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Preface
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Abstract

Cancer is a major global issue claiming the lives of millions every year. It is an extremely com-

plex and diverse disease spanning numerous cancer types, however, they are all defined by one

specific hallmark: abnormal cell growth. Historically, researchers have focused on the cancer

itself, but it is now apparent that several other factors contribute to the disease. Cancer cells and

immune cells constantly exert mutual selective pressure on each other during cancer develop-

ment. Immune cells posses the ability to kill cancer cells, nevertheless cancer cells can escape

this by creating immunosuppressive environments. The introduction of immunotherapies has

changed the cancer treatment paradigm. Instead of using highly toxic treatment options such as

chemotherapy and radiation, immunotherapies aim at unleashing the potential of immune cells

to eliminate the cancer cells. Due to varying response rates, there is a strong need for patient

stratification in order to determine who will benefit from treatment.

With the advances of single-cell technologies such single-cell RNA (scRNA) sequencing, dis-

section of heterogeneous cell systems such as the tumor microenvironment is now widely

adopted. This thesis is comprised of four studies with a common goal of elucidating vari-

ous aspects of the tumor microenvironment primarily employing scRNA sequencing. The first

study presented highlights transcriptional differences between healthy immune cells and cancer

patients with either chronic lymphocytic leukemia (CLL) or the precursor stage thereof.

Secondly, a study seeking to discover the determinants of response in Richter’s syndrome (RS)

patients following PD1 checkpoint blockade is presented. This showed that response associated

with a CD8+ T cell population marked by the expression of the transcription factor ZNF683

that appeared to regulate key pathways of T cell activation and differentiation.

The third included in this thesis observes no transcriptional changes of the tumor cells of CLL

patients going from precursor stage to disease. This is in concordance with the DNA methy-

lation patterns presented in this study, that is detected already at the precursor stage and is

persistent through the disease course. Finally, scRNA sequencing was utilized to detect clonal

evolution of CLL cells transforming into an aggressive secondary lymphoma, RS. The findings

of this study also includes molecular events driving this transformation.
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Dansk resumé

Kræft er et stort globalt sundhedsproblem og en sygdom, der er koster flere millioner liv hvert år.

Kræftsygdommen er ekstrem kompleks, divers, og dækker over mange forskellige kræftformer.

Dog har de alle ét fælles karaktertræk: unkontrollerbar cellevækst. Historisk har forskere fouk-

seret på selve kræften, men det er nu etableret, at en række andre faktorer også har indflydelse

på sygdommen. Kræftceller og immunceller er i konstant kontakt og udøver selektivt pres på

hinanden under sygdomsudviklingen. Kroppens eget immunforsvar har evnen til at eliminere

kræften, men kræften kan undslippe dette ved at skabe et immundæmpende miljø omkring sig.

Introducering af immunterapi har ændret behandlingen af kræftpatienter. I stedet for at an-

vende toksiske behandlinger såsom kemoterapi og strålebehandling, er målet med immunterapi

at undslippe immunforsvarets egne celler til at eliminere kræften. Effektiviteten af immunterapi

varierer en del, og der er derfor et stort fokus på at identificere hvilke patienter, der vil rea-

gere positivt på behandlingen. Udviklingen af enkeltcelle-baserede teknologier, såsom enkelt-

celle RNA-sekventering, har muliggjort undersøgelser af heterogene cellesystemer og bliver

rutinemæssigt udført. Denne PhD afhandling indeholder fire forskellige studier med ét overod-

net fælles mål at belyse forskellige aspekter af miljøet omkring kræften ved brug af enkeltcelle

RNA-sekventering. Det første studie viser transkriptionelle forskelle mellem raske immunceller

og kræftpatienters immunceller. Dernæst præsenteres et studdie der har til formål at undersøge

mulige afgørende faktorer for et positivt respons til immunterapi med PD-1-blokade i kræftpa-

tienter med Richter’s syndrom (RS). Her viste vi, at respons er associaseret med en population

af CD8+ T-celler, der er makeret af ekspressionen af transkrriptionsfaktoren ZNF683. Studiet

indikerer, at ZNF683 regulerer essentielle ”pathways” indenfor aktivering og differentiereing

af T-celler. Et tredje studie observerer ingen transkripttionelle forskelle mellem kræftceller

fra patienter med kronisk lymfatisk leukæmi samt forstadiet hertil. Det er i overensstemmelse

med DNA methylering, der også er præsenteret i dette studie. Abnormal DNA methylering er

dektekteret allerede på forstadiet og vedbliver gennem sygdomsforløbet. Slutteligt, anvendes

enkeltcelle RNA-sekventering til at undersøge mekanismerne bag transformationen fra kronisk

lymfatisk leukæmi til den aggresive og sekundære lymfom, RS.
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Introduction

Cancer is the second leading cause of death worldwide responsible for almost 10 million deaths

in 2020 [1,2]. The disease has an increasing incidence as the population ages. Every third Dan-

ish person will be diagnosed with some type of cancer before they reach the age of 75 years old,

and two out of three will be close to somebody with cancer. However, with growing research

and treatment options, prognosis for cancer patients is improving with about 67% surviving

cancer [3], although some cancer types have better prognoses than others.

Cancer is an umbrella term covering more than 100 distinct cancer types, spanning both solid

and liquid tumors. Due to heterogeneity within a single tumor, the understanding of cancer

becomes even more complicated.

The immune system presents itself as a promising resource to utilize in killing cancer cells.

However, cancer cells can evolve to evade immune killing making it a complex interplay. To

heighten our understanding of cancer, it is therefore crucial to analyze both malignant and im-
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CHAPTER 1. INTRODUCTION 2

mune cells and how they communicate, interact and co-evolve. It is becoming increasingly

appreciated to profile tumor microenvironments using single-cell expression data. Accordingly,

computational tools to robustly analyze this complex high-dimensional data is of outmost im-

portance.

Thesis scope

The focus of this thesis is the bioinformatic analysis of data pertaining to the complex interplay

between cancer cells, immune cells and and understanding how these interactions shift in the

context of disease evolution and therapy primarily using single-cell transcriptomics data. Both

computational analyses and biological interpretations of this will be included.

This provided a deeper understanding of the cancer cells in relation to immune cells, disease

progression and during immunotherapy, while also covering the computational workflow of

data analysis. The thesis includes a discussion of how to integrate data for increased knowledge

extraction.

Thesis structure

First, I start out by setting the theoretical background necessary for the presented work by intro-

ducing cancer, the immune system, immunotherapies along with response predictions. Subse-

quently, a general introduction of cancer profiling using expression data, focusing on single-cell

levels, and how to analyse this is provided. Following, are three chapters covering various facets

of cancer and the tumor microenvironment:

1. Single-cell profiling of immune cells in chronic lymphocytic leukemia: Cancer cells

co-evolve with immune cells in their environment and they mutually exert selective pres-

sure on each other. In PAPER I, we studied how the immune cells of patients diagnosed

with chronic lymphocytic leukemia evolve with disease progression, and the consequence

of treatment regarding cell-cell communication patterns.

2. Single-cell profiling of immune cells in Richter’s syndrome during immunotherapy:

Richter’s syndrome is the transformation of chronic lymphocytic leukemia into an ag-



CHAPTER 1. INTRODUCTION 3

gressive secondary lymphoma with poor prognosis and treatment options. Clinical trials

are showing how these patients are responding to immmunotherapies, e.g. PD-1 check-

point blockade. In PAPER II, we interrogated single-cell expression data of responders

and non-responders to detect markers of response.

3. Single-cell profiling of blood cancers: The disease spectrum of chronic lymphocytic

leukemia spans both a precursor stage, disease stage and sometimes a transformation into

Richter’s syndrome. In PAPER III we showed how the cancer cells evolve during the

natural progression from precursor stage to chronic lymphocytic leukemia. Molecular

characteristics defining disease transition into RS was highlighted in PAPER IV.

Then I will present a conclusion summarizing the work carried out in this thesis and how it sets

in relation to future work. Finally, the four research papers included in this thesis is attached.



2

Theoretical background

2.1 Cancer is a complex disease

The key characteristic of cancer is the presence of cells growing uncontrolled. Cancer cells

arise from the body’s healthy cells through mutational changes enabling this abnormal growth.

Abnormal growth is achieved through a set of characterized features, namely the hallmarks of

cancer. As we heighten our understanding of cancer biology, the features also expand. In 2000,

the first set hallmarks consisting of six biological properties was proposed [4]. These were fur-

ther expanded to eight hallmarks with an addition of two enabling characteristics [5]. Hallmarks

of cancer circa 2022 now includes 10 hallmarks and four enabling characteristics [6]. Briefly,

the hallmarks include sustaining proliferative signaling, evading growth suppressors, avoiding

immune destruction, enabling replicative immortality, tumor-promoting inflammation, activat-

ing invasion and metastasis, inducing or accessing vasculature, genome instability and mutation,

4



2.2. THE IMMUNE SYSTEM HELPS PROTECT OUR BODY 5

resisting cell death (apoptosis), deregulating cellular metabolism, unlocking phenotypic plastic-

ity, non-mutational epigenetic reprogramming, senescent cells and polymorphic microbiomes.

One that is especially interesting in the context of the work presented in this thesis is the ability

to avoid immune destruction.

A cancer cell is an experiment in evolution, and it evolves through acquisition of mutations

making them quite different from healthy cells [7, 8]. During cell proliferation, the genome is

copied, and in this process mistakes can be introduced. Most often these will be corrected and

have no effect, but it is not always the case. When errors are not corrected they are passed on to

the progeny. The majority of mutations are harmless, but a subset leaves the cell one step closer

to becoming cancerous [9]. A single mutation is rarely adequate, and some might be introduced

by extrinsic factors [10] such as tobacco and alcohol [7,11,12] and UV light [13,14]. Mutations

can ultimately lead to altered gene products, which can be apparent at the RNA level [15].

For a long time, the focus has primarily been on the cancer cell itself. A tumor is not just a

collection of cancerous cells, but rather a complex heterogeneous system [16]. Cancer cells on

the outer side of a solid tumor may differ considerably from cells on the inside, as these are

the cells that are in contact with the microenvironment surrounding the tumor. Transcriptional

heterogeneity within the tumor is increasingly recognized as a driver of progression, metastasis

and treatment outcome [17]. Several studies have shown an, at first surprisingly, high variation

in transcriptomic profiles of cancer cells within the same tumor [17]. Also, it is becoming more

appreciated that the non-cancerous cells, such as immune cells, in the tumor microenvironment

(TME) play a vital role [18].

2.2 The immune system helps protect our body

Our body is constantly exposed to potential infectious agents and toxins, so why are we not

sick all the time? The immune system is our body’s defense against foreign matters that detects

non-self from self and eliminates it. It is a highly complex system consisting of a variety of

specialized effector cells and molecules [19, 20]. Overall, the immune system is categorized

into the innate and the adaptive immune system, both of which depend on the activity of white

blood cells, namely leukocytes.
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The majority of immune cells arise from the bone marrow, where they can also develop and

mature. Mature immune cells can either occupy peripheral tissues or circulate the blood stream

or the lymphatic system. All leukocytes as well as the other components of blood including

red blood cells (erythrocytes) and platelets, derive from hematopoietic stem cells (HSCs) from

the bone marrow. HSCs divide into two types of stem cells; a common lymphoid and a com-

mon myeloid progenitor cell. The lymphoid progenitor gives rise to the lymphoid lineage of

leukocytes; innate lymphoid cells, natural killer (NK) cells and T- and B cells. The myeloid

progenitor gives rise to the rest of the leukocytes. Among the myeloid leukocytes are dendritic

cells (DCs), macrophages, neutrophils, and mast cells. Figure 2.1 provides a brief overview of

the how the cells arise from the HSCs in the bone marrow.

Hematopoietic stem cell

Common myeloid progenitor Common lymphoid progenitor

B cell Natural  killer cell T cell

CD8+ T cellCD4+ T cell

Macrophage

Mast cell Erythrocyte Platelets Myeloblast

MonocyteBasophil Eosinophil Neutrophil

Dendritic cell

Figure 2.1 | Overview of the immune cells derived from hematopoietic stem cells of the bone marrow with cells split into the lymphoid and
myeloid lineages. Some intermediate cell types have been omitted represented by broken lines. Figure adapted from [19, 20]
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Innate immunity

The innate immune system is responsible for the immediate response to a wide range of pathogens.

If a pathogen succeeds in breaching both anatomical (epithelial surfaces such as the skin) and

chemical barriers within the host, it will encounter the components of the innate immune sys-

tem. Once detected, inflammation is induced by the release of cytokines and chemokines at-

tracting additional immune cells.

Innate cells are activated by pattern recognition receptors (PRRs) that detect typical features of

microbes, such as lipopolysaccharides. When a microorganism crosses the epithelial barrier and

starts reproducing within host tissue, it will likely be recognized by resident phagocytic cells.

Phagocytes encompasses macrophages, monocytes, granolucytes and DCs with macrophages

being the dominant population in most normal tissues. They arise from either progenitor cells

or from circulating monocytes exiting the blood stream. Monocytes develop in the bone mar-

row and circulate the bloodstream, and is typically classified as either classical or non-classical

monocytes.

Innate lymphoid cells (ILCs) including NK cells develop in bone marrow from the same progen-

itor that develops B- and T cells. As effector cells they amplify signals by innate recognition,

and are stimulated by cytokines produced by other innate cells. NK cells lack the antigen-

specific receptors of T cells, but can exhibit an equivalent cytotoxic capacity. They are found

in tissues and circulating the blood stream. Additionally, the NK cells will contain an infection

while the adaptive immune response becomes activated [19].

Adaptive immunity

The adaptive immune response relies on specific recognition using highly specialized cell-

surface receptors, and a key characteristic is that it provides immunological memory. The

adaptive immunity is mainly dominated by two cell types: B- and T cells. Both of these har-

bour extremely variable antigen-specific receptors, and differentiate from a state of naı̈ve cells

to effector cells upon antigen-recognition. These receptors are generated by somatic rearrange-

ment to provide them with a unique antigen-specificity. Activated B cells, plasma cells, secrete

antibodies, and T cells will differentiate into various effector cells. A subset of activated cells,

will differentiate into memory populations responsible for the long-term memory. These can be
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reactivated by a following antigen exposure and differentiate into effector cells in order to clear

the infection more rapidly. This specificity and immunological memory is why the adaptive

immune response is slower, but also more powerful [20].

Two main types of T cells exist, characterized by the expression of the co-receptors: CD4

and CD8. Through their T cell receptor (TCR), they recognize fragments of antigens, namely

epitopes, bound by major histocompability complexes (MHC) on the surface of other cells.

CD8+ T cells recognize epitopes bound to MHC class I, which is present on all nucleated cells.

MHC class I presents intracellular peptides, and thereby CD8+ T cells can detect intracellular

pathogens. When detecting a foreign epitope, the CD8+ T cell will become cytotoxic and kill

the infected cells [20]. Contrary, CD4+ T cells interact with epitopes bound to MHC class II,

which are only found on antigen-presenting cells (APCs). Peptides presented on MHC class

II are usually derived from the extracellular environment, which primes the CD4+ T cells to

become either helper T cells or regulatory T cells (Tregs). Helper T cells recruit and activate

other immune cells such as B cells via cytokines to produce antibodies or induce macrophage

killing. Tregs dampen the activity of other lymphocytes and help limit any potential damage

of the immune response and maintain self-tolerance. They inhibit the extend of the immune

activation and promote tolerance rather than clearing of an antigen. Initial activation of the

CD8+ T cells is depending on signals from innate cells, as it occurs through presentation by

DCs. If the DC is not infected itself, it will take up peptides generated by other infected cells

through a process named cross-presentation [21]. Once activated, the T cells induce apoptosis

of infected cells presenting peptide-MHC complexes complimentary to their TCR. In order to

ensure activation, interaction between the co-stimularoty molecule, CD28, on the T cell and B7

ligands on the APC must occur. Following, the T cells will increase expression of inhibitory

molecules, such as CTLA-4 and PD-1, with higher affinity for B7 ligands. This will eventually

stop the activation, and is an important feature of tolerance [22, 23].

T cells continuously exposed to antigens or inflammatory signals in chronic infections or can-

cers can become exhausted leading to progressive loss of effector functions, and expression of

multiple inhibitory receptors (PD-1, CTLA-4, LAG3, TIM3 and TIGIT), dysregulated metabolism,

poor memory response and homeostatic proliferation [24,25]. Exhaustion is associated with in-

efficient control of chronic infections or cancers. A subset is also referred to as being terminally
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exhausted, which are resistant to treatment [26].

Immune responses can both be beneficial but also extremely harmful, depending on the antigen.

Allergies and autoimmune diseases are examples of a normal response directed at an inappro-

priate antigen. Cancer is an example of a deficient immune response against an appropriate

antigen.

The role of immune cells in cancer

Immune cells play a crucial role in immunosurveillance, as both adaptive and innate immune

cells infiltrate the TME [27], which plays a critical role in tumorigenesis, metastasis and drug

resistance [28]. The relationship between immune cells and cancer cells is extremely complex,

but three phases of tumor growth have been proposed: 1) elimination phase, where immune cells

destroy potential cancer cells (immunosurveillance), 2) equilibrium phase, where cancer cells

undergo changes that promote survival due to selection pressure by the immune system, and 3)

escape phase in which cancer cells have acquired abilities to escape immune killing [29, 30].

Immunosurveillance is generally considered to be the undetectable phase of early cancer devel-

opment [31]. During the second phase, cancer immunoediting takes place where the properties

of cancer cells are continuously shaped to promote survival. Here, cancer cells continue to co-

exist with the immune cells.

One of the hallmarks of cancer as previously mentioned is immune evasion by creating an im-

munosuppressive environment [30,32]. There are several avenues to achieve this: low immuno-

genicity (no peptide-MHC complex, no adhesion molecules or no co-stimulatory molecules),

treating the tumor as self (tumor peptides presented on MHC in the absence of co-stimulation),

antigenic modulation (loosing epitopes that will be recognized by TCRs), immune suppression

(secreting factors that inhibit immune cells directly or expressing them on the surface of the

tumor, e.g. PD-L1) and creating a tumor-induced privileged site (secreting factors that will act

as a physical barrier against the immune cells, such as collagen).

The down-regulation of MHC molecules on cancer cells can be recognized by NK cells. One

important activator of NK cells is the loss of MHC expression, thus making cancer cells a tar-

get. Also, NK cells produce cytokines and chemokines that recruit DCs and influence T cell

responses during inflammation [33]. Therefore, NK cells are useful targets to activate in thera-



2.3. IMMUNOTHERAPIES TO COMBAT CANCER 10

pies [34].

Tumor-specific antigens arising from point mutations or gene rearrangements, may alter the epi-

tope presented on the MHC molecule preserving the binding affinity, or de novo proteins will

now bind and be presented. These are referred to as neoepitopes, newly immunogenic versions

of normal peptides. Both may elicit an immune response by recognition by T cells.

A successful anti-tumor response requires the presence of both adaptive CD8+ T cells, CD4+ T

cells, B cells along with innate lymphoid cells, e.g. NK cells [35, 36]. Cytotoxic CD8+ T cells

are highly responsible for anti-tumor activities and are associated with improved prognosis in

virtually all cancers [35, 37]. CD4+ T helper cells promote CD8+ T cells and are crucial for B

cell activation, expansion and differentiation into plasma cells and memory B cells [35, 38].

Historically, the main focus of anti-tumor activity has relied on CD8+ T cell responses, as pres-

ence of these are strongly associated with higher survival. However, recent work highlights a

key role of B cells in immunotherapies and a positive association with presence and progno-

sis has been observed in several cancer types [39–42]. B cells can act as APCs and activate

CD8+ T cells, but can also kill the cancer cells directly by secretion of toxic cytokines or indi-

rectly by secreting immunostimulatory cytokines. Plasma cells produce antibodies that mediate

antibody-dependent cell-mediated cytotoxicity targeting cancer cells for phagocytosis by NK

cells [35]. Contrary, B cells also harbor tumor-promoting effects with regulatory B cells inhibi-

tion of effector functions and converting CD4+ T cells into Tregs. Likewise, Tregs counteract the

tumor-specific response by suppressing CD8+ T cells, and are thus also considered to be tumor-

promoting. The composition of tumor-infiltrating lymphocytes (TILs) present in the TME has

shown to impact clinical outcomes [35].

2.3 Immunotherapies to combat cancer

Traditional cancer therapies include surgery, chemotherapy, and radiation and have generally

focused on the tumor itself [43]. However effective, these treatments suffer from severe side

effects, as they also harm the non-cancerous cells of the body. The current treatment paradigm

has shifted towards harnessing the immune system.
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Introduction of immunotherapy has revolutionized cancer treatments showing responses seen

in up to 50% of patients with long-term response [44], with adoptive cell transfer and immune

checkpoint blockade inhibitors resulting in durable clinical responses. However, efficacy’s vary

and not all patients respond [27, 45].

As eluded to previously, cancers can take advantage of the immune system’s built-in checkpoint

that normally dampens the immune responses, preventing autoimmune diseases and allergies,

thus modulating the intensity of an immune response [46]. Checkpoint blockade inhibitors

therapies aim to revert this by using monoclonal antibodies to down-regulate these inhibitory

molecules. Many of these are targeting the reactivation of exhausted T cells in tumors [26, 47].

However, as described the anti-tumor response is complex and involves both innate and adap-

tive immune cells. Therefore, the innate cells are promising new targets as well [36, 48].

The introduction of checkpoint blockade inhibitors, anti-CTLA-4 and anti-PD-1 in particular,

changed the management of many cancers. In advanced melanoma this means we have reached

long-term control and tumor regression in about 50% of patients, which was around 10% be-

fore [49]. The checkpoint receptors CTLA-4 and PD-1 have been studied extensively. PD-1 is

responsible for limiting T cell activity during an inflammatory response. Expression of PD-1 is

induced on antigen-stimulated T cells, B cells, NK cells and a subset of DCs, and after interac-

tion with the cognate ligand, PDLs, expressed by tumor cells (PD-L1 or PD-L2), decreased T

cell activation and proliferation and eventually exhaustion is observed. PD-1 expression on TILs

is associated with poor prognosis, and blocking PD-1 with an antibody will restore the activity

of the inhibited immune cells. A PD-1 blockade can thus revert the exhausted state in im-

mune cells present in the TME. Understanding the TME is important for effective therapy [50].

Blockade of PD-1 or PD-L1 has shown great clinical promise [51]. Three PD-1-antibodies, and

three anti-PD-L1 antibodies are currently approved by the Food and Drug Administration [52].

Mechanisms of immune escape following immunotherapy is categorized as either primary,

adaptive and acquired resistance. Patients with primary resistance do not respond to treat-

ment, where acquired resistance sets in after an initial response leading to disease progression.

In adaptive immune resistance, the cancer is recognized but not eliminated through antigenic

escape and/or loss of immunogenicity [43, 44].
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2.4 Characteristics of response

A critical part of expanding the implementation of immunotherapies is dissecting the features

that might be predictive or prognostic of clinical response. To better identify patients bene-

fiting from treatment, samples are usually collected at diagnosis, time of therapy response (or

resistance), remission and relapse [53] in order to detect novel biomarkers of response using

proteomic, genomic, and transcriptomic analyses [52]. Biomarkers predicting responders are

highly desirable, as are biomarkers predicting immune-related adverse effects that can require

treatment discontinuation. Insights into host intrinsic and extrinsic factors impacting the re-

sponse and toxicity are needed [54], and our understanding of response and resistance to treat-

ment is continuously evolving.

Overall, neoantigen load is thought to be a major biomarker of response in cancer immunother-

apy [55]. A positive association between tumor mutational burden (TMB) and response across

27 cancer types has been shown [56]. Higher TMB in in non-small cell lung carcinoma is asso-

ciated with improved response, durable clinical benefit, and progression-free survival [57, 58].

In melanoma increased TMB is likewise found in patients with durable responses to CTLA-4

antibodies [59, 60]. BRCA2 mutations are enriched in melanoma patients responding to anti-

PD-1, however, the association is not predictive [61].

Expression of PD-L1 on cancer cells in melanoma, non-small cell lung carcinoma, renal cell

carcinoma, colorectal carcinoma, or castration-resistant prostate cancer positively associated

with response to anti-PD-1 therapy [62]. Also, IFN-g predicts clinical response to anti-PD-1 in

melanoma [63]. A study of 48 tumor samples from melanoma patients treated with checkpoint

inhibitors, showed that expression of the transcription factor TCF7 in CD8+ T cells was predic-

tive of positive clinical outcome [64], while resistance has been associated to MHC loss [65].

Additionally, a treatment signature score consisting of a set of 91 genes was proposed in lung

cancer [66] in order to predict response. In colorectal cancer, mismatch repair deficiency has

been associated with better response to anti-PD-1 [67].

Intratumoral microbes as well as gut microbiota has shown to impact anti-tumor responses as

well. The gut microbiome of melanoma patients modulates response to anti-PD-1 [68] showing

higher alpha diversity and relative abundance of certain bacteria (the Ruminococcaceae family).
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Another study also emphasized a significant correlation between commensal microbiota and

clinical response in metastatic melanoma patients highlighting abundance differences between

responders and non-responders [69]. A third study showed correlation between gut microbiota

and clinical response in epithelial tumors [68].

2.5 Profiling tumor microenvironments

Gene expression profiling is deciphering the total mRNA or protein levels in a cell or tis-

sue [70,71]. The transcriptome is the complete set of transcripts and their abundances [72] act-

ing as a link between phenotypes and genotypes. Transcriptomic analyses are the studies of

RNA molecules using high-throughput technologies [73], and has been used extensively for

functional characterization of tumors [71, 74]. It is also used to test for biological differences

in expression under different conditions, such as healthy versus disease or treatment versus no

treatment.

Actively transcribed RNA is highly dynamic meaning that it provides a signature or snapshot

of cell or tissue states. Transcriptome profiling has shown to be better for understanding molec-

ular mechanisms behind cancer prognosis and drug resistance [73]. As a consequence of both

genomic mutations and epigenetic changes, cancer cells show aberrant transcriptional patterns

and the abnormal cancer pathways can be identified [73].

RNA sequencing has been around for more than a decade, and has been a paramount tool in tran-

scriptomic analysis of differential gene expression and alternative splicing of mRNA [75, 76].

It is valuable for understanding dynamics of transcriptomics during development, comparisons

between healthy and diseased tissue along with classification of disease states. RNA sequencing

provides a precise quantitative measurement of transcripts and isoforms [72]. The technology

has enabled characterization of cancer heterogeneity, evolution, drug resistance, biomarker dis-

covery providing invaluable insights of cancer research and treatment [73, 76].

However, one drawback of RNA sequencing of bulk tissues is the assumption of homogeneity,

thus ignoring cellular diversity by providing averaged data [77, 78]. This is particularly prob-

lematic for blood, which consists of multiple different cell types with distinct genetic programs,

present in varying abundances.
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Single-cell RNA (scRNA) sequencing was highlighted as “Method of the Year” in 2013 [79]

and it enables transcriptomic profiling at single-cell resolution and has shown immense potential

in cancer research [53,78,80–82]. It is also valuable for dissecting the immune system [83–85]

and during immunotherapy [86]. The overall workflow of scRNA sequencing is similar to that

of bulk RNA sequencing: 1) single-cell capture, 2) mRNA reverse transcription, 3) cDNA am-

plification and 4) library preparation [83, 87]. The two technologies differ in how the input is

prepared. That is isolation of single cells in scRNA sequencing. Several methods to do so exists;

valves, droplets and nanowells, with droplet-based technologies being commonly used [77,88].

Droplet-based methods offers high-throughput, however with the cost of less control [88], fewer

features and limit studies to gene-level only. Here the single cells are encapsulated in oil beads

along with reagents and barcodes. Three main platforms use this technique: 10X Genomics

Chromium, inDrop and DropSeq [89–92]. Each individual cell is tagged to a bead with a

unique barcode. Each mRNA transcript is also tagged with a unique molecular identifier (UMI)

to account for potential PCR biases [93]. The output is a matrix of the absolute counts for each

transcript in a given cell.

Protocols also differs in how the sequencing libraries are constructed: i) full-length or ii) tag-

based. Tags can be added to either the 5’ or 3’ end of the transcript allowing to be combined

with UMIs. The Smart-seq2 [94] and Smart-seq3 [95] protocols can give full-length transcrip-

tome profiles of single-cells.

10X Genomics uses the GemCodeT M technology for cell partitioning, where single cells are en-

capsulated in Gel Bead in Emulsion (GEMs) with enzymes. Each bead has their own barcode,

and each transcript labelled with an UMI. Cell lysis and reverse transcription happens in each

GEM. All cDNA is then pooled and amplified for short-read sequencing [90].

As described, tumors are complex biological systems that requires comprehensive analysis.

So, no single approach can elucidate the entire tumor development and behavior, requiring mul-

tiple levels of information such as genomic, transcriptomic, proteomics and epigenetics [74].

Integrated analysis of these different molecular features, or modalities, is essential to creating a

comprehensive overview of the disease.
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Most single-cell technologies require different cells as an input to measure different modalities,

which can be challenging when trying to computationally integrate the data [96]. A rising num-

ber of platforms do offer multimodal measurements at single-cell resolution.

Reverting to 10X Genomics, they offer paired full-length TCR (or BCR) sequences coupled

with 5’ gene expression, thus allowing identification of the T and B cell repertoire, detection of

expanded clones and linking clones to phenotype. Furthermore, it is possible to simultaneously

profile gene expression and open chromatin stretches within a given cell (single-cell ATAC se-

quencing). Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq) [97]

is another multimodal technology that allows for coupling gene expression with surface protein

expression for a given cell. CITE-seq uses barcoded antibodies to integrate protein expres-

sion with transcriptomic measurements and is compatible with existing scRNA sequencing ap-

proaches such as 10X Genomics [97]. With scNMT-seq [98] joint chromatin accessibility, gene

expression and DNA methylation can be analyzed. One disadvantage of scRNA sequencing

is the necessary dissociation of tissues missing the spatial information and information on cell

proximities [99]. Spatial transcriptomics [100] is an emerging technology that allows for pro-

filing gene expression of a tissue sample while preserving spatial information [80, 101], which

can provide an in-depth analysis of the TME [28, 99, 102]. This will help us interrogating how

the tumor cells communicate [80].

The increase in multimodal platforms, demands an increase in computational methods capable

of analyzing such data. However, all these modalities will help gain a better understanding of

complex environments such as the TME, and will be crucial in personalized medicine of cancer

patients [103].

2.6 Computational tools for transcriptomic analysis

Analysis of RNA sequencing data can broadly be separated into two overall workflows. The

first, and probably most used historically, consist of aligning to reference genome, e.g. using

STAR [104], followed by gene quantification, normalization and differential gene expression

(DGE) testing, using DESeq2 [105] or edgeR [106], or differentially expressed transcripts.

However, a secondary approach is becoming widely adopted. This approach utilizes alignment-
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free tools such as kallisto [107] and Salmon [108] for rapidly quantifying abundances of tran-

scripts by the use of pseudoalignments, again followed by normalization and DGE or differen-

tially expressed transcripts.

As mentioned, bulk RNA sequencing dilutes signals from smaller population by averaging the

expression across a sample. scRNA sequencing data have shown to be an indispensable tool

in dissecting heterogeneous cell systems and tissues and de novo discoveries [87, 109]. How-

ever, the data is associated with certain caveats. Due to the lower amount of starting material

and lower sequencing depth, the mRNA yield resulting from a scRNA sequencing run is lower

comparing to what is obtained with bulk RNA sequencing. Some genes will fail to be detected,

even if they are expressed, and the resulting expression matrix will contain a large number of

zeroes, ranging from 50% up to 99% [110]. This is very much in contrast to bulk RNA sequenc-

ing, where the number is around 20% (or less) [110]. This data sparsity is both due to technical

and biological noise [87].

Raw sequencing reads from 10X Genomics are usually processed with their CellRanger pipeline

[90] consisting of: demultiplexing, alignment, filtering followed by barcode and UMI counting

generating a feature-cell count matrix. Once the expression matrix is obtained, quality control

is a necessary step to exclude poor quality data and ensure to include viable cells only. Qual-

ity control is often based on three measurements. The first two are the number of detected

genes (library complexity) and transcripts per cell (library size) [111,112]. The third is removal

of dying cells, which will often display a high proportion of mRNA from the mitochondrial

genome [113]. There are no golden standards for threshold settings of these, but is often de-

pending on the cell types being analyzed. It can be done by detection of outliers.

Doublets, or even multiplets, can be another contaminating factor, often approximately 5% (75).

These can be simulated and filtered using tools such as Scrublet [114], DoubletDecon [115] and

DoubletFinder [116]. DoubletFinder has shown to provide highest accuracy detection [117].

Cleaned data will then be normalized to account for varying sequencing depths either by simple

count depth or by scRNA sequencing specific models that also account for data sparsity, e.g.

scTransform [118]. Another possible confounder to consider is proliferating cells that will show

enrichment of upregulated genes related to the cell cycle. To compensate for this, one can either
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remove those cells or regress out their signal using general linear models [110]. Other gene sets

accounting for unwanted source of variation may also be detected.

scRNA sequencing data is high dimensional, but many of the genes expressed in a cell are

house-keeping genes with low variability between cells, and many genes will have zero counts

in a dataset. Therefore, in order to reduce the dimensionality a feature selection will often

follow to detect the most variable genes in the dataset and these will be used for downstream

analysis [112].

Batch effects is another major concern when analyzing multiple samples. Several methods ex-

ist to integrate and analyze scRNA sequencing data and thus overcoming these batch effects.

Broadly, they can be separated into two categories: supervised (e.g. reference-based) and un-

supervised [119]. Reference-based methods are usually faster; however, it does require a good

representative reference, which can be challenging when seeking novel cell populations. Unsu-

pervised methods will often perform integration two datasets at a time.

Following will be two rounds of dimensionality reduction, first using principal component

analysis (PCA) and then Uniform manifold approximation and projection (UMAP) [120] (or

t-SNE [121] or largeVis [122] reductions) for visualizations. This is then followed by cluster-

ing of the cells. Clusters have no biological insight themselves, so the next step is to annotate

them into cell populations, which can be a daunting and time-consuming task as many popu-

lations can be further divided into subpopulations. Also, many exist as continuous rather than

distinct populations. But it can be done in two ways: 1) manual annotation by the use of marker

genes or 2) mapping to previously annotated reference datasets, either bulk or single-cell, using

Seurat [123, 124] or singleR [125]. Finally, differential expression and abundance is usually

performed. Conventional DGE methods developed for bulk RNA sequencing, such as DESeq2,

are in current use and perform well, however, methods accounting for the characteristics of

scRNA sequencing data have been developed [126–128].

scRNA sequencing provides a snapshot of a cell’s gene expression, yet cell states are not static,

but rather continuous during cell differentiation processes. Adding another layer of informa-

tion, scRNA sequencing can be used to estimate cell differentiation and lineage tracing [129].

Modeling of this continuum is referred to as trajectory inference or pseudotime mapping.

Contrary to clustering, where each cell is assigned a categorical label, trajectory analyses aim
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at labeling cells with continuous values, namely pseudotime [130]. The term ‘pseudo-time’

was first introduced with Monocle [131]. Pseudotime values quantify a cell’s position along a

given trajectory, and how far the cell is from a given progenitor state. A plethora of methods

for trajectory inferences from scNRA sequencing data are being published with many currently

being developed [131–135]. Inferred trajectories can either be linear or a non-linear branching,

where most differentiation process includes branching [134], but novel tools also infer cyclic

trajectories [136] or disconnected graphs [137].

RNA velocities, or the changes in mRNA abundance, is another approach for studying cellular

dynamics by leveraging splicing kinetics of mRNA [138, 139]. RNA velocities across genes

can be used to infer the future state of a given cell.

An array of workflows for analyzing scRNA sequencing data exists, and many are currently

under development for either end-to-end analysis or focused parts. Examples include pagoda2

[140], conos [141], Seurat [123,124], Scanpy [142] and Monocle3 [143]. The general workflow

described above is depicted in Figure 2.2.
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Figure 2.2 | Schematic of typical bioinformatic workflow of single-cell RNA sequencing data analysis of multiple samples.
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Single-cell profiling of immune cells in chronic

lymphocytic leukemia

Chronic lymphocytic leukemia (CLL) in the most common adult leukemia in Western countries.

CLL has an incidence rate varying from less than 0.01% in Asia to 0.06% in the United States

of America and Europe. The median age at diagnosis is 70 years old, and it is rarely seen in

people below the age of 40, and is extremely rare in children. The prognosis of CLL patients

is highly variable; some patients can live a full life without requiring treatment for long periods

(or even at all), and some requires treatment imminently after diagnosis.

Historically, CLL patients were treated with chemotherapy or a combinational therapy of both

chemotherapy and immunotherapy, such as anti-CD20 antibodies. During the past years the

therapy has shifted from chemotherapy to using targeted agents, such as BTK inhibitors (Ibru-

tinib) and the BCL-2 inhibitor Venetoclax [144]. These are now the preferred initial treatments

19
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of CLL patients in the United States [145, 146]. Ibrutinib irreversibly inhibits BTK, which is

essential in the B cell receptor signaling cascade and once activated leads to increased prolif-

eration, survival, and migration of the B cells [147]. CLL is a malignancy of CD19+CD5+ B

cells that can circulate either in the bloodstream, bone marrow or secondary lymphoid tissues.

Patients are diagnosed with CLL if there are more than 5,000 clonal B cells in a whole blood

sample. Most CLL patients have more than 10,000 malignant B cells. CLL is divided into two

subsets based on the mutational status of IGHV, with unmutated IGHV tending to lead to more

aggressive disease courses. Monoclonal B-cell lymphocytosis (MBL) is the precursor stage of

CLL [148,149], and is characterized by less than 5,000 malignant cells in a whole blood sample

with no additional signs of lymphoma [150]. MBL is categorized as either low-count (<500

cells) or high-count (>500 cells). Approximately 5% of adults with European ancestry at the

age of 40 or above will have low-count MBL. Low-count MBL rarely progresses to CLL, al-

though 1-2% of high-count patients will develop CLL per year [151].

CLL has several key characteristics making it an extraordinary model system to interrogate

the co-evolution of immune and cancer cells. First, CLL is often associated with a slow disease

progression that enables longitudinal studies. As CLL cells continuously circulate between the

blood stream, bone marrow and lymph nodes [152], highly pure tumor samples can easily be

drawn from the peripheral blood [153]. CLL is considered a prototype of a microenvironment

dependent tumor, where cancerous cells co-evolve with host immune cells in the bone marrow

or lymph node. Sampling from bone marrow and lymph nodes are despite being important

microenvironments for CLL cells, more invasive and thus less common. Immune cells in CLL

patients show a skewing towards generating a disease tolerant environment with phenotypes

shifting towards exhausted states [154]. Even so, how immune and CLL cells co-evolve re-

mains incompletely characterized [153].

Besides the direct effect of BTK inhibitors, such as Ibrutinib, on the malignant B cells, it is

also evident that the anti-tumor effects are related to indirect effects on the TME. It is becom-

ing increasingly recognized that Ibrutinib modulates the T cells in CLL patients by expanding

memory T cells, and reducing the expression of the inhibitory molecules PD-1 and CTLA-

4 [155, 156].
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PAPER I

In PAPER I, we sought to investigate the circulating immune cells from peripheral blood

mononuclear cells (PBMCs) in CLL through single-cell transcriptomics using 10X Ge-

nomics technologies. All single-cell data was analyzed using Seurat [123, 124]. First,

two serial samples from 3 high-count MBL patients and 7 CLL patients were processed.

This revealed that transcriptional dysfunction of immune cells occurs early in the disease

setting, as no major differences distinguished immune cells of MBL and CLL patients.

A second patient cohort was then interrogated: two serial samples from 4 MBL pa-

tients progressing to CLL along with two age-matched donors. Here, we observed tran-

scriptomic differences between immune cells in CLL patients and age-matched healthy

donors. Additionally, an increased number predicted interactions in MBL subjects, also

in CLL, compared to the healthy donors was observed, especially within myeloid cells.

These interactions included multiple inhibitory immune signals. Looking at an additional

two patients receiving Ibrutinib, the interactions decreased to levels similar to healthy

donors post treatment as depicted in Figure 3.3G. These findings warrants further assess-

ment of the influence of myeloid cells in CLL patients.

Exploring data integration approaches

As previously mentioned, sample integration is a vital part of multi-sample analyses due to

batch effects. The computational data integration carried out in relation to PAPER I spans

a wide array of approaches. The following methods were tested during preliminary analysis

and data exploration: 1) MUDAN [157], 2) Seurat using anchors using canonical correlation

analysis, 3) Seurat using harmony [158], and finally 4) reference-based integration utilizing a

CITE-seq reference of 162,000 cells measured with 228 antibodies [124] in Seurat. Detailed

explanation of the final methodologies used can be found in PAPER I.
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The importance of standardized sample preparation

During sample preparation, technical biases can be introduced that can impact the results that

in most drastic cases could lead to false or biased discoveries. Therefore, it is very important to

ensure standardized sampling conditions. Multiple confounders have shown to impact scRNA

sequencing data: sample preparation, storage and processing [159–161]. A recent study [162]

highlighted the effects of varying processing times of PBMC samples used for scRNA sequenc-

ing. The authors simulated common practices adopted in bio-banks and clinics by cryopreserv-

ing samples at varying time points, ranging from 0 to 48 hours. This resulted in an identification

of a gene-set referred to initially as a cold-shock signature. This effect was consistent across all

cell types as well as sequencing technologies. Sampling time accounted for the largest propor-

tion of variability, and the described signature was overlapping with findings elucidated in bulk

RNA sequencing [163]. PAPER I included samples collected at various sites, so therefore we

investigated this proposed cold-shock signature our dataset. This displayed a clear distinction

between samples from four patient cohorts included, as shown in Figure 3.1.

Figure 3.1 | Distribution of cold-shock signature scores for each patient cohort included in PAPER I. We analyzed 3 non-progressive MBL
patients with 7 CLL patients due to similar cold-shock signature scores. Similarly, we analyzed 4 paired MBL-CLL patients with two healthy
donors given their equivalent cold-shock signature scores. Signature scores were computed using Seurat [123, 124]. Figure adapted from
supplementary material in PAPER I.

Methods to regress out such signals have been proposed as alluded to previously using cell cycle

signals as an example. However, in this case simple linear regression was not enough to properly

remove this tendency suggesting the presence of other confounding signatures. Although, this

was not tested. In addition, regression of technical confounders comes with a risk of removing

subtle variations and thus homogenizing cell subpopulations [162]. Consequently, the data

analysis in PAPER I was split into two based on choosing samples with similar signature scores
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computed in Seurat (Figure 3.2 and 3.3). The first patient cohort included two serial samples

collected from 3 high-count MBL patients 7 CLL patients. Post quality control we identified

67,333 cells partitioned into 16 clusters (Figure 3.2).

number of cells per sample, 4400; range, 2630-7596 cells) using
the same approach described above (Figure 2A-B). Again, we
observed an absence of major compositional or phenotypic
changes in immune cell populations in the transition from MBL
to CLL, whereas marked differences in the composition in
immune cell types were evident in patients with CLL compared
with HDs. In particular, the proportion of CD81 T cells was
higher in patients with CLL than in HDs (33% vs 8%, P 5 .037),
with a corresponding decrease in CD41 T cells (Figure 2C, left;
supplemental Table 2B). The CD41 and CD81 T-cell subtypes
that contributed to these differences were naive, central memory
CD41 and terminal effector memory CD81 cells (Figure 2C;
right). A higher number of differentially expressed genes
(adjusted P , .05 and javg_log2 FCj .0.6) was observed
between HDs and patients with MBL/CLL than between MBL
and CLL at the time of progression (patients MBL-CLL-1 and -2;

Figure 2D; supplemental Table 3). More differences in gene
expression were seen in those paired CLL samples obtained at a
time more distant from transition to CLL (patients MBL-CLL-3
and -4), suggesting further evolution of the immune response
over time with CLL progression. Effector memory CD81 T cells
and CD56dim natural killer cells consistently showed more differ-
entially expressed genes in patients with MBL and CLL than in
HDs (Figure 2D, right), which we also observed in a pseudobulk
reanalysis of the same data (supplemental Figure 2). Compara-
ble shifts in immune cell expression profiles were observed
in the evaluation of independent MBL (MBL1-3, T1) vs CLL
(CLL1-7, T2), but only minimal differences were observed in non-
progressing MBL (Figure 2E). We acknowledge that the low
number of replicates (n 5 2) did not provide sufficient power to
detect the biological variability among HDs and that individual-
specific variations may have confounded the observed
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Figure 1. scRNA-seq analysis of immune cells from nonprogressive MBL patients and CLL patients. (A) PBMCs from 2 serial samples were collected for 3 patients
with MBL and 7 with CLL. (B) Non-CD191CD51 cells were isolated by fluorescence-activated cell sorting. UMAP visualization of all immune cells colored by immune cell
type (top) and CLL or MBL assignment (bottom). (C) Proportion of immune cell types per time point in patients with MBL or CLL. (D) Proportion of T-cell types per time
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Figure 3.2 | Key findings from first patient cohort in PAPER I. A. PBMCs from 2 serial samples were collected for 3 patients with MBL and 7
with CLL. B. Non-CD19+CD5+ cells were isolated by fluorescence-activated cell sorting (FACS) for scRNA sequencing. UMAP visualization
of all immune cells colored by immune cell type (top) and CLL or MBL assignment (bottom). C. Immune cell type proportion at each time
point in patients with MBL or CLL. D. T cell type proportion at each time point in patients with MBL or CLL. CTL = cytotoxic T lymphocyte,
DC = dendritic cell, gdT = g-dT cells, ILC = innate lymphoid cell, MAIT = mucosa-associated invariant T cells, Mono = monocyte, NK =
natural killer cell, pDC = plasmacytoid dendritic cell, T = T cell, TCM = central memory T cell, TEM = effector memory T cell, Treg =
regulatory T cells. Figure adapted from PAPER I.

This highlighted that no major transcriptional or compositional differences between the two

patient groups were observed, suggesting a disease tolerant environment. To confirm these

findings, we evaluated the second patient cohort consisting of two healthy donors and four

high-count MBL patients progressing to CLL (MBL-CLL). Figure 3.3 shows the key results

from this analysis.
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Figure 3.3 | Key results from second patient cohort in PAPER I. A. scRNA sequencing was performed on PBMCs collected from 4 patients
with MBL (red) progressing to CLL (purple), and from 2 healthy donors (blue). X = CLL diagnosis. B. UMAP visualization of all immune
cells colored by immune cell types (left) and by sample types (right). C. Proportion of immune cell types (left) and T-cell subtypes (right). D.

Number of significant differentially expressed genes for each cell type by performing a comparison of paired samples within patients (left) or
comparison between MBL samples or CLL samples vs healthy donors (right). E. Same analysis for significant differentially expressed genes
was performed on 3 independent patients with non-progressive MBL and 7 with CLL. Figure adapted from PAPER I.
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Figure 3.3 | F. Heatmaps with the number of the significant ligand-receptor interactions for each cell type under different conditions using
CellPhoneDB (v2.1.7). Heatmap comparing the number of significant interactions between healthy donors and patient samples from either
MBL stage or CLL stage (left). Heatmaps including samples before and after ibrutinib for 2 additional patients (right). Gray = insufficient
cell numbers. G. Heatmaps representing the difference of P values for each ligand-receptor pair for specific cell types (x-axis). Interactions
enriched in patients (red) or in healthy donors (blue) were calculated by subtracting 2log10(p-value) in healthy donors from 2log10 (p-value)
in patients (left). The same interactions that are either enriched (red) or depleted (blue) after ibrutinib (right) are calculated by subtracting
2log10(p-value) in pre-ibrutinib from 2log10(p-value) in post-ibrutinib. Pts = patients. Figure adapted from PAPER I.

Again, we observed an absence of phenotypic changes in cell types transitioning from MBL

to CLL. Contrary, immune cells of healthy donors were markedly distinguished from immune

cells of both MBL and CLL patients. Particularly, the proportion of CD8+ T cells was increased

in CLL patients, and CD4+ T cells decreased. However, there is a risk that these differences

being owed to not capturing the biological variation within healthy donors due to the the small

sample size. Although, we attempted to minimize this risk by inclusion of age-matched healthy

donors.

Inferring cell-cell interactions

Cell-cell interactions are important in communication pathways, especially between immune

and cancer cells. Quantification of cellular communication serves as an important tool across

multiple disciplines [164]. The increased population of protein-protein interaction databases,

has enabled inference of cellular interactions using gene expression (both bulk and single-cell).

In particular, receptor-ligand pairs are used by detecting coordinate expression of cognate genes.

Moreover, scRNA sequencing data has the advantage over bulk RNA sequencing that the cell

types the signals originate from are known. This interrogation is also of interest within the TME

in order to detect crosstalk between tumor and immune cells. This assumes that gene expression

correlates to protein abundance, which is not always the case [165], and that protein abundance

is enough to infer interactions, ignoring potential post-translational modifications [164]. Cell-

cell interactions can be inferred with CellPhoneDB [166, 167], which is a publicly available

repository encompassing about 900 ligand–receptor pairs from existing datasets.

Addressing cell-cell interactions between immune cells and malignant (or healthy) B cells in the

second patient cohort revealed an enrichment of potential interactions in patients compared to

healthy donors. This was observed for many of the immune cell types, in particular monocytes.
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The majority of upregulated interactions involved inhibitory signals. By expanding the analysis

with two additional CLL patients receiving Ibrutinib, we showed that the increased interactions

was depleted upon treatment, as seen in Figure 3.3G (right).

Conclusion

To summarize, in PAPER I we presented both computational challenges and intriguing biolog-

ical observations needing further investigations. This chapter exemplified the importance of

standardizing sample preparations for scRNA sequencing by showing how it can impact and

potentially misguide the analysis. The relatively small sample size is a clear limitation of this

study, which may limit the power to observe differences along the disease trajectory and capture

biological variation within healthy donors.

We showed that immune cells of healthy donors are markedly different from patients with either

MBL or CLL, whereas no major transcriptional differences distinguished immune cells of MBL

patients with immune cells of CLL patients. This suggests that immune deficits in CLL occurs

early in the disease course.



4

Single-cell profiling of immune cells in

Richter’s syndrome during immunotherapy

Richter’s syndrome (RS) is the transformation of CLL into an aggressive secondary lymphoma

occurring in 2-10% cases of CLL patients. The aggressive nature of RS shows in a poor sur-

vival rate with a median survival of approximately one year [168,169]. Currently, the treatment

options available are limited, but typically includes an aggressive chemotherapy followed by

a haemopoietic stem cell transplant for eligible patients. However, the response rates are low,

remission is short and toxicity is severe, displaying a demanding need for treatment alternatives.

Recent clinical trials have demonstrated unexpected responses to anti-PD-1 in RS patients with

response rates of 42-65% [170–172]. However, there is a need for understanding the character-

istics of response and predicting which patients will benefit from the treatment. In PAPER II

we utilized data from patients enrolled in a clinical trial with PD-1 checkpoint blockade con-

27
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currently with Ibrutinib (NCT 02420912).

PAPER II

In PAPER II we sought to discover the mechanisms of response in RS patients following

PD-1 checkpoint blockade (NCT 02420912). We analyzed scRNA-sequencing data from

17 serial bone marrow samples from 6 RS patients (4 responders and 2 non-responders).

The study showed that response was associated with a CD8+ T cell effector/effector

memory population marked by expression of the transcription factor ZNF683. Trajectory

analysis predicted that said population to be an intermediate exhausted population evolv-

ing from stem-like memory cells and divergent from terminally exhausted cells.

Bulk RNA sequencing of peripheral blood samples from 7 independent RS patients pre-

treatment (2 responders, 5 non-responders) confirmed the association of ZNF683high T

cells and response. Furthermore, the signature overlapped with tumor-infiltrating popu-

lations from solid tumors and peripheral blood CD8+ T cells from melanoma checkpoint

blockade responders.

Through epigenetic analyses, we discovered that ZNF683 directly impact key T cell genes

(TCF7, LMO2, and CD69) and pathways for T cell cytotoxicity and activation.

Figure 4.1 summarizes the discovery cohort of which single-cell transcriptomes were analyzed

during a clinical trial with PD-1 blockade treatment. The cohort included four responders (RS-

R1, RS-R2, RS-R3 and RS-R4), two non-responders (RS-NR1 and RS-NR2), along with two

CLL patients (CLL-1 and CLL-2) not responding to treatment. Sampling was done prior to

therapy (except RS-R3), time of complete or partial response, and at progression. Bone marrow

biopsies were flow-sorted to first isolate all viable lymphocytes, and subsequently only non-

tumor cells (CD5�CD19� cells). These were then prepped for scRNA sequencing with 10X

Genomics, and processed and analyzed using pagoda2 [140] and conos [141] (Figure 4.1).

Tumor cells (CD5+CD19+ cells) were sorted separately, and processed, sequencing analyzed

in the same manner, however, in this chapter I will focus on the results obtained from an anal-

ysis of the immune compartment. PAPER II highlights the results from the single-cell tumor

analysis.
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Flow cytometry sorting of bone marrow

• Sorted all viable 
lymphocytes

• Selected non-tumor immune 
fraction

Analysis

• scRNA-seq (10x Genomics)
• Data processing (Pagoda 2)
• Joint clustering (Conos)

Figure 4.1 | Brief overview of discovery RS cohort, sampling times and analysis in PAPER II.

We analyzed in total 78,488 cells, of which we performed subclustering of lymphocytes (60,727

cells). Figure 4.2B-D show the phenotypic attributes of the 11 detected lymphocyte clusters.

More detailed annotations of each identified cluster is provided in PAPER II. The CD8+ T cells

of the RS bone marrow samples revealed high cytotoxicity and exhausted states (Figure 4.2D).

Furthermore, we included two age-matched healthy donors in the analysis, and an additional

28 healthy donors from publicly available datasets [173, 174]. Methodological descriptions of

how additional samples were included in the analysis are detailed in the methods section of PA-

PER II. Inclusion of healthy donors revealed disease-specific clusters effector/effector memory

T cells (cluster 1 and cluster 4), exhausted T cells (cluster 8) and Tregs. Contrary, healthy donors

displayed a larger proportion of naı̈ve T cells (cluster 5).
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Figure 4.2 | A. Immune cell populations with subsequent subclustering of lymphocytes revealing 11 distinct transcriptional clusters. B. Heatmap
of marker genes and cluster identities for 11 identified T and NK cell clusters. Cluster 1, red; Cluster 4, teal, Cluster 8, magenta. C. Heatmap
of cell surface markers for 11 identified T and NK cell clusters using CITE-seq. D. Identified T and NK cell clusters plotted by Cytotoxicity
and Exhaustion scores [175]. E. Bar graphs showing T and NK population distributions across serial marrow samples and normal bone marrow
samples. F. Distribution of T and NK cell populations in RT and CLL marrows as compared to normal bone marrow samples (2 sample t-tests).
Figure adapted from PAPER II.
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We observed key transcriptional changes associated with PD-1 response, as depicted in Fig-

ure 4.3. However, one central observation is that RS responders show enrichment of CD8+ T

cells, primarily cluster 1, which is marked by the expression of ZNF683. Cluster 1, annotated

as effector/effector memory CD8+ T cells, showed quantitative differences already present at

baseline, with a significantly larger proportion present in responders (p = 0.04).

Figure 4.3 | Transcriptional changes associated with PD-1 response. A. Subclustering graph showing cells responders in purple and cells from
non-responders in blue, as well as ZNF683-expressing cells (red). B. Cluster proportions for responders (purple) and non-responders (blue) in
bar graphs on top of heatmaps showing representative cytotoxicity, exhaustion and expression changes within circled clusters. C. Volcano plot
of gene expression differences between responder and non-responder cells in the exhausted T cell cluster (c8). D. Top transcription factors in
comparison of all CD8 T cells between responders and non-responders. E. Kinetics of cluster 1 and 4 cell proportions showing expansion at
time of response in RS-R3. F. Bubble plot showing percentage of expressing and average relative expression for RS patients with progression
on PD-1 blockade. Figure adapted from PAPER II.

Within-cluster differential gene expression also highlighted ZNF683 to mark response. Across

all CD8+ T cell clusters, ZNF683 was the top up-regulated transcription factor in responders,

whereas TOX was the dominant transcription factor of non-responders.
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Linking functional T cell phenotypes to clonality

The TCR is a heterodimer consisting of two chains, the alpha and the beta chain. Single-cell

approaches enable the detection of paired alpha and beta chains of TCRs, which is not possible

using bulk RNA sequencing. T cell phenotypes and clonality can be linked using a combination

of scRNA sequencing and single-cell TCR (scTCR) sequencing. This is extremely effective

for mapping the phenotypic landscape of T cells during the course of immunotherapy [103].

In PAPER II, we performed scRNA sequencing coupled with scTCR sequencing for one RS

responder and one RS non-responder pre and post treatment. This showed an enrichment of

expanded clones in the responder, specifically one dominating T cell clone present both before

and after treatment, as seen in Figure 4.4. This clone had high expression of ZNF683 (Figure

4.4B), and occupied mainly cluster 1 and cluster 8. On the other hand, the clonal space of the

non-responder revealed much higher diversity, with both contracting, expanding and emerging

T cell clones.
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Figure 4.4 | Clonal tracing results from PAPER II. A. Cluster distribution for individual samples in 5’ scRNA-seq performed with CITE-seq
and TCR-seq (top). Top 2 expanded TCR clones in each sample (bottom). B. Expanded clonotypes (n > 1) for responder and non-responder
pre and post treatment (left). ZNF683+ clones in responder and non-responder pre and post treatment (right). C. Top 50 clones distribution
per cluster. D. Scatterplot of clonotypes pre and post treatment for responder (left) and scatterplot of clonotypes pre and post treatment for
non-responder (right). Plots in C. and D. were generated using scRepertoire [176]. Figure adapted from PAPER II.

Trajectory inference

As the overall distribution of CD8+ phenotypes suggested a continuum across tumor-specific

T cell states, we performed trajectory inference of CD8+ T cells using slingshot [177] (Figure

4.5). Accordingly, the lineage was set to begin in the naı̈ve T cell cluster (cluster 5).



CHAPTER 4. IMMUNE PROFILING IN RICHTER’S SYNDROME 34

−4

−2

0

2

4

−4−2024

dim[2]

di
m

[1
]

c4: CD8 E/EM 2
      ZNF683int c1: CD8 E/EM 

      ZNF683high

c8: CD8 exhausted
c3: CD8 GZMK+
     memory

c5: Naive

Figure 4.5 | Trajectory analysis of CD8+ T cells using slingshot [177] from PAPER II. Trajectory was set to start in the naı̈ve T cell cluster
(c5), and shows a branching from cluster 4 into two divergent paths.

This showed a linear trajectory with bifurcation from the ZNF683intermediate cluster (cluster 4)

to either ZNF683high effector/effector memory T cells (cluster 1) or terminally exhausted T cells

(cluster 8). This suggests that the ZNF683intermediate cluster serves as an alternate path towards

exhausted effector function, which is divergent from terminal exhaustion.

Deconvolution of cell types in bulk RNA sequencing

scRNA sequencing is still relatively costly compared to bulk RNA, and large amounts of bulk

RNA sequencing datasets exist. Therefore, it is possible to utilize signatures discovered in

scRNA sequencing, and deconvoluting bulk RNA sequencing and interrogating for this signa-

ture. Deconvolution of cell type proportions from bulk RNA sequencing can readily be done

using e.g. CIBERSORT [178], CIBERSORTx [179] or xCell [180].

The estimated cell type composition can then be used to dissect cell type specific expression

patterns in bulk RNA sequencing, thus allowing to utilize the vast amount of bulk RNA se-

quencing datasets to confirm signatures detected in scRNA sequencing. This was exemplified

in PAPER II, where cellular content was inferred using CIBERSORT with the LM22 signature

matrix [178]. Proportions were then used to normalize gene expression data from an additional

cohort comprising 35 RS patients in order to extract T cell specific expression of genes, such as
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ZNF683 (Figure 4.6A (top)). Deconvolution of bulk RNA sequencing is highly essential, as the

samples consist of mixtures of cells present in various abundances.

Figure 4.6 | A. ZNF683 TPMs corrected for T cell content estimated by CIBERSORT [178] in RS bulk RNA seqeuncing samples (N=35). Top
20% of samples = blue, bottom 80% = red (top). Cluster 1 signature and T cell normalized ZNF683 expression in bulk RNA sequencing data
from 35 independent RS patients (bottom). B. ZNF683 TPMs corrected for T cell content estimated by CIBERSORT [178] in CLL bulk RNA
sequencing samples (N=81). Top 20% of samples = blue, bottom 80% = yellow. Figure adapted from PAPER II.

Additionally, the same analysis was performed on a cohort of bulk RNA sequencing samples

from 81 CLL patients (Figure 4.6B). Both analyses showed that ZNF683 expression is also de-

tectable in bulk RNA sequencing with 20% showing high expression.

Furthermore, using top up-regulated genes marking the ZNF683high effector/effector memory

T cell cluster (cluster 1), the enrichment for each RS bulk RNA sequencing sample was as-

sessed using single-sample GSEA (ssGSEA) [181], showing overlap between high expression

of ZNF683 and high enrichment score (Figure 4.6A (bottom)).

Functional studies of ZNF683

In order to functionally annotate the transcription factor ZNF683 and elucidate potential targets,

experimental validation using Jurkat cell lines was performed by over-expression of ZNF683 (+

doxycycline) (Figure 4.7A) followed by CUT&RUN [182] and bulk RNA sequencing (Figure

4.7B).
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Figure 4.7 | A. Schematic of doxycycline-inducible expression of ZNF683 in Jurkat cells. B. Volcano plot of differentially regulated genes by
ZNF683 induction by RNA sequencing. C. CUT&RUN data from Jurkat cell lines (top) shows binding of ZNF683 at regions surrounding key
immune genes that correspond to differential ATAC-sequencing peaks in T cell subsets and prior PRDM1 ChIP-seq data [183]. N = naı̈ve, CM
= central memory, PD-1high = PD-1 high tumor infiltrating CD8+ T cells. Figure adapted from PAPER II.

Differential gene expression highlighted that over-expression of ZNF683 resulted in up-regulation

of PRF1, ITGA1, CD244, CD226 and IL2RB as well as down-regulation of PRDM1 and IL2

(Figure 4.7B). Differential peaks and differential genes were integrated using CISTROME-

GO [184] defining a set of potential targets of ZNF683. Some of these targets overlapped with

publicly available ATAC-sequencing from mice [185] (Figure 4.7C). Detailed experimental and

computational methodologies can be found in PAPER II.

In addition, data integration revealed enrichment of pathways involved in antigen binding and

presentation, transcription factor activity, and T cell mediated cytotoxicity and cell killing upon

ZNF683 expression. These findings indicate that ZNF683 is a regulator of key T cell function

and immune response.
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Implications of ZNF683 expression

ZNF683 was also found to mark immune populations in other cancer types. A pan-cancer

study [186] showed transcriptionally distinct populations highly overlapping with the signature

presented in PAPER II (Figure 4.8, left).

Pan-cancer Melanoma
A

Z score
-2 0 2

Figure 4.8 | Heatmap showing single-cell GSEA scores for identified CD8+ T cell clusters as compared to Pan-cancer analysis CD8+ T cell
clusters [186] (left). Survival curve showing ZNF683 expression and cluster 1 gene expression signature with overall survival in melanoma
patients treated with PD-1 checkpoint blockade [187] (right). Figure adapted from PAPER II.

Further examination of bulk RNA sequencing data of melanoma patients treated with PD-1

checkpoint blockade [187] also showed the cluster 1 gene signature was associated with re-

sponse (p = 0.02) (Figure 4.8, right).

In addition, we confirmed the signature to be present in the peripheral blood of RS patients by

expanding the analysis to a validation cohort of bulk RNA sequencing of T cells from seven

independent RS patients. Of this, we performed differential gene expression analysis between
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two PD-1 checkpoint blockade responders and five non-responders. Again, ZNF683 was among

the top differentially expressed genes between the two groups (Figure 4.9A). We also detected

overlaps with signatures associated with CD8+ T cells in melanoma patients responding to

PD-1 treatment [188] (Figure 4.9B), and with neoantigen-specific CD8+ T cells early in PD-1

treatment detected in the peripheral blood of lung cancer patients [189] (Figure 4.9C).

Caushi et al. 
Nature 2021

Lung Cancer blood 
Neoantigen-specific CD8+ T cell

Early in PD-1 treatment

Fairfax et al.
Nature Medicine, 2020

Melanoma blood 
CD8+ T cell

PD-1 response

Scaled 
expression

A B C

Figure 4.9 | A. Heatmap of differentially expressed genes from bulk RNA sequencing of peripheral blood human T cells from additional
responders and non-responders highlighting ZNF683 is associated with PD- response. B.. C. Heatmap of s. Figure adapted from PAPER II.

Conclusion

Response to PD-1-blockade appeared to be associated with an increased proportion of ZNF683high

CD8 effector/effector memory T cells in bone marrow of RS patients. This ZNF683high popu-

lation showed to be a divergent path from terminal exhaustion. Through functional studies, we

detected that ZNF683 regulates key pathways in T cell differentiation, activation and cytotoxic-

ity. The ZNF683high signature was detectable in peripheral blood and seemingly correlates with

response to checkpoint blockade. This presents a promising signal, that requires future studies

in order to establish the predictive potential of such population.
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Single-cell profiling of cancer cells

While chapter 3 and 4 focused on characterization of the immune cells in the TME, the follow-

ing chapter will focus on profiling the cancer cells themselves in CLL and RS, respectively.

Cancer is thought to begin with changes in a single cell [53]. By selective forces, additional

changes accumulate leading to heterogeneity among cancer cells both within a patient and be-

tween patients diagnosed with the same disease.

High-dimensional single-cell technologies are therefore a natural fit for studying cancer. It has

already been widely adopted, and has transformed the understanding of cancer heterogeneity.

This chapter will focus on analyzing cancer heterogeneity using single-cell transcriptomic pro-

files.

39
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5.1 Profiling chronic lymphocytic leukemia cells

CLL has served as a model disease for studying cancer heterogeneity, and a vast amount

of genetic characterizations have been made. Studies have shown a high genetic variability

between CLL patients, although the overall tumor mutational burden is lower compared to

solid tumors [153, 190–193]. Besides genetic aberrations, tumor heterogeneity also includes

transcriptional and epigenetic changes along with interactions between cancer and immune

cells [194–196]. Both bulk and single-cell sequencing technologies have facilitated longitu-

dinal studies of clonal evolution in CLL patients [194].

However, some aspects of the disease and it’s spectrum remains uncharted, and there is currently

a poor understanding of why some cases of MBL progress into CLL and what the underlying

mechanisms are. Accordingly, there is a need for research to get a better understanding of the

disease course and what some of the risk factors are.

DNA methylation as an essential epigenetic mechanism in cancer

Cancer was long thought to be a genetic disease, however, it is now also evident that epi-

genetics influence the disease [197]. Epigenetics is describing changes that are not genetic,

which are heritable through cell division [198, 199]. There are three main types of epigenetic

changes: DNA methylation, genomic imprinting and histone modification. DNA methylation is

the biological process of adding methyl groups to DNA, and is one of the essential epigenetic

mechanisms that control cell proliferation, apoptosis, cell cycle and differentiation [200].

Abnormal DNA methylation in as disease hallmark of cancer presenting global hypomethyla-

tion and local hypermethylation [201]. Hypermethylation denotes the acquisition of methyla-

tion leading to transcriptional suppression and decreased gene expression. Hypomethylation is

contrary lacking of methylation and is associated with chromosome stability. In cancers, hy-

permethylation is often observed in promoters regions, thereby silencing of tumor suppressor

genes, which ultimately leads to the proliferation of cancer.

Differences in DNA methylation between CLL patients and normal B cells as well as within

CLL subtypes have been established [202–206]. However, little is known about the methyla-

tion changes, if any, arises in the transition from a normal to a precursor to cancer stage.
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PAPER III

The goal of PAPER III was to investigate the emergence and dynamics of the cancer

methylome and transcriptome. Genome-wide DNA methylation in MBL and CLL

patients was characterized, including serial samples collected across disease course.

An aberrant tumor-associated methylation landscape at the time CLL diagnosis was

observed, with no significantly differentially methylated regions in the transition of

high-count MBL to CLL. Patient methylomes showed stability across natural disease and

post-therapy progression. This was also apparent in methylation and transcriptomes of

single CLL cells. This longitudinal study highlights that the cancer methylome emerges

early and persists suggesting a key role in disease onset.

The work carried out in relation to this thesis consisted in preliminary and ex-

ploratory analysis of 5 serial scRNA sequencing samples from patients with MBL

progressing to CLL (patients A-E) along with two age-matched healthy donors (HD1,

HD2). Tumor cells from patient samples were sorted using Fluorescence-activated Cell

Sorting (CD5+CD19+), and sequenced using 10X Genomics. The analysis included

quality control assessment, normalization, and testing a set of computational integration

approaches of 60,630 single-cells. However, all highlighted the same key results:

malignant B cells are closer within patient and mostly almost overlapping than between

patients and compared to healthy B cells, as seen in Figure 5.1B, and 5.1E.

Complimentary to a comprehensive methylation analysis, PAPER III profiled the transcriptomes

of about 60,000 cells from two healthy donors and five matched MBL-to-CLL samples. Nine

transcriptionally distinct clusters were identified, with four of them originating from the healthy

donors (T cells, NK cells, myeloid cells and healthy B cells), and the remaining five comprised

on of the malignant cells from each respective patient. Deconvolution of the composition within

a patient cluster (Figure 5.1E) showed a remarkable overlap between MBL and CLL cells, high-

lighting the transcriptional similarity of the MBL and CLL cells.



5.1. PROFILING CHRONIC LYMPHOCYTIC LEUKEMIA CELLS 42
The Altered DNA Methylation Landscape in CLL RESEARCH ARTICLE

 JANUARY  2021!BLOOD CANCER DISCOVERY | 63 

Figure 4.  Single-cell transcriptome analysis. A, Summary table with details of donors, tissue source, number of cells per sample, and IGHV status. 
Patients were profiled in MBL as well as the CLL state using the 10x Genomics Chromium droplet single-cell RNA sequencing. HD, healthy donor. B, UMAP 
displaying the groups found using the Louvain algorithm. The healthy donor cells split into B cells, T cells, myeloid cells, and natural killer (NK) cells. The 
MBL and CLL cells of patients build distinct groups but are within a patient not distinguishable. C, Normalized gene expression level and the number of 
positive cells of marker genes used to identify normal cell types in B. B-cell–specific genes show an aberrant expression profile in clusters derived from 
patient cells. D, Normalized gene expression level and the number of positive cells of genes identified as marker genes between B cells and all patient 
cells (Wilcoxon rank-sum test). E, UMAP of MBL, CLL, and B cells with artificially introduced identification of MBL and CLL cells. MBL and CLL cells cluster 
farther apart from the B cells than from other cells of the same patient and are highly overlapping for almost all patients. F, Heatmap displaying single-cell 
gene expression of highest-ranking marker genes between MBL and CLL cells of the same patient (Wilcoxon rank-sum test). Expression levels are very 
similar among cells of the same patient as compared with other patients or B cells, a parameter that is also supported by hierarchical clustering.

T-cell

NK

Myeloid

B-cell

B

CE

A

D

B-cell

A

B

C

D

E

A

B

C

D

E

A

C D

F

B

Donor

HD1
HD2

Sample

Blood
Blood
MBL/CLL
MBL/CLL
MBL/CLL
MBL/CLL
MBL/CLL

# Cells

8,613
8,966

3,702/3,292
4,340/5,368
5,183/4,654
4,335/2,508
4,641/5,028

Σ 60,630

IGHV

Mutated
Mutated
Unmutated
Unmutated
Mutated

C
S

T
3

LY
Z

LD
H

B
IL

32
C

D
3E

G
IM

A
P

7
IL

R
7

G
N

7R
N

K
G

7
C

S
T

7
G

Z
M

A
P

R
F

1
C

T
S

W
C

C
L5

C
D

79
A

M
S

4A
1

C
D

79
B

C
D

74
H

LA
-D

R
A

C
D

3D
A

IF
1

LS
T

1 0

100
80
60
40
20

0

1

LT
B

M
S

4A
1

T
M

S
B

4X
F

O
S

B
A

N
K

1
C

C
D

C
88

A
A

B
C

A
6

C
D

27
P

E
B

P
1

K
LF

2
P

M
A

IP
1

V
O

P
P

1
C

LN
K

E

UMAP-1

0 1

Norm. expression

EIF1
JUNB

RPS27
TCL1A

RPS29
TPT1

TUBB4B

MT-ATP6
CKS2

MT-ND2
KLF6

DUSP1
TSC22D3

H3F3B

CLL

B cell

U
M

A
P

-2

UMAP-1

U
M

A
P

-2

MBL CLL MBL CLL MBL CLL MBL CLL MBL

Norm.
expression

% cells

0

100
80
60
40
20

0

1

Norm.
expression

% cells

MBL-A
B cell

MBL-B

MBL-C

MBL-D

MBL-E

CLL-A

CLL-B

CLL-C

CLL-D

CLL-E

D C B EA

T cell
NK

Myeloid

B cell
A
B
C
D
E

overrepresented among pathways involved in proliferation, 
cell survival, and growth. Although it remains technically 
challenging to experimentally explore if, for instance, the 
addition of just these CLL DMRs alone is sufficient to drive 
the tumorigenic transition or facilitate extended and rapid 
proliferation, we anticipate that these targets are certainly 
worthy of future exploration, including with emerging epige-
nome editing tools.

Our results provide a comprehensive picture of the DNA 
methylation alterations in MBL and CLL and demonstrate 
that the switch to an abnormal landscape has consistently 
occurred before any of our measured time points. This 
notably expands findings from prior array-based studies 
(41, 42) and complements recent work on the genetic evo-
lution across the 21 CLL samples (28). Similar early altera-
tions of the methylome have also been noted in colorectal 
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Figure 5.1 | Single-cell transcriptome analysis from PAPER III. A. Cohort overview. Patients were profiled in MBL as well as the CLL stage
with scRNA sequencing using 10X Genomics. HD = healthy donor. B. UMAP of detected clusters. Healthy donor cells split into B cells, T
cells, myeloid cells, and natural killer (NK) cells. The MBL and CLL cells of patients occupy distinct clusters, but are overlapping within a
patient. C. Normalized gene expression and percentage of positive cells of marker genes. D. Normalized gene expression and percentage of
positive cells of marker genes between healthy B cells and all patient cells. E. UMAP of MBL, CLL, and healthy B cells. F. Heatmap of marker
genes between MBL and CLL cells within patient. Figure adapted from PAPER III.

Conclusion

The findings of PAPER III emphasize the cancer heterogeneity within patients of the same

disease. The single-cell transcriptomic analysis captures this heterogeneity as malignant cells

are more similar within patient compared to across patients. This in concordance with findings

from other studies [207], highlighting the absence of strong selective pressure. In addition,

based on patient methylomes and transcriptomes, it seemed that changes emerge early and are
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persistent, suggesting a key role in early disease onset. This lack of heterogeneity over time also

suggest a more flexible selection process of the cancer cells. Maybe it even indicates that there

is less immune control, as the cancer cells are allowed to exist as they are and are not forced to

evolve in order to escape immune killing. Perhaps this is also why many CLL patients can live

with the disease over long time periods.

5.2 Clonal evolution of cancer cells in Richter’s syndrome

RS, is as mentioned an aggressive secondary lymphoma developing in CLL patients. Despite

deep characterizations of CLL [208, 209], understanding of driver mechanisms of RS remains

unlimited. This is in part due to difficulties in acquiring matched CLL and RS cell samples chal-

lenging both evolutionary analyses and detection of molecular events underlying the transfor-

mation. Studies have shown alterations in genes such as TP53, CDKN2A/B and MYC [210,211].

Also, aberrations in NOTCH1 has been detected both in whole-exome sequencing and bulk

RNA sequencing [212]. A subset of RS is believed to be clonally unrelated to the underlying

CLL [213], however, large whole-genome studies have not yet been performed to exclude any

shared ancestry.

As RS biopsies contain admixtures of RS and CLL cells, either computational deconvolution is

necessary. scRNA sequencing is another option for separation and study of these two cell types.

PAPER IV

In PAPER IV, we deciphered the genetic mechanisms underlying RS, by computation-

ally deconvoluting admixtures of CLL and RS cells from 52 patients with RS, evaluating

paired CLL/RS whole-exome sequencing data. RS-specific somatic driver mutations

were uncovered along with recurrent copy number alterations, recurrent whole genome

duplication and chromothripsis. This was confirmed in 45 independent RS cases and in

an additional set of RS whole-genomes. We observed pathways that were dysregulated

in RS compared to CLL. In addition, we were able to detect clonal evolution of the RS

transformation at single-cell resolution and identifying intermediate cell states using

scRNA sequencing. The study also defined distinct molecular subtypes of RS and
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highlighted cell-free DNA analysis as a potential tool for early diagnosis and disease

monitoring.

The work carried out in relation to this thesis comprised of patient-specific analy-

sis of single-cell transcriptomes isolated from either bone marrow or lymph node

biopsies of 5 RS patients. The data analysis included: quality control, data cleaning,

dimensionality reduction and clustering followed by a preliminary analysis of copy

number variations using infercnv [214].

From bulk RNA sequencing, PAPER IV identified s set of differentially expressed genes associ-

ated with transformation to RS (292 up-regulated and 111 down-regulated) (Figure 5.3a-b.). To

further examine the transformation at high-resolution, we employed scRNA sequencing of sam-

ples from five patients at time of RS diagnosis. This revealed clonally related CLL and RS cells

(Figure 5.3d-e). In addition, RS cells displayed a higher transcript abundance, both in bulk and

scRNA sequencing. For the quality control of the scRNA sequencing data, this also meant that

we increased the upper limit of the thresholds for library size to ensure the inclusion of RS cells.

Data cleaning

As briefly discussed, doublets in scRNA sequencing data occur frequently and can have sub-

stantial impact on the biological interpretation of the results. In PAPER IV, we detected several

doublets by co-expression of otherwise exclusive cell type markers in a cluster (data not shown).

Therefore, we estimated doublets using DoubletFinder [116]. In doing so, we removed between

5.2% and 7.4% doublets.

Any cell-free RNA within the input solution in droplet-based scRNA sequencing technologies

are also captured, and sequencing of these constitute the background contamination that is an-

other potential confounder influencing the biological interpretation of the data. This background

noise is often referred to as ambient RNA, and methods to denoise data for this exist [215,216].

For the scRNA sequencing data included PAPER IV, we decided to denoise the data for ambient

RNA using CellBender [215].

Finally, for some scRNA sequencing samples included in the patient cohort of PAPER IV, we
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observed that initial clusterings were heavily confounded by cell cycle genes based on a pub-

lished list of cell cycle markers [217]. An example is shown in Figure 5.2. Cell-cycle signals

were subsequently removed with linear regression.

Figure 5.2 | UMAP of single-cell RNA sequencing data from one Richter’s syndrome patient colored by cell cycle phase (G1, G2M, S) before
correction. Cell cycle phases were determined with cell cycle scoring and regression in Seurat [123, 124].

Post data cleaning and subclustering of malignant B cells only, we identified transcriptionally

distinct clusters that could be separated as CLL, RS or a transitional state, as seen in Figure

5.3e-d (middle). Based on previous studies highlighting cancer heterogeneity between patients

(such as 5.1), we performed analysis on a per-patient basis.
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Figure 5.3 | Transformation to Richter’s syndrome (RS) at single-cell resolution. A. Heatmap of differentially expressed genes (FDR<0.1,
log2-foldchange>1) comparing paired RS and CLL samples. B. Volcano plot of gene expression changes in RS compared to CLL. Pink dots
= selected relevant genes. C. Schematic of copy number changes assignment to single-cells enabling identification of CLL and RS cells. D-E.

Single-cell RNA sequencing data shows transcriptional differences between RS and CLL from Pt 43 in D., and Pt 10 in E., and highlights
intermediate states. Phylogenetic tree showing clonal structure of RS from WES data (top left) and UMAP visualization of RS and CLL
single-cells (top middle). Heatmap of differentially expressed genes between clusters (top right) and dot plot showing cluster expression of
representative genes in deregulated pathways. Inferred allelic copy number from CNVsingle for each single-cell cluster (bottom) depicted
adjacent to WES allelic copy number plots color-coded to show copy number events assigned to CLL and RS clones. Figure adapted from
PAPER IV.

Inferring copy number changes from single-cell transcriptomic data

Copy number variations (CNVs), defined as large stretches of DNA displaying copy number

differences, is another avenue for achieving genetic diversity. CNVs are important drivers of

rapid adaptive evolution and disease progression of cancers [218]. These variations can be



5.2. CLONAL EVOLUTION OF CANCER CELLS IN RICHTER’S SYNDROME 47

detected by a variety of approaches of next-generation sequencing including whole-exome-,

whole-genome-, and cell-free DNA sequencing [219–222], however, CNVs can also be esti-

mated from bulk RNA sequencing [223].

Now, computational tools capable of inferring CNVs from tumor scRNA sequencing data are

emerging [214, 224]. In PAPER IV, a novel tool, CNVsingle [225], was developed for CNVs

predictions that provides allele-specific copy number profiles for tumor cell clusters. Further-

more, CNVsingle does not rely on a reference, and it greatly reduces the signal-to-noise ratio

compared to existing methods.

From the scRNA sequencing data, CNVs were predicted with CNVsingle, and these mapped to

our detected transcriptionally distinct clusters (Figure 5.3d-e (bottom)). In-depth explanations

and results can be further accessed in PAPER IV.

Conclusion

In PAPER IV, we presented a comprehensive evolutionary study of the largest series of paired

CLL and RS specimens so far that integrates both genomic, cell-free DNA and single-cell anal-

ysis. The obtained results showed both distinct molecular events preceding and defining RS as

well as identification of novel driver genes. These findings can improve future diagnosis and

prognosis of RS patients. Furthermore, PAPER IV showed that scRNA sequencing data was

able to distinguish CLL cells from intermediate states and RS cells with expression differences

marking each of these. Although, the scRNA sequencing data analyzed in PAPER IV showed

several issues that required attention including removal of doublets, ambient RNA and enrich-

ment of cell cycle genes.



6

Conclusion

This thesis addresses various aspects of the bioinformatic analysis of the interplay between the

cells of the tumor microenvironment. The main data type analyzed is gene expression data from

either bulk RNA sequencing or scRNA sequencing, with a heavy focus on the latter. scRNA

sequencing shows an immense potential for profiling cells of heterogeneous systems and dis-

covering cell populations or signals that otherwise would have been missed using bulk tech-

nologies.

This serves as an extremely valuable tool for dissecting intra-tumor heterogeneity and immune

cells present in the tumor microenvironment. In addition, coupled gene expression with CITE-

seq data, scTCR- and scBCR sequencing data links phenotype to clonality providing a more

comprehensive view of each single cell.

48
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Elucidating the disease course of chronic lymhocytic leukemia

The work carried out in relation to this thesis have furthered the research of the co-evolution of

cancer and immune cells along the disease spectrum of CLL spanning from the precursor stage,

MBL, to the transformation into the aggressive, secondary lymphoma RS.

We have established in PAPER I and PAPER III that transcriptional changes both in immune and

cancer cells happens early in CLL, as changes are already observed at the precursor stage com-

pared to healthy donors. This has supported other findings highlighting that transition happens

early observed in other studies and modalities, including aberrant DNA methylation patterns.

Much focus has been on T cell deficits in CLL [155, 226], however, we have shown there is an

increased number of interactions between the myeloid cells and the cancer cells including in-

hibitory molecules. Upon treatment these interactions are depleted, highly suggesting a myeloid

role in the disease that should be studied further.

At the other end of the spectrum RS lies. A secondary lymphoma that is challenging to both

diagnose and treat [227]. Several clinical trials are currently undertaken, and here accurate di-

agnosis is critical to ensure that trial outcomes are not influenced by underlying CLL. It is also

important to ensure patients treated outside clinical trials receive the most optimal treatment. In

PAPER IV, we identified novel molecular events that drive the transformation of CLL into RS,

and suggested a framework that can be applied to other transformed cancers. Finally, we ad-

vocate for a non-invasive detection of RS by using cell-free DNA. This will improve diagnosis

and prognosis for RS patients.

Exhaustion of CD8+ T cells is a well-established phenomenon in many cancers, but the hetero-

geneity and variation among cancers is incompletely understood. In PAPER II, we have showed

that an intermediate exhausted population expressing the transcription factor ZNF683 served as

an alternate path towards exhausted effector function divergent from terminal exhaustion. Our

findings indicate that ZNF683 plays an essential role in the choice of differentiation path in

anti-tumor T cells, and that ZNF683 was associated with response to checkpoint blockade war-

ranting for further assessment of the predictive power of ZNF683 both in RS but also other

cancers. These two studies of the characteristics of RS, will improve and guide treatment of

patients with otherwise poor prognoses.
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Bioinformatics - where biology meets data science

The thesis provides insight into some of the essential computational aspects of handling scRNA

sequencing data. Bioinformatic analysis of the scRNA sequencing requires strong knowledge

within both biology and data science. Here, I have highlighted several key examples of where

analytical choices are being made in order to continue the analysis.

First of all, when analyzing scRNA sequencing data, a lot of effort is being put into cleaning

the data due to the large amount of noise present. Much often a publication utilizing scRNA se-

quencing will depict some sort of dimensionality reduction of the identified cell types, however,

reaching this point is an extremely iterative process of cleaning and re-processing the data. As

touched upon in section 2.6, initial quality control of scRNA sequencing data often includes fil-

tering cells based on three metrics, in order to ensure inclusion of viable cells only. Yet, without

prior knowledge of the cell types investigated this is a challenging task. RS cancer cells, as an

example, are typically defined by a large morphology and containing more expressed transcripts

at higher abundance compared to both CLL cells and immune cells, and therefore thresholds

should be set keeping this in mind. Biological processes such as apoptosis and cell cycle can

heavily influence the gene expression and dominate other potentially interesting signals. In PA-

PER IV, we showed how part of a dataset can be highly influenced by cell cycle genes, which

needed to be handled.

Clustering is an important part of scRNA sequencing analysis and is often semi-supervised as it

requires some sort of input affecting the clustering, such as resolution or the expected number

of clusters. These features can be continuously modified and the resulting clustering should be

re-assessed biologically. In addition, poor quality cells that have escaped initial quality control

or other oddly behaving clusters can be identified, removed followed by a re-analysis of the

cleaned up data.

The identification of an enrichment of a gene set related to sample handling in PAPER I is a

strong example of how to detect confounding factors in the data followed by an attempt to re-

duce the effect of this. After realizing that it is not possible, we changed the analysis strategy to

avoid misleading conclusions based on the detected confounder.

A common task in all analyses of scRNA sequencing carried out in this thesis included integra-
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tion of multiple samples requiring batch correction. As mentioned, there are several ways of

doing so, which is also exemplified here. The optimal method can vary between datasets [228]

depending on which cell types are expected and what the goal of the study is. For larger datasets,

it is often more feasible according to compute time and memory usage to use reference-based

methods. Although, depending on the chosen reference, it can be challenging to identify rare

and novel cell types with reference-based methods.

Even with the potential of scRNA sequencing, bulk RNA sequencing is still highly informative,

and routinely used in clinical sampling. The nature of bulk RNA sequencing is an admixture

of cells present in various abundances across samples. Therefore, when analyzing bulk RNA

sequencing and looking for population specific expression, it is extremely important to estimate

cell type proportions. These can then be used to obtain a ”corrected” expression value based on

the cell type of interest. In PAPER II, I have completed deconvolution bulk RNA sequencing

and used these to detect population specific expression patterns.

Finally, in PAPER II I demonstrated a strong cross-field analytical skills not only pertaining

to RNA sequencing, but also epigenetic profiling regarding analysis ATAC-sequencing and

CUT&RUN. Data obtained from these technologies combined with bulk RNA sequencing from

an experiment of over-expressing a transcription factor were integrated in order to support the

evidence the regulatory role of that transcription factor.

Future perspectives

There still exist a wide range of open-ended questions in the field of cancer research. A common

goal is to optimize treatment often by the identification of biomarkers of response and disease

markers that may lead to better and earlier diagnosis.

Multimodal single-cell technologies can assist in elucidating some of these questions. More

modalities can now be measured per single cell giving a more comprehensive insight to the

state of the cell. As these single-cell technologies continuously develop, we can also expect the

size of datasets to increase. Recent examples of these large datasets include scRNA sequenc-

ing data from 500,000 cells across 24 tissues and organs [229]. Examples of large multimodal

datasets include the publication of a pan-cancer T cell atlas consisting of coupled scRNA- and
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scTCR sequencing of 316,000 T cells from 21 cancer types from 316 patients [186], and a

CITE-seq study encompassing 162,000 cells and 228 antibodies measured [124]. Simultaneous

quantification of gene and protein expression at single-cell resolution is eminently informative,

as these two molecules are highly linked, but do not consistently correlate [230].

mRNA expression of cognate ligand-receptor pairs is not the only requirement of cellular com-

munication. Interacting cells are usually found located close to each other, which is not captured

with scRNA sequencing [164]. Cellular localization is crucial to improve predictions of cell-

cell interactions. Therefore, spatial transcriptomics is the obvious next step in such an analysis.

Showing that there is a potential for interaction both in terms of expression of the pair and that

the cells are in fact in close contact is extremely valuable. However, this is only applicable in

tissues and solid tumors.

An additional avenue to achieve diversity is through alternative splicing of mRNAs giving rise

to divergent isoforms from the same gene. Alternative splicing or differential transcript usage

have shown to be a key feature cancers [231]. However, with tag-based scRNA sequencing

protocols, it is not possible to derive such isoforms as this requires transcripts of full-length.

Currently, there is a lot of effort being put into long-read sequencing methods [232]. This might

impact scRNA sequencing methods facilitating more feasible full-length transcripts and thereby

enabling isoform studies on a single-cell level.

Cancer is such a multi-faceted disease, and there will never be a one-size-fits-all solution push-

ing the need for personalized medicine. A multitude of factors need to be taken into consid-

eration: the tumor itself, the composition of the tumor microenvironment especially immune

cells, but also intra-tumoral microbioata and several external factors. As more and more data is

being produced and high-resolution technologies developed, more advanced analytical methods

tailored to this data type are required. However, all will contribute in piecing the small pieces

of the cancer puzzle together. The work presented here is a small step in that direction.
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[73] Cieślik, M. and Chinnaiyan, A. M. (2018): Cancer transcriptome profiling at the juncture

of clinical translation Nature Reviews Genetics, 19(2), 93–109.

[74] Hanash, S. (2004): Integrated global profiling of cancer Nature reviews Cancer, 4(8),

638–644.

[75] Stark, R., Grzelak, M., and Hadfield, J. (2019): RNA sequencing: the teenage years

Nature Reviews Genetics, 20(11), 631–656.

[76] Hong, M., Tao, S., Zhang, L., Diao, L.-T., Huang, X., Huang, S., Xie, S.-J., Xiao, Z.-D.,

and Zhang, H. (2020): RNA sequencing: new technologies and applications in cancer

research Journal of hematology & oncology, 13(1), 1–16.

[77] Kulkarni, A., Anderson, A. G., Merullo, D. P., and Konopka, G. (2019): Beyond bulk: a

review of single cell transcriptomics methodologies and applications Current opinion in

biotechnology, 58, 129–136.

[78] Lei, Y., Tang, R., Xu, J., Wang, W., Zhang, B., Liu, J., Yu, X., and Shi, S. (2021): Appli-

cations of single-cell sequencing in cancer research: progress and perspectives Journal

of Hematology & Oncology, 14(1), 1–26.

[79] (2014): Method of the Year 2013 Nature Methods, 11(1), 1.



REFERENCES 62

[80] Li, X. and Wang, C.-Y. (2021): From bulk, single-cell to spatial RNA sequencing Inter-

national Journal of Oral Science, 13(1), 1–6.

[81] Zhang, Y., Wang, D., Peng, M., Tang, L., Ouyang, J., Xiong, F., Guo, C., Tang, Y., Zhou,

Y., Liao, Q., et al. (2021): Single-cell RNA sequencing in cancer research Journal of

Experimental & Clinical Cancer Research, 40(1), 1–17.

[82] Baslan, T. and Hicks, J. (2017): Unravelling biology and shifting paradigms in cancer

with single-cell sequencing Nature Reviews Cancer, 17(9), 557–569.

[83] Chen, H., Ye, F., and Guo, G. (2019): Revolutionizing immunology with single-cell RNA

sequencing Cellular & molecular immunology, 16(3), 242–249.

[84] Hu, X. and Zhou, X. (2022): Impact of single-cell RNA sequencing on understanding

immune regulation Journal of Cellular and Molecular Medicine, 26(17), 4645–4657.

[85] Brodin, P. and Davis, M. M. (2017): Human immune system variation Nature reviews

immunology, 17(1), 21–29.

[86] Erfanian, N., Derakhshani, A., Nasseri, S., Fereidouni, M., Baradaran, B., Tabrizi, N. J.,

Brunetti, O., Bernardini, R., Silvestris, N., and Safarpour, H. (2022): Immunotherapy of

cancer in single-cell RNA sequencing era: A precision medicine perspective Biomedicine

& Pharmacotherapy, 146, 112558.

[87] Hedlund, E. and Deng, Q. (2018): Single-cell RNA sequencing: technical advancements

and biological applications Molecular aspects of medicine, 59, 36–46.

[88] Prakadan, S. M., Shalek, A. K., and Weitz, D. A. (2017): Scaling by shrinking: em-

powering single-cell’omics’ with microfluidic devices Nature Reviews Genetics, 18(6),

345–361.

[89] Zhang, X., Li, T., Liu, F., Chen, Y., Yao, J., Li, Z., Huang, Y., and Wang, J. (2019):

Comparative analysis of droplet-based ultra-high-throughput single-cell RNA-seq sys-

tems Molecular cell, 73(1), 130–142.



REFERENCES 63

[90] Zheng, G. X., Terry, J. M., Belgrader, P., Ryvkin, P., Bent, Z. W., Wilson, R., Ziraldo,

S. B., Wheeler, T. D., McDermott, G. P., Zhu, J., et al. (2017): Massively parallel digital

transcriptional profiling of single cells Nature communications, 8(1), 1–12.

[91] Klein, A. M., Mazutis, L., Akartuna, I., Tallapragada, N., Veres, A., Li, V., Peshkin, L.,

Weitz, D. A., and Kirschner, M. W. (2015): Droplet barcoding for single-cell transcrip-

tomics applied to embryonic stem cells Cell, 161(5), 1187–1201.

[92] Macosko, E. Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., Tirosh, I.,

Bialas, A. R., Kamitaki, N., Martersteck, E. M., et al. (2015): Highly parallel genome-

wide expression profiling of individual cells using nanoliter droplets Cell, 161(5), 1202–

1214.

[93] Grün, D. and van Oudenaarden, A. (2015): Design and analysis of single-cell sequencing

experiments Cell, 163(4), 799–810.
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Chronic lymphocytic leukemia (CLL) is characterized by a clonal
expansion of mature CD191CD51 B cells, which are highly
dependent on microenvironmental cues for their survival.1 This
common adult leukemia is preceded by a precursor phase
termed monoclonal B-cell lymphocytosis (MBL),2,3 which has
been characterized as indistinguishable from CLL at the genetic,
transcriptomic, and epigenomic level.4-6 However, how leukemia
cells coevolve with immune cells in their circulating microenvi-
ronment during the onset of MBL and upon progression to CLL
remains incompletely characterized.7

Recently, single-cell transcriptome sequencing (scRNA-seq) ap-
proaches have transformed our ability to gain a comprehensive
evaluation of the spectrum of immune cells within the tumor
microenvironment and of their potential cross talk with cancer
cells.8-14 In our study, we applied scRNA-seq to broadly charac-
terize circulating immune cells coexisting with leukemic cells dur-
ing natural CLL progression. Although we acknowledge the
critical role of the bone marrow and lymph node microenviron-
ments on CLL cells, the lack of feasibility for procuring serial
specimens from these tissue compartments led us to focus our
study on circulating immune cells. We therefore collected serial
peripheral blood mononuclear cell (PBMC) samples from 3 indi-
viduals with high-count MBL who did not progress to CLL after
a median follow-up of 7.0 years and 7 patients with CLL, whose
genetic characterization of CD191CD51 cells over time by
whole-exome sequencing, has been reported15 (Figure 1A). We
processed paired samples from all patients: the first samples
were collected at time point 1 (T1), at a median of 4.96 years
(range, 2.44-5.46) after MBL diagnosis or 2.54 years (range, 0.5-
4.2) after CLL diagnosis; whereas the second group were col-
lected at T2, a median of 2.97 years (range, 2.01-2.99) after T1
for the MBL patients and 4.75 years (range, 1.3-10.6) for the
CLL patients. T2 samples for CLL patients were collected at a
median of 0.2 years (range, 0-5.9) before the first treatment
(supplemental Table 1, available on the Blood Web site).

Non-CD191CD51 cells were isolated by fluorescence-activated
cell sorting, and samples from each patient were processed on
the same day to minimize the batch effect. Cell suspensions
were loaded on a GemCode Single-Cell Instrument (103 Geno-
mics), and libraries were prepared as previously described16

(supplemental Methods). Analysis was conducted using Seurat
V4.0.0 selecting cells with gene count between 500 and 3000
and less than 10% mitochondrial reads. Using the trimmed data
set, we isolated the nontumor population and assigned
immune cell types by performing multimodal reference map-
ping, using a CITE-seq (cellular indexing of transcriptomes and
epitope–sequencing) reference of 162000 PBMCs measured
with 228 antibodies.17 B cells were excluded because of poten-
tial CLL contamination. After quality control, we obtained 67333
single-cell transcriptomes (median number of cells per sample,
3711; range, 491-6633; Figure 1B; supplemental Table 1). For
each sample, we evaluated the potential for processing and
batch artifacts between samples and cohorts, and we selected
cohorts with similar “cold-shock signature”18 for comparison
(supplemental Figure 1A). In total, we identified 16 clusters
across 3 distinct lineages: T cells, natural killer cells, and myeloid
cells (Figure 1B; top, UMAP [uniform manifold approximation
and projection]). The distribution of immune cell types from
MBL and CLL samples and across patients appeared to be bal-
anced across the cell clusters (Figure 1B; bottom, UMAP; sup-
plemental Figure 1B). Analysis of the proportions of immune cell
types, including various T-cell subsets, between MBL and CLL
samples revealed no differences, even across time points (T1 vs
T2; Figure 1C-D; supplemental Table 2A).

To confirm the absence of major differences in immune cell pro-
portions between MBL and CLL, we performed scRNA-seq on
PBMCs collected from a separate cohort of 4 patients with high-
count MBL that progressed to CLL (MBL-CLL1-4); the median
time from MBL (T1) to CLL diagnosis was 2.68 years (range, 0.7-
4.6) and from CLL diagnosis to T2 was 0.6 years (range, 0-1.8).
We also evaluated 2 age-matched healthy donors (HDs, median
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number of cells per sample, 4400; range, 2630-7596 cells) using
the same approach described above (Figure 2A-B). Again, we
observed an absence of major compositional or phenotypic
changes in immune cell populations in the transition from MBL
to CLL, whereas marked differences in the composition in
immune cell types were evident in patients with CLL compared
with HDs. In particular, the proportion of CD81 T cells was
higher in patients with CLL than in HDs (33% vs 8%, P 5 .037),
with a corresponding decrease in CD41 T cells (Figure 2C, left;
supplemental Table 2B). The CD41 and CD81 T-cell subtypes
that contributed to these differences were naive, central memory
CD41 and terminal effector memory CD81 cells (Figure 2C;
right). A higher number of differentially expressed genes
(adjusted P , .05 and javg_log2 FCj .0.6) was observed
between HDs and patients with MBL/CLL than between MBL
and CLL at the time of progression (patients MBL-CLL-1 and -2;

Figure 2D; supplemental Table 3). More differences in gene
expression were seen in those paired CLL samples obtained at a
time more distant from transition to CLL (patients MBL-CLL-3
and -4), suggesting further evolution of the immune response
over time with CLL progression. Effector memory CD81 T cells
and CD56dim natural killer cells consistently showed more differ-
entially expressed genes in patients with MBL and CLL than in
HDs (Figure 2D, right), which we also observed in a pseudobulk
reanalysis of the same data (supplemental Figure 2). Compara-
ble shifts in immune cell expression profiles were observed
in the evaluation of independent MBL (MBL1-3, T1) vs CLL
(CLL1-7, T2), but only minimal differences were observed in non-
progressing MBL (Figure 2E). We acknowledge that the low
number of replicates (n 5 2) did not provide sufficient power to
detect the biological variability among HDs and that individual-
specific variations may have confounded the observed
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differences between HD and MBL/CLL samples, but we mini-
mized that risk by selecting age-matched HDs and applied uni-
form processing to all samples.

To investigate which dysfunctional immune mechanisms may
impact CLL biology, we interrogated major molecular interac-
tions between immune and normal B or CLL-B cells in HDs or
patients, respectively, using CellPhoneDB v2.1.7, which predicts
potential interactions between ligand-receptor pairs based on
elevated expression in the corresponding cell types.19 In so
doing, we observed an increased total number of potential
interactions in subjects with MBL compared with those in HDs.
This increase remained stable with progression to CLL and was
evident across diverse immune cell types but was most distinctly
observed in monocytes (Figure 2F, left heat map). To examine
the effects of B-cell receptor signaling inhibition with ibrutinib
on the cellular interactions between immune and leukemia cells,
we reanalyzed 4 additional scRNA-seq samples previously gen-
erated from PBMCs before and during ibrutinib treatment (cells
collected 30-240 days after treatment) from 2 patients with
CLL.20,21 We again observed that the number of cellular interac-
tions in pretreatment CLL samples was higher across immune
cell types, especially in monocytes in both patients. Consistently,
the number of interactions decreased after ibrutinib treatment
to levels similarly observed in HDs (Figure 2F, right heat maps).
Most of the interactions upregulated in patients with MBL/CLL
involved inhibitory signals of immune cell function proceeding
from CLL cells across to various immune cell types, such as
BTLA/MIF-TNFRSF14 (HVEM, observed in MBL-CLL1, -3, and
-4), CTLA4-CD86 (observed in MBL-CLL-4), and LGALS9-
HAVCR2 (TIM3, observed in MBL-CLL1-4; Figure 2G, left; sup-
plemental Figure 3). Notably, only a proportion of cancer cells
express these inhibitory signals: BTLA (17.4%), MIF (41.6%),
LGALS9 (18.2%), and CTLA4 (10.4%) (supplemental Figure 4).
We observed that all these interactions were downregulated
after ibrutinib treatment (Figure 2G, right).

Altogether, we observed that the composition and state of
immune cells was markedly different between HDs and patients
with MBL, whereas no major additional transcriptional changes
manifested during natural progression from MBL to CLL. These
observations suggest that the key drivers of transcriptional
immune dysfunction in CLL may be present early during the
course of the disease and are in keeping with the early transcrip-
tomic, genomic, and epigenetic changes already present in
MBL, as well as the known increased risk of infections, even at
the earliest stages of the disease.22 Among the features that dis-
tinguished immune and leukemia cells interactions in patients
with CLL were an increased number of cellular interactions com-
pared with HDs, especially within myeloid cells, that

predominantly involved multiple inhibitory immune signals and
that were no longer detected after ibrutinib treatment. Thus,
although T-cell deficits in CLL have been well investigated,23,24

the contribution of myeloid cells to inhibitory signals has been
far less well characterized and warrants further assessment.
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J., Hergalant, S., Guièze, R., Li, S., Zhang, W., Long, J., Yin, S., Werner, L., Anandappa, A.,

Purroy, N. Z., Gohil, S. H., Oliveira, G., Bachireddy, P., Shukla, S. A., Huang, T., Livak, K. J.,

Gad Getz, Neuberg, D., Feugier, P., Kharchenko, P., Wierda, W., Olsen, L. R., Jain, N., Wu, C. J.

Submitted, Cancer Cell, 2022

* = equal contribution

86



 

 

1 

ZNF683 marks a CD8+ T cell population associated with anti-tumor immunity following 
anti-PD-1 therapy for Richter syndrome 
 
Erin M Parry*1,2, Camilla K Lemvigh*1,3, Stephanie Deng1, Nathan Dangle1, Neil Ruthen1, 
Binyamin A Knisbacher4, Julien Broséus5,6, Sébastien Hergalant5, Romain Guièze7,8, 
Shuqiang Li1,4,9, Wandi Zhang1, Jaclyn Long9,10,11, Shanye Yin1, Lillian Werner12, Annabelle 
Anandappa1, Noelia Purroy1, Satyen Gohil1, Giacomo Oliveira1,2, Pavan Bachireddy1, Sachet 
A Shukla12, Teddy Huang1,9, Kenneth J Livak1,9, Gad Getz4, Donna Neuberg13, Pierre 
Feugier5,6, Peter Kharchenko14, William Wierda15, Lars Rønn Olsen3, Nitin Jain15, Catherine J 
Wu*1,2,4 

 
1 Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, United 
States 
2 Harvard Medical School, Boston, MA 02215, United States 
3 Department of Health Technology, Technical University of Denmark, 2800 Kongens 
Lyngby, Denmark 
4 Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States 

5 Inserm UMRS1256 Nutrition-Génétique et Exposition aux Risques Environnementaux (N-
GERE), Université de Lorraine, 54000 Nancy, France 
6 Université de Lorraine, CHRU-Nancy, service d'hématologie biologique, pôle laboratoires, 
54000 Nancy, France 
7 CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France 
8 EA 7453 (CHELTER), Université Clermont Auvergne, 63001 Clermont-Ferrand, France 
9 Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, MA 02215, 
United States 
Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 
02215, United States 
10 Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and 
Women's Hospital, Boston, MA 02215, United States 
11 Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, 
Boston, MA 02115, United States 
12 Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson 
Cancer Center, Houston, TX 77030, United States 
13 Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 
Boston, MA 02215, United States 
14 Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02215, 
United States 
15 Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, TX 
77030, United States 
 

*Correspondence: cwu@partners.org 
 

 
  
  

Manuscript Click here to view linked References



 

 

2 

Summary 
 
Unlike many other B cell malignancies, Richter syndrome (RS), an aggressive B cell 

lymphoma originating from indolent chronic lymphocytic leukemia, is responsive to PD-

1 blockade. To discover the determinants of response, we analyzed single-cell 

transcriptome data generated from 17 bone marrow samples longitudinally collected 

from 6 RS patients. Response was associated with CD8 effector/effector memory T cells 

marked by high expression of the transcription factor ZNF683, determined to be an 

intermediate exhausted population evolving from stem-like memory cells and divergent 

from terminally exhausted cells. Analysis of pre-treatment peripheral blood from 7 

independent RS PD-1 responders validated this association of ZNF683high T cells with 

response. This signature overlapped with that of tumor-infiltrating populations from solid 

tumors and peripheral blood CD8 T cells from melanoma checkpoint blockade 

responders. ZNF683 was found to directly target key T cell genes (TCF7, LMO2, CD69) 

and pathways regulating T cell cytotoxicity and activation.  
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Introduction 

Although immune checkpoint blockade (CPB) such as anti-PD1 therapy has transformed the 

clinical practice of oncology, responses to anti-PD1 antibody across hematologic malignancies 

have varied considerably, with exceptional response rates in Hodgkin lymphoma but generally 

disappointing activity for B cell cancers such as myeloma and chronic lymphocytic leukemia 

(CLL).  In this context, the responses of Richter syndrome (RS) to PD-1 blockade, recently 

reported across several clinical trials at 43-65%, have been unexpected (Ding et al., 2017; Jain 

et al., 2018; Younes et al., 2019). Described as a transformation of indolent CLL into an 

aggressive lymphoma, RS has historically resulted in dismal overall survival and poor 

responsiveness to chemotherapy (Parikh et al., 2014). RS thus provides a unique setting to gain 

understanding of both tumor and immune determinants of response to PD-1 CPB in 

hematologic malignancies. Great strides in our understanding of the mechanisms underlying 

treatment responses and the tumor microenvironment have been provided by the rapid adoption 

of droplet-based single-cell RNA-sequencing (scRNA-seq) to deeply characterize 

heterogeneous tumor-infiltrating immune cell populations (Zhang and Zhang, 2020). Here, 

through scRNA-seq based examination of serial marrow samples from 6 RS and 2 CLL patients 

treated with nivolumab (anti-PD-1 antibody) combined with ibrutinib (Jain et al., 2018), we 

found the transcription factor ZNF683, encoding the Blimp1 homolog known as Hobit (Mackay 

et al., 2016), to mark a population enriched in RS responders, an association confirmed in 

peripheral blood from independent anti-PD1 treated RS patients. Characterization of ZNF683 

overexpression revealed ZNF683 to directly regulate the key pathways of T cell cytotoxicity 

and activation, suggesting an important role in governing anti-tumor response.   
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RESULTS 

RS as an opportune setting in which to study the response determinants to PD-1 therapy 

We examined serial BM samples collected from patients with RS or relapsed/refractory (R/R) 

CLL on an investigator-initiated phase II trial, treated with PD-1 blockade (nivolumab; 3 mg/kg 

every 2 weeks in 28-day cycles) combined with ibrutinib (420 mg daily, continuous, starting 

day 1 of cycle 2) (NCT02420912) (Jain et al., 2018). Of 24 enrolled patients with RS, 10 

demonstrated response (ORR 42%), with median time to response of 28 days and all responses 

achieved by 3 months. In contrast, none of 10 enrolled R/R CLL subjects demonstrated benefit 

to nivolumab beyond single-agent ibrutinib. We focused our discovery efforts on a cohort of 6 

patients with RS (4 responders, 2 non-responders) and two patients with R/R CLL, treated on a 

separate study arm with the same protocol, for which matched on-therapy marrow samples were 

available at the time of the 3-month response assessment (Figure 1A, Table S1). All RS 

responders achieved best response by 3 months after initiation of therapy, with complete 

response (CR) observed in all, aside from RS-R3, who had a delayed partial response at that 

time. Only RS-R2 had pathologically confirmed RS marrow involvement at time of study 

initiation while the remaining cohort participants had detectable nodal RS with confirmed CLL 

marrow involvement. All 4 RS responders were previously treated with CLL-directed 

chemotherapy (median 2.5 lines, range 1-4), while RS-NR1 had novel agent exposure and RS-

NR2 received RS-directed chemo-immunotherapies (Figure 1A, Table S1).  

 

Per patient, viable malignant (CD5+CD19+) and non-malignant (CD5-CD19-) cell fractions 

were isolated from marrow specimens by fluorescence activated cell sorting (FACS). For the 

RS-R2baseline and RS-R1progression marrow samples, which had pathologically confirmed RS, the 

malignant fraction was further separated based on size (FSC/SSC) to identify RS (large) and 

CLL (small) cells (Figure 1B, Figure S1A-B). To examine these heterogeneous sorted cell 
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populations at high resolution, single-cell RNA-sequencing (scRNA-seq) was performed. After 

initial filtering (Methods) joint clustering with Conos (Barkas et al., 2019) was performed on 

78,488 non-tumor and 117,703 malignant cells from a total of 19 marrow samples (17 serial 

trial samples and 2 age-matched healthy marrow donors) (Figure 1C).  

 

Single-cell evaluation of both RS and CLL cells revealed that RS cells displayed higher mean 

reads/cell (6,094 UMI/cell, 1,964 genes/cell) compared to CLL (2,963 UMI/cell, 1,070 

genes/cell) (p value < 2.2x10-16, Wilcoxon test), in line with other aggressive hematologic 

malignancies (Zheng et al., 2017) (Figure S2A-H, Table S2). Four of 11 malignant B cell 

clusters appeared to be patient-specific (e.g. clusters C, G, H and K), highlighting their unique 

gene expression patterns likely attributable to their individual tumor genetics (Penter et al., 

2021a; Tirosh et al., 2016) (Figure S3A-C), and cluster E was predominant in the RS samples 

(Table S3, Figure S3C). By unsupervised joint clustering with Conos (Barkas et al., 2019), RS 

clustered separately from CLL (Figure S3D) and displayed relative upregulation of pathways 

of cell cycle (E2F targets, G2M checkpoint, mitotic chromatid segregation), oxidative 

phosphorylation and MYC targets as compared to CLL (Figure 1D, Table S3). In comparing 

the aggregate CLL cells of RS-Rs and RS-NRs, no significant pathways were found that 

distinguished responding from non-responding patients. Across samples, HLA class I and II 

expression were maintained (Figure S3E). Of note, we observed the entire set of malignant B 

cells to express a wide variety of inhibitory and immune modulatory molecules at baseline, 

including CTLA4, LAG3, TNFRSF8, TGFBI/TGFB1, suggesting complex microenvironment 

interactions prior to CPB initiation (Figure S3F). Previously, no difference in response based 

upon PD-1 and PD-L1 staining of tumor was demonstrated in 10 study patients (Jain et al., 

2018).  

Distinct infiltrating lymphocyte populations in RS marrow 
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Since bone marrow is an important reservoir of lymphoid cell populations, (Mazo et al., 2005; 

Mercier et al., 2011) we focused on the characterization of the diverse captured marrow-resident 

T and NK cells (60,727 (77% of non-tumor cells)) (Figure S4A-D, Figure 2A). Following sub-

clustering (Methods, Figure 2A), we identified 11 transcriptionally distinct clusters, consisting 

of 2 NK cell clusters, 4 CD8 T cell clusters and 5 CD4-predominant clusters (Figure 2A-B). 

Each transcriptional cluster was defined based on a combination of cluster marker genes (Table 

S4) and lineage markers (Figure S5A; defining genes highlighted in Figure 2B).  

 

Four clusters (clusters 1, 3, 4 and 8) were composed of CD8+ T cells. Cluster 1 was a large 

effector/effector memory (E/EM) cell population marked by the expression of the transcription 

factor ZNF683, and displayed co-expression of cytolytic machinery genes (GZMA, GZMB, 

PRF1, NKG7) and the activation marker CD226 and intermediate expression of exhaustion 

markers (LAG3, ENTPD1, CD160). Cluster 3 was marked by expression of GZMK and CD27 

and genes suggestive of marrow-resident memory (CD69, CXCR4). A subset of cluster 3 

contained TCF7+cells, as has been observed in stem-like memory populations (Miller et al., 

2019; Sade-Feldman et al., 2018) (Figure 2B, S5A). Cluster 4 displayed a higher relative 

mitochondrial content and intermediate features between clusters 1 and 3, such as lower 

ZNF683 and higher IL7R and GZMK expression compared to cluster 1. Cluster 8 CD8 T cells 

had high expression of multiple exhaustion markers (TIGIT, PDCD1, LAG3, HAVCR2) and 

high TOX expression. Other non-CD8 cytolytic clusters included cluster 9, which comprised 

CD4 T cells with cytotoxic gene expression, and 2 populations of NK cells (clusters 6 and 10). 

Of the CD4 T cells, cluster 7 showed features consistent with a T regulatory phenotype while 

cluster 5 was comprised of a naïve-like T cell population. In repeat scRNA-seq 

characterizations of pre- and post-therapy marrow samples from RS-R2 and RS-NR1, we 
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confirmed the cluster identities based on linked surface protein marker expression (CITE-seq, 

Methods) (Figure 2C, Figure S5B).  

 

We observed the CD8 T cell clusters found in RS marrow displayed high cytotoxicity and 

exhaustion (Figure 2D). Exhaustion levels were highest in clusters 3 and 8, while cluster 1 

reflected an intermediate exhaustion expression score with maintained cytotoxicity. Compared 

to marrow-infiltrating T cells from the RS samples to that across 30 healthy adult volunteers 

(Oetjen et al., 2018) (Table S4), RS and CLL marrow were enriched in cytotoxic populations 

(clusters 1, 4, 6, 8, and 9, all p values < 0.05, 2-sample t test) and T regulatory cells (cluster 7, 

p = 0.001, 2-sample t test). In contrast, normal marrow was enriched in cells with a naïve-like 

signature (cluster 5, p = 0.06, 2-sample t test) (Figure 2E-F, Figure S5C-E).  

 

Increased ZNF683+ effector/effector memory CD8+ T cells in anti-PD1 responders 

Several observations led us to implicate ZNF683-expressing CD8 T cells in the RS response to 

PD-1 blockade therapy. First, across the samples, the marrow-infiltrating T cells enriched in 

RS responders predominantly corresponded to the ZNF683high CD8 cells of cluster 1 (Figure 

3A, Figure S6A-B). This quantitative difference in the cluster 1 ZNF683-expressing E/EM 

cells between clinical outcome groups was already evident at baseline, where the pre-treatment 

samples from RS responders demonstrated a larger proportion of cells within cluster 1 (p = 

0.04, t-test), with correspondingly fewer T regulatory cells (cluster 7, p = 0.006, t-test) than RS 

non-responders (Figure 3B-bar graphs).   

 

Second, within assigned clusters, comparison of gene expression between RS-Rs and RS-NRs 

again identified higher ZNF683 expression in RS-Rs, including in clusters 1 and 8 (Figure 3B-

C, Figure S6C). Across all CD8 T cell clusters, ZNF683 was one of the top upregulated 
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transcription factors in RS-Rs, while TOX was highly upregulated in RS-NRs (Figure 3D, 

Figure S6G, Table S5). Third, the kinetics of changes in ZNF683-expression was highly 

correlated with response. RS-R3, who had a delayed response to therapy, displayed an 

expansion of the CD8 clusters 1 and 4 at the time of response (Figure 3E, Figure S6C). With 

RS progression, relative ZNF683 expression/cell decreased (Figure 3F, Figure S6C).    

 

To identify co-regulated genes, we performed differential gene expression analysis between 

RS-R and RS-NR cells on a per-cluster basis (Figure 3B-heatmaps, Figure S6D-F). In the 

ZNF683high cluster 1, this notably included several T cell transcription factors (RORA, SATB1, 

TCF25 and BATF in Rs; TOX and ARID5A in NRs) and immune signaling molecules (CD226 

in Rs; KLRC1, KLRB1, CD27, CD69 and GZMK in NRs) (Figure 6D, Table S5). In the cluster 

8 (exhausted), ZNF683 was one of the top genes distinguishing the terminal exhausted cells of 

RS-R and RS-NR, along with CD226, while higher expression of CD27, KLRC1, and SIRPG 

was found in RS-NR (Figure 3C). We also identified gene expression changes within non-

ZNF683 expressing clusters that distinguished RS-Rs. For example, in the CD4 clusters 2 and 

9, expression of cytolytic machinery (NKG7, CST7, PRF1, GZMH, GZMM, GZMK, GZMA, 

FGFBP2, GNLY) and cytokines (CCL4, CCL5) was increased in responders relative to non-

responders (Figure S6E-F, Table S5), supporting cytotoxic CD4 T cells as another hallmark 

of response to PD-1 CPB in RS. Expression of TCF7 did not vary with response status (Figure 

S6H).   

Evaluation of the T cell receptor (TCR) repertoire of individual marrow-infiltrating T cells from 

a representative RS-R and RS-NR (RS-R2 and RS-NR1) revealed prominent differences in 

stability and phenotype among the expanded clonotypes before and following PD-1 blockade 

(Figure S6I, Table S6). RS-R2 demonstrated a single dominant clonotype (count 723 of 1,683) 

and multiple other highly expanded clones (counts range 16-114) prior to PD-1 therapy (Figure 
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3G-pie charts), and subsequent stable persistence of these expanded clones following PD1 

therapy (Figure 3G-left). These expanded clonotypes predominantly resided within the 

ZNF683high clusters 1 and 4 and even included a cytotoxic CD4 clonotype. In contrast, RS-NR1 

had fewer hyperexpanded and large clones pre-treatment and exhibited more clonotype 

expansion with PD-1 therapy (Figure 3G-right). The top clonotypes of RS-NR1 showed higher 

exhaustion compared to RS-R2 (cluster 8) (p < 0.001, Poisson test). Neither patient was 

observed to have expanded clonotypes in the T regulatory compartment (Table S6). Bulk TCR 

analysis of paired baseline and 3 month post peripheral blood from 4 RS-R [R2, R4, R5, R6] 

and 4 RS-NR [NR1, NR2, NR4, NR6] (Table S6) demonstrated that the clonal repertoire in 

responding patients was relatively stable while clonal expansion and contraction were observed 

in the RS-NR (Figure 3H) (Methods (Penter et al., 2021b)). At the time of progression, we did 

not observe further clonal shifts in 2 RS-R patients who subsequently lost response (Figure 3I).  

 

Overall, the distribution of clonotypes across diverse CD8 phenotypes suggested a continuum 

of malignancy-associated T cell states. Trajectory analysis (Methods) supported a T cell 

differentiation path from GZMK+ memory to ZNF683intermediate and then a branching towards 

either ZNF683High or terminal exhaustion (Figure 3J).  

 

 

ZNF683 marks populations of tumor-infiltrating lymphocytes in RS and across cancers 

To establish the extent to which ZNF683high T cell signatures are detectable in a broader 

population of RS patients, we examined bulk RNA-seq data generated from 35 independent RS 

biopsy specimens of lymph node or spleen origin. While 28 of 35 (80%) expressed minimal 

normalized ZNF683 levels in the computationally deconvoluted T cell compartment 

(Methods), 7 patients (20%) were confirmed to have higher ZNF683 expression and higher 
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cluster 1 signatures (Figure 4A).  A similar distribution of samples with ZNF683high expression, 

when corrected for T cell fraction, were observed in 18 of 81 (20%) CLL for which non-CD19 

selected transcriptomic data was available (Yin et al., 2019) (and thus allowing for the sampling 

of non-CLL immune populations) (Figure 4B). The subset expressing ZNF683high T cells 

displayed a trend towards improved overall survival (p = 0.11, Figure 4B). Thus, even in 

unselected CLL patients, ZNF683 expression appears to mark a T cell population associated 

with improved clinical outcome.  

 

We evaluated the extent of overlap by our ZNF683high-cluster 1 signature with well-annotated 

transcriptionally defined populations from a large dataset of single-cell tumor infiltrating 

lymphocytes (TIL) (Zheng et al., 2021). Indeed, we found high similarity of our signature to 

the two CD8+ pan-cancer derived ZNF683-expressing clusters (Figure 4C), including one 

which was previously computationally identified as a transitional intermediate between naïve-

like and exhausted CD8+ T cells – not dissimilar to our trajectory analysis (Figure 3J). 

Moreover, our exhausted cluster 8 showed overlap with the terminal exhausted and NK-like 

populations described from the pan cancer analysis, while our cluster 3 demonstrated broad 

overlap across several previously defined pan-cancer clusters, including with naïve and TCF7+ 

exhausted populations. Given the presence of such similar ZNF683high populations in these 

disease settings, we examined 13 cancers across TCGA data and observed an association with 

survival in melanoma cases with high T cell expression of ZNF683, as in CLL and high cluster 

1 signature (Figure 4D). The observed similarity in ZNF683high gene signatures in melanoma 

support the notion that ZNF683 may function to mediate T cell gene expression states across 

certain solid tumor malignancy contexts.  

 

ZNF683 regulates key genes in T cell differentiation and activation 
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To test the hypothesis that ZNF683 governs key regulators of T cell state and activation, we 

examined its cellular impact in vitro in Jurkat cells, which lack endogenous ZNF683, unlike 

cultured primary T cells (Figure S7A). A Flag-tagged L isoform of ZNF683, the dominant 

transcript associated with response and active isoform (Vieira Braga et al., 2015), was 

introduced into the Jurkat cells under a doxycycline-inducible promoter (Figure 5A; Figure 

S7B-C).  

 

ZNF683 overexpression (+ doxycycline) revealed upregulation of PRF1, ITGA1, CD244, 

CD226 and IL2RB as well as downregulation of PRDM1 and IL2 (Figure 5B). Likewise, 

analysis of RNA-seq data generated from our stable ZNF683-FLAG cell lines compared to a 

mock vector in the presence of doxycycline produced similar findings (Figure S7D, Table S8). 

To probe the binding sites of ZNF683 and identify its direct targets, we performed CUT&RUN 

(Skene and Henikoff, 2017) using anti-FLAG antibodies alongside controls (H3K4Me3, 

isotype controls) (Table S8). Twenty-four peaks were differentially regulated in doxycycline-

exposed Jurkat cells compared to doxycycline-absent or isotype controls (FDR <0.1, Methods). 

These peaks localized preferentially to ENCODE-identified regulatory regions adjacent to 

several genes, rather than promoters, including elements adjacent to key immune genes 

(TNFAIP8, BTN3A2, CD69/KLRF1, ARHGAP2, CAMK4, LMO2, IL2, TCF7; Table S8). 

Included amongst these targets were previously identified and functionally validated genes 

(Vieira Braga et al., 2015) (e.g. BTN3A3), and peaks shared with previously generated PRDM1 

(Blimp1) CHIP-seq data from human cells (Davis et al., 2018) (Figure 5C, Figure S7E, Table 

S8).  

  

In support of the notion that ZNF683 regulates a T cell differentiation path, we observed a 

binding peak for ZNF683 upstream of TCF7, which helps maintain a stem-like or progenitor 
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exhausted cell state (Chen et al., 2019; Miller et al., 2019; Sade-Feldman et al., 2018; Siddiqui 

et al., 2019). Evaluation of external ATAC-seq data generated from exhausted T cell subsets 

(Philip et al., 2017) revealed PD-1high TILs have reduced accessible chromatin at this TCF7 

peak and other identified putative ZNF683 binding sites. Thus, terminal exhausted cells not 

only lose ZNF683 expression but also display chromatin remodeling that likely abrogates some 

of its downstream effects (Figure 5C-track PD-1high [blue]). Other  ZNF683 targets included a 

regulatory element near CD69, a marker of tissue residency that is differentially expressed on 

exhausted tumor-specific T cell subsets (Beltra et al., 2020), and KLRF1, an NK-like marker, 

that also corresponded to decreased accessible chromatin region in exhausted TIL subsets. By 

applying CISTROME-GO (Li et al., 2019a), which integrates CUT&RUN and RNA-seq data 

layers, we observed enrichment in pathways corresponding to antigen binding and presentation, 

transcription factor activity, and T cell mediated cytotoxicity and cell killing upon ZNF683 

expression (Figure 5D). From the CUT&RUN data, we detected that the top binding motif of 

ZNF683 was predicted to overlap with the motif of LEF1 (Figure 5E-top, Methods). This 

motif displayed notable similarity to ZNF683-homolog PRDM1 (Figure 5E-bottom, p = 

0.002). Altogether, ZNF683 appears to bind to and regulate key T cell loci involved in T cell 

function and immune response with similarity in sequence recognition to its homolog PRDM1, 

and is predicted to function both as a transcriptional repressor and activator. 

ZNF683 expression in peripheral blood is associated with response to immune checkpoint 

blockade 

To determine if the association between ZNF683 expression and response to PD-1 blockade in 

RS could be validated in easily sampled peripheral blood, we analyzed RNA-seq data generated 

from T cells isolated from pre-treatment blood samples from 7 independent RS patients treated 

with PD-1 therapy. Differential gene expression analysis between transcriptomes from 2 RS 

responders and 5 RS non-responders at baseline identified 1,528 genes (p < 0.05, absolute Log2 
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fold change >1.5 and base mean expression value of >50, Methods). Among the top 

differentially regulated genes was ZNF683 (Log2 fold change = 2.13, p = 0.037, Figure 5F) as 

well as several other genes enriched in cluster 1 (BATF, CORO1A, CD38, ITGB2, GZMM). 

Baseline PDCD1 and ENTPD1 were also associated with subsequent response in the peripheral 

blood, which was not observed in the marrow-derived discovery data. Non-responders appeared 

to be enriched in NK/T genes, including KLRC1, FCGR3A, KLRG1, KLRF1 and FCER1G, 

echoing findings from prior studies, where this NK-like skewing was seen in more exhausted 

CD8 marrow populations. Supporting our detected association of cluster 1 ZNF683high and CPB 

response, our single-cell cluster 1 signature displayed high overlap with a previously identified 

peripheral blood signature in melanoma PD-1 CPB responders (Fairfax et al., 2020) (p < 0.001 

hypergeometric test, Figure 5G). 

 

DISCUSSION 

While the functional exhaustion of anti-tumor antigen-specific CD8+ T cells is well-established 

in human cancers, it has been increasingly recognized that this T cell population is 

heterogenous, and its composition may vary per distinct cancer context. T cell transcription 

factors define and regulate many of these exhaustion subsets (McLane et al., 2019). Mouse 

studies have provided key insights into the path from stem-like exhaustion (marked by 

expression of TCF7) to terminal exhaustion (delineated by expression of TOX, BLIMP1, 

EOMES and others), and have highlighted cell populations intermediate between these two axes 

(McLane et al., 2019). However, our understanding of those T cell subpopulations capable of 

reprogramming, replication, and generating effective human anti-tumor immunity in the setting 

of PD-1 blockade remains incomplete.  
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Here, we uncover a role for the transcription factor ZNF683, or Hobit, in marking an 

intermediate exhausted population in RS bone marrow that is absent from healthy controls and 

is associated with CPB response. Trajectory, differential gene expression and clonotype 

analyses demonstrated this population as an alternate path from stem-like exhaustion memory 

(cluster 3) towards exhausted effector function (cluster 1, ZNF683high), and divergent from 

terminal CD8 T cell exhaustion (cluster 8, TOXhigh). Concordant with this work, recent 

investigations have similarly associated ZNF683high or tissue-resident memory (TRM) 

populations with pre-terminal exhaustion in other malignancies (Anadon et al., 2022; Zheng et 

al., 2021). Our cluster 1 ZNF683high population bears similarity to the recently reported CD69- 

intermediate exhausted tumor-specific populations in mouse models that reside between 

CD69+ progenitor exhausted and terminal exhausted populations, and maintain replicative 

potential (Beltra et al., 2020). Altogether, these lines of evidence, along with our discovery 

marrow-based analysis in RS and extension studies across TCGA-characterized solid tumors, 

highlight ZNF683 as functioning as a potential important mediator of intermediate exhaustion 

states across several malignancies. 

 

Our study is consistent with the notion that transcription factors such as ZNF683 and TOX 

govern the choice of differentiation path taken by anti-tumor T cells. In support of this model, 

TOX knockdown mouse models have been shown to exhibit increased ZNF683 expression in 

virus-specific T cells (Alfei et al., 2019). Our results reported herein substantially advance our 

current understanding of how ZNF683 functions to directly and indirectly mediate its effects 

on T cell state. First, through analysis of a cell line model with enforced expression of ZNF683, 

we demonstrate that ZNF683 has putative transcriptional enhancer and repressor activity and 

targets T cell genes and pathways involved in differentiation, effector function, activation and 

cytotoxicity. Second, we show that its binding sites reside predominantly in enhancer elements 
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rather than promoters and that its binding motif displays similarity to the binding sites of its 

homolog BLIMP1. Notably, several of these binding sites localize within epigenetically scarred 

regions of exhausted T cells (Philip et al., 2017), pointing to how the differential response to 

this transcription factor may occur in terminal exhausted cells. We emphasize that these human-

based studies of ZNF683 are critical to undertake, despite the current challenges of lack of 

availability of critical tools such as robust antibodies against human ZNF683, since its function 

in human cells may be distinct from that in murine models. For example, T cell expression of 

ZNF683 in mouse is thought to be restricted to the resident memory program (Mackay et al., 

2016), unlike ZNF683 expression in human cells, where it marks the TRM populations but 

additionally regulates long-lived effector cells in CMV infection (Vieira Braga et al., 2015) that 

retain immediate effector functions upon stimulation.  

 

With the success of clinical studies of PD-1 CPB across human cancers, a priority has been 

focused on identifying the underlying T cell populations capable (or not) of responding to 

immune checkpoint blockade. Our data provides insight into how terminally exhausted T cells 

are less able to respond to re-stimulation or revert to an earlier more activated state. A 

potentially valuable translational corollary is that the ZNF683high T cell gene signature detected 

in the marrow of our RS subjects was not only associated with CPB response but that this same 

signature could be detected in the pre-treatment peripheral blood of independent RS PD-1 

responders and for PD-1 treated melanoma patients as well. Certainly, we have more to learn 

about why ZNF683 appears to hold prognostic and predictive significance in certain disease 

contexts (RS, SKCM) but not others. But for now, our data strongly suggest that this ZNF683 

CD8+ T cell population is key in anti-tumor immunity and the ability of patients to respond to 

CPB. A fertile area of future investigation is the testing of ZNF683 expression as a potential 
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predictive marker in studies of immunomodulatory therapy across the relevant malignancies 

because it can be detected as a circulating cell population and its expression is not TIL restricted.  
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Main Figure Titles and Legends 
 
Figure 1. Single-cell RNA-sequencing cohort for determinants of response to PD-1 
blockade  
 (A) Response data (pie chart) for RS arm of NCT 02420912 and Swimmer’s plot 
showing the 8 patients included in the discovery cohort and treatment schema (gray bars). RS 
responders are represented in purple, RS non-responders are represented in light blue and 
relapsed/refractory CLL patients in dark blue.  
  
 (B) Experimental schema showing flow cytometry sorting strategy of populations used 
for single-cell RNA-sequencing experiments followed by analytic strategy.  
  
 (C) LargeVis embedding displaying joint clustering of tumor and immune cell 
populations.  
  
 (D) GSEA analysis shows differences between tumor transcriptome of RS vs. CLL.  

 
Figure 2. Transcriptionally identified T cell populations in RS and CLL marrow  
 (A) Joint graph LargeVis embedding of immune cell populations with subsequent sub-
clustering of T and NK cells revealing 11 distinct transcriptional clusters. 
   
 (B) Heat map showing marker genes and cluster identities for 11 identified T and NK 
cell clusters. Cluster 1, red; Cluster 4, teal, Cluster 8, magenta.  
  
 (C) Heat map showing cell surface markers for 11 identified T and NK cell clusters by 
CITE-seq.  
  
 (D) Identified T and NK cell clusters plotted by Cytotoxicity and Exhaustion scores 
(Oliveira et al., 2021).  
  
 (E) Bar graphs showing T and NK population distributions across serial marrow 
samples and normal bone marrow samples.  
  
 (F) Distribution of T and NK cell populations in RT and CLL marrows as compared to 
normal bone marrow samples (2 sample t-tests).  

 
Figure 3. Gene expression changes associated with PD-1 response  
 (A) Joint graph LargeVis sub-clustering embedding showing RS-R (purple) and RS-
NR (light blue) cells as well as ZNF683-expressing cells (red).  
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 (B) Cluster proportions for RS-R (purple) and RS-NR (blue) in bar graphs at top with 
heat maps showing representative cytotoxicity, exhaustion and expression changes within 
circled clusters for RS-R and RS-NR.  
  
 (C) Volcano plot showing gene expression differences comparing RS-R to RS-NR 
cells in Cluster 8 Exhausted.  
  
 (D) Top transcription factors in comparison of all CD8 T cells between RS-R and RS-
NR.  
  
 (E) Kinetics of cluster 1 and 4 cell proportions showing expansion at time of response 
in RS-R3.  
  
 (F) Bubble plot showing percent expressing and average relative expression for RS 
patients with progression on PD-1 blockade.  
  
 (G) Single-cell TCR analysis showing captured distribution of clonotypes (pie chart) 
pre- and post CPB therapy (top) and cluster distribution (bottom bar plots) of expanded 
clonotypes for RS-R2 and RS-NR1 pre (navy) and post (light blue) CPB.  
  
 (H) Bulk-TCR sequencing of 4 RS-R and 4 RS-NR show clonotype stability or shifts 
with PD-1 CPB therapy from pre-therapy to time of response.  
  
 (I) RS-R showing changes in clonotypes from response to progression.  
  
 (J) Trajectory analysis of CD8 clusters showing inferred patterns of T cell 
differentiation across clusters.  

 
Figure 4. ZNF683 marks a distinct population in RS and CLL with prognostic 
significance  
 (A) ZNF683 TPMs corrected for T cell content in RS bulk RNA-seq samples (N=35) 
(top). Top 20% of samples, blue; bottom 80%, pink. Cluster 1-ZNF683high signature and T 
cell normalized ZNF683 expression in bulk-RNA-seq data from 35 independent RS patients 
(bottom).  
  
 (B) ZNF683 TMPs corrected for T cell content in CLL bulk-RNA-seq samples (n=81) 
(top). Top 20% of samples, blue; bottom 80%, yellow. Kaplan-Meier curve showing ZNF683 
expression in PBMCs is associated with overall survival in CLL (bottom).  
  
 (C) Heatmap showing single-cell GSEA scores for identified CD8 T cell clusters as 
compared to Pancancer analysis CD8 T cell clusters (Zheng et al., 2021).  
  
 (D) Survival curve showing ZNF683 expression and C1 gene expression signature 
with overall survival in TCGA melanoma data.  

 
Figure 5. ZNF683 directly regulates key pathways of T cell activation and function  
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 (A) Schema showing doxycycline-inducible expression of ZNF683 in Jurkat cells.  
  
 (B) Volcano plot showing genes differentially regulated by ZNF683 induction by 
RNA-seq.  
  
 (C) CUT&RUN on Jurkat cell lines (top) shows binding of ZNF683 at regions 
surrounding key immune genes that correspond to differential ATAC-seq peaks in T cell 
subsets24 and prior PRDM1 ChIP-seq data (Davis et al., 2018). N, Naïve; CM, Central 
memory, PD-1high; PD-1 high tumor infiltrating CD8 T cells.  
  
 (D) Top pathways predicted to be differentially regulated by ZNF683 through 
CISTROME-GO analysis.  
  
 (E) Top predicted motifs for ZNF683 (top) compared to reference PRDM1 motif21 
(below).  
  
 (F) Heatmap showing differential gene expression results from bulk RNA-seq on 
peripheral blood human T cells from additional RS-R and RS-NR highlighting ZNF683 is 
associated with PD-1 response.  
 

STAR METHODS TEXT 

Resource availability 

Lead contact 

Further information and requests for resources, reagents and data should be directed to the lead 

contact, Catherine J. Wu (cwu@partners.org).  

 

Materials availability 

This study did not generate new unique reagents.  

 

Data and code availability 

scRNA sequencing, scTCR sequencing, and bulk TCR sequencing, bulk RNA sequencing and 

CUT&RUN sequencing data used in this study will be deposited in NCBI’s Gene Expression 

Omnibus (GEO) upon acceptance. Accession numbers will be listed in the key resources table. 
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This study does not report any original code. Any additional information required to reanalyze 

the data reported in this study can be obtained from the lead contact upon request. 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Human samples 
 
Whole bone marrow and whole blood samples were obtained from RS and CLL patients 

enrolled on clinical trials of nivolumab plus ibrutinib therapy(AbbVie, 2021, 2022) and 

mononuclear bone marrow samples from control healthy donors were obtained through the 

tissue bank at Dana-Farber Cancer Institute, approved by and conducted in accordance with the 

principles of the Declaration of Helsinki and with the approval of the Institutional Review 

Boards (IRB) of the University of Texas/MD Anderson Cancer Center (MDACC) or of Dana-

Farber Cancer Institute (DFCI). Their clinical characteristics are reported in Table S1. From 

clinical trial patients, blood, and marrow tissue samples were collected at baseline, response 

assessment, and at relapse. Trial samples were obtained in heparin green top tubes and placed 

on ice after collection. They were mixed at a 1:1 ratio with Freezing media (80% FCS and 20% 

DMSO) and cryopreserved and stored in liquid nitrogen until analysis. Healthy controls from 

DFCI underwent mononuclear cell isolation by Ficoll gradient prior to being preserved in 

freezing media (FCS with final concentration 10% DMSO) and cryopreserved using similar 

methods. Forty-seven independent fresh DLBCL subtype RS biopsy samples (spleen or lymph 

node) were obtained from the French FILO (French Innovative Leukemia Organization) cohort 

(ClinicalTrials.gov Identifier: NCT03619512). 

 

METHOD DETAILS 

Flow cytometry sorting 



 

 

22 

Cells were thawed by drop-wise addition of warmed media (RPMI 10% FCS 1% P/S) and 

stained with antibodies (Biolegend CD5 FITC, CD19 PE-Cy7, CD3 PB) and 7-AAD 

(Biolegend) before being resuspended in PBS-0.04% BSA (NEB/Invitrogen). Viable CD5+ 

CD19+ population was sorted for CLL and viable CD5-CD19- population for immune fraction. 

In marrow samples where RS tumor was present, RS and CLL fractions were sorted by size 

based on the increased forward scatter (FSC) of RS cells. The sorting strategy is shown in 

Figure 1B and Figure S1.  

 

CITE-seq and TCR-seq 

For CITE and TCR-seq, bone marrow samples were thawed into warmed PBS 10% FCS and 

washed with PBS. Cells were stained with Zombie Violet viability marker (Biolegend) followed 

by CD19 (Biolegend) and glycophorin (BD CD235) to mark tumor B cells and erythrocyte 

precursors respectively. The non-stained population (CD19-glycophorinA-) population was 

sorted for scRNA sequencing. Cells were then pelleted and stained with 55 antibodies (Table 

S9) from BioLegend Total-Seq-C system according to the manufacturer’s protocol in PBS-

0.04% BSA. After washing, the cells were sequenced using the 5’ V2 kit with human T cell 

V(D)J enrichment (10x Genomics) according to manufacturer’s instructions. 

 

Single-cell RNA-sequencing  

About 16,000 cells were loaded onto a 10× Genomics ChromiumTM instrument 

(10× Genomics) according to the manufacturer’s instructions.  The scRNAseq libraries were 

processed using Chromium Next GEM Single Cell 5' Kit v2 kit or 3’ v2 kit (10× Genomics). 

The sequencing libraries for scRNAseq, TCRseq and CITEseq were normalized to 4nM 

concentration and pooled.  The pooled libraries were sequenced on NovaSeq S4 or HiSeq X 

platform (Illumina). 
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Bulk TCR sequencing 

Cells were washed after thawing with PBS and RNA was isolated from whole blood after 

thawing by Qiagen RNeasy kit. Bulk-TCR sequencing was then performed as previously 

described (Li et al., 2019b). Clonotypes across timepoints were compared using Fisher’s exact 

test (Penter et al., 2021b). Clonotypes determined to be significant with multiple test correction 

(Bonferroni) were then classified as expanded (increasing frequency in second timepoint), 

depleted (decreasing frequency in second timepoint), disappeared (no longer detected at second 

timepoint), or novel (new at second timepoint). 

 

Bulk RNA-sequencing of patient samples 

Ten million cells from 11 frozen RS patient samples were thawed directly into 1 mL of MACS 

buffer (0.5% BSA, mM EDTA in 1X PBS) with 100 uL CD3 MicroBeads (Miltenyi Biotec), 

and then incubated on ice for 15 minutes. The cells were than washed with 5 mL MACS buffer 

(1500 RPM spin for 5 minutes) and resuspended in 500 uL MACS. CD3+ T cell isolation was 

performed according to the CD3 Microbeads protocol and total RNA was extracted from the 

CD3+ T cells using the Qiagen RNeasy Micro Kit (Qiagen). RNA-sequencing libraries were 

made using the NEBNext single-cell/low input library Prep Kit for Illumina following the 

manufacturer manual. Sequencing was performed on an NovaSeq SP platform (Illumina).    

 

ZNF683 qPCR 

cDNA libraries were synthesized from 500 ng of RNA following the manufacturer’s protocol 

for PrimeScript RT Master Mix for qRT-PCR (Takara Bio) using a SimpliAmp Thermal Cycler. 

cDNA was diluted with nuclease-free water to reach 76.9 ng/100 uL. Each qPCR reaction 

contained: 10 uL 2X TaqMan Gene Expression Master Mix (Life Technologies), 1 uL of either 
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appropriate TaqMan probe (Hs00543184_m1 for ZNF683) or Beta Actin (Life Technologies) 

or GAPDH (Life Technologies) and 9 uL of cDNA diluted to 76.9 ng/100 uL. A 384-well plate 

and cover was used to run qPCR reactions on the QuantStudio 6 Flex Real-Time PCR system 

following the manufacturer’s thermal protocol for the TaqMan Gene Expression Master Mix.  

 

Generation of ZNF683-expressing Jurkat cell lines 

Sleeping Beauty transposon plasmids containing dox-inducible ZNF683 were assembled by 

introducing a gBlock (IDT) construct of codon optimized ZNF683 by cloning. First, pSB-tet-

GP (Addgene) was linearized by SfiI and ClaI digestion (NEB) performed overnight at 37oC in 

CutSmart buffer (NEB) prior to gel electrophoresis and band excision and purification 

(Promega). PCR was performed using Phusion High Fidelity DNA Polymerase and the 

following primers were used to add a FLAG-tag to the C-terminal end of the ZNF83 protein 

after a flexible glycine linker: 5’-

AAAGGCCTCTGAGGCCACCATGAAAGAGGAATCAGC-3’, 5’ -

AAGCTTGGCCTGACAGGCCTTTATTTGTCGTCGTCATCCTTGTAGTCTGAACCGCC

ATTATTTTGGTCTTGACCCA-3’. PCR was then performed on purified resulting fragment 

(Promega) using overlap primers F- 5’- 

CTCGAAAGGCCTCTGAAAGGCCTCTGAGGCCAC-3’ and R- 5’- 

CATCAATGTATCTTATCATGTCTATAAGCTTGGCCTGACAGGC-3’ and subsequently 

Gibson cloning (NEB) was performed. To generate ZNF683-expressing cell lines or mock-

containing cells lines for overexpression experiments, early passage Jurkat cells E6.1 (ATCC) 

were nucleofected with 15 ug of pCMV(CAT)T7-SB100 (Addgene) and 15 ug of either pSB-

tet-GP-ZNF683-flag or pSB-tet-GP (mock control) using manufacturer protocol (Lonza). Post-

nucleofection, after GFP was visible (Day 3), cells containing plasmid integration were selected 

by puromycin (added at 0.25 ug/mL) for two weeks to obtain stable cell lines prior to addition 
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of doxycycline and subsequent experiments. Doxycycline (1 ug/mL) was added to cells and the 

cells were cultured for 48 hours in the presence/absence of doxycycline prior to RNA 

sequencing and CUT&RUN experiments. 

 

Western blot confirmation of protein expression 

ZNF683-expressing Jurkat cells were in culture with doxycycline for 48 hours prior to 

extraction of nuclear protein (Pierce™ NE-PER® Nuclear and Cytoplasmic Extraction Reagent 

Kit; Thermo Scientific, #78833), starting with 2x106 cells. Sample preparation and gel loading 

was performed in accordance to the manufacturer’s protocol (NuPAGE Bis-Tris Mini Gels [4-

12% Polyacrylamide]; Life Technologies, #NP0321BOX). Protein was then transferred from 

the gel to a nitrocellulose membrane according to the iBlot 2 Transfer Stacks protocol (Life 

Technologies, #IB23002) on an iBlot 2 Gel Transfer Device. Ponceau staining confirmed 

protein transfer to the membrane, after which the membrane was cut to separate the 

experimental anti-Flag protein and Histone His3 control and both parts of the membrane were 

blocked in blocking buffer (5% BSA in 1X TBS-T) on a rocker at room temperature for 1 hour. 

The membranes were then blocked with Histone H3 Antibody (Cell Signaling Technology) and 

DYKDDDDK Tag Antibody (Cell Signaling Technology) according to the manufacturer’s 

protocol, overnight on a rocker at 4℃. The membranes were washed with 1X TBS-T in three 5-

minute intervals on a rocker at room temperature, incubated with the secondary antibody anti-

rabbit IgG HRP-linked Antibody (Cell Signaling Technology) for 40 minutes at 4℃, followed 

by another three 1X TBS-T washes as aforementioned. The membranes were developed 

according to protocol using SuperSignal™ West Pico PLUS Chemiluminescent Substrate 

(Thermo Scientific) and exposed for imaging in a Bio-Rad ChemiDoc Imaging System.  

 

RNA sequencing of cell lines 
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Cells were washed in PBS and total RNA was extracted using Qiagen RNAeasy Mini Kit 

(Qiagen) from at least 1x106 cells. For ZNF683 to mock comparison, 3 independent cell line 

replicates per condition each underwent extraction. 200ng of total RNA (RIN quality >8) was 

utilized for library construction. For dox-on and dox-off experiments, 100 ng of total RNA 

(RIN >8) was utilized for library construction. For cDNA libraries construction, total RNA was 

quantified using the Quant-iT RiboGreen RNA Assay Kit (Thermo Scientific) and normalized 

to 5 ng/μl. The cDNA libraries were prepared using NEBnext single cell/Low input RNA library 

prep kit for Illumina (NEB), followed by cDNA fragmentation and adaptor ligation. For 

ZNF683 overexpression compared to mock, single-indexes were used as previously described 

(Biran et al., 2021). For dox on-off experiment, dual indexes were utilized as previously 

described (Li et al., 2019b). After Ampure beads cleaning, final sequencing libraries were 

quantified using a High Sensitivity DNA Kit on Bioanalyzer (Agilent).  RNA-seq libraries were 

normalized to 4nM concentration and pooled before loading onto an Illumina sequencer, with 

the Next-seq 75 used for mock vs. dox-induced ZNF683 and NovaSeq SP used for dox-on vs. 

dox-off. Data was analyzed as described above. 

 

CUT&RUN 

CUT&RUN was performed on Jurkat cells either with or without ZNF683 expression, as per 

the CUTANA™ ChIC/CUT&RUN Kit (EpiCypher) protocol; conditions were optimized for a 

light cross-link condition (0.1% formaldehyde for 1 minute) and 0.001% Digitonin for cell 

permeabilization. The following antibodies were used: anti-FLAG (Fisher), The manufacturer’s 

protocol for NEBNext® Ultra™ II DNA Library Prep Kit for Illumina® (NEB) was followed 

for DNA library prep, except for modifications as instructed by the CUT&RUN protocol. 

NEBNext Multiplex Oligos for Illumina (NEB) were used as dual index primers for the DNA 



 

 

27 

library. The Illumina MiniSeq sequencing platform and the MiniSeq High Output Kit (150 

cycles) were used to sequence the DNA library (Illumina).  

 

RNA-sequencing of RS nodal tissue 

RNA was extracted with Macherey Nagel RNA extraction kit (Macherey-Nagel, Düren, 

Germany). Total RNA-Seq libraries were generated from 500 ng of total RNA using TruSeq 

Stranded Total RNA LT Sample Prep Kit with Ribo-Zero Gold (Illumina, San Diego, CA), 

according to manufacturer's instructions. The final cDNA libraries were checked for quality 

and quantified using capillary electrophoresis prior to sequencing with Hiseq 4000 sequencing 

using 1x50 bases protocol.  

 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Data processing of scRNA-seq libraries 

scRNA-seq reads were processed, aligned to the Hg19 reference genome, and filtered using the 

Cell Ranger pipeline v2.0.0/v2.1.1 from 10x Genomics. Filtered feature-barcode matrices 

containing detected cellular barcodes were used in further analysis. Initially, each sample was 

processed individually with Pagoda2 (Fan et al., 2016). This included quality control and count 

normalization. Cells were filtered based on size with a minimum cell size of 500 UMIs and 

maximum of 8,000 UMIs (12,000 for RS samples due their larger cell size). Cells with more 

than 10% mitochondrial content and genes with low expression (detected in 10 cells or fewer) 

were removed. Across all samples, a total of 196,191 cells passed these filters and were subject 

to further analysis of separate tumor and immune compartments.  

 

Data processing of CITE-seq and TCR libraries 
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CITE-seq and TCR reads were aligned to the Hg19 and GRCh38 reference genome, 

respectively, and transcripts quantified using the Cell Ranger pipeline v3.0.2 from 10x 

Genomics. Further processing of gene expression data was as described above. Protein 

expression data was processed per sample and normalized by the summed count of isotype 

controls (IgG1, IgG2a, IgG2b antibodies). Total number of cells captured with linked gene and 

protein data is 8,062 with an average 1365 genes/cell. TCRs were captured for 7,235 of these 

cells. 

 

Joint clustering 

In order to compare cell proportions and states across multiple time points and samples, we set 

out to combine our data using Conos v1.3.1 (Barkas et al., 2019). Joint clusters were 

subsequently detected using the Leiden community detection method (Traag et al., 2019).  For 

analysis of the immune cells, we performed a subclustering of lymphocytes with a resolution 

to 1.5 and detected 11 transcriptionally distinct clusters. Marker genes for each cluster were 

computed and these were used along with expression of canonical markers to annotate clusters. 

Differential gene expression between responders and non-responders was performed using 

DESeq2 v1.22.2 (Love et al., 2014). As a single cell might not be a truly independent 

observation, we decided to concatenate by summation count data within a cluster per sample, 

thus generating a pseudo-bulk RNA sequencing count matrix. This naturally generated higher 

counts indicating a greater confidence that a given gene was observed. DESeq2 has its own 

normalization step that accounts for differences in library size, and therefore we used raw count 

data as input for all DESeq2 runs. This normalization accounts for instances with uneven 

sample contribution to a cluster.  
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Concurrently, we performed joint analysis of tumor samples, and detected 12 distinct clusters 

with four of them characterized as immune cells (spillover from sorting) using a resolution of 

1.0. Only clusters consisting of malignant B cells were considered in subsequent analysis and 

subclustered. We performed differential gene expression between RS and CLL cells using 

DESeq2 with the same approach as described earlier. Gene set enrichment analysis (GSEA) 

(Subramanian et al., 2005) was run with the R package fgsea v1.13.2 (Korotkevich et al., 2021) 

on the ranked list of log fold changes using the C5 and Hallmark gene sets from the molecular 

signature database (MSigDb) (Liberzon et al., 2011, 2015),(Subramanian et al., 2005)) 

 

Addition of normals and CITE-seq samples 

Lymphocytes from additional samples, including 28 normal marrows (Oetjen et al., 2018; 

Rozenblatt-Rosen et al., 2017) and 4 CITE-seq samples (Oetjen et al., 2018) were included in 

our lymphocyte sub-clustering by label propagation (55,016 and 7,954 cells). This was done by 

computing the probabilities for each cell belonging to each of the 11 clusters. Using the 

normalized protein-linked expression from CITE-seq samples, we further confirmed our cluster 

annotations. For statistical comparisons of populations, 2 sample T-tests were used to compare 

cell proportions between RS-R and RS-NR and between patients (pre-therapy) and healthy 

controls. For healthy control data, technical replicates were averaged and included, and the first 

(earliest) sample of biological replicates was used in comparisons.  

 

Single-cell TCR repertoire analysis 

Cell barcodes with corresponding alpha and beta chain nucleotides sequences were extracted 

and only cells with productive TCRs were considered. Productive TCRs were defined as having 

either one alpha chain and one beta chain, two alpha chains and one beta chain, or one alpha 

chain and two beta chains. Of all TCRs 84% and 83% were defined as productive for RT-R2 
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and RT-NR1, respectively. For the responder and non-responder, we summarized and evaluated 

the unique clonotype frequencies pre and post therapy. Clonotypes were categorized based on 

frequencies using scRepertoire v1.0.0 (Borcherding et al., 2020). 

  

Trajectory analysis 

We performed trajectory analysis on our 4 CD8 T cell clusters (cluster 1, 3, 4 and 8) using 

slingshot v1.8.0 (Street et al., 2018). To construct the trajectory, we set cluster 3 as the starting 

point, and ran the analysis with ~points = 150 to reduce compute time.  

 

Bulk RNA-sequencing of patient samples and cell lines 

Abundances of transcripts from the bulk RNA sequencing reads were quantified using kallisto 

v0.46.0 (Bray et al., 2016). Transcripts were summarized to gene level, and differential gene 

expression analysis was performed using DESeq2 v1.22.2.  

 

CUT&RUN 

We removed adapter sequences from the paired-end reads with Cutadapt v3.5 (Martin, 2011). 

Reads were then aligned to Hg19 reference genome with Bowtie2 v.2.4.2 (Langmead and 

Salzberg, 2012). Alignments were filtered and sorted using Samtools v1.2 (Danecek et al., 

2021), converted to bed format and subsequently to bedgraphs using bedtools v2.30.0 (Quinlan 

and Hall, 2010). Peaks from bedgraphs were called using SEACR v1.3 (Meers et al., 2019). We 

used bamCoverage from deepTools v3.5.1 (Ramírez et al., 2016) to generate bigWig files to 

visualize peaks in IGV tools. We used DiffBind for differential peak analysis v3.4.3 (Stark and 

Brown).  

 

CISTROME-GO 
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To analyze the functional enrichment of the transcription factor peaks generated by CUT&RUN 

results for ZNF683 overexpressed Jurkat cells, the Cistrome-GO (Li et al., 2019a) online tool 

was applied to the results with the following parameters: Human (GRCh37/hg19) genome, 

Ensemble mode, all genes for GO, 1.0 cutoff of logFoldChange, 0.1 FDR for DE genes, top 

10,000 peaks in the peak BED file generated from CUT&RUN data, 10.0 kb half-decay 

distance, 0.2 FDR cutoff of GO/KEGG terms to return, minimum of 10 genes to maximum of 

2,000 genes in GO and KEGG gene sets.  

 

Motif analysis 

We performed a comprehensive motif analysis of CUT&RUN peaks using MEME-ChIP from 

the MEME Suite (Bailey et al., 2015). We used differential peaks with an FDR < 0.5 with 

default parameters and the human database (Kulakovskiy et al., 2018) to enable detection of 

recurrent peaks. To directly compare top MEME-ChIP result with PRDM1 (Bailey et al., 

2015), TomTom (Street et al., 2018) was used with default parameters.  

 

Comparisons with existing datasets 

To compare our signatures with other existing datasets, we first used singleR v1.4.0 (Aran et 

al., 2019) to annotate our CD8+ T cells with labels from existing melanoma single-cell data 

(Fairfax et al., 2020). Second, we ran single-sample GSEA (Barbie et al., 2009) (ssGSEA) using 

GSVA v1.30.0 (Hänzelmann et al., 2013) on a per cluster basis on our CD8+ T cells using the 

mean expression. We included the following gene sets for ssGSEA: cytotoxicity and exhaustion 

(Oliveira et al., 2021) and top 50 most significantly expressed genes per CD8+ T cell cluster 

(Anadon et al., 2022; Caushi et al., 2021; Fairfax et al., 2020; Zheng et al., 2021).  

 

Analysis of ZNF683 signature in external datasets 
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DESeq2-normalized TPMs from the RNA-seq from 35 RS nodal tissue samples was examined 

for enrichment of our cluster 1 signature (top 50 genes, padj < 0.05) using ssGSEA with GSVA 

v1.30.0. Additionally, we examined expression of ZNF683 normalized by estimated total T cell 

fraction of each sample using CIBERSORT v1.05 (Newman et al., 2015). RNA-seq data from 

81 treatment-naïve non-CD19 selected RNA-seq samples from the CLLmap cohort (phs00435) 

was examined for relative ZNF683 expression. TPMs from RNA-SeQC v2.3.6 (Graubert et al., 

2021) were DESeq2-normalized and further normalized by total T-cell content (per 

CIBERSORT v1.0.5). Expression analysis showed a bimodal ZNF683 expression distribution 

with 20% (n=18) in the higher group and 80% (n=63) in the lower. Kaplan-Meier curves were 

used to display overall survival and assessed with the log rank test. TCGA datasets was then 

analyzed with similar normalization by total T-cell content (per CIBERSORT v1.0.5) followed 

by Kaplan-Meier curves for the top and bottom 50%. 

 

Hypergeometric test 

To examine whether our cluster 1 signature overlapped with a parallel T-cell cluster (Fairfax 

et al melanoma citation) derived from melanoma PD-1 CPB responders (n=8), we performed 

a hypergeometric test on the overlap between cluster 1 signature and the set of significantly 

upregulated genes in the parallel cluster (parameters: q=103, overlapping genes -1, m=163 

genes in cluster 1 signature, n=7128 genes across clusters-163, k=279 genes in parallel 

cluster). 

 

SUPPLEMENTARY ITEM TITLES 

Supplementary Figure Legends 

Supplementary Figure 1. Sorting strategy for FACS of RS and CLL  
 (A) Experimental schema showing flow cytometry sorting strategy for bone marrows 
b, Sorting strategy for CLL malignant B cell fraction of patient bone marrow samples.  
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 (B) Sorting strategy for immune (non-malignant) cell fraction for RS and CLL cells.  
 
 
Supplementary Figure 2. Single-cell RNA-sequencing metrics  
(A) – (D) Malignant B cell QC metrics per sample before filtering:  
 (A) cells/sample  
 (B) percent mitochondrial content/cell per sample  
 (C) gene/cell per sample  
 (D) UMI/cell (3rd row)  
 
(E) – (H) Immune fraction QC metrics per sample:  
(E) cells/sample  
(F) percent mitochondrial content per cell per sample  
(G) gene/cell per sample  

 (H) UMI/cell per sample 
 
Supplementary Figure 3. Joint clustering of tumor and immune cells  
 (A) Conos joint graph using largeVis embedding of sorted tumor fraction clusters A-
O.  
  
 (B) Individual graph embeddings of each sample showing clusters A-O.  
  
 (C) Malignant B cell cluster cell proportions across sorted tumor fractions.  
  
 (D) Conos joint graph embedding showing RS (purple), CLL (blue), and immune 
(gray) populations.  
  
 (E) Conos joint graph embeddings showing expression of Class I and representative 
Class II and non-classical HLA genes in CLL and RS. Cells expressing, red.  
  
 (F) Conos joint graph embeddings showing immune marker genes expressed by 
malignant B cells. Cells expressing, red.  
 
 
Supplementary Figure 4. Clustering of immune cells  
 (A) Conos joint graph embedding of immune clusters.  
  
 (B) Joint graph of immune clusters by sample.  
  
 (C) Joint graph colored by sample.  
  
 (D) Marker gene panels highlight major cell types within immune clusters. Red 
highlights cells expressing labelled marker gene.  

 
 
Supplementary Figure 5. Lymphocyte sub-clustering  



 

 

34 

 (A) Marker gene panels highlight major cell types within lymphocyte sub-clustering 
on Conos largeVis embedding. Red highlights cells expressing marker gene.  
  
 (B) Flow sorting strategy for CITE-seq experiment. FSC-A, forward scatter.  
  
 (C) Bar graphs showing population distributions across serial CLL and RS marrow 
samples and normal bone marrow samples.  
  
 (D) Individual panel graphs of patient marrow samples and normal marrow colored by 
cluster.  
  
 (E) Bar graphs showing population distributions for 5’ single-cell RNA-seq performed 
in conjunction with CITE-seq for marrow samples of RS-R2 (purple) and RS-NR1 (blue) pre- 
and post- treatment.  

 
 
Supplementary Figure 6. T cell populations associated with CPB response 
(A) Conos joint graph of immune sub-cluster by sample. 
 
(B) LargeVis of Conos joint graph of immune sub-cluster by sample and sample type.  
 
(C) Bubble plot displaying ZNF683 and TOX expression in RS-R vs RS-NR.  
 
(D) – (F) Volcano plots for CD8 T cell clusters (1, 2, 9) displaying gene expression differences 
within each cluster between non-responder (left) and responder (right).  
 
(G) Heatmap displaying genes differentially regulated between RS-R and RS-NR in across all 
CD8 clusters. ZNF683 and TOX are labelled among top differentially expressed genes.  
 
(H) TCF7 expression by violin plot is stable across all samples in memory cluster 3.  
 
(I) Panel of cluster distribution for individual samples in 5’ scRNA-seq performed with CITE-
seq and TCR-seq (top). Top 2 expanded TCR clones in each sample are depicted on the bottom 
panel (bottom).  
 
Supplementary Figure 7. ZNF683 expression in primary T cells and overexpression in 
Jurkat cell lines  
 (A) Line graph shows endogenous ZNF683 in primary T cells from 3 healthy donors 
expanded in culture following CD3-CD28 bead stimulation.  
  
 (B) Flow cytometry analysis of ZNF683-expressing Jurkats after puromycin selection 
shows stable cell lines express GFP.  
  
 (C) Western blot confirms dox-induced ZNF683 expression in Jurkat cells, as 
measured by FLAG protein expression.  
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 (D) Volcano plot for gene expression differences between Jurkat cells containing dox-
inducible ZNF683 vector vs mock (luciferase) vector by RNA-seq.  
 (E) CUT&RUN on Jurkat cell lines shows binding of ZNF683 at regions surrounding 
key immune genes (purple) that correspond to differential ATAC-seq peaks in T cell subsets 
(green) (Philip et al., 2017) and prior PRDM1 ChIP-seq data (black) (Davis et al., 2018). 
CUT&RUN controls depicted in black in top three tracks of each panel.  
 
Supplemental table titles 
 
S1: Clinical data for study patients, related to Figure 1 
 
S2: Quality control metrics for scRNA-seq data, related to Figure S2 
 
S3: Single-cell tumor cluster proportions, gene expression and GSEA, related to figure 1 
 
S4: Single-cell cluster markers and cell proportions, related to Figure 2 
 
S5: Differential gene expression between RS-R and RS-NR, related to Figure 3 
 
S6: TCR sequencing and clonotype information, related to Figure 3 
 
S7: GSEA enrichment analysis on bulk patient RNA-seq, related to Figure 4 
 
S8: CUT&RUN and RNA-seq data, related to Figure 5 
 
S9: CITE-seq antibody list, related to STAR Methods 
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Key resources table 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
anti-CD19 (PE-Cy7) Biolegend  Cat# 302216 
anti-CD5 (BV421) Biolegend Cat# 300626 
anti-CD4 (FITC) Biolegend Cat# 300506 
anti-CD3 (Pacific Blue) Biolegend Cat# 300330 
anti-CD5 (FITC) Biolegend Cat# 364022 
anti-CD19 (PE-Cy7) Biolegend Cat# 302216 
anti-CD235 BD Biosciences Cat# 555570 
7-AAD Viability Staining Solution Biolegend Cat# 420404 
Zombie Violet Fixable Viability Kit Biolegend Cat# 423114 
CITE-seq antibodies in Supplementary Table 9    
Histone H3 antibody Cell Signaling 

Technology 
Cat# 9715S 

DYKDDDDK Tag Antibody Cell Signaling 
Technology 

Cat# 2368S 

HRP-linked Antibody Cell Signaling 
Technology 

Cat# 7074S 

CUTANA™ ChIC/CUT&RUN Kit H3K4Me3, IgG controls EpiCypher  Cat# 14-1048 
anti-FLAG Fisher Cat# FG4R 
CD3 MicroBeads Miltenyi Biotec Cat# 130-050-101 
Bacterial and virus strains  
   
Biological samples 
Whole bone marrow and blood samples during clinical 
trial 

Clinical trial NCT03619512 
(https://clinicaltrials.g
ov/ct2/show/NCT036
19512)  

Chemicals, peptides, and recombinant proteins 
Doxycycline Takara Bio 631311 
Puromycin Life Technologies A1113803  
SuperSignal™ West Pico PLUS Chemiluminescent 
Substrate  

Thermo Scientific 34580 

PrimeScript RT Master Mix  Takara Bio RR036A 
TaqMan Gene Expression Master Mix Life Technologies 4369514 
Critical commercial assays 
Chromium Next GEM Single Cell 5' Kit v2 kit  10x genomics 1000244 
Chromium Next GEM Single Cell 3’ v2 kit 10x genomics PN-120237 
RNeasy kit Qiagen 74106 
Qiagen RNeasy Micro Kit Qiagen 74004 
NEBNext single-cell/low input library Prep Kit for Illumina NEB E6420L 
PrimeScript RT Master Mix for qRT-PCR Takara Bio RR036A 
Pierce™ NE-PER® Nuclear and Cytoplasmic Extraction 
Reagent Kit 

Thermo Scientific 78833 

Quant-iT RiboGreen RNA Assay Kit Thermo Scientific R11490 
High Sensitivity DNA Kit Agilent 5067-4626 

Key Resource Table



 

TruSeq Stranded Total RNA LT Sample Prep Kit with 
Ribo-Zero Gold 

Illumina 20020598  

Wizard SV Gel and PCR Clean-Up System Promega A9282 
NEBNext® Ultra™ II DNA Library Prep Kit for Illumina® NEB E7645S/L 
MiniSeq High Output Kit (150 cycles) Illumina FC-420-1002 
Deposited data 
Single-cell RNA sequencing data This study dbGAP link upon 

acceptance 
Bulk RNA sequencing data This study dbGAP link upon 

acceptance 
Single-cell TCR sequencing This study dbGAP link upon 

acceptance 
Bulk TCR sequencing This study dbGAP link upon 

acceptance 
CUT&RUN This study dbGAP link upon 

acceptance 
Human reference genome NCBI build 37, GRCh37 Genome Reference 

Consortium 
https://www.ncbi.nlm
.nih.gov/projects/gen
ome/assembly/grc/h
uman/  

CLL Transcriptome Data dbGAP phs000435 
TCGA RNA-seq Sample and Clinical Data  The Cancer Genome 

Atlas Research 
Network 

https://portal.gdc.can
cer.gov  

TCGA RNA-seq Data Broad Institute GDAC 
Firehose  

https://gdac.broadins
titute.org  

CHiP-seq, Davis et al. Cistrome-GO data 
browser 

ENCSR098YLE_2 

ATAC-seq, Philip et al. Gene Expression 
Omnibus 

GSM2365846, 
GSM2365852, 
GSM2365855, 
GSM2365856, 
GSM2365857 

Experimental models: Cell lines 
Jurkat cell line, clone E6-1  ATCC TIB-152 
Experimental models: Organisms/strains 
   
Oligonucleotides 
5’-
AAAGGCCTCTGAGGCCACCATGAAAGAGGAATCAG
C-3’ 

This paper FlagPCR F 

5’ -
AAGCTTGGCCTGACAGGCCTTTATTTGTCGTCGTCA
TCCTTGTAGTCTGAACCGCCATTATTTTGGTCTTGAC
CCA-3’ 

This paper FlagPCR R 

5’- CTCGAAAGGCCTCTGAAAGGCCTCTGAGGCCAC-
3’ 

This paper Gibson overlap F 

5’- 
CATCAATGTATCTTATCATGTCTATAAGCTTGGCCTG
ACAGGC-3’ 

This paper Gibson overlap R 

ZNF683 Taqman probe Life Technologies Hs00543184_m1 
Beta actin Taqman probe Life Technologies 4333762T 



 

GAPDH Taqman probe Life Technologies 4333764T 
NEBNext Multiplex Oligos for Illumina, Dual Index 
Primers  

NEB E7600 

Recombinant DNA 
ZNF683 gene block  This paper  
pSB-tet-GP Addgene  60495 
pCMV(CAT)T7-SB100 Addgene 34879 
Software and algorithms 
Cell Ranger v2.0.0, v2.1.1, v3.0.2 10x Genomics http://10xgenomics.c

om/  
Conos v 1.3.1 Barkas et al., 2019 https://github.com/kh

archenkolab/conos  
DESeq2 v1.22.2 Love et al., 2014 https://bioconductor.

org/packages/releas
e/bioc/html/DESeq2.
html  

fgsea v1.13.2 Korotkevich et al., 
2019 

https://bioconductor.
org/packages/releas
e/bioc/html/fgsea.ht
ml  

scRepertoire v1.0.0 Borcherding et al., 
2022 

https://www.biocond
uctor.org/packages/r
elease/bioc/html/scR
epertoire.html  

slingshot v1.8.0 Street et al., 2018 https://bioconductor.
org/packages/releas
e/bioc/html/slingshot.
html  

kallisto v0.46.0 Bray et al., 2016 https://pachterlab.git
hub.io/kallisto/downl
oad.html  

Cutadapt v3.5 Martin et al., 2011 https://cutadapt.read
thedocs.io/en/stable/  

Bowtie2 v2.4.2 Langmead et al., 2012 http://bowtie-
bio.sourceforge.net/
bowtie2/index.shtml  

samtools v1.2 Danecek et al., 2021 http://www.htslib.org/
download/  

bedtools v2.30.0 Quinlan et al., 2010 https://bedtools.readt
hedocs.io/en/latest/i
ndex.html  

SEACR v1.3 Meers et al., 2019 https://github.com/Fr
edHutch/SEACR  

deepTools v3.5.1 Ramírez et al., 2016 https://deeptools.rea
dthedocs.io/en/devel
op/  

DiffBind v3.4.3 Stark et al., 2011 https://bioconductor.
org/packages/releas
e/bioc/html/DiffBind.
html  

Cistrome-GO Li et al., 2019 http://go.cistrome.or
g  



 

MEME-ChIP v5.4.1 Bailey et al., 2015 https://meme-
suite.org/meme/tools
/meme-chip  

GSVA v1.30.0 Hänzelmann et al., 
2013 

https://bioconductor.
org/packages/releas
e/bioc/html/GSVA.ht
ml  

CIBERSORT v1.05 Newman et al., 2015 https://cibersort.stanf
ord.edu  

RNA-SeQC v2.3.6 Graubert et al., 2021 https://github.com/ge
tzlab/rnaseqc  

Integrated Genomics Viewer (IGV) Broad Institute https://software.broa
dinstitute.org/softwar
e/igv/  
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Figure S1. Sorting strategy for FACS of RS and CLL. 
(A) Experimental schema showing flow cytometry sorting strategy for bone marrows b, 

Sorting strategy for CLL malignant B cell fraction of patient bone marrow samples. 
(B) Sorting strategy for immune (non-malignant) cell fraction for RS and CLL cells. 

Supplemental Text and Figures Click here to access/download;Supplemental Text and
Figures;Supplemental figures and tables.pdf



 

Figure S2. Single-cell RNA-sequencing metrics. 
(A) – (D) Malignant B cell QC metrics per sample before filtering: 

(A) cells/sample 
(B) percent mitochondrial content/cell per sample 
(C) gene/cell per sample 
(D) UMI/cell (3rd row)  

(E) – (H) Immune fraction QC metrics per sample: 
(E) cells/sample 
(F) percent mitochondrial content per cell per sample 
(G) gene/cell per sample 
(H) UMI/cell per sample 



Table S2. QC metrics on non-tumor, tumor scRNA-seq post filtering, Related to Figure S2.  
Subject ID Timepoint No. cells mean numi/cell mean ngene/cell % mitochondrial reads 
RS-R1 pre 3157 2684.72 957.82 2.83 
RS-R2 post 5424 2601.85 966.26 2.72 
RS-R1 progression 4178 2754.55 979.55 2.95 
RS-R2 pre 4738 3913.49 1303.82 3.08 
RS-R2 post 5230 3126.20 1077.79 3.24 
RS-R3 pre 4424 2810.27 846.81 3.26 
RS-R3 post 3492 2740.32 992.75 3.77 
RS-R3 progression 1378 2933.43 996.26 3.82 
RS-R4 post 8120 2571.84 1042.79 4.16 
RS-NR1 pre 6137 2396.28 919.96 3.31 
RS-NR1 post 5977 2520.34 951.49 3.31 
RS-NR2 pre 3211 3622.74 1130.42 3.04 
RS-NR2 post 1129 4146.55 1202.74 2.59 
CLL-1 pre 907 2572.04 1005.77 4.70 
CLL-1 post 3690 2055.69 851.58 3.63 
CLL-2 pre 4647 4408.19 1353.41 2.92 
CLL-2 post 2921 5111.08 917.75 1.65 
Normals, Donor 1 NA 2835 4010.31 961.46 2.66 
Normals, Donor 2 NA 2984 4417.59 606.30 1.57 

 
Subject ID Timepoint-tumor No. cells mean numi/cell mean ngene/cell % mitochondrial reads 
RS-R1 pre-CLL 6712 2630.43 972.96 3.09 
RS-R1 post-CLL 4423 2218.69 846.27 2.66 
RS-R1 progression-CLL 8892 2818.00 936.88 3.10 
RS-R1 progression-RT 3397 4794.60 1473.52 4.64 
RS-R2 pre-CLL 8161 3972.56 1424.41 2.95 
RS-R2 pre-RT 6566 5885.76 1911.27 3.34 
RS-R2 post-CLL 5285 3337.94 1122.98 3.35 
RS-R2 pre-CLL 3809 3725.41 1405.29 3.64 
RS-R2 pre-RT 2741 6288.29 2082.81 3.92 
RS-R3 pre-CLL 6670 2274.80 747.70 2.68 
RS-R3 post-CLL 4462 2856.17 1024.06 3.73 
RS-R3 progression-CLL 5801 2779.27 988.91 3.39 
RS-R4 post-CLL 9364 2703.59 1016.53 4.38 
RS-NR1 pre-CLL 8447 2396.13 951.43 3.77 
RS-NR1 post-CLL 7055 2485.57 957.18 4.24 
RS-NR2 post-CLL 3985 3609.75 1238.10 1.91 
CLL-2 pre-CLL 8533 4933.32 1554.01 3.55 
CLL-2 post-CLL 11686 3420.43 1209.31 2.36 

 



 

Figure S3. Joint clustering of tumor and immune cells, related to Figure 1.   
(A) Conos joint graph using largeVis embedding of sorted tumor fraction clusters A-O.  
(B) Individual graph embeddings of each sample showing clusters A-O.  
(C) Malignant B cell cluster cell proportions across sorted tumor fractions. 
(D) Conos joint graph embedding showing RS (purple), CLL (blue), and immune (gray) 

populations.  
(E) Conos joint graph embeddings showing expression of Class I and representative Class II 

and non-classical HLA genes in CLL and RS. Cells expressing, red.  
(F) Conos joint graph embeddings showing immune marker genes expressed by malignant B 

cells. Cells expressing, red. 



Table S1. Clinical data for study patients, Related to Figure 1.  

a. Discovery-Bone marrow 
        

Subject 
ID 

Gender  Prior 
CLL 
therap
ies 

Cytoge
netics 

Gene 
Mutation 
(Clinical 
Testing) 

IGHV 
status 

Age at RS 
diagnosis 
(years) 

Baseline 
marrow 
findings 

Prior 
RS 
therapy 

Best 
response 
(months 
after PD-1 
blockade) 

Months to 
progression 
after PD-1 
blockade 

RS-R1 F R, FCR del(17p
) 
CK 

TP53 UM 62 CLL 
(80%) 

NA CR (1) 12 

RS-R2 F FCR, 
BR, 
OBI-
HDMP
,                
R-Idela 

Tri12 
CK 

TP53 UM 66 RS and 
CLL 

NA CR (1) NA 

RS-R3 M FR, 
Benda
mustin
e, IBR 

Tri12 BTK, 
NOTCH1 

UM 53 CLL 
(95% at 
C2D1) 

NA PR (3) 6 

RS-R4 M FCR del(11q
) 
CK 

SF3B1, 
ATM 

UM 66 CLL 
(70% 
CLL at 
C2D1) 

NA CR (1) 6 

RS-NR1 F IBR  del(17p
) 
CK 

BIRC3, 
NOTCH1 

UM 64 CLL NA NA 1 

RS-NR2 M none del(11q
) 
CK 

not done UM 60 CLL BR, R-
EPOCH 
and 
RICE 

NA 3 

CLL-1 F ofatum
umab 

del(13q
) 

TP53 MUT NA CLL NA NA NA 

CLL-2 M VEN, 
FCR 

del(17p
) 

TP53 UM NA CLL NA NA NA 

 

b. Validation-Blood 
        

RS-R5 M none not 
done 

MYD88, 
CXCR4, 
CD79B 

not 
done 

66 NA RCHOP, 
auto-
SCT 

CR NA 

RS-R6 M PCR, 
BR, 
ibrutin
ib 

NEG 
FISH 

not done not 
done 

70 NA none PR (1) NA 

RS-
NR3 

F lenalid
omide 

Tri12 BIRC3 MUT 78 NA none no 
response 

NA 



RS-
NR4 

F FR, 
FCR, 
BR, 
ibrutin
ib 

del(17
p) CK 

TP53 MUT 63 NA none no 
response 

NA 

RS-
NR5 

F BR, 
chlora
mbucil
, 
rituxi
mab/H
DMP, 
ibrutin
ib, 
ofatum
umab 

del(17
p) CK 

not done UM 88 NA none no 
response 

NA 

RS-
NR6 

F FCR, 
TGR1
202/ub
lituxi
mab 

Tri12 not done MUT 65 NA R-
EPOCH, 
haplo-
SCT, 
OFAR, 
VEN+ob
in 

no 
response 

NA 

RS-
NR7 

M FMD, 
BR 

not 
done 

not done not 
done 

49 NA CD19 
mAb, 
RICR, 
R-
DHAP, 
R-
Hyper-
CVAD, 
MUD-
SCT, 
ibrutinib 

no 
response 

NA 

Abbreviations: M, male; F, female; FCR = fludarabine, cyclophosphamide, rituximab; R, 
rituximab; BR, bendamustine, rituximab; OBI-HDMP, obinutuzumab and high dose 
methylprednisone, R-idela, Rituximab-idealisib; IBR, ibrutinib; VEN, venetoclax; FR, 
fludarabine and rituximab; FMD, Fludarabine, mitoxantrone and dexamethasone; CK, complex 
karyotype; UM, IGHV unmutated; M, IGHV mutated; R-EPOCH, rituximab plus etoposide, 
prednisone, vincristine, doxorubicin and cyclophosphamide; R-CHOP, rituximab, 
cyclophosphamide, doxorubicin, vincristine and prednisone; RICE, rituximab, ifosfamide, 
carboplatinum, etoposide; SCT, stem cell transplant; OFAR, oxaliplatin, fludarabine, cytarabine 
and rituximab; MUD, matched unrelated donor; DHAP, dexamethasone, cytarabine, cisplatin; 
CR; complete response, PR, partial response 



 

Figure S4. Clustering of immune cells, related to Figure 2.  
(A) Conos joint graph embedding of immune clusters.  
(B) Joint graph of immune clusters by sample.  
(C) Joint graph colored by sample.  
(D) Marker gene panels highlight major cell types within immune clusters. Red highlights 

cells expressing labelled marker gene. 



 

Figure S5. Lymphocyte sub-clustering, related to Figure 2. 
(A) Marker gene panels highlight major cell types within lymphocyte sub-clustering on 

Conos largeVis embedding. Red highlights cells expressing marker gene.  
(B) Flow sorting strategy for CITE-seq experiment. FSC-A, forward scatter.  
(C) Bar graphs showing population distributions across serial CLL and RS marrow samples 

and normal bone marrow samples. 
(D) Individual panel graphs of patient marrow samples and normal marrow colored by 

cluster. 
(E) Bar graphs showing population distributions for 5’ single-cell RNA-seq performed in 

conjunction with CITE-seq for marrow samples of RS-R2 (purple) and RS-NR1 (blue) 
pre- and post- treatment.  

 



 

Figure S6. T cell populations associated with CPB response, related to Figure 3.  
(A) Conos joint graph of immune sub-cluster by sample. 
(B) LargeVis of Conos joint graph of immune sub-cluster by sample and sample type.  
(C) Bubble plot displaying ZNF683 and TOX expression in RS-R vs RS-NR.  
(D) – (F) Volcano plots for CD8 T cell clusters (1, 2, 9) displaying gene expression 
differences within each cluster between non-responder (left) and responder (right).  
(G) Heatmap displaying genes differentially regulated between RS-R and RS-NR in across 
all CD8 clusters. ZNF683 and TOX are labelled among top differentially expressed genes.  
(H) TCF7 expression by violin plot is stable across all samples in memory cluster 3.  
(I) Panel of cluster distribution for individual samples in 5’ scRNA-seq performed with 
CITE-seq and TCR-seq (top). Top 2 expanded TCR clones in each sample are depicted on 
the bottom panel (bottom).  

 



Table S7a. ssGSEA enrichment scores for cluster 1 signature on bulk RNA seq from RS 
patients, Related to Figure 4.  

  cluster 1 
signature 

RP.1917_DFCI.5486.RS.01_v1_Exome_OnPrem 6.27 
RP.1917_DFCI.5488.RS.01_v1_Exome_OnPrem 6.14 
RP.1917_DFCI.5491.RS.01_v1_Exome_OnPrem 6.75 
RP.1917_DFCI.5494.RS.01_v1_Exome_OnPrem 6.36 
RP.1917_DFCI.5495.RS.01_v1_Exome_OnPrem 6.18 
RP.1917_DFCI.5496.RS.01_v1_Exome_OnPrem 6.67 
RP.1917_DFCI.5497.RS.01_v1_Exome_OnPrem 5.98 
RP.1917_DFCI.5498.RS.01_v1_Exome_OnPrem 6.32 
RP.1917_DFCI.5500.RS.01_v1_Exome_OnPrem 6.02 
RP.1917_DFCI.5502.RS.01_v2_Exome_OnPrem 6.72 
RP.1917_DFCI.5503.RS.01_v1_Exome_OnPrem 6.38 
RP.1917_DFCI.5504.RS.01_v1_Exome_OnPrem 6.48 
RP.1917_DFCI.5505.RS.01_v1_Exome_OnPrem 6.90 
RP.1917_DFCI.5506.RS.01_v1_Exome_OnPrem 6.24 
RP.1917_DFCI.5507.RS.01_v1_Exome_OnPrem 6.51 
RP.1917_DFCI.5508.RS.01_v1_Exome_OnPrem 6.29 
RP.1917_DFCI.5509.RS.01_v1_Exome_OnPrem 6.41 
RP.1917_DFCI.5510.RS.01_v1_Exome_OnPrem 6.39 
RP.1917_DFCI.5511.RS.01_v1_Exome_OnPrem 6.41 
RP.1917_DFCI.5514.RS.01_v1_Exome_OnPrem 6.48 
RP.1917_DFCI.5515.RS.01_v1_Exome_OnPrem 6.50 
RP.1917_DFCI.5516.RS.01_v1_Exome_OnPrem 6.32 
RP.1917_DFCI.5517.RS.01_v1_Exome_OnPrem 6.53 
RP.1917_DFCI.5522.RS.01_v1_Exome_OnPrem 6.65 
RP.1917_DFCI.5522.RS.02_v1_Exome_OnPrem 6.87 
RP.1917_DFCI.5523.RS.01_v1_Exome_OnPrem 6.68 
RP.1917_DFCI.5524.RS.01_v1_Exome_OnPrem 6.16 
RP.1917_DFCI.5525.RS.01_v1_Exome_OnPrem 6.23 
RP.1917_DFCI.5526.RS.01_v1_Exome_OnPrem 6.40 
RP.1917_DFCI.5527.RS.01_v1_Exome_OnPrem 6.25 
RP.1917_DFCI.5528.RS.01_v1_Exome_OnPrem 6.46 
RP.1917_DFCI.5529.RS.01_v1_Exome_OnPrem 5.90 
RP.1917_DFCI.5530.RS.01_v1_Exome_OnPrem 6.78 
RP.1917_DFCI.5531.RS.01_v1_Exome_OnPrem 6.12 
RP.1917_DFCI.5532.RS.01_v1_Exome_OnPrem 6.72 

 



Table S7b. ssGSEA enrichment scores for Pan-cancer CD8 T cell clusters on scRNA-seq 
CD8 clusters, Related to Figure 4.  

  cluster 
1 

cluster 
3 

cluster 
4 

cluster 
8 

CD8.c02 0.35 0.49 0.42 0.36 
CD8.c04 0.73 0.69 0.72 0.70 
CD8.c10 0.76 0.76 0.75 0.76 
CD8.c01 0.73 0.77 0.75 0.70 
CD8.c05 0.45 0.57 0.49 0.52 
CD8.c06 0.71 0.74 0.72 0.70 
CD8.c07 0.68 0.55 0.68 0.68 
CD8.c11 0.41 0.54 0.43 0.50 
CD8.c12 0.64 0.64 0.62 0.65 
CD8.c13 -0.08 0.07 -0.05 0.09 
CD8.c14 0.46 0.53 0.49 0.48 
CD8.c08 0.46 0.50 0.48 0.56 
CD8.c09 0.37 0.37 0.41 0.49 
CD8.c15 0.43 0.44 0.43 0.43 
CD8.c16 0.35 0.40 0.40 0.29 
CD8.c17 0.73 0.74 0.73 0.73 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S7. ZNF683 expression in primary T cells and overexpression in Jurkat cell lines, 
related to Figure 5.  

(A) Line graph shows endogenous ZNF683 in primary T cells from 3 healthy donors 
expanded in culture following CD3-CD28 bead stimulation.  

(B) Flow cytometry analysis of ZNF683-expressing Jurkats after puromycin selection shows 
stable cell lines express GFP.  

(C) Western blot confirms dox-induced ZNF683 expression in Jurkat cells, as measured by 
FLAG protein expression.  

(D) Volcano plot for gene expression differences between Jurkat cells containing dox-
inducible ZNF683 vector vs mock (luciferase) vector by RNA-seq.  

(E) CUT&RUN on Jurkat cell lines shows binding of ZNF683 at regions surrounding key 
immune genes (purple) that correspond to differential ATAC-seq peaks in T cell subsets 
(green)24 and prior PRDM1 ChIP-seq data (black)21. CUT&RUN controls depicted in 
black in top three tracks of each panel. 



Table S9. Antibodies used for CITE-seq, Related to STAR methods.  
TotalSeq-C 
antibody 

Biolegend catalog 
number 

CD80  301071 
CD86  305447 
PDL1  328751 
CD3  300479 
CD19  302265 
CD45RA  304163 
CD4  300567 
CD8a  301071 
CD14  301859 
CD16  302065 
CD56  392425 
CD25  302649 
CD45RO  404259 
PD1  329963 
TIGIT  372729 
IgG1isotype  400187 
IgG2aisotype  400293 
IgG2bisotype  400381 
CD20  302363 
NKp46  331941 
CD69  310951 
CD62L  304851 
CCR7  353251 
CD27  302853 
HLADR  307663 
CD11b  301359 
ICOS  313553 
41BB  309839 
CD28  302963 
IL7RA  351356 
CD45  304068 
CD15  323053 
CD73  344031 
CD70  355119 
CD44  338827 
TCRab  306743 
KLRG1  138433 
CD39  328237 
NKG2D  320837 



CD5  300637 
CD10  312233 
CTLA4  369621 
CD95  305651 
OX40  350035 
CXCR3  353747 
CCR4  359425 
CXCR4  306533 
2B4  329529 
CD40  334348 
DNAM1  338337 
CD49f  313635 
CD38  303543 
B7H4  358116 
CD11a  350617 
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ABSTRACT Most human cancers converge to a deregulated methylome with reduced global 
levels and elevated methylation at select CpG islands. To investigate the emergence 

and dynamics of the cancer methylome, we characterized genome-wide DNA methylation in preneo-
plastic monoclonal B-cell lymphocytosis (MBL) and chronic lymphocytic leukemia (CLL), including serial 
samples collected across disease course. We detected the aberrant tumor-associated methylation 
landscape at CLL diagnosis and found no significant differentially methylated regions in the high-count 
MBL-to-CLL transition. Patient methylomes showed remarkable stability with natural disease and 
posttherapy progression. Single CLL cells were consistently aberrantly methylated, indicating a homo-
geneous transition to the altered epigenetic state and a distinct expression profile together with MBL 
cells compared with normal B cells. Our longitudinal analysis reveals the cancer methylome to emerge 
early, which may provide a platform for subsequent genetically driven growth dynamics, and, together 
with its persistent presence, suggests a central role in disease onset.

SIGNIFICANCE: DNA methylation data from a large cohort of patients with MBL and CLL show that epi-
genetic transformation emerges early and persists throughout disease stages with limited subsequent 
changes. Our results indicate an early role for this aberrant landscape in the normal-to-preneoplastic 
transition that may reflect a pan-cancer mechanism.
See related commentary by Rossi, p. 6.
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INTRODUCTION
In normal adult tissues, cell identity is associated with 

accurate maintenance of a distinct DNA methylation land-

scape (1, 2). By contrast, cells profiled from virtually every 
human cancer type display local hypermethylation at typi-
cally lowly methylated CpG-rich regions and simultaneously 
global hypomethylation at highly methylated domains (3–6).

The striking universality of this phenomenon across cancer 
types raises the fundamental question of whether a cell first 
becomes cancerous and then acquires an aberrant methylome or 
if the aberrant methylome is a prerequisite. Methylation dynam-
ics of similar proportions have otherwise only been observed 
during early embryonic development or the germ line specifica-
tion. At the same time, the generation and propagation of most 
other benign adult cell types show relatively stable global meth-
ylation patterns (1–7). One notable exception to the epigenetic 
stability of adult cell types is the maturation of B cells from 
hematopoietic stem cells through several intermediate stages to 
mature B cells, which is a critical process for the establishment 
of a highly effective, dynamic immune system (8). This matura-
tion process involves genetic modulation such as somatic hyper-
mutation of the immunoglobulin heavy-chain variable (IGHV) 
region and immunoglobulin class switch recombination (9), as 
well as a modulation of the methylome (10, 11). Interestingly, 
the methylation dynamics observed in B-cell maturation share 
many features with the cancer methylome (10, 11).

Chronic lymphocytic leukemia (CLL) is a malignancy of 
aberrant clonal mature B cells in the blood, bone marrow, 
and lymphoid organs that provides an ideal model setting 
to gain insight into the emergence of the altered methyl-
ome. Its typically indolent course enables longitudinal studies 
within individual patients from a pretreatment “watch and 
wait” phase—the duration of which is highly variable among 
patients, lasting months to years (12)—to the posttreatment 
setting and even onto progression (13, 14). A precursor stage 
termed monoclonal B-cell lymphocytosis (MBL) has also been 
described, defined as elevated white blood cell (WBC) counts 
with clonal B cells of a CLL immunophenotype. High-count 
MBL on average progresses to CLL that requires treatment in 
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1% to 2% of patients per year (15). A well-established prognostic  
factor in CLL is the mutational status of the IGHV region 
genes, with mutated IGHV showing a much better prognosis 
than CLL with unmutated IGHV (16, 17). The IGHV muta-
tional status has been thought to reflect differences in the cell 
of origin, with a similarity in methylation profiles of unmu-
tated CLLs and pregerminal center B cells, and of mutated CLL 
with mature, postgerminal center memory B cells, suggesting 
that CLL emerges from a spectrum of B cells undergoing broad 
DNA methylation alterations (11, 16, 18, 19). In addition to 
these characteristic global changes, we previously identified a 
pervasive local disorder of methylation across genomic features 
in CLL, not present in normal tissues (20). Although general 
changes in methylation profiles during B-cell development and 
cancer have been described (6, 10, 11, 20–24), little is currently 
known about: (i) if and which additional methylation changes 
are necessary to transition from normal into a preneoplas-
tic state and further into cancer, (ii) how this altered cancer 
methylome is affected by therapy, and (iii) why it is found so 
ubiquitously across different types and stages of cancer. Fur-
thermore, the chronologic origin of altered methylation with 
respect to cancer initiation and progression is not well under-
stood but would be of relevance for early detection and could 
lead to novel therapeutic strategies.

To approach these questions, we used bulk and single-
cell reduced representation bisulfite sequencing (RRBS; refs. 
25–27) to profile normal mature B cells, as well as cells from 
patients in the preneoplastic MBL phase and during CLL 
progression, including after treatment. We characterized the 
methylation status of samples collected from 53 patients sup-
plemented with WBC counts as a measure of tumor burden, 
and hence the effect of treatment (average sampling period of  
5.7 years). Further, we used single-cell transcriptomics to 
complement the DNA methylation results in the patients 
transitioning from MBL to CLL. Our analyses reveal that 
changes in methylome and transcriptome are established 
early on, already at the precursor stage, and remain remark-
ably stable throughout the disease and even after therapy.

RESULTS
Unmutated and Mutated CLLs Converge to a 
Similar Methylome

To systematically study the DNA methylation dynamics 
across the disease course of CLL, we generated RRBS datasets 
from CD19+ CD5+ cells collected from 23 individuals with 
MBL, matched samples for 5 patients capturing both the MBL 
and their transition to CLL, and serial pre- and posttreatment 
samples from 25 patients collected following the diagnosis of 
CLL (28, 29) and compared these with published B-cell–lineage 
subpopulations (refs. 10, 30; Fig. 1A; Supplementary Table S1).

Genome-wide correlation of single CpG methylation 
showed a substantial similarity of unmutated and mutated 
methylation profiles (r = 0.96); however, compared with 
their putative cell of origin, the CLL IGHV subtypes showed 
different degrees of abnormality. Although the unmutated 
CLL showed more changes compared with naïve B cells, the 
mutated CLL exhibited a methylation landscape more similar 
to memory B cells than naïve to memory B cells (Fig. 1B). As 
noted above, CLLs originate from a range of developmental 
stages with pregerminal center B cells thought to give rise to 
unmutated CLL and mature, postgerminal center memory B 
cells to mutated CLLs (10, 11, 16, 18, 19, 31). Evaluation of single 
samples in a phylogenetic tree analysis revealed that the unmu-
tated and mutated CLL samples are characterized by a methy-
lome that consistently differs from normal naïve and memory 
B cells, suggesting a convergent disease-associated methylome, 
irrespective of IGHV mutation status (Fig. 1C; Supplementary 
Fig. S1A). Together, these results suggest that both IGHV sub-
types of CLL undergo methylation changes specific to CLL. 
However, some of these changes also appear to be normally 
acquired during B-cell maturation, as observed in the exam-
ple of the EBF3 locus (Fig. 1D).

To more systematically evaluate regions that are consistently 
altered in CLL, we identified differentially methylated regions 
(DMR) between (i) unmutated CLL versus naïve B cells (n = 
23,206 DMRs) and (ii) mutated CLL versus memory B cells  

Figure 1.  CLL methylation signatures distinguish CLL from normal B cells. A, Schematic representation of progression from the precursor state of MBL 
to CLL, depicting the extended period of “watch and wait” (w/w) until first treatment and an overview of the patient cohort from which 109 samples were 
collected to generate RRBS data. Combination chemoimmunotherapy (CIT; FC/FCR) typically leads to a rapid decrement in WBC counts. Our cohort included 
samples from 23 MBL, 5 paired samples of MBL and CLL, and 25 CLL patients. More specifically, the MBL samples are n = 20 high and n = 3 low count [2 with 
unmutated IGHV (≥98% homology with germline sequence), 18 with mutated IGHV (<98% homology with germline sequence), 3 with unknown status], and 
the CLL are n = 21 CIT treated (red: IGHV unmutated status; orange: IGHV mutated status) and n = 4 venetoclax treated, after having already progressed 
from first-line (fludarabine-based) regimens. Each circle indicates a sample collected. B, Correlation of CpG methylation levels between naïve B cell, memory 
B cells, and unmutated and mutated CLL at CpG-level resolution (purple, low density; orange, high density). The methylome of memory B and CLL cells, in con-
trast to naïve B cells, is strongly hypomethylated and shows hypermethylation in otherwise lowly methylated regions. Bar charts give fraction of hypermeth-
ylated (>0.25) and hypomethylated (<0.25) CpGs. N = 3,490,971 (mem-nai); 3,202,573 (unmut-nai); 3,034,005 (mut-nai); 3,202,573 (unmut-mem); 3,034,005 
(mut-mem); 2,974,458 (mut-unmut). C, Phylogenetic CpG methylation tree of normal B cells (gray shading) and first time point samples of patients with CLL 
[IGHV: unmutated (red) and mutated (orange)] in the context of normal B-cell differentiation states. All CLLs cluster to the more mature end of the tree and 
separate by the mutational status of the IGHV chain genes except for two cases (orange lines). Each line represents a sample. Arrows indicate presumed 
cell of origin to CLL transition. bmPC, bone marrow plasma cell; gcBC, germinal center B cell; HPC, hematopoietic progenitor cell; PCT, plasma cell from 
tonsil; preB2C, pre-B-II cell. D, Average CpG methylation from bulk in naïve B cells (light gray), memory B cells (dark gray), and unmutated (red) and mutated 
CLL (orange) across the EBF3 locus. Both CLL samples exhibit similar levels of modulation across the entire region. Specifically, both CLL samples reveal 
stronger hypermethylation in the promoter region than the normal B cells and loss of methylation in the usually highly methylated gene body. Although to a 
much lesser degree, this effect can also be found between naïve and memory B cells. E, Average CpG methylation levels for CLL DMRs of unmutated CLL ver-
sus naïve B cells and mutated versus memory B-cell comparisons. The rows represent overlapping and mutated or unmutated CLL–specific DMRs. Samples 
are merged into a mean methylation representation per group (columns) and DMR (rows). Rows were ordered using unsupervised hierarchical clustering. Side 
annotations for DMR location and chromatin state: hyper- or hypomethylated DMR; CpG density: CpG island, shore, or shelf; location: promoter, gene body, 
or intergenic; chromatin state: promoter, poised promoter, enhancer, transcription related, insulator, or heterochromatin. F, Numbers of hypomethylated 
(gray) and hypermethylated (blue) DMRs (minimum difference of 0.25, minimum 3 CpG in length) in unmutated CLL versus naïve B-cell and mutated versus 
memory B-cell comparisons. DMRs are classified as B-cell related or CLL based on their overlap with CpGs that are differentially methylated during normal 
B-cell development. G, Overrepresentation enrichment analysis for genes with CLL DMRs compared with the background, i.e., all DMRs. Enriched pathways 
(Panther) include PI3K, EGFR, Ras, FGF, and CCKR signaling. A common characteristic of these pathways is their implication in cell survival, gene expression 
regulation, growth factors, activation of proliferation, and cell invasion. Shown are the top 10 pathways based on P value.
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(n = 4,653 DMRs; Supplementary Table S2; ref. 32). To disen-
tangle methylation changes associated with normal cell line-
age–specific differentiation from potentially cancer-related 
changes, we classified the aggregate of these two sets of DMRs 
as B-cell related (n = 22,325) or CLL (n = 3,475), depending on 
whether they were classified as dynamically changing during 
normal B-cell development (Fig. 1E and F; Methods; ref. 30). 
The majority (85%) of the DMRs overlapped with develop-
mental regions, whereas 15% were classified as CLL DMRs 
(Fig. 1E and F; Supplementary Fig. S1B). Based on the clus-
tering, B-cell lineage–related DMRs showed a gradual shift, 
mostly toward hypomethylation, from naïve to memory and 
both CLL subtypes, reflecting the normal B-cell developmen-
tal changes that are retained in CLL. In contrast, as expected, 
the set of CLL DMRs readily distinguished normal B cells 
from CLL (Fig. 1E). Moreover, genes that were associated 
with CLL DMRs were found to be overrepresented among 
pathways related to cell growth and survival, proliferation, 
and neoplastic transformation, suggesting possible regula-
tory relevance (Fig. 1G).

We additionally confirmed the DMRs to be a distinctive 
feature between normal B and CLL cells by analyzing repli-
cates of CD5-positive and -negative naïve and memory B cells 
from a set of three healthy donors. Genome-wide phyloge-
netic tree clustering and the correlation of methylation rates 
revealed two major clusters, separating the samples by naïve 
and memory B cells but not by CD5 status (Supplementary 
Fig. S2A and S2B). Based on the presence of the CLL-spe-
cific DMRs, CD5-sorted healthy donor samples were found 
to cluster into the group of previously published reference  
B cells, hence demonstrating similar methylation in DMRs 
independent of CD5 status of naïve or memory B-cell state 
(Supplementary Fig. S2C).

CLL Methylome Remains Mostly Unchanged  
after Treatment

To evaluate the stability of these DMRs and the dynamics 
of the CLL methylome over time, we analyzed longitudinal  

samples collected during natural CLL progression. CLL 
allows that leukemic burden can be approximately esti-
mated by measuring the WBC count over time since it is, 
for many patients, primarily a circulating malignancy. To 
study the CLL methylome before and after the first treat-
ment, we performed unsupervised phylogenetic clustering 
of the pre- and posttreatment (fludarabine, cyclophospha-
mide, and rituximab, FCR) samples of patients. Interest-
ingly, we found no consistent methylation differences that 
separate pre- and posttreatment samples, and also no WBC-
related effects could be seen in the clustering (Fig. 2A).  
Next, we compared methylation levels across patient time 
points for selected chromatin states derived from pub-
lished data of the lymphoblastoid cell line GM12878 (33). 
Despite vastly different growth patterns and subclonal 
dynamics (defined by prior genetic characterization; ref. 
28), global methylation levels of various genomic features, 
such as heterochromatin, strong enhancers, and poised 
promoters, for serial samples from all 21 patients remained 
stable and were consequently independent of the dynamic 
changes in WBC counts (Fig. 2B, left; Supplementary Fig. 
S3A and S3B).

We observed substantial posttreatment reduction in WBCs 
creating population bottlenecks for the nine patients follow-
ing treatment with FCR (Fig. 2B; Supplementary Fig. S3A). 
However, this was not associated with any notable DNA 
methylation changes over the three representative genomic 
features or the number of distinct epialleles present (Fig. 2B; 
Supplementary Fig. S3; ref. 34). Indeed, methylation levels 
were mostly independent of detected subclonal genetic evolu-
tion and from patterns of growth. Similar stability was also 
found at the previously identified DMRs, with once acquired 
changes appearing to persist during CLL progression (Fig. 
2C). These deregulated regions, including the example of 
NFATC1 (Fig. 2D), further highlight the remarkable stability 
of methylation patterns.

We also compared the nine patients by focusing on the 
clinically most divergent time points, i.e., first and last 

Figure 2.  The CLL methylome remains mostly unchanged over disease progression, including after treatment. A, Phylogenetic tree of normal B cells and 
all measured time points of patients with CLL (n = 83) using global CpG methylation levels. Each line represents a sample; subtrees are multiple samples 
of the same patient. Yellow lines represent posttreatment samples (chemoimmunotherapy and venetoclax V1–V4). Mutated and unmutated are colored as 
before, and all patient numbers are shown next to the respective branches. All samples from the same patient clustered together, whereas normal samples 
are distinct from the CLL cohort. B, WBC counts and methylation dynamics for selected genomic features to represent global hypomethylation (HC, hetero-
chromatin; SE, strong enhancers) and hypermethylation (PP, poised promoters) across disease progression for patients 11, 13, 16, and 17 (for all others, 
see Supplementary Fig. S3A). The methylation levels remain constant over time and after treatment. Black dots: WBC counts (left axis). Blue lines and dots: 
measurements of CpG methylation levels (right axis). Black arrows and dashed lines indicate collected time points for DNA methylation analysis. Boxplots 
to the right display the coverage normalized epiallele fraction in poised promoter regions. Treatment exposure at time points is indicated as shaded 
boxplots. In addition to the methylation level, the epiallelic fractions’ distribution stays stable over time and after treatment. WBC plots are taken from 
the same patients studied in ref. 28 and have been overlaid with our DNA methylation data. Distinct genetically defined subclones are indicated with the 
different colors. Tx., treatment. C, Left, average methylation levels per sample (columns) for CLL DMRs (rows) of unmutated CLL versus naïve B cells and 
mutated versus memory B-cell comparisons. Rows were ordered using unsupervised hierarchical clustering. Right, average methylation levels per sample 
(columns) for B-cell–related DMRs (rows) of unmutated CLL versus naïve B cells and mutated versus memory B-cell comparisons. Rows were ordered using 
unsupervised hierarchical clustering. D, Average CpG methylation in naïve B cells (light gray), memory B cells (dark gray), and five serial samples collected 
from patient 17 (orange, top to bottom: three pretreatment and two posttreatment samples) across the NFATC1 locus. Dots represent CpG-level methyla-
tion of each sample. E, Correlation of CpG methylation levels in the first pre- and last pretreatment sample as well as last pre- and first posttreatment of 
patient 17 at CpG-level resolution (n = 1,912,382). For all other samples, see Supplementary Table S3. Bar charts give fraction of hypermethylated (>0.25) 
and hypomethylated (<0.25) CpGs. Numbers are given within the scatter. F, Boxplot of correlation coefficients of genome-wide CpG-level correlation 
between the first pre- and last pretreatment samples of all patients with CLL as well as last pre- and first posttreatment samples for the posttreatment 
CLL (left). Corresponding boxplot of genome-wide CpG-level difference between the first pre- and last pretreatment samples as well as last pretreatment 
to first posttreatment samples (right). n = 21 pretreatment data points and n = 9 posttreatment data points. In the boxplots, the centerline is median; 
boxes, first and third quartiles; whiskers, 1.5× interquartile range; data beyond the end of the whiskers are omitted. G, Correlation of CpG methylation lev-
els in the pre- and posttreatment samples of the venetoclax-treated patients V1 and V2 at CpG-level resolution. For all other samples, see Supplementary 
Fig. S4. Bar charts give fraction of hypermethylated (>0.25) and hypomethylated (<0.25) CpGs. Numbers are provided within the scatter.
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pretreatment and last pre- and first posttreatment. No joint 
DMRs between all first pretreatment versus last pretreat-
ment time points could be detected. The variability between 
samples of the same patient and the lack of shared events 
appear to be more in line with patient-specific evolution 
than a common path across patients. Moreover, correlation 
analysis on the CpG level also confirmed a largely stable 
methylome across CLL evolution and even after treatment 
(Fig. 2E and F).

To explore if the observed methylation stability is therapy 
specific, we next analyzed four patients treated with the BCL2 
inhibitor venetoclax (35). As with the FCR chemoimmuno-
therapy-treated patients, these CLL samples collected before 
and after venetoclax exposure clustered tightly together, 
within the group of chemoimmunotherapy-treated patients 
(Fig. 2A and G). We further confirmed the stability of the 
B-cell–related and CLL DMRs in this treatment cohort, in 
which we could only detect globally on average less than 6% 
of CpGs to vary between pre- and post-venetoclax treatment 
(Supplementary Fig. S4A–S4D).

Combined with the early emergence of the altered methyla-
tion landscape, our posttreatment results highlight the strik-
ing stability of the CLL methylome, with minimal changes 
over disease progression, including after treatment.

Variations in the CLL Methylome Appear 
Stochastic among Patients

Because only a few patient-specific methylation dynamics 
were observed, we assessed if their occurrence exceeded ran-
dom dynamics present among normal B-cell subtypes. Focus-
ing on the chemoimmunotherapy-treated patient samples, 
we first compared the number of dynamic CpGs between first 
and last pretreatment, and last pre- and first posttreatment 
CLL samples with differences between biological replicates 
of naïve and memory B cells (Supplementary Fig. S5A; Sup-
plementary Table S3). Although we did not detect any cor-
relation with the time to treatment, we observed the fraction 
of dynamic CpGs to be slightly higher in posttreatment 
samples. Overall, only 1 of 21 patients stood out with higher 
variability (r = 0.94 pretreatment and r = 0.93 for pre- to 
posttreatment comparison); however, this is very similar to 
the variation observed at the transition of naïve to memory 
B cells (r = 0.95). Moreover, the relative number of CpGs 
that exhibited substantial differences was less than 5% of all 
considered CpGs for most CLL cases, and those CpGs were 
frequently located in heterochromatin regions and outside  
of CpG islands (Supplementary Fig. S5B). Most of the dynamic 
CpGs were restricted to individual patients, and 99.9% of CpGs 
were shared within a maximum of six and four patients for pre- 
and posttreatment comparisons, respectively (Supplementary 
Fig. S5C), thus again confirming limited variation and a high 
degree of stability of CLL methylome over time.

To further separate random single dynamic position events 
from consistently altered regions during disease progres-
sion and following treatment, we focused on patient-specific 
DMRs identified either between first and last pretreatment 
for all 21 patients (Supplementary Fig. S5D, left), or between 
the last pre- and first posttreatment for the nine patients 
(Supplementary Fig. S5D, right). We found a median of 106 
pre- and 143 posttreatment DMRs per sample. Of these, the 

vast majority (89% and 86%) appeared in regions shared with 
normal B-cell development. The remaining DMRs comprised 
only 8% of the aforementioned dynamic CpGs. However, 
with 50% of the dynamic CpGs still localized to CLL-specific 
regions, our data suggest the presence of randomly modu-
lated individual CpGs rather than stretches of adjacent CpGs. 
Furthermore, about half of the CLL DMRs were located 
in heterochromatin, supporting the assumption that these 
may represent a secondary effect (Supplementary Fig. S5E). 
Finally, gene set enrichment analysis revealed pathways sup-
ported by only a few genes (i.e., B-cell and T-cell pathways 
supported by three genes and p53 by two genes) or pathways 
with no apparent link to CLL (Supplementary Fig. S5E).

In sum, although a low number of patient-specific methyl-
ation changes accompany the individual tumor evolution, we 
observed remarkable stability and similarity of the acquired 
CLL methylome across patients.

The Altered Methylome Is Already Detectable at 
the MBL Stage

Because we observed an altered methylome already pre-
sent within the first time points of the characterized CLL 
specimens, we next turned to specimens collected from our 
patients with MBL to evaluate the cancer precursor methyl-
ome. We again performed unsupervised phylogenetic cluster-
ing but now including the high-count MBL samples. Despite 
clinical classification as a precursor state, all of the MBL 
cases were found to cluster directly among the group of CLL 
samples and not to branch earlier from the trunk of this tree  
(Fig. 3A). Most strikingly, all five matched MBL–CLL cases 
appeared to be as similar to each other as the biological repli-
cates of different healthy B-cell types and much more similar 
to each other than to the other CLL cases. Thus, patient-specific 
methylation signatures appeared to be stronger than any 
preleukemic versus leukemic methylation signature, which 
would have otherwise resulted in the separate clustering of 
the MBL samples from the CLL samples.

Strikingly, the identified CLL-associated DMRs were also 
present in our patients with MBL (Supplementary Fig. S6A 
and S6B). We extended the analysis to search for additional 
consistently occurring methylation changes that could 
potentially drive the MBL-to-CLL transition. However, no 
statistically significant DMRs could be detected between the 
methylomes of the individuals that transitioned from MBL 
to CLL. As a representative example of this shared landscape 
between MBL and CLL, we show the methylation patterns 
for the gene NFATC1, which has been reported as overex-
pressed in CLL due to loss of epigenetic repression (36) and 
is an upstream effector of BCL2, which itself is frequently 
deregulated due to chromosomal translocations in B-cell 
malignancies (Fig. 3B). Through a correlation analysis at sin-
gle CpG resolution of the methylomes of the matched MBL 
and CLL pairs, we further observed the striking similarity 
between MBL and CLL methylomes. These results revealed 
only minor, if any, targeted remodeling of the methylome 
between the precursor and CLL stages within a given patient 
(Fig. 3C; Supplementary Fig. S6C). To appreciate this high 
similarity, we note that comparably high correlations are 
otherwise found between biological replicates of flow cyto-
metrically isolated normal B-cell subpopulations.

D
ow

nloaded from
 http://aacrjournals.org/bloodcancerdiscov/article-pdf/2/1/54/3041889/54.pdf by guest on 28 N

ovem
ber 2022



The Altered DNA Methylation Landscape in CLL RESEARCH ARTICLE

 JANUARY  2021!BLOOD CANCER DISCOVERY | 61 

Figure 3.  CLL methylation signatures are already present in MBL. A, Phylogenetic tree of normal B cells, MBL, CLL (first pretreatment sample per case), 
and matched MBL–CLL pairs using all CpGs (n = 3.5 million). Left, all MBL cases clustered together with CLL cases. Each line represents a sample. Right, 
unsupervised hierarchical clustering of normal B cells and matched MBL–CLL pairs. Matched MBL–CLL cases clustered as closely as biological replicates of 
normal B cells; mean joint fork distance (log2FC) of matched versus mismatched MBL–CLL versus normal B cells: -0.03 versus -1.06. gcBC, germinal center 
B cell. B, RRBS-based genome browser tracks. Average methylation is shown as a smoothed line across the NFATC1 locus, grouped by naïve B cells (light 
gray, n = 3 samples), memory B cells (dark gray), unmutated (red) and mutated CLL (orange), and MBL (brown). Naïve and memory B cells are hypermethyl-
ated in the gene body, with only a small drop at the transcription start site. Unmutated and mutated CLL are hypomethylated across the promoter and gene 
body. C, Correlation of CpG methylation levels in matched MBL–CLL pairs (n = 5), in biological replicates of normal B cells (naïve B cells and memory B cells), 
at CpG-level resolution (n = 1,801,907 CpGs). Plots show a high correlation between biological replicates of normal B cells and a similarly high correlation 
between MBL–CLL pairs. Numbers give quantification of hypermethylated (>0.25) and hypomethylated (<0.25) CpGs. For comparison of CpG differences 
with mismatched samples, the quantification of all CLL samples versus one MBL is shown. r = 0.97–0.98 for matched pairs, r = 0.85–0.9 for mismatched 
pairs, r = 0.99 for naïve B cells, and r = 0.97 for memory B cells. D, CpG-level resolution differences between matched MBL–CLL pairs and among biological 
replicates of normal B cells. For all MBL–CLL comparisons, a maximum of 4.2% of positions show a difference of >0.25 (n = 1,801,907 CpGs). Methylation 
differences among biological replicates were less than 2% (naïve B cells) and 3.6% to 9.5% (memory B cells) of CpGs with a difference of >0.25. Per box-
plot, the median value is indicated by the centerline, with first and third quartiles as outlines of boxes, and 1.5× interquartile range as whiskers; data beyond 
the end of the whiskers are omitted. E, Number of CpGs with a difference of >0.25 in MBL–CLL comparisons and frequency of recurrent observations 
across the five pairs (light gray, unique for one pair, to dark grey, observed in four of five pairs, no five of five detected). The minority of CpGs are recur-
rently differentially methylated. F, Comparison of average chromatin state methylation among DNA from normal B cells, MBL, and CLLs. Black horizontal 
lines, matched MBL–CLL pairs (n = 1,801,907 CpGs). G, Comparison of chromatin state proportions of discordant methylation rates (proportion of discord-
ant reads, PDR) between MBL and CLLs. Black horizontal lines, matched MBL–CLL pairs.
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Also, at single CpG resolution, we found that at most 4% 
of all covered CpGs showed a difference of 0.25 or greater 
between MBL and CLL samples of the same patient (Fig. 
3D). An expanded analysis to examine whether individual 
CpGs were conserved targets across patients revealed this 
is not the case (Fig. 3E). Finally, we compared methylation 
and read-discordance levels for different chromatin states. 
This showed that differences and variability compared with 
normal B cells affect MBL and CLL cases to the same degree, 
again highlighting that the similarity of MBL and CLL is not 
merely based on patient identity (Fig. 3F and G).

Lastly, as most of our patients with MBL had already rela-
tively elevated WBC counts, we further extended our investi-
gation to include CD5+ sorted cells from three patients with 
low-count MBL (Supplementary Fig. S7A). Although the sig-
nal is expectedly not as strong due to the rare proportion of 
cells sequenced and the potential contamination with CD5+ 
normal B cells, we do detect evidence of the same characteris-
tic epigenetic alterations as observed in high-count MBL and 
CLL (Supplementary Fig. S7B–S7D).

Taken together, our comprehensive analysis of 53 patients 
and 101 pretreatment RRBS datasets suggests that the tran-
sition to the cancer methylome occurs early in the disease. 
Analysis of patient-matched MBL and CLL shows that no 
consistent additional DNA methylation changes are seemingly 
associated with disease progression.

Heterogeneous Expression Patterns Are  
Present Per Patient but Are Stable across  
Natural Disease Progression

Complementing our methylation analysis, we profiled 
the transcriptomes of approximately 60k single cells iso-
lated from healthy donors and the five matched MBL–CLL  
specimens (Fig. 4A). Unsupervised clustering revealed nine 
distinct clusters: four clusters representing peripheral 
blood mononuclear cells of the two healthy donors and the 
remaining five, with each representing one of five patient 
B cells (Fig. 4B). From the healthy donors, cell clusters of 
myeloid and lymphoid origin were readily identifiable based 
on their marker gene expression. In contrast, the five clus-
ters from patients were identified as CLL/MBL-mixed clus-
ters that showed expression of some B-cell marker genes, 
although less pronounced (Fig. 4C). When looking more 
specifically at differentially expressed genes, we found lower 
and heterogeneous expression for some characteristic B-cell 
markers and similarly heterogeneous upregulation of genes 
such as KLF2 and CD27 in the patient samples (Fig. 4D). Of 
note, the MBL and CLL cells per patient were transcription-
ally indistinguishable.

Because the transcription-based clustering could not dis-
tinguish the MBL and CLL cells, we instead used barcode 
information per cell for annotation (Fig. 4E). We observed a 
remarkable overlap for most clusters, supporting the strik-
ing similarity of the MBL and CLL transcriptomes. Only the 
MBL and CLL cells from patient A were slightly separated 
in the UMAP visualization. However, upon evaluation of 
the highest-ranked marker genes for each MBL–CLL set, we 
found a surprisingly high concordance of expression of even 
the most differential expressed genes between MBL and CLL 
cells (Fig. 4F).

Based on the single-cell expression profiles, the differences 
between MBL and CLL appear to be marginal, which agrees 
with the lack of separation by clustering on single-cell tran-
scriptomes. Combined with the lack of DNA methylation 
changes in the MBL-to-CLL transition, it points to an earlier 
molecular event that sets the normal cells already on the path 
to tumorigenesis.

Individual MBL and CLL Cells Show Little DNA 
Methylation Heterogeneity

Our bulk data indicated an early conserved switch in the 
DNA methylation landscape across patients with CLL, and 
our single-cell transcriptome data demonstrate the transcrip-
tional similarity between matched MBL and CLL. However, 
bulk measurements cannot completely distinguish the con-
tributions of diverse cellular subpopulations to the overall 
picture. Subclonal evolution and genetic heterogeneity are 
common in CLL (37–39). This understanding motivated us 
to investigate single-cell methylation maps from two patients 
with CLL, two patients with MBL, and age-matched B cells 
collected from two healthy adult volunteers, uncovering a 
stable level of mean methylation per cell on a global scale (Fig. 
5A; Supplementary Table S1; ref. 40).

Analysis of our previously defined DMRs showed the pres-
ence of aberrant methylation levels in all MBL/CLL cells 
with sufficient coverage (Fig. 5B). When comparing naïve to 
memory with MBL and CLL cells, a gradual gain of meth-
ylation in B-cell–related and CLL hyper-DMRs was observed. 
Conversely, hypomethylated B-cell–related and CLL DMRs 
appeared slightly stronger in separating normal from dis-
eased (MBL and CLL) cells (Fig. 5B). Phylogenetic clustering 
separated CLL, memory B, and naïve B cells, with no differ-
ences between the B-cell subpopulations with or without the 
presence of CD5 (Fig. 5C; ref. 12). Moreover, we observed 
a clear separation between MBL and CLL versus normal, 
with each forming a tight cluster in line within the observed 
stability of the methylome per patient. Of note, memory B 
cells, despite many shared features with the CLL methylome, 
cluster distinctly next to the naïve B cells and apart from the 
MBL and CLL cells.

Our genome-wide single-cell methylation analysis thus 
complements our bulk data by further showing the clear 
methylation difference between MBL and CLL compared 
with sorted B-cell subtypes.

DISCUSSION
We show that the aberrant cancer methylome in CLL is 

already established at the preneoplastic MBL stage and is con-
sistently present at the time of diagnosis across samples col-
lected from 3 low-count and 20 high-count MBL, 5 matched 
MBL–CLL pairs, and 25 patients with CLL. Although nor-
mal B-cell maturation shows some similarities with the CLL 
methylome, these normal developmental changes are likely 
insufficient to transform cells into proliferative MBL and 
CLL. Nonetheless, the shared targets make a better under-
standing of the underlying mechanism and biological reason 
highly relevant. We also find a limited set of cancer-specific 
targets that can be readily applied to distinguish all normal 
B-cell subtypes from MBL and CLL. These CLL DMRs are 
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Figure 4.  Single-cell transcriptome analysis. A, Summary table with details of donors, tissue source, number of cells per sample, and IGHV status. 
Patients were profiled in MBL as well as the CLL state using the 10x Genomics Chromium droplet single-cell RNA sequencing. HD, healthy donor. B, UMAP 
displaying the groups found using the Louvain algorithm. The healthy donor cells split into B cells, T cells, myeloid cells, and natural killer (NK) cells. The 
MBL and CLL cells of patients build distinct groups but are within a patient not distinguishable. C, Normalized gene expression level and the number of 
positive cells of marker genes used to identify normal cell types in B. B-cell–specific genes show an aberrant expression profile in clusters derived from 
patient cells. D, Normalized gene expression level and the number of positive cells of genes identified as marker genes between B cells and all patient 
cells (Wilcoxon rank-sum test). E, UMAP of MBL, CLL, and B cells with artificially introduced identification of MBL and CLL cells. MBL and CLL cells cluster 
farther apart from the B cells than from other cells of the same patient and are highly overlapping for almost all patients. F, Heatmap displaying single-cell 
gene expression of highest-ranking marker genes between MBL and CLL cells of the same patient (Wilcoxon rank-sum test). Expression levels are very 
similar among cells of the same patient as compared with other patients or B cells, a parameter that is also supported by hierarchical clustering.
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overrepresented among pathways involved in proliferation, 
cell survival, and growth. Although it remains technically 
challenging to experimentally explore if, for instance, the 
addition of just these CLL DMRs alone is sufficient to drive 
the tumorigenic transition or facilitate extended and rapid 
proliferation, we anticipate that these targets are certainly 
worthy of future exploration, including with emerging epige-
nome editing tools.

Our results provide a comprehensive picture of the DNA 
methylation alterations in MBL and CLL and demonstrate 
that the switch to an abnormal landscape has consistently 
occurred before any of our measured time points. This 
notably expands findings from prior array-based studies 
(41, 42) and complements recent work on the genetic evo-
lution across the 21 CLL samples (28). Similar early altera-
tions of the methylome have also been noted in colorectal 
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Figure 5.  Single-cell DNA methylation analysis of MBL, CLL, and normal B cells. A, Summary table of methylation data generated from MBL (rose, 
brown), CLL (red, orange), and flow cytometrically isolated normal B-cell subpopulations [naïve B cells, CD19+CD27− (lightest gray), CD5+ naïve B cells 
(CD19+CD27−, light gray), memory B cells (CD19+CD27+, dark gray), CD5+ memory B cells (CD19+CD27+, darkest gray)]. n = 611,452 CpGs covered on aver-
age. (1)Data for CLL were taken from Gaiti and colleagues (40). B, Average methylation levels for B-cell–related and CLL DMRs per cell confirm aberrant 
methylation of these regions being consistently observed across all cells. CLL and MBL cells show strong patterns of hypomethylation, whereas the  
small number of hypermethylated DMRs (n = 888 and 70, respectively) is already present in MBL but also seems to be slightly more prevalent in CLL 
cells. C, Unsupervised hierarchical clustering of MBL, CLL, and normal B cells. MBL and CLL cluster together into one clade. Although the clonal MBL  
and CLL separate by donor, naïve and memory B cells are intermingled with their CD5-positive counterparts.

cancer where the aberrant methylation landscape is already 
detectable in premalignant colorectal adenomas and ampli-
fies upon the colorectal cancer state (43). Taken together 
with the near universality of the altered cancer methylome 
(5), the possibly conserved early emergence points to an 
important role for the epigenetic change in a tumorigenic 
transition. Although it is difficult to establish causality, 
we speculate that the altered landscape may provide a 
receptive platform for the disease progression. Alterna-
tively, the cancer methylome may simply be a consequence 
of a developmental program that may regulate numerous 
cellular attributes, including methylation (5). In the latter 
case, it may well be other features driving the tumorigenic 
transition, and the methylome is only one biological conse-
quence of the entire program. Although this seems possible, 
it should be noted that this altered DNA methylation land-
scape is maintained across patients sometimes for decades 
and found in nearly all cancer types, raising the question of 
why it is not diverging if it has no functional role. Another 
possibility that we can consider here is that the altered 
methylome presents an optimized epigenetic state to main-
tain viability with maximum proliferation and the minimal 
energy requirement for DNA methylation maintenance.

Aside from these considerations, we note that the MBL and 
CLL methylome and transcriptome are extremely stable once 
acquired. In contrast to the dramatic fluctuations in tumor 
burden (estimated by the changes in the level of WBC counts) 
across disease course, methylation levels are not consistently 
affected by clonal expansion or treatment-induced bottlenecks. 
The latter may reflect that cells surviving treatment represent 
either the average of all subclones or that limited methylation 
heterogeneity is present across all subclones. From a practi-
cal standpoint, the stability of the methylome in patients 
with CLL limits its utility to track disease progression. Still, 
it may be valuable for early detection and helpful to assess 
the efficiency of treatments. We observed neither any notable 
consistency of dynamic CpGs along with the MBL to CLL 
nor CLL progression and treatment, indicating that the few 
observed dynamics over the disease progression are possibly 
an accumulative secondary effect. During disease progression, 
considerable increases in WBC counts are only juxtaposed with 
subtle methylome changes. These largely constant methyla-
tion levels within each patient indicate that increased clonal  
expansion occurred without substantial additional departure 
from the preexisting, already aberrant landscape. The stabil-
ity of the altered state is further supported by our single-cell  
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transcriptomes from the five patients that transition from MBL 
to CLL without any major expression dynamics. Finally, our 
finding that the cancer methylome also remains mostly unaf-
fected by conventional chemoimmunotherapy or the BCL2 
inhibitor venetoclax may keep patients at an elevated risk for 
relapse, in line with the fact that CLL is rarely cured, although 
this treatment landscape is continuously evolving (17).

Genetic and epigenetic diversity of normal tissues, tumors, 
and even clonally amplified cell populations have been most 
broadly assessed in-depth so far using bulk sequencing. To 
date, the degree of heterogeneity in methylation levels among 
distinct genomic regions within a single cell has not been 
investigated to our knowledge. Here, we applied single-cell 
methylome analysis and could show that aberrant meth-
ylation affects single cells to a surprisingly similar extent. 
Despite these convincing findings, it needs to be stated that 
due to technical limitations, such as stochastically missing 
values caused by unequal coverage, parts of the genome have 
not been investigated. Nevertheless, we could confirm that 
hypomethylation is more pronounced across individual MBL 
and CLL cells, suggesting that the methylation machinery 
targets a consistent and specific set of regions, though single 
CpGs are generally affected discordantly (20). As a result, 
single-cell analysis can help classify tumors and their micro-
environment, which provides a more holistic disease picture 
and may guide more precise treatments in the future.

In sum, our comprehensive exploration over the disease 
course of CLL, including its precursor stage MBL, highlights sev-
eral important lessons toward a better mechanistic understand-
ing of the cancer methylome. First, the transition to the altered 
methylome occurs very early, possibly as a nongenetic precursor 
lesion that is not yet tumorigenic. Second, it should play at least 
some facilitating, if not central, role as it was present in all 53 
patients evaluated and at all stages with remarkable stability. 
And finally, its persistence after treatment, though currently 
limited to the 13 patients that we investigated, suggests that the 
current chemoimmunotherapy and BCL2 inhibition approach 
eradicates only some but not all diseased cells. Although it 
remains to be investigated, the general nature of the epigenetic 
transformation extends to other cancer types, including many 
solid tumors, suggesting that this landscape may reflect conver-
gence toward a commonly utilized regulatory mechanism.

METHODS
Human Samples

Heparinized blood samples were obtained from normal donors 
and patients enrolled in clinical research protocols approved by the 
Human Subjects Protection Committee of the Dana-Farber Cancer 
Institute (DFCI), at University of California, San Diego and the Mayo 
Clinic (CLL Research Consortium), and through the International 
Cancer Genome Consortium (42) after obtaining written-informed 
consent. Treatment indication for all 21 patients in the discovery 
cohort was determined based on International Workshop on Chronic 
Lymphocytic Leukemia criteria (12, 44). Peripheral blood mononu-
clear cells (PBMC) from normal donors and patients were isolated by 
Ficoll/Hypaque density gradient centrifugation. Mononuclear cells 
were used fresh or cryopreserved with 10% DMSO FBS and stored 
in vapor-phase liquid nitrogen until the time of analysis. CD19+ B 
cells from normal volunteers and CLL samples with WBC ≤ 50 × 
109/L were isolated by immunomagnetic selection (Miltenyi Biotec) 

and stained with anti–CD19-phycoerythrin (PE; BioLegend) prior to 
FACS sorting for live single cells in the presence of DAPI. MBL cells 
and naïve and memory B cells from age-matched healthy donors were 
isolated as follows: Cryopreserved PBMCs were thawed and stained 
with anti–CD19-PE, CD5-FITC, and CD27-Allophycocyanin (APC; 
BioLegend). Cells were gated for naïve B cells (CD19+, CD27−, and 
CD5), memory B cells (CD19+, CD27+, and CD5−), or MBL (CD19+ 
and CD5+; Supplementary Fig. S7A).

Bulk RRBS Library Generation and Data Processing
RRBS libraries were generated from 25 to 100 ng of input DNA using 

the Ovation Methyl-Seq System (NuGen) following the manufacturer’s 
recommendation. We used NuGen unique molecular identifier (UMI) 
technology to measure the rate of PCR duplicates on one patient (four 
samples) and found the duplicate rate to be below 2%, even at an input 
of only 25 ng of DNA. On average, 15.7M fragments, resulting in 31.4M 
paired-end 101–base pair (bp) reads, were sequenced per sample on 
an Illumina HiSeq2500. These reads were aligned to the human hg19 
genome using BSmap (45) with flags -v 0.05 -s 16 -w 100 -S 1 -p 8 -u. An 
average of 21.1M reads per sample was aligned correctly. Custom scripts 
written in Perl were used to count the number of times a CpG was 
observed to be methylated. The methylation percentage for each CpG 
was calculated as the number of times the CpG appeared methylated 
divided by the total times the CpG was covered in sequencing reads. 
Finally, we converted the resulting CpG level files to bigWig files, filter-
ing out all CpGs covered with less than five reads. An average of 3.4M 
CpGs was covered per sample at an average depth of 14×.

Multiplexed Single-Cell RRBS Library Generation  
and Data Processing

Single-cell RRBS libraries were prepared by combining the first 
steps (cell lysis and physical separation of DNA and mRNA) of the sin-
gle-cell methylome and transcriptome sequencing protocol (46) with 
multiplexed single-cell RRBS (26) using double MspI+HaeIII diges-
tion. Single cells were sorted into 5 µL RLT plus buffer (QIAGEN)  
containing 1 U SUPERase in RNase inhibitor (Invitrogen) in 96-well 
PCR plates, flash-frozen on dry ice, and stored at –80°C. Upon 
thawing, 5 µL of QIAGEN RLT plus buffer and 10 µL M-280 
streptavidin beads conjugated to a biotinylated oligo-dT primer 
were added to each well. After 30 minutes at 25°C, the plates 
were transferred to a magnet to capture bead-bound mRNA, and 
the DNA-containing supernatant was transferred to a new 96-well 
plate. Beads in the original wells were washed twice with 15 µL 
of washing buffer (50 mmol/L Tris-HCl, pH 8, 75 mmol/L KCl, 3 
mmol/L MgCl2, 10 mmol/L DTT, and 0.5% Tween-20), and each 
wash was added to the DNA plate. To clean up the DNA, 1 volume of 
a 1:5 dilution of AMPure XT SPRI beads (Beckman Coulter) in 20% 
PEG/2.5 mol/L NaCl and 0.5 µL Proteinase K (0.8 U/µL, NEB) were 
added. After 30 minutes at 25°C with mixing, the beads were washed 
with 80% ethanol and genomic DNA eluted with 8 µL H2O, with the 
beads remaining in the well during library prep. After addition of  
2 µL 1x CutSmart buffer (NEB) containing 10 U of MspI (NEB), or 5 
U of MspI plus 5 U of HaeIII (NEB), DNA was digested for 2 hours 
at 37°C, followed by heat inactivation for 15 minutes at 65°C. MspI 
sites were filled in and fragment ends adenylated by adding 2 µL 
1× CutSmart containing 2.5 U Klenow fragment (3′–5′exo-, NEB), 
0.4 µL of dNTP mixture (10 mmol/L dATP, 1 mmol/L dCTP, and 
1 mmol/L dGTP) followed by a two-step incubation for 25 minutes 
at 30°C and 30 minutes at 37°C and heat inactivation at 70°C for 
10 minutes. After addition of 3 µL 1× CutSmart containing 800 U 
T4 DNA ligase (NEB), 0.1 µL of 100 mmol/L ATP (Roche), 1.5 µL of 
0.1 µmol/L custom 5mC-substituted and indexed (inline barcode) 
adapter, overnight ligation at 16°C, and heat inactivation (20 min-
utes at 65°C), 24 separately indexed ligation reactions were pooled. 
After addition of 3 µL sheared and dephosphorylated Escherichia coli  
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carrier DNA (27), DNA was cleaned up with 1.8 volumes of 
AMPure XP beads (Beckman Coulter), eluted off the beads, and 
bisulfite converted (EpiTect Fast Bisulfite kit, QIAGEN) following 
the manufacturer’s recommendations with extended conversion time  
(20 minutes each cycle). Each pool of RRBS libraries from 24 single 
cells was PCR amplified using KAPA HiFi Uracil+ DNA Polymerase, a 
universal P5, and a pool-specific indexed P7 primer for a total of  
17 cycles. The thermoprofile was 98°C denaturation for 45 sec-
onds, 6 cycles of 98°C for 20 seconds, 58°C annealing for 30 
seconds, and 72°C extension for 1 minute, followed by 11 cycles 
of 98°C for 20 seconds, 65°C annealing for 30 seconds, and 
72°C extension for 1 minute, and a final extension at 72°C for  
5 minutes. To minimize size bias during sequencing, multiple PCR 
products, each representing 24 single cells, were pooled together 
and size selected on a 2% NuSieve agarose gel into two fractions 
(150–400 bp and 400–800 bp) that were sequenced in separate 
lanes with a 10% spike-in of a library with a balanced base compo-
sition, which is typically 2 lanes (1.5 plus 0.5 lanes for the low and 
high size cut, respectively) for 96 cells. On average, 4.5M fragments, 
resulting in 9M paired-end 75-bp reads, were generated per sample 
on an Illumina HiSeq4000.

Sequencing reads were demultiplexed using the inline barcode, 
adapters were trimmed, and reads were trimmed for quality. These 
reads were aligned to the human hg19 genome using BSmap with 
flags -v 0.1 -s 12 -w 100 -S 1 −q 20 −u −R. An average of 8.4M reads 
(4.2M pairs) per sample was aligned. To determine the methylation 
state of all CpGs captured and assess the bisulfite conversion rate, 
we used the mcall module in the MOABS software suite with stand-
ard parameter settings (47). Finally, we converted the resulting  
CpG level files to bigwig files, filtering out all CpGs covered with 
more than 250 reads resulting in an average of 1.1M CpGs covered 
per sample.

10x Single-Cell RNA Library Generation and  
Data Processing

PBMCs were thawed in Roswell Park Memorial Institute 1640 
medium supplemented with 10% FBS and centrifuged at 1,500 
rpm for 5 minutes. Each sample was filtered through a 70-µm 
filter. Cells were resuspended in PBS–0.04% BSA and stained with 
anti-human CD5 (FITC), CD19 (PE), CD27 (APC), and 7-aminoac-
tinomycin D for 15 minutes on ice (BioLegend). The samples were 
washed and resuspended in PBS–0.04% BSA at a concentration of 
10 × 106 cells/mL. Samples from the same patient were processed 
and sorted in parallel on the same day using two FacsAria II cytom-
eters (Becton Dickinson). Cells were sorted through a 70-µm noz-
zle into 1.5-mL Eppendorf tubes with 10-µL PBS–0.04% BSA and 
immediately stored on ice. Cellular suspensions were loaded on a 
10x Genomics Chromium Controller platform (10x Genomics, Inc.) 
to generate a single-cell Gel bead in Emulsion (GEM). Single-cell 
RNA sequencing (scRNA-seq) libraries were prepared as previously 
described (48).

The Cell Ranger pipeline (10X Genomics, Inc.) was used for each 
scRNA-seq dataset to demultiplex the raw base call files, generate 
the fastq files, perform the alignment against the mouse reference 
genome hg19, filter the alignment, and count barcodes and UMIs. 
Outputs from multiple sequencing runs were also combined using 
Cell Ranger functions.

Data Analysis
If not stated otherwise, all statistics and plots are generated using 

R version 3.5.1 “Feather Spray.” In all boxplots, the centerline is 
median; boxes, first and third quartiles; whiskers, 1.5× interquartile 
range; and data beyond the whiskers’ end are omitted.

Bed files were processed using UCSCtools and bedtools 
(v2.25.0).

Additional Data
Whole genome bisulfite sequencing (WGBS) data of normal B cells 

were obtained from the European Genome-phenome Archive (EGA) 
under accession EGAS00001001196 for comparison in the phylogenetic 
and average methylation analysis. Methylation data were filtered for 
minimum coverage of 10× read coverage, and coordinates were con-
verted to hg19 using bedtools liftOver (49). Additional WGBS data of 
normal B cells were obtained from Beekman and colleagues (30) and 
downloaded from http://resources.idibaps.org/paper/the-reference-
epigenome-and-regulatory-chromatin-landscape-of-chronic-lym-
phocytic-leukemia. Methylation data were filtered for a minimum 
of 10× read coverage, and coordinates were converted to hg19 using 
bedtools liftOver. Data were used in phylogenetic comparisons, aver-
age methylation analysis, and all comparative analysis, e.g., detecting 
differential methylated regions and genomic region visualizations. 
To ensure accurate comparison among samples, all published WGBS 
data were reduced to positions covered in any of our patient RRBS 
data, resulting in a set of approximately 5 million comparable CpGs.

Single-cell RRBS and RNA-seq data of the two CLL samples were 
obtained from Gaiti and colleagues (40).

Feature Annotations
Chromatin states were defined by the standard 15-state model 

using the ChromHMM algorithm (33) and were downloaded from 
the UCSC Genome Browser (50). The average methylation rate for 
each sample and per chromatin state was calculated as the mean of 
all methylation rates overlapping with a particular chromatin state. 
CpG islands were downloaded from the UCSC Genome Browser; 
shores were defined as adjacent 2 kb regions and shelves as the next 
adjacent 2 kb regions. Gene annotations were downloaded from the 
UCSC Genome Browser (gencode v19), and promoter regions were 
defined as 5,000 nt upstream to 2,500 nt downstream of annotated 
transcription start site. DMRs were assigned to genes if overlapping 
with the promoter or gene body with at least one shared base. For 
unique annotation of DMRs and if a DMR overlapped more than 
one feature, the ranking was: promoter, gene body, last intergenic; or 
CpG island, shelf, and last shore. For chromatin state annotation of 
DMRs, the 15 chromatin states were collapsed into the 6 main cat-
egories (Active Promoter, Poised Promoter, Enhancer, Transcription, 
Insulator, and Heterochromatin), and each DMR was assigned to the 
region with its maximal overlap.

Mutation and subclone information was taken from ref. 28.

Phylogenetic Tree
The phylogenetic analysis of DNA methylation was performed 

as previously described (51). In brief, the phylogenetic trees were 
inferred using the fastme.bal function in the R package ape, which 
is based on the minimal evolution method. Trees were computed 
by applying the fastme.bal function on the Euclidean distance 
matrices of the methylation rates of all samples in the tree. To 
always capture the maximal information, the subset of CpGs 
considered was adapted to the sample shows, resulting in n = (i) 
28,343,743; (ii) 5,227,401; and (iii) 3,490,971 CpGs for (i) normal 
B cells, (ii) normal B cells + first time point CLL, and (iii) normal 
B cells + first time point CLL + MBL; normal B cells + all CLL time 
points, respectively.

Scatter Plots and Correlation
Scatter plots were created using the smoothScatter function of R, 

and correlations were calculated using the cor function of R. For the 
first figure, the average methylation per group was used (n = 3 for 
naïve and memory B cells, n = 20 and 21 for unmutated and mutated 
CLL, respectively). Missing values were removed from the mean cal-
culation. For the matched MBL–CLL correlation, missing values were 
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not omitted from the naïve, memory, and the five matched MBL and 
CLL samples, resulting in 1,801,907 CpGs that were used for correla-
tion analysis and scatter plots. Statistics for the full CLL cohort are 
given in Supplementary Fig. S5A.

Genome Region Visualization
Visualization of methylation levels per CpG at genomic regions 

was done using the plotTracks function of the R package Gviz (52). 
Track data were grouped by cell type, and for the curve, representa-
tion was plotted as a smoothed line.

Differential Methylation Analysis
DMRs were called using metilene version 0.2–7 (32). DMRs were 

defined to have an absolute minimum difference in methylation of 
0.25 with a maximum distance of 100 nt between CpGs within a 
DMR and a minimum of 3 CpGs per DMR (parameter −M 100 −m 
3 −d 0.25). DMRs were calculated between (i) the normal B cells 
from Beekmann and colleagues (30), (ii) CLL samples as well as 
between the first and last pretreatment and the last pre- and first 
posttreatment time points, and (iii) for each sample individually 
between the first and last pretreatment and the last pre- and first 
posttreatment time points. More specifically, DMRs were calcu-
lated for normal B cells to CLL between the naïve B cells (n = 3) and 
the first time point of the CLL samples with unmutated IGHV as 
well as between the memory B cells (n = 3) and the first time point 
of the CLL samples with mutated IGHV. Only positions on the 
autosomes (chr1–22) were taken into account that were covered 
by all three normal B-cell samples (naïve or memory) and 90% of 
the CLL samples (n = 18 unmutated/n = 19 mutated CLL), respec-
tively. For within-patient sample versus sample DMRs, all posi-
tions that were covered by both samples were taken into account. 
After DMR calling, all P values were adjusted for multiple testing 
using the R function p.adj, and regions with an adjusted P value  
< 0.05 were considered DMRs. As previously described, DMRs 
were separated into DMRs that overlap CpGs that are dynamic 
during B-cell differentiation (difference between all normal B 
cells > 0.25) and subsequently called B-cell–related DMRs, and 
those that do not overlap any dynamic position are called CLL 
DMRs. No DMRs (FDR < 0.05) were found when comparing the 
five matched MBL samples with the respective five CLL samples, 
when comparing the unmutated and mutated CLL, or when com-
paring the first pretreatment time points to the last pretreatment 
time points.

For heatmap visualization, methylation levels of DMRs were cal-
culated as the mean methylation of all CpGs with a DMR for all 
samples and plotted using the heatmap function of the R package 
ComplexHeatmap (53). Row annotations were based on overlap with 
features; see Feature Annotations section above. The enrichment 
analysis of genes affected by DMRs was done using the online Web 
tool WebGestalt (54). An overrepresentation enrichment analysis 
(ORA) was calculated for the CLL DMRs with all DMRs as back-
ground for Panther pathways and the patient-specific DMRs by 
comparing recurrently hit genes among more than two patients with 
all DMR genes.

Single-Cell Analysis. For comparison of the RRBS single-cell 
experiments, only positions of the double-digest data (naïve and 
memory B cells) were considered that were also covered by the single-
digest data (CLL).

10x scRNA-seq. The single-cell RNA was analyzed using the 
python toolkit “Scanpy” with default parameters for clustering and 
UMAP generation (55). Gene expression profiles were generated 
using parameters for normalized gene expression representation for 
dotplot and heatmap representations.

Data Accessibility
Raw methylation sequence data from patients are deposited in the 

database of Genotypes and Phenotypes (dbGAP) record # phs001431.
v1.p to allow controlled access and maintain patient privacy.

ScRNA-seq and processed methylation data are available under 
Gene Expression Omnibus (GEO) accession GSE125499. Go to https:// 
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE125499.
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Extended Data 
Fig. 1 

Clonal 
deconvolution 
process. 

Parry_ED_Fig1.t
if 

a, distinguishing RS from CLL clones after 
inferring subclonal composition of paired CLL 
and RS samples. b, inferring phylogenetic tree 
from cancer cell fraction using PhylogicNDT. c, 
sample composition d, mapping copy number 
variations to clones using CopyNumber2Tree. 

Extended Data 
Fig. 2 

Phylogenetic 
reconstruction 
and somatic 
genomic 
alterations.  

Parry_ED_Fig2.t
if 

For each of the patient trios with WES data, the 
left panel shows the phylogenetic tree tracing 
the transformation history from CLL to RS. The 
magenta frame denotes the Richter clones. The 
middle top panel represents the subclonal 
composition inferred after clustering alterations 
with similar cancer cell fractions as previously 
reported4. The middle bottom panel indicates 
the timeline with RS and CLL sampling time 
and CLL therapeutic lines. (F, fludarabine; C, 
cyclophosphamide; R, rituximab; P, pentostatin; 
O/Ofa, ofatumumab; HDMP, high-dose 
methylprednisolone; A, alemtuzumab; Auto, 
autologous stem cell transplantation; CLB, 
chlorambucil; B, bendamustine; CHOP, 
cyclophosphamide, doxorubicin, vincristine, 
prednisone; ESHAP, etoposide, 
methylprednisolone, high-dose cytarabine, 
cisplatin; CHP, cyclophosphamide, 
doxorubicin, prednisone; Len, lenalidomide; 
Ob, obinutuzumab; idela; idelalisisb; D, 
dexamethasone; Adria, adriamycin). The right 
panel is composed of allelic fraction plots and 
allelic copy ratio plots showing clonal 
assignment of somatic copy number events to 
CLL and RS clones. Cases with whole genome 
doubling in Extended Data Fig. 2 and clonal 
unrelated cases in Extended Data Fig. 3. 
 

Extended Data 
Fig. 3 

Phylogenetic 
reconstruction 
and somatic 
genomic 
alterations 

Parry_ED_Fig3.t
if 

For each of the patient trios with WES data, the 
left panel shows the phylogenetic tree tracing 
the transformation history from CLL to RS. The 
magenta frame denotes the Richter clones. The 
middle top panel represents the subclonal 
composition inferred after clustering alterations 



with similar cancer cell fractions as previously 
reported4. The middle bottom panel indicates 
the timeline with RS and CLL sampling time 
and CLL therapeutic lines. (F, fludarabine; C, 
cyclophosphamide; R, rituximab; P, pentostatin; 
O/Ofa, ofatumumab; HDMP, high-dose 
methylprednisolone; A, alemtuzumab; Auto, 
autologous stem cell transplantation; CLB, 
chlorambucil; B, bendamustine; CHOP, 
cyclophosphamide, doxorubicin, vincristine, 
prednisone; ESHAP, etoposide, 
methylprednisolone, high-dose cytarabine, 
cisplatin; CHP, cyclophosphamide, 
doxorubicin, prednisone; Len, lenalidomide; 
Ob, obinutuzumab; idela; idelalisisb; D, 
dexamethasone; Adria, adriamycin). The right 
panel is composed of allelic fraction plots and 
allelic copy ratio plots showing clonal 
assignment of somatic copy number events to 
CLL and RS clones. Cases with whole genome 
doubling in Extended Data Fig. 2 and clonal 
unrelated cases in Extended Data Fig. 3. 
 

Extended Data 
Fig. 4 

Putative RS 
driver genes 

Parry_ED_Fig4.t
if 

a-x, individual protein mutation maps for 
selected putative Richter drivers, showing gene 
mutation subtype (for example, missense), 
position and evidence of mutational hotspots. 
Panels were generated by using the cBioPortal 
for Cancer Genomics tool. 

Extended Data 
Fig. 5 

RS sCNAs and 
genomic 
clustering. 

Parry_ED_Fig5.t
if 

GISTIC2-defined recurrent copy number gains 
(red, left) and losses (blue, right) are visualized 
for focal events for RS samples (a) and RS 
clones (b) (RS samples with CLL events 
subtracted, bottom). Chromosomes are shown 
on the vertical axis. Green line denotes a near 
significant q value of 0.25 and significant 
events (q<0.1) are annotated in text along with 
putative driver genes contained within the peak 
(Supplementary Table 5) c, NMF clustering of 
RS with DLBCL (304 de novo DLBCL 
samples14 shows clonal related RS clusters 
separately from DLBCL and closes to DLBCL 
from C214. Clonal unrelated RS clusters across 
DLBCL subtypes and separate from RS. 
Samples were annotated for clonal relationship 
(related RS, gray, unrelated RS, black),  cohort 
(DLBCL, light purple; RS, dark purple) and 
DLBCL clusters (C1, purple; C2, yellow, C3, 
pink, C4, blue, C5, green)14. d, NMF clustering 
of RS shows 5 distinct genomic subtypes of 
transformation 



Extended Data 
Fig. 6 

Transcriptome 
supports distinct 
RS molecular 
subtypes. 

Parry_ED_Fig6.t
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a, Supervised clustering of transcriptome data 
from 36 RS patients by molecular subtype 
highlights differentially regulated genes in 
subtype 1 and 3 (Supplementary Table 8). 
Samples are annotated for cohort (Discovery, 
pink; Validation, yellow), clonal relationship 
(unrelated, black, related, white), and sample 
purity by WES (green gradient). b, 
Unsupervised consensus clustering of RS 
transcriptome data (n=36) shows 5 clusters.  
(Discovery, pink; Validation, yellow), RS 
molecular subtype (1, purple; 2, blue; 3, 
orange; 4, green; and 5, pink), and sample 
purity by WES (green gradient).c, 5 x 5 table 
showing association between molecular 
subtype of RS and unsupervised transcriptome 
clusters (2 sided Fisher’s exact test, P=0.038) 
d, Kaplan-Meier curve showing OS of clonal 
unrelated RS compared to clonal related RS. P 
value is log rank (2 sided Mantel Cox). 

Extended Data 
Fig. 7 

Phylogenetic 
trees showing 
CLL and RS 
clones from WGS 
of paired 
samples. 

Parry_ED_Fig7.t
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a, Phylogenetic tree and CCF plot for 9 patients 
based on WGS data showing clonal related RS 
(magenta box). b, Phylogenetic tree and CCF 
plot for 2 patients based on WGS demonstrating 
clonally unrelated RS c, Representative 
phylogenetic trees and CCF plot for 3 patients 
from UK cohort8 based on WGS.  

Extended Data 
Fig. 8 

WGS Circos plots 
with or without 
chromothripsis. 

Parry_ED_Fig8.t
if 

a, chromothripsis and kataegis in RS sample (Pt 
42) with whole genome doubling. Circos plots 
showing structural variants (interchromosomal, 
blue; deletion, red; inversion, yellow; tandem 
duplication, green; long range, teal), allelic copy 
number (middle), rainfall plot with kataegis 
regions (red) and chromosomes (outside). 
Adjacent rainfall plots show kategis regions (C 
to G, red; C to T, yellow; C to A, teal) with 
corresponding allelic copy number 
fragmentation. b, Circos plots from RS WGS 
samples showing structural variants 
(interchromosomal, blue; deletion, red; 
inversion, yellow; tandem duplication, green 
and long range, teal), allelic copy number 
(middle), rainfall plot with kataegis regions 
(red) and chromosomes (outside). SVs 
impacting known genes and translocation 
partners are labeled (Supplementary Table 7k).  
 

Extended Data 
Fig. 9 

Single cell 
processing and 
transcriptome 
analysis of RS 

Parry_ED_Fig9.t
if 

a, flow sorting strategy for RS single-cell 
samples. Flow sorting to separate RS and CLL 
cells by size for Patient 19 and Patient 41 (lymph 
node, LN; peripheral blood, PB; bone marrow, 



samples at single 
cell resolution. 

BM). Flow sorting viable cells for Pt 43, Pt 4 
and Pt10. Representative flow plots below 
demonstrate CLL and RS cells were included in 
sorted population. b, B-cell receptor (BCR) 
clonotypes plotted for RS and CLL clusters on 
UMAP visualization. c, Representative example 
from patient 10 showing CNVsingle identifies 
malignant B cell clusters (5 and 6) separate from 
immune cell clusters (0,1,2,3,4,7,9). d, UMI/cell 
and Gene/cell plots for CLL and RS single-cell 
clusters. RS demonstrates higher UMI/cell 
(P<2.2 x 10-16 see Methods, Supplementary 
Table 8). e, RNA inference of directional 
trajectories is shown on UMAP visualization for 
Pts 43 and 10. f, copy number variation heatmap 
inferred in each cluster from scRNA-seq data 
using our CNVSingle algorithm for Pts 43 and 
10 (Methods) 

Extended Data 
Fig. 10 

Single-cell 
transcriptome 
and copy number 
analysis of RS 
patients. 

Parry_ED_Fig10
.tif 

UMAP visualization of single-cells from patient 
4 (left) with associated allelic copy number ratio 
plot inferred by CNVsingle (top right) and RS 
WES (bottom right). b, UMAP visualization of 
CLL and RS cells from Patient 18 (left top 
panel) with flow-sorting annotations (right top 
panel). Inferred CNAs from CNVSingle 
(bottom panel) are shown as heatmap with CLL 
(green) and RS (pink) events highlighted. c, 
UMAP visualization of CLL and RS cells from 
Patient 41 (left top panel) with flow-sorting 
annotations (right top panel). Inferred CNAs 
from CNVSingle (bottom panel) with CLL 
(green) and RS (pink) events highlighted. d, 
Plasma of patient 44 shows RS specific sCNVs 
on chromosome 9 and 13 leading up to RS 
diagnosis, which are not reflected in circulating 
CLL e, Plasma of patient 99 at the start of CLL-
directed therapy (top) and just ahead of  
diagnosis of RS (bottom) during CLL response. 
f, Chromothripsis in post-transplant RS plasma 
cfDNA at time of relapse (Pt 112). g, Plot 
showing allele frequency of RS (purple) and 
CLL (green) mutations in RS WES (bottom) and 
plasma cfDNA WES (top) for patient 5 (top) and 
patient 44 (bottom)  
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 75 
ABSTRACT 76 
 77 
 78 
Richter syndrome (RS) arising from chronic lymphocytic leukemia (CLL) exemplifies an aggressive malignancy 79 

that develops from an indolent neoplasm. To decipher the genetics underlying this transformation, we 80 

computationally deconvoluted admixtures of CLL and RS cells from 52 patients with RS, evaluating paired CLL-81 

RS whole-exome sequencing data. We discovered RS-specific somatic driver mutations (including IRF2BP2, 82 

SRSF1, B2M, DNMT3A, and CCND3), recurrent copy number alterations beyond del(9p21)[CDKN2A/B], 83 



recurrent whole genome duplication and chromothripsis, which were confirmed in 45 independent RS cases and 84 

in an external set of RS whole-genomes. Through unsupervised clustering, clonally-related RS was largely 85 

distinct from diffuse large B cell lymphoma (DLBCL). We distinguished pathways that were dysregulated in RS 86 

versus CLL, and detected clonal evolution of transformation at single-cell resolution, identifying intermediate 87 

cell states. Our study defines distinct molecular subtypes of RS and highlights cell-free DNA analysis as a 88 

potential tool for early diagnosis and monitoring. 89 

 90 

 91 

 92 

  93 



Transformation to a high-grade malignancy accounts for therapeutic resistance and rapid disease progression 94 

across cancers1-4. Richter syndrome (RS), an aggressive lymphoma developing in patients with chronic 95 

lymphocytic leukemia (CLL), is a striking example of transformation3. RS is associated with median overall 96 

survival of less than one year, even in the modern era3. Despite advanced genomic characterization of CLL5,6, 97 

understanding of the genetic factors driving evolution of CLL to RS remains limited. This has been partly from 98 

the difficulties in acquiring RS tissue and paired antecedent CLL cells. These challenges have precluded 99 

comparative evolutionary analysis, and limited the ability to define the molecular events underlying 100 

transformation beyond alterations in TP53, NOTCH1, CDKN2A/B and MYC4,7-9. While a subset of RS is believed 101 

to be clonally unrelated based on IGHV sequencing3,9, a genome-wide analysis to exclude shared ancestry has 102 

not been yet performed. Finally, RS biopsies contain admixtures of RS and CLL cells, mandating development 103 

of tools for in silico deconvolution of RS and CLL genetic changes. To definitively delineate factors contributing 104 

to high-grade transformation, we analyzed exomes from matched RS and CLL DNA from 52 patients and 105 

confirmed our findings in 45 independent RS patients and 14 external RS cases4.   106 



RESULTS  107 

Developing an analytic framework to discover RS drivers  108 

We assembled a discovery cohort of 53 patients with paired CLL and RS samples of diffuse large B-cell histology 109 

(DLBCL), the most common form of transformation3 (Fig. 1a, Supplementary Table 1-2). Forty-five (83%) 110 

patients received prior CLL-directed therapies, with 11 (21%) having received targeted agents. Thirty-nine (72%) 111 

patients had unmutated immunoglobulin heavy-chain variable region gene (IGHV) CLL (U-CLL). Whole-exome 112 

sequencing (WES) was completed for 186 DNA samples (from 53 patients) and whole-genome sequencing 113 

(WGS) for 30 samples (11 patients) (Supplementary Table 3). WES data from 42 patients originated from 114 

matched CLL-RS-germline samples (“trios”) and 10 from paired CLL-RS (“duos”). As validation, we performed 115 

WES on 45 independent RS cases, 17 of which were duos (Fig. 1b, Supplementary Table 1-3).  116 

To delineate the driver events giving rise to RS, we employed established WES analysis tools and 3 additional 117 

steps: (i) deTiN10, to recover somatic mutations filtered due to tumor-in-normal contamination;5 (ii) an optimized 118 

tool to detect somatic copy number alterations (sCNAs); (iii) PhylogicNDT11 to establish the clonal composition 119 

per patient sample and infer the phylogenetic tree (Fig. 1c; Extended Data Fig. 1a-c). RS clones were defined 120 

as new clones arising in the RS sample, not present in the antecedent CLL sample, and distinct based on somatic 121 

single nucleotide variants (sSNVs) and sCNAs. Within the CLL compartment, phylogenetic trees identified the 122 

ancestral (CLLANC), intermediate (CLLINT, which expanded to give rise to RS that arose from CLLANC), and 123 

divergent (CLLDIV) clones (Fig. 1d). RS was identified as related to CLL if at least one common CLLANC clone 124 

was shared.  125 

These tools were applied to infer the CLL and RS clonal structure and relatedness (Extended Data Fig. 1d, 2-3; 126 

Supplementary Figure 1-2). We identified instances of clonal unrelatedness to the antecedent CLL (Fig. 1e, 127 

Extended data Fig. 2), previously classified based on IGHV sequencing in ~20% of RS 3,9. Most RS were clonally 128 

related to the antecedent CLL (n=45, 87%) (Fig. 1f). Evolutionary relationships were secondarily determined by 129 

comparing the immunoglobulin gene sequence (Supplementary Table 4), largely in line with the WES-based 130 

phylogenies.  131 



 132 

Defining the genomic landscape of RS 133 

To determine the pure RS genomic landscape, we identified: (i) events strictly present in RS cells through 134 

computational isolation of the RS lineage separate from CLLDIV (Fig. 2a-grey outline); and (ii) events newly 135 

acquired in RS clones (Fig. 2a-magenta outline). To uncover drivers of transformation, we applied MutSig2CV12 136 

and GISTIC2.013 (Fig. 2b-c, Supplementary Table 5)14-16 137 

 138 

From our discovery cohort, we observed mutations in known CLL drivers (NOTCH1, TP53, SF3B1; Fig. 2b) and 139 

identified new candidate RS drivers (Fig. 2c, Extended Data Fig. 4a-x). These included mutations in IRF2BP2  140 

(n=7), which encodes an IRF2-dependent transcriptional corepressor, that is mutated in the N1 subtype of 141 

DLBCL15 and primary mediastinal B cell lymphoma17 (Extended Data Fig. 4d). Inactivating mutations in the 142 

DNA methyltransferase DNMT3A (8%) were previously reported as a single case in RS8; genetically engineered 143 

mice modelling this alteration have confirmed its CLL-driving function and impact on NOTCH 144 

signaling18,19(Extended Data Fig. 4e). B2M loss through inactivating mutations, a mechanism of immune escape 145 

across cancers, 14,20,21 21,22 was observed in 3 patients (Extended Data Fig. 4f). The detected mutations in the 146 

MYC-interacting23 splicing factor SRSF1 (n=4) did not co-occur with mutated-SF3B1, consistent with mutual 147 

exclusivity of splicing factor mutations across cancers24 (Extended Data Fig. 4g). EZH2 hotspot alterations were 148 

found in 2 clonally unrelated RS cases, as in DLBCL14,15, while EZH2 frameshift was seen in one case (Extended 149 

Data Fig. 4h).  150 

Strikingly, we detected numerous sCNAs (Fig. 2b-c, Extended Data Fig. 5a-b; Methods), including del(17p) 151 

[TP53, 63%] and del(9p21.3) [CDKN2A/B, 19%], with arm-level loss of 9p in 5 additional patients. Recurrent 152 

focal events beyond common CLL drivers included del(15q13.1l) [MGA and B2M, 21%], amplification (amp) of 153 

chromosome 8q24 [MYC, 15%], del(7q36) [EZH2, POT1, KMT2C 11.5%], and amp(13q31.2) [ERCC5, miR-17-154 

92 12%], which have been described in high-risk CLL25. Changes not previously reported in CLL or RS included 155 

amp(9p24) [PDL1/L2, 8%], del(16q12) (11.5%), del(18q22) (8%), and amp(7q21.2) [CDK6, 11.5%], del(1p), 156 

amp(11q) [POU2AF1, SDHD] and amp(1q23). Whole-genome doubling (WGD) was noted in 15% of cases 157 



(Extended Data Fig. 2-3). The recurrent RS-specific gene mutations, sCNAs, and WGD were confirmed in our 158 

validation cohort (n=45) (Fig. 2b-right bar, Supplementary Table 5, Extended Data Fig. 4a-x) and 14 external 159 

RS genomes4 (Extended Data Fig. 4a-x; Supplementary Table 5).  160 

Combined analysis of our discovery and validation cohorts provided power to further detect novel RS drivers, 161 

with CCND3, TET2 and BRAF mutations and additional focal sCNAs emerging as significant (Extended Data 162 

Fig. 4v-x, Fig. 2d). Comparison of our 45 clonally related cases with prior large-scale CLL analyses26 revealed 163 

predisposing lesions for RS, given their relative enrichment in CLLANC+INT, including mutated TP53 and 164 

NOTCH1, del(17p) and del(14q32) but not tri(12), mut-SF3B1, or del(11q) (all Q<0.05, Fig. 2e, Supplementary 165 

Table 5). Compared to DLBCL14,15, the driver distribution in these 45 cases was enriched for TP53, del(17p), 166 

NOTCH1, del(13q14.2), del(1p), amp(19p13.2), SF3B1, EGR2, and GNB1 (Fig. 2f, all Q<0.05). Mut-IRF2BP2, 167 

-MGA and -DNMT3A frequency was higher in RS compared to 304 de novo DLBCLs14.  168 

Evaluation of the relative timing of each putative driver event in 58 related RS cases revealed ATM mutations, 169 

tri(12) or SF3B1 mutations as already present in CLLANC; alterations in TP53 (mutations and/or del(17p)) or 170 

NOTCH1 and del(15q15.1) [MGA] were predominantly CLL events (P<0.05, Supplementary Table 6). In 171 

contrast, del(9p21), del(9p), del(9q), del(2q37), amp(1q23), and del(6q) were most frequently observed as new 172 

RS events (P<0.05, Supplementary Table 6); WGD was restricted to the RS clones (Fig. 2g, Extended Data 173 

Fig. 2-3, Supplementary Figure 1-2). By systematically identifying preferred genomic trajectories driving 174 

transformation, we calculated the probability for acquiring any of the RS drivers per CLL driver, via network 175 

analysis (Fig. 2h, Supplementary Table 6). Significant trajectories from CLL to RS included NOTCH1 to 176 

del(1p), NOTCH1 to del(14q32) and del(14q32) to amp(16q23) (P<0.05; Q<0.4). 177 

Overall, our findings indicate mutations of NOTCH1, DNA damage response and the MAPK pathway as 178 

preexisting in CLL, and alterations in epigenetics, interferon/inflammatory signaling, cell cycle deregulation and 179 

immune evasion - whether by sSNVs or by sCNAs - as newly occurring at transformation (Fig. 3a).  180 

 181 

Profiling RS emerging following targeted therapies 182 



Therapies targeting BTK, BCL2 or PI3K-delta pathways have revolutionized CLL therapy, and yet have failed to 183 

prevent transformation. Since RS is a recognized mechanism of therapeutic resistance27-29, we evaluated the 15 184 

patients within our cohort presenting transformation to RS while receiving targeted agents. No typical resistance 185 

mutations to targeted agents were detected (BTK, BCL2), while one ibrutinib-exposed patient had del(8p) and one 186 

venetoclax-treated patient had amp(1q), both previously described sCNA drivers of resistance30,31 (Fig. 3b, 187 

Extended Data Fig. 2-3, Supplementary Fig. 1-2). 188 

 189 

To track disease tempo over time, we analyzed serial samples procured in the years prior to RS from 2 patients 190 

receiving targeted agents. Pt 26 illustrates the potential impact of EZH2 inactivation to transformation while on 191 

venetoclax since the RS specimen carried both an inactivating EZH2 frameshift mutation and deletion of the 192 

EZH2 locus through del(7q36) (Fig. 3c). Pt 3 developed nodal RS that evolved from TP53-mutated CLL while 193 

on ibrutinib. The RS clone emerged from an aggressive CLL subclone (clone 3) marked by focal loss of the 194 

CDKN2A/B locus (Fig. 3d). Newly acquired genetic changes in the RS clone included inactivating mutations in 195 

chromatin modifiers (CHD2, SRSF1), NFKBIE, and del(15q15) [MGA loss]. Transformation on targeted agents 196 

appears as an heterogenous process, distinct from acquired resistance in CLL and characterized by complex 197 

evolution marked by accumulation of multiple events. 198 

 199 

RS is characterized by distinct molecular subtypes  200 

To assess the degree of similarity between RS and DLBCL, we performed unsupervised non-negative matrix 201 

factorization (NMF) clustering on our 97 RS cases along with 304 DLBCL samples14 based on our identified RS 202 

genetic alterations together with known DLBCL drivers. Most RS (75 of 97 cases) clustered together, largely 203 

separately from DLBCL (Extended Data Fig. 5c). The DLBCL cases closest to RS comprised DLBCL C2, 204 

previously reported with biallelic TP53 inactivation, frequent CDKN2A/B loss and del(13q14)[Rb1]14. Seven of 205 

8 clonally unrelated RS clustered with DLBCL (Fisher’s exact test, P=6.75 x 10-6), with membership across the 206 

DLBCL clusters14, highlighting unrelated RS as a diverse entity genetically similar to de novo DLBCL.   207 

 208 



Analysis of the combined RS validation and discovery WES data by unbiased NMF consensus clustering defined 209 

5 RS molecular subtypes (Extended Data Fig. 5d). Three (RS1, RS3, RS5) were enriched in TP53 and/or 210 

del(17p) and displayed higher rates of sCNAs and genome alterations (Fig. 4a). RS1 (13.4%) was marked by 211 

WGD and fractured genomes (P <0.001 Supplementary Table 7f; Methods), along with arm level loss of 1p 212 

and 9p and MYC amplification. It comprised 6 of 15 M-CLL patients, highlighting WGD as a mechanism of 213 

transformation in M-CLL (Fisher’s exact test P=4.6x10-3). RS3 (20.6%) was enriched for del(17p) and mutations 214 

in TP53, NOTCH1, and IRF2BP2, and frequently contained sCNAs, including del(14q32.11), del(9q), 215 

del(15q15.2) [MGA], amp(16q23.2) [IRF8] and del(2q37.1). RS5 (22.7%) similarly displayed high rates of 216 

del(17p) and TP53 alterations and frequent sCNAs including del(16q12.1), del(1p35.2) and amp(7p) but lacked 217 

NOTCH1 mutation. By contrast, subtypes RS2 and RS4 showed lower fraction of genome altered (P <0.001 [RS2 218 

vs 1, 3, 5]; P<0.005 [RS4 vs 1, 3, 5]; Supplementary Table 7). RS2 (26.8%) was predominantly marked by 219 

tri(12) co-occurring with SPEN/NOTCH1 and KRAS mutations. RS4 (16.5%) was marked by SF3B1 and EGR2 220 

mutations on a background of del(13q).  221 

 222 

Evaluation of differential expression between subtypes from matched transcriptomes from 36 RS cases identified 223 

distinct signatures defining RS1 (n=25 genes) and RS3 (n=188) (Extended Data Fig. 6a, Supplementary Table 224 

8). RS3 displayed signatures of cell cycle and inflammatory/interferon signaling processes in line with its 225 

enrichment for IRF2BP2 mutations (Supplementary Table 8). Unsupervised consensus clustering identified 5 226 

transcriptional clusters that associated with RS molecular subtypes (Fisher’s exact test, P=0.038, Extended Data 227 

Fig. 6b-c). RS2 and RS4 associated with improved overall survival (log-rank P = 0.0082) (Fig. 4b). Clonally 228 

related cases had shorter median OS than unrelated ones (log-rank P = 0.0094) (Extended Data Fig. 6d).   229 

 230 

Mutational processes underlying transformation 231 

Evaluation of mutational profiles from the combined CLL and RS WES data revealed signatures of aging and 232 

activation-induced cytidine deaminase (AID), like previous studies6,16,32. We detected a dominant signature of 233 

polymerase epsilon (POLE) mutation in an unrelated RS case (Pt 30), with deleterious POLE mutation and >2,000 234 



sSNVs (Figure 4c). We further analyzed WGS generated from 11 RS trios since WGS-determined phylogenetic 235 

trees improved resolution of clones; these remained concordant with the WES phylogenies, as previously 236 

reported33 (Extended Data Fig. 7a). CLL and RS clones of the two unrelated RS cases did not share a distant 237 

non-coding evolutionary history, definitively establishing them as unrelated malignancies (Extended Data Fig. 238 

7b). Of 14 external WGS RS cases4, 2 were clonally unrelated cases (Extended Data Fig. 7c, Supplementary 239 

Table 7). Mutational analysis of the CLL clones from 10 of 11 evaluable patients revealed signatures similar to 240 

the WES analysis (Fig. 4c). However, the RS clones revealed expanded mutational signatures, including prior 241 

chemotherapy (SBS17b), reactive oxygen species (SBS18) and defective DNA mismatch repair (SBS44, as 242 

previously reported4). Kataegis was recently reported in RS4, and we indeed identified this across 4 of 11 RS 243 

genomes with clustered AID-related mutations (Fig. 4d-e, Supplementary Table 7). 244 

  245 

From the WGS samples, we observed chromothripsis as a common defining feature of TP53-altered RS genomes 246 

(Fig. 4f, Extended Data Fig. 8a). Chromothripsis was detected in regions likely contributing to RS pathogenesis, 247 

including 7q21 (CDK6) (Pt 41), 11q13 (CCND1) (Pt 29) and 9p24.1 (PD-L1/L2) (Pt 41); most regions were 248 

patient-specific (Extended Data Fig. 8b).  249 

 250 

Dynamics of transformation at single-cell resolution 251 

We identified 292 upregulated and 111 downregulated transcripts associated with transformation from analysis 252 

of bulk RNA-seq data generated from paired high-purity RS and CLL RNA (n=5; log2 fold change| > 1, adjusted 253 

P < 0.05) (Fig. 5a-b, Supplementary Table 9). The larger RS cells contained more expressed transcripts and at 254 

higher abundances. Their most upregulated transcripts included regulators of mitosis, spindle assembly and 255 

cytokinesis (AURKA, AURKB, CDK1, CDK2), activation-induced cytidine deaminase (AIDCA), and DNA repair 256 

regulators (BRCA1, XRCC2) (Fig. 5b, Supplementary Table 9). Overexpression of several of these genes have 257 

been implicated in aneuploidy in cancer34. By contrast, CLL showed higher relative expression of BCR-signaling 258 

pathway genes.  259 

 260 



To examine CLL transforming to RS at high-resolution, we performed scRNA-seq of flow cytometry-sorted RS 261 

diagnosis biopsy specimens from 5 additional patients that contained clonally related RS and CLL cells within 262 

the same microenvironment (Fig 5c; Extended Data Fig. 9a-b). Given the numerous RS-defining sCNAs in our 263 

WES data, we devised a tool, CNVSingle, to identify the expression clusters representing RS versus CLL clones 264 

based on detection of sCNA events in scRNA-seq data. CNVSingle is not dominated by reference, but rather 265 

utilizes segmentation of SNP-heterozygous sites to infer the sCNAs across a cluster of cells. This approach greatly 266 

improved the signal-to-noise ratio over other methods35 and robustly detected tumor-specific sCNAs in malignant 267 

cells, with additional events in clusters of RS cells compared to those of CLL, and the absence of sCNAs in 268 

normal immune cells (Extended Data Fig. 9c).  269 

 270 

Compared to CLL, the RS-identified clones across the evaluated patient samples displayed higher UMI/cell (i.e., 271 

mean 9000 vs. 3193 for Pt 43, P<10-14, Wilcoxon) and genes/cell (mean 2909 vs. 1074, P< 10-14) (Extended 272 

Data Fig. 9d). Differential expression analyses of the RS versus CLL clusters showed enrichment in pathways 273 

mapping to MYC targets, cell cycle, inflammatory response and STAT signaling pathways (Supplementary 274 

Table 9). Directional trajectories inferred using RNA-velocity36 supported a transition in cell states from CLL to 275 

RS (Extended Data Fig. 9e). The expression patterns in CLL and RS cells were sufficiently distinct that a 276 

Random Forest classifier could predict CLL vs. RS identity of individual cells (mean F1 ± σ = 0.92 ± 0.01; 277 

Methods). 278 

 279 

Strikingly, sCNA assignments mapped to transcriptionally identified cell populations. For example, the LN cells 280 

of Pt 43 (RS5 subtype), formed two groups of clusters consistent with CLL and RS (Fig. 5d-top middle). CLL 281 

cluster 2 exhibited gene expression intermediate between cluster 1 and the RS clusters, including an increase in 282 

cell cycle genes (Fig. 5d-top right). Accordingly, the copy number profile of cluster 1 resembled the quieter 283 

CLLANC clone in WES (green), while cluster 2 showed acquisition of sCNAs of the CLLINT clone in WES (light 284 

blue) that subsequently gave rise to RS. RS clusters (3, 4) displayed additional sCNAs, consistent with the 285 

chromothripsis seen in WES analysis (i.e., sCNAs on chromosome 2 and 7, 8, and 9 with regional fragmentation) 286 



(Extended Data Fig. 9f-top). Thus, intranodal cells reside on a genetic and transcriptional continuum from 287 

indolent to aggressive CLL towards RS. 288 

 289 

Pt 10 (RS1) highlighted the rapid evolution of transformation with genomic instability in M-CLL. WES analysis 290 

established the lack of sCNAs in circulating CLL before transformation, in contrast to the abundant sCNAs and 291 

WGD in RS cells. WES of peripheral blood CLL at the time of RS diagnosis revealed new WGD, but with fewer 292 

sCNAs than the LN RS WES. By flow cytometry of the LN at RS diagnosis, both CLL and RS cells were detected 293 

(Extended Data Fig. 9a, right); single-cell transcriptomes yielded 3 distinct populations. Cluster 1 displayed 294 

gene counts per cell consistent with CLL while cluster 3 expressed much higher numbers of genes, in line with 295 

RS (Extended Data Fig. 9d); Cluster 2 showed an intermediate phenotype (Fig. 5e top). Cluster 1 demonstrated 296 

both del(17p) and WGD, matching the WES profile of the circulating CLL at the time of RS. Cluster 2 showed 297 

progressive genomic disorder followed by cluster 3, which highly resembled the CN profile of RS as per WES, 298 

with further sCNAs and fragmentation on chromosome 9. Therefore, in this case, del(17p) and WGD in an 299 

aggressive CLL clone preceded the RS transition, marked by subsequent global copy number shifts and 300 

chromothripsis; these observations delineate the stepwise sequence of events leading to RS. 301 

  302 

For Pt 4, few RS cells were captured but WGD and frequent sCNAs were nonetheless observed, again 303 

demonstrating the genome disorder of the RS1 subtype (Extended Data Fig. 10a). For Pt 18 (RS2), clustering 304 

identified distinct early RS (clusters 3 and 4) from an RS subclone (cluster 0) containing del(6) that had been seen 305 

by WES (Extended Data Fig. 10b). Pt 41 (RS1) highlighted an intermediate cell state clearly residing within the 306 

co-existing forward scatter (FSC)-low CLL population (Extended Data Fig. 9b,d; Supplementary Table 8). 307 

Indeed, per CNVsingle, the intermediate state cells showed acquisition of early RS-specific events (i.e. del(3p), 308 

del(4) and del(14q)), while expression data showed enriched cell cycle genes (Extended data Fig. 10c).  309 

 310 

Early RS clones are detectable in cell-free DNA  311 



Given the numerous RS-associated genomic features, we assessed the feasibility of non-invasive detection of RS 312 

events through cell-free DNA (cfDNA) (Fig. 6a). We evaluated 46 plasma samples by ultra-low pass (ULP)-313 

WGS37  collected from 24 patients within three years of RS diagnosis and through relapse (Supplementary Table 314 

10). Samples from 17 patients were collected at the time of RS disease, including 8 at initial diagnosis. Ten were 315 

from the discovery cohort and their RS characterization served as positive confirmation for detection of RS-316 

specific alterations. Eight of these also had simultaneous (same blood draw), or contemporaneous circulating CLL 317 

cells analyzed by WES, thus offering a controlled way to evaluate the differing contributions of nodal vs 318 

circulating disease, since the cfDNA includes DNA shed from both LN and circulating CLL cells. 319 

 320 

RS-associated genomic features were indeed detectable in plasma. WGD was observed in the cfDNA of Patient 321 

38 at time of RS diagnosis, matching the RS WES profile, while circulating CLL remained diploid (Fig. 6b). The 322 

cfDNA of Patient 44 revealed RS-associated sCNAs (del(9p), amp(13)) that were not in the CLL cells (Extended 323 

Data Fig. 10d). cfDNA analysis also highlighted RS emergence during therapy in a high-risk CLL patient with 324 

del(17p) (Patient 99). While the cfDNA profile at the start of CLL-directed therapy showed minimal sCNAs, that 325 

at time of RS diagnosis showed abundant new sCNAs including amp(8q24) [MYC]  (Extended Data Fig. 10e). 326 

In other patients, chromothripsis was evident in plasma cfDNA (Fig. 6c; Extended Data Fig. 10f). Furthermore, 327 

for 4 of 4 cases from our discovery cohort in which WES was additionally performed on cfDNA, RS-specific 328 

mutations were detected (Fig. 6d, Extended Data Fig. 10g). 329 

 330 

We queried whether RS changes could be detected in cfDNA in advance of RS diagnosis. For 2 of 7 patients 331 

whose plasma was collected 1-10 months prior to RS diagnosis (Supplementary Table 10), we could detect RS-332 

associated alterations in the cfDNA, during which time they were undergoing therapies for presumed refractory 333 

CLL. In Pt 5, WGD and chromothripsis (chr 6 and 16) were detected in plasma 162 days prior to diagnosis and 334 

were absent from CLL (Fig. 6e-left). WES of cfDNA (Extended Data Fig. 10g) further showed presence of RS-335 

specific mutations. In Pt 20, cfDNA 181 days prior to RS diagnosis showed WGD and sCNAs not present in the 336 

corresponding CLL blood sample (day -179) or LN biopsy (CLL) from the prior week (Fig. 6e-right).  337 



 338 

Finally, we probed the potential for cfDNA analysis to detect early RS relapse. We considered 2 patients who had 339 

achieved a state of minimal CLL involvement following allogeneic hematopoietic stem cell transplantation 340 

(HSCT), but subsequently relapsed with nodal RS. For Patient 112, cfDNA obtained immediately following 341 

HSCT lacked evidence of RS events but by days +83 and +162, new sCNAs, and thus increased fraction genome 342 

altered (FGA), were found - consistent with nodal disease emergence (Fig. 6f). Ultimately, biopsy-confirmed RS 343 

relapse was diagnosed on day +187. With subsequent RS response, the RS-associated cfDNA changes resolved. 344 

Pt 111 intermittently had elevated FGA in plasma following HSCT, prior to RS diagnosis, which resolved 345 

following RS therapy (Supplementary Table 10). Across samples, the highest levels of FGA in cfDNA were 346 

observed in RS diagnostic samples (n=8), with decreasing ratio in the preceding 1-10 months (n=7), and even 347 

lower ratio in more distant pre-diagnosis samples (>10 months; n=4). In 7 cases, FGA exceeded all values from 348 

high-risk CLL cases (n=14 samples from 5 patients) (Fig. 6g). Of the 8 patients with cfDNA available at the time 349 

of biopsy-proven RS diagnosis, we confidently discerned RS-specific lesions in 6 (75%) using strict criteria.  350 

 351 

DISCUSSION 352 

For decades, the RS diagnosis has relied on morphologic characterization of aggressive lymphoma within the 353 

context of concurrent or known history of CLL3. Herein, through the implementation of advanced analytic 354 

approaches that can distinguish between the RS and CLL clones, and through integration of exome, genome and 355 

transcriptome data to the largest series of paired CLL and RS specimens to date, we have defined the distinct 356 

molecular events that precede and define the RS transition.  357 

 358 

Of the new insights gained from this study, one was the identification of novel putative driving events in RS, 359 

distinct from CLL, affecting splicing, immune evasion, epigenetics, cell cycle regulation, interferon signaling, 360 

and MYC signaling. Epigenetic remodeling has been detected in RS, impacting pathways of BCR signaling, 361 

oxidative phosphorylation, cell proliferation and MYC signalling38. We further identified instances of driver 362 

alterations with potential therapeutic impact, such as those affecting CDK6 or immune checkpoints. Our study 363 



highlights major differences between RS and de novo DLBCL despite several shared driver events. We delineated 364 

5 RS subtypes and confirmed these genomic patterns associated with distinct transcriptomes and outcome.  365 

 366 

Second, RS is marked by numerous sCNAs and features of genomic instability (i.e. chromothripsis, kataegis, 367 

WGD). Near tetraploidy has been identified as an RS risk factor39, and our detailed genomic and single-cell 368 

analysis demonstrates how this unstable state can lead to RS evolution. These features could result from mitosis 369 

defects, as suggested by RNA expression data, and WGD may confer potential therapeutic vulnerabilities40.  We 370 

demonstrate how such instability may be used to provide an earlier and non-invasive detection of RS in cfDNA, 371 

which should be further evaluated in clinical studies as a cost-effective approach for this difficult-to-diagnose 372 

aggressive cancer41 .  373 

 374 

Finally, we confirmed the majority of RS is unrelated to the co-occurring CLL- a facet previously only defined 375 

based on differing IGHV clonotypes3,9 and ultra-deep IGHV sequencing42. Unrelated RS has been previously 376 

associated with improved clinical outcomes, which suggests distinct disease biology3,9. We now demonstrate that 377 

by exome- or genome-level analysis, clonal unrelated RS is a de novo DLBCL, occurring as an independent 378 

lymphoma, lacking any shared distant genetic history with the co-existing CLL. These cases tended to lack TP53 379 

and NOTCH1 alterations, were enriched in M-CLL, and clustered with de novo DLBCL separately from clonal 380 

related RS. These molecular insights may help identify RS patients with a more favorable prognosis.  381 

 382 

Altogether, our comprehensive evolutionary tracing enables a molecular definition of transformation that can 383 

guide identification, diagnosis and prognosis of RS. Our advanced molecular framework can serve as a model for 384 

studying transformed cancers. 385 

 386 

  387 

 388 
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Figure 3
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Figure 4
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Figure 5
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 488 
FIGURE LEGENDS 489 

 490 
Fig. 1. Developing an analytic framework for detecting Richter Syndrome (RS)-specific clones. a, Disease course of 53 RS 491 
patients from CLL diagnosis in relationship to lines of therapy and sample collection. b, Disease course of 44 of 45 RS validation 492 
cohort patients from CLL diagnosis in relationship to lines of therapy and sample collection (1 patient with missing data). c, 493 
Computational schema for deciphering CLL and RS clones within RS biopsy samples. d, Inset shows labeled sample phylogenetic 494 
tree with associated sample cancer cell fraction (CCF) plot. Phylogenetic trees with CCF clustering, clonal abundance and 495 
associated patient disease course in representative clonally unrelated (e) and related (f) cases. 496 
 497 
Fig. 2. The landscape of putative driver mutations in RS. a, Phylogenetic tree schema demonstrating clones comprising RS 498 
history (gray box) and RS-specific clones (magenta box) (ANC, ancestor clone; INT, CLL intermediate clone; DIV, CLL 499 
divergent clone; RS, RS clone). b-c, Somatic mutation information across the putative driver genes and recurrent somatic copy 500 
number alterations (rows) for 52 RS patients (columns) that underwent WES, ranked by frequency (right) for both (b) RS history, 501 
alterations detected in RS cells and (c) RS clones, alterations acquired at transformation. Samples were annotated for sequencing 502 
site (DFCI/Broad, red; German CLL Study Group (GCLLSG), blue; French Innovative Leukemia Organization (FILO), yellow), 503 
IGHV status (maroon, mutated; peach unmutated), and clonal relationship (black, related; white, unrelated). Light blue frequency 504 
bars adjacent to RS history represent frequency in validation cohort of each alteration (n=45) d, GISTIC2.0 plots showing arm 505 
level (right panel) and focal (left panel) amplifications (red, top) and deletions (blue, bottom) for RS samples in the combined 506 
discovery and validation cohorts (n=97). Discovery cohort GISTIC2.0 plots are located in Extended Data Figure 4. e, Frequencies 507 
of somatic alterations in CLL clones from related RS cases (n=45, dark green bars) compared to CLL driver frequencies16 using 508 
2 sided exact binomial test with Benjamini-Hochberg multiple hypothesis testing correction f, RS somatic alteration frequencies 509 
(dark purple) compared to DLBCL event frequencies (light purple) from DLBCL cohorts15,17 using 2 sided exact binomial test 510 
with Benjamini-Hochberg multiple test correction. g, Proportion in which a recurrent driver is found as present in CLLANC+INT 511 
(green) or acquired in RS (purple) across 58 related cases (only drivers affecting at least 4 patients are shown) (Supplementary 512 
Table 6). * denotes P<0.05 (McNemar test, one-sided). h, Sankey plot showing trajectories from CLL driver to acquired RS 513 
driver. Only driver pairs with at least 4 co-occurrences across the cohort are displayed and tested for statistical significance 514 
(Supplementary Table 6). * denotes P<0.05 (Fisher’s exact test, two-sided) and Q < 0.4.  515 
 516 
Fig. 3. Tracing evolution of RS on targeted agent therapy 517 
a, Pathways altered in CLL transformation to RS include CLL phase alterations (light green) and new drivers identified in RS 518 
(light purple). sSNV (top shading) and sCNA (bottom shading). b, Trees depicting clonal evolution of CLL to RS in seven select 519 
patients who developed RS on novel agents. Recurrent RS drivers indicated in bold. c-d, Evolution of RS from CLL showing 520 
clonal composition and absolute tumor burden over time based on serial sampling for two patients. Left panel - a phylogenetic 521 
tree with associated driver events. (Magenta square, RS clones). Right panel - relative abundance of CLL in peripheral blood by 522 
white blood cell count (1000 cells/microliter) (top) and relative abundance of RS in bottom plot (by PET/CT scan tumor metrics) 523 
with clonal evolution dynamics. Pie charts reflect composition of each sampling timepoint. (pink dotted line, sampling time; Top 524 
bar, treatment history; PB, peripheral blood; BM, bone marrow) 525 
 526 
Fig. 4. Molecular mechanisms underlying transformation to RS. a, genomic classification of RS. For 97 patients (columns), 527 
5 patterns of RS identified by consensus NMF clustering are depicted with respective somatic mutations and copy number 528 
alterations (rows). Samples are annotated for prior treatments (chemoimmunotherapy, light green; targeted agent, dark green; no 529 
prior therapy, white); IGHV status (mutated, brown; unmutated, beige; white, not determined); clonal relatedness (related, gray; 530 
unrelated, black; unknown by WES, white); and the presence of whole genome doubling (gray). Fraction genome altered per 531 
sample is shown (top). Event frequencies are indicated as blue bars on the right side for each alteration. Genes that met 532 
significance for association with a cluster by Fisher’s exact Test (Supplementary Table 7) are highlighted by cluster 533 
association (subtype 1, purple; subtype 2, blue; subtype 3, orange; subtype 4, green; subtype 5, red). b, Overall survival 534 
according to the RS genomic pattern. Kaplan-Meier curves for each subtype according to color legends. P value is from log-535 
rank (Mantel Cox) testing. c, WES signatures for RS samples from discovery cohort (n=52). d-e, WGS signatures for CLL (c) 536 
and RS (d) clones in 10 evaluable patients. IGHV status (mutated, M; unmutated, UM) and clonal relationship (R, related; UR, 537 
unrelated) is indicated at bottom.  f, Chromothripsis and kataegis in RS sample (Pt 42) with whole genome doubling. Circos 538 
plots showing structural variants (interchromosomal, blue; deletion, red; inversion, yellow; tandem duplication, green; long 539 
range, teal), allelic copy number (middle), rainfall plot with kataegis regions (red) and chromosomes (outside). Adjacent rainfall 540 
plots show kategis regions (C to G, red; C to T, yellow; C to A, teal) with corresponding allelic copy number ratio plot showing 541 
corresponding fragmentation.  542 



 544 
 545 
 546 
Fig. 5. Transformation to RS at single-cell resolution. a, Heatmap of differentially expressed transcripts with FDR<0.1 and 547 
absolute log2 fold change > 1 in analysis between paired RS and CLL samples from Pts 27, 7, 42, 20 and 24. b, Volcano plot of 548 
transcript expression changes in RS compared to CLL. Differentially expressed genes were assessed using limma-voom 549 
(Methods) in paired mode using sample read counts. logFC denotes log2FC and P-values are adjusted for multiple comparisons. 550 
Pink dots denote select relevant transcripts. c, Schema for assignment of copy number changes to single-cells to enable 551 
identification of CLL vs RS cells. d-e, Single-cell data shows transcriptional differences between RS and CLL from Pt 43 in d, 552 
and Pt 10 in e, and highlights intermediate states. Phylogenetic tree showing clonal structure of RS from WES data (top left) and 553 
UMAP visualization of RS and CLL single-cells (top middle). Heatmap representation of differential regulated genes between 554 
clusters (top right) and dot plot showing cluster expression of representative genes in dysregulated pathways (Supplementary 555 
Table 9) (purple shading, relative expression; dot size, percent of single-cell cells expressing transcript). Inferred allelic copy 556 
number from CNVsingle for each single-cell cluster (bottom) depicted adjacent to WES allelic copy number plots color-coded to 557 
show copy number events assigned to CLL and RS clones (Methods).  558 
 559 
Figure 6. cfDNA isolated from plasma of RS patients shows evidence of transformation. a,  Schema showing how RS 560 
specific DNA events can be identified separately from cell-free DNA and different from circulating CLL cells. b, cfDNA in RS 561 
Pt 38 shows WGD of clonally unrelated RS, which is not seen in circulating CLL disease at time of diagnosis. c, 562 
Chromothripsis is observed in cfDNA of RS patients, as demonstrated by plotting the difference between copy number state 563 
changes across the genome (Pt 32 top, Pt 5 bottom) d, Allele frequencies for RS (purple) and CLL (green) mutations found in 564 
RS WES sample (bottom) and RS plasma sample cfDNA WES (top) for patient 38 (top panel) and patient 8 (bottom panel). e, 565 
Plasma from patients shows early detection of RS. Pt 5 (top) shows RS-related WGD and chromothripsis fragmentation 162 566 
days prior to RS diagnosis, which is not seen in corresponding co-sampled CLL cells. Plasma from Pt 20 (bottom panel) 567 
examined 181 days prior to RS shows RS-related WGD and sSCNVs which are not seen in co-sampled CLL or in lymph node 568 
biopsy taken from prior week. f, sCNAs become detectable prior to post-transplant relapse in Pt 112, as seen by plot of fraction 569 
genome altered and corresponding cfDNA samples showing emergence of new sCNVs despite continued remission of 570 
circulating and marrow CLL. g, Metrics of RS in cfDNA are plotted for RS samples leading up to diagnosis. Y axis is fragment 571 
genome altered, color scale shows presence of chromothripsis, square represents whole genome doubled (WGD) sample and 572 
purple outline indicates samples for which RS mutations were detected on WES of cfDNA. CLL samples at left of figure depict 573 
13 samples from 5 relapsed/refractory CLL patients. RS samples (right) show 19 samples divided by time leading up to RS in 574 
14 RS patients. Number of samples per each category is indicated on the figure by N. Dashed lines denote serial samples from 575 
same patients. Box plots  show median values as horizontal line and whiskers showing maximum and minimum values with 576 
boundaries of box showing the interquartile range.  577 
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 670 
 671 

ONLINE METHODS  672 

Patient sample collection and processing  673 

CLL, RS, and normal germline (i.e. non-tumor) samples were collected from patients following written informed 674 

consent through sample collection protocols or from clinical trial NCT03619512 from the French Innovative 675 

Leukemia Organization (FILO) with the approval of the following institutional review boards (IRBs): Dana-676 

Farber Cancer Institute IRB, University of California San Diego IRB, Mayo Clinic IRB, MD Anderson Cancer 677 

Center IRB, Ethics Committee of Ulm University, Ulm Germany or University Hospital of Nancy with the 678 

approval of the Comité de Protection des personnes (CPP) Ouest IV (Nantes, France). All biospecimen collection 679 

protocols were conducted in accordance with the principles of the Declaration of Helsinki and with the approval 680 

of the Institutional Review Boards of the respective institutions. Patient and sample characteristics are provided 681 

(Supplementary Tables 1-2). Sex was self-report. 682 

 683 

RS samples. RS samples were collected from BM, LN, lymphoid tissue or PBMCs and included both fresh frozen 684 

and FFPE samples. Freshly collected tissue samples were disaggregated by GentleMACs digestion (Miltenyi 685 

Biotec) before cryopreservation with FBS/10% DMSO and storage in liquid nitrogen or directly stored as whole 686 

tissue blocks in liquid nitrogen. Blood and BM specimens were isolated by Ficoll/Hypaque density gradient 687 

centrifugation prior to cryopreservation with FBS/10% DMSO and storage in liquid nitrogen. For viably frozen 688 

samples of low purity (<30% tumor), RS cells were isolated by fluorescence activated cell sorting (FACS) (Aria 689 

II instrument, Becton Dickinson) based on CD5+ and CD19+ co-expression on cells with increased forward 690 



scatter (FSC) (Biolegend, CD5-FITC cat#364022, CD19-PE-Cy7 cat#302216). For FFPE specimens, samples 691 

from each submitting center were reviewed for >50% purity prior to sequencing.  692 

 693 

CLL samples. CLL samples were obtained from PBMCs. Samples with higher CLL purity (WBC >25 x 694 

103/microliter or ALC >20 x 103/microliter) were processed without CD19 selection, and PBMCs were isolated 695 

by Ficoll/Hypaque density gradient centrifugation and then cryopreserved with FBS/10% DMSO and stored in 696 

liquid nitrogen until the time of analysis. Samples with WBC <25,000/uL or ALC <20,000/uL underwent CD19 697 

selection (RosetteSep Human B-cell enrichment, Stem Cell Technologies) or as previously described5 or FACS 698 

sorting to enrich for CD5+CD19+ populations.  699 

 700 

Germline samples. Sources of non-tumor germline DNA included saliva (Oragene Discover [ORG500 or 701 

ORG600] kit, DNA Genotek), remission bone marrow 5 or in vitro expanded T cells. For the latter, CD19- CD4+ 702 

or CD19-CD3+ cells were collected by FACS (Aria II, BD; Biolegend, cat#300330, cat#300506, #363006). The 703 

cells were plated and expanded in vitro in RPMI (Gibco) containing phytohemagglutinin (PHA) (1.5:100), IL-7 704 

(20 ng/mL), IL-2 (100 U/mL), 10% human serum and beta-2-mercaptoethanol (1/1000).  705 

 706 

Genomic DNA sequencing 707 

Whole-exome sequencing (WES) 708 

A total of 143 samples were processed and sequenced at the Broad Institute (Cambridge, MA). For these fresh 709 

blood and bone marrow samples and cryopreserved suspension cells, genomic DNA and RNA was extracted per 710 

manufacturer’s recommendations (Qiagen). DNA was quantified in triplicate using a standardized PicoGreen® 711 

dsDNA Quantitation Reagent (Invitrogen) assay. The quality control identification check was performed using 712 

fingerprint genotyping of 95 common SNPs by Fluidigm Genotyping (Fluidigm, San Francisco, CA). Library 713 

construction from double-stranded DNA was performed using the KAPA Library Prep kit, with palindromic 714 

forked adapters from Integrated DNA Technologies. Libraries were pooled prior to hybridization. Hybridization 715 

and capture were performed using the relevant components of Illumina's Rapid Capture Enrichment Kit, with a 716 

37Mb target. All library construction, hybridization and capture steps were automated on the Agilent Bravo liquid 717 

handling system. After post-capture enrichment, library pools were denatured using 0.1N NaOH on the Hamilton 718 

Starlet. Cluster amplification of DNA libraries was performed according to the manufacturer’s protocol (Illumina) 719 

using HiSeq 4000 exclusion amplification chemistry and HiSeq 4000 flowcells. Flowcells were sequenced 720 

utilizing Sequencing-by-Synthesis chemistry for HiSeq 4000 flowcells. The flowcells were then analyzed using 721 

RTA v.2.7.3 or later. Each pool of whole-exome libraries was sequenced on paired 76 cycle runs with two 8 cycle 722 

index reads across the number of lanes needed to meet coverage for all libraries in the pool. Output from Illumina 723 

software was processed by the Picard data-processing pipeline to yield BAM files containing demultiplexed, 724 



aggregated aligned reads. Standard quality control metrics, including error rates, percentage-passing filter reads, 725 

and total Gb produced, were used to characterize process performance before downstream analysis.  726 

Twenty-seven samples were processed and sequenced at University of Ulm, Germany. Exome Enrichment was 727 

performed through biotinylated RNA oligomer libraries, which are part of the SureSelectXT Human All Exon V5 728 

capture library. The preparation workflow with the SureSelectXT reagent kit included DNA Fragmentation via 729 

Covaris supersonic shearing, end repair, ligation, library hybridization, indexing, QPCR based quantification and 730 

multiplexing (per protocol version 1.7). Multiple quality controls via Agilent Bioanalyzer were implemented into 731 

the process. Libraries were amplified to produce clonal clusters and sequenced using massively parallel 732 

sequencing on the Illumina HiSeq2000 Sequencing System. Eleven samples were processed (SureSelect QXT 733 

Agilent kit) and sequenced on a HiSeq 1000 instrument at the University of Nancy, France. 734 

A subset of our WES data had reduced coverage in the GC-rich region of NOTCH1. For these, targeted deep 735 

sequencing of the NOTCH1 3’ UTR was performed, as previously described26. 736 

 737 

Whole-genome sequencing (WGS) 738 

Preparation of libraries for cluster amplification and sequencing (PCR-Free). 350ng of genomic DNA in 50µL 739 

of solution was processed by fragmentation through acoustic shearing (Covaris focused ultrasonicator), targeting 740 

385bp fragments, and additional size selection was performed using a SPRI 80 cleanup. Library preparation 741 

(Hyper Prep without amplification module, KAPA Biosystems, #KK8505) was performed as above for WES. 742 

Libraries were then quantified using quantitative PCR (KAPA Biosystems) with probes specific to the ends of 743 

the adapters, normalized to 1.7nM, and then pooled into 24-plexes.  744 

 745 

Preparation of libraries for cluster amplification and sequencing (PCR-Plus). An aliquot of genomic DNA 746 

(100ng in 50µL) was used as the input into DNA fragmentation. Shearing was performed as described above in 747 

the PCR-free procedure. Library preparation was performed using a commercially available kit provided by 748 

KAPA Biosystems (KAPA Hyper Prep with Library Amplification Primer Mix, product KK8504), and with 749 

palindromic forked adapters using unique 8-base index sequences embedded within the adapter (Roche). The 750 

libraries were then amplified by 10 cycles of PCR. Following sample preparation, libraries were quantified using 751 

quantitative PCR (KAPA Biosystems) with probes specific to the ends of the adapters. This assay was automated 752 

using Agilent’s Bravo liquid handling platform. Based on qPCR quantification, libraries were normalized to 753 

2.2nM and pooled into 24-plexes.  754 

 755 

Cluster amplification and sequencing (NovaSeq 6000). Sample pools were combined with NovaSeq Cluster 756 

Amp Reagents DPX1, DPX2 and DPX3 and loaded into single lanes of a NovaSeq 6000 S4 flowcell cell using 757 



the Hamilton Starlet Liquid Handling system. Cluster amplification and sequencing occurred on NovaSeq 6000 758 

Instruments utilizing sequencing-by-synthesis kits to produce 151bp paired-end reads. Output from Illumina 759 

software was processed by the Picard data-processing pipeline to yield CRAM or BAM files containing 760 

demultiplexed, aggregated aligned reads. All sample information tracking was performed by automated LIMS 761 

messaging. 762 

 763 

Circulating DNA sequencing. Whole blood was collected by routine phlebotomy. Plasma was separated within 764 

1-4 days of collection through density centrifugation and stored at -80°C until DNA extraction (QIAsymphony 765 

DSP Circulating DNA Kit, QIAGEN), which was performed according to the manufacturer’s instructions. Library 766 

preparation was performed (KAPA HyperPrep Kit with Library Amplification, KAPA Biosystems) using duplex 767 

UMI adapters (IDT), starting with 2-3 cc of plasma. Samples were normalized and pooled using equivolume 768 

pooling, with up to 95 samples per pool. Cluster amplification was performed according to the manufacturer’s 769 

protocol (Illumina) using Exclusion Amplification cluster chemistry and HiSeqX flowcells. Flowcells were 770 

sequenced on v2 Sequencing-by-Synthesis chemistry for HiSeqX flowcells. The flowcells were then analyzed 771 

using RTA v.2.7.3 or later. Each pool of ultra-low pass whole genome libraries was run on one lane using paired 772 

151bp runs.  773 

 774 

Analysis of UK WGS. BAM files were obtained from prior analysis and realigned them to the Broad Institute's 775 

build of hg19 (known as b37: https://gatk.broadinstitute.org/hc/en-us/articles/360035890711-GRCh37-hg19-776 

b37-humanG1Kv37-Human-Reference-Discrepancies)43. Out of the 17 sample trios obtained from the UK group, 777 

14 samples completed WGS (3 failed due to data quality and realignment issues). The standard pipeline as 778 

previously described43 was applied to these FFPE samples except for detection of sCNAs. Formalin damage 779 

results in extremely noisy read coverage profiles, confounding traditional copy number segmentation pipelines. 780 

To mitigate this, we applied a modified sCNA calling method that relies on segmentation of allelic imbalance at 781 

germline het sites (as opposed to segmentation of total coverage) as its primary signal. Although total coverage 782 

is extremely noisy, the fraction of reads supporting alternate versus reference alleles at heterozygous sites is 783 

undistorted, allowing for clean allelic imbalance segmentation. Within each segment of allelic imbalance, we 784 

binned total coverage on a megabase scale, which is coarse enough to average over formalin-induced coverage 785 

fluctuations, which typically manifest as sharp coverage spikes at the 10-100 kilobase scale. SV and phylogenetic 786 

analysis were completed for 12/14 samples. 787 

 788 

Sequence data processing and analyses  789 

WES/WGS alignment and quality control. Sequencing was conducted using standard methods (Supplementary 790 

Note)16,33,44. All DNA sequence data were processed through Broad Institute pipelines, such that data from 791 

multiple libraries and flow cell runs were combined into a single BAM file. This file contained reads aligned to 792 



the human genome hg19 genome assembly (version b37, using BWA-MEM [version 0.7.15-r1140]) provided by 793 

the Picard and Genome Analysis Toolkit (GATK) developed at the Broad Institute45, a process that involves 794 

marking duplicate reads, recalibrating base qualities and realigning around indels.  795 

 796 

WES analysis. Sequences were analyzed by the Broad Institute’s Cancer Genome Analysis WES Characterization 797 

Pipeline, in which aligned BAM files were inputted into a standard WES somatic variant-calling pipeline44 and 798 

included MuTect for calling somatic single nucleotide variants (sSNVs), Strelka246 for calling small insertions 799 

and deletions (indels), deTiN for estimating tumor-in-normal (TiN) contamination, ContEst for estimating cross-800 

patient contamination, AllelicCapSeg for calling allelic copy number variants, and ABSOLUTE for estimating 801 

tumor purity, ploidy, cancer cell fractions, and absolute allelic copy number. Artifactual variants were filtered out 802 

using a token panel-of-normals (PoN) filter, a blat filter, and an oxoG filter. For tumor samples without a matching 803 

normal control, a “no-normal” pipeline was used, as previously described14. Several FFPE samples exhibited 804 

lower DNA quality, resulting in noisier profiles with standard methods. For these samples, we applied an 805 

additional filtering technique of identifying the most correlated targets across a set of FFPE samples and 806 

performing tangent normalization47 on samples that showed consistent behavior, thus excluding artifactual copy 807 

number targets. 808 

 809 

WGS Analysis. WGS analysis was performed as previously described43. Due to the large amount of computational 810 

resources required to efficiently process cancer whole genomes, we ran these analysis pipelines on an elastic high 811 

performance computing (HPC) cluster on Google Cloud VMs, comprising thousands of CPU cores.  812 

 813 
For structural variation (SV) identification, our pipeline integrates evidence from three SV detection algorithms 814 

(Manta48, SvABA49 and dRanger50) to generate a list of SV events with high confidence from WGS data. 815 

Subsequently, we applied BreakPointer51 to pinpoint the exact breakpoint at base-level resolution. Breakpoint 816 

information was aggregated per sample to identify: (i) balanced translocations, defined as those with breakpoints 817 

on reverse strands within 1 kb of each other; (ii) inversions supported on both ends; (iii) complex events, based 818 

on the number of clustered events within 50 kb of each other. Breakpoints were annotated by intersection with 819 

our lists of CLL driver genes and significant sCNA regions, and with genes in the COSMIC Cancer Gene Census 820 

(v90)52. 821 

 822 

Identification of regions of kataegis and chromothripsis. In the WGS, kataegis regions were defined by genomic 823 

regions with at least 6 mutations within 2 standard deviations of the median chromosomal intermutational 824 

distance, as previously described53. For FFPE samples, to account for increased background sequencing artifacts, 825 

we considered only mutations with VAF > 0.15. Regions of chromothripsis were identified based on integrated 826 

evaluation of rainfall plots, allelic CN plots and SV calls.  827 



 828 
Determining evolutionary relationships between RS and CLL and identifying RS specific genetic alterations. 829 

The PhylogicNDT11,33 suite of tools was used to generate posterior distributions on cluster positions and mutation 830 

membership to calculate the ensemble of possible trees that support the phylogenetic relationship of detected cell 831 

populations. Through applying this tool across a set of CLL and RS samples per patient, the most likely tree was 832 

identified using probabilistic modeling and thus parent-child relationships among clones. Furthermore, all 833 

mutations were assigned to clones based on the match of mutational and clone CCF distribution. The RS clone 834 

was defined as a novel emerging clone first detected in the RS sample and absent in a preceding CLL sample. In 835 

the rare cases without close antecedent CLL samples, RS clones were conservatively identified from distal tree 836 

branches and through integrating available information on RS purity from pathology assessment. If a shared CLL 837 

historical clone was identified between samples, the RS was determined to be clonally related. If a shared clone 838 

was not identified across samples, the RS was determined to be clonally unrelated. In WGS PhylogicNDT results 839 

only, clusters with fewer than 20 mutations were removed along with clusters with low cancer cell fraction (CCF 840 

< 15%). 841 

 842 

Mapping CN alterations to RS and CLL clones. Once clonal structure was established, subclonal sCNAs were 843 

mapped to clones using PhylogicNDT CopyNumber2Tree. Posterior probability was calculated based on CN 844 

profiles and allele-fraction distributions of heterozygous SNP sites across samples to assign likelihood of each 845 

event to belong to a clone with a particular CCF. The RS and CLL specific clonal events (both sSNVs and sCNAs) 846 

were thus identified. 847 

 848 

Discovery of significantly mutated genes in RS and CLL clones. MutSig2CV12 was run to identify driver genes 849 

from the filtered WES Mutation Annotation Format (MAF) file of both the RS history and RS clones. Divergent 850 

CLL clones were thus excluded, allowing for the identification of recurrent drivers contained within RS cells and 851 

clones. To further improve power to detect known variants, we ran MutSig2CV on a restricted set of hypotheses 852 

through utilizing list of CLL16 and de novo DLBCL drivers14,15. For the validation cohort, MutSig2CV results 853 

were reported for new drivers that met significance and were present in at least one patient from the discovery 854 

cohort.  855 

 856 

Identification of recurrent RS focal and arm-level copy number events. Somatic copy number alterations 857 

(sCNAs) were detected using the GATK4 CNV pipeline (http://github.com/gatk-workflows/gatk4-somatic-cnvs), 858 

comprised of the CalculateTargetCoverage, NormalizeSomaticReadCounts, and Circular Binary Segmentation 859 

(CBS) algorithms54 for genome segmentation, with additional normalization for FFPE samples as described for 860 

WES analysis. To identify significantly amplified or deleted genomic regions in RS samples, GISTIC2.013 was 861 

applied, both before and after subtracting the CLL sample segment changes, to produce a list of candidate RS 862 



sCNA driver regions. In parallel, the antecedent CLL sCNA drivers were examined through GISTIC. Significant 863 

events were reported with a Q value threshold of 0.1. A force-calling process was applied to identify the 864 

presence/absence of each sCNA driver event across tumor samples 865 

(https://github.com/getzlab/GISTIC2_postprocessing). This force calling process was then applied to all DLBCL 866 

recurrent sCNAs in RS and to identify RS recurrent sCNAs in DLBCL, both for frequency comparisons and to 867 

build a consensus matrix for clustering.  868 

  869 
Signature analysis. Mutational signatures were determined using SignatureAnalyzer 870 

(https://github.com/getzlab/getzlab-SignatureAnalyzer). We furthermore compared the identified signatures with 871 

those in COSMIC (v3.2)52 based on cosine similarity.  872 

 873 

Immunogenetic analysis 874 

To determine the clonal relationships between CLL and RS, we inferred the DNA sequences of immunoglobulin 875 

genes from WES/WGS data as previously described16.  (Supplementary Table 4). 876 

 877 

Consensus clustering of genetic alterations 878 

Generation of gene sample matrix 879 

All significantly mutated genes (MutSig2CV, Q ≤0.1 and frequency ≥4 cases), significant regions of sCNAs 880 

(GISTIC2.0, Q ≤0.1 and frequency ≥4 cases) were assembled into a gene-by-sample matrix (Supplementary 881 

Table 7c). The entries in the gene-by-sample matrix represent mutations and CN events as follows: non-882 

synonymous mutations, 2; synonymous mutations, 1; no-mutation, 0; high-grade CN gain [CN ≥ 3.4 copies], 2; 883 

low-grade CN gain [3.4 copies ≥ CN ≥ 2.1 copies], 1; CN neutral, 0; low-grade CN loss [1.1 ≤ CN ≤1.9 copies], 884 

1; high-grade CN loss [CN ≤ 1.1 copies], 2; WGD, 5.  885 

 886 

NMF clustering 887 

The 7 samples without genetic drivers in the gene-by-sample matrix were assigned to cluster C0. In addition, we 888 

identified marker genes differentially expressed across clusters  by applying a Fisher’s exact test (2×5 table with 889 

variant present or absent as one dimension and cluster as the second dimension) and corrected the p-values for 890 

multiple hypothesis testing using the BH-FDR procedure55 (Supplementary Table 7f). Features with a q-value 891 

≤0.1 were selected as cluster features and visualized as a color-coded heatmap. Features were annotated with their 892 

maximally positive associated cluster, determined by computing the 2x2 Fisher Exact test for all 5 clusters (2×2 893 

table with variant present or absent as one dimension and within-cluster or outside-cluster the second dimension) 894 

(Supplementary Table 7f). To ensure robustness given the sample size of 97, we performed 100 subsampling 895 

iterations by randomly removing 8 patients in each iteration and calculated a sample-by-sample similarity matrix 896 

that reflects the frequency that each of two samples were clustered together in the 100 runs. Finally, we performed 897 



UPGMA hierarchical clustering using 1-similarity as a distance metric. To define the final cluster membership, 898 

we cut the resulting dendrogram based on the modal number of clusters across the 100 subsampled consensus 899 

NMF clustering runs.  900 

 901 

Mutual exclusivity/co-occurrence estimations.  902 

For each gene of interest, the significance of the co-occurrence or mutual exclusivity for each pair of different 903 

events (mutations, amplification, deletion) that affects that gene was calculated using Fisher’s exact test, and then 904 

false discovery rate was calculated using the Benjamini-Hochberg method. 905 

 906 

Non-negative matrix factorization consensus clustering 907 

To robustly identify clusters of tumors with shared genetic features, we applied a non-negative matrix consensus 908 

clustering algorithm56 with slight modifications. Briefly, we passed the gene-by-sample matrix to the NMF 909 

consensus clustering algorithm (testing number of clusters k=2 to 10) and skipped the matrix normalization step 910 

so that the distance is calculated directly based on the values in the gene-by-sample matrix. The consensus NMF 911 

method was run as 20 iterations of NMF starting with different random seeds. The NMF consensus clustering 912 

algorithm provided the cluster membership of each sample, the cophenetic coefficient for k=2 to k=10 clusters 913 

and silhouette values for the optimal number of clusters, which was k=5 (Supplementary Table 7d, 914 

Supplementary Note 2).  915 

 916 

Bulk RNA sequencing and data analyses 917 

High-quality RNA from CLL/RS pairs was extracted, as previously described5. Total RNA was quantified using 918 

the Quant-iT™ RiboGreen® RNA Assay Kit and normalized to 5 ng/μl. Following plating, 2 μL of ERCC 919 

controls (using a 1:1000 dilution) were spiked into each sample. An aliquot of 200ng for each sample was 920 

transferred into library preparation which uses an automated variant of the Illumina TruSeq™ Stranded mRNA 921 

Sample Preparation Kit. This method preserves strand orientation of the RNA transcript. It uses oligo dT beads 922 

to select mRNA from the total RNA sample, followed by heat fragmentation and cDNA synthesis from the RNA 923 

template. The resultant 400bp cDNA then goes through dual-indexed library preparation: ‘A’ base addition, 924 

adapter ligation using P7 adapters, and PCR enrichment using P5 adapters. After enrichment, the libraries were 925 

quantified using Quant-iT PicoGreen (1:200 dilution). After normalizing samples to 5 ng/μL, the set was pooled 926 

and quantified using the KAPA Library Quantification Kit for Illumina Sequencing Platforms. The entire process 927 

was in a 96-well format and all pipetting is done by either Agilent Bravo or Hamilton Starlet. Pooled libraries 928 

were normalized to 2 nM and denatured using 0.1 N NaOH prior to sequencing. Flowcell cluster amplification 929 

and sequencing were performed according to the manufacturer’s protocols using either the HiSeq 2000 or HiSeq 930 

2500 instrument. Each run generated a 101bp paired-end with an eight-base index barcode read. Data was 931 

analyzed using the Broad Picard Pipeline, which includes de-multiplexing and data aggregation.  932 



 933 
Bulk RNA-sequencing of validation cohort 934 
RNA was extracted with Macherey Nagel RNA extraction kit (Macherey-Nagel, Düren, Germany). Total RNA-935 

Seq libraries were generated from 500 ng of total RNA using TruSeq Stranded Total RNA LT Sample Prep Kit 936 

with Ribo-Zero Gold (Illumina, San Diego, CA), according to manufacturer's instructions. The final cDNA 937 

libraries were checked for quality and quantified using capillary electrophoresis prior to sequencing with HiSeq 938 

4000 sequencing using  939 

 940 

RNA-seq data analyses. RNA-seq reads were aligned to the human reference genome hg19 using STAR 941 

(v2.4.0.1)57. Lowly expressed genes with CPM < 1 in all samples were filtered out. Differentially expressed (DE) 942 

genes were assessed using limma-voom58 in paired mode using sample read counts, with |log2FC|>1 and adjusted 943 

p-value<0.25 as a cutoff. To ensure robustness of the analysis, for the 5 pairs of RS and CLL samples analyzed, 944 

DE genes were recalculated iteratively, each time leaving out one sample pair. Genes were rank ordered by their 945 

t statistic multiplied by the frequency they were found significant ( |log2FC|>1 and adjusted P <0.1) in the leave-946 

one-out analysis. This was used as input for pre-ranked GSEA on HALLMARK pathways (1,000 permutations, 947 

weighted enrichment statistics, MsigDB v7.4)59. 948 

 949 

RNA clustering of RS samples and integration with genetic subtypes 950 

Gene counts were pre-processed with ComBat-seq (v3.42.0)60 to eliminate possible batch 951 

effects and one sample was removed as an outlier. TPMs were computed and genes were filtered out if TPM = 0 952 

in at least one sample, median TPM over samples <= 0.5, or median TPM over samples > 1000. TPMs were then 953 

log2 transformed and top genes by variance (z-score of variance > 1) were z-score transformed for downstream 954 

analysis. Consensus clustering61 using the hierarchical clustering (complete linkage) with spearman distance was 955 

used to identify the optimal number of clusters (observed as 5 RNA subtypes), and the resulting consensus matrix 956 

was transformed into a distance matrix for hierarchical clustering (complete linkage). The agreement 957 

between RNA subtypes and genomically-identified clusters was determined by a Fisher’s exact test. Supervised 958 

analysis for differentially expressed genes for each genomically-identified cluster was performed using limma-959 

voom(v3.50.3)58 as a one-vs-other comparison. Pathway analysis of each genomically-identified cluster was 960 

performed using Preranked-GSEA59 with the MsigDB Hallmark (v7.4) genesets using the LIMMA t-statistic to 961 

rank order genes. 962 

 963 

Single-cell RNA-sequencing and analysis 964 

Sample preparation. For suspension samples with admixture of both CLL and RS cells, cells were thawed by 965 

drop-wise addition of warmed media (RPMI 10% FCS) and stained with antibodies (Biolegend CD5 FITC 966 

cat#364022, CD19 PE-Cy7 cat#302216, CD3 PB cat#300330 using 2-4 uL of each antibody per 100 uL test) and 967 



a viability marker (Biolegend 7-AAD cat#420404 at 1:500 or Zombie Violet cat#423114 at 1:1000) before 968 

resuspension in PBS-0.04% BSA (Ultrapure NEB/Invitrogen). For Patients 19 and 41, viable CD5+ CD19+ cells 969 

were sorted into RS and CLL fractions by size based on the increased forward scatter (FSC) of RS cells (BD 970 

FACS Aria II). For Patients 43, 4 and 10, viable cells within the lymphocyte gate were sorted for analysis. 971 

 972 

Sequencing. Five to ten thousand single-cells per specimen underwent transcriptome sequencing (Chromium 973 

Controller, 10X Genomics) according to the manufacturer’s instructions, using either the 3’ v2 kit (Patients 19 974 

and 41) or the 5’ v2 kit with BCR and TCR sequencing (Patients 43, 4 and 10). Each flow sorted fraction was run 975 

as a separate lane on the same chip. Libraries were pooled and sequenced on HiSeqX or NovoSeqS4 (Illumina).  976 

 977 

Data processing of scRNA-seq libraries. Reads were processed and aligned to the Hg19 reference genome. All 978 

data were filtered using Cell Ranger (v2.1.1 for Patient 41; v2.0.0 for Patient 19, and v3.0.2 for Patients 4, 10 and 979 

43). Background, or ambient, RNA was removed using CellBender with the exception of Patient 41. Data from 980 

each patient was analyzed using Seurat (v3.1.4)62. QC filtering was applied to remove cells with fewer than 500 981 

UMIs, >50,000 UMIs or more than 10% mitochondrial reads. Potential doublets were detected using 982 

DoubletFinder (v2.0.2)63 using default pN and optimal pK for each sample and removed ahead of further analysis. 983 

For Patient 41, cell cycle regression was performed followed by data integration using standard methods62.  984 

 985 

Clustering was then performed to identify B cell clusters; these were further sub-clustered for additional analysis 986 

of malignant B cells using the presence of standard B cell markers (CD19, CD20, IGLL5, CD79A, CD79B) and 987 

the absence of T/NK/Myeloid markers (CD3, CD4, CD8, CD56, CD14, CD16, CD33). Clustree (v0.4.2) was used 988 

to identify stable clusters prior to downstream analysis. UMI/cell and genes/cell for each cluster were calculated 989 

with Seurat and the mean values across CLL and RS clusters were compared using a Wilcoxon test.  990 

 991 

Inferred copy number across single cells (CNVsingle). We applied a novel tool CNVsingle 992 

(https://github.com/broadinstitute/CNVsingle) to the above processed Seurat objects. In brief, CNVsingle utilized 993 

normalization from matched PBMC derived B-cell profiles followed by Savitzky–Golay noise reduction. These 994 

profiles alongside the per cell allele counts across common heterozygous SNP sites identified in the samples were 995 

utilized by a Hidden Markov Model running in allele specific mode on subsets of cells. Thus CNVsingle provides 996 

allele-specific copy number profiles for all malignant cell clusters. As validation, different types of normal cells 997 

provided copy-neutral profiles. Single cell derived allelic CN across clusters was compared to WES CN profiles 998 

and found to be highly concordant. These profiles were then used to identify clusters as CLL, RS or transitional 999 

and cluster identities were used for subsequent differential expression testing.  000 

 001 



Differential expression testing. Expression analysis was performed on CLL and RS clusters identified as those 002 

CNVsingle profiles that matched the CLL WES or RS WES samples. Clusters that showed intermediate sCNA 003 

profiles were considered potential transitional clusters. Furthermore, genes with non-zero read counts in less than 004 

20 cells were removed. Gene counts for a given cluster were obtained by summing the counts across all the cells 005 

in each respective cluster. DE genes were assessed using limma-voom(v3.50.3) in paired mode. The ranked gene 006 

list sort the t statistic from the DE analysis for RS clusters in each scRNAseq sample was submitted to pre-ranked 007 

GSEA to analyze the HALLMARK pathways (1,000 permutations, weighted enrichment statistics, MsigDB 008 

v7.4)59.  009 

  010 

Velocity Analysis.  RNA inference of directional trajectories was performed with scVelo (v 0.2.4 – with 011 

fit_connected_states=False) using the dynamical model on the normalized data. Spliced and unspliced reads were 012 

computed via velocity (v 0.17.17)36. The result of the model was then used to estimate gene latency, which 013 

represents the cell’s internal clock and is based only on its transcriptional dynamics. The root key parameter has 014 

been computed via the CellRank (v 1.5.0) library.  015 

 016 

Random Forest (RF) Analysis. We used an RF approach to differentiate between CLL and RS cells in the single 017 

cell data. Data was preprocessed using the same cell/gene filtering as in the DE analysis. To reduce the impact of 018 

cell size differences between CLL and RS, we performed a z-score normalization per cell. We trained an RF 019 

(n_estimators = 1000, sklearn v1.0.1) on samples LNs from Pts 10 and 43 and predicted on cells from Pts 41 (LN 020 

or peripheral blood [PB] samples) and 18 (bone marrow) whose cell labels were determined by FACS sorting 021 

described earlier. We ran the RF 20 times and obtained a mean ± σ of 0.92 ± 0.01 when looking at only the LN 022 

sample in the test set to avoid any potential microenvironment differences. When we included the PB sample in 023 

the test set, the F1 only slightly decreased to 0.86 ± 0.11; while also adding in Pt 18 yielded an F1 of 0.66 ± 0.01. 024 

The decrease in F1 score is possibly due to differences in tissues of origin and sequencing platforms. The top 025 

discriminative features are defined as genes whose gini impurity scores were at least 3σ above the mean. 026 

 027 

Clinical endpoint analysis and statistical analysis 028 

Data analyses were carried out using GraphPad Prism version 9 and R software version 4. To compare RS drivers 029 

identified with previously reported CLL (n=1063)16 and DLBCL (n=304)14 and (n=574)15 datasets, a 2-sided exact 030 

binomial test was performed with Benjamini-Hochberg multiple hypothesis testing correction. To obtain the 031 

frequency of RS events in DLBCL cohorts prior to this comparison, we called RS sCNAs in 304 DLBCLs14 and 032 

the 443 primary DLBCLs15 for which purity was >20%. Event frequencies were compared when an event was 033 

detected in both sample sets. RS and CLL drivers co-occurrences were represented by using a Sankey diagram. 034 

Significance was evaluated by calculating the probability for acquiring each of the RS drivers considering the 035 

acquisition of a given driver in CLL using Fisher’s exact test. To evaluate how often a given driver initially occurs 036 



during the RS stage in the subset of related RS, we performed the McNemar test. Differences were considered 037 

significant when a P value adjusted for multiplicity of testing was < 0.05. Overall survival (OS) was defined as 038 

the interval between date of transformation and death or censored at last follow-up. Survival data were calculated 039 

using the method of Kaplan-Meier and curves were compared by log-rank testing. 040 

 041 

Cell free DNA (cfDNA) analysis 042 

After sequencing, plasma cfDNA samples were processed and analyzed as reported37. To detect RS-specific 043 

changes, we undertook the following steps. First, we analyzed delta copy number changes between segments, 044 

assigning a positive chromothripsis score when 3 consecutive 1 Mb segments had CN delta ≥ 0.1, suggested 045 

locally fractured genome. Second to assess Richter-specific aneuploidy, we evaluated the fraction of genome in 046 

non-copy-neutral state by fraction genome altered (FGA), defining a region as altered if the segment had an event 047 

as detected by iCHOR analysis and a CN change ≥ 0.1 (to filter out low confidence CN changes) and comparing 048 

to a matched CLL sample when available.  Third, we assigned WGD to samples where copy-number events had 049 

allelic ratios (corrected for iCHOR estimated purities) corresponding to two levels of allele deletions (i.e. 2/0, 1/1 050 

and 2/1 copy-number states) as measured from the main balanced copy-number level (2/2). Lastly, we performed 051 

WES on cfDNA, which we then examined for RS clonal alterations detected in bulk through phylogenetic 052 

reconstruction. 053 

 054 

Data Deposition 055 

WES, RNA-seq, WGS, and scRNAseq data will be deposited in dbgap (accession number phs002458.v1.p1) at 056 

the time of publication. 057 

 058 
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