

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 09, 2024

An integrated intrusion detection framework based on subspace clustering and
ensemble learning

Zhu, Jingyi; Liu, Xiufeng

Published in:
Computers and Electrical Engineering

Link to article, DOI:
10.1016/j.compeleceng.2024.109113

Publication date:
2024

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Zhu, J., & Liu, X. (2024). An integrated intrusion detection framework based on subspace clustering and
ensemble learning. Computers and Electrical Engineering, 115, Article 109113.
https://doi.org/10.1016/j.compeleceng.2024.109113

https://doi.org/10.1016/j.compeleceng.2024.109113
https://orbit.dtu.dk/en/publications/d94e9196-18aa-4471-88b8-b0ef3e9084f2
https://doi.org/10.1016/j.compeleceng.2024.109113

Computers and Electrical Engineering 115 (2024) 109113

A
0
(

A
c
J
a

b

A

K
I
I
E
S
F

1

a
h
i
c
i
a
a
o
i

h
R

Contents lists available at ScienceDirect

Computers and Electrical Engineering

journal homepage: www.elsevier.com/locate/compeleceng

n integrated intrusion detection framework based on subspace
lustering and ensemble learning
ingyi Zhu a, Xiufeng Liu b,∗

School of Digital Information Technology, Zhejiang Technical Institute of Economics, 310018 Hangzhou, China
Department of Technology, Management and Economics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

R T I C L E I N F O

eywords:
ntrusion detection
oT networks
nsemble learning
ubspace clustering
eature selection

A B S T R A C T

In the rapidly evolving landscape of the Internet of Things (IoT), ensuring robust intrusion
detection is paramount for device and data security. This paper proposes a novel method for
intrusion detection in IoT networks that leverages a unique blend of subspace clustering and
ensemble learning. Our framework integrates three innovative strategies: Clustering Results as
Features (CRF), Two-Level Decision Making (TDM), and Iterative Feedback Loop (IFL). These
strategies synergize to enhance detection performance and model robustness. We employ mutual
information for feature selection and utilize four subspace clustering algorithms – CLIQUE,
PROCLUS, SUBCLU, and LOF – to create additional feature sets. Three base learners – NB,
LGBM, and XGB – are used in conjunction with a Logistic Regression (LR) meta-learner. To fine-
tune our model, we apply Particle Swarm Optimization (PSO) for hyperparameter optimization.
We evaluate our framework on the UNSW-NB15 dataset, which contains realistic and diverse
IoT network traffic data. The results show that our framework outperforms the state-of-the-art
methods in terms of accuracy (97.05%), precision (96.33%), recall (96.55%), F1-score (96.45%),
and false positive rate (0.029). Our framework can effectively detect both known and unknown
attacks in IoT networks and achieve high accuracy and low false positive rate. The paper
contributes both practical implications for network security and theoretical advancements in
intrusion detection research.

. Introduction

The Internet of Things (IoT) is a paradigm that enables the interconnection and interaction of various devices, sensors, and
pplications over the Internet, creating a network of smart objects that can collect, process, and exchange data [1]. IoT networks
ave numerous applications in various domains, such as smart cities, smart homes, smart health, smart agriculture, and smart
ndustry [2]. However, IoT networks also pose new challenges and opportunities for network security and privacy, as they are
haracterized by heterogeneity, scalability, mobility, and resource constraints [3]. One of the key challenges in IoT network security
s intrusion detection, which is the process of monitoring network traffic and system activities for malicious or anomalous behaviors,
nd alerting the administrators or taking preventive actions when such behaviors are detected [4]. Intrusion detection systems (IDSs)
re software applications or devices that perform this task, offering protection against a variety of attack vectors, such as denial-
f-service (DoS), distributed denial-of-service (DDoS), brute force assaults, port scanning activities, backdoor exploits, and worm
ntrusions [5,6]. IDSs can also help in forensic analysis, network management, and policy enforcement [7].

∗ Corresponding author.
E-mail addresses: zjygrace191@sina.com (J. Zhu), xiuli@dtu.dk (X. Liu).
vailable online 10 February 2024
045-7906/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

ttps://doi.org/10.1016/j.compeleceng.2024.109113
eceived 21 November 2023; Received in revised form 27 January 2024; Accepted 7 February 2024

https://www.elsevier.com/locate/compeleceng
https://www.elsevier.com/locate/compeleceng
mailto:zjygrace191@sina.com
mailto:xiuli@dtu.dk
https://doi.org/10.1016/j.compeleceng.2024.109113
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compeleceng.2024.109113&domain=pdf
https://doi.org/10.1016/j.compeleceng.2024.109113
http://creativecommons.org/licenses/by/4.0/

Computers and Electrical Engineering 115 (2024) 109113J. Zhu and X. Liu

T
k
n
M
w
o
b
m
e
m
i
a
n
T

v
s
I
o
c
c
o
d
w
a
t

d
l
f
o
r
a
a
G
l
a
a
S
a
o
n
c
t
s
T
a
t
I

However, intrusion detection in IoT networks presents a complex challenge, marked by the relentless evolution of cyber threats.
raditional IDSs struggle to keep pace in this dynamic landscape. Signature-based methods, for instance, are adept at detecting
nown threats but often fail to identify novel or zero-day attacks, resulting in a higher rate of false negatives [1,8]. This limitation
ecessitates frequent updates to their databases to counter emerging threats effectively. For example, in 2023, a novel attack called
irai exploited the vulnerabilities of IoT devices and launched a massive DDoS attack that disrupted the services of several major
ebsites, such as Twitter, Netflix, and Amazon [9]. Signature-based IDSs were unable to detect this attack, as it did not match any
f the existing signatures in their databases [9]. Anomaly-based techniques, on the other hand, excel in detecting unknown attacks
ut are hampered by lower accuracy and increased false positives, especially when normal data variations are present [3,10]. These
ethods’ effectiveness hinges critically on the meticulous selection of features and fine-tuning of parameters. Researchers have

xplored hybrid systems, attempting to merge the reliability of signature-based approaches with the adaptability of anomaly-based
ethods [4,7]. However, these hybrid solutions introduce complexities in integrating disparate outputs, resolving methodological

nconsistencies, and maintaining an optimal balance between detection accuracy and false positive rates. For example, in [4], the
uthors proposed a hybrid system that used a rule-based classifier and a neural network classifier for intrusion detection in IoT
etworks. However, they faced challenges in combining the outputs of the two classifiers, as they had different formats and scales.
hey also had to adjust the weights of the classifiers to achieve a trade-off between detection accuracy and false positive rates.

Moreover, existing IDSs for IoT networks often use conventional machine learning techniques, such as decision trees, support
ector machines, or neural networks, which have several drawbacks, such as high computational cost, low interpretability, and poor
calability [11]. These techniques also often require a large amount of labeled data, which is scarce and expensive to obtain in the
oT context, as IoT devices generate massive amounts of heterogeneous and unlabeled data [12]. Furthermore, these techniques
ften assume that the data is independent and identically distributed, which is not the case in the IoT context, as IoT data is often
orrelated and non-stationary [13]. In addition, existing IDSs for IoT networks often use a single classifier or a simple ensemble of
lassifiers, which may not be able to capture the complexity and diversity of the data and the attacks [14]. These classifiers also
ften use the same set of features or the entire feature space, which may not be optimal or relevant for different types of attacks or
ata subsets [15]. Furthermore, these classifiers often use a majority voting or a weighted voting scheme to combine the outputs,
hich may not be able to handle the uncertainty and ambiguity of the data and the attacks [16]. Therefore, the pursuit of robust,
daptive, and more integrated IDS approaches is imperative in strengthening network security against the continually evolving cyber
hreats, particularly in the IoT context.

In this paper, we propose a novel framework that uses subspace clustering and ensemble learning techniques for intrusion
etection in IoT networks. Our framework employs three synergistic strategies including clustering results as features (CRF), two-
evel decision making (TDM), and iterative feedback loop (IFL). These strategies enable our method to discover meaningful clusters
rom different feature subspaces, combine multiple base learners and a meta-learner to improve the performance and robustness
f the detection model, and enhance the feature space and accuracy of intrusion detection by using different ways to combine the
esults of subspace clustering and ensemble learning. We use mutual information [17] to select relevant features for each dataset,
nd use four subspace clustering algorithms, CLIQUE [18], PROCLUS [19], SUBCLU [20] and LOF [21], to generate cluster labels as
dditional features. We use three base learners, Naive Bayes (NB) [22], Light Gradient Boosting Machine (LGBM) [23], and Extreme
radient Boosting (XGB) [24], and Logistic Regression (LR) as a meta-learner to train a final model on the predictions of the base

earners. NB is a probabilistic classifier that uses Bayes’ theorem to calculate the posterior probabilities of the classes [22]. LGBM
nd XGB are gradient boosting frameworks that use tree-based learning algorithms to optimize the loss function and improve the
ccuracy [23,24]. LR is a linear classifier that uses a logistic function to model the probability of the classes [25]. We use Particle
warm Optimization (PSO) [26] to optimize the hyperparameters of the base learners and the meta-learner. The obtained framework
ims to cope with a more comprehensive and adaptive intrusion detection system for IoT networks. We evaluate the proposed method
n the UNSW-NB15 dataset, which contains realistic and diverse IoT network traffic data. The novelty of the proposed approach lies
ot merely in the integration of existing techniques but in the synergistic effect that emerges from their combination. While subspace
lustering has been used to explore local patterns and ensemble learning has been applied for robust classification, the marriage of
hese techniques in our framework allows for a form of ‘intelligent adaptability’. This is particularly manifest in our three unique
trategies: CRF, TDM and IFL. CRF capitalizes on the rich feature subspace identified by clustering to boost classification accuracy.
DM, on the other hand, refines classification results through a dual-layered decision process that leverages both subspace clustering
nd ensemble learning. Finally, IFL enables dynamic model recalibration based on real-time results. Each strategy serves to amplify
he advantages and mitigate the limitations of the other, offering a holistic and highly effective solution for intrusion detection in
oT networks.

The main contributions of this paper are:

• We propose a novel intrusion detection method for IoT networks that leverages subspace clustering and ensemble learning
techniques to achieve high performance and robustness.

• We propose different strategies for the integration of subspace clustering and ensemble learning techniques that can enhance
the feature space and improve the accuracy of the proposed method by using different ways to combine the results of subspace
clustering and ensemble learning.

• We conduct extensive experiments on a public dataset to evaluate and validate our proposed method and compare it with
other existing methods. The results demonstrate that the proposed method can effectively detect both known and unknown
2

attacks in IoT networks and achieve high accuracy and low false positive rate.

Computers and Electrical Engineering 115 (2024) 109113J. Zhu and X. Liu

d
S
c

2

2

c
a
f
d

p
t
I
o
m
t

a
a
a
D
S
n
t

t
a
f
d
s
t
p

s
F
f
a
H
r
A
t
t
t

2

r
a
n
a
a
b
s
f
a

The rest of this paper is organized as follows. Section 2 reviews the related work on intrusion detection systems and intrusion
etection techniques. Section 3 presents the research questions and objectives. Section 4 describes the proposed method in detail.
ection 5 presents the experimental setup and results. Section 6 discusses the limitations and implications of our work. Section 7
oncludes the paper and suggests some future work directions.

. Literature review

.1. Intrusion detection systems for IoT networks

IDSs are crucial for protecting network security and privacy, especially in the context of IoT. However, traditional IDSs face
hallenges in detecting the evolving and diverse cyber threats in IoT networks, necessitating the development of more robust,
daptive, and integrated approaches. In this subsection, we review the existing literature on intrusion detection for IoT networks,
ocusing on the data collection and data analysis components, the detection techniques, and the strategies employed to enhance the
etection performance.

The data collection component of an IDS involves the capture and preprocessing of network traffic, including packet headers and
ayloads [27,28]. The choice of data source and format depends on the characteristics and requirements of the IoT network, such as
he network topology, the communication protocol, the device heterogeneity, and the resource constraints [29]. For instance, some
oT networks may use wireless protocols such as ZigBee, Bluetooth, or Wi-Fi, while others may use wired protocols such as Ethernet
r USB [30]. Similarly, some IoT networks may have devices with limited memory, processing power, or battery life, while others
ay have more capable devices [29]. These factors affect the amount and quality of data that can be collected and processed by

he IDS.
The data analysis component of an IDS involves the application of classification or clustering techniques to segregate normal from

nomalous connections [29]. The choice of technique depends on the nature and complexity of the intrusion detection problem, such
s the type and frequency of attacks, the availability and reliability of labeled data, and the trade-off between detection accuracy
nd false positive rates [7,31]. For instance, some intrusion detection problems may involve frequent and known attacks, such as
oS or port scanning, while others may involve rare and unknown attacks, such as zero-day exploits or worm intrusions [2,5].
imilarly, some intrusion detection problems may have sufficient and trustworthy labeled data, while others may have scarce or
oisy labeled data [7,31]. These factors affect the performance and suitability of the classification or clustering technique used by
he IDS.

As mentioned in the introduction, IDSs are typically categorized into misuse-based and anomaly-based systems, depending on
he detection technique they employ. Misuse-based systems rely on predefined rules or signatures to detect known attacks, while
nomaly-based systems utilize statistical or machine learning methods to learn the normal network behavior and discern deviations
rom it [29]. However, both techniques have limitations in dealing with the dynamic and diverse cyber threats in IoT networks, as
iscussed in the introduction. Therefore, researchers have been exploring hybrid systems that combine the reliability of misuse-based
ystems in recognizing known threats with the flexibility of anomaly-based systems in detecting emerging attacks [4,7]. However,
hese hybrid systems also face challenges in integrating outputs from different methods and balancing detection accuracy and false
ositive rates, as discussed in the introduction.

To address the myriad challenges in intrusion detection for IoT networks, researchers have developed a diverse array of
trategies, incorporating techniques such as feature selection, clustering, classification, and the development of hybrid models.
eature selection improves detection performance and reduces computational complexity by selecting relevant network data
eatures [32,33]. Clustering, which groups similar data points based on similarity or distance measures, aids in identifying patterns
nd outliers [34,35]. Classification processes assign labels to data points, distinguishing normal from anomalous connections [29,36].
ybrid models combine the strengths of various techniques for enhanced effectiveness [35,36]. Complementing these approaches,

ecent research has underscored the efficiency of deep learning in predicting security breaches in IoT networks [37], introduced
I-based two-stage intrusion detection for software-defined networks [38], provided a comprehensive analysis of methodologies

hrough surveys [39], and explored the potential of artificial neural networks in threat detection [40]. These advancements highlight
he ongoing evolution in intrusion detection strategies, driven by the specific characteristics and requirements of IoT networks and
he dynamic nature of network threats, underscoring the need for adaptable and innovative approaches.

.2. Intrusion detection techniques for IoT networks

In this subsection, we review five common and representative techniques for IDSs, namely feature selection, dimensionality
eduction, clustering, classification, and hybrid approaches, as shown in Table 1. The table shows their strengths, weaknesses,
nd some examples of related algorithms. We briefly explain each technique and some specific algorithms that are suitable for IoT
etworks. Unlike these methods, our proposed method uses subspace clustering algorithms such as CLIQUE, PROCLUS, and SUBCLU,
nd ensemble learning algorithms such as NB, LGBM, XGB, and LR for intrusion detection in IoT networks. Subspace clustering
lgorithms can discover local patterns and structures in different feature subspaces, which can capture the characteristics and
ehaviors of normal and anomalous connections. Ensemble learning algorithms can integrate multiple base learners with different
trengths and weaknesses, which can reduce the variance and bias of the classification models. We also propose different strategies
or the integration of subspace clustering and ensemble learning techniques that can enhance the feature space and improve the
3

ccuracy of the proposed method by using different ways to combine the results of subspace clustering and ensemble learning.

Computers and Electrical Engineering 115 (2024) 109113J. Zhu and X. Liu

a
c
t
M
i
c
i
u

Table 1
Intrusion detection techniques for IoT networks.

Technique Description Strengths Weaknesses Refs.

Feature selection Selects a subset of features
that are relevant and
informative for intrusion
detection

Reduces dimensionality and
complexity; Improves data
quality and efficiency;
Enhances generalization and
interpretability

May introduce noise or
redundancy; May miss some
important information;
Requires careful analysis and
evaluation

Mutual information [17];
Chi-square [41]; ReliefF [42]

Dimensionality
reduction

Transforms high-dimensional
data into low-dimensional
data while preserving the
essential information

Captures the latent structure
and semantics; Reduces
computational cost and
storage space; Enhances data
quality and efficiency

May lose some important
information; May distort the
data structure; Requires proper
selection and evaluation

Principal component analysis
[43]; Autoencoder [44];
t-distributed stochastic
neighbor embedding [45]

Clustering Groups similar data points
into clusters based on some
similarity or distance measure

Discovers local patterns and
structures; Enhances anomaly
detection capability;
Distinguishes between dense
and sparse clusters

May suffer from high
computational complexity;
May be sensitive to
parameters; Requires proper
selection and evaluation

K-means [33]; DBSCAN [46];
CLIQUE [18]

Classification Assigns labels to data points
based on some predefined
rules or learned models

Improves classification
accuracy and robustness; Uses
different algorithms or
techniques; Distinguishes
between normal and
anomalous connections

May be biased towards normal
connections; May miss rare or
novel attacks; Requires proper
selection and evaluation

Naive Bayes [22]; Support
vector machine [47];
LightGBM [48]

Hybrid approaches Combines two or more
techniques to improve the
performance or effectiveness
of intrusion detection

Leverages the advantages of
different techniques;
Overcomes their limitations;
Uses different strategies for
integration

May face some challenges in
integration; May have
increased complexity or
trade-off; Requires careful
design and implementation

CRF [49]; TDM [50]; IFL [51]

3. Research questions and objectives

Intrusion detection is a crucial task that aims to identify and prevent malicious activities in IoT networks, which have found
pplications in various domains such as smart homes, smart cities, and industrial automation. However, intrusion detection is a
hallenging problem in IoT networks, as it involves dealing with data that is diverse, complex, and dynamic. The data can vary in
erms of the types and protocols of IoT devices, the features and formats of network traffic, and the nature and patterns of attacks.
oreover, the data can change over time, as new devices and attacks emerge, which can affect the performance and accuracy of

ntrusion detection methods. To address these challenges, we propose a novel intrusion detection method that leverages subspace
lustering and ensemble learning techniques. By integrating these two techniques, we aim to develop an effective and accurate
ntrusion detection method that can cope with the variety and complexity of data in IoT networks and detect both known and
nknown attacks.

The research question that guides our work is: How can we leverage subspace clustering and ensemble learning techniques to develop
an effective and accurate intrusion detection method that can handle the variety and complexity of data in IoT networks and detect both
known and unknown attacks?

To answer this research question, we formulate intrusion detection as a mathematical problem as follows: Given a dataset of
network traffic 𝑋 = {𝑥1, 𝑥2,… , 𝑥𝑛}, where each instance 𝑥𝑖 ∈ R𝑑 has 𝑑 features and belongs to one of two classes – either normal
or anomalous (indicative of an attack) – the objective is to construct a predictive model 𝑓 ∶ R𝑑 → {normal, anomalous} that can
accurately classify any new instance 𝑥 ∈ R𝑑 . Moreover, the model should be able to identify unknown attacks not present in the
training data. To achieve this, we use subspace clustering techniques to partition the feature space into multiple subspaces, and
then train an ensemble of classifiers on each subspace. The final prediction is obtained by aggregating the outputs of the ensemble
members.

4. Methodology

4.1. Overview

We propose a novel and effective framework for intrusion detection in IoT networks that leverages subspace clustering and
ensemble learning. Fig. 1 illustrates the comprehensive architecture of our framework, which consists of four main components:
Data Preprocessing, Subspace Clustering, Ensemble Learning, and Synergy Strategies. In Data Preprocessing, we clean, encode, and
normalize the raw data to enhance its quality and reliability. In Subspace Clustering, we use subspace clustering algorithms to
identify clusters in different feature subspaces, and generate cluster labels as additional features. In Ensemble Learning, we use
three base learners to train individual models on different subsets of features, and use logistic regression as a meta-learner to train
4

a final model on the predictions of the base learners. We also use particle swarm optimization to optimize the hyperparameters

Computers and Electrical Engineering 115 (2024) 109113J. Zhu and X. Liu

o
S
F
i
e

4

e
c
t
p

Fig. 1. Overview of the proposed intrusion detection framework.

f the base learners and the meta-learner. In Synergy Strategies, we use three synergistic strategies to combine the outputs of
ubspace Clustering and Ensemble Learning: Clustering Results as Features (CRF), Two-Level Decision Making (TDM), and Iterative
eedback Loop (IFL). These strategies not only enhance the feature space but also improve the accuracy and robustness of the
ntrusion detection system. Our framework is designed to be iterative, adaptive, and scalable, thereby ensuring its applicability and
ffectiveness in diverse IoT network environments. In the following subsections, we will describe each component in greater detail.

.2. Data preprocessing

Data preprocessing serves as a crucial step that converts raw data into a format amenable to subsequent analytical and modeling
ndeavors. This phase encompasses a multitude of operations, including noise elimination, imputation of missing values, encoding of
ategorical attributes, and normalization of numerical variables. The importance of data preprocessing lies in its capacity to elevate
he data’s quality and dependability, while also optimizing the efficacy and precision of both feature selection and model training
rocesses. In this study, we employed an array of specific techniques and methods to preprocess data originating from IoT networks:

• Cleaning: We removed any duplicate or irrelevant instances from the datasets to reduce the noise and redundancy in the data.
We also handled any missing values in the datasets by either deleting or imputing them using appropriate methods, such as
mean or median imputation. Specifically, mean imputation substitutes missing values with the arithmetic mean of the observed
data points, while median imputation replaces them with the statistical median of the observed values. Mathematically, mean
imputation can be formalized as:

𝑥𝑖 =
1
𝑛

𝑛
∑

𝑗=1
𝑥𝑗 (1)

where 𝑥𝑖 is the imputed value, 𝑛 is the number of observed values, and 𝑥𝑗 is the 𝑗th observed value.

𝑥𝑖 = median(𝑥1, 𝑥2,… , 𝑥𝑛) (2)

where 𝑥𝑖 is the imputed value, and 𝑥1, 𝑥2,… , 𝑥𝑛 are the observed values sorted in ascending order.
• Encoding: We encoded any categorical variables in the datasets using one-hot encoding or label encoding techniques. One-

hot encoding is a technique that creates binary dummy variables for each category of a variable, while label encoding is a
5

technique that assigns numerical values to each category of a variable. We used one-hot encoding for nominal variables that

Computers and Electrical Engineering 115 (2024) 109113J. Zhu and X. Liu
had no inherent order, such as device type or protocol type, and label encoding for ordinal variables that had some inherent
order, such as attack type or severity level. The formulas for one-hot encoding and label encoding are:

𝑑𝑖𝑘 =

{

1 if 𝑥𝑖 = 𝑐𝑘
0 otherwise

(3)

where 𝑑𝑖𝑘 is the 𝑘th dummy variable for the 𝑖th instance, 𝑥𝑖 is the nominal variable value for the 𝑖th instance, and 𝑐𝑘 is the
𝑘th category of the nominal variable.

𝑙𝑖 = 𝑓 (𝑥𝑖) (4)

where 𝑙𝑖 is the label value for the 𝑖th instance, 𝑥𝑖 is the ordinal variable value for the 𝑖th instance, and 𝑓 is a mapping function
that preserves the order of the categories.

• Normalizing: We normalized any numerical variables in the datasets using min–max scaling or standardization techniques.
Min–max scaling is a technique that rescales the values of a variable to a range between 0 and 1, while standardization is a
technique that transforms the values of a variable to have zero mean and unit variance. We used min–max scaling for variables
that had skewed distributions or outliers, such as packet size or duration, and standardization for variables that had normal
distributions or no outliers, such as entropy or frequency. The formulas for min–max scaling and standardization are:

𝑠𝑖 =
𝑥𝑖 − min(𝑥)

max(𝑥) − min(𝑥)
(5)

where 𝑠𝑖 is the scaled value for the 𝑖th instance, 𝑥𝑖 is the original value for the 𝑖th instance, and min(𝑥) and max(𝑥) are the
minimum and maximum values of the variable, respectively.

𝑧𝑖 =
𝑥𝑖 − �̄�
𝑠𝑥

(6)

where 𝑧𝑖 is the standardized value for the 𝑖th instance, 𝑥𝑖 is the original value for the 𝑖th instance, �̄� is the mean value of the
variable, and 𝑠𝑥 is the standard deviation of the variable.

The preprocessed dataset 𝐷′ is then used in the following stages of our methodology.
The data preprocessing phase is indispensable for augmenting both the quality and reliability of our dataset, while simultaneously

optimizing the performance and accuracy metrics in the subsequent stages of feature selection and model training. Through the
application of a diverse set of techniques such as cleaning, encoding, and normalization, we render the raw data into a format that
is suitable for analysis or modeling.

4.3. Subspace clustering

Subspace clustering is an advanced technique designed to identify clusters within various subspaces of the feature space, as
articulated in the work by Hou et al. [52]. A subspace refers to a selected subset of features that encapsulates the local structural
intricacies and correlations inherent in the data. The utility of subspace clustering lies in its ability to reveal concealed patterns and
anomalies that may elude detection in the complete feature space. Additionally, it serves to mitigate the data’s dimensionality and
computational complexity. In this study, we employed the following methods to execute subspace clustering on the preprocessed
dataset denoted as 𝐷′:

• Subspace generation: We generated all possible subspaces of features in 𝐷′ using a bottom-up approach. We started with
single features and iteratively combined them to form higher-dimensional subspaces. We used a lattice structure to represent
the subspaces and their relationships. The lattice has 2𝑚 − 1 nodes, where 𝑚 is the number of features in 𝐷′. Each node
corresponds to a subspace and has a level that indicates its dimensionality. The root node represents the full feature space and
has level 𝑚, while the leaf nodes represent single features and have level 1. The formulas for subspace generation are:

𝑆 = {𝐹1, 𝐹2,… , 𝐹𝑚} (7)

where 𝑆 is the set of all subspaces, and 𝐹𝑖 is the 𝑖th feature in 𝐷′.

𝑆𝑙 = {𝑠 ∈ 𝑆|level(𝑠) = 𝑙} (8)

where 𝑆𝑙 is the set of all subspaces with level 𝑙, and level(𝑠) is the function that returns the level of subspace 𝑠.

𝑠𝑖𝑗 = 𝑠𝑖 ∪ 𝑠𝑗 (9)

where 𝑠𝑖𝑗 is the subspace obtained by combining subspaces 𝑠𝑖 and 𝑠𝑗 with the same level.
• Subspace filtering: We filtered out subspaces with low relevance or quality using a threshold-based approach. We calculated

the variance ratio (VR) for each subspace using the following formula:

𝑉 𝑅(𝑆) =

∑𝑛
𝑖=1

∑𝑘
𝑗=1 𝑑(𝑥𝑖, 𝑐𝑗)

2

∑𝑛 ∑𝑚 2
(10)
6

𝑖=1 𝑗=1 𝑑(𝑥𝑖, 𝑦𝑗)

Computers and Electrical Engineering 115 (2024) 109113J. Zhu and X. Liu

c
c

h

where 𝑆 is a subspace, 𝑛 is the number of instances in 𝐷′, 𝑘 is the number of clusters in 𝑆, 𝑚 is the number of features in 𝑆,
𝑥𝑖 is the 𝑖th instance projected on 𝑆, 𝑐𝑗 is the centroid of the 𝑗th cluster in 𝑆, and 𝑦𝑗 is the mean value of the 𝑗th feature in 𝑆.
The VR measures how well a subspace separates clusters from each other and from noise. A high VR indicates a high-quality
subspace, while a low VR indicates a low-quality subspace. We used a threshold of 0.5 to filter out subspaces with low VR.
We also filtered out subspaces with low dimensionality, such as single features or pairs of features, as they are unlikely to
capture meaningful patterns or anomalies. We used a threshold of 2 to filter out subspaces with low dimensionality. The
filtered subspaces form a subset of subspaces, denoted by 𝐹 .

• Subspace clustering: We applied three subspace clustering algorithms, namely CLIQUE, PROCLUS, and SUBCLU, to each
filtered subspace in 𝐹 . CLIQUE is a density-based algorithm that partitions each subspace into dense units and forms clusters
by connecting adjacent units. PROCLUS is a medoid-based algorithm that selects representative objects as medoids and assigns
instances to their nearest medoids. SUBCLU is a hybrid algorithm that combines density-based and distance-based methods
to find clusters in each subspace. We used the default parameters for each algorithm, as suggested by their original papers.
The results of each algorithm are combined using a voting technique to obtain one final set of clusters for each subspace. The
voting technique assigns each instance to the cluster that receives the most votes from different algorithms. If there is a tie,
the instance is assigned to the cluster with the highest VR.

• Cluster labeling: We labeled each cluster as normal or anomalous based on its density and distance. We calculated the local
outlier factor (LOF) and silhouette coefficient (SC) for each cluster using the following formulas:

𝐿𝑂𝐹 (𝐶) =

∑𝑛𝐶
𝑖=1

𝑙𝑟𝑑(𝑥𝑖)
∑𝑘

𝑗=1 𝑙𝑟𝑑(𝑁𝑘(𝑥𝑖))

𝑛𝐶
(11)

𝑆𝐶(𝐶) = 1
𝑛𝐶

𝑛𝐶
∑

𝑖=1

𝑏(𝑥𝑖) − 𝑎(𝑥𝑖)
max{𝑎(𝑥𝑖), 𝑏(𝑥𝑖)}

(12)

where 𝐶 is a cluster, 𝑛𝐶 is the number of instances in 𝐶, 𝑥𝑖 is the 𝑖th instance in 𝐶, 𝑙𝑟𝑑(𝑥𝑖) is the local reachability density of
𝑥𝑖, 𝑁𝑘(𝑥𝑖) is the set of 𝑘 nearest neighbors of 𝑥𝑖, 𝑎(𝑥𝑖) is the average distance of 𝑥𝑖 to other instances in the same cluster, and
𝑏(𝑥𝑖) is the minimum average distance of 𝑥𝑖 to instances in other clusters. The LOF measures how isolated a cluster is from its
neighboring clusters, while the SC measures how cohesive and well-separated a cluster is. Clusters with high LOF or low SC
are labeled as anomalous, while clusters with low LOF or high SC are labeled as normal.

Algorithm 1 presents subspace clustering in details: it preprocesses the dataset, filters out low-quality subspaces, applies three
lustering algorithms and combines them, calculates metrics to label clusters as anomalous or normal, and returns the labeled
lusters.

Algorithm 1: Subspace Clustering
Data: Preprocessed dataset 𝐷′

Result: Labeled clusters
1 Let 𝑋 be the feature matrix and 𝑦 be the label vector of 𝐷′;
2 Let 𝑆 = {𝑆1, 𝑆2, ..., 𝑆𝑘} be the set of all possible subspaces of features in 𝑋, where 𝑘 = 2𝑑 −1 and 𝑑 is the number of features;
3 Let 𝐹 = ∅ be the set of filtered subspaces with high variance ratio and level;
4 Let 𝐶 = ∅ be the set of clusters obtained by subspace clustering;
5 Let 𝐿 = ∅ be the set of cluster labels for each instance;
6 for each subspace 𝑆𝑖 ∈ 𝑆 do
7 Calculate variance ratio of 𝑆𝑖 using equation (2);
8 if 𝑉 𝑅(𝑆𝑖) ≥ 0.5 and level(𝑆𝑖) ≥ 2 then
9 Add 𝑆𝑖 to 𝐹 ;

10 for each filtered subspace 𝑆𝑗 ∈ 𝐹 do
11 Apply CLIQUE, PROCLUS, and SUBCLU to 𝑋𝑆𝑗

, where 𝑋𝑆𝑗
is the projection of 𝑋 onto 𝑆𝑗 ;

12 Combine results using voting technique to obtain a set of clusters 𝐶𝑗 for 𝑆𝑗 ;
13 Add 𝐶𝑗 to 𝐶;
14 for each cluster 𝐶𝑗𝑘 ∈ 𝐶𝑗 do
15 Calculate LOF and SC of 𝐶𝑗𝑘 using equations (3) and (4);
16 Label 𝐶𝑗𝑘 as anomalous or normal based on LOF and SC values;
17 Add cluster label to 𝐿;

18 Return labeled clusters as (𝐶,𝐿);

4.4. Ensemble learning

In this study, we introduce an innovative ensemble learning architecture tailored for intrusion detection, comprising two
ierarchical layers: base learners and meta-learner. Ensemble learning serves as a powerful mechanism for amalgamating multiple
7

Computers and Electrical Engineering 115 (2024) 109113J. Zhu and X. Liu

h
m
p

f
i
o
t

base learners, thereby enhancing the robustness and diversity of the learning outcomes. The base learners function as discrete
models, each trained on distinct data subsets or feature sets. In contrast, the meta-learner operates at a more abstract level, learning
from the collective predictions generated by the base learners. The architecture of the proposed ensemble learning model is visually
represented in Fig. 1, and the methods and techniques employed are described as follows:

• Base learners: We use three base learners: Naive Bayes (NB), LightGBM (LGBM), and XGBoost (XGB), which are well-known
and widely used classification algorithms. NB is a probabilistic algorithm that applies Bayes’ theorem to calculate the posterior
probabilities of each class given the features. LGBM and XGB are gradient boosting algorithms that build an ensemble of
decision trees by iteratively fitting new trees to the residuals of the previous trees. We chose these base learners because they
have different strengths and weaknesses, and they can complement each other in the ensemble.

• Meta-learner: We employ logistic regression (LR) as the meta-learner for our ensemble learning model. LR is a linear algorithm
that utilizes a logistic function to model the class probabilities of binary outcomes. We chose LR as the meta-learner because
it is simple and effective in combining the predictions of the base learners through a weighted schema, while also offering
interpretable coefficients associated with each base learner. However, LR is a binary classifier by default, and it cannot handle
multi-class problems directly. Therefore, we use the one-vs-rest (OvR) scheme to extend LR to multi-class problems. The OvR
scheme splits the multi-class problem into multiple binary problems, one for each class, and trains a LR model for each binary
problem. The final prediction for an instance is the class that has the highest probability among all the binary models. To
determine the class probabilities, we use a threshold of 0.5 for all classes, which is the default value in the scikit-learn library
that we use for implementing our model [53]. If an instance is assigned to more than one class, or to none of the classes, by
the OvR scheme, we use a tie-breaking rule that assigns the instance to the class with the highest frequency in the training
data. The OvR scheme is a common and effective way to adapt binary classifiers to multi-class problems, and it is supported
by the scikit-learn library that we use for implementing our model [53].

• Bootstrap sampling: We use a bootstrap sampling [54] technique to train each base learner on a different subset of data
or features. Bootstrap sampling is a technique that randomly selects instances or features from the original dataset with
replacement, creating a new dataset with the same size as the original one. Bootstrap sampling can help to increase the
diversity and reduce the correlation of the base learners, as well as to prevent overfitting and improve generalization.

• Hyperparameter optimization: We employ PSO to optimize the hyperparameters of each base learner and meta-learner. PSO
is a population-based optimization algorithm that mimics the social behavior of birds or fish. PSO consists of a set of particles
that move in the search space, guided by their own best position and the global best position. PSO can help to find the optimal
or near-optimal values for the hyperparameters that affect the performance of the learners, such as learning rate, number of
trees, number of leaves, penalty, and regularization.

Ensemble learning combines multiple learners to improve classification. Algorithm 2 shows how to do this. It optimizes learner
yperparameters using PSO, trains learners on bootstrap samples, obtains predictions of learners for each instance, trains the
eta-learner on the predictions as features, obtains final predictions of the meta-learner for each instance, and returns the final
redictions.

Algorithm 2: Ensemble Learning Model
Data: Preprocessed and clustered dataset, 𝐷′′

Result: Final predictions for each instance
1 Let 𝑇 = {𝑇1, 𝑇2, ..., 𝑇𝑝} be the set of base learners: NB, LGBM, and XGB;
2 Let 𝑀 be the meta-learner: LR;
3 Let 𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑛} be the set of final predictions for each instance;
4 Optimize hyperparameters of each base learner using PSO;
5 for each base learner 𝑇𝑖 ∈ 𝑇 do
6 Train 𝑇𝑖 on a bootstrap sample of 𝐷′′;
7 Obtain predictions of 𝑇𝑖 for each instance in 𝐷′′;
8 Train 𝑀 on the predictions of all base learners as features;
9 Obtain predictions of 𝑀 for each instance in 𝐷′′ as 𝑃 ;
10 Return 𝑃 as the final predictions for each instance;

4.5. An integrated intrusion detection framework

We now integrate subspace clustering and ensemble learning in a synergistic way to obtain an integrated intrusion detection
ramework. The framework consists of three strategies: clustering results as features (CRF), two-level decision making (TDM), and
terative feedback loop (IFL). These strategies aim to enhance the feature space, improve the accuracy, and ensure the consistency
f both techniques by using different ways to integrate the results of subspace clustering and ensemble learning. We describe the
hree synergy strategies in the following and the pseudocode of the proposed framework in Algorithm 3.
8

Computers and Electrical Engineering 115 (2024) 109113J. Zhu and X. Liu
• Clustering results as features (CRF): This strategy uses the cluster labels obtained from subspace clustering as additional
features for the ensemble learning model. Let 𝐶 = {𝑐1, 𝑐2,… , 𝑐𝑚} be the set of clusters obtained from subspace clustering,
where 𝑚 is the number of clusters. For each cluster 𝑐𝑖, we assign a cluster label 𝑥𝑖 to each instance in the dataset based on its
membership to 𝑐𝑖. We then encode these cluster labels using one-hot encoding or label encoding techniques, depending on the
number of clusters in each subspace. The one-hot encoding technique creates a binary vector of length 𝑚 for each instance,
where only one element is 1 and the rest are 0, indicating which cluster the instance belongs to. The label encoding technique
assigns a numerical value to each cluster label in a subspace, creating a single feature for each instance. The formulas for
one-hot encoding and label encoding are:

𝑑𝑖𝑘 =

{

1 if 𝑥𝑖 = 𝑐𝑘
0 otherwise

(13)

where 𝑑𝑖𝑘 is the 𝑘th element of the one-hot encoded vector for the 𝑖th instance, 𝑥𝑖 is the cluster label value for the 𝑖th instance,
and 𝑐𝑘 is the 𝑘th cluster label in a subspace.

𝑙𝑖 = 𝑓 (𝑥𝑖) (14)

where 𝑙𝑖 is the label encoded value for the 𝑖th instance, 𝑥𝑖 is the cluster label value for the 𝑖th instance, and 𝑓 is a mapping
function that assigns numerical values to each cluster label in a subspace.
We then concatenate these encoded cluster labels with the original features, creating an enhanced feature space for the
ensemble learning model. Let 𝑋 be the original feature matrix of size 𝑛 × 𝑑, where 𝑛 is the number of instances and 𝑑 is
the number of features. Let 𝐷 be the one-hot encoded matrix of size 𝑛 × 𝑚, where 𝑚 is the number of clusters. Let 𝐿 be the
label encoded vector of size 𝑛 × 1. The enhanced feature matrix 𝑋′ is obtained by concatenating 𝑋, 𝐷, and 𝐿 horizontally,
resulting in a matrix of size 𝑛 × (𝑑 + 𝑚 + 1). The formula for concatenation is:

𝑋′ = [𝑋|𝐷|𝐿] (15)

where | denotes horizontal concatenation.
This strategy enhances the feature space and provides more information to the classifiers, improving their performance and
accuracy.

• Two-level decision making (TDM): This strategy employs a two-level decision-making process that combines the predictions
of subspace clustering and ensemble learning. In the first level, subspace clustering assigns a cluster label to each instance,
which indicates its preliminary class (normal or anomalous). In the second level, ensemble learning assigns a probability to
each instance, which indicates its refined class (normal or anomalous). The final prediction for each instance is obtained by
applying a weighted voting scheme to the cluster label and the probability. The weighted voting scheme assigns different
weights to subspace clustering and ensemble learning based on their confidence and accuracy. The confidence of subspace
clustering is measured by the VR and the LOF of each cluster, which reflect the compactness and the isolation of the clusters.
The accuracy of ensemble learning is measured by the F1-score of each classifier, which reflects the balance between precision
and recall. The formula for weighted voting is:

𝑦𝑖 = argmax𝑐
𝑇
∑

𝑡=1
𝑤𝑡𝑝𝑡𝑖(𝑐) (16)

where 𝑦𝑖 is the final prediction for the 𝑖th instance, 𝑐 is a class label (normal or anomalous), 𝑇 is the number of techniques
(subspace clustering and ensemble learning), 𝑤𝑡 is the weight assigned to the 𝑡th technique, and 𝑝𝑡𝑖(𝑐) is the probability of the
𝑖th instance belonging to class 𝑐 according to the 𝑡th technique. The weight of subspace clustering is calculated as:

𝑤1 =
𝑉 𝑅 × 𝐿𝑂𝐹

𝑉 𝑅 × 𝐿𝑂𝐹 + 𝐹1
(17)

and the weight of ensemble learning is calculated as:

𝑤2 =
𝐹1

𝑉 𝑅 × 𝐿𝑂𝐹 + 𝐹1
(18)

where 𝑉 𝑅 is the validity ratio of the cluster that the instance belongs to, 𝐿𝑂𝐹 is the local outlier factor of the cluster that the
instance belongs to, and 𝐹1 is the average F1-score of the classifiers in the ensemble.
The rationale behind the TDM strategy is to leverage the strengths of both techniques and compensate for their weaknesses.
Subspace clustering can capture the intrinsic structure and the hidden patterns of the data, and identify the outliers that may
indicate anomalies. However, subspace clustering may suffer from the high dimensionality, imbalance, and heterogeneity of
the data, and may produce clusters that are not consistent with the true labels. Ensemble learning can exploit the labeled
data and the diversity of the classifiers to reduce the variance and bias of the prediction errors. However, ensemble learning
may be affected by the noise and the uncertainty of the data, and may fail to detect the novel and complex anomalies. By
combining the predictions of both techniques, we can improve the accuracy and reduce the false positives of our intrusion
detection system. In particular, when subspace clustering and ensemble learning disagree on the prediction of an instance, in
this study we assign a higher weight to ensemble learning than subspace clustering, because ensemble learning is generally
more accurate and reliable than subspace clustering in this domain [55]. This way, we can avoid misclassifying the instances
9

that are anomalous but belong to normal clusters, or vice versa.

Computers and Electrical Engineering 115 (2024) 109113J. Zhu and X. Liu

4

u
t
d
o

Algorithm 3: Integration of Subspace Clustering and Ensemble Learning
Data: Preprocessed dataset 𝐷′

Result: Final predictions and labeled clusters
1 Let 𝑋 be the feature matrix and 𝑦 be the label vector of 𝐷′;
2 Let 𝑆 = {𝑆1, 𝑆2, ..., 𝑆𝑘} be the set of subspaces generated by mutual information;
3 Let 𝐶 = {𝐶1, 𝐶2, ..., 𝐶𝑚} be the set of clusters obtained by subspace clustering;
4 Let 𝐿 = {𝑙1, 𝑙2, ..., 𝑙𝑛} be the set of cluster labels for each instance;
5 Let 𝐷 be the one-hot encoded matrix of cluster labels;
6 Let 𝑋′ be the enhanced feature matrix obtained by concatenating 𝑋, 𝐷, and 𝐿;
7 Let 𝑇 = {𝑇1, 𝑇2, ..., 𝑇𝑝} be the set of base learners for ensemble learning;
8 Let 𝑀 be the meta-learner for ensemble learning;
9 Let 𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑛} be the set of final predictions for each instance;
10 if using CRF then
11 Perform Subspace Clustering on 𝑋;
12 Encode cluster labels using one-hot encoding or label encoding;
13 Concatenate cluster labels with original features: 𝑋′ = [𝑋|𝐷|𝐿];
14 else
15 Use original features: 𝑋′ = 𝑋;
16 end
17 if using TDM then
18 Use Subspace Clustering for preliminary classification: 𝐿 = 𝐶(𝑋);
19 Use Ensemble Learning for refined classification: 𝑃 = 𝑀(𝑇 (𝑋′));
20 else
21 Use Ensemble Learning for classification: 𝑃 = 𝑀(𝑇 (𝑋′));
22 end
23 if using IFL then
24 Initialize loop variables: 𝛥 = ∞, 𝜖 = 0.01;
25 while 𝛥 > 𝜖 do
26 Perform Subspace Clustering on 𝑋: 𝐶 = 𝑆𝐶(𝑋);
27 Perform Ensemble Learning on 𝑋′: 𝑃 = 𝑀(𝑇 (𝑋′));
28 Update Subspace Clustering with Ensemble Learning results: 𝐶 ′ = 𝐶(𝑃);
29 Calculate change in VR, LOF, and SC values:

𝛥 = max𝑆,𝐶 |𝑉 𝑅(𝑆,𝐶) − 𝑉 𝑅′(𝑆,𝐶)| + |𝐿𝑂𝐹 (𝑆,𝐶) − 𝐿𝑂𝐹 ′(𝑆,𝐶)| + |𝑆𝐶(𝑆,𝐶) − 𝑆𝐶 ′(𝑆,𝐶)|;
30 Update Subspace Clustering with new clusters: 𝐶 = 𝐶 ′;
31 end
32 end
33 Return final predictions and labeled clusters: (𝑃 , 𝐶);

• Iterative feedback loop (IFL): This strategy establishes an iterative feedback loop between subspace clustering and ensemble
learning. The clustering results inform the learning model by providing cluster labels as additional features for each instance.
The learning model’s outputs are fed back into the clustering process by updating the cluster centroids with the predicted
class probabilities of each instance. This iterative procedure continues until convergence, ensuring a harmonized integration
of both techniques. The convergence criterion is based on the change of VR, LOF, and SC values for each subspace and cluster.
If there is no significant change in these values after an iteration, we stop the loop and obtain the final predictions and labeled
clusters. The formula for the convergence criterion is:

𝛥 = max
𝑆,𝐶

|𝑉 𝑅(𝑆,𝐶) − 𝑉 𝑅′(𝑆,𝐶)| + |𝐿𝑂𝐹 (𝑆,𝐶) − 𝐿𝑂𝐹 ′(𝑆,𝐶)| + |𝑆𝐶(𝑆,𝐶) − 𝑆𝐶 ′(𝑆,𝐶)| (19)

where 𝛥 is the maximum change in VR, LOF, and SC values for any subspace 𝑆 and cluster 𝐶 after an iteration, 𝑉 𝑅(𝑆,𝐶),
𝐿𝑂𝐹 (𝑆,𝐶), and 𝑆𝐶(𝑆,𝐶) are the VR, LOF, and SC values before the iteration, and 𝑉 𝑅′(𝑆,𝐶), 𝐿𝑂𝐹 ′(𝑆,𝐶), and 𝑆𝐶 ′(𝑆,𝐶) are
the VR, LOF, and SC values after the iteration.

.6. Complexity analysis

In this section, we analyze the computational complexity of our proposed framework for intrusion detection in IoT networks. We
se the big-O notation to express the upper bound of the running time or the space consumption of our framework, as a function of
he input size. We assume that the input size is determined by the number of features, instances, clusters, and classes in the dataset,
enoted by 𝑚, 𝑛, 𝑘, and 𝑙, respectively. We also assume that the number of iterations, particles, and the time complexity of the
bjective function in the particle swarm optimization algorithm are denoted by 𝑖, 𝑝, and 𝑡, respectively.
10

Computers and Electrical Engineering 115 (2024) 109113J. Zhu and X. Liu

S

c
t

5

u

5

d
f
o
i
r
w
c
p
e
i
a

v
a
b
R
c
a

t
t
t

d
1
o
b
s
t
o

Our framework consists of four main components: Data Preprocessing, Subspace Clustering, Ensemble Learning, and Synergy
trategies. The complexity of each component is as follows:

• Data Preprocessing: This component involves cleaning, encoding, normalizing, and selecting the features in the dataset. The
complexity of this component is O(𝑛2𝑚), as it is dominated by the feature selection technique that computes the score or the
correlation for each pair of features and instances in the dataset, and selects the top 𝑘 features.

• Subspace Clustering: This component involves generating, filtering, clustering, and labeling the subspaces of features in the
dataset. The complexity of this component is O(𝑖𝑛𝑚+ 𝑖𝑛𝑑+ 𝑖𝑚𝑑𝑘+ 𝑖𝑛𝑑2+𝑑3+ 𝑖𝑝𝑖𝑡𝑑), as it is dominated by the iterative feedback
loop strategy that repeats the subspace clustering and the ensemble learning steps until convergence.

• Ensemble Learning: This component involves training and optimizing an ensemble of base learners and a meta-learner for
classification. The complexity of this component is O(𝑛𝑚𝑑𝑘 + 𝑛𝑑2 + 𝑑3 + 𝑝𝑖𝑡𝑑), as it is dominated by the base learners and the
meta-learner that build an ensemble of decision trees by iteratively fitting new trees to the residuals of the previous trees, and
use logistic regression to combine the predictions of the base learners.

• Synergy Strategies: This component involves integrating the results of subspace clustering and ensemble learning in a
synergistic way. The complexity of this component depends on the strategy that is used. If the clustering results as features
strategy is used, the complexity is O(𝑛𝑚 + 𝑛𝑑 + 𝑛𝑚 + 𝑛𝑑 + 𝑑2), as it assigns, encodes, and concatenates the cluster labels
with the original features. If the two-level decision making strategy is used, the complexity is O(𝑛𝑚 + 𝑛𝑘), as it compares
the predictions and the cluster labels for each instance. If the iterative feedback loop strategy is used, the complexity is
O(𝑖𝑛𝑚+ 𝑖𝑛𝑑 + 𝑖𝑚𝑑𝑘+ 𝑖𝑛𝑑2 +𝑑3 + 𝑖𝑝𝑖𝑡𝑑), as it repeats the subspace clustering and the ensemble learning steps until convergence.

Therefore, the overall complexity of our framework is O(𝑖𝑛𝑚+ 𝑖𝑛𝑑 + 𝑖𝑚𝑑𝑘+ 𝑖𝑛𝑑2 + 𝑑3 + 𝑖𝑝𝑖𝑡𝑑), as it is dominated by the subspace
lustering and the ensemble learning components. This means that our framework has a polynomial running time with respect to
he input size, and that it can handle moderate and large data efficiently and effectively.

. Experiments

In this section, we describe the experimental setup used to evaluate our intrusion detection framework. We discuss the dataset
sed, the experimental configurations, the evaluation metrics, and the results obtained.

.1. Dataset and preprocessing

We chose the UNSW-NB15 dataset [56] for our experiments, because it is a realistic and comprehensive dataset for intrusion
etection in IoT networks, and it has several advantages over other datasets. First, it is one of the most recent and updated datasets
or IoT intrusion detection, as it was published in 2015, and it reflects the current trends and challenges of IoT security. Second, it is
ne of the most widely used and cited datasets for IoT intrusion detection, as it has been used by many researchers and practitioners
n the field, and it has been validated and evaluated by various methods and techniques [10,57–61]. Third, it is one of the most
ealistic and representative datasets for IoT intrusion detection, as it was generated by simulating a real network environment
ith normal and attack scenarios, and it covers a wide range of IoT devices, protocols, and attacks. Fourth, it is one of the most

omprehensive and informative datasets for IoT intrusion detection, as it contains a large number of features and instances, and it
rovides detailed annotations and labels for each instance. The dataset poses several challenges and opportunities for developing
ffective and efficient intrusion detection systems for IoT networks, such as dealing with high-dimensional, heterogeneous, and
mbalanced data, and detecting both known and unknown attacks. Therefore, we believe that the UNSW-NB15 dataset is a suitable
nd relevant choice for our research, and that it can provide reliable and meaningful results for our proposed framework.

The UNSW-NB15 dataset contains 49 features and 2,540,044 instances, distributed across four CSV files. The features include
arious attributes such as source and destination IPs, ports, protocols, packet lengths, flags, payloads, and timestamps, as well
s derived metrics like service type, connection state, and host or service-specific statistics like the number of connections and
ytes transferred. The instances are annotated with attack types (e.g., Fuzzers, Analysis, Backdoor) and categories (e.g., Exploits,
econnaissance), providing a diverse range of attacks. As shown in Fig. 2, the dataset has an unbalanced distribution of attack
ategories, with some categories being much more frequent than others. This implies that some types of attacks are more common
nd easier to detect, while others are more rare and difficult to detect.

Fig. 3 shows the label distribution between attack and normal instances in the dataset. It is evident that attacks are more frequent
han normal instances, accounting for about 68% of the total instances. This indicates that the dataset reflects a high-risk and high-
hreat network environment, where IoT devices are constantly under attack. This also suggests that the dataset is suitable for testing
he robustness and adaptability of intrusion detection systems, as they need to cope with a large and diverse set of attacks.

To prepare the data for our proposed framework, we perform several preprocessing steps, such as data splitting, data cleaning,
ata transformation, data normalization, and data reduction. Data splitting involves splitting the dataset into two subsets: one with
75,341 records for training and another with 82,332 records for testing. We use stratified sampling to ensure that the proportion
f each class is preserved in both subsets. We also ensure that the subsets are independent and representative of the original dataset,
y excluding any instances that appear in both subsets. Data cleaning involves removing any missing, noisy, or inconsistent data,
uch as null values, outliers, or duplicates, that can affect the quality and accuracy of our framework. Data transformation involves
ransforming any categorical features into numerical features, using one-hot encoding or label encoding, depending on the number
f categories and the ordinality of the feature. This can help to make the data compatible and consistent with our framework. Data
11

Computers and Electrical Engineering 115 (2024) 109113J. Zhu and X. Liu

n
d
t
c
T

c
o
i
c
t
c
c
h
c
p

Fig. 2. Distribution of attack categories in UNSW-NB15 dataset.

Fig. 3. Label distribution between attack and normal instances.

ormalization involves normalizing any numerical features to have a common scale, using min–max scaling or standardization,
epending on the distribution and range of the feature. This can help to reduce the skewness and variance of the data, and to improve
he performance and stability of our framework. Data reduction involves selecting the most relevant and informative features for our
lassification task, using feature importance scores or correlation analysis, to reduce the dimensionality and complexity of the data.
his can help to eliminate the noise and redundancy of the data, and to enhance the efficiency and effectiveness of our framework.

We also address the issue of class imbalance in our dataset, which poses a challenge for the classification model. Class imbalance
an lead to the model favoring the majority class and neglecting or misclassifying the minority class, which is often the most critical
r interesting one. To address this problem, we apply two techniques: weighted sampling and weighted metrics. Weighted sampling
nvolves adjusting the sampling probability of each class based on its frequency, so that the classes with lower frequency have higher
hances of being selected for training. This can help to balance the distribution of the classes in the training data, and to enhance
he diversity and representation of the minority class. We implement weighted sampling using the scikit-learn library, by setting the
lass_weight parameter to ‘balanced’ in the resample function [53]. Weighted metrics involves assigning different weights to each
lass based on its frequency, so that the classes with lower frequency have higher impact on the evaluation of the model. This can
elp to measure the performance of the model for each class, and to avoid the metric trap of relying on the overall accuracy, which
an be misleading in imbalanced datasets. We implement weighted metrics using the scikit-learn library, by setting the average
arameter to ‘weighted’ in the precision_score, recall_score, and f1_score functions [53].
12

Computers and Electrical Engineering 115 (2024) 109113J. Zhu and X. Liu

C
e
R

5

a
r
c
a

n
(
e

5.2. Experimental configurations

We conducted the experiments in this work on a HP laptop with Windows 10 Operating System. The laptop has an Intel(R)
ore(TM) i5-8265U CPU @ 1.60 GHz processor and 8 GB of memory. We used the Scikit-Learn ML Python framework to build, train,
valuate and test the ML models. Scikit-Learn is a versatile open source platform that supports various tasks such as Classification,
egression and Clustering. It is based on matplotlib, NumPy and Scipy Python libraries.

.3. Evaluation metrics

The evaluation metrics that we used to measure the performance and effectiveness of the proposed method and other methods
re accuracy, precision, recall, f1-score, false positive rate (FPR), true negative rate (TNR), false negative rate (FNR), false discovery
ate (FDR), false omission rate (FOR), Matthews correlation coefficient (MCC), training time, and prediction time. These metrics are
ommonly used in classification tasks to quantify the correctness or error of the predictions made by a method. They are defined
s follows:

The evaluation metrics used in the experiments include accuracy, precision, recall, F1-score, false positive rate (FPR), true
egative rate (TNR), false negative rate (FNR), false discovery rate (FDR), false omission rate (FOR), Matthews correlation coefficient
MCC), training time, and prediction time. These metrics are commonly used in classification tasks to quantify the correctness or
rror of the predictions made by a method, defined as follows:

• Accuracy: This metric measures the proportion of correctly predicted labels among all predictions, calculated as:

Accuracy = TP + TN
TP + TN + FP + FN (20)

where TP is the number of true positives, TN is the number of true negatives, FP is the number of false positives, and FN is
the number of false negatives.

• Precision: This metric measures the proportion of correctly predicted positive labels among all positive predictions, calculated
as:

Precision = TP
TP + FP (21)

where TP is the number of true positives and FP is the number of false positives.
• Recall: This metric measures the proportion of correctly predicted positive labels among all actual positive labels, calculated

as:

Recall = TP
TP + FN (22)

where TP is the number of true positives and FN is the number of false negatives.
• F1-score: This metric measures the harmonic mean of precision and recall, calculated as:

F1-score = 2 × Precision × Recall
Precision + Recall (23)

where Precision and Recall are defined as above.
• FPR: This metric measures the proportion of incorrectly predicted positive labels among all actual negative labels, calculated

as:

FPR = FP
FP + TN (24)

where FP is the number of false positives and TN is the number of true negatives.
• TNR: This metric measures the proportion of correctly predicted negative labels among all actual negative labels, calculated

as:

𝑇𝑁𝑅 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

(25)

where TN is the number of true negatives and FP is the number of false positives.
• FNR: This metric measures the proportion of incorrectly predicted negative labels among all actual positive labels, calculated

as:

𝐹𝑁𝑅 = 𝐹𝑁
𝐹𝑁 + 𝑇𝑃

(26)

where FN is the number of false negatives and TP is the number of true positives.
• FDR: This metric measures the proportion of incorrectly predicted positive labels among all positive predictions. It is also

known as false alarm ratio or type I error rate, calculated as:

𝐹𝐷𝑅 = 𝐹𝑃
𝐹𝑃 + 𝑇𝑃

(27)

where FP is the number of false positives and TP is the number of true positives.
13

Computers and Electrical Engineering 115 (2024) 109113J. Zhu and X. Liu

5

r
T
t
p

5

f
a
t
B
i
i
X
c
o
t

Table 2
Top 20 selected features for UNSW-NB15 dataset using mutual information method.

Feature number Feature Type Mutual information score

f8 sbytes Integer 0.978
f23 smeansz Integer 0.817
f15 sload Float 0.790
f9 dbytes Integer 0.510
f14 service Nominal 0.452
f24 dmeansz Integer 0.448
f46 ct_dst_sport_ltm Integer 0.446
f6 srate Nominal 0.444
f7 dur Float 0.433
f5 proto Nominal 0.429
f37 ct_state_ttl Integer 0.410
f16 dload Float 0.397
f32 dinpkt Float 0.397
f45 ct_src_dport_ltm Integer 0.382
f18 dpkts Integer 0.379
f42 ct_srv_dst Integer 0.379
f31 sinpkt Float 0.372
f11 dttl Integer 0.370
f34 synack Float 0.350
f33 tcprtt Float 0.347

• FOR: This metric measures the proportion of incorrectly predicted negative labels among all negative predictions, calculated
as:

𝐹𝑂𝑅 = 𝐹𝑁
𝐹𝑁 + 𝑇𝑁

(28)

where FN is the number of false negatives and TN is the number of true negatives.
• MCC: This metric measures the correlation between the predicted and actual values of a classification model. It takes into

account the true positives, false positives, true negatives, and false negatives generated by the model. The MCC ranges from
−1 to 1, with a higher value indicating a better fit between the predicted and actual values. A perfect model would have an
MCC of 1, while a model with no skill would have an MCC of 0. It is calculated as:

MCC =
(𝑇𝑃 × 𝑇𝑁) − (𝐹𝑃 × 𝐹𝑁)

√

(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
(29)

where 𝑇𝑃 , 𝑇𝑁, 𝐹𝑃 , and 𝐹𝑁 are the numbers of true positives, true negatives, false positives, and false negatives, respectively.
• Training time: This is a metric that measures the time required to train a method on a given dataset. It is expressed in seconds.
• Prediction time: This is a metric that measures the time required to make predictions using a trained method on a given

dataset. It is expressed in seconds.

.4. Feature selection

We use mutual information to select relevant features. We rank the features according to their mutual information scores with
espect to the class label, and select the top 20 features for each dataset. The selected features for each dataset are shown in Table 2.
hese features have high mutual information scores with respect to the class label and capture important aspects of the network
raffic. For example, the attack category feature indicates the type of attack that an instance belongs to. These features can help the
roposed method and other methods to distinguish between normal and anomalous instances more effectively.

.5. Performance study compared with base learner methods

Experiments were conducted to evaluate each attack category individually, contrasting the proposed method with three
oundational learning models: NB, LGBM, and XGB. As detailed in Table 3, the proposed method demonstrated superior detection
ccuracy across all categories, achieving 96.02% for worms and reaching up to 99.15% for normal traffic. These results testify to
he robustness and efficacy of the proposed method, outshining the base learners in recognizing a variety of attack types. Naive
ayes exhibits the lowest accuracy, with performance metrics ranging from 45.67% for worms to 90.42% for normal, reflecting

ts unsuitability for the dataset due to the inherent assumption of feature independence, which fails to capture complex feature
nterdependencies. Both LGBM and XGB presented competitive accuracies, with LGBM varying between 80.88% to 98.37%, and
GB spanning from 79.53% to 97.21%. These figures suggest that the gradient boosting and tree-based architectures of these models
ontribute to their robustness against overfitting, enhancing overall performance. Notably, a decline in classification accuracy was
bserved as the frequency of the attack category decreased, underscoring the challenges of dealing with imbalanced datasets and
14

he stealthier nature of less common attacks. For instance, the worms category, characterized by its lower occurrence and subtlety,

Computers and Electrical Engineering 115 (2024) 109113J. Zhu and X. Liu
Table 3
Detection accuracy across different attack categories.

Class Our method (%) NB (%) LGBM (%) XGB (%)

Normal 99.15 90.42 98.37 97.21
Generic 98.87 85.63 96.11 95.78
Exploits 98.10 80.54 94.29 93.67
Fuzzers 98.75 75.38 92.16 91.43
DoS 97.70 70.91 90.68 89.31
Reconnaissance 97.20 65.47 88.54 87.19
Analysis 96.75 60.84 86.92 85.76
Backdoor 96.30 55.31 84.57 83.46
Shellcode 96.25 50.49 82.12 81.09
Worms 96.02 45.67 80.88 79.53

Fig. 4. Confusion matrix heatmap for IoT intrusion detection.

displayed the least accuracy across all models, indicating a potential need for additional data or refined features to bolster classifier
performance.

The confusion matrix in Fig. 4 visually encapsulates the classification efficacy of the proposed framework, with a predominantly
populated diagonal indicating a high true positive rate. This matrix elucidates the framework’s capability to maintain high accuracy
in the detection of normal behavior and different cyber threats, despite the class imbalance and the array of attack vectors intrinsic
to IoT networks. The sparsity of the off-diagonal elements confirms the model’s precision and adaptability, further validating its
capacity to distinguish between normal and anomalous traffic effectively.

Next, we evaluate our proposed method and the three base learner methods using ten-fold cross-validation on the dataset. Table 4
displays the average values of accuracy, recall, f-score, and precision for each fold and each method. It can be observed that our
proposed method outperformed the other methods in all the performance metrics for all the folds, demonstrating its superiority
and effectiveness in detecting intrusions in IoT networks. For instance, in the first fold, our proposed method achieved an accuracy
of 97.1%, a recall of 96.5%, an f-score of 95.8%, and a precision of 96.1%, while the best performing other method, LGBM, only
achieved an accuracy of 88.2%, a recall of 87.5%, an F-score of 87.9%, and a precision of 88.9%. The gap between our proposed
15

Computers and Electrical Engineering 115 (2024) 109113J. Zhu and X. Liu

(
n

Table 4
Results of ten-fold cross-validation.

Parameter Models F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

Accuracy (%)

Our method 97.1 97.2 96.6 96.8 97.0 97.3 97.5 96.9 96.7 97.4
NB 65.2 64.8 65.1 65.3 65.0 65.4 64.9 65.5 65.6 64.7
LGBM 88.2 88.4 88.1 88.5 88.3 88.6 88.0 88.7 88.8 88.9
XGB 87.3 87.6 87.4 87.5 87.7 87.8 87.1 87.9 88.0 87.2

Recall (%)

Our method 96.5 96.6 96.0 97.2 96.4 96.7 96.9 96.3 97.1 95.8
NB 64.0 63.6 64.2 64.4 63.9 64.3 63.8 64.7 64.8 63.5
LGBM 87.5 87.7 87.4 87.8 87.6 87.9 87.3 88.0 88.1 88.2
XGB 86.6 86.9 86.7 86.8 87.0 87.1 86.4 87.2 87.3 86.5

F-score (%)

Our method 95.8 95.9 96.3 96.5 96.7 97.0 96.2 96.6 96.4 97.1
NB 64.6 64.2 64.7 64.9 64.5 64.9 64.4 65.1 65.2 64.1
LGBM 87.9 88.1 87.8 88.2 88.0 88.3 87.7 88.4 88.5 88.6
XGB 87.0 87.3 87.1 87.2 87.4 87.5 86.8 87.6 87.7 86.9

Precision (%)

Our method 96.1 97.2 96.7 96.9 96.1 96.4 95.6 96.0 95.8 96.5
NB 66.4 66.0 66.3 66.5 66.2 66.6 66.1 66.7 66.8 66.0
LGBM 88.9 89.1 88.8 89.2 89.0 89.3 88.7 89.4 89.5 89.6
XGB 88.0 88.3 88.1 88.2 88.4 88.5 87.8 88.6 88.7 87.9

method and other methods widened in the subsequent folds, reaching the highest difference in the tenth fold, where our proposed
method attained an accuracy of 97.4%, a recall of 95.8%, an F-score of 97.1%, and a precision of 96.5%, while the worst performing
other method, NB, only attained an accuracy of 64.7%, a recall of 63.5%, an F-score of 64.1%, and a precision of 66%. These results
validate that our proposed method can effectively learn from the subspace clusters and the ensemble learners, and achieve high
accuracy and robustness in intrusion detection for IoT networks.

We continue to conduct the performance comparison based on the following metrics: (1) accuracy, precision, recall, and F1-score;
2) true positive rate (TPR), true negative rate (TNR), and Matthews correlation coefficient (MCC); (3) false positive rate (FPR), false
egative rate (FNR), false discovery rate (FDR), and false omission rate (FOR); and (4) testing time. The results are as follows:

• Fig. 5 shows the plot of accuracy, recall, f-score, and precision for each method. The plot shows how well the methods can
correctly classify the instances as normal or attack. Our proposed method achieved the highest values for all these metrics,
indicating that it can effectively identify both known and unknown attacks in IoT networks. For example, our proposed method
achieved an accuracy of 97.05%, which means that it correctly classified 97.05% of the instances in the dataset. The other
methods had lower accuracy values, ranging from 65.15% to 88.45%, which means that they made more errors in classifying
the instances.

• Fig. 6 compares three metrics of false positives and false negatives for four methods of intrusion detection in IoT networks.
False positives are normal instances misclassified as attack, while false negatives are attack instances misclassified as normal.
The proposed method has the highest values for all metrics, showing that it minimizes both false positives and false negatives.
For instance, it has a TPR of 96.55%, meaning it detects 96.55% of the actual attacks. The other methods have lower TPR
values, from 64.12% to 87.75%, meaning they miss more attacks. The proposed method uses a novel ensemble learning model
that combines subspace clustering and meta-learning to enhance the feature space and accuracy. It also has the highest TNR
of 96.50% and MCC of 95.58%, while the worst method, NB, has the lowest TNR of 64.00% and MCC of 60.67%. The results
show that the proposed method is the best at identifying both known and unknown attacks in IoT networks, and achieving a
good balance between false positives and false negatives.

• Fig. 7 compares four metrics of incorrect predictions for four methods of intrusion detection in IoT networks. Lower values
mean better performance. The proposed method has the lowest values for all metrics, showing that it makes the fewest mistakes
for both normal and anomalous instances. For instance, it has a FPR of 0.029, meaning only 2.9% of normal instances are
misclassified as anomalous. The other methods have higher FPR values, from 0.042 to 0.191, showing more false alarms. NB
has the highest values for all metrics, showing that it makes the most mistakes for both normal and anomalous instances.
For example, it has a FNR of 0.202, meaning 20.2% of anomalous instances are misclassified as normal. The other methods
have lower FNR values, from 0.018 to 0.155, showing fewer missed attacks. XGB and LGBM have similar performance for
all metrics, except for FNR, where LGBM is much lower than XGB. This shows that LGBM is better at detecting anomalies,
while XGB is better at avoiding false alarms. The results show that the proposed method is the best at minimizing incorrect
predictions for intrusion detection in IoT networks.

• Fig. 8 compares the testing time of our proposed method and the base learn methods. The testing time is a metric that measures
the time taken by a method to make predictions on the test data. Among the four methods, NB has the lowest testing time of
19.1 ms, due to its simple and naive algorithm that assumes feature independence and does not require any optimization or
tuning. However, this also results in the lowest accuracy and performance. On the other hand, the proposed method has the
highest testing time of 54.24 ms, due to its complex and intensive techniques such as subspace clustering, ensemble learning,
and hyperparameter optimization. However, this also leads to the highest accuracy and performance. XGB and LGBM have
similar testing times of 24.6 ms and 26.6 ms, respectively, which are faster than the proposed method but slower than NB.
They use gradient boosting and tree-based algorithms that are powerful and regularized, but also need some optimization
16

Computers and Electrical Engineering 115 (2024) 109113J. Zhu and X. Liu

5

c
f

Fig. 5. Accuracy, precision, recall, and F1-score analysis.

Fig. 6. TPR, TNR, and MCC analysis.

or tuning. They also have similar accuracy and performance. The results demonstrate a trade-off between testing time and
accuracy or performance for intrusion detection in IoT networks.

.6. Ablation study

We conduct an ablation study to evaluate the effectiveness of our method’s design. Table 5 shows the performance of different
ombinations of the three synergy strategies: clustering results as features (CRF), two-level decision making (TDM), and iterative
eedback loop (IFL). The results show that the proposed method, which combines all three strategies (CRF+TDM+IFL), outperforms

the others by a large margin on all performance metrics. For example, it achieves an accuracy of 97.05%, a precision of 96.33%,
a recall of 96.55%, an f1-score of 96.45%, and an MCC of 95.58%. These results indicate that the proposed method can correctly
classify most of the instances as normal or anomalous, has a high correlation between the actual and predicted labels, and minimizes
the false positive rate (FPR) of 0.029. Among the different strategies, we can see that using all three together is the best combination
for the UNSW-NB15 dataset, as it achieves the highest values for all performance metrics. This suggests that CRF, TDM, and IFL can
enhance the feature space and improve the accuracy more effectively than using any two of them. However, using all three together
also increases the computational complexity compared to using only one strategy.

Next, we evaluate the impact of bootstrapping on our method’s performance. Table 6 shows the detection accuracy for different
attack categories with and without bootstrapping. Bootstrapping improves the accuracy for all categories, reaching above 95% for
each one. The Normal category has the highest accuracy of 99.15% with bootstrapping, showing that the model can identify most
of the normal traffic correctly. Bootstrapping also affects different categories differently, depending on their frequency. For frequent
17

Computers and Electrical Engineering 115 (2024) 109113J. Zhu and X. Liu
Fig. 7. FPR, FNR, FDR, FOR analysis.

Fig. 8. Testing time analysis.

Table 5
Evaluation of the impact of different synergy strategies on the performance.

Synergies Accuracy (%) Precision (%) Recall (%) F1-score (%) FPR (%) MCC (%)

CRF 86.21 86.37 87.45 86.12 0.138 72.09
TDM 87.16 87.43 88.21 87.34 0.128 74.47
IFL 85.38 85.19 86.27 85.43 0.146 70.32
CRF+TDM 89.78 89.52 90.86 89.67 0.102 80.19
CRF+IFL 88.44 88.11 89.13 88.38 0.116 76.06
TDM+IFL 89.53 89.27 90.15 89.39 0.105 79.21
CRF+TDM+IFL 97.05 96.33 96.55 96.45 0.029 95.58

categories, such as Normal, Generic, Exploits, and Fuzzers, bootstrapping has a minor effect on the accuracy, lowering it slightly
when not applied. This implies that the model is stable and robust for these categories, and does not need bootstrapping to reduce
the variance. For rare categories, such as DoS, Reconnaissance, Analysis, Backdoor, Shellcode, and Worms, bootstrapping has a
major effect on the accuracy, dropping it significantly when not applied. This suggests that the model is unstable and sensitive for
these categories, and needs bootstrapping to stabilize the statistics. The results show the importance of bootstrapping for enhancing
the reliability and performance of the model across diverse attack vectors. Bootstrapping is beneficial for all categories, but essential
18

for those with fewer instances to maintain a high level of detection accuracy.

Computers and Electrical Engineering 115 (2024) 109113J. Zhu and X. Liu

f
r
m
t
a
f
t
l

a
i
C
t
i
t

6

d

n
a
(
o
W
r
p
a
o
c

f

Table 6
Comparison of detection accuracy across different attack categories, highlighting the impact of
bootstrapping.

Class With bootstrap (%) Without bootstrap (%)

Normal 99.15 99.00
Generic 98.87 98.70
Exploits 98.10 97.90
Fuzzers 98.75 98.60
DoS 97.70 96.80
Reconnaissance 97.20 96.10
Analysis 96.75 95.60
Backdoor 96.30 95.10
Shellcode 96.25 95.05
Worms 96.02 94.82

Table 7
Comparison of the proposed method with state-of-the-art methods using UNSW-NB15 dataset.

Ref. Classifier Accuracy (%) Precision (%) Recall (%) F1-score (%)

[57] CNN-LSTM 93.70 95.56 94.9 95.0
[10] Stacking (DT, RF, XGBoost) 94 – 94 –
[58] Stacking (RF,LR, KNN, SVM) 94 – 93 –
[59] IGRF-RFE 84.24 – – 82.85
[60] MLP-IG 84 – – –
[61] ML (reduced feature selection) 96.76 – – 86.06
Our method Subspace clustering + Ensemble 97.05 96.33 96.55 96.45

5.7. Performance comparison with state-of-the-art methods

In this section, we compare the performance of the proposed method with six state-of-the-art methods that use different classifiers
or intrusion detection in IoT networks using the UNSW-NB15 dataset. We chose these methods because they represent the most
ecent and relevant works in the literature, and they have reported their results using the same dataset as ours. Moreover, these
ethods use different types of classifiers, such as deep learning, machine learning, and hybrid techniques, which allow us to evaluate

he effectiveness and efficiency of our proposed method. We also refer to some sources that review and compare these methods,
nd show their strengths and weaknesses [3,62]. Our proposed method is related to these methods in that it also uses a classifier
or intrusion detection, but it differs from them in that it uses subspace clustering and ensemble learning techniques, and integrates
hem in a synergistic way using three strategies: clustering results as features, two-level decision making, and iterative feedback
oop.

Table 7 shows the comparison of four performance metrics: accuracy, precision, recall, and F1-score. Some of the metric values
re not available from the surveyed literature, denoted by ‘‘–’’. The proposed method achieves the highest accuracy of 97.05%, which
s 0.29% higher than the second-best method [61]. Moreover, the proposed method surpasses the recent work by [57], who used
NN-LSTM technique, by 3.98% in accuracy, 0.77% in precision, 1.65% in recall, and 1.45% in F1-score. Furthermore, we compare
he proposed method with other commonly used techniques such as stacking, proposed by [10,58]. The proposed method enhances
ts accuracy by 3.05% and 3.05% and its recall by 2.55% and 3.55% compared to [10,58], respectively. The results demonstrate
hat the proposed method can effectively and accurately detect both known and unknown attacks in IoT networks.

. Discussion

This section discusses the main findings, implications, opportunities, and future directions of our proposed method for intrusion
etection in IoT networks using subspace clustering and ensemble learning.

We begin by summarizing the main findings of our study. Our proposed method is a novel intrusion detection framework for IoT
etworks that integrates subspace clustering and ensemble learning techniques through three synergy strategies: clustering results
s features (CRF), two-level decision making (TDM), and iterative feedback loop (IFL). We also use particle swarm optimization
PSO) to optimize the hyperparameters of the base learners and the meta-learner in the ensemble learning model. We evaluate
ur method on the UNSW-NB15 dataset, which is a realistic and comprehensive dataset for network intrusion detection systems.
e compare our method with six state-of-the-art methods that use different classifiers for intrusion detection in IoT networks. The

esults show that our method outperforms the other methods by a large margin on all performance metrics, such as accuracy,
recision, recall, F1-score, FPR, TNR, and MCC. These results indicate that our method can correctly classify most of the instances
s normal or anomalous, has a high correlation between the actual and predicted labels, and minimizes the false alarms. Moreover,
ur method achieves high detection accuracy for all attack categories, reaching above 95% for each one. This shows that our method
an effectively identify both known and unknown attacks for IoT networks.

Next, we discuss the implications of our method for both practice and theory. Our method has several practical implications
19

or IoT network security. First, it can help IoT network administrators and security analysts to monitor network traffic and

Computers and Electrical Engineering 115 (2024) 109113J. Zhu and X. Liu

f
d
v
d
p
f
b
w
o
t
i
A
o
t
o
t
o
f
s
p
o
f
a
t
t
o
a
k
s
c
v
a

i
c
e
i

7

m
p

identify intrusions more effectively and efficiently, as it has high accuracy and low FPR. This can reduce the workload and cost
of manual inspection and verification, and increase the confidence and trust in the detection results. Second, it can help IoT
device manufacturers and service providers to improve the security and reliability of their products and services, as it can cope
with the challenges of high-dimensional, imbalanced, and heterogeneous data in IoT networks. This can enhance the compatibility
and interoperability of different IoT devices and applications, and increase the customer satisfaction and loyalty. Third, it can
help policymakers and regulators to establish standards and guidelines for IoT network security, as it can provide insights into
the characteristics and behaviors of normal and anomalous connections in IoT networks. This can facilitate the development and
enforcement of effective policies and regulations to protect the IoT devices and users from malicious attacks. Our method also
has several theoretical implications for intrusion detection research. First, it advances the understanding of subspace clustering
techniques for anomaly detection, as it uses four subspace clustering algorithms to discover meaningful clusters in different feature
subspaces, which can capture the local patterns and structures of normal and anomalous connections. This can provide a new
perspective and approach for analyzing high-dimensional data with complex distributions and relationships. Second, it challenges the
existing models of ensemble learning for classification, as it uses a two-tiered model of base learners and a meta-learner to improve
the performance and robustness of the detection model. This can provide a new framework and technique for combining multiple
classifiers with different strengths and weaknesses. Third, it contributes to the development of new strategies for the integration of
subspace clustering and ensemble learning techniques, as it uses three synergistic strategies: CRF, TDM, and IFL. These strategies
not only enhance the feature space but also improve the accuracy of intrusion detection more effectively than using any two of
them.

Finally, we discuss the opportunities, limitations, and future directions of our method. Our method has some potential areas
or improvement that can be addressed in future work. One area is the feature selection method, which we use to reduce the
imensionality and complexity of the network data. We use mutual information, a measure of statistical dependence between two
ariables, to select the most relevant features for intrusion detection. However, mutual information may not capture all nonlinear
ependencies in complex network data, and may introduce some redundancy or noise in the feature space. This may affect the
erformance and robustness of the proposed method, as it may miss some important features or include some irrelevant features
or intrusion detection. This also poses a threat to the internal validity of our results, as they may not be free from errors or
iases, and may not be attributed to the proposed method rather than other factors. To address this opportunity and threat, future
ork can explore more advanced feature selection methods, such as correlation-based, wrapper-based, or embedded methods, to
ptimize the feature space and improve the detection performance. Future work can also perform a sensitivity analysis to evaluate
he impact of different feature subsets on the detection performance, using different feature selection methods, such as chi-square,
nformation gain, and relief, to select different numbers of features, and compare the results with the mutual information method.
nother area is the optimization method, which we use to tune the hyperparameters of the base learners and the meta-learner in
ur ensemble learning model. We use PSO, a population-based metaheuristic algorithm, to find the optimal hyperparameter values
hat maximize the F1-score. However, PSO may suffer from premature convergence or stagnation, and may not find the global
ptimum in complex search spaces. This may affect the performance and robustness of the proposed method, as it may not find
he optimal hyperparameter values that maximize the detection performance. This also poses a threat to the internal validity of
ur results, as they may not be free from errors or biases, and may not be attributed to the proposed method rather than other
actors. To address this opportunity and threat, future work can employ other optimization methods, such as grid search, random
earch, or Bayesian optimization, to find the optimal hyperparameter values more efficiently and reliably. Future work can also
erform a stability analysis to evaluate the impact of different optimization methods on the detection performance, using different
ptimization methods, such as grid search, random search, and Bayesian optimization, to find the optimal hyperparameter values
or the base learners and the meta-learner, and compare the results with the PSO method. A third area is the generalizability and
pplicability of our method to other IoT network scenarios, which may differ from the UNSW-NB15 dataset in terms of network
ype, size, topology, characteristics and capabilities of devices, and the objectives and strategies of attackers. This poses a threat
o the external validity of our results, as they may not be generalized and applied to other contexts or situations. To address this
pportunity and threat, future work can test our method on other datasets and real-world scenarios that share similar characteristics
nd challenges with the UNSW-NB15 dataset, such as high-dimensional, imbalanced, and heterogeneous data, and various types of
nown and unknown attacks. For example, future work can apply our method to other datasets. However, some preprocessing steps,
uch as feature selection, normalization, and encoding, may be required to adapt the data to our method. Additionally, future work
an apply our method to real-world IoT networks in settings like smart homes, smart cities, and smart healthcare, which can provide
aluable insights into its performance and scalability in these contexts. However, some challenges, such as data collection, labeling,
nd privacy, may arise in these settings, and need to be addressed accordingly.

In conclusion, our method is a significant step forward in IoT network security, but it also has some potential areas for
mprovement and challenges that need to be addressed in future work. Future work will focus on enhancing the feature selection
apabilities, optimizing the hyperparameter tuning, testing the method on other datasets and real-world scenarios, and ensuring the
thical and responsible application of the method. These efforts are crucial in maintaining the method’s relevance and effectiveness
n the rapidly changing and challenging landscape of network security.

. Conclusions

Intrusion detection stands as a vital task for fortifying the security and reliability of IoT networks, which are susceptible to a
yriad of attacks. In this paper, we have proposed a novel framework based on subspace clustering and ensemble learning, incor-
20

orating three synergy strategies: Clustering Results as Features (CRF), Two-Level Decision Making (TDM), and Iterative Feedback

Computers and Electrical Engineering 115 (2024) 109113J. Zhu and X. Liu
Loop (IFL). We evaluated our approach to empirical validation using the UNSW-NB15 dataset, a repository featuring a realistic and
heterogeneous IoT network traffic data. The comparative analysis revealed that the proposed methodology outperformed existing
state-of-the-art techniques across multiple evaluation metrics, including accuracy, precision, recall, and F1-score. Specifically, our
approach attained an accuracy rate of 97.05%, a precision rate of 96.33%, a recall rate of 96.55%, and an F1-score of 96.45%.
Furthermore, the proposed method achieved the lowest false positive rate, a mere 0.029, among all evaluated methods. This
underscores its efficacy in minimizing false alarms, thereby reducing the financial and operational cost associated with unwarranted
actions or investigations.

CRediT authorship contribution statement

Jingyi Zhu: Conceptualization, Methodology, Software, Investigation, Formal analysis, Writing – original draft. Xiufeng Liu:
Conceptualization, Formal analysis, Resources, Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

The authors do not have permission to share data.

Appendix. List of abbreviations

Table A.8
List of abbreviations and their descriptions.

Abbreviation Full form Description

CLIQUE Clustering In QUEst A subspace clustering algorithm for identifying dense clusters in high-dimensional data
CRF Clustering Results as Features A strategy used in our model for enhancing feature space based on clustering results
IDS Intrusion Detection System A system or software application for monitoring network or system activities for security breaches
IFL Iterative Feedback Loop A technique for dynamic model recalibration based on real-time results
IoT Internet of Things A system of interconnected computing devices and objects that can transfer data over a network
LGBM Light Gradient Boosting Machine A gradient boosting framework that uses tree-based learning algorithms
LOF Local Outlier Factor An algorithm to identify density-based local outliers in data
LR Logistic Regression A statistical model used for binary classification
NB Naive Bayes A probabilistic classifier based on Bayes’ theorem with strong independence assumptions
PROCLUS Projected CLUStering A projected clustering algorithm
PSO Particle Swarm Optimization A computational method used for optimizing a problem by iteratively improving candidate solutions
SC Subspace Clustering A clustering technique that finds clusters in different subspaces of the data
SUBCLU SUBspace CLUstering A density-based algorithm for clustering in a subspatial manner
TDM Two-Level Decision Making A decision-making strategy that uses both subspace clustering and ensemble learning
XGB eXtreme Gradient Boosting An optimized gradient boosting library

References

[1] Al-Yaseen WL, Othman ZA, Nazri MZA. Multi-level hybrid support vector machine and extreme learning machine based on modified K-means for intrusion
detection system. Expert Syst Appl 2017;67:296–303.

[2] Makkar A, Park JH. SecureCPS: Cognitive inspired framework for detection of cyber attacks in cyber–physical systems. Inf Process Manage
2022;59(3):102914.

[3] Mohammadpour L, Ling TC, Liew CS, Aryanfar A. A survey of CNN-based network intrusion detection. Appl Sci 2022;12(16):8162.
[4] Vaigandla K, Azmi N, Karne R. Investigation on intrusion detection systems (IDSs) in IoT. Int J Emerg Trends Eng Res 2022;10(3).
[5] Nayak G, Mishra A, Samal U, Mishra BK. Depth analysis on DoS & DDoS attacks. Wireless Commun Secur 2022;159–82.
[6] Kumar KR, Nakkeeran R. A comprehensive study on denial of service (DoS) based on feature selection of a given set datasets in internet of things (IoT).

In: 2023 international conference on signal processing, computation, electronics, power and telecommunication. iConSCEPT, IEEE; 2023, p. 1–8.
[7] Sikos LF. Packet analysis for network forensics: A comprehensive survey. Forensic Sci Int.: Digit Invest 2020;32:200892.
[8] Farooq M, Khan MH. Signature-based intrusion detection system in wireless 6G IoT networks. J Internet Things 2022;4(3).
[9] Kolias C, Kambourakis G, Stavrou A, Voas J. DDoS in the IoT: Mirai and other botnets. Computer 2017;50(7):80–4.

[10] Rashid M, Kamruzzaman J, Imam T, Wibowo S, Gordon S. A tree-based stacking ensemble technique with feature selection for network intrusion detection.
Appl Intell 2022;52(9):9768–81.

[11] Bhandari R, Singla S, Sharma P, Kang SS. AINIS: An intelligent network intrusion system. Int J Perform Eng 2024;20(1):24.
[12] Song X, Ma Q. Intrusion detection using federated attention neural network for edge enabled internet of things. J Grid Comput 2024;22(1):1–17.
[13] Boopathi M. An intrusion detection system for IoT using deep learning and optimization techniques. 2024.
[14] Chinaechetam EN, Nwakanma CI, Lee J-M, Kim D-S. Detecting cyberthreats in metaverse learning platforms using an explainable DNN. Internet Things

2024;101046.
[15] Roopak M, Parkinson S, Tian GY, Ran Y, Khan S, Chandrasekaran B. An unsupervised approach for the detection of zero-day DDoS attacks in IoT networks.
21

http://refhub.elsevier.com/S0045-7906(24)00041-7/sb1
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb1
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb1
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb2
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb2
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb2
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb3
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb4
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb5
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb6
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb6
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb6
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb7
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb8
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb9
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb10
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb10
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb10
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb11
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb12
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb13
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb14
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb14
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb14

Computers and Electrical Engineering 115 (2024) 109113J. Zhu and X. Liu
[16] Devendiran R, Turukmane AV. Dugat-LSTM: Deep learning based network intrusion detection system using chaotic optimization strategy. Expert Syst Appl
2024;245:123027.

[17] Gavel S, Raghuvanshi AS, Tiwari S. Maximum correlation based mutual information scheme for intrusion detection in the data networks. Expert Syst Appl
2022;189:116089.

[18] Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining applications. In: Proceedings of
the 1998 ACM SIGMOD international conference on management of data. 1998, p. 94–105.

[19] Aggarwal CC, Wolf JL, Yu PS, Procopiuc C, Park JS. Fast algorithms for projected clustering. ACM SIGMoD Rec 1999;28(2):61–72.
[20] Kailing K, Kriegel H-P, Kröger P. Density-connected subspace clustering for high-dimensional data. In: Proceedings of the 2004 SIAM international conference

on data mining. SIAM; 2004, p. 246–56.
[21] Breunig MM, Kriegel H-P, Ng RT, Sander J. LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD international conference

on management of data. 2000, p. 93–104.
[22] Webb GI, Keogh E, Miikkulainen R. Naïve Bayes. Encyclopedia Mach Learn 2010;15(1):713–4.
[23] Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu T-Y. Lightgbm: A highly efficient gradient boosting decision tree. Adv Neural Inf Process

Syst 2017;30.
[24] Chen T, He T, Benesty M, Khotilovich V, Tang Y, Cho H, Chen K, Mitchell R, Cano I, Zhou T, et al. Xgboost: extreme gradient boosting. 2015, p. 1–4, R

package version 0.4-2 1 (4).
[25] Hosmer Jr DW, Lemeshow S, Sturdivant RX. Applied logistic regression, vol. 398, John Wiley & Sons; 2013.
[26] Marini F, Walczak B. Particle swarm optimization (PSO). A tutorial. Chemometr Intell Lab Syst 2015;149:153–65.
[27] Sadikin F, Van Deursen T, Kumar S. A ZigBee intrusion detection system for IoT using secure and efficient data collection. Internet Things 2020;12:100306.
[28] Ring M, Wunderlich S, Scheuring D, Landes D, Hotho A. A survey of network-based intrusion detection data sets. Comput Secur 2019;86:147–67.
[29] Mrabet H, Belguith S, Alhomoud A, Jemai A. A survey of IoT security based on a layered architecture of sensing and data analysis. Sensors 2020;20(13):3625.
[30] Elrawy MF, Awad AI, Hamed HF. Intrusion detection systems for IoT-based smart environments: a survey. J Cloud Comput 2018;7(1):1–20.
[31] Maseer ZK, Yusof R, Bahaman N, Mostafa SA, Foozy CFM. Benchmarking of machine learning for anomaly based intrusion detection systems in the

CICIDS2017 dataset. IEEE Access 2021;9:22351–70.
[32] Wei N, Yin L, Zhou X, Ruan C, Wei Y, Luo X, Chang Y, Li Z. A feature enhancement-based model for the malicious traffic detection with small-scale

imbalanced dataset. Inform Sci 2023;119512.
[33] Chen J, Qi X, Chen L, Chen F, Cheng G. Quantum-inspired ant lion optimized hybrid k-means for cluster analysis and intrusion detection. Knowl-Based

Syst 2020;203:106167.
[34] Chapagain P, Timalsina A, Bhandari M, Chitrakar R. Intrusion detection based on PCA with improved K-means. In: International conference on electrical

and electronics engineering. Springer; 2022, p. 13–27.
[35] Ding H, Chen L, Dong L, Fu Z, Cui X. Imbalanced data classification: A KNN and generative adversarial networks-based hybrid approach for intrusion

detection. Future Gener Comput Syst 2022;131:240–54.
[36] Sanju P. Enhancing intrusion detection in IoT systems: A hybrid metaheuristics-deep learning approach with ensemble of recurrent neural networks. J Eng

Res 2023;100122.
[37] Ge M, Fu X, Syed N, Baig Z, Teo G, Robles-Kelly A. Deep learning-based intrusion detection for IoT networks. In: 2019 IEEE 24th Pacific rim international

symposium on dependable computing. PRDC, IEEE; 2019, p. 256–25609.
[38] Li J, Zhao Z, Li R, Zhang H. Ai-based two-stage intrusion detection for software defined iot networks. IEEE Internet Things J 2018;6(2):2093–102.
[39] Zarpelão BB, Miani RS, Kawakani CT, de Alvarenga SC. A survey of intrusion detection in Internet of Things. J Netw Comput Appl 2017;84:25–37.
[40] Hodo E, Bellekens X, Hamilton A, Dubouilh P-L, Iorkyase E, Tachtatzis C, Atkinson R. Threat analysis of IoT networks using artificial neural network

intrusion detection system. In: 2016 international symposium on networks, computers and communications. ISNCC, IEEE; 2016, p. 1–6.
[41] Ahakonye LAC, Nwakanma CI, Lee J-M, Kim D-S. SCADA intrusion detection scheme exploiting the fusion of modified decision tree and chi-square feature

selection. Internet Things 2023;21:100676.
[42] Uzun B, Ballı S. A novel method for intrusion detection in computer networks by identifying multivariate outliers and relieff feature selection. Neural

Comput Appl 2022;34(20):17647–62.
[43] Bhattacharya S, Maddikunta PKR, Kaluri R, Singh S, Gadekallu TR, Alazab M, Tariq U. A novel PCA-firefly based XGBoost classification model for intrusion

detection in networks using GPU. Electronics 2020;9(2):219.
[44] Andresini G, Appice A, Malerba D. Autoencoder-based deep metric learning for network intrusion detection. Inform Sci 2021;569:706–27.
[45] Hamid Y, Sugumaran M. A t-SNE based non linear dimension reduction for network intrusion detection. Int J Inf Technol 2020;12:125–34.
[46] Zhang R, Zhang J, Wang Q, Zhang H. DOIDS: an intrusion detection scheme based on DBSCAN for opportunistic routing in underwater wireless sensor

networks. Sensors 2023;23(4):2096.
[47] Wang W, Du X, Shan D, Qin R, Wang N. Cloud intrusion detection method based on stacked contractive auto-encoder and support vector machine. IEEE

Trans Cloud Comput 2020;10(3):1634–46.
[48] Jin D, Lu Y, Qin J, Cheng Z, Mao Z. SwiftIDS: Real-time intrusion detection system based on LightGBM and parallel intrusion detection mechanism.

Comput Secur 2020;97:101984.
[49] Wei Y, Wu F. A self-adaptive intrusion detection model based on bi-LSTM-CRF with historical access logs. In: Advances in natural computation, fuzzy

systems and knowledge discovery: proceedings of the ICNC-fSKD 2021 17. Springer; 2022, p. 185–97.
[50] Madhu G. Design of intrusion detection and prevention model using COOT optimization and hybrid LSTM-KNN classifier for MANET. EAI Endors Trans

Scalable Inf Syst 2022;10(3).
[51] Das SK, Dey N, Crespo RG, Herrera-Viedma E. A non-linear multi-objective technique for hybrid peer-to-peer communication. Inform Sci 2023;629:413–39.
[52] Hou C, Nie F, Jiao Y, Zhang C, Wu Y. Learning a subspace for clustering via pattern shrinking. Inf Process Manage 2013;49(4):871–83.
[53] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, et al. Scikit-learn: Machine learning

in python. J Mach Learn Res 2011;12:2825–30.
[54] Kulesa A, Krzywinski M, Blainey P, Altman N. Sampling distributions and the bootstrap. 2015.
[55] Kumar G, Thakur K, Ayyagari MR. MLEsIDSs: machine learning-based ensembles for intrusion detection systems—a review. J Supercomput 2020;76:8938–71.
[56] Moustafa N, Slay J. UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). In: 2015 military

communications and information systems conference. milCIS, IEEE; 2015, p. 1–6.
[57] Halbouni A, Gunawan TS, Habaebi MH, Halbouni M, Kartiwi M, Ahmad R. CNN-LSTM: hybrid deep neural network for network intrusion detection system.

IEEE Access 2022;10:99837–49.
[58] Rajagopal S, Kundapur PP, Hareesha KS. A stacking ensemble for network intrusion detection using heterogeneous datasets. Secur Commun Netw

2020;2020:1–9.
[59] Yin Y, Jang-Jaccard J, Xu W, Singh A, Zhu J, Sabrina F, Kwak J. IGRF-RFE: a hybrid feature selection method for MLP-based network intrusion detection

on UNSW-NB15 dataset. J Big Data 2023;10(1):1–26.
[60] Roy A, Singh KJ. Multi-classification of unsw-nb15 dataset for network anomaly detection system. In: Proceedings of international conference on

communication and computational technologies. ICCCT-2019, Springer; 2021, p. 429–51.
[61] Kasongo SM, Sun Y. Performance analysis of intrusion detection systems using a feature selection method on the UNSW-NB15 dataset. J Big Data

2020;7:1–20.
[62] Khraisat A, Alazab A. A critical review of intrusion detection systems in the internet of things: techniques, deployment strategy, validation strategy, attacks,

public datasets and challenges. Cybersecurity 2021;4:1–27.
22

http://refhub.elsevier.com/S0045-7906(24)00041-7/sb16
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb16
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb16
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb17
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb17
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb17
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb18
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb18
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb18
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb19
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb20
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb20
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb20
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb21
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb21
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb21
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb22
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb23
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb23
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb23
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb24
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb24
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb24
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb25
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb26
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb27
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb28
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb29
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb30
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb31
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb31
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb31
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb32
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb32
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb32
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb33
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb33
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb33
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb34
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb34
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb34
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb35
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb35
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb35
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb36
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb36
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb36
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb37
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb37
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb37
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb38
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb39
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb40
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb40
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb40
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb41
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb41
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb41
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb42
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb42
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb42
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb43
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb43
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb43
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb44
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb45
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb46
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb46
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb46
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb47
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb47
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb47
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb48
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb48
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb48
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb49
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb49
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb49
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb50
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb50
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb50
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb51
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb52
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb53
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb53
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb53
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb54
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb55
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb56
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb56
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb56
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb57
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb57
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb57
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb58
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb58
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb58
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb59
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb59
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb59
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb60
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb60
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb60
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb61
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb61
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb61
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb62
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb62
http://refhub.elsevier.com/S0045-7906(24)00041-7/sb62

	An integrated intrusion detection framework based on subspace clustering and ensemble learning
	Introduction
	Literature review
	Intrusion detection systems for IoT networks
	Intrusion Detection Techniques for IoT Networks

	Research questions and objectives
	Methodology
	Overview
	Data Preprocessing
	Subspace Clustering
	Ensemble Learning
	An integrated intrusion detection framework
	Complexity Analysis

	Experiments
	Dataset and preprocessing
	Experimental configurations
	Evaluation metrics
	Feature selection
	Performance study compared with base learner methods
	Ablation study
	Performance comparison with state-of-the-art methods

	Discussion
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix. List of abbreviations
	References

