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Abstract
The brain is a complex organ that requires precise mapping to understand its structure and function. Brain atlases provide a 
powerful tool for studying brain circuits, discovering biological markers for early diagnosis, and developing personalized treat-
ments for neuropsychiatric disorders. Neuromodulation techniques, such as transcranial magnetic stimulation and deep brain 
stimulation, have revolutionized clinical therapies for neuropsychiatric disorders. However, the lack of fine-scale brain atlases 
limits the precision and effectiveness of these techniques. Advances in neuroimaging and machine learning techniques have led to 
the emergence of stereotactic-assisted neurosurgery and navigation systems. Still, the individual variability among patients and 
the diversity of brain diseases make it necessary to develop personalized solutions. The article provides an overview of recent 
advances in individualized brain mapping and navigated neuromodulation and discusses the methodological profiles, advantages, 
disadvantages, and future trends of these techniques. The article concludes by posing open questions about the future development 
of individualized brain mapping and navigated neuromodulation.
Keywords: Brain atlas; Individualization; Navigated neuromodulation; Multimodal magnetic resonance imaging; Transcranial 
magnetic stimulation; Deep brain stimulation
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Introduction

The human brain is the most complex organ in terms 
of structure and function, making brain atlases essential 
tools for studying its intricacies.[1–6] Brain atlases not only 
enable researchers to understand complex functional 
circuits and the neural basis of cognitive behaviors but 
also provide insights into development mechanisms, 
identification of early diagnostic biomarkers, and the 
establishment of personalized and precise treatments for 
brain diseases.[7,8] In the past decade, neuromodulation 
techniques[9,10] such as transcranial magnetic stimulation 
(TMS)[11] and deep brain stimulation (DBS)[12] have 
rapidly advanced, enabling personalized treatments for 
various neuropsychiatric disorders. These techniques can 
improve patient outcomes by precisely targeting specific 
brain regions or circuits, altering neuroelectrical activity 
and transmitter release.[13,14]

Recent advancements in neuroimaging and computer- 
assisted intervention have led to new concepts like ste-
reotactic neurosurgery and neurosurgical navigation 
systems. While these technologies have made substan-
tial advancements in the treatment of brain diseases, 
they are confronted with a formidable challenge—the 
pronounced variability in pathological mechanisms 
and individual patient differences shaped by a complex 
interplay of genetic and environmental factors.[15] This 
interplay results in structural disparities within the 
brain, encompassing differences in size, shape, cellular 
architecture, and brain connectivity. The uniqueness of 
each individual’s brain structure extends its influence to 
brain function, leading to variability at behavioral levels, 
including functional signals,[16] cognition,[17] psychiatric 
symptom,[18] and clinical neurosurgery.[19,20] As a result, 
there is a need for personalized navigation solutions and 
targeted neuromodulation strategies for each disease and 
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patient. Current commercial brain navigation systems 
often rely on traditional anatomical brain atlases, which 
have limitations due to their basis on postmortem spec-
imens, insufficient information on individual variability, 
and lack of functional brain parcellation.[7,21] This hinders 
clinical effectiveness and the precision of neuromodula-
tion therapies. A major bottleneck in navigation-based 
neuromodulation lies in the lack of fine-scale brain atlases 
and individualized approaches, limiting the development 
of personalized and precise treatments. Existing stereotac-
tic navigation systems often require manual intervention, 
reducing efficiency and introducing potential subjective 
errors. Consequently, it is crucial to integrate and ana-
lyze individualized brain mapping methods for specific 
neuromodulation navigation, thus to better characterize 
pathological changes, understand neuromodulation 
mechanisms, and provide a basis for early diagnosis and 
prognostic evaluation.

In this review, we presented an overview of recent 
advances linking individualized brain mapping and 
navigated neuromodulation, focusing on establishing 
precise neuromodulation paradigms based on individual-
ized brain mapping. We discussed the latest approaches 
to individualized brain mapping, their methodological 
profiles, advantages, disadvantages, and application 
trends. We also reviewed the progress in non-invasive 
neuromodulation technology, providing an overview of 
current TMS targeting methods and future directions. 
Furthermore, we illustrated how various DBS procedures 
localize stimulation targets and how the latest individual-
ized brain mapping techniques promote DBS localization. 
Finally, we summarized our findings and posed open 
questions about the future directions of individualized 
brain mapping navigated neuromodulation.

Current Status of the Methodology for Individualized Human 
Brain Mapping

From initial attempts a hundred years ago[1] to recent 
advancements,[7,8] individualized brain mapping has expe-
rienced several stages as brain imaging techniques have 
evolved. The pioneering method[22] involved constructing 
a brain atlas using postmortem brain tissues from a 
single subject and manually labeling brain regions based 
on cytoarchitectural features. The most widely utilized 
atlas among these is the Brodmann atlas.[1,22] This first 
specimen atlas highlighted the potential of individualized 
brain mapping, but brain atlases based on an individual’s 
anatomical characteristics lacked population commonal-
ity and provided only a coarse division of brain regions. 
More recent studies have employed staining techniques 
to map specimen brains at the group level, using cytoar-
chitectonic and myeloarchitectonic characteristics[4,5] 
extracted from multiple subjects. The increased number 
of subjects improved the population coverage of the brain 
atlas; however, anatomical annotation is labor-intensive, 
and the experience and annotation standards of annota-
tors are not uniform, making it challenging to create a 
group-consistent brain atlas. Furthermore, since ex vivo 
manual annotation is invasive, histological brain atlases 
cannot be reproduced in living subjects. In this case, 

various individualization techniques [Figure  1, Table  1] 
have been employed in individualized brain mapping.

Registration-based individualized brain mapping

The most straightforward approach for individualized 
brain mapping is image registration. Regardless of the 
magnetic resonance imaging (MRI) data modality, the 
goal of single-modality registration is to align the reference 
atlas[21] to individual space and minimize reference-in-
dividual differences. The structure registration-based 
individualized brain mapping [Figure  1, Table  1] can 
depict local anatomical architecture like brain shape and 
volume size, but hardly assesses diffusion characteristics 
or functional activation patterns.[23] Diffusion regis-
tration-based individualized brain mapping [Figure  1, 
Table  1] can preserve diffusion characteristics, such as 
diffusion orientation and density, and is advantageous 
for tractography.[24] Function registration-based indi-
vidualized brain mapping [Figure 1, Table 1] is to align 
functional MRI signals, ensuring a group-consistent func-
tional activation pattern between subjects.[25]

The single-modality MRI registration-based individual-
ized brain mapping depicts the parcellation pattern from 
a structural or functional perspective. To achieve a more 
comprehensive individualized brain mapping, multi-mo-
dality registration techniques were developed to integrate 
anatomical architecture, connectivity, and functional 
information of the cerebral cortex [Figure 1, Table 1] mul-
ti-modality registration).[26] In addition to the similarity 
constraint within the anatomical structure, multi-modal-
ity registration aims to minimize structural connectivity 
or functional connectivity differences between the refer-
ence and individualized atlases, allowing multi-modality 
features to be fused during the registration process. Com-
pared to classical volume-based single-modality MRI 
registration techniques, surface-based multi-modality 
registration better preserves the biological features of the 
cortex.[26,27] However, surface-based multimodal regis-
tration is limited by substantial surface shape variability 
between individuals.[26] The structural connectivity and 
functional networks often differ even in the same cortical 
placement between subjects.

In addition to multi-modality registration techniques, 
multi-atlas registration [Figure 1, Table 1] offers another 
approach to individualized brain mapping.[28] While 
multi-modality registration combines parcellation char-
acteristics from different MRI modalities, multi-atlas 
registration aims to integrate parcellation patterns from 
a group of reference brain atlases. Briefly, multi-atlas 
registration assigns reference atlas labels with the highest 
likelihood to a new subject, thereby constructing the 
individualized brain atlas. A typical multi-atlas regis-
tration framework includes reference atlas generation, 
atlas registration, label propagation, and label fusion.[28] 
Notably, the multi-atlas registration-based individualized 
brain mapping is sensitive to label fusion algorithms. 
Individualized brain mapping based on multi-atlas regis-
tration is also capable of integrating parcellation patterns 
from cross-modality reference atlases.[29]
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In summary, while single-modality MRI registration 
methods could construct a non-invasive individualized 
brain atlas compared to histological labeling, they have 
insufficient parcellation perspective. Multi-modality MRI 
registration methods offer a comprehensive perspective 
by integrating cytoarchitecture, connectivity, and func-
tional aspects into individualized brain mapping, but 
they encounter individual variability issues. Multi-atlas 
registration techniques provide a more flexible way to 
individualized brain mapping by fusing parcellation 
patterns from a group of reference atlases with single 
or multiple modalities. In the future, registration-based 
individualized brain mapping is likely to lean toward 
cross-modality multi-atlas registration, integrating with 
the burgeoning deep learning technology to develop a 
range of clinical applications.

Unsupervised learning-based individualized brain mapping

While image registration-based individualized brain 
mapping techniques have been widely used in clinical 
applications,[11,12] they have limited ability to accurately 
capture individual specificity. To better capture the 
individual specificity in brain mapping, unsupervised 
learning-based methods rely solely on the subject’s own 
MRI data. The ultimate purpose of unsupervised learn-
ing-based individualized brain mapping is to segment 
structurally or functionally integrated brain tissues 

into segregated brain regions.[7] To achieve this goal, 
several unsupervised learning-based methods have been 
developed, which can be classified into four categories: 
boundary mapping,[6] region growing,[30] individual clus-
tering,[31–33] and community detection.[34]

Inspired by edge detection algorithms in image segmen-
tation studies, boundary mapping was initially used to 
identify locations where parcellation features change 
rapidly in the target ROI [Figure  1, Table  1].[6] These 
abrupt local changes in cytoarchitecture, connectivity, 
or function form the biological basis of boundary map-
ping.[6] Consequently, the boundary mapping method 
does not require setting the number of subregions, which 
is automatically determined by the distribution of the 
parcellation features. However, constructed brain atlases 
may be inconsistent when using different parcellation 
features due to variations in the distribution of bound-
ary features. Notably, most unsupervised learning-based 
individualized brain mapping methods are not limited to 
parcellation features and MRI modalities.[7] Compared 
to seeking local boundaries where parcellation features 
change rapidly, the region growing method[30] [Figure 1, 
Table 1] starts from the central seed points in the target 
ROI and iterates outwards. The iteration is to find the 
voxels with the parcellation features most similar to the 
seed points or regions and merge them into the updated 
seed regions until the iteration traverses all voxels. These 
iterations are multi-channel, iterating from multiple seed 

Figure 1: Schematic overview of individualized brain mapping techniques. A detailed description can be seen in Table 1.
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Table 1: Summary of individualized brain mapping techniques.

Categories Items Descriptions Schemas

Registration-based individ-
ualized brain mapping

Structure registration[23] Minimizing local structural differences 
between reference and  
individual atlases

Figure 1: structure regis-
tration

Diffusion registration[24] Minimizing differences in local  
diffusion characteristics or structural 
connectivity between reference and  
individual atlases

Figure 1: diffusion regis-
tration 

Function registration[25] Minimizing differences in functional 
activation or functional connectivity 
patterns between reference and 
individual atlases

Figure 1: function regis-
tration 

Multi-modality registration[26] Minimizing feature differences between 
reference and individual atlases  
across multi-modalities

Figure 1: multi-modality 
registration 

Multi-atlas registration[28] Minimizing feature differences between 
multiple reference atlases and  
individual atlas

Figure 1: multi-atlas 
registration 

Unsupervised learning- 
based individualized 
brain mapping

Boundary mapping[6] Not limited to data modalities, but  
often used in fMRI to find where 
changes are sharpest as brain  
region boundaries

Figure 1: boundary 
mapping 

Region growing[30] Not limited to data modalities, brain 
regions start at random centroids  
and expand outward until conver-
gence to boundaries

Figure 1: region  
growing 

Individual clustering[31–33] Not limited to data modalities, the 
mainstream unsupervised clustering 
methods are K-means, hierarchical 
clustering, and spectral clustering

Figure 1: individual 
clustering 

Community detection[34] Not limited to data modalities, a graph 
theoretic approach is utilized to 
perform subgraph cuts to delineate 
brain regions

Figure 1: community 
detection 

Group prior-guided  
individualized brain 
mapping

Tractography projection[35] Only used for dMRI data, relying on 
reference atlas to offer seed brain 
regions for tractography between 
cortical and subcortical areas

Figure 1: tractography 
projection 

Decomposition[36,37] Mostly used for fMRI data, utilizing a 
group of subjects to build the group-
level reference components and then 
projecting it onto individual subjects

Figure 1: decomposition

Exemplar-based clustering[38,39] Mostly used for fMRI data, utilizing 
a group of subjects to build the 
group-level exemplar map and then 
performing affinity propagation 
clustering for individuals

Figure 1: exemplar-based 
clustering

Boundary iterative adjust-
ment[40,41]

Not limited to data modalities, utilizing 
a group of subjects to build a reference 
probability atlas and then iteratively 
adjusting the region boundary in 
individuals until convergence

Figure 1: boundary itera-
tive adjustment

Probabilistic modeling[42,43] Mostly used for fMRI data, utilizing 
a group of subjects to optimize 
inter-subject, intra-subject, and 
inter-region variability and to build 
the individual atlas

Figure 1: probabilistic 
modeling 

Deep learning[44,45] Not limited to data modalities, utilizing 
a group of subjects to train an  
individualized brain mapping model 
and then predicting the parcellation 
pattern for individuals

Figure 1: deep learning

dMRI: Diffusion MRI; fMRI: Functional magnetic resonance imaging.
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points simultaneously. Thus, the parcellation granularity 
of the region growing method is determined by the num-
ber of seed points. Additionally, the final individualized 
brain atlas may be affected by the location of the initial 
seed points. Methodologically, boundary mapping and 
region growing are complementary, with the initialization 
of the former being the boundary and the latter being the 
central points.

Typical individual clustering algorithms applied in indi-
vidualized brain mapping are K-means, hierarchical, and 
spectral clustering [Figure 1, Table 1]. K-means clustering 
assigns voxels to several centroids according to the prin-
ciple of nearest distance, thereby assigning all voxels of 
the target ROI to a given number of clusters.[31] Hierar-
chical clustering aims to build a hierarchical relationship 
map according to the similarity between voxel or cluster 
pairs.[32] Spectral clustering first reduces the dimension of 
the parcellation features and then performs K-means clus-
tering on the reduced-dimensionality feature matrix.[33] 
Community detection is a type of graph segmentation 
algorithm regarding the target ROI as an adjacency 
graph [Figure 1, Table 1].[34] The purpose of a commu-
nity detection algorithm is to segment an adjacency 
graph into subgraphs by minimizing the distance within 
the subgraph and maximizing the distance between the 
subgraphs. Clustering pays more attention to the inherent 
attributes of nodes, whereas community detection focuses 
on the connections between nodes. Also, while clustering 
methods are sensitive to cluster numbers, community 
detection algorithms can estimate the optimal number of 
subgraphs.

Boundary mapping or region growing methods focus on 
local variability or continuity, while individual clustering 
and community detection methods pay more attention to 
the global relationship. Utilizing the subject’s own MRI 
data rather than reference atlases, these unsupervised 
learning-based individualized brain mapping methods 
are advantageous in depicting individual specificity. In 
the future, there is an urgent need for unsupervised learn-
ing-based individualized mapping methods that can work 
with low-resolution diffusion MRI (dMRI) and short-scan 
functional magnetic resonance imaging (fMRI), which are 
commonly acquired in clinical settings. Additionally, as 
high-resolution dMRI and long-scan fMRI become more 
accessible, unsupervised learning-based individualized 
brain mapping will empower the neuroscience community 
to achieve substantial advancements beyond the current 
state.

Group prior-guided individualized brain mapping

Unsupervised learning-based individualized brain map-
ping methods effectively capture individual specificity 
in parcellation patterns, but their moderate population 
commonality, due to the lack of prior information from 
reference atlases, leads to challenges in depicting inter-sub-
ject consistency. Moreover, unsupervised learning-based 
methods,[7] with different settings, may produce highly 
variable parcellation results because of the absence of 
constraints from prior information. To address these 
issues, group prior-guided individualized brain mapping 

methods were proposed to integrate reference atlases 
with individual MRI data. Current group prior-guided 
individualized brain mapping methods include tractogra-
phy projection,[20,35] decomposition,[36,37] exemplar-based 
clustering,[38,39] boundary iterative adjusting,[40,41] prob-
abilistic modeling,[42,43] and deep learning.[44,45] These 
approaches employ prior information from group-level 
reference brain atlases to constrain or initialize the con-
struction of individualized brain atlases. Consequently, 
group prior-guided individualized brain mapping can 
capture both high individual specificity and population 
commonality.

The tractography projection method depends on regis-
tering the reference cortical atlas to the individual brain 
and performing tractography between the subcortical 
seed ROI and cortical reference brain regions (Figure 1 & 
Table 1).[35] The ROI is then divided into reference-related 
functional zones based on the fiber connectivity profile. As 
fiber bundles connect functional circuits between cortical 
and subcortical regions, tractography projection-based 
individualized brain mapping aligns with neurological 
interpretation. This approach has been applied in localiz-
ing DBS targets.[20] However, the brain atlas constructed 
by tractography projection relies on an accurate reference 
cortical atlas and robust tractography algorithms. The 
reference cortical atlas is of great importance in giving 
credible interpretations of the delineation results. Since 
the reference cortical atlas is constructed by data from a 
group of subjects, it has strong population commonality 
but weak individual specificity. Whereas subjects differ 
because of their pathological states and brain anatomy, 
using the reference atlas to substitute for the individual’s 
brain parcellation pattern may lead to inaccurate brain 
mapping results. Hence, developing an accurate cortical 
brain atlas of an individual subject is a necessary step 
before building an individualized subcortical atlas by trac-
tography projection. In terms of tractography algorithms, 
false positive fiber bundles and fiber crossing issues may 
also compromise the tractography-based projection’s 
performance. To enhance the tractography algorithms, 
high spatial resolution dMRI data has been utilized to 
create tractography projection-based individualized brain 
mapping.[20] In the future, the availability of clinically 
oriented high-field MRI technology may further advance 
this individualization method.

The decomposition methods first generate group-level 
components [Figure 1, Table 1],[36,37] then calculate each 
subject’s loading matrix on the group-level components, 
and finally map the loading matrix to the corresponding 
brain spatial location to create an individualized brain 
atlas. But there are negative loadings that may not be 
biologically meaningful. To prevent negative loadings, a 
group-guided non-negative matrix factorization (NMF) 
method was proposed.[37] However, the individual loading 
matrix’s sensitivity to group-level component generation 
makes group prior-guided decomposition methods vul-
nerable to the number of subjects and the dimension of 
parcellation features.[37] More recently, an autoencoder 
model has been employed to extract group-level compo-
nents in a non-linear manner, providing an individualized 
brain atlas with flexible parcellation granularities.[45]
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Exemplar-based clustering builds upon traditional individ-
ual clustering while incorporating prior information from 
reference atlases [Figure  1, Table  1]. Researchers have 
used unsupervised learning-based individual clustering 
methods to construct an individualized brain atlas based 
on data from a specific subject; however, this approach 
may produce an individualized brain atlas that is sensitive 
to initial centroids and cluster numbers. To address this 
issue, exemplar-based clustering first identifies the most 
representative exemplars of a group of subjects using a 
greedy algorithm.[38] Then, it assigns a voxel to the exem-
plar-corresponding clusters by minimizing the distance to 
the determined exemplars. Similarly, group-guided affinity 
propagation clustering first finds the cluster centers and the 
optimal number of clusters in a group-level connectivity 
matrix.[39] Then, it uses the group-level results to initialize 
individual-level affinity propagation clustering. While 
exemplar-based clustering individualized brain mapping 
methods are robust in constructing highly individual-spe-
cific and inter-subject consistent brain parcellations, they 
are time-consuming and computationally complex.[38,39] 
Consequently, these methods may be more suitable for 
individualized brain mapping with low-dimensional 
parcellation features or small-volume ROIs. In the future, 
dimensionality reduction algorithms and parallel comput-
ing techniques may be employed to reduce computational 
burden and accelerate convergence.

Iterative boundary adjustment first creates a group-level 
reference atlas based on a large population dataset  
[Figure  1, Table  1].[40] The group-level reference atlas 
is then used as an initialization of individualized brain 
mapping. Each vertex or voxel is iteratively reassigned to 
the functional network with the most similar parcellation 
features until the iterative adjustment process converges 
according to a predefined criterion. This method is robust 
whether the parcellation features are functional connectiv-
ity[40] or structural connectivity.[41] Since the parcellation 
pattern of an iterative adjustment-based individualized 
brain mapping depends on a reference atlas, it is essential 
to construct canonical reference brain atlases.[21] Cur-
rently, the main technical challenge of iterative boundary 
adjustment methods is portability, as many empirical 
experiments are required to find the optimal termination 
criteria in different application scenarios. Furthermore, 
reference atlases constructed by normal subjects may 
not accurately reflect brain atrophy or dysconnectivity 
in patients. In the future, group-level age-specific and 
disease-specific brain atlases may enhance the clinical 
applicability of the boundary iterative adjusting method.

Probabilistic modeling methods use group-level parcella-
tion features and labels as a prior probability distribution 
[Figure  1, Table  1].[42,43] To construct an individualized 
brain atlas for a new subject, the maximum posterior 
probability is calculated by maximizing the consistency 
within subregions and the difference between subregions. 
Earlier probabilistic modeling-based atlas focused on 
population-level parcellation patterns and inter-region 
variability. Later, inter-subject variability was introduced 
to the calculation of posterior probability.[42] Coupled with 
advancements in high-quality fMRI data, multi-session 
scanning has enabled researchers to consider intra-subject 

variability.[43] Probabilistic modeling methods are pri-
marily used for fMRI data and allow the fusion of local 
and global parcellation features. Currently, the latest 
multi-session hierarchical Bayesian model (MS-HBM) has 
achieved impressive results for studying individual speci-
ficity at lab level.[43] However, applying the MS-HBM in 
clinical settings is challenging due to the requirement for 
high-quality MRI data, which necessitates long scanning 
times. In the future, data generation techniques may offer 
clinical feasibility for high-quality fMRI-based probabil-
istic modeling individualization methods.

Deep learning methods train classification or regression 
models using reference brain atlases and signals, and 
then test the trained models using a new individual’s data 
to construct an individualized brain atlas (Figure  1 & 
Table  1).[44,45] These deep learning-based individualized 
brain mapping methods are not sensitive to parcellation 
features and data modality. In addition to benefiting from 
the powerful representation capacity of deep learning 
models, deep learning-based individualized brain map-
ping has been reported to be more capable of capturing 
individual variability than parameter-based group pri-
or-guided methods.[44,45] However, as a “black box”, the 
parcellation criteria of deep learning models are only 
weakly interpretable from a biological perspective. More-
over, the accuracy of deep learning models is data-hungry 
and relies heavily on the number of training samples 
and model complexity. Excessive attempts at adjusting 
hyper-parameters and overly complicated models may 
lead to overfitting. In the future, deep learning-driven 
individualization methods may be used in neuroscience 
research on large-scale datasets. Simultaneously, with 
the development of super-resolution technology, individ-
ual-level deep learning models, such as self-supervised 
learning, may become dominant in the field of individual-
ized brain mapping.

By integrating individual parcellation features and ref-
erence atlases, group prior-guided individualized brain 
mapping methods can effectively capture both individual 
specificity and population commonality. These methods 
have not only made significant contributions to neu-
roscience research but have also demonstrated clinical 
feasibility in some cases. In the future, advancements in 
dimensionality reduction, parallel computing, popula-
tion-specific brain atlases, data generation techniques, 
super-resolution MRI, and self-supervised learning will 
further accelerate the development of clinically useful 
group prior-guided individualized brain mapping.

Summary

In the present study, individualized brain mapping 
methods were divided into three categories. Registra-
tion-based individualization methods preserve population 
commonality to the greatest extent, while unsupervised 
learning-based individualization methods capture individual 
specificity to the greatest extent. By combining group 
priors with individual characteristics, group prior-guided 
individualized brain mapping methods retain not only 
high population commonality but also capture sufficient 
individual specificity. These three types of individualization 
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methods are well-developed and have been applied to var-
ious neuroscience research and clinical scenarios. In the 
future, several techniques may facilitate the development 
of individualized brain mapping. First, MRI data quality 
enhancement techniques will be crucial, as MRI data 
quality directly affects the performance of individualiza-
tion methods and the accuracy of the constructed atlases. 
However, clinical MRI data often have poor spatial reso-
lution and signal-to-noise ratios. Enhancing clinical data 
quality through algorithms can promote the efficiency 
of individual parcellation feature extraction. Second, 
the development of population-specific group atlases is 
essential. Most current reference atlases provide popu-
lation-level features for healthy young individuals but 
largely ignore age variability and pathological differences 
in broader human brain populations. Establishing group-
level brain parcellation patterns for different age groups 
and pathological states is vital, as aging and pathological 
conditions often result in nuclear atrophy and decreased 
fiber bundle connections, leading to unstable clinical 
localization data. Finally, individual-level individualiza-
tion modeling will be a future direction for individualized 
brain mapping. Most current individualization models 
are at the group level, with all subjects sharing the same 
set of parameters in individualized brain mapping. This 
approach inevitably leads to spatial registration errors 
between the group prior and individual features, regard-
less of the registration method applied. Moreover, group 
optima in the pipeline parameters do not reflect indi-
vidual-level optimal parameters for parcellation. A “one 
subject, one model” approach, providing subject-specific 
parcellation models as well as subject-specific parcellation 
pipeline parameters for each subject, will be the future 
direction of individualized brain mapping. In summary, 
individualized brain mapping is expanding and will con-
tinue to integrate into clinical practices, with even more 
exciting advancements expected in the near future.

Non-Invasive Neuromodulation Method: Electric Field 
Simulation Guided and Brain Circuits Targeted TMS

The previous section has focused on the state-of-art 
methodological review of individualized brain mapping 
[Figure 1, Table  1]. In the next section, we will discuss 
how individualized brain mapping approaches can be 
applied to the field of neuromodulation, specifically with 
regard to non-invasive neuromodulation using TMS. 
TMS is an established, safe, and effective non-invasive 
neuromodulation method that delivers focused magnetic 
pulses to the scalp, generating an electric field in the cor-
tex and modulating neuroactivity in the targeted brain 
region.[46] TMS has been used to treat many neuropathic 
conditions, including depression,[47] migraine,[48] and 
obsessive-compulsive disorder[49] according to the US 
Food and Drug Administration (FDA). A specific TMS 
target that can significantly affect the brain circuits is 
required to achieve substantial therapeutic effects. This 
section focuses on individualized TMS targeting methods 
with depression being the primary focus because it is one 
of the most extensively studied diseases. Although the 
traditional therapeutic approaches, such as medication 
and psychotherapy, are effective in treating depression, 

they do not work for approximately 20%–30% of 
patients diagnosed with major depression disorder.[50] 
TMS was therefore proposed as an alternative therapeutic 
approach that directly affects neural activity and modu-
lates neuroactivity in ways that differ from conventional 
approaches.[47] In TMS therapy, a precise individualized 
stimulation target is essential for effective treatment. In 
the following subsections, we will overview the typical 
methods for individualized TMS targeting and discuss the 
potential for future targeting techniques. These methods 
can be broadly categorized into four classes: the fixed 
distance method, which is simple and convenient but may 
not account for individual differences; the registration 
method, which accounts for individual differences in 
brain anatomy but not functional connectivity; the brain 
connectivity-based targeting method, which considers 
individual differences in functional connectivity; and the 
functional brain network-based targeting method, which 
considers the brain network affected by TMS. The first 
two methods are often utilized in clinical trials and are of 
an experimental nature, while the latter two leverage more 
advanced brain network analysis tools to understand the 
underlying mechanism of TMS therapy and thereby seek 
to obtain more precise individualized targets.

TMS targeting based on scalp landmarks

Lesion and imaging studies indicate that depression is 
pathophysiologically influenced by left prefrontal lobe 
dysfunction.[51] Accordingly, stimulation at 5  cm ante-
rior to the motor cortical hand hotspot [Figure 2A] has 
been suggested as an effective target for the treatment 
of depression. This location, which is in the dorsolateral 
prefrontal cortex (DLPFC), has proved to be an effective 
therapeutic brain region for depression in subsequent 
research.[47] So, determining the position of the DLFPC 
has become an increasingly important step in navigated 
TMS therapy for depression. Due to its convenience and 
rapid effects, the 5 cm targeting method was subsequently 
employed in several large clinical trials. For instance, 301 
medication-free patients underwent six weeks of stimula-
tion[52] and 127 patients received three weeks of targeted 
stimulation.[53] However, some studies revealed that the 
5 cm rule failed to locate the DLPFC in one out of three 
patients.[47,54] To improve targeting accuracy, a location 
more anterior to the hand hotspot, such as at 5.5 cm or 
6.0 cm or even 7.0 cm [Figure 2A], was adopted to localize 
the DLPFC.[54,55] Although these methods are convenient, 
fast, and extensively used in clinical situations, research-
ers still found no standard distance that could accurately 
specify the location of the DLPFC since 5 cm, 6 cm, and 
even 7  cm distances all provide therapeutic effects on 
depression. Due to the variability in head size and shape, 
determining the distance in different subjects before stim-
ulation remains challenging, which limits the application 
of the scalp landmarks method in TMS targeting and 
compromises their therapeutic efficacy.

TMS targeting based on individual anatomy

To alleviate the issue of scalp landmark variability 
across subjects, targeting methods based on individual 
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anatomical images were proposed. These methods consist 
of two main steps: identifying the target on a reference 
atlas and projecting the group-wise target to the sub-
ject space using registration-based individualized brain 
mapping techniques mentioned in the above section. As 
image registration is quite well established and widely 

available in standard software packages, the majority 
of research in the field of TMS targeting methods has 
focused on determining the precise location of the DLPFC 
at the group level. Two types of representative studies are 
those that are based on electroencephalography electrode 
localizations and those that are based on brain atlases. 

Figure 2: Overview of four different individualized TMS targeting methods. (A) TMS targeting based on scalp landmarks. Initially, the hand hotspot is identified by stimulating the motor 
region and assessing the resulting signal. In the illustration, the red point serves as a representative position for the hand hotspot. Additionally, the blue and green points represent the 
5 cm and 6 cm targets, respectively. (B) TMS targeting based on individual anatomy. This figure depicts the 10–20 EEG system. These electrodes are firstly projected to the subject’s 
scalp, and then the TMS coil is placed into the warrant position such as AF3 or F3 electrode that is commonly considered to be close to the DLPFC at the group level, and are marked 
by the red circles in the figure. (C) TMS targeting based on brain connectivity. The seed and target region are extracted from individualized brain atlas. The purple region represents 
the SGC, associated with depression, while the pink region represents the DLPFC, a potential target for stimulation. Functional timeseries are extracted from both of these regions, and 
functional connectivity is calculated using the extracted timeseries. This process yields the TMS target that exhibits the maximum anti-correlation with SGC within the DLPFC. Regarding 
structural connectivity, the fiber bundle passing through both of these regions is extracted and utilized to compute the structural connectivity. The subregion within the DLPFC with the 
greatest number of fibers is determined as the TMS target. (D) TMS targeting based on brain networks. The FPN is extracted from the individualized brain atlas. To attain the maximum 
E-field strength within the FPN, simulated TMS is repeatedly applied to FPN at various positions. The simulated E-field values are collected within the FPN, and the target that yields the 
highest cumulative E-field strength is identified as the TMS target. DLPFC: Dorsolateral prefrontal cortex; FPN: Frontoparietal network; SGC: Subgenual cingulate cortex; TMS: Transcranial 
magnetic stimulation.
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Early research verified that the electroencephalography 
(EEG)-F3 electrode in the 10–20 electroencephalography 
system [Figure 2B] coincides well with the DLPFC at the 
group level, and so the EEG-F3 is often chosen as the target 
(MNI coordinate: –51, 51, 44).[56] Subsequently, the group 
location of F3 can be projected to an individualized loca-
tion and then used to determine the individualized TMS 
target through a registration of the anatomical volumes. A 
further study identified another target termed Fitzgerald 
(MNI: –45, 45, 35), which is located near the midpoint 
between the positions of the F3 and AF3 electrodes. This 
target was obtained by comparing the position of the EEG 
electrodes between the group DLPFC and the EEG elec-
trodes across subjects and was verified to provide a better 
localization of the DLPFC.[55] Rusjan et al[57] also found 
evidence that a location between the F3 and F5 that was 
very close to the F5 overlapped with the DLPFC and veri-
fied that this target provided significantly less inter-subject 
variability than either the fixed distance method or the 
EEG-F3 method. However, all these targets require the 
availability of neuroimaging data and accurate registra-
tion of the subject anatomy. In this case, a method that can 
be used without the availability of neuroimaging data was 
proposed to determine the location of the F3 electrode by 
directly measuring a number of parameters related to the 
subject’s head dimensions and calculating the location of 
F3 based on those parameters. This method, termed the 
Beam-F3 target,[58] has been extensively applied in clinical 
settings with greater reliability than the 5 cm target.[59] In 
addition, the brain atlas-based method can be also used 
to determine the location of the DLPFC, since almost all 
brain atlases include information about areas related to 
the DLPFC. For instance, the DLPFC overlaps with area 
9 and 46 in the Brodmann atlas, and the center of the 
BA9 and BA46 border was identified as a potential TMS 
target.[60]

Compared with the fixed distance, targeting methods 
based on anatomical images show better consistency 
across subjects.[55] While many advances have been 
made in registration-based individualized brain mapping 
techniques, neither of them provides fully disease-specific 
targets for individual subjects as the DLPFC is doc-
umented to not only play a role in the development of 
depression but also other diseases, such as Parkinson’s 
disease.[61] In addition, the DLPFC acts as a hub in a brain 
network with identified involvement in many activation 
studies and neuropathies.[62] Therefore, it will be useful to 
introduce network information about the DLPFC when 
attempting to identify the most appropriate individual 
TMS target.

TMS targeting based on brain connectivity

While stimulating the DLPFC via TMS is reported to 
be effective in the treatment of depression, Fox et al[63] 
found a significant negative correlation (anticorrelation) 
of functional connectivity between these DLPFC targets 
and the subgenual cingulate cortex (SGC). The SGC 
shown in Figure 2C was identified as an effective target 
for treating depression in DBS.[64] In this case, a potential 
therapeutic mechanism for the treatment of depression 
by stimulating the DLPFC by TMS was revealed. That 

is, the position with the most anticorrelation to the SGC 
may be regarded as an appropriate TMS target; this gave 
birth to the connectivity-based TMS targeting methods. 
Unfortunately, the SGC typically offers quite a low signal-
to-noise ratio in fMRI studies. This causes the SGC to 
be an unstable target when relying on traditional seed-
based methods. A seed map method was developed to 
improve the stability of the connectivity metric by replac-
ing the average blood-oxygen-level-dependent (BOLD) 
signal of the SGC with the weighted average BOLD 
signal of the whole brain gray matter.[65] Furthermore,  
Cash et al[66] proposed a clustering method for determin-
ing the position of the voxels that are most anticorrelated 
with the signal in the SGC in cortical regions to improve 
the precision and reproducibility of the functional con-
nectivity-based targeting. Using a combination of the seed 
map and the clustering method can reduce the targeting 
position difference between different days from 25 mm to 
approximately 2 mm across scans.[66]

Another type of method for computing the connectivity 
between brain regions involves dMRI. Here, tractogra-
phy obtained from dMRI data was used to directly and 
structurally delineate the relationship between regions 
as described in the individualized brain mapping section 
[Figure  2]. Compared with BOLD Signal, tractography 
should be more consistent across scans because changes 
in structural connectivity are quite stable over short days. 
Hence, structural connectivity was utilized to determine 
an individualized TMS target that was located in almost 
the same position across scans.[67] In addition, the targets 
acquired by this method were near the group target and 
had no significant variance between subjects. Although 
localization based on structural connectivity has a prefer-
able intra- and inter-subject consistency, it has a relatively 
weak functional interpretation of the therapeutic effect, 
while localization based on functional connectivity is 
more promising in this aspect.[67]

Most previous studies used fMRI to determine individ-
ualized TMS targets,[63,65,66] whereas fewer relied on 
dMRI.[67] The targeting position methods based on fMRI 
are reasonably validated as effective in clinical trials,[68] 
but they still lack reproducibility across scans.[69] In 
comparison, the targeting methods based on dMRI suc-
cessfully solve the heterogeneity issues that are dominant 
in fMRI, but have thus far failed to achieve significant 
therapeutic effects.[67] Hence, future studies that integrate 
fMRI and dMRI data may enable a good interpretation 
of TMS effects as well as excellent consistency of TMS 
targeting. One potential way to integrate these is to use 
the structural connectivity obtained by dMRI to constrain 
functional connectivity such that noise can be suppressed 
while preserving the already identified therapeutic clinical 
effects. In addition, both functional and structural con-
nectivity-based methods attempt to find the maximum 
connectivity between DLPFC and SGC in depression 
therapy, and so the choice of the SGC location also sig-
nificantly affects connectivity-based methods. The SGC 
brain region identified by Fox et al[63] is a 5 mm radius 
sphere centered at the specified coordinate, while in the 
Brodmann map BN25 is the SGC brain region.[22] Further-
more, it is also important to determine the DLPFC brain 
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region, where the stimulation location is typically applied. 
Overall, the target SGC region and the directly stimulated 
cerebral cortex are determined based on the brain atlas. 
This underscores the vital role that individualized brain 
mapping, particularly the accurate delineation of the SGC 
brain region, plays in neuromodulation techniques like 
TMS.

TMS targeting based on brain networks

While localized regional dysfunction in the prefrontal 
cortex has been discovered before,[51] recent studies have 
shown that depression is also influenced by large-scale 
brain functional networks, especially the frontoparietal 
network (FPN).[70] Consequently, several targeting meth-
ods have emerged that aim to measure the engagement 
of the brain network affected by TMS. These approaches 
involved using individualized brain mapping techniques 
to construct functional brain networks related to depres-
sion, such as the functional registration or unsupervised 
learning-based method. As shown in Figure 2D, the region 
of interest (ROI) colored by orange is the FPN extracted 
from the individualized brain atlas.[70,71] Then, to achieve 
an optimal individualized TMS target to treat depression, 
it is worth studying to measure the influence of TMS on 
cortical tissues classified as belonging to the FPN and to 
identify the position with the maximum effect.

The most important metric related to the TMS effect is 
the electric field strength induced by TMS. Usually, many 
simulated stimulation targets are predefined in the target 
functional network, such as the FPN for depression, and 
then the electric field simulation is performed to obtain 
the simulated electric field corresponding to each stimu-
lation target. Finally, the cumulative value of the electric 
field in the target network is calculated to generate the 
optimal stimulation target with the highest cumulative 
electric field value. The electric field simulation software 
uses SimNIBS (https://simnibs.drcmr.dk/),[72] which is 
an open-source software package that calculates the 
induced electric field induced by TMS based on the 
finite element method (FEM). Inspired by the method 
based on connectivity in the studies of Fox et al,[63,65]  
Opitz et al[73] adopted a creative method combining 
the simulated electric field with resting-state functional 
connectivity and quantifying impacts on directly and 
indirectly affected areas.[73] In the previous electric 
field simulation methods, this method can only register 
group-averaged functional networks to individuals due to 
the lack of individualized functional network maps, which 
results in the limitation of capturing individual specificity. 
It is worth noting that Lynch et al[19] acquired abundant 
personal functional MRI to construct precise individual-
ized functional brain networks and demonstrate a better 
TMS influence in silico and in vivo.[19] In addition to the 
research described above, recent studies have used decom-
position or deep learning methods [Figure  2] to obtain 
an individualized functional network—for instance, using 
non-negative matrix decomposition to divide the brain 
network into meaningful functional networks at the indi-
vidual level[37] or computing the individualized functional 
networks utilizing a deep learning method.[45]

In addition to simulating electric fields, various methods 
employ the use of BOLD signal[74] and EEG signal[75] 
to gauge the effects of TMS on cortical tissue. These 
methods primarily consider that TMS stimulation not 
only directly affects the stimulated area but also ripples 
through the entire brain network. Consequently, these 
approaches define the brain’s state changes and its input 
form to create a model of the brain, enabling the simula-
tion of the propagation of TMS effects. Ultimately, after 
the propagation reaches a stable state, the alterations 
induced by stimulation at specific locations are quantified, 
and the stimulation site that promises the most signifi-
cant expected changes is chosen as the target for TMS 
stimulation. These modeling methods necessitate dividing 
the brain into networks during the modeling process, 
with each network serving as a node of the model. While 
they are capable of identifying optimal TMS stimulation 
targets on a broader scale, developing personalized brain 
atlases is still necessary to provide an accurate pattern 
of an individual’s brain network. Furthermore, all these 
simulations can be applied to all nodes within the brain 
network. Hence, they could be leveraged to explore addi-
tional disease-related targets beyond the DLPFC, such 
as the dorsomedial PFC (DMPFC) or the orbitofrontal 
cortex (OFC), as potential targets for the treatment of 
depression.[11]

Summary

In the preceding section, we have reviewed four primary 
approaches for pinpointing the target locations in TMS 
therapy, particularly in the context of treating depression. 
Although the fixed distance methods are fast, convenient, 
and have been adopted frequently in clinical settings, they 
encountered issues related to inconsistency among indi-
viduals and a lack of individual specificity. TMS targeting 
strategies based on individual anatomical images could 
alleviate inter-subject variability issues but lacked dis-
ease-specific localization interpretation. To encompass the 
brain’s activity information linked to specific brain disease, 
connectivity information was utilized to identify TMS tar-
gets. Although the connectivity-based targeting methods 
are of remarkable biological interpretation, they were 
limited by the identification accuracy of disease-specific 
deep brain nuclei. In this case, disease-specific functional 
cortical networks combined with electric field simulation 
techniques were adopted to identify optimal TMS tar-
gets. However, a major shortcoming of anatomy-based, 
connectivity-based, and network-based targeting is 
that they are sensitive to the accuracy of defined brain 
nuclei or networks. Therefore, a precise individualized 
brain atlas is of great importance to achieve reliable and 
personalized TMS targeting. In summary, each of these 
methodologies possesses its own set of advantages and 
limitations. The ultimate objective remains the identifi-
cation of fine-grained and disease-specific individualized 
TMS targets, fostering a more profound understanding 
of and improved treatment for various neuropsychiatric 
conditions. To achieve this goal, integration between 
multimodal neuroimaging and individualized brain map-
ping will consequently improve the accuracy as well as 
reproducibility of TMS targeting.[11,19] In addition, the 
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development of deep brain TMS coils may provide more 
diverse stimulation methods, thus facilitating targeting 
accuracy and clinical outcomes.[76] These software and 
hardware efforts will continue to advance TMS targeting 
and facilitate the development of more personalized treat-
ments.

Invasive Neuromodulation Methods: Localization Errors and 
Brain Atlas Solutions in Navigated DBS

DBS is a practical, interdisciplinary neurosurgical treat-
ment that differs from cortical-oriented TMS as it directly 
stimulates subcortical nuclei using implanted electrodes. 
DBS has been employed to address a range of neurolog-
ical and psychiatric disorders.[77] Common stimulation 
targets for DBS include subcortical nuclei associated with 
the basal ganglia-thalamo-cortical circuit, specifically the 
sensorimotor region of the subthalamic nucleus (STN), the 
internal part of the globus pallidus (GPi), and the ventral 
intermediate nucleus (VIM) of the thalamus.[78] Although 
these targets are typically millimeter-scale, precise stim-
ulation can lead to significant improvements in related 
brain networks. Awake DBS surgery involves electrode 
implantation using microelectrode recording (MER) and 
intraoperative test stimulation with patients in an awake 
state.[79] In contrast, asleep DBS surgery is performed 
under general anesthesia without neurophysiological 
recording or stimulation, relying instead on intraopera-
tive imaging techniques like computed tomography (CT) 
or MRIto guide electrode implantation.[79] The following 
subsections will delve into these two types of DBS surgery 
and their respective electrode implantation methods.

Awake DBS

Awake DBS surgery [Figure 3A,B] is performed under local 
anesthesia. Before electrode implantation, the stimulation 
target is roughly determined using histological human 
brain atlases. During surgery, the precise location of the 
stimulation target is further refined based on electro-
physiological patterns of the neuroanatomical structures 
encountered along the surgical trajectory toward the 
DBS target. These patterns are produced by neuronal cell 
firing and can be estimated by recording extracellular 
and local neuronal activity using MER.[80] Based on the 
observed electrophysiological patterns, the stimulation 
target and electrode implantation trajectories can be well 
defined. Intraoperative awake patient responses can also 
contribute to adjustments during electrode implantation. 
Furthermore, intraoperative stimulation offers valuable 
physiological information to avoid acute clinical responses 
and side effects.

Electrode localization accuracy is a critical factor for 
DBS treatment efficacy.[81] A direct measurement of this 
accuracy is the radial error between the position of the 
implanted electrode and the expected target, serving as 
an objective numerical indicator of whether the DBS 
electrode is within-target or off-target. The histological 
human brain atlases attempt to standardize deep brain 
nuclei that are not well-visualized on conventional imag-
ing sequences by using x, y, and z coordinates relative 
to the anterior conjoined-posterior conjoined (AC-PC) 
plane.[79,82] These atlases are constructed from a limited 
population of specimens and may not generalize well 
to the broader population. They are also susceptible to 

Figure 3: Awake DBS surgery vs. asleep DBS surgery. (A) Awake DBS surgery is usually performed with patients under local anesthesia and in a conscious state. Patients must remain 
awake during lengthy surgeries to provide intraoperative feedback to guide the surgeon in adjusting the DBS target. (B) The microelectrodes are implanted in the brain prior to or in 
parallel with the DBS leads using the planned trajectories. The MER DBS surgery continuously adjusts the microelectrodes intraoperatively according to the recorded electrode signals 
to determine the final DBS target locations. (C) Asleep DBS surgery is performed with patients under general anesthesia, usually without MER. Patients have a more comfortable surgical 
experience with a much shorter (compared to awake DBS surgery) surgical duration. (D) Asleep DBS surgery usually relies on neuroimaging for the preoperative target selection and 
postoperative target localization. High anatomical resolution T1 and geometric resolution CT images are often fused to perform MRI/CT DBS surgeries. dMRI enables direct targeting of 
WM fibers by tractography algorithms. Other neuroimaging categories (fMRI, MEG, etc.) can also play a role in DBS surgery. CT: Computed tomography; DBS: Deep brain stimulation; 
dMRI: Diffusion MRI; DWI: Diffusion-weighted imaging; fMRI: Functional magnetic resonance imaging; MEG: Magnetoencephalography; MER: Microelectrode recording; MRI: Magnetic 
resonance imaging; PET: Positron emission tomography; SPECT: Single photon emission computed tomography; WM: White matter.
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spatial distortion due to unavoidable standardization 
and alignment errors in fixation, sectioning, and staining. 
Additionally, the location, shape, and extent of deep brain 
nuclei vary significantly across individuals.[82,83] Conse-
quently, histological atlas-guided DBS localization cannot 
always provide precise stimulation targets for patients. It 
has been reported that the estimated radial error between 
the implanted electrode position of MER-guided awake 
DBS surgery and the expected target typically ranges 
from 1.0 mm to 1.4 mm,[84] while the mean overall radial 
error of neuroimaging-guided asleep DBS surgery ranges 
from 0.6 mm to 1.3 mm.[79] Besides localization error, the 
lengthy surgical time of awake DBS surgery is a significant 
burden on both patients and doctors, increasing the prob-
ability of infection during and after surgery. Increased 
risks of intracranial hemorrhage and reduced cognitive 
performance have also been associated with intraopera-
tive MER. As a result, preoperative neuroimaging is now 
commonly used as an adjunct to enhance DBS localization 
by optimizing stimulation targets and electrode implanta-
tion trajectories. With the advancement of neuroimaging 
techniques, an increasing number of neuroscientists and 
neurosurgeons are shifting their focus toward asleep DBS 
surgery.

Asleep DBS

In contrast to awake DBS surgery, asleep DBS surgery 
is performed under general anesthesia without neuro-
physiological recording or stimulation, as depicted in 
Figure 3C,D. Although MER can also provide electrical 
signal feedback during asleep DBS surgery, it is currently 
avoided due to additional risks and debates surround-
ing its efficacy.[85] Instead, asleep DBS surgery relies on 
preoperative neuroimaging to determine the target loca-
tion and verify the accuracy of electrode implantation. 
The high spatial resolution and individual specificity of 
preoperative neuroimaging serve to increase electrode 
implantation accuracy, eliminating the need for physio-
logical feedback during awake DBS surgery. Moreover, 
asleep DBS allows for shorter surgery duration, reducing 
the infection risk for patients and alleviating the burden 
on surgeons compared to awake DBS surgery. Asleep 
DBS can be categorized into three main classes based 
on the modality of neuroimaging used: structural MRI/
CT-guided, structural MRI/dMRI-guided, and other neu-
roimaging-guided.

In structural MRI/CT-guided asleep DBS, the stimulation 
target is identified using structural MRI and CT.[86,87] Due 
to significant heterogeneity across subcortical nuclei,[82,83] 
high-resolution structural MRI allows for direct identifi-
cation of many subcortical nuclei with high tissue contrast. 
As a result, sMRI is the primary technique for preopera-
tive target localization and trajectory planning.[86] Before 
the electrode implantation, the target nuclei could be 
localized by structure registration from a template atlas 
[Figure 1, Table 1] or manual outlining. Since structure 
registration is not a complete substitute for individual 
characteristics and manual outlining is time-consuming 
and laborious, robust individualized brain mapping is 
urgently needed to provide reliable targeting of nuclei. 
During DBS surgery, it is crucial to check whether the 

implantation location is within-target or off-target to 
adjust the electrode and verify accuracy. Since radio 
frequency pulses heat the DBS electrodes and pose safety 
issues, MRI scanning is not applicable after electrode 
implantation. Although the electrode-heating effect can 
be limited under certain scanning conditions,[88] signal 
gaps and artifacts remain major unresolved issues.[87] In 
this case, highly geometrically accurate CT images are 
beneficial for detecting the electrode location in the brain 
after implantation. Another advantage of using CT for 
intraoperative or postoperative imaging is its reduced 
scanning time and higher safety compared to sMRI (CT: 
1  min; sMRI: 10  min[87]), which is advantageous for 
subsequent patient recovery. Consequently, the fusion of 
preoperative sMRI images with intraoperative or postop-
erative CT images has become one of the most popular 
techniques for guiding DBS electrode implantation with 
high accuracy. Although the fusion process increases 
technical and procedural complexity and may introduce 
fusion errors, many advanced image fusion algorithms 
have been developed to address this issue robustly.[86,87] In 
clinical settings, several stable software options for sMRI/
CT fusion have been developed, such as Neuroinspire 
(Renishaw, Chassieu, France) and Framelink (Impex Inc, 
FL, USA). Lead-DBS is also an excellent tool for sMRI/CT 
fusion and further neuroscientific research.[89]

In the structural MRI/dMRI-guided asleep DBS, the 
stimulation target is identified using tractography. 
Tractography can be used to estimate the connectivity 
between nuclei and cortical functional zones.[20,90] For 
example, the stimulation target clinically considered most 
effective for dystonia, the ventral GPi, is motivated by its 
robust connectivity with the primary sensory cortex and 
posterior motor cortex.[91] To determine a subject-specific 
stimulation target, the most common individualized brain 
mapping method currently used in clinical practice is to 
register reference functional cortical atlas and subcorti-
cal ROI to the dMRI space and perform tractography 
[Figure  1, Table  1]. As mentioned in the tractography 
projection subsection, this method results in stimulation 
targets that are consistent across subjects, but may ignore 
individual differences in target localization caused by per-
sonalized disease states and diversity of brain anatomy. 
Since the stimulation targets are determined according to 
the cortical functional zones that the fiber bundles are con-
nected to, an accurate individualized cortical brain atlas 
is of great importance in improving localization accuracy. 
Based on the individualized brain atlas, the location of 
the volume of tissue activated (VTA) could be determined 
with reasonable connectivity interpretation. The VTA can 
also be estimated by activating expected target locations 
with standard DBS parameters. Notably, patient-specific 
simulation of VTA should make more sense since a unique 
subject has a specific anatomical structure and brain 
morphology.[92] While tractography projection offers 
neuroanatomical connection guidance for DBS electrode 
localization, it is limited by technical issues, including 
poor spatial resolution, fiber crossing, and the presence 
of false positives during fiber tracking.[93] Furthermore, 
the group-level reference functional cortical atlas and 
subcortical ROI may not be suitable for all subjects due 
to individual variability among different people with 
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different pathological states and ages.[18] This individual 
variability may reduce localization accuracy. In addition, 
it is not clear whether the effective area of stimulation for 
DBS is the subcortical nuclei, or the cortical networks, or 
the fiber tracts.[94] In the future, more capable individu-
alized brain mapping techniques are toward addressing 
this shortcoming of tractography-based DBS targeting 
and providing more robust and precise localization of 
targets. These advances would help to further optimize 
and personalize DBS treatment for patients, potentially 
leading to even better clinical outcomes.

fMRI guided DBS localization focuses on detecting and 
estimating the neurophysiological effects of DBS stimula-
tion during or after electrode implantation, which serves 
to adjust the electrode location. These neurophysiological 
effects are often measured by the changes in the func-
tional activation network within the basal ganglia or 
functional connectivity between the basal ganglia and the 
cortex. In particular, evidence from pig studies indicates 
that effective DBS treatment can target motor-related 
circuits and facilitate better cognitive and emotional 
circuit function.[95] The authenticity of the postopera-
tive fMRI signal may be an issue because the implanted 
electrodes can cause susceptibility artifacts, which are 
highly problematic for robust and distortion-free fMRI 
recordings. Notably, low-conducting graphene electrodes 
have recently been adopted for use in STN-DBS, bringing 
few-to-no MRI artifacts and better control of heating due 
to distributed impedance while maintaining a high charge 
injection capacity.[96] Another work regarding graphene 
electrodes from the group of INBRAIN Neuroelectronics 
(Barcelona, Spain) is that they used graphene electrodes to 
record neurophysiological signals and pinpoint epileptic 
foci by recognizing abnormal discharge patterns.[97] While 
intraoperative or postoperative fMRI is used to evaluate 
the effect of stimulation, preoperative fMRI is also used to 
predict the optimal settings of the stimulation parameters 
for surgical planning.[98] In addition to the above three 
types of MRI-guided DBS electrode localization, positron 
emission tomography (PET),[99] single photon emission 
computed tomography (SPECT),[100] and magnetoen-
cephalography (MEG)[101] are also adopted for searching 
the optimal stimulation target. Yalaz et al[102] used MEG 
to non-invasively detect the position and orientation of 
DBS electrodes. Although the average detection accuracy 
of the electrode location was 2.2 mm due to the insuffi-
cient measurement accuracy of the MEG system, future 
magnetometry systems with higher measurement accu-
racy may serve to more precisely detect the position and 
orientation of DBS electrodes.[99]

Summary

The transformation from MER-guided awake DBS 
surgery to neuroimaging-guided asleep DBS surgery has 
indeed led to reduced surgical duration and improved 
surgical efficacy. Preoperative neuroimaging techniques 
provide more precise stimulation target localization for 
DBS surgery compared to MER, and this accuracy is 
crucial for successful treatment outcomes. Various neu-
roimaging techniques are now applied in preoperative 
electrode localization, and advancements in stereotactic 

frameworks, including robot-assisted neurosurgery sys-
tems, have further enhanced the accuracy of electrode 
implantation.[80] In terms of DBS electrodes, there is a shift 
from traditional toroidal DBS electrodes, which produce 
a spherical electric field, to more advanced directional 
DBS electrodes.[104] These directional electrodes allow for 
more spatially flexible stimulation of the target. Graphene 
electrodes have improved the safety and signal-to-noise 
ratio of DBS electrodes. Rechargeable DBS systems have 
also been developed and utilized in the latest years, such 
as the G102RZ DBS system developed by PINS (Beijing 
PINS Medical Co. Ltd, Beijing, China). Currently, group 
reference brain atlases are still used to initialize the stim-
ulation target and check whether the VTA exceeds the 
defined stimulation area. Although these group atlases 
have stable and consistent parcellation patterns within 
the same group of subjects, they may not provide suffi-
cient identification of individual stimulation targets due 
to inter-individual variability caused by factors such as 
pathological states and ages. To address this limitation 
and enable the full utilization of advancements in surgical 
and electrode systems, a fine-grained individualized brain 
atlas is needed to provide precise stimulation targets 
with high individual specificity. In the future, combining 
individualized brain mapping techniques with DBS tar-
get localization will not only improve the accuracy and 
success rate of surgery but also contribute to a more per-
sonalized and effective treatment approach for patients.

Conclusions

Above, we have overviewed the methodology of current 
individualized brain mapping techniques and the target 
localization methods for two mainstream neuromodu-
lation techniques. Here, we predict future directions by 
quickly discussing some open questions for individualized 
brain mapping navigated neuromodulation. (1) What is 
the required accuracy of individualized brain mapping 
for targeting neuromodulation? (2) Is volume-based, net-
work-based, or connectivity-based individualized brain 
mapping most appropriate for navigation during neuro-
modulation? (3) How can individualized brain mapping 
be used for navigation neuromodulation in patients with 
different brain disorders and within different age groups? 
(4) How can individualized brain mapping be used for 
optimizing stimulation parameters for neuromodulation? 
(5) How can individualized brain mapping be used to 
estimate neuromodulation effects? (6) How can individ-
ualized brain mapping be used to predict the prognosis 
after neuromodulation?

Computationally, advancements in high-resolution 
imaging, machine learning algorithms, and real-time data 
processing are fundamental in this endeavor. The creation 
of brain atlases that seamlessly integrate multiple modal-
ities as well as the development of adaptable simulation 
algorithms capable of accommodating diverse brain 
disorders and age groups is paramount. Furthermore, 
computational modeling should embrace individualized 
brain mapping and simulation to predict the potential 
effects of neuromodulation and post-neuromodulation 
prognosis effectively.
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Neurosurgically, patient-specific brain characteristics 
and pathologic data need to be accurately collected pre-
operatively. Intraoperative surgical navigation could rely 
on individualized brain mapping and simulation, which 
could improve treatment outcome and reduces surgical 
risk. Postoperatively, the prognostic data of each patient 
should be carefully investigated and organized. All these 
patient-specific data from different centers should be 
legally collected and integrated for large-scale modeling 
and analysis to pursue the nature of optimal individualized 
treatment.

Regarding the animal models, they could serve as valua-
ble tools for validating accuracy and assessing the safety 
of different individualized brain mapping techniques for 
specific neuromodulation. These animal models could also 
aid in comprehending how age-related and disease-spe-
cific changes in the brain influence the effectiveness of 
neuromodulation techniques, offering essential insights 
for tailoring treatment strategies. Moreover, animal 
models would contribute to the identification of potential 
biomarkers indicative of treatment success or failure.

In summary, the successful application of individualized 
brain mapping in neuromodulation demands a multi-
disciplinary approach. Computational advancements, 
neurosurgical expertise, and validation through animal 
models collectively pave the way for more precise and 
effective neuromodulation strategies across a spectrum of 
brain disorders.
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