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A B S T R A C T

Detection of abnormalities within the inner ear is a challenging task even for experienced clinicians. In
this study, we propose an automated method for automatic abnormality detection to provide support for
the diagnosis and clinical management of various otological disorders. We propose a framework for inner
ear abnormality detection based on deep reinforcement learning for landmark detection which is trained
uniquely in normative data. In our approach, we derive two abnormality measurements: 𝐷image and 𝑈image. The
first measurement, 𝐷image, is based on the variability of the predicted configuration of a well-defined set of
landmarks in a subspace formed by the point distribution model of the location of those landmarks in normative
data. We create this subspace using Procrustes shape alignment and Principal Component Analysis projection.
The second measurement, 𝑈image, represents the degree of hesitation of the agents when approaching the final
location of the landmarks and is based on the distribution of the predicted Q-values of the model for the last ten
states. Finally, we unify these measurements in a combined anomaly measurement called 𝐶image. We compare
our method’s performance with a 3D convolutional autoencoder technique for abnormality detection using
the patch-based mean squared error between the original and the generated image as a basis for classifying
abnormal versus normal anatomies. We compare both approaches and show that our method, based on deep
reinforcement learning, shows better detection performance for abnormal anatomies on both an artificial and
a real clinical CT dataset of various inner ear malformations with an increase of 11.2% of the area under the
ROC curve. Our method also shows more robustness against the heterogeneous quality of the images in our
dataset.
1. Introduction

Inner ear malformation has been reported with an incidence of
20%–30% among children with congenital hearing loss (Brotto et al.,
2021). The prevalence of bilateral congenital hearing loss is estimated
as 1.33 per 1000 live births in North America and Europe, while in
sub-Saharan Africa, the estimate is 19 per 1,000 newborns, and in
South Asia up to 24 per 1,000 (Korver et al., 2017). Sensorineural
hearing loss is generally detected early in countries with good access to
healthcare services, which allows the prescription of interventions that
mitigate the risk of abnormal social, emotional, and communicative
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development. These interventions include cochlear implant (CI) ther-
apy, which is prescribed each year to about 80,000 infants and toddlers
worldwide (Paludetti et al., 2012).

Radiological examination of children born with sensorineural hear-
ing loss is key for an early diagnosis of congenital inner ear malforma-
tion. When the patient is treated with cochlear implant therapy, during
the radiological examination the anatomy of the patient is evaluated
to plan the surgical strategy. This surgery usually consists of drilling
a precise tunnel from the surface of the scalp to the scala tympani
in the cochlea where the implant is placed. The final location of the
implanted electrode is critical for the patient’s outcome (Chakravorti
et al., 2019). Cases presenting congenital inner ear malformations raise
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many challenges during the planning and execution of CI surgery, often
necessitating the surgeon to discover and adapt as the procedure pro-
gresses. Detecting and identifying such malformations from standard
imaging modalities is a complex task even for expert clinicians. The de-
tection and classification of the type of malformation is not a trivial task
given the complexity of the anatomy and the great anatomical variation
among malformations. Studies have defined several categories for these
malformations, such as Sennaroğlu and Bajin (2017) which is one of the
most popular works used for classifying congenital malformations of
the inner ear. Dhanasingh et al. (2021, 2022) defined possible strategies
for clinicians to detect congenital inner ear malformations based on
the visual exploration of CT scans involving explicit measurements and
humans’ natural ability for pattern recognition. The strategy described
in Dhanasingh et al. (2022) is based on visualizing the cochlea in two
specific planes (oblique-coronal and mid-modiolar) and following three
steps: the cochlear A and B distances defined as Escudé et al. (2006), the
number of cochlear turns, and a visual analysis based on an assessment
of resemblance to different objects such as the Aladdin’s lamp and a side
view of a dog’s face. This methodology provides empirical guidelines
for clinicians to detect these malformations based on hand-crafted
features. As with any human-based image interpretation method, it is
time-consuming and can be subject to the clinician’s subjectivity during
evaluation.

In López Diez et al. (2022b), we introduced the first automated
approach for detecting inner ear congenital malformations. In that
approach, we used a deep reinforcement learning (DRL) model trained
for landmark localization exclusively in normal anatomies to derive two
anomaly measurements: the first was based on the variability of the
predicted configuration of the landmarks in a subspace formed by the
point distribution model of the normative landmarks’ location using
Procrustes shape alignment and principal component analysis (PCA)
projection. The second measurement was based on the distribution of
the predicted Q-values of the model for the last ten states before the
landmarks were localized. In the present paper, we build on our prior
work and compare this approach to a 3D convolutional autoencoder
approach in which the patch-based reconstruction error is used for
anomaly detection in 3D images, as described by Sato et al. (2018).

This journal paper presents a significant extension of the conference
work presented at MICCAI 2022 (López Diez et al., 2022b). We have
extended the literature review, especially for unsupervised anomaly
detection (UAD) in medical images. Furthermore, we have chosen to
use the MARL architecture and not the communicative version (C-
MARL), as it has proven best for this task based on our findings, and
we have closely benchmarked our method against another state-of-the-
art 3D-based approach for UAD in both artificially generated anomalies
and clinical images of congenital inner ear malformations. This helps us
to understand how current approaches tested on brain datasets might
perform in different and more challenging datasets, as is the case with
our rare clinical dataset. Furthermore, our approach allows us to assess
how the performance generalizes from artificially generated datasets
and heterogeneous real clinical scans to scans from a very specific and
controlled environment.

2. Background

Recently, machine learning has enabled the development of auto-
mated medical image analysis methods that achieve great levels of
performance in the detection of abnormal anatomies and other types of
anatomical anomalies (Sajid et al., 2019; Wang et al., 2022). Despite
their outstanding performance, these methods, which are based on
supervised learning, have a major disadvantage: they require large la-
beled datasets that faithfully represent the spectrum of possible anoma-
lies. These datasets are scarce, and costly to obtain, especially for rare
diseases such as congenital inner ear malformation. Furthermore, it is
very difficult to predict how these supervised models will behave with
new unseen data. Lately, some deep learning approaches that seek to
2

enhance UAD have been introduced. These new deep-learning-based
UAD methods resemble the clinical approach to image exploration and
can detect anomalies without prior knowledge about the anomalies’
appearance.

Historically, UAD was based on statistical models (Van Leemput
et al., 2001), out-of-the-distribution techniques (Prastawa et al., 2004;
Allenby et al., 2021), hand-crafted features (Martins et al., 2020),
content-based retrieval or clustering (Taboada-Crispi et al., 2009).
Nowadays, approaches based on isolation forest (Liu et al., 2012),
like (Hariri et al., 2021; Xu et al., 2023a) for UAD, have gained
significant popularity and demonstrate high performance. However,
these approaches rely on the anomalies being distinct and sparse, being
this last one a condition not met by the datasets utilized in this study.
Furthermore, these approaches have been used only in features or
lower-dimensional spaces derived from CT images as in the work pre-
sented by Hainan et al. (2019) and Welch et al. (2020). Nevertheless,
they are not yet suitable for direct application to high-dimensional
clinical data, such as CT or MRI images. This misalignment contradicts
our goal of utilizing an approach directly applicable to the entire CT
image. New deep learning techniques are being tested for UAD as the
ones presented in Wang et al. (2023), Xu et al. (2023b). However, in the
medical image domain, most of the UAD methods used for 3D images
are based on an autoencoder approach. The underlying concept is to
learn an implicit and synthesized representation of a certain type of
image in normative samples and use the difference between the original
image and the one produced by the generative branch of the model
to estimate the probability of the given sample being an anomaly.
Different versions of convolutional autoencoders (CAE) (Baur et al.,
2019; Sato et al., 2018; Atlason et al., 2019; Astaraki et al., 2022) and
variational autoencoders (VAE) (Chen et al., 2020; Pawlowski et al.,
2018; Zimmerer et al., 2019; Astaraki et al., 2022) have been tested
for UAD in medical images. These are popular strategies to tackle unsu-
pervised anomaly segmentation by modeling the distribution of normal
images. In a similar manner, different GANs-based approaches (Schlegl
et al., 2019; Baur et al., 2020; Sun et al., 2020; Schlegl et al., 2017)
have been used for this purpose as well. More recently, autoencoders
with transformers (Pinaya et al., 2022b) and diffusion models (Pinaya
et al., 2022a; Wolleb et al., 2022) have been proposed for UAD. Finally,
attention-map-based approaches such as the ones presented by Silva-
Rodríguez et al. (2022) and Venkataramanan et al. (2020) are also
being used for UAD on medical images.

Besides the work by Sato et al. (2018) and Pinaya et al. (2022b), all
the previously mentioned works have proposed 2D-based approaches,
even though some are used for processing volumetric data, mainly MRI
and CT scans. These 2D approaches do not exploit all the implicit
information of the 3D scans, even if they are computationally more
efficient. This inability to exploit all the information is problematic in
UAD for complex anatomies, such as the inner ear, for which 3D spatial
information is essential in correctly analyzing the internal structures,
which are small and interconnected with a high degree of curvature.
Despite their success, transformer-based approaches, such as Pinaya
et al. (2022b), still have some weaknesses intrinsic to their autoregres-
sive nature, as it is the fixed order of sequence elements that creates a
bias to attention. This problem is more noticeable in 3D images, where
even more transformers might be required to achieve good coverage of
the image context given the images’ higher dimensionality. Therefore,
we chose to compare our proposed 3D-based UAD method with the
asymmetric 3D convolutional autoencoder described by Sato et al.
(2018) as we consider it the best-suited approach for direct comparison
with a low demand of computational resources.

In a similar fashion, we tackle the anomaly detection problem with
a parametric approach instead of a classification one, in an attempt
to build implementations that move toward more interpretable results.
We decided to use the landmark-based approach as an object search
problem using a DRL approach trained in normative data to derive

implicit information that can be used for UAD. The implicit information
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used is of two different types. The first type is based on the variability of
the predicted configuration of the pre-specified landmarks in a subspace
defined by the point distribution model of the normative location of the
landmarks using Procrustes shape alignment and Principal Component
Analysis projection. The second type is based on the distribution of the
predicted Q-values of the model for the last ten states before the land-
marks are localized as an agent hesitation measurement. Landmarks
located with DRL have been used for anomaly detection by Bekkouch
et al. (2022), where a method for abnormality detection in 2D X-ray
images of the hip is proposed. This method is however not a UAD
as it is not unsupervised because the agents are trained to localize
the landmarks in abnormal cases and their prediction is then used
to estimate if they fall within the healthy population expected inter-
landmark relationship. This approach is therefore limited, as are all the
supervised methods, by the size and representativity of the dataset used
in comparison to all the possible abnormal cases.

Deep reinforcement learning consists of the use of deep learning to
solve a reinforcement learning problem. Deep reinforcement learning
has been applied to medical images with great success over the last
years for parametric medical image analysis, optimization problems,
and image classification (Zhou et al., 2021). Even though the automatic
detection of the different types of inner ear malformation is, by nature,
a classification problem, due to the lack of availability of representative
and heterogeneous datasets that faithfully represent the full spectrum
of these congenital malformations, we use a parametric approach (land-
mark detection) in normative data to derive implicit information that
can potentially detect an anomaly in the anatomy in an unsupervised
manner.

Many existing UAD approaches focus on the detection of brain
cancer (Nazir et al., 2021), where cancer can appear at almost ran-
dom locations in the entire brain. The goal of those approaches is
to detect where the brain looks abnormal compared to a normative
population. In our case, we are specifically looking at a very small
anatomical region, the cochlea, that when abnormal might have a very
different overall appearance compared to a normative population. Our
assumption is that the configuration of a limited number of anatomical
landmarks can provide the necessary information for anomaly detec-
tion. For a brain scan with a randomly placed tumor, a landmark-based
UAD would require an extensive amount of anatomical landmarks and
we do not believe that our DRL approach would be suitable for that
task.

3. Materials and methods

3.1. Data

In this study, two different datasets have been used to evaluate the
different methods: an artificial dataset and a clinical dataset.

The artificial dataset consists of 119 clinical CT scans of patients
with normal inner ear anatomy. The cochlear structure presents some
variability in normative patients but it is fairly consistent across this
population (Demarcy et al., 2017). This dataset is composed of images
from diverse CT scanners which were cropped to a standard view
and orientation of the region of interest (ROI) of 32.13 mm3 using the
Nautilus software (Margeta et al., 2022) and their proposed orientation.
These images were labeled with five anatomical points of interest
for nerve characterization (López Diez et al., 2021), an example of
which is shown in Fig. 1. To test our approach, we synthetically
generated abnormal inner ear CT scans from the original images by
removing the cochlea (simulating cochlear aplasia), thus generating
corresponding pairs of normal and abnormal CT scans with the same
surrounding structures. The cochlea was segmented using ITK-SNAP
software (Yushkevich et al., 2006) and then replaced by Gaussian noise
with mean and standard deviation estimated from the intensities of the
tissue surrounding the segmentation (López Diez et al., 2022a).
3

Fig. 1. Artificial dataset. Top: Example of CT scan from the artificial dataset with
a ROI of 32.13 mm3 and isotropic spacing of 0.2 mm. Bottom: Landmark set A: 1, 2
- Opposite sides of bony cochlear nerve canal in axial view. 3 - Facial Nerve (FN)
exiting the internal acoustic canal. 4 - Closest point of FN and cochlea. 5 - Geniculate
ganglion of the FN.
Source: Figure edited from Trier et al. (2008).

Fig. 2. Clinical dataset. Top: Example of CT image from the clinical dataset with a
ROI of 803 mm3 and isotropic spacing of 0.15 mm. Bottom: Landmark set B: 1 - Sigmoid
sinus (closest point to the external acoustic canal). 2 - External acoustic canal (closest
point to).sigmoid sinus 3 - Jugular bulb (closest point to round window). 4 - Carotid
artery (closest point to basal turn of the cochlea). 5 - Basal turn (closest point to JB).
6,7 - Anterior and posterior edges of RW. 8,9 - Anterior and posterior crus of staples.
10 - Short process of incus. 11 - Pyramidal process 12- Cochleariform process.
Source: Figure edited from Trier et al. (2008).

Our second dataset, the clinical dataset, consists of 300 anatomically
normal CT scans from heterogeneous sources and 122 CT scans of inner
ears that present different types of inner ear malformations. The ROI
extraction for this dataset was done using the methodology described
by Radutoiu et al. (2022) using anatomical points of interest that
were not involved in the anatomy of interest in order to allow for a
standardized and robust image orientation regardless of the appearance
of the inner ear region. A greater ROI of 803 mm3 was selected for
this dataset in order to contain all the anatomical points of interest
for CI therapy. For this dataset, as shown in Fig. 2, twelve anatomi-
cally relevant landmarks were carefully designed and annotated in a
randomly selected subset of 160 CT scans of anatomically normal cases
in collaboration with our clinical partner, an ENT surgeon specialized
in CI therapy in abnormal anatomies.

3.2. DRL for landmark localization

Reinforcement learning is a computational approach for learning
an optimal policy by interacting with the environment 𝐸. An agent
observes its current state, 𝑠, and chooses an action, 𝑎, from its set of
possible actions, 𝐴, and the environment returns a reward, 𝑟, which
characterizes the quality of the action chosen. For landmark localiza-
tion in 3D images, the problem is defined as the environment, 𝐸, being



Computerized Medical Imaging and Graphics 113 (2024) 102343P. López Diez et al.
Fig. 3. Diagram of the multi-agent reinforcement learning architecture used. The input is a patch centered in the current agent’s position (state). In yellow we show the convolutional
neural network which extracts the relevant features of a certain patch. Those features are then passed to each corresponding agent which consists of a set of fully connected layers
(in green) that map those features to the estimated expected reward (Q-values) of each of the possible actions (up, right, left, down, forward, or backward). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
the 3D image and the agent is a physical location within the image. The
state, 𝑠, is a patch of the image centered in the agent’s location and the
action set, 𝐴, is the movement in one of the six Cartesian directions (up,
down, left, right, forward, and backward). The reward, 𝑟, is defined as
the difference between the distance to the target landmark’s location
after the last action and in the previous state, meaning it is a positive
value if the agent is moving closer and a negative one if it has moved
away from the target landmark’s location. The agent’s goal is to learn
an optimal policy that maximizes not only the immediate reward but
also the subsequent future rewards.

The expected reward of taking a certain action given a state is
defined as the Q-value. In deep reinforcement learning, this Q-value
is estimated using a Deep-Q-Network which takes the current state
as its input, and outputs the Q-value associated with each possible
action. The architecture of the Deep-Q-Network used for landmark
location resembles a typical image classification architecture. We use a
MARL (Vlontzos et al., 2019) architecture which includes a set of fully
connected layers for each agent. An illustration of the architecture used
can be seen in Fig. 3. The agents all share the same convolutional layers
(implicit communication), meaning the feature extractor is common
to all the agents, but each agent has its own set of fully connected
layers. While explicit communication was introduced in the C-MARL
model proposed by Leroy et al. (2020), we do not include explicit
communication, as we found in López Diez et al. (2022b) that it is not
beneficial for anomaly detection.

We employ a multi-scale approach in which the artificial agent is
trained not only to distinguish the target within the anatomy but also
to learn and follow an optimal navigation path to the target landmark
location in the 3D image, as introduced by Ghesu et al. (2019). The
agent’s search starts at the coarsest scale level with a global context
and continues across three different scales, capturing increased levels
of detail when transitioning to finer scales. This resembles the human
approach to landmark detection in medical images, starting with a big
field of view and localizing the region of interest where the clinician
zooms in and continues looking for the specific features of that specific
landmark.

3.2.1. PCA shape distance method
The landmark locations defined in Figs. 1 and 2 present a consistent

spacial configuration among patients with a normal inner ear anatomy.
The assumption is that when the anatomy does not resemble the
anatomical appearance and configuration the agents have been trained
with, the final location will deviate significantly.

To evaluate the configuration of the predicted landmark locations,
we use a point distribution model (PDM) following the approach pre-
sented by Cootes et al. (1995). A full set of landmark locations in an
image is denoted as a shape with a point correspondence across all
shapes in the training data, and this correspondence is known. Firstly,
the alignment between all the shapes from normative data is derived
using Procrustes analysis (Gower, 1975). By using this transformation,
we obtain a PDM that represents shape variability within the ROI for
normal anatomies and is invariant to size and orientation. We can thus
4

derive the mean shape 𝑥 from this model, followed by a PCA of the
shape variation (Cootes et al., 1995).

From this analysis, we obtain the matrix, 𝛷, which is a set of the
principal components describing the variability of the shape in the
healthy dataset. Based on this, a new shape, 𝑥′, can be defined as: 𝑥′ =
𝑥+𝛷𝑏, where the vector 𝑏 defines the weights controlling the modes of
shape variation and 𝛷 contains the first 𝑡 principal components, which
we defined as the lower possible 𝑡 such that 90% of the shape variability
is contained in the 𝛷 matrix. For the artificial dataset, shown in Fig. 1,
it was found that 𝑡 = 6 was enough, while for the clinical dataset, shown
in Fig. 2, 𝑡 = 11 was found sufficient.

When a new set of landmark locations is predicted, the new shape,
𝑥′, can be aligned to the mean shape, 𝑥, and be approximated by the
PDM model by projecting the residuals from the average shape into
principal component space: 𝑏 = 𝛷𝑇 (𝑥′ − 𝑥).

The vector 𝑏 describes the shape coordinates in the PCA space.
In this space, we evaluate the distance between the different shapes
predicted by the model. We then compute the Euclidean distance
between the projected shapes as

𝑑𝑗𝑖 = ‖𝑏𝑖 − 𝑏𝑗‖2 (1)

which quantifies the variation of all the different shapes predicted for
a certain image, where 𝑖 and 𝑗 represent two different shapes within
the same image. Finally, we compute the standard deviation of this
distribution of distance values for a certain image in the following
manner

𝐷image =

√

∑

|𝑑 − 𝑑|2

𝑛
(2)

where 𝑛 is the number of different distances within one images. 𝐷image
measures the level of agreement among the multiple predictions com-
puted in the PCA space defined by normative shapes. A sketch of this
approach is shown in Fig. 4(I).

3.2.2. Q-value history distribution method
It is our assumption that the expected rewards (Q-values) predicted

during the landmark location search process, in which the agent is
navigating the image, could represent the degree of confidence (or,
defined anthropomorphically, of hesitation) an agent has about the
final landmark location. This hesitation measurement should be highly
correlated with the anatomical appearance, meaning it could be used
to detect anomalies in the anatomy where the landmarks are localized.

Given a certain state of the agent resembles the normal anatomical
configuration of such a region, we expect that the Q-values will present
a uniform distribution as the agent should not expect a high reward for
moving in a certain direction. On the other hand, when the anatomy
of the current state does not resemble what the agent is looking for,
the Q-values should be less uniformly distributed, pushing the agent
to move away from the current location. We define a measurement
of the variability within the distribution of the predicted Q-values of
the action set in the last stages prior to the final landmark location.
To compute this hesitation or uncertainty measurement, we collect the
buffer of predicted Q-values of the last 10 states of the agent, which
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Fig. 4. (I) Diagram of the PCA shape distance method and how 𝐷𝑖𝑚𝑎𝑔𝑒 is computed. (II) Diagram of the Q-value history distribution method and how 𝑈image is computed.
have empirically been found sufficient to define the later stages of the
landmark search procedure. The normalization of the Q-values is done
using the last 10 states of an agent, these values are divided by the
biggest Q-value of that agent in that run and the standard deviation
is computed using those normalized values over all the runs, which is
the uncertainty measurement of that landmark, 𝑢𝑛. These uncertainty
measurements are then joined together by computing the norm of the
vector containing the 𝑢𝑛 of all the landmarks in that image into a single
value per image as follows

𝑈image =
√

∑

𝑛
𝑢2𝑛 (3)

We check the uniformity of the Q-values distribution for each landmark
independently and not over all the landmarks in one image because
different landmarks have specific anatomical relevance. An overview
of this method is shown in Fig. 4(II).

3.2.3. Combined anomaly measure
To evaluate whether the two proposed methods could complement

each other, the joint performance is also taken into account. Due to the
magnitude of the measurements being different from one another, we
introduce a weighting factor to obtain a more representative combina-
tion of both methods. This weighting factor is computed by estimating
the median of both 𝐷image and 𝑈image over all the training images in
order to determine the intrinsic magnitude difference between both
measurements. The weighting factor is then defined as

𝑤 =
median(𝐷training)
median(𝑈training)

(4)

The combined measure, which can be used to analyze the joint perfor-
mance, is therefore defined as:

𝐶image =
√

𝐷2
image + (𝑤𝑈image)2 (5)

to analyze the joint performance.
5

3.3. 3D convolutional autoencoder

An autoencoder is an unsupervised learning algorithm that learns
an identity mapping of the input by minimizing the loss function
between the input and its reconstructed output. It is based on both
an encoding and a decoding phase. In the encoding phase the original
image, 𝐼 ∈ 𝐷, is compressed into a feature vector, 𝑦 ∈ 𝑑 , that can
be reconstructed back to the original space 𝐼 ∼ 𝐼 , given 𝐷 ≫ 𝑑 in the
decoding phase. Autoencoders are very well suited for different tasks
such as anomaly detection but also for simplifying the process of feature
engineering in machine learning studies, as well as for dimensionality
reduction, denoising data, generative modeling, and even pretraining
deep learning neural networks (Lopez Pinaya et al., 2020).

Convolutional autoencoders (CAEs) (Masci et al., 2011) are based
on the same principles but use deep convolutional layers to perform the
dimensionality reduction. The local connectivity of convolutional layers
enables the CAE to extract local and hierarchical features capturing
the global feature of the input by combining the local features. These
local connections require less computational cost than full connections.
Pooling layers are used to reduce the input size and to add robustness
to shift and position variance. 3D-CAE is an extended CAE composed of
3D convolution and pooling layers, applicable to volumetric data (Arai
et al., 2018). We use the asymmetric architecture proposed by Sato
et al. (2018), which they employed for anomaly detection in emer-
gency head CT volumes. The architecture consists of a contracting path
(3D-CNN) and a reconstructive path (3D-deCNN). Details about the
architecture are shown in Fig. 5.

We consider the reconstruction error as the squared difference in
intensity between input and output  = (𝐼 − 𝐼)2. The Mean Squared
Error (MSE) is used as the loss function to train the network.

3.3.1. Abnormality measurement
Given that the CAE has only been trained on anatomically normal

images, it is assumed that the model will learn how to efficiently syn-
thesize such images. This implies that some possible implicit patterns
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Fig. 5. Architecture of the asymmetrical 3D convolutional autoencoder used for anomaly detection where the different convolutional layers are characterized. 𝐼 is the input image
which is a CT scan of the inner ear and 𝐼 is its generated version after the image has been synthesized into the feature vector of size 1024.
,

that are consistent throughout the whole dataset might not be a specific
part of the encoding, given that they are always present in a similar
way. This is the case for the cochlear structure, whose anatomical
structure is complex yet very consistent across normative subjects. A
higher reconstruction error is expected for images that are anatomically
different to the ones in the training set. The chosen error measurement
for the CAE model is the patch-based MSE, as used in the study by Sato
et al. (2018). The abnormality measurement is defined as the MSE of a
patch and all the values for the patches of a certain image are concate-
nated in a vector denoted 𝑎image. The abnormality measurement of a
certain case is thus defined as the maximum abnormality measurements
over all the patches in an image, defined as

𝐴image = max{𝑎image} (6)

3.4. Experiments

The 119 anatomically normal cases of the artificial dataset were
randomly split into: 87 cases for training, 10 for validation, and 22 for
testing. The test set comprises those 22 cases and their corresponding
artificial anomalies generated with the transformation explained in
Section 3.1, resulting in 44 images for evaluation. The clinical dataset
was randomly split into a training set of 160 (anatomically normal)
images, a validation set of 18 (anatomically normal) images, and 244
images for testing (122 anatomically normal and 122 with congenital
malformations). Both the MARL models for landmark localization and
the 3D-CAE model were trained using the same split of the data. The
best-performing model on the validation set was chosen as the final
model for evaluation.

All the models were trained end-to-end on a Titan X 12 GB GPU.
The MARL models were trained with one agent per landmark, meaning
five agents for the artificial dataset and 12 for the clinical dataset. The
models were evaluated over five inferences in order to compute the
corresponding anomaly metrics introduced in Eqs. (2), (3) and (5). The
approximate training time for the two MARL models used was five days.
In the training process, the final state is reached when the distance to
the landmark is ≤ 1 voxel using the 𝜖-greedy search strategy (Watkins,
1989). During inference, the agent’s oscillation is used to finalize the
search. The forgetting factor 𝛾 is set to 0.9 as this has been empirically
found to be the best-performing option. We used a multi-scale approach
with three isotropic resolutions: 0.5, 0.250, and finally 0.125 mm and
a frame history of 4 observations.

The 3D-CAE model software was developed using PyTorch (Paszke
et al., 2019) building on top of the MONAI software (MONAI-Consortium
2022). With a batch size of 8 and a patch size of 128 × 128 × 128
voxels. We used a learning rate of 5.10−5 and AdamW optimizer for
training.

4. Results

Processing results for the artificial dataset are shown in Fig. 6 and
the ones for the clinical dataset in Fig. 7. In Figs. 6(a) and 7(a) we
have included the Receiver Operating Characteristic (ROC) curve which
represents the trade-off between true positive rate (TPR), also known
as sensitivity, and the false positive rate, which is equivalent to 1-
specificity, for all the possible thresholds of the binary classification.
We also include the maximum accuracy metric and the Area under the
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Curve (AuC) as an overall summary of anomaly detection performance
that can be observed in Table 1.

In Figs. 6(b) and 7(b) the precision–recall curve of the anomaly
detection is represented. Even though we have created a perfectly
balanced test set for both experiments, it is relevant to get a better
overview of the classifier performance. These curves represent the
relationship between recall (TPR) and precision which measures the
fraction of examples classified as anomalies that are truly anomalies.
We have also computed the maximum f1-score for each of the methods
which is shown in Table 1.

Finally, in Figs. 6(c) and 7(c), boxplots of the distribution of the
different anomaly measurements of each method are represented for
the artificial and the clinical dataset respectively.

Fig. 8 shows an original image, 𝐼original, from the test set and its
corresponding reconstructed version, 𝐼original, followed by its artificially
generated abnormal version, 𝐼artificial, and its reconstruction, 𝐼artificial.
Furthermore, we also display the reconstruction error,  , for both the
original, 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙, and the artificial image, 𝑎𝑟𝑡𝑖𝑓 𝑖𝑐𝑖𝑎𝑙. It can be observed
in the reconstructed artificial image, 𝐼artificial, that even though the
cochlea had been artificially removed from the input image, 𝐼artificial,
it generates a normal cochlear shape, very similar to the one shown in
the original image from the corresponding pair, 𝐼original. This shows that
the model has indeed learned the implicit representation of the normal
cochlea and always reconstructs an image with normal anatomy. The
resemblance between both outputs is very clear and we can understand
the artificial image will have a higher reconstruction error, especially
in the cochlear region which could be used to segment or indicate the
region of the image that presents the anomaly.

However, is it important to note that the reconstructed images in
Fig. 8 present a more smooth overall appearance with less noise than
the input images. As previously mentioned, we collected both of our
datasets from different clinics meaning the images come from different
CT scanners and present different image quality levels, thus the datasets
are quite heterogeneous. When visually analyzing the results in the
artificial dataset, one notes that the more noisy scans present a greater
and generalized reconstruction error due to the denoising effects of the
autoencoder. This behavior is the main reason behind the results shown
in Fig. 6, where a better result was expected for the 3D autoencoder
given the smaller ROI and the artificially introduced anomaly that is
more extreme than most of the real clinical cases. In addition, the fact
that the artificial dataset presents corresponding pairs of scans with and
without the malformation for evaluation allows for an analysis of the
pair-wise behavior, where we also observe that the 𝐴image measurement
is always greater in the corrupted image but a global threshold is not
successful for classification. This can be observed in Fig. 6(c) where
the corresponding outliers that present a greater reconstruction error in
the normal anatomies have their corresponding pairs for the abnormal
cases which have a slightly greater value of 𝐴image. Therefore setting
a general threshold for binary classification is quite challenging for
a heterogeneous dataset, but very feasible for a model implemented
exclusively for a homogeneous dataset for a specific CT scanner. In
Figs. 6(a) and 6(b) we can see that the CAE-based model only detects
10% of the anomalies if any false positive is tolerated.

Our DRL-based methods generally outperform the 3D-CAE approach,
which is observed in the better performance curves in both Figs. 6
and 7. However, for both experiments, we see that there is a tendency
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Fig. 6. Evaluation in the artificial dataset. Performance metrics obtained with each of the methods based in DRL (green, blue and orange) against the performance of the 3D-CAE
method (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. Evaluation in the clinical dataset. Performance metrics obtained with each of the methods based in DRL (green, blue and orange) against the performance of the 3D-CAE
method (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. 3D-CAE test examples from the artificial dataset. 𝐼original is the input CT clinical image and 𝐼artificial is its corresponding corrupted version (in-painted cochlear structure).
𝐼original and 𝐼artificial are the corresponding reconstructed version of the input images. original and artificial present the reconstruction error between input and output for each case.
that if false positives are not tolerated, then a DRL approach clearly
outperforms the 3D-CAE, but if a high rate of normal cases detected
as anomalies is tolerated (around 50% for the clinical dataset as seen
in Fig. 7(a)), then the 3D-CAE has a similar or slightly better accuracy
depending on the threshold and dataset. Given this, it is natural that
7

in Fig. 7(b) we see that the 3D-CAE approach suffers a smaller drop in
precision as the recall is increased, but an overall significantly lower
precision for recall values from 0 to approximately 0.8.

When comparing the results in Figs. 6 and 7, a similar trend is
observed for both experiments. This proves that the hypothesis tested
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Table 1
Summary of evaluation metrics for the different methods for anomaly detection in the inner ear anatomy in artificial
and clinical datasets.

Artificial dataset Clinical dataset

AuC Max. f1-score Max. acc. AuC Max. f1-score Max. acc.

DRL: 𝐷image 0.95 0.88 0.87 0.82 0.77 0.76
DRL: 𝑈image 0.90 0.86 0.87 0.87 0.82 0.82
DRL: 𝐶image 0.97 0.94 0.93 0.86 0.80 0.80
3D-CAE: 𝐴image 0.85 0.92 0.91 0.76 0.80 0.76
with a sparser dataset that contains a more reduced field of view and
where the images have been artificially transformed into the more
severe type of malformation generalizes well to a complicated clinical
dataset with different types of malformations with a greater field of
view of the image.

For our DRL approach, we observe that the combined anomaly
measure, 𝐶image, shows improved performance on the artificial dataset
as shown in Fig. 6, and a very close performance to the best-performing
method on the clinical dataset as seen in Fig. 7. These results are
also shown in Table 1. We consider that the combination, 𝐶image,
should be used as a more reliable measurement, even though in the
clinical dataset we observe a small better performance from the 𝑈image
measurement.

It is also interesting to note how the different evaluation metrics
shown in Table 1 vary for the different methods and datasets. There
is a clear drop in performance between the artificial and the clinical
dataset, as was expected, given the increased complexity of the task. If
we look at the AuC, the difference in performance between any of the
DRL methods and the 3D-CAE is very clear (11, 2% improvement on
average). Meanwhile, we see similar values for the maximum f1-score
and accuracy, which sometimes is higher for the 3D-CAE than for some
of the DRL approaches, however, the 𝐶image always presents similar or
superior metrics than 𝐴image.

5. Discussion

Our DRL-based method outperforms the 3D-CAE mostly due to a
better adaptation to heterogeneous datasets which are typical in a
clinical context. In our experiments, the autoencoder presents a bigger
sensitivity toward the nature and origin of the image. The search agents
are more robust to the quality difference between images, even though
they are trained to choose an optimal action given a certain crop of the
image, the appearance is not directly correlated with the loss function,
as it is in the case of the autoencoder, nor is it directly linked with the
final anomaly measurement. Of course, the image’s quality also affects
the DRL approach’s performance, as it would do for a clinician who is
searching for the location of a certain number of landmarks. Images of
a lower quality are still more challenging for the DRL approach because
the quality of the extracted features will be affected by this, but not to
the same extent as the 3D-CAE approach, as can be observed especially
when analyzing the performance in the artificial set where the 3D-CAE
shows a lower tolerance towards noisy scans, as explained in Section 4.

Both approaches have the potential to be used as a more inter-
pretable anomaly detector rather than a basic classifier because both
approaches contain spatial information about the original image that
can be exploited. In the case of the 3D-CAE model, the reconstruction
error  can be seen as a map of the abnormal areas indicated by a
higher error, which can be highlighted to the clinician as areas of
interest. For the DRL approach, the use of specific landmarks that are
key for the studied anatomy provides information on the relative points
of interest for each case. In both abnormality measurements 𝐷image and
𝑈image, the information of each agent (corresponding to one landmark)
could be used to indicate which region of the image contributes more
to the final measurement. This potential for interpretability allows for
highlighting regions of the image that have influenced the decision.
Clinicians could look into this area of interest and detect something
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that might have otherwise been overseen, such as an anomaly or the
reason for a falsely detected anomaly, which might be, for example, an
artifact in the image.

For our DRL-based approach, the normative images used for training
must be annotated with all the landmarks of interest, which can be
time-consuming. The 3D-CAE approach does not require pixel-level
annotations but only confirms that the image contains normal anatomy.
However, the 3D-CAE approach does require a more strict standard-
ization of the input image. The DRL approach is less sensitive to
scale variations or small differences in orientation given its multiscale
approach. This supports the previously introduced idea that the 3D-
CAE approach will be better suited for homogeneous datasets, while
the DRL-based approach generalizes better for more heterogeneous
datasets.

6. Conclusion

We have shown that congenital inner ear malformations in CT
images can be automatically detected by training a DRL model ex-
clusively on normative data and evaluating the output variability of
its implicit information. This information contains the relative posi-
tion of the predicted landmarks’ location over different runs/agents
in a subspace defined by the normative annotations as well as the
distribution of the Q-values of the last iterations of the agents as a
measurement of the uncertainty of the final location. We also compare
the proposed approaches with an asymmetric 3D-CAE, which is based
on a 3D-approach for volumetric data. We compare the performance
between both methods and analyze the results obtained not only on
artificially generated data but also in a large dataset of real clinical
CT scans of patients with diverse inner ear malformations from several
different clinics. The DRL approach outperforms the 3D-CAE method
in both datasets, mostly because it presents a higher tolerance towards
heterogeneous real clinical scans from different sources. We believe
that the presented DRL approach could be readily adapted to other
anatomies prone to complex anatomical anomalies. This could include,
but not be limited to, congenital heart disorders or complex spine
compressions.
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