
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 27, 2024

A large-scale study of peptide features defining immunogenicity of cancer neo-
epitopes

Wan, Yat-Tsai Richie; Koşaloğlu-Yalçın, Zeynep; Peters, Bjoern; Nielsen, Morten

Published in:
NAR Cancer

Link to article, DOI:
10.1093/narcan/zcae002

Publication date:
2024

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Wan, Y-T. R., Koşaloğlu-Yalçın, Z., Peters, B., & Nielsen, M. (2024). A large-scale study of peptide features
defining immunogenicity of cancer neo-epitopes. NAR Cancer, 6(1), Article zcae002.
https://doi.org/10.1093/narcan/zcae002

https://doi.org/10.1093/narcan/zcae002
https://orbit.dtu.dk/en/publications/2d48864d-240d-436d-8bb9-bee1da2dee85
https://doi.org/10.1093/narcan/zcae002


NAR Cancer , 2024, 6 , 1–16 
https://doi.org/10.1093/narcan/zcae002 
Advance access publication date: 29 January 2024 
Cancer Computational Biology 

A large-scale study of peptide features defining 

immunogenicity of cancer neo-epitopes 

Yat-tsai Richie Wan 

1 , * , Zeynep Ko ̧s alo ̆glu-Yalçın 

2 , Bjoern Peters 

2 and Morten Nielsen 

1 

1 Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, DK 28002, Denmark 
2 Center for Infectious Disease and Vaccine Research, La Jolla Institute of Immunology, La Jolla, CA 92037, USA 

* To whom correspondence should be addressed. Tel: +41 78 626 13 60 / +45 71 66 39 92; Email: riwa@dtu.dk 

Abstract 

Accurate prediction of immunogenicity for neo-epitopes arising from a cancer associated mutation is a crucial step in many bioinformatics 
pipelines that predict outcome of c hec kpoint bloc kade treatments or that aim to design personalised cancer immunotherapies and vaccines. 
In this study, we performed a comprehensive analysis of peptide features relevant for prediction of immunogenicity using the Cancer Epitope 
Database and Analysis Resource (CEDAR), a curated database of cancer epitopes with experimentally validated immunogenicity annotations 
from peer-re vie w ed publications. T he de v eloped model, ICERFIRE (ICore-based Ensemble Random Forest for neo-epitope Immunogenicity 
pREdiction), extracts the predicted ICORE from the full neo-epitope as input, i.e. the nested peptide with the highest predicted major histo- 
compatibility complex (MHC) binding potential combined with its predicted likelihood of antigen presentation (%Rank). Key additional features 
integrated into the model include assessment of the BLOSUM mutation score of the neo-epitope, and antigen expression levels of the wild-type 
counterpart which is often reflecting a neo-epitope’s abundance. We demonstrate impro v ed and robust performance of ICERFIRE over existing 
immunogenicity and epitope prediction models, both in cross-validation and on external validation datasets. 
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uring tumorigenesis, malignant cells accumulate mutations
hich in turn may produce altered, tumour-specific proteins.
eo-epitopes are characterised by cancer-specific somatic
oint mutations in differentiated tissues and differ from other
umour associated antigens such as testis antigens, encoded
y germline genes ( 1 , 2 ). V ia antigen processing, peptides con-
aining these mutations are generated, and if presented on ma-
or histocompatibility complex (MHC) molecules on a cell’s
urface, the resulting so-called neo-epitopes can drive antitu-
our T cell responses. One key component of this response

s the CD8+ T cell-mediated killing of cancer cells displaying
eoantigens on MHC class I (MHC-I). As such, T-cell therapy
nd cancer vaccines have emerged as promising approaches
o treat malignancies by inducing tumour-specific immune re-
ponses ( 3 ), and ongoing efforts ( 4–9 ) have demonstrated the
linical efficacy of therapies targeting neo-epitopes. Hilf et
eceived: September 17, 2023. Revised: January 3, 2024. Editorial Decision: Janu
The Author(s) 2024. Published by Oxford University Press on behalf of NAR C

his is an Open Access article distributed under the terms of the Creative Comm
hich permits unrestricted reuse, distribution, and reproduction in any medium, 
al. developed neo-epitope vaccines for patients with glioblas-
toma, with personalised targeting based on mass spectrometry
analyses of the immunopeptidome of the tumours, initiating
both CD4+ and CD8+ T cell responses to mutated MHC-I
neo-epitopes ( 5 ). Another study by Cafri et al. used tumour-
infiltrating lymphocytes to identify neo-epitopes to construct
mRNA vaccines for patients with metastatic gastrointestinal
cancer, observing T cell reactions against some selected neo-
epitopes in three of four patients tested ( 6 ). Whole-exome se-
quencing of tumour and normal cell DNA can also be used to
identify neo-epitope targets ( 4 ,7–10 ). These approaches are
highly cost intensive, as they rely on subsequent T cell reac-
tivity screenings in vitro to validate the immunogenicity of the
identified neo-epitope targets. Thus, there is a growing interest
in predicting neo-epitopes using computational methods. 

Neoantigens must go through a series of steps before they
can be recognised by a T cell receptor on a cell’s surface and
ary 8, 2024. Accepted: January 12, 2024 
ancer. 
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induce an immune response. As a result, deciphering charac-
teristics of neo-epitope immunogenicity requires taking into
account a number of parameters. Firstly, a peptide’s abun-
dance is directly linked to the expression of its source protein,
and several studies ( 11–16 ) have described an improved epi-
tope identification through the inclusion of source proteins’
expression / abundance. Specific protein abundance levels can
be estimated from a patient’s tumour sample, for example
through RNAseq. Alternatively general expression levels may
be retrieved from publicly available databases such as TCGA
( 17 ) or GTEX ( 18 ). Additionally, tools such as PepX ( 19 ) have
been developed to estimate a peptide’s abundance from vari-
ous databases. 

Secondly, in the MHC class I pathway, the source protein is
processed by proteases into peptides, before being bound to an
MHC molecule and forming a peptide-MHC (pMHC) com-
plex. The pMHC complex is transported to the endoplasmic
reticulum by the transporter associated with antigen process-
ing to be then displayed on the cell surface ( 20 ,21 ). MHC-
I binding has been extensively studied and modelled. Con-
sequently, there are multiple highly accurate computational
models available for the prediction of MHC-I binding and
antigen presentation ( 11 , 12 , 14 , 22–24 ). Given the importance
of MHC presentation for T cell recognition, most epitope im-
munogenicity prediction tools integrate predicted MHC bind-
ing into their framework. 

Finally, once presented on a cell’s surface, various factors re-
lated to the neopeptide might impact T cell recognition. Neo-
epitopes arise from somatic alterations of self-proteins, and
as such, rules that apply for viral peptides immunogenicity
might not hold true. Properties specific to neoantigens must
be defined to appropriately characterise interactions between
neoantigens and CD8 + T cells. One feature, for example, as
noted in previous studies, is the dissimilarity to self, or the
wild-type (WT) peptide ( 25–27 ). Here, the authors hypoth-
esise that due to central tolerance, neo-epitopes too similar
to its WT counterpart might be non-immunogenic. Consid-
ering T cell cross-reactivity, similarity to immunogenic pep-
tides originating from previous infections were found to be
linked to neo-epitope immunogenicity ( 27 ,28 ). Other studies
found predictive power in the relative MHC binding affinity
between a neo-epitope and its non-mutated peptide, defined
as the agretopicity, being the ratio between the mutant and
the WT’s predicted MHC binding affinity ( 26 , 27 , 29 ). Other
studies showed an enrichment in hydrophobic or aromatic
residues as being key characteristics for immunogenicity pre-
diction in neo-epitopes ( 25 , 30 , 31 ). Finally, several studies ob-
served the importance of various positions within a peptide
sequence for the prediction of immunogenicity ( 25 , 26 , 28–30 ),
suggesting that amino acid substitution or enrichment at cer-
tain positions might affect neo-epitope immunogenicity. For
instance, Schmidt et al. developed PRIME, a immunogenicity
prediction model that uses as input an amino acid frequency
vector, computed from masking MHC-anchor position from
an input peptide as well as the predicted MHC binding per-
centile rank, observing an enrichment in tryptophan in im-
munogenic peptides ( 30 ,32 ). 

In this work, we performed a comprehensive investigation
of this long list of proposed properties and features for pre-
diction of cancer neoepitope immunogenicity using a neo-
epitope dataset extracted from The Cancer Epitope Database
and Analysis Resource (CEDAR) ( 33 ). We demonstrate im-
proved prediction power by considering the optimal ICORE
using NetMHCpan 4.1 ( 23 ) rather than the full peptide se- 
quence. Optimal performance was found using the amino 

acids composition rather than the actual peptide sequence as 
input, and we show that weighting schemes such as mask- 
ing or weighting MHC-anchor positions prior to computing 
amino acid frequencies to a high degree are dataset-specific,
and that our model with an updated anchor masking method 

is able to better generalise and yields more accurate predic- 
tions across different datasets. Finally, we explored novel fea- 
tures computed using the ICORE, as well as previously de- 
fined features, identifying an optimal feature set and observed 

improved immunogenicity predictions, outperforming current 
methods for immunogenicity prediction or epitope prediction 

on three benchmark datasets. 

Materials and methods 

Training data 

CEDAR mutant dataset 
The raw dataset of cancer neo-epitopes was downloaded 

from the Cancer Epitope Database and Analysis Resource 
(CEDAR) in June 2022. Only HLA class I restricted peptides 
with full HLA resolution and annotated wild type were kept.
We also excluded neo-epitopes resulting from frameshift mu- 
tations as our features based on mutation scores are com- 
puted for point mutations where mutant and wild type are 
aligned. We further filtered the mutants by allowing up to 

three mutations between the predicted MHC-binding ICORE 

and the aligned wild-type icore. This produced 3033 unique 
neo-epitope-HLA pairs, with 63 unique HLA alleles, of which 

631 are positives and 2402 are negatives. As a peptide may 
come from different patients and bound to different HLA al- 
leles, the dataset contains 2926 unique peptide sequences, re- 
stricted to one or more alleles. 

Expression datasets 
To further supplement our dataset, a second dataset was cre- 
ated by using the wild-type peptide’s expression data. Ex- 
pression data was obtained in January 2023, from the web- 
server of PepX, developed by the Immune Epitope Database 
(IEDB). The gene-level expression was collected using the 
wild-type peptides of each data point with PepX, and the 
TCGA Pan-Cancer Atlas as reference. The TCGA PanCanAt- 
las was developed using data generated by the TCGA Re- 
search Network available at https:// www.cancer.gov/ tcga . For 
the CEDAR dataset, in total, 107 data points (44 unique wild 

types) were removed as no expression data could be retrieved,
leaving 2988 unique neo-epitope-HLA allele pairs, or 2882 

unique peptide sequences. The expression of a given peptide 
was quantified and aggregated using three different methods: 
total gene TPM, total peptide TPM or total scaled peptide 
TPM as described by Frentzen et al ( 19 ). 

External data 

Neo-epitope datasets were used as external evaluation 

datasets. All data were processed and filtered with the same 
method as the training dataset, keeping only linear peptides 
restricted to any of the 63 HLA class I alleles present in the 
training dataset, with full HLA resolution, as well as wild-type 
annotation, for lengths 8–12. Additional information specific 

https://www.cancer.gov/tcga
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RIME 

he data used to train the PRIME method were downloaded
rom the supplementary materials of Schmidt et al. ( 30 ) in July
022. To keep only neo-epitopes, the pathogen, random, and
ancer testis peptides were discarded. To avoid overlap with
he training data, data points that are present in both the train-
ng and the PRIME dataset were further removed. The filtered
ataset consists of 2706 peptides (2664 negatives, 42 posi-
ives) for the base dataset, and 2591 peptides (2550 negatives,
1 positives) for the expression dataset. 

EPDB 

eo-epitopes were downloaded from the neo-epitopes
atabase (NepDB) ( 34 ) on January 19th 2023 and used as
 second external validation dataset. To remove any overlap
ith the training data, the peptides common to both the train-

ng and evaluation datasets were removed from the evaluation
ataset and duplicates were removed. The filtered dataset con-
ists of 243 peptides (219 negatives, 24 positives) for the base
atasets, and 232 peptides (213 negatives, 19 positives) for the
xpression dataset) 

raining data partitioning 

he training datasets were partitioned into 10 folds and used
or nested 10-fold cross-validation. To avoid data leakage be-
ween partitions, the redundant data points were identified us-
ng the Hobohm-1 algorithm ( 35 ) and initially set aside. The
imilarity between two peptides was computed using the pep-
ide kernel similarity algorithm ( 26 ,36 ) with window sizes of
–8, and a threshold of 0.9 was set to filter similar peptides.
he resulting dataset of dissimilar peptides were randomly
plit into 10 partitions. Finally, the held-out pool of similar
eptides were iteratively added back to the corresponding by
rst adding back the identical peptides to the fold of their du-
licate, then reassigning the related peptide to their match, by
aking the maximum similarity computed above. 

ata processing 

he MHC-binding ICORE of each mutant was predicted us-
ng NetMHCpan-4.1 with a pseudo-fasta format where the
ull peptide is treated as a protein sequence. This was done
ith a window length of 8–12 to find the optimal ICORE.
he best ICORE was then picked by keeping the ICORE with

he best predicted (lowest) percentile rank for its given HLA
llele. Using the starting position of the mutant ICORE, the
ligned wild-type ICORE was found, and used as the reference
ild-type sequence from which features can be computed. 
The position specific weights were assigned from the infor-
ation content calculated from a set of natural human pep-

ides, filtering for strong binders at a %Rank threshold of
.25 to a given HLA predicted by NetMHCpan-4.1. From this
et of predicted binders, position specific amino acid frequen-
ies were calculated using Seq2Logo ( 37 ) excluding sequence
eighting and applying a low count correction of 20. Next,

he position-specific Kullback-Leibler (KL) information con-
ent was computed of each allele and lengths. 

In total, five groups of weighting schemes were used prior
o computing the amino acid frequency vectors. To prioritise
on-anchor positions, Normal uses (1 – IC) as a weight vector
nd NormalMask uses (1 – IC) and a threshold of IC ≥0.2
o determine anchor positions to mask. In order to favour an-
hor positions instead, Inverted uses the IC as a weight vector,
and InvertedMask uses a threshold of IC < 0.2 to determine
the non-anchor positions to mask. Finally, None applies no
weighting to the sequence. 

Feature processing 

To obtain the amino acid frequency vector, sequences are en-
coded using either OneHot encoding or BLOSUM62 encod-
ing, and weights are applied by multiplying encoded sequence
and weight vector, using any of the five weighting schemes. De-
pending on whether the full peptide or the ICORE was used
as input, their corresponding full peptide %Rank or ICORE
%Rank were added as features. The resulting vector of dimen-
sion 21 is used as the base input for our machine learning mod-
els. When using the peptide expression models, combinations
of either of the three expression levels (total gene TPM, total
peptide TPM or total scaled peptide TPM) were also added as
features. 

The scaled agretopicity was computed as 

Agret opicit y = 

∣∣Rank Mut − Rank W T 

∣∣ · Rank Mut 

Rank W T 
(1)

We added this scaling factor to penalise instances where ei-
ther the mutant or the wild-type peptide had very high ranks,
i.e. they are non-binders, to prevent them from having the
same ratio. For example, a mutant and wild-type with ranks of
0.1 and 1 respectively should not be treated the same as a mu-
tant and wild-type who have ranks of 10 and 100 respectively,
though they both yield an unscaled ratio of 0.1. This Rank-
agretopicity, as the original affinity based agretopicity score,
is expected to be low for immunogenic peptides, i.e. peptides
where the rank score of the mutant peptide is low compared
to the wildtype. 

Mutation scores and BLOSUM62 mutation scores were
computed using either the codon mutation matrix or the BLO-
SUM62 LogOdds matrix. Sequences were aligned using ei-
ther the full peptide against its wild type, or the predicted
ICORE and its aligned wild-type ICORE. The score of mu-
tations within the aligned sequences were computed using the
tables and summed. 

The similarity score between a peptide and its wild type
were computed using the peptide kernel similarity algorithm
as described in Bjerregaard et al. ( 26 ,36 ), with K-mer windows
of lengths 3–8 for both the full peptide and the ICORE. 

Physico-Chemical properties for either the peptide or
ICORE were computed using the peptides packages on Python
3.10. The following four features were selected based on the
properties described. The features describe the aliphatic in-
dex, hydrophobicity, isoelectric point and the Boman potential
protein interaction index ( 38–41 ). The features were chosen
after analysis with feature correlations and one-sided Mann–
Whitney and Welch tests. 

The foreignness score as described by Wells et al. ( 27 )
was computed using a Docker installation of their anti-
gen.garnish pipeline (version 2.3.1), installed and used ac-
cording to the authors’ instructions at https://github.com/
andrewrech/antigen.garnish . 

Human proteome data 

The human proteome was downloaded from UniProt. Each
protein was split into peptides of lengths 8–12 and their eluted
ligand %Rank were predicted for each of the 65 HLA alle-

https://github.com/andrewrech/antigen.garnish
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les present in the dataset (see Supplementary Table S1 ) us-
ing NetMHCpan 4.1. Random human peptides were used as
background predictions for our model. Datapoints were sam-
pled from the human proteome dataset, with the number of
peptides sampled assigned to each allele and length accord-
ing to their distribution in the original CEDAR dataset. Ex-
pression values (total gene TPM) for each of these human
peptide samples were retrieved from the TCGA-PanCan ( 17 )
database using PepX ( 19 ). Data points containing missing ex-
pression values were omitted, resulting in 108 372 unique data
points. Subsequently, single positions were randomly mutated
to generate mutant peptides. Finally, the same feature process-
ing methodology described above was applied to these ran-
dom peptides, extracting the mutant ICOREs, aligned wild-
type ICOREs and their associated features. 

Models and training 

A nested 10-fold cross-validation scheme was used to train
Random Forest models. This produces an ensemble of 90
models, which are then used for ensemble predictions. Ran-
dom Forest models were developed using Python 3.10 and
Scikit-Learn 1.1.1. Hyperparameters were tuned using the
base features of unweighted amino acid frequencies and per-
centile rank in a 8-fold standard cross-validation. The final
Random Forest model used 300 estimators, a max depth of
8, minimum of 7 samples per leaf, and a regularising factor
alpha of 1e −5 . An extensive grid of input encoding, weight-
ing scheme and features were tested, and the optimal mod-
els CEDAR and PRIME models were selected based on the
models’ performance. To allow statistical analysis of perfor-
mances during the data processing and feature selection pro-
cess, the cross-validation performance of each condition was
taken and bootstrapped for 10 000 rounds. Then, a condition
C1 was considered to perform significantly better than a con-
dition C2 by doing a bootstrapped t -test on the AUC values
for each round, where the P -value equals the 1 – (number of
times C1 outperformed C2), divided by the number of rounds,
i.e. 

p = 

∑ 10000 

n =0 

A UC c 1 > A UC c 2 

10000 

(2)

NNalign 

As a baseline method and in an attempt to identify motifs
from immunogenic peptides, NNAlign 2.1 was trained on the
CEDAR dataset. The model used a motif length of 8, 50 hid-
den neurons, and trained for 75 epochs. The dataset was split
by ‘common motif’ using NNAlign’s setting and used a 10-
fold nested cross-validation, with a burn-in period of 100 and
early stopping. Data was encoded using both OneHot and
BLOSUM encoding, and peptide lengths were encoded with
individual neurons for lengths 8–12. 

For the evaluation of difference in performance between
approaches relying on amino acid composition and those
rooted in sequence motif-based techniques, we additionally
trained NNAlign models using varying motif lengths from 5
to 9, 50 hidden neurons, trained for 75 epochs in a 10-fold
nested cross-validation. These models were trained using ei-
ther the complete peptide or the ICORE as input. A predic-
tion score was computed using a weighted average between
the NNAlign score and (1 – %Rank) value from NetMHC-
pan 4.1. In this evaluation, we systematically tested weights
spanning the range from 0 to 1, with increments of 0.05. 
Predictions benchmark 

Various bioinformatic tools were used to benchmark our 
method on the training set (CEDAR) ( 33 ), external test sets 
from PRIME ( 32 ) and NEPdb ( 34 ). We first looked at MHC- 
binding predictors, which were used to assess the performance 
gain beyond MHC presentation alone, namely NetMHC- 
panEL 4.1 ( 23 ), MHCflurry 2.0.6 ( 24 ), MixMHCpred 2.2 

( 32 ) and HLAthena (without expression, referred to as HLA- 
thena) ( 11 ) were used to obtain percentile rank (%Rank) pre- 
dictions. Then, predictors related to immunogenicity and epi- 
tope prediction were used, with PRIME 2.0 ( 32 ) and Calis 
et al.’s immunogenicity predictor ( 42 ). Finally, other meth- 
ods for epitope prediction that use peptide expression data 
were also benchmarked, with AXEL-F ( 13 ) and HLAthena 
(with expression, referred to as HLAthena_E). In line with our 
analysis, each of these predictions were bootstrapped 10 000 

times. The benchmark datasets and their respective prediction 

scores can be found in the supplementary data (See Table on 

next page). 

Results 

With the aim of developing machine learning models for the 
prediction of cancer neo-epitopes, we have collected data from 

CEDAR ( 33 ), focusing on HLA class I-restricted neo-epitopes.
As the peptide properties (i.e. feature space) we want to ex- 
plore relies on information from the wild-type (WT) peptide,
we further restricted the dataset to keep only peptides for 
which the WT peptide annotation were available (for details 
refer to Materials and methods). The data set consists of pep- 
tides of length 9–12 restricted that include reported restric- 
tions to 63 different HLAs. Out of those, the majority of the 
peptides (80%) are reported to be restricted to 7 HLAs (see 
figure 1 A). This data set consists of 3033 unique peptide-HLA 

pairs, with 2926 unique peptides, as a given peptide can be 
bound by different HLAs, with 2402 (79%) negative and 631 

(21%) positive data points (see Figure 1 , Table S1 ). 

Impact of predicted HLA antigen presentation 

As epitopes require presentation on MHC to elicit an immune 
response from CD8 T cells, we first examined the performance 
of predicted MHC-binding for discriminating between posi- 
tive and negative data using NetMHCpan-4.1 ( 23 ). We con- 
sidered (i) a predicted %Rank using the full peptide (Figure 
2 A), and (ii) a sliding window within the peptide to find the 
optimal interaction core by picking the best scoring submer in 

terms of %Rank (ICORE, Figure 2 B). Note that the ICORE is 
different from the CORE, in that the ICORE is the sequence of 
the peptide predicted to be bound and presented by the MHC,
and the CORE the minimal 9 amino acid binding core directly 
in contact with the MHC (see Figure 2 C). This analysis cov- 
ered 854 instances where the predicted ICORE differed from 

the full length peptide and showed that the ICORE had a slight 
but significantly improved predictive power compared to us- 
ing the full-length peptide ( Supplementary Figure S1 , ROC 

AUC = 0.634 and 0.611 respectively, P = 0.0007 using a one- 
sided bootstrapped t -test). This suggests that focusing on min- 
imal optimal epitopes is advantageous even in author reported 

‘minimal’ epitopes. 
Since neo-epitopes are produced by cancer-specific mu- 

tations, we tested whether immunogenic neo-epitopes were 
enriched for either anchor or non-anchor mutations, and 

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae002#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae002#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae002#supplementary-data
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Software Author / reference Version Misc. 

NetMHCpanEL Reynisson et al. ( 23 ) 4.1 Executed on Computerome-2.0 
NNAlign_MA Alvarez et al. ( 43 ) 2.0 Executed on Computerome-2.0 
MixMHCpred Gfeller et al. ( 32 ) 2.2 https:// github.com/ GfellerLab/ MixMHCpred 
PRIME Gfeller et al. ( 32 ) 2.0 https:// github.com/ GfellerLab/ PRIME 

MHCflurry O’Donnell et al. ( 24 ) 2.0.6 https:// github.com/ openvax/ mhcflurry/ tree/ v2.0.6 
HLAthena Sarkizova et al. ( 11 ) − Executed locally with a Docker image http:// hlathena.tools/ 
IEDB Calis Calis et al. ( 42 ) − http:// tools.iedb.org/ immunogenicity/ 
AXEL-F Ko ̧s alo ̆glu-Yalçın et al. ( 13 ) 1.1.0 Executed locally with a Docker image 

http:// tools.iedb.org/ axelf/ download 
NetMHCpanExp Garcia-Alvarez et al. ( 12 ) 1.0 https: 

// services.healthtech.dtu.dk/ services/ NetMHCpanExp-1.0/ 
AntigenGarnish Richman et al. ( 25 ,27 ) 2.3.1 Executed locally with a Docker image 

https:// github.com/ andrewrech/ antigen.garnish 

Figure 1. Quantitative description of the CEDAR data set. Top panel: Log positive counts, with an offset of +1 to account for alleles with 0 positive 
samples. Bottom panel: Positive to negative ratios for each allele. A ratio of –1 indicates no negative samples. 
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hether these mutations were located within the ICORE. To
his end, we picked the best predicted-binding ICORE for each
eptide together with the corresponding WT ICORE. To lo-
ate the anchor positions, a conservation score (i.e. informa-
ion content, IC for each peptide position) was calculated from
he position specific amino acid frequencies calculated from
 large set of predicted binders for each HLA and peptide
ength from 8 to 12. Details regarding the generation of the
nformation content weights can be found in the methods sec-
ion. Next, an anchor position for a given HLA was defined
s a position having an IC higher than 0.200. The threshold
or defining anchor positions was manually chosen given the
equence logos and information content for 9-mers and are
hown in Supplementary Table S2 . 

This analysis revealed that 116 peptides ( < 4%) had a mu-
ation outside its ICORE, out of which only 11 (9.5%) pep-
ides were found to be immunogenic, against 620 (21.3%)
or immunogenic peptides with ICORE mutations. This result
emonstrates that the subset of peptides with mutations out-
ide the predicted ICORE is significantly depleted in immuno-
genic peptides ( P = 0.0011, one-sided proportions z-test).
Out of the 2917 remaining peptides with mutations within
the ICORE, 73.5% of the mutations were located at non-
anchor positions. The proportions of non-anchor mutations
were not found to differ significantly between positive and
negative peptides, with 71.6% for immunogenic and 74.0%
for non-immunogenic peptides respectively ( P = 0.1151 , one-
sided proportions z-test). Finally, for the 773 peptides with
anchor mutations, 77.2% of them are negative and 22.8%
are positive. 

Integration of amino acid composition 

Several approaches for representing the peptide sequences into
a machine learning model were next investigated, all based on
different variants of amino acid composition. Schmidt et al.
( 30 ) described masking anchor positions as a means to only
include TCR facing residue when computing the amino acid
composition. An alternative approach, that does not entirely
mask out parts of the sequence, would be to up or down

https://github.com/GfellerLab/MixMHCpred
https://github.com/GfellerLab/PRIME
https://github.com/openvax/mhcflurry/tree/v2.0.6
http://hlathena.tools/
http://tools.iedb.org/immunogenicity/
http://tools.iedb.org/axelf/download
https://services.healthtech.dtu.dk/services/NetMHCpanExp-1.0/
https://github.com/andrewrech/antigen.garnish
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae002#supplementary-data
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Figure 2. Summary of the input types tested. The ICORE is computed 
from the full peptide through NetMHCpan-4.0 and may include deletions 
at the N or C termini, as illustrated here. Panel A shows the full peptide 
prior to MHC binding and antigen processing. Panel B shows a submer 
after the predicted cleaving of N-terminal amino acids for MHC-binding, 
termed the ICORE. Panel C shows the MHC-bound submer, with the 
transparent amino acid in red being remo v ed when only considering the 
CORE. 
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weight the HLA anchor positions, using weight defined for
instance from the position specific IC values described above
for each HLA and peptide length. Given the similar propensity
for anchor and non-anchor mutation for both immunogenic
and non-immunogenic peptides, both methods of weighting
were tested. 

We investigated the various weighting schemes using either
of the two input formats to derive the amino acid composition,
i.e. the full peptide and its full peptide rank, or the best pre-
dicted ICORE and its associated rank. The different resulting
amino acid composition vectors as well as the %Rank value
were used as input for a Random Forest model with the pur-
pose of identifying the optimal amino acid composition repre-
sentation (for detail on the Random Forest, refer to materials
and methods). To assess the relative performance difference
between methods based on the amino acid composition and
sequence motif-based methods, we also trained a NNAlign
model using either the full peptide or the predicted ICORE as
input. We computed a weighted average score by combining
the NNAlign score and the %Rank value from NetMHCpan
(either of the peptide or ICORE), but found that this method
underperformed the amino acid composition method without
any positional weighting, with the best full peptide version
scoring 0.66 AUC and the best ICORE version scoring 0.70
AUC (data not shown). Details pertaining to the cross valida-
tion and the weighted averaging methods can be found in the
Materials and methods section. 

Several important conclusions can be drawn from these re-
sults. First and foremost, and in line with what was observed
in figure S1 , the models using ICORE and ICORE %Rank as
input significantly outperformed the models using the full pep-
tide and full peptide %Rank for all of the weighting schemes
(see Figure 3 ). Second, the results demonstrate that the use of
position masking in general performs suboptimal compared
to the use of no weighting or IC-positional weighting. As ex-
pected, the Inverted Mask weighting scheme had the poorest
performance, as all but the anchor positions are masked. In
terms of positional weighting, the results show that all weight- 
ing schemes achieve comparable performance, with a slight,
non-significant advantage in favour of anchor upweighting 
(KL weighting) (see Supplementary Figure S1 ). Additionally,
other ways of computing the information content (KL or 
Shannon) were investigated and the same behaviour was ob- 
served for the two types (see Supplementary Figure S2 ). 

The conclusions from the analyses in Figure 3 are opposite 
to what was proposed by Schmidt et al., where optimal perfor- 
mance was observed when anchor positions were masked out 
on a per -HLA, per -length basis. To investigate further if this 
discrepancy was imposed by our masking implementation or 
by the CEDAR data set used in the analysis, we investigated 

whether this effect held true when evaluating our models on 

the dataset from Schmidt et al. ( 30 ) filtered to only keep neo- 
epitopes. 

For the PRIME data set, this analysis gave results in line 
with that of Schmidt et al. i.e. with the optimal method us- 
ing anchor masking (see (see Figure 4 ). This result highlights 
a strong discordance in the weighting behaviour between the 
two datasets. This may be a result of inherent properties of the 
two datasets. One clear difference is the proportion of posi- 
tive to negative peptides which is 0.26 for the CEDAR data 
and 0.04 for PRIME. However, in terms of anchor versus non- 
anchor mutations, the PRIME data set behaves very similarly 
to that of the CEDAR data, with 32% of both positive and 

negative peptides having anchor mutations. 
Given this discrepancy and non-significant performance 

gain when using different weighting schemes, the model in the 
following analysis uses the simplest, unweighted input. 

In vestig ating additional features 

To go beyond MHC binding, we next investigate the impact 
of other properties and features of neo-epitopes in our model.
Earlier research has proposed that agretopicity ( 25–27 ,29 ),
defined as the ratio between the binding affinity of a mu- 
tant and its WT peptide, as a feature associated with neo- 
epitope immunogenicity. Previous studies have underlined 

the improved performance and reliability of using %Rank 

scores rather than binding affinity values to characterise HLA- 
binding ( 44 ). Also, earlier work has demonstrated the im- 
proved predictive power of applying eluted ligand likelihood 

scores over affinities for the prediction of epitopes ( 45 ). Con- 
sequently, we used eluted ligand percentile rank scores rather 
than predicted binding affinity to construct a redefined rank- 
based agretopicity score (for details on this score refer to meth- 
ods). Here, we used the ICORE predicted rank of the mutant 
peptide, and the predicted rank value for corresponding wild- 
type ICORE, and defined the scaled Rank-agretopicity score 
as the ratio of the mutant rank over the WT rank, scaled by the 
absolute value of the difference of the two (refer to materials).
We also compared performance using the original definition 

of agretopicity based on the ratio between the binding affin- 
ity of the mutant and its wild-type counterpart and found that 
our rank-agretopicity outperformed the former (AUC = 0.589 

and 0.539 for the rank and binding affinity ratios, respec- 
tively). As an alternative to this aggregated score, we further 
investigated if the binding potential of the WT peptide could 

add value to the model as a complement to the binding poten- 
tial of the mutant variant. A summary of the distribution of 
mutant and wild-type ranks for both anchor and non-anchor 
mutation groups and labels in Figure S3 . 

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae002#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae002#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae002#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae002#supplementary-data
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Figure 3. Perf ormance e v aluation of different positional w eight schemes f or the CEDAR data. For each of the w eighting schemes, the %Rank and amino 
acid composition were derived from either the full length peptide or the ICORE, resulting in vectors of 21 features used in Random Forest models for 
cross-validation. Number labels indicate median values. Boxplot lines indicate 25, 50 and 75% quartiles respectively, whiskers indicate the 1.5 
interquartile range for 10 0 0 0 rounds of bootstrapped cross-validation AUCS. Sig levels: * = 0.05, ** = 0.01, *** = 0.001, **** = 0.0 0 01. 

Figure 4. Performance evaluation of different positional weight schemes for the PRIME dataset. Each model was trained on the CEDAR dataset using 
either of the input and weighting methods as described above and evaluated on the PRIME dataset. Boxplot lines indicate 25, 50 and 75% quartiles 
respectiv ely, whisk ers indicate the 1.5 interquartile range f or 10 0 0 0 rounds of bootstrapped cross-v alidation AUCS. Sig le v els: * = 0.05, ** = 0.01, *** 
= 0.001, **** = 0.0001 
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Further, previous studies have suggested that both the sim-
larity to known epitopes, termed the foreignness score, and
imilarity to self, computed by scoring peptides against the hu-
an proteome, share predictive power for the identification
f neo-epitopes ( 25–27 ). Here, we used antigen.garnish ( 25 )
o compute the foreignness score. For self-similarity, we calcu-
ated the similarity between the mutant and wildtype ICORES,
using a peptide kernel similarity defined by Shen et al ( 36 ) and
as previously used by Bjerregaard et al ( 26 ). This similarity
is computed by using sliding K-mer windows of lengths 3–
8 along both sequences and using BLOSUM62 as a scoring
matrix. This scoring scheme by construction gives less impor-
tance to either ends of the peptide, prioritising its centre. To
characterise a given mutation, we moreover explored two dif-
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ferent scores. The first is referred to as the BLOSUM mutation
score and is defined from the BLOSUM score for each mu-
tated amino acid between a mutant and wild-type sequence.
The second is referred to as the Codon mutation score and is
defined as the probability of a mutation as a result of a single
nucleotide mutation, given the codon of the wild-type amino
acid and the mutant amino acid. 

Next, we looked at various physico-chemical properties of
peptides. Earlier evidence has pointed at properties such as
hydrophobicity having predictive power for immunogenicity
( 31 ,46 ). Another property related to hydrophobicity is the
aliphatic index of a peptide, defined by Ikai et al. ( 41 ) as the
relative volume occupied by aliphatic (and thus, hydrophobic)
side chains within a peptide. Boman et al. described a poten-
tial protein interaction index (Boman index) ( 38 ), loosely re-
lated to hydrophobicity properties. Details pertaining to the
extraction of physico-chemical properties can be found in the
methods section. 

Finally, we also included information related to source pro-
tein abundance of the peptides. As we do not have access to
the raw sequence data for the neo-epitopes included in our
CEDAR and PRIME data sets, we used the Peptide eXpression
annotator (pepX) ( 19 ) to retrieve an estimate of expression
level of the wild-type peptide for each mutant. Given the neo-
epitope nature of our dataset, we limited the reference dataset
to the TCGA Pan-Cancer database ( 17 ,47 ). Here, each dataset
(CEDAR, PRIME) were further filtered to keep only data
points for which expression value could be assigned (hereafter
referred to as X_expr datasets). This filtering removed 45 data
points from the CEDAR dataset (from 3033 to 2988 unique
peptide–HLA pairs), and 156 data points from the PRIME
dataset (from 2706 to 2550 unique peptide–HLA pairs). Ac-
cording to PepX recommendations, Total Gene TPM was ap-
plied in the subsequent analysis ( 19 ). 

A full grid search was performed to select the optimal com-
bination of features. The distribution of each feature by im-
munogenicity and a correlation matrix of the features for the
training dataset can be found in figure S3 and figure S4 respec-
tively. Figure 5 summarised the results of this analysis using
the best individual weighting scheme according to Figures 3
and 4 for each method, i.e. no positional weighting on the
CEDAR and masking weighting for PRIME. 

Here, the bootstrapped t -tests and their P -values compare
whether a given additional feature improves performance over
the base model, while the P -value for the opposite test, where
the base model outperforms the model with an additional
feature can be obtained by taking 1 minus the P -value of
the first test. Examining the result in Figure 5 , we first com-
pared the performance difference between the baseline model
(amino acid composition + %Rank) against each model ex-
panded by additional features. When evaluated on CEDAR,
only the models using physico-chemical properties and anti-
gen expression as additional features outperformed the base-
line model (ns, P = 0.1152 , *, P = 0.0453, respectively), both
reaching 0.725 in AUC compared to 0.719 for the baseline
model. In contrast, when looking at performances of the mod-
els evaluated on the PRIME dataset, we noticed once again
a divergent behaviour. Here, the model with added physico-
chemical properties significantly underperformed compared
to the baseline model (*, P = 1 – 0.9524 = 0.0476), dropping
from 0.693 to 0.658 AUC) while the model with mutation-
related features (self-similarity, BLOSUM mutation score,
codon mutation score) improved performance with a gain of
0.02, though the gain was statistically insignificant ( P = 0.08).
Furthermore, the model using scaled agretopicity significantly 
underperformed the base model on the CEDAR dataset (***,
P = 1 – 0.9992 = 0.0008), but significantly outperformed the 
base model on the PRIME dataset (*, P = 0.0307). 

Finally, no change in predictive performance was observed 

on the PRIME data when adding expression levels. When 

looking at the other features tested, they seem to have little 
impact on the CEDAR dataset, while having a larger varia- 
tion from the baseline on the PRIME dataset. This could be 
attributed to a bias or difference in features distribution across 
classes between the two datasets, or an artefact of overfitting 
during cross-validation given the small data set sizes. Together,
these results suggest that while each feature set and weighting 
scheme can improve performance, this gain is dataset-specific,
due to intrinsic biases. 

Model generalisation 

Despite individual features not bringing a significant boost in 

performance, we performed an extensive search for combi- 
nations of various additional features and weighting schemes 
and defined the optimal model for each dataset (optimal 
CEDAR model, optimal PRIME model) as the best perform- 
ing model when evaluated on the respective datasets yield- 
ing a combination of optimal features and positional weight- 
ing scheme. Next, these optimal models were compared to 

the baseline model, defined from the amino acid composition 

computed without any positional weighting from the ICORE 

and the mutant %Rank. Further, to complete the analysis, we 
evaluated an NNAlign ( 48 ) model trained on CEDAR, as well 
as the PRIME-2.0 ( 30 ,32 ) model on both datasets to underline 
problems with overfitting and generalisation. The NNAlign 

method is aimed at identifying linear motifs in biological se- 
quences ( 48 ), and we hypothesised that immunogenic neo- 
epitopes might share common characteristics and sequence 
motifs (for details on this model, refer to materials and 

methods). 
The result of this is shown in Figure 6 . Here, the optimal 

CEDAR model was found to use ‘Inverted IC’ for positional 
weighting, upweighting the anchor positions, with the Bo- 
man Index, BLOSUM mutation score, the WT %Rank, for- 
eignness score and antigen expression as additional features,
outperforming the baseline model (**, P = 0.003). For the 
PRIME data set, the optimal model was found to use mask- 
ing as positional weighting, with self-similarity, BLOSUM mu- 
tation score and scaled agretopicity and antigen expression 

as additional features, outperforming the baseline model (ns,
P = 0.13). This result again underlines the fundamental dif- 
ference between the CEDAR and PRIME data sets. 

Although the optimal CEDAR model significantly outper- 
formed all the other models on the CEDAR dataset, it under- 
performed all the other models when evaluated on the PRIME 

dataset except NNAlign. In particular, when looking at the 
performance of the optimal CEDAR model across the two 

datasets, the performance dropped from 0.742 to 0.655 AUC 

when evaluated on the PRIME dataset, significantly worse 
than the other models, suggesting a poor generalisation abil- 
ity. This could be attributed to the unconventional positional 
weighting preferred by the model as well as the features it 
uses. In particular, the inclusion of Boman Index, WT %Rank 

and foreignness score as well as the ‘inverted’ weighting, plac- 
ing importance on the anchor positions, only improved per- 

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae002#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae002#supplementary-data
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Figure 5. Performance Comparison of models integrating different additional features. Panel A reports the cross-validation performance on the CEDAR 

dataset. Panel B reports the external test performance on the PRIME dataset. Each bar indicates the addition of a given feature on top of the base 21 
features (amino acid frequency + MUT %Rank) Each bracket indicates a bootstrapping t -test between the base model and an additional feature, where 
the null hypothesis is where the added feature does not improve performance compared to the base model. 
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ormance when evaluated on the CEDAR dataset. In con-
rast, the optimal PRIME model performed comparably on
ither datasets. Finally, as noted with the optimal CEDAR
odel, signs of overfitting can be seen with the other mod-

ls. PRIME’s performance drops from 0.710 to 0.659 AUC
hen evaluated on the CEDAR dataset, suggesting that akin

o our optimal CEDAR model, their model might be overfit-
ing to an inherent bias of their training data. Similarly, we
bserve a performance drop for the NNAlign model trained
n the CEDAR dataset, from 0.691 cross-validation AUC to
.632 AUC when evaluated on the PRIME dataset. Together,
hese results show that models trained and selected on either
ataset are likely to overfit to specific characteristics and fail
o generalise. 

valuation of external independent data and 

onsensus model 

s the definition of an optimal model was found to differ de-
ending on the dataset, we next attempted to define a model
ble to better generalise to any datasets. To do so, we first se-
ected an external, independent dataset. We downloaded and
ltered neo-epitope data from NEPdb ( 34 ) by excluding pep-
ides included in the CEDAR training data set, selecting epi-
topes of lengths 8 to 12, restricted to MHC class I with wild-
type annotations. For more details, refer to the methods sec-
tion. To define an optimal, generalisable model, we trained
models on CEDAR and picked the best model based on the
harmonic mean between the cross-validation AUC on CEDAR
and the test AUC on PRIME, yielding a ‘consensus model’.
Prior to this, the overlap between PRIME and NEPDB , was
removed from the PRIME dataset in order to prevent select-
ing a model that would have inflated performance on NEPDB
during the benchmark. This filtering process yields a reduced
PRIME dataset containing 2395 negatives and 36 positives,
termed PRIME reduced in the following results. From this,
we obtained the ‘consensus’ model, which was found to be
similar to the optimal PRIME model, using ICORE as input,
masking as positional weighting, BLOSUM mutation score
and antigen expression as additional features. We term this
consensus model, ICERFIRE, for ICore-based Ensemble Ran-
dom Forest for neo-epitope Immunogenicity pREdiction. Sim-
ilarly, an updated Optimal PRIME model was picked using
the reduced PRIME dataset to avoid boosted performance
on the NEPDB dataset due to the overlap between the two
datasets, yielding a model that uses masking as positional
weighting, self-similarity and BLOSUM mutation score as ad-
ditional features. Furthermore, we explored the feasibility of
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Figure 6. Comparison of the baseline model, optimal models for each dataset as well as NNalign and the PRIME-2.0 method for comparison. All models 
e x cept PRIME w ere trained on the CEDAR dataset. L eft panel indicates perf ormance f or models e v aluated on CEDAR, right panel indicates perf ormance 
for models evaluated on PRIME. Number labels indicate median value. Boxplot lines indicate 25, 50 and 75% quartiles respectively, whiskers indicate 
the 1.5 interquartile range for 10 0 0 0 rounds of bootstrapped cross-validation AUCS. Black bars and P -values annotations compare the performance of an 
optimal model to all other models. Blue bars and p-values annotation compare the performance of the consensus model to other models. Sig le v els: * = 

0.05, ** = 0.01, *** = 0.001, **** = 0.0 0 01 
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training a model on a merged dataset of CEDAR and PRIME
reduced . However, our investigation revealed that training on
the combined dataset did not lead to enhanced performance
(refer to Table S3). This behavior may be attributed to the im-
balance in class distribution between CEDAR and PRIME .
Consequently, the trained models tend to prioritize CEDAR
data points due to its larger proportion of positives. Despite
experimenting with various sampling strategies, such as up-
sampling positives from the PRIME dataset or down-sampling
CEDAR data points, the models did not exhibit improved
performance. 

We evaluated our models (ICERFIRE, Baseline Model, Op-
timal CEDAR, Optimal PRIME) as well as external methods,
IEDB-Calis ( 42 ), PRIME ( 30 ), NNAlign ( 43 ) (trained on the
CEDAR data, see earlier), NetMHCpan ( 23 ), MixMHCpred
( 32 ), MHCFlurry ( 24 ), HLAthena ( 11 ,14 ), AXEL-F ( 13 ) and
NetMHCpanExp ( 12 ) and a foreignness score from anti-
gen.garnish ( 25 ). All the methods were benchmarked on the
data sets including estimated RNAseq expression values (see
earlier). 

The benchmark results (see Figure 7 ) demonstrate that
while the consensus model is not always the top performer,
it consistently maintains a high level of performance across
all three datasets, yielding the highest average AUC over the
three datasets (see Figure 7 , bottom panel). We found that
while some of the other methods showed strong performance 
on one dataset, they had significantly lower performance on 

another dataset. For example, the Optimal CEDAR model 
yields the best AUC and AUC 0.1 (see Figure 7 , figure S6 ) 
on the CEDAR dataset, and maintains good performance 
for the NEPDB dataset at 0.737 AUC, but fails to gener- 
alise to the PRIME reduced dataset, with performance drop- 
ping to 0.604 AUC. Likewise, the NNAlign model trained 

on CEDAR achieved relatively high performance when eval- 
uated on both CEDAR and PRIME reduced , with 0.691 and 

0.656 mean AUC respectively. This model however failed to 

carry its predictive power when evaluated on NEPDB , with 

performance dropping to 0.439 AUC, performing worse than 

random predictions, suggesting overfitting and large differ- 
ences in motif and characteristics between the neo-epitope 
datasets. 

If we next look at other immunogenicity predictors, a 
similar dataset specific behaviour was observed when com- 
paring the performances of both PRIME and AXEL-F. For 
PRIME, while it has the highest AUC on the PRIME re- 
duced dataset, which is part of its training data, its AUC and 

AUC 0.1 values drop to 0.562 and 0.521 respectively on the 
NEPDB_expr dataset. AXEL-F, on the other hand, while it has 
one of the highest AUC on the NEPDB_expr dataset at 0.769,
only reaches 0.534 AUC 0.1 whereas our best two models 

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae002#supplementary-data
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Figure 7. Benchmark of our models and external methods on all three datasets (CEDAR, PRIME, NEPDB). Top panel shows the mean AUCs and 
standard deviation for 10 0 0 0 rounds of bootstrapping. Bottom panel reports the mean AUC ( n = 3) as well as standard deviation across the three 
datasets. For NetMHCpan, NetMHCpanExp, MixMHCpred, MHCflurry and HLAthena (w / Expression), one minus the values of the EL ranks, 
presentation rank and MHC predicted %Rank were used as a score respectively. 
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(consensus, optimal PRIME) achieve up to 0.615 AUC 0.1
on the same dataset. More interestingly, when evaluated on
the other two datasets, namely CEDAR and PRIME reduced,
AXEL-F’s AUC dramatically drops to 0.466 and 0.415 respec-
tively, performing worse than a model outputting random pre-
diction. The third immunogenicity predictor, IEDB-Calis, did
not display such variance across datasets, but rather an over-
all lower performance in predicting immunogenic neoanti-
gens. This may be caused by the fact that it was developed
using only viral peptides, and as such, there is likely a signif-
icant difference in the characteristics between viral peptides
and neoantigens, limiting the model’s predictive power for
neoantigen immunogenicity (Figure 7 , Figure S6 ). Lastly, the
Foreignness Score ( 25 ) alone performs similarly to random
predictions, with an average 0.516 AUC across all three eval-
uation datasets. 

Finally, examining the MHC-ligand predictors (NetMHC-
pan, NetMHCpanExp, MixMHCpred, MHCflurry, HLA-
thena) ( 11 , 12 , 23 , 24 , 32 ), it is expected that they would have
lower predictive power for immunogenicity prediction, as they
were not specifically trained for this task, and that the pep-
tides included in the different data set likely, to a very high
degree, were selected based on prediction HLA binding. Nev-
ertheless, their performances are still relatively good, outper-
forming IEDB-Calis and scoring above 0.64 AUC on average
and having overall lower variation across datasets than the
immunogenicity predictors. 

Overall, our consensus model is able to consistently yield
high predictive performance over the three datasets, scoring
the best overall mean AUC, closely followed by the optimal
PRIME model. These results suggest that the other methods
are likely overfitting to specific characteristics of their respec-
tive training data, rather than generalising well to new data.
This is further supported by the mean and standard deviation
for AUC and normalised AUC 0.1 values across the three ref-
erence datasets (Fig S6). 

Model behaviours and feature importances 

To further illustrate the differences in behaviour between
models, we in Figure 8 and Supplementary Figure S5 show
the feature importances estimates of each model. In all three
models, the most important feature is the percentile rank, with
importance values ranging from 14.7 to 22.7%. The opti-
mal PRIME and consensus models behave similarly, giving the
BLOSUM mutation score between 4.4 and 5.7% feature im-
portance. (see Figure 8 , Supplementary Figure S7 ). One no-
table difference between these two models is the usage of
scaled agretopicity and self-similarity in the optimal PRIME
model, scoring 10.9% and 9.7% of feature importances, while
these features are not used in the consensus model. In com-
parison, the optimal CEDAR model uses a different feature
set, with the addition of Boman Index, foreignness score, WT
%Rank, while omitting the ICORE self-similarity score. To-
gether, these additional features take up 22.2% of the feature
importances, while the BLOSUM mutation score’s importance
drops to 2.5%, from around 4.7% for the other models. This
shift, along with the positional weighting scheme may be an
indication of overfitting, with the model’s inability to gener-
alise to the PRIME dataset. When it comes to the feature im-
portance of Tryptophan (W), despite previous studies observ-
ing an enrichment of this amino acid ( 30 ,42 ) in immunogenic
peptides, it consistently ranks at the bottom three of the fea-
ture importances in all three models, with less than 1.5% fea- 
ture importance on average. 

Schmidt et al. included both random human self-peptides 
and viral data in their training dataset ( 30 ). To uncover 
whether either data type could influence the feature impor- 
tance of tryptophan, we complemented our training dataset 
with progressively increasing amounts of viral or self-peptides.
The results summarised in Supplementary Figure 8 revealed 

a notable change in the feature importance of Tryptophan,
showing an increasing trend only with the addition of viral 
data. In addition, we investigated the enrichment of Trypto- 
phan (W) in immunogenic peptides within both the viral and 

neo-epitope datasets (refer to Supplementary Table 4 ). We 
observed a significant enrichment of tryptophan in positive 
peptides in the viral dataset, measuring 0.0187 and 0.0069 

for immunogenic and non-immunogenic peptides, respectively 
( P = 2.35e-37, one-sided W elch’ s t -test). In contrast, the mean 

proportion of W in the neo-epitope dataset did not show a 
significant enrichment, measuring 0.0176 and 0.0161 for im- 
munogenic and non-immunogenic neo-epitopes, respectively 
( P = 0.236, one-sided W elch’ s t -test). Our results demonstrate 
that as the proportion of viral data in the training set in- 
creased, the tryptophan feature importance increased accord- 
ingly, up to 8% for the case of 81.8% of viral data in the 
training dataset, while neo-epitope AUC dropped down to 

around 60%. This finding suggests that the previously ob- 
served enrichment of Tryptophan in immunogenic peptides 
might be attributed to the addition of viral data rather than 

a specific enrichment in immunogenic neo-epitopes or self- 
peptides. Furthermore, it is worth noting that the performance 
of the models in predicting immunogenicity in neo-epitopes 
decreased as we added more viral or self-peptide data. These 
findings suggest that the addition of mixed data types does not 
necessarily improve the model’s ability to predict immuno- 
genic neo-epitopes. Instead, the previously reported perfor- 
mance by other studies might be attributed to the model’s im- 
proved capability to identify viral immunogenic peptides or 
non-immunogenic self-peptides. These findings highlight the 
complexity of feature importance and emphasise the impor- 
tance of carefully considering the composition of the training 
dataset, as it can significantly impact both feature importance 
and prediction performance. 

Web server interface and usage 

The trained model is accessible through a web server hosted 

at https:// services.healthtech.dtu.dk/ services/ ICERFIRE-1.0/ .
Input data must be provided in a comma-separated format,
with information about the mutant, wild-type, and HLA al- 
lele. The user may also provide their own antigen expression 

values (in TPMs) as an additional column. The web server em- 
ploys NetMHCpan-4.1 ( 23 ) to initially predict HLA-binding 
affinities as %Rank and ICOREs. Subsequently, the aligned 

wild-type ICOREs are identified to generate the feature set 
that serves as input for the model. Furthermore, users have 
the option to select between a model trained with expression 

(by default) or without expression. In cases where expression 

values are included, the server automatically queries a refer- 
ence database (TCGA-pancan ( 17 )) to retrieve wild-type ex- 
pression values using PepX. Any missing values are substituted 

with the median TPM value from the reference database. 
The program’s output provides a comprehensive view of 

immunogenicity predictions, shedding light on the poten- 

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae002#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae002#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae002#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae002#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae002#supplementary-data
https://services.healthtech.dtu.dk/services/ICERFIRE-1.0/
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Figure 8. Mean feature importances of the selected consensus model. The feature importances per fold were retrieved and the mean over all the 
models in the ensemble was calculated for each feature and reported. Feature importances for Random Forest models corresponds to how much a 
given feature contributes to decreasing the impurity when training and splitting decision trees. 
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ial immune response tied to the input data. Key compo-
ents of the output include NetMHCpan rank predictions,
uantifying the likelihood of HLA antigen presentation in
erms of percentile rank. It extends further to include the
redicted ICOREs for mutants, predicted aligned ICOREs
or their wild-type counterparts, and features like gene TPM
alues, self-similarity scores, and BLOSUM mutation scores.
he immunogenicity predictions are complemented by a per-
entile rank score, spanning from 0 to 100 (in percentages),
here a rank of 0 corresponds to a highly immunogenic pep-

ide. The percentile ranks are obtained by scoring the model
gainst ∼110 000 randomly selected human proteome pep-
ides, each with random mutations (for details refer to Mate-
ials and methods). 

iscussion 

he identification of suitable antigen targets is vital for the
evelopment of personalised cancer immunotherapies, such
s cancer vaccines. Immunogenicity prediction plays a criti-
al role in this process, as it enables the characterisation of
elevant epitopes ( 7 , 10 , 49–51 ). In this study, we developed
CERFIRE, a model that predicts the immunogenicity of neo-
pitopes using an ensemble of Random Forest models trained
n curated neo-epitope data from CEDAR ( 33 ). We explored
n array of previously studied and novel features to develop a
odel able to better generalise to multiple datasets. The final
odel is an ensemble of 90 Random Forest models, developed
by nested cross-validation, with each fold constructed using
data redundancy reduction methods to prevent data leakage
and reduce overfitting. 

The study aimed to identify optimal models and peptide
features for predicting immunogenic neo-epitopes using differ-
ent datasets. Extensive searches were conducted to find com-
binations of features and weighting schemes that yielded the
best-performing models. In terms of the peptide sequence, the
optimal input to the model was found to be the amino acid
composition of the predicted ICORE of the tumour associ-
ated peptide, i.e. the nested submer of the reported peptide
with optimal predicted HLA antigen presentation potential,
combined with its predicted likelihood of antigen presenta-
tion (%Rank). This observation was robustly found across all
investigated data sets. 

However, from our analysis of the optimal models, it be-
came evident that models were often overfitted to specifici-
ties of each given datasets. By way of example, the opti-
mal CEDAR model incorporated the Inverted (IC) positional
weighting, upweighted anchor positions, and additional fea-
tures such as the Boman Index, BLOSUM mutation score,
WT %Rank, foreignness score, and antigen expression. It
outperformed the baseline ICORE model in cross-validation.
However, this model demonstrated a significant performance
drop when evaluated on the alternate PRIME dataset, sug-
gesting poor power of generalisation. Furthermore, despite
the inclusion of the foreignness score as a feature in this
model, it only accounts for 1.7% of feature importances
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(see Figure S7 ), ranking at the bottom five least important
features along with the amino acids cysteine, histidine, as-
paragine and tryptophan. 

In comparison, the optimal PRIME model used masking
as positional weighting, with self-similarity, BLOSUM mu-
tation score, scaled agretopicity, and antigen expression as
additional features, also outperforming the baseline ICORE
model. In contrast, the ‘consensus’ ICERFIRE model, which
balanced cross-validation AUC on CEDAR and test AUC on
PRIME, showed comparable performance on both datasets.
Together, our results suggest that the large differences in opti-
mal features as well as positional weighting methods highlight
the challenges of generalisation and the potential limitations
of dataset-specific models in predicting immunogenic neo-
epitopes. The performance of ICERFIRE was found to rely
on positional weighting to mask out anchor positions. Our
analysis further identified features that relate neo-epitopes to
their wild-type counterparts, such as the BLOSUM mutation
score and peptide abundance (in the form of gene expression)
to improve prediction accuracy. 

The main obstacles in developing accurate neo-epitope im-
munogenicity predictors are data heterogeneity and quality
and quantity of data. The first point to address is the bias
in HLA restriction. In our training dataset, out of 65 alleles
present in the data, peptides restricted to the top 10 most com-
mon alleles make up 84.47% of the dataset, with peptides
restricted to HLA-A*02:01 constituting 38.35% of all pep-
tides. This overrepresentation of certain alleles in the training
data can affect the model’s performance when evaluated on
peptides restricted to lesser-known alleles. Secondly, the def-
inition of immunogenicity from a data perspective is not al-
ways consistent. Akin to IEDB, data from CEDAR is curated
from different studies with a myriad of T cell assay types, both
in vitro and in vivo . Three main categories can be used to fil-
ter assays (3D structure, biological activity, binding), of which
many sub-categories exist, for instance cytokine release (IL-2,
IFN- γ) or degranulation detection for biological activity. Im-
munogenicity can thus be defined as a positive observation
in any of the aforementioned assays. However, a peptide that
was found to be immunogenic in vitro , for example, through
an ELISPOT detection of cytokine release might not necessar-
ily elicit an immune reaction in vivo . Thirdly, a single pep-
tide might have multiple entries, with both positive and neg-
ative reactions to the same or different assays, where some
assays have different levels of quantitative labels (negative,
positive low, positive high). To train our models, all the la-
bels for a given Peptide-HLA pair were collapsed into a sin-
gle class label, where a data point is deemed immunogenic
if there is a single positive entry, and negative only if all the
entries are negative. While this approach is intuitive and sim-
ple, it has important potential negative implications. For in-
stance, a peptide with a single negative data entry will be la-
belled as non-immunogenic despite the fact that such a claim
clearly would require the peptide being tested in multiple as-
says and individuals to deal with issues such a immunodom-
inance and immune-stochasticity ( 52 ,53 ). Even though avail-
ability of more data to some extent could alleviate this prob-
lem, the unique and personalised nature of cancer genomes
makes it an inherent, natural and unsolvable property of neo-
epitopes, limiting the degree of annotation accuracy for indi-
vidual peptides, placing a cap on the performance of the de-
veloped method for prediction of neo-epitope immunogenic-
ity . Finally , a fundamental issue lies in the current curation
of the data. We observed that several peptides annotated as 
neo-epitopes in the database did not meet the true definition 

of neo-epitopes. Instead, these peptides were peptide analogs 
where a specific anchor amino acid was substituted with an 

alternative amino acid, resulting in altered binding properties.
For instance, the peptide SLLMWITQV was identified as a 
neo-epitope, replacing the amino acid C at position 9 with 

V to enhance binding to HLA-A*02:01. However, this alter- 
ation is not associated with a tumour mutation, but is rather 
a mutation artificially introduced to increase MHC binding.
A similar situation arises with the synthetic peptide ELAGIG- 
ILTV, which is an anchor-optimised variant of the WT pep- 
tide EAAGIGILTV, wherein the amino acid A at position 2 

is replaced with L to enhance binding to HLA-A*02:01. To 

address this issue, an improved curation and filtering process 
identifying true neo-epitopes derived from cancer mutations 
is critical in facilitating the development of immunogenicity 
prediction models for neo-epitopes. 

Other studies previously observed an enrichment of trypto- 
phan in immunogenic peptides ( 30 ,42 ). However, when look- 
ing at the feature importances of our selected models, fre- 
quency of tryptophan consistently appears among the least 
important features. This is in line with observations from ear- 
lier work related to cancer neo-epitope ( 52 ). We hypothesise 
that this discrepancy could stem from the type of training 
data included. While our models are restricted to neo-epitopes 
only, both PRIME ( 30 ) and IEDB-Calis ( 42 ) were developed 

by adding or using only viral peptides. In the context of im- 
munogenicity prediction for neo-epitopes, we tested whether 
the inclusion of viral data had an effect on both the feature 
importance of tryptophan and the performance of our models 
when evaluated on neo-epitopes. We trained the base model 
and added increasing amounts of viral data from IEDB in the 
training set, reporting the tryptophan importance and cross- 
validation AUC on neo-epitopes only versus the amount of 
viral data added (see Figure S8 ). This suggests that the enrich- 
ment in tryptophan noted by Schmidt et al. and Calis et al.
could be attributed to the increased frequency of the amino 

acid in viral data and could explain the poor performance 
of the IEDB-Calis model when benchmarked on neo-epitope 
datasets as shown in the results section. 

In summary, in this study, we have investigated the predic- 
tion of immunogenic neo-epitopes using a large set of features 
and input methods. Our findings demonstrated the impor- 
tance of feature selection and weighting schemes in achiev- 
ing optimal predictive performance, while highlighting the 
potential bias from using certain features depending on the 
dataset. While both trained on the CEDAR dataset, the op- 
timal CEDAR and PRIME models showed promising results 
on their respective test datasets. However, the former exhib- 
ited poor generalisation capabilities compared to the latter. An 

‘consensus’ model, designed to balance performance across 
datasets, emerged as a viable alternative, suggesting the po- 
tential for a more generalised approach, although this remains 
unsolved. In our benchmark, we further highlighted overfit- 
ting issues in several models, both in our and the external 
methods, highlighting the need for cautious model selection 

and training on unbiased data. Future research should explore 
ways to improve dataset curation. Data gathered from vari- 
ous studies and databases could be mixed to generate a larger 
training dataset. However, independent validation datasets are 
equally important, emphasising the need for a larger amount 
of robust, unbiased data. Finally, the exploration of additional 

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae002#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcae002#supplementary-data
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eatures to improve the predictive accuracy of immunogenic
eo-epitope models should consider potential biases to pre-
ent overfitting. Overall, this study contributes to the under-
tanding of predictive modelling in immunoinformatics and
rovides valuable insights for the development of more ac-
urate and generalised models for immunogenic neo-epitope
rediction. 

ata availability 

he web server for the model described in this work is avail-
ble at https:// services.healthtech.dtu.dk/ services/ ICERFIRE- 
.0/. The datasets used to train, evaluate, as well as the bench-
arks prediction scores are available in the supplementary
ata section at NAR online. 
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