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Abstract
The scalability of integrated photonics hinges on low-loss chip-scale components, which are
important for classical applications and crucial in the quantum domain. An important component
is the power splitter, which is an essential building block for interferometric devices. Here, we use
inverse design by topology optimization to devise a generic design framework for developing
power splitters in any material platform, although we focus the present work on silicon photonics.
We report on the design, fabrication, and characterization of silicon power splitters and explore
varying domain sizes and wavelength spans around a center wavelength of 1550 nm. This results in
a set of power splitters tailored for ridge, suspended, and embedded silicon waveguides with an
emphasis on compact size and wide bandwidths. The resulting designs have a footprint of
2µm× 3µm and exhibit remarkable 0.5 dB bandwidths exceeding 300 nm for the ridge and
suspended power splitters and 600 nm for the embedded power splitter. We fabricate the power
splitters in suspended silicon circuits and characterize the resulting devices using a cutback
method. The experiments confirm the low excess loss, and we measure a 0.5 dB bandwidth of at
least 245 nm—limited by the wavelength range of our lasers.

1. Introduction

The unique properties of light make it an attractive platform for quantum technologies. Chip-scale quantum
photonic circuits [1] leverage the scalability of semiconductor technology as well as the rapidly growing
insights from research on nanophotonics [2] to enable highly efficient interfaces with matter [3] for,
e.g. quantum nonlinearities [4], and squeezed light sources [5]. Minimizing losses is key to quantum
photonics, which has led to the exploration of materials such as silicon nitride and lithium niobate, whose
nanofabrication methods are much less mature than those for silicon but which instead offer ultra-low
propagation losses in photonic waveguides [6, 7]. In addition, photonic waveguides may be suspended,
embedded, or simply reside as ridge or rib waveguides on substrates with a lower refractive index, and the
different materials are subject to different fabrication constraints. This calls for a generic optimization
framework capable of devising highly optimized components across all materials, geometries, and
fabrication constraints.

Large-scale integrated quantum photonic devices require the development of photonic circuit
components exhibiting unparalleled performance with a compact footprint. Since the spatial modes of light
are the same across the quantum and the classical domains [8], the challenge of building low-loss
components is an optimization problem governed by Maxwell’s equations. Such optimizations can be
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Table 1.Measured performance and figures of merit of power splitters reported in the literature compared to this work. The power
splitters are listed based on the number of channels, the waveguide type, the optimization procedure (parametric, size, or topology
optimization), the size, the center excess loss and the 0.5 dB bandwidth. The measured bandwidths denoted with ∗ are limited by the
wavelength range in the experiment.

Channels Type
Optimization
procedure Size (µm2) ELλc (dB)

0.5 dB
BW (nm) Reference

1× 2 Embedded Parametric 40× 2 −0.06 100∗ [43]
1× 2 Embedded Parametric >1.6× 10 −0.5 — [44]
1× 2 Embedded Size 3× 1.4 −0.28 80∗ [45]
1× 2 Embedded Size 2.7× 2.3 −0.1 45∗ [46]
1× 2 Embedded Topology 0.9× 1.4 −0.5 — [24]
1× 3 Embedded Topology 3.2× 2.3 −0.44 90 [57]
1× 2 Suspended Topology 2× 3 −0.13± 0.03 245∗ This work

approached by size and shape optimization on geometries based on simple designs, but they can typically
only compete with advanced inverse-design methods in the simplest cases. Generally, the most rewarding
scenarios for inverse design involve structures optimized for multiple mutually dependent figures of merit or
unclear performance bounds [9], where intuition-based approaches cannot realistically succeed. Examples
include mode-converters [10–14], non-reciprocal routers [15], circuit crossings [16],
high-spatial-confinement cavities [17], metalenses [13, 18–20] and demultiplexers [21–23]. Even for design
challenges traditionally dominated by intuition-based approaches, such as grating couplers, mirrors,
waveguide bends, and beam splitters, inverse design can offer significant improvements by minimizing
footprints [24–26] and extending bandwidths [27, 28]. Here we are concerned with the inverse design of
compact, highly efficient, broadband, 50:50 power splitters, which are essential devices in both quantum
photonic architectures [29–31] and classical applications such as signal routing [32], spectroscopy [33], and
imaging [34]. Our method applies to any material platform, but we consider silicon, which offers advanced
fabrication technology and integration with electronics and nanomechanics [35]. Silicon is gaining attention
for quantum technologies not only for the aforementioned reasons but also due to the ability to integrate
emitters with excellent quantum optical and spin properties [36, 37].

The 50:50 power splitters mainly fall into two categories: as specialized instances of generic 2× 2
couplers, such as directional couplers, or as fixed power-splitting devices with a 1× 2 configuration [38].
Directional couplers are the chip-scale equivalent of a conventional optical beam splitter, and they operate by
evanescent coupling of the modes of two adjacent waveguides separated by a small gap, with the power
distribution along them and the final power-splitting ratio determined by the width of that gap, the optical
interaction length, and the wavelength. That ratio can be tuned by refractive-index changes, achieved via
thermo-optic or electro-optic effects, or by modifications to the gap through mechanical actuation if the
waveguides are suspended. Such tunability makes them ideal for optical switching in programmable
networks. Nevertheless, their dispersive working mechanism makes them sensitive to deviations of the
fabricated structure from the nominal geometry, thus requiring post-fabrication calibration to achieve the
targeted 50:50 splitting [39, 40]. On the other hand, the 1× 2 power splitters are robust to size variations and
more broadband, making them ideal for Mach–Zehnder interferometers (MZIs) or cascaded 1×N power
splitters. A possible intuitive design is a Y-splitter with a gradual (adiabatic) geometry transition from one
waveguide into two waveguides [41, 42]. The simple adiabatic Y-splitters can have good bandwidth (400 nm)
and low intrinsic losses, but the required footprint limits their use in large-scale nanophotonic networks and
sets demanding requirements in terms of the extrinsic propagation losses associated with fabrication
disorder. The propagation loss is often only considered for waveguides but must also be taken into account
when other components get exceedingly long.

A multitude of design approaches has been applied to silicon power splitters [24, 43–50] and has resulted
in remarkable improvements over the past decades. Table 1 summarizes the previously reported Y-splitter
designs, including their center excess loss, bandwidth (defined as where the excess loss does not exceed
0.5 dB), and the corresponding sizes. Low excess losses have been reported with slot-waveguide Y-splitters
featuring a center excess loss of only 0.06 dB and more than 100 nm bandwidth for a length of 40µm [43]. In
terms of bandwidth, Y-splitter designs featuring more than 700 nm with a length of 5µm have been
theoretically proposed [50] although this included sharp features that can hardly be realized experimentally.
Compact Y-splitters with lengths down to 0.9µm have been devised by 2D inverse design [24], 1.5µm with
compact star-shape splitters [44], and approximately 3µm with size optimization of the tapering region in
Y-splitters [45, 46]. However, these compact Y-splitter designs do not display bandwidths larger than 100 nm.
More generally, a power-splitter that simultaneously exhibits low loss, wide bandwidth, and compact
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Figure 1. Compact and broadband topology-optimized power splitters. (a) Tilted-view scanning electron micrograph of a
fabricated power splitter with insets highlighting specific design features. (b) The measured mean excess loss with (black solid)
and 95% confidence interval (shaded) shows very good agreement with the simulated performance (blue) within the measured
wavelength range available with the two tunable lasers used in our experiment.

footprint has so far been missing. In this study, we explore the achievable performance in terms of size, loss,
and bandwidth of power splitters by employing density-based topology optimization [51, 52]. This inverse
design method optimizes the refractive indices in a large material grid without putting any restrictions on the
device shape or topology besides the resolution of the material grid. The vast design space explored by
inverse-design methodologies frequently leads to record-breaking performance [24–26, 28, 50, 53–55], but
may in some cases contain unfeasible design elements [50, 54]. More recent works on inversely designed
structures include the fabrication constraints directly in the optimization, e.g. the resolution, the minimum
solid and void radii of curvature, or the feature-size dependence of the pattern transfer fidelity. This
approach harvests the benefits of inverse design while resulting in geometries that are inherently realistic [17,
27, 56, 57]. In this study, we ensure that the final designs respect fabrication restrictions of electron beam
lithography with an explicit constraint on ensuring connectivity of free-standing (suspended) structures as
well as implicitly through parameters such as smoothing radius [58, 59] and design-element size. We design
broadband and compact power splitters with a center wavelength of 1550 nm for three different photonic
platforms: embedded, ridge, and suspended. We fabricate the suspended version in a silicon membrane as
shown in figure 1(a). The high design-to-device fidelity results in a very good agreement between simulated
and measured performance across a very wide wavelength span (figure 1(b)).

2. Model formulation

We model power splitters between one input waveguide and two output waveguides, each with a width, w, as
shown in figure 2. The waveguides are connected to a rectangular design domain of length L and widthW.

3
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Figure 2. Implementation of power splitter model. The illustration on the left shows the model domain, wherein the design
domain of the power splitter is highlighted with the brown rectangle in the center. The design field, ξ, is defined in the design
domain to control the material distribution. The panels on the right show the evolution of the design field through the smoothing
and thresholding steps defined in equations (4)–(7).

We denote the waveguide material as the core material, while the surrounding material is denoted as the
cladding material. We simulate the transfer of light from the input waveguide to the two output waveguides
by solving the electromagnetic wave equation in the frequency domain:

∇×∇×E(r,ω)− ω2

c2
(n(r,ω)+ iκ(r,ω))2E(r,ω) = 0, r ∈ Ω, (1)

where E(r,ω) is the spatial profile of a time-harmonic electric field of angular frequency ω, n+ iκ is the
complex refractive index of the material, and c is the speed of light in vacuum. We consider the fundamental
transverse-electric mode of the waveguide, which we insert as a source in the input port (Port 1 in figure 2)
and simulate the transfer of light into the same mode for the two output waveguides (Ports 2 and 3). The
boundaries of the model are truncated by using a first-order absorbing boundary condition,

n̂×∇×E(r,ω)+ i k(ω) n̂×E(r,ω)× n̂= 0, r ∈ ΓABS, (2)

which allows light to escape out of the model domain while limiting reflections. In addition, we use perfectly
matched layers at the outer ends of the waveguide domains, ΩPML, in order to absorb directly transmitted or
back-reflected light. We solve the electromagnetic problem with the finite-element method in the
commercial software COMSOL Multiphysics® v. 6.0 [60].

3. Optimization

We aim to design a set of power splitters that operate efficiently over a user-specified bandwidth, exhibiting
ideally a perfect balance between the output channels (by imposing device symmetry), maximum power
transfer, and minimum back-reflection into the input waveguide. To this end, we define the objective
function,

Φ= 10
3∑

i=1

si log10

(
Tport-2 (λi)+Tport-3 (λi)

1+Rport-1 (λi)

)
/

3∑
i=1

si , (3)

which is tailored to promote high broadband transmission at the output ports (Port 2 and 3) and low
reflection at the input port (Port 1). To ensure a wide wavelength span, we consider the transmission, T, and
reflection, R, of the power splitter for three wavelengths, λi ∈ {1,2,3}. The sum in equation (3) includes the
scaling factors, s1 = 1, s2 = 2, s3 = 1, the values of which are chosen empirically to emphasize the
performance at the center wavelength. We employ density-based topology optimization as described in [61]
to optimize the material distribution within the designated design domain. We define a design field, ξ, that

4



Mater. Quantum Technol. 4 (2024) 016201 S E Hansen et al

can vary continuously between 0 and 1 to interpolate between the core and cladding material in the design
domain, i.e.

0⩽ ξ ⩽ 1. (4)

Then, we perform a smoothing step on the design field to limit the appearance of small design features and
prevent a mesh-dependent solution. The smoothed design field, ξ̃, is created with a density-filter operation
[62], which is defined via

−
(

rf
2
√
3

)2

∇ξ̃ (r)+ ξ̃ (r) = ξ (r) (5)

with a smoothing radius, rf of 100 nm. Then we employ a smoothed approximation of the Heaviside
function,

Hs (x,β,η) =
tanhβη+ tanhβ (x− η)

tanhβη+ tanhβ (1− η)
, (6)

that transforms the design field towards binary values close to 0 or 1 to realize realistic designs of either
cladding or core material. The parameter η defines the threshold in the function, whereas the parameter β
controls the threshold sharpness. We apply the threshold operation (equation (6)) on the smoothed design
field with the threshold being at the center value–η= 0.5:

¯̃ξ (r) =Hs

(
ξ̃,β,η

)
. (7)

We progressively double the threshold sharpness starting from 5 and ending at 80 using a continuation

approach to achieve a near-binary design [58]. The three design-field steps (ξ, ξ̃, and ¯̃ξ) are illustrated in the

right panels of figure 2. We use the thresholded design field, ¯̃ξ, to interpolate into a refractive-index
distribution in the design domain with a linear material interpolation between the core and cladding
materials,

n(r,ω) = ncore (ω)+
¯̃ξ (r)

(
ncladding (ω)− ncore (ω)

)
. (8)

To further promote a binary design, we introduce an artificial extinction coefficient, κ(r), defined in
equation (9) that causes optical losses for intermediate values of the thresholded design field [63]. In
conjunction, we directly impose a limit on the non-binary design in equation (10) with an inequality
constraint that requires the losses in the design domain to be less than a constant, Closs,

κ(r) = 4κ0
¯̃ξ (r)

(
1− ¯̃ξ (r)

)
(9)´

Ωdesign
κ(r)∂3r

κ0Vdesign
⩽ Closs. (10)

The refractive index and extinction coefficient are inserted into the wave equation, which is solved to
compute the electric field distribution used to calculate the optical performance of the device as quantified
by the objective function in equation (3).

The evolution of the geometry and the objective function during an optimization run are illustrated in
figure 3 for a power splitter with a design domain size of 2× 3µm and optimized at the wavelengths,
λi ∈ [1450nm,1550nm,1650nm]. The design field is initialized with ξ= 0.5, i.e. a material with properties
between silicon and air. A Y-splitter form appears early in the design iterations, which guides light towards
the output waveguides. The optimization improves the coupling by further shaping the Y-splitter and
forming guiding antenna-like structures on the sides to direct back-scattered light toward the output
waveguides. The objective function increases rapidly in the first 50 iterations and slows down as it gets closer
to the local optimum. The notable jumps in the objective value at different continuation steps with different
β stem from the artificial attenuation (equation (9)), which is set to penalize grey-scale by increased losses,
and its impact gradually diminishes as the thresholding parameter, β, increases.

The optimization problem, as defined by equations (1)–(10), is sufficient to optimize power splitter
structures in the ridge and embedded platforms. However, for power splitters fully suspended in air, we
require another constraint to ensure that all material regions are connected to the waveguide for the device to
be physically realizable. Therefore, we implement a connectivity constraint [14, 64] with an auxiliary heat
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Figure 3. Progression of design and electric field distribution during 2D topology optimization of a power splitter with a
2× 3µm2 design domain and 200 nm optimization wavelength span. (a) The design and electric field distribution at select
iterations, N, are shown to illustrate the progression toward the final design. (b) The iteration history of the objective function for
the various continuation steps with different threshold values, β.

problem, where heat is only removed if the material connects to the input waveguide. We define a
conductivity parameter, σ,

σ (r) = Adesign

(
σcore +Hs

(
¯̃ξ (r) ,βc,ηc

)(
σcladding −σcore

))
, (11)

where Adesign is the area of the design domain and σcore and σcladding are conductivities set for the core and
cladding region. We use a high conductivity in the solid regions and a low conductivity in the air region.
Similarly, we define a heat source, fs, with an interpolation of the double-thresholded design field and high
heat generation in the solid regions, Score and no heat generation in air, Scladding,

fs (r) = Score +Hs

(
¯̃ξ (r) ,βfs,ηfs

)(
Scladding − Score

)
. (12)

We solve the heat equation in the design domain,

−∇· (σ (r)∇u(r)) = fs (r) (13)

u(r) = 0 ∀ r ∈ ∂ΩDirichlet (14)

n̂(r) ·∇u(r) = 0 ∀ r ∈ ∂ΩNeumann, (15)

with a zero-Dirichlet boundary condition on the connected input waveguide and zero-Neumann boundary
condition elsewhere to find the field, u, which represents the local heat density. We compare the total heat in
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the design domain to the heat in a reference domain of equal size and made of the solid material and limit
the logarithmic heat ratio to a set value Cconnectivity with an inequality constraint,

10 log10

(´
Ωdesign

u(r)∂3r´
Ωref

u(r)∂3r

)
⩽ Cconnectivity. (16)

The full optimization problem is solved using the algorithm known as the globally convergent method of
moving asymptotes [65] and employing the adjoint sensitivity method for computing the gradient of the
design field [66].

4. Optimization results

First, we investigate the role of the selected optimization wavelengths, λi, on the achievable operational
bandwidth of an inversely designed power splitter. Due to the large computational load of 3D simulations
[67], this study uses optimization in 2D with a homogeneous air cladding to find good optimization
parameters for the subsequent full optimization in 3D. We perform three independent optimizations for
three different optimization wavelength spans,∆λopt, defined as the range between the outer optimization
wavelengths. The wavelength spans are set to the following: 1 nm to mimic a single-wavelength optimization,
200 nm to get a moderate bandwidth, and finally 400 nm, which is similar to the highest previously reported
bandwidths [43, 68]. The design domain is set to be 3µm× 3µm and the waveguide width is w = 500 nm.
The performance of the power splitters is evaluated based on the excess loss (EL), return loss (RL),
bandwidth, and size, where EL is defined as the ratio of power coupled to the output waveguides to the input
power, and RL represents the ratio of back-reflected power to the input power. We consider the bandwidth to
be the wavelength range for which the EL is less than 0.5 dB.

The final designs and their performance are shown in figure 4. We observe that the optimization with
∆λopt = 1 nm exhibits a broadband response, especially in transmission, achieving a 0.5 dB bandwidth of
406 nm, which may explain the success of other design optimizations that have used a single-wavelength
objective function [45]. The optimization with∆λopt = 200 nm shows a flatter loss spectrum as the multiple
optimization wavelengths are close to each other. Despite the larger∆λopt, the optimized geometry does not
exhibit a wider bandwidth. On the contrary, the optimization for∆λopt = 400 nm leads to a record-high
bandwidth of 656 nm. However, the EL drops significantly between the optimization wavelengths. This is a
consequence of the optimization only enforcing a high performance at the specified optimization
wavelengths. This could be mitigated by increasing the number of wavelengths albeit at the expense of more
computation time. While resonant-like features in transmission at the optimization wavelengths are limited,
the reflections exhibit features at or close to the optimization wavelengths, particularly for∆λ=1 nm, for
which a large 10 dB dip is visible. Despite that, the optimization achieves nearly zero EL and low reflections
of−30 dB (0.1%) or less at the optimization wavelengths. The three optimized geometries exhibit many
common features: they all have a characteristic V-shape, some narrow beams in between, and an
antenna-like shape on the input side. The beams serve the dual purpose of suppressing reflection at the
branching point and preventing direct forward propagation. At the same time, the structure at the input
guides scattered waves originating from the center of the design region into the output waveguides. We find
that all features positively impact the objective function, albeit leading to multiple dips at other wavelength
ranges due to resonant wave phenomena.

To further understand the achievable performance and its relation to the size of the power splitters, we
perform 2D optimizations of air-cladded power splitters of domain lengths L ∈ {1µm,2µm,3µm}. The
optimization wavelength span is set to 200 nm as the previous simulations show that this achieves the most
uniform performance around the center wavelength. The resulting geometries and transmission/reflection
spectra are shown in figure 5. We find a degradation of the objective function value for the 1µm× 3µm
design domain. However, its 0.5 dB bandwidth extends almost 100 nm longer than the same optimizations
with a longer length. In addition, both EL and RL display fewer narrow features, which suggests, as does the
optimized geometry, that the size limits the presence of minute resonant features. On the contrary, both the 2
and 3µm long power splitters exhibit several narrow geometric features, which play a key role in minimizing
the EL at the targeted wavelengths. Interestingly, the power splitter with a 2µm× 3µm footprint exhibits the
lowest objective function value (see table 2) despite being encompassed by the larger domain size. This
observation indicates both the abundance of local optima and the responsiveness of the optimization process
to the scale of design components.

While 2D simulations provide good intuition by outlining the design space, they fail to capture
out-of-plane scattering losses which may dominate in planar-integrated photonic splitters. In addition, 2D
simulations rest on the assumption of a homogeneous effective refractive index—an assumption that is
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Figure 4. Two-dimensional optimization of power splitters with different optimization wavelength spans. The design (a) and the
performance (b) are shown for three optimization runs of power splitters targeting bandwidths of 1 nm, 200 nm and 400 nm.

generally not valid in complex nanostructures. Therefore, we perform 3D optimization using the same
objective function, which naturally suppresses all loss pathways. The device height is set to 220 nm to match
the device layer of conventional photonic silicon-on-insulator wafers. Based on the 2D simulations, we use a
2µm× 3µm domain and an optimization wavelength span of 200 nm. In addition, the final thresholded
design of the corresponding 2D simulation is used to initialize the design field, except for a modification of
the binary design values (ξ= 0 and ξ= 1) into intermediate values (ξ= 0.25 and ξ= 0.75). We run the
optimizations for three distinct waveguide platforms: suspended, ridge, and embedded. The suspended
power splitter has air surrounding it on all sides, the embedded is covered in glass, and the ridge has glass
beneath but air next to and above the structure. The optimized designs and performances for the three
waveguide platforms are shown in figure 6. The geometries change considerably compared to the initial 2D
design, which stems from the fact that the design also needs to prevent out-of-plane scattering as well as the
aforementioned invalidity of the homogeneous assumption about the effective refractive index. Due to
out-of-plane scattering, the optimized designs for the various waveguide platforms all share center EL of
0.1 dB compared to the near-zero loss of their 2D counterparts. The ridge and suspended power splitters
show a bandwidth of more than 300 nm with a relatively flat EL. The embedded power splitter surpasses
these already excellent broadband performances, attaining an unprecedented bandwidth of 629nm. We
attribute this in part to the symmetric electromagnetic environment and in part to the reduced index
contrast, which allows for more gentle scattering. In any case, any interpretation must be handled with
caution since the model has too many degrees of freedom to make formal inferences about global optimality.
We provide a quantitative comparison in table 2 of the simulated figures of merit obtained for all the
designed power splitters.

5. Optical characterization

To experimentally validate the performance of the optimized designs, we fabricate the suspended power
splitter, a selection driven by its compatibility with our already established suspended silicon platform [17,
69–71]. We fabricate suspended silicon photonic circuits that include the optimized suspended power splitter

8



Mater. Quantum Technol. 4 (2024) 016201 S E Hansen et al

Figure 5. Two-dimensional optimization of power splitters with different design-domain lengths. The design (a) and the
performance (b) are shown for three optimization runs with design-domain lengths of 1, 2, and 3µm, while the optimization
wavelength span is set to 200 nm.

of figure 6(b) from a silicon-on-insulator substrate with a 220 nm silicon device layer and a 2µm
buried-oxide layer. The pattern is defined using low current (0.22 nA) and high-resolution electron-beam
lithography, transferred into a polysilicon/chromium hard mask, and etched into the silicon device layer
using a low-power switched SF6/O2 reactive-ion etching process [72, 73]. Then, we remove the buried oxide
layer to suspend the circuits with an anhydrous vapor phase hydrofluoric acid etch. An example of a
fabricated power splitter is shown in figure 7(a). To validate the simulated EL, we perform broadband optical
measurements using two tunable lasers covering a wavelength range from 1365 nm to 1630 nm. We measure
on a carefully designed set of circuits with an increasing number of power splitters and use the cutback
method to extract the EL per power splitter [45, 70]. Cutback measurements are performed on reference
circuits used to find the waveguide propagation loss and on cascaded MZIs which use the power splitter as
both a splitter and a combiner (see figure 7(b)). The measurements are performed with a cross-polarized
microscope setup using free-space grating couplers placed orthogonally to each other [70]. The measured
absolute power transmission for one set of cascaded MZI circuits with an increasing number of MZIs is
shown in figure 7(c). We subtract the propagation loss found from the reference measurements and obtain
the loss per power splitter via linear fits to the values on a logarithmic scale (dB). Figure 7(d) shows the
propagation loss fit for three representative measurement sets of nominally identical photonic circuits. The
mean and standard deviation of the extracted EL from 60 measurements (10 measurement sets) are shown in
figure 7(e). We find a good agreement with the EL curve of the design except for a small degradation and a
34 nm redshift. To understand this shift, we extract the contour of the fabricated structure from image
analysis on five top-view SEMmicrographs and simulate each independently. The mean simulated EL of the
fabricated structures agrees well with the measured result. The etched features in the fabricated structure
have shrunken compared to the original design, which increases the effective refractive index and, therefore,
redshifts the spectral response. This indicates robustness towards the growth or shrinkage of the pattern
when transferred from design to device, which is commonly observed in nanophotonic components [71].
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Figure 6. Optimized designs of power splitters made for the ridge, embedded, and suspended waveguide platforms. (a) Side-view
illustration of the ridge, embedded, and suspended waveguides fabricated on a silicon-on-insulator platform. (b) Power splitter
designs optimized for the various waveguide platforms. (c) The excess loss and return loss as a function of wavelength show
excellent broadband performance.

Table 2. Comparison of power splitter optimizations with various design inputs. The power splitters are listed by model dimension,
waveguide type, size of design domain, and optimization wavelength span,∆λopt. The objective function,Φ, quantifies the
optimization performance, while the device characteristics are: the center excess loss, ELλc

; the center return loss, RLλc
; the bandwidth

with excess loss below 0.5 dB; and the highest return loss, RLmax, for that bandwidth.

Model Type Size (µm2) ∆λopt (nm) Φ (dB) ELλc (dB) RLλc (dB) 0.5 dB BW (nm) RLmax (dB)

2D air-cladded 3× 3 1 −0.004 −0.004 −42.98 406 −18.91
2D air-cladded 1× 3 200 −0.100 −0.076 −27.57 484 −18.82
2D air-cladded 2× 3 200 −0.003 −0.002 −40.44 353 −20.59
2D air-cladded 3× 3 200 −0.028 −0.020 −34.21 397 −19.59
2D air-cladded 3× 3 400 −0.082 −0.083 −31.31 656 −17.35
3D ridge 2× 3 200 −0.139 −0.121 −36.48 325 −19.01
3D embedded 2× 3 200 −0.114 −0.107 −38.09 629 −17.93
3D suspended 2× 3 200 −0.115 −0.102 −32.72 317 −20.17
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Figure 7. Experimental validation of suspended power splitters. (a) Scanning electron micrographs of the fabricated suspended
power splitter. (b) Scanning electron micrographs of a circuit with Mach–Zehnder loops containing the power splitters and a
corresponding reference circuit. (c) Raw measurement data of total transmission through the Mach–Zehnder loop circuits with
various lengths and number of power splitters. (d) Cutback measurement of loss per number of power splitters at the center
wavelength. (e) The measured excess loss with the mean (black solid) and 95% confidence interval (shaded) compared to the
simulated performance of the design (blue) and the mean simulated performance of the fabricated power splitters (red). The
wavelength range is limited by the available range of the tunable lasers used in our experiment.

6. Conclusion

In summary, we employ topology optimization to design compact and broadband power splitters with
hitherto unparalleled performance. We investigate the impact of varying the design domain length and
optimization wavelength range in a 2D setting to determine the achievable performance of the power
splitters. Using an optimization wavelength span of 400 nm, we obtain a record-high 0.5 dB bandwidth of
more than 600 nm. However, with a shorter bandwidth, we obtain a flatter loss profile due to the shorter
wavelength spacing. The findings in 2D are used as a starting point for subsequent design optimization in 3D.
We design power splitters for three distinct and commonly used waveguide platforms: ridge, embedded, and
suspended. Notably, all three platforms demonstrate substantial 0.5 dB bandwidths surpassing 300 nm with
the embedded power splitter reaching 600 nm. To validate the realization of the proposed power splitters, we
fabricate the device for the suspended waveguide platform and conduct thorough optical characterization to
extract the EL. Apart from a redshift caused by fabrication variations, we achieve a remarkable concurrence
in the magnitude of the loss and bandwidth. This demonstration further highlights the efficacy of the inverse
design method in producing high-performing devices with consistent and desirable characteristics.
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and broadband on-chip wavelength demultiplexer Nat. Photon. 9 374–7
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