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ABSTRACT

This study addresses the challenge of inaccurate gradients in computing the em-
pirical Fisher Information Matrix during neural network pruning. We introduce
SWAP, a formulation of Entropic Wasserstein regression (EWR) for pruning, cap-
italizing on the geometric properties of the optimal transport problem. The “swap”
of the commonly used linear regression with the EWR in optimization is analyt-
ically demonstrated to offer noise mitigation effects by incorporating neighbor-
hood interpolation across data points with only marginal additional computational
cost. The unique strength of SWAP is its intrinsic ability to balance noise reduction
and covariance information preservation effectively. Extensive experiments per-
formed on various networks and datasets show comparable performance of SWAP
with state-of-the-art (SoTA) network pruning algorithms. Our proposed method
outperforms the SoTA when the network size or the target sparsity is large, the
gain is even larger with the existence of noisy gradients, possibly from noisy data,
analog memory, or adversarial attacks. Notably, our proposed method achieves
a gain of 6% improvement in accuracy and 8% improvement in testing loss for
MobileNetV1 with less than one-fourth of the network parameters remaining.

1 INTRODUCTION

The advent of deep learning has revolutionized various domains of artificial intelligence, with neu-
ral networks showing remarkable performance across an array of applications. Nonetheless, the
increase in model complexity has led to escalating computational demands and substantial memory
requirements. This poses significant challenges for deploying these models in resource-constrained
environments such as mobile or internet of things (IoT) devices. Therefore, the concept of neural
network pruning emerges as a critical solution. It aims to optimize the network by removing less
important parameters, which reduces computational overhead while maintaining the performance of
the original model.

In the realm of state-of-the-art deep learning, the models often exhibit substantial size and complex-
ity, with up to trillions of parameters, as exemplified by models such as GPT-4. The immense compu-
tational demand, energy inefficiency, and the challenges with model interpretability associated with
these models highlight the need for innovative and efficient optimization techniques. These tech-
niques should ideally minimize the model size while improving their robustness and interpretability.
Considering the limitations of previous work, especially those arising from the influence of noisy
data and noisy gradients, the paper proposes a promising pathway for robust pruning.

Below, we inspect the network pruning problem from an optimization perspective, with a concise
introduction of the most relevant existing works. Then a sketch of our approach is given.

Related Work on Pruning as Optimization. Denote by w̄ P Rp a trained model and Lpwq the loss
function given arbitrary model w. The loss function can be locally approximated around w̄ with
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Thriges Fond 5041-2402. Hei Victor Cheng is supported by the Aarhus Universitets Forskningsfond under
Project AUFF 39001.
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Taylor Expansion as shown in (1).

Lpwq “ Lpw̄q ` ∇Lpw̄qJpw ´ w̄q `
1

2
pw ´ w̄qJ∇2Lpw̄qpw ´ w̄q `Op∥w ´ w̄∥3q (1)

Consider a neural network with a loss function Lpwq “ 1
N

řN
i“1 ℓipwq, where ℓipwq P Rp is the

loss incurred at data point i (i “ 1, . . . , N ). The goal of network pruning is to find a set of w
such that there are k (k ă p) elements of w being zero while keeping the newly obtained model
w’s performance as good as possible to the original one w̄. Mathematically, we want to find some
w P Rp that satisfies both Lpwq « Lpw̄q and ∥w∥0 ď k, with k ă p.

This line of research can be dated back to (LeCun et al., 1989), where the approximation in equation
(1) is adopted. Under the assumption that gradient ∇Lpw̄q « 0 when the network is trained, the net-
work weights are pruned one-by-one in decreasing order based on the value of pw´w̄qJHpw´w̄q.
In their approach, the H is approximated as a diagonal matrix; this is later extended in (Hassibi &
Stork, 1992) to include the whole Hessian matrix, and the authors also proposed using the Fisher
information matrix (FIM) as an approximation to the Hessian. Later, (Singh & Alistarh, 2020)
proposed to reduce the computation complexity by using block diagonal Hessian, and FIM is ap-
proximated using a small subset of the training data.

These approaches all use equation (1) to prune the network in a one-by-one manner, namely the
weight with the least importance is set to zero according to the different approximations of equation
(1). In this way, the potential interactions of pruning multiple weights are ignored. To explore this,
the network pruning problem is formulated as a mixed integer quadratic programming (MIQP) in
(Yu et al., 2022). Namely, an objective function

fpwq “ pw ´ w̄qJHpw ´ w̄q ` λ ∥w ´ w̄∥2 (λ ě 0) (2)

is minimized, and Hessian is approximated as H « ∇2Lpw̄q, subject to the sparsity constraint
∥w∥0 ď k, where λ is a regularization parameter. Although this approach shows significant im-
provements, it suffers from scalability issues as a full Hessian matrix is required.

Sparse Linear Regression (LR) Formulation. To reduce the computational complexity, the Hes-
sian matrix can be approximated by the empirical FIM, using n samples as in (Chen et al., 2022;
Benbaki et al., 2023). Denote G “ r∇ℓ1, . . . ,∇ℓnsJ P Rnˆp, where ∇ℓi “ ∇ℓipw̄q. For simplic-
ity, ∇ℓi is used in this document to represent the derivative of the data point i’s loss at w̄ consis-
tently in this paper unless specified otherwise. The Hessian is approximated through the expression
H « p1{nq

řn
i“1 ∇ℓi∇ℓJ

i “ p1{nqGJG, which is the so-called FIM. Denote xi “ ∇ℓJ
i w and

yi “ ∇ℓJ
i w̄, (2) is formulated to the sparse LR problem shown in (3) below.

min
w

Q̄pwq “

n
ÿ

i“1

∥xipwq ´ yi∥2 ` nλ ∥w ´ w̄∥2 , s.t. }w}0 ď k (3)

This formulation has a computational advantage, as empirical FIM needs not to be computed explic-
itly. It is shown that the formulation scales to large neural network pruning (Chen et al., 2022).

Motivation of Combating Against Noise. In practice, it is not always easy to obtain the correct
gradients for pruning large neural networks. There can be noise contained in the data samples, and
the gradients can also be corrupted due to various reasons, e.g., distributed or federated learning
(Turan et al., 2022), or adversarial attacks such as data poisoning (Steinhardt et al., 2017).

As pointed out by (Mahsereci et al., 2017; Siems et al., 2021), conditioning on the underlying true
gradient ∇Lpw̄q “ 0, there are mini-batch gradients which are not informative anymore as it can be
fully explained by sample noise and the vanishing gradients. These gradients would not contribute
to the covariance information of the empirical FIM but serve as outliers in Hessian approximation.

In the scenarios of federated learning (FL), gradients computed by different clients are skewed and
consequently, local models move away from globally optimal models (Huang et al., 2022), imposing
challenges for constructing informative FIM. Besides, noise can be added to the gradient for privacy
concerns in communications (Li et al., 2020). Additionally, the clients usually have inevitable noisy
samples and labels, making models suffer from a significant performance drop (Tuor et al., 2021).
Additionally, over-the-air communications itself suffer from unavoidable noises (Ang et al., 2020;
Yang et al., 2020). These lead to concerns for network pruning with noisy gradients. Finally, analog
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memory recently gained attention for deep learning model deployment (Garg et al., 2022). When
neural network parameters and data are stored in these analog devices, they are susceptible to device-
related noise, affecting the performance of network compression (Isik et al., 2023).

Approach Sketch. We revisit the MIQP network pruning optimization from a perspective of en-
tropic Wasserstein regression (EWR), which leverages Wasserstein distance to model the dissimilar-
ity between two distributions. In our context, it measures the dissimilarity of distributions relevant to
model parameters and gradient magnitudes before and after pruning. Namely, ∇ℓ is a p dimensional
distribution, capturing geometric properties of the loss at w̄ before pruning. Both w̄ and w perform
projections for ∇ℓ to a 1-D distribution respectively as ∇ℓJw̄ and ∇ℓJw. Computing the distance
between ∇ℓJw̄ and ∇ℓJw falls into the framework of sliced probability divergence (Nadjahi et al.,
2020). Under this framework, pruning optimization essentially fine-tunes w and selectively reserves
its elements such that the divergence is minimized subject to the sparsity constraint.

Our approach’s effectiveness in combating noisy gradients is established both analytically and nu-
merically. We demonstrate that pruning through the Wasserstein regression implicitly enacts gradi-
ent averaging using Neighborhood Interpolation. This entails a nuanced balance between capturing
gradient covariance and diminishing gradient noise. Notably, the sparse LR formulation is merely a
specific instance of ours. Yet, our proposed algorithm doesn’t demand a markedly higher computa-
tional expense. This modest additional effort bestows upon us enhanced robustness.

2 PROBLEM SETUP AND FORMULATION

We first introduce the optimal transport (OT) problem in Kantorovich formulation with entropic
regularization, which measures the distance between two distributions, defined in (4) below. The
Wasserstein regression formulation as a generalization of the LR formulation is then proposed.

The Kantorovich Problem. Denote P2 the set of probability measures with finite second moments.
Let µ, ν P P2 and let Πpµ, νq denote the set of probability measures in P2 with marginal distribu-
tions equal to µ and ν. The 2-Wasserstein distance is defined as

W 2
2 pµ, νq “ inf

πPΠpµ,νq

ż

Rdˆd

∥x´ y∥2 dπpx, yq ` ε

ż

Rdˆd

log

ˆ

dπ

dµdν

˙

dπ. (4)

This is also referred to as the entropic OT problem, where the first term is the transportation cost
between the two measures and the second term is the entropic regularization with multiplier ε.

Sparse EWR Formulation. The pruning problem formulation is defined in (5) below.

min
w

Qpwq “ W 2
2 pxpwq, yq ` λ ∥w ´ w̄∥2 (5a)

s.t. ∥w∥0 ď k (5b)

The term W 2
2 pxpwq, yq is a Wasserstein distance between the two one-dimensional distributions x

and y (or a sliced Wasserstein distance for ∇ℓ with two one-dimensional projections). The opti-
mization is to alter w such that the distance between the two distributions is minimized.

Let x and y follow the empirical distributions txiu
n
i“1 and tyiu

n
i“1. Denote by µi and νi the mass

of the data points xi and yi, respectively. We use Π to refer to a matrix representing the transporta-
tion probability between x and y, and Π the set of all such matrices, i.e. Π “ tΠ|

řn
i“1 πij “

µj @j and
řn
j“1 πij “ νi @iu, where µi and νj are marginal distributions. Then (5) reads:

min
w

Qpwq “ inf
ΠPΠ

#

n
ÿ

i“1

n
ÿ

j“1

∥xipwq ´ yi∥2 πij ` ε
n
ÿ

i“1

n
ÿ

j“1

log

ˆ

πij
µiνj

˙

πij

+

` λ ∥w ´ w̄∥2 (6a)

s.t. ∥w∥0 ď k (6b)

LR as a Special Case. Let ε “ 0. Once we set Π to be a diagonal matrix with constant value
1{n, i.e. diagp1{nq, the mass transportation happens only between data point pairs pxi, yiq for
i “ 1, . . . , n. Therefore we have

QΠ“diagp1{nqpwq “
1

n

n
ÿ

i“1

∥xipwq ´ yi∥2 ` λ ∥w ´ w̄∥2 “
1

n
Q̄pwq, (7)
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i.e. the formulation (6) in this case degrades to the LR formulation in (3).

3 THEORETICAL ASPECTS

This section reveals some good theoretical properties of the Sparse EWR formulation for network
pruning. We start with Proposition 1 below (proof in Appendix A.1) that states a geometry prop-
erty of OT with squared Euclidean distance cost. Additionally, we demonstrate the Neighborhood
Interpolation mechanism that happens implicitly in solving the EWR. Moreover, we show that such
a mechanism strikes a balance in capturing gradient covariance and reducing gradient noise, with a
brief discussion on the advantage of using entropic regularization in terms of sample complexity.
Proposition 1 (Convex Hull Distance Equality). Consider a set S and its convex hull ConvpSq in a
Euclidean space, and an arbitrary point x in the space. For any probability measure ν̂ on S, we can
find a point y1 in ConvpSq as y1 “

ş

y dνpyq such that }x ´ y1}2 “
ş

}x ´ y}2 dν̂pyq, where ν is a
measure on ConvpSq.

Neighborhood Interpolation. In formulation (5), let Wx be the first term of W 2
2 for an arbitrary

given x, i.e., Wx “
ş

∥xpwq ´ y∥2 dπp¨|xqpyq, where πp¨|xqpyq is a conditional measure given x.
Now, divide the Euclidean space Rd by subspaces Sy1 , Sy2 . . . , Syn for y. For any conditional measure
πp¨|xqpyq defined on any Syi (i “ 1, . . . , n), there exists a measure νpyq defined on ConvpSyi q such
that the weighted distance from Syi to x equals the distance from x to a point y1 in ConvpSyi q. Hence

Wx “

ż

Sy
1 YSy

2 Y¨¨¨YSy
n

}x´ y}
2
dπp¨|xqpyq

“
1

n

n
ÿ

i“1

›

›x´ y1
i

›

›

2
s.t. y1

i “

ż

ConvpSy
i q

y dνpyq, ν P Vipxq, i “ 1, . . . n.

where Vipxq is the set of measures ν that make the equality holds and Vipxq ‰ ∅ by Proposition 1.

Similarly, we define Wy for any given y and subspaces Sx1 , Sx2 . . . , S
x
n,

Wy “

ż

Sx
1 YSx

2 Y¨¨¨YSx
n

}x´ y}
2
dπp¨|yqpxq

“
1

n

n
ÿ

i“1

›

›x1
i ´ y

›

›

2
s.t. x1

i “

ż

ConvpSx
i q

x dµpxq, µ P Uipyq, i “ 1, . . . n.

where µ is a measure defined on ConvpSxi q and Uipyq ‰ ∅.

y1 y2

y3

y4

y5

x

y1

We demonstrate the concept of “Neighborhood Interpolation”
through an empirical distribution example. Define S as a subset of
y such that for every element yi P S, πx,i ą 0. Without loss of gener-
ality, we can denote S “ ty1, y2, y3, y4, y5u. The area shaded in gray,
denoted as ConvpSq, represents the convex hull of S. Wx computes a
weighted summation of distances between x and the points y1, . . . , y5.
The weights πx,1, . . . , πx,5 are decided by OT. A significant πx,i typi-
cally implies that yi is in proximity to x, indicating a neighborhood
relation. By Proposition 1, this weighted distance is analogous to the
distance between x and y1, where y1 is derived from ConvpSq.

Revisit the EWR formulation. The integral of either Wx or Wy respectively on x or y gives the
first term of W 2

2 . One can then reformulate (5) as (8) below.

min
w:}w}0ďk

Qpwq “
1

2
inf
π

"
ż

Wxpwqdµpxq `

ż

Wypwqdνpyq

*

` λ ∥w ´ w̄∥2 . (8)

Interpretation: The objective function calculates the Euclidean distance between a point x and n
distinct points. These n points originate from n convex hulls, each shaped by different n subspaces
within y. Similarly, the function measures the distance between each point y and m unique points
derived from m convex hulls, each formed by distinct m subspaces within x.
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We claim that the EWR formulation is more resilient to noisy gradient than its counterpart, the
LR formulation given by (3). To understand this claim better, let us reimagine the problem using
empirical distributions, as indicated by (6). In this context, we use xi and yi as substitutes for Sxi
and Syi . Moreover, the integration in both Wx and Wy is replaced with summations, offering a more
insightful version of our initial EWR formulation, shown as (9).

min
w:∥w∥0ďk

Qpwq “ inf
Π

#

QΠpwq ` ε
n
ÿ

i“1

n
ÿ

j“1

log

ˆ

πij
µiνj

˙

πij

+

(9)

The notation QΠpwq defined in (10) denotes the part of the objective function given fixed Π:

QΠpwq “

n
ÿ

i“1

n
ÿ

j“1

∥xipwq ´ yj∥2 πij ` λ ∥w ´ w̄∥2 (10a)

“
1

2

n
ÿ

i“1

∥∥xipwq ´ y1
i

∥∥2
loooooooooomoooooooooon

K
p1q

Π

`
1

2

n
ÿ

i“1

∥∥x1
ipwq ´ yi

∥∥2
loooooooooomoooooooooon

K
p2q

Π

`λ ∥w ´ w̄∥2 (10b)

In QΠpwq, for each index i, points x1
i and y1

i are chosen from the convex hulls formed by points
in x and y, as per the guidelines of Proposition 1. Now, contrasting this with the LR model in
(3), the objective Q̄pwq aims for regression directly over the data points whereas every point from
one empirical set is matched for Euclidean distance computation to a point derived from a convex
combination of the other.

The infimum in (9) seeks the OT plan, Π, that aligns the empirical distributions x and y closely. In
practical terms, for each data point xi, only a subset of tyiu

n
i“1 will transport a substantial mass,

rather than the entire set. This behavior of Π effectively defines n ”neighborhoods” for each data
point xi within the empirical distribution of y. Here, a ”neighborhood” refers to a group of data
points in y that are proximate to a specific xi in the Euclidean sense.

Neighborhood Size Control. A critical aspect of this formulation is the entropic regularization
term, which is used to modulate the size of these neighborhoods. Specifically, increasing the value
of ε amplifies the impact of the entropy term. This change broadens the neighborhoods, drawing
more data points into the fold of the associated convex hulls. An illustrative extreme case is when
ε “ 0. Here, the OT does one-to-one matching, implying that each data point yi primarily forms the
convex hull independently. On the contrary, when ε Ñ 8, all data points are equally weighted by
Π and hence involved in forming the convex hull as a neighborhood.

Capturing Covariance With Gradient Noise Reduction. For an arbitrary w, the EWR for-
mulation essentially strikes a balance between gradient noise reduction and covariance captur-
ing. We show the analysis for Kp1q

Π in (10), and K
p2q

Π pwq follows similarly. Note that y1
i “

řn
j“1 ν

piq
j yj “

řn
j“1 ν

piq
j ∇ℓJ

j w̄, where νpiq are convex combination coefficients by Proposition 1.

Denote ∇ℓ1J
i “

řn
j“1 ν

piq
j ∇ℓJ

j , and G1 “ r∇ℓ1
1, . . . ,∇ℓ1

nsJ. The term K
p1q

Π expands as follows.

K
p1q

Π “

n
ÿ

i“1

p∇ℓJ
i w ´ ∇ℓ1J

i w̄qJp∇ℓJ
i w ´ ∇ℓ1J

i w̄q

“

n
ÿ

i“1

pwJ∇ℓi∇ℓJ
i w ´ wJ∇ℓi∇ℓ1

i
Jw̄ ´ w̄J∇ℓ1

i∇ℓi
Jw ` w̄J∇ℓ1

i∇ℓ1
i
Jw̄q (11)

Examining K
p1q

Π from (11), we see that it effectively replaces half of ∇ℓi with ∇ℓ1
i, a version

obtained through weighted gradient averaging. Now let’s compare the covariance between ∇ℓi and
∇ℓ1

i. Assume that ∇ℓi (1 ď i ď n) are i.i.d. with the same covariance matrix Σ, then G1 is with
equal or less noise than G. To show this, denote the covariance matrix of each ∇ℓ1

i by

Σ1
i “ Cov

„ n
ÿ

j“1

ν
piq
j ∇ℓj

ȷ

“

n
ÿ

j“1

rν
piq
j s2Σ.

5
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The total variance of each gradient in G1 (i.e., the trace of Σ1
i) is then

tracepΣ1
iq “ trace

ˆ n
ÿ

j“1

“

ν
piq
j

‰2
Σ

˙

“

n
ÿ

j“1

“

ν
piq
j

‰2
tracepΣq ď tracepΣq.

The last inequality follows from the fact that
řn
j“1rν

piq
j s2 ď 1, which is a consequence of the

Cauchy-Schwarz inequality given that the coefficients νpiq
j form a convex combination.

Originally, the covariance information of all data points is embedded in ∇ℓi∇ℓJ
i for i “ 1, 2, . . . , n.

An alternative representation is ∇ℓ1
i∇ℓ1J

i , which prioritizes noise reduction, but sacrifices some co-
variance information. Both ∇ℓ1

i∇ℓJ
i and ∇ℓi∇ℓ1J

i highlight a trade-off. Notably, both the original
covariance ∇ℓi∇ℓJ

i and its noise-reduced counterpart ∇ℓ1
i∇ℓ1J

i are retained in (11).

Difference From Averaging Prior to Optimization: Next, we show that such gradient av-
eraging differs from the averaging operation conducted prior to optimization. Let G1 “

r∇ℓ1
1,∇ℓ1

2, . . . ,∇ℓ1
nsJ such that G1 represents the row-wise convex combination of G. Approxi-

mating the Hessian of the MIQP (2), two scenarios emerge: using G that not performing averaging
(case 1) and G1 that performs averaging before optimization (case 2).

Case 1 is the original LR formulation (3). Denote by K below its term corresponding to Kp1q

Π :

K “ pw ´ w̄qJGJGpw ´ w̄q

“

n
ÿ

i“1

pwJ∇ℓi∇ℓJ
i w ´ wJ∇ℓi∇ℓJ

i w̄ ´ w̄J∇ℓi∇ℓJ
i w ` w̄J∇ℓi∇ℓJ

i w̄q (12)

Case 2 uses the less-noisy row-wise convex combination matrix G1 instead of G. Yet, the original
covariance ∇ℓi∇ℓJ

i is lost: Denote by K 1 the corresponding term, and we have

K 1 “

n
ÿ

i“1

pwJ∇ℓ1
i∇ℓ1J

i w ´ wJ∇ℓ1
i∇ℓ1J

i w̄ ´ w̄J∇ℓ1
i∇ℓ1J

i w ` w̄J∇ℓ1
i∇ℓ1J

i w̄q (13)

Inspecting the expressions, it can be observed that Kp1q

Π (also Kp2q

Π ) strikes a balance between K
and K 1. There are two notable extreme cases for Π:

1. Π “ diagp1{nq. This corresponds to the LR formulation, as detailed in Section 2. A
smaller value of ε steers the optimization in this direction.

2. Π “ p1{n2q1 ¨ 1J. This arises when ε Ñ 8, meaning the entropy term holds sway in the
OT optimization. Here, mutual information is minimized to ensure an even contribution
from data points in the convex combination. Both x1

i and y1
i are the arithmetic means of

their respective sets, and all ∇ℓ1
i are equivalent to the averaged gradient over the n points.

Importantly, the original covariance remains intact even in this edge case.

As n grows indefinitely, the empirical OT formulation from (6) approaches its continuous coun-
terpart given by (5). Intuitively, a large dataset of high-quality training samples makes the empir-
ical fisher a close approximation to the true fisher. In such situations, ε is set to zero. Brenier’s
theorem (Peyré, 2019) then suggests that the OT plan turns into a monotone map for costs repre-
sented by squared Euclidean distances. This means Π tends towards diagp1{nq. Consequently, the
Wasserstein distance formulation reduces to the Euclidean distance formulation, delivering optimal
performance with ample data.

An advantage of employing the EWR formulation is its inherent capability of gradient averaging.
This approach negates the need to manually determine the convex combination coefficients or re-
sort to density estimation to pinpoint the nearest gradient neighbors for averaging. Importantly,
this seamless trade-off has an advantage over using Euclidean distance with gradient averaging per-
formed prior to optimization. The reason is that the original covariance information will inevitably
be lost in the formulation (13), irrespective of the chosen averaging method.

Sample Compexity of W 2
2 pµ, νq is narrowed to Op1{

?
nq from Op1{n

1
4 q by the entropic regular-

ization term. Please see Appendix A.2 for details.
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4 ALGORITHM DESIGN

Algorithmic Framework. The algorithm addresses the network pruning problem defined in (5).
Drawing inspiration from (Chen et al., 2022), the algorithm incrementally adjusts the sparsity of
the weights vector w by using a descending sequence of non-zero elements k0, . . . , kT . During
each sparsity level, the weights w and the transportation plan Π (can be obtained with efficient
algorithms; see Appendix A.3) are refined iteratively.

Algorithm 1 Sparse Entropic WAsserstein Regression Pruning (SWAP)

Input: Number of pruning stages T , pre-pruning weights w̄, target sparsity k, regularization pa-
rameter λ, ε, batches B0,B1 . . . ,BT , optimization step size τ ą 0.

Output: Post-pruning weights w, satisfying ∥w∥ ď k
1: Set k0, k1, . . . , kT as a descending sequence, with k0 ă p and kT “ k.
2: wp0q Ð w̄
3: for t Ð 0, 1, . . . , T do
4: Compute G “ r∇ℓ1pw̄q, . . .∇ℓnpw̄qsJ with batch Bt
5: x,y Ð Gwptq,Gw̄
6: Compute the pairwise Euclidean distance matrix C between x and y
7: Compute OT planning Πptq (see Appendix A.3)
8: ∇Q Ð GJpΠpGwptq ´ Gw̄qq ` λpwptq ´ w̄q

9: wpt` 1
2 q Ð wptq ´ τ∇Q

10: wpt`1q Ð Select from wpt` 1
2 q kt components having largest absolute values; Others zero

11: w̄ Ð wpt`1q

12: end for
13: w “ wpT`1q

Weights Optimization. The weights w are optimized using the stochastic gradient descent (SGD)
paired with the iterative hard thresholding (IHT) algorithm. We use ∇Q to represent the derivative
of Qpwq for brevity, with its comprehensive derivation in Appendix A.4. The expression is

∇Q “ GJpΠpGw ´ Gw̄qq ` λpw ´ w̄q. (14)

Following the weight updates driven by SGD (as seen in line 9 of Algorithm 1), the IHT method is
applied. Here, the kt components of w with the largest magnitudes are retained, while the remaining
are set to zero, ensuring adherence to the sparsity criteria.

A vital component of the optimization process is the choice of the stepsize τ (referenced in line 9).
Although a straightforward approach might be to set τ “ 1

L (where L denotes the Lipschitz constant
of Q), better performance can be achieved when the stepsize is optimized using the methodology
proposed in (Chen et al., 2022, Algorithm 2). For the quadratic function Q, the Lipschitz constant
L is given by L “ nλ` ∥G∥2op, where ∥¨∥op indicates the foremost singular value.

Line 10 in Algorithm 1 employs the IHT method that is commonly used in sparse learning, which
together with line 9, forms a projected gradient descent algorithm. It finds a sparse representation
of the updated gradient in line 9. Intuitively, IHT keeps the dominant model weights and essentially
preserves the most impactful aspects of the to-be-trimmed model. Although there exist alternative
strategies for refining the IHT solution—including active set updates, coordinate descent, and the
Woodbury formula’s back-solving—a discussion on these falls outside the scope of this paper. For
in-depth exploration, especially with respect to the specialized case described in (7), one can consult
(Bhatia et al., 2015; Chen & Mazumder, 2020; Hazimeh & Mazumder, 2020; Benbaki et al., 2023).

5 NUMERICAL RESULTS

Our method is compared with several existing SoTA methods including MP (magnitude pruning
(Mozer & Smolensky, 1989)), WF (WoodFisher (Singh & Alistarh, 2020)), CBS (Combinatorial
Brain Surgeon (Yu et al., 2022)), and LR (i.e. the sparse LR formulation adopted by (Chen et al.,
2022)). We refer to our proposed method as EWR (i.e. sparse entropic Wasserstein regression).
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Table 1: Model Pruning Accuracy Benchmarking. Five runs are taken for LR and EWR, with
the mean and 95% confidence interval (in the brackets) reported. The data of MP, WF, and CBS
are copied from (Yu et al., 2022). The superscript “`σ” indicates that 20% of data is with noise.
Bold texts imply the best performance, with 0.1 percentage as tolerance in difference. The sparsity
column is the target sparsity.

Network Sparsity MP WF CBS LR (EWRΠ“I{n) EWR (proposed)

MLPNet
on MNIST
(93.97%)

0.5 93.93 94.02 93.96 95.26 (˘0.03) 95.24 (˘0.03)
0.6 93.78 93.82 93.96 95.13 (˘0.02) 95.13 (˘0.01)
0.7 93.62 93.77 93.98 94.93 (˘0.03) 95.05 (˘0.04)
0.8 92.89 93.57 93.90 94.82 (˘0.04) 94.84 (˘0.03)
0.9 90.30 91.69 93.14 94.32 (˘0.05) 94.30 (˘0.05)
0.95 83.64 85.54 88.92 92.82 (˘0.06) 92.86 (˘0.05)

0.95`σ - - - 90.11 (˘0.08) 90.50 (˘0.07)
0.98 32.25 38.26 55.45 84.43 (˘0.10) 85.71 (˘0.09)

0.98`σ - - - 82.12 (˘0.11) 83.69 (˘0.10)

ResNet20
on CIFAR10

(91.36%)

0.5 88.44 90.23 90.58 92.06 (˘0.04) 92.04 (˘0.03)
0.6 85.24 87.96 88.88 91.98 (˘0.09) 91.98 (˘0.09)
0.7 78.79 81.05 81.84 91.09 (˘0.10) 91.89 (˘0.10)
0.8 54.01 62.63 51.28 89.00 (˘0.12) 90.15 (˘0.09)
0.9 11.79 11.49 13.68 87.63 (˘0.11) 88.82 (˘0.10)
0.95 - - - 80.25 (˘0.17) 81.33 (˘0.15)

0.95`σ - - - 77.37 (˘0.18) 79.05 (˘0.16)
0.98 - - - 68.15 (˘0.27) 69.21 (˘0.24)

0.98`σ - - - 65.04 (˘0.27) 68.01 (˘0.25)

ResNet50
on CIFAR10

(92.78%)

0.95 - - - 83.75 (˘0.14) 84.96 (˘0.15)
0.95`σ - - - 82.34 (˘0.16) 84.92 (˘0.17)

0.98 - - - 81.04 (˘0.14) 82.85 (˘0.20)
0.98`σ - - - 80.11 (˘0.23) 82.94 (˘0.22)

MobileNetV1
on ImageNet

(71.95%)

0.3 71.60 71.88 71.87 71.14 (˘0.08) 71.87 (˘0.05)
0.4 69.16 71.15 71.45 71.12 (˘0.10) 71.44 (˘0.07)
0.5 62.61 68.91 70.21 70.12 (˘0.13) 71.12 (˘0.18)
0.6 41.94 60.90 66.37 70.05 (˘0.22) 70.92 (˘0.18)
0.7 6.78 29.36 55.11 68.15 (˘0.17) 69.26 (˘0.13)
0.8 0.11 0.24 16.38 65.72 (˘0.19) 66.82 (˘0.14)

0.8`σ - - - 60.29 (˘0.18) 63.62 (˘0.15)
0.9 - - - 47.65 (˘0.15) 49.43 (˘0.13)

0.9`σ - - - 44.55 (˘0.16) 47.98 (˘0.16)

Note that LR is a special instance of EWR, with Π “ diagp1{nq. All the methods are benchmarked
on pre-trained neural networks: MLPNet (30K parameters) trained on MNIST (LeCun et al., 1998),
ResNet20 (200K parameters) and ResNet50 (25M parameters) (He et al., 2016) trained on CIFAR10
(Krizhevsky et al., 2009), and MobileNetV1 (Howard et al., 2017) (4.2M parameters) trained on
ImageNet (Deng et al., 2009). The experiment setup for reproducibility1 is detailed in AppendixA.5.
We deliver more experiments results in Appendix A.6-A.9.

Model Accuracy Performance Benchmarking. Table 1 compares different networks across var-
ious sparsity levels, utilizing different methods. MLPNet’s performance on MNIST is consistent
across different sparsity levels, with both LR and the proposed EWR method showing superior per-
formance. The advantages of EWR over the others are reflected by the three more challenging tasks
ResNet20 and ResNet50 on CIFAR10 and MobileNetV1 on ImageNet, especially in the presence of
noisy gradients. In summary, the proposed EWR method consistently outperforms or matches other
methods. The LR method performs well at lower sparsity levels but is surpassed otherwise.

1The code is available on �
https://github.com/youlei202/Entropic-Wasserstein-Pruning
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Table 2: Comparison of testing loss values (no fine-tuning) for ResNet20. The result is averaged
over 25 runs. The 90% confidence interval is reported. The target sparsity is set to be 0.95.

10% Noisy Data
Sparsity Noise = σ Noise = 2σ

LR EWR Diff LR EWR Diff

0.95 2.83 (˘0.02) 2.75 (˘0.02) 2.87% 2.86 (˘0.02) 2.74 (˘0.01) 4.35%
0.84 1.58 (˘0.01) 1.54 (˘0.01) 2.73% 1.62 (˘0.03) 1.54 (˘0.02) 5.15%
0.74 0.66 (˘0.00) 0.64 (˘0.00) 3.03% 0.66 (˘0.00) 0.65 (˘0.00) 1.32%
0.63 0.35 (˘0.00) 0.35 (˘0.00) 0.00% 0.35 (˘0.00) 0.35 (˘0.00) 0.85%

25% Noisy Data
Sparsity Noise = σ Noise = 2σ

LR EWR Diff LR EWR Diff

0.95 2.87 (˘0.02) 2.77 (˘0.01) 3.50% 2.89 (˘0.02) 2.79 (˘0.02) 3.82%
0.84 1.72 (˘0.02) 1.65 (˘0.02) 4.07% 1.76 (˘0.02) 1.69 (˘0.02) 4.05%
0.74 0.67 (˘0.01) 0.67 (˘0.00) 0.49% 0.68 (˘0.00) 0.67 (˘0.00) 1.55%
0.63 0.36 (˘0.00) 0.36 (˘0.00) 0.00% 0.35 (˘0.00) 0.35 (˘0.00) 0.00%

Table 3: Comparison of testing loss values (no fine-tuning) for MobileNetV1. The result is averaged
from 10 runs. The 90% confidence interval is reported. The target sparsity is set to be 0.75.

10% Noisy Data
Sparsity Noise = σ Noise = 2σ

LR EWR Diff LR EWR Diff

0.75 4.54 (˘0.06) 4.34 (˘0.06) 4.41% 4.62 (˘0.07) 4.40 (˘0.06) 5.02%
0.63 2.53 (˘0.04) 2.46 (˘0.03) 2.61% 2.56 (˘0.04) 2.48 (˘0.04) 3.23%
0.53 1.64 (˘0.02) 1.56 (˘0.02) 5.16% 1.66 (˘0.03) 1.56 (˘0.02) 6.01%
0.42 1.30 (˘0.00) 1.30 (˘0.00) 0.00% 1.30 (˘0.00) 1.30 (˘0.00) 0.00%

25% Noisy Data
Sparsity Noise = σ Noise = 2σ

LR EWR Diff LR EWR Diff

0.75 4.93 (˘0.06) 4.53 (˘0.06) 8.13% 5.02 (˘0.06) 4.66 (˘0.05) 7.92%
0.63 2.54 (˘0.04) 2.44 (˘0.03) 4.01% 2.57 (˘0.04) 2.45 (˘0.03) 5.00%
0.53 1.66 (˘0.02) 1.57 (˘0.02) 5.16% 1.66 (˘0.02) 1.55 (˘0.02) 6.63%
0.42 1.30 (˘0.00) 1.30 (˘0.00) 0.30% 1.31 (˘0.00) 1.31 (˘0.00) 0.00%

Robustness with Noisy Gradient. From Section 3, EWR differs from LR in terms of gradient noise
reduction achieved by solving the OT problem to obtain a group of non-trivial data pair weighting
coefficients. Hence, LR that has the transportation plan Π fixed to diagp1{nq naturally serves as a
baseline for evaluating the effectiveness of such optimization in terms of robustness against noise.
In two noisy scenarios, 10%, and 25%, we evaluate loss at noise levels of σ and 2σ across varying
sparsity. Tables 2 and 3 contrast the loss difference between LR and EWR. EWR consistently
outperforms LR in both ResNet20 and MobileNetV1, most notably in noisy conditions and at higher
sparsity. The peak performance difference is 8.13% favoring EWR on MobileNetV1 at 0.75 sparsity
with 25% noise. Hence, EWR outperforms LR.

6 CONCLUSIONS AND FUTURE IMPACT

The paper offers a novel formulation based on EWR, which strikes a balance between covariance in-
formation preservation and noise reduction. The work suggested promising avenues for applications
in large-scale model compression, though it may require further empirical validation and exploration
of practical implementations.
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A APPENDIX

A.1 PROOF OF PROPOSITION 1

(Convex Hull Distance Equality) Consider a set S and its convex hull ConvpSq in a Euclidean space,
and an arbitrary point x in the space. For any probability measure ν̂ on S, we can find a point y1

in ConvpSq as y1 “
ş

y dνpyq such that }x ´ y1}2 “
ş

}x ´ y}2 dν̂pyq, where ν is a measure on
ConvpSq.

Proof. We define a function fpνq “ ∥x´ y1∥2, where y1 “
ş

ydνpyq. This function takes the em-
pirical measure ν as input and computes the squared Euclidean distance between x and y1. Similarly,
we define a function gpνq “

ş

∥x´ y∥2 dνpyq, which computes the weighted average of squared
Euclidean distances between x and the points in the set S according to the probability measure ν.

Without loss of generality, let’s assume that S is contained within its convex hull ConvpSq. Then,
the right-hand side of the equation to be proved in the theorem takes the minimum and maximum
values, respectively, at points within ConvpSq, i.e.,

gmin “ inf
ν

ż

}x´ y}2 dνpyq

and
gmax “ sup

ν

ż

}x´ y}2 dνpyq.

The function fpνq takes its maximum value at z, where z is the farthest point inside ConvpSq from
x, i.e.,

fmax “ sup
ν

}x´ y1}2 “ }x´ z}2.

Similarly, the minimum value is obtained at y1 “ z1, where z1 is the closest point inside ConvpSq to
x. The minimum value can reach zero if x is inside ConvpSq. Formally,

fmin “ inf
µ

␣

}x´ z}2
ˇ

ˇ z P ConvpSq
(

.

To establish that fmax ě gmax, we consider the maximum values of the two functions. The function
fpνq takes its maximum value at z, which is the farthest point inside ConvpSq from x. This means
that fmax is the squared Euclidean distance between x and z, i.e., fmax “ |x ´ z|2. On the other
hand, the function gpνq computes the weighted average of squared Euclidean distances between x
and the points in S. The maximum value of gpνq, denoted as gmax, corresponds to the squared
Euclidean distance between x and the farthest point in S. Since ConvpSq contains S, it follows that
z is farther from x than any point in S. Therefore, fmax ě gmax. Similarly, since ConvpSq contains
S and z1 is the closest point in ConvpSq to x, it follows that fmin ď gmin.

We apply the intermediate value theorem to finish the proof. For any measure ν, let hpµq “ fpµq ´

gpνq. Once can find two measures µ1 and µ2 such that hpµ1q ď 0 and hpµ2q ě 0, hence the zero
point of h exists, followed by that there is a corresponding value of µ such that fpµq “ gpνq.

Hence, the conclusion.

A.2 SAMPLE COMPLEXITY

The efficiency of an estimator is often measured by its ability to deliver accurate estimates with
fewer samples, a trait referred to as ’good sample complexity’. The entropic Wasserstein distance
formulation is posited to enhance noise reduction by optimizing this sample complexity. When
ε “ 0, the sample complexity of W 2

2 pµ, νq stands at Op1{n
1
4 q. Specifically,

lim
nÑ8

ErW 2
2 pµn, νnq ´W 2

2 pµ, νqs “ Op1{n
1
4 q

as per (Nadjahi et al., 2020, Corollary 2). As ε approaches infinity,W 2
2 pµ, νq leverages the beneficial

characteristics of the maximum mean discrepancies (MMD) (Gretton et al., 2006), which narrows
the sample complexity to Op1{

?
nq according to (Genevay et al., 2019, Theorem 3). The coefficient

ε acts as a regulator, adjusting the sample complexity within this specified range.
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A.3 OT PLAN OPTIMIZATION

For an arbitrary wptq, the transportation plan Πptq is obtained by solving W 2
2 pxpwptqq, yq. The

optimization of the transportation plan Π in line 7 of Algorithm 1 is based on the Sinkhorn-Knopp
algorithm, shown in Algorithm 2 below.

Algorithm 2 Sinkhorn-Knopp Algorithm for Regularized OT

Input: C (n ˆ n Euclidean distance matrix), µ,ν (probability mass of x and y), ε (regularization
parameter), ϵ (tolerance for stopping criterion)

Output: Π
1: Initialize K “ expp´C{εq, u “ 1n{n, v “ 1n{n
2: repeat
3: u “ µ{Kv

4: v “ ν{KJu

5: until sup
␣

∥a ´ diagpuqKv∥8 ,
∥∥b ´ diagpvqKJu

∥∥
8

(

ă ϵ

6: return Π “ diagpuq ¨ K ¨ diagpvq

The Sinkhorn-Knopp algorithm is an iterative method used to solve regularized OT problems, aiming
to find a transportation plan that minimizes total cost while adhering to specific source and target
probability distributions. In the algorithm, an initial matrix K is formed using the exponential
of the negative cost matrix divided by a regularization parameter, and two vectors are initialized
as uniform distributions. These vectors are then iteratively updated using rules derived from the
Kullback-Leibler divergence, seeking to align the row and column sums of the resulting matrix
with the given source and target distributions. The process continues until the maximum difference
between the actual and desired row and column sums falls below a specified tolerance, ensuring the
solution is feasible.

Note that x and y are one-dimensional projections of high-dimensional random variables ∇ℓ, of
which the dimension is the number of parameters of the neural network, a.k.a. p. Prior research
has demonstrated that when certain moderate criteria are met, the distribution of lower-dimensional
versions of high-dimensional random variables tends to closely follow a Gaussian (or normal) distri-
bution (Sudakov, 1978; Reeves, 2017; Nadjahi et al., 2021). In the research by (Janati et al., 2020),
it is highlighted that given x and y obeying the Gaussian distribution, W 2

2 px, yq can be reduced to a
concise closed-form solution. As illustrated in Algorithm 3, the OT plan can be directly computed
relying solely on the statistics of the empirical distributions x and y.

Algorithm 3 Closed Form Algorithm for Regularized OT

Input: ψ “
a

ε
2 , a “ meanpxq, b “ meanpyq, σ2

a “ varpxq, σ2
b “ varpyq, dψ “ p4σaσ

2
bσa`ψ4q

1
2

Output:

Π „ N
ˆ„

a
b

ȷ

,

„

σ2
a

1
2σadψσ

´1
a

1
2σadψσ

´1
a σ2

b

ȷ˙

Specifically, the OT plan, represented as Π, is governed by the mean and variance of both x and y,
in tandem with the regularization parameter ε. To derive the nˆn matrix Π, pxi, yiq, where i spans
from 1 to n, are employed to extract n samples from the distribution produced in Algorithm 3.

As depicted in Figure 1, a comparative evaluation of the two algorithms in terms of attaining the OT
objective, W 2

2 , is presented. The entropic regularization term’s value has been omitted considering
its non-impact on the pruning optimization of w, given a constant Π. Notably, the disparity between
the two algorithms in their objective optimization magnifies as ε increases. Typically, in real-world
applications, the value of ε oscillates between 0 and 10 (and we use ε “ 1 most frequently in
our experiments). The variance in the performance of the two algorithms concerning OT planning
remains trivial, echoing our practical observations during the algorithmic implementation in this
study.
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Figure 1: Comparison between the Sinkhorn-Knopp (i.e. Algorithm 2) and the closed-form solution
(i.e. Algorithm 3). The plot is made based on the data of ResNet20 trained on Cifar10. The relative
difference is computed by (red - blue) / blue.

A.4 DERIVATIVE OF Qpwq

Let’s start by revisiting the function Qpwq:

Qpwq “

#

n
ÿ

i“1

n
ÿ

j“1

∥xipwq ´ yj∥2 πij

+

` λ ∥w ´ w̄∥2 (15)

Given:

xipwq “ ∇ℓJ
i w

yj “ ∇ℓJ
j w̄

Differentiating Qpwq with respect to w:

∇Qpwq “ ∇

«#

n
ÿ

i“1

n
ÿ

j“1

∥∥∥∇ℓJ
i w ´ ∇ℓJ

j w̄
∥∥∥2 πij

+

` λ ∥w ´ w̄∥2
ff

“ 2λpw ´ w̄q ` ∇

«#

n
ÿ

i“1

n
ÿ

j“1

∥∥∥∇ℓJ
i w ´ ∇ℓJ

j w̄
∥∥∥2 πij

+ff

(16)

For the gradient of the inner term, consider:

∇

«#

n
ÿ

i“1

n
ÿ

j“1

∥∥∥∇ℓJ
i w ´ ∇ℓJ

j w̄
∥∥∥2 πij

+ff

“

n
ÿ

i“1

n
ÿ

j“1

2πijp∇ℓJ
i w ´ ∇ℓJ

j w̄q∇ℓi (17)

Expressing in Matrix Form. Given matrices:

G “

»

—

—

–

∇ℓ1
∇ℓ2

...
∇ℓn

fi

ffi

ffi

fl

Π “ Matrix with elements πij
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Consider the double summation:
n
ÿ

i“1

n
ÿ

j“1

2πijp∇ℓJ
i w ´ ∇ℓJ

j w̄q∇ℓi

For each i, the term ∇ℓJ
i w projects vector w onto ∇ℓi. To compute this for every i simultaneously,

it is Gw. This results in an nˆ 1 column vector. Similarly, for each j, it is Gw̄. This also produces
an nˆ 1 column vector.

The difference between these two projections for each i and j is Gw´Gw̄. This results in an nˆ1
column vector. To incorporate the πij weights, we have

Π pGw ´ Gw̄q

This operation gives an nˆ1 column vector, where each element is a summation over j for the term
πijp∇ℓJ

i w ´ ∇ℓJ
j w̄q.

To finalize the summation, we multiply it by GJ, yielding

GJ pΠ pGw ´ Gw̄qq . (18)

Combining (16), (17), and (18), we get:

∇Qpwq “ 2λpw ´ w̄q ` 2GJpΠpGw ´ Gw̄qq

“ 2rGJpΠpGw ´ Gw̄qq ` λpw ´ w̄qs (19)

A.5 EXPERIMENT SETUP

The models MLPNet, ResNet20, and MobileNetV1 underwent a pre-training phase of 100 epochs
utilizing 4 NVIDIA Tesla V100 32 GB GPUs connected with NVlink. The training times were
approximately 1 hour for MLPNet, 3 hours for ResNet20, and 1 day for MobileNetV1. Pre-pruning
accuracy levels for these models are detailed under their respective names in Table 1. For the pruning
process, we either utilized 2 NVIDIA Tesla V100 32 GB GPUs with NVlink or a single Tesla A100
PCIE (available in 40 or 80 GB configurations). It’s worth emphasizing the time-intensive nature of
training and pruning the MobileNetV1 on ImageNet; thus, harnessing multiple GPUs for concurrent
training is highly recommended.

In Table 1, we set the pruning stage of LR and EWR to be 15 for MLPNet and ResNet20 and 10
for MobileNetV1. The sparsity k1, k2, . . . kT in Algorithm 1 is arranged following an exponential
gradual pruning schedule

kt “ kT ` pk0 ´ kT q

ˆ

1 ´
t

T

˙3

with the initial sparsity k0 set to zero. The fisher sample size setup follows (Chen et al., 2022, Table
2), shown as Table 4 of this paper below.

Table 4: Comparison of Sample and Batch Sizes for Different Models

Model MLPNet ResNet20/50 MobileNet

Sample Batch Sample Batch Sample Batch

WF & CBS 1000 1 1000 1 400 2400
LR & EWR 1000 1 1000 1 1000 16

In Table 2, Table 3, Table 6, Table 7, and additional results provided in the Appendix, sparsity is
set using a linear gradual pruning strategy, progressing from 0 to 0.75 or 0.95 across ten distinct
stages for MLPNet and ResNet, and from 0 to 0.75 across eight distinct stages for MobileNetV1.
The values are computed with linear incremental steps, from zero to the target sparsity. Notably, all
recorded loss values are captured immediately post-pruning, devoid of any subsequent fine-tuning.
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This approach ensures that the loss values exclusively reflect the impact of the pruning algorithms,
without being clouded by external factors. Contrasting with Table 1, where each row represents a
full pruning cycle, the loss values here are recorded across the ten incremental pruning stages. The
empirical fisher is computed based on 100 samples with a batch size of 1.

In calibrating noise for data in neural networks, we start with a well-trained network. First, we
calculate the standard deviation σ of the network’s derivative. Then, we add Gaussian noise with
zero mean to the data. After adding the noise, the standard deviation of the network’s derivative
changes to a new value, σ1, which is always greater than sigma. The goal is to adjust the standard
deviation of the Gaussian noise so that σ1 becomes σ1 “ σ ` σ (referred to as noise level being σ)
or σ1 “ σ ` 2σ (referred to as noise level being 2σ).

Throughout the paper, we set λ in the optimization problem (6) to 0.01. The regularization multiplier
ε is set to 1 unless specified otherwise. The noise level σ is set to be the standard deviation of the
original gradients.

A.6 ABLATION STUDY

Table 5: Comparison of loss values in terms of ε for ResNet20. The results are obtained from 25
runs, with 10% Noisy data and noise level σ. The target sparsity is 0.95.

Sparsity LR Loss EWR Loss

ε “ 0 ε “ 1 ε “ 2 ε “ 10 ε “ 8

0.95 2.89 2.77 2.78 2.78 2.79 2.97
0.84 1.76 1.69 1.61 1.68 1.71 2.62
0.74 0.68 0.68 0.67 0.66 0.66 0.81
0.63 0.36 0.36 0.36 0.36 0.36 0.37
0.53 0.31 0.31 0.31 0.31 0.31 0.31
0.42 0.31 0.31 0.31 0.31 0.31 0.31
0.32 0.30 0.30 0.30 0.30 0.30 0.30
0.21 0.30 0.30 0.30 0.30 0.30 0.30
0.11 0.31 0.31 0.31 0.31 0.31 0.31

ε “ 0 ε “ 1 ε “ 2 ε “ 10
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Figure 2: Loss reduction with different ε. The result is averaged over 25 runs for ResNet20, with
10% Noisy data and noise level σ. The error bar shows 90% confidence interval. The target sparsity
is 0.95.

The ablation study centered on ResNet20 gives insight into the influence of the entropic regulariza-
tion multiplier, ε, on pruning. The aim is to understand how different values of this parameter affect
the loss Lpwq during the pruning process.

Observations from Loss Values. From Table 5, we can glean the following points. For higher
sparsity levels (0.95, 0.84, 0.74), EWR Loss consistently outperforms the LR Loss, except for ε “
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8. The optimum performance of the EWR Loss, across varying sparsities, tends to occur when ε is
set at values between 1 and 2. As ε tends towards infinity, the EWR loss exceeds the LR loss. This
phenomenon aligns with the neighborhood interpolation elaborated upon in Section 3. Specifically,
incorporating an excessive number of distant data points into the interpolation detrimentally impacts
performance. For lower sparsity levels (from 0.63 downwards), the differences between LR Loss
and EWR Loss across different ε values are minuscule.

Loss Reduction Insights. Referencing Figure 2, it’s evident that the loss reduction (difference
between LR and EWR) is more pronounced at higher sparsity levels. For a sparsity of 0.84, ε “ 1
demonstrates the most significant loss reduction. The trend of EWR loss for different ε values is
consistent across varying sparsity levels. The impact ε is clearly visible at higher sparsity levels. For
mid to high sparsity levels, lower values of ε (specifically 1 and 2) seem to achieve the best balance
in terms of loss.

00.20.40.60.81

1

2

3

Sparsity

E
W

R
L

os
s

EWR Loss for Different ε Values

ε “ 0
ε “ 1
ε “ 2
ε “ 10

Figure 3: EWR Loss in function of the sparsity. The result is obtained over 25 runs on ResNet20,
with 10% Noisy data and noise level σ. The target sparsity is 0.95.

Figure 3 illustrates EWR Loss for various ε values against sparsity, there is a clear trend of de-
creasing loss as sparsity decreases, consistent across all ε values. Particularly at ε “ 8, there’s a
pronounced increase in loss at higher sparsity, suggesting that extreme entropic regularization might
hinder optimal pruning. However, at low sparsity levels, the loss is consistent across all ε, empha-
sizing the minimal impact of ε in limited pruning scenarios. This underscores the significance of
choosing an appropriate ε, balancing between regularization and pruning efficiency.

The ablation study provides insights into the role of the parameter ε in pruning. Its influence di-
minishes at low sparsity levels but becomes significant at extremely high sparsity. For ResNet20,
an optimal range for ε appears to be between 1 and 2, ensuring effective pruning. Generally, while
the exact choice of ε doesn’t drastically alter the pruning outcome, exceedingly high values, such as
1 ˆ 108, might lead to less than ideal pruning decisions in very sparse networks.

A.7 ANALYSIS OF PRUNING STAGE VERSUS PERFORMANCE

Analysis of Loss. Figure 4 depicts the relationship between the sparsity and the difference in loss
(LR - EWR) under the influence of varying noise levels.

The left plot, representing data with a 10% noise level, depicts a prominent decrease in the difference
of loss as sparsity is reduced for both noise levels 2σ and σ. Notably, in the 2σ noise scenario,
there is a sharp decline in loss difference when sparsity transitions from 0.95 to 0.53. Beyond this
threshold, the loss difference stabilizes and remains near zero. For the noise level σ, the decrease
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Figure 4: Difference in loss between LR and EWR for ResNet20. The data is from Table 2. The
relative loss improvement of EWR over LR is reported. The target sparsity is 0.95.
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Figure 5: Difference in loss between LR and EWR for MobileNetV1. The data is from Table 3. The
relative loss improvement of EWR over LR is reported. The target sparsity is 0.75.

appears more gradual. It is of interest to observe that the loss difference diminishes more swiftly for
2σ compared to σ. The error bars offer insights into data variability, showcasing broader intervals
at elevated sparsity levels, which suggests greater unpredictability at these levels, particularly in the
2σ setting.

The right plot represents data with 25% noise. While the trends in loss difference share similarities
with the 10% noisy data, the exact values differ slightly. In this 25% noise setting, the decline in loss
difference between the two noise levels is similar. The error bars, indicating confidence intervals,
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Figure 6: Accuracy difference vs. pruning stage for ResNet20. The difference is defined to be (EWR
- LR) / LR. The data is obtained over 5-25 runs over combinations of different setups: noise level σ
and 2σ, noisy gradient proportion 10% and 25%, ε “ 1, 2. The target sparsity is 0.95.

highlight the increased variability at larger sparsity levels. This variability is most noticeable for the
2σ setting at the top sparsity levels.

Figure 5 depicts the difference in loss between LR and EWR algorithms applied to the MobileNetV1.
In both two cases 10% and 25% noisy data, as sparsity increases, the loss difference diminishes, par-
ticularly when sparsity is approximately 0.42 or less. The 10% noisy data reveals that the difference
in loss for noise level 2σ is marginally higher than that of σ for most sparsity levels. In contrast, the
25% noisy data sometimes exhibits a reversal in this trend, especially at the highest sparsity level of
0.74.

Confidence intervals provided at select data points underscore the reliability of the data, with the
25% noisy data showing tighter intervals compared to the 10% scenario. This infers a higher con-
sistency in the measurements or a minimized effect of outliers in the 25% noisy data. These plots
accentuate the interplay between sparsity, noise, and the performance difference between the two al-
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Figure 7: Accuracy difference vs. pruning stage for MobileNetV1. The difference is defined to be
(EWR - LR) / LR. The data is obtained over 5-10 runs over combinations of different setups: noise
level σ and 2σ, noisy gradient proportion 10% and 25%, ε “ 1, 2. The target sparsity is 0.95.

gorithms, emphasizing the significance of noise levels in algorithmic performance evaluations across
various sparsity conditions. The underlying rationale is that as the noise intensity is too high, the
performance of both LR and EWR tends to deteriorate. Consequently, their performances converge,
resulting in a diminished differential between the two.

Analysis of Accuracy. The box plots in Figure 6 together with Table 6 show how the ResNet20
model performs at different pruning stages in terms of top-1 accuracy (also referred to as accuracy
or the overall accuracy) and top-5 accuracy difference. Top-5 accuracy means any of our model’s
top 5 highest probability answers match with the expected answer. The difference is computed for
EWR, using LR as the baseline. When we look closely, we can see patterns that help us understand
how much pruning affects the model.

In the earlier pruning stages, both the overall accuracy and the top 5 accuracy differences for EWR
are minimal, suggesting that EWR remains closely aligned with the baseline LR in terms of per-
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Table 6: Comparison of testing Top-1 accuracy (%) (without the fine-tuning steps imposed) values
for LR and EWR for ResNet20. The result is averaged over 25 runs. The 90% confidence interval
is reported. The target sparsity is set to be 0.95.

10% Noisy Data
Sparsity Noise = σ Noise = 2σ

LR EWR Diff LR EWR Diff

0.95 11.65 (˘0.21) 11.70 (˘0.15) 0.47% 11.53 (˘0.14) 11.72 (˘0.14) 1.70%
0.84 57.01 (˘0.10) 58.17 (˘0.10) 2.03% 56.03 (˘0.09) 57.50 (˘0.09) 2.63%
0.74 80.53 (˘0.05) 81.12 (˘0.07) 0.73% 80.23 (˘0.05) 81.06 (˘0.06) 1.03%
0.63 89.85 (˘0.06) 89.90 (˘0.06) 0.00% 88.95 (˘0.06) 88.96 (˘0.05) 0.85%

25% Noisy Data
Sparsity Noise = σ Noise = 2σ

LR EWR Diff LR EWR Diff

0.95 11.63 (˘0.17) 11.98 (˘0.15) 3.03% 11.68 (˘0.18) 12.04 (˘0.16) 3.04%
0.84 56.90 (˘0.09) 58.90 (˘0.09) 3.52% 57.90 (˘0.07) 59.76 (˘0.06) 3.22%
0.74 80.37 (˘0.05) 80.76 (˘0.10) 0.49% 81.50 (˘0.08) 82.27 (˘0.05) 0.95%
0.63 89.62 (˘0.05) 89.62 (˘0.09) 0.00% 90.56 (˘0.06) 90.56 (˘0.05) 0.00%

Table 7: Comparison of testing Top-1 accuracy (%) (without the fine-tuning step imposed) values for
LR and EWR for MobileNetV1. The result is averaged from 10 runs. The 90% confidence interval
is reported. The target sparsity is set to be 0.75.

10% Noisy Data
Sparsity Noise = σ Noise = 2σ

LR EWR Diff LR EWR Diff

0.75 17.10 (˘0.20) 17.79 (˘0.15) 4.02% 17.05 (˘0.21) 17.84 (˘0.18) 4.62%
0.63 43.92 (˘0.05) 44.92 (˘0.05) 2.27% 43.27 (˘0.10) 44.53 (˘0.10) 2.92%
0.53 61.06 (˘0.04) 61.84 (˘0.05) 1.28% 60.51 (˘0.05) 63.90 (˘0.05) 2.30%
0.42 68.09 (˘0.05) 68.09 (˘0.06) 0.00% 67.24 (˘0.05) 67.24 (˘0.05) 0.00%

25% Noisy Data
Sparsity Noise = σ Noise = 2σ

LR EWR Diff LR EWR Diff

0.75 13.97 (˘0.14) 14.88 (˘0.26) 6.52% 13.78 (˘0.21) 14.78 (˘0.25) 7.29%
0.63 43.45 (˘0.10) 44.78 (˘0.09) 3.05% 43.21 (˘0.10) 45.13 (˘0.11) 4.44%
0.53 60.59 (˘0.05) 61.26 (˘0.04) 1.10% 60.07 (˘0.05) 61.56 (˘0.05) 2.48%
0.42 67.33 (˘0.04) 67.46 (˘0.05) 0.20% 66.92 (˘0.06) 66.92 (˘0.05) 0.00%

formance. This minimal deviation can be viewed as an advantage, as it implies that even with
simplifications brought by pruning, EWR retains its effectiveness compared to LR.

However, as pruning intensifies, the patterns begin to reveal more about EWR’s relative strengths.
Although the accuracy difference increases, this increase in the context of the baseline suggests
that EWR might be better at handling intense pruning than LR. Notably, in the top 5 accuracy, the
discrepancies remain relatively low compared to the overall accuracy up until the more aggressive
pruning stages. This suggests that while the model’s primary prediction confidence may decrease,
the true class is still frequently among its top 5 predictions. In essence, EWR seems to retain
a broader spectrum of potential correct classifications even when it’s uncertain about the primary
prediction.

Figure 7 together with Table 7 shows the performance difference between EWR and LR using Mo-
bileNetV1 across various pruning stages. In the first plot showcasing the overall accuracy, there’s
an evident upward trend in the median accuracy difference as pruning intensifies. Initially, the dif-
ference is marginal, which suggests that EWR’s performance closely mirrors LR during the early
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Figure 8: Scalability of Algorithm 1. This plot shows the comparison between LR and EWR of
the single-round execution time of Lines 4–11. The test is performed on an NVIDIA Tesla V100
32GB GPU. The fisher sample size is set to 1000. Layers of the networks are gradually added for
pruning (hence the number of model parameters p increases). The OT planning Π is solved using
the Sinkorn-Knopp method shown in Algorithm 2.

pruning stages. However, as we progress to the 5th and 6th stages, the accuracy difference widens
considerably, indicating that EWR might be outpacing LR. The 7th stage is particularly striking,
with a median accuracy difference surpassing 6%, pointing towards a potential superiority of EWR
in extreme pruning scenarios.

The second plot focuses on the top 5 accuracy differences, presenting a more varied pattern. The
early stages indicate a tight performance race between EWR and LR. By the 2nd stage, there’s a
minor dip, hinting at EWR’s possible underperformance. This scenario changes by the 3rd stage as
EWR regains momentum. The later stages, especially the 5th and 6th, denote a significant rise in
the median difference in EWR’s favor. Much like the accuracy chart, the 7th stage is distinct, with
EWR showcasing a considerable advantage in the top 5 accuracy over LR.

A.8 ALGORITHM SCALABILITY

In this section, we analyze the scalability of Algorithm 1 with respect to the number of model
parameters involved in pruning. The result is shown in Figure 8. It can be observed that the execution
time scales linearly with the number of pruning parameters. The extra cost of solving the OT is
marginal. Theoretically, one could derive this linear scalability by inspecting Line 9, which is the
most time-consuming step. The required operations can be decomposed as sequential operations:
matrix-vector multiplications Gw and Gw̄ in Opnpq, the vector subtraction Gw ´ Gw̄ in Opnq,
a matrix-matrix multiplication ΠpGw ´ Gw̄q in Opn2q, a matrix transposition and multiplication
with G in Opnpq, and the vector subtraction and scalar multiplication λpw ´ w̄q in Oppq. Thus, the
overall complexity isOpnpq, with p significantly larger than n practically. Given fixed fisher sample
size n, the loop of Algorithm 1 scales linearly with the number of pruning parameters p.

A.9 OPTIMAL TRANSPORT VISUALIZATION

In this section, we showcase the optimized OT plan denoted as Π. This was derived from the pruning
applied to ResNet20. Figure 9 displays two data sets: 1) txiu

n
i“1: This is Gw where w is the pruned

model. 2) tyiu
n
i“1: This represents Gw̄ where w̄ is the original unpruned model.
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In Figure 10, the matrix Π is shown through vibrant heatmaps that adjust with varying ε values.
For small ε, the majority of the data remains near a diagonal. As ε increases, there’s a broader data
distribution, notably for central data points.
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Figure 9: The histogram and kde plot of the empirical distribution txiu
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Figure 10: Heatmap of the optimized OT plan Π across different ε. Darker color indicate larger
value in Π.
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