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We study parameterisation-independent closed planar curve matching as a Bayesian inverse problem. The motion 
of the curve is modelled via a curve on the diffeomorphism group acting on the ambient space, leading to a large 
deformation diffeomorphic metric mapping (LDDMM) functional penalising the kinetic energy of the deformation. 
We solve Hamilton’s equations for the curve matching problem using the Wu-Xu element (Wu and Xu (2019) 
[12]) which provides mesh-independent Lipschitz constants for the forward motion of the curve, and solve the 
inverse problem for the momentum using Bayesian inversion. Since this element is not affine-equivalent we 
provide a pullback theory which expedites the implementation and efficiency of the forward map. We adopt 
ensemble Kalman inversion (EKI) using a negative Sobolev norm mismatch penalty to measure the discrepancy 
between the target and the ensemble mean shape. We provide several numerical examples to validate the 
approach.

1. Introduction

Closed curve matching is a central problem in shape analysis where the goal is to bring into alignment two closed curves in Emb(𝑆1, ℝ𝑑 ) called 
the template and the target [1]. This has numerous practical applications in biology [2] and medical image analysis [3] as shape changes can model 
disease progression or lead to an understanding of the variability of the data [4]. Other examples of applications include nuclear analysis, see e.g. [5]

where the variation of HeLA cells was studied, and archaeology, where shape analysis has been used for artifact classification [6]. As the resolution 
of the data captured in all fields of science continues to increase there is a demand for novel scalable methods to be developed for continuous 
shape matching. Curve shapes are invariant under arbitrary reparameterisation, so in this paper we consider unparameterised planar curves. The 
shape space for these objects is 𝑄 = Emb(𝑆1, ℝ𝑑 ) ⧵ Diff+(𝑆1) [7,8]. This quotient space disassociates the curve from arbitrary reparameterisation 
since they do not affect the range of the curves in question. This gives rise to studying the commuting left and right actions of two Lie groups, 
𝐺 = Diff+(ℝ2) and 𝐻 = Diff+(𝑆1) as in [9]:

𝐺𝑄 = Emb(𝑆1,𝐺.ℝ2), 𝐻𝑄 = Emb(𝐻.𝑆1,ℝ2). (1)

In the context of developing algorithms for planar curve matching, these group actions must be explicitly discretised. In this paper we equip our 
shape space with the so-called outer metric inherited by 𝐺 which acts on the ambient space. This is in contrast to inner metrics intrinsically defined 
on the embedded shape [10], see [7] for a comparison. To treat the parameterisation, one can parameterise elements of 𝐻 using its Lie algebra 
and exploit its vector space structure. In this paper we consider a mismatch penalty that eliminates the need to treat 𝐻 explicitly. We note that 
two closed curves 𝑐1 and 𝑐2 are similar when the difference between the indicator function 1 evaluated on their interiors is small. For some linear 
differential operator  we therefore define the mismatch, or misfit, between them as:

𝔈(𝑐1, 𝑐2) = ‖1𝑐1 − 1𝑐2‖2 , (2)
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where ‖𝑓‖2 = ⟨−1𝑓, −1𝑓⟩𝐿2 over some computational domain described later. For the outer metric we take the LDDMM approach [11] and 
consider a one-parameter family of velocities 𝑡 ↦ 𝑢𝑡 encoding the motion of the ambient space (and therefore the shape) which simultaneously 
provides a distance measure. We discretise the velocity field using finite elements, specifically the Wu-Xu element [12]. This element provides a 
nonconforming discretisation for sixth order operators; sixth order is necessary for the diffeomorphism to be sufficiently smooth for the computations 
that we undertake. The implementation of this element in Firedrake [13] is made possible by applying the theory of [14] and techniques for code 
generation in [15]. Given certain assumptions on the structure of our problem we can identify this entire family of velocities with a single initial 
momentum defined as a function over the template. We eliminate its evolution equation by using the analytical solution, and restrict the initial 
conditions to only generate geodesics in the space of unparameterised curves. This results in a forward map, taking as input the initial momentum 
and providing the diffeomorphism whose action maps the template to the target curve. While adjoint-based methods are popular in variational 
problems such as the one treated here, the implementation of the Fréchet derivative of the forward map may be difficult if a degree of automation 
is not available. Instead, we approach the matching problem as a Bayesian inverse problem to apply ensemble Kalman inversion (EKI) [16,17] and 
invert the forward map for the initial momentum determining the geodesic motion of the curve aligning the template with the target. The aim here 
is a method which is highly scalable and parallelisable.

We summarise our main contributions in this paper. We provide a formulation of curve matching using an outer metric based on the Lipschitz-

conforming Wu-Xu element which preserves the diffeomorphic evolution of the curve at any level of mesh refinement. In addition, the formulation 
removes the need to integrate the momentum equation which otherwise requires additional regularity of the velocity field. In order to carry out 
the computations efficiently we also provide a pull-back theory for the Wu-Xu element which has not been explored before in the literature. The 
resulting forward map is mesh-based which easily facilitates parallel computation, a feature that is particularly valuable as forward solves are 
typically expensive to compute. Not only is our proposed method derivative-free, it is also based on EKI, which is trivially parallelisable. While the 
use of EKI in shape analysis has been studied before for landmarks [18] (but not curves), this is to the authors’ knowledge the first approach allowing 
a high degree of parallelisation in both the forward map and the inversion method. Since we discretise an outer metric the proposed method is 
scalable for other types of data allowing for e.g. truly large-scale parallel image LDDMM.

1.1. Previous work

Diffeomorphic registration has enjoyed a rich literature since the seminal works [19,20]. For curves specifically, [21,22] present the first 
algorithms for modelling curve matching via gradient descent methods. [11] represents curves as measures onto which a Hilbert structure is 
endowed, and computations of both the outer metric and the curves are done via radial reproducing kernels producing 𝐶∞ velocities. In particular, 
curves were represented as geometric currents. [23] studies such a varifold-based loss function for elastic metrics, see also [24–26] for numerical 
frameworks for 𝐻2 metrics. [27] contains a review of methods related to elastic curves.

In this paper we are concerned with higher-order metrics using finite elements. While there is typically a loss of regularity incurred by these 
methods, they can offer more computationally efficient methods than e.g. kernel methods. Finite elements also benefit from spatial adaptivity 
allowing for local refinement e.g. close to embedded curves. Closest to our approach in terms of discretisation are [28,29] where a particle-mesh

method is employed for curve matching where the curve was discretised into a finite set of particles, acted on by an outer metric. However, we 
consider instead an outer metric finite element discretisation (as opposed to the intrinsic metric in [10]). [30] presents an adaptive Eulerian FEM 
discretisation of the velocity field for LDDMM using 𝐶1 cubic Hermite elements and compares the deformations generated using 𝐶∞ fields to assess 
the effect of the loss of regularity. Smooth mesh deformations are also of interest in shape optimisation where the aim is to transform a mesh such 
that some functional is minimised. Finite element methods are also adopted here, with deformation fields being discretised using B-splines [31], 
harmonic polynomials or Lagrange finite elements depending the desired resolution or order [32]. Using the finite element space introduced in 
[12] we can guarantee that the Lipschitz norm remains bounded under mesh refinement without resorting to spline or kernel discretisations. As 
mentioned, we use Firedrake [13] for all our numerical experiments, see also [33] for an extension of this package for shape optimisation.

Our formulation eliminates the need to integrate the momentum equation via its analytical solution thereby improving on the typically larger 
cost of Hamiltonian shooting based methods [34] compared to an LDDMM formulation [11]. We only need to solve an elliptic equation to obtain 
the velocity and use a simple variational Euler scheme to evolve the diffeomorphism. Traditional approaches in numerical shape analysis often 
apply shooting procedures to determine the initial momentum transporting the image or landmarks to the desiderata, see e.g. [35,36]. Bayesian 
approaches have been employed before in the context of shape analysis, see e.g. [37] where function space Markov Chain Monte Carlo is used to 
characterise the posterior density of momenta generating a given shape. Similar to our approach is [18] in which EKI is applied to recover the 
momentum for landmark matching.

1.2. Organisation

Section 2 contains an introduction to diffeomorphic curve matching and the associated Hamiltonian systems, we also discuss the application of 
the finite element approach using the Wu-Xu element from [12] and the discretisation of the velocity equation. Section 3 contains the transformation 
theory for the Wu-Xu element, and Section 4 contains details of the discretisation of the Hamiltonian equations. Next, Section 5 discusses the Bayesian 
inverse problem, and Section 6 contains numerical results. Section 7 contains a summary.

2. Diffeomorphic registration

Let Ω be a convex subset of ℝ𝑑 , 𝑑 = 2, with polygonal boundary 𝜕Ω. We study maps 𝑞 ∈𝑄 =𝐻1(𝑆1, ℝ𝑑 ) from a template curve Γ0 ∈ Emb(𝑆1, Ω)
to a target curve Γ1 ∈ Emb(𝑆1, Ω) whose motion is restricted by the differential equation:

�̇�𝑡 = 𝑢𝑡◦𝑞𝑡 , (3)

where 𝑢𝑡, 𝑡 ∈ [0, 1] is a family of time-dependent vector fields on Ω with some prescribed spatial smoothness. A geodesic path between two such 
parameterised curves Γ0 and Γ1 is defined as a path minimising the associated kinetic energy in 𝑢:
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1
2

1

∫
0

‖𝑢𝑡‖2 d𝑡, (4)

where ‖ ⋅ ‖ dominates the Lipschitz norm. In fact, since 𝑢𝑡 is supported on Ω it generates a curve on Diff(Ω) [1] of the entire ambient space via:

�̇�𝑡 = 𝑢𝑡◦𝜑𝑡, 𝜑0 = id, (5)

whose motion restricted to the curve 𝑞0◦𝑆1 equals the 𝑞𝑡◦𝑆1 at time 𝑡 ∈ [0, 1]. As the kinetic energy measures distances between two elements 
of Emb(𝑆1, ℝ𝑑 ) via velocity defined over the entire field Ω, we refer to this associated distance measure as an outer metric on the shape space 
Emb(𝑆1, ℝ𝑑 ).

2.1. Hamiltonian system

Here we take a Hamiltonian approach [38] and introduce the momentum 𝑝𝑡 ∈ 𝑇 ∗𝑄 occupying the linear cotangent space, which we assume has 
enough regularity so that it has a Fréchet-Riesz representer in 𝐿2(𝑆1) (also denoted 𝑝𝑡, with some abuse of notation). We extremise the following 
the functional:

𝑆 =

1

∫
0

1
2
‖𝑢𝑡‖2 + ⟨𝑝𝑡, �̇�𝑡 − 𝑢𝑡◦𝑞𝑡⟩d𝑡,

where ⟨ℎ, 𝑔⟩ = ∫𝑆1 ℎ ⋅ 𝑔 d𝜃. Taking variations i.e. 𝛿𝑆 = 0 leads to Hamilton’s equations for curve matching for 𝑡 ∈ [0, 1]:

1

∫
0

⟨𝛿𝑝, �̇�𝑡 − 𝑢𝑡◦𝑞𝑡⟩d𝑡 = 0, ∀𝛿𝑝 ∈𝐿2(𝑆1), (6a)

1

∫
0

⟨�̇�𝑡 −∇𝑢⊤𝑡 ◦𝑞𝑡𝑝𝑡, 𝛿𝑞⟩d𝑡 = 0, ∀𝛿𝑞 ∈𝑄, (6b)

1
2
𝛿‖𝑢𝑡‖2
𝛿𝑢

− ⟨𝑝𝑡, 𝛿𝑢◦𝑞𝑡⟩ = 0, (6c)

where 𝛿𝑝, 𝛿𝑢 and 𝛿𝑞 are space-time test functions. The following theorem shows that we can solve (6b) analytically:

Theorem 1. The solution 𝑝𝑡 to (6b) is at all times 𝑡 ≥ 0 given by 𝑝𝑡 =∇𝜑−⊤
𝑡 ◦𝑞0𝑝0.

Proof. See Appendix A. □

To generate parameterisation-independent geodesics as in [9] we replace the initial condition 𝑞0 by 𝑞0◦𝜂, where 𝜂 ∈ Diff+(𝑆1) in the case of 
planar curves is an arbitrary reparameterisation. As a result of this quotient representation Emb(𝑆1, ℝ𝑑 ) ⧵ Diff+(𝑆1) of curves we minimise over 
all 𝜂 leading to the horizontality condition on the momentum. This means that the momentum 𝑝0 has no tangential component and can therefore be 
described by a one-dimensional signal, �̃�0 ∶ 𝑆1 ↦ℝ:

𝑝0 = 𝐧𝑞0 �̃�0

where 𝐧𝑞0 ∶ 𝑆
1 →ℝ2 is the outward normal of the template. Thus, along with Theorem 1 we have the following characterisation,

𝑝𝑡 = 𝜑−⊤
𝑡 ◦𝑞−⊤0 𝐧𝑞0 �̃�0. (7)

This generates trajectories of geodesics between unparameterised curves. The entire geodesic motion of the curve can therefore be determined by a 
one-dimensional signal along the initial curve 𝑞0. To summarise this section we are concerned with integration of the following reduced Hamiltonian 
system for 𝑡 ∈ [0, 1]:

1
2
𝛿‖𝑢𝑡‖2
𝛿𝑢

= ⟨𝜑−⊤
𝑡 ◦𝑞0𝐧𝑞0 �̃�0, 𝛿𝑢◦𝑞𝑡⟩, (8a)

�̇�𝑡 = 𝑢𝑡◦𝑞𝑡, (8b)

with 𝑞0 and �̃�0 fixed and boundary conditions 𝑢𝑡|𝜕Ω = 0 for all 𝑡 ∈ [0, 1]. Next we discuss a discretisation of (8).

2.2. Outer metric via finite elements

From Picard-Lindelhöf analysis it is clear that the Banach space ordinary differential equation (ODE) (8b) requires a pointwise Lipschitz condition 
on 𝑢𝑡. As such, 𝑢𝑡 must occupy at least 𝑊 1,∞(Ω)𝑑 when 𝑞0 ∈ 𝐿∞(𝑆1), see [37, Theorem 5] (see also Corollary 7 in this reference for other host 
spaces). Dupuis [20] establishes sufficient conditions accomplishing the same in a Hilbertian setting. The Hilbertian setting is better suited to 
finite element methods. This is in contrast with 𝑊 1,∞(Ω)𝑑 which is only a Banach space and, to the best of the authors’ ability, is not easy to 
approximate numerically.1 We therefore request a norm ‖ ⋅ ‖ such a way that a solution to (8a) ensures that this condition is met, which in turn 

1 [39] approximates by means of a fixed point linearisation solutions to the nonlinear ∞-harmonic equation [40].
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Fig. 1. Affine mapping to a reference cell �̂� from a typical cell 𝐾 . Note that here 𝐹 maps from the physical cell 𝐾 to the reference cell �̂� rather than the other way 
around.

implies global existence and uniqueness of (8b) by the references above. For 𝑑 = 2, 3, 𝐻3
0 (Ω) is contained in 𝖢1(Ω̄) and so is Lipschitz on the interior 

[41, Theorem 2.5.1]. As such, we want to describe a discretisation of (8a) ensuring a type of 𝐻3 regularity as the follow theorem shows.

Theorem 2. Let 𝑂 be a convex bounded Lipschitz domain in ℝ𝑑 with polygonal boundary and 𝑂ℎ a shape-regular, quasi-uniform triangulation thereof [42]

for some mesh size ℎ > 0. Suppose further that 𝑢 is continuous on �̄�, 𝑢|𝐾 ∈𝐻3(𝐾)𝑑 for 𝐾 ∈ 𝑂ℎ and that there exists an operator 𝐵 inducing the norm ‖𝑢‖2
𝐵
=
∑
𝐾∈𝑂ℎ ‖𝑢‖2𝐵(𝐾), where we define ‖𝑢‖2

𝐵(𝐾) = ∫𝐾 𝐵𝑢 ⋅ 𝑢 d𝑥 such that ‖𝑢‖𝐻3(𝐾)𝑑 ≲ ‖𝑢‖𝐵(𝐾). Then 𝑢 ∈𝑊 1,∞(𝑂)𝑑 .

Proof. The embedding theorem for homogeneous Sobolev spaces (i.e. with zero traces) into the space 𝖢𝑗 (�̄�) is well-known. However, since the 
trace 𝛾𝐾𝑢 of 𝑢 on 𝜕𝐾 , 𝐾 ∈𝑂ℎ may not be zero. By [43, Theorem 4.12], 𝐻3(𝐾) ↪𝖢1

𝐵
(𝐾), where:

𝖢1
𝐵(𝐾) = {𝑢 ∈ 𝖢1(𝐾) |𝐷𝜶𝑢 is bounded on 𝐾, |𝜶| ≤ 1}.

This means any 𝐻3(𝐾) function has a continuous representative with almost everywhere bounded first derivatives on 𝐾 . Since 𝑢 ∈ 𝖢0(�̄�), 𝑢 is a 
continuous function with its first derivative a.e. bounded, implying a Lipschitz condition. To summarise:

‖𝑢‖2
𝑊 1,∞(𝐾)𝑑 ≲ ‖𝑢‖2

𝐻3(𝐾)𝑑 ≲ ‖𝑢‖2
𝐵(𝐾).

Summing over the elements 𝐾 ∈Ω and squaring:

‖𝑢‖2
𝑊 1,∞(𝑂)𝑑 ≲ ‖𝑢‖2𝐵,

where we have used that 𝑢 is a continuous function with essentially bounded gradient. □

In light of this theorem we approximate the space of velocity fields by a nonconforming finite element space (see e.g. [44, Section 10.3]). 
This way we can guarantee the necessary Lipschitz properties of our functions without having to impose higher-order global continuity of the 
finite-dimensional solution spaces.

In Section 4 we use the 𝐻3-nonconforming finite element space presented in [12, Section 4] in a discretisation of (8). We choose the operator 
𝐵 = (id − 𝛼Δ)2𝑚 for a given positive constant 𝛼 leading to the following bilinear form:

𝑎Ω(𝑢, 𝑣) =
𝑑∑
𝑖=1

∫
Ω

𝑚∑
𝑗=0

𝛼𝑗
(
𝑚

𝑗

)
𝐷𝑗𝑢𝑖 ⋅𝐷𝑗𝑣𝑖 d𝑥 = ∫

Ω

𝐵𝑢 ⋅ 𝑣d𝑥, (9)

where 𝑥 ⋅ 𝑦 is the Euclidean inner product, 𝐷0 = id, and

𝐷𝑗 =

{
∇𝐷𝑗−1 𝑗 is odd,

∇ ⋅𝐷𝑗−1 𝑗 is even.

3. A pullback theory for the Wu-Xu element

The Wu-Xu element provides an opportunity to tackle this problem in a (nonconforming) 𝐻3 setting, but it presents implementation challenges. 
Although we can construct its basis on a reference element, say, using the FIAT package [45], the Wu-Xu elements do not form an affine equivalent 
family [44] under pullback. Consequently, we apply the theory developed in [14], which gives a generalisation of techniques developed for the 𝐶1

conforming Argyris element [46,47]. The main contribution of this section is to derive a pullback theory for the Wu-Xu elements so that their basis 
functions may be constructed once on a reference domain rather than constructed individually on each cell in the mesh.

3.1. Some general considerations

To fix ideas, put a reference triangle 𝐾 with vertices by {𝐯𝑖}3𝑖=1. For any nondegenerate triangle 𝐾 with vertices {𝐯𝑖}3𝑖=1, we let 𝐹 ∶ 𝑇 → 𝐾

denote the affine mapping sending each 𝐯𝑖 to the corresponding 𝐯𝑖 and 𝐽𝑇 its Jacobian matrix. (See Fig. 1.)

We adopt the ordering convention used in [48], where edge 𝑒𝑖 of any triangle connects the vertices other than 𝑖. We take the unit tangent 
𝐭𝑖 =

[
𝑡𝑥𝑖 𝑡

𝑦
𝑖

]𝑇
to from the vertex of lower number to the higher one. The normal to edge 𝑖 is defined by counterclockwise rotation of the tangent, 

so that 𝐧𝑖 = 𝑅𝐭𝑖, where 𝑅 =
[

0 1
−1 0

]
. The normals, tangents, and edge midpoints for the reference element 𝐾 will include hats: 𝐧𝑖, ̂𝐭𝑖, and �̂�𝑖. The 

pull-back of any function 𝑓 defined on 𝐾 is given by

𝐹 ∗(𝑓 ) = 𝑓◦𝐹 , (10)
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and the push-forward of functionals 𝑛 acting on functions defined over 𝐾 is

𝐹∗(𝑛) = 𝑛◦𝐹 ∗, (11)

so that

𝐹∗(𝑛)(𝑓 ) = (𝑛◦𝐹 ∗)(𝑓 ) = 𝑛(𝑓◦𝐹 ). (12)

A finite element implementation requires local shape functions {𝜓𝐾𝑖 }𝑁
𝑖=1 that are restrictions of the global basis to cell 𝐾 . These are taken dual 

to a set of nodes or degrees of freedom {𝑛𝐾𝑖 }
𝑁
𝑖=1 in the sense that

𝑛𝐾𝑖 (𝜓
𝐾
𝑗 ) = 𝛿𝑖𝑗 .

In practice, one typically computes the basis {�̂�𝑖}𝑁𝑖=1 dual to some nodes {�̂�𝑖}𝑁𝑖=1 over the reference element �̂� . For affine equivalent families 
(like the Lagrange basis), the physical basis functions are the pullbacks of reference element shape functions, so that

𝜓𝐾𝑖 = 𝐹 ∗(�̂�𝑖).

Equivalently, the nodes are preserved under push-forward, with

𝐹∗(𝑛𝐾𝑖 ) = �̂�𝑖.

We may express these relations in a kind of vector-notation. If Ψ̂ is a vector whose entries are �̂�𝑖, then in the affine equivalent case, 𝐹 ∗(Ψ̂)
contains the basis on cell 𝐾 , and also 𝐹∗( ) = ̂ . For non-equivalent families, these relations fail, but we can hope to construct a matrix 𝑀 such 
that

Ψ=𝑀𝐹 ∗(Ψ̂) (13)

contains the correct vector of basis functions on 𝑇 . The matrix 𝑀 will depend on the particular geometry of each cell, but if it is sparse this 
amounts to a considerable savings over directly constructing the basis on each triangle. Our theory in [14] proceeds by transforming the actions of 
the functionals on the finite element space. The finite element functionals are defined on some infinite-dimensional space (e.g. twice-continuously 
differentiable functions), and we let 𝜋 denote the restriction of functionals to the finite-element space and �̂� the corresponding restriction on the 
reference element. Then, we look for a matrix 𝑉 such that

𝑉 𝐹∗(𝜋 ) = 𝜋̂ , (14)

and can prove [14, Theorem 3.1] that

𝑀 = 𝑉 𝑇 . (15)

3.2. The Wu-Xu element

For any triangle 𝐾 and integer 𝑘 ≥ 0, we let 𝑘(𝐾) denote the space of polynomials of degree no greater than 𝑘 over 𝐾 . Letting 𝜆𝑖 be the 
barycentric coordinates for 𝐾 (equivalently, the Lagrange basis for 1(𝐾)), we let 𝑏𝐾 = 𝜆1𝜆2𝜆3 be the standard cubic bubble function over 𝐾 . We 
also need notation for the linear functionals defining degrees of freedom. We let 𝛿𝐱 denote pointwise evaluation of some (continuous) function:

𝛿𝐱(𝑝) = 𝑝(𝐱). (16)

We let 𝛿𝐱𝐱 denote the derivative in some direction 𝐬 at a point 𝐱:

𝛿𝐬𝐱(𝑝) = 𝐬𝑇∇𝑝(𝐱) (17)

Repeated superscripts will indicate higher derivatives. We use block notation for gradients and sets of second-order derivatives, such as

∇𝐱 =
[
𝛿𝐱𝐱 𝛿

𝐲
𝐱
]𝑇

(18)

for the gradient in Cartesian coordinates at a point 𝐱, and

△
𝐱
=
[
𝛿𝐱𝐱𝐱 𝛿

𝐱𝐲
𝐱 𝛿

𝐲𝐲
𝐱
]𝑇

(19)

for the unique components of the Hessian matrix. We will use superscripts in the block notation to indicate the derivatives taken in directions other 
than the Cartesian ones, such as ∇𝐧𝐭 containing the derivatives with respect to a normal vector 𝐧 and tangent vector 𝐭 for some part of the boundary. 
Similarly, △𝐧𝐭

will contain the second partials in each direction and the mixed partial in both directions.

The Wu-Xu elements also utilise integral moments of normal derivatives, and we shall also need averages of tangential and mixed derivatives 
over edges to perform the transformations. Given any directional vector 𝐬, we define the moment of the derivative in the direction 𝐬 over edge 𝐞 by:

𝜇𝐬𝐞(𝑓 ) = ∫
𝐞

𝐬 ⋅∇𝑓 𝑑𝑠. (20)

Similarly, we let 𝜇𝐬1𝐬2𝐞 to denote the functionals computing moments of second (possibly mixed) directional derivatives over an edge. Now, 
we define the pair of 𝐻3 nonconforming triangles considered in [12]. Note that there are two spaces given: a space compatible with sixth-order 
problems, and a robust space that is stable for second, fourth and sixth-order problems. We define function space (𝐾) over some triangle 𝐾 by
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Fig. 2. Degrees of freedom for the Wu-Xu (left) and robust Wu-Xu (right) elements. Point values are given by dots, gradients by circles, while averages of first and 
second normal derivatives are given by thin and thick arrows, respectively.

Fig. 3. Compatible nodal completions for the Wu-Xu and robust Wu-Xu elements.

(𝐾) = 3 + 𝑏𝐾1, (21)

and the function space for the robust element will be

𝑟(𝐾) = 3 + 𝑏𝐾1 + 𝑏2𝐾1, (22)

where 𝑘 is the standard space of polynomials of degree 𝑘. Note that we have dim(𝐾) = 12 and dim𝑟(𝐾) = 15 since 𝑏𝐾 ∈ 3 ∩ 𝑏𝐾1. The 
degrees of freedom for the two elements are quite similar. We can parametrise 𝑟(𝐾) by

 =
[
𝛿𝐯1 ∇𝑇𝐯1 𝛿𝐯2 ∇𝑇𝐯2 𝛿𝐯3 ∇𝑇𝐯3 𝜇

𝐧1𝐧1
𝐞1 𝜇

𝐧2𝐧2
𝐞2 𝜇

𝐧3𝐧3
𝐞3

]𝑇
. (23)

That is, the degrees of freedom consist of point values and gradients at each vertex, together with moments of the second normal derivative along 
edges. For the robust element, we also use the moments of the first normal derivatives, so that

𝑟 =
[
𝛿𝐯1 ∇𝑇𝐯1 𝛿𝐯2 ∇𝑇𝐯2 𝛿𝐯3 ∇𝑇𝐯3 𝜇

𝐧1
𝐞1 𝜇

𝐧2
𝐞2 𝜇

𝐧3
𝐞3 𝜇

𝐧1𝐧1
𝐞1 𝜇

𝐧2𝐧2
𝐞2 𝜇

𝐧3𝐧3
𝐞3

]𝑇
. (24)

Wu and Xu actually define the degrees of freedom as average of these moments over the relevant facets, although this does not affect unisolvence 
or other essential properties. For the reference element, it will be helpful to use their original definition. For some edge 𝐞 of �̂� , define

�̂��̂��̂�(𝑓 ) =
1|�̂�| ∫̂

𝐞

�̂� ⋅ ∇̂𝑓 𝑑�̂�, (25)

and similarly define moments second directional derivatives over reference element edges. The reference element nodes for (�̂�) will be taken as

̂ =
[
𝛿�̂�1 ∇̂𝑇�̂�1 𝛿�̂�2 ∇̂𝑇�̂�2 𝛿�̂�3 ∇̂𝑇�̂�3 �̂�

�̂�1�̂�1
�̂�1

�̂�
�̂�2�̂�2
�̂�2

�̂�
�̂�3�̂�3
�̂�3

]𝑇
, (26)

and for 𝑟(�̂�) we will use

̂ =
[
𝛿�̂�1 ∇̂𝑇�̂�1 𝛿�̂�2 ∇̂𝑇�̂�2 𝛿�̂�3 ∇̂𝑇�̂�3 �̂�

�̂�1
�̂�1

�̂�
�̂�2
�̂�2

�̂�
�̂�3
�̂�3

�̂�
�̂�1�̂�1
�̂�1

�̂�
�̂�2�̂�2
�̂�2

�̂�
�̂�3�̂�3
�̂�3

]𝑇
. (27)

Note that this redefinition has no effect in the case of an equilateral reference triangle with unit edge length. For the more common case of a right 
isosceles reference triangle, however, this will eliminate the need for logic indicating to which reference element edges the edges of each triangle 
correspond.

3.3. Mapping the Wu-Xu element

The derivative degrees of freedom in both Wu-Xu elements are not preserved under push-forward, and since we have only normal derivatives on 
the edges, we cannot immediately obtain the correct nodes by taking linear combinations (see Fig. 2). Consequently, we must develop a compatible 
nodal completion [14, Definition 3.4]. For the Wu-Xu elements, this contains all the original degrees of freedom plus the integrals of tangential and 
mixed normal/tangential derivatives. Such a completion is shown for the standard Wu-Xu element in Fig. 3a. A completion for the robust element 
includes the first normal moments and tangential moments as well, as shown in Fig. 3b.

We define

1,𝑖 =
[
𝜇
𝐧𝑖
𝐞 𝜇

𝐭𝑖
𝐞

]𝑇
(28)
𝑖 𝑖
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to be the vector of the moments of the normal and tangential derivatives on a particular edge. We also let ̂1,𝑖 contain the corresponding reference 
element nodes. We only need 1,𝑖 and ̂1,𝑖 for the robust element. Both elements require

2,𝑖 =
[
𝜇
𝐧𝑖𝐧𝑖
𝐞𝑖 𝜇

𝐭𝑖𝐭𝑖
𝐞𝑖 𝜇

𝐧𝑖𝐭𝑖
𝐞𝑖

]𝑇
(29)

containing the unique second derivative moments on each edge. We similarly define ̂2,𝑖 to contain the reference element integral averages. The 
compatible nodal completion for (𝐾, (𝐾),  ) is

𝐶 =
[
𝛿𝐯1 ∇𝑇𝐯1 𝛿𝐯2 ∇𝑇𝐯2 𝛿𝐯3 ∇𝑇𝐯3 𝑇

2,1 𝑇
2,2 𝑇

2,3

]𝑇
, (30)

with the hatted equivalents comprising ̂𝐶 on the reference cell. The completed set of nodes for the robust element is

𝐶
𝑟 =

[
𝛿𝐯1 ∇𝑇𝐯1 𝛿𝐯2 ∇𝑇𝐯2 𝛿𝐯3 ∇𝑇𝐯3 𝑇

1,1 𝑇
1,2 𝑇

1,3 𝑇
2,1 𝑇

2,2 𝑇
2,3

]𝑇
. (31)

Now, the matrix 𝑉 from (14) will be obtained in factored form

𝑉 =𝐸𝑉 𝑐𝐷, (32)

where each matrix plays a particular role. 𝐷 is a rectangular matrix expressing the completed nodes in terms of the given physical nodes. 𝑉 𝑐 is 
a block diagonal matrix relating the push-forward of the reference nodal completion to the physical nodal completion, and 𝐸 is a Boolean matrix 
selecting actual finite element nodes from the completion. For the Wu-Xu element, 𝐷 is 18 × 12, 𝑉 𝑐 is 18 × 18, and 𝐸 is 12 × 18. For the robust 
element, 𝐷 is 24 × 15, 𝑉 𝑐 is 24 × 24, and 𝐸 is 15 × 24.

Now, we define the matrix 𝐷, which expresses the members of 𝐶 as linear combinations of the members of  . Clearly, the rows corresponding 
to members of 𝐶 also appearing in  will just have a single nonzero in the appropriate column. For the Wu-Xu element, the remaining nodes 
are all integrals of quantities over edges, and we can use the Fundamental Theorem of Calculus to perform this task. Let 𝐞 be an edge running from 
vertex 𝐯𝑎 to 𝐯𝑏 with unit tangent and normal 𝐭 and 𝐧, respectively. We have

𝜇𝐭𝐞(𝑓 ) = ∫
𝐞

𝐭𝑇∇𝑓𝑑𝑠 = 𝑓 (𝐯𝑏) − 𝑓 (𝐯𝑎) = 𝛿𝐯𝑏 (𝑓 ) − 𝛿𝐯𝑎 (𝑓 ). (33)

In a similar way, the moments of the second tangential and mixed derivatives on 𝐞 can be expressed as differences between components of the 
gradients at endpoints by:

𝜇𝐧𝐭𝐞 (𝑓 ) = 𝐧𝑇
(
∇𝐯𝑏𝑓 −∇𝐯𝑎𝑓

)
,

𝜇𝐭𝐭𝐞 (𝑓 ) = 𝐭𝑇
(
∇𝐯𝑏𝑓 −∇𝐯𝑎𝑓

)
,

(34)

and we have that 𝐶 =𝐷 , or

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛿𝐯1
𝛿𝐱𝐯1
𝛿
𝐲
𝐯1
𝛿𝐯2
𝛿𝐱𝐯2
𝛿
𝐲
𝐯2
𝛿𝐯3
𝛿𝐱𝐯3
𝛿
𝐲
𝐯3

𝜇
𝐧1𝐧1
𝐞1

𝜇
𝐧1𝐭1
𝐞1

𝜇
𝐭1𝐭1
𝐞1

𝜇
𝐧2𝐧2
𝐞2

𝜇
𝐧2𝐭2
𝐞2

𝜇
𝐭2𝐭2
𝐞2

𝜇
𝐧3𝐧3
𝐞3

𝜇
𝐧3𝐭3
𝐞3

𝜇
𝐭3𝐭3
𝐞3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 −𝑛1,𝑥 −𝑛1,𝑦 0 𝑛1,𝑥 𝑛1,𝑦 0 0 0
0 0 0 0 −𝑡1,𝑥 −𝑡1,𝑦 0 𝑡1,𝑥 𝑡1,𝑦 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 −𝑛2,𝑥 −𝑛2,𝑦 0 0 0 0 𝑛2,𝑥 𝑛2,𝑦 0 0 0
0 −𝑡2,𝑥 −𝑡2,𝑦 0 0 0 0 𝑡2,𝑥 𝑡2,𝑦 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 −𝑛3,𝑥 −𝑛3,𝑦 0 𝑛3,𝑥 𝑛3,𝑦 0 0 0 0 0 0
0 −𝑡3,𝑥 −𝑡3,𝑦 0 𝑡3,𝑥 𝑡3,𝑦 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛿𝐯1
𝛿𝐱𝐯1
𝛿
𝐲
𝐯1
𝛿𝐯2
𝛿𝐱𝐯2
𝛿
𝐲
𝐯2
𝛿𝐯3
𝛿𝐱𝐯3
𝛿
𝐲
𝐯3

𝜇
𝐧1𝐧1
𝐞1
𝜇
𝐧2𝐧2
𝐞2
𝜇
𝐧3𝐧3
𝐞3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (35)

The matrix 𝑉 𝐶 is obtained by relating the push-forwards of the nodal completion to their reference counterparts.

We can convert between the Cartesian and other orthogonal coordinate systems (e.g. normal/tangential) representations as follows. Given a pair 
of orthogonal unit vectors 𝐧 and 𝐭, we can define an orthogonal matrix 𝐺 by:
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𝐺 =
[
𝐧 𝐭

]𝑇
. (36)

In particular, we will use 𝐺𝑖 to have the normal and tangential vectors to edge 𝑖 of triangle 𝐾 and 𝐺𝑖 those for triangle 𝐾 . The multivariate chain 
rule readily shows that

∇𝑥 =𝐺𝑇∇𝐧𝐭
𝐱 . (37)

Similarly, letting 𝐧 =
[
𝑛𝑥 𝑛𝑦

]𝑇
and 𝐭 =

[
𝑡𝑥 𝑡𝑦

]𝑇
, we define the matrix Γ by

Γ =
⎡⎢⎢⎢⎣
𝑛2𝑥 2𝑛𝑥𝑡𝑥 𝑡2𝑥
𝑛𝑥𝑛𝑦 𝑛𝑥𝑡𝑦 + 𝑛𝑦𝑡𝑥 𝑡𝑥𝑡𝑦

𝑛2𝑦 2𝑛𝑦𝑡𝑦 𝑡2𝑦

⎤⎥⎥⎥⎦ , (38)

and the chain rule gives

△
𝑥
= Γ

𝐧𝐭
△
𝑥
. (39)

Although 𝐺 is an orthogonal matrix, Γ is not. A similar calculation also shows gives that: △𝐧𝐭
𝐱 = Γ−1△𝐱 , where

Γ−1 =
⎡⎢⎢⎢⎣
𝑛2𝑥 2𝑛𝑥𝑛𝑦 𝑛2𝑦

𝑛𝑥𝑡𝑥 𝑛𝑥𝑡𝑦 + 𝑛𝑦𝑡𝑥 𝑛𝑦𝑡𝑦

𝑡2𝑥 2𝑡𝑥𝑡𝑦 𝑡2𝑦

⎤⎥⎥⎥⎦ . (40)

We will also need to transform derivatives under pull-back. Using the chain rule,

∇(�̂�◦𝐹 ) = 𝐽𝑇 ∇̂�̂�◦𝐹 . (41)

Combining this with (37) lets us relate the normal and tangential derivatives in physical space to the normal and tangential derivatives in reference 
space.

∇𝐧𝐭
𝐱 =𝐺𝐽𝑇𝐺𝑇 ∇̂�̂��̂�

�̂� . (42)

We can perform a similar calculation for second derivatives. With the entries of the Jacobian matrix as:

𝐽 =
⎡⎢⎢⎣
𝜕𝑥

𝜕�̂�

𝜕𝑥

𝜕�̂�

𝜕𝑦

𝜕�̂�

𝜕𝑦

𝜕�̂�

⎤⎥⎥⎦ , (43)

we define the matrix

Θ=

⎡⎢⎢⎢⎢⎢⎣

(
𝜕�̂�

𝜕𝑥

)2
2 𝜕�̂�
𝜕𝑥

𝜕�̂�

𝜕𝑥

(
𝜕�̂�

𝜕𝑥

)2

𝜕�̂�

𝜕𝑦

𝜕�̂�

𝜕𝑥

𝜕�̂�

𝜕𝑦

𝜕�̂�

𝜕𝑥
+ 𝜕�̂�

𝜕𝑥

𝜕�̂�

𝜕𝑦

𝜕�̂�

𝜕𝑥

𝜕�̂�

𝜕𝑦(
𝜕�̂�

𝜕𝑦

)2
2 𝜕�̂�
𝜕𝑦

𝜕�̂�

𝜕𝑦

(
𝜕�̂�

𝜕𝑦

)2

⎤⎥⎥⎥⎥⎥⎦
, (44)

so that for 𝐱 = 𝐹 (�̂�),

△
𝐱
=Θ△̂�̂�. (45)

The inverse of Θ follows by reversing the roles of reference and physical variables:

Θ−1 =

⎡⎢⎢⎢⎢⎢⎣

(
𝜕𝑥

𝜕�̂�

)2
2 𝜕𝑥
𝜕�̂�

𝜕𝑦

𝜕�̂�

(
𝜕𝑦

𝜕�̂�

)2

𝜕𝑥

𝜕�̂�

𝜕𝑥

𝜕�̂�

𝜕𝑥

𝜕�̂�

𝜕𝑦

𝜕�̂�
+ 𝜕𝑥

𝜕�̂�

𝜕𝑦

𝜕�̂�

𝜕𝑦

𝜕�̂�

𝜕𝑦

𝜕�̂�(
𝜕𝑥

𝜕�̂�

)2
2 𝜕𝑥
𝜕�̂�

𝜕𝑦

𝜕�̂�

(
𝜕𝑦

𝜕�̂�

)2

⎤⎥⎥⎥⎥⎥⎦
(46)

We can also relate the second-order derivatives in normal/tangential coordinates under pullback by

𝐧𝐭
△
𝐱
= ΓΘΓ̂−1

�̂��̂�
△
�̂�
. (47)

From here, we will let 𝐺𝑖 and �̂�𝑖 denote the matrices containing normal and tangent vectors to edge 𝐞𝑖 of a generic triangle 𝑇 and the reference 
triangle �̂� , respectively, with similar convention for the other geometric quantities Γ and Θ. For any vector 𝐬, edge 𝐞, and smooth function 𝑓 = 𝑓◦𝐹 , 
we have

∫
𝐞

𝐬𝑇∇𝑓𝑑𝑠 = ∫
𝐞

𝐬𝑇 ∇̂𝑓◦𝐹𝑑𝑠 = ∫̂
𝐞

𝐬𝑇 ∇̂𝑓𝐽𝐞,�̂�𝑑�̂�, (48)

where the Jacobian 𝐽𝐞,�̂� is just the ratio of the length of 𝐞 to that of the corresponding reference element edge �̂�. Applying this to the normal and 
tangential moments and using (42), we have that:
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1,𝑖 = |𝐞𝑖|𝐺𝑖𝐽𝑇 �̂�−1
𝑖 ̂1,𝑖, (49)

where the factor of |�̂�𝑖| in the denominator of the Jacobian is merged with the reference element moments to produce ̂1,𝑖. Hence, the slight 
modification of reference element nodes avoids extra data structures or logic in identifying reference element edge numbers. Then, we can use (47)

to express each 2,𝑖 in terms of the reference element nodes

2,𝑖 = |𝐞|Γ𝑖ΘΓ̂−1𝑖 ̂2,𝑖. (50)

We define vectors

𝐵1,𝑖 = 1|𝐞𝑖| �̂�𝑖𝐽−𝑇 𝐺𝑇𝑖 , 𝐵2,𝑖 = 1|𝐞𝑖| Γ̂𝑖Θ−1Γ−1𝑖 , (51)

and hence 𝑉 𝐶 is the block-diagonal matrix

𝑉 𝐶 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
𝐽−𝑇

1
𝐽−𝑇

1
𝐽−𝑇

𝐵2,1

𝐵2,2

𝐵2,3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (52)

with zeros of the appropriate shapes in the off-diagonal blocks. The extraction matrix 𝐸 is just the 12 × 18 Boolean matrix selecting the members of 
𝑁 from 𝑁𝐶 :

𝐸 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(53)

Multiplying 𝐸𝑉 𝐶𝐷 out and defining

𝛽𝑖,𝑥 = 𝑛𝑖𝑥𝐵
2,𝑖
12 + 𝑡

𝑖
𝑥𝐵

2,𝑖
13 ,

𝛽𝑖,𝑦 = 𝑛𝑖𝑦𝐵
2,𝑖
12 + 𝑡

𝑖
𝑦𝐵

2,𝑖
13 ,

(54)

we obtain for 𝑉

𝑉 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0
0 𝜕𝑥

𝜕�̂�

𝜕𝑦

𝜕�̂�
0 0 0 0 0 0 0 0 0

0 𝜕𝑥

𝜕�̂�

𝜕𝑦

𝜕�̂�
0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 𝜕𝑥

𝜕�̂�

𝜕𝑦

𝜕�̂�
0 0 0 0 0 0

0 0 0 0 𝜕𝑥

𝜕�̂�

𝜕𝑦

𝜕�̂�
0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 𝜕𝑥

𝜕�̂�

𝜕𝑦

𝜕�̂�
0 0 0

0 0 0 0 0 0 0 𝜕𝑥

𝜕�̂�

𝜕𝑦

𝜕�̂�
0 0 0

0 0 0 0 −𝛽1,𝑥 −𝛽1,𝑦 0 𝛽1,𝑥 𝛽1,𝑦 𝐵2,1
11 0 0

0 −𝛽2,𝑥 −𝛽2,𝑦 0 0 0 0 𝛽2,𝑥 𝛽2,𝑦 0 𝐵2,2
11 0

0 −𝛽3,𝑥 −𝛽3,𝑦 0 𝛽3,𝑥 𝛽3,𝑦 0 0 0 0 0 𝐵2,3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (55)
11
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The same considerations lead to a similar derivation of 𝐸, 𝑉 𝑐 , and 𝐷 for the robust element, resulting in

𝑉 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 𝜕𝑥

𝜕�̂�

𝜕𝑦

𝜕�̂�
0 0 0 0 0 0 0 0 0 0 0 0

0 𝜕𝑥

𝜕�̂�

𝜕𝑦

𝜕�̂�
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 𝜕𝑥

𝜕�̂�

𝜕𝑦

𝜕�̂�
0 0 0 0 0 0 0 0 0

0 0 0 0 𝜕𝑥

𝜕�̂�

𝜕𝑦

𝜕�̂�
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 𝜕𝑥

𝜕�̂�

𝜕𝑦

𝜕�̂�
0 0 0 0 0 0

0 0 0 0 0 0 0 𝜕𝑥

𝜕�̂�

𝜕𝑦

𝜕�̂�
0 0 0 0 0 0

0 0 0 −𝐵1,1
12 0 0 𝐵1,1

12 0 0 𝐵1,1
11 0 0 0 0 0

−𝐵1,2
12 0 0 0 0 0 𝐵1,2

12 0 0 0 𝐵1,2
11 0 0 0 0

−𝐵1,3
12 0 0 𝐵1,3

12 0 0 0 0 0 0 0 𝐵1,3
11 0 0 0

0 0 0 0 −𝛽1,𝑥 −𝛽1,𝑦 0 𝛽1,𝑥 𝛽1,𝑦 0 0 0 𝐵2,1
11 0 0

0 −𝛽2,𝑥 −𝛽2,𝑦 0 0 0 0 𝛽2,𝑥 𝛽2,𝑦 0 0 0 0 𝐵2,2
11 0

0 −𝛽3,𝑥 −𝛽3,𝑦 0 𝛽3,𝑥 𝛽3,𝑦 0 0 0 0 0 0 0 0 𝐵2,3
11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(56)

for 𝑉 , where 𝛽 is as defined in (54).

4. Discretisation

We now describe the discretisations of the Hamiltonian system (8) using a function space introduced in the previous section. Letting Ω0 denote 
a convex subset of ℝ2 with polygonal boundary, smooth solutions to (8a) defined on Ω0 generate the following curve of diffeomorphisms:

�̇�𝑡 = 𝑢𝑡◦𝜑𝑡, 𝜑0 = id, (57)

where the domain of 𝜑𝑡 is Ω0. This subsumes the left action on the curve 𝑞0 in (8b). Our approach is therefore to solve (8a) for an outer metric in 
tandem with integrating the diffeomorphism defined over the entire domain and moving the mesh, thereby automatically providing a solution to a 
discrete analogue of (8b). We denote by 0 a shape-regular, quasi-uniform triangulation of the template domain Ω0. Let ℎ denote the mesh skeleton

of 0 and ̊ℎ the subset of ℎ whose elements do not intersect 𝜕Ω0. We place the following assumption on the initial triangulation 0:

Assumption 1. 0 is constructed such that the range of 𝑞0 is described by a subset of ̊ℎ.

Using the function space (𝐾) introduced in (21) we define the vector-valued Wu-Xu space defined over Ω0:

𝑉 (Ω0) = {𝑣 ∈𝐿2(Ω)2 |𝑣𝑖|𝐾 ∈(𝐾), 𝐾 ∈ 0, 𝑖 = 1,2}.

Further, let 0 = 𝑡0, 𝑡Δ𝑇 , … 𝑡𝑇−1 = 1 denote 𝑇 uniformly distributed points and use an Euler discretisation of the time derivate in (5), where we let 
𝜑𝑡𝑘 ∈ 𝑉 (Ω0), 𝑢𝑡𝑘 ∈ 𝑉 (Ω0):

𝜑𝑡𝑘+1 = 𝜑𝑡𝑘 + 𝑢𝑡𝑘◦𝜑𝑡𝑘Δ𝑇 . (58)

For sufficiently small Δ𝑇 , 𝜑𝑡𝑘 is a diffeomorphism of Ω [49]. Using the notation Ω𝑡𝑘 = 𝜑𝑡𝑘◦Ω0, 𝑉 (Ω𝑡𝑘 ) ∶= {𝑓 | 𝑓◦𝜑−1
𝑡𝑘

∈ 𝑉 (Ω0)} and by noting that 
𝑞𝑡𝑘 = 𝜑𝑡𝑘◦𝑞0 we obtain a discrete analogue of (8) where �̂�𝑡𝑘 ∈ 𝑉 (Ω𝑡𝑘 ):

𝑎Ω𝑡𝑘
(�̂�𝑡𝑘 , �̂�) = ∫

𝑆1

∇𝜑−⊤
𝑡𝑘

◦𝑞0𝐧𝑞0 �̃�0 ⋅ �̂�◦𝑞0 d𝑠, ∀�̂� ∈ 𝑉 (Ω𝑡𝑘 ), (59a)

𝜑𝑡𝑘+1 = 𝜑𝑡𝑘 + �̂�𝑡𝑘Δ𝑇 , (59b)

for 𝑘 = 0, … , 𝑇 − 1, where 𝜑𝑡𝑘◦𝜕Ω0 = id owing to the homogeneous Dirichlet boundary conditions implied by (59a). At each time step 𝑘 after the 
solution of (59a), the mesh is moved according to (58) upon which the equation (60):

𝑞𝑡𝑘+1 = 𝑞𝑡𝑘 + 𝑢𝑡𝑘◦𝑞𝑡𝑘Δ𝑇 , (60)

is automatically satisfied. The underlying coordinate field of the mesh itself is chosen to be a Lagrange subspace of 𝑉 (Ω0), so that the map 
𝑞0 ↦ 𝜑𝑡𝑘◦𝑞0 is a diffeomorphism. At 𝑘 = 0, the assembly of the right-hand side is in practice done by integration over 𝑞0◦𝑆1, which means that we 
can supply an initial “momentum” signal 𝐩0 ∈ �̃�0◦𝑞−10 ∈ 𝐿2(𝑞0◦𝑆1) (now defined over initial curve) to encode the entire geodesic flow of 𝜑, and 
thereby of the embedded curve. We believe this is the first formulation of a Lipschitz-conforming finite element discretisation of the curve matching 
equations. Fig. 4 show examples of forward integration of this system for two 𝐩0 and 𝑞0◦𝑆1 (the initial meshes were generated using gmsh [50]). 
Note that the norm of the velocity present in (8) is confined to certain energy levels determined by the initial momentum as the system is integrated. 
In the fully discrete analogue we can only hope to establish approximate conservation of the Hamiltonian. The importance of this is nebulous since 
we only integrate over fixed time intervals, and is subject to future work.

The computational cost of integrating (59) is dominated by the inversion of the discrete bilinear form. Mesh-based methods readily facilitate 
parallel computations (e.g. matrix-vector products in a Krylov subspace method), which along with preconditioning strategies are competitive with 
fast multipole methods. They also offer flexibility in choosing the bilinear form (9), which can be altered according to an informed modelling choice 
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Fig. 4. Top row: two template domains Ω0 with curves highlighted. Bottom row: 𝜑1◦Ω1 computed by integrating (59) from the two templates with different initial 
momenta.

or application. Finally, mesh adaptivity is also an option. For the application at hand a graded mesh with a fine resolution in the vicinity of the curve 
and coarser elements closer to the boundary can both increase accuracy and the computational burden of the method.

5. Inverse problem

We now consider the matching problem using the data misfit functional in (2). We wish to estimate the momentum 𝐩0 ∶= �̃�0◦𝑞−10 ∈ 𝐏 that 
generates the curve 𝑡 ↦ 𝑞𝑡. That is, 𝐩0 is the momentum object defined on the computational domain 𝑞0◦𝑆1. We drop explicit dependence on the 
template as it remains fixed during computation as well as the time dimension of the initial momentum. To ease the notation we use boldface 𝝉 to 
represent the smoothed version of the indicator function on the interior of a curve 𝑞,

𝝉 = −11𝑞,

where  is a linear elliptic differential operator. We define the forward operator:

𝐩↦  (𝐩) = 𝝉 ∶= −11𝑞1 , (61)

where 𝑞1 is the solution at 𝑡 = 1 given by solving (59) using 𝑞0 and 𝐩 as initial conditions, i.e. the time-1 flow map of the initial curve. Given a target 
shape 𝝉 target the inverse problem of interest is therefore to recover the momentum 𝐩∗ such that:

𝝉 target =  (𝐩∗) + 𝜂, (62)

where 𝜂 ∈ dom() represents noise in the data. The targets we consider in this paper are known, and the noise is therefore deterministic. The use of 
a probability distribution is, however, essential for the sampling of an initial ensemble.

To tackle this inverse problem we use EKI. We let 𝑁 denote the number of ensemble members and let 𝐩𝑗 , 𝑗 = 1, … , 𝑁 denote the momenta 
corresponding to ensemble member 𝑗. The ensemble mean momentum and the mean predicted shape are:

�̄� ∶=𝑁−1
𝑁∑
𝑗=1

𝐩𝑗 , �̄� ∶=𝑁−1
𝑁∑
𝑗=1

𝝉
𝑗 , (63)

where 𝝉𝑗 = −11 (𝐩𝑗 ). The Kalman update operator (or Kalman gain) is defined by:

𝔎𝐏 = Cov𝐏𝑄[Cov𝑄𝑄 + 𝜉𝐼]−1, (64)

where 𝐼 is the identity operator and 𝜉 is a regularisation parameter that determines the influence of the prediction covariance Cov𝑄𝑄 on 𝔎𝐏. The 
actions above are given by:

Cov𝑄𝑄[⋅] =
1

𝑁 − 1

𝑁∑
𝑗=1

(𝝉𝑗 − �̄�)⟨𝝉𝑗 − �̄� , ⋅⟩𝐿2 , (65a)

Cov𝐏𝑄[⋅] =
1

𝑁 − 1

𝑁∑
𝑗=1

(𝐩𝑗 − �̄�)⟨𝝉𝑗 − �̄� , ⋅⟩𝐿2 . (65b)

The data misfit at iteration 𝑘 of the EKI algorithm is defined as:

𝔈𝑘 = ‖𝝉 target − �̄�‖2
𝐿2(Ω). (66)

The prediction and analysis steps are summarised below:
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Fig. 5. Template used in our numerical experiments. On the left we show the initial mesh with the embedded curve 𝑞0 , on the right we show 1𝑞0◦𝑆1 .

Fig. 6. Synthetic targets generated using the momenta in (67). From left to right: a simple contraction, a squeezed shape with a right bias, a star and a teardrop 
shape. In each panel the curve divides the two coloured regions; we choose this representation for visualisation purposes.

1. Prediction: For each ensemble member 𝑗, compute 𝝉𝑗 = −11 (𝐩𝑗 ) and the average �̄� using (63).

2. Analysis: Update each ensemble momentum:

𝐩𝑗+1 = 𝐩𝑗 +𝔎𝐏(𝝉 target − 𝝉
𝑗 ).

6. Numerical experiments

We present numerical experiments showing that the EKI algorithm is able to find suitable approximations of a target given a random initial 
ensemble. Section 6.1 describes how we generate the synthetic target that we will use as matching targets. Section 6.2 summarises the parameters 
that we have chosen to in our experiments to match the synthetic data, and section 6.3 contains the numerical results.

6.1. Synthetic data

For simplicity we fix the template curve throughout our experiments and choose the unit circle seen in Fig. 5.

We define Ω0 = [−10, 10]2 and let the computational domain be a triangulation 0 of Ω0 with mesh resolution2 ℎ = 1. We have taken 𝛼 = 0.5
in (9), 𝑇 = 15 time steps and have used piecewise constant finite elements on the mesh skeleton to represent 𝐏 (although we compute only with 
functions supported over the submanifold 𝑞0◦𝑆1 ⊂ ℎ). We use the forward operator described previously to generate synthetic targets for this set 
of parameters. We produce the four targets in Fig. 6 by applying the forward operator  to the following four momenta:

𝐩†contract = −1.38𝜋, (67a)

𝐩†
squeeze

=

{
0.83𝜋𝑒−𝑦2∕5 𝑥 < −0.3
5
3𝜋 sin(𝑥∕5)|𝑦| otherwise

, (67b)

𝐩†star = 2.6𝜋 cos(2𝜋𝑥∕5), (67c)

𝐩†
teardrop

=

{
−3𝜋 sign(𝑦) 𝑦 < 0
3𝜋𝑒−𝑥2∕5 otherwise

. (67d)

An example of the evolution of the template to one of the targets is shown in Fig. 7.

With 𝐩† we associate the following relative error at each iterate 𝑘:

𝑘 = ‖�̄�𝑘 − 𝐩†‖𝐿2(𝑞0◦𝑆1)∕‖𝐩†‖𝐿2(𝑞0◦𝑆1). (68)

The consensus deviation 𝑘 of an ensemble at iteration 𝑘 in equation (69) is defined below:

𝑘 =𝑁−1
𝑁∑
𝑗=1

‖𝐩𝑗,𝑘 − �̄�𝑘‖𝐿2(𝑞0◦𝑆1), (69)

2 This is the maximum diameter ℎ𝐾 of any triangle 𝐾 in the triangulation.
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Fig. 7. Evolution of the template in Fig. 5. The panels show the interior of the curve 𝜑𝑡𝑘◦𝑞0 for 12 time steps 0 < 𝑘 < 𝑇 using the initial momentum 𝐩†
teardrop

in (67).

where 𝐩𝑗,𝑘 denotes the momentum of ensemble member 𝑗 at iteration 𝑘. This quantity is a useful diagnostic which measures the information 
remaining in the ensemble after iteration 𝑘. Since EKI relies on estimates of the forecast covariance, consensus is reached when 𝑘 approaches zero, 
at which point the algorithm can be stopped.

In all our simulations we invert the system in (59a) using the direct solver MUMPS [51]; investigating a preconditioned iterative solver is subject 
to future work. For details on the validation of the implementation of the Wu-Xu element in Firedrake, see [52, Appendix B] and the Zenodo entry 
[53].

6.2. Experimental setup

We now describe the setup we have used to test the EKI. Firstly, we consider the noise in (62) to be deterministic, i.e., 𝜂 ≡ 0. We have taken 
𝑇 = 10 and 𝛼 = 1 so the parameters differ from those used to generate the synthetic targets. Recall that EKI requires an initial ensemble, in this case 
of momenta. The basis coefficients of the momenta was sampled from a uniform distribution over the interval [−25, 25], with different realisations 
for each ensemble member. We set 𝜉 = 10−3 in (64), although adaptive tuning of this parameter to avoid overfitting is possible; an early termination 
rule is suggested in [17, Equation 10]. We choose  = id− 𝜅Δ, 𝜅 = 10 in (66), as this smoothes out the mismatch sufficiently for our computational 
domain. The quality of the matching is directly related to the size and variance of the ensemble as the solution is sought as a linear combination 
of its members. We conduct experiments for two ensemble sizes, 𝑁 = 20, 𝑁 = 40 and 𝑁 = 80. These were chosen since, with the parameter set as 
above, dim𝐏 = 48 in order to develop an understanding of how EKI performs when the ensemble size is smaller than, similar to, and larger than 
the dimension of the state, while still keeping the overall computational cost such that the experiments can be done in a reasonable amount of 
time. The case where 𝑁 ≪ dim𝐏 is the de facto situation for ensemble methods as the MC approximation allows for a computationally feasible 
method. In general, small ensemble sizes can lead to filter inbreeding (the forecast covariance is underestimated), filter divergence (the gain does 
not adequately correct the ensemble), or spurious correlations [54]. We comment on each of these later.

6.3. Results

We have run EKI 10 times for each value of 𝑁 with different draws for the initial ensemble to assess the robustness of the algorithm with respect 
to the starting point. Fig. 8 shows examples of the numerical results we obtain for curve matching using EKI. Note that only five iterations of EKI 
were necessary to produce the results shown in this section to reach a relative tolerance below 3%. Fig. 9 shows the progression of the EKI algorithm 
for one of these instances. Qualitatively a larger ensemble size leads to a better match, which is to be expected. Ensemble methods such as EKI 
offer a practical advantage to gradient methods given their inherent parallelisability. Indeed, the prediction step discussed in Section 5 can be done 
in parallel for each ensemble member. We therefore start 𝑁 processes corresponding to each member, and used a Message Passing Interface (MPI) 
[55] implementation to exchange information between them (the MPI reduce operation, specifically). Thanks to this parallelisation, five iterations 
of EKI take less than two minutes for 𝑁 = 20, five minutes for 𝑁 = 40 and 14 minutes for 𝑁 = 80 on a 2021 MacBook Pro.3

Fig. 10, 11 and 12 show the relative errors, data misfits and consensus deviations for our experiments across the selected targets and ensemble 
sizes. These all decrease at various rates in the early iterations after which they stagnate. As the Kalman gain corrects the ensemble members, 
and therefore the motion of their respective curves, the data misfit decreases meaning that each member improves its prediction. This increases 
consensus in the ensemble, which explains what is seen in Fig. 12. We notice from the data misfits and the momentum consensus that higher values 
of 𝑁 provide a more accurate approximation of the true momentum, which explains the accuracy of the matches seen in Fig. 8. Note that the 

3 Apple M1 Pro chip, 16 GB of memory.
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Fig. 8. Final reconstruction of the targets in Fig. 6 produced by EKI for 𝑁 = 20 (left column), 𝑁 = 40 (middle column) and 𝑁 = 80 (right column).

Fig. 9. An example of EKI progression for 𝑁 = 40. The algorithm takes one iteration to produce a recognisable approximation of the desired target while later 
iterations serve to smooth out localised mismatches.

relative error, which is a surrogate for posterior consistency, also decreases (albeit not with a clear pattern across shapes and ensemble sizes). Since 
the forward operator in use is heavily nonlinear, theoretical convergence results are not readily obtained at this stage. We highlight that the Kalman 
gain is very efficient in correcting the ensemble momenta, with the consensus decreasing exponentially in the early stages of the algorithm. We 
comment on this later. The conclusion is therefore that even at a modest ensemble size, EKI performs well. It is not certain that the same behaviour 
that we see above (i.e. few iterations are needed) will scale with 𝑁 and the size of the problem, but the results are promising for research in this 
direction.

Higher values of 𝜉 were found to slow the convergence of the algorithm compared to the selected value, which is consistent with the behaviour 
for landmark-based EKI [18], and we do not comment on it further. We noticed that the value of 𝜅 also influences the convergence of the EKI; 
for small values the operator id − 𝜅Δ approaches the identity, and since the mismatch is computed from point evaluations of the finite element 
function, information can be lost if the grid is not sufficiently refined. A larger value of 𝜅 “spreads out” the mismatch which improves convergence 
for coarser grids.

7. Summary and outlook

In this paper we have presented a parameterisation- and derivative-free method for matching closed planar curves. A moving mesh discretisation 
of Hamilton’s equations for curves was described using the induced diffeomorphism of a vector field occupying the Wu-Xu finite element space. 
We also describe a transformation theory for this element facilitating a computationally performant forward model for use in the associated inverse 
problem. Finding the momentum encoding the forward motion of the template matches a desired curve was treated as a Bayesian inverse problem in 
section 5 and EKI was used to approximate its solution. The numerical results presented in section 6 suggests that the method shows great promise. 
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Fig. 10. Relative error (equation (68)) as a function of EKI iterate. The columns correspond to 𝑁 = 20, 𝑁 = 40 and 𝑁 = 80 and the rows to the targets in Fig. 6.

Not only is it easy to implement, the EKI is shown to quickly reach ensemble consensus meaning that it is efficient in exploring the subspace spanned 
by the initial ensemble. This is in part thanks to the momentum being a one-dimensional signal on the template. Treating the mismatch term in 
a negative Sobolev norm was shown to increase both accuracy of our results and robustness to mesh resolution. Further, assuming the forward 
operator is scalable as the mesh is refined (large-scale PDE solves are common in many areas of scientific computing), the computational burden of 
our approach stems from the inverse needed in the Kalman gain as it scales cubically in 𝑁 [56]. However, our results showed that the proposed 
method is not only robust to the choice of initial ensemble but also effective even when the 𝑁 is less than half the dimension of the forward problem. 
Therefore, only a moderate sized ensemble may be required for accurate results.

Future work includes proving convergence of the finite element discretisation for (59) and subsequently using these error estimates to quantify 
error in a rigorous treatment of the Bayesian inverse problem [57]. As indicated in [58], some challenges exist for nonconforming finite element 
methods with singular source terms. The template considered in this paper is a piece-wise linear curve. An obvious extension would be to apply 
isoparametric methods to cater for piece-wise higher-order polynomial curves. The effect of this would only affect the right-hand side and would 
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Fig. 11. Data misfits (equation (66)) as a function of EKI iterate. The columns correspond to 𝑁 = 20, 𝑁 = 40 and 𝑁 = 80 and the rows to the targets in Fig. 6.

not affect regularity results for the velocity. An advantage of the finite element method for curves is also that it allows for adaptivity e.g. refinement 
of the mesh only in the vicinity of the embedded template. We considered problems of modest size to illustrate the discretisation and the EKI. As the 
mesh is refined, it is likely the case that the dimension of the forward operator dwarfs the size of the ensemble and effects of the MC approximation 
are more pronounced. This is the case for ensemble methods for e.g. numerical weather prediction and several techniques exist to counter these 
effects [54] (e.g. localisation or covariance inflation). In particular, localisation methods may be suitable to assume conditional independence 
between separated states (i.e. parts of the shape that are distant in physical space) so as to counter spurious correlations.

Data availability

No data was used for the research described in the article.
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Fig. 12. Momentum consensus deviation (equation (69)) as a function of EKI iterate. The columns correspond to 𝑁 = 20, 𝑁 = 40 and 𝑁 = 80 and the rows to the 
targets in Fig. 6.

Appendix A. Proof of Theorem 1

The momentum satisfies

�̇�𝑡 +∇𝑢⊤𝑡 ◦𝑞𝑡𝑝𝑡 = 0.

Using the ansatz we verify:

�̇�𝑡 +∇𝑢⊤𝑡 ◦𝑞𝑡𝑝𝑡 =
̇𝐽−⊤
𝑡 𝑝0 + ∇𝑢⊤𝑡 𝐽

−⊤
𝑡 𝑝0

= −𝐽−⊤
𝑡 𝑑(𝐽⊤𝑡 )𝐽

−⊤
𝑡 𝑝0 + ∇𝑢⊤𝑡 ◦𝑞𝑡𝐽

−⊤
𝑡 𝑝0
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= −𝐽−⊤
𝑡 (𝑑𝐽𝑡)⊤𝐽−⊤

𝑡 𝑝0 + ∇𝑢⊤𝑡 ◦𝑞𝑡𝐽
−⊤
𝑡 𝑝0

= −𝐽−⊤
𝑡 (∇𝑢𝑡◦𝑞𝑡𝐽𝑡)⊤𝐽−⊤

𝑡 𝑝0 + ∇𝑢⊤𝑡 ◦𝑞𝑡𝐽
−⊤
𝑡 𝑝0

= −𝐽−⊤
𝑡 𝐽⊤𝑡 ∇𝑢

⊤
𝑡 ◦𝑞𝑡𝐽

−⊤
𝑡 𝑝0 + ∇𝑢⊤𝑡 ◦𝑞𝑡𝐽

−⊤
𝑡 𝑝0

= −∇𝑢⊤𝑡 𝐽
−⊤
𝑡 𝑝0 + ∇𝑢⊤𝑡 ◦𝑞𝑡𝐽

−⊤
𝑡 𝑝0

= 0 .
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