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Abstract. With emergence of new materials, more and more materials are avail-
able for adsorption and separation processes. The adsorption selectivity of adsor-
bent to adsorbate is one of the important indicators in choosing materials. Because
the adsorption experiment of the mixture is time-consuming and difficult, the selec-
tivity of the adsorbent is generally calculated by the ideal adsorbed solution theory
(IAST). Taking the CO>/H, gas mixture as an example, this paper proposes a new
adsorption selectivity calculation method based on a deep neural network (DNN)
with 5 hidden layers, which takes the molar fraction of CO;, adsorption pressure
and Langmuir adsorption isotherm parameters as the inputs of DNN. Combin-
ing the DNN and the NIST/ARPA-E database to quickly and accurately calculate
the adsorption selectivity, the hydrogen purification and carbon dioxide storage
materials can be quickly screened.

Keywords: Hydrogen purification - Ideal adsorbed solution theory - Langmuir
isotherm - Selectivity - Deep neural network

1 Introduction

Integrated gasification combined cycle (IGCC) is an advanced power system that com-
bines coal gasification technology and an efficient combined cycle. IGCC will produce
alot of CO; and Hy. It has a good development prospect to capture CO, efficiently and
obtain high-purity Hy by pressure swing adsorption (PSA) technology [1]. The com-
monly used commercial adsorbents are activated carbon (AC) and zeolite. However,
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with the emergence of new materials, metal-organic frameworks (MOFs) are increas-
ingly proven to be effective as adsorbents to separate CO; and Hy. Therefore, quickly and
accurately selecting the appropriate adsorbent as the separation of CO, and Hy becomes
particularly important.

At present, the selectivity of the adsorbent is one of the important indicators to
evaluate the performance of the adsorbent. Adsorption selectivity is the thermodynamic
characteristic of the equilibrium-based separations system, which determines the separa-
tion efficiency [2]. The method commonly used to solve selectivity is the ideal adsorbed
solution theory (IAST). The main practical advantage of IAST is that the adsorption
selectivity of adsorbent can be estimated simply from the adsorption isotherm of a sin-
gle gas, so no special equipment is required for the separation measurement of mixed gas
[3]. However, the solution of IAST requires integral calculation from different adsorption
isotherm models to solve the spreading pressure. Different adsorption isotherm models
will obtain different analytical models, and the solution of selectivity is also relatively
complex [4].

Deep neural network (DNN) has good advantages in processing non-linear charac-
teristics and has been increasingly used in the simulation, prediction and optimization
of gas adsorption and separation. In this paper, a DNN model is used to predict the
separation selectivity. The inputs of DNN are CO; molar fraction, adsorption pressure
and Langmuir adsorption isotherm parameters, and the output of DNN is separation
selectivity. The training data of DNN comes from the selectivity by IAST calculations.

2 Mathematical Model

2.1 Langmuir Model for Calculating Adsorption Amount

Langmuir adsorption model is the most widely used isotherm model. The basic Langmuir
adsorption model has simple from:
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where n represents the equilibrium adsorption amount, p represents the equilibrium
adsorption pressure, and ng and b are saturation capacity and affinity, which are obtained
by fitting the experimental values.

The extended Langmuir is used for the adsorption of multi-component gas:
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where i is the gas component.

2.2 Ideal Adsorbed Solution Theory (IAST) for Calculating Adsorption Amount

The ideal adsorbed solution theory (IAST) assumes that the adsorbed mixture is an ideal
solution at constant spreading pressure and temperature. From the IAST, the spreading
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pressure 7 is given by [5],

P}
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where a is the adsorbent specific surface area, R is the molar gas constant. p? is the gas
pressure of component i that corresponds to the spreading pressure 7.
The spreading pressure for a Langmuir isotherm via Eq. (3) is

A
ﬁnio (p?) = ng log(l + bp?) “4)

At a constant temperature 7, the spreading pressure of a single component is the
same.
For binary adsorption of component 1 and 2, combining Egs. (3) and (4),we can get,

nsi 1og(1+ bip}) = nya log(1 + bap3) )
The IAST requires

yipe = x1p), (1 —y)pr = (1 —x1)p) (6)

where y; and x; are the molar fractions of component i in gas phase and adsorbed phase,
respectively, and p; is the total gas pressure.

2.3 Selectivity Calculated by IAST and Extended Langmuir Equation

Adsorption selectivity in a binary mixture of components 1 and 2 is defined as

=G =GIE-GIE) o

The adsorption selectivity can be solved by combining Eqs. (5) and (6). If the
extended Langmuir equation is used to solve the adsorption selectivity, combining
Egs. (2), (7) becomes

nslblpl ns2b2p2 2 ns1by
Siz= / =)= (8)
L+ bipi” 14 bipi )\ ngby

where p; is calculated from the total pressure p; by multiplying the mole fraction y;. In
this paper, component 1 represents CO,, and component 2 represents Hy. So here Sy2
represents the selectivity of an adsorbent for CO, compared to H,. Higher S5 is good
for hydrogen purification.
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2.4 Deep Neural Network (DNN) for Selectivity

Artificial neural network (ANN) has strong nonlinear processing ability, which includes
an input layer, hidden layers and an output layer. A deep neural network (DNN) is a
neural network with multiple hidden layers. The more the number of hidden layers, the
better the nonlinear fitting characteristics of the ANN, and the better it is to deal with
complex problems. In this paper, the number of hidden layers is set to 5, and the number
of neurons in each hidden layer is 10. The structure of the DNN in this paper is shown
in Fig. 1. The inputs of DNN are CO, molar fraction, adsorption pressure and Langmuir
adsorption isotherm parameters. And the output of DNN is separation selectivity. The
chosen method of training data generation is via Latin hypercube sampling (LHS). The
significant advantage of LHS is that a small number of samples can represent the entire
sample space. The upper and lower boundaries of the LHS are shown in Table 1. The
total number of sample points is set to 6000, and the adsorption selectivity values of the
selected sample points are calculated by IAST. Due to the large difference between the
input parameter values, the calculated selectivity difference is also large. The adsorption
selectivity values are set between 3 and 1500. Finally, 3602 sample points are selected
to train DNN.

CO, molar fraction

Pressure

— Selectivity

Output layer

Tnput layer Multiple hidden Tayer
0] ® o

Fig. 1. DNN structure for predicting separation selectivity.

Table 1. Lower (Ib) and upper (ub) boundaries of Latin hypercube sampling (LHS).

Condition | CO, molar | Pressure | nco, (mol/kg) | bco, (bar—1) ny, (mol/kg) | by, (bar—1)
fraction (bar)

Ib 0.1 0.1 5 0.1 0.5 0
ub 0.9 30 20 1.5 6 0.6
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3 Results and Discussion

The NIST/ARPA-E database of Novel and Emerging Adsorbent Materials is a free,
web-based catalog of adsorbent materials and measured adsorption properties of numer-
ous materials, thus making it a treasure trove for data-driven analysis [6, 7]. As shown
in Fig. 2, the Isotherm Visualization Tool of the NIST/ARPA-E database can quickly
obtain the adsorption isotherm and Langmuir fitting parameters by searching the adsor-
bent material and gas species. The adsorption of CO; and H» on activated carbon and
CuBTC is randomly selected in the NIST/ARPA-E database. Therefore, by combining
NIST/ARPA-E Database and DNN model, the selectivity of different adsorbents to CO,
and Hj can be quickly calculated so as to achieve the purpose of fast screening materials.

The algorithm of DNN is completed by Matlab software. The correlation coefficients
of the training set, validation set, test set and whole data set of the DNN are 0.99998,
0.9998, 0.99688 and 0.99948, respectively, indicating that the DNN model can well
predict the selectivity. In order to further verify the accuracy of the DNN model, the
selectivity of activated carbon and CuBTC under different pressures and CO, molar
fractions is calculated by extended Langmuir, IAST and DNN. As shown in Fig. 3,
by comparison, the selectivity values calculated by the IAST agree well with the values
calculated by the DNN model, which further verifies the robustness of the DNN model. In
Fig. 3 (a), for an 80:20 H>/CO, mixture, CuBTC selectivity under different adsorption
pressures is greater than activated carbon. In Fig. 3 (b), at 10 atm, the selectivity of
CuBTC is also greater than that of activated carbon at different mole fractions of carbon
dioxide. Therefore, for ideal Hy purification and CO, capture materials, CuBTC is
more suitable than activated carbon. Compared with activated carbon, CuBTC has a
larger surface area and higher pore volume. There are also related articles about the
application of CuBTC in PSA hydrogen purification. For the 81:19 H>/CO, mixture,
the purity 99.99+ of hydrogen can be obtained by a 4-step PSA cycle with CuBTC as
an adsorbent [8].

Besides, after nonlinear treatment by DNN, the process optimization design of
adsorption and separation can be carried out. For example, Ref. [9] predicts and opti-
mizes CO, adsorption capacity, selectivity and adsorption heat through DNN and multi-
objective optimization algorithm. It is worth noting that the selectivity at a fixed tem-
perature calculated by extended Langmuir is a constant value, and the selectivity value
does not change with adsorption pressure and mole fraction. Obviously, the calculation
error of extended Langmuir is large. Ref. [10] points out that the IAST gives the most
accurate predictions than the extended Langmuir and LRC for three binary systems.
Therefore, more and more researchers use IAST to develop corresponding application
programming interfaces (APIs) for calculating selectivity, such as pyIAST, pyGAPS and
GraphIAST [11].

Compared with IAST, another advantage is that the DNN does not need to solve the
integral solutions of different isotherm models. Actually, the DNN proposed in this paper
can calculate the selectivity of any two-component gas, such as CO>/CH4, CH4/H3, etc.
When the input parameters of DNN exceed the lower and upper boundaries of training
data, the predicted results may deviate from the IAST theoretical calculations. The
robustness of the DNN can be enhanced by increasing the dimension of input parameters
and adjusting the structure of the DNN, which is not the focus of this paper. The DNN
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Adsorption v. Pressure Adsorption v. Composition
@ Carbon/Carbon Dioxide (10.1007510450-013-9527-2.isotherm1) — La(Feo: 12.19, K: 0.1887) R2=0.9972 @ CuBTC/Carbon Dioxide (10.1007510450-013-9527-2.isotherm18)
— La(Tw: 1011, K: 0.5146) R2=0.9932 @ Carbon/Hydrogen (10.1007510450-013-9527-2.isotherm4) — La(F: 2.650, K: 0.03472) R?=0.9982
@ CuBTC/Hydrogen (10.1007510450-013-9527-2.isotherm21) — La(: 4.592, K- 0.009257) R2=0.9960
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Fig. 2. Adsorption isotherms of CO; and Hy on CuBTC and AC at 298K on NIST/ARPA-E
(equilibrium data from Ref. [12]).
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Fig. 3. Extended Langmuir, IAST and DNN calculated selectivities of activated carbon and
CuBTC for a 20:80 CO,/Hy mixture at different pressure (a) and a 10 atm CO,/H; mixture
at a different molar fraction of CO» (b).

model is a new attempt at calculating selectivity and can improve the efficiency of
adsorbent screening. In addition, the DNN model can also be extended to the calculation
of adsorption selectivity of multi-component gases to optimize the design of layered
beds with multi-adsorbent.

4 Conclusion

The deep neural network model constructed in this paper can quickly predict the adsorp-
tion selectivity of CO,/H,. The results show that the correlation coefficient of the
DNN model for the whole data set can reach 0.99948. In addition, by combining with
NIST/ARPA-E Database, this paper takes activated carbon and CuBTC as examples to
compare the adsorption selectivity of the two adsorbents under different pressures and
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CO; molar fraction at the same temperature. The results show that the adsorption selec-
tivity of CuBTC is greater than that of activated carbon, so CuBTC is more suitable for
H; purification and CO; storage than activated carbon.
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