Rpi); Ribulose-5-P 3-epimerase (Rpe); Transketolase (Tkt); Transaldolase (Tal). 
TCA cycle enzymes: AceF, Acetyltransferase component of pyruvate dehydrogenase complex; Lpd, 
Dihydrolipoyl dehydrogenase; AceE, Pyruvate dehydrogenase E1 component; LpdG, Dihydrolipoyl 
dehydrogenase G; GltA, Citrate synthase; AcnA-I, Aconitate hydratase I; AcnA-II, Aconitate hydratase 
II; AcnB, Aconitate hydratase B; Icd, Isocitrate dehydrogenase [NADP]; SucA, Oxoglutarate 
dehydrogenase (succinyl-transferring); SucC, Succinate-CoA ligase [ADP-forming] subunit beta; SucD, 
Succinate-CoA ligase [ADP-forming] subunit alpha; SdhA, Succinate dehydrogenase flavoprotein 
subunit; SdhB, Succinate dehydrogenase iron-sulfur subunit; FumC, Fumarate hydratase class II; Mqo-
1, Malate:quinone oxidoreductase 1; Mqo-2, Malate:quinone oxidoreductase 2; Mqo-3, Malate:quinone 
oxidoreductase 3; AceA, Isocitrase; GlcB, Malate synthase. Adapted from (Nikel, et al., 2015). 
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Here, we described a step-by-step methodology to perform -omic experiments in a 
standardized manner, combined with a novel visual framework for metabolic flux 
analysis. The strategies were applied to investigate glucose metabolism in 
Pseudomonas putida KT2440 to a degree of detail that surpasses previous studies. The 
multi-omic platform is implemented from Chapter 4 to Chapter 7, with specific 
modifications according the goals and aims of the topic under study. 
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Abstract 

Multi-omics strategies integrate diverse data sets from different omics experiments for 
a comprehensive understanding of biological systems. A key challenge in multi-omics 
analysis is the integration of large datasets. To overcome this, computational methods 
such as correlation-based approaches, network analysis, and machine learning 
techniques have been developed. Nevertheless, researchers may possess limited 
knowledge or experience regarding the use of these complex techniques employed in 
the analysis of microbial metabolism. The analysis can also lead to data 
misinterpretation and require significant time and resources. For that, in this chapter, 
we described a versatile, robust and user-friendly workflow that facilitates running 
multi-omics experiments, data analysis and interpretations as well as visualization 
across three omic levels (i.e. metabolomics, proteomics and fluxomics). The 
experimental set-up has been standardized to enable precise sampling for the different 
analysis. In addition, the pipeline was complemented with a visualization framework 
that permit to represent the changes of metabolites, proteins and metabolic fluxes. 
Using this methodology, we captured metabolites, proteins and fluxes changes during 
two different time-points showing a rigid upper glycolytic pathway, PP pathway and 
active TCA cycle to support growth. The utility of the procedure developed in this 
chapter is illustrated by using the Gram-negative bacterium Pseudomonas putida 
KT2440, a versatile microbial cell factory with great biotechnological potential.  
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2.1 Introduction 

 Multi-omics analysis to explore metabolism at the systems scale 

Microbial metabolism involves a complex network of biochemical reactions that are 
tightly regulated in time and space. In accordance with the central dogma of molecular 
biology, the metabolic complexity is the manifestation of how genetic information 
flows from the genome across the different information layers which lead to the 
observable characteristics of the microorganism (Cobb, 2017). Several methods have 
been developed in order to unravel the interconnected network of the final phenotype. 
By utilizing a set of techniques collectively known as multi-omics methods, scientist 
can track the information from the genome (genomics) through the transcriptome 
(transcriptomics), the proteome (proteomics), the metabolome (metabolomics), and 
ultimately the fluxome (fluxomics) (Veenstra, 2021, Gurdo, et al., 2023). For instance, 
these techniques allow researchers to examine how microbes adapt their metabolism 
in response to different conditions (Zhang, et al., 2010). Many studies have 
demonstrated the usefulness of omics analyses as a tool to guide metabolic 
engineering efforts or expand the knowledge about the system under study. Table 2.1 
presents several examples conducted over the past two decades, illustrating the 
application of these methodologies in studying microbial platforms including 
Pseudomonas putida, Escherichia coli, Corynebacterium glutamicum, Bacillus subtilis, 
Bacillus licheniformis as well as human pathogens as Pseudomonas aeruginosa. 
 
In particular, these system biology approaches provide data from various biological 
levels, including genetic information, transcript levels, protein and metabolite 
abundances or concentrations, as well as measurements of metabolic fluxes, serving 
as experimental outputs (De Keersmaecker, et al., 2006, Oldiges, et al., 2007, Kanani, 
et al., 2008). The study of transcriptomics can provide valuable insights into the gene 
structures and RNA-mediated control mechanisms in any living organism (Sorek and 
Cossart, 2010). Proteomics based-mass spectrometry helps on understanding how 
cells functions at a global level by analyzing proteome dynamics (Graham, et al., 2007, 
Altelaar, et al., 2013, Vranakis, et al., 2014). Metabolomics enables the precise detection 
and quantification of a large number of metabolites in numerous samples, enabling 
the investigation of dynamic metabolomic networks and yielding findings that cannot 
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be obtained through traditional methods (Weckwerth, 2003). Finally, the 
quantification of intracellular fluxes is also a major objective in Systems Biology, and 
metabolic flux analysis (13C–MFA) constitutes a key tool for this purpose (Wiechert, 
2001). This type of analysis uses isotopic labeling experiments to determine the 
distribution of intracellular fluxes across key metabolic pathways. To obtain the final 
flux distribution, in vivo experiments and in silico simulations must be compared using 
an iterative computation process (Driouch, et al., 2012). Next, the resulting estimated 
fluxes can be visualized using metabolic network diagrams. 
 
However, multi-omics research presents several challenges, such as experimental 
design, data integration and visualization (Gehlenborg, et al., 2010). The reason for 
this is that multi-omics experiments were originally developed to study individual 
layers separately, making it hard to obtain data under the same metabolic conditions. 
Consequently, challenges arise from the complexity of the data sets and the 
heterogeneity between data sources (López de Maturana, et al., 2019). Also, another 
primary obstacle faced by both users and developers of visualization tools in the field 
of systems biology is how to take advantage of the vast amounts of available data 
without becoming overwhelmed by it. In practical terms, this means finding ways to 
present the data in a coherent, informative way that strikes the right balance between 
level of detail and comprehensibility. Nevertheless, to get a clear understanding of 
phenotypes and allow reliable interpretations, it is crucial to gather high-quality data 
from various cellular components in an integrated experimental set-up.  
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Table 2.1. A list of different examples of –omic approaches applied to explore several features of 
microbial metabolism. 

Organisms Purpose -omic approach Ref. 

Pseudomonas 
putida 

Investigating metabolism of 
valerolactam and caprolactam 
degradation 

RB-TnSeq and shotgun proteomics (Thompson, 
et al., 2019) 

Improving heterologous 
indigoidine production 

13C–Metabolic flux analysis and 
metabolomics 

(Czajka, et 
al., 2022) 

Understanding activation of mcl-
PHA biosynthesis and genetic 
target identification for polymer 
accumulation. 

RNA sequencing (RNAseq) and 
proteomics (1D-LC-MS) 

(Fu, et al., 
2015) 

Pseudomonas 
aeruginosa 

Studying and tracking mechanism 
of persistence in CF condition Sequencing and genotyping 

(Bartell, et 
al., 2021) 

Analyzing growth and survival on 
n-alkenes 

RNA sequencing (RNAseq) and 
microarray analysis, ribosome 
profiling, proteomics, metabolomics 

(Grady, et 
al., 2017) 

Pseudomonas 
pseudoalcaligenes 

Exploring response to cyanide 
Genomics, transcriptomics and 
proteomics 

(Luque-
Almagro, et 
al., 2015, 
Cabello, et 
al., 2018) 

Escherichia coli 

Elucidating the complex interplay 
between synthetic and 
endogenous E. coli metabolism 

Metabolomics, proteomics, 
transcriptomics and fluxomics data 

(Kim, et al., 
2016) 

Deciphering genotype-phenotype 
relationship in E.coli strains. 

Transcriptomics and proteomics and 
genome scale metabolic models 

(Yoon, et al., 
2012) 

Corynebacterium 
glutamicum 

Interpreting cellular global 
regulatory mechanisms and 
physiological events related to L-
arginine synthesis 

Genomics and transcriptomics 
(Zhao, et al., 
2022) 

Lactococcus 
lactis 

Comprehending metabolic 
regulations during multi-substrate 
growth 

Transcriptomics and proteomics 
(Lahtvee, et 
al., 2011) 

Bacillus 
licheniformis 

Investigating the physiological 
response to cadmium 

Transcriptomics, metabolomics and 
proteomics 

(Sun, et al., 
2015) 

Bacillus subtilis 

Examining physiological 
adaptations to grow in a sustained 
high-salinity environment that is 
simultaneously limited for carbon 
supply 

Transcriptomic, mass spectrometry-
based proteomic, metabolomics and 
13C-fluxomic 

(Kohlstedt, 
et al., 2014) 

Streptococcus 
mutans and 
Candida albicans 

Exploring cross-kingdom 
interaction and sugar metabolism 

Transcriptomics and quantitative 
proteomics 

(Ellepola, et 
al., 2019) 
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 Capturing the dynamics of metabolism by visualizing multi-omic 
data 

Visualization enables portraying different data sets according to metabolite pools, 
protein abundances, and metabolic flux changes within cells in a given metabolic 
network. There are various visualization methods available today (Neuweger, et al., 
2008, Wiklund, et al., 2008, Xia and Wishart, 2010, Hartmann and Jozefowicz, 2018). 
Nonetheless, the large number of metabolites and proteins in a metabolic network, as 
well as the wide range of concentrations, from fmol to several mmol, make it difficult 
to directly compare different conditions. Consequently, a transformation into 
biological relevant values, i.e., metabolite concentrations or protein fold changes, has 
to be compulsory by peak area integration. Another challenge in the realm of 
visualization lies in the lack of a standardized methodology to effectively display and 
integrate the vast amount of data generated from a singular experiment. 
 
Several software tools are accessible to facilitate the visualization of complex 
metabolic networks and the integration of omics datasets, including Omix (Droste, et 
al., 2011), MiBIOmics (Zoppi, et al., 2021) and MicrobioSee (Li, et al., 2022). While 
software tools are capable of presenting data from various perspectives, they may 
require significant computational resources or come at a cost, which can restrict their 
accessibility. As a result, researchers have historically relied on custom-built tools to 
analyze, interpret, integrate, and visualize -omics data which, can lead to perplexing 
outcomes that present difficulties in comprehension and interpretation. More 
recently, the field has become simpler with the advent of new and improved software. 
Nevertheless, until now, only a limited number of investigations have integrated 
microbial physiology with more than two -omics experiments. These studies have 
conventionally relied on the information derived from one or two biological layers. 
 

 The environmental bacterium Pseudomonas putida as a model 
organism for multi-omics analysis 

A way to delve into metabolic architectures involves the exploration of the microbial 
metabolism by applying multi-omics strategies, as was mentioned in Section 2.1.1. 
Pseudomonas putida, a versatile bacterium renowned for its robustness and metabolic 
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flexibility, serves as an excellent candidate for such investigations. This Gram-
negative bacterium can survive and grow in a variety of harsh conditions, such as high 
salt concentrations and toxic compounds. P. putida is known for its ability to use a 
wide variety of carbon sources, such as aromatic compounds, fatty acids, and amino 
acids (Weimer, et al., 2020).  
 
Numerous research studies have investigated the adaptability of P. putida's 
metabolism. The following examples serve as compelling evidence: i) Refactoring 
metabolic pathway for co-utilization of a wide range of sugars: P. putida has been engineered 
to enable the simultaneous use of a wide range of sugars. This includes the ability to 
efficiently grow on cellobiose and co-metabolize it with glucose and xylose. This 
demonstrates not only an expansion in the bacterium's metabolic capability to use 
novel substrates but also highlights P. putida as a viable platform for integrating novel 
biochemical pathways that utilize carbohydrate mixtures from lignocellulose sources 
(Dvořák and de Lorenzo, 2018). ii) Tolerance to toxic compounds: P. putida has been 
shown to have a high tolerance to toxic compounds such as organic solvents. P. putida 
butanol tolerance was found to be primarily linked to classic solvent defense 
mechanisms, such as efflux pumps, membrane modifications and control of redox 
state (Cuenca, et al., 2016). iii) Segregated metabolic pathways: a study on simultaneous 
carbon substrate uptake has demonstrated the ability to co-utilize glucose and 
benzoate in P. putida. The multi-omic strategy revealed metabolic segregation on the 
substrate carbons providing new insights into the metabolic architecture of this 
bacteria (Kukurugya, et al., 2019). iv) Stress response mechanisms: finally, a study by 
Bojanovic and colleagues (2019) delved into the stress response mechanisms of P. 
putida and discovered that it can endure high salt concentrations and oxidative stress 
by activating specific stress response pathways (Bojanovič, et al., 2017). This metabolic 
flexibility is due to the presence of multiple catabolic pathways and regulatory 
systems that enable P. putida to efficiently utilize different carbon sources or withstand 
several environmental conditions. The main strength of this bacterium is its robust but 
complex metabolic architecture. P. putida central carbon metabolism (CCM) has four 
main pathways that direct carbons towards biosynthetic building blocks. These 
pathways are the Entner-Doudoroff (ED) pathway, the pentose-phosphate pathway 
(PPP), the upper Embden-Meyerhof-Parnas (EMP) pathway, and the TCA cycle. 
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Glucose catabolism is used to direct glucose-derived carbons towards the ED and PP 
pathways. This can be achieved through direct glucose phosphorylation to glucose-6-
phosphate (G6P) or by oxidizing glucose to gluconate (Glcn) and 2-ketogluconate (2-
KGA) in the periplasm, followed by phosphorylation to 6-phosphogluconate (6PG) 
(Sudarsan, et al., 2014, Nikel, et al., 2015, Sasnow, et al., 2016). Given that Pseudomonas 
putida KT2440 is a microorganism that possesses a complex metabolic architecture and 
considering that it has the ability to strongly rewire its metabolism upon internal or 
external perturbations, we decided to create an integrated multi-omics to: i) 
standardize the different strategies; ii) provide an experimental, data integration and 
visualization framework and; iii) capture relevant metabolic information in 
Pseudomonas putida KT2440. 
 

2.2 Results 

 Setting up a multi-omics workflow for physiological 
characterization, metabolomics, proteomics and fluxomics analyses 

The use of standardized multi-omic protocols for sample collection, data integration, 
and visualization can result in improved reproducibility, reduced experimental 
variability, and more accurate conclusions (Quinn, et al., 2016). To fully harness the 
potential of different -omics methodologies, a systematic and integrated workflow 
was developed to obtain an overall perspective on the metabolic status (Figure 2.1). 
This strategy involves conducting multiple -omics experiments in parallel, all 
executed under the same, reproducible conditions. The goal is to integrate different 
data sets coming from metabolomics, proteomics, and fluxomics assays in a 
meaningful way. By running the experiments under uniform conditions, it becomes 
easier to compare and integrate the results from different -omics approaches (Figure 
2.2). In the study, we adopted Pseudomonas putida KT2440 as model organism to 
display how the workflow can be used to explore its unique metabolic properties and 
robust metabolism. The framework provides a simple and straightforward approach 
for the analysis and interpretation of the obtained data, improving the understanding 
of the cellular metabolic state. The experimental and analytical workflow was 
complemented by a set of custom R scripts assembled into the package VisomX 
(www.github.com/Nicwir/VisomX) to facilitate user-friendly and comprehensive 
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omics data analysis. The included visualization functions aim to overcome the 
challenges faced in integrating a large amount of data generated from multi-omics 
experiments, making it easier for biologists to comprehend the results and draw valid 
conclusions. 
 

 

Figure 2.1. Experimental set-up for multi-omics analysis in this study. The diagram represents the set 
of experiments to carry out. The analysis involves four main strategies: quantitative physiology 
analysis, metabolomics, proteomics, and fluxomics. Cultivations are performed using the 
corresponding labelling (12C or 13C Glucose). At least three biological replicates per set of experiment. 
μ: Specific growth rate (h-1), qs: substrate uptake rate (mmol gCDW-1 h-1), Yx/s: biomass yield (g biomass 
produced  g substrate consumed-1), Yp/s (g product produced  g substrate consumed-1). BR1,2,3: 
Biological replicate 1, 2 and 3. TR1, 2, 3: Technical replicates 1, 2 and 3. t1, …, t9 represent different 
sampling time points (in h). 
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Figure 2.2. Description of the main methodologies for quantitative physiology and –omics analysis. 
Overall, the first step is common for all the strategies consisting on culturing the strains in non-labeled 
glucose or, in the case of metabolic flux analysis, labeled glucose. For quantitative physiology analysis 
(A), the steps involve sampling, optical density measurement and supernatant analysis by HPLC. For 
targeted metabolomics (B), the samples are quenched, lyophilized and reconstituted for LC-MS/MS 
analysis. In semi-quantitative proteomics (C), the pellet is lysed, digested and prepared for LC-MS/MS 
analysis. Finally, for metabolic flux analysis (D), the harvested biomass is hydrolyzed, derivatized and 
analysed by GC-MS.  
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To bring the efforts to fruition, the initial stage involved cultivating Pseudomonas putida 
KT2440 in DBMG2g/L to gather quantitative information on its physiology. Figure 2.3A 
shows a typical growth curve (with the biomass concentration estimated as the optical 
density measured at 600 nm, OD600), as well as the extracellular concentrations for 
glucose, gluconate, and 2-ketogluconate—the three forms of sugars utilized and 
processed by P. putida. The calculated specific growth rate (μ) of P. putida KT2440 was 
0.61 h-1, with a maximum optical density (OD600max) of 2.42 or 1.02 gCDW L-1. The glucose 
uptake rate was 7.08 ± 0.22 mmol gCDW-1 h-1 (qGlucose) and the biomass yield was 0.42 ± 
0.03 gCDW gglucose-1 (YX/S) (Figure 2.3B). The rate of gluconate secretion was determined 
to be 16.96 ± 3.56 mmol gCDW-1 h-1 (qSecGluconate) during the initial 2-hour period of 
cultivation. From hour 3 to 8, the uptake rate of gluconate was found to be 0.83 ± 0.08 
mmol gCDW-1 h-1 (qUptGluconate). In the case of 2-KGA, the secretion rate was estimated to be 
4.65 ± 0.16 mmol gCDW-1 h-1 (qSec2-KGA) within the first 4 hours of cultivation. 
Subsequently, from hours 4 to 6, the uptake rate of 2-KGA was observed to be 2.08 ± 
0.09 mmol gCDW-1 h-1 (qUpt2-KGA). These results were consistent with previous findings 
(Nikel, et al., 2015). Glucose was first oxidized into gluconate and, in a second 
oxidation step, gluconate was converted into 2-ketogluconate. As soon as they were 
secreted into the extracellular space, both organic acids were progressively consumed 
along the cultivation. Figure 2.3A shows the specific time intervals during which we 
collected samples for -omic analysis while maintaining a constant specific growth rate 
and glucose uptake rate: 1) at Mid-log phase, which indicates the cultures reached 
OD600~1.0 and; 2) Late phase, at OD600~1.8. Based on the specific time points indicated 
in Figure 2.3A, we conducted metabolomics and proteomics analyses, as well as 
metabolic flux analysis. These procedures were performed following the general 
methodology outlined in Figure 2.2, which provided a framework for the overall 
experimental design and analytical approach. 
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Figure 2.3. Physiological characterization of Pseudomonas putida KT2440. (A) Growth curve showing 
bacterial growth (OD600, purple circles), glucose (blue squares), gluconate (green up triangles) and 2-
ketogluconate (orange down triangles) concentration in g L-1 in the supernatant. Points denote average 
of three biological replicates while shading area represents standard deviation. (B) Calculated 
parameters are shown in the table on the left: specific growth rate (μ), maximum optical density 
(OD600max), glucose uptake rate (qGlucose) and biomass yield (YX/S). (C) Symbols indicate where the aliquot 
for metabolomics and proteomics were taken as well as in (D) for the case of 13C metabolic flux analysis. 
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 Visualization of omic datasets generated in this study 

To simplify the analysis and integration of various types of omics data, we developed 
several “dummies” template maps representing the central carbon metabolism of 
Pseudomonas putida KT2440 (shown in Figure 2.4) (Nikel, et al., 2015). These maps 
enabled us to easily assign information from our -omics analyses. The data sets 
consisted on normalized absolute concentrations (metabolomics) and relative protein 
abundances (proteomics). The metabolic fluxes were expressed as relative values, 
provided as percentages and incorporated into the template.  
 
In order to visualize metabolite concentrations and protein relative changes, we used 
sizable circles (Figure 2.4A) and squares (Figure 2.4B), which were colored using a 
specific color palette (see below). Moreover, it was also possible to provide further 
details regarding the energy levels of cells by indicating the concentrations of energy 
and redox molecules such as ATP, NAD+, NADH, NADP+ and NAD(P)H. Finally, to 
represent metabolic fluxes, we varied the arrow intensity color to indicate the 
magnitude of the flux (Figure 2.4C). The data set of omics was created during the 
course of this study by conducting the experiments illustrated in Figure 2.2, which 
included targeted metabolomics, semi-quantitative proteomics, and 13C fluxomics. 
 
With the aim of visualizing the collected data in the dummies maps, we allocated the 
previous metabolites data, protein abundances and metabolic fluxes. Metabolites 
were indicated with a yellow-to-violet color gradient and varying size, proportional 
to their measured concentrations. Small yellow circles indicate metabolites with the 
lowest concentrations while big violet circles correspond to metabolites with the 
highest concentrations. As the metabolite concentrations can span several orders of 
magnitude, logarithmic transformation (base 4) was applied to the metabolite 
concentrations before applying the color gradient and calculating circle radio. The 
purpose of applying a logarithmic transformation was to effectively capture and 
highlight visual distinctions arising from variations in metabolite concentrations. 
Metabolites not measured are shown by leaving their name on the metabolic map 
(Figure 2.5).  
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For proteomics data visualization, log2 fold-changes were depicted in squared boxes 
beside the flux arrows within the metabolic network map. For isozymes, the squares 
are placed horizontally and labeled with letters (e.g. ZwfA, ZwfB and ZwfC), while 
for enzymes complexes, they were arranged vertically and labeled with numbers (e.g. 
pyruvate dehydrogenase complex where, 1, 2 and 3 are components I, II and III 
respectively). We applied a palette color ranging from blue (downregulated proteins), 
over white (no change), to red (overregulated proteins). Furthermore, the limits of the 
color gradient were set at -2 and 2 in order to capture all the changes in the interval 
(Figure 2.6).  
 
For fluxomics, the flux values (%) were depicted on the metabolic map by adjusting 
the blue intensity in the arrows. The darker blue color indicated a 100% flux (which 
was the glucose uptake rate), while light gray dashed lines represented the absence of 
flux. The directionality of every arrow indicates the direction of each flux. In addition, 
the network model includes three compartmentalized sections showing metabolite 
pools in the extracellular, periplasmic or cytosolic space (Figure 2.7).  
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Figure 2.4. Templates used to visualize metabolome, proteome and fluxome in central carbon 
metabolism of Pseudomonas putida KT2440. (A) Map containing the normalized concentration (μmol 
gCDW-1) of the different metabolites. Gray circles represent the specific metabolites. (B) Template 
showing the Log2(fold change) of proteins involve in CCM. Squares symbolize the enzyme(s) acting in 
the metabolic steps. (C) Template map including metabolic fluxes calculated after 13C–MFA. Arrows 
denote direction and the value (%) is the relative flux versus total carbon uptake. Abbreviations are as 
follows: G6P, glucose-6-P; F6P, fructose-6-P; F1,6P2, fructose-1,6-P2; DHAP, dihydroxyacetone-P; 6PG, 
6-phosphogluconate; 2KDPG, 2-keto-3-deoxy-6-phosphogluconate; Ru5P, ribulose-5-P; R5P, ribose-5-
P; Xu5P, xylulose-5-P; S7P, sedoheptulose-7-P; E4P, erythrose-4-P; G3P, glyceraldehyde-3-P; 2PG, 
glycerate-2-P; PEP, phosphoenolpyruvate; Pyr, pyruvate; Acetyl-CoA, acetyl-coenzyme A; Oaa, 
oxaloacetate; 2K6PG, 2-ketogluconate-6-phosphate; Cit, citrate; Acon, aconitate; Icit, isocitrate; 2-OG, 2-
oxoglutarate; SucCoa, succinyl-CoA; Succ, succinate; Fum, fumarate; Mal, malate; Glx, glyoxylate; CO2, 
carbon dioxide.   

 

 Quantitative comparison of metabolome, proteome and fluxome 
dataset 

With the aim of exposing the main variations in comparative -omics analyses, we 
created five visualization maps: two for Mid-log and Late metabolomics (Figure 2.5A 
and Figure 2.5B), two for Mid-log and Late fluxomics (Figure 2.7A and Figure 2.7B), 
and one for proteomics (Figure 2.6). The data included in the proteomic map used the 
Mid-log phase data as a reference point for calculating log2(fold change). By utilizing 
the met_to_map(), prot_to_map(), and flux_to_map() functions in the R package VisomX, 
we were able to simultaneously process, analyze, and visualize the data set obtained 
from the three omics experiments. All our analyses were performed by comparing the 
data obtained from the Mid-log phase with that from the Late phase. In order to capture 
the metabolic dynamics between the two different cellular states (Mid-log and Late), 
we first represented the calculated metabolite concentration data in the metabolic 
map. As specified in material and methods, measured concentration data were pre-
processed before visualization in the reaction network. The first processing step was 
the normalization of the concentrations in μmol gCDW-1 by using the optical density 
(OD600) and its correlation with cell dry weight  at the harvesting time point.  
 
In this study, we have examined the most commonly used sampling techniques in the 
field of metabolomics (Bolten, et al., 2007). This methods involved cell separation by 
fast filtration and quenching using cold methanol at -20°C. We were able to achieve 
reasonable concentrations of intermediates from glycolysis, PP pathway, and TCA 
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cycle ranging from 0 to around 400 μmol gCDW-1 (Table S2.1). As previously stated, this 
approach has been shown to have strong consistency and reproducibility across both 
biological and technical replicates (Wordofa, et al., 2017). We observed that during the 
Mid-log phase, there was an increased concentration of all metabolites across the 
different metabolic pathways compared to the Late phase, indicating a high level of 
metabolic activity during this phase.   
 
Concerning metabolic flux analysis, Figure 2.8 shows a typical flux distribution of 
Pseudomonas putida KT2440 grown on glucose. The calculated relative fluxes are listed 
in Table S2.1. In both phases (Mid-log and Late), more than 90% of the input substrate 
is metabolized via periplasmic oxidation to gluconate and 2-ketogluconate. 
Assimilation of these two sugar acids converges at 6-phosphogluconate, which is 
further metabolized through the ED pathway. It should be noted that the exact split 
ratio between the gluconate uptake branch and the 2-ketogluconate uptake branch 
cannot be resolved based on carbon transitions utilizing this experimental set up. A 
different tracer strategy employing deuterated sugar substrates, known as D-
fluxomics, should be employed in order to follow the fate of glucose in the upper sugar 
processing routes (Volke, et al., 2023). At the output node of the ED pathway, 
specifically at the convergent G3P metabolic hub, approximately 20% of the carbon is 
recycled back through the EMP pathway to form hexose phosphates (F6P and G6P). 
The observed net fluxes through ED pathway and lower glycolysis corroborated 
earlier outcomes proposed for pseudomonads, where the ED pathway is the core 
pathway for glucose processing (Vicente and Cánovas, 1973, Fuhrer, et al., 2005, del 
Castillo, et al., 2007, Ebert, et al., 2011, Sudarsan, et al., 2014, Nikel, et al., 2015). In 
addition, previous in silico analysis and experimental results in glucose-grown cells 
have demonstrated that the flux through the PP pathway is low in P. putida KT2440 
(Tokic, et al., 2020, Wirth, et al., 2022), which is optimized for providing the necessary 
biomass precursors.  
 
Regarding proteomics, the analysis provided a global overview of the proteome 
allocation when cells grew on glucose as carbon source. As shown in Figure 2.6, most 
of the proteomic changes were centered on peripheral reactions (gluconate oxidation 
into 2-KGA as well as 2-KGA into 2K6PG), G6P dehydrogenase (Zwf) and 6PG 
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dehydrogenase (Gnd) and TCA cycle. When comparing Late phase against Mid-log, 
the enzymes responsible for the oxidation of gluconate (Gad) or the phosphorylation 
of 2-KGA (KguK) were downregulated. This observation is consistent with the fact 
that in Late phase gluconate is not further processed into 2-KGA (Figure 2.3A), yet one 
must bear in mind that the proteomics methodology employed in this study is not 
optimized for the extraction and analysis of membrane-bound proteins, such as Gad 
(Tan, et al., 2008).  
 
In addition, it was expected that the protein levels of all PPP enzymes, except for trans-
ketolase (Tkt) and transaldolase (Tal), would be low in the two tested conditions. Tkt 
and Tal are responsible for interconverting PPP metabolites, rearrange carbon 
skeletons and act on two substrates simultaneously, F6P and E4P (Stincone, et al., 
2015). The enzymatic reactions mediated by Tkt and Tal involve the transfer of two- 
and three-carbon fragments (Tal-C and Tkt-C in Figure 2.4A) from a ketose donor to 
an aldose acceptor. Tkt facilitates the transfer of glycolaldehyde (C2 skeleton) utilizing 
tightly bound thiamine pyrophosphate (TPP) as a cofactor. Within TPP, the second 
carbon atom of the thiazole ring possesses a propensity for ionization, resulting in the 
formation of a carbanion. This carbanion readily reacts with the carbonyl group of the 
ketose substrates, namely xylulose 5-phosphate (X5P), fructose 6-phosphate (F6P), or 
sedoheptulose 7-phosphate (S7P). The phosphorylated portion of the ketose substrate 
is cleaved, resulting in a negatively charged C2 atom bound to TPP. Through 
resonance forms, the glycolaldehyde moiety remains attached to TPP until an 
appropriate acceptor molecule, such as ribose 5-phosphate (R5P), erythrose 4-
phosphate (E4P), or glyceraldehyde 3-phosphate (G3P), is encountered. In contrast to 
Tkt, Tal lacks a prosthetic group and instead relies on the formation of a Schiff base. 
This occurs between the carbonyl group of the ketose substrate (F6P, S7P) and the ε-
amino group of a lysine residue within the enzyme's active site. This interaction 
results in the production of either G3P or E4P, with the bound dihydroxyacetone (C3 
skeleton) remaining. Similar to the nitrogen atom within the thiazole ring of Tkt, the 
nitrogen atom within the Schiff base stabilizes the dihydroxyacetone unit through 
resonance forms until an appropriate aldose acceptor (G3P, E4P) becomes bound 
(Kleijn, et al., 2005).  
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The overall control over the flux of these reactions is likely exerted at the metabolite 
level. These reactions can only occur if the remaining PP pathway reactions can 
provide the required substrates. Having elevated levels of Tkt and Tal as a baseline, 
in this case in Mid-log phase, could enable a faster adaptation to alterations in the flux 
distribution in the EDEMP network. Also, in order to compensate the lack of reducing 
equivalents in the upper glycolysis and TCA cycle at the end of the Late phase, the cell 
increases the activity of Zwf, Gnd, isocitrate dehydrogenase (Icd), succinate 
dehydrogenase (SdhD), and malate dehydrogenase (Mdh) enzymes to extract energy 
from the remaining glucose and gluconate before entering in stationary phase. 
 
Summarizing, the whole analysis of comparative metabolome, proteome, and 
fluxome data in biochemical network diagrams is a powerful tool that allows for a 
comprehensive understanding of the metabolic state of a system. By analyzing the 
data in this manner, we can gain critical insights into the system, such as identifying 
key regulatory points, determining the impact of genetic mutations or environmental 
changes, and understanding how changes within the network affect the entire system. 
Overall, this systematic visualization approach is a powerful tool for advancing our 
understanding of metabolism and its regulation in biological systems. 
 



Chapter 2 
Establishing an integrated multi-omics workflow for metabolic profiling 

 
59 

 

 

Figure 2.5. Visualization of central carbon metabolites in Mid-log and Late phases. Metabolite 
concentrations are depicted and colored according the palette reference on the left down corner of each 
graph. Abbreviations can be found in the legend to Figure 2.4. Smaller and yellow circles represent 
lowest concentration (0.01 μmol gCDW-1) while bigger and purple circles the highest concentration 
(10,000 μmol gCDW-1) 
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Figure 2.6. Visualization of proteins in Pseudomonas putida KT2440 central carbon metabolism 
during Mid-log in comparison to Late phase. Protein fold change are symbolize in squared boxes 
according the color bar on the right upper corner. Log2(fold change) covers from -2 (blue), 0 (white) to 
2 (red). Black boxes represent that the corresponding protein has not been detected. Abbreviations can 
be found in Figure 2.4. 



Chapter 2 
Establishing an integrated multi-omics workflow for metabolic profiling 

 
61 

 

 

Figure 2.7. Visualization of metabolic fluxes during Mid-Log and Late phases. All fluxes were 
normalized to the specific glucose uptake rate (arbitrarily set to 100), and the intensity of each arrow 
correlates proportionally to the relative flux percentage. Dashed lines indicate that no significant flux 
through the corresponding biochemical step was detected under the experimental conditions tested. 
Abbreviations can be referred in Figure 2.5. 
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2.3 Discussion 

Several bioinformatics tools have been previously developed for multi-omics analysis. 
(Gomez-Cabrero, et al., 2014, Yugi, et al., 2016, Hasin, et al., 2017, Argelaguet, et al., 
2018). However, researchers typically create customized pipelines that incorporate 
some of these available tools, as each multi-omics dataset is unique. Although this 
approach is common, we assert that a general framework is crucial for gaining 
knowledge and conducting an optimized integrated research analysis in the future. 
Here, we first presented an experimental strategy to gather comparable –omic data 
sets for metabolomics, proteomics and fluxomics in Pseudomonas putida KT2440 under 
glycolytic regime.  
 
We also developed an intuitive framework to capture the system-wide changes in the 
metabolism. Together with this, we were able to visualize and compare the 
information collected in the –omic experiments. This flexible framework allowed 
allocating the cellular components in a pre-designed metabolic network. Thus, we 
could examine and integrate the different cellular components being able to acquire 
an overview picture of the metabolism. The current design is suitable to incorporate, 
for example, transcriptomic data (in form of fold-changes), which can expand the 
information about the system. This visual framework is adaptable to the necessities of 
numerous application fields in Systems Biology. Frameworks like the one presented 
in this study, as well as other complementary tools (Rohart et al., 2017), are becoming 
more and more essential with the increasing volume of multi-omics data, especially 
in the field of multi-omics (Pinu, et al., 2019). 
 
By utilizing the approach developed in this study, it becomes feasible to identify 
metabolic bottlenecks and acquire fundamental understanding about molecular 
mechanisms that are associated with a particular trait or phenotype. The workflow 
outlined in this study enables a wide audience of scientists to easily explore, integrate, 
and analyze multi-omics datasets. Ultimately, the entire pipeline can be implemented, 
scaled-down or –up, and applied in Biofoundries with the aim of increasing the 
throughput and conditions to be tested. Forthcoming work will focus on the 
integration and automated analysis of –Omic datasets by incorporating R-based 
statistical tools. In connection to this, another objective is to include a high-resolution 
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time-course set up allowing detecting temporal changes in relevant condition for 
biotechnological purposes (Xia, et al., 2011).  
 
The future of multi-omics integration in system biology looks promising. With the 
development of new technologies, such as single-cell omics, high-throughput 
sequencing, machine learning and artificial intelligence (AI) researchers will be able 
to generate and analyze even larger and more complex datasets. This will enable the 
development of more accurate predictive models and the identification of new drug 
targets and diagnostic biomarkers (Lee, et al., 2020). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 2 
Establishing an integrated multi-omics workflow for metabolic profiling 

 
64 

 

2.4 Material and Methods 

 Experiment design and platform set up for multi-omics analysis 

The experimental design involves four sets of experiments: quantitative physiology, 
targeted metabolomics, semi-quantitative proteomics, and fluxomics. Regarding the 
quantitative physiological analysis, three biological replicates―named as BR1, BR2, 
and BR3―with their corresponding technical replicates―TR1, TR2, and TR3 were run 
in this experiment. In total, nine flasks were required for this first initial experimental 
set. For Pseudomonas putida KT2440, ten time points were harvested to analyze the 
entire growth curve in de Bont medium with 2 g L–1 glucose (DBMG2g/L). In case of 
using a different strain or condition, is important to adjust the sampling time along 
the cultivation. In order to collect different aliquots (700 μl each), the sampling 
sequence was done as follows: for TR1 (BR1, BR2 and BR3) three samples were 
harvested at t1, 4, and 7 (hours 1, 4, and 7), TR2 (BR1, BR2, and BR3), at t2, 5 and8 
(hour 2, 5, and 8), and TR3 (BR1, BR2, and BR3) at t3, 6 and 9 (hours 3, 6 and 9). The 
sampling sequence was carried out as previously mentioned in order to prevent the 
removal of over 10% of the flask volume (~2.0 mL). Once the strain was characterized 
in terms of growth, the sampling window was selected in order to harvest at Mid-log 
(OD600~1.0) and Late (OD600~1.8) phases. On the following day, metabolomics and 
proteomics were carried out by culturing the strain in three different flask (biological 
replicates). Within the same experimental set, samples for metabolomics were taken 
first according Metabolomics sample processing and analysis and later, proteomics 
samples as is indicated in Semi-quantitative proteomics analysis. 

 

 Culture conditions 

Throughout the experiments conducted in this study, Pseudomonas putida KT2440 was 
grown at a temperature of 30°C. For propagation and storage, cells were grown in 
lysogeny broth (LB) medium (10 g L–1 tryptone, 7.5 g L–1 yeast extract, and 10 g L–1 
NaCl). Pre-cultures as well as cultures were performed using de Bont medium (1.55 g 
L–1 K2HPO4, 0.85 g L–1 NaH2PO4, 2.0 g L–1 (NH4)2SO4,0.1 g L–1 MgCl2, 10 mg L–1 EDTA, 
2 mg L–1 ZnSO4, 1 mg L–1 CaCl2, 5 mg L–1 FeSO4, 0.2 mg L–1 Na2MoO4, 0.2 mg L–1 CuSO4, 
0.4 mg L–1 CoCl2, and 1 mg L–1 MnCl2) containing 2 g L–1 glucose (Hartmans, et al., 
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1989). Solid culture media contained 15 g L–1 agar. Pre-cultures were set in 12-mL 
plastic tubes with 3 mL of DBMG2g/L. Cultures were done in sterile 100-mL shaken 
flasks covered with aluminum foil and filled with 20 mL of DBMG2gL. All liquid pre-
cultures were agitated at 250 rpm (MaxQ™8000 incubator; ThermoFisher Scientific, 
Waltham, MA, USA) while the cultures were agitated at 200 rpm (New Brunswick™ 
Innova® 42/42R Shaker, sticky pad). Solid culture media contained 15 g L–1 agar. 
 

 Growth and uptake/secretion rates determination 

Bacterial growth, uptake and secretion rates were calculated according (Long and 
Antoniewicz, 2019). Briefly, inoculum and cultures were done as explained in section 
Culture conditions. During the cultivation, nine samples per replicate were taken along 
the entire growth curve covering from the lag phase until stationary phase. Optical 
density was followed at 600nm (OD600) and supernatants were collected by 
centrifugation at 10,000 g for 5 min at 4°C. Supernatants were stored at -20°C until 
further analysis. Glucose, gluconate and 2-ketogluconate consumption were 
determined as is described in section High-performance Liquid Chromatography (HPLC) 
metabolite analysis. Specific growth rates (h-1) as well as uptake and secretion rates 
(mmol gCDW-1 h-1) were determined by plotting the natural logarithm ln(OD600) versus 
time (hours) and external concentration (mM) versus OD600, respectively. Biomass 
concentration was calculated transforming OD values in grams of cell dry weight per 
liter (gCDW L-1) using a conversion factor of 0.42 gCDW L-1 OD600-1. 
  

 High-performance Liquid Chromatography (HPLC) metabolite 
analysis 

The quantification of glucose, gluconate, and 2-ketogluconate was carried out using a 
Dionex Ultimate 3000 HPLC with an Aminex® HPX-87X Ion Exclusion (300 x 7.8 mm) 
column from BioRad, Hercules, CA. Detection was achieved using a combination of 
refractive index (RI-150) and UV detectors set to 260, 277, 304, and 210 nm. For 
analysis, the temperature column was maintained at 30°C and 5 mM H2SO4 solution 
was used as mobile phase with a flow rate of 0.5 mL min-1. Chromeleon 7.1.3 software 
(Thermo Fisher Scientific®) was used to process and analyze chromatograms, 
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compound concentrations were calculated from peak areas using calibration curves 
with six different standard concentrations (Standard range for glucose was 0-4 g L-1, 
sodium gluconate 0-1 g L-1 and 2-Keto-D-gluconic acid hemicalcium salt hydrate 0-1 g 
L-1). 
 

 Multiomic analysis - Experimental set up and sampling 

The experimental design is described in Figure 1. For all the experiments, pre-cultures 
were inoculated by taking one colony per replicate from a fresh LB plate (< 7 days) 
and incubated overnight for ~16 h. For fluxomics experiments, three biological 
replicates were used while for metabolomics and proteomics analysis four replicates 
were utilized. Each biological replicate pre-culture was used to inoculate the 
corresponding shaken flask with an initial OD600 of 0.05 as it is indicated in section 
Culture conditions. Prior to inoculation, the aliquots were centrifuged at 5,000 g for 5 
min and washed once with de Bont minimal medium without carbon source. Then, 
the biomass pellet was resuspended in DBMG2g/L to initiate the different cultures. In 
all the experiments, once the culture reached an optical density of one (OD600 ~ 1.0), 
one milliliter was taken from the culture for fluxomics analysis and two milliliters for 
metabolomics and proteomics. The samples were processed according the procedures 
in Metabolomic Analysis, Semi-quantitative proteomics and Fluxomics Analysis. 
 

 Metabolomics sample processing and analysis 

The cultivation for the metabolomics analysis was carried out as it is indicated in 
section Culture conditions. When the cultures reached Mid-Log or Late phase, 1 mL per 
replicate was taken. Each sample was rapidly filtrated in MF Millipore™ membrane 
filter (0.45-μm pore size; Sigma-Aldrich Co.). Later, the filter containing the bacterial 
biomass was placed onto a mini-Petri dish with 1 mL of quenching solution [40% (vol 
vol-1) acetonitrile, 40% (vol vol-1) methanol and 100 mM formic acid] precooled to -
20°C. The solution containing the quenched biomass was transferred into a 2-mL tube; 
the filter was rinsed with an extra 1 mL of quenching solution and collected in a 2-mL 
Eppendorf tube. Samples were promptly placed in a dry ice bath and kept under these 
conditions for 30 min.  
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Next, the samples were thawed and centrifuged at 13,000 g for 5 min and the 
supernatants were transferred to a clean 2-mL Eppendorf tube, where the solvent was 
evaporated in a SpeedVac centrifuge for ca. 2 h at 45°C until they were fully dried. 
Finally, the samples were stored at -80°C until analysis. Just prior to metabolite 
analysis, the samples were resuspended in 100 μl of LC–MS grade water. 
Chromatographic separation of metabolites was done with an ACQUITY UPLC™ 
high-strength silica T3 column (1.8 μm × 2.1 mm × 30 mm, Agilent Technologies Inc.) 
in an HPLC apparatus (Shimadzu; Columbia, MD, USA). A gradient of eluent A [10 
mM acetic acid, 5% (vol vol-1) methanol, 10 mM tributylamine and 2% (vol vol-1) 2-
propanol] and 2-propanol was implemented for metabolite separation as previously 
described (McCloskey, et al., 2018). The flow rate was set to 0.5 ml min-1 with a total 
run time of 4.4 min; the autosampler was kept at 10°C and the column oven was set at 
40°C with an injection volume of 10 μl. For metabolite identification and 
determination, a mass spectrometer (QTrap™ AB SCIEX mass spectrometer 5500) was 
operated in negative ion mode with the following settings: ionization set, −4,500; 
temperature, 500°C; curtain gas, 45; collision gas, high; ion source gas, 1; and ion 
source gas pressure, 250 pound square inch-1.  
 

 Semi-quantitative proteomics analysis 

For proteomics analysis, please refer to (Gurdo, et al., 2023) for a detailed step-by-step. 
Briefly, the samples were obtained from the same shaken flask where metabolomics 
samples were taken. Cells were harvested by centrifugation at 17,000 g for 2 minutes 
at 4°C. After removal of the supernatant, the cell pellets were frozen at −80°C until 
further analysis. Thawing of the cells was done on ice, and any remaining supernatant 
was removed after centrifugation at 15,000 g for 10 min. While kept on ice, two 3-mm 
zirconium oxide beads (Glen Mills, NJ, USA) were added to the samples. Immediately 
after removing the samples from ice, 100 μl of a solution containing 6 M Guanidinium 
hydrochloride (GuHCl), 5 mM tris(2-carboxyethyl)phosphine (TCEP), 10 mM 
chloroacetamide (CAA), and 100 mM Tris–HCl pH 8.5 heated at 95°C was added to 
the samples. The cells were disrupted in a Mixer Mill (MM 400 Retsch, Haan, 
Germany) set at 25 Hz for 5 min at room temperature, followed by 10 min in a thermal 
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mixer at 95°C and 2,000 rpm. Any cell debris was removed by centrifugation at 15,000 
g for 10 min, after which 50 μl of supernatant was collected and diluted with 50 μl of 
50 mM ammonium bicarbonate. Based on protein concentration quantification [via the 
Bradford method with BSA concentration standards (He, 2011)], 100 μg of protein was 
used for tryptic digestion. Tryptic digestion was carried out at constant shaking (400 
rpm) for 8 h, after which 10 μl of 10% trifluoroacetic acid (TFA) was added, and 
samples were ready for StageTipping, using C18 as resin (Empore, 3M, USA). 
 
For sample analysis, a CapLC system (Thermo Scientific) coupled to an Orbitrap Q 
exactive HF-X mass spectrometer (Thermo Scientific) was used. First, samples were 
captured at a flow rate of 10 μl min-1 on a pre-column (μ-precolumn C18 PepMap 100, 
5 μm, 100Å). Subsequently, the peptides were separated in a 15 cm C18 easy spray 
column (PepMap RSLC C18 2μm, 100Å, 150 μmx15cm) at a flow rate of 1.2 μl min-1, 
with an applied gradient from 4% (v v-1) acetonitrile in water to 76% (v v-1) over a total 
of 60 minutes. While spraying the samples into the mass spectrometer, the instrument 
operated in data-dependent mode using the following settings: MS-level scans were 
performed with Orbitrap resolution set to 60,000; AGC Target 3.0e6; maximum 
injection time 50 ms; intensity threshold 5.0e3; dynamic exclusion 25 s. Data-
dependent MS2 selection was performed in Top 20 Speed mode with HCD collision 
energy set to 28% (AGC target 1.0e4, maximum injection time 22 ms, Isolation window 
1.2 m z-1).  
 
For analysis of the thermo raw files, Proteome discoverer 2.4 was used with the 
following settings: Fixed modifications: Carbamidomethyl (C); Variable 
modifications: oxidation of methionine residues; First search mass tolerance: 20 ppm; 
MS/MS tolerance: 20 ppm; Trypsin as enzyme, allowing one missing cleavage; the 
false-discovery rate (FDR) was set at 0.1%; the match-between-runs window was set 
to 0.7 min. Only unique peptides were considered for quantification. To assign the 
detected peptides to their functions, a protein database consisting of the Pseudomonas 
putida reference proteome (UP000000556) was used, supplemented with 
heterologously expressed proteins. 
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 Fluxomics Analysis 

For parallel isotopic labeling experiment, Pseudomonas putida KT2440 was pre-grown 
in DBMG2gL with unlabeled 12C6 glucose. The pre-cultures containing non-labeled 
biomass were used to inoculate the flask containing labeled substrate. In this case, 
three different isotopic tracers were used as carbon source: (i) 99% [1–13C] glucose, (ii) 
99% [6–13C] glucose, and (iii) a 50:50% mixture of naturally labelled 12C and 99% [U-
13C6] glucose. Labeled glucose was acquired in Cambridge Isotope Laboratories, Inc. 
(Teddington, Middlesex, United Kingdom). Prior to the flux experiments, P. putida 
KT2440 cells from a cryovials were streaked onto a LB agar plate and grown overnight 
(~18 hours). All experiments were comprised of three biological replicates and two 
technical replicates. 
 

 GC-MS labeling analysis of aminoacids 

For the analysis of proteinogenic amino acids, one absorbance unit at 600 nm (OD600 ~ 
1.0 or 0.42 gCDW L-1) was harvested in a refrigerated (4°C) centrifuge at 10,000 g for 5 
min. After removing the supernatant, pellets were re-suspended in 200 μL of 6 M HCl 
and incubated at 105°C for 16-24 hours in order to hydrolyze the biomass (Zamboni, 
et al., 2009). Hydrolyzed samples were then filtered on a 96-filter plate 
(MultiScreenHTS, HV Filter Plate 0.45 μm, hydrophilic, clear, non-sterile, Millipore, 
Catalogue number MSHVN45) by centrifugation at 1,500 g for 2 min, and dried for 4 
h at 30°C using a vacuum concentrator (SAVANT, SpeedVac, Thermo Fisher 
Scientific, San Diego, CA, USA). Then, dried samples were derivatized in a two-step 
reaction: 1) by re-suspending the hydrolysate with 50 μL dimethylformamide (DMF) 
until it turns brownish and; 2) by adding the previous solution into a glass vial with 
50 μL of N-tertbutyldimethylsilyl-N-methyltrifluoroacetamide with 1% (wt wt-1) 
tertbutyldimethyl-chlorosilane (TBDMSTFA) and incubating it at 85°C for 1 hour. The 
derivatized samples were aliquoted in glass vials with inlets for GC-MS analysis 
within 12 h from derivatization.  
 
The samples were injected on a single quadrupole Agilent 5977 GC-MS system with 
an Agilent DB-5ms capillary column (30m, inner diameter of 0.25 mm, film thickness 
of 0.25 μm). Samples were measured in full-scan mode, using a 1:100 split ratio, with 
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the following gradient: start at 160°C, hold for 1 min, ramp to 310°C at 20°C min-1, 
hold for 1 min. Raw chromatographic data was integrated using SmartPeak 
(Kutuzova, et al., 2020). Processed data was further corrected for the natural 
abundance of isotopes in the derivatization agents used for GC-MS analysis using 
INCA software (Young, 2014). 
 
Altogether, 12 amino acids yielded ion clusters with clean mass isotopomer 
distributions (MIDs), which were considered as inputs for flux estimation: alanine 
(m/z 232, m/z 260), glycine (m/z 218, m/z 246), valine (m/z 260, m/z 288), leucine (m/z 
274), isoleucine (m/z 274), proline (m/z 258), serine (m/z 362, m/z 390), threonine (m/z 
376, m/z 404), phenylalanine (m/z 302, m/z 308, m/z 336), aspartate (m/z 390, m/z 418), 
glutamate (m/z 330, m/z 432), lysine (m/z 329, m/z 431), and tyrosine (m/z 302).  
 
These fragments have been previously demonstrated to be suitable for 13C flux 
studies of Pseudomonads (Kohlstedt and Wittmann, 2019). Glutamate and aspartate 
also reflected the pools of glutamine and asparagine, which underwent deamination 
during protein hydrolysis. The proteinogenic amino acids cysteine, methionine and 
tryptophan were not detected due to their degradation in the hydrolysis process 
(Wittmann, 2007).  
 

   GC-MS labeling analysis of sugars 

For the analysis of cellular sugars, one absorbance unit at 600 nm (OD600 ~ 1.0 or 0.42 
gCDW L-1) was harvested by centrifugation (5 min, 4°C, 10,000 g) and pellets were 
hydrolyzed in 250 μL 2 M HCl for 2 h at 100°C (Kiefer, et al., 2004). Afterwards, cell 
debris was removed by filtration using a 96-filter plate (MultiScreenHTS, HV Filter 
Plate 0.45 μm, hydrophilic, clear, and non-sterile, Millipore, Catalogue number 
MSHVN45). Subsequently, the hydrolysate was dried in a vacuum concentrator 
(SAVANT, SpeedVac, Thermo Fisher Scientific, San Diego, CA, USA). Analytes 
contained in the dried residue were incubated in 100 μL methoxylamine 2 % m v-1 in 
pyridine at 80°C for 1 h. The obtained O-methyl oxime forms of the analytes were 
silylated at 80°C for 30 min into trimethylsilyl (TMS) derivatives in a second step using 
N,O-bis-trimethylsilyl-trifluoroacetamide (BSTFA, Macherey-Nagel). The derivatized 
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analytes were quantified by GC-MS as it is described in GC-MS labeling analysis of 
aminoacids. The fragments considered for 13C–MFA were: glucose (m/z 319, m/z 554) 
and glucosamine (m/z 319, m/z 553). 

 

  Data manipulation and visualization 

2.4.11.1 Targeted metabolomics based on LC-MS/MS 

Peak intensities for metabolites within central carbon metabolism were obtained from 
this analysis by processing the raw mass spectrometry data through the SmartPeak 
workflow (Kutuzova, et al., 2020, Kozaeva, et al., 2021). Metabolomics data analysis 
was carried out in Excel and the analysed data—metabolite fold change (FC)—was 
used as input to visualize it on a map by utilizing the R package fluctuator.  
 

2.4.11.2 Semi-quantitative proteomics 

Proteomics data, acquired as described above, were analyzed using a customized R 
script in RStudio (version 2022.12.0). The abundance values were log2-transformed 
and normalized via variance stabilization normalization using the vsn package 
(Huber, et al., 2002). Next, missing values were imputed by replacing them with the 
lowest observations of each sample (Liu and Dongre, 2021). A differential enrichment 
test was performed for each contrast in the dataset based on protein-wise linear 
models and empirical Bayes statistics using limma (Ritchie, et al., 2015). P-values were 
adjusted using fdrtool with the Benjamini-Hochberg method (Strimmer, 2008). The 
adjusted P-value threshold for significant observations was set at a value of 0.05. The 
log2(fold change) values of proteins in central metabolism were visualized on a map 
by using functions of the package fluctuator. 
 

2.4.11.3 Reaction network for metabolic flux analysis 

The metabolic networks of Pseudomonas putida KT2440 was built using the last genome 
scale metabolic model published: iJN1463 (Nogales, et al., 2020). In total, 79 reactions 
were included as part of the central carbon metabolism in P. putida KT2440. The full 
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list containing the whole compendium of reactions as well as the carbon atom 
transition are listed in Supplementary Information (Table S2.2). 
 

2.4.11.4 Flux estimation using INCA software 

For 13C–metabolic flux analysis (13C–MFA) and flux estimation, INCA software 
package was implemented to analyze the metabolic network (Young, 2014). Growth 
rates, glucose, gluconate and 2-KGA uptake/secretion rates were used to constrain the 
MFA model. The biomass equation was derived from biomass yield that represents 
the normalized precursor drainage to calculate the experimental growth rates (Czajka, 
et al., 2022). Also, ATP and NAD(P)H maintenance rates were converted into relative 
fluxes and included as fixed parameters in the model according (Zobel, et al., 2017). 
The uptake rates used to constrain the model were normalized using the sum of the 
uptake rates (100% = sum of glucose + gluconate and 2-KGA uptake rates). The relative 
intracellular fluxes (%) were calculated by minimizing the sum-of-squared residuals 
(SSR) between computationally simulated and experimentally determined 
measurements (MDVs or mass distribution vectors for each fragment analyzed). 
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Chapter 3 - Protocol for absolute quantification of proteins in 
Gram-negative bacteria based on QconCAT-based labeled 
peptides 
 
This chapter represents a protocol paper published in STAR protocol as follows: 
 
Gurdo, N., Taylor Parkins, S.K., Fricano, M., Wulff, T., Nielsen, L.K., and Nikel, P.I. 
(2023) Protocol for absolute quantification of proteins in Gram-negative bacteria based 
on QconCAT-based labeled peptides, STAR Protocols 4: 102060. 
https://doi.org/10.1016/j.xpro.2023.102060.  
 
Abstract 
 
Mass-spectrometry-based absolute protein quantification uses labeled quantification 
concatamer (QconCAT) as internal standards (ISs). To calculate the amount of 
protein(s), the ion intensity ratio between the analyte and its cognate IS is compared 
in each biological sample. The present protocol describes a systematic workflow to 
design, produce, and purify QconCATs and to quantify soluble proteins in 
Pseudomonas putida KT2440. Our methodology enables the quantification of detectable 
peptide and serves as a versatile platform to produce ISs for different biological 
systems.  
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Protocol for absolute quantification of proteins
in Gram-negative bacteria based on
QconCAT-based labeled peptides

Mass-spectrometry-based absolute protein quantification uses labeled quantification

concatamer (QconCAT) as internal standards (ISs). To calculate the amount of protein(s), the ion

intensity ratio between the analyte and its cognate IS is compared in each biological sample. The

present protocol describes a systematic workflow to design, produce, and purify QconCATs and

to quantify soluble proteins in Pseudomonas putida KT2440. Our methodology enables the

quantification of detectable peptide and serves as a versatile platform to produce ISs for different

biological systems.
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SUMMARY

Mass-spectrometry-based absolute protein quantification uses labeled quantifi-
cation concatamer (QconCAT) as internal standards (ISs). To calculate the amount
of protein(s), the ion intensity ratio between the analyte and its cognate IS is
compared in each biological sample. The present protocol describes a systematic
workflow to design, produce, and purify QconCATs and to quantify soluble pro-
teins in Pseudomonas putida KT2440. Our methodology enables the quantifica-
tion of detectable peptide and serves as a versatile platform to produce ISs for
different biological systems.

BEFORE YOU BEGIN

The protocol below describes the steps needed to conduct an integral, quantitative proteomics

analysis of the model soil bacterium Pseudomonas putida KT2440.1–4 This workflow (Figure 1) can

be likewise applied to different Gram-negative bacteria to quantify the protein content in the bac-

terial biomass. Regardless of the microbial host selected, an effective method for protein extraction

is required to isolate the greatest number of proteins possible5,6—subjected to the specific exper-

imental conditions employed.7,8 In the last two decades, most of the studies developed to this end

have applied qualitative strategies to explore the total bacterial proteome under different condi-

tions (often, through direct comparison to a reference sample) by calculating relative ratios or

fold changes in protein content.9–11 This methodology, however, could potentially lead to biases

due to the fact that relative quantification cannot explicitly provide the actual polypeptide concen-

trations, given that proteins are present at contents that vary in orders of magnitude (e.g., femto-,

pico-, nano- or micromoles of protein per gram/number of cells).12 To address this challenge, the

asymmetrical distribution of protein concentrations in the cell could be quantified by targeted pro-

teomics methods, capable of accurately determining the amount of specific proteins.13 Here, quan-

tification can be accomplished by incorporating labeled proteotryptic peptides—adopted as inter-

nal standards—in the samples, allowing the user to calculate the absolute concentration of a

selected set of proteins.

Reagent preparation

Timing: 6–8 h

STAR Protocols 4, 102060, March 17, 2023 ª 2023 The Author(s).
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Note: This protocol has been used to express and purify unique peptides (i.e., peptides that

are present in only one protein of a proteome of interest) from Pseudomonas putida (in this

protocol, strain KT2440)14,15 in Escherichia coli BL21(DE3) DlysA DargH. This strain is an

L-lysine and L-arginine auxotroph derivative of E. coli BL21(DE3), commonly used for protein

production,16 and will only grow in a minimal medium when the corresponding amino acids

are supplemented to the cultures.

The day before the ‘‘peptide candidate mapping experiment’’:

1. Prepare the following media: 23YT and LB agar plates (with and without antibiotics as needed).

2. Make antibiotic and IPTG stock solutions.

3. Prepare lysis buffer, ammonium bicarbonate solution, resuspension buffer, Ni-resin equilibration

buffer, elution buffer, phosphate buffer, SDS-PAGE buffer and [Glu1]-fibrinopeptide B solution.

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

Bicinchoninic acid (BCA) assay kit VWR Cat#89167-792

Bacteria strains

Escherichia coli BL21
DE3 DlysA DargH

Denmark Technical University,
The Novo Nordisk Foundation
Center for Biosustainability

This work

Pseudomonas putida KT2440 ATCC Cat#47054

(Continued on next page)

Figure 1. Workflow for the selection of candidate peptides

The scheme represents a detailed step-by-step procedure to obtain peptide candidates used in the design of the pQconCAT plasmid.
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Yeast extract Sigma-Aldrich CAS# 8013-01-2

Bacto yeast extract Thermo Fisher Cat#212750

Tryptone Sigma-Aldrich CAS# 91079-40-2

Bacto tryptone Thermo Fisher Cat#211705

NaCl Sigma-Aldrich CAS# 7647-14-5

Calcium chloride dihydrate (CaCl2$H2O) Sigma-Aldrich CAS# 10043-52-4

Magnesium sulfate
heptahydrate (MgSO4$7H2O)

Sigma-Aldrich CAS# 10034-99-8

Pyridoxine hydrochloride Sigma-Aldrich CAS# 58-56-0

Thiamine hydrochloride Sigma-Aldrich CAS# 67-03-8

Riboflavin Sigma-Aldrich CAS# 83-88-5

Nicotinic acid Sigma-Aldrich CAS# 59-67-6

Calcium D-(+)-pantothenate Sigma-Aldrich CAS# 137-08-6

p-Aminobenzoic acid Sigma-Aldrich CAS# 150-13-0

Thioctic acid Sigma-Aldrich CAS# 1077-28-7

Biotin Sigma-Aldrich CAS# 58-85-5

Folic acid Sigma-Aldrich CAS# 59-30-3

Vitamin B12 Sigma-Aldrich CAS# 68-19-9

Disodium EDTA Sigma-Aldrich CAS# 6381-92-6

Zinc sulfate heptahydrate
(ZnSO4$7H2O)

Sigma-Aldrich CAS# 7446-20-0

Manganese chloride
tetrahydrate (MnCl2$4H2O)

Sigma-Aldrich CAS# 13446-34-9

Cobalt(II) chloride
hexahydrate (CoCl2$6H2O)

Sigma-Aldrich CAS# 7791-13-1

Copper(II) chloride
dehydrate (CuCl2$2H2O)

Sigma-Aldrich CAS# 10125-13-0

Disodium molybdate
dehydrate (Na2MoO4$2H2O)

Sigma-Aldrich CAS# 10102-40-6

Iron sulfate heptahydrate
(FeSO4$7H2O)

Sigma-Aldrich CAS# 7782-63-0

Boric acid (H3BO3) Sigma-Aldrich CAS# 10043-35-3

Potassium iodide (KI) Sigma-Aldrich CAS# 7681-11-0

Disodium hydrogen
phosphate (Na2HPO4)

Sigma-Aldrich CAS# 7558-79-4

Potassium phosphate,
monobasic (KH2PO4)

Sigma-Aldrich CAS# 7778-77-0

Ammonium chloride (NH4Cl) Sigma-Aldrich CAS# 12125-02-9

Agar Sigma-Aldrich CAS# 9002-18-0

Kanamycin monosulfate Sigma-Aldrich CAS# 25389-94-0

Guanidinium hydrochloride (GuHCl) Sigma-Aldrich CAS# 50-01-1

Tris(2-carboxyethyl)phosphine
hydrochloride (TCEP)

Sigma-Aldrich CAS# 51805-45-9

2-Chloroacetamide (CAA) Sigma-Aldrich CAS# 79-07-2

Tris(hydroxymethyl)aminomethane
hydrochloride (Tris$HCl)

Sigma-Aldrich CAS# 1185-53-1

Ammonium bicarbonate (NH4HCO3) Sigma-Aldrich CAS# 1066-33-7

Trifluoroacetic acid (TFA) Sigma-Aldrich CAS# 76-05-1

Isopropyl b-D-1-
thiogalactopyranoside (IPTG)

Sigma-Aldrich CAS# 367-93-1

Ethylenediaminetetraacetic acid (EDTA) Sigma-Aldrich CAS# 60-00-4

D,L-Dithiothreitol (DTT) Sigma-Aldrich CAS# 3483-12-3

Urea Sigma-Aldrich CAS# 57-13-6

Sodium phosphate dibasic
heptahydrate (Na2HPO4.7H2O)

Sigma-Aldrich CAS# 7782-85-6

Sodium dihydrogen phosphate
monohydrate (NaH2PO4.H2O)

Sigma-Aldrich CAS# 10049-21-5

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Imidazole Sigma-Aldrich CAS# 288-32-4

Trypsin and LysC digestion mix Thermo Fischer Cat#A40007

Pierce� Universal Nuclease
for Cell Lysis

Thermo Fischer Cat#88700

43 Laemmli sample buffer Bio-Rad Cat#1610747

43 2-Mercaptoethanol Sigma-Aldrich CAS# 60-24-2

2-Amino-2-(hydroxymethyl)-1,
3-propanediol (Tris base)

Sigma-Aldrich CAS# 77-86-1

Glycine Sigma-Aldrich CAS# 56-40-6

Sodium dodecyl sulfate (SDS) Sigma-Aldrich CAS# 151-21-3

Page Ruler Plus Prestained
Protein Ladder, 10–250 kDa

Thermo Fischer Cat#26619

Instant Blue staining Abcam ab119211

[Glu1]-Fibrinopeptide B Sigma-Aldrich CAS# 103213-49-6

Water for chromatography
(LC-MS Grade) LiChrosolv�

Sigma-Aldrich CAS# 7732-18-5

Deposited data

Pseudomonas putida KT2440
soluble protein quantification

This paper https://github.com/biosustain/
QconCATquantSTAR

Recombinant DNA

pQconCAT plasmid This paper N/A

Software and algorithms

Proteome Discoverer Thermo Fisher https://www.thermofisher.
com/us/en/home/industrial/
mass-spectrometry/
liquid-chromatography-
mass-spectrometry-lc-ms/
lc-ms-software/multi-omics-
data-analysis/proteome-
discoverer-software.html v2.4

Python version 3.10.5 Python Software
Foundation

https://www.python.org

Other

3 mm zirconium oxide beads Glen Mills Cat#7361-003000

2 mm solid-glass beads Sigma-Aldrich SKU 1040140500

Mixer Mill Retsch MM400

ThermoMixer Eppendorf Cat#5382000023

C18 resin Empore Cat#13-110-018

Dionex UltiMate 3000 Thermo Fisher Cat#IQLAAAGABHFAPBMBFD

Orbitrap Exploris 480 Thermo Fisher Cat#BRE725533

Thermal Mixer with 24 3 2 mL
microtube block Eppendorf shaker

Thermo Fisher Cat#13687717

250 mL Nalgene� plastic bottle Sigma-Aldrich SKU B1033-4EA

Vibra-Cell sonicator Sonic & Material
Instrument

Model VCX 130

Waving shaker VWR Cat#10811-240

HisPur� Ni-NTA Resin Thermo Fisher Cat#88222

Pierce� Disposable Columns, 10 mL Thermo Fisher Cat#29924

Amicon Ultra centrifugal filters (50 mL) Millipore Cat#UFC901096

NanoDrop 2000 spectrophotometer Thermo Fisher Cat#ND-2000

PCR tube Thermo Fisher Cat#14-230-210

Spin microcentrifuge VWR Cat#521-2844

Mini-PROTEAN TGX 4%–20%
resolving gel

Bio-Rad Cat#4561096

Mini-PROTEAN tetra cell vertical
gel electrophoresis system

Bio-Rad Cat#1658004

Spatula or Knife Gel Thermo Fisher Cat#EI9010
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MATERIALS AND EQUIPMENT

Note: Autoclave LB agar medium at 15 psi, 121�C–124�C for 20 min and cool down to 45�C–
50�C before adding kanamycin or the selected antibiotic. These can be stored at 4�C for

�1 month.

Note: This medium can be autoclaved (at 15 psi, 121�C–124�C for 20 min) and stored at 23�C
for �6 months.

Note: This medium can be stored at 23�C for �6 months.

Note: This medium can be stored at 23�C for �12 months.

23YT broth

Reagent Final concentration Amount

Yeast extract 10 g/L 10 g

Tryptone 16 g/L 16 g

NaCl 5 g/L 5 g

Deionized water N/A Up to 1 L

Total N/A 1 L

LB agar plates containing kanamycin (or any other selected antibiotic)

Reagent Final concentration Amount

Yeast extract 5 g/L 5 g

Tryptone 10 g/L 10 g

NaCl 10 g/L 10 g

Agar 15 g/L 15 g

Kanamycin (1,0003) 50 mg/mL (13) 1 mL

Deionized water Not applicable (N/A) Up to 1 L

Total N/A 1 L

M9 medium glucose

Reagent Final concentration Amount

Calcium chloride (CaCl2) solution 0.1 mM 0.1 mL

Magnesium sulfate (MgSO4) solution 2 mM 1 mL

Wolfe’s vitamin solution (1,0003) 13 1 mL

Trace element solution (2,0003) 13 0.5 mL

M9 medium salts (103) 13 100 mL

Glucose monohydrate 40 mM 7.2 g

Double deionized water N/A Up to 1 L

Total N/A 1 L

Calcium chloride solution

Reagent Final concentration Amount

Calcium chloride (CaCl2) dihydrate 1 M 147.01 g

Double deionized water N/A Up to 1 L

Total N/A 1 L
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Note: This medium can be stored at 23�C for �12 months.

Note: First, dissolve all compounds in 500 mL MQ water. Add double deionized water to a

final volume of 1 L. Filter sterilize. Store the sterile solution at 4�C in the dark for �12 months.

Note: First, dissolve EDTA and ZnSO4$7H2O in 0.75 L of double deionized water and set the

pH to 6.0 with 1 M NaOH. Whilst maintaining the pH at 6.0, dissolve in the other compounds

one by one. When ready, set the pH to 4.0 with 1 M HCl and adjust the volume to 1.0 L. Ster-

ilize by autoclaving (15 psi, 121�C–124�C for 20 min). Store the sterile solution at 4�C in the

dark for �12 months.

Wolfe’s vitamin solution (1,0003)

Reagent Final concentration Amount

Pyridoxine hydrochloride 10.0 mg/L 10.0

Thiamine hydrochloride 5.0 mg/L 5.0

Riboflavin 5.0 mg/L 5.0

Nicotinic acid 5.0 mg/L 5.0

Calcium D-(+)-pantothenate 5.0 mg/L 5.0

p-Aminobenzoic acid 5.0 mg/L 5.0

Thioctic (a-lipoic) acid 5.0 mg/L 5.0

Biotin 2.0 mg/L 2.0

Folic Acid 2.0 mg/L 2.0

Vitamin B12 1.0 mg/L 1.0

Double deionized water N/A Up to 1 L

Total N/A 1 L

Magnesium sulfate solution

Reagent Final concentration Amount

Magnesium sulfate (MgSO4) heptahydrate 2 M 240.73 g

Double deionized water N/A Up to 1 L

Total N/A 1 L

Trace element solution (2,0003)

Reagent Final concentration Amount

Disodium EDTA 15 g/L 15

Zinc sulfate (ZnSO4) heptahydrate 4.5 g/L 4.5

Manganese chloride (MnSO4) tetrahydrate 0.7 g/L 0.7

Cobalt(II) chloride (CoCl2) hexadrate 0.3 g/L 0.3

Copper(II) chloride (CuCl2) dihydrate 0.2 g/L 0.2

Disodium molybdate (Na2MoO4) dihydrate 0.4 g/L 0.4

Calcium chloride (CaCl2) dihydrate 4.5 g/L 4.5

Iron(II) sulfate (FeSO4) heptahydrate 3.0 g/L 3.0

Boric acid (H3BO3) 1.0 g/L 1.0

Potassium iodide (KI) 0.1 g/L 0.1

Double deionized water N/A Up to 1 L

Total N/A 1 L

M9 medium salts (103)

Reagent Final concentration Amount

Disodium hydrogen phosphate (Na2HPO4) 68 g/L 10 g

(Continued on next page)
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Note: This medium can be stored at 23�C for �12 months.

CRITICAL: D,L-Dithiothreitol (DTT) is a reducing agent that can cause skin, eye and respi-

ratory irritation. It is highly recommended to wear appropriate protective equipment and

work under the chemical hood.

Note: Buffer A can be stored at 4�C for �12 months.

CRITICAL: Urea can cause irritation to the skin, eyes, and respiratory tract. Urea is harmful

if swallowed or inhaled.

Note: Buffer B can be stored at 4�C for �12 months.

Note: Phosphate buffer can be stored for at least 2 years at 23�C.

Buffer A – Inclusion bodies solubilization

Reagent Final concentration Amount

Tris$HCl (pH = 8.0) 20 mM 242.3 mg

EDTA 1 mM 29.2 mg

DTT 5 mM 77.1 mg

Double deionized water N/A Up to 100 mL

Total N/A 100 mL

Continued

Reagent Final concentration Amount

Potassium phosphate monobasic (KH2PO4) 30 g/L 16 g

Sodium chloride (NaCl) 5 g/L 5 g

Ammonium chloride (NH4Cl) 10 g/L 10 g

Double deionized water N/A Up to 1 L

Total N/A 1 L

Buffer B – Inclusion bodies solubilization

Reagent Final concentration Amount

Tris$HCl (pH = 8.0) 20 mM 242.3 mg

EDTA 1 mM 29.2 mg

DTT 5 mM 77.1 mg

Urea 8 M 48.05 g

Double deionized water N/A Up to 100 mL

Total N/A 100 mL

Phosphate buffer (pH = 7.4)

Reagent Final concentration Amount

Sodium phosphate dibasic heptahydrate (Na2HPO4$7H2O) 1 M 20.21 g

Sodium dihydrogen phosphate monohydrate (NaH2PO4$H2O) 1 M 3.39 g

Double deionized water N/A Up to 100 mL

Total N/A 100 mL
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Note: Resuspension buffer can be stored for at least 2 years at 4�C protected from light.

CRITICAL: Imidazole may form combustible dust concentrations in the air. It is harmful if

swallowed and can cause severe skin burns and eye damage; it may also cause respiratory

irritation. Personal protective equipment (e.g., goggles, laboratory coat and gloves) must

be used when handling this compound.

Note: Equilibration buffer Ni-resin can be stored for at least 2 years at 4�C protected from

light.

Note: Elution buffer Ni-resin can be stored for at least 2 years at 4�C protected from light.

Note: Sample exchange buffer can be stored for at least 2 years at 23�C.

Equilibration buffer Ni-resin

Reagent Final concentration Amount

1 M phosphate buffer (pH = 7.4) 20 mM 2 mL

NaCl 300 mM 1.75 g

Imidazole 20 mM 0.136 g

Urea 8 M 48.05 g

Double deionized water N/A Up to 100 mL

Total N/A 100 mL

Resuspension buffer

Reagent Final concentration Amount

1 M phosphate buffer (pH = 7.4) 20 mM 2 mL

NaCl 300 mM 1.75 g

Imidazole 20 mM 0.136 g

Double deionized water N/A Up to 100 mL

Total N/A 100 mL

Elution buffer Ni-resin

Reagent Final concentration Amount

1 M phosphate buffer (pH = 7.4) 20 mM 1 mL

NaCl 300 mM 0.825 g

Imidazole 500 mM 1.7 g

Urea 8 M 24.02 g

Double deionized water N/A Up to 50 mL

Total N/A 50 mL

Sample exchange buffer

Reagent Final concentration Amount

1 M phosphate buffer (pH = 7.4) 20 mM 2 mL

Double deionized water N/A Up to 1 L

Total N/A 1 L
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Note: SDS is a detergent, do not shake the mixture to avoid formation of foam.

CRITICAL: Sodium dodecyl sulfate (SDS) can cause skin, eye, and respiratory irritation.

Avoid inhalation of dusts, substance contact, and keep away from heat and sources of igni-

tion. Personal protective equipment (e.g., goggles, laboratory coat and gloves) must be

used when handling this compound.

Note: This medium can be stored at 23�C for �12 months.

Note: [Glu1]-Fibrinopeptide B solution must be stored at –20�C. Storage time �2 years.

Note: The ammonium bicarbonate solution can be stored for at least 2 years at 23�C.

Note: Adjust the pH of the solution to 8.5 with 5 M NaOH. The solution can be stored at 23�C
for at least 2 years.

[Glu1]-Fibrinopeptide B solution

Reagent Final concentration Amount

[Glu1]-Fibrinopeptide (EGVNDNEEGFFSAR) 0.1 mg/mL 100 mg

LC-MS grade water N/A Up to 1 mL

Total N/A 1 mL

SDS-PAGE buffer 103

Reagent Final concentration Amount

Tris base 30.3 g/L 30.3 g

Glycine 144.4 g/L 144.4 g

SDS 10 g/L 10 g

Double deionized water N/A Up to 1 L

Total N/A 1 L

Ammonium bicarbonate solution

Reagent Final concentration Amount

Ammonium bicarbonate (NH4HCO3) 50 mM 198 mg

LC-MS grade water N/A Up to 50 mL

Total N/A 50 mL

Tris$HCl buffer (pH = 8.5)

Reagent Final concentration Amount

Tris$HCl 1 M 7.88 g

LC-MS grade water N/A Up to 50 mL

Total N/A 50 mL

Lysis buffer

Reagent Final concentration Amount

Gu$HCl 6 M 28.66 g

(Continued on next page)
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CRITICAL: Guanidinium hydrochloride (Gu$HCl) is harmful if swallowed. It can also cause

eye and skin irritation. Tris(2-carboxyethyl)phosphine hydrochloride (TCEP) is corrosive

and can cause severe skin and eye burns. 2-Chloroacetamide (CAA) is toxic upon ingestion

and may cause an allergic skin reaction. Use appropriate protective personal equipment

(e.g., goggles, laboratory coat and gloves) when working with these substances.

Note: This medium can be stored at 4�C for �6 months.

Alternatives: Chemical compounds produced by manufacturers other than the ones specified

in the key resources table are adequate substitutes, where and whenever are of highest purity,

sequence grade, and LC-MS grade. The enzymes used in this protocol (Trypsin/LysC diges-

tion mix and Pierce� Universal Nuclease for Cell Lysis) should be purchased using the same

vendor to ensure workflow reproducibility.

HPLC-MS and data analysis settings

For sample analysis, utilize a Dionex UltiMate 3000 coupled to an Orbitrap Exploris 480. Capture the

sample on a pre-column (m-precolumn C18 PepMap 100, 5 mm, 100 Å) at a flow rate of 10 mL/min.

Separate the peptides on a 15 cm C18 easy spray column (PepMap RSLC C18 2 mm, 100 Å,

150 mm 3 15 cm) at a flow rate of 1.2 mL/min, with an applied gradient from 4% (v/v) acetonitrile

in water with 0.1%–76% (v/v) formic acid over a total of 60 min. Operate the instrument in data-

dependent mode using the following settings: MS-level scans performed with resolution set to

120,000; AGC target of 3.03106; maximum injection time of 50 ms; intensity threshold of 5.03

103; and dynamic exclusion at 25 s. Perform data-dependent MS2 selection in Top 20 Speed

mode with HCD collision energy set to 28% (AGC target 1.03104; maximum injection time of

22 ms; and isolation window 1.2 m/z with a resolution of 30,000).

For analysis of the .RAW files, run ProteomeDiscoverer v2.4 (Thermo Fisher Scientific, Waltham,MA,

USA) with the following settings. Dynamic modifications: carbamidomethyl of cysteine residues and

oxidation of methionine residues; label 13C(6) in arginine and lysine residues; precursor mass toler-

ance set to 10 ppm; fragment mass tolerance at 0.02 Da; trypsin (full) as digestion enzyme, allowing

for a maximum of two missed cleavages; minimum peptide length of 6; maximum peptide length of

144; and the false-discovery rate (FDR) set at 0.1%.

STEP-BY-STEP METHOD DETAILS

The first part of the protocol involves the selection of several unique peptides used in the design of the

quantification concatamers (QconCATs) for absolute protein determination. QconCATs are imple-

mented to precisely quantify the content of desired proteins not only in bacteria but also in any biolog-

ical system by slightly adjusting the protein extraction procedure. The presented protocol includes all

the necessary steps—from the in silico design to the calculation of the in vivo protein concentrations—

to carry out an end-to-end workflow in Gram-negative bacteria (e.g., P. putida or E. coli).

Peptide candidate mapping experiment

Timing: 2–3 days

Continued

Reagent Final concentration Amount

TCEP 5 mM 71.7 mg

CAA 10 mM 46.7 mg

Tris$HCl (pH = 8.5) 100 mM 5 mL

LC-MS grade water N/A Up to 50 mL

Total N/A 50 mL
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1. Grow the pre-culture of the selected Gram-negative bacterial strain for �16 h at its optimal

growth condition in a 50-mL Falcon tube containing 10 mL of 23YT medium. Use colonies

from a freshly-inoculated LB agar plate.

Note: E. coli should be grown at 37�C and P. putida cultures are incubated at 30�C.

2. Re-inoculate a 250-mL Erlenmeyer flask containing 50 mL of 23YT medium by diluting the pre-

culture 1003 (500 mL).

3. When the culture reaches mid-exponential phase (roughly equal to 0.53OD600
max, i.e., half the

maximum optical density measured at 600 nm) or �0.4–0.5 mg of total cell dry weight.

4. Harvest 1 mL of the suspension by centrifugation at 10,000 g for 10 min at 4�C.
5. Remove the supernatant and freeze the cell pellets at –80�C until sample preparation.

6. Thaw the cell pellets on ice. Add two 3-mm zirconium oxide beads to each sample, and 100 mL of

lysis buffer (6 M Gu$HCl [guanidinium hydrochloride], 5 mM TCEP [tris(2-carboxyethyl)phos-

phine], 10 mM CAA [2-chloroacetamide] and 100 mM Tris$HCl, pH = 8.5) to the samples.

7. Disrupt the cell suspension in a Mixer Mill set at 25 Hz for 5 min at �20�C. Heat the sample for

10 min in a ThermoMixer at 99�C and 1,800 rpm.

8. Remove the cell debris by centrifugation at 15,000 g for 10 min at 23�C and collect 50 mL of su-

pernatant into a new Eppendorf tube. Dilute the cell extract with 50 mL of 50 mM (NH4)HCO3

(ammonium bicarbonate).

9. Quantify protein concentration via the bicinchoninic acid (BCA) assay4,17 and take 20 mg of pro-

tein for tryptic digestion into a new Eppendorf tube.

10. Dilute the tryptic digestion to reach a total volume of 100 mL by using the appropriate amount of

50 mM (NH4)HCO3 solution.

Note: The expected protein concentration might vary according to the organism under study,

carbon source and culture conditions. For a typical bacterial culture at OD600 = 1.0, the esti-

mated protein concentration is �2 mg/mL.

11. Add 20 mL of 0.1 mg/mL trypsin and LysC digestion mix (ratio 1:1). Initiate the tryptic digestion at

constant shaking (400 rpm) for 8 h and 37�C.

Note: Ensure at least a 43 dilution to avoid interferences between the Gu$HCl present in the

lysis buffer and the digestion enzymes.

12. Add 10 mL of 10% (w/v) trifluoroacetic acid (TFA) to stop the tryptic digestion. Vortex and centri-

fuge the samples at 15,000 g for 15 min at 23�C (See problem 3 in troubleshooting).

13. Perform StageTipping, using C18 resin (solid phase extraction disk) to desalt the samples prior

to HPLC-MS analysis. For a detailed explanation on StegeTipping desalting process, please

refer to Rappsilber et al.18 for further details.

14. HPLC-MS analysis of the samples is performed using a Dionex UltiMate 3000 coupled to an Or-

bitrap Exploris 480 operated using data-dependent acquisition. The data analysis of the .RAW

files is executed using Proteome Discoverer. Further details on HPLC-MS and data analysis can

be found in the materials and equipment section; please also refer to Wirth et al.19 and Kozaeva

et al.20 for details.

The experimental workflow to build the peptide list is shown in Figure 2.

Note:Only consider unique peptides for quantification. Assign the detected peptides to their

functions using a protein database consisting of the reference Gram-negative bacteria prote-

ome. If necessary, supplement heterologously expressed proteins by adding those proteins

and sequences to the FASTA file obtained from the database.
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15. From the peptide candidate list obtained, select the peptides using the following criteria:

a. Mass peptide: select peptides ranging 350–5,000 Da in mass.

Avoid proline (P) residues on the carboxyl side of the cleavage site (RP or KP) as well as acidic resi-

dues—aspartate (D) and glutamate (E)—on either side of the cleavage site due to the lower rate of

hydrolysis.

16. Pick two or more proteotyptic peptides per protein with the highest fragment intensity. Please

refer to Calderón-Celis et al.21 for details.

In silico QconCAT plasmid design (pQconCAT)

Timing: 15–20 days

17. In silico design of pQconCAT vectors.

a. The plasmid design should contain the following structure:

i. T7 RNA polymerase promoter region;

ii. Ribosome binding site;

iii. Quantification tag (e.g., [Glu1]-fibrinopeptide B);

iv. Sacrificial peptide;

v. Concatenated peptides (n peptides) selected in ‘‘peptide candidate mapping experi-

ment’’;

vi. Hexahistidine purification tag (HisTag36);

vii. STOP codon;

viii. Antibiotic resistance determinant;

ix. Origin of vegetative replication (oriV).

The general structure of plasmid pQconCAT is depicted in Figure 2.

Figure 2. Standard design of the inducible pQconCAT plasmid to produce labeled peptides for absolute protein

quantification

(A and B) The plasmid encompasses different parts that allow the production of the desired protein: (A) concatenated

peptides (n peptides) selected in ‘‘peptide candidate mapping experiment’’ and (B) a T7 RNA polymerase promoter

region, ribosome binding site (RBS), quantification tag (e.g., [Glu1]-fibrinopeptide B), sacrificial peptide,

hexahistidine purification tag (HisTag36), stop codon, antibiotic resistance determinant and origin of vegetative

replication (oriV). This design allows for the production of an equimolar (1:1) amount of QconCAT peptides, which can

be added in known quantities to the sample. Then, the amount of each represented peptide standard can be

calculated based on the [Glu1]-fibrinopeptide B, serving as a reference to accurately quantify proteins.
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Note:Optimize (optional) the QconCAT gene for codon usage in E. coli to facilitate produc-

tion of the concatamers.

b. Order the plasmid previously designed (typical synthesis time: 15 days).

QconCAT transformation and expression

Timing: 7–10 days

18. Competent cells for pQconCAT transformation.

a. Grow for�16 h a pre-culture of E. coli BL21(DE3) DlysA DargH in 5 mL of LB medium at 37�C
in a shaker at 250 rpm.

b. Inoculate 50 mL of fresh LB medium, placed in a 250-mL Erlenmeyer flask, with 0.5 mL of the

pre-culture to yield an OD600 �0.05.

c. Grow cells at 37�C in a shaker at 250 rpm until the culture reaches OD600 �0.5 (�2–3 h).

d. Place the Erlenmeyer flask to ice to prevent further bacterial growth.

Note: From now on, steps e-k should be performed at 4�C, maintaining cells on an ice bath

and using chilled tubes.

e. Transfer the cells to a pre-chilled 50-mL Falcon conical tube.

f. Harvest the cells in a pre-cooled centrifuge at 4�C for 10 min and 4,500 g. Discard the super-

natant.

g. Resuspend the pellet in 1-mL chilled, filter-sterile 10% (v/v) glycerol solution and transfer to a

chilled 1.5-mL Eppendorf tube.

h. Centrifuge for 1 min at 11,000 g and 4�C. Discard supernatant.

i. Repeat steps g and h at least twice.

Note: The pellet will become softer with every wash round. Be careful when removing the

supernatant.

j. Resuspend the cell pellet in 10% (v/v) glycerol to 1:100 volume of initial culture (i.e., 500 mL).

Culture volumes can be scaled down accordingly if only a few transformations will be per-

formed.

k. Transfer 30–50 mL aliquots to chilled 1.5-mL Eppendorf tubes.

Note: Cells can be flash-frozen and maintained at –80�C until transformation or used directly

for electroporation.

19. pQconCAT transformation.

a. Take competent cells E. coli BL21(DE3) DlysA DargH from –80�C and place them on ice.

b. Prepare the plasmid suspension by diluting it in the tube to a concentration of 100 ng/mL us-

ing MQ water.

c. Add �25–50 ng of the plasmid into the cell tubes and vortex quickly one time.

d. Put the cells and the plasmid on ice for 30 min.

e. Place the tube into the water bath at 42�C for 60 s. After that, place them back on ice for

2 min.

f. Add 1 mL of LB medium (without antibiotics), transfer the cells into a 2-mL Eppendorf tube

and incubate the bacterial suspension for 1 h at 37�C in a Thermal Mixer with a 24 3 2 mL

microtube block Eppendorf shaker at 800 rpm.

g. Plate 50 mL of the cell suspension on LB agar plates (with the corresponding antibiotic) using

pre-sterilized 2-mm glass beads.
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Note: The antibiotic to be added to the plates depends on the selection marker in the plasmid

used for the protein expression. Prepare a 1,0003 antibiotic stock solution and dilute to 13.

h. Centrifuge the tube containing the remaining cells at 10,000 g for 5 min and discard most of

the medium (�900 mL). Resuspend the cells in the remainder liquid.

i. Plate the cell suspension on LB agar plates (with the corresponding antibiotic) using 2-mm

glass beads and incubate the plates for �16 h in an incubator at 37�C.
j. Pick the colonies, confirm presence of the plasmid by mini-prep and sequencing, and pre-

pare glycerol stocks of the selected clones.

20. QconCAT expression.

a. Inoculatepre-cultures in50-mLFalcon tubes containing10mLofM9minimalmediumwith40mM

glucose, 0.1mg/mL U13C-L-lysine, 0.1 mg/mL U13C-L-arginine + the selected antibiotic (13 final

concentration, see above) at 37�C at 200 rpm for �16 h (see problem 1 in troubleshooting).

b. Dilute the pre-culture 1:100 in 100 mL of the same medium described in 3.a. placed in

500-mL Erlenmeyer flask, and incubate the culture at 37�C.
c. When the culture reaches OD600 � 0.5–0.6, cool down the flask (in ice or cold room) until it

reaches approximately �23�C.
d. Induce the expression of the construct borne by plasmid pQconCAT by adding IPTG to a final

concentration of 1 mM and incubate for 24 h at 30�C and 200 rpm (see problem 2 in trouble-

shooting).

Note: The concatamer polypeptide tends to form inclusion bodies (IBs) when using this IPTG

concentration to induce the expression of the construct. It is possible to optimize the IPTG

concentration for different polypeptides if needed. In case that no information is available,

a low IPTG concentration (e.g., 0.2 mM) is a good starting point. Please refer to Lozano Terol

et al.22 for further information.

e. Centrifuge the culture at 3,000 g and 4�C for 20 min in a 250-mL Nalgene� plastic

bottle.

f. Freeze the bacterial pellets at –20�C for 1 h to weaken the cell membrane.

Pause point: It is possible to store the pellets at –20�C gor �16 h and continue with the rest

of the procedure the next day.

21. Cell disruption, inclusion bodies solubilization and pQconCAT purification.

a. Cell disruption:

i. Thaw the frozen pellets and resuspend the biomass in 25 mL of resuspension buffer by

vortexing. Pour the suspended pellet solution in a 50-mL Falcon tube.

ii. Sonicate the samples using a Vibra-Cell sonicator at 65% intensity for 10 min with ON-

OFF cycles of 30 s.

Note: The samples should be maintained at 4�C during the sonication.

iii. Incubate the lysate with 2 mL of Pierce�Universal Nuclease for Cell Lysis for at least 30min

at 23�C to digest DNA and reduce the viscosity of the sample.

iv. Centrifuge lysates for 20 min at 16,000 g in a cooled centrifuge (4�C).

CRITICAL: At this point, the soluble proteins should be present in the supernatant. How-

ever, because of the nature of the polypeptide, the QconCAT will be typically recovered

from IBs. These IBs will be present in the pellet (insoluble fraction) of the sample, with a

negligible amount of QconCATs in the supernatant.

v. Recover the pellet and use it in the next step for IB solubilization.
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Note: The supernatant should be stored at 4�C in case that no protein is detected in the IB

fraction (pellet); if this is the case, filter the supernatant using a 0.45 mm and then a 0.22 mm

membrane. Continue to step 5.a. if the protein of interest is in the soluble fraction.

Pause point: The pellet can be stored at –20�C in case you need to pause the process.

CRITICAL: The solubilization buffers A and B must be prepared immediately before this

step.

b. IBs solubilization:

i. Resuspend the pellet in 2 mL of buffer A by pipetting up and down until the protein pellet

is completely dissolved. Place the dissolved protein in a new 2-mL Eppendorf tube.

ii. Centrifuge for 60 min at 4�C and 15,000 g. Remove the supernatant and proceed with

pellet solubilization.

iii. Solubilize the protein by adding 5–10 mL of buffer B.

Note:Do not add the whole volume of buffer B directly to the pellet; rather add 1-mL aliquots

at a time to gradually dissolve the materials. Repeat this procedure until dissolving the whole

insoluble fraction. Do not use more than 10 mL of the solubilization solution. Place the solu-

tion in a 15-mL Falcon tube.

iv. Stir gently for 1 h at 4�C in a waving shaker with an inclination of 30�C.

Note: In case the pellet is not completely dissolved, it is recommended to leave the sample for

�16 h at the conditions mentioned above to complete the solubilization of the polypeptide.

v. Centrifuge for 15 min at 4�C and 15,000 g to eliminate insoluble debris. Store the super-

natant containing the solubilized protein. Continue to the purification step.

c. QconCAT purification:

i. Assemble the purification Pierce� Disposable Column by placing a filter disc in the bot-

tom, cap the column tip and add 2 mL of HisPur� Ni-NTA resin.

Note: Mix the resin vigorously to form a homogenous solution before adding it to the column.

ii. Allow the resin to drain without becoming completely dry by removing the cap. Once

the resin is drained, recap the column.

Note: To drain buffers/solution, remove the cap and recap once the column is drained. Place

several 50-mL Falcon tubes under the column during the different intermediate steps in or-

der to collect the fractions.

iii. To wash and equilibrate the column, add 2 mL of equilibration buffer (no need to be

gentle with the resin) and let the resin drain. Place the cap on the tip.

iv. Load the solution containing the QconCATs on top of the resin. Collect the flow-through

and repeat this step twice to increase protein recovery.

Note: It is important to keep the fraction containing the QconCATs at 4�C.

v. Wash the resin twice with 10 mL of equilibration buffer Ni-resin.

vi. Elute twice with 2 mL of elution buffer.

vii. Load the eluent in a 50-mL Amicon Ultra centrifugal filters (with a cut-off of at least 10 kDa

below the size of the polypeptide of interest) and proceed to exchange the buffer.

ll
OPEN ACCESS

STAR Protocols 4, 102060, March 17, 2023 15

Protocol



viii. Centrifuge at 4,000–7,000 g for 10 min at 4�C and refill the column with 4 mL of sample

exchange buffer (see problem 4 in troubleshooting).

ix. Repeat the step above 3–4 times to properly exchange the buffer. Then, recover the

purified proteins in a final volume of 1 mL of the buffer by pipetting up and down. Centri-

fuge the sample again in case that more than 1 mL is obtained.

x. Measure the protein concentration by using NanoDrop 2000 spectrophotometer.

Absorbance ratio at 260 nm over 280 nm (A260/A280) should be around 0.6.

The schematic representation of pQconCAT transformation, pQconCAT expression, cell

disruption, and inclusion bodies solubilization is presented in Figure 3. The QconCAT

purification workflow is illustrated in Figure 4.

22. SDS-PAGE of purified proteins.

a. Prepare your protein samples in a 0.2-mL PCR tube bymixing the components listed in Table 1:

Note: Load �0.2–1 mg of the purified protein in the polyacrylamide gel to get clear bands.

Bigger protein amounts can lead to streaked bands, while lower a mass below 0.2 mg can

result in the absence of noticeable bands in the gel.

CRITICAL: 43 2-Mercaptoethanol is a 600 mM solution (in water); work in the chemical

fume hood when preparing and handling this solution.

b. Incubate the samples at 95�C for 5 min and spin them down in a spin microcentrifuge.

c. Take a Mini-PROTEAN TGX 4%–20% resolving gel and remove the comb carefully to avoid

damaging the wells. Remove the green tape at the bottom of the gel and insert it in a Mini-

PROTEAN tetra cell vertical gel electrophoresis system.

d. Place the cell in the suitable position of the tank buffer. Use the 13 SDS-PAGE buffer to fill the

cell volume completely and the rest of the buffer tank up to the appropriate level mark.

e. Load 10 mL of the suspension sample. Include at least one well with 2–3 mL of Page Ruler Plus

Prestained Protein Ladder, 10–250 kDa.

f. Run the SDS-PAGE at 200 V for approximately 25 min.

Note: Recycle the buffer outside the electrophoresis cell as long as the dye inside the precast

cell has not escaped through the bottom of the gel.

g. Open the precast gel using a spatula or gel knife, wash it with distilled water and incubate it in

�15–20 mL of Instant Blue staining (enough volume to cover the gel) with gently shaking at

23�C. Bands will be visible after 15 min and completely stained after 1 h.

h. Wash the gel to remove the dye by washing it with 30 mL of distilled water for 5 min. Repeat

this step three times.

Quantification of the QconCAT

Timing: 2 days

23. For each purified QconCAT from step 21.c.x, add 10 mL to a new Eppendorf tube. Next, add

60 mL of 0.1 mg/mL quantification tag peptide [Glu1]-fibrinopeptide B as internal standard.

24. Perform tryptic digestion, StageTipping, HPLC-MS and data analysis as described in steps 6–14

of Section ‘‘peptide candidate mapping experiment’’.

25. Using the sequence of the quantification tag peptide and the Proteome Discoverer results file

containing the ‘‘Peptide Groups’’, the abundance of the spiked-in quantification tag (light pep-

tide) and the abundance of the 13C-labeled quantification tag from the QconCAT (heavy pep-

tide) can be determined. Next, the concentration of each QconCAT is calculated as shown in

Equation 1:
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� (Equation 1)

where cQconCAT is the concentration of the QconCAT, cQtag;light is the concentration of the quantifi-

cation tag peptide solution (i.e., 0.1 mg/mL in this example), AQtag;light is the abundance of the

spiked-in quantification tag (light peptide), AQtag;heavy is the abundance of the 13C-labeled quantifi-

cation tag from the QconCAT (heavy peptide),MWQconCAT is the molecular weight of the QconCAT

protein, and MWQtag;light is the molecular weight of the spiked-in quantification tag, assuming equi-

molar concentrations of the 13C-labeled quantification tag (heavy peptide) and the QconCAT pro-

tein (see problem 5 in troubleshooting).

Quantification of samples and expected results

Timing: 2 days

26. A biological sample from any experimental condition can be used for protein quantification us-

ing the QconCAT standards. Ensure that the samples (cell pellets, as described in step 1 of Sec-

tion ‘‘peptide candidatemapping experiment’’) correspond to a total OD600 ranging from 1 to 2.

27. Perform cell lysis and total protein quantification following steps 6–9 of Section ‘‘peptide candi-

date mapping experiment’’.

28. Add an amount of each QconCAT protein to the samples that corresponds to approximately the

mass of the endogenous proteins per 20 mg of total protein. These are the spiked-in concentra-

tions of the QconCATs, which are required for quantification.

Figure 3. Cultivation procedures and expression of pQconCAT and inclusion bodies (IB) solubilization

The workflow lists the most important steps to obtain the final protein before the purification.
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Note: The endogenous protein quantity can be estimated from previous studies.23 Usually,

200 fmol/mg total protein is a reasonable start point; this means that if 20 mg of protein are

taken for the digestion, 4,000 fmol will be present in the sample. Hence, theQconCAT amount

to spike-in would be around 4,000 fmol.

29. Perform tryptic digestion, StageTipping, HPLC-MS and data analysis as described in steps 6–8

of Section ‘‘peptide candidate mapping experiment’’.

30. Using the Proteome Discoverer results file containing the ‘‘Peptide Groups’’, the abundance of

each QconCAT peptide (heavy peptide) and of each corresponding endogenous peptide (light

peptide) can be determined. The concentration of the endogenous peptides, for which a

QconCAT protein was constructed, are calculated as shown in Equation 2:

cpep;end =
Apep;end

Apep;QconCAT
,cpep;QconCAT = cprot;end or cprot;end =

P
cpep;end

# end pep
(Equation 2)

where cpep;end is the concentration of the endogenous peptide, Apep;end is the abundance of the

endogenous peptide (light peptide), Apep;QconCAT is the abundance of the 13C-labeled QconCAT

peptide (heavy peptide), cpep;QconCAT is the concentration of the QconCAT peptide, cprot;end is the

concentration of the corresponding endogenous protein, and # end pep is the number of

endogenous peptides for which a 13C-labeled QconCAT peptide was constructed, for a particular

endogenous protein. The concentration of the endogenous peptide will have the same unit as

the concentration of the QconCAT peptide, e.g., fmol/mg total protein. The concentration of the

endogenous protein is either the same as the molar concentration of the corresponding

Figure 4. QconCAT purification using HisPur� Ni-NTA Resin

Systematic procedure for QconCAT purification based on the HisTag technology.
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endogenous peptide (due to equimolar concentrations of peptide and protein), or an average of the

endogenous peptide concentrations when multiple peptides per endogenous protein where pre-

sent in the QconCAT protein standard.

Please refer to the following repository https://github.com/biosustain/QconCATquantSTAR to

calculate the peptide concentrations. Use the Python script (QconCATquantSTAR.py) to calculate

those concentrations in the samples. See the Pseudomonas putida dataset example in the repository

for a detailed outcome.

EXPECTED OUTCOMES

This protocol enables the production of labeled peptide concatamers to be used as internal stan-

dard. Following this protocol, it is possible to obtain pure QconCATs for absolute quantification

of proteins in Gram-negative bacteria. Refer to Figure 5 to see the expected outcomes of the

SDS-PAGE analysis of purified QconCATs.

LIMITATIONS

The main limitation is the unknown nature of the QconCAT produced in a biological (bacterial) sys-

tem. As it is a construction of several peptides (chimeric protein), it is almost impossible to predict if

the protein of interest will be produced in the form of soluble or insoluble protein (Inclusion body).

Another limitation is that it is sometimes impossible to select two or three unique or signature pep-

tides for each protein of interest.

TROUBLESHOOTING

Problem 1

Slow growth of the strain in minimal medium containing the labeled amino acids after 24 h (step 3.d).

Table 1. Composition of protein samples for SDS-PAGE analysis

Component Volume [mL]

Protein sample Up to 6

43 Laemmli sample buffer 3

43 2-Mercaptoethanol 3

Water As needed

Final volume 12

Figure 5. SDS-PAGE analysis of QconCATs

Line 1 corresponds to the Page Ruler Plus Prestained Protein

Ladder, 10–250 kDa. Line 2 and 3 shows two examples of purified

QconCAT proteins produced by applying this protocol.
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Potential solution

Leave the culture for another 24 h and track the changes in OD600 of the culture; it should reach

maximum OD600 after 48 h.

Problem 2

Poor expression of the QconCAT plasmid. This problem can be caused by (i) protein instability and/

or (ii) protein toxicity.

Potential solution

In the case of (i), vary expression conditions such as temperature, aeration and induction time. For

protein toxicity issues (ii), test different E. coli strains [e.g., BL21(DE3) pLysS or BL21(DE3) pLysE].24

Problem 3

Incomplete QconCAT digestion.

Potential solution

Increase amount of trypsin and modify digestion conditions in order to ensure complete proteolysis.

Problem 4

Filter blocked due to insoluble debris (step 21.c.viii.).

Potential solution

Resuspend the solution inside the filter and transfer it to a 15-mL Falcon tube. Centrifuge at 5,000 g

for 10 min and repeat the buffer exchange from step 21.c.vii.

Problem 5

GluFib (or other tag) are not detected or identified in the analysis.

Potential solution

Repeat the analysis adding more QconCAT in the sample.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Pablo Iván Nikel (pabnik@biosustain.dtu.dk).

Materials availability

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Pablo Iván Nikel (pabnik@biosustain.dtu.dk).

Data and code availability

The published article includes figures, code and datasets generated with this protocol. The code

and datasets are available on GitHub (https://github.com/biosustain/QconCATquantSTAR) and

also on Zenodo (https://doi.org/10.5281/zenodo.7330244).
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Chapter 4 – Understanding and engineering the native 
metabolism of Pseudomonas putida during adaptation to 
multi-substrate environments 
 
This chapter is mainly composed of results from the following publication in 
preparation: 

Gurdo, N., Tagliani, T., O’Connell, G. W., Taylor Parkins, S.K., Mohamed, E. T., 
Johnsen, J., Nielsen, L.K., Feist, A. M., & Nikel, P. I. Engineering the native metabolism 
of Pseudomonas putida for adaptation to multi-substrate environments. Manuscript in 
preparation. 

 
Summary 
The environmental bacterium Pseudomonas putida thrives in complex habitats that 
necessitate adaptation to fluctuating conditions. For instance, when exposed to a 
mixture of two sugars, these bacteria demonstrate a distinct sequential utilization 
pattern by initially consuming the preferred sugar, followed by metabolic utilization 
of the second sugar. Subsequent to the initial phase of rapid growth, a transient period 
of stasis, known as the diauxie lag phase, ensues. This phase is a critical interval during 
which the bacteria undergo specific preparatory processes, enabling them to 
effectively harness and metabolize the second sugar. However, the mechanism behind 
this complex process is not widely understood. Here, we provided a systematic 
analysis using a fluctuating adaptive laboratory evolution strategy between glucose 
and citrate, retroengineering of identified mutations coupled with targeted 
metabolomics and proteomics for multi-omics analysis. Our results showed that 
evolved clones showing absent of diauxic shift contained key mutations in rpoA (RNA 
polymerase α subunit) and gacA (encoding the regulatory subunit GacA of the two-
component system GacS/GacA). Metabolomic profiling revealed shifts in the hexose 
phosphates, PP pathway, and the tricarboxylic acid (TCA) cycle. Concurrently, 
proteomic analysis detected significant changes in the glyoxylate-pyruvate nodes and 
the EDEMP cycle. Taken together, our findings provide a comprehensive 
understanding of the mechanisms underlying adaptation in multi-substrate 
environments at a systems-level. 
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4.1 Introduction 

 Exploring bacterial metabolism in multi-substrate environments 

In their natural surroundings, bacteria encounter a range of environmental 
perturbations, including changes in nutrient availability, as well as biotic or abiotic 
stressors, which may vary over time (Aertsen and Michiels, 2004). The existence of 
multiple environmental conditions can prompt a distinct metabolic response in 
bacteria, which facilitates the allocation of vital resources required for their survival 
in a specific niche. This response highlights the complex and multifaceted nature of 
bacterial metabolism, illustrating the sophisticated mechanisms through which 
various microorganisms interact with their environment. For instance, when bacterial 
cells are exposed to multiple carbon sources (e.g. organic acids and sugars), a 
particular response is triggered that allows them to adapt and flourish in their 
ecological habitat. 
 
It is well-established that bacteria do not metabolize all carbon sources 
simultaneously; rather, there is a structured hierarchy in the utilization of specific 
carbon sources (Görke and Stülke, 2008). This behavior is usually interpreted as an 
adaptation to maximize population-level growth in multi-nutrient environments. In 
general, bacterial cells first metabolize the most-preferred carbon source and; later, 
when it is depleted, switch to the less-preferred one. Between this carbon source shifts, 
there is a period of time which the cell seems to stop growing. However, it is implicit 
that cells need to invest resources in order to produce the proper enzymes―required 
for each carbon source―to switch from one substrate to another (Stanier, 1951). This 
phenomenon was described by Jacques Monod as “diauxie” (Monod, 1949). Several 
studies have provided evidence that E. coli exhibits a preference for the utilization of 
glycolytic substrates over gluconeogenic substrates (e.g. organic acids). As an 
illustrative example, when exposed to a combination of glucose and acetate, E. coli 
initially exhibits growth on glucose followed by growth on acetate (Enjalbert, et al., 
2013). Interestingly, certain microorganisms display an alternative preference for 
carbon sources, presenting a "reverse" diauxic effect consuming first gluconeogenic 
over glycolytic carbon sources, as in many Pseudomonas spp. (McGill, et al., 2021). 
Traditionally, diauxic shift has been known as part of a catabolite repression process, 
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wherein the depletion of the preferred substrate releases the repression of specific 
genes for metabolizing the second substrate resulting in a significant reprogramming 
of central carbon metabolism (Haurie, et al., 2001, Solopova, et al., 2014, Perrin, et al., 
2020). Stated differently, a persistent and adaptable metabolic reprogramming must 
be active to facilitate the sequential or simultaneous uptake of desired compounds 
from the external environment (Fondi, et al., 2016). Surprisingly, this aspect has not 
received sufficient attention, despite its potential significance in comprehending the 
dynamics of nutrient exchange on a micro-scale. In this context, the soil bacterium 
Pseudomonas putida serves as an example of the challenges faced by microorganisms 
in effectively and expeditiously utilizing complex nutritional inputs. 
 
In the particular case of P. putida KT2440, it prioritizes the consumption of organic 
acids such as citrate, succinate or pyruvate over glycolytic substrates like glucose or 
fructose (Figure 4.1). A fundamental requirement for the establishment of a microbial 
chassis is the microorganism's capacity to seamlessly transition between diverse 
carbon sources and efficiently metabolize multiple carbon substrates. Among the next 
generation of microbial platforms, P. putida KT2440 occupies a privileged place for the 
development of biotechnological applications including the production of a vast 
plethora of biochemicals (Weimer, et al., 2020), and bioremediation of contaminants 
in the environment (Wasi, et al., 2013). Gaining an insight on the molecular mechanism 
during transitions between carbon sources can assist the design of genetic strategies 
for further strain improvement (Siegal, 2015).  
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Figure 4.1. Comparison between diauxic shifts in Escherichia coli and Pseudomonas putida. 

 

 Exploring and engineering the phenotype of Pseudomonas putida 
in dynamic growth environments using ALE and multi-omic analyses. 

Adaptive laboratory evolution (ALE) is a valuable approach for detecting crucial 
mutations in evolved phenotype that are difficult to anticipate beforehand. This is 
particularly useful to capture genetic changes that occur during evolution in 
alternating carbon sources (Dragosits and Mattanovich, 2013). ALE can be customized 
to different setups to closely simulate the natural environment where microorganisms 
thrive opening up a number of experimental possibilities. For example, incremental 
tolerance to specific chemicals can result in optimized bioproduction strains 
(Mohamed, et al., 2017), or by rapidly altering the growth environment, strains with 
desirable diauxic phenotypes can be obtained (Karve, et al., 2015, Sandberg, et al., 
2017). The use of -omics analyses in conjunction with ALE techniques can enhance the 
exploration of intrinsic biochemical capabilities in bacteria, providing valuable 
insights. This integration can improve the effectiveness of ALE methods to better 
understand the metabolic potential of microorganisms (Wu, et al., 2022). The 
information gathered in these studies can assist the development of novel microbial 
chassis that requires an in-depth and wide understanding of the cellular metabolism. 
However, much of the research to date focuses on phenotypic characterization, 
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mutation identification and evaluation in the parental strain to corroborate the effect 
of such mutation (LaCroix, et al., 2015). A deeper analysis supported by –omics 
analysis is needed to expand the knowledge behind the microorganism physiology 
(Gurdo, et al., 2022). 
 
In this study, we combined Fluctuating Logarithmic Iterative Growth in High 
Throughput Adaptive Laboratory Evolution (FLIGHT ALE) alternating the carbon 
sources citrate (gluconeogenic) and glucose (glycolytic). The methodology generated 
clones capable of erasing the diauxic shift in the dual condition with glycolytic and 
gluconeogenic substrates. Some evolved clones showed an improved growth rate 
versus the parental strain, and mutations were identified having an effect in the 
enhanced phenotype. Reverse engineering of rpoA (encoding a DNA-directed RNA 
polymerase subunit ) and gacA (the two-component system GacS/GacA, regulatory 
subunit), both contributed to the enhanced final phenotype. Time-course targeted 
metabolomics and proteomics were used to study the dynamic reshaping of 
metabolism during diauxic shift. The evolved and double mutant strain exhibited a 
faster protein allocation response in the TCA cycle, anaplerotic reactions, and EDEMP 
enzymes, effectively utilizing glucose and citrate. Protein analysis revealed that the 
T300A substitution in RpoA had no impact on its structure. However, the GacA 
mutation, specifically the T66I residue replacement, could potentially disrupt catalytic 
phosphorylation activation and downstream reactions, possibly contributing to the 
observed phenotype improvement. Overall, the mutations identified in this work are 
promising targets for future improvement of Pseudomonas putida in multi-substrate 
conditions.  
 
 
 
 
 



Chapter 4 
Harnessing the native metabolism of Pseudomonas putida  

 
107 

 

4.2 Results 

 Evolution of Pseudomonas putida Δgcd to erase diauxic shift on 
minimal medium with citrate and glucose and candidate selection 

ALE was employed to adapt Pseudomonas putida Δgcd to an environment with 
constantly alternating carbon growth substrates citrate and glucose. When subjected 
to citrate and glucose as carbon sources, this strain exhibits a diauxic growth pattern 
characterized by the sequential consumption of citrate as the primary substrate, 
followed by glucose. Generally, the utilization of carbon sources in P. putida follows a 
hierarchical pattern, characterized by distinct diauxic lag phases during growth on 
mixed carbon sources (Bloxham, et al., 2022). P. putida is known to display a preference 
for tricarboxylic acid cycle intermediates and amino acids as its primary carbon 
sources (Kukurugya, et al., 2019, McGill, et al., 2021). Interestingly, unlike many 
enteric bacteria, glucose does not hold a particularly favored status in the metabolic 
preferences of P. putida. Upon this background, the general strategy adopted in this 
study to erase the diauxic lag is described in Figure 4.2. FLIGHT ALE experiments 
were performed by culturing six independent parallel replicates (evolved lineages or 
populations) in M9 minimal medium alternating between medium containing 1.5 g L-

1 sodium citrate and 1.5 g L-1 glucose.  
 
The alternation between both carbon sources was designed to shorten the diauxic lag 
between the two carbon sources. The FLIGHT ALE experiments were ran for a total 
of 20 days, corresponding to around 400 generations. During the evolution, growth 
rates were used to assess phenotypic improvements. The number of generations 
achieved for each individual replicate, together with the growth rate improvements 
on each carbon source is presented in Figure 4.3B. The final growth rate was calculated 
separately for each replicate as the average of the growth rate in the three last batch of 
the evolution experiment with each respective carbon source. For glucose, the 
improvement measured in change percentage (%) compared to the parental strain 
increased from 17 to 33% while; for citrate, it was between 18 and 25% (Figure 4.3B). 
Fitness trajectories of the six evolved replicates of the Δgcd strain are presented in 
Figure 4.3A. At the end of the experiment, a PCR confirmation was done to confirm 
the deletion of the correct strain for each replicate. We next proceeded to select clones 
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from the evolved end populations by picking five colonies with different sizes. Then, 
we evaluated the growth of the chosen clones in 10 mL of M9 minimal medium with 
1 g L-1 sodium citrate and 2 g L-1 glucose in 50-mL Falcon tubes (Figure 4.3C-H). P. 
putida Δgcd showed a diauxic shift behavior between hours 5 to 7 while, most of the 
selected clones significantly decreased the diauxic lag time. Clone 5.5 (from now on 
Δgcdevo) showed almost complete reduction of the diauxic shift in this condition 
(Figure 4.4E). Likewise, given that Δgcdevo had the best performance in two 
independent replicates among all the selected clones, additional clones were not 
analyzed. 
 

 
Figure 4.2. Overview workflow of the main steps carried out in this study. 1) Automated platform 
for adaptive laboratory evolution. 2) FLIGHT strategy using alternating carbon sources. 3) End-
populations selection in selective minimal medium. 4) Colony picking and selection of clone 
candidates. 5) Evaluation of best performing candidates and physiological analysis in Falcon tubes. 6) 
Sequencing, mutational analysis and reverse-engineering of the selected mutation into the parental 
strain. Targeted metabolomics and proteomics in the evolved, mutant and parental strain. 
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Figure 4.3. Comparison of evolved populations and growth analysis of the clones selected from the 
evolved end populations. (A) Fitness trajectories of the Δgcd Glucose-citrate FLIGHT ALE experiments. 
Population’s growth rate [h-1] plotted against the number of batches for each replicate. (B) Resulting 
phenotypic changes for each evolved population (replicates) in the Glucose/Citrate FLIGHT ALE 
experiments; number of generations, growth rate improvements on glucose and citrate are given. For 
growth analysis, cells were cultivated in Falcon® tubes in M9 minimal media supplemented with 1.5 g 
L-1 sodium citrate and 1.5 g L-1 glucose. Growth curves of (C) population 1, (D) population 2, (E) 
population 3, (F) population 4, (G) population 5 and (H) population 6. Dashed lines represents the 
course of bacterial growth [OD600] along the cultivation. Error bars indicate the standard deviation from 
two biological replicates. 

 

 Physiological characterization of evolved clones in shaken-flask 
cultures 

In order to characterize Δgcdevo from a physiological point of view, we analyzed 
growth, substrate consumption and yields on M9 containing: A) 2 g L-1 glucose, B) 1 g 
L-1 sodium citrate plus 2 g L-1 glucose, and C) 2 g L-1 sodium citrate using 250-mL 
shaken-flasks (Figure 4.4). By analyzing the physiological parameters, we found that 
in glucose as only carbon source, the evolved strain displayed a significant 
improvement from 0.48 to 0.57 h-1 and 0.43 to 0.63 gCDW g glucose-1 in terms of growth 
rates and biomass yields, respectively (Figure 4.4A and 4.4D). This indicates that most 
of the beneficial mutations were acquired during the evolution in glucose. Also, the 
evolved strain was more efficient in converting the carbon sources into biomass 
because of its higher yields while keeping equal uptakes rates. On the other hand, in 
the condition with citrate, growth rates and yields exhibited a slightly increase in the 
evolved strain compared to the parental strain (Figure 4.4C).  
 
Finally, when citrate and glucose were present in the medium, we observed that 
citrate was consumed primarily as the preferred carbon source after 4 hours of 
cultivation. Later, for the parental strain Δgcd, a diauxic lag of 2 h was observed 
between 4 and 6 h while; for Δgcdevo, it was practically omitted. As soon as citrate was 
completely depleted in the medium, cells started to consume glucose. Here, the 
evolved strain metabolized glucose faster than the parental strain (Figure 4.4B). This 
isolated clone and parental strain were then subjected to DNA sequencing to examine 
and compare their genetic basis, with the goal of better understanding the genotype 
responsible for the observed increase in fitness. 
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Figure 4.4. Physiological characterization in 250-mL shaken-flask of Δgcdevo versus Pseudomonas 
putida Δgcd. Cells were grown on M9 minimal medium containing on glucose (A), glucose 
complemented with citrate (B) and citrate (C). Calculated physiological parameters (specific growth 
rate, uptake rate and biomass yields) (D) for the Δgcdevo and parental strain on M9 minimal medium 
with glucose, glucose and citrate and citrate. 
 

 Whole genome sequencing and mutation analysis in the parental 
strain and its Δgcdevo derivative 

Whole-genome sequencing was applied to determine the genetic basis of the 
improved fitness phenotype of the evolved Pseudomonas putida Δgcdevo on glucose-
citrate M9 minimal medium. Overall, two genes were identified having unique 
mutations in the selected clone (Figure 4.5A). Δgcdevo exhibited two important 
mutations, specifically in the genes for DNA-directed RNA polymerase α subunit 
rpoA and the regulatory subunit GacA of the two-component system GacS/GacA 
(Figure 5B). Regarding the first key mutation, a single nucleotide polymorphism 
(SNP) A→G occurred in the amino acid residue 300 (ACT→GCT) where the amino 
acid L-threonine was substituted by an L-alanine residue (Simpson, 1979, Ross, et al., 
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1993). This polymerase catalyzes the transcription of DNA into RNA using the four-
ribonucleoside triphosphates as substrates (Ishihama, 1992). Specific mutations in 
rpoA were identified in E. coli affecting central metabolic pathways when growing on 
different carbon sources (Conrad, et al., 2010, Rajaraman, et al., 2016, Utrilla, et al., 
2016). Also, mutations in rpoA and rpoB genes conferred higher stress resistance to 
different conditions: temperature (Igarashi, et al., 1990), rifampicin (Alifano, et al., 
2015) and organic acids (Lennen, et al., 2023). Surprisingly, there are few evidences to 
date showing that rpoA has a beneficial effect in the phenotype fitness in Pseudomonas 
spp. A study revealed that mutations in rpoB bestowed higher tolerance to the organic 
acid 4-hydroxybenzoate (4HBA) (Hosokawa, et al., 2002). The second important 
mutation corresponds to the regulatory subunit gacA in the GacS-GacA complex 
(Song, et al., 2023). This two-component system has a critical role in recognizing 
signaling molecules and regulating physiological responses as an adaptation to the 
environment (Stock, et al., 2000, Gao, et al., 2007). Previous studies in Escherichia coli 
have demonstrated that disrupting the BarA-UvrY complex (GacS-GacA two 
component system in Pseudomonas spp.) impairs the bacterial capability to switch 
between two different carbon sources or compete for glycolytic substrates (Tomenius, 
et al., 2006). With this contextual knowledge, we decided to explore the effects of these 
mutations in the central carbon metabolism using the strain Pseudomonas putida Δgcd 
as genetic background.   
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Figure 4.5. Mutational analysis in Pseudomonas putida Δgcdevo. (A) Relevant mutations found after 
evolution in glucose and citrate. The analysis was made utilizing the reference sequence AEO15451; 
genomic position is indicated, along with the type of mutation and specific amino acid change. Gene 
name, product and aminoacids modification are also shown. (B) Schematic representation of the 
mutations in the corresponding gene and protein product. RNAP (RNA polymerase) complex shows 
the different subunits in multicolor. α subunit is depicted in orange. The domain composition of 
GacS/GacA: GacS contains the sensing domain and GacA is a typical response regulator composed of 
the N-terminal REC (D2) and C-terminal helix-turn-helix (HTH). Asterisks points out where the 
mutations occurred. 
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 Reverse engineering to validate mutational effect 
 
In order to examine how mutations affect the diauxic shift in Pseudomonas putida 
KT2440, we generated three different strains containing the following mutations: 1) 
rpoA [T300A (ACT→GCT)], gacA [T66I (ACC→ATC)] and the combination of both 
rpoA and gacA. Fitness analyses were performed in parallel on M9 medium 
supplemented with both sodium citrate (1 g L-1) and glucose (2 g L-1). Mutations were 
evaluated and compared for improved fitness by analyzing growth rates in this 
condition (Figure 4.6). The comparative analysis of reverse engineered strains 
exhibited that the mutated genes rpoA and gacA identified in this FLIGHT ALE 
experiment conferred a fitness advantage over the parental strain allowing to mostly 
rescue the diauxic lag phenotype. The analysis also showed that the mutation at amino 
acid 66 of RpoA shortened the shifting time from citrate to glucose in approximately 
50% in comparison to the parental strain Δgcd.  
 
It is also worth noting that the single mutant rpoA not only reached a higher biomass 
density but also enhanced specific growth rate in comparison to the single mutant 
gacA. Along the same line, we observed that introducing the mutation in gacA, the 
growth rate on citrate phase increased from 0.59 to 0.71 h-1. Finally, when the double 
mutation was introduced in the parental genetic background, both mutation acted 
sinergically where gacA improved growth on citrate and rpoA accelerated the shift into 
glucose. To summarize, the non-evolved strain with the double point mutation was 
able to replicate the fitness of the final phenotype to a great extent, as it significantly 
shortened the diauxic phase and exhibited growth similar to the evolved strain. 
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Figure 4.6. Reverse-engineered strain analysis. (A) Evaluation of retro-engineered strains in shaken-
flask cultivations. Growth curves were done in M9 minimal medium with citrate and glucose as carbon 
sources. Optical density at 600 nm was measured every hour until the cultures reached stationary 
phase. (B) The table shows calculated specific growth rates of the different mutants for each substrate. 
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 Targeted metabolomics reveals temporal organization of 
gluconeogenic-glycolytic shift in Pseudomonas putida Δgcd  

As mentioned in Chapter 1, P. putida KT2440 exhibits a cyclic glycolytic metabolism, 
encompassing the catabolic and anabolic activities of the Entner-Doudoroff pathway 
and the Embden-Meyerhof-Parnas (EMP) pathway (in a gluconeogenic manner), 
alongside the pentose phosphate (PP) pathway. This metabolic framework, known as 
the EDEMP cycle, facilitates the regeneration of hexose phosphates and promotes 
catabolic NAD(P)H production. The concentration of metabolites within the EDEMP 
and tricarboxylic acid (TCA) cycles was analyzed to gain insights into the metabolic 
dynamics (Figure 4.7A). In order to disentangle the physiological changes that cells 
undergo during the diauxic shift, we first captured the dynamics of 15 intracellular 
metabolites from central carbon metabolism (EDEMP, PPP and TCA cycle). The data 
gathered in this analysis was normalized using the cell dry weight previously 
estimated for P. putida KT2440. We plotted normalized concentrations along the 
different stages from 0-3 hours (pre-shift, citrate phase), 3-5 hours (diauxic shift) to 5-
7 hours (post-shift, glucose) within (Figure 4.7B). Overall, the data revealed the 
conventional dynamic of intracellular metabolite concentrations upon glycolytic-
gluconeogenic regimen. The levels of TCA cycle metabolites including citrate, 
glyoxylate, 2-OG and succinate remained high at 3 h when cells were exposed to 
citrate, but decreased continuously during the diauxic phase (time points 4, 5, and 6) 
as well as during the glucose phase (7 and 8 h). However, there was an exception for 
citrate, which started to increase again during hours 6 and 7, specifically during the 
glycolytic phase.  
 
In contrast, PP pathway metabolites R5P, Ru5P and S7P as well as DHAP operated in 
contraposition to the TCA cycle where, metabolite levels stayed at low concentrations 
within citrate phase and raised up to 3-fold in glucose condition. Hexose phosphates 
F6P, G6P and 6PG remained stable across the cultivation in the wild-type strain while 
double mutant showed an increase in F6P and G6P during the diauxic lag (hour 5) 
and; both Δgcdevo and double mutant experienced a significant overproduction of the 
two previous metabolites upon glycolytic regimen. These results indicate that the TCA 
cycle is the predominant catabolic route for citrate under a gluconeogenic regime 
(Zampar, et al., 2013). In addition and particularly for the double mutant, pentose 
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phosphate pathway metabolites exhibited a higher metabolite activity during the 
diauxic lag phase, in comparison with the wild-type, indicating that this metabolic 
block is also critical to rapidly switch from citrate to glucose. Overall, these 
measurements showed a specific pattern in the concentrations of intracellular 
metabolites based on the pathways in which they participate. 
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Figure 4.7. Targeted metabolomics in M9 medium glucose and sodium citrate for wild-type strain 
and Δgcdevo and double mutant. (A) Simplified metabolic map of central metabolism in P. putida 
KT2440. Peripheral reactions of glucose processing are highlighted in red while and the Entner–
Doudoroff pathway in green; reactions within the pentose phosphate (PP) pathway are shown in 
orange. Purple arrows identify the incomplete Embden–Meyerhof–Parnas (EMP) pathway, and blue 
arrows are used for reactions within the tricarboxylic acid (TCA) cycle. Proteins that show a 
concentration difference in the presence either on citrate or glucose are pinpointed in bold face. 
Abbreviations for enzymes: EDEMP enzymes: Glucose kinase (Glk); Glucose-6-P isomerase-1 (Pgi-1); 
Glucose-6-P isomerase-2 (Pgi-2); 6-phosphogluconate dehydratase (Edd); 2-dehydro-3-deoxy-6-
phosphogluconate aldolase (Eda); Fructose-1,6-P2 phosphatase (Fbp); Fructose-1,6-P2 aldolase (Fda); 
Triosephosphate isomerase (TpiA); Glyceraldehyde-3-P dehydrogenase-1 (Gap-1); Glyceraldehyde-3-
P dehydrogenase-2 (Gap-2); Phosphoglycerate kinase (Pgk); Phosphoglycerate mutase (Pgm); Enolase 
(Eno); Pyruvate kinase (PykA); Pyruvate kinase complex (PykAF). PP pathway enzymes: Glucose-6-P 
dehydrogenase-1 (Zwf-1); Glucose-6-P dehydrogenase-2 (Zwf-2); Glucose-6-P dehydrogenase-3 (Zwf-
3); Phosphogluconolactonase (Pgl); Phosphogluconate dehydrogenase (Gnd); Ribose-5-P isomerase 
(Rpi); Ribulose-5-P 3-epimerase (Rpe); Transketolase (Tkt); Transaldolase (Tal). Citrate transport and 
TCA cycle enzymes: CitN, Citrate transporter; AceF, Acetyltransferase component of pyruvate 
dehydrogenase complex; Lpd, Dihydrolipoyl dehydrogenase; AceE, Pyruvate dehydrogenase E1 
component; LpdG, Dihydrolipoyl dehydrogenase G; GltA, Citrate synthase; AcnA-I, Aconitate 
hydratase I; AcnA-II, Aconitate hydratase II; AcnB, Aconitate hydratase B; Icd, Isocitrate 
dehydrogenase [NADP]; SucA, Oxoglutarate dehydrogenase (succinyl-transferring); SucC, Succinate-
CoA ligase [ADP-forming] subunit beta; SucD, Succinate-CoA ligase [ADP-forming] subunit alpha; 
SdhA, Succinate dehydrogenase flavoprotein subunit; SdhB, Succinate dehydrogenase iron-sulfur 
subunit; FumC, Fumarate hydratase class II; Mqo-1, Malate:quinone oxidoreductase 1; Mqo-2, 
Malate:quinone oxidoreductase 2; Mqo-3, Malate:quinone oxidoreductase 3; AceA, Isocitrase; GlcB, 
Malate synthase. (B) Normalized intracellular concentrations (y-axis) of metabolites participating in 
glycolysis, TCA/glyoxylate cycle and PP pathway during growth on citrate and glucose from 3 to 8 
hours (x-axis). Purple, blue and green bars represent wild-type strain Δgcd, Δgcdevo and double mutant 
respectively. The concentrations of each metabolite were normalized using cell dry weight (gCDW). 
Average data is represented from 3 biological replicates. Statistical analysis was performed using two-
way ANOVA analysis. * p<0.05, **p<0.01, ***p<0.001. Abbreviations are as follows: F6P, fructose-6-
phospahte; G6P, glucose-6-phosphate; 6PG, 6-phosphogluconate; R5P, ribose-5-P; Ru5P, ribulose-5-P; 
S7P, sedoheptulose-7-P; DHAP, dihydroxyacetone-P; G3P, glyceraldehyde-3-P; PEP, 
phosphoenolpyruvate; AcCoA, acetyl-coenzyme A; CIT, citrate; GLX, glyoxylate; 2-OG, 2-oxoglutarate; 
SUCC, succinate. 

 

 Protein allocation in the glyoxylate-pyruvate nodes and the 
EDEMP cycle facilitates metabolic transitions from citrate to glucose in 
evolved Pseudomonas putida 

The crucial role of proteins in shaping microbial phenotypes is widely acknowledged 
in the academic community. Given the constraints of limited cellular resources and 
space, it is essential for microbes to efficiently allocate proteins in order to achieve 
maximum proliferation rates, while also being able to adapt to changing 
environmental conditions such as diauxic shift. The phenomenon of diauxic shift has 
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been previously investigated in cultures of P. aeruginosa using systems biology 
approaches such as genomics, exo-metabolomics and label-free proteomics (Yung, et 
al., 2019, McGill, et al., 2021). However, to the best of our knowledge, there is no 
explicit description of this diauxic phenotype in P. putida using targeted proteomics 
methods. Accurately assessing the diauxic phenotype in P. putida within a dual 
environmental context is a fundamental requirement for gaining insight into the 
nutrient and energy fluxes that govern energy metabolism, growth, and adaptation at 
the cellular level. As part of our study, we analyzed the diauxic shift dynamic at 
proteome level in the three strains. To accomplish this, we collected samples in the 
same manner as we did for metabolomics, and subsequently processed them using 
the methodology outlined in the materials and methods section. Proteomic data 
typically provides a more reliable representation of how cellular resources are utilized 
and offers stronger insights into cell function compared to relying solely on 
transcriptomic or genomic data (Veenstra, 2021). The final phenotypes were studied 
using quantitative proteomics with mass spectrometry (MS) using QconCAT peptides 
added on whole-cell lysates taken in pre-diauxic shift (3 h), in the diauxic shift (5 h) 
and post-shift (7 h) (Gurdo, et al., 2023). The utilization of this approach was based on 
its ability to precisely measure the levels of targeted CCM proteins in P. putida. 
Additionally, it exhibits superior accuracy compared to alternative methods such as 
label-free strategies. Moreover, it enables direct quantification of protein expression 
levels across different samples, conditions, or time points, thereby providing a 
comprehensive understanding of the dynamic changes within the bacterial proteome 
(Neilson, et al., 2011). The data obtained from proteomic analysis was examined in 
order to identify the proteins involve in central carbon metabolism and the transition 
between gluconeogenic (citrate) to glycolytic regimen (glucose). When analyzing the 
data in TCA cycle, we observed a significant upregulation of the acetyl-CoA 
synthetase II (AcsA-II), citrate synthase (GltA), pyruvate dehydrogenase E1 
component (AceA), FumC-II (Figure 4.8A) and the malic enzyme (MaeB) 
corresponding to the pyruvate shunt in the Δgcdevo and ΔgcdRpoAT300AGacAT66I when 
compared to the parental strain, during the diauxic shift (5 h) (Figure 4.8B). Moreover, 
there is a clear change in the concentration of certain protein when citrate is depleted, 
namely AcnA-I, Icd and FumC-II (which are only significantly active during the 
glucose phase). This data suggests that during growth on citrate, TCA enzymes could 



Chapter 4 
Harnessing the native metabolism of Pseudomonas putida  

 
121 

 

supply more energy, reducing power and precursors for many important metabolites 
in the Δgcdevo and Δgcd RpoAT300A GacAT66I strains as compared with the parental P. 
putida, leading to a better performance in this condition. 
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Figure 4.8. Protein quantification of TCA cycle during pre-shift (3 hours), shift (5 hours) and post-
shift (7 hours). The strains were grown in M9 medium containing sodium citrate (1 g L-1) and glucose 
(2 g L-1) as carbon sources and were harvested at different time points. Violin graph were depicted to 
visualize four biological replicates per strain. The horizontal line inside the violin area represents the 
median. The area around the dots is a kernel density estimation showing the distribution shape of the 
data. Wider sections of the violin plot represent a higher probability that members of the population 
will take on the given value; the skinnier sections represent a lower probability. Statistical analysis was 
performed using two-way ANOVA analysis. *p<0.05, **p<0.01, ***p<0.001. Abbreviations are as follows: 
(A) TCA cycle: Acetyl-CoA synthetase-I (AcsA-I); Acetyl-CoA synthetase-I (AcsA-II); Citrate synthase 
(GltA); Isocitrate lyase (AceA); Malate synthase (GlcB); Aconitate hydratase I (AcnA-I); Aconitate 
hydratase II (AcnA-II); Aconitate hydratase B  (AcnB); Isocitrate dehydrogenase [NADP] (Icd); 
Isocitrate dehydrogenase isozyme (Idh); Fumarate hydratase class II (FumC-I); Fumarate hydratase 
class II (FumC-II); Acetyltransferase component of pyruvate dehydrogenase complex (AceF); Pyruvate 
dehydrogenase E1 component (AceE) and Malate dehydrogenase (Mdh). (B) Anaplerotic reactions: 
Pyruvate carboxylase subunit A (PycA); Pyruvate carboxylase subunit B (PycB); Phosphoenolpyruvate 
carboxylase (Ppc) and Malic enzyme (MaeB). 
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With respect to the EDEMP cycle proteins (Figure 4.9A), notable changes were 
detected in Pgi-1 protein―responsible for converting fructose-6-P into glucose-6-P 
through an isomerization reaction―whereby the strains Δgcdevo and 
ΔgcdRpoAT300AGacAT66I exhibited reduced protein levels in the upper metabolism 
when compared to the parental strain. This observation implies that these strains 
exhibit less preference towards this particular step of the EDEMP cycle. Then, we also 
noticed a higher concentration of the Entner–Doudoroff (ED) enzymes 6PG 
dehydratase (Edd) and KDPG aldolase (Eda) in the Δgcdevo and ΔgcdRpoAT300AGacAT66I 
not only during the gluconeogenic phase (citrate as only carbon source) but also 
during the diauxic shift. Earlier studies have suggested that deactivation of GacA may 
result in substantial alterations in gene transcription by negatively regulating the 
expression of the secretory systems (Hassan, et al., 2010), reducing biofilm formation 
(Parkins, et al., 2001) as well as the production of secondary metabolites and 
extracellular enzymes (Wei, et al., 2013). However, it is not clear its effect in primary 
metabolism in the presence (with or without mutations) or absence of this gene. Here, 
we believe that the mutated protein could be acting at transcriptional level activating 
several transcription factors, which affect the expression of central carbon metabolism 
enzymes. During growth on citrate and in the transition into glucose consumption 
(diauxic shift), it was observed that enzymes associated with the lower glycolysis 
pathway, including PykA, Pgm, Pgk, Gap-1/Gap-2 and Fda were significantly higher 
in Δgcdevo and ΔgcdRpoAT300AGacAT66I in comparison to the parental strain. This 
indicates that certain enzymes may be subjected to transcriptional derepression, 
resulting in increased transcript levels that are subsequently translated into greater 
amounts of enzyme content. This, in turn, could enhance the metabolic efficiency of 
Embden-Meyerhof-Parnas (EMP) pathway. As a general trend, a higher protein 
content in EDEMP enzymes is evident when comparing the complete time-course 
profile of the strain with its parental counterpart.  

 
Concerning PP pathway, transketolase (TktA) and transaldolase (Tal) exhibited a 
significantly higher concentration during the citrate phase, and Tal was the sole 
enzyme with increased concentration during the diauxic shift when comparing Δgcdevo 
and ΔgcdevoRpoAT300AGacAT66I against the parental strain. Transketolase mediates two 
crucial reactions that occur in opposite directions within two different pathways. The 
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initial step of the non-oxidative pentose phosphate pathway involves transketolase, 
which utilizes thiamine diphosphate as a cofactor. In this reaction, transketolase 
accepts a 2-carbon fragment from D-xylulose-5-P (X5P), a 5-carbon ketose, and then 
transfers this fragment to D-ribose-5-P (R5P), a 5-carbon aldose, producing 
sedoheptulose-7-P (S7P), a 7-carbon ketose. The removal of two carbons from X5P 
results in the formation of glyceraldehyde-3-P (G3P), a 3-carbon aldose. The second 
reaction involves the transfer of a 2-carbon fragment from X5P to an aldose, namely, 
erythrose-4-phosphate (E4P), via thiamine diphosphate. This reaction leads to the 
production of fructose 6-phosphate (F6P) and glyceraldehyde-3-P (G3P). On the other 
hand, transaldolase (Tal) facilitates the reversible transfer of a three-carbon ketol unit 
from S7P to G3P, leading to the production of E4P and F6P. The up-regulation of PP 
pathway enzymes, as Tal and Tkt, specifically in the non-oxidative phase, may 
indicate metabolic adaptations to rearrange carbon skeletons to meet the demands of 
cellular anabolism. This can be a strategic mechanism employed by the bacteria to 
optimize the allocation of resources and maintain efficient growth and survival in 
various environmental conditions (Rytter, et al., 2021). On the other hand, even 
though no significant difference where observed within the strains, isozymes Zwf-2 
and Zwf-3 were found at very low concentrations. However, Zwf-1 appeared to be 
functional and the amount of protein increased along the culture, having the highest 
concentration during post-shift (glucose phase) which was consistent with prior 
findings (Volke, et al., 2021). Pgl and Gnd behaved similarly than Zwf-1, as their 
concentration escalated throughout the cultivation process, which corroborates earlier 
findings indicating that these enzymes are upregulated under glycolytic substrates 
(Figure 4.9B) (Nikel, et al., 2015). 
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Figure 4.9. Protein quantification of during pre-shift (3 hours), shift (5 hours) and post-shift (7 
hours). The strains were grown in M9 medium containing sodium citrate (1 g L-1) and glucose (2 g L-1) 
as carbon sources and were harvested at different time points. Violin graph were depicted to visualize 
four biological replicates per strain. The horizontal line inside the violin area represents the median. 
The area around the dots is a kernel density estimation showing the distribution shape of the data. 
Wider sections of the violin plot represent a higher probability that members of the population will 
take on the given value; the skinnier sections represent a lower probability. Statistical analysis was 
performed using two-way ANOVA analysis. * p<0.05, **p<0.01, ***p<0.001. Abbreviations are as 
follows: (A) EDEMP proteins: Glucose kinase (Glk); Glucose-6-P isomerase-1 (Pgi-1); Glucose-6-P 
isomerase-2 (Pgi-2); 6-phosphogluconate dehydratase (Edd); 2-dehydro-3-deoxy-6-phosphogluconate 
aldolase (Eda); Fructose-1,6-P2 phosphatase (Fbp); Fructose-1,6-P2 aldolase (Fda); Phosphogluconate 
dehydrogenase (Gnd); Triosephosphate isomerase (TpiA); Glyceraldehyde-3-P dehydrogenase-1 (Gap-
1); Glyceraldehyde-3-P dehydrogenase-2 (Gap-2); Phosphoglycerate kinase (Pgk); Phosphoglycerate 
mutase (Pgm); Enolase (Eno); Pyruvate kinase (PykA); Pyruvate kinase (PykF). (B) PP pathway 
enzymes: Glucose-6-P dehydrogenase-1 (Zwf-1); Glucose-6-P dehydrogenase-2 (Zwf-2); Glucose-6-P 
dehydrogenase-3 (Zwf-3); Phosphogluconolactonase (Pgl); Ribose-5-P isomerase (Rpi); Ribulose-5-P 3-
epimerase (Rpe); Transketolase (Tkt); Transaldolase (Tal). 
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 Protein analysis and AlphaFold predictions  

Based on the knowledge gained through our proteomic study and considering the 
current background information about the effects of mutations on RpoA and GacA, 
we decided to investigate in more detail the structural consequences of these specific 
mutations and determine if these changes could potentially result in an implicit 
impact on genomic regulation, thereby influencing protein synthesis and resource 
allocation. We utilized PyMOL software and AlphaFold to examine the impact of the 
mutation on RpoA and GacA proteins.  

 

4.2.7.1 RpoAT300A 

In Escherichia coli, the gene rpoA encodes the α subunit of DNA-direct RNA 
polymerase (RNAP). This subunit is responsible for activating several operons 
controlled by transcriptional regulators such as OxyR, OmpR, UhpA, MetR, CatR 
(Jafri, et al., 1995, Tao, et al., 1995). Studies have shown that in E. coli, the N-terminal 
region of the α subunit RNAP, also known as αNTD, is involved in the formation of 
the core enzyme (α2ββ′). Additionally, the C-terminal region, or αCTD, plays a critical 
role in interacting with transcriptional activators, binding to specific DNA sequences, 
and dimerizing with αRNAP. Biochemical data indicates that there is a flexible linker 
connecting αCTD and αNTD, and this linkage could potentially play a role in 
transcriptional activation. In Pseudomonas putida, rpoA gene was generally used as an 
endogenous reference to compensate inter-PCR variations (Martínez-García, et al., 
2015). The protein that received the most in-depth examination was a variant of the 
transcriptional activator SoxS (R93A/S101A), which has the ability to be fused to a 
CRISPR-Cas DNA binding domain that can be programmed to activate gene 
expression in E. coli. SoxS interacts with an interface on the α-subunit of RNA 
polymerase (RpoA) that is widely conserved throughout bacterial species, including 
P. putida, suggesting that the CRISPRa system developed in E. coli should also be 
effective in P. putida and other bacteria. Since there are no available RpoA structure 
for P. putida, AlphaFold was implemented to predict the structure and; later, the 
analysis was extended to one of the closest relative of P. putida―in this case 
Pseudomonas aeruginosa homologous. We also continued following the relative 
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distances of its genetic tree to the other members of the proteobacteria phylum to 
conduct a more in-depth analysis. After predicting the RpoA protein structure using 
AlphaFold (Varadi, et al., 2021), we ranked different structure model predictions 
(Figure 4.10A). To assess model quality, we utilized the Local Distance Difference Test 
(lDDT) which is a superposition-free score that evaluates local distance differences of 
all atoms in a model. Score of 60 or greater is considered a reasonable model and scores 
above 80 are robust models (Mariani, et al., 2013). The model yielded five predictions 
being “rank_1” the one with the highest score (Figure 4.10B). For our analysis, we 
searched for structural and functional homologs in Pseudomonas genus. Then, we used 
rank_1 model to make different superpositions analysis among the homologs. We 
assessed two homologs in Pseudomonas aeruginosa that contain a 96.4% sequence 
similarity. Specifically, we focused on the α subunit of the RNAP sigma S holoenzyme 
complex which was positioned alongside the transcription factors SutA (Figure 4.11C) 
and AlpA (not shown) (He, et al., 2022, Wen, et al., 2022).  
 
Despite the disordered state of the C-Terminal domain of the α subunit in SutA, the 
superposition results were satisfactory. Our prediction of RpoA showed a nearly 
flawless alignment with chain C of SutA's α subunit in the model, except for the lower 
quality segment between amino acid position 150 and 170 as well as the C-terminal 
domain from amino acid 230 and 333, which were not included. Additionally, there is 
no corresponding model in SutA available for superposing the C-terminal domain of 
RpoA. We were interested in the C-terminal domain of RpoA because it contains the 
mutation we aimed to investigate, specifically T300 (marked by pink dots enclosed in 
white dashed circles). The location of the C-terminal domain in the predicted RpoA 
suggests that there is a possibility of a direct interaction with the transcriptional 
regulation region of a particular DNA sequence as has been studied in E. coli (Jafri, et 
al., 1995). Conversely, the prediction scores indicate that the linker domain of RpoA 
has a low IDDT score, indicating either instability of the domain or inaccuracies in the 
model. The previously stated observations are also applicable to the transcriptional 
regulator AlpA. Additionally, it can be noticed that DNA can bind to the complex in 
various ways, depending on the transcription factors involved. This suggests that the 
flexibility of the C-terminal domain of RpoA is potentially associated with the 
bendability of DNA (Russo and Silhavy, 1992, Gourse, et al., 2000). This complexity 
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makes it exceedingly challenging to obtain a three-dimensional illustration of RpoA, 
due to its highly conjectured flexibility and diverse functions. 
 
We also decided to broaden our analysis of the C-terminal domain by comparing the 
segment that contains the mutation of interest in Pseudomonas genus. Firstly, we 
searched for homologs in the very last portion of the C-terminal domain. Specifically, 
we performed a BLAST search on the last amino acid sequence (F251-A333) 
[ILLRPVDDLELTVRSANCLKAENIYYIGDLIQRTEVELLKTPNLGKKSLTEIKDVLA
SRGLSLGMRLDNWPPASLKKDDKATA] of several Pseudomonas species that we 
marked with pink dots in the illustration (Figure 4.11D). BLASTP results 
demonstrated that this domain is highly conserved among the Pseudomonas genus (not 
shown). In the next step, we excluded the Pseudomonas genus from the query in order 
to investigate how the domain was conserved in different phyla. Indeed, the BLASTP 
analysis indicated that this domain was also entirely and highly conserved in 
numerous gammaproteobacteria phyla (Supplementary Figure S4.2). For instance, 
our Threonine residue (T300) corresponds to the conserved residue T301 in E. coli. 
Prior investigations in the latter have evaluated an alanine library to assess the 
influence of different mutations on 2 UP elements (α recognition element), which 
revealed that T301A does not have a significant impact on their activity (Ross, et al., 
2003). Conversely, in a separate study, the alanine substitution T301A resulted in a 2-
fold impairment of UP elements, while the proline substitution (T301P) caused an 8-
fold reduction in the before mention UP elements (Krishnan, 1996). 
 
Ultimately, we conducted an analysis on RpoA from distantly related microorganisms 
by superposing their structures. It can be noticed that our residue T300 is included in 
a relatively high conserved domain, but specifically T300 is not at all conserved among 
different life domains (Murakami, et al., 1996). We identified the C-terminal domain 
structure of RpoA in H. pylori and B. subtilis as an example of closely related RpoA 
without a conserved T300, and included one from E. coli in our analysis (Figure 4.10E, 
Figure 4.10F and Figure 4.10G). The superposition of these structures was highly 
accurate, suggesting a conserved structure-function relationship. However, our 
investigation also indicated that the T300 residue might be specific to a particular 
phylum and that it is not evolutionarily significant. In the context of this particular 
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mutation, the protein structure remained conserved across the various bacteria 
examined. This suggests that the structural integrity of the protein is not affected by 
the mutation. However, it is plausible that this mutation might still play a role in 
influencing the protein's function and regulation. 
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Figure 11. AlphaFold α subunit RpoA protein predictions and superimpositions. (A) Protein 
prediction of Pseudomonas putida KT2440 RpoA protein. (B) Selected predictive α subunit RpoA protein 
for comparison with other structures. Superimposition analysis of Pseudomonas putida α subunit RpoA 
protein with (C) P. aeruginosa RNAP holoenzyme complexed with DNA (transcription factors are 
removed from the pics). (D) C-terminal domain analysis using BLASTP on several species of 
Pseudomonas genus. Pseudomonas genus C-terminal domain superimposed with the predicted α subunit 
RpoA protein. C-terminal domain structure superimposition of RpoA in E.coli (E), H. pylori (F) and B. 
subtilis (G).  

 

4.2.7.2 GacAT66I 

The GacS/GacA system, classified as a two-component system (TCS), exhibits the 
capacity for regulating global gene expression that is linked to environmental traits 
(Yan, et al., 2018, Latour, 2020). The conventional method of signal transduction 
employed by Two-Component Systems (TCS) is characterized by a stimulus-response 
coupling mechanism (Buschiazzo and Trajtenberg, 2019). Typically, the process 
involves the transfer of a phosphoryl group between two conserved components: a 
histidine kinase protein (HK), which possesses a kinase core, and a response 
regulatory protein (RR), which features a regulatory domain (Gao and Stock, 2009). 
The sensor kinase GacS and response regulator GacA, or their equivalent 
counterparts, are prevalent in multiple Gram-negative bacterial species, including 
Pseudomonas, Salmonella and Vibrio. These components have a notable impact, for 
instance, on the virulence and pathogenicity of these microorganisms (Gooderham 
and Hancock, 2009). The primary mechanism by which GacS/GacA controls various 
physiological processes in bacteria is through the Gac/Rsm signaling cascade pathway 
(Ferreiro and Gallegos, 2021). The Two-Component System (TCS) serves as a bridge 
between bacteria sensing environmental signals and the intrinsic regulation of the 
physiological behavior (Zschiedrich, et al., 2016). The principal stages for TCS 
recognition and regulation involve the autophosphorylation of HK and the 
phosphorylation of RR. 
 
In this study, we identified a mutation (SNP) which caused an aminoacid residue 
substitution in the residue Threonine at position 66 for Isoleucine (T66I). The mutation 
was located within the N-terminal Response Regulator Domain of GacA, which 
interacts with the histidine protein kinase (HK) and catalyzes the transfer of a 
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phosphoryl group to one of its own Asp residues as well as its own 
autodephosphorylation. The RR domain has a doubly wound five-stranded α/β fold 
consisting of about 125 residues. The structure of this fold is composed of a core five-
stranded parallel β sheet, surrounded by ten amphipathic α helices. In all RR domains, 
there are specific residues that are conserved and concentrated in two areas: one being 
an active-site cleft that is formed by extensions from the C-terminal ends of β strands 
1, 3 and 5, and the other being a pair of residues that form a diagonal pathway across 
the molecule from the active site. The active site itself is a consistent acidic pocket 
containing the phosphorylable aspartate residue (Stock, et al., 2000). Given this 
background information, we conducted a structural analysis to examine the impact of 
our mutation on the protein in question. Our analysis revealed that the polar amino 
acid T66 may act as a helix coordinator, forming polar contacts with Glycine at 
position 62 (G62) and situated in a position that allows for interactions with nearby 
amino acids of the front-facing β-sheet that terminates in the essential catalytic residue 
Glutamate at position 54 (D54) (Figure 4.11A). Protein mutagenesis analysis showed 
that the more hindered and hydrophobic residue I66 could potentially disrupt this 
coordination due to its lack of polar coordination and the presence of repulsive 
interactions with the hydrophobic residues MET-53, VAL-78, and LEU-93 could 
interfere with the mechanism for catalytic phosphorylation activation (Figure 4.11B). 
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Figure 4.11. Mutational analysis of wild-type protein GacA (A) and mutant GacAT66I (B). View 
centered on the mutation under analysis surrounded by neighbor amino acids. The picture were drawn 
using PYMOL software. Residues: Met53, Asp54, Gly62, Thr66/Ile66, Leu93 and Val78.  
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4.3 Outlook 

In this study, we investigated the metabolic adaptation of Pseudomonas putida Δgcd in 
dual-substrate conditions containing citrate and glucose as carbon sources, with the 
goal of gaining insight into the mechanism of diauxic shift. Through adaptive 
laboratory evolution in alternating conditions, we were able to significantly reduce 
the diauxic lag in the final evolved population. Our analysis revealed two critical 
mutations in the genes rpoA (encoding the DNA-directed RNA polymerase α subunit) 
and gacA (encoding the regulatory subunit GacA of the two-component system 
GacS/GacA), which could mostly explain the contribution to the final phenotype. 
After reverse engineering the non-evolved strain, we achieved a significant 
improvement in the double mutant strain with respect the parental strain. The results 
showed that GacA acted during the citrate phase and RpoA improve the growth on 
glucose. More interestingly, both mutations operated sinergically to the extent that the 
diauxic lag was practically erased in the double mutant strains as it was for the 
evolved one. 
 
Through our work, we untangled the temporal organization of the diauxic shift at 
metabolome and proteome level within the central carbon metabolism. These analyses 
showed a particular pattern of metabolites and proteins during glycolytic and 
gluconeogenic regimen which changed according the different cultivations phases 
(pre-shift, diauxic shift and post-shift).  
 
We also evaluated the effect of the different mutations on the protein structures and 
if these had a structural consequence that might affect transcription or downstream 
reactions. We found that the rpoA mutation did not have any structural chances and 
the mutation seemed to be particularly associated with the Pseudomonadotas phylum 
and that it is not evolutionarily significant. Even though this seems to be the case, we 
believe that this mutation has an effect at transcriptional level. On the other side, GacA 
exposed a modification close to the phosphorylation-autophosphorylation site which 
can provoke considerable effect in the metabolism, such as secondary metabolism, 
nutrient homeostasis and cellular motility. The current study has the potential to 
provide important insights in comprehending the mechanism of carbon source 
regulation that governs the transition from gluconeogenesis to glycolysis. This 
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understanding can then be utilized to develop innovative approaches aimed at 
enhancing the production of biotechnological products through the use of multi-
carbon substrates. 
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4.4 Materials and Methods 
 
Table 4.2. Strains used and constructed in this study.  
 

Strain name  Description  Reference or 
source  

Escherichia coli   

DH5α λpir  

Cloning host; F– – endA1 glnX44(AS) 
thiE1 recA1 relA1 spoT1 gyrA96(NalR) 
rfbC1 deoR nupG 80(lacZM15) (argF-
lac)U169 hsdR17(rK– mK+),  pir lysogen 

Platt et al., 2000 

Pseudomonas   

KT2440 
Wild-type strain, derived from P. putida 
mt-2 (Worsey and Williams, 1975) cured 
of the TOL plasmid pWW0  

Bagdasarian, et al. 
(1981) 

Δgcd  Pseudomonas putida with gcd (PP1444) 
deleted  

  

Δgcd rpoAT300A  Pseudomonas putida carrying the T300A 
substitution in rpoA   This work  

Δgcd gacAT66I  Pseudomonas putida carrying the T66I 
substitution in gacA  This work  

Δgcd rpoAT300A gacAT66I  
Pseudomonas putida carrying T300A 
substitution in rpoA and T66I 
substitution in gacA  

This work  

 
Table 4.3. Plasmids used and constructed in this study.  
 

Plasmid Name  Description  Source  

pSNW2  Derivative of vector pGNW2 (Wirth et al., 2020) with 
P14g(BCD2)→msfGFP; KmR  

Volke et 
al., 2020 

pSNW::rpoAT300A  
Derivative of vector pSNW2 carrying homology 
regions to introduce the T300A substitution in rpoA 
(PP_0479); KmR  

This work  

pSNW::uvrYT66I  
Derivative of vector pSNW2 carrying homology 
regions to introduce the T66I substitution in urvY 
(PP_4099); KmR  

This work  

pQURE6·H  Derivative of vector pJBSD1 carrying XylS/Pm→I-
SceI and P14g(BCD2) →mRFP; GmR  

Volke et 
al., 2020 
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Table 4.4. Primers used in this study.  
 

Primer name  Nucleotide sequence (5’ to 3’)  Usage  
pSNW2_U_F  aggatcUggtaccgagctcgaattcagattaccc  pSNW2 

linerization  pSNW2_U_R  agtcgaccUcagggtaatccggcgtaatcatggt  
23_pEMG_seq_F  tgtaaaacgacggccagt  Plasmid 

sequencing  24_pEMG_seq_R  ctttacactttatgcttccggc  

479_rpoA_B_U_R  aggtcgacUagaaataaacaatagatgtataaacaaaaaaccgggc  pSNW::rpoAT300A 
construction  480_rpoA_A_U_F  agatccUgtccgactacggcacccag  

481_rpoA_A_U_R  agggacUtcttacccaggttaggagtctt  
482_rpoA_B_U_F  agtcccUggctgaaatcaaggacgtt  
483_rpoA-chk-1F  gcccgtgttgaacagcgtacca  Sequencing  
484_rpoA-chk-1R  cgtaacgcttgcccaggtcgtt  
485_gacA_B_U_R  aggtcgacUggccgggtgcggttgg  pSNW::gacAT66I 

construction  486_ gacA 
_A_U_F  

agatccUggcgggcagcccgtac  

487_ gacA 
_A_U_R  

atggccUccaggccgccg  

488_ gacA 
_B_U_F  

aggccaUccgcaaactgctgc  

489_ gacA -chk-1F  ggatccaatcgccctgctgacg  Sequencing   
490_ gacA -chk-
1R  

caaggcctgcacccttggtcag  

 

 
 Bacterial strains and culture conditions 

The bacterial strains and plasmids employed in this study are listed in Table 4.2 and 

Table 4.3, respectively. Escherichia coli and Pseudomonas putida KT2440 strains were 

incubated at 37°C and 30°C, respectively. For cell propagation and storage, routine 

cloning and genome engineering manipulations, cells were grown in lysogeny broth 

(LB) medium (10 g L-1 tryptone, 5 g L-1 yeast extract, and 10 g L-1 NaCl). Unless 

otherwise indicated, liquid pre-cultures were performed keeping the ratio medium 

volume:flask volume 1:5. In this case, we used 50-mL Falcon® centrifuge tubes with a 

medium volume of 10 mL or; for culture, 250-mL Erlenmeyer flask containing 50 mL 

of medium. All liquid pre-cultures were agitated at 250 rpm (MaxQ™8000 incubator; 
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ThermoFisher Scientific, Waltham, MA, USA) while cultures were incubated at 200 

rpm (New Brunswick™ Innova® 42/42R Shaker, sticky pad). Solid culture media 

contained an additional 15 g L-1 agar. Selection of plasmid-harboring cells was 

achieved by adding kanamycin (Km) or gentamicin (Gm), when required at 50 μg mL-1 

and 10 μg mL-1, respectively.  

 

For adaptive laboratory evolution (ALE) experiments, clone screening, phenotypic 
characterizations as well as targeted metabolomics and proteomics analyses in shaken 
flasks, the experiments were performed in M9 medium: 1x M9 salts, 2 mM MgSO4, 100 
μM CaCl2 and 1x trace elements and Wolfe’s vitamin solution. Stock 10x M9 salts 
solution contained 68 g L-1 Na2HPO4 anhydrous, 30 g L-1 KH2PO4, 5 g L-1 NaCl, and 10 
g L-1 NH4Cl dissolved in Milli-Q filtered water. 2000x M9 trace elements solution was 
prepared as follows: 3.0 g L-1 FeSO4·7H2O, 4.5 g L-1 ZnSO4·7H2O, 0.3 g L-1 CoCl2·6H2O, 
0.4 g L-1 Na2MoO4·2H2O, 4.5 g L-1 CaCl2·H2O, 0.2 g L-1 CuSO4·2H2O, 1.0 g L-1 H3BO3, 15 
g L-1 disodium ethylene-diamine-tetra-acetate, 0.1 g L-1 KI, 0.7 g L-1 MnCl2·4H2O and 
concentrated HCl dissolved in Milli-Q filtered water. The pH of the medium was 
adjusted at 7.0 and supplemented with 1 g L-1 sodium citrate and 2 g L-1 glucose. For 
all experiments, the pre-culture media were identical to those used for the experiment. 
The pre-cultures were harvested by centrifugation at 8,000 g for 5 min, washed with 
M9 medium without the addition of any carbon source, and resuspended in the final 
media of the experiment at the desired start-optical density at 600 nm (OD600). 
Bacterial growth was followed spectrophotometrically by measuring the absorbance 
at 600 nm. 
 

 Adaptive Laboratory Evolution (ALE) 

Pseudomonas putida KT2440 Δgcd was evolved in an automated platform monitoring 

growth and performing serial passaging at late exponential phase, as described 

previously [1–3]. Six evolution experiments were carried out in parallel giving, as final 

outcome, six different populations. Cultures were kept well mixed and aerated at 1200 

rpm with magnetic stirring at 30°C in 15 mL M9 minimal medium (See composition 

in Bacterial strains and culture conditions). When the cultures reached 



Chapter 4 
Harnessing the native metabolism of Pseudomonas putida  

 
141 

 

approximately an OD600 of 0.3 (Tecan Sunrise OD plate reader, equal to approximately 

OD 1 benchtop 1cm), 150 μL were passed into the next tube with fresh media. The M9 

minimal medium contained either citrate (1.5 g L-1) or glucose (1.5 g L-1) were 

alternating between the two carbon sources, i.e., one transfer in M9 with glucose and 

the next in M9 medium citrate for FLIGHT experiment. 

 

 Clone screening from populations and candidate selection 

For clone screening, the six resulting populations from the ALE experiment were 

streaked out onto selective condition in minimal medium M9 containing 1.5 g L-1 

sodium citrate and 1.5 g L-1 glucose. Five clones per population with different colony 

sizes were selected with a sterile toothpick and, were individually inoculated in the 

same selected condition as mentioned above. The clones were storage at -80°C in 2-

mL cryotubes with cryopreservation solution until further characterization. The 

cryopreservation solution consists of 50% vol vol-1 glycerol (of the highest purity 

available), 0.1 M MgSO4, and 50 mM Tris·HCl (pH = 8.0). For candidate selection, the 

screened clones were subjected to a rapid analysis in 50-mL Falcon tubes. Briefly, 10 

mL of minimal medium M9 were inoculated with an initial OD600 of 0.05 and 4/5 

samples were taken from the culture. The clone that suppressed the diauxic shift was 

chosen () for a detailed phenotypic characterization in 250-mL shaking flask. 

 

 Phenotypic characterization of selected clone 

The selected clone 5.5 and Δgcd strain were phenotypically analyzed in 250-mL 
shaking flask with baffles by measuring optical density at 600nm, sodium citrate and 
glucose consumption. The shaking flasks were inoculated at an initial OD600 of 0.05 
and incubated at 30°C with an agitation of 200 rpm. In total, 10 samples were collected 
along the cultures (one sample per hour). The samples were measured 
spectrophotometrically at 600nm, the supernatants were collected by centrifugation 
(10,000 g for 5 min at 4°C) and storage at -20°C for HPLC analysis. 
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 Whole genome sequencing and mutational analysis 

Genomic DNA was extracted from the cultures using PureLink Genomic DNA Mini 

Kit. Sequencing libraries were prepared using Plexwell, and the sequencing was 

performed on Nextseq500 using Illumina Nextseq mid output kit, 300 cycles. The 

sequenced samples were analyzed using the in-house mutation calling pipeline [4], 

using the reference genome with GenBank accession number AE015451. The average 

coverage for the clonal and the population samples was approximately 60x. For 

population samples, mutations with frequencies less than 0.50 were excluded from 

the analysis in order to filter out artifacts in the mutation callings and focus on causal 

mutations. 

 

 Retroengineering of relevant mutations into Pseudomonas putida 
Δgcd:  USER cloning and plasmid construction 

In order to re-introduce the mutations obtained from ALE experiments, plasmids were 

constructed for homologous recombination mediate gene replacement (Table 3). In 

brief, primers were designed to include the substitution of interest and cloning was 

performed with Uracil-excision (USER). To begin, the AMUSER web tool (Genee, et 

al., 2015) was used to generate three fragments, two containing the substitution of 

interest and 500 bp up or downstream the gene of interest and linearized pSNW2. 

DNA fragments were produced using Phusion™ U high-fidelity DNA polymerase 

(ThermoFisher Scientific®), gel-purified with a NucleoSpin™ gel purification kit 

(Macherey-Nagel, Germany), digested with USER enzyme (New England BioLabs, 

Ipswich, MA, USA) and transformed into chemically competent E. coli DH5α λpir.  

 

Homologous recombination was performed following established protocols 

(Martínez-García and de Lorenzo, 2011, Volke, et al., 2020, Wirth, et al., 2020). In brief, 

up to 500 ng of modified pSNW2 plasmid was transformed into, 0.3 M sucrose 

washed, Pseudomonas putida Δgcd via electroporation. Green colonies resistant to 

kanamycin were grown in liquid media and electroporated with up to 100 ng 
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pQURE6·H. Then, the cells were directly recovered overnight in LB with gentamicin 

and 5 mM 3-methylbenzoate (3mBz). The following day, up to 10 μL of liquid media 

was streak on solid LB media with gentamicin. Red colonies, capable of growing on 

gentamicin but not kanamycin, were screened via colony PCR with sequencing 

primers and the resulting fragment sent for Sanger sequencing (Eurofins Genomics, 

Ebersberg, Germany) with the same primers. Colonies with successful gene 

replacement were grown in non-selective media, screened for gentamicin sensitivity 

and preserved in cryostock solution at -80°C.  

 

 Time-course targeted metabolomics  

For time-course metabolomics, six samples per flask were taken across the cultivation 

at 3, 4, 5, 6, 7 and 8 hours covering the diauxic shift. Each sample was immediately 

filtrated in MF Millipore™ membrane filter (0.45-μm pore size; Sigma-Aldrich Co.) 

and the filter containing the bacterial biomass was instantly quenched with 1 ml of 

40% vol. vol.-1 acetonitrile, 40% vol. vol.-1 methanol and 100 mM formic acid at −20°C. 

The resulting solution was transferred into a sterile 2-ml Eppendorf tube; the filter 

was rinsed with an additional 1-ml of quenching solution and collected in the same 

tube. Samples were placed in a dry ice bath for 30 min. Later, the samples were thawed 

and centrifuged at 13,000 g for 5 min. and the supernatants were transferred to a new 

tube to evaporate the solvent in a SpeedVac centrifuge (2 h at 45°C). Finally, the 

samples were stored at −80°C until prior analysis.  

 

Samples at -80°C were thawed on ice and prepared for injection. Prior to the LC-

MS/MS analysis, the samples were resuspended in 100 μl of LC–MS grade water. 

Chromatographic separation of metabolites was done with an ACQUITY UPLC™ 

high-strength silica T3 column (XP, XSelect HSS 2.5 μm, 2.1×150 mm from Waters) in 

an HPLC apparatus (Shimadzu; Columbia, MD, USA). A gradient of eluent A [5% vol. 

vol.-1 methanol, 2% vol. vol.-1 2-propanol, 10 mM  tributylamine (TBA) and 10 mM 

acetic acid in H2O] and 2-propanol was implemented for metabolite separation 
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(McCloskey, et al., 2016). The flow rate was set to 0.4 ml min−1 with a total run time of 

33 min.; the autosampler was kept at 10°C and the column oven was set at 40°C with 

an injection volume of 10 μl. For metabolite identification as well as determination, a 

mass spectrometer (QTrap™ AB SCIEX mass spectrometer 5500) was operated in 

negative ion mode with the following settings: ionization set, −4500; temperature, 

500°C; curtain gas, 45; collision gas, high; ion source gas, 1; and ion source gas 

pressure, 250 pound square inch−1. Metabolomics data analysis was carried out in 

Excel and the analysed data—metabolite fold change (FC)—were used as input to 

visualize the data in line graphs using GraphPad Prism® 9.5.0. 

 

 Targeted proteomics by mass spectrometry (MS) 

Sample preparation for proteomic analysis was performed as described previously by  
(Gurdo, et al., 2023) and any modifications are mentioned below. Briefly, cell pellets 
of either Pseudomonas putida strains were lysed in 6 M Gu·HCl [guanidinium 
hydrochloride], 5 mM TCEP [tris(2-carboxyethyl)phosphine], 10 mM CAA [2-
chloroacetamide] and 100 mM Tris·HCl, pH = 8.5, disrupted mechanically and heated 
to 99°C. After centrifugation, the cell-free lysates were diluted with 50 mM 
ammonium bicarbonate and subjected to bicinchoninic acid (BCA) assay to estimate 
protein concentrations. Trypsin and LysC digestion mix (Promega) was added to 20 
μg protein of each sample and incubated for 8 hours. Trifluoroacetic acid was added 
to halt digestion and the samples were desalted using C18 resin (Empore, 3M) before 
HPLC-MS analysis. QconCAT proteins of central carbon metabolism of Pseudomonas 
putida as well as the proteins contained in the GlucoBrick were used as internal 
standard (Table S3). 
All SIL QconCAT proteins were expressed, purified and quantified as previously 
described by Gurdo et al. (2023). The QconCAT proteins were labelled with 13C-L-
arginine and 13C-L-lysine to ensure solely SIL QconCAT peptides after tryptic 
digestion. During sample preparation, QconCAT proteins in varied amounts were 
added to the samples preceding digestion (see SUP) subsection HPLC-MS analysis. 
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 HPLC-MS acquisition settings 

HPLC-MS analysis of the samples was performed on the Orbitrap Exploris 480 
instrument (Thermo Fisher Scientific) prefaced by the EASY-nLC 1200 HPLC system 
(Thermo Fisher Scientific). For each sample, 500 ng of peptides was captured on a 2cm 
C18 trap column (Thermo Fisher 164946) and subsequently separated using a 70 
minute gradient from 8\% (v v-1) to 48% (v v-1) of acetonitrile in 0.1% (v v-1) formic 
acid on a 15 cm C18 reverse-phase analytical column (Thermo EasySpray ES904) at a 
flow rate of 250 nL min-1. The mass spectrometer was operated in data-independent 
acquisition mode with the specific settings listed below subsubsection DIA For data-
independent acquisition, the mass spectrometer was run with the HRMS1 method as 
previously described (Xuan 2020) prefaced by the FAIMS Pro Interface (Thermo Fisher 
Scientific) with CV of -45 V, and any modifications are mentioned below. Full MS1 
spectra were collected at a resolution of 120,000 and scan range of 400-1000 m/z, with 
an AGC target of 300 or the maximum injection time set to auto. MS2 spectra were 
obtained at a resolution of 60,000, with an AGC target of 1000 or the maximum 
injection time set to auto, and the collision energy set to 32. Each cycle consisted of 
three DIA experiments each covering a range of 200 m/z with a window size of 6 m/z 
and a 1 m/z overlap, while a full MS scan was obtained in between experiments. 
 
All the experiments reported were independently repeated at least twice (as indicated 
in the corresponding figure or table legend), and the mean value of the corresponding 
parameter ± standard deviation is presented. In some cases, the level of significance 
of the differences when comparing results was evaluated by means of the Student's t 
test with α = 0.05. 
 

  Statistical analysis of metabolomics and proteomics data 

GraphPad Prism 9 ® was used to analyze the two datasets from metabolomics and 

proteomics. Two-way ANOVA was carried out to assess the main effects and 

interactions between the two independent variables (strains and time) on the 

dependent variable (metabolite or protein concentrations). The significance level was 

set at α = 0.05 to determine the statistical significance of the observed effects. 
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  Metabolite analyses via HPLC 

Glucose and sodium citrate were analyzed using a Dionex Ultimate 3000 HPLC with 

an Aminex® HPX-87X Ion Exclusion (300 x 7.8 mm) column (BioRad, Hercules, CA) 

as well as RI-150 refractive index and UV (260, 277, 304 and 210 nm) detectors. For 

analysis, the column was maintained at 45°C and a 5 mM H2SO4 solution was used as 

mobile phase at a flowrate of 0.6 mL min-1. HPLC data were processed using the 

Chromeleon 7.1.3 software (Thermo Fisher Scientific), and compound concentrations 

were calculated from peak areas using calibration curves with five different standard 

concentrations. 
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4.5 Supplementary Material 
 

Table S4.1. Peptides belonging to the central carbon metabolism that were used for targeted and 
quantitative proteomics. 

Enzyme name 
Protein name 
and PP 
number (s) 

Peptide sequence Entry QconCAT 
plasmid 

Glucose dehydrogenase Gcd (PP1444) LLALDPDTGAEIWR Q88MX4 1 
Gluconate 2-
dehydrogenase 
cytochrome c subunit 

PP3382 LSDQEVAEVVNFIR Q88HH6 1 

Gluconate kinase 
GnuK 
(PP3416) 

GEPLTLALDATQPIEALAE
AVDHWLK 

Q88HE4 1 

2-Ketogluconate kinase KguK 
(PP3378) 

VVDTVGAGDAFAVGVLSA
LLEGRPVAEAVAR 

Q88HH9 1 

2-Ketogluconate 6-P 
reductase 

KguD 
(PP3376) 

GAGLDVFVHEPLPIDSPLL
QLDNVVATPHIGSATEETR Q88HI1 1 

6-Phosphogluconate 
dehydratase Edd (PP1010) 

MAFSPAEQGASAFTSALEH
LK Q88P43 1 

2-Keto-3-deoxi-6-
phosphogluconate 
aldolase 

Eda (PP1024) EEDILPLADALAAGGIR Q88P29 1 

Glucose-6-P 1-
dehydrogenase 

ZwfA ALAPITGDGLSTSVVR Q88P31 1 
Zwf WAGVPFYLR Q88C32 1 

6-
Phosphoglucolactonase Pgl (PP1023) LASEHLDWAK Q88P30 1 

6-Phosphogluconate 
dehydrogenase Gnd (PP4043) 

DAITGLEGEGAQGAHDLG
ALVQK Q88FP6 1 

Ribulose-5-P-3-
Epimerase 

Rpe (PP0415) MQPYAIAPSILSADFAR Q88QS3 1 

Ribose-5-P isomerase RpiA (PP5150) LVPVLGAFPLPVEVIPMAR Q88CN0 1 

Transketolase TktA (PP4965) STPNLDTWRPADAVESAVS
WK 

Q88D62 1 

TransaldolaseB Tal (PP2168) LKPVDATTNPSLLLK Q88KX1 1 
Glucokinase Glk (PP1011) ALPGEGGHVDLPVGNAR Q88P42 1 
Fructose-1,6-
bisphosphate aldolase Fda (PP4960) 

QMLDHAAEFGYGVPAFNV
NNLEQMR Q88D67 1 

Fructose-1,6-
bisphosphatase Fbp (PP5040) YVGELLAGETGPLKK Q88CY9 1 

Glucose-6-P Isomerase 
1 

Pgi-1 (PP1808)   TPHDVTALPAWK Q88LW9 1 

Glucose-6-P Isomerase 
2 

Pgi-2 (PP4701) TPHDVTALPAWQALQK Q88DW7 1 

Triose phosphate 
isomerase TpiA (PP4715) VQLLYGGSVK Q88DV4 1 
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Glyceraldehyde-3-P-
dehydrogenase 1 

Gap-1 
(PP1009) 

GADATVVYGVNHDILR Q88P44 1 

Gap-2 
(PP2149) 

EELADVVGQQNASAR Q88KZ0 1 

Phosphoglyceratekinas
e 

Pgk (PP4963) VSVPLPVDVVVAK Q88D64 1 

Phosphoglycerate 
mutase 

Pgm (PP5056) EGGVLADVAPTMLK Q88CX4 1 

Phosphopyruvate 
hydrolase 

Eno (PP1612) FNQIGSLTETLEAIQMAK Q88MF9 1 

Pyruvate kinase PykA (PP1362) 
IVATLGPASNSPEVIEQLILA
GLDVAR 

Q88N54 1 

Acetyltransferase 
component of pyruvate 
dehydrogenase 
complex 

AceF (PP0338) LMLPLSLSYDHR Q88QZ6 1 

Pyruvate 
dehydrogenase E1 
component 

AceE (PP0339) AMVEDLSDEEIWK Q88QZ5 1 

Citrate Synthase GltA (PP4194) LEEIALTDPYFIER Q88FA4 2 

Aconitate Hydratase 

AcnA (PP2112) AIGSADLTVASVLSGNR Q88L24 2 
AcnB (PP2339) VQTGSTVVSTSTR Q88KF1 2 
acnA-II 
(PP2336) 

LAPNITATDLVLALTEFLR Q88KF4 2 

Isocitrate 
dehydrogenase 

Icd (PP4011) LVSSSGFGDEMIK Q88FS2 2 
Idh (PP4012) VLANTLDQATGK Q88FS1 2 

2-Ketoglutarate 
dehydrogenase 

KgdB (PP4188) LGFMSFFVK Q88FB0 2 
SucA (PP4189) LLELPEGFVVQR Q88FA9 2 

Succinyl CoA 
synthetase 

SucD (PP4185) FAALQDAGVK Q88FB3 2 

SucC (PP4186) 
VLAESGLNIIAATSLTDAA
QQVVK Q88FB2 2 

Succinate 
dehydrogenase 

SdhA (PP4191) 
IEALELQNLLEVAEATAIA
AEAR Q88FA7 2 

SdhB (PP4190) LASLDDPFSVFR Q88FA8 2 
SdhC (PP4193) SQRPVNLDLR Q88FA5 2 
SdhD (PP4192) VTNVTNLSR Q88FA6 2 

Fumarate hydratase 

FumC-1 
(PP0944) 

AVDNFPISGQR Q88PA6 2 

FumC-2 
(PP1755) 

LLPAVTELSSGLAELSMR Q88M20 2 

FumC 
(PP0897) 

MAMLNPSDSIVDWVLK Q88PF3 2 

Malate dehydrogenase 
Mdh (PP0654) 

IIELPLDAQEQAMFDHSAD
QVAR 

Q88Q44 2 

DpkA 
(PP3591) 

VDAAGGFAQPALAAAR Q88GX6 2 

Malate:quinone 
oxidoreductase 

Mqo-1 
(PP0751) 

TLATDAALYHK Q88PU7 2 
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Mqo-2 
(PP1251) 

AYGIASTGAPPMSVPHLDT
R 

Q88NF9 2 

Mqo-3 
(PP2925) 

LGTEVVTSR Q88IS4 2 

Isocitrate lyase AceA (PP4116) LAADVSGVPTIILAR Q88FI0 2 
Malate synthase GlcB (PP0356) FALNAANAR Q88QX8 2 

Pyruvate carboxylase 

OadA 
(PP5346) 

VDITGVGVK Q88C37 2 

AccC-2 
(PP5347) 

SGQFNTSFVESHPELTNYSI
K 

Q88C36 2 

Phosphoenolpyruvate 
carboxylase Ppc (PP1505) QQHGDAFLQK Q88MR4 2 

Malic enzyme  MaeB (PP5085) SDYPNQVNNVLGFPFIFR Q88CU5 2 

 
Table S4.2. BLASTP analysis in gammaproteobacteria phyla. 

Description Scientific Name Max 
Score 

Total 
Score 

Query 
Cover 

E 
value 

Per. 
ident 

Acc. 
Len 

Accession   

DNA-directed RNA polymerase subunit 
alpha [Enterobacter hormaechei] 

Enterobacter 
hormaechei 

167 167 1 1E-51 100 115 MCE1776939.1 

DNA-directed RNA polymerase subunit 
alpha [Klebsiella pneumoniae] Klebsiella pneumoniae 167 167 1 2E-51 100 131 HBQ8682308.1 

DNA-directed RNA polymerase subunit 
alpha [Gammaproteobacteria bacterium] 

Gammaproteobacteria 
bacterium 

168 168 1 2E-51 100 149 MBU1861264.1 

DNA-directed RNA polymerase subunit 
alpha [Pseudomonadales bacterium 32-61-5] 

Pseudomonadales 
bacterium 32-61-5 

168 168 1 2E-51 100 152 OYW86933.1 

DNA-directed RNA polymerase subunit 
alpha [Mycobacterium tuberculosis] 

Mycobacterium 
tuberculosis 

167 167 1 2E-51 100 149 CNJ68737.1 

DNA-directed RNA polymerase subunit 
alpha C-terminal domain-containing protein 
[Leclercia adecarboxylata] 

Leclercia adecarboxylata 168 168 1 3E-51 100 160 WP_272713920.1 

DNA-directed RNA polymerase subunit 
alpha [Eggerthia catenaformis] Eggerthia catenaformis 168 168 1 3E-51 100 162 OUC50534.1 

DNA-directed RNA polymerase subunit 
alpha [Gammaproteobacteria bacterium] 

Gammaproteobacteria 
 bacterium 169 169 1 1E-50 100 233 MBU0882341.1 

DNA-directed RNA polymerase subunit 
alpha [Gammaproteobacteria bacterium] 

Gammaproteobacteria 
bacterium 169 169 1 1E-50 100 241 MBU0565710.1 

DNA-directed RNA polymerase subunit 
alpha [Gammaproteobacteria bacterium] 

Gammaproteobacteria 
bacterium 169 169 1 1E-50 100 240 MBU2333823.1 

DNA-directed RNA polymerase subunit 
alpha [Gammaproteobacteria bacterium] 

Gammaproteobacteria 
bacterium 169 169 1 2E-50 100 248 MBU2011334.1 

DNA-directed RNA polymerase subunit 
alpha [Gammaproteobacteria bacterium] 

Gammaproteobacteria 
bacterium 169 169 1 6E-50 100 302 MBU2255663.1 

DNA-directed RNA polymerase subunit 
alpha [Klebsiella pneumoniae] Klebsiella pneumoniae 169 169 1 9E-50 100 333 SVJ63247.1 

DNA-directed RNA polymerase subunit 
alpha [Azomonas agilis] Azomonas agilis 169 169 1 9E-50 100 333 WP_144572999.1 

DNA-directed RNA polymerase subunit 
alpha [Pseudomonadales bacterium 
RIFCSPHIGHO2_02_FULL_60_43] 

Pseudomonadales 
bacterium  169 169 1 9E-50 100 333 OHC29687.1 
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DNA-directed RNA polymerase subunit 
alpha [Gammaproteobacteria bacterium] 

Gammaproteobacteria 
bacterium 169 169 1 1E-49 100 333 MBU0807032.1 

DNA-directed RNA polymerase subunit 
alpha [Pseudomonas sp. ADP] Pseudomonas sp. ADP 169 169 1 1E-49 100 333 KSW25962.1 

DNA-directed RNA polymerase subunit 
alpha [Enterobacter cloacae] Enterobacter cloacae 169 169 1 1E-49 100 333 SAJ31530.1 

DNA-directed RNA polymerase subunit 
alpha [Stutzerimonas stutzeri subgroup] 

Stutzerimonas stutzeri 
subgroup 169 169 1 1E-49 100 333 WP_003281807.1 

DNA-directed RNA polymerase subunit 
alpha [Stutzerimonas stutzeri] Stutzerimonas stutzeri 169 169 1 1E-49 100 333 WP_102824663.1 

DNA-directed RNA polymerase subunit 
alpha [Pseudomonadaceae] Pseudomonadaceae 169 169 1 1E-49 100 333 WP_003289187.1 

DNA-directed RNA polymerase subunit 
alpha [Stutzerimonas stutzeri] Stutzerimonas stutzeri 169 169 1 1E-49 100 333 WP_181082232.1 

DNA-directed RNA polymerase subunit 
alpha [Azotobacter vinelandii] Azotobacter vinelandii 169 169 1 1E-49 100 333 WP_012699326.1 

DNA-directed RNA polymerase subunit 
alpha [Pseudomonadales bacterium 
RIFCSPLOWO2_02_FULL_63_210] 

Pseudomonadales 
bacterium  169 169 1 1E-49 100 333 OHC47757.1 

DNA-directed RNA polymerase subunit 
alpha [Mesorhizobium sp.] Mesorhizobium sp. 169 169 1 1E-49 100 333 TIR55146.1 

DNA-directed RNA polymerase subunit 
alpha [Pseudomonadaceae] Pseudomonadaceae 169 169 1 1E-49 100 333 WP_014854205.1 

DNA-directed RNA polymerase subunit 
alpha [Stutzerimonas kirkiae] Stutzerimonas kirkiae 169 169 1 1E-49 100 333 WP_131186015.1 

DNA-directed RNA polymerase subunit 
alpha [Stutzerimonas stutzeri] Stutzerimonas stutzeri 169 169 1 1E-49 100 333 AZO84817.1 

DNA-directed RNA polymerase subunit 
alpha [Pseudomonadaceae bacterium] 

Pseudomonadaceae 
bacterium 169 169 1 1E-49 100 333 MBQ54681.1 

DNA-directed RNA polymerase subunit 
alpha [Pseudomonadales bacterium] 

Pseudomonadales 
bacterium 169 169 1 1E-49 100 333 MBH1969047.1 

DNA-directed RNA polymerase subunit 
alpha [Stutzerimonas] Stutzerimonas 169 169 1 1E-49 100 333 WP_138408828.1 

DNA-directed RNA polymerase subunit 
alpha [Stutzerimonas stutzeri] Stutzerimonas stutzeri 169 169 1 1E-49 100 333 WP_181079260.1 

DNA-directed RNA polymerase subunit 
alpha [Pseudomonadaceae] Pseudomonadaceae 169 169 1 1E-49 100 333 WP_003293045.1 

DNA-directed RNA polymerase subunit 
alpha [Stutzerimonas stutzeri] Stutzerimonas stutzeri 169 169 1 1E-49 100 333 MCF6783845.1 

DNA-directed RNA polymerase subunit 
alpha [[Pseudomonas] nosocomialis] 

[Pseudomonas] 
nosocomialis 169 169 1 1E-49 100 333 WP_138411267.1 

DNA-directed RNA polymerase subunit 
alpha [Pseudomonas cremoris] Pseudomonas cremoris 169 169 1 1E-49 100 333 MBC2385459.1 

DNA-directed RNA polymerase subunit 
alpha [Pseudomonadales bacterium 
GWC2_63_15] 

Pseudomonadales 
bacterium 
GWC2_63_15 

169 169 1 1E-49 100 333 OHC13905.1 

DNA-directed RNA polymerase subunit 
alpha [Gammaproteobacteria] Gammaproteobacteria 169 169 1 1E-49 100 333 WP_003255452.1 

DNA-directed RNA polymerase subunit 
alpha [Stutzerimonas stutzeri] Stutzerimonas stutzeri 169 169 1 1E-49 100 333 NIM33434.1 
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DNA-directed RNA polymerase subunit 
alpha [Pseudomonadaceae bacterium] 

Pseudomonadaceae 
bacterium 169 169 1 1E-49 100 333 MAB97142.1 

DNA-directed RNA polymerase subunit 
alpha [Stutzerimonas kunmingensis] 

Stutzerimonas 
kunmingensis 169 169 1 1E-49 100 333 WP_102832133.1 

DNA-directed RNA polymerase subunit 
alpha [Pseudomonadales bacterium 
GWC1_66_9] 

Pseudomonadales 
bacterium  

169 169 1 1E-49 100 333 OHC11062.1 

DNA-directed RNA polymerase subunit 
alpha [Stutzerimonas azotifigens] 

Stutzerimonas 
azotifigens 169 169 1 1E-49 100 333 WP_028238743.1 

DNA-directed RNA polymerase subunit 
alpha [Pseudomonadaceae] Pseudomonadaceae 169 169 1 1E-49 100 333 WP_014821626.1 

DNA-directed RNA polymerase subunit 
alpha [Pseudomonadaceae] Pseudomonadaceae 169 169 1 1E-49 100 333 WP_019339960.1 

DNA-directed RNA polymerase subunit 
alpha [Gammaproteobacteria bacterium] 

Gammaproteobacteria 
bacterium 

169 169 1 1E-49 100 333 MBO2510897.1 

DNA-directed RNA polymerase subunit 
alpha [Pseudomonas typographi] 

Pseudomonas 
typographi 

169 169 1 1E-49 100 333 MBD1553034.1 

DNA-directed RNA polymerase subunit 
alpha [[Pseudomonas] urumqiensis] 

[Pseudomonas] 
urumqiensis 

169 169 1 1E-49 100 333 WP_120997533.1 

DNA-directed RNA polymerase subunit 
alpha [Azotobacter beijerinckii] Azotobacter beijerinckii 169 169 1 1E-49 100 333 WP_090625029.1 

DNA-directed RNA polymerase subunit 
alpha [Pseudomonadaceae] Pseudomonadaceae 169 169 1 1E-49 100 333 WP_090350159.1 

DNA-directed RNA polymerase subunit 
alpha [Pseudomonadales bacterium] 

Pseudomonadales 
bacterium 

169 169 1 1E-49 100 333 TNF09516.1 

DNA-directed RNA polymerase subunit 
alpha [Azotobacter chroococcum] 

Azotobacter 
chroococcum 

169 169 1 1E-49 100 333 WP_089169342.1 

DNA-directed RNA polymerase subunit 
alpha [Stutzerimonas chloritidismutans] 

Stutzerimonas 
chloritidismutans 

169 169 1 1E-49 100 333 WP_023445631.1 

DNA-directed RNA polymerase subunit 
alpha [Stutzerimonas stutzeri] Stutzerimonas stutzeri 169 169 1 1E-49 100 333 WP_256073801.1 

DNA-directed RNA polymerase subunit 
alpha [Azotobacter salinestris] Azotobacter salinestris 169 169 1 1E-49 100 333 WP_152388475.1 

DNA-directed RNA polymerase subunit 
alpha [Azotobacter chroococcum] 

Azotobacter 
chroococcum 

169 169 1 1E-49 100 333 WP_039806100.1 

DNA-directed RNA polymerase subunit 
alpha [Pseudomonadaceae] Pseudomonadaceae 169 169 1 2E-49 100 333 WP_041110249.1 

DNA-directed RNA polymerase subunit 
alpha [Azomonas macrocytogenes] 

Azomonas 
macrocytogenes 

169 169 1 2E-49 100 333 WP_183165833.1 
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Chapter 5 - Dissecting tolerance acetate metabolism in 
genome–reduced Pseudomonas putida via adaptive laboratory 
evolution and multi-omic strategies. 
 
This chapter is mainly composed of results from the following publication in 
preparation: 

Gurdo, N., Tagliani, T., O’Connell, G. W., Alvan Vargas M.V.G, Wirth, N., Volke, D.C., 
Johnsen, J., Srinivasan A., Eng T., Mukhopadhyay A., Feist, A. M., & Nikel, P. I. 
Dissecting tolerance acetate metabolism in genome–reduced Pseudomonas putida via 
adaptive laboratory evolution and multi-omic strategies. Manuscript in preparation. 

 

Summary 
Pseudomonas putida is a robust microbial chassis suitable for biomanufacturing, 
exhibiting the ability to assimilate a wide range of substrates while simultaneously 
tolerating unfavorable environmental conditions. Of particular interest among these 
substrates is acetate, which holds promise for eco-friendly production of significant 
biotechnological products. Acetate, a C2 substrate, can be derived from various 
renewable sources like CO2 electrolysis and lignocellulosic biomass hydrolysis. 
However, the acetate levels in the medium often reach inhibitory concentrations, 
negatively impacting bacterial metabolism. To enhance the strength and stability of 
biotechnological processes constrained by the toxic effects of acatate, deeper insights 
into its underlying toxicity mechanisms are vital. In this study, we employed adaptive 
laboratory evolution to obtain tolerant clones to the organic acid and conducted 
whole-genome sequencing (WGS) to identify mutations arising from the evolutionary 
process. Our approach uncovered two point mutations: one in gacA gene, encoding 
the regulatory subunit of the GacS/GacA two-component system, and the other in fabB 
gene, encoding 3-oxoacyl-[acyl-carrier-protein] synthase I. To assess the effects of 
these mutations in the presence of high acetate concentrations from a systems biology 
perspective, we retro-engineered them into the parental strain and analyzed these 
strains by applying proteomics and 13C-acetate fluxomics. The strain harboring the 
double mutation exhibited a spectrum of adaptive responses, including metabolic flux 
reconfiguration towards NAD(P)H-generating reactions, rewiring of methionine 
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biosynthesis, activation of detoxifying enzymes, and facilitation of extracellular iron 
uptake through the pyoverdine system. 
 

5.1 Introduction 

 Acetate as a non-conventional carbon source for biotechnology 

In recent decades, there has been a substantial interest in utilizing non-traditional 

carbon sources to develop innovative bioprocesses in order to produce a diverse array 

of biochemicals. This may include, for example, the production of biofuels, 

biopolymers, and other high-value products (Wendisch, et al., 2016). Moreover, in 

response to the rising demand for bio-based products, there has been a concerted 

effort to engineer microbial cell factories that can metabolize a wide range of non-

conventional carbon sources (Schrader, et al., 2009, Dürre and Eikmanns, 2015, Kim, 

et al., 2021). Among them, C1 compounds such as carbon dioxide/monoxide, syngas, 

formate, methanol and methane as well as C2 substrates such as acetate can be used 

to produce alcohol and lipids (Klasson, et al., 1992, Henstra, et al., 2007, Lagoa-Costa, 

et al., 2017), lactic acid and 2,3-butanediol (McAnulty, et al., 2017, Hwang, et al., 2018, 

Nguyen, et al., 2018) and polymers (Khosravi-Darani, et al., 2013).  

 

Acetate is a promising alternative to traditional sugar feedstock for the production of 

biochemicals, owing to several advantages. One of the primary benefits of acetate is 

its low cost, which makes it an attractive option for large-scale production. 

Additionally, acetate can be derived from renewable sources, further increasing its 

appeal as a sustainable feedstock. Nowadays, acetate can be generated from chemical 

and biological approaches, encompassing chemical catalysis (CC; for instance, 

methanol carbonylation, acetaldehyde oxidation), lignocellulose biomass hydrolysis 

(LBH), microbial electrosynthesis (MES), syngas fermentation (SF), anaerobic 

digestion (AD) (Novak and Pflügl, 2018, Kiefer, et al., 2021, Kim, et al., 2021).  
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 Biological conversion of acetate into high-added products 

Numerous microorganisms have the ability to assimilate acetate into their metabolic 

pathways, making it a versatile and widely applicable substrate for bioprocesses. 

Regarding acetate metabolism in bacteria, the process begins with acetate passing 

through the cellular cytoplasm using the acetate permease ActP, which is a 

cation/acetate symporter (although part of the protonated form, acetic acid, may 

permeate directly). Next, the acetyl-CoA synthetase I (AcsA-I) transforms acetate into 

acetyl-coenzyme A (CoA) being utilized in the TCA cycle to generate energy and form 

building blocks for biomass or biotechnologically relevant biomolecules. 

 

It was previously demonstrated that acetate can be biologically converted into organic 

acids (succinic and itaconic acid), alcohol (isobutanol) free fatty acids, and 

recombinant proteins (Leone, et al., 2015, Huang, et al., 2018, Noh, et al., 2018, Song, 

et al., 2018). Some example of microorganism that can metabolize acetate include 

Pseudomonas sp., Escherichia coli, Corynebacterium glutamicum, Saccharomyces cerevisiae, 

Rhodotorula toruloides, Yarrowia lipolytica and Aspergillus oryzae. Among these microbial 

platforms, Escherichia coli have been widely exploited to produce high-added chemical 

from acetate (Xiao, et al., 2013, Li, et al., 2016, Chen, et al., 2018, Jo, et al., 2019, Yang, 

et al., 2019). However, this two-carbon molecule is not a preferred carbon source for 

most bacteria, and it exerts a toxic effect in E. coli growth.  

 

Different strategies have been applied to improve acetate utilization in this Gram-

negative by modifying endogenous metabolic pathways (glyoxylate shunt) or several 

regulation points across TCA cycle, for example modulating the activity of the 

isocitrate lyase enzyme (Roe, et al., 2002, Díaz-Guerra, et al., 2006, Pinhal, et al., 2019). 

Although the before mentioned studies have achieved their desired outcomes, acetate 

toxicity has been observed to hinder the production of the specific product where 

production rates, yield and titer are far from profitable industrial values. Thus, 

resistant microorganisms, such as Pseudomonas putida, have emerged as robust 

microbial chassis that can tolerate higher concentrations of toxic compounds and; 
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particularly, it can naturally use organic acids as a preferred carbon source over 

glycolytic substrates. Recent studies have showed the potential of P. putida to convert 

acetate into valuable products―e.g. mcl-polyhydroxyalkanoates (Yang, et al., 2019). 

Along the same line, the dynamic of acetate metabolism, not only in E. coli but also in 

P. putida, was only partially explored to date. Hence, more efforts are required in order 

to decipher the molecular basis for acetate utilization. 

 

 Adaptive laboratory evolution to improve acetate tolerance 

Adaptive laboratory evolution (ALE) is commonly utilized in biology to better 

understand the fundamental mechanisms of molecular evolution, as well as the 

adaptive modifications that occur within microbial populations over prolonged 

periods of selection under specific growth conditions (Dragosits and Mattanovich, 

2013). Moreover, ALE is also an effective strategy employed to adapt microorganisms 

to toxic or stressful conditions (Sandberg, et al., 2019). ALE involves growing 

microorganisms under specific and well-defined conditions for a prolonged period 

ranging from weeks to years, enabling the selection of improved phenotypes. 

Microbial cells are particularly advantageous for ALE studies due to several factors: 

(a) their simple nutrient requirements, (b) their ease of cultivation in a laboratory 

setting, and (c) their rapid growth rate, allowing for several hundred generations to 

be cultured within a matter of weeks or months. 

 

Rational approaches have been applied to optimize specific growth rate (Pfeifer, et al., 

2017), increase tolerance to toxic compounds or stressful conditions (Wallace-Salinas 

and Gorwa-Grauslund, 2013), boost yield/titer (von Kamp and Klamt, 2017), substrate 

uptake (Latif, et al., 2015) and general discovery to determine the genetic basis (Long, 

et al., 2018). Regarding the last application, ALE has been applied to study 

fundamental aspect of biology such as metabolic regulation in response to stressors. 

In order to deeply analyze the underlying mechanisms of an adapted microorganisms 

at system-level, ALE can be combined with –omics analysis which allow capturing the 
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crosstalk between the different layers of information (Horinouchi and Furusawa, 

2020). The process of metabolic adaptation induces alterations in both the metabolic 

state and through the genome, transcriptome, metabolome and proteome. To gain 

insights into the molecular mechanisms underlying metabolic adaptation, it is crucial 

to examine the "trans-omics" network, which refers to the interactions occurring 

among molecules across multiple layers within the cell (Yugi, et al., 2016, Yugi and 

Kuroda, 2018). 

 

On the background exposed above, in this work we evolved the genome-reduced 

Pseudomonas putida strain SEM1.4 through ALE in increasing acetate concentration to 

enhance tolerance against this C2-carboxylic acid aiming to elucidate the molecular 

mechanism underlying acetate toxicity at genome, proteome and fluxomes levels. 

Systematic genomics and phenotypic analysis of the evolved clone and the reverse-

engineered strain revealed that the two point mutations in gacA and fabB genes 

significantly contributed to the final tolerized phenotype. Proteomics unveiled 

substantial alterations in the pathways associated with methionine metabolism, 

motility, oxidative stress response, biofilm formation, and amino acid synthesis. 

Moreover, analysis of metabolic flux distribution revealed modifications in both the 

EDEMP and PP pathways. The outcomes of this research study indicated that 

individual mutations in the gacA and fabB genes played a crucial role in granting 

resistance to acetate, given their extensive influence on the proteome. These findings 

underscored the remarkable adaptability and flexibility exhibited by the metabolic 

processes of P. putida.  
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5.2 Results 

 Adaptive laboratory evolution enhanced resistance of 
Pseudomonas putida SEM1.4 to acetate 

Acetate is a weak C2-organic acid that exerts a toxic effect in the cytoplasm of bacterial 

cells. One of the most dramatic consequences is that the undissociated acid molecule 

can permeate through the highly lipophilic cell membrane by passive diffusion and 

dissociate inside the cytosol into the anion acetate. When acetic acid dissociates, it 

gives rise to the accumulation of protons causing a significant decrease of the cytosolic 

pH together with the disruption of the electrochemical gradient across the cell 

membrane. Not only protons generate a toxic effect, but also acetate itself can cause 

pleiotropic damages on cell physiology (Trček, et al., 2015). An increase in the internal 

acetate concentration disturbs amino acid homeostasis, mainly glutamate and 

methionine biosynthesis pathways (Roe, et al., 1998, Roe, et al., 2002). Microorganisms 

possess protective mechanism against acetate toxicity, for instance, regulation of 

membrane transporters to pump the acetate anion out to the extracellular space 

(Steiner and Sauer, 2001, Nakano, et al., 2006), modification of the membrane 

composition (e.g. increasing phosphatidylglycerol content in the lipid bilayer) (Trcek, 

et al., 2007), formation of extracellular polysaccharides (Deeraksa, et al., 2005) and 

overexpression of genes encoding heat shock proteins (Andrés-Barrao, et al., 2012), 

among others.  

 

Aiming to overcome acetate toxicity towards identifying acetate-resistance 

mechanisms in the Gram-negative bacteria P. putida SEM1.4, we first evolved the 

parental strain by gradually increasing the acetate concentration in de Bont minimal 

medium starting from 20 until 180 mM. The evolution process was stopped after 130 

days and ten colonies were selected from the evolved population by placing them in 

de Bont minimal medium agar plates containing 180 mM potassium acetate, which 

allowed for the identification of potential candidates while maintaining a strong 

selective pressure (Figure 5.1A). After selecting the candidates, a physiological 
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characterization was carried out to analyze the behavior of each clone at high acetate 

concentration. The clones were then subjected to whole-genome sequencing (WGS) to 

investigate the genetic alterations that occurred during the evolution. Specific 

mutations were reintroduced into the parental strain and evaluated through multi-

omic analyses, including genomic, proteomic, and fluxomics assessments, in order to 

uncover the molecular mechanism behind this stress, as shown in Figure 5.1B. 

 
Figure 5.1. Overall workflow to explore acetate toxicity in Pseudomonas putida SEM1.4 (A) Adaptive 
laboratory evolution strategy adopted to increase tolerance to high concentrations of potassium acetate. 
(B) Steps for physiological and metabolic characterization of selected clones. 

 

Later, we tested the selected clones against the parental strain in different 

concentrations of potassium acetate: 20, 60, 100, 140 and 180 mM for 48 h. The 

performance of the selected clones was superior in all the conditions tested in 

comparison with the wild-type strain. The clones and parental strain displayed similar 

behavior at 20 mM, except that the clones reached higher final OD600 after 10 h of 

cultivation (Figure 5.2A). A reduction of 50% in the lag phase was observed for 60 and 

100 mM in most of the clones (Figure 5.2B and Figure 5.2C). When the cells were 

exposed to 140 mM acetate, the parental strain was not able to growth after 48 h while 

the tolerized clones reached OD600~2.5 (Figure 5.2D). Finally, at the highest 
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concentration tested (180 mM), cells could not overcome acetate toxicity. The findings 

obtained in this section demonstrate the effective enhancement of tolerance to 

potassium acetate through the implementation of the adaptive laboratory evolution 

(ALE) strategy. Subsequently, the set of ten clones were subjected to further 

characterization by analyzing the genetic background as first step. 
 

 
Figure 5.2. Evaluating acetate tolerance in selected clones and wild type strain in 96-microtiter wells. 
Growth profiles of the ten clones in de Bont minimal medium with 5 g L-1 MOPS supplemented with 
different concentrations of potassium acetate: (a) 20 mM, (b) 60 mM, (c) 100 mM and (d) 140 mM. Solid 
lines represent the optical density average and the shaded area surrounded the average line correspond 
to the standard deviation of four biological replicates. 
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 Mutational analysis exposed key mutations associated to global 
regulation and fatty acid metabolism  

To identify mutations associated with acetate tolerance, the selected clones were 
investigated using WGS. With the aim of identifying key point mutations, we focused 
our analysis in unique mutations appearing in most of the clones and within the gene 
sequence. Using this criterion, we identified mutations in four genes with regulatory 
functions, namely, rsmY (PP0371, transcriptional regulator―LysR family), gacA 
(PP4099, two-component system GacS/GacA, regulatory subunit), hupB (PP2303, 
DNA binding regulator,  subunit) and fabB (PP4175, 3-oxoacyl-[acyl-carrier-protein] 
synthase I involved in fatty acid metabolism) (Table 5.1). It was previously reported 
that RsmY has a relevant role in carbon and secondary metabolism and acts as a 
central node; its transcription being strictly dependent on GacA (Valverde, et al., 
2003). In connection to this and, most crucially, the two-component system 
GacS/GacA mediates bacterial adaptation to environmental perturbations and, 
mutations on their genes can cause global rearrangements in various metabolic 
pathways (mainly central carbon and secondary metabolism, quorum sensing and 
biofilm formation) (Song, et al., 2023). In addition, hupB was also associated with 
essential metabolic functions in growth homeostasis and stress responses (Griego, et 
al., 2022). Lastly, fabB catalyzes the Claisen condensation of acyl-ACP (acyl carrier 
protein) and malonyl-ACP via an acyl-enzyme intermediate to elongate fatty acid 
chains (Yadrykhins' ky, et al., 2021). In Escherichia coli, FabB is implicated in the 
production of unsaturated fatty acids relevant for the formation of the bacterial 
membrane (Feng and Cronan, 2009). To evaluate the effect of the arisen mutations 
after the adaptive process, we decided to individually incorporate those point 
mutations back in the parental strain by reversed engineering. The selection criteria 
was based on the presence of the specific mutations in the majority of the isolated 
clones (>50%).  
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Table 5.1. Mutational analysis of selected clones after the evolution on acetate. Single nucleotide 
polymorphisms (SNPs) found in the isolated clones after whole-genome sequencing (WGS).  

aLocus identifiers (IDs) are provided from the NCBI Prokaryotic Genome Annotation Pipeline Version 
4.10 (Oct. 2019). 
aAnnotations assigned from NCBI Reference Genome NC_002947.4. 

 

We first generated a group of individual mutants and we incorporated the following 
mutations on P. putida SEM1.4 by Uracil-excision (USER) cloning and recombination 
mediated by I-SceI (Wirth, et al., 2020): rsmYR277H, gacAE197K, fabBL77P and hupBA35V. Later, 
we assessed the tolerance of the mutants at increasing concentration of potassium 
acetate (Figure 5.3). In control conditions (i.e. with 20 mM potassium acetate), no 
significant differences were observed within the strains (Figure 5.3A). We observed 
that the evolved strain SEM1.4 as well as single mutants gacAE197K, fabBL77P and hupBA35V, 
exhibited a dramatic reduction in lag phase times in the conditions where acetate 
concentration was higher than 60 mM against the wild-type strain. The reduction 
observed in the duration of the lag phase varied from 14% in the case of gacAE197K at 60 
mM, to a substantial 77% in the SEM1.4evo strain at a concentration of 100 mM (Table 
5.2). Most importantly, no growth was detected in the parental strain when was 
cultivated at 120 and 140 mM after 72 h (Figure 5.3F and Figure 5.3G). In addition, the 
strain carrying the rsmYR277H mutation presented an impaired growth in all the 
condition and against each strain, so we decided to set this strain aside for further 
characterization. Our observation revealed that among the selected mutations, two 
mutants, namely gacAE197K and fabBL77P, demonstrated superior performance. This 
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finding led us to question whether the combination of these mutations could result in 
a synergistic effect on the final phenotype. Based on this, we decided to build the 
double mutant strain P. putida SEM1.4 gacAE197K fabBL77P and we challenged the mutant 
with increasing acetate concentrations as it was previously done with the single 
mutants. Surprisingly, the double mutant strain behaved similarly to the evolved 
strain SEM1.4evo, in most condition, suggesting that the combination of both point 
mutations might act in cooperation to overcome acetate toxicity (Figure 5.3). Then, we 
decided to characterize the three strain in shaken-flask cultivations to capture relevant 
physiological parameters (e.g. growth rates, lag phase times and acetate consumption 
rates) as well as to determine sampling times for omics experiments. Overall, the 
double mutant achieved to recapitulate around the 50% of the phenotype obtained in 
the evolved strain.  
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Figure 5.3. Evaluation of the different mutants containing the identified single nucleotide 
polymorphisms (SNPs) in high acetate concentration. Mutant (rsmYR277H, gacAE197K, fabBL77P, hupBA35V 
and gacAE197KfabBL77P) were tested in de Bont minimal medium with (A) 20 mM, (B) 60 mM, (C) 80 mM, 
(D) 100 mM, (E) 120 mM and (F) 140 mM of potassium acetate. Solid lines represent the average and 
the surrounding shading area correspond to the standard deviation of four biological replicates. 
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Table 5.2. Growth parameters of Pseudomonas putida SEM1.4, SEM1.4evo and reverse-engineered 
strains grown in increasing concentration of potassium acetate (20-140 mM). Specific growth rates 
and lag phase times were calculated using the package QurvE (https://github.com/NicWir/QurvE/) 
 

 

 Physiological characterization in shaken-flasks and sampling 
determination for proteomics and fluxomics. 

With the objective of analyzing the physiological parameters of P. putida SEM1.4, 
SEM1.4evo and the double mutant gacAE197KfabBL77P, we performed a growth 
characterization in shaken-flasks to calculate specific growth rate, lag phase, acetate 
uptake rate and yield. In addition, the sampling time window for each strain was 
selected in order to execute a consistent and reproducible –Omics experiments. 
Therefore, the strains were cultured in de Bont minimal medium containing 5 g L-1 
MOPS supplemented with 100 mM of potassium acetate because it was the 
concentration where substantial differences were observed among the strains in the 
previous analysis (Figure 5.3D). We determined that the ideal sampling point for each 
strain was approximately at OD600 ~1.0 after 13, 19 and 29 hours for the evolved, double 
mutant and parental strains, respectively. Afterwards, physiological parameters were 
individually calculated for the strains under study. As expected, lag phases were 
significantly shorter both in the evolved (9 hours) and double mutant (15 hours) in 
comparison with the parental strain (22 hours) (Figure 5.4A). Along the same line, 
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acetate consumption mirrored growth with a specific acetate uptake rate of ca. 25.8 ± 
0.8 mmol gCDW-1 h-1 for the evolved strain, 23.8 ± 1.6 mmol gCDW-1 h-1 while, the parental 
strain reached ca. 34.1 ± 4.7 mmol gCDW-1 h-1 (Figure 5.4B and Figure 5.4C). In this 
condition, specific growth rates were improved by around 20% and biomass yields 
were increased by 60% in both strains (Figure 5.4C). Based on this results, we 
confirmed that the evolved strain as well the double mutant, improved their fitness 
upon acetate toxicity where cells grew faster (reduced lag phase and higher specific 
growth rate) as well as were able to transform acetate into biomass more efficiently 
than the parental strain. Having these preliminary results at hand, we expected the 
possibility that large metabolic rewiring might be caused due to acetate toxicity. Thus, 
we considered exploring the dynamics at proteome and fluxome level to identify 
global changes in acetate metabolism. 

 

 

Figure 5.4. Physiological parameter determination in shaken-flask cultivations. Pseudomonas putida 
SEM1.4, SEM1.4evo and gacAE197KfabBL77P were grown in 100 mM of potassium acetate to evaluate (A) 
growth (B) acetate consumption. Specific growth rates, acetate uptake rate and yields are displayed in 
(C). Solid lines represent the average and the shading area correspond to the standard deviation of 
three biological replicates.  
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 Network-wide proteomics analysis reveals major adaptive 
mechanisms upon acetate toxicity in Pseudomonas putida  

P. putida SEM1.4, SEM1.4evo and gacAE197KfabBL77P were cultivated in the presence of 100 
mM of potassium acetate and harvested in mid-exponential phase (OD600~1.0) as was 
determined previously. As a first step, protein changes, log2(fold-changes) were 
analyzed by LC-MS/MS. For data visualization, three volcano plots were created to 
help identify proteins that were expressed differently by plotting on the X-axis the 
log2(fold-change) of proteins against their statistical significance on the Y-axis 
[represented by the negative log10(p-value)] (Figure 5A, Figure 5.5B and Figure 5.5C). 
The absolute fold-change values are represented in the supplementary Table S5.1, 
Table S5.2 and Table S5.3. The results showed that there were 23 proteins up 
regulated and 259 down regulated when the SEM1.4evo was compared to the wild type. 
Similarly, when comparing the double mutant to the wild type, 29 proteins were up 
regulated and 198 down regulated. Lastly, only 9 proteins were significantly up 
regulated and 3 were down regulated when comparing the SEM1.4evo strain to the 
double mutant under high acetate concentration growth conditions. In general, the 
SEM1.4evo strain and double mutant exhibited comparable volcano plots, suggesting 
that the mutations that were previously incorporated significantly rewired the cellular 
proteome.  
 
Subsequently, based on the proteomics analysis, we investigated which protein 
groups or pathways were impacted by the presence of elevated acetate concentrations. 
We observed substantial alterations in methionine metabolism of both the SEM1.4evo 
and double mutant strains. Methionine transport system ATP-binding protein 
(MetN1) and sulfate permeate (CysZ) were significantly upregulated by a log2(fold-
change) of 8.5 and 7.3, respectively. Also, related to sulfur metabolism, 
alkanesulfonate monooxygenase (SsuD), the organosulfonate utilization protein 
(SsuF) together with thiosulfate sulfurtransferase (GlpE) were significantly 
downregulated with a log2(fold-change) of -9. In addition, the enzyme that convert O-
acetylhomoserine and sulfide into L-homocysteine, O-acetylhomoserine 
sulfhydrylase (MetY) was downregulated (Kulikova, et al., 2019). These findings are 
in agreement with earlier research, which suggested two key points. Firstly, that the 
addition of methionine shields E. coli from the damaging effects of acetate. Secondly, 
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homocysteine obstructs the enzymes that are responsible for generating methionine 
(Roe, et al., 2002). It is assumed that providing additional methionine protects against 
the negative effects of homocysteine by triggering a regulatory mechanism that 
suppress methionine production, preventing homocysteine accumulation. 
Methionine and cysteine biosynthesis were also studied in Pseudomonas putida S-313 
and Pseudomonas aeruginosa PAO1. Both these organisms use direct sulfhydrylation of 
O-succinylhomoserine for the synthesis of methionine but also, contained substantial 
levels of O-acetylserine sulfhydrylase (cysteine synthase) activity which could 
support the cell to obtain extracellular sulfate by transcriptionally activating genes 
related to sulfate transport, activation and reduction in order to boost methionine 
production (Vermeij and Kertesz, 1999, Campanini, et al., 2015).  
 
We also noticed an increase in the relative amount of SucC (Succinyl-CoA ligase 
[ADP-forming] subunit beta) and SucD (Succinyl-CoA ligase [ADP-forming] subunit 
alpha). The activity of these two enzymes been provide to increase during acetate 
oxidation phase (Saeki, et al., 1999). The findings indicate that P. putida might utilize 
this system in the TCA cycle as an additional mechanism to detoxify the acetate within 
the cell. This process involves directing acetate through the TCA cycle to neutralize its 
harmful effects (Mullins, et al., 2008). 
 
Moreover, we also identified enzymes that are involved in several mechanisms to 
fight oxidative stress and avoid the imbalance of ROS (reactive oxygen species) levels 
that lead to cell toxicity. From these, the presence of scavenging enzymes that 
consume ROS (superoxide dismutases, catalases and peroxidases) are critical in self-
defense mechanisms against oxidative stress in bacteria. Among them, we observed 
that glutathione S-transferase protein (PP1821 and PP2536), thiol peroxidase (Tpx), 
catalase-peroxidase (KatG), superoxide dismutase (SodB) and cytochrome C (PP1659 
and PP3822) were down regulated in the evolved and double mutant strain in 
comparison with the wild type. This indicates that wild-type strain is more susceptible 
to oxidative stress as indicated the relative changes in abundance of detoxifying 
enzymes. It is known that glutathione reductases maintain and regulate redox 
homeostasis in the cell (Couto, et al., 2016) and together with the combined action of 
superoxide dismutases, catalases and thiol peroxidases can degrade superoxide (O2-) 
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and hydrogen peroxide (H2O2) and thus, withstand the ROS effect (Fridovich, 1974, 
Mishra and Imlay, 2012, Somprasong, et al., 2012, Kim and Park, 2014, Gurdo, et al., 
2018). Also, cytochrome C may also contribute to ROS defense mechanisms in bacteria 
catalyzing the four-electron reduction of O2 to 2H2O using quinol or cytochrome c as 
the electron donor (Malatesta, et al., 1995, Melo and Teixeira, 2016). In connection to 
oxidative stress, we noticed that pyoverdine synthetase (PvdL), the non-ribosomal 
peptide synthase (PvdI and PP3788) and L-Ornithine N5-oxygenase (PvdA) (Visca, et 
al., 1994) were significantly down regulated in the evolved and double mutant strain 
against the wild type. Pyoverdine (PvdI) has been previously reported to act as a 
siderophore for scavenging iron, a key nutrient in Pseudomonas spp. metabolism 
(Chimiak, et al., 1984, Leoni, et al., 1996, Ganne, et al., 2017, Ringel and Brüser, 2018). 
If there is oxidative stress, the Fe+2 is converted to Fe+3, which stimulates the 
production of oxidative stress proteins via ROS molecules generated by the activation 
of the Fenton reaction through Fe+3 (Touati, 2000), which seem to be the case to greater 
extent for the non-evolved strain.  
 
We also observed a general down regulation in the OmpA proteins (PP3090, PP4669 
and PP1502) in the evolved in comparison to the wild-type strain (Wang, 2002, Sainz, 
et al., 2005). Previous reports have demonstrated that the OmpA protein is associated 
with cell turgor maintenance and cellular size (Chevalier, et al., 2017). In Acinetobacter 
baumannii, this protein family are crucial in regulating outer membrane vesicles 
(OMVs) and formation of biofilm (Gaddy, et al., 2009, Moon, et al., 2012), both of 
which are vital for the survival of bacteria during stressful situations (Hall-Stoodley, 
et al., 2004, Schwechheimer and Kuehn, 2015). Cell morphology was also reported to 
be altered in response to the presence of acetate. Increasing the size of the cells is 
another cellular strategy to counteract its effects. This leads to a reduction in the 
relative area responsible for the passive diffusion of the carboxylic acid into the cell, 
providing an additional line of defense against acetate toxicity (Trcek, et al., 2007).  
 
Another significant finding was that the enzymes responsible for β-oxidation FadE 
(PP1893) and fatty acid metabolism [acyl-CoA dehydrogenases (PP0360, PP3638, 
PP3670) and cyclopropane-fatty-acyl-phospholipid synthase (PP5365)] were down 
regulated in the evolved and double mutant strains in comparison with the wild-type 
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(Thompson, et al., 2020). This showed that the wild-type strain had higher levels of 
the proteins involved in the biosynthesis and degradation of fatty acids which may 
lead to changes in the lipidic membrane composition (Willdigg and Helmann, 2021). 
Finally, we noted a significant decrease in GacA abundance in both SEM1.4evo and the 
double mutant. This suggests that the mutation could cause a loss of function, 
decreased activity, or reduced ability to bind to the DNA region. Earlier studies 
demonstrated that GacA had a negative impact on numerous genes responsible for 
iron uptake in Pseudomonas fluorescens Pf-5 when grown in culture. Our proteomic 
analysis supports previous experimental results which showed an increase in the 
production of siderophore after the loss of GacA/GacS signalling in a closely related 
Pseudomonas fluorescens strain called CHA0 (SCHMIDLI-SACHERER, et al., 1997, 
Duffy and Défago, 2000, Hassan, et al., 2010).  
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Figure 5.5. Volcano plot of mass spectrometry results showing differentially expressed proteins 
comparing the proteome profile within Pseudomonas putida SEM1.4 (A), evolved (B) and the double 
mutant gacAE197KfabBL77P strain (C). Four biological replicates were grown in de Bont minimal medium 
supplemented with 100 mM acetate harvested in the mid-exponential phase to measure the entire 
protein content of biomass. Each point in the plot represents an individual protein. The horizontal and 
vertical intersections were set at a 1. 

 
 Acetate toxicity exposes rewiring of metabolic fluxes in the 

EDEMP cycle to counteract oxidative stress 

As previously mentioned, high levels of acetate induce oxidative stress in several 
microorganisms. Bacteria can adapt their metabolism to overcome adverse conditions 
by producing detoxifying enzymes such as superoxide dismutases, catalase, and 
glutathione/glutaredoxin recycling systems (Imlay, 2013). In P. putida, adjusting the 
central carbon metabolism is one of the tactics employed to counteract sub-lethal 
oxidative stress (Nikel, et al., 2021). In order to capture the metabolic effects of acetate 
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toxicity in P. putida strain used in this study, we carried out a 13C fluxome analysis 
where the cells were exposed to high acetate concentration in de Bont minimal 
medium. We implemented a parallel labelling strategy ([1-13C1]-, [2-13C1]- and [50% U-
13C6]-acetate) to resolve the relative contribution of TCA cycle, EDEMP, PP, and ED 
pathway. Samples were collected at mid-exponential phase to assess proteinogenic 
aminoacids and sugar monomers (glucose and glucosamine). The calculated relative 
fluxes for the three strains cultured on labeled acetate are shown in Figure 5.6. Also, 
the calculated flux distributions, carbon atom transition for each reaction and upper 
and lower boundaries of the flux estimates are provided in Figure S5.1.  
 
Carbon fluxes in cultures grown on acetate varied greatly among the wild type strain 
SEM1.4 in comparison to the SEM1.4evo and the double mutant strain. Initially, we first 
observed a distinct pattern in the wild type strain compared to the other two strains. 
Specifically, while the wild type strain had significant net flux through the EDEMP 
and PP pathways, there was almost absent flux in SEM1.4evo and double mutant 
strains. The flux pattern in the wild type strain correlates with previous results where, 
under oxidative stress, increased cyclic operation in EDEMP and PP pathway was 
observed, especially in the oxidative segment of this metabolic pathway (Nikel, et al., 
2021). Our flux analysis revealed that no carbon is utilized by the NAD(P)H-
generating steps of the ED pathway during acetate growth, which suggests that this 
phenomenon may be regulated at the transcriptional level. Previous studies have 
shown that during growth on acetate, both Cra and CRP are activated to modulate the 
expression of key enzymes involved in glycolysis, but in opposing ways. Cra is known 
to down regulate the expression of most of the enzymes in the glycolysis pathway, 
with the exception of two genes, fbp and ppsA, which redirect flux towards 
gluconeogenesis and are up regulated to supply 5- or 6-carbon precursor molecules 
(Son, et al., 2011). Similarly, the fact that there is no flux in EDEMP and PP pathway 
of SEM1.4evo and double mutant strains correlates to the results observed under non-
toxic acetate conditions, indicating that these strains are capable of withstanding the 
effects of acetate within the cell (Dolan, et al., 2020). Moreover, during steady-state 
growth on acetate, we observed that the glyoxylate shunt received approximately 50% 
of the carbon reaching the acetyl-CoA node in the wild type strain, while this value 
was around 60% in SEM1.4evo and double mutant strains.  
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The primary function of the glyoxylate shunt is to produce malate, which is then 
converted to oxaloacetate, a precursor to gluconeogenesis, through the catalytic action 
of malate:quinone oxidoreductase (MqoB). Also, malate dehydrogenase (MaeB) 
contributes to the NAD(P)H supply in these strains by converting malate into 
oxaloacetate. Hypothetically, high levels of oxaloacetate, which could be accumulated 
in response to limited NAD(P)H supply for anabolism, might stimulate the activity of 
one of the isozymes of isocitrate dehydrogenase, IDH. This forms an elegant feedback 
loop that restores the flux through the TCA cycle (Crousilles, et al., 2018). In addition, 
the evolved and double mutant strains exhibited around 50% increase in the carbon 
cycling through the pyruvate shunt compared to the wild type strain. Given that 
NAD(P)H is produced via the latter reaction, this observation suggests that the 
reaction may act as an additional energy source in the cell helping to cope with the 
stress induced by acetate (Blank, et al., 2008). Our analysis of flux data revealed that, 
in SEM1.4evo and double mutant strains, the metabolic pathways of EDEMP and PP 
were shut down, whereas in the wild type strain, these pathways were highly active. 
Until now, our evaluation of these observations were mostly centered on the necessity 
of NAD(P)H to neutralize the oxidative stress that results from elevated levels of 
acetate.  
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Figure 5.6. Acetate metabolism and proteins associated in P. putida KT2440 (A). In vivo carbon flux 
distributions in central metabolism of P. putida SEM1.4 (B), SEM1.4evo (C), gacAE197K fabBL77P(D) 

during growth on acetate as unique carbon source. Fluxes are expressed as a molar percentage of the 
average acetate uptake rate, calculated from the individual rates in Figure 5.4C. Fluxes were expressed 
as a molar percentage of the average acetate (34.1, 25.9 and 23.8 mmol gCDW-1 h-1 for wild type, SEM1.4evo 
and double mutant, respectively) uptake rate, calculated from the individual rates in Figure 5. The 
inaccuracies assigned to each flux indicate the respective 95% confidence intervals. The fluxes were 
represented graphically by coloring the arrows in the flux map using a blue scale, where high fluxes 
were depicted as dark blue and no fluxes were shown as white. 

 

 Mutagenesis analysis in GacAE197K evidences a bond disruption 
when it interacts with the DNA 

Drawing on the knowledge of proteomics, and considering the current background 

information about the effects of mutations on GacA, we decided to investigate in more 

detail the structural consequences of this specific mutation. We utilized PyMOL 

software to investigate the impact of the mutation on GacA and the adjacent residues. 

Upon conducting the analysis, we discovered that the mutation was located in the C-

terminal domain of LuxR-type HTH. This domain is a helix-turn-helix (HTH) DNA-

binding domain that spans around 65 amino acids, and it is present in transcriptional 

regulators belonging to the LuxR/FixJ family of response regulators (Kahn and Ditta, 

1991, Sitnikov, et al., 1995). According to the results of the structural analysis, 

glutamate-197 (E197), which carries a negative charge, appears to be capable of 

coordinating with either the polar threonine-193 (Thr-193) within the same chain, or 

more distantly with the positively charged lysine-164 (Lys-194) and/or glutamine-163 

(Gln-163) (Figure 5.7A). The spatial separation between the amino acids could indicate 

the presence of an ion-coordinated bond or a similar type of interaction. In the unlikely 

event that the amino acid in question fails to form bonds with any other molecule or 

structure, its negative charge may still have an indirect impact on maintaining a 

delicate balance of charge. This possibility is supported by the examination of the 

neighboring amino acids mentioned above. Therefore, switching from the negatively 

charged glutamate (E) to the positively charged lysine (K) could significantly 

influence the coordination of dimerization, resulting in altered transcriptional 

regulation (Figure 5.7B). This hypothesis is supported by experimental evidence 
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demonstrating that the inactivation of either gacS or gacA genes in P. putida or 

Pseudomonas stutzeri leads to significant fitness improvements (Eng, et al., 2021). These 

findings suggest that the E197K mutation may be detrimental for GacA, potentially 

diminishing or disrupting its regulatory function. Our analysis of mutagenesis 

provides further evidence to support the observations outlined above.  

 

Figure 5.7. Mutational analysis in Pseudomonas putida mutant GacAE197K (A) and wild-type GacA 
protein (B). View centered on the mutation under analysis surrounded by neighbor amino acids. The 
picture were drawn using PYMOL software. Residues: Cys162, Gln163, Lys164, Thr193 and 
Glu197/Lys197. The amino acid residues selected for mutational analysis is indicated with white dashed 
boxes. 
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5.3 Discussion 

Understanding bacterial metabolism is the way forward to tackle metabolic 
bottlenecks as well as to comprehend the interaction between environment and 
cellular processes (Nicholson and Wilson, 2003, Vilchez-Vargas, et al., 2010). The focus 
of our investigation was to examine how P. putida SEM1.4 copes with acetate toxicity 
by studying its tolerance mechanisms applying –Omics methodologies (genomics, 
proteomics and fluxomics). Over time, P. putida has proven to be a robust host for 
bioproduction because of its ability to thrive in diverse environmental conditions. This 
characteristic is complemented by its high level of resilience to oxidative stress and 
toxic substances (Calero and Nikel, 2019). Despite having a versatile metabolism that 
enables it to metabolize a wide range of carbon sources, there is a dearth of knowledge 
about the fundamental mechanisms responsible for such biochemical activities. By 
combining systems-level analysis with multi-omics techniques, it is possible to 
conduct an in-depth examination of the entire metabolism across a range of 
environmental conditions (Gurdo, et al., 2022). 
 
In this study, we employed the genome-reduced strain SEM1.4, derived from P. putida 
EM42 (Martínez-García, et al., 2014), for evolution experiments in order to increase the 
resistant to the dicarboxylic acid, acetate. After a long-term evolution in increasing 
acetate concentration, a tolerant population was isolated and several clones were 
screened for further analysis. We examined different clones from a physiological 
perspective and found that their fitness had improved significantly due to the 
accumulation of genetic mutations in its genome. Two single nucleotide 
polymorphism mutations were identified with relevant role in Pseudomonas 
metabolism: i) gacA gene, encoding the response regulator of the GacS/GacA two-
component system and (Song, et al., 2023); ii) fabB gene, encoding the 3-oxoacyl-[acyl-
carrier-protein] synthase that is involved in fatty acid metabolism (McNaught, et al., 
2023). Once the mutations were reintroduced into the original strains, the impact of 
these two mutations was assessed in terms of their effects on the proteome and 
fluxome. 
 
Global proteome analysis allowed capturing the changes at different levels including 
iron homeostasis, stress response (detoxifying enzymes), methionine biosynthesis, 
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osmotic maintenance systems as well as fatty acid β-oxidation regulation. 13C-
metabolic flux analysis showed a significant rewiring in the parental strain through 
the EDEM and PP pathway which might provide NAD(P)H and other anabolic routes 
to counteract the toxic effect of acetate. The results obtained from the comparison of a 
double mutant strain with an evolved strain in Volcano plot yielded significant 
insights into the effects of genetic modifications and evolutionary processes on the 
phenotype and performance of the organism. 
 
Taken together, these experimental findings suggest that the metabolic modifications 
resulting from ALE allowed the organism to withstand the harmful effects of acetate. 
The outcomes of this study demonstrate that the mutations in gacA and fabB genes 
contributed significantly to the development of the observed phenotype, as revealed 
by the analyses of proteomes and fluxomes. Our results are supported and 
supplemented by earlier research on acetate tolerance (Trček, et al., 2015), and hence, 
it enriches the understanding of Pseudomonas putida's strategies for overcoming acetate 
toxicity. This knowledge could be utilized to develop more effective bioproduction 
processes, thereby making acetate bioeconomy an attainable reality in the near future. 
The increasing interest in non-conventional carbon sources reflects a growing 
awareness of the need to develop more sustainable and environmentally friendly 
bioprocesses, while also exploring new and innovative solutions to meet the ever-
growing demand for bio-based products. 
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5.4 Materials and Methods 
 
Table 5.3. Strains used and constructed in this study.  
 

Strain name  Description  Reference or 
source  

Escherichia coli   

DH5α λpir  

Cloning host; F– – endA1 glnX44(AS) 
thiE1 recA1 relA1 spoT1 gyrA96(NalR) 
rfbC1 deoR nupG 80(lacZM15) (argF-
lac)U169 hsdR17(rK– mK+),  pir lysogen 

(Platt, et al., 2000) 

Pseudomonas   

P. putida KT2440 
Wild-type strain, derived from P. putida 
mt-2 (Worsey and Williams, 1975) cured 
of the TOL plasmid pWW0  

(Bagdasarian, et al., 
1981) 

P. putida EM42 

Reduced-genome derivative of P. 
putida KT2440; ΔPP4329-PP4397 (flagellar 
operon) ΔPP3849-PP3920 (prophage I) 
ΔPP3026-PP3066 (prophage II) ΔPP2266-
PP2297 (prophage III) ΔPP1532-
PP1586 (prophage IV) ΔTn7 ΔendA-
1 ΔendA-2 ΔhsdRMS ΔTn4652 

(Martínez-García et 
al., 2014) 

P. putida SEM1.4 

Reduced genome derivative of EM42; 
ΔPP5003-5008 (ΔphaC1ZC2DFI), 
ΔPP3161-3164 (ΔbenABCD), ΔPP1408 
(ΔphaG) 

(Mezzina et al., not 
published) 

P. putida evoSEM1.4 
ALE derivative of P. putida SEM1.4 with 
increased acetate tolerance of up to 180 
mM Potassium acetate 

This work 

SEM1.4 hupBT49I P. putida SEM1.4 hupBT49I This work 
SEM1.4 hupBA35V P. putida SEM1.4 hupBA35V This work 
SEM1.4 fabBL77P P. putida SEM1.4 fabBL77P This work 
SEM1.4 PP_0371R277H P. putida SEM1.4 PP0371R277H This work 
SEM1.4 uvrYE197K P. putida SEM1.4 uvrYE197K This work 
SEM1.4 uvrYE197K 
fabBL77P P. putida SEM1.4 uvrYE197K fabBL77P This work 
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Table 5.4. Plasmids used in this study.  
 
Plasmid Name  Description  Source  

pSNW2 Derivative of vector pGNW2 (Wirth et al., 2020) 
with P14g(BCD2) →  msfGFP; KmR 

(Volke et al., 
2020) 

pSNW::uvrYE197K 
Derivative of vector pSNW2 carrying 
Homologous Regions (HRs) to introduce the 
E197K substitution in uvrY; KmR 

This work 

pSNW::hupBT49I Derivative of vector pSNW2 carrying HRs to 
introduce the T49I substitution in hupB; KmR This work 

pSNW::hupBA35V Derivative of vector pSNW2 carrying HRs to 
introduce the A35V substitution in hupB; KmR This work 

pSNW::PP0371R277H 
Derivative of vector pSNW2 carrying HRs to 
introduce the R277H substitution in PP_0371; 
KmR 

This work 

pSNW::fabBL77P Derivative of vector pSNW2 carrying HRs to 
introduce the L77P substitution in fabB; KmR This work 

pQURE6·H 
Conditionally-replicating vector; derivative of 
vector pJBSD1 carrying XylS/Pm→I-
SceI and P14g(BCD2)→mRFP; GmR 

(Volke et al., 
2020) 

 
Table 5.5. Primers used in this study.  
 

Primer name  Nucleotide sequence (5’ to 3’)  Usage  

491_UvrYE197K_A_U_F agatcctGGCGGGCAGCCCGTAC 
USER adaptors for 
mutagenesis of 
UvrYE197K 

492_UvrYE197K_A_U_R AGTTTGACGTCGCTGGTGACC 
493_UvrYE197K_B_U_F ACGTCAAACTGACCTTGCTGGC 

494_UvrYE197K_B_U_R aggtcgactGGCCGGGTGCGGTTGG 

495_UvrYE197K_chk-F CTGACCAAGGGTGCAGGCCTTG 

495_UvrYE197K_c
hk-F 
496_UvrYE197K_c
hk-R 

496_UvrYE197K_chk-R TGGCCTTGCCCACGTAAAGCAG 

495_UvrYE197K_c
hk-F 
496_UvrYE197K_c
hk-R 

497_HupBT49A_A_U_F agatcctGTGTCGGCGCTGACGCA 

USER adaptors for 
mutagenesis of 
hupBT49A 

498_HupBT49A_A_U_R 
AGAAGATACCAAAGCCAACCAGTA
CCAC 

499_HupBT49A_B_U_F ATCTTCTCGGTCAAGGAGCGC 

500_HupBT49A_B_U_R aggtcgactTGGCATCCTCAGCACCTTGC
A 



Chapter 5 
Dissecting acetate metabolism in genome–reduced Pseudomonas putida SEM1.4 

 
188 

 

501_HupBT49A-chk-F CCATGCCTCCCAGCACACGTTT sequencing for 
hupB 502_HupBT49A-chk-R AAACGGCTGTACCACTGCGTCG 

503_HupBA35V_A_U_F agatcctGTGTCGGCGCTGACGCA 
USER adaptors for 
mutagenesis of 
HupBA35V 

504_HupBA35V_A_U_R ACGCCGGTGACGGATTCG 
505_HupBA35V_B_U_F ACCGGCGTCCTGAAGCAAG 

506_HupBA35V_B_U_R aggtcgactTGGCATCCTCAGCACCTTGC
A 

507_PP_0371R277H_A_
U_F agatcctGAGCCCGGGTTGATCAACGC 

USER adaptors for 
mutagenesis of 
PP_0371R277H 

508_PP_0371R277H_A_
U_R AGGCCTGCTGGTGCTGGG 

509_PP_0371R277H_B_
U_F AGCAGGCCTCTGTGGAGCTG 

510_PP_0371R277H_B_
U_R aggtcgactGGCGGCGCTGGCG 

511_PP_0371R277H-chk-
F TGATGCTGGGCGAGGAGTTCCA sequencing for 

PP_0371 512_PP_0371R277H-chk-
R CGGGGTTTTCTTTGCGTGCGTG 

513_FabBL77P_A_U_F agatcctGAAGACCTGCTGCGCTGCA 
USER adaptors for 
mutagenesis of 
FabBL77P 

514_FabBL77P_A_U_R ATGGCCGGGTAGGCGTAGG 
515_FabBL77P_B_U_F ACCCGGCCATGCAGGAC 
516_FabBL77P_B_U_R aggtcgactTACGCGATTCATCTGGGCGC 
517_FabBL77P-chk-F GTCGGCGTGTTCACCTCCACTG 

sequencing for fabB 
518_FabBL77P-chk-R AGGGTGTCCAGCGCTTCCATCT 

 

 Bacterial strains and culture conditions 

Escherichia coli and Pseudomonas putida KT2440 strains employed in this study are listed 
in Table 5.2. The strains were incubated at 37°C and 30°C, respectively. To perform 
cell propagation and storage as well as routine cloning and genome engineering 
manipulations, cells were grown in lysogeny broth (LB) medium (10 g L-1 tryptone, 5 
g L-1 yeast extract, and 10 g L-1 NaCl). Liquid pre-cultures were done in 50-mL Falcon® 
centrifuge tubes with a medium volume of 10 mL or; for cultures, 250-mL Erlenmeyer 
flask containing 50 mL of medium. All liquid pre-cultures were agitated at 250 rpm 
(MaxQ™8000 incubator; ThermoFisher Scientific, Waltham, MA, USA) while cultures 
were incubated at 200 rpm (New Brunswick™ Innova® 42/42R Shaker, sticky pad). 
Solid culture media contained an additional 15 g L-1 agar. Selection of plasmid-
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harboring cells was achieved by adding kanamycin (Km) or gentamicin (Gm), when 
required at 50 μg mL-1 and 10 μg mL-1, respectively.  
 
For adaptive laboratory evolution (ALE) experiments, clone screening, phenotypic 
characterizations as well as targeted metabolomics and proteomics analyses in shaken 
flasks, the experiments were performed in de Bont minimal medium additionally 
buffered with 5 g L-1 3-(N-morpholino)propane sulfonic acid (MOPS) at pH 7.0 and 
supplemented with different concentrations of potassium acetate as explained later in 
the next sections. To inoculate the cultures, the aliquot taken from the pre-cultures 
were harvested by centrifugation at 8,000 g for 5 min, washed with de Bont medium 
without the addition of any carbon source, and resuspended in the final media of the 
experiment at the desired start-optical density at 600 nm (OD600).  
 

 Adaptive Laboratory Evolution (ALE) in acetate 

Pseudomonas putida SEM1.4 was evolved in 250-mL shaken baffled flask containing 
increasing concentrations of potassium acetate pH 7.0. The strain was streaked out 
onto a LB plate from the glycerol stock and it was incubated overnight. Several 
colonies were selected, pooled and inoculated in a 250-mL Erlenmeyer baffled flask 
containing 50 mL of minimal medium with an initial potassium acetate concentration 
of 20 mM. Cultures were kept well mixed and aerated at 200 rpm at 30°C in. When the 
culture reached stationary phase, 500 μL were passed into the next 250-mL 
Erlenmeyer baffled flask with fresh media. Three consecutive passages were 
performed within the same concentration prior the inoculation of the following 
Erlenmeyer with higher concentration. Concentrations in the flask were gradually 
increased a lag phase of 12 hours was observed. 
 

 Clone screening from populations and candidate evaluation 

For clone screening, the cultures from the last Erlenmeyer was streaked out onto 
selective condition in minimal medium de Bont containing 180 mM of potassium 
acetate. Ten clones with different colony sizes were selected with a sterile toothpick 
and, were individually inoculated in the same selected condition as mentioned above. 
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The clones were stored at -80°C in 2-mL cryotubes with cryopreservation solution 
until further characterization. The cryopreservation solution consists of 50% vol vol-1 
glycerol (of the highest purity available), 0.1 M MgSO4, and 50 mM Tris·HCl (pH = 
8.0).  
 
The selected clones were evaluated in Growth Profiler 960 (System Duetz, Enzyscreen, 
Heemstede, The Netherlands) using 96-squared well microtiter plates sealed with a 
gas permeable sandwich cover (Enzyscreen, Heemstede, The Netherlands). Briefly, 
300 μL of de Bont minimal medium with several concentrations of potassium acetate 
(20, 60, 100 and 140 mM) were inoculated with an initial OD600 of 0.1. Bacterial growth 
was followed every 15 min by optimal image scanning through the Growth Profiler 
960. G-values (integrated green values) taken from each scan and well were 
transformed into equivalent OD600 values to determine microbial growth. This was 
determined by means of calibration values fitted to a Monod function: 
 

G − value  =  
a ∗ OD

b + OD
  (Equation 1) 

; with a and b parameters determined by non-linear regression, where the optical 
density of a culture at different dilutions was measured a priori in a UV-1600PC 
spectrophotometer (VWR, Radnor, USA) and the corresponding images of the culture 
were taken in the Growth Profiler 960.  
 

 Whole genome sequencing and mutational analysis 

Genomic DNA (gDNA) was extracted from the cultures using PureLink® Genomic 
DNA Mini Kit. Sequencing libraries were prepared using Plexwell, and the 
sequencing was performed on Nextseq500 using Illumina Nextseq mid output kit, 300 
cycles. The sequencing files were analyzed using a previously described in-house 
script (Phaneuf, et al., 2019) based on bowties2 (Deatherage and Barrick, 2014), using 
the reference genome with GenBank accession number AE015451. The average 
coverage for the clonal and the population samples was approximately 60x. For 
population samples, mutations with frequencies less than 0.50 were excluded from 
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the analysis in order to filter out artifacts in the mutation callings and focus on causal 
mutations. 
 

 Retro engineering of relevant mutations into Pseudomonas putida 
SEM1.4:  USER cloning and plasmid construction 

In order to re-introduce the mutations obtained from ALE experiments, plasmids were 
constructed for homologous recombination mediate gene replacement. Uracil-
excision (USER) cloning (Nisson, et al., 1991, Cavaleiro, et al., 2015) was used for the 
construction of all plasmids. In order to build the plasmids for gene substitution by 
homology recombination, USER primers were designed with AMUSER (Genee, et al., 
2015), containing the targeted single-nucleotide mutations. Table 3 and Table 4 shows 
the strains and plasmids used and generated in this study, respectively. Table 5 
describes the designed primers. Phusion™ U high-fidelity DNA polymerase 
(ThermoFisher Scientific) was used for PCR amplification, mutagenesis, and USER 
adaptors construction, in a one-step reaction. PCR products were then run on 1% 
agarose gel for confirmation and purified with NucleoSpin™ gel purification kit 
(Macherey-Nagel, Germany). The purified amplicons were ligated into pSNW2 vector 
with USER enzyme (New England BioLabs, Ipswich, MA, USA), following 
manufacturer’s specifications, and transformed in Escherichia coli by heat shock for 
cryostock storage. 
 
To perform gene substitution by homology recombination, I-SceI-mediated 
recombination engineering strategy (Martínez-García and de Lorenzo, 2011, Wirth, et 
al., 2020) was followed, with the addition of inducible self-curing vectors (Volke, et 
al., 2020). Briefly, the protocol of Wirth et al. (2020) was implemented for genomic 
integration and confirmed by green fluorescence (i.e. GFP) of individual colonies and 
colony PCR of selected amplicons. Positive colonies were grown in LB medium. 
Cultures were then washed with 0.3 M sucrose and transformed by electroporation 
with the self-curing plasmid (i.e. pQURE6·H). Cells were recovered overnight in LB 
medium containing 5 mM 3mBz, and then streaked onto LB medium agar with 10 μL 
mL-1 Gm and incubated overnight. Correct gene substitutions were confirmed by red 
fluorescence (i.e. mRFP) of individual colonies, colony PCR of selected amplicons and 
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sequencing. Single colonies were then inoculated and grown in LB, for plasmid curing. 
Eventually, the cultures were streaked onto solid media and non-fluorescent colonies 
were selected: the loss of the plasmid was confirmed by colony PCR, parallel plating 
in LB and Gm, and DNA sequencing. To store the positive mutants, single colonies 
were grown in LB and preserved as cryostocks.  
 

 Phenotypic characterization of retro engineered strains 

The evolved, double mutant P. putida SEM1.4 uvrYE197K fabBL77P and reduced genome 
SEM1.4 strains were phenotypically characterized in 250-mL shaking baffled flask 
with 50 mL of de Bont minimal medium containing 100 mM of potassium acetate 
supplemented and 5 g L-1 MOPS. Optical density at 600 (OD600) was measured and 
potassium acetate consumption (mmol gCDW-1 h-1) was determined. The shaking flasks 
were inoculated at an initial OD600 of 0.1 and incubated at 30°C with an agitation of 
200 rpm. When appropriated, samples were collected along the cultures; the 
supernatants were collected by centrifugation (10,000 g for 5 min at 4°C) and storage 
at -20°C for HPLC analysis. Cell dry weight (CDW) was determined by growing the 
cells in the same conditions as is mentioned before. At different cultivation times, six 
samples (two per replicate) of 10 mL each were collected per strain in pre-weighted 
15-mL Falcon® tubes. Optical density at 600nm was measured and the collected 
samples were centrifuged at 8,000 g for 10 min at 4°C, washed twice with de Bont 
minimal medium without carbon sources. The tubes containing the biomass were 
frozen at -20°C and lyophilized under vacuum until constant weight. 
 

 Metabolite analyses via HPLC 

Potassium acetate consumption was analyzed using a Dionex Ultimate 3000 HPLC 

with an Aminex® HPX-87X Ion Exclusion (300 x 7.8 mm) column (BioRad, Hercules, 

CA) as well as RI-150 refractive index and UV (260, 277, 304 and 210 nm) detectors. 

For analysis, the column was maintained at 45°C and a 5 mM H2SO4 solution was used 

as mobile phase at a flowrate of 0.6 mL min-1. HPLC data were processed using the 

Chromeleon 7.1.3 software (Thermo Fisher Scientific), and compound concentrations 
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were calculated from peak areas using calibration curves with six different standard 

concentrations covering the range from 0 to 250 mM. 

 

 Semi-quantitative proteomics by mass spectrometry (MS) 

Pseudomonas putida strains were pre-cultured overnight in de Bont minimal medium 
supplemented with 20 mM potassium acetate. Experimental cultures were done in 
flasks containing de Bont minimal medium with 100 mM potassium acetate inoculated 
at an initial OD600 of 0.1. Samples were taken in the mid-log phase, and the cells were 
harvested by centrifugation at 10,000 g for 5 minutes at 4°C. Then, the supernatant 
was removed and the cell pellet were frozen at −80°C until the processing of samples. 
Samples were desalted and isolated using a variation of a previously-described 
chloroform/methanol extraction protocol (Flügge and Wessel, 1984). Cell pellets were 
first thawed at 4°C and resuspended in 100 μL HPLC water. Then, 400 μL of HPLC 
grade methanol, 100 μL of HPLC grade chloroform, 300 μL of HPLC grade water were 
added to each sample in sequential order with thorough vortexing after each addition. 
Later, samples were centrifuged for 60 sec at ~21,000 g to promote phase separation. 
The top layer (water and methanol) was discarded by centrifugation leaving on the 
protein pellet the chloroform layer remaining. Additional 300 μL of HPLC grade 
methanol was added, the samples were vortexed and centrifuged for 2 min at ~21,000 
g. The remaining liquid was discarded and the cell pellets were dried in a fume hood 
for 5 min. Then, protein pellets were resuspended in freshly-prepared 100 mM 
ammonium bicarbonate buffer in HPLC water containing 20% (v v-1) methanol HPLC 
grade.  
 
Protein concentrations in the resuspended samples were quantified using a DC 
Protein Assay Kit (Bio-Rad Laboratories, Hercules, CA). In total, 100 μg of protein was 
transferred to a PCR strip and tris(2-carboxyethyl)phosphine (TCEP) was added until 
a final concentration of 5 mM. Samples were incubated at 22°C for 30 min and; 
subsequently, iodoacetamide (IAA) was added until a final concentration of 10 mM. 
Again, samples were incubated at 22°C in the dark for 30 min. Finally, trypsin was 
added to a final ratio of 1:25 w w-1 trypsin:sample, and samples were incubated at 37°C 
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for 5–8 h in order to digest the proteins prior being placed into a conical LC vials for 
LC-MS analysis.  
 
For shotgun proteomic experiments, peptides were analyzed by using an Agilent 6550 
iFunnel Q-TOF mass spectrometer (Agilent Technologies, Santa Clara, CA) coupled 
to an Agilent 1290 UHPLC system as described previously (González Fernández-
Niño, et al., 2015). 20 μg of peptides were separated on a Sigma–Aldrich Ascentis 
Peptides ES-C18 column (2.1 mm × 100 mm, 2.7 μm particle size, operated at 60°C) at 
a 0.400 mL min-1 flow rate and eluted using following gradient: 98% solvent A (0.1% 
formic acid v v-1) and 2% solvent B (99.9% v v-1 acetonitrile, 0.1% formic acid v v-1). 
Solvent B was increased to 35% over 30 min, and then increased to 80% over 2 min, 
then was constant for 6 min, followed by a ramp back down to 2% Solvent B over 1 
min where it was kept constant for 4 min in order to re-equilibrate the column to 
original conditions.  
 
Peptides were introduced to the mass spectrometer from the LC by using a Jet Stream 
source (Agilent Technologies) operating in positive-ion mode (3500 V). Source 
parameters employed gas temp (250 C), drying gas (14 L min-1), nebulizer (35 psig), 
sheath gas temp (250°C), sheath gas flow (11 L min-1), VCap (3500 V), fragmentor (180 
V), OCT 1 RF Vpp (750 V). Agilent MassHunter Workstation Software was used to 
acquire the data, LC/MS Data Acquisition B.06.01 operating in Auto MS/MS mode 
whereby the 20 most intense ions (charge states, 2–5) within 300–1400 m/z mass range 
above a threshold of 1500 counts were selected for MS/MS analysis. The quadrupole 
was set to “Medium” resolution in order to collect MS/MS spectra (100–1700 m/z) and 
were acquired until 45,000 total counts were collected or for a maximum accumulation 
time of 333 ms. Former parent ions were excluded for 0.1 min following MS/MS 
acquisition. The acquired data were exported as .mgf files and searched against the 
latest Pseudomonas putida KT2440 protein database with Mascot search engine version 
2.3.02 (Matrix Science). The resulting search results were filtered and analyzed by 
Scaffold v 4.3.0 (Proteome Software Inc.). 
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 Statistical analysis of proteomics data 

The data from proteomics was examined using a customized R script in RStudio 
(version 1.3.1093), which was developed as part of the thesis. Only proteins that were 
detected in all samples were considered. The abundance values were normalized 
using quantile normalization through the R-package qsmooth. A Student's t-test was 
then conducted using the built-in dt() function. The data was log2-transformed for 
fold-change comparison between groups, and volcano plots were generated using 
VolcaNoseR online tool (Goedhart and Luijsterburg, 2020). Proteins that showed a 
log2-fold change of 1.0 in abundance and a –log10(adj. p-value) more than or equal to 
1.0 were considered to be differentially expressed. 

 

  13C metabolic flux analysis using labeled acetate 

Pre-cultures were initially inoculated with a loop of freshly plated evolved, double 
mutant P. putida SEM1.4 uvrYE197K fabBL77P and reduced genome SEM1.4 strains in de 
Bont minimal medium supplemented with 20 mM non-labeled potassium acetate and 
5 g L-1 MOPS. Prior inoculation into the experimental culture, cells were centrifuged 
at 10,000 g for 5 min and washed twice using de Bont minimal medium without carbon 
source. Then, cells were separately inoculated with an initial OD600 of 0.02 in 100 mL 
shaken flask containing 20 mL of de Bont medium with 100 mM of the following 
labeled carbon sources: 99% [1–13C] sodium acetate or [2–13C] sodium acetate or a 
molar 1:1 mixture of [U-13C2] sodium acetate. The inoculum level of the cultures with 
13C-labeled tracer was kept below 1% (initial OD of <0.02) of the final sampled cell 
concentration. This was done to exclude potential interference of non-labeled 
inoculum with subsequent calculations of flux (Wittmann, 2007). All experiments 
were performed in two biological replicates and two technical replicates, and samples 
were harvested once the cultures reached OD600~2.0 for the analysis of either 
proteinogenic amino acids or cellular sugars. The samples were centrifuged at 10,000 
g for 5 min, the supernatant was removed and the pellet was frozen at -80°C until 
further processing. 
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  GC-MS labeling analysis of proteinogenic aminoacids 

Pellets were thawed on ice at 4°C and re-suspended in 200 μL of 6 M HCl and 
incubated at 105°C for 16-24 hours in order to hydrolyze the biomass (Zamboni, et al., 
2009). Hydrolyzed samples were then filtered on a 96-filter plate (MultiScreenHTS, 
HV Filter Plate 0.45 μm, hydrophilic, clear, non-sterile, Millipore, Catalogue number 
MSHVN45) by centrifugation at 1,500 g for 2 min and were freeze dried and stored at 
–80ºC. Then, dried samples were derivatized in a two-step reaction: 1) by re-
suspending the hydrolysate with 50 μL dimethylformamide (DMF) until it turns 
brownish and; 2) by adding the previous solution into a glass vial with 50 μL of N-
tertbutyldimethylsilyl-N-methyltrifluoroacetamide with 1% (wt wt-1) 
tertbutyldimethyl-chlorosilane (TBDMSTFA) and incubating it at 85°C for 1 hour. The 
derivatized samples were aliquoted in glass vials with inlets for GC-MS analysis 
within 12 h from derivatization. The samples were injected on a Agilent 7890A GC-
MS system with an Agilent HP-5ms capillary column (30m, inner diameter of 0.25 
mm, film thickness of 0.25 μm). Samples were measured in full-scan mode with the 
following gradient: start at 120°C, hold for 1 min (Initial step); ramp to 160°C at 4°C 
min-1, hold for 5 min (Ramp 1); ramp to 270°C at 4°C min-1, hold for 3 min (Ramp 2); 
ramp to 310°C at 20°C min-1 (Ramp 3), hold for 1 min and; ramp to 120°C at 60°C min-

1 (Ramp 4).  

 

  GC-MS labeling analysis of sugar monomers 

For cellular monomers analysis (glucose and glucosamine) pellets were hydrolyzed in 
250 μL 2M HCl for 2 h at 100°C (Kiefer, et al., 2004). Next, cell debris was removed by 
filtration using a 96-filter plate (MultiScreenHTS, HV Filter Plate 0.45 μm, hydrophilic, 
clear, non-sterile, Millipore, Catalogue number MSHVN45). Subsequently, the 
hydrolysate were freeze dried and stored at –80ºC. Analytes contained in the dried 
residue were incubated in 100 μL methoxylamine 2 % m v-1 in pyridine at 80 °C for 1 
h. The obtained O-methyl oxime forms of the analytes were silylated at 80 °C for 30 
min into trimethylsilyl (TMS) derivatives in a second step using N,O-bis-
trimethylsilyl-trifluoroacetamide (BSTFA, Macherey-Nagel). The derivatized analytes 
were quantified by GC-MS using an Agilent 7890A GC-MS system with an Agilent 
HP-5ms capillary column (30m, inner diameter of 0.25 mm, film thickness of 0.25 μm). 
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Samples were measured in full-scan mode with the following gradient: start at 120°C, 
hold for 2 min (Initial step); ramp to 280°C at 10°C min-1, hold for 12 min (Ramp 1) 
and; ramp to 300°C at 10°C min-1, hold for 0 min (Ramp 2).  
 

  GC-MS chromatographic data analysis 

Raw chromatographic data was integrated using SmartPeak (Kutuzova S. et al., 2020). 
Processed data was further corrected for the natural abundance of isotopes in the 
derivatization agents used for GC-MS analysis using INCA software (Young, 2014). 
Altogether, 14 amino acids yielded ion clusters with clean mass isotopomer 
distributions (MIDs), which were considered as inputs for flux estimation: alanine 
(m/z 232, m/z 260), aspartate (m/z 302, m/z 390, m/z 418), glutamate (m/z 330, m/z 
432), glycine (m/z 218, m/z 246), histidine (m/z 338, m/z 440), isoleucine (m/z 274), 
leucine (m/z 274), lysine (m/z 329, m/z 431), methionine (m/z 218, m/z 320), 
phenylalanine (m/z 302, m/z 308, m/z 336), proline (m/z 258), serine (m/z 362, m/z 390), 
threonine (m/z 376, m/z 404), tyrosine (m/z 302) and valine (m/z 260, m/z 288). These 
fragments have been previously demonstrated to be suitable for 13C metabolic flux 
analysis in Pseudomonas spp. (Kohlstedt and Wittmann, 2019)Glutamate and aspartate 
also reflected the pools of glutamine and asparagine, which underwent deamination 
during protein hydrolysis. The proteinogenic amino acids cysteine and tryptophan 
were not detected due to their degradation in the hydrolysis process (Wittmann, 2007). 
For sugar analysis, the fragments considered for 13C–MFA were: glucose (m/z 319, m/z 
554) and glucosamine (m/z 319, m/z 553) as previously reported (Kohlstedt and 
Wittmann, 2019). 
 

  Reaction network and computational design for flux estimation  

The metabolic networks of Pseudomonas putida SEM1.4 strains were built based on the 
most recent genome-scale metabolic model (Nogales, et al., 2020). In total, 72 reactions 
were included as part of the central carbon metabolism. All included reactions, as well 
as the carbon atom transitions, are listed in Table S4. The INCA software package was 
utilized for 13C-metabolic flux analysis (13C-MFA) (Young, 2014). Specific growth 
rates, and uptake or secretion rates for acetate were used to constrain the MFA model. 
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The biomass equation was taken from (Czajka, et al., 2022). To estimate the relative 
intracellular fluxes, a weighted sum-of-squared-residuals (SSR) was minimized 
through iterative analysis of simulated and experimental labeling data for various 
molecules, including proteinogenic amino acids, extracellular sugars and sugar acids, 
glycogen, and glucosamine. . To ensure the most accurate results, the flux estimation 
was repeated at least 20 times with random initial values until convergence. To assess 
the goodness-of-fit, a χ2 test was applied, and precise 95% confidence intervals were 
calculated by determining the sensitivity of the sum of squared residuals to flux 
parameter variations (Antoniewicz, et al., 2006). The resulting flux results, including 
best fits, standard deviations, and upper and lower bounds of the 95% confidence 
intervals for all fluxes, can be found in Table S4. To visualize the flux distributions of 
different strains, computed flux values were mapped onto custom metabolic maps 
using the R package fluctuator. 
 

  Alphafold prediction and structure characterization 

The 3D structure prediction of GacA were created with AlphaFold 2.0 with default 
settings (Jumper, et al., 2021). The tertiary structure fold of the 5 highest ranking 
predictions were analysed and validated with Local Distance Difference Test (lDDT), 
SPServer  (Aguirre-Plans, et al., 2021) and ProSa-Web (Wiederstein and Sippl, 2007).  
Visualization, superimposition analysis and mutagenesis were performed with 
PyMOL v.2.3.4 [The PyMOL Molecular Graphics System, Version 2.3.4 Schrödinger, 
LLC.].  
Original sequences were obtained from Pseudomonas Database (Winsor, et al., 2016) 
and protein homologs investigation was performed and analysed with AlphaFold’s 
templates search algorithm in PDB, NCBI BLASTP (https://www.ncbi.nlm.nih.gov/), 
InterPro server (Paysan-Lafosse, et al., 2022) and with JalView v2.11 (Waterhouse, et 
al., 2009). 
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5.5 Supplementary Material 

 
Table S5.1. Differentially expressed protein in SEM1.4evo against Wild-type strain. The table shows 
protein ID (PP_number or protein name), protein description and Log2(fold-change). 

 

Protein 
ID 

Protein description 
Log

2
(fold-

change) 
SEM1.4evo Vs Wild-type 

Pp_0861 Outer membrane ferric siderophore receptor 9.15 
Ppsd Non-ribosomal siderophore peptide synthetase 9.10 

Pp_0371 
(RsmY)  

Transcriptional regulator, LysR family 8.55 

Metn1 Methionine import ATP-binding protein MetN 1 8.50 
Pp_2314 Class I SAM-dependent methyltransferase 8.20 
Pp_4243 Pyoverdine synthetase (PvdL) 8.11 
Pp_4221 Non-ribosomal peptide synthetase (PvdI) 7.31 

Cysz Sulfate transporter CysZ 7.26 
Pp_3796 L-ornithine N5-oxygenase (PvdA) 6.13 
Pp_3179 Transcriptional regulator, LysR family 4.18 
Pp_4223 Diaminobutyrate-2-oxoglutarate transaminase 3.31 
Pp_4421 Aminotransferase, class III 3.28 
Pp_0154 Propionyl-CoA:succinate CoA transferase 2.08 
Pp_0566 Translation initiation factor SUI1 (yciH) 1.72 
Mmsa-1 Methylmalonate-semialdehyde dehydrogenase 1.68 

Succ Succinyl-CoA ligase [ADP-forming] subunit beta 1.48 
Sucd Succinyl-CoA ligase [ADP-forming] subunit alpha 1.39 
Fpva Outer membrane ferripyoverdine receptor 1.39 

Pp_1078 ABC transporter, ATP-binding protein, putative (Iron 
transporter) 

1.21 

Ndh NADH dehydrogenase 1.19 
Pp_2474 Glutathione S-transferase family protein 1.19 

Exbb Ferric siderophore transport system protein ExbB 1.08 
Waap Lipopolysaccharide core heptose(I) kinase 1.00 

Pp_3091 ImcF-like family protein -15.03 
Proc-1 Pyrroline-5-carboxylate reductase -13.93 

Pp_3775 Sarcosine oxidase, putative -13.35 
Pp_1661 Dehydrogenase subunit, putative -13.13 
Pp_3090 OmpA domain protein -13.09 
Pp_3088 ImpA_N domain-containing protein -13.00 
Pp_3777 Methyltranfer_dom domain-containing protein -12.96 
Pp_3094 Type VI secretion system lipoprotein TssJ -12.94 
Pp_1246 Conserved domain protein -12.89 
Pp_1659 Cytochrome C -12.54 
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Pp_5395 BpsA_C domain-containing protein -12.32 
Pp_3784 Conserved domain protein (Endoribonuclease L-PSP) -12.22 

Pp_3781 
Oxygen-independent Coproporphyrinogen III oxidase 
family protein -12.11 

Pp_3092 DotU domain-containing protein -11.96 
Pp_3108 Rhs-related protein (Related to secretion system) -11.73 
Pp_3097 ImpG (Type VI secretion system baseplate subunit TssF) -11.53 
Pp_4834 SPFH domain/Band 7 family protein -11.44 
Pp_3100 Type VI secretion system contractile sheath small subunit -10.99 
Pp_3611 Exported protein -10.87 
Pp_3691 DNA helicase-related protein -10.80 
Pp_1245 SH3b domain-containing protein -10.72 
Pp_1795 DUF4438 domain-containing protein -10.69 

Glgb 1,4-alpha-glucan branching enzyme GlgB -10.62 
Pp_0570 Extracellular protein, putative (Alpha-2-macroglobulin) -10.55 

Pp_4669 
OmpA family protein (Related to cell turgor maintenance 
(Chevalier et al., 2017) and acting as non-specific 
transporters of ionic species (Nestorovich et al., 2006) 

-10.53 

Pp_3786 Aminotransferase -9.84 
Pp_1502 OmpA family protein -9.79 

Malq 4-alpha-glucanotransferase -9.72 
Pp_3638 Acyl-CoA dehydrogenase, putative -9.57 
Pp_2536 Glutathione S-transferase family protein -9.55 

Glpe Thiosulfate sulfurtransferase GlpE -9.48 

Pp_0824 Phosphate ABC transporter, periplasmic phosphate-
binding protein, putative 

-9.43 

Pp_2007 P-47-related protein -9.37 
Pp_1726 ABC transporter, periplasmic binding protein -9.36 

Eco 
(Pp_3072) Ecotin -9.24 

Pp_4053 Glycosyl hydrolase, putative (Maltooligosyl trehalose 
synthase, TreY) -9.22 

Pp_4981 UPF0312 protein PP_4981 -9.13 
Glga Glycogen synthase -9.10 

Pp_1790 Acylneuraminate cytidylyltransferase, putative -8.96 
Pp_3680 Uncharacterized protein (ATP-dependent endonuclease) -8.86 
Pp_4939 Glycosyltransferase family 2 protein -8.82 

Rnk Nucleoside diphosphate kinase regulator -8.72 
Pp_3087 Excinuclease ABC, A subunit, putative -8.68 
Pp_1793 Glycosyl transferase, group 2 family protein -8.67 

Ppra Alginate biosynthesis protein PprA -8.59 
Pp_2853 Uncharacterized protein (Transporter) -8.52 
Pp_0203 Tabtoxinine-beta-lactam limiting dipeptidase, putative -8.50 
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Pp_3785 
Uncharacterized protein (related to Non-hame Fe2+, 
alpha-ketoglutarate-dependent halogenase; 
Syringomycin biosynthesis enzyme 2) 

-8.35 

Pp_3788 Non-ribosomal peptide synthetase, putative -8.33 
Hisi Phosphoribosyl-AMP cyclohydrolase -8.29 

Pp_1660 Uncharacterized protein (related to the putitive cluster 
dehydrogenase) 

-8.27 

Pp_3127 Exopolysaccharide transport protein, putative -8.19 
Sela L-seryl-tRNA(Sec) selenium transferase -8.19 

Glge 
Alpha-1,4-glucan:maltose-1-phosphate 
maltosyltransferase -7.99 

Pp_3099 Uncharacterized protein (Uricase/urate oxidase) -7.83 
Pp_1663 Uncharacterized protein (Dehydrogenase) -7.82 
Pp_3822 Cytochrome c family protein -7.72 
Pp_4938 Glycosyl transferase, putative -7.62 

Pp_1510 Carboxyvinyl-carboxyphosphonate phosphorylmutase, 
putative -7.54 

Pp_4100 Transcriptional regulator, Cro/CI family -7.23 
Pp_4051 Malto-oligosyltrehalose trehalohydrolase -7.21 
Pp_2258 Sensory box protein -7.18 

Coae Dephospho-CoA kinase -7.16 

Pp_4448 
Uncharacterized protein (Helicase HerA central domain-
containing protein) -7.00 

Pp_3128 Exopolysaccharide biosynthesis/transport protein, 
putative -6.99 

Dapf-1 Diaminopimelate epimerase -6.76 
Pp_2629 Uncharacterized protein (Not found in UniProt) -6.28 
Pp_0765 Uncharacterized protein (Adhesin) -6.07 
Pp_3095 Chaperone-associated ATPase, putative -6.03 

Mety O-acetylhomoserine sulfhydrylase -5.82 
Pp_3988 Uncharacterized protein (related to DNA) -5.01 
Pp_1791 Aldolase/synthase, putative -4.60 

Pp_0766 Uncharacterized protein (DUF1329 domain-containing 
protein) -4.08 

Pp_0258 LysM domain protein -3.93 
Algc Phosphomannomutase/phosphoglucomutase -3.90 

Pp_1893 

Acyl-CoA dehydrogenase, putative (FadE) a long-chain 
2,3-saturated fatty acyl-CoA + H+ + oxidized [electron-
transfer flavoprotein] = a long-chain (2E)-enoyl-CoA + 
reduced [electron-transfer flavoprotein] 

-3.90 

Pp_1230 Uncharacterized protein (DUF945 domain-containing 
protein) -3.77 

Mine Cell division topological specificity factor -3.58 
Pp_5365 Cyclopropane-fatty-acyl-phospholipid synthase, putative -3.30 

Acna Aconitate hydratase -3.20 
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Rmla Glucose-1-phosphate thymidylyltransferase -3.17 

Pp_3106 Uncharacterized protein (Gp5/Type VI secretion system 
Vgr protein OB-fold domain-containing protein) 

-3.13 

Pp_0397 Uncharacterized protein (Protein kinase YeaG) -3.13 
Pp_1786 Glycosyl transferase, putative -2.99 

Ohr Organic hydroperoxide resistance protein -2.84 
Pp_2132 Universal stress protein -2.83 
Pp_0396 UPF0229 protein PP_0396 -2.76 
Pp_5182 Aminotransferase, class III -2.75 

Tolc Agglutination protein -2.69 
Hupb DNA-binding protein HU-beta -2.66 

Icd Isocitrate dehydrogenase [NADP] -2.63 
Biod ATP-dependent dethiobiotin synthetase BioD -2.62 
Glgp Alpha-1,4 glucan phosphorylase -2.60 

Pp_3089 Uncharacterized protein (Type VI secretion system tube 
protein Hcp) -2.45 

Fumc Fumarate hydratase class II -2.42 
Tpx Probable thiol peroxidase -2.40 

Pp_0886 Uncharacterized protein (DUF541 domain-containing 
protein) 

-2.38 

Pp_0893 ThiJ/PfpI family protein -2.36 

Pp_5156 Uncharacterized protein (DUF4399 domain-containing 
protein) -2.29 

Pp_1071 Amino acid ABC transporter, periplasmic amino acid-
binding protein -2.16 

Pp_5303 Endoribonuclease -2.13 

Pp_1752 Uncharacterized protein (Polyphosphate kinase-2-related 
domain-containing protein) -2.12 

Pp_4802 UPF0250 protein PP_4802 -2.12 
Pp_0679 Uncharacterized protein DUF -2.11 
Pp_2648 Universal stress protein family -2.11 

Ansb Glutaminase-asparaginase -2.09 
Pp_1908 Peptidase, putative -2.09 

Rpos RNA polymerase sigma factor RpoS -2.04 
Gcd Glucose dehydrogenase (Pyrroloquinoline-quinone) -2.01 

Pp_4570 Uncharacterized protein -1.97 

Glnd 
Bifunctional uridylyltransferase/uridylyl-removing 
enzyme -1.93 

Pp_0859 Carbon-nitrogen hydrolase family protein -1.89 

Pp_2105 Uncharacterized protein (Aspartyl/asparaginy/proline 
hydroxylase domain-containing protein) 

-1.85 

Pp_3754 Beta-ketothiolase -1.84 
Phop Transcriptional regulatory protein PhoP -1.82 

Pp_5234 Nitrogen regulatory protein P-II -1.75 
Trx-2 Thioredoxin -1.71 
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Pp_0370 Acyl-CoA dehydrogenase family protein (Related to 
FadB) 

-1.70 

Acpp Acyl carrier protein -1.70 
Pp_0541 Acetyltransferase, GNAT family -1.69 

Efp Elongation factor P -1.69 
Ppib Peptidyl-prolyl cis-trans isomerase -1.69 

Pp_2189 Uncharacterized protein (DUF) -1.65 
Dksa RNA polymerase-binding transcription factor DksA -1.64 

Pp_4067 
(MmcA) 

Acetyl-CoA carboxylase, biotin carboxylase, putative 
(Methylcrotonyl-CoA carboxylase biotin-containing 
subunit alpha) 

-1.56 

Anr Transcriptional regulator Anr -1.52 

Pp_1695 Sodium-solute symporter/sensory box histidine 
kinase/response regulator, putative 

-1.51 

Pp_0368 Acyl-CoA dehydrogenase, putative (Related to FadB) -1.49 
Pp_1056 Iron-chelator utilization protein, putative -1.48 

Ppc Phosphoenolpyruvate carboxylase -1.43 
Pp_1488 Methyl-accepting chemotaxis transducer -1.41 
Pp_4034 N-carbamoyl-beta-alanine amidohydrolase, putative -1.39 

Acsa1 Acetyl-coenzyme A synthetase 1 -1.38 
Cspa-2 Cold shock protein CspA -1.35 

Hpf Ribosome hibernation promoting factor -1.33 
FabB 3-oxoacyl-(Acyl-carrier-protein) synthase I -1.32 
Csta Carbon starvation protein CstA -1.29 

Pp_0985 Cold-shock domain family protein -1.28 
Katg Catalase-peroxidase -1.28 
Mind Site-determining protein -1.28 
Rmlb dTDP-glucose 4,6-dehydratase -1.27 

Pp_1478 Xenobiotic reductase, putative -1.26 
Oprq Outer membrane protein OprE3 -1.25 
Ivd Isovaleryl-CoA dehydrogenase -1.22 

Pp_0545 Aldehyde dehydrogenase family protein -1.22 
Ompr-1 DNA-binding response regulator OmpR -1.21 
Pp_1481 Betaine aldehyde dehydrogenase, putative -1.20 
Pp_0086 Uncharacterized protein -1.20 
Pp_2806 Transcriptional regulator, TetR family -1.18 
Mmsb 3-hydroxyisobutyrate dehydrogenase -1.16 

Pp_5309 Transcriptional regulator, LysR family -1.16 

Pp_1787 
Uncharacterized protein (Oxidative and nitrosative stress 
transcriptional dual regulator, OxyR) -1.10 

Fadb1x Enoyl-CoA hydratase/isomerase FadB1x -1.09 
Fadax 3-ketoacyl-CoA thiolase -1.03 
Glmu Bifunctional protein GlmU -1.03 

Pp_4760 Alcohol dehydrogenase, zinc-containing -1.03 
Pp_1993 Uncharacterized protein (Putative motility protein fimV) -1.01 
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Table S5.2. Differentially expressed protein in double mutant gacA fabB against Wild-type strain. 
The table shows protein ID (PP_number or protein name), protein description and Log2(fold-
change). 

 

Protein Protein description 
Log

2
(fold 

change) 
gacA fabB Vs Wild-type 

Ppsd Non-ribosomal siderophore peptide synthetase 9.83 
Pp_0861 Outer membrane ferric siderophore receptor 9.36 
Pp_4243 Pyoverdine synthetase 8.71 
Pp_4213 Dipeptidase, putative 8.62 
Pp_4245 Siderophore biosynthesis protein, putative 8.38 
Pp_3612 TonB-dependent receptor, putative 8.24 
Metn1 Methionine import ATP-binding protein MetN 1 8.16 

Pp_3553 AMP-binding domain protein 7.87 
Cysz Sulfate transporter CysZ 7.77 
Arop Aromatic amino acid transporter 7.76 

Pp_3796 L-ornithine N5-oxygenase 7.68 
Pp_4214 Aminotransferase, class V 7.58 
Pp_0860 Sulfite reductase, flavoprotein component, putative 7.29 
Pp_1125 Helicase, putative 7.28 
Pp_4221 Non-ribosomal peptide synthetase 7.15 
Pp_4422 Succinate-semialdehyde dehydrogenase, putative 6.97 
Pp_3599 5-dehydro-4-deoxyglucarate dehydratase 6.84 
Pp_0867 FecA-like outer membrane receptor 6.70 
Pp_1067 Histidine kinase 6.42 
Pp_0862 PKHD-type hydroxylase PP_0862 6.26 
Pp_3179 Transcriptional regulator, LysR family 4.76 
Pp_4421 Aminotransferase, class III 2.34 

Exbd Ferric siderophore transport system, inner membrane 
protein ExbD 1.67 

Ndh NADH dehydrogenase 1.64 
Pp_0566 Translation initiation factor SUI1 1.61 

Fpva Outer membrane ferripyoverdine receptor 1.56 
Exbb Ferric siderophore transport system protein ExbB 1.51 

Pp_1078 ABC transporter, ATP-binding protein, putative 1.26 
Prfc Peptide chain release factor 3 1.02 

Pp_3091 Uncharacterized protein (Imv protein, related to secretion) -15.03 
Proc-1 Pyrroline-5-carboxylate reductase -13.93 

Pp_3775 Sarcosine oxidase, putative -13.35 
Pp_1661 Dehydrogenase subunit, putative -13.13 
Pp_3777 Methyltranfer_dom domain-containing protein -12.96 
Pp_1246 Conserved domain protein -12.89 
Pp_1659 Cytochrome C -12.54 
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Pp_5395 
BpsA_C domain-containing protein (N(4)-
bis(aminopropyl)spermidine synthase C-terminal 
domain-containing protein) 

-12.32 

Pp_3784 Conserved domain protein -12.22 

Pp_3781 Oxygen-independent Coproporphyrinogen III oxidase 
family protein -12.11 

Pp_3092 DotU domain-containing protein -12.01 
Pp_3783 Syringomycin biosynthesis enzyme 2, syrB -11.64 
Pp_3097 ImpG (Type VI secretion system baseplate subunit TssF) -11.53 
Pp_3094 Type VI secretion system lipoprotein TssJ -11.52 
Pp_4834 SPFH domain/Band 7 family protein -11.44 
Pp_1245 SH3b domain-containing protein -10.72 
Pp_3096 Type VI secretion system baseplate subunit TssG -10.13 
Pp_3786 Aminotransferase -9.84 

Malq 4-alpha-glucanotransferase -9.72 
Pp_2166 Anti-anti-sigma factor -9.60 
Pp_3638 Acyl-CoA dehydrogenase, putative -9.57 
Pp_1821 Glutathione S-transferase family protein -9.37 
Pp_2007 P-47-related protein -9.37 
Pp_1726 ABC transporter, periplasmic binding protein -9.36 

Eco Ecotin -9.24 
Ssud Alkanesulfonate monooxygenase -9.15 
Glga Glycogen synthase -9.10 

Pp_1790 Acylneuraminate cytidylyltransferase, putative -8.96 
Pp_3680 Uncharacterized protein (atp-dependent endonuclease) -8.86 
Rhda-2 Sulfurtransferase -8.80 

Rnk Nucleoside diphosphate kinase regulator -8.72 
Pp_3087 Excinuclease ABC, A subunit, putative -8.68 
Pp_1793 Glycosyl transferase, group 2 family protein -8.67 
Pp_0586 Heavy metal translocating P-type ATPase -8.57 
Pp_2853 Uncharacterized protein (Transporter) -8.52 
Pp_0203 Tabtoxinine-beta-lactam limiting dipeptidase, putative -8.50 
Pp_2536 Glutathione S-transferase family protein -8.37 

Pp_3785 
Uncharacterized protein (related toNon-haem fe2+, alpha-
ketoglutarate-dependent halogenase; Syringomycin 
biosynthesis enzyme 2; ) 

-8.35 

Pp_3788 Non-ribosomal peptide synthetase, putative -8.33 

Pp_1660 Uncharacterized protein (related to the putitive cluster 
dehydrogenase) -8.27 

Ssuf Organosulfonate utilization protein SsuF -8.19 
Pp_0142 ABC transporter, permease protein, putative -8.11 

Glge Alpha-1,4-glucan:maltose-1-phosphate 
maltosyltransferase 

-7.99 

Wbpz Glycosyl transferase WbpZ -7.82 
Pp_3822 Cytochrome c family protein -7.72 
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Pp_0570 Extracellular protein, putative -7.71 
Pp_4100 Transcriptional regulator, Cro/CI family -7.23 
Pp_4051 Malto-oligosyltrehalose trehalohydrolase -7.21 
Pp_2258 Sensory box protein -7.18 

Pp_3128 Exopolysaccharide biosynthesis/transport protein, 
putative -6.99 

GacA DNA-binding response regulator GacA -6.97 
Dapf-1 Diaminopimelate epimerase -6.76 

Pp_3108 Rhs-related protein -6.45 
Pp_3100 Type VI secretion system contractile sheath small subunit -6.21 

Mety O-acetylhomoserine sulfhydrylase -5.86 
Pp_3093 Type VI secretion system baseplate subunit TssK -5.71 
Pp_3691 DNA helicase-related protein -5.00 
Pp_3095 Chaperone-associated ATPase, putative -4.79 
Pp_0258 LysM domain protein -4.75 
Pp_3761 Sensor histidine kinase/response regulator -4.61 
Pp_4054 Uncharacterized protein (DUF) -4.40 

Pp_1893 

Acyl-CoA dehydrogenase, putative (FadE) a long-chain 
2,3-saturated fatty acyl-CoA + H+ + oxidized [electron-
transfer flavoprotein] = a long-chain (2E)-enoyl-CoA + 
reduced [electron-transfer flavoprotein] 

-4.31 

Pp_3988 Uncharacterized protein (related to DNA) -4.26 
Pp_0765 Uncharacterized protein (Adhesin) -4.12 
Pp_4981 UPF0312 protein PP_4981 -3.55 

Trpc Indole-3-glycerol phosphate synthase -3.40 
Pp_1230 Uncharacterized protein DUF -3.33 
Pp_1791 Aldolase/synthase, putative -2.88 
Pp_0766 Uncharacterized protein DUF -2.87 
Pp_0428 HIT family protein -2.87 
Pp_1786 Glycosyl transferase, putative -2.86 

Csra Carbon storage regulator homolog -2.45 
Rmla Glucose-1-phosphate thymidylyltransferase -2.42 

Pp_1314 Oxidoreductase, aldo/keto reductase family -2.30 
Tolc Agglutination protein -2.30 

Pp_0165 GGDEF domain protein -2.24 
Pp_4138 Chromate reductase -2.13 
Pp_0396 UPF0229 protein PP_0396 -2.12 
Pp_2648 Universal stress protein family -2.10 
Pp_5156 Uncharacterized protein DUF -2.03 
Pp_0893 ThiJ/PfpI family protein -2.02 

Pp_3089 Uncharacterized protein (Type VI secretion system tube 
protein Hcp) -2.01 

Fumc Fumarate hydratase class II -1.97 

Pp_1752 (Polyphosphate kinase-2-related domain-containing 
protein) 

-1.90 
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Ppic-2 Peptidyl-prolyl cis-trans isomerase C -1.89 
Ohr Organic hydroperoxide resistance protein -1.88 
Cmk Cytidylate kinase -1.81 

Pp_0679 Uncharacterized protein DUF -1.81 
Sodb Superoxide dismutase [Fe] -1.80 

Pp_0397 Uncharacterized protein (Protein kinase YeaG) -1.75 
Pp_5234 Nitrogen regulatory protein P-II -1.68 
Pp_5303 Endoribonuclease -1.68 

Brac Branched-chain amino acid ABC transporter, periplasmic 
amino acid-binding protein -1.66 

Pp_2105 (Aspartyl/asparaginy/proline hydroxylase domain-
containing protein) 

-1.66 

Trpa Tryptophan synthase alpha chain -1.58 
Rpos RNA polymerase sigma factor RpoS -1.53 

Pp_0202 CBS domain protein -1.53 
Pp_3754 Beta-ketothiolase -1.49 
Pp_2189 Uncharacterized protein (DUF) -1.46 
Pp_5365 Cyclopropane-fatty-acyl-phospholipid synthase, putative -1.42 

Phop Transcriptional regulatory protein PhoP -1.36 
Tpx Probable thiol peroxidase -1.33 
Anr Transcriptional regulator Anr -1.33 
Adk Adenylate kinase -1.32 

Pp_0592 Oxidoreductase, short chain dehydrogenase/reductase 
family 

-1.31 

Efp Elongation factor P -1.30 
Trx-2 Thioredoxin -1.29 
Acpp Acyl carrier protein -1.26 

Pp_0985 Cold-shock domain family protein -1.25 
Pp_0545 Aldehyde dehydrogenase family protein -1.21 
Pp_1056 Iron-chelator utilization protein, putative -1.20 
Pp_1895 ABC transporter, ATP-binding protein -1.20 

Rmld dTDP-4-dehydrorhamnose reductase -1.18 
Ppib Peptidyl-prolyl cis-trans isomerase -1.14 

Pp_1787 
Uncharacterized protein (Oxidative and nitrosative stress 
transcriptional dual regulator, OxyR) -1.05 

Pp_1291 PhoH family protein -1.03 
Pp_1478 Xenobiotic reductase, putative -1.02 

Gnd 6-phosphogluconate dehydrogenase -1.01 
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Table S5.3. Differentially expressed protein in double mutant gacA fabB against SEM1.4evo strain. 
The table shows protein ID (PP_number or protein name), protein description and Log2(fold-
change). 

 

Protein Protein description Log
2
(fold change) 

gacA fabB Vs SEM1.4evo 
Pp_4939 Glycosyltransferase family 2 protein 8.07 
Pp_4938 Glycosyl transferase, putative 8.04 
Pp_3192 Transcriptional regulator DauR 7.27 
Pp_3553 AMP-binding domain protein 7.87 

Hupb DNA-binding protein HU-beta 2.67 
Acsa1 Acetyl-coenzyme A synthetase 1 1.64 

Pp_5278 Aldehyde dehydrogenase family protein 1.01 
Pp_5365 Cyclopropane-fatty-acyl-phospholipid synthase, putative 1.88 
Pp_0154 Acetyl-CoA hydrolase/transferase family protein -1.41 

Succ Succinyl-CoA ligase [ADP-forming] subunit beta -1.33 
Sucd Succinyl-CoA ligase [ADP-forming] subunit alpha -1.29 
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Table S5.4. Relative net fluxes determined by 13C-MFA in the Pseudomonas putida SEM1.4 
model. Relative mean values (%) are net fluxes relative to acetate uptake rate of 100% (uptake 
rates were estimated for each strain and those mean values are reported in Table 2). Mean 
parameter estimates and 95% confidence bounds using INCA’s parameter continuation 
method are shown below for SEM1.4, SEM1.4 Evolved and SEM1.4 uvrYE197K fabBL77P. 
 

Reaction 
ID Equation 

Pseudomonas putida 
SEM1.4 

Pseudomonas putida 
SEM1.4 Evolved 

Pseudomonas putida 
SEM1.4 uvrYE197K fabBL77P 

Value 
(%) 

SD 
Lower 
bond 

Upper 
bond 

Value 
(%) 

SD 
Lower 
bond 

Upper 
bond 

Value 
(%) 

SD 
Lower 
bond 

Upper 
bond 

1 Ac.ext -> Ac 100.0 0.0 100.0 100.0 100.0 0.0 100.0 100.0 100.0 0.0 100.0 100.0 

2 Ac + 2*ATP -> AcCoA 100.7 0.0 100.7 100.7 101.1 0.0 101.1 101.1 101.1 0.0 101.1 101.1 

3 OAA + AcCoA -> Cit 71.3 0.4 70.9 71.6 76.6 0.0 76.5 76.6 77.4 0.2 77.3 77.4 

4 Cit <-> ICit 71.3 0.4 70.9 71.6 76.6 0.0 76.5 76.6 77.4 0.2 77.3 77.4 

5 ICit -> Suc + Glyox 33.7 0.3 33.2 34.2 44.8 0.3 44.3 45.3 45.1 0.3 44.7 45.6 

6 Glyox + AcCoA -> 
Mal 

33.7 0.3 33.2 34.2 44.8 0.3 44.3 45.3 45.1 0.3 44.7 45.6 

7 
ICit -> AKG + CO2 + 
NADPH 37.7 0.5 37.0 37.9 31.8 0.3 31.2 32.3 32.3 0.5 31.8 32.6 

8 
AKG -> SucCoA + 
CO2 + NADH 

36.2 0.5 35.5 36.4 29.3 0.3 28.7 29.8 29.8 0.5 29.4 30.2 

9 
SucCoA <-> Suc + 
ATP 

35.8 0.5 35.1 36.0 28.6 0.3 28.1 29.1 29.2 0.5 28.8 29.6 

10 Suc -> Fum + FADH2 69.8 0.4 69.3 70.1 74.0 0.0 74.0 74.1 74.9 0.2 74.9 75.0 

11 Fum <-> Mal 70.5 0.4 70.0 70.7 75.1 0.0 75.0 75.1 75.9 0.2 75.9 76.0 

12 Mal -> OAA + FADH2 75.3 1.0 69.6 81.2 81.1 1.6 74.4 84.4 78.5 5.0 75.5 80.7 

13 Pyr + CO2 + ATP -> 
OAA 

17.2 2.5 12.3 26.8 8.8 2.9 4.5 14.9 9.5 6.0 7.9 13.4 

14 
Pyr -> AcCoA + CO2 + 
NADH 7.9 0.4 7.1 8.7 26.7 0.3 26.2 27.3 27.7 0.5 27.3 28.2 

15 OAA -> Pyr + CO2 0.0 1.3 0.0 15.5 0.0 2.7 0.0 11.9 0.0 3.5 0.0 6.0 

16 PEP + CO2 -> OAA 0.0 7.6 0.0 13.0 0.0 0.0 0.0 7.4 0.0 1.7 0.0 4.6 

17 
OAA + ATP -> PEP + 
CO2 18.6 5.2 18.3 34.5 9.6 2.7 9.5 19.0 7.0 4.1 6.9 13.1 

18 
Mal -> Pyr + CO2 + 
NADPH 

28.8 1.0 22.7 34.5 38.7 1.4 35.8 43.8 42.5 5.0 40.7 45.9 

19 G6P <-> F6P -44.4 0.9 -45.8 -43.5 -1.0 0.1 -1.1 -0.9 -1.0 0.1 -1.1 -0.9 

20 FBP -> F6P 15.4 0.4 15.1 16.0 1.5 0.1 1.4 1.6 1.7 0.2 1.6 1.8 

21 FBP <-> DHAP + GAP -15.4 0.4 -16.0 -15.1 -1.5 0.1 -1.6 -1.4 -1.7 0.2 -1.8 -1.6 

22 DHAP <-> GAP -15.4 0.4 -16.0 -15.1 -1.5 0.1 -1.6 -1.4 -1.7 0.2 -1.8 -1.6 

23 
GAP <-> 3PG + ATP + 
NADH 

-16.6 0.4 -17.1 -16.3 -3.4 0.1 -3.5 -3.3 -3.5 0.2 -3.6 -3.4 

24 3PG <-> PEP -17.6 0.5 -18.1 -17.2 -5.4 0.1 -5.5 -5.2 -5.4 0.3 -5.5 -5.2 

25 PEP -> Pyr + ATP 0.0 5.2 0.0 15.5 2.5 2.7 0.0 11.9 0.0 4.1 0.0 6.0 

26 G6P -> 6PG + NADPH 44.2 0.9 43.3 45.6 0.6 0.1 0.5 0.7 0.6 0.1 0.5 0.8 

27 6PG -> Ri5P + CO2 + 
NADPH 

44.1 0.9 43.2 45.5 0.2 0.0 0.1 0.3 0.1 0.1 0.0 0.2 

28 Ri5P <-> X5P 29.1 0.6 28.5 30.0 -0.4 0.0 -0.5 -0.4 -0.5 0.0 -0.6 -0.4 

29 Ri5P <-> R5P 15.1 0.3 14.8 15.5 0.7 0.0 0.6 0.7 0.6 0.0 0.6 0.6 

30 X5P <-> GAP + EC2 29.1 0.6 28.5 30.0 -0.4 0.0 -0.5 -0.4 -0.5 0.0 -0.6 -0.4 

31 F6P <-> E4P + EC2 -14.3 0.3 -14.7 -14.0 0.7 0.0 0.6 0.7 0.7 0.0 0.6 0.7 

32 S7P <-> R5P + EC2 -14.8 0.3 -15.3 -14.5 -0.2 0.0 -0.3 -0.2 -0.2 0.0 -0.2 -0.1 

33 F6P <-> GAP + EC3 -14.8 0.3 -15.3 -14.5 -0.2 0.0 -0.3 -0.2 -0.2 0.0 -0.2 -0.1 

34 S7P <-> E4P + EC3 14.8 0.3 14.5 15.3 0.2 0.0 0.2 0.3 0.2 0.0 0.1 0.2 
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35 6PG -> Pyr + GAP 0.1 0.2 0.0 0.2 0.4 0.1 0.3 0.5 0.6 0.2 0.5 0.7 

36 AKG + NADPH + 
NH3 -> Glu 

8.8 0.1 8.7 8.8 14.3 0.0 14.2 14.3 13.8 0.2 13.7 13.9 

37 Glu + ATP + NH3 -> 
Gln 

1.1 0.0 1.1 1.1 1.7 0.0 1.7 1.7 1.7 0.0 1.7 1.7 

38 
Glu + ATP + 
2*NADPH -> Pro 

0.3 0.0 0.3 0.3 0.6 0.0 0.6 0.6 0.5 0.0 0.5 0.5 

39 

Glu + CO2 + Gln + Asp 
+ AcCoA + 5*ATP + 
NADPH -> Arg + 
AKG + Fum + Ac 

0.5 0.0 0.5 0.5 0.8 0.0 0.8 0.8 0.7 0.0 0.7 0.7 

40 
OAA + Glu -> Asp + 
AKG 

2.6 0.3 2.5 2.7 3.7 0.0 3.6 3.8 3.6 0.5 3.4 3.7 

41 
Asp + 2*ATP + NH3 -
> Asn 

0.2 0.0 0.2 0.2 0.3 0.0 0.3 0.3 0.3 0.0 0.3 0.3 

42 
Pyr + Glu -> Ala + 
AKG 0.8 0.0 0.8 0.8 1.3 0.0 1.3 1.3 1.2 0.0 1.2 1.2 

43 
3PG + Glu -> Ser + 
AKG + NADH 

1.0 0.1 0.9 1.0 1.9 0.0 1.9 2.0 1.9 0.2 1.8 1.9 

44 Ser <-> Gly + 
MEETHF 

0.3 0.1 0.2 0.3 0.7 0.0 0.7 0.8 0.7 0.2 0.6 0.8 

45 
Gly <-> CO2 + 
MEETHF + NADH + 
NH3 

0.1 0.1 0.0 0.1 -0.2 0.0 -0.3 -0.2 -0.2 0.2 -0.3 -0.1 

46 
Thr <-> Gly + AcCoA 
+ NADH 

0.4 0.3 0.2 0.4 0.0 0.0 -0.1 0.1 0.0 0.5 -0.2 0.1 

47 
Ser + AcCoA + 3*ATP 
+ 4*NADPH + SO4 -> 
Cys + Ac 

0.2 0.0 0.2 0.2 0.4 0.0 0.4 0.4 0.4 0.0 0.4 0.4 

48 

Asp + Pyr + Glu + 
SucCoA + ATP + 
2*NADPH -> 
LL_DAP + AKG + Suc 

0.2 0.0 0.2 0.2 0.4 0.0 0.4 0.4 0.4 0.0 0.4 0.4 

49 LL_DAP -> Lys + CO2 0.2 0.0 0.2 0.2 0.4 0.0 0.4 0.4 0.4 0.0 0.4 0.4 

50 
Asp + 2*ATP + 
2*NADPH -> Thr 1.0 0.3 0.9 1.1 1.1 0.0 1.0 1.2 1.0 0.5 0.9 1.2 

51 

Asp + METHF + Cys + 
SucCoA + ATP + 
2*NADPH -> Met + 
Pyr + Suc + NH3 

0.2 0.0 0.2 0.2 0.3 0.0 0.3 0.3 0.3 0.0 0.3 0.3 

52 
Pyr + Pyr + Glu + 
NADPH -> Val + CO2 
+ AKG 

0.5 0.0 0.5 0.5 0.8 0.0 0.8 0.8 0.8 0.0 0.8 0.8 

53 

AcCoA + Pyr + Pyr + 
Glu + NADPH -> Leu 
+ CO2 + CO2 + AKG + 
NADH 

0.8 0.0 0.8 0.8 1.4 0.0 1.4 1.4 1.3 0.0 1.3 1.3 

54 
Thr + Pyr + Glu + 
NADPH -> Ile + CO2 + 
AKG + NH3 

0.3 0.0 0.3 0.3 0.5 0.0 0.5 0.5 0.5 0.0 0.5 0.5 

55 
PEP + PEP + E4P + Glu 
+ ATP + NADPH -> 
Phe + CO2 + AKG 

0.2 0.0 0.2 0.2 0.4 0.0 0.4 0.4 0.4 0.0 0.4 0.4 

56 

PEP + PEP + E4P + Glu 
+ ATP + NADPH -> 
Tyr + CO2 + AKG + 
NADH 

0.2 0.0 0.2 0.2 0.3 0.0 0.3 0.3 0.3 0.0 0.3 0.3 

57 

Ser + R5P + PEP + E4P 
+ PEP + Gln + 3*ATP + 
NADPH -> Trp + CO2 
+ GAP + Pyr + Glu 

0.1 0.0 0.1 0.1 0.2 0.0 0.2 0.2 0.2 0.0 0.2 0.2 

58 

R5P + FTHF + Gln + 
Asp + 5*ATP -> His + 
AKG + Fum + 
2*NADH 

0.2 0.0 0.2 0.2 0.3 0.0 0.3 0.3 0.3 0.0 0.3 0.3 

59 
MEETHF + NADH -> 
METHF 

0.2 0.0 0.2 0.2 0.3 0.0 0.3 0.3 0.3 0.0 0.3 0.3 

60 
MEETHF -> FTHF + 
NADPH 

0.2 0.0 0.2 0.2 0.3 0.0 0.3 0.3 0.3 0.0 0.3 0.3 
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61 Biomass 1.3 0.0 1.3 1.3 2.2 0.0 2.2 2.2 2.1 0.0 2.1 2.1 

62 CO2_unlabeled <-> 
CO2 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

63 NADH <-> NADPH 30.1 6.1 22.4 31.0 56.2 0.1 50.0 56.4 57.6 3.1 54.4 57.8 

64 
ATP -> 
ATP.maintenance 

2.7 0.0 2.7 2.7 3.6 0.0 3.6 3.6 3.9 0.0 3.9 3.9 

65 
NADPH -> 
NADPH.maintenance 

169.2 4.2 163.6 169.3 103.1 1.6 99.8 104.1 109.4 1.9 107.3 109.6 

66 NADH + O2 -> 3*ATP 0.0 6.1 0.0 6.5 0.0 0.0 0.0 6.2 0.0 3.1 0.0 3.2 

67 FADH2 + O2 -> 2*ATP 145.1 1.0 139.0 150.7 155.2 1.6 148.5 158.4 153.5 5.0 150.4 155.6 

68 CO2 -> CO2.ext 158.8 0.0 158.8 158.8 131.9 0.0 131.9 131.9 134.2 0.0 134.2 134.2 

69 NH3.ext -> NH3 9.5 0.0 9.5 9.5 15.7 0.0 15.7 15.7 15.2 0.0 15.2 15.2 

70 SO4.ext -> SO4 0.2 0.0 0.2 0.2 0.4 0.0 0.4 0.4 0.4 0.0 0.4 0.4 

71 O2.ext -> O2 145.1 4.2 145.0 150.7 155.2 1.6 154.1 158.4 153.5 1.9 153.3 155.6 

Fit Yes Yes Yes 

SSR  210.5 268.3 185.3 

Expected SSR [185.3-268.4] [210.8 - 299] [185.3 - 268.4] 

Normally distributed Yes Yes Yes 

 
0.174*G6P + 0.068*F6P + 0.107*GAP + 1.882*AcCoA + 0.431*Gly + 0.263*Pro + 
0.598*Ala + 0.389*Val + 0.628*Leu + 0.244*Ile + 0.122*Met + 0.055*Cys + 0.191*Phe 
+ 0.135*Tyr + 0.077*Trp + 0.126*His + 0.18*Lys + 0.354*Arg + 0.251*Gln + 0.158*Asn 
+ 0.301*Glu + 0.284*Asp + 0.301*Ser + 0.256*Thr + 46.75*ATP -> Biomass 
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Chapter 6 - System-level analyses of Pseudomonas putida 
strains blocked in sugar phosphorylation and oxidation unveil 
adaptive mechanisms for restoring systemic equilibrium 
 

Abstract 

Glucose phosphorylation and oxidation in the soil bacterium Pseudomonas putida has 
been blocked to generate several mutants with different glucose processing peripheral 
pathways. The strategy involved the deletion of enzymatic activities in the following 
steps: i) glucose phosphorylation into glucose-6-phosphate (G6P), ii) glucose 
oxidation that channel carbon skeletons into gluconate or 2-keto-gluconate (2-KGA) 
and, iii) glucose phosphorylation and partially oxidation. A set of physiological and 
multi-omics analysis―metabolomics, proteomics and fluxomics―in the mutant 
strains, revealed a global metabolic rewiring of the native glucose metabolism 
components as a consequence of these genetic modifications. In the present study, we 
showed that pathway-specific metabolites and enzymes, which play a pivotal role in 
the energy homeostasis, modulate activities in EDEMP and TCA cycles. Time-course 
metabolomics exhibited substantial changes in hexose phosphates pools in EDEMP 
(mainly, G6P and F6P) and PP pathway metabolites. Proteomics captured variations 
in proteins involved in energy homeostasis, such as Gnd, GapA, Icd and Mqo3. 
Finally, 13C-labelling experiments indicated a significant increase in EMP and ED 
pathway fluxes as well as TCA cycle. The robust metabolic flexibility allows P. putida 
to cope with the genetic perturbations and preserves stable phenotypes, likely by 
redirecting metabolic fluxes of key reactions across the cell. 
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6.1 Introduction 

 Metabolic control in bacteria under genetic perturbations 

Bacteria possess the capacity to adapt to alterations in their environment by 
modulating their metabolic activities. The central carbon metabolism (CCM) 
constitutes a range of pathways, such as glycolysis, gluconeogenesis, pentose 
phosphate (PP) pathway, anaplerosis, tricarboxylic acid cycle (TCA), as well as the 
glyoxylate shunt (Westfall and Levin, 2018). CCM plays a vital role in maintaining the 
balance of carbon in the organism, and it can be regulated through gene expression, 
transcriptional regulation, and enzyme activity modulation. The aforementioned 
regulation is indispensable for the biological system to occupy a particular ecological 
niche and withstand adverse growth conditions (Maciąg, et al., 2011). Virtually all 
bacteria have developed systems to control metabolic fluctuations across the different 
layers of information―from the genotype to the phenotype. The inherent control of 
cellular processes operates primarily at the levels of the genome, post-transcriptional 
and post-translational modifications, allosteric regulation, and metabolites. These 
regulatory mechanisms work together to maintain balance in the quantities of 
metabolites and metabolic activity within the cellular metabolism (Gerosa and Sauer, 
2011). To provide perspective, one can draw a comparison between an electronic 
control system and the regulation of global metabolism. In this analogy, the input 
signal in the electronic device corresponds to the external signal in the biological 
system, which may consist of a specific metabolite concentration like glucose or 
environmental factors like temperature, pH, osmolarity or the presence of toxic 
compounds (Shimizu, 2013, Nijhout, et al., 2019). The external signals can set off a 
cascade of intracellular reactions that engage multiple cellular components, such as 
DNA, transcripts, proteins, and metabolites, via diverse biological pathways (Figure 
6.1). At the same time, internal signals, such as a high concentration of a particular 
metabolite, can activate or inhibit intracellular targets as part of the inherent biological 
regulatory system. A master regulator―mimicking a controller in the electronic 
system―dynamically regulates the biological components by modulating the levels of 
genes, transcripts, proteins, metabolites, and metabolic fluxes. Ultimately, the 
metabolic process generates an output signal that determines the final phenotype. 
However, in order to understand how a biological system re-routes carbon fluxes 
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against not only external (e.g., physicochemical factors) but also internal fluctuations 
(e.g., genetic modifications), it is mandatory to analysis several layers of information 
as well as to understand how they are interconnected (Friedman, et al., 2006, 
Chavarría, et al., 2012, Soma, et al., 2014, Kobayashi, et al., 2020).  

 

 
Figure 6.1. Schematic representation of the analogy between an electronic control system and 
metabolism. An external signal (purple circle) triggers a downstream response into the metabolism 
(dashed blue square). The controller modulates the fluctuations and controls the entire metabolic 
network by adjusting the components in the genome, transcriptome, proteome, metabolome and 
fluxome. Circles represent metabolites and the arrows are the connecting reactions. 

 
Understanding how cells are able to control and regulate metabolic networks can 
reveal the organization and interactions of cellular networks that enable complex 
processes such as glucose metabolism in bacteria (Sauer, et al., 2007). Several strategies 
were exemplified in numerous previous studies. As a first example, authors found 
that E. coli's intracellular metabolic network is highly stable and resilient when it is 
subjected to various disturbances (particularly to central carbon metabolism gene 
knock-out strains). This global stability is vital for efficient cell growth and allows E. 
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coli to respond effectively to changes in the concentration of growth-limiting 
substances. Fluctuating metabolite levels reflects an active regulation of enzyme 
expression to maximize growth rates (Kiviet, et al., 2014). This response enables E. coli 
to effectively deal with environmental fluctuations, but it may be costly because it 
requires additional systems such as sensor proteins, signal mediators, and 
transcriptional regulators to detect and respond to specific disturbances. The study 
suggests that this active response to environmental changes at the gene expression 
level is a common trait of E. coli. In addition, E. coli does not appear to respond 
significantly to the disruption of most single metabolic genes by regulating multiple 
mRNA or protein levels (Ishii, et al., 2007). Another example explores how the 
perturbations in promoter-ORF regions spread across the E. coli transcriptome. The 
authors used 255 microarrays representing 85 rewired networks and they found a 
wide range of perturbation with many common patterns of genes differentially 
expressed between different rewiring (Baumstark, et al., 2015). Finally, a metabolism-
centric study exploited the global regulatory network in Salmonella virulence under 
specific in vitro mimicking infection conditions. Computational network analysis 
combined with high-throughput –omics measurements allowed to inferred 168 
proteins in Salmonella virulence, which were clustered close to SPI-2 (Salmonella 
Pathogenicity Island-2) virulence proteins in the regulatory network. This provided 
critical insights in the pathogenicity process in this bacterium (Yoon, et al., 2011). 
 
The rapid expansion of more advanced systems biology approaches in the SynBio 
field allowed exploiting the microbial metabolism in-depth (Gurdo, et al., 2023). As it 
was previously stated in this thesis, multi-omic methodologies have gained significant 
attraction in the last decades. A versatile toolbox for a wide system-level analysis was 
developed not only to support a vast range of SynBio applications―guiding 
engineering efforts―but also to explore unknown edges of the metabolism. The 
incorporation of these techniques to studies on metabolism can disentangle the 
behavior of metabolic networks per se or; comprehend how cellular metabolism 
responds to internal/external changes (Chen, et al., 2013, Donati, et al., 2021). 
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 Pseudomonas putida KT2440 bears a model metabolic network to 
study genetic perturbations 

P. putida KT2440 is a bacterium that has been extensively studied for its metabolic 
capabilities. One of its interesting features is its ability to utilize glucose as a carbon 
source. Understanding the metabolic network involved in glucose utilization and its 
regulation can help to gain insights into the bacterium's core architecture. By studying 
genetic perturbations in the glucose metabolism of P. putida KT2440, it is possible to 
identify key regulatory genes and pathways involved in this process, paving the way 
for future research in the field of synthetic biology and biotechnology (Weimer, et al., 
2020). 
A detailed description of the central metabolic design of P. putida is explained in 
Chapter 1. In P. putida KT2440, glucose diffuses into the periplasm through the outer 
membrane porin (OprB) (Saravolac, et al., 1991, Wylie and Worobec, 1995, Llamas, et 
al., 2003). After entering into the periplasm, glucose is either (I) directly imported or 
(II) oxidized in the periplasm. The direct import (I) into the cytoplasm is orchestrated 
by the D-glucose ABC-transporter (GtsABCD) and; subsequent phosphorylation 
mediated by the glucokinase (Glk) into glucose-6-phosphate (G6P). The latter is 
further converted into 6-phosphogluconate (6PG) by the action of G6P dehydrogenase 
(G6PDH) and 6-phosphogluconolactonase (Pgl) or; (II) Two-step periplasmic 
oxidation to yield gluconate and 2-ketogluconate via glucose dehydrogenase (Gcd) 
and gluconate dehydrogenase (Gad), respectively. Later, gluconate and 2-
ketogluconate pass through the cytoplasmic membrane assisted by the GntT and 
KguT transporters. GnuK phosphorylates gluconate into 6-phosphogluconate. KguK 
acts over 2-ketogluconate to transform it into 2-ketogluconate-6-P (2-KG6P) which is 
further converted into 6-phosphogluconate (6PG) by the 2-ketogluconate-6-P 
reductase (KguD). Both gluconate and 2-ketogluconate can be secreted and retaken in 
a sequential manner (first gluconate and then 2-ketogluconate). The genes encoding 
glucokinase/glucose 6-phosphate dehydrogenase, which result in the production of 6-
phosphogluconate, are under the control of HexR (del Castillo, et al., 2008). 
Additionally, the genes responsible for the Entner-Doudoroff (ED) pathway enzymes 
that produce glyceraldehyde-3-phosphate and pyruvate, as well as gap-1 that encodes 
glyceraldehyde-3-phosphate dehydrogenase, are also regulated by HexR.  
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2-Keto-3-deoxy-6-phosphogluconate (KDPG), an intermediate metabolite in the 
Entner-Doudoroff (ED) pathway, acts as an effector of HexR causing its dissociation 
from target operators (zwf, edd, and gap-1 genes) (Daddaoua, et al., 2009). At the same 
time, ED pathway is also necessary for the catabolism of other sugars (e.g. fructose) 
and organic acids like gluconate and 2-ketogluconate. The pathways before described 
co-exist and act simultaneously in Pseudomonas putida KT2440. The upper glucose 
metabolism is represented in Figure 6.2. 
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Figure 6.2. Upper glucose metabolism in Pseudomonas putida KT2440. The picture shows how 
glucose enters from the extracellular space (Exterior) through the OprB porin into the periplasm. Here, 
it is either oxidized into gluconate and 2-ketogluconate (2-KGA) or phosphorylated in the cytosol by 
the action of the glucokinase (Glk). ZwfA,B,C, glucose 6-P dehydrogenase isozymes A, B and C; Pgl, 6-
phosphogluconolactonase; Gcd, glucose dehydrogenase; Gad, gluconate oxidase; GntT, gluconate 
transporter; KguT, 2-ketogluconate transporter; KguK, 2-ketogluconate kinase; KguD, 2-ketogluconate-
6-phosphate dehydrogenase; GnuK, gluconate kinase; PQQ, pyrroloquinoline quinone; PQQH2, 
pyrroloquinoline quinone reduced. 2-KGA-6P, 2-ketogluconate-6-phosphate. G6P, glucose-6-
phosphate. 6PG, 6-phosphogluconate. G3P, glyceraldehyde-3-phosphate. FBP, fructose-1,6-
bisphosphate. F6P, fructose-6-phosphate. Pyr, pyruvate. 
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 Interplay between peripheral reactions and energy metabolism in 
Pseudomonas putida   

The primary steps of glucose uptake take place through a set of three pathways that 
converge in 6-phosphogluconate (6PG). Each confluent path includes ATP-dependent 
phosphorylation and oxidation steps. During glucose uptake and phosphorylation, 
the internalization of glucose requires the utilization of one ATP molecule, while an 
additional ATP molecule is necessary to phosphorylate glucose to form G6P. Later, 
glucose-6-phosphate dehydrogenase (Zwf), convert G6P into the central metabolite 
6PG yielding one NAD(P)H molecule (Volke, et al., 2021).  
 
In P. putida, ATP generation can be partially uncoupled from NADH formation by 
shifting glucose processing from the phosphorylative branch into a two-step-
oxidation reaction via glucose dehydrogenase (Gcd) and gluconate dehydrogenase 
(Gad). Both enzymes can consecutively oxidize glucose to gluconate and 2-
ketogluconate in the periplasm. In this process, the respiratory chain components 
PQQ (pyrroloquinoline quinone) are reduced into PQQH2 (reduced pyrroloquinoline 
quinone) by Gcd and FAD into FADH2 by Gad being released two electron equivalents 
in each oxidation step, while bypassing the NAD(P)H-generating G6P 
dehydrogenase. Adjacently, gluconate can be directly phosphorylated into 6PG by 
spending one ATP. In the case of 2-ketogluconate, it is firstly phosphorylated into 2-
ketogluconate-6-phosphate and then, it consumes one NAD(P)H to be converted into 
6PG (Ebert, et al., 2011).  
 
Besides their role in central carbon metabolism, these reactions are critical in the 
control of energy homeostasis (Hoek and Rydström, 1988). By disrupting either 
phosphorylation or oxidative reactions, the cellular energy homeostasis is affected 
leading to cofactor imbalance and severe effects on bacterial growth (ADACHI, et al., 
1979, Olavarria, et al., 2014, Sriherfyna, et al., 2021). To counteract these effects, 
imbalance-avoiding mechanisms comprise the suitable choice of catabolic pathways, 
as in S. cerevisiae (Blank, et al., 2005), and the differential expression of isoenzymes 
with different cofactor specificities (Clarke, et al., 1986, Boonstra, et al., 1999, Doan, et 
al., 2003, Fuhrer and Sauer, 2009). As part of these mechanisms, several biochemical 
energy cycles are capable of effectively catalyzing reaction of transhydrogenation 
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without disturbing net catabolic fluxes. There are some examples in literature of those 
cycles, such as operation of isocitrate dehydrogenase in eukaryotic mitochondria 
(Sazanov and Jackson, 1994), synergistic process of glyceraldehyde-3-phosphate 
(GAP) and alcohol dehydrogenases in the yeast Kluyveromyces lactis (Overkamp, et al., 
2002, Verho, et al., 2002), among others. 
 

 Systems biology strategies to study microbial metabolism: the 
case of Pseudomonas putida 

The question that comes out from the previous sections is how we can analyze 
microbial metabolism and the physiological behavior of a living cell under 
environmental or metabolic perturbations. Bacterial physiology emerged as an 
important scientific discipline in the early 1900s, offering valuable understanding of 
the central carbon metabolic pathways. As molecular biology progressed in the 80s 
and 90s, along with research into growth kinetics and cellular regulation mechanisms, 
the discipline underwent significant changes (Ideker, et al., 2002). This led to the 
creation of a sub-discipline called microbial kinetics, which exploit the dynamic of the 
metabolism using advanced mathematical models (Bailey, 1998). Finally, in the last 
two decades, the development of more quantitative approaches culminated with the 
appearance of systems biology, allowing the collection of huge amounts of data with 
better quality (Edwards, et al., 2001, Wang, et al., 2010, Valgepea, et al., 2013, Klumpp 
and Hwa, 2014, Scott, et al., 2014). Conventional system biology approaches―aiming 
to analyse the behavior of a biological system―can capture the entire picture by 
collecting the information coming from the well-interconnected network between 
genotype-phenotype (Nielsen, 2017). 
This approach can be executed in an integrative manner combining the analysis of 
individual components in the biological system under study. Likewise, the use of 
system biology strategies on biological networks has identified spatiotemporal 
regulation of metabolic pathways, which can enlighten global regulation mechanisms 
or; decipher how carbon fluxes are distributed in a context of genetic modifications 
(Munger, et al., 2008, Blaby, et al., 2013, Hackett, et al., 2016). 
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In this study, systems-level analysis aided by multi-omics strategies was implemented 
to unwire glucose metabolism at different cellular levels following genetic 
disruptions. The study was carried out using a collection of Pseudomonas putida 
KT2440 strains having different glucose entry points towards the cytoplasm (Figure 
6.3A). The strains harbored specific deletions either in the oxidative and/or 
phosphorylative glucose pathway, which could directly affect cellular and energy 
homeostasis. Within the strains constructed in this work 1) Δgcd, strain lacking the 
glucose dehydrogenase, metabolizes glucose via direct phosphorylation while (Figure 
6.3B); 2)  Δglk, is unable to phosphorylate glucose into G6P being forced to oxidized it 
through the dehydrogenase Gcd as a first step; or mediated by the gluconate 
dehydrogenase Gad (Figure 6.3C). 3) The third strain, ΔgtsABCDΔglkΔgad, does not 
phosphorylate glucose neither can perform a second oxidation step from gluconate 
into 2-KGA being the entire gluconate pool channeled to 6PG (Figure 6.3D). 4) Finally, 
ΔgtsABCDΔglkΔgnuKΔgntT is pushed to double oxidized glucose into 2-KGA and 
later to 6PG (Figure 6.3E). Here, we interrogated whether the physiological 
interruption in the peripheral reactions of glucose phosphorylation and/or oxidation 
steps affect central carbon metabolism topology and if those changes can be capture 
by system-biology approaches. To do so, the mutants were analysed from a 
physiological point of view by measuring growth, uptake and secretion rates (glucose, 
gluconate and 2-ketogluconate). Next, the strains were subjected to a time-course 
targeted metabolomics, semi-quantitative proteomics and 13C metabolic flux analyses 
to assess how central carbon metabolism metabolites, proteins and fluxes are rewired 
under glycolytic regime upon genetic perturbations. Finally, this study was intended 
to: a) shed light on the initial steps of glucose metabolism (phosphorylation and 
oxidation branches) from a system biology point of view and; b) to propose a 
metabolic model for regulation of CCM upon genetic perturbations. 
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Figure 6.3. Simplified scheme of the different Pseudomonas putida KT2440 mutants used in this 
study. The image illustrates the processes of glucose phosphorylation in the cytosol and glucose 
oxidation in the periplasm of P. putida KT2440. Glucose is transported into the periplasm where it can 
either be phosphorylated in the cytosol to form G6P or oxidized to gluconate or 2-KGA. Subsequently, 
the latter two compounds can be phosphorylated and transported back into the cytoplasm. A) Wild-
type; B) Δgcd; C) Δglk; D) ΔgtsABCDΔglkΔgad and E) ΔgtsABCDΔglkΔgnuKΔgntT. The blue down 
arrowhead indicates reactions toward central carbon metabolism. 
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6.2 Results 

 Quantitative physiology of mutant strains with divergent routes 
for glucose assimilation 

Efficient glucose uptake is an important process that many bacteria have optimized 
through the evolution. Changes in peripheral reactions modify intracellular precursor 
pools, which affect downstream reactions leading to global rearrangement in the 
metabolic architecture and rewiring of existing regulatory networks to regain 
metabolic fitness. To understand the physiology of channeling glucose flux through 
different entry points into the cytosol, we built different mutants of glucose 
transporters―oxidation and phosphorylation―by disrupting a combination of 
peripheral and upper glucose reactions. In order to disentangle the effects of such 
genetic perturbations at extracellular level, we performed a physiological analysis by 
measuring glucose and the organic acids gluconate and 2-KGA. To achieve this 
particular aim, we performed a quantitative physiological characterization of the 
different P. putida KT2440 mutants  by: 1) following spectrophotometrically the optical 
density at 600 nm (OD600) and; 2) measuring glucose, gluconate and 2-KGA 
concentrations (uptake and secretion rates in mmol gCDW-1 h-1) on each strain in de Bont 
medium containing 15 mM of glucose. Growth curves, glucose consumption as well 
as gluconate or 2-ketogluconate secretion/consumption are presented in Figure 6.4.  
 
The final biomass was similar in all the strains (~4 OD600nm) except for the Δglk mutant, 
which showed a reduction of 25% (~3 OD600nm). Major differences were observed 
between the Δgcd mutant and the rest of the strains during the exponential phase. The 
longer lag-phase, reduced μmax and YX/S in this strain might be the consequence of the 
inactivation of the glucose dehydrogenase enzyme, which implies a growth defect in 
this strain. The specific growth rate for the wild type strain was 0.61 h-1 while the 
mutant growth rates ranged from 0.45 h-1 (Δgcd) to 0.64 h-1 (ΔgtsABCDΔglkΔgad). The 
quantitative parameters are presented in Table 6.1.  
 
Regarding glucose consumption, specific uptake rates ranged between 6 and 7.5 mmol 
glucose gCDW-1 h-1.  Glucose uptake rates, on the other hand, increased by 30% in Δgcd 
and ΔgtsABCDΔglkΔgnuKΔgntT, 20% in Δgad, 10% in Δglk and no variations were 
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observed in ΔgtsABCDΔglkΔgad compared to the wild-type strain. These results 
suggested that significant alterations in respiratory metabolism may be linked to 
energy imbalance caused by the introduced genetic disruptions. 

 
Table 6.1. Quantitative physiology parameters of mutant strains in de Bont medium with glucose as 
only carbon source. Maximum exponential growth rates (μmax) were determined via linear regression 
for growth experiments in 100 mL Erlenmeyer flasks. The average values ± standard deviation were 
calculated from at least three biological replicates. *qATP and qNAD(P)H were derived from 13C-metabolic 
flux analysis. gCDW: grams of cell dry weight. 

 

The biomass yield showed that P. putida KT2440 was more efficient in converting 
glucose into biomass. Furthermore, Δgcd, ΔgtsABCDΔglkΔgnuKΔgntT and Δglk 
presented lower yields. This can be explained because the double oxidation of glucose 
through 2-KGA and; later to 6PG, is energetically more expensive for the cell (needing 
1 ATP to phosphorylate 2-KGA into 2-KGA-6P and 1 NAD(P)H from 2-KGA-6P into 
6PG, see Table S6.1) (Volke, et al., 2023). From an energetic point of view, the specific 
ATP production rates were calculated based on the energy requirement on each step 
(ATP, NADH, NAD(P)H, FADH2 and UQH2) considering the reactions in the 
metabolic network for the 13C parallel labelling experiment. The relative percentages 
(%) of the reaction contributing to ATP formation and consumption were converted 
into specific rates. The net specific ATP/NAD(P)H production rates were calculated 
using Equation 1. The values ranged from 21.0 (Δgcd) to 30.7 (ΔgtsABCDΔglkΔgad). 
Here, the cellular ATP supply was higher in the strains that do not use the second 
oxidation step (2-KGA toward 6PG). The reaction from 2-KGA-6P to 6PG is a sink for 
NAD(P)H which might indicate that this step is energetically expensive for the cell. 
Despite the fact that 10% of glucose is redirected towards this reaction in the wild-
type strain, it has a negative impact on the overall ATP output because of its lower 
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efficient compare to glucose oxidation, as reported previously (Kohlstedt and 
Wittmann, 2019).  
 
Additionally, the NAD(P)H rates also varied between strains. The reason for the 
elevated qNAD(P)H levels in Δgcd can be attributed to the elimination of the glucose 
oxidation reactions. Consequently, in response to the reduced availability of 
NAD(P)H, the cell adopts a compensatory mechanism by enhancing the flux through 
NAD(P)H-producing reactions, such as the conversion of G6P to 6PG, pyruvate to 
Acetyl-CoA, and isocitrate to α-ketoglutarate, which serve as the primary sources of 
energy. On the other hand, the strain ΔgtsABCDΔglkΔgnuKΔgntT showed the lowest 
NAD(P)H production rate correlating also with its lower flux in the TCA cycle 
reactions. We know from previous studies that P. putida strains possess a great ability 
to regenerate NAD(P)H and have a low energy demand for cellular maintenance. This 
is beneficial for NAD(P)H-dependent biocatalysis since it allows for a high net NADH 
regeneration rate, which is available for biocatalysis due to low NAD(P)H 
consumption for ATP generation. Moreover, the carbon breakdown process operates 
without any by-product formation, such as acetate, glycerol, or ethanol, which are 
commonly observed with other important industrial hosts like E. coli, B. subtilis, and 
S. cerevisiae, even at high rates (Isken, et al., 1999, Blank, et al., 2008).  
 

Similarly, the findings revealed a connection between the excretion and intake of the 
organic acids (gluconate and 2-KGA) in relation to the specific genetic deletions that 
were introduced in these strains. As expected, the wild type strain KT2440 
sequentially oxidized glucose into gluconate as a first step and later on into 2-
ketogluconate (Pedersen, et al., 2021). The two carboxylic acids were progressively 
secreted and co-consumed. In the mutant Δgcd, gluconate and 2-ketogluconate were 
not observed in the supernatant since this strain does not have the glucose 
dehydrogenase enzyme that converts glucose into gluconate. This strain is forced to 
directly phosphorylate glucose into glucose-6-phosphate. For the mutant Δglk, 
gluconate and 2-ketogluconate were detected in the media showing that the deletion 
of the glucokinase does not have any effect in the organic acid profile. Finally, 
ΔgtsABCDΔglkΔgnuKΔgntT secreted both gluconate and significantly higher 2-
ketogluconate concentration (~3 mM) than the rest of the strains in this condition. The 
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presence of convergent pathways (glucose oxidation and phosphorylation) facilitates 
glucose utilization by this microorganism, without regards the genetic interruptions, 
at the different levels in the upper glycolysis. Indeed, this bacteria was able to channel 
the carbon flux toward the key intermediate 6-phosphogluconate.  
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Figure 6.4. Physiological analysis of Pseudomonas putida KT2440, Δgcd, Δglk, ΔgtsABCDΔglkΔgad 
and ΔgtsABCDΔglkΔgnuKΔgntT in minimal medium supplemented with 15 mM glucose. The strains 
were cultured in 100 mL flask containing 20 mL of de Bont minimal medium supplemented with 15 
mM glucose as the sole source of carbon. The medium with glucose contained an additional 5 g L-1 
MOPS to buffer the acidifying effect of gluconate and 2-KGA production. Cell density (purple circles), 
glucose (blue squares), gluconate (green up pointing triangles) and 2-KGA (orange down pointing 
triangles) concentrations were measured over a period of 10-11 hours. Standard deviation is indicated 
with error bars calculated from three biological replicates. 
 

6.3 Time-course targeted metabolomics analysis exposes through the 
central carbon metabolism  

To investigate the intracellular changes of key central carbon intermediates, the 
metabolite content of the strains under study was analysed via LC-MS/MS. Cells were 
grown in de Bont minimal medium supplemented with 20 mM glucose. Metabolites 
from EDEMP, PPP and TCA pathways were quantified at four time points along the 
growth curve OD600nm 0.1 (t1), 0.5 (t2), 1.0-1.2 (t3) and 2.0-2.5 (t4). 16 metabolites were 
quantified, normalized by cell dry weight (μmol gCDW-1) and represented according the 
metabolic pathway. Normalized metabolite concentrations and measured metabolites 
were plotted in the y and x-axis, respectively (Figure 6.5). 
 
Within EDEMP metabolites, significant changes in glucose-6-phosphate (G6P) and 
fructose-6-phosphate (F6P) levels were observed across the cultivation. While the 
previous intermediates tended to decrease in most of the strains, a substantial increase 
in G6P was observed for Δgcd. Likewise, F6P was kept at high concentrations 
suggesting that the cell is producing sugar phosphates for biomass formation. On the 
other hand, the strains lacking the enzymes glucokinase (Glk): Δglk, 
ΔgtsABCDΔglkΔgad and ΔgtsABCDΔglkΔgnuKΔgntT; showed low concentrations of 
G6P indicating that the cellular metabolite pool shift the glucose incorporation via the 
oxidative pathways (i.e., glucose oxidation toward gluconate and/or 2-KGA) (Nikel, 
et al., 2015). As we previously stated, both gluconate and 2-KGA can be funneled into 
the central carbon metabolism through 6PG and; subsequently, into ED pathway. The 
6PG levels in the before mentioned strains were comparable to the wild-type strain 
KT2440 and, considerably higher than Δgcd strain. In the same direction, the 
metabolites in the lower EDEMP cycle―DHAP and PEP―significantly decreased in 
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the early stages (t1 and t2) either to supply biomass precursors or pyruvate to fuel the 
TCA cycle (Sauer and Eikmanns, 2005, Meza, et al., 2012) (Figure 6.5A). 
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Figure 6.5. Central carbon metabolites concentration in the strains under study grown on de Bont 
medium at different time points. The strains were cultures in minimal medium supplemented with 15 
mM glucose and harvested at different time points (t1, 2, 3 and 4). Metabolites in A. EDEMP pathway. 
B. Pentose phosphate pathway and C. Tricarboxylic acid cycle. Abbreviations of metabolites are as 
follows: G6P, glucose-6-P; F6P, fructose-6-P; FBP, fructose-1,6-P2; DHAP, dihydroxyacetone-P; PEP, 
phosphoenolpyruvate; 6PG, 6-phosphogluconate; R5P, ribose-5-P; Ru5P, ribulose-5-P; S7P, 
sedoheptulose-7-P; AcCoA, acetyl-coenzyme A; AKG (2-OG), α-ketoglutarate. The strains are 
symbolized with circles (KT2440); squares (Δgcd); triangles (Δglk); diamond (ΔgtsABCDΔglkΔgad) 
and hexagon (ΔgtsABCDΔglkΔgnuKΔgntT). 
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Similarly, PPP metabolites R5P, Ru5P and S7P concentrations remained stable in the 

strain Δgcd at relatively high concentrations during t1-t4. This could be attributed to 

the cyclic operation of the pentose phosphate pathway aiming to balance the loose of 

electron equivalents in the glucose oxidative branch (Christodoulou, et al., 2018, 

Hurbain, et al., 2022). For the other mutants, the concentrations at t1 and t2 were 

significantly lower and dropping later in mid (t3) and late (t4) stages in comparison to 

the wild-type strain (Figure 6.5B).  

 

Finally, regarding the strains Δgcd and Δglk with respect to TCA cycle metabolites, the 

products of NADH/FADH2-forming reactions: acetyl-CoA, AKG, succinate and 

fumarate, exhibited comparable or higher concentrations than the other strains under 

study at early stages (t1 and t2). Particularly in Δgcd strain, it is worth noting that the 

absence of glucose dehydrogenase could potentially cause an impairment in the 

cellular energy status [NADH, NAD(P)H] which is translated in a lower specific 

growth rate (Volke, et al., 2021). As a response against this energetic imbalance, the 

cell utilizes specific co-factor-forming reactions to fuel and compensate the amount of 

electro equivalents not produced in the perisplasmatic oxidation steps (Spaans, et al., 

2015). One of this reaction is the production of fumarate from succinate through the 

succinate dehydrogenase complex (Sdh) yielding FADH2 (Cecchini, et al., 2002). This 

response could partially supply reducing power for biomass precursor formation. On 

the other hand, the strains ΔgtsABCDΔglkΔgad and ΔgtsABCDΔglkΔgnuKΔgntT, 

showed lower fumarate concentration than the other strains, indicating that co-factors 

were also obtained in other reactions such as the conversion of G6P into 6PG mediated 

by ZwfA,B,C and Pgl to give NAD(P)H or; through the action of the pyruvate kinase 

(Pyk) transforming PEP into pyruvate yielding one ATP (Fuhrer and Sauer, 2009) 

(Figure 6.5C). 
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 Semi-quantitative proteomics analysis exposes changes in 
reducing power-generating reactions (NADH and NAD(P)H) as a 
responses to genetic disturbances in glucose peripheral oxidation steps 

To study the effects of disturbing the glucose entry points at the protein level, the 
protein content of the different strains was analysed via mass spectrometry. Cells were 
grown in de Bont minimal medium supplemented with 15 mM glucose as carbon 
source and 5 g L-1 MOPS. In total, 2517 proteins were detected and; among these, 58 
proteins belonging to the central carbon metabolism, were selected to analyse the 
magnitude of change or log2(fold change). The wild-type strain KT2440 was taken as 
reference point and compared against the four strains at different time points (t1-4). 
The results are shown in Figure 6.6. The X-axis represents the selected proteins at t1, 
t2, t3 and t4 and Y-axis exhibits log2(fold change). Table S6.2 shows the log2(fold 
change) average and standard deviation for all the proteins analysed in the chapter 
are listed. 
 
Within the peripheral reactions, in the Δgcd strain, we noted a significant drop in the 
relative content of proteins involved in glucose oxidation (PP3383-84, GnuK, KguE-K 
and PtxS). Likewise, we observed an upregulation of the glucose transporter GtsA and 
GtsD, which could indicate that the system increases glucose uptake through the 
cytoplasm toward G6P by the glucokinase. In Δglk and despite the inactivation of 
glucokinase, GtsA and D were also upregulated, suggesting the possibility of residual 
Glk activity. In contrast, ΔgtsABCDΔglkΔgad and ΔgtsABCDΔglkΔgnuKΔgntT showed 
no signal after the proteomics analysis, confirming the deletion of the glucose 
facilitator complex gtsABCD.   
In the pentose phosphate pathway, upregulation of ZwfA in Δgcd and Δglk was 
detected in t1-t2 and t1, t3-t4, respectively. For Δgcd, this could suggest that a greater 
amount of G6P is transformed into 6PG, while simultaneously producing NAD(P)H 
with the objective of generating more precursor 6PG―showed a significant decrease 
in concentration during metabolomics analysis―and providing energy. Although the 
concentration of G6P was significantly reduced, our results showed that in the case of 
Δglk, the overregulation of ZwfA facilitated the continuous production of 6PG at 
levels comparable to those of the wild-type strain. For ΔgtsABCDΔglkΔgad and 
ΔgtsABCDΔglkΔgnuKΔgntT, proteomics showed a downregulation of ZwfA. It is 
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important to mention that the 6PG levels were similar to those of the wild-type strain, 
which suggests that either GnuK in the first mutant or KguK/KguE proteins in the 
second one could be responsible for maintaining this pool (Figure 6.5A). Going further 
in the PPP, we also noticed an upregulation of 6-phosphogluconate dehydrogenase 
(Gnd) in practically all the strains and times along the cultivation. The rise in protein 
content could imply an increase in the NAD(P)H generation to compensate the 
potential decline of reducing power produced in the oxidative peripheral branch 
reactions. Likewise and especially for the Δgcd, the transaldolase Tal (catalyze the 
conversion of S7P + G3P into E4P + F6P) exhibited an overproduction of up to 100% in 
t1-t3. This enzyme might contribute to keep the F6P levels constant, as was previously 
revealed during the metabolomics analysis. In addition, we observed a reduction in 
the expression of Rpe, RpiA and TktA, which could indicate that the enzymes pool 
are not directly linked with the energy compensation mechanism in the cell (Rytter, et 
al., 2021). Regarding the ED pathway, there were significant chances, but they were 
not of considerable magnitude. This means that this two-step reaction has a 
comparable activity to the wild-type strain despite the alterations in the glucose 
peripheral oxidation and phosphorylation pathways. This behavior might explain 
why environmental bacteria, as P. putida, rely on the innate capability to use ED for 
glucose metabolism (Conway, 1992, Daddaoua, et al., 2009, Nikel, et al., 2015). 
Relating to the anaplerotic reactions, while Ppc was upregulated in Δgcd and 
ΔgtsABCDΔglkΔgnuKΔgntT, the oxaloacetate decarboxylase (PP1389) was 
downregulated. Although it was not previously reported in P. putida, this might point 
out that the activity of the Ppc could be positively regulated by the increased of the 
G6P favoring the reaction toward OAA (Sauer and Eikmanns, 2005) (Figure 6.6A). 
Regarding the EDEMP pathway, there were few notable alterations. Specifically, in 
the Δgcd mutant, the downregulation of Pgi-1 and Fbp was observed as the primary 
change. Here, the increase in G6P and F6P concentration in the cytosol could negative 
control not only Pgi-1 but also Fbp. This relationship has not been previously observed 
in bacterial cells, but it has been observed in eukaryotic cardiomyocyte cells, which 
warrants further investigation to better understand the underlying biological 
processes (Karlstaedt, et al., 2020). In connection with the previous fact, we also argue 
that the decrease of these two enzymes together with the action of the transaldolase 
Tal could play a pivotal role in the regulation of F6P levels in the cell.  
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Moreover, in the lower part of the EDEMP pathway, the glyceraldehyde-3-phosphate 
dehydrogenase (GapA)―which catalyzes the transformation of GAP to glycerate-1, 3-
biphosphate with the production of NADH―was significantly up-regulated in Δgcd 
but, to a lesser degree in the mutants lacking the glucokinase enzyme (Fillinger, et al., 
2000). This follows the same rationale as before where the cell attempts to 
counterbalance the energy deficit provoked by the inactivation of the glucose 
oxidative branch. This action mediated by GapA tries to conserve the high energetic 
efficiency of the EDEMP pathway but also might give rise to a post-translational 
regulatory checkpoint for the central carbon metabolism. As reported in the literature, 
the expression of the genes gapA and gapB are transcriptionally regulated in an 
opposite manner under glycolytic conditions. Our results indicated that meanwhile 
the production of GapA was stimulated, GapB was downregulated.  
 
Finally, in the TCA cycle, Acetyl-coenzyme A synthetase 2 (AcsA2) was significantly 
over-regulated in most time points. This enzyme participates in the conversion of 
acetate to acetyl coenzyme A (acetyl-CoA) (Zhu, et al., 2022). When comparing our 
results to previous studies, it must be pointed out that acetate is not produced or 
secreted during glycolytic regimen in P. putida. AcsA2 could have a regulatory 
function over carbon metabolism genes, as it was previously demonstrated in P. 
aeruginosa (Kretzschmar, et al., 2010). Furthermore, reducing power forming enzymes, 
such as isocitrate dehydrogenase-NADP dependent (Icd) and malate:quinone 
oxidoreductase 3 (Mqo3), were significantly overregulated in all the strains and 
specifically at t3 (mid-exponential). These enzymes might be providing part of the 
energy in form of NAD(P)H to replenish reducing equivalents (LaPorte, et al., 1984, 
Kretzschmar, et al., 2002, Molina, et al., 2019). On the other hand, aconitate hydratase 
I (AcnA-I) and fumarate hydratase class II (FumC) were also up-regulated in Δgcd, 
suggesting that could push the TCA cycle forward by increasing the pool of 
metabolites isocitrate, AKG, succinate, fumarate and L-malate (Mhamdi, et al., 2010, 
Spaans, et al., 2015) (Figure 6.6C). 
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Figure 6.6. Changes in protein expression within central carbon metabolism for strains Δgcd, Δglk, 
ΔgtsABCDΔglk and ΔgtsABCDΔglkΔgntT against Pseudomonas putida KT2440 wild type. A. Upper 
glycolysis, PPP, ED and Anaplerosis. Abbreviations of proteins are as follows: GtsA Mannose/glucose 
subunit A glucose system transporter; GtsD Mannose/glucose subunit D glucose system transporter; 
PP3383, Gluconate 2-dehydrogenase flavoprotein subunit; PP3384, Gluconate 2-dehydrogenase 
gamma subunit; GnuK, Gluconokinase; KguE, Epimerase; KguK, Putative 2-ketogluconokinase; PtxS, 
2-ketogluconate utilization repressor; ZwfA, Glucose-6-phosphate 1-dehydrogenase A; Gnd, 6-
phosphogluconate dehydrogenase; Pgl, 6-phosphogluconolactonase; Rpe, Ribulose-phosphate 3-
epimerase; RpiA, Ribose-5-phosphate isomerase; TktA, Transketolase; Tal, Transaldolase; Edd; 
Phosphogluconate dehydratase; Eda, 2-dehydro-3-deoxy-phosphogluconate aldolase; Ppc, 
Phosphoenolpyruvate carboxylase; MaeB, Malic enzyme B; PycB, Pyruvate carboxykinase A; PP1389; 
oxaloacetate decarboxylase. B. EDEMP and C. TCA. Glk, glucose-binding periplasmic protein 
Glucokinase; Pgi-1, Glucose-6-phosphate isomerase 1; Pgi-2, Glucose-6-phosphate isomerase 2; Fbp, 
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Fructose-1,6-bisphosphatase class 1; Fba, Fructose-1,6-bisphosphate aldolase; PP1791, Putative 
Aldolase/synthase; TpiA, Triosephosphate isomerase; GapA, Glyceraldehyde-3-phosphate 
dehydrogenase A; GapB, Glyceraldehyde-3-phosphate dehydrogenase B; Pgk, Phosphoglycerate 
kinase; Pgm, Phosphoglucomutase; Eno, Enolase; PpsA, Phosphoenolpyruvate synthase; PtsP, 
Phosphoenolpyruvate-protein phosphotransferase; PykA, Pyruvate kinase; AceF, Acetyltransferase 
component of pyruvate dehydrogenase complex; Lpd, Dihydrolipoyl dehydrogenase; AceE, Pyruvate 
dehydrogenase E1 component; LpdG, Dihydrolipoyl dehydrogenase G; AcsA1, Acetyl-coenzyme A 
synthetase 1; AcsA2, Acetyl-coenzyme A synthetase 2; GltA, Citrate synthase; AcnA-I, Aconitate 
hydratase I; AcnA-II, Aconitate hydratase II; AcnB, Aconitate hydratase B; Icd, Isocitrate 
dehydrogenase [NADP]; SucA, Oxoglutarate dehydrogenase (succinyl-transferring); SucC, Succinate-
CoA ligase [ADP-forming] subunit beta; SucD, Succinate-CoA ligase [ADP-forming] subunit alpha; 
SdhA, Succinate dehydrogenase flavoprotein subunit; SdhB, Succinate dehydrogenase iron-sulfur 
subunit; FumC, Fumarate hydratase class II; Mqo-Malalate:quinone oxidoreductase 1; Mqo-2, 
Malate:quinone oxidoreductase 2; Mqo-3, Malate:quinone oxidoreductase 3; AceA, Isocitrase; GlcB, 
Malate synthase.         
 

 13C-Metabolic flux analysis reveals a strong activity of EDEMP 
and TCA cycle upon metabolic perturbations 

Metabolomics and proteomics data served as first step to analyse the dynamics 

between metabolites and proteins inside the cell (Kell, 2004, Sabidó, et al., 2012). 

However, the interaction between gene–protein–metabolite cannot be capture by only 

applying the previous methodologies (Yurkovich and Palsson, 2018). Metabolic flux 

analysis is a powerful strategy to quantify metabolic fluxes through the different 

metabolic routes (Sauer, 2006, Heinemann and Sauer, 2010). In order to get a better 

understanding as well as to characterize the metabolic architecture within the strains, 

we performed a parallel labelling experiment using [1–13C1]-glucose, [6–13C1]-glucose, 

and a mixture of each 50% unlabeled and uniformly labelled glucose [U–13C6]-glucose. 

This particular combination of tracers has been employed previously to generate 

precise flux maps in Pseudomonas sp., with satisfactory results (Kohlstedt and 

Wittmann, 2019). The flux distribution maps for all the strains are depicted in Figure 

6.7, the reactions investigated, atom transitions and the calculated relative fluxes 

associated to the catabolic pathways are listed in Table S6.4. The 13C-MFA analysis of 

the five strains displayed sum of squared residuals (SSR) values within the given 

interval. 
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Our results obtained from the 13C metabolic flux analysis revealed that fluxes in the 

EDEMP pathway and TCA cycle in the Δgcd mutant strain were 1.5 to 4.0 times greater 

than those observed in the wild-type strain, respectively (Figure 6.7A and 6.7B). It is 

noteworthy that there was a convergence of net flux towards the G6P node. This was 

the result of both glucose phosphorylation and F6P isomerization, which then 

proceeded to 6PG with a relative flux of ~150% (11.2 mmol gCDW-1 h-1). This observation 

was consistent with a higher abundance of Zwf and Gnd proteins detected in the 

proteomics analysis (Figure 6.6A). Additionally, this mutant recycled 80% more of the 

triose phosphate GAP into to F6P and G6P compared to the wild-type strain (52% 

versus 29%, respectively). The process of recycling may serve an additional purpose, 

as it leads to the production of NAD(P)H through the activity of glucose 6-phosphate 

dehydrogenase (Zwf) (Nikel, et al., 2015). In conjunction with this recycling process, 

the cell is also able to contribute to the production of E4P and R5P for anabolic 

purposes, through the reversible reactions in the pentose phosphate pathway (Nikel, 

et al., 2015). In the lower part of the EDEMP cycle, the split ratio between FBP, DHAP 

and 3PG was nearly 1:1:1 at the G3P node for all the strains suggesting could work as 

a key regulator node in the lower glycolysis (Ma and Zeng, 2003, Lee, et al., 2021). 

Furthermore, the fluxomics results obtained in this experiment, correlated with 

proteomics analysis where GapA was overregulated during the entire cultivation and 

the increasing in the concentration of the metabolites DHAP, FBP and G6P from t1 to 

t3 (Figure 6.6B). 

 

The majority of the strains, excluding the mutant strain ΔgtsABCDΔglkΔgnuKΔgntT, 

exhibited negligible flux through the PP pathway. This was because 6PG was largely 

directed towards the Entner-Doudoroff (ED) pathway, indicating its vital role in 

glucose catabolism (Chavarría, et al., 2013). In the wild-type strain, 40% of the ED 

pathway flux was channeled into the TCA cycle while for the strains under study this 

percentage oscillated between 53-90%. In general, we observed that there was a 

substantial flux redirection toward the TCA cycle where large amounts of C3 and C4 

building blocks were interchanged between the EDEMP and TCA cycles (Nikel, et al., 
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2015). Also, we noted that the glyoxylate shunt was inactive in all the tested strains, 

where the remaining flux toward the isocitrate node was mainly converted by the 

isocitrate dehydrogenase (Icd) through the TCA cycle. Likewise, the anaplerotic 

reactions were not affected in the conditions tested in this study. With regards to Δglk 

and ΔgtsABCDΔglkΔgad, the metabolic flux map were comparable in terms of flux 

distribution, with around 50-75% relative flux through TCA cycle and 30-40% in the 

EDEMP (Figure 6.7C and 6.7D). 

 

Regarding the mutant ΔgtsABCDΔglkΔgnuKΔgntT, nearly 90% of reduction was 

observed in the fluxes thought the TCA cycle. Particularly, for this mutant, it is worth 

mentioning that 60% of the flux was secreted out of the cell in form of 2-KGA and, 

30% of the 6PG pool was re-route into the PP pathway. Furthermore, the process of 

converting 2-ketoglutarate (2-KGA) into 2-ketoglutarate-6-phosphate (2-KGA-6P) 

through phosphorylation, and then reducing it to 6-phosphogluconate (6PG), is a 

significant consumer of ATP in this particular strain, leading to a decreased fitness 

level that contrasts with the results of a physiological analysis. To ensure the energy 

supply, the strain keeps oxidizing glucose into 2-KGA and deviate a significant 

fraction of its flux toward PP pathway, attempting to recover reducing power from 

the reductive decarboxylation of 6-phosphogluconate into ribulose-5-phosphate 

(Nikel, et al., 2015, Kohlstedt and Wittmann, 2019) (Figure 6.7E). 
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Figure 6.7 Flux distributions of Pseudomonas putida KT2440 wild type and their mutants. 1) Wild-
type; 2) Δgcd; 3) Δglk; 4) ΔgtsABCDΔglkΔgad and 5) ΔgtsABCDΔglkΔgnuKΔgntT. The flux values of the 
best fit were normalized to the specific glucose uptake rate (refer Table 6.1 for details) in mmol gCDW-1 
h-1 of 100%. The absolute value for total carbon consumption rate is based in the sum of glucose, 
gluconate and 2-KGA uptakes. 2-OG represents AKG: 2-oxoglutarate. 



Chapter 6 
System-level analyses of glucose uptake mutants of Pseudomonas putida KT2440  

 
252 

 

6.4 Outlook 

 Alterations in the peripheral and upper glucose pathway in 
Pseudomonas putida KT2440 channel glucose fluxes through the 
metabolic 6PG node 

Overall, P. putida KT2440 strains showed a systematic response upon the different 

genetic perturbations in the peripheral reactions involved in glucose processing. The 

genetic deletions exposed changes at different metabolic levels, which were capture 

by applying metabolism-centric approaches. Interestingly, all the reaction were 

channeled into the central node 6PG, which acts as one of the most important carbon 

distributor in the CCM but also potentially as NAD(P)H enhancer formation through 

Gnd (Udaondo, et al., 2018).  

 

The growth patterns of the various strains were significantly impacted by these 

alterations. In the strain Δgcd, lacking the glucose dehydrogenase, the process of 

double oxidation leading to the formation of gluconate and 2-KGA was eliminated, 

prompting the cell to instead directly undergo glucose phosphorylation. This might 

compromise the generation of ATP and NADH as a consequence of the absence of the 

oxidation steps (Ebert, et al., 2011). However, the cell can compensate it by increasing 

the protein amount in specific reactions across the CCM (Noor, et al., 2010, Pfeuty, et 

al., 2023). A portion of this energy compensation can be observed through the 

convergence of metabolic fluxes towards 6PG, coupled with the overproduction of 

ZwfA and Gnd enzymes. 

 

In contrast, glk mutant showed a decrease in the growth rate and reached lower 

OD600nm, which suggests a shortage in biomass precursors―mainly G6P, and F6P―as 

reported in the metabolomics study (Figure 6.5A) (del Castillo, et al., 2007). Likewise, 

most of the flux was channeled toward 6PG through Gcd and GnuK enzymes and to 

a less extent by the second oxidation step though Gad, KguK and KguD. On the other 

hand, the mutant harboring the deletion ΔgtsABCDΔglkΔgad was not affected in terms 
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of growth. Given that approximately 90% of the glucose undergoes conversion to 6PG 

via GnuK, it can be inferred that the second oxidation step, leading to 2-KGA, may not 

be a prerequisite for sustaining cellular energy homeostasis, unlike the initial 

oxidation step. Moreover, this second step appears to be linked with environmental 

or energy stresses (Bentley, et al., 2008). Regarding ΔgtsABCDΔglkΔgnuKΔgntT, the 

removal of GnuK beyond what has been previously documented could potentially 

impact the activation or suppression of specific regulators in genes further 

downstream (del Castillo, et al., 2008, Daddaoua, et al., 2009, Moreno, et al., 2009, 

Udaondo, et al., 2018). In this particular strain, the flux was directed towards 6PG via 

a process involving double oxidation, phosphorylation, and subsequent reduction of 

2-KGA-6P to form 6PG.  

 

The time-course targeted metabolomics approach captured the fluctuation in the 

metabolites levels through the CCM pathways. Notably, the deletion of gcd produced 

an accumulation of G6P while maintaining the F6P and cycling the EDEMP pathway. 

Consistent with reported knockout of genes in glucose catabolism in P. putida strains 

grown on glucose, we observed a decrease or absence in both protein abundances and 

metabolic fluxes in the reactions that the genes were knocked out compared to the 

wild type strain. In the same direction, the CCM metabolome and proteome reacted 

to meet energetically favorable metabolic fluxes to produce and compensate the 

reducing power in form of NADH, FADH2 and NAD(P)H. The higher flux in the node 

glucose-G6P-6PG, could be connected with the overexpression of Glk and ZwfA 

enzymes together with the increasing concentration of G6P, as well as a possible 

involvement of HexR and PtsX regulation in P. putida (Hamood, et al., 1996, Castillo, 

et al., 2007, Daddaoua, et al., 2009, Daddaoua, et al., 2012, Udaondo, et al., 2018, Lim, 

et al., 2022). Furthermore, it could be associated to post-transcriptional regulation 

mechanisms (gene transcripts stabilization) in upper part of the glycolysis or (Morin, 

et al., 2016); post-transcriptionally regulated by binding―in close proximity―to the 

ribosome binding site which, hinders the translation process of the target mRNA, 
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leading to the inhibition of translation or facilitating mRNA decay (Timmermans and 

Van Melderen, 2010).  

 

 Metabolic versatility model of Pseudomonas putida KT2440 upon 
genetic alterations in the peripheral glucose pathway. 
 

The research findings have prompted the proposal of a metabolic model for P. putida 

that aims to balance energy and metabolic homeostasis within the cell when there is 

genetic disruption in the peripheral glucose reactions (Figure 6.8). The hypothetical 

model is founded on the findings derived from the multi-omics experiments, which 

enabled us to pinpoint systemic alterations in the metabolome, proteome, and 

fluxomes that resulted from the varied genetic modifications. From a metabolomics 

point of view, metabolite levels of G6P, F6P, PEP, DHAP and 6PG in the EDEMP 

pathways as well as R5P, Ru5P and S7P in the PPP fluctuate across the cultivation in 

the different strains. Similarly, we detected a number of key enzymes, associated with 

energy generation, that we over regulated in the conditions tested. GapA, Icd, and 

FumC were observed to exhibit variations, as they are responsible for generating 

NAD(P)H, which is crucial for supplying both redox and energy equivalents to the 

cell. 

 

Finally, flux distribution maps showed higher activities in the EDEMP and TCA cycle 

pointing out that both metabolic blocks work in conjunction to regulate energy 

metabolism by producing ATP and reducing equivalents, such as NADH, NAD(P)H 

and FADH2, which are subsequently utilized in the electron transport chain to 

generate energy. Overall, this hypothetical model suggests a complex regulatory 

network that operates to maintain energy and metabolic homeostasis in P. putida 

(Figure 6.8) (Kotte, et al., 2010).  
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Figure 6.8. Proposed model of metabolic versatility for Pseudomonas putida KT2440 subjected to 
genetic perturbations. EDEMP encompasses the key elements belonging to the Entner-Doudoroff (ED) 
pathway (in green), the Embden-Meyerhof-Parnas pathway (in purple, operating in the gluconeogenic 
direction), and the pentose phosphate pathway PPP (in orange). TCA (Tricarboxylic acid) cycle and 
anaplerotic reactions in grey are also shown. Genetic perturbations in the glucose peripheral reactions 
are symbolized with red dashed lines. GapA, Icd, Mqo and FumC are enzymes involved in energy 
homeostasis in this particular model. 
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6.5 Conclusions 

To comprehend the physiological response in the different mutants on glucose, we 

employed a systems biology approach (quantitative physiology and multi-omics 

analysis). Aiming to unravel and identify intracellular mechanisms that could tempter 

the effects of the different genetic modifications, we performed time-course targeted 

metabolomics, semi-quantitative proteomics and 13C-metabolic flux analysis. By 

applying these methodologies, we were able to perform an in-depth multi-level 

analysis of the metabolism in P. putida KT2440.  In summary, the strong and flexible 

robustness against energy imbalances makes P. putida KT2440 as a suitable microbial 

host for energy-demanded biocatalysis applications. The system biology analysed 

presented here, provides useful insights into the physiological and metabolic response 

of this Gram-negative bacteria to generic perturbations. Overall, while the energy 

homeostasis model provides a general framework for understanding the regulation of 

energy metabolism in cells, the specific mechanisms of metabolic regulation can vary 

widely between different organisms and metabolic pathways. The metabolic 

regulation in P. putida represents an example of how metabolic pathways interact to 

achieve specific cellular functions. 
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6.6 Materials and Methods 
 
Table 6.2. Strain used in this study. 
 

Strain Genotype / Relevant characteristics 
Reference or 
source 

P. putida KT2440 Wild-type strain, derived from P. putida mt-
2 cured of the TOL plasmid pWW0  

(Worsey and 
Williams, 1975, 
Bagdasarian, et 
al., 1981) 

Δgcd Deletion of gcd gene (PP1444) encoding 
periplasmic glucose dehydrogenase This study 

Δglk Deletion of glk gene (PP1011) encoding 
glucokinase This study 

ΔgtsABCDΔglkΔgad 
Deletion of gtsABCD operon (PP1015-
PP1018) encoding glucose ABC transporter, 
glucokinase and gad cluster genes 

This study 

ΔgtsABCDΔglkΔgnuKΔgnt
T 

Deletion of gtsABCD operon (PP1015-
PP1018), glucokinase, gnuK gene encoding 
the gluconate kinase (PP3416) and gntT gene 
encoding the citoplasmatic D-gluconate 
transporter (PP3417)  

This study 

 

 Bacterial strains and culture conditions 

The bacterial strains employed in this study are listed in Table 5.2. Pseudomonas putida 

strains were incubated at 30°C for all the experiments. Cell propagation and storage, 

were grown in lysogeny broth (LB) medium (10 g L-1 tryptone, 5 g L-1 yeast extract, 

and 10 g L-1 NaCl). Liquid pre-cultures were performed using either 50-ml centrifuge 

Falcon® tubes with a medium volume of 10 mL. Cultures were cultivated in 100-mL 

flat bottom Erlenmeyer containing 20 mL de Bont medium supplemented with 20 mM 

glucose as only carbon source. The media was buffered with 5 g L-1 3-(N-

morpholino)propanesulfonic acid (MOPS) at pH 7.0. Liquid pre-cultures were 

agitated at 250 rpm (MaxQ™8000 incubator; ThermoFisher Scientific, Waltham, MA, 

USA). Cultures were incubated at 200 rpm (New Brunswick™ Innova® 42/42R 

Shaker, sticky pad). Solid culture media contained an additional 15 g L-1 agar.  
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 Sampling for multi-omics analysis 

Samples were taken according the procedure described in Chapter 2 with some 

modifications described as follows: for footprinting analysis, several samples―one 

per hour―were taken from 2 to 11 hours of cultivation. The bacterial growth was 

followed by measuring the optical density at 600nm (OD600nm), the samples were 

centrifuged at 10,000 g for 5 min. at 4°C.  The supernatant was collected and frozen at 

-20°C until further characterization. For time-course metabolomics, four samples per 

flask were taken across the cultivation at different metabolic states: Lag-phase or t1 

(OD600nm~0.1), mid-log(1) or t2 (OD600nm~0.5), mid-log (2) or t3 (OD600nm~1.0-1.2) and late 

or t4 (OD600nm~2.0-2.5). Each sample was quickly filtrated in MF Millipore™ membrane 

filter (0.45-μm pore size; Sigma-Aldrich Co.). Later, the filter containing the bacterial 

biomass was quenched with 1 ml of [40% (vol. vol.-1) acetonitrile, 40% (vol. vol. -1) 

methanol and 100 mM formic acid] at −20°C. The resulting solution was transferred 

into a 2-ml Eppendorf tube; the filter was rinsed with an extra 1-ml of quenching 

solution and collected in the same tube. Samples were placed in a dry ice bath for 

30 min and; after that, the samples were thawed and centrifuged at 13,000 g for 5 min. 

Later, the supernatants were transferred to a new tube to evaporate the solvent in a 

SpeedVac centrifuge (2 h at 45°C). Finally, the samples were stored at −80°C until prior 

analysis. Prior to the LC-MS/MS analysis, the samples were resuspended in 100 μl of 

LC–MS grade water. For proteomics and fluxomics sampling, a total of 1 OD600nm was 

harvested at phase mid-log (2) or t3 (OD600nm~1.0-1.2). The samples were centrifuged at 

10,000 g for 5 minutes and the supernatant was discarded. Next, the biomass was 

washed twice by adding 1 mL of de Bont minimal media without carbon source. 

Samples were centrifuged at 10,000 g between each wash step and the pellet was 

frozen at -80°C for further analysis. Three biological replicates were carried out for 

each experiment.  
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 Determination of physiological parameters  

Regression analysis was applied during exponential growth to calculate (i) the 

maximum specific growth rate (μmax); (ii) the specific rate of glucose (qs); (iii) biomass 

yield on substrate (YX/S); (iv) specific ATP production rate (qATP) and (v) the biomass 

yield on ATP (YX/ATP). CDW was determined by harvesting 10 mL of cells in independent 

flasks at different optical densities. The cells were centrifuges at 10,000 g for 10 min 

and washed twice with MQ-water. The biomass was transferred by pipetting into pre-

weighed glass and dried at 105 °C until constant weight. qATP and qNAD(P)H were 

calculated using the following (Equation 1): 

 

𝑟
/ ( )   

−  𝑟
/ ( )    

 (𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟏) 

 

ri is the specific production or consuming rate for the reaction i and n is the total 

amount of reactions contributing to ATP or NAD(P)H formation/consumption in the 

metabolic network of the different P. putida strains. 

  

 Supernatant analysis via HPLC 

Glucose, gluconate and 2-ketogluconate were analyzed using a Dionex Ultimate 3000 

HPLC with an Aminex® HPX-87X Ion Exclusion (300×7.8 mm) column (BioRad, 

Hercules, CA) and RI-150 refractive index and UV (260, 277, 304 and 210 nm) 

detectors. For analysis, the column was maintained at 30°C and a 5 mM H2SO4 solution 

was used as mobile phase at a flowrate of 0.6 mL min-1. HPLC data were processed 

using the Chromeleon 7.1.3 software (Thermo Fisher Scientific), and compound 

concentrations were calculated from peak areas using calibration curves with seven 

different standard concentrations (Glucose range: 0 – 20 mM. Gluconate: 0 – 10 mM. 

2-ketoglucoante: 0 – 10 mM). 
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 Targeted metabolomics analysis via LC-MS/MS 

Samples at -80°C were thawed on ice and prepared for injection. Chromatographic 

separation of metabolites was done with an ACQUITY UPLC™ high-strength silica 

T3 column (XP, XSelect HSS 2.5 μm, 2.1×150 mm from Waters) in an HPLC apparatus 

(Shimadzu; Columbia, MD, USA). A gradient of eluent A [5% (vol. vol. -1) methanol, 

2% (vol. vol. -1) 2-propanol, 10 mM  tributylamine (TBA) and 10 mM acetic acid in H2O] 

and 2-propanol was implemented for metabolite separation (McCloskey, et al., 2018). 

The flow rate was set to 0.4 ml min−1 with a total run time of 33 min.; the autosampler 

was kept at 10°C and the column oven was set at 40°C with an injection volume of 10 

μl. For metabolite identification as well as determination, a mass spectrometer 

(QTrap™ AB SCIEX mass spectrometer 5500) was operated in negative ion mode with 

the following settings: ionization set, −4500; temperature, 500°C; curtain gas, 45; 

collision gas, high; ion source gas, 1; and ion source gas pressure, 250 pound square 

inch−1. Metabolomics data analysis was carried out in Excel and the analysed data—

metabolite fold change (FC)—were used as input to visualize the data in line graphs 

using GraphPad Prism® 9.5.0. 

 

 Semi-quantitative proteomics by mass spectrometry (MS) 

For sample processing, the cell pellets were thawed on ice and; later, the tubes were 

centrifuged at max speed (21,000 g) for 10 min. While maintained on ice, two 3-mm 

zirconium oxide beads (Glen Mills, NJ, USA) were added to the samples. After 

removing the samples from ice, 100 μl of 95°C 6 M Guanidinium hydrochloride 

(GuHCl), 5 mM tris(2-carboxyethyl)phosphine (TCEP), 10 mM chloroacetamide 

(CAA), and 100 mM Tris–HCl pH 8.5) was added to the samples. Cells were lysed 

using a Mixer Mill (MM 400 Retsch, Haan, Germany) set at 25 Hz for 5 min. at room 

temperature, followed by 10 min. in a thermal mixer at 95°C and 2000 rpm. The cell 

debris was removed by centrifugation at 21,000 g for 10 min. Later, 50 μl of 

supernatant was collected and diluted with 50 μl of 50 mM ammonium bicarbonate. 

Next, the protein concentration was quantified utilizing Bradford method with BSA 
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concentration standard. An aliquot containing 100 μg of total protein was collected 

for tryptic digestion. The enzymatic digestion was performed at 400 rpm for 8 h, after 

which 10 μl of 10% trifluoroacetic acid (TFA) was added. For peptide purification, 

enrichment and pre-fractionation, a C18 resin (Empore, 3M, USA) was used as part of 

the StageTipping process. 

 

The purified peptides were analysed using a CapLC system (Thermo Scientific) 

coupled to an Orbitrap Q exactive HF-X mass spectrometer (Thermo Scientific). 

Initially, samples were captured on a pre-column (μ-precolumn C18 Pep-Map 100, 5 

μm, 100Å) at a flow rate of 10 μl min.-1. Subsequently, the peptides were separated on 

a 15 cm C18 easy spray column (PepMap RSLC C18 2μm, 100Å, 150 μm×15 cm) at a 

flow rate of 1.2 μl min.-1. A gradient from 4% (v/v) acetonitrile in water to 76% (v/v) 

was applied over a total of 60 min. While spraying the samples into the mass 

spectrometer, the instrument operated in data-dependent acquisition (DDA) mode 

using the following settings: MS-level scans were performed with Orbitrap resolution 

set to 60,000; AGC Target 3.0e6; maximum injection time 50 ms; intensity threshold 

5.0e3; dynamic exclusion 25 s. Data-dependent MS2 selection was performed in Top 

20 Speed mode with HCD collision energy set to 28% (AGC target 1.0e4, maximum 

injection time 22 ms, Isolation window 1.2 m/z). For analysis of the thermo .raw files 

refer to methodology in Chapter 2. 

 

 Parallel 13C-labelling cultivations for flux analysis 

For parallel labelling tracer experiments, Pseudomonas putida strains were grown as 

indicated in Bacterial strains and culture conditions by supplementing the medium 

with the labeled substrate of preference. In this experiment, three different isotopic 

tracers combination were used [1–13C1]-glucose, [6–13C1]-glucose, or a mixture of each 

50% unlabeled and uniformly labeled glucose [U–13C6]-glucose (Kohlstedt and 

Wittmann, 2019). All labeled substrates were acquired from Cambridge Isotope 

Laboratories Inc. (Teddington, Middlesex, United Kingdom). Pre-cultures were 
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performed in de Bont minimal media with 15 mM unlabeled glucose with 5 g L-1 

MOPS. The cultures were inoculated at an initial OD600nm of 0.025 in a 100-mL 

Erlenmeyer flask containing 20 mL of de Bont medium with the specific tracers. For 

culture inoculation, aliquots were taken from the pre-cultures, centrifuged at 10,000 g 

and 4°C for 5 min, and washed twice using de Bont medium without a carbon source. 

All experiments were performed in three biological replicates and two technical 

replicates, and multiple samples were harvested for the analysis of either 

proteinogenic amino acids or cellular sugars (glucose-6-phosphate and fructose-6-

phosphate).  

 

 Sample preparation and GC-MS analysis of proteinogenic amino 
acids and cellular sugar 

Please refer to Chapter 2 for a detailed explanation.  

 

 Reaction network and computational design for flux estimation 

The metabolic networks of the different Pseudomonas putida strains were built based 

on the most updated genome-scale metabolic model (Nogales, et al., 2020). In total, 79 

reactions were included as part of the central carbon metabolism in Pseudomonas putida 

KT2440 Wild-type. In the case of the strains containing the deletions, the following 

reactions were set to zero (0) form the “core model” of 79 reactions: R3 to R10 for Δgcd; 

R2 for Δglk; R6 to R9 for Δgad; R2 and R6 to R9 ΔgtsABCDΔglkΔgad and; R2 and R5 for 

ΔgtsABCDΔglkΔgnuKΔgntT. All the reactions, as well as the carbon atom transitions, 

are listed in Table S6.4 and Table S6.5, respectively. The INCA software package was 

utilized for 13C-metabolic flux analysis (13C-MFA) (Young, 2014). Specific growth rates, 

uptake and secretion rates for glucose, gluconate and 2-ketogluconate (2-KGA) were 

used to constrain the MFA model. The general biomass equation was derived from 

the normalized precursor drainage to calculate experimental growth rates (Ebert, et 

al., 2011, Kohlstedt and Wittmann, 2019, Czajka, et al., 2022) . The relative fluxes of 

fixed parameters (glucose, gluconate, 2-KGA, biomass formation, ATP and NAD(P)H) 
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were calculated and expressed as a percentage based on the uptake rate of glucose 

(100%) (Table S6.3). Intracellular fluxes were estimated by iteratively minimizing the 

weighted sum-of-squared-residuals (SSR) between simulated and experimental 

labeling data for proteinogenic amino acids, extracellular sugars and sugar acids, 

glycogen, and glucosamine [i.e., the mass isotopomer distribution vectors (MDVs) of 

all analyzed fragments]. To ensure that the global best solution was determined, the 

flux estimation was iterated 20 times, starting with random initial values. Upon 

convergence, a χ2 test was applied to assess the goodness-of-fit. The 95% confidence 

intervals were calculated by determining the sensitivity of the sum of squared 

residuals to flux parameter variations (Antoniewicz, et al., 2006). The full set of 

calculated fluxes, including best fits, standard deviations, upper and lower bounds of 

the 95% confidence intervals for all fluxes are presented in Table S6.4. The flux 

distributions of the Pseudomonas putida strains were visualized by plotting the 

computed flux values onto custom metabolic maps using the R package fluctuator. 
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6.7 Supplementary Material 

Table S6.1. ATP production and consumption for the strains used in this study within the peripheral 
reactions. ATP estimation from: 1) Glucose to G6P; 2) G6P to 6PG; 3) Glucose to gluconate; 4) Gluconate 
to 6PG; 5) Gluconate to 2-KGA; and 6) 2-KGA to 6PG. Glnt: Gluconate. G6P: glucose-6-phosphate. 6PG: 
6-phosphogluconate. 2-KGA: 2-ketogluconate. ATP: adenosine triphosphate. 
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t1
t2

t3
t4

t1
t2

t3
t4

t1
t2

t3
t4

t1
t2

t3
t4

A
vg.

1.46
1.94

2.06
2.09

0.74
0.78

1.60
0.77

-5.79
-5.72

-5.35
-6.40

-4.87
-5.39

-5.57
-6.80

SD
0.06

0.26
0.32

0.12
0.04

0.12
0.28

0.09
0.27

0.32
0.43

0.09
2.14

0.12
0.42

0.08
A

vg.
0.94

1.06
1.23

1.46
0.41

0.32
1.01

0.51
-2.18

-1.35
-2.11

-2.38
-1.88

-2.08
-1.92

-2.55
SD

0.06
0.13

0.37
0.23

0.13
0.18

0.23
0.24

0.19
0.24

0.30
0.04

0.43
0.24

0.18
0.17

A
vg.

-1.29
-2.61

-3.16
-3.04

0.01
-0.17

-0.82
-0.27

-1.48
-2.62

-3.05
1.08

1.45
0.67

-3.06
0.94

SD
0.10

0.20
1.15

0.19
0.15

0.10
0.20

0.36
0.20

0.42
0.55

0.10
0.19

0.20
0.30

0.28
A

vg.
-3.89

-6.23
-4.68

-3.96
0.38

-0.01
-0.73

-0.20
-5.51

-6.38
-7.94

1.32
2.26

0.75
-6.07

1.17
SD

0.06
0.26

3.10
0.32

0.15
0.28

0.28
0.29

0.35
0.01

0.53
0.16

0.49
0.29

0.35
0.11

A
vg.

-2.25
-2.39

-3.00
-3.10

0.01
0.04

0.34
0.48

0.02
0.08

0.53
-2.06

-3.08
-2.54

0.36
-1.77

SD
0.11

0.19
1.17

0.44
0.20

0.10
0.04

0.21
0.15

0.24
0.25

0.11
0.92

0.40
0.18

0.23
A

vg.
-3.00

-4.09
-4.01

-3.99
0.32

0.49
-1.11

-0.12
-3.73

-6.02
-4.89

3.21
2.80

2.29
-5.45

2.90
SD

0.54
0.53

0.64
0.50

0.45
0.41

0.32
0.21

0.26
0.83

0.49
0.29

0.37
0.31

0.42
0.29

A
vg.

-1.07
-1.62

-1.88
-1.83

0.25
0.13

-0.40
-0.21

-0.18
-0.59

-1.09
1.96

1.86
1.40

-1.26
2.05

SD
0.09

0.27
0.59

0.27
0.46

0.29
0.15

0.14
0.26

0.13
0.02

0.14
0.30

0.17
0.33

0.17
A

vg.
-0.30

-1.60
-2.16

-1.94
0.24

-0.65
-0.35

0.00
-0.20

-0.27
-0.14

0.59
0.35

-0.13
0.39

0.86
SD

1.14
0.15

1.39
0.07

0.38
0.28

0.32
0.27

0.11
0.31

0.16
0.06

1.13
0.12

0.10
0.48

A
vg.

0.44
0.59

0.31
0.60

0.52
0.20

0.59
0.35

-0.57
-0.75

-0.77
-1.03

-0.54
-0.25

-0.59
-0.66

SD
0.14

0.11
0.76

0.29
0.27

0.29
0.39

0.19
0.14

0.24
0.25

0.17
0.14

0.15
0.30

0.21
A

vg.
1.09

1.71
1.26

-0.30
0.20

0.65
1.09

-0.06
0.65

0.16
1.17

-0.25
0.85

1.17
1.58

0.24
SD

0.34
0.20

0.64
0.10

0.13
0.17

0.13
0.32

0.09
0.46

0.72
0.25

0.14
0.12

0.93
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A
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0.06
0.16

0.10
-0.33

0.25
0.22

0.44
0.16

-0.16
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-0.07
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-0.05
0.13

0.10
-0.09

SD
0.02

0.15
0.14

0.15
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0.25
0.18

0.12
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0.20
0.09

0.05
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0.14
0.13

0.02
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-0.20
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SD
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Table S6.2. C
hanges in protein expression for the strains used in this chapter com

pared to P. putida K
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0.53
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0.29
0.49
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SD
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SD
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SD
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0.11
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0.52
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0.29
0.33

0.36
0.64
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0.11
0.25

0.42
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0.34
-0.24

0.02
-0.09

0.35
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-0.04
-0.45

0.01
0.13

0.02
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SD
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0.35
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SD
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-0.14
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SD

0.11
0.15
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0.09
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SD
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0.13
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0.33
0.07
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SD
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t1
t2

t3
t4

t1
t2

t3
t4

t1
t2

t3
t4

t1
t2

t3
t4

A
vg.

-0.04
-0.31

-0.33
0.01

-0.33
-0.24

-0.49
-0.23

0.36
0.18

0.01
0.33

0.26
0.03

-0.19
0.34

SD
0.07

0.08
0.17

0.13
0.05

0.24
0.09

0.04
0.06

0.13
0.05

0.05
0.26

0.19
0.07

0.07
A

vg.
0.23

0.66
0.38

0.03
0.28

0.28
0.53

0.08
0.48

0.18
0.53

0.00
0.38

0.63
0.60

0.29
SD

0.21
0.38

0.08
0.11

0.45
0.20

0.32
0.23

0.23
0.31

0.21
0.14

0.46
0.17

0.03
0.05

A
vg.

-0.09
-0.21

-0.24
-0.21

-0.36
-0.27

-0.75
-0.34

0.19
-0.14

-0.27
0.39

0.13
-0.11

-0.55
0.35

SD
0.11

0.28
0.10

0.24
0.13

0.11
0.21

0.08
0.15

0.17
0.05

0.17
0.11

0.08
0.18

0.13
A

vg.
-0.10

0.07
-0.17

0.04
-0.37

0.10
-0.23

0.04
-0.10

0.14
0.01

0.13
-0.18

0.12
-0.24

-0.06
SD

0.08
0.35

0.27
0.11

0.15
0.15

0.25
0.15

0.12
0.24

0.22
0.20

0.16
0.23

0.32
0.25

A
vg.

0.93
0.78

0.68
0.63

0.35
0.06

0.05
0.02

0.48
-0.41

-0.14
0.16

-0.31
-0.33

-0.59
0.00

SD
0.26

0.05
0.23

0.35
0.31

0.22
0.32

0.20
0.28

0.11
0.12

0.29
0.31

0.31
0.27

0.25
A

vg.
0.71

3.60
3.49

4.27
0.79

0.98
3.97

0.23
0.48

-0.03
4.95

-0.09
-0.12

2.23
5.33

1.25
SD

0.37
0.35

1.27
1.11

0.29
0.89

1.57
0.37

0.25
0.88

0.30
0.98

0.21
0.17

0.65
0.66

A
vg.

-0.06
0.03

0.03
0.08

-0.17
-0.15

-0.24
0.11

-0.06
0.10

-0.12
0.28

-0.54
-0.08

-0.23
0.53

SD
0.13

0.01
0.23

0.36
0.19

0.30
0.33

0.17
0.30

0.16
0.23

0.32
0.19

0.32
0.10

0.28
A

vg.
0.45

1.55
1.53

1.80
-0.10

-0.23
1.51

-0.30
-0.02

-0.14
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-0.47
-0.19

0.85
2.26

0.31
SD

0.19
0.25

0.32
0.44

0.30
0.37

0.35
0.15

0.25
0.45

0.24
0.30

0.08
0.31

0.15
0.30

A
vg.

0.35
0.51

0.29
0.45

0.06
-0.02

0.36
-0.04

0.32
0.15

0.48
0.19

0.47
0.51

0.48
0.23

SD
0.08

0.33
0.25

0.16
0.07

0.21
0.21

0.10
0.07

0.28
0.06

0.28
0.30

0.19
0.12

0.17
A

vg.
0.07

-0.03
-0.07

0.03
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0.02
-0.08

-0.08
0.04

-0.20
-0.21

-0.08
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SD

0.10
0.25
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A
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SD
0.16

0.37
0.20

0.15
0.16

0.33
0.16

0.12
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0.00
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0.06

SD
0.07

0.17
0.23

0.39
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0.25
0.21

0.27
0.11

0.28
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0.34
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0.33
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0.13
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0.04
-0.03

0.30
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0.03
-0.33
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0.05
SD
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0.05

0.07
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0.23
0.09

0.06
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0.10
0.00

0.07
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0.09
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0.20
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0.23

-0.07
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-0.16
0.00

0.07
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-0.20

-0.56
-0.05

SD
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0.05
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0.07

0.14
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Table S6.3. IN
C

A
 m

odel constrain param
eters in the different Pseudom

onas putida strains. N
orm

alized uptake, secretion, A
TP and N

A
D

H
 

m
aintenance as w

ell as grow
th rates to the glucose uptake rate (100%

) as constrain param
eters for 13C

-m
etabolic flux analysis. The relative 

values can be obtained by dividing the respective specific uptake rates (qs) by glucose uptake rate (q
glucose ) m

ultiplied by 100%
. 
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Table S6.4. Relative net fluxes determined by 13C-MFA in the Pseudomonas putida KT2440 model. 
Relative mean values (%) are net fluxes relative to glucose uptake rate of 100% (uptake rates were 
estimated for each strain and those mean values are reported in Table S6.3). Mean parameter estimates 
and 95% confidence bounds using INCA’s parameter continuation method are shown below for Wild-
type; Δgcd; Δglk; Δgad; ΔgtsABCDΔglkΔgad and ΔgtsABCDΔglkΔgnuKΔgntT.  

 

Reaction 
ID 

Equation 

Pseudomonas putida  
KT2440  

Pseudomonas putida  
KT2440 Δgcd 

Value 
(%) 

SD Lower 
bond 

Upper 
bond 

Value 
(%) 

SD Lower 
bond 

Upper 
bond 

R1 Gluc.ext -> Gluc.per 100,0 0,0 100,0 100,0 100,0 0,0 100,0 100,0 

R2 Gluc.per + 2*ATP -> 
G6P 15,9 1,6 13,0 19,3 100,0 0,0 100,0 100,0 

R3 Gluc.per -> Gluco.per + 
UQH2 84,1 1,6 80,7 87,0 0,0 0,0 0,0 0,0 

R4 Gluco.per -> Gluco.ext 16,3 0,0 16,3 16,3 0,0 0,0 0,0 0,0 
R5 Gluco.per + ATP -> 6PG 64,4 1,6 61,0 67,3 0,0 0,0 0,0 0,0 

R6 Gluco.per -> 
Kgluco.per + FADH2 3,4 0,0 3,4 3,4 0,0 0,0 0,0 0,0 

R7 Kgluco.per -> 
Kgluco.ext 

3,4 0,0 3,4 3,4 0,0 0,0 0,0 0,0 

R8 Kgluco.per + ATP -> 
KGluco6P 

Sum with R5 
0,0 0,0 0,0 0,0 

R9 KGluco6P + NADPH -> 
6PG 0,0 0,0 0,0 0,0 

R10 G6P <-> F6P -26,2 2,1 -30,8 -23,1 -49,5 1,8 -54,9 -46,4 
R11 FBP -> F6P 29,0 1,4 26,6 31,7 51,6 1,8 48,5 56,5 
R12 FBP <-> DHAP + GAP -29,0 1,4 -31,7 -26,6 -51,6 1,8 -56,5 -48,5 
R13 DHAP <-> GAP -29,0 1,4 -31,7 -26,6 -51,6 1,8 -56,5 -48,5 

R14 GAP <-> 3PG + ATP + 
NADH 42,3 1,4 39,5 44,7 43,2 1,8 38,2 46,3 

R15 3PG <-> PEP 34,0 1,5 31,3 36,4 38,2 1,8 33,3 41,3 
R16 PEP -> Pyr + ATP 37,6 5,7 29,0 41,1 45,9 2,6 0,0 50,8 
R17 G6P -> 6PG + NADPH 40,3 3,0 35,4 46,7 148,5 1,8 145,4 153,8 

R18 6PG -> Ri5P + CO2 + 
NADPH 1,0 2,2 0,0 5,8 0,0 0,0 0,0 5,0 

R19 Ri5P <-> X5P -2,1 1,5 -2,8 1,1 -1,6 0,0 -1,6 1,7 
R20 Ri5P <-> R5P 3,1 0,7 2,8 4,7 1,6 0,0 1,6 3,3 
R21 X5P <-> GAP + EC2 -2,1 1,5 -2,8 1,1 -1,6 0,0 -1,6 1,7 
R22 F6P <-> E4P + EC2 3,1 0,7 1,5 3,5 2,0 0,0 0,4 2,0 
R23 S7P <-> R5P + EC2 -1,0 0,7 -2,6 -0,7 -0,4 0,0 -2,1 -0,4 
R24 F6P <-> GAP + EC3 -1,0 0,7 -2,6 -0,7 -0,4 0,0 -2,1 -0,4 
R25 S7P <-> E4P + EC3 1,0 0,7 0,7 2,6 0,4 0,0 0,4 2,1 
R26 6PG -> Pyr + GAP 103,7 1,5 101,0 106,6 148,5 1,8 145,4 153,4 

R27 Pyr -> AcCoA + CO2 + 
NADH 

73,3 1,0 71,7 74,0 149,2 0,1 147,5 154,4 

R28 OAA + AcCoA -> Cit 43,8 1,0 42,2 44,5 131,8 0,1 130,2 132,0 
R29 Cit <-> ICit 43,8 1,0 42,2 44,5 131,8 0,1 130,2 132,0 
R30 ICit -> Suc + Glyox 0,1 0,0 0,0 0,3 0,0 0,0 0,0 5,2 
R31 Glyox + AcCoA -> Mal 0,1 0,0 0,0 0,3 0,0 0,0 0,0 5,2 

R32 ICit -> AKG + CO2 + 
NADPH 43,7 1,0 42,1 44,4 131,8 0,1 126,7 132,0 

R33 AKG -> SucCoA + CO2 
+ NADH 31,6 1,0 30,0 32,4 124,8 0,1 119,6 125,0 

R34 SucCoA <-> Suc + ATP 28,5 1,0 26,9 29,3 123,0 0,1 117,8 123,1 
R35 Suc -> Fum + FADH2 31,7 1,0 30,1 32,5 124,8 0,1 123,1 125,0 
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R36 Fum <-> Mal 36,7 1,0 35,1 37,4 127,7 0,1 126,0 127,8 
R37 Mal -> OAA + FADH2 36,8 7,5 33,5 37,8 127,7 0,1 104,1 132,8 

R38 Pyr + CO2 + ATP -> 
OAA 181,3 9,2 171,6 187,6 1753,6 3,5 1700,7 2176,8 

R39 OAA -> Pyr + CO2 142,7 6,2 135,0 149,1 1725,6 3,1 1715,9 2150,8 
R40 PEP + CO2 -> OAA  0,0 6,1 0,0 9,5 0,0 0,0 0,0 51,2 

R41 OAA + ATP -> PEP + 
CO2 11,9 1,3 9,8 14,4 12,5 1,2 10,4 16,6 

R42 Mal -> Pyr + CO2 + 
NADPH 

0,0 7,5 0,0 3,1 0,0 0,0 0,0 23,5 

R43 AKG + NADPH + NH3 
-> Glu 69,3 0,7 68,9 69,9 40,4 0,1 40,2 40,5 

R44 Glu + ATP + NH3 -> 
Gln 8,3 0,0 8,3 8,3 4,9 0,0 4,9 4,9 

R45 Glu + ATP + 2*NADPH 
-> Pro 

2,7 0,0 2,7 2,7 1,6 0,0 1,6 1,6 

R46 

Glu + CO2 + Gln + Asp 
+ AcCoA + 5*ATP + 
NADPH -> Arg + AKG 
+ Fum + Ac 

3,6 0,0 3,6 3,6 2,1 0,0 2,1 2,1 

R47 OAA + Glu -> Asp + 
AKG 19,6 1,5 19,0 21,0 11,3 0,2 10,9 11,6 

R48 Asp + 2*ATP + NH3 -> 
Asn 1,6 0,0 1,6 1,6 1,0 0,0 1,0 1,0 

R49 Pyr + Glu -> Ala + AKG 6,2 0,0 6,2 6,2 3,6 0,0 3,6 3,6 

R50 3PG + Glu -> Ser + AKG 
+ NADH 

8,3 0,7 7,6 8,6 4,9 0,1 4,8 5,1 

R51 Ser <-> Gly + MEETHF 2,6 0,7 1,9 2,9 1,6 0,1 1,4 1,8 

R52 
Gly <-> CO2 + 
MEETHF + NADH + 
NH3 

0,0 0,7 -0,3 0,7 -0,1 0,1 -0,3 0,1 

R53 Thr <-> Gly + AcCoA + 
NADH 1,9 1,5 1,2 3,2 0,9 0,2 0,6 1,2 

R54 
Ser + AcCoA + 3*ATP + 
4*NADPH + SO4 -> Cys 
+ Ac 

1,8 0,0 1,8 1,8 1,1 0,0 1,1 1,1 

R55 

Asp + Pyr + Glu + 
SucCoA + ATP + 
2*NADPH -> LL_DAP 
+ AKG + Suc 

1,9 0,0 1,9 1,9 1,1 0,0 1,1 1,1 

R56 LL_DAP -> Lys + CO2 1,9 0,0 1,9 1,9 1,1 0,0 1,1 1,1 

R57 Asp + 2*ATP + 
2*NADPH -> Thr 7,0 1,5 6,4 8,4 3,9 0,2 3,6 4,2 

R58 

Asp + METHF + Cys + 
SucCoA + ATP + 
2*NADPH -> Met + Pyr 
+ Suc + NH3 

1,3 0,0 1,3 1,3 0,7 0,0 0,7 0,7 

R59 
Pyr + Pyr + Glu + 
NADPH -> Val + CO2 + 
AKG 

4,0 0,0 4,0 4,0 2,3 0,0 2,3 2,3 

R60 

AcCoA + Pyr + Pyr + 
Glu + NADPH -> Leu + 
CO2 + CO2 + AKG + 
NADH 

6,5 0,0 6,5 6,5 3,8 0,0 3,8 3,8 

R61 
Thr + Pyr + Glu + 
NADPH -> Ile + CO2 + 
AKG + NH3 

2,5 0,0 2,5 2,5 1,5 0,0 1,5 1,5 
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R62 
PEP + PEP + E4P + Glu 
+ ATP + NADPH -> Phe 
+ CO2 + AKG 

2,0 0,0 2,0 2,0 1,1 0,0 1,1 1,1 

R63 
PEP + PEP + E4P + Glu 
+ ATP + NADPH -> Tyr 
+ CO2 + AKG + NADH 

1,4 0,0 1,4 1,4 0,8 0,0 0,8 0,8 

R64 

Ser + R5P + PEP + E4P + 
PEP + Gln + 3*ATP + 
NADPH -> Trp + CO2 + 
GAP + Pyr + Glu 

0,8 0,0 0,8 0,8 0,5 0,0 0,5 0,5 

R65 
R5P + FTHF + Gln + 
Asp + 5*ATP -> His + 
AKG + Fum + 2*NADH 

1,3 0,0 1,3 1,3 0,8 0,0 0,8 0,8 

R66 MEETHF + NADH -> 
METHF 

1,3 0,0 1,3 1,3 0,7 0,0 0,7 0,7 

R67 MEETHF -> FTHF + 
NADPH 1,3 0,0 1,3 1,3 0,8 0,0 0,8 0,8 

R68 Biomass formation 
Refer to* 10,3 0,0 10,3 10,3 6,0 0,0 6,0 6,0 

R69 CO2.unlabeled <-> CO2 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 
R70 NADH <-> NADPH 50,1 8,9 41,1 55,9 -199,0 1,8 -223,6 -194,2 

R71 ATP -> 
ATP.maintenance 15,6 0,0 15,6 15,6 12,3 0,0 12,3 12,3 

R72 NADPH -> 
NADPH.maintenance 

13,4 0,0 13,4 13,4 10,6 0,0 10,6 10,6 

R73 NADH + O2 -> 3*ATP 116,4 7,9 112,8 121,7 527,3 0,2 522,1 550,9 
R74 FADH2 + O2 -> 2*ATP 71,9 7,7 68,1 73,3 252,5 0,2 228,9 257,7 
R75 UQH2 + O2 -> 3*ATP 84,1 1,6 80,7 87,0 0,0 0,0 0,0 144,1 
R76 CO2 -> CO2.ext 144,8 0,0 144,8 144,8 403,0 0,0 403,0 403,0 
R77 NH3.ext -> NH3 75,4 0,0 75,4 75,4 44,1 0,0 44,1 44,1 
R78 SO4.ext -> SO4 1,8 0,0 1,8 1,8 1,1 0,0 1,1 1,1 
R79 O2.ext -> O2 272,5 0,0 272,5 272,5 779,8 0,0 779,8 923,8 

Fit Accepted Accepted 
SSR 214.6 262.1 

Expected SSR [208.1 - 295.7] [246.6 - 341.2] 
Normally distribution Yes Yes 

 

Reaction 
ID Equation 

Pseudomonas putida  
KT2440 Δglk 

Value 
(%) 

SD Lower 
bond 

Upper 
bond 

R1 Gluc.ext -> Gluc.per 100,0 0,0 100,0 100,0 

R2 Gluc.per + 2*ATP -> 
G6P 0,0 0,0 0,0 0,0 

R3 Gluc.per -> Gluco.per + 
UQH2 100,0 0,0 100,0 100,0 

R4 Gluco.per -> Gluco.ext 13,5 0,0 13,5 13,5 

R5 Gluco.per + ATP -> 
6PG 83,8 0,0 83,8 83,8 

R6 Gluco.per -> 
Kgluco.per + FADH2 

2,7 0,0 2,7 2,7 

R7 Kgluco.per -> 
Kgluco.ext 2,7 0,0 2,7 2,7 

R8 Kgluco.per + ATP -> 
KGluco6P 

Sum with R5 
R9 KGluco6P + NADPH -

> 6PG 
R10 G6P <-> F6P -38,6 3,1 -43,4 -34,4 
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R11 FBP -> F6P 40,4 2,8 36,8 44,0 
R12 FBP <-> DHAP + GAP -40,4 2,8 -44,0 -36,8 
R13 DHAP <-> GAP -40,4 2,8 -44,0 -36,8 

R14 GAP <-> 3PG + ATP + 
NADH 36,3 2,8 32,7 39,9 

R15 3PG <-> PEP 29,7 2,8 26,0 33,3 
R16 PEP -> Pyr + ATP 35,0 3,6 1,0 39,6 
R17 G6P -> 6PG + NADPH 37,2 3,1 33,0 42,0 

R18 6PG -> Ri5P + CO2 + 
NADPH 1,4 2,6 0,3 7,3 

R19 Ri5P <-> X5P -0,4 1,7 -2,2 -0,4 
R20 Ri5P <-> R5P -0,4 0,9 2,2 -0,4 
R21 X5P <-> GAP + EC2 0,4 1,7 0,4 2,7 
R22 F6P <-> E4P + EC2 2,2 0,9 0,9 2,7 
R23 S7P <-> R5P + EC2 -0,5 0,1 -3,0 -0,5 
R24 F6P <-> GAP + EC3 -0,5 0,1 -3,0 -0,5 
R25 S7P <-> E4P + EC3 0,5 0,1 0,5 3,0 
R26 6PG -> Pyr + GAP 119,6 3,0 114,8 123,6 

R27 Pyr -> AcCoA + CO2 + 
NADH 

99,3 0,2 97,3 104,3 

R28 OAA + AcCoA -> Cit 76,0 0,1 74,0 76,7 
R29 Cit <-> ICit 76,0 0,1 74,0 76,7 
R30 ICit -> Suc + Glyox 0,0 0,1 0,0 4,7 
R31 Glyox + AcCoA -> Mal 0,0 0,1 0,0 4,7 

R32 ICit -> AKG + CO2 + 
NADPH 76,0 0,1 71,2 76,7 

R33 AKG -> SucCoA + CO2 
+ NADH 66,6 0,1 61,8 67,3 

R34 SucCoA <-> Suc + ATP 64,2 0,2 59,3 64,8 
R35 Suc -> Fum + FADH2 66,6 0,2 64,6 67,3 
R36 Fum <-> Mal 70,5 0,2 68,5 71,1 
R37 Mal -> OAA + FADH2 70,5 0,2 64,5 75,5 

R38 Pyr + CO2 + ATP -> 
OAA 853,7 0,1 819,6 862,3 

R39 OAA -> Pyr + CO2 821,3 5,3 812,6 829,3 
R40 PEP + CO2 -> OAA  0,0 0,0 0,0 35,6 

R41 OAA + ATP -> PEP + 
CO2 11,8 1,3 9,6 14,1 

R42 Mal -> Pyr + CO2 + 
NADPH 0,0 0,3 0,0 5,8 

R43 AKG + NADPH + NH3 
-> Glu 1,0 0,0 1,0 1,0 

R44 Glu + ATP + NH3 -> 
Gln 

6,5 0,0 6,5 6,5 

R45 Glu + ATP + 2*NADPH 
-> Pro 2,1 0,1 2,1 2,1 

R46 

Glu + CO2 + Gln + Asp 
+ AcCoA + 5*ATP + 
NADPH -> Arg + AKG 
+ Fum + Ac 

2,8 0,1 2,8 2,8 

R47 OAA + Glu -> Asp + 
AKG -0,1 0,1 -0,4 0,1 

R48 Asp + 2*ATP + NH3 -> 
Asn 

0,9 0,3 0,4 1,3 

R49 Pyr + Glu -> Ala + AKG 4,8 0,2 4,8 4,8 

R50 3PG + Glu -> Ser + AKG 
+ NADH 6,6 0,2 6,4 6,8 

R51 Ser <-> Gly + MEETHF -0,2 0,2 -0,5 0,1 
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R52 
Gly <-> CO2 + 
MEETHF + NADH + 
NH3 

-0,2 0,3 0,5 0,1 

R53 Thr <-> Gly + AcCoA + 
NADH 0,7 0,0 0,7 0,7 

R54 
Ser + AcCoA + 3*ATP + 
4*NADPH + SO4 -> 
Cys + Ac 

1,4 0,0 1,4 1,4 

R55 

Asp + Pyr + Glu + 
SucCoA + ATP + 
2*NADPH -> LL_DAP 
+ AKG + Suc 

1,4 0,0 1,4 1,4 

R56 LL_DAP -> Lys + CO2 1,4 0,3 1,4 1,4 

R57 Asp + 2*ATP + 
2*NADPH -> Thr 1,0 0,0 1,0 1,0 

R58 

Asp + METHF + Cys + 
SucCoA + ATP + 
2*NADPH -> Met + Pyr 
+ Suc + NH3 

0,8 0,0 0,8 0,8 

R59 
Pyr + Pyr + Glu + 
NADPH -> Val + CO2 + 
AKG 

0,5 0,0 0,5 0,5 

R60 

AcCoA + Pyr + Pyr + 
Glu + NADPH -> Leu + 
CO2 + CO2 + AKG + 
NADH 

0,8 0,0 0,8 0,8 

R61 
Thr + Pyr + Glu + 
NADPH -> Ile + CO2 + 
AKG + NH3 

0,7 0,0 0,7 0,7 

R62 
PEP + PEP + E4P + Glu 
+ ATP + NADPH -> 
Phe + CO2 + AKG 

0,8 0,0 0,8 0,8 

R63 
PEP + PEP + E4P + Glu 
+ ATP + NADPH -> Tyr 
+ CO2 + AKG + NADH 

0,6 0,0 0,6 0,6 

R64 

Ser + R5P + PEP + E4P 
+ PEP + Gln + 3*ATP + 
NADPH -> Trp + CO2 
+ GAP + Pyr + Glu 

0,6 0,0 0,6 0,6 

R65 
R5P + FTHF + Gln + 
Asp + 5*ATP -> His + 
AKG + Fum + 2*NADH 

1,0 0,0 1,0 1,0 

R66 MEETHF + NADH -> 
METHF 1,0 0,0 1,0 1,0 

R67 MEETHF -> FTHF + 
NADPH 

1,0 0,0 1,0 1,0 

R68 Biomass formation 
Refer to * 8,0 0,3 8,0 8,0 

R69 CO2.unlabeled <-> 
CO2 0,0 0,3 0,0 0,0 

R70 NADH <-> NADPH -8,3 4,2 -16,8 -1,4 

R71 ATP -> 
ATP.maintenance 14,0 0,0 14,0 14,0 

R72 NADPH -> 
NADPH.maintenance 

12,0 0,3 12,0 12,0 

R73 NADH + O2 -> 3*ATP 225,3 0,3 219,8 231,8 
R74 FADH2 + O2 -> 2*ATP 139,8 1,7 133,3 145,3 
R75 UQH2 + O2 -> 3*ATP 100,0 0,0 100,0 100,0 
R76 CO2 -> CO2.ext 239,6 0,0 239,6 239,6 
R77 NH3.ext -> NH3 58,9 0,0 58,9 58,9 



Chapter 6 
System-level analyses of glucose uptake mutants of Pseudomonas putida KT2440  

 
274 

 

R78 SO4.ext -> SO4 1,4 0,0 1,4 1,4 
R79 O2.ext -> O2 465,1 0,0 465,1 465,1 

Fit Accepted 
SSR 220,3 

Expected SSR [194,4 - 279,4] 
Normally distribution Yes 

 

 

Reaction 
ID Equation 

Pseudomonas putida KT2440 
ΔgtsABCDΔglkΔgad 

Pseudomonas putida KT2440 
ΔgtsABCDΔglkΔgntT 

Value 
(%) 

SD Lower 
bond 

Upper 
bond 

Value 
(%) 

SD Lower 
bond 

Upper 
bond 

R1 Gluc.ext -> Gluc.per 100,0 0,0 100,0 100,0 97,3 0,0 97,3 97,3 

R2 Gluc.per + 2*ATP -> 
G6P 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

R3 Gluc.per -> Gluco.per + 
UQH2 100,0 0,0 100,0 100,0 97,3 0,0 97,3 97,3 

R4 Gluco.per -> Gluco.ext 8,5 0,0 8,5 8,5 2,7 0,0 2,7 2,7 

R5 Gluco.per + ATP -> 
6PG 91,5 0,0 91,5 91,5 0,0 0,0 0,0 0,0 

R6 Gluco.per -> 
Kgluco.per + FADH2 

0,0 0,0 0,0 0,0 99,9 0,0 99,9 99,9 

R7 Kgluco.per -> 
Kgluco.ext 0,0 0,0 0,0 0,0 53,8 0,0 53,8 53,8 

R8 Kgluco.per + ATP -> 
KGluco6P 0,0 0,0 0,0 0,0 46,1 0,0 46,1 46,1 

R9 KGluco6P + NADPH -
> 6PG 0,0 0,0 0,0 0,0 46,1 0,0 46,1 46,1 

R10 G6P <-> F6P -28,7 0,7 -31,1 -27,4 -34,3 0,7 -35,9 -32,8 
R11 FBP -> F6P 32,3 0,7 31,0 33,8 17,6 0,7 16,3 19,1 
R12 FBP <-> DHAP + GAP -32,3 0,7 -33,8 -31,0 -17,6 0,7 -19,1 -16,3 
R13 DHAP <-> GAP -32,3 0,7 -33,8 -31,0 -17,6 0,7 -19,1 -16,3 

R14 GAP <-> 3PG + ATP + 
NADH 

49,9 0,7 48,4 51,2 22,7 0,7 21,3 24,1 

R15 3PG <-> PEP 41,2 0,7 39,8 42,5 17,4 0,7 15,9 18,7 
R16 PEP -> Pyr + ATP 41,3 0,8 37,9 42,8 14,6 3,2 8,4 16,2 
R17 G6P -> 6PG + NADPH 26,9 0,7 25,5 29,2 33,2 0,7 31,6 34,8 

R18 6PG -> Ri5P + CO2 + 
NADPH 

0,0 0,0 0,0 2,6 28,4 0,0 27,6 29,2 

R19 Ri5P <-> X5P -2,9 0,0 -2,9 -1,2 17,2 0,0 16,6 17,7 
R20 Ri5P <-> R5P 2,9 0,7 0,3 3,7 11,3 0,0 11,0 11,5 
R21 X5P <-> GAP + EC2 -0,4 0,0 -2,9 -0,4 17,2 0,0 16,6 17,7 
R22 F6P <-> E4P + EC2 -0,4 0,7 2,7 -0,4 -7,2 0,0 -7,5 -7,0 
R23 S7P <-> R5P + EC2 0,4 0,7 0,4 -0,7 -9,9 0,0 -10,2 -9,7 
R24 F6P <-> GAP + EC3 -0,7 0,7 -1,6 -0,7 -9,9 0,0 -10,2 -9,7 
R25 S7P <-> E4P + EC3 -0,7 0,1 0,7 1,6 9,9 0,0 9,7 10,2 
R26 6PG -> Pyr + GAP 118,4 0,1 117,0 119,9 50,9 0,7 49,6 52,3 

R27 Pyr -> AcCoA + CO2 + 
NADH 101,4 0,1 96,9 106,6 26,8 0,0 26,3 27,3 

R28 OAA + AcCoA -> Cit 62,7 0,7 61,9 63,0 7,8 0,0 7,8 7,8 
R29 Cit <-> ICit 62,7 0,7 61,9 63,0 7,8 0,0 7,8 7,8 
R30 ICit -> Suc + Glyox 8,1 0,1 3,6 13,3 0,0 0,0 0,0 0,0 
R31 Glyox + AcCoA -> Mal 8,1 0,1 3,6 13,3 0,0 0,0 0,0 0,0 

R32 ICit -> AKG + CO2 + 
NADPH 54,6 0,1 49,5 59,1 7,8 0,0 7,8 7,8 
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R33 AKG -> SucCoA + CO2 
+ NADH 

42,2 0,1 37,0 46,7 0,0 0,0 0,0 0,0 

R34 SucCoA <-> Suc + ATP 39,0 0,1 33,8 43,5 -2,0 0,0 -2,0 -2,0 
R35 Suc -> Fum + FADH2 50,3 0,1 49,5 50,5 0,0 0,0 NaN 0,0 
R36 Fum <-> Mal 55,4 0,7 54,6 55,6 3,2 0,0 NaN 3,2 
R37 Mal -> OAA + FADH2 63,5 2,7 53,2 68,8 0,0 0,0 0,0 0,0 

R38 Pyr + CO2 + ATP -> 
OAA 446,0 6,4 433,7 459,3 112,7 3,3 106,3 115,8 

R39 OAA -> Pyr + CO2 418,0 4,0 410,4 425,0 89,8 1,3 86,6 93,0 
R40 PEP + CO2 -> OAA  0,0 0,1 0,0 3,5 0,2 3,4 0,0 6,7 

R41 OAA + ATP -> PEP + 
CO2 

0,0 0,0 0,0 9,7 2,8 0,2 2,5 3,2 

R42 Mal -> Pyr + CO2 + 
NADPH 8,7 0,3 7,6 9,7 3,2 0,0 3,2 3,2 

R43 AKG + NADPH + NH3 
-> Glu 71,4 0,1 71,1 71,6 44,6 0,0 44,3 44,8 

R44 Glu + ATP + NH3 -> 
Gln 8,6 0,3 8,6 8,6 5,4 0,0 5,4 5,4 

R45 Glu + ATP + 2*NADPH 
-> Pro 

1,0 0,0 1,0 1,0 1,7 0,0 1,7 1,7 

R46 

Glu + CO2 + Gln + Asp 
+ AcCoA + 5*ATP + 
NADPH -> Arg + AKG 
+ Fum + Ac 

3,8 0,6 3,8 3,8 2,3 0,0 2,3 2,3 

R47 OAA + Glu -> Asp + 
AKG 20,0 0,1 19,5 20,5 12,6 0,0 12,0 13,1 

R48 Asp + 2*ATP + NH3 -> 
Asn 1,7 0,1 1,7 1,7 1,0 0,0 1,0 1,0 

R49 Pyr + Glu -> Ala + AKG -0,1 0,1 -0,4 0,1 4,0 0,0 4,0 4,0 

R50 3PG + Glu -> Ser + AKG 
+ NADH 

0,9 0,3 0,4 8,9 5,4 0,0 5,1 5,6 

R51 Ser <-> Gly + MEETHF -0,3 0,3 -0,7 0,0 1,7 0,0 1,4 1,9 

R52 
Gly <-> CO2 + 
MEETHF + NADH + 
NH3 

-0,1 0,6 0,5 0,1 0,0 0,0 -0,3 0,2 

R53 Thr <-> Gly + AcCoA + 
NADH 1,7 0,3 1,2 2,2 1,1 0,0 0,6 1,7 

R54 
Ser + AcCoA + 3*ATP + 
4*NADPH + SO4 -> 
Cys + Ac 

1,9 0,3 1,9 1,9 1,2 0,0 1,2 1,2 

R55 

Asp + Pyr + Glu + 
SucCoA + ATP + 
2*NADPH -> LL_DAP 
+ AKG + Suc 

0,7 0,0 0,7 0,7 1,2 0,0 1,2 1,2 

R56 LL_DAP -> Lys + CO2 1,9 0,6 1,9 1,9 1,2 0,0 1,2 1,2 

R57 Asp + 2*ATP + 
2*NADPH -> Thr 7,0 0,3 6,5 7,5 4,5 0,0 3,9 5,0 

R58 

Asp + METHF + Cys + 
SucCoA + ATP + 
2*NADPH -> Met + Pyr 
+ Suc + NH3 

1,3 0,0 1,3 1,3 0,8 0,0 0,8 0,8 

R59 
Pyr + Pyr + Glu + 
NADPH -> Val + CO2 + 
AKG 

4,1 0,0 4,1 4,1 2,6 0,0 2,6 2,6 

R60 

AcCoA + Pyr + Pyr + 
Glu + NADPH -> Leu + 
CO2 + CO2 + AKG + 
NADH 

0,8 0,0 0,8 0,8 4,2 0,0 4,2 4,2 
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R61 
Thr + Pyr + Glu + 
NADPH -> Ile + CO2 + 
AKG + NH3 

0,5 0,0 0,5 0,5 1,6 0,0 1,6 1,6 

R62 
PEP + PEP + E4P + Glu 
+ ATP + NADPH -> 
Phe + CO2 + AKG 

0,8 0,0 0,8 0,8 1,3 0,0 1,3 1,3 

R63 
PEP + PEP + E4P + Glu 
+ ATP + NADPH -> Tyr 
+ CO2 + AKG + NADH 

0,7 0,0 0,7 0,7 0,9 0,0 0,9 0,9 

R64 

Ser + R5P + PEP + E4P + 
PEP + Gln + 3*ATP + 
NADPH -> Trp + CO2 
+ GAP + Pyr + Glu 

0,8 0,0 0,8 0,8 0,5 0,0 0,5 0,5 

R65 
R5P + FTHF + Gln + 
Asp + 5*ATP -> His + 
AKG + Fum + 2*NADH 

1,3 0,0 1,3 1,3 0,8 0,0 0,8 0,8 

R66 MEETHF + NADH -> 
METHF 1,3 0,0 1,3 1,3 0,8 0,0 0,8 0,8 

R67 MEETHF -> FTHF + 
NADPH 

1,3 0,0 1,3 1,3 0,8 0,0 0,8 0,8 

R68 Biomass formation 
Refer to * 10,6 0,0 10,6 10,6 6,6 0,0 6,6 6,6 

R69 CO2.unlabeled <-> 
CO2 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

R70 NADH <-> NADPH 56,7 0,3 46,3 61,6 61,9 0,7 60,5 63,3 

R71 ATP -> 
ATP.maintenance 

15,3 0,0 15,3 15,3 11,8 0,0 11,8 11,8 

R72 NADPH -> 
NADPH.maintenance 13,1 0,0 13,1 13,1 10,2 0,0 10,2 10,2 

R73 NADH + O2 -> 3*ATP 156,6 2,8 151,2 167,0 0,0 0,0 0,0 NaN 
R74 FADH2 + O2 -> 2*ATP 113,8 2,8 103,4 119,1 99,9 0,0 99,9 99,9 
R75 UQH2 + O2 -> 3*ATP 100,0 0,0 100,0 100,0 97,3 0,0 97,3 97,3 
R76 CO2 -> CO2.ext 201,4 0,0 201,4 201,4 59,9 0,0 59,9 59,9 
R77 NH3.ext -> NH3 77,9 0,0 77,9 77,9 48,6 0,0 48,6 48,6 
R78 SO4.ext -> SO4 1,9 0,0 1,9 1,9 1,2 0,0 1,2 1,2 
R79 O2.ext -> O2 370,3 0,0 370,3 370,3 197,2 0,0 197,2 197,2 

Fit Accepted Accepted 
SSR 183,1 159,1 

Expected SSR [180,8 - 263,0] [149,2 - 224,6] 
Normally distribution Yes Yes 

 

Biomass equation: 0.174*G6P + 0.068*F6P + 0.107*GAP + 1.882*AcCoA + 0.431*Gly + 
0.263*Pro + 0.598*Ala + 0.389*Val + 0.628*Leu + 0.244*Ile + 0.122*Met + 0.055*Cys + 
0.191*Phe + 0.135*Tyr + 0.077*Trp + 0.126*His + 0.18*Lys + 0.354*Arg + 0.251*Gln + 
0.158*Asn + 0.301*Glu + 0.284*Asp + 0.301*Ser + 0.256*Thr + 46.75*ATP -> Biomass. 
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Table 6.S5. Atom transition list from the reactions in Table 6.S5. Reaction IDs are on the left column 
while the corresponding reactions on the right column. Letters in parenthesis symbolizes the carbon 
position in the molecule. 
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Summary 

Synthetic circuits can be introduced into host microorganisms to enhance specific 
physiological traits and provide new functionalities for bioproduction. This study 
focuses on modifying the metabolic identity of Pseudomonas putida and transitioning 
it to a new lifestyle by reshaping its central carbon metabolism (CCM). Previous 
research successfully incorporated a glycolytic module from E. coli, converting the 
native cyclic Entner-Doudoroff (ED) pathway to a linear Embden-Meyerhof-Parnas 
(EMP) glycolysis. However, the engineered strain did not exhibit optimal growth 
performance under glucose conditions. In this work, we employed adaptive 
laboratory evolution (ALE) to improve the overall fitness of the bacterium and utilized 
a systems biology approach to investigate the impact of the E. coli glycolytic module 
in P. putida. Through evolution, a point mutation in the topoisomerase A gene (topA) 
was identified, leading to global rewiring at the proteome and fluxome levels, 
resulting in enhanced fitness and performance of the engineered strain. Additionally, 
network-wide proteomics and metabolic flux analysis revealed adjustments in protein 
levels within the introduced glycolytic enzymes and significant rerouting of flux in 
the Embden-Meyerhof-Parnas (EMP) glycolytic pathway and Tricarboxylic Acid cycle 
(TCA). Overall, our findings highlight the potential of strategically modifying 
metabolic characteristics in a versatile bacterium to enhance physiological traits. 
 
 
 
 
 
 
 
 
 

 

 



Chapter 7 
System level analysis of an engineered-grafted P. putida  

 
289 

 

7.1 Introduction  

Synthetic metabolism has been widely implemented to build novel biosynthetic 

pathways into different microbial chassis. Plugging -in and –out biological 

components as part of the central metabolism core, can provide unique properties to 

be exploited from a biotechnological point of view (Medema, et al., 2011). For example, 

the incorporation of metabolic modules allows reprogramming central carbon 

metabolism by rationally redirecting the fluxes toward the desired final product. Even 

though there are several evidences showing that specific metabolic features can be 

incorporated into metabolic networks (Gassler, et al., 2020, Moon, et al., 2023), 

transforming the metabolic identity of central carbon metabolism is one of the hardest 

task in synthetic biology and metabolic engineering to date. This requires different 

approaches involving rational rewiring of the native biochemical network together 

with tightly-controlled expression of genetic elements which encodes the intended 

catabolic route. Particularly for glucose metabolism, systematic strategies that target 

central carbon metabolism–to obtain energy and precursors needed for growth and 

bioproduction–are relatively limited. 

 

One partial but successful example is given by Sánchez-Pascuala et al. (2019) where 

two GlucoBrick (GBI and GBII), containing the linear Embden-Meyerhof-Parnas 

(EMP) glycolysis from Escherichia coli, were implemented in Pseudomonas putida 

KT2440. The first part of the glycolytic process in E. coli encompasses a series of ten 

reaction steps that convert glucose into pyruvate. This widely investigated process is 

known as the Embden-Meyerhof-Parnas (EMP) pathway, which involves the 

successive action of ten distinct enzymes (Romano and Conway, 1996). Concerning 

the GlucoBrick introduced in P. putida, the first operon (GBI) encodes the genes for the 

upper catabolic block of the glycolysis pathway, which comprises the preparatory 

phase. The second operon (GBII) encodes the genes for the lower catabolic block of the 

glycolytic pathway, which comprises the pay-off phase. The first module encompasses 

Glk (Glucokinase), Pgi (Phosphoglucose isomerase), PfkA (6-phosphofructo-1-

kinase), FbaA (Fructose-1,6-bisphosphate aldolase) and TpiA (Triose phosphate 
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isomerase). The second module contains genes encoding for GapA (Glyceraldehyde-

3-P-dehydrogenase), Pgk (Phosphoglycerate kinase), GpmA (Phosphoglycerate 

mutase A), Eno (Enolase) and PykF (Pyruvate kinase). In that work, the approach 

consisted on eliminating the enzymatic activities of the Entner-Doudoroff (ED) 

pathway as well as the peripheral reactions for glucose oxidation in order to avoid 

carbon loss in form of organic acids (gluconate and 2-ketogluconate). Then, E. coli 

glycolytic enzymes from the EMP pathway–that convert glucose into pyruvate–were 

introduced into the mutant strain with the aim of filling the metabolic gaps for the 

complete metabolism of glucose toward TCA cycle. The previous study demonstrated 

that by precisely rewiring P. putida native metabolism with the corresponding genetic 

graft containing the artificial glycolytic module empowers glucose-dependent growth 

through a linear glycolytic pathway for sugar catabolism. The EMP metabolic 

pathway plays a crucial role in generating various precursor molecules, serving as the 

primary route leading to the central hub pyruvate―acetyl-CoA. Achieving an optimal 

growth necessitates the presence of an effective mechanism that governs protein 

allocation, ensuring its efficient utilization (Li, et al., 2014, Grigaitis, et al., 2021). 

 

Even though the strategy was successfully implemented, the previous grafted 

prototype obtained in Sánchez-Pascuala et al. (2019) presented a slow specific growth 

rate of 0.05 h-1 and a prolonged lag phase of approximately 24-36 h. It is important to 

note that while the glycolytic module was originally introduced into a plasmid-based 

structure, specifically induced by 3-methylbenzoate, for the current investigation, the 

module was integrated into the genome using transposon vectors. 

In pursuit of optimal titers and productivity, effective biocatalysts are strategically 

designed to yield desirable outcomes. In addition, to optimize the efficiency of the 

relevant metabolic pathway and further enhance its performance, the implementation 

of additional improvements become a viable approach. For instance, adaptive 

laboratory evolution has proven to be a powerful approach that has been widely 

utilized to acquire strains with superior metabolic performance (Dragosits and 

Mattanovich, 2013). Additionally, systematic approaches such as multi-omics analysis 
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have enabled a systems-level understanding of microbial metabolism – guiding 

engineering efforts as an essential element of the design–build–test–learn (DBTL) 

cycle (Carbonell, et al., 2018). The recent advances made not only provide new 

opportunities for modifying bacterial chassis to generate innovative whole-cell 

biocatalysts, but also give rise to intriguing inquiries on how species identity is 

determined by core metabolism. Enlarging the application of synthetic metabolism 

would significantly increase the understanding of the biological system and provide 

innovative biosynthetic pathways for the production of novel and high-value 

chemicals.  

 

P. putida KT2440 is recognized for its versatile metabolism and amenability to rewiring 

its metabolic pathways upon genetic disturbances or stressful environmental 

conditions (Belda, et al., 2016, Calero, et al., 2022). In this study, we employed the 

grafted chassis created by Sánchez-Pascuala et al. (2019), which incorporates the 

GlucoBrick platform that consists of two modules, each with five individual bricks. 

Module I (GBI) encodes the enzymes necessary for the preparatory phase, which 

employs ATP to convert hexoses into trioses-P [in this case, glucose → 

glyceraldehyde-3-P (G3P)]. Module II (GBII) encodes the enzymes required for the 

pay-off phase, the latter half of the EMP pathway, and changes trioses phosphate to 

pyruvate (Pyr) (i.e. G3P → Pyr). Given this context, we implemented an ALE strategy 

on glucose to enhance the catalytic efficiency of the EMP pathway towards pyruvate 

in the grafted P. putida KT2440. The ALE strategy enhanced growth on glucose 

compared to the non-evolved strains, and we identified a point mutation in 

topoisomerase I (TopA299P) that had a positive effect on the final phenotype achieved 

in this study. To gain a comprehensive understanding of the dynamic interplay 

between the different layers of information, we carried out multi-omics analyses, 

encompassing genomics, metabolic flux analysis, and quantitative proteomics. The 

system-level analyses confirmed a higher carbon flux via the EMP pathway and a 

wide-proteome rewiring of key proteins in the synthetic GlucoBrick graft using 

glucose as the carbon source. Overall, this study demonstrated the plasticity of central 
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carbon metabolism in P. putida KT2440 and highlighted the potential of synthetic 

metabolism as a tool for future biotechnological applications. 

 

7.2 Results 

 Adaptive laboratory evolution enhances glucose assimilation in 
two populations of Pseudomonas putida SG2. 

In P. putida KT2440, there are two ways of processing glucose: (i) direct 

phosphorylation through the cytoplasmatic enzyme glucokinase (Glk) which converts 

glucose into glucose-6-phosphate (G6P), and (ii) through oxidation mediated by the 

periplasmatic glucose dehydrogenase (Gcd), which involves glucose oxidation into 

gluconate. In a second oxidation phase, gluconate is re-oxidized into 2-ketogluconate 

(2-KGA) by gluconate 2-dehydrogenase (Gad) (del Castillo, et al., 2007). Sánchez-

Pascuala et al. (2019) generated a P. putida strain, named SG2, with a different 

metabolic lifestyle where the native glucose metabolism was transformed by 

incorporating the conventional linear glycolytic pathway―i.e. by plugging the 

corresponding GlucoBrick device―from E. coli (Figure 7.1A, 1B).  

 

Results showed that the glycolytic module was successfully implanted in P. putida; 

however, the activity and fluxes through the components were not optimal due to its 

deficient and impaired growth on glucose. This observation prompted the question 

whether we could boost the pathway activity in vivo through direct adaptive 

evolution. To address this point, we started to improve the glucose assimilation of the 

engineered strain P. putida SG2 harboring the full lineal glycolytic route. As the 

previous initial growth rate of SG2 after the implementation of the GlucoBrick was 

0.05 h-1, we decided to evolve the strain in M9 minimal medium supplemented with 

40 mM glucose as the only carbon and energy source. Two independent populations 

of the SG2 strain (i.e. population A and population B) were evolved in parallel batches 

under the strict selection pressure of continuous exponential growth on glucose 

(Figure 7.1C and Figure S7.1). 



Chapter 7 
System level analysis of an engineered-grafted P. putida  

 
293 

 

 

 
Figure 7.1. Construction of evolved grafted glycolytic chassis eSG2 used in this work. A. Glycolytic 
chassis 1–SG1– contains in-frame deletions of the genes Δglk, Δgcd, Δedd, Δgad, ΔPP3382, ΔPP3383, 
ΔPP3384, ΔPP3623, and ΔPP4232 B. Glycolytic chassis 2–SG2–harbors Module I from the GlucoBrick 
system (i.e., genes encoding the enzymes needed for the conversion of glucose into glyceraldehyde-3-
P: glk (b2388), pgi (b4025), pfkA (b3916), fbaA (b2925) and tpiA (b3919). Module II contains gapA (b1779), 
pgk (b2926), gpmA (b0755), eno (b2779), and pykF (b1676) and the glucose facilitator (glf) from Zymomonas 
mobilis as an alternative transport system. C. Evolved SG2 or eSG2 strain evolved in glucose 
implemented in this study.   

 

The evolution experiments were conducted for about 80 days, or 42-46 passages, until 

there was no further increase in the specific growth rate in both evolutionary lineages 

(LaCroix, et al., 2015, Mohamed, et al., 2019). At the end of the experiment, 

populations A and B exhibited growth rates on glucose of 0.17 h-1 and 0.27 h-1, 

respectively. This represents a 3.3-fold and 5.5-fold increase in relative fitness 

compared to the original strain SG2. The growth rate trajectories during the ALE 

experiments for both evolved populations are presented in Supplementary Figure 

S7.1A and S7.1B. Both replicate experiments resulted in approximately 9.50-9.60 x 1011 

cumulative cell divisions (CCD). CCD is used as an alternative way to measure the 
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timescale of ALE, as it accounts for variability during the passaging process (Lee, et 

al., 2011). Although both evolved populations demonstrated an enhancement in 

fitness, there were notable disparities in terms of their fitness relative to the initial 

strain and the dynamics of the ALE process. These discrepancies could potentially be 

attributed to distinct mutations that were responsible for the observed improvement 

in glucose growth. Samples from both final populations, eSG2A and eSG2B, were 

collected and stored in 25% (v v-1) glycerol stocks at -80°C for later whole-genome 

sequencing (WGS) analysis. 

 

 Screening of evolved clones in 96-well microtiter plates and 
physiological candidates characterization in shaken-flask cultivations. 

Individual clones from the two endpoint populations, eSG2A and eSG2B, were 

isolated on M9 agar minimal medium supplemented with 40 mM glucose. 

Specifically, five clones designated as eSG2 clones 1-5 from population A, and five 

clones designated as eSG2 clones 6-10 from population B, were chosen for the purpose 

of examining their specific growth rate. This analysis was performed on M9 minimal 

medium, which was supplemented with 40 mM glucose, and the growth evaluation 

was carried out using 96-well microtiter plates. The wild-type strain KT2440 and non-

evolved parental strain SG2 were used as controls. Specific growth rates ranged 

between 0.13-0.15 h-1 for the clones selected in population A and 0.18-0.33 h-1 for 

population B, representing a 2.0 to 5.0-fold increase in comparison to the non-evolved 

SG2 (Figure 7.2A). These results were comparable to those obtained from the 

populations that underwent evolution on glucose. Also, the growth curves indicated 

that the clones derived from population A had a shorter or absent lag phase, but a 

slower growth rate than the clones originally from population B (Figure 7.2B and 

7.2C). Between the two populations, clones eSG2A3 (Clone 3) and eSG2B9 (Clone 9) 

presented the highest growth rates and were selected for further physiological 

characterization in shaken flasks. Thus, the use of the ALE strategy showcases that 

through extended periods of evolution, microorganisms can adapt to particular 



Chapter 7 
System level analysis of an engineered-grafted P. putida  

 
295 

 

conditions and consequently achieve an improvement in fitness (Long and 

Antoniewicz, 2018). 

 
Figure 7.2. Evaluation of selected populations and its respective clones in 96 well microtiter plate. 
Growth profiles at OD630 of (A) Pseudomonas putida KT2440 and SG2, (B) clones obtained from 
population A and (C) clones obtained from population B. (D) Specific growth rate of Pseudomonas putida 
KT2440, SG2 and ten evolved clones from population A and B. Lines correspond to the average of six 
biological replicates in the case of KT2440, five biological replicates for SG2 and three biological 
replicates. The strains were cultivated at 30°C in M9 minimal medium containing 40 mM glucose as 
sole carbon source.  
 

To better characterize growth on glucose, we performed growth experiments in 

shaken flasks and subsequently analyzed the metabolites consumed and secreted in 

the supernatant. Again, wild-type Pseudomonas putida KT2440 strain was used as 

reference. After estimating the physiological parameters, we found that both specific 

growth and uptake rates were considerably enhanced (0.24 h-1 and 3.18 mmol glucose 
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gCDW-1 h-1 and 0.28 h-1 and 2.57 mmol glucose gCDW-1 h-1 for eSG2A3 and eSG2B9, 

respectively) by 5.0-fold for both clones in comparison with SG2 strain (0.056 h-1 and 

0.59 mmol glucose gCDW-1 h-1) (Table 7.1). Beneficial mutations gathered during the 

adaption on glucose probably explain the increase in growth performance and glucose 

assimilation (Mohamed, et al., 2020). The observed biomass yields in both evolved 

clones eSG2A3 and eSG2B9 were almost identical to the one obtained in KT2440, but 

the SG2 strain showed a higher yield.  

 

Again, these results―growth and glucose uptake rate―are consistent with the 

previous data obtained after the evolution and in 96-well microtiter plate. In addition, 

growth curves reflected the data calculated in Table 7.1 where lag phases were 

significantly shorter in eSG2A3 and eSG2B9 than SG2, 12 and 36 hours, respectively. 

Along the same line, glucose consumption was faster in the two evolved clones in 

comparison to the parental strain. However, while the final optical density was greater 

in cultures of strain SG2 than in the evolved clones, lactate was unexpectedly detected 

at later stages, leading to a loss of carbon that could have potentially been used for 

biomass production (Figure 7.3B, 7.3C and 7.3D). Finally, as part of the sequential 

glucose oxidation in P. putida KT2440, gluconate and subsequently 2-KGA were 

observed in the supernatant. Both of these organic acids can be retaken and used as a 

carbon source by the bacterium (Figure 7.3A). For the evolved clones, the two organic 

acids were not detected due to the fact the peripheral reactions were previously 

removed when building the SG2 strain. 

 
Table 7.1. Determination of physiological parameters of Pseudomonas putida KT2440, SG2 and the 
two selected evolved clones eSGSA and eSG2B. Specific growth rates (μ), glucose uptake rates (qS) 
and biomass yield (YX/S) were estimated from experiment carried out in Figure 3. The values represent 
the average of three biological replicates ± standard deviation. gCDW, grams of cell dry weight. 
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Figure 7.3. Physiological characterization of evolved strain shows improvement of specific growth 
and glucose consumption rates on glucose. (A) P. putida KT2440 as control condition. (B) SG2 strain. 
(C) eSG2A and (D) eSG2B. Experiments were conducted using M9 minimal medium containing 40 mM 
glucose. Solid lines represent the average and shaded areas correspond to the standard deviation of 
three biological replicates. Consumption or secretion of different metabolites were measured by HPLC 
and plotted using colored lines: glucose (red), gluconate (green), 2-KGA (purple), orange (pyruvate), 
black (acetate) and brown (lactate). Bacterial growth is represented by the blue line.   

 

 Whole genome sequencing and mutation analysis 

In order to proceed with the analysis of the two strains, we analyzed the genetic 

modifications of the enhanced final phenotype on glucose minimal medium. This was 

achieved through whole genome sequencing (WGS) that enables the identification of 
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genetic mutations and variations in the entire genome of the strains under study 

(Giani, et al., 2020). The two isolated clones eSG2A3 and eSG2B9 were sequenced along 

with the corresponding endpoint populations from which they were isolated (i.e. 

eSG2A and eSG2B, respectively). The full list of mutations identified in both fast-

growing clones is shown in Table 7.2. To determine the specific mutations that 

contributed to the improved fitness, the genome sequence of every individual clone 

was compared to the genome sequence of its corresponding population. By examining 

the open reading frames and intragenic regions, we were able to identify mutations 

that were present in multiple individuals and likely played a role in enhancing their 

fitness. Interestingly, no shared key mutations were found between the two replicate 

evolution experiments. The most relevant key mutations of the two evolved clones are 

described below.  

 

In the clone eSG2A3, a point mutation was detected in the topA gene (PP2139), 

specifically the mutation A299P (GCC→CCC), hereafter referred to as TopA299P, which 

was also present in the endpoint population eSG2A (Table 7.2). The topA gene encodes 

a DNA topoisomerase I protein that prevents hyper-negative supercoiling of DNA 

during transcription and, together with the antagonistic activity of DNA gyrases, 

directly controls the level of DNA supercoiling (Vos, et al., 2011, Dorman and Dorman, 

2016, Ferrándiz, et al., 2016). The topological changes in DNA (i.e. DNA supercoiling) 

have been shown to be a fundamental regulatory principle in the control of bacterial 

gene expression, allowing bacteria to adapt to environmental changes and 

competition from neighboring microorganisms. Interestingly, mutations in E. coli topA 

gene have been observed to provide a substantial improvement in fitness and thus a 

selective growth advantage (Crozat, et al., 2005, Crozat, et al., 2010, Deatherage and 

Barrick, 2021). Several point mutations described in the topA gene have also shown to 

affect global gene expression (and thus, metabolism) in many bacteria and eukaryotic 

organisms (Hatfield and Benham, 2002, Durand-Dubief, et al., 2010, Yan, et al., 2019). 

To provide an example, a mutated form of topoisomerase I led to widespread 

modifications in the pattern of gene expression in a particular strain of B. subtilis. 
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These changes included an increase in the activity of glycolytic genes and a decline in 

the activity of gluconeogenic genes (Reuß, et al., 2018). The A299 amino acid residue 

found in the TopA protein of P. putida seems to be a conserved component among the 

TopA proteins of various bacterial species (S. coelicolor, E. coli and P. aeruginosa) 

(Figure 7.4). Therefore, the A299P mutation could be altering the enzymatic activity 

of TopA and affecting global gene expression in the clone eSG2A3 because of changes 

in the DNA topology, which could ultimately lead to the observed increase in fitness 

in glucose cultures. TopA appears to be essential for cell viability in several bacteria, 

including P. aeruginosa, so it is unlikely that the TopA299P variants encode a fully 

inactive topoisomerase protein in P. putida (Sandhaus, et al., 2018, Leela, et al., 2021). 

Alternative functional roles of the TopA protein in P. putida should also be considered. 

For example, specific point mutations in the topA gene of E. coli lead to the emergence 

of mutator phenotypes, characterized by a distinct pattern of mutations that is notably 

enriched with deletions and tandem duplications (Bachar, et al., 2020). Another study 

showed that the TopA protein interacts with the RNA polymerase in B. subtilis, and 

therefore, can directly affect its activity and promoter preference (Delumeau, et al., 

2011).  

 

Figure 7.4. Protein sequence alignment of the internal region of TopA proteins from different bacteria. 
Protein identity percentages of the different TopA proteins and the TopA protein from Pseudomonas 
putida KT2440 are indicated in parenthesis. Protein sequences (UniProt database):  Streptomyces coelicolor 
A3(2) (Q9X909), Escherichia coli K-12 (P06612), Pseudomonas putida KT2440 (Q88KZ9) and Pseudomonas 
aeruginosa PAO1 (Q9HZJ5). Number on the left and right correspond to the aminoacids coordinates in 
the sequence. 

 

In the clone eSG2B9, we identified a point mutation in the heterologous pykF gene 

(GlucoBrick II), the mutation H43L (CAC→CTC), which was also present in the 

endpoint population eSG2B (Table 7.2). The pykF gene encoding the pyruvate kinase 
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I of Escherichia coli catalyzes the formation of pyruvate in the last irreversible 

enzymatic step of glycolysis, a critical reaction for the control of metabolic flux in the 

second part of glycolysis towards TCA cycle (Mattevi, et al., 1995). Several mutations 

in the pykF gene have been shown to provide a substantial improvement in fitness of 

Escherichia coli during long-term evolution experiments, including mutations that 

completely abrogate the PykF function (Peng, et al., 2018, Deatherage and Barrick, 

2021). Earlier ALE experiments aimed at enhancing growth rate in minimal media 

have detected mutations in pykF or adjacent intergenic regions (LaCroix, et al., 2015). 

These mutations have been found to cause a reduction in the expression of PykF 

(Sandberg, et al., 2014).  

 

Additionally, some studies have revealed that deleting pykF results in a 

downregulation of glycolysis and an upregulation of the pentose phosphate pathway 

(Al Zaid Siddiquee, et al., 2004, Siddiquee, et al., 2004). We also found a second point 

mutation in the oxyR gene (PP5309) in the clone eSG2B9, the mutation F106I 

(TTC→ATC). The oxyR gene encodes a peroxide-sensing transcriptional regulator that 

has been found previously mutated in populations of Pseudomonas putida grown on 

glucose during ALE experiments (Mohamed, et al., 2020). Other mutations in oxyR 

gene has also been identified in laboratory evolution experiments with other bacterial 

species and might be associated with a reduction of DNA damage from reactive 

oxygen species (Anand, et al., 2020).  
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Table 7.2. Most relevant mutations found in the ALE-evolved clones isolated for further 
physiological characterization studies. The presence or absence of the identified mutations in the 
whole populations is also represented by percentage of frequencies in re-sequencing reads. 
Abbreviation: SNP, single-nucleotide polymorphism; INS, insertion; DEL, deletion. 

 

 

 

 
 

Position* Mutation Gene Product Details Population A Population B 

     Population 
Clone 
eSG2A 

Population 
Clone 
eSG2B 

2,440,892 SNP (G→C) 
topA  

(PP_2139) 

DNA 
topoisomeras

e I 

A299P 
(GCC→CCC) 

1 1   

3,442,664 SNP (T→G) PP_3062 
Phage tail 

tape measure 
protein 

F763C 
(TTT→TGT) 

 1   

4,636,691 SNP (G→T) 
gcvA  

(PP_4107) 

GcvA family 
transcriptional 

regulator 

S213I  
(AGC→ATC) 

 1   

4,735,298 
INS  
(+T) 

PP_4194, 
PP_4195 

- 
Intergenic 

(+535/+217) 
 1   

5,329,883 SNP (G→C) PP_4696 

Sigma-54-
dependent Fis 

family 
transcriptional 

regulator 

G183R 
(GGC→CGC) 

 1   

945,036 SNP (T→A) pykF* 
Pyruvate 
kinase I  
(E. coli) 

H43L  
(CAC→CTC) 

  0.6 1 

2,836,198 
DEL  

(Δ24 pb) 
PP_2488, 
PP_2489 

- 
Intergenic  
(-14/+167) 

   1 

3,775,508 SNP (T→G) PP_3338, 
PP_3339 

- Intergenic  
(+54/-87) 

   1 

4,430,964 
INS  
(+T) 

PP_3931, 
PP_3932 

- 
Intergenic  
(+262/-89) 

   1 

4,735,122 SNP (C→T) 
PP_4194, 
PP_4195 

- 
Intergenic 

(+360/+393) 
   1 

5,674,195 
INS 

(+GGGGC) 
PP_4986, 
PP_4987 

- 
Intergenic  
(-132/+70) 

   1 

6,055,711 SNP (T→A) 
oxyR  

(PP_5309) 

Hydrogen 
peroxide-
sensing 

transcriptional 
regulator 

F106I  
(TTC→ATC) 

   1 
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 Metabolic flux analysis reveals higher flux through the EMP route 
on evolved strains eSG2A3 and eSG2A9 

In order to gain an understanding about the in vivo absolute metabolic fluxes 
distribution of the refactoring and evolved P. putida strains on glucose, we conducted 
a 13C fluxome analysis. This analysis involved examining the distribution of mass 
isotopomer in both proteinogenic amino acids and cell carbohydrates (glycogen and 
glucosamine), using three different tracers as outlined in the Materials and Methods 
section. The calculated relative fluxes for SG2, eSG2A3, eSG2B9 and KT2440 (as control) 
strains cultured on labeled glucose are visualized in Figure 7.5 and the absolute values 
± standard deviation as well as upper and lower bound are detailed in Table S7.3. As 
the modified strains do not contain the peripheral and ED reactions, the fluxes into 
gluconate and KDPG were set up to zero. We employed this experimental approach 
to gain insights into the extent to which the chassis could tolerate manipulation with 
respect to redirecting its central carbon metabolism. Under this condition, glucose was 
fully processed via the glucokinase enzyme (Glk), resulting in the formation of G6P. 
At this node, the flux was divided into F6P and 6PG in a strain-specific manner.  
 
Our findings indicate that adapted strains eSG2A3 and eSG2B9 displayed a significant 
increase in the flux through F6P, with percentages of 88.5% and 86.3%, respectively, 
compared to SG2 (68.3%). Relative fluxes through PPP were 3 times higher in the 
parental strain than the evolved strains. Also, SG2 redirected 30% of the G6P absolute 
flux into 6PG and Ri5P, while the evolved strains redirected only 10%. Regarding 
EMP, fluxes through PfkA until Eno were practically identical in all the strains. In the 
EMP pathway, the final step relies deeply on the pyruvate kinase (PykF), which is a 
critical allosteric enzyme. PykF is responsible for carrying out one of the two substrate-
level phosphorylation reactions that produce ATP, making it a crucial mediator of an 
important metabolic step in P. putida (Emmerling, et al., 2002, Zhao, et al., 2017). We 
found a partial re-routing of the metabolic flux from PEP to pyruvate (63% for SG2 
and 110-120% for the evolved strains) into PEP to OAA (100% for SG2 and 50-60% for 
the evolved strains). Furthermore, in E. coli and P. putida, glucose is directed towards 
the production of PEP and pyruvate, and later to Acetyl-CoA, which serve as the main 
precursor for TCA cycle. The primary roles of this central pathway are to produce 
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precursor metabolites for biosynthesis, as well as NAD(P)H for biosynthesis and 
NADH for energy production (Puchałka, et al., 2008).  
 
When analyzing the carbon fluxes in the TCA cycle, it was discovered that a significant 
redirection of the metabolic flux occurred at the level of the isocitrate node. In this 
scenario, the TCA cycle enzyme isocitrate dehydrogenase encoded by icd (PP4011), 
and the glyoxylate shunt enzyme isocitrate lyase (Icl) encoded by aceA (PP4116), both 
strive to utilize the available isocitrate. Icd has a much lower affinity for isocitrate [Km 
= 8 μm] (LaPorte, et al., 1984) than ICL [Km = 604 μm] (Crousilles, et al., 2018). Hence, 
to achieve a substantial flux through the glyoxylate shunt, Icd should be deactivated 
which seems to be the case for the evolved strains. The evolved strains displayed a 
much larger flux through the glyoxylate shunt at this point, with a relative flux of 60% 
and 40% for eSG2A3 and eSG2B9, respectively, compared to just 15% in the SG2 strain. 
Idh can be either enhanced or inhibited by elevated or reduced levels of OAA. The 
division of flux at the intersection between the TCA cycle and the glyoxylate shunt 
could also impact the delivery of NAD(P)H to the cell, prompting the activation of 
compensatory mechanisms.  
 
Ultimately, there was no observable flux toward pyruvate from malate produced via 
the TCA cycle through the operation of malic enzyme, contributing to the so-called 
pyruvate shunt. The pyruvate shunt, a loop of reactions that transforms malate → 
pyruvate → oxaloacetate → malate, produces NAD(P)H for anabolism, but consumes 
1 ATP equivalent in the process. Consequently, this pathway has the potential to serve 
as an additional source of NAD(P)H. In general, the strains examined here appear to 
feature a robust utilization of the EMP pathway as well as an active TCA cycle and 
glyoxylate shunt in these glucose conditions. 
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Figure 7.5. Intracellular carbon fluxes of glucose-grown P. putida KT2440 (A), SG2 (B), eSG2A3 (C) and 
eSG29 (D) as determined by 13C metabolic flux analysis. All fluxes are given as a molar percentage of 
the mean specific glucose uptake rate of qSKT2440=8.51 mmol gCDW−1 h−1, qSSG2= 0.591 mmol gCDW−1 h−1, 
qSeSG2A3= 3.178 mmol gCDW−1 h−1 and qSeSG2A9= 2.572 mmol gCDW−1 h−1 which was set to 100%.  

 

 Reverse engineering of TopA299P into refactoring SG2 enhances 
growth on glucose 

As it was previously stated, the mutation in topoisomerase I leads to significant 
rearrangements at systems level (e.g. central carbon metabolism) due to its vital role 
in regulating the DNA topology and replication. The interconnection between the 
metabolic state of a cell and crucial processes such as DNA replication, initiation, and 
elongation is of utmost importance. This implies a critical relationship between these 
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events and the overall process of cellular duplication (Jannière, et al., 2007). With this 
background, we hypothesized that the mutation in TopA299P can improve the SG2 
phenotype as shown in the evolved strain eSG2A3. Supported by physiological data, 
we decided to reverse engineer SG2 with the point mutation TopA299P to evaluate the 
effect at growth level. A growth assessment was conducted using a 96-well microtiter 
plate to compare the growth in the engineered SG2, the evolved clone eSG2A3, and 
the single mutant SG2 TopA299P. The results showed that the point mutation in the SG2 
TopA299P mutant had a significant impact on glucose growth, increasing the specific 
growth rate by 50%. Specifically, the growth rate improved from 0.063 h-1 in the case 
of SG2 to 0.094 h-1 for the single mutant. These findings raised the question of whether 
this specific mutation in the topoisomerase I could potentially influence other aspects 
of cellular metabolism and what kind of effects it may have at proteome level.  

 
Figure 7.6. Assessing growth of reverse engineered strain SG2. Cultivation of the different strains on 
glucose as a sole carbon source within a 96-well plate. Plate reader experiments were performed in 
triplicates, average is shown with solid lines and standard deviation is pointed with shaded area 
around the main line. Values OD600 were previously converted from OD630 by using the corresponding 
calibration curve. 
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 Network-wide proteome analysis exposed protein redistribution 
across EMP as a strategy to optimize enzyme levels 

Building upon our previous findings, we decided to further explored system level 
variations causes by TopA299P mutation. First, we analyzed the proteome changes on 
Pseudomonas putida SG2, eSG2A3, TopA299P and P. putida KT2440 as control condition. 
The strains were cultivated in the presence of 40 mM glucose and harvested in mid-
log phase (corresponding to OD600 ~1.0). Then, a network-wide absolute quantification 
proteomics analysis was carried out focusing the analysis on central carbon 
metabolism enzymes.  
 
We observed an upregulation of the enzyme PfkA and TpiA associated with the initial 
segment or preparatory phase of the EMP pathway (specifically, from G6P to G3P) in 
both the evolved strain and the single mutant when compared to SG2. Initially, we 
investigated the E. coli proteins that were plugged in as part of the glycolytic module 
(corresponding to the EMP pathway). We found that the abundance of proteins 
involved in this pathway changed significantly along the metabolic pathway from 
glucose toward pyruvate. No significant differences were observed in Glk and Pgi-1. 
Despite confirming the deletion of the native Glk and Pgi-1 genes, there was still 
presence of residual protein levels in the crude extract at very low levels, which could 
potentially be due to technical issues with the detection.  
 
Significantly, the protein levels of the enzyme PfkA were notably elevated, 
demonstrating an increase ranging from 7- to 4-fold for eSG23 and TopA299P, 
respectively. These levels approached those observed for the Fbp in the native and 
control wild-type strain KT2440 (Figure 7.7). Regarding the TpiA protein, it is 
noteworthy that TopA299P exhibited a higher protein content compared to SG2 and the 
evolved strain, eSG23. Contrarily, by analysing the route from G3P to pyruvate, there 
was a downregulation of GapA, Pgk, GpmA, Eno and PykF ranging from 2- to 5-fold 
in the evolved and single mutant strains compared to SG2. Furthermore, the presence 
of the TopA299P mutation showed a strong correlation with the protein levels observed 
in the eSG2A3 strains during the pay-off phase. This indicates that the mutation could 
potentially be affecting the transcription of the genes involved in the pathway and, 
consequently, the protein levels. Additionally, the quantity of protein generated 
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during the pay-off phase was significantly greater in the SG2 strain than in the evolved 
and single mutant strains, estimated to be in the range of several hundred femtomoles 
per ug of crude extract. Conversely, the rise in protein levels during the initial stage 
was not as substantial as in the pay-off phase (Figure 7.7).  
 
In connection to this, various bacterial growth models have proposed that protein 
synthesis can act as a limiting factor for growth under certain conditions (Molenaar, 
et al., 2009, Scott, et al., 2010). The results obtained in this section may suggest that 
heightened protein expression in the SG2 strain could have negative effects on growth 
by increasing misfolding and causing toxic promiscuous activity (Eames and 
Kortemme, 2012). Since glycolytic enzymes make up a significant portion of microbial 
proteomes, reducing their levels (e.g., by regulating gene expression) could enable 
cells to increase their growth rate. Consequently, the cellular growth and adaptation 
to the introduced glycolytic synthetic pathway are significantly influenced by the 
efficient allocation of resources, emphasizing its critical role (Peebo, et al., 2015). 
 
On the other hand, the PP pathway exhibited a notable downregulation of ZwfA and 
Pgl (approaching negligible levels) in the evolved strains. In contrast, there was an 
upregulation observed in the Tal enzyme. These findings indicate that the evolved 
strains do not heavily rely on the PPP metabolic block, confirming earlier observations 
from the metabolic flux analysis experiment. However, the higher protein levels of Tal 
protein suggests that the cells aim to enhance the pool of G3P, thereby facilitating the 
progression towards the pay-off phase. In addition to the conducted analysis, TopA299P 
does not appear to significantly impact the protein changes in the PP pathway, as the 
concentrations of proteins in the TopA mutant were found to be similar to those 
observed in SG2 and the control condition (Figure S7.2). This indicates that the 
presence of a different mutation in the evolved strain, such as in the transcriptional 
regulator GcvA, can result protein level changes within the PP pathway (Table 7.2) 
(Leyn, et al., 2011). 
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Figure 7.7 Comparison in protein concentration within EMP of the different glycolytic strains SG2, 
eSG2A3, TopA299P and the control wild-type strain KT2440. The strains were grown in M9 minimal 
medium containing 40 mM glucose. Concentrations are given in fmol protein μg crude extract-1 from 
four biological replicates. One-way ANOVA was carried out to perform the statistical analysis. * p<0.05, 
**p<0.01, ***p<0.001 and *p<0.0001. Glk, glucokinase; Pgi-1, glucose-6-phosphate isomerase; PfkA, 6-
phosphofructokinase I; FbaA, fructose 1,6-bisphosphate aldolase; TpiA, triosephosphate isomerase; 
GapA, glyceraldehyde 3-phosphate dehydrogenase; Pgk, phosphoglycerate kinase; GpmA, 2,3-
bisphosphoglycerate-dependent phosphoglycerate mutase ; Eno, enolase; PykF, pyruvate kinase. 
 

 Quantitative proteomics detects proteome changes at the 
isocitrate node leading to flux reconfiguration through the glyoxylate 
shunt  

The glyoxylate shunt is a non-reversible process that allows for the preservation of 
carbon skeletons necessary for gluconeogenesis and biomass production by 
circumventing the oxidative decarboxylation phases of the TCA cycle (Kornberg, 
1966). In the 1980s, the mechanisms that govern the allocation of carbon flux between 
the TCA cycle and glyoxylate shunt were studied in E. coli (Maloy and Nunn, 1982). 
Here, the enzymes isocitrate dehydrogenase (Icd) from the TCA cycle and isocitrate 
lyase (AceA) from the glyoxylate shunt compete for the same pool of isocitrate. Icd 
has a lower affinity for isocitrate with a Km of 8 μm, while AceA has a higher Km of 
604 μm (LaPorte, et al., 1984, Walsh and Koshland, 1984). Therefore, to achieve a 
substantial carbon flux through the glyoxylate shunt, Icd must be inactivated, which 
can be accomplished through reversible phosphorylation by the enzyme AceK. 
However, not all the bacteria follow the same enzymatic pathway at the branch point 
between the TCA cycle and the glyoxylate shunt, and may possess a secondary 
isozyme of isocitrate dehydrogenase that is not affected by AceK, as for example the 
AceK-insensitive isocitrate dehydrogenase isozyme (Idh) (Crousilles, et al., 2018). 
 
In the case of environmental bacteria P. putida and human pathogen P. aeruginosa, 
there is an extra level of complexity. Three enzymes, namely Icd, Idh, and AceA (Icl), 
are in competition for isocitrate. Moreover, these bacteria harbor the Icd 
kinase/phosphatase, AceK, which exerts regulatory control over Icd by 
phosphorylation and subsequent inhibition of its enzymatic activity. To better 
understand the protein changes at the isocitrate node, and building upon our previous 
fluxomics data (Figure 7.5), we examined the protein concentrations of enzymes 
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involved in the TCA cycle (as illustrated in Figure 7.8). Our analysis revealed 
significant alterations in the levels of Icd, Idh, and AceA proteins during glucose 
growth. SG2 and TopA299P were found to have an opposite relationship in comparison 
with the evolved strains eSG2A3. Surprisingly, TopA299P did not follow the same trend 
as the evolved strain suggesting that the mechanisms leading to this outcome do not 
operate through the isocitrate node. The protein level of Icd was higher in 
SG2/TopA299P, reaching 100 fmol μg crude extract-1 in both cases. However, in eSG2A3, 
there was a 50% decrease in Icd protein level. On the other hand, Idh and AceA 
exhibited a significant increase in protein levels (up to three times higher) in eSG2A3, 
as compared to both the single mutant and SG2 strains. This observation could 
indicate that the evolved strain redirected the carbon flux through the glyoxylate 
shunt by regulating not only AceA but also GlcB. The latter was likewise found to 
follow a similar trend as for AceA. It appears that AceA-GlcB play a vital role in the 
growth and carbon preservation in the evolved strain (Crousilles, et al., 2018). This 
finding is consistent with previous studies suggesting that there is a considerable 
carbon flux through the glyoxylate shunt even when glucose is used as the primary 
source of energy (Dolan, et al., 2020). 
 
Upon examining the remaining steps of the TCA cycle, we noted that SucA and SucDC 
maintained consistent levels among the three investigated strains and were present in 
lower concentrations compared to the control strain KT2440. We observed a unique 
pattern in the production of fumarase isozymes in the different strains. Fumarate 
hydratase (Fum) was produced in similar amounts in the evolved and single mutant 
strains while the SG2 strain presented lower concentrations than KT2440. FumC-I was 
overproduced in eSG23 and almost completely absent in SG2 as well as in the control 
condition. Lastly, FumC-II concentrations were higher in SG2 (25 fmol μg crude 
extract-1 in average) than eSG2A3 and TopA299P. While there is no currently information 
regarding a compensation system, it is possible that such isozyme system could help 
control the flux at this point in the TCA cycle. However, it should be noted that in E. 
coli, the actions of these isozymes have been linked to DNA damage (Silas, et al., 2021). 
Concerning the other proteins involved in the TCA cycle, we noticed a decrease in the 
levels of AceE and AceF proteins in the evolved, single mutant and KT2440 strains 
when compared to SG2. These proteins, namely the pyruvate dehydrogenase E1 and 
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acetyltransferase component of the pyruvate dehydrogenase complex, respectively, 
exhibited comparable behavior to the proteins in the pay-off phase (Jeyaseelan and 
Guest, 1980). In addition, we observed a significant increase in the levels of citrate 
synthase (GltA) in the evolved strain, as compared to SG2. This particular enzyme is 
responsible for catalyzing the condensation of oxaloacetate and acetyl-CoA to produce 
citrate, which is then utilized to fuel the TCA cycle (Gerike, et al., 1998). In the 
subsequent step, the conversion of citrate to isocitrate via cis-aconitate is mainly 
facilitated by the aconitase hydratase. AcnB is primarily responsible for carrying out 
this process. In the evolved strain and KT2440, the protein levels were three time 
higher than in SG2 and TopA299P. Overall, we could  
 
Regarding the anaplerotic reactions, we observed a higher protein concentration for 
the phosphoenolpyruvate carboxylate enzyme (Ppc) and malic enzyme (MaeB) in the 
evolved strain eSG23 in comparison to SG2, TopA299P and KT2440. Pyruvate 
carboxylase complex [PycB/AccC-2] exhibited lower concentrations in SG2, eSG23 and 
TopA299P in comparison to KT2440. These findings potentially indicate a level of 
adaptability in the anaplerotic reactions, which may be governed by the regulation at 
pyruvate shunt level (Lien, et al., 2015). Notably, despite the elevated abundance of 
the MaeB enzyme observed in the proteomics investigations, there exists no apparent 
association with the fluxomics data, which indicates negligible flux from malate to 
OAA. This observation could potentially indicates the occurrence of a post-
translational modification (PTM), such as acetylation at one of the lysine residues, 
which could impede the catalytic activity of this essential enzyme in the anaplerotic 
reactions (Pisithkul, et al., 2015). Finally, further investigations are warranted to fully 
understand the implications of these observed changes. 
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Figure 7.8 Comparison in protein concentration within TCA cycle of the different glycolytic strains 
SG2, eSG2A3, TopA299P and the control strain KT2440. The strains were grown in M9 minimal medium 
containing 40 mM glucose. Concentrations are given in fmol protein μg crude extract-1 from four 
biological replicates. One-way ANOVA was carried out to perform the statistical analysis. * p<0.05, 
**p<0.01, ***p<0.001 and *p<0.0001. AceF, Acetyltransferase component of pyruvate dehydrogenase 
complex; AceE, Pyruvate dehydrogenase E1 component; GltA, Citrate synthase; AcnA-I, Aconitate 
hydratase A I ; AcnA-II, Aconitate hydratase A II; AcnB, Aconitate hydratase B; Icd, Isocitrate 
dehydrogenase [NADP]; Idh, Isocitrate dehydrogenase [NADP]; SucA, Oxoglutarate dehydrogenase 
A; SucD, Succinate--CoA ligase [ADP-forming] subunit alpha; SucC, Succinate--CoA ligase [ADP-
forming] subunit beta ; Fum, Fumarate hydratase class I; FumC-I, Fumarate hydratase class II; FumC-
II, Fumarate hydratase class II; Mdh, Malate dehydrogenase; Mqo-1, Malate:quinone oxidoreductase 1; 
Mqo-2, Malate:quinone oxidoreductase 2; Mqo-3, Malate:quinone oxidoreductase 3; AceA, Isocitrase; 
GlcB, Malate synthase G. 
 
 

7.3 Outlook  

In this work, we aimed to investigate the consequences of incorporating a glycolytic 

graft derived from GlucoBrick I and II in E. coli into the chassis P. putida. The analysis 

focused on the system level to obtain a deeper understanding of how the integration 

of synthetic modules can potentially alter the metabolic identity of the microorganism. 

Although successful implantation of the glycolytic module was achieved, the activity 

and fluxes through the components were suboptimal, resulting in deficient growth on 

glucose. To address this, we conducted direct ALE experiments using M9 minimal 

medium supplemented with glucose as the sole carbon and energy source. SG2 strain 

was evolved under strict selection pressure for continuous exponential growth on 

glucose. Two evolved populations were obtained and from each population, the most 

promising candidate was chosen for subsequent physiological analysis (eSG2A3 and 

eSG2A9). The results showed a significant improvement in fitness, with evolved 

populations exhibiting growth rates of 0.17-0.27 h-1, representing a 3.3-fold to 5.5-fold 

increase compared to the original strain SG2.  

 

To analyze the genetic modifications underlying the enhanced phenotypes of the two 

strains, whole genome sequencing (WGS) was performed on the isolated clones 

eSG2A3 and eSG2B9, as well as their respective endpoint populations (eSG2A and 

eSG2B). In the clone eSG2A3, a point mutation was detected in the topA gene (PP2139), 
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namely A299P (GCC→CCC), referred to as TopA299P. Mutations in topA have been 

associated with improved fitness in other bacteria, affecting gene expression and 

metabolic pathways. In the clone eSG2B9, a point mutation was identified in the 

heterologous pykF gene (GlucoBrick II), resulting in H43L (CAC→CTC). PykF is 

involved in the final step of glycolysis and mutations in this gene have been observed 

to enhance fitness in E. coli. A second point mutation was found in the oxyR gene 

(PP5309), F106I (TTC→ATC), which encodes a peroxide-sensing transcriptional 

regulator. It has been previously detected in P. putida populations grown on glucose 

during evolution experiments, potentially associated with DNA damage reduction 

causes by reactive oxygen species (ROS) (Anand, et al., 2020, Mohamed, et al., 2020). 

Further studies are needed to elucidate the regulatory mechanisms and functional 

roles of these mutations in P. putida's improved phenotypes.  

 

The in vivo metabolic flux distribution in P. putida strains revealed significant changes. 

Specifically, the evolved strains eSG2A3 and eSG2B9 exhibited a substantial increase 

in the flux through F6P compared to the original strain SG2. Along the same line, there 

was a decrease in the relative fluxes through the PP pathway in the evolved strains 

compared to SG2. Flux redirection from G6P to 6PG and Ri5P was reduced in the 

evolved strains compared to SG2. Also, fluxes through the EMP pathway were similar 

among all strains. The metabolic flux from PEP to pyruvate was partially rerouted 

toward OAA in the evolved strains. Notably, the TCA cycle flux was redirected at the 

isocitrate node, favoring the glyoxylate shunt in the evolved strains. Both evolved 

strains exhibited a larger flux through the glyoxylate shunt. Overall, the examined 

strains demonstrated robust utilization of the EMP pathway, an active TCA cycle, and 

glyoxylate shunt under glucose conditions. 

 

At proteome level, P. putida strains were analyzed, focusing on enzymes related to 

central carbon metabolism. The initial segment of the EMP pathway showed 

upregulation of enzymes in both the evolved and single mutant strains compared to 

SG2. However, there were no significant differences in Glk and Pgi-1 proteins except 
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for a slight upregulation in Glk for the evolved strain. PfkA protein levels increased 

similar to the control strain, while FbaA levels were comparable among all strains. 

Downregulation of GapA, Pgk, GpmA, Eno, and PykF was observed from G3P to 

pyruvate in the evolved and single mutant strains. In general, the protein levels of the 

TopA299P strain correlated with eSG2A3 in the preparative and pay-off phase of the 

glycolysis. Protein synthesis, particularly of glycolytic enzymes, can influence growth, 

and resource allocation, which are crucial for cellular growth and adaptation. The 

evolved strains exhibited downregulation of ZwfA and Pgl in the PP pathway, 

indicating reduced reliance on this metabolic block, while Tal enzyme levels were 

upregulated to potentially enhance the G3P pool.  

 

Regarding protein changes at the isocitrate and glyoxylate levels, we observed 

significant alterations in the protein levels of enzymes involved in these metabolic 

pathways. Notably, Icd protein levels were higher in SG2 and TopA299P, while eSG2A3 

exhibited a decrease. On the other hand, Idh and AceA proteins had significantly 

increased levels in eSG2A3 compared to the other strains. This suggests a redirection 

of carbon flux through the glyoxylate shunt in the evolved strain. The TCA cycle 

enzymes SucA and SucDC maintained consistent levels, while fumarase isozymes 

exhibited varying concentrations among the strains. The levels of AceE and AceF 

proteins decreased in the evolved strain, and GltA protein levels were significantly 

higher. Additionally, anaplerotic reactions showed differences in MaeB and Ppc 

protein concentrations, indicating potential adaptability in these pathways. Further 

investigations are needed to fully understand the implications of these observed 

changes. 
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7.4 Materials and Methods 

 Culture conditions  

Pseudomonas putida cultures were incubated at 30°C. For physiological experiments, 
bacterial cells were grown in a rotatory shaker at 200 rpm. in 250-ml Erlenmeyer flasks 
filled with 50 ml of M9 minimal medium, containing 6 g l−1 Na2HPO4, 3 g l−1 KH2PO4, 
1.4 g l−1 (NH4)2SO4, 0.5 g l−1 NaCl, 0.2 g l−1 MgSO4·7H2O, and 2.5 ml l−1 of a trace elements 
solution (Nikel and de Lorenzo, 2013). Unless otherwise indicated, minimal medium 
cultures were added with glucose at 40 mM.  

 

 Bacterial transformation  

Electrocompetent P. putida cells were obtained by subsequent washings at room 
temperature with 300 mM sucrose (Choi, et al., 2006). For all strains, when 
appropriate, the electroporation was performed in a Gene Pulser/Pulse Controller 
(Bio-Rad) system configured as follows: 2.5 kV, 25 μF, 200 W. 

 

 DNA manipulation and sequencing  

DNA manipulations were carried out following routine laboratory techniques (Green 
and Sambrook, 2012). Plasmid DNA purification was accomplished with the QIAprep 
Spin Miniprep kit (Qiagen Inc., Valencia, CA, USA) according to the manufacturer's 
instructions. Restriction and DNA modification enzymes employed in this study were 
purchased from New England Biolabs (Ipswich, MA, USA). Isolate colonies from fresh 
LB plates were the starting material for colony polymerase chain reaction (PCR) 
amplification in order to check the presence of plasmid or gene deletions/insertion. 
PCR products were purified with the NucleoSpin Extract II kit (Macherey-Nagel, 
Düren, Germany). Agarose gel visualization was possible with the use of VersaDoc™ 
apparatus (Bio-Rad Corp., Hercules, CA, USA). Sanger sequencing (Secugen SL, 
Madrid, Spain) was used in order to check the accuracy of all the DNA constructs. 
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 Design of oligonucleotides  

Oligonucleotides employed in PCR reactions were designed from the DNA sequence 
of interest using the software DNASTAR Lasergene Suite v14 (DNASTAR, Inc. 
Madison, WI, USA). The oligonucleotides used in this study were obtained from 
Sigma-Aldrich Co. (St. Louis, MO, USA). 

 

 Construction of Pseudomonas putida TopA299P mutant strains  

Plasmid pGNW2·topA::A299P was constructed using uracil-excision (USER) cloning 
by amplifying the 1,000 bp upstream and downstream of the topA::A299P mutation 
with Phusion U Hot StartTM DNA polymerase (ThermoFisher Scientific Co., 
Waltham, MA, USA) according to the manufacturer’s recommendations using uracil-
containing primers. Plasmid pGNW2 was further digested with DpnI prior to mixing 
1 μL of DpnI-treated plasmid with 100 ng of each PCR fragment and 1 μL of USERTM 
enzyme (New England BioLabs, Ipswich, MA, USA) in a final volume of 10 μL. The 
reaction was incubated for 30 min at 37°C, followed by a temperature decrease during 
3 min (from 28°C to 20°C, 2°C per step), and incubation at 10°C for at least 10 min. 
Finally, 50 μL of chemically-competent E. coli DH5α λpir cells were transformed with 
5 μL of the USER. 
 
The suicide pGNW2-derivative plasmid harboring homologous regions was delivered 
by electroporating 50 μL of freshly-prepared P. putida EM42 electrocompetent cells, 
washed three times with 300 mM sucrose with 500 ng of DNA (Wirth, et al., 2020). 
Electroporation was performed with a Gene Pulser XCell (Bio-Rad, Hercules, CA, 
USA) set to 2.5 kV, 25 μF capacitance and 200 Ω resistance in a 2-mm gap cuvette. 
Positive co-integrants were further transformed via electroporation with a plasmid 
encoding the meganuclease I-SceI, which cuts pGNW2 within the chromosome forcing 
a second homologous recombination event. Cells were recovered in 1 mL of LB 
medium supplemented with 2 mM of 3-methylbenzoate (3-mBz) for at least 3 h at 
30°C, and plated onto LB medium agar containing the corresponding antibiotic(s) and 
1 mM 3-mBz to induce I-SceI expression. Positive clones were identified by colony 
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PCR, verified by DNA sequencing and cured from the resolving plasmid by serial 
dilution under non-selective conditions. 

 

 Bacterial strains and growth conditions 

All bacterial strains and plasmids used in this work are listed in Table S7.1. E. coli 
DH5α was used for cloning and plasmid maintenance. E. coli and P. putida strains were 
routinely grown in lysogeny broth (LB) medium (10 g L–1 tryptone, 5 g L–1 yeast extract 
and 5 g L–1 NaCl) at 37°C and 30°C, respectively, in an orbital shaker at 200 rpm. For 
all physiological experiments, P. putida was grown in M9 minimal medium 
supplemented with different concentrations of glucose (20-40 mM) as sole carbon 
source. Bacterial growth was estimated by measuring the optical density at 600 nm 
(OD600). 

 

 Adaptive Laboratory Evolution (ALE) 

Two adaptive laboratory evolution experiments of the engineered strain P. putida SG2 
were carried out in parallel on a custom-designed liquid handling platform (Sandberg, 
et al., 2014, LaCroix, et al., 2015, Mohamed, et al., 2019). Briefly, the SG2 strain was 
streaked on an LB agar plate overnight, and two single colonies were picked as starters 
of the evolution experiments. The cells were cultured on 15 mL of magnetically stirred 
40 mM glucose M9 minimal medium supplemented with trace elements and vitamins 
(Mohamed, et al., 2017) under full aeration conditions and an incubation temperature 
of 30°C. When the cultures reached the late-exponential growth phase (i.e. an OD600 
of 0.30), a 900 μL culture volume was transferred into a new tube with 15 mL of fresh 
M9 medium. The exponential growth phase of the cultures took place from the 
moment of inoculation until the cultures reached an OD600 of 0.30, and the maximum 
final OD600 observed was approximately 0.50. The OD600 was measured by a Sunrise 
Plate Reader (Tecan Inc., Switzerland), and the correction factor between the plate 
reader OD600 and a benchtop spectrophotometer with a 1-cm path length was 4.29. 
Growth rate was calculated for each flask by calculating the slope of a least-squares 
linear regression fit to the natural logarithm of the OD600 measurements versus time. 
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Each population lineage was periodically validated by PCR, using the 
oligonucleotides rpoD-F and rpoD-R (Supplementary Information Table S7.2). 
Samples of the populations were also periodically taken and stored in 25% glycerol 
stocks at −80°C for reference and for later sequencing analysis. The evolution 
experiments were concluded once increases in the growth rate were no longer 
observed during several passages (LaCroix, et al., 2015, Mohamed, et al., 2019). 

 

 Initial clonal screening of evolved populations in microtiter  

Three independent pre-cultures of P. putida KT2440, SG2 and the 10 clones selected 
were grown for 16, 48 and 24 h, respectively in 10 ml of M9 media with 40 mM glucose 
in 50 ml Falcon tubes. The pre-cultures were incubated in an orbital shaker at 250 rpm 
and 30°C. Once the pre-cultures reached exponential phase, the tubes were 
centrifuged at 10,000 g for 5 min, washed twice with 10 ml of M9 media without carbon 
source. The initial optical density was 0.05 OD600 ml-1 on each well and the bacterial 
growth was followed by measuring the OD630 every 15 minutes in a BioTek ELx808 
Absorbance Microtiter Reader (BioTek Instruments Inc., Winooski, VT, USA) where 
the agitation and temperature were set up at 1080 rpm and 30°C, respectively.   

 

 Physiological characterization of ALE-evolved clones in shaken 
flasks 

Three biological replicates of P. putida KT2440, SG2 and the 2 well-performed clones 
were inoculated as pre-cultures using the same conditions as it was described before 
(See “Initial clonal screening of evolved populations in microtiter”). The pre-cultures 
were used to inoculate 250 ml baffled bottom shaking flask containing 50 ml of M9 
media with 40 mM glucose with an initial OD600 of 0.05. The flasks were incubated in 
an orbital shaker at 200 rpm and 30°C. Different aliquots of 700 μl were withdrawn 
along the growth curves to measure glucose consumption and metabolites secretion 
into the media. Samples were centrifuged at 10,000 g for 5 min at 4°C; the supernatants 
were collected in Eppendorf tubes and were stored at -20°C until further analysis. 
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  Glucose and organic acids quantification by high-performance 
liquid chromatography (HPLC) 

For glucose and organic acid -gluconate, 2-ketogluconate, succinate, lactate, formate, 
acetate and pyruvate- analyses, frozen samples were thawed at 4°C and further 
processed for high-performance liquid chromatography (HPLC). The quantification 
was performed on a Dionex Ultimate 3000 system (Thermo Scientific, Waltham, USA) 
with a HPx87H ion exclusion column (125-0140, Aminex, Dublin, Ireland), equipped 
with a guard column holder (125-0131, Bio-Rad, Hercules, California, USA) and guard 
column (125-0129, Bio-Rad, Hercules, California, USA) and eluted with 5 mM H2SO4 
at an isocratic flow of 0.6 ml min-1 at 30°C for 30 min. Glucose, 2-ketogluconate, 
succinate, lactate, formate and acetate were analysed by RI detection using a Smartline 
RI detector 2300 (KNAUER Wissenschaftliche Geräte, Berlin, Germany), whereas 
gluconate and pyruvate were analysed by UV detection at a wavelength of 210 nm 
using a System Gold 166 UV detector (Beckman Coulter, Brea, USA) (Pedersen, et al., 
2021). 

 

  Genomic DNA purification, library construction, and whole 
genome sequencing (WGS) 

DNA was purified using the PureLinkTM Genomic DNA purification kit (Invitrogen, 
Waltham, MA, USA) from 2 mL of overnight cultures inoculated from cryostocks. The 
genomic DNA of each sample was randomly sheared into short fragments of about 
350 bp using ultrasonic interruption. Short and large DNA fragments were removed 
using magnetic bead size selection and subsequently verified by capillary gel 
electrophoresis. The obtained DNA fragments were subjected to library construction 
using the NEBNextTM DNA Library Prep Kit (NEB), following the supplier’s 
specifications. Libraries quality control was performed with a Qubit® 2.0 fluorometer 
and an AgilentTM 2100 BioAnalyzer. Subsequent sequencing was performed using 
the Illumina NovaSeqTM 6000 PE150 platform. For quality-control purposes, paired 
reads were discarded when: (i) either read contains adapter contamination, (ii) 
uncertain nucleotides (N) constitute >10% of either read, or (iii) low quality 
nucleotides (base quality less than 5, Q ≤ 5) constitute >50% of either read. The effective 
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sequencing data were aligned with the reference sequence (NCBI Reference Sequence: 
X) through Burrows-Wheeler Aligner (BWA) software (Li and Durbin, 2009), and the 
mapping rate and coverage were counted according to the alignment results. The 
duplicates were removed by means of the SAMtools package (Danecek, et al., 2021). 
Single nucleotide polymorphisms (SNPs) and InDels were detected using SAMtools 
and followed by annotation using ANNOVAR (Wang, et al., 2010). Libraries 
construction, sequencing and subsequent data quality control was performed by 
Novogene Co. Ltd. (Cambridge, United Kingdom). 
 

  Parallel labelling experiment: flux distribution analysis of SG2, 
evolved clones and Topoisomerase mutant  

For parallel isotopic labeling experiment, P. putida KT2440 was pre-grown in M9 with 
40 mM unlabeled 12C6 glucose. The pre-cultures were started from a fresh LB agar plate 
(<5 days old) in 10 mL conical tubes with 2 ml of M9 media containing the 
corresponding labelled tracer in  (P. putida KT2440, SG2 and the 2 selected clones were 
cultivated–in biological triplicates–for fluxomic analyses at 30°C and 250 rpm. The 
parallel labelling experiment was carried out using 3 different tracers: (i) 99% [1–13C] 
glucose, (ii) 99% [6–13C] glucose, and (iii) an 50:50% mixture of naturally labelled 12C 
and 99% [U-13C6] glucose (Cambridge Isotopes Laboratories Inc., MA and Omicron 
Biochemicals, IN). An atom transition map containing 82 reactions of P. putida KT2440 
core metabolism was constructed using previous published resources with slightly 
modifications representing the metabolic network of the four different strains. The 
INCA software package was used to analyze the metabolic network for parallel tracer 
experiments (Young, 2014). 

 

  Proteomics: Sample preparation and LC-MS/MS parameters 

Sample preparation for proteomic analysis was performed as described previously by 
(Gurdo, et al., 2023). Briefly, cell pellets of P. putida strains were lysed in 6 M Gu·HCl 
[guanidinium hydrochloride], 5 mM TCEP [tris(2-carboxyethyl)phosphine], 10 mM 
CAA [2-chloroacetamide] and 100 mM Tris·HCl, pH = 8.5, disrupted mechanically and 
heated to 99°C. After centrifugation, the cell-free lysates were diluted with 50 mM 
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ammonium bicarbonate and subjected to bicinchoninic acid (BCA) assay to estimate 
protein concentrations. Trypsin and LysC digestion mix (Promega) was added to 20 
μg protein of each sample and incubated for 8 hours. Trifluoroacetic acid was added 
to halt digestion and the samples were desalted using C18 resin (Empore, 3M) before 
HPLC-MS analysis. HPLC-MS analysis of the samples was performed on the Orbitrap 
Exploris 480 instrument (Thermo Fisher Scientific) prefaced by the EASY-nLC 1200 
HPLC system (Thermo Fisher Scientific). For each sample, 500 ng of peptides was 
captured on a 2cm C18 trap column (Thermo Fisher 164946) and subsequently 
separated using a 70 minute gradient from 8% v v-1 to 48% v v-1 of acetonitrile in 0.1% 
v v-1 formic acid on a 15cm C18 reverse-phase analytical column (Thermo EasySpray 
ES904) at a flow rate of 250 nL min-1. The mass spectrometer was operated in data-
independent acquisition mode with the specific settings listed below.  

 

  DIA method and data analysis 

For data-independent acquisition, the mass spectrometer was run with the HRMS1 
method as previously described (Xuan, et al., 2020). It was preceded by the FAIMS Pro 
Interface (Thermo Fisher Scientific) with a compensation voltage (CV) of -45 V, and 
any modifications are mentioned below. Full MS1 spectra were collected at a 
resolution of 120,000 and scan range of 400-1,000 m/z, with an AGC target of 300 or 
the maximum injection time set to auto. MS2 spectra were obtained at a resolution of 
60,000, with an AGC target of 1000 or the maximum injection time set to auto, and the 
collision energy set to 32. Each cycle consisted of three DIA experiments each covering 
a range of 200 m/z with a window size of 6 m/z and a 1 m/z overlap, while a full MS 
scan was obtained in between experiments. 
 
For the data analysis of raw files from the DIA method, DIA-NN was used with library 
free approach (Demichev, et al., 2020). DIA-NN was used for library-free analyses 
with the following settings: the smart profiling and the heuristic protein inference 
activated and the FDR cut-off set at 1%. For the additional in silico digest feature, 
acetylation of the protein N-term and oxidation of methionine residues were set as 
variable modifications, and the cleavage specificity was set to ”K*,R*” (Trypsin/P). 
Also, the following incorporations were added: generate spectral library, predictor, 
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FASTA search and match-between-runs (MBR) enabled, minimum 200 and maximum 
1,800 m/z for fragment exclusion, minimum 7 and maximum 30 for peptide length, 
minimum 300 and maximum 1,800 m/z for precursor exclusion, minimum 1 and 
maximum 4 for precursor charge, and the maximum missed cleavages set to 1. 

 

  Protein intensity inference 

Before protein inference using the LFAQ algorithm (Chang, et al., 2018), precursor 
intensities were summed based on identical sequence to obtain peptide intensities and 
filtered with an FDR cut-off of 1%, similarly to the aLFQ R package import 
functionality. A tailored Python script was created to facilitate communication with 
the LFAQ algorithm through the command line. The input data for the LFAQ 
algorithm was divided on a per-sample basis, and the corresponding output was 
subsequently merged. This was necessary as the LFAQ algorithm exclusively 
conducts protein inference for individual samples. For subsequent analyses, only 
protein intensities were employed; nonetheless, the LFAQ algorithm requires protein 
concentrations to be calculated. To address this challenge, a supplementary input file 
was generated, consisting of randomly selected protein identifiers from the protein 
database and associated random concentrations. This additional input was 
incorporated without influencing the calculated protein intensities. 

 

  Protein identification and absolute quantification 

For the analysis, sequence identification was performed using a protein database 
consisting of either the E. coli (UP000000625) or the P. putida (UP000000556) reference 
proteome.  Proteome-wide absolute quantification was carried out using standard-
free TPA method (Wiśniewski, et al., 2014). A custom Python script was developed to 
carry out all the quantification approach. The calculated protein intensities from the 
inference algorithm was used as input, together with a table recording total protein 
mass per sample. 
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  Statistical Analysis  

All the experiments reported were independently repeated at least twice (as indicated 
in the corresponding figure or table legend), and the mean value of the corresponding 
parameter ± standard deviation is presented. In some cases, the level of significance 
of the differences when comparing results was evaluated by means of the Student's t 
test with α = 0.05. For proteomics analysis, one-way ANOVA was applied for 
determining differences in normalized protein concentrations. For the statistical 
analysis, we exclusively employed the proteins that were consistently identified in all 
replicate data sets pertaining to a specific comparison. 
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7.5 Supplementary Information 

Table S7.1. Bacterial strains used in this Chapter. 
 

 Relevant characteristics Reference 
Bacterial strains 
Escherichia coli 

DH5α 
Cloning host; F– λ– endA1 glnX44(AS) thiE1 recA1 relA1 spoT1 
gyrA96(NalR) rfbC1 deoR nupG Φ80(lacZΔM15) Δ(argF-lac)U169 
hsdR17(rK7(r-–K– m+K) 

(Meselson and Yuan, 1968) 

Pseudomonas putida 

KT2440 Wild-type strain, derived from P. putida mt-2 cured of the TOL plasmid 
pWW0 

(Bagdasarian, et al., 1981) 

SG2 

Glycolytic chassis, derivative of P. putida KT2440 with the deletions Δglk, 
Δgcd, Δgad, Δedd, Δeda, Δgts and chromosomal insertion of the gene 
encoding the Glf glucose transporter from Zymomonas mobilis, and 
GlucoBricks containing Module I and II. 

(Sánchez-Pascuala, et al., 2019) 

eSG2A 
ALE-evolved population with higher growth rate on glucose derived from 
the starting strain SG2 (flask 46; population A) 

This work 

eSG2B ALE-evolved population with higher growth rate on glucose derived from 
the starting strain SG2 (flask 42; population B) 

This work 

eSG2A (Clone 1) 
Evolved clone with higher growth rate on glucose isolated from the 
endpoint of the ALE-evolved population eSG2 #A 

This work 

eSG2A (Clone 2) 
Evolved clone with higher growth rate on glucose isolated from the 
endpoint of the ALE-evolved population eSG2 #A 

This work 

eSG2A (Clone 3) 
Evolved clone with higher growth rate on glucose isolated from the 
endpoint of the ALE-evolved population eSG2 #A This work 

eSG2A (Clone 4) 
Evolved clone with higher growth rate on glucose isolated from the 
endpoint of the ALE-evolved population eSG2 #A 

This work 

eSG2A (Clone 5) Evolved clone with higher growth rate on glucose isolated from the 
endpoint of the ALE-evolved population eSG2 #B 

This work 

eSG2B (Clone 1) 
Evolved clone with higher growth rate on glucose isolated from the 
endpoint of the ALE-evolved population eSG2 #B 

This work 

eSG2B (Clone 2) 
Evolved clone with higher growth rate on glucose isolated from the 
endpoint of the ALE-evolved population eSG2 #B 

This work 

eSG2B (Clone 3) 
Evolved clone with higher growth rate on glucose isolated from the 
endpoint of the ALE-evolved population eSG2 #B 

This work 

eSG2B (Clone 4) 
Evolved clone with higher growth rate on glucose isolated from the 
endpoint of the ALE-evolved population eSG2 #B 

This work 

eSG2B (Clone 5) 
Evolved clone with higher growth rate on glucose isolated from the 
endpoint of the ALE-evolved population eSG2 #B This work 

 

Table S7.2. Oligonucleotides used in this chapter. 

Oligonucleotides Sequence (5’→ 3’) Uses 

rpoD-F ATCCGATCAGCTTCAGGCAACCTC 
 Validation of lineage during ALE rpoD-R ATGCGGATGGTGCGTGCCTG 
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Table S7.3. Relative net fluxes determined by 13C-MFA in Pseudomonas putida strains. Best fit represents the relative mean values (%) related to glucose uptake 
rate of 100%. Mean parameter estimates and 95% confidence bounds using INCA’s parameter continuation method for SG2, eSG2A3 and eSG2B9 are shown. 
 

Reaction ID Equations (Carbon atom transition) 
SG2 eSG2A3 eSG2A9 

Best fit SD LB UP Best fit SD LB UP Best fit SD LB UP 
R1 Gluc.ext -> Gluc.per 100.0 0.0 100.0 100.0 100.0 0.0 100.0 100.0 100.0 0.0 100.0 100.0 
R2 Gluc.per + 2*ATP -> G6P 100.0 0.0 100.0 100.0 100.0 0.0 100.0 100.0 100.0 0.0 100.0 100.0 
R3 G6P <-> F6P 69.6 2.6 67.9 71.8 88.5 3.7 86.2 91.6 86.3 2.1 84.4 88.0 
R4 F6P + ATP -> FBP 78.4 1.8 76.1 80.7 91.8 1.2 90.3 92.8 91.3 1.1 89.6 92.1 
R5 FBP <-> DHAP + GAP 78.4 1.8 76.1 80.7 91.8 1.2 90.3 92.8 91.3 1.1 89.6 92.1 
R6 DHAP <-> GAP 78.4 1.8 76.1 80.7 91.8 1.2 90.3 92.8 91.3 1.1 89.6 92.1 
R7 GAP <-> 3PG + ATP + NADH 170.0 1.8 167.7 172.4 183.3 1.2 181.8 184.3 183.7 1.1 182.0 184.4 
R8 3PG <-> PEP 163.5 1.9 161.2 165.8 175.9 1.2 173.2 178.4 177.4 1.1 175.7 178.2 
R9 PEP -> Pyr + ATP 87.4 2.5 83.8 92.3 117.9 2.3 86.6 148.0 106.1 2.3 100.2 113.3 
R10 G6P -> 6PG + NADPH 28.8 2.6 26.5 30.5 9.8 3.7 6.7 12.2 12.2 2.1 10.4 14.1 
R11 6PG -> Ri5P + CO2 + NADPH 18.0 2.5 14.2 21.2 9.8 3.7 6.6 12.2 11.9 1.9 9.7 13.8 
R12 Ri5P <-> X5P 9.4 1.7 6.9 11.5 3.9 2.5 1.8 5.5 5.6 1.3 4.1 6.9 
R13 Ri5P <-> R5P 8.6 0.8 7.3 9.6 5.9 1.2 4.8 6.7 6.3 0.6 5.6 7.0 
R14 X5P <-> GAP + EC2 9.4 1.7 6.9 11.5 3.9 2.5 1.8 5.5 5.6 1.3 4.1 6.9 
R15 F6P <-> E4P + EC2 -2.8 0.8 -3.9 -1.5 0.0 1.2 -0.8 1.1 -1.0 0.6 -1.7 -0.3 
R16 S7P <-> R5P + EC2 -6.6 0.8 -7.7 -5.4 -3.9 1.2 -4.7 -2.8 -4.5 0.6 -5.2 -3.8 
R17 F6P <-> GAP + EC3 -6.6 0.8 -7.7 -5.4 -3.9 1.2 -4.7 -2.8 -4.5 0.6 -5.2 -3.8 
R18 S7P <-> E4P + EC3 6.6 0.8 5.4 7.7 3.9 1.2 2.8 4.7 4.5 0.6 3.8 5.2 
R19 6PG -> Pyr + GAP 10.8 1.9 7.7 14.0 0.0 0.0 0.0 1.8 0.3 0.9 0.0 2.1 
R20 Pyr -> AcCoA + CO2 + NADH 133.7 3.2 128.3 140.8 172.6 5.8 162.5 185.2 159.4 2.7 154.5 164.1 
R21 OAA + AcCoA -> Cit 87.6 1.0 86.4 89.0 87.5 1.2 86.4 88.5 98.3 0.6 97.6 99.1 
R22 Cit <-> ICit 87.6 1.0 86.4 89.0 87.5 1.2 86.4 88.5 98.3 0.6 97.6 99.1 
R23 ICit -> Suc + Glyox 21.1 3.0 16.1 27.6 58.3 5.8 48.1 71.1 37.6 2.6 32.8 42.1 
R24 Glyox + AcCoA -> Mal 21.1 3.0 16.1 27.6 58.3 5.8 48.1 71.1 37.6 2.6 32.8 42.1 
R25 ICit -> AKG + CO2 + NADPH 66.5 2.7 60.4 71.1 29.2 6.1 16.2 39.6 60.7 2.6 56.3 65.5 
R26 AKG -> SucCoA + CO2 + NADH 55.4 2.7 49.3 60.0 17.8 6.1 4.8 28.2 50.6 2.6 46.1 55.3 
R27 SucCoA <-> Suc + ATP 52.6 2.7 46.5 57.1 14.9 6.1 1.9 25.3 47.9 2.6 43.5 52.7 
R28 Suc -> Fum + FADH2 76.5 1.0 75.3 77.9 76.1 1.2 75.1 77.2 88.2 0.6 87.4 88.9 
R29 Fum <-> Mal 81.1 1.0 79.9 82.5 80.8 1.2 79.7 81.9 92.3 0.6 91.6 93.1 
R30 Mal -> OAA + FADH2 102.2 2.5 82.2 109.3 139.1 2.6 133.7 151.7 129.9 3.2 121.5 134.6 
R31 Pyr + CO2 + ATP -> OAA 254.3 6.1 208.5 360.1 34.5 6.5 20.4 46.3 71.7 1.7 66.9 73.6 
R32 OAA -> Pyr + CO2 317.1 11.0 212.0 465.1 117.0 5.5 109.6 127.5 149.5 7.2 140.6 152.5 
R33 PEP + CO2 -> OAA 103.6 2.5 91.1 121.0 121.9 2.3 116.5 126.5 93.8 2.3 87.5 99.6 
R34 OAA + ATP -> PEP + CO2 35.1 4.3 28.2 41.8 71.7 5.6 60.9 82.5 29.5 2.3 25.3 34.0 
R35 Mal -> Pyr + CO2 + NADPH 0.0 2.5 0.0 51.0 0.0 2.6 0.0 4.4 0.0 3.2 -4.0 9.2 
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Reaction ID Equations (Carbon atom transition) 
SG2 eSG2A3 eSG2A9 

Best fit SD LB UB Best fit SD LB UB Best fit SD LB UB 
R36 AKG + NADPH + NH3 -> Glu 64.9 0.6 64.5 65.3 65.7 0.1 65.0 65.8 59.2 0.0 58.9 59.3 
R37 Glu + ATP + NH3 -> Gln 7.7 0.0 7.7 7.7 7.8 0.0 7.8 7.8 7.0 0.0 7.0 7.0 
R38 Glu + ATP + 2*NADPH -> Pro 2.5 0.0 2.5 2.5 2.6 0.0 2.6 2.6 2.3 0.0 2.3 2.3 
R39 Glu + CO2 + Gln + Asp + AcCoA + 5*ATP + NADPH -> Arg + AKG + Fum + Ac 3.4 0.0 3.4 3.4 3.4 0.0 3.4 3.4 3.1 0.0 3.1 3.1 
R40 OAA + Glu -> Asp + AKG 20.2 1.2 19.4 21.0 19.4 0.1 18.0 19.6 18.0 0.1 17.4 18.2 
R41 Asp + 2*ATP + NH3 -> Asn 1.5 0.0 1.5 1.5 1.5 0.0 1.5 1.5 1.4 0.0 1.4 1.4 
R42 Pyr + Glu -> Ala + AKG 5.7 0.0 5.7 5.7 5.8 0.0 5.8 5.8 5.2 0.0 5.2 5.2 
R43 3PG + Glu -> Ser + AKG + NADH 6.6 0.6 6.2 7.0 7.4 0.1 7.2 8.0 6.3 0.0 6.2 6.6 
R44 Ser <-> Gly + MEETHF 1.3 0.6 0.9 1.7 2.0 0.1 1.8 2.6 1.5 0.0 1.4 1.8 
R45 Gly <-> CO2 + MEETHF + NADH + NH3 1.1 0.6 0.6 1.5 0.4 0.1 -0.2 0.6 0.7 0.0 0.4 0.8 
R46 Thr <-> Gly + AcCoA + NADH 3.9 1.2 3.0 4.7 2.6 0.1 1.3 2.9 3.0 0.1 2.4 3.2 
R47 Ser + AcCoA + 3*ATP + 4*NADPH + SO4 -> Cys + Ac 1.7 0.0 1.7 1.7 1.7 0.0 1.7 1.7 1.5 0.0 1.5 1.5 
R48 Asp + Pyr + Glu + SucCoA + ATP + 2*NADPH -> LL_DAP + AKG + Suc 1.7 0.0 1.7 1.7 1.7 0.0 1.7 1.7 1.6 0.0 1.6 1.6 
R49 LL_DAP -> Lys + CO2 1.7 0.0 1.7 1.7 1.7 0.0 1.7 1.7 1.6 0.0 1.6 1.6 
R50 Asp + 2*ATP + 2*NADPH -> Thr 8.6 1.2 7.8 9.4 7.5 0.1 6.2 7.8 7.3 0.1 6.7 7.5 
R51 Asp + METHF + Cys + SucCoA + ATP + 2*NADPH -> Met + Pyr + Suc + NH3 1.2 0.0 1.2 1.2 1.2 0.0 1.2 1.2 1.1 0.0 1.1 1.1 
R52 Pyr + Pyr + Glu + NADPH -> Val + CO2 + AKG 3.7 0.0 3.7 3.7 3.8 0.0 3.8 3.8 3.4 0.0 3.4 3.4 
R53 AcCoA + Pyr + Pyr + Glu + NADPH -> Leu + CO2 + CO2 + AKG + NADH 6.0 0.0 6.0 6.0 6.1 0.0 6.1 6.1 5.5 0.0 5.5 5.5 
R54 Thr + Pyr + Glu + NADPH -> Ile + CO2 + AKG + NH3 2.3 0.0 2.3 2.3 2.4 0.0 2.4 2.4 2.1 0.0 2.1 2.1 
R55 PEP + PEP + E4P + Glu + ATP + NADPH -> Phe + CO2 + AKG 1.8 0.0 1.8 1.8 1.9 0.0 1.9 1.9 1.7 0.0 1.7 1.7 
R56 PEP + PEP + E4P + Glu + ATP + NADPH -> Tyr + CO2 + AKG + NADH 1.3 0.0 1.3 1.3 1.3 0.0 1.3 1.3 1.2 0.0 1.2 1.2 
R57 Ser + R5P + PEP + E4P + PEP + Gln + 3*ATP + NADPH -> Trp + CO2 + GAP + Pyr + Glu 0.7 0.0 0.7 0.7 0.7 0.0 0.7 0.7 0.7 0.0 0.7 0.7 
R58 R5P + FTHF + Gln + Asp + 5*ATP -> His + AKG + Fum + 2*NADH 1.2 0.0 1.2 1.2 1.2 0.0 1.2 1.2 1.1 0.0 1.1 1.1 
R59 MEETHF + NADH -> METHF 1.2 0.0 1.2 1.2 1.2 0.0 1.2 1.2 1.1 0.0 1.1 1.1 
R60 MEETHF -> FTHF + NADPH 1.2 0.0 1.2 1.2 1.2 0.0 1.2 1.2 1.1 0.0 1.1 1.1 

R61 

0.174*G6P + 0.068*F6P + 0.107*GAP + 1.882*AcCoA + 0.431*Gly + 0.263*Pro + 0.598*Ala 
+ 0.389*Val + 0.628*Leu + 0.244*Ile + 0.122*Met + 0.055*Cys + 0.191*Phe + 0.135*Tyr + 
0.077*Trp + 0.126*His + 0.18*Lys + 0.354*Arg + 0.251*Gln + 0.158*Asn + 0.301*Glu + 
0.284*Asp + 0.301*Ser + 0.256*Thr + 46.75*ATP -> Biomass 

9.5 0.0 9.5 9.5 9.7 0.0 9.7 9.7 8.7 0.0 8.7 8.7 

R62 CO2.unlabeled <-> CO2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
R63 NADH <-> NADPH 190.3 1.7 140.3 222.7 319.4 7.8 269.9 361.3 365.0 7.7 339.9 283.2 
R64 ATP -> ATP.maintenance 156.0 0.0 156.0 156.0 50.0 0.0 50.0 50.0 54.0 0.0 54.0 54.0 
R65 NADPH -> NADPH.maintenance 186.0 1.7 165.8 196.5 251.3 1.8 248.2 256.7 343.5 2.4 334.9 351.7 
R66 NADH + O2 -> 3*ATP 188.9 1.7 0.0 338.2 73.4 7.8 50.3 82.5 46.4 7.7 34.5 54.1 
R67 FADH2 + O2 -> 2*ATP 178.7 2.5 128.3 186.7 215.2 2.6 209.8 227.7 218.1 3.2 209.8 225.2 
R68 UQH2 + O2 -> 3*ATP 0.1 1.7 0.0 149.5 0.0 0.0 0.0 58.1 0.0 0.0 0.0 101.6 
R69 CO2 -> CO2.ext 289.2 0.0 289.2 289.2 282.6 0.0 282.6 282.6 315.4 0.0 315.4 315.4 
R70 NH3.ext -> NH3 69.6 0.0 69.6 69.6 71.0 0.0 71.0 71.0 63.7 0.0 63.7 63.7 
R71 SO4.ext -> SO4 1.7 0.0 1.7 1.7 1.7 0.0 1.7 1.7 1.5 0.0 1.5 1.5 
R72 O2.ext -> O2 367.7 3.7 364.0 517.7 288.6 1.8 283.5 291.7 264.4 2.4 262.1 666.7 
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Parameter continuation INCA SG2 eSG2A3 eSG2A9 

Fit Yes Yes Yes 

SSR 284.7 259.6 295.5 

Expected SSR [232.8-325.0] [236.5-329.5] [243.8-338.0] 
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Figure S7.1. Trajectories of populations A and B during adaptive laboratory evolution. Cells were grown 
in M9 containing 40 mM glucose as only carbon source. A, B. Serial batches were run until no growth rate 
improvement was observed. X-axis represents Cumulative Cell Division [CCD] and Y-axis growth rate [h-

1]. C. Parameters obtained after the evolution. 
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Figure S7.2. Comparison in protein concentration within Pentose Phosphate Pathway (PPP) of the 
different glycolytic strains SG2, eSG2A3, TopA299P and the control wild-type strain KT2440. The strains 
were grown in M9 minimal medium containing 40 mM glucose. Concentrations are given in fmol protein 
μg crude extract-1 from four biological replicates. One-way ANOVA was carried out to perform the 
statistical analysis. * p<0.05, **p<0.01, ***p<0.001 and *p<0.0001. Zwf, Glucose-6-phosphate 1-
dehydrogenase; ZwfA, Glucose-6-phosphate 1-dehydrogenase A; ZwfB, Glucose-6-phosphate 1-
dehydrogenase B; Pgl, 6-phosphogluconolactonase; Gnd, 6-phosphogluconate dehydrogenase; RpiA, 
Ribose-5-phosphate isomerase; Rpe, Ribulose-phosphate 3-epimerase; Tal, Transaldolase; Tkt; 
Transketolase. 
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Chapter 8 - Conclusions and future perspectives 
 
In conclusion, this Ph.D. thesis has explored the metabolism of the soil bacterium 
Pseudomonas putida from a systems biology point of view shedding light on the potential 
of this versatile bacterium for basic research and sustainable biotechnological 
applications. By employing systems biology approaches, we have gained valuable 
insights into the complex cellular networks of P. putida, elucidating even more metabolic 
capabilities and regulatory mechanisms under different conditions.  
 
Through the comprehensive analysis of P. putida's genome, fluxome, proteome, and 
metabolome, we have identified key genetic targets and metabolic bottlenecks that 
influence its performance as a microbial cell factory. Furthermore, this research has 
highlighted the importance of a holistic and multidisciplinary approach for a successful 
implementation of P. putida-based bioeconomy. Merging systems and synthetic biology 
principles has proven to be crucial in bridging the gap between fundamental research 
and industrial applications. The integration into the bioeconomy framework has the 
potential to revolutionize the way we produce and utilize valuable bio-based products, 
contributing to a more sustainable and environmentally friendly society. 
 
This research opens up several exciting possibilities. Firstly, there is the potential for 
further development and refinement of the multi-omic platform introduced in Chapter 2 
and Chapter 3. This could involve integrating the various methodologies into a more 
robust and standardized process, which could be accomplished by leveraging the concept 
of a Biofoundry. For example, the implementation of high-throughput screening methods 
and directed evolution strategies will allow for the rapid development of P. putida strains 
with improved performance, stability, and tolerance to diverse environmental 
conditions. The integration of omics data and computational modeling can be further 
refined, enabling more accurate predictions and rational design of microbial cell factories. 
 
By studying multi-substrate conditions, as in Chapter 4, we gained insights into the 
regulatory mechanisms and metabolic adaptations of P. putida in response to two carbon 
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sources (glucose and citrate). This knowledge provided a deeper understanding of how 
P. putida efficiently switches between different substrates and optimizes its metabolic 
pathways in order to adapt to different conditions. In this way, we acknowledged that 
exploring multi substrate conditions in P. putida could have significant implications for 
biotechnological applications.  
 
In Chapter 5, we studied acetate metabolism in P. putida which is of significant 
importance in the context of acetate-based bioeconomy. Acetate is a valuable carbon 
source that can be utilized for the production of various bio-based chemicals and fuels. 
However, the toxic effects of acetate can limit microbial growth and productivity, posing 
challenges to its efficient utilization. Understanding how the bacterium responds to toxic 
acetate conditions is crucial for the development of acetate-based bioprocesses. By 
investigating the mechanisms underlying acetate tolerance and metabolism from a 
genetic, proteomics and metabolomics perspective, we identified genetic targets and 
metabolic bottlenecks that enhanced acetate utilization. This knowledge can guide the 
design of engineered P. putida strains towards a more robust and efficient platform to 
utilize acetate as a carbon source. In addition to its adaptability and tolerance to high 
acetate concentrations, the abilities of P. putida hold significant implications for 
bioremediation practices. 
 
In Chapter 6 and Chapter 7, we explored a) glucose catabolism in P. putida upon genetic 
perturbations and; b) the incorporation of a glycolytic module from E. coli. In the first case 
of study, blocking glucose phosphorylation or oxidation pathways revealed 
compensatory mechanisms that the bacterium employs to sustain its growth and energy 
homeostasis. This information can be used to elucidate the metabolic networks 
interconnectivity and can help to identify alternative routes and metabolic engineering 
targets for manipulating glucose metabolism in P. putida. In the second case, we 
highlighted the potential to modify conserved metabolic characteristics to improve 
desired physiological traits. Thus, the refactoring of the glycolytic pathway emerged as 
an appealing objective in the domain of metabolic engineering for industrial 
microorganisms. Numerous approaches in metabolic engineering have been devised to 
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redirect carbon flux towards desired compounds. Within these various strategies, the 
modification of the glycolytic pathway emerges as a highly promising approach due to 
its potential to significantly enhance the efficiency of sugar uptake. By enhancing the 
efficiency of this crucial metabolic route, the productivity of microbial catalysts can be 
directly augmented, paving the way for enhanced industrial bioprocesses. 
 
As a final statement, this Ph.D. thesis has provided a foundation for the exploration and 
exploitation of Pseudomonas putida in the context of systems biology. By unraveling the 
complex interplay between cellular processes and engineering principles, we have laid 
the groundwork for a sustainable and efficient bio-based industry. Advances in synthetic 
biology techniques, such as genome editing and pathway optimization, will undoubtedly 
play a pivotal role in expanding the capabilities of P. putida as a cell factory. 
Consequently, we postulate that the integration of a metabolism-centric approaches into 
the DBTL cycle will serve as a catalyst for the advancement of industrial biotechnology 
in the foreseeable future. This integration will facilitate the biosynthesis of new-to-nature 
compounds that are currently beyond the biological scope of commonly utilized cell 
factories. Despite the existence of several unresolved challenges such as: i) the immense 
landscape of complex cellular traits in non-traditional hosts; ii) selection of the correct cell 
platform and, iii) automation of these metabolism-centric approaches; we believe that the 
methodologies presented in this thesis offer potential solutions that could effectively be 
applied to enhance the design of microbial cell factories to consolidate the bioeconomy. 
This becomes especially pertinent in a time where there is an urgent and imperative need 
for viable alternatives to oil-based production, which is highly susceptible to geopolitical 
and socioeconomic influences. The future prospects are promising, and continued 
research and collaboration in this field will undoubtedly lead to remarkable 
advancements and the realization of a bioeconomy driven by P. putida's potential. 
 
 
 
 
 




