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Abstract. Active trailing edge flap (AFlap) systems have shown promising results in reducing wind tur-
bine (WT) loads. The design of WTs relying on AFlap load reduction requires implementing systems to detect,
monitor, and quantify any potential fault or performance degradation of the flap system to avoid jeopardizing
the wind turbine’s safety and performance. Currently, flap fault detection or monitoring systems are yet to be
developed. This paper presents two approaches based on machine learning to diagnose the health state of an
AFlap system. Both approaches rely only on the sensors commonly available on commercial WTs, avoiding the
need and the cost of additional measurement systems. The first approach combines manual feature engineering
with a random forest classifier. The second approach relies on random convolutional kernels to create the fea-
ture vectors. The study shows that the first method is reliable in classifying all the investigated combinations
of AFlap health states in the case of asymmetrical flap faults not only when the WT operates in normal power
production but also before startup. Instead, the second method can identify some of the AFlap health states for
both asymmetrical and symmetrical faults when the WT is in normal power production. These results contribute
to developing the systems for detecting and monitoring active flap faults, which are paramount for the safe and
reliable integration of active flap technology in future wind turbine design.

1 Introduction

The pursuit of lower levelized cost of energy has driven
a steady increase in the size of utility-scale wind tur-
bines (WTs) over the past years, with a consequent increase
in the load carried by the WT components. Among the new
technologies studied to mitigate this load increase, actively
controlled flaps located at the blade trailing edge (AFlap)
have shown promising results in reducing fatigue and ulti-
mate loads and increasing annual energy production, see Bar-
las et al. (2016) and Pettas et al. (2016). Despite the potential
benefits of AFlaps, this technology has yet to reach a suf-
ficient level of maturity for its implementation in commer-
cial WTs. To the authors’ knowledge, only Siemens Gamesa
Renewable Energy (SGRE) has publicly shared data of an
AFlap system implemented on two different multi-megawatt

WTs: a 4.0 MW WT prototype and a 4.3 MW WT prototype,
both installed in Høvsøre (Denmark); see Gomez Gonzalez
et al. (2022).

Every time a new component is included in a wind tur-
bine’s design, the safe and reliable continuous wind turbine
operation must be ensured for the whole turbine’s lifetime.
To fulfill this requirement, additional components, systems,
and controller strategies are needed to identify, quantify, and
resolve any potential issue deriving from the fault of the new
component without compromising the WT safety. Once the
active flap reaches an adequate level of maturity, the wind
turbine design will rely on the load reduction provided by
the active flap. Therefore, any potential fault or performance
degradation of the flap system may jeopardize the safety and
performance of the wind turbine if not adequately managed.
Therefore, a system will be needed to identify, monitor, and
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manage active flap faults or degradation. Until now, the fault
diagnosis and condition monitoring of AFlap systems has not
been investigated in detail, and to our knowledge, no litera-
ture is available on this topic. Nevertheless, we can foresee
different approaches for AFlap fault diagnosis and monitor-
ing, following the standard methodologies currently applied
in the wind energy sector, for which Hossain et al. (2018)
and Gao and Liu (2021) provide comprehensive and updated
overviews.

As a first approach, monitoring and diagnosis can rely on
dedicated sensors located in specific mechanical elements,
like a vibration sensor in a gearbox (Zappalá et al., 2014).
For the AFlap system, position or pressure sensors could be
located on the flap surfaces or in their proximity to quan-
tify the AFlap deflection or the AFlap impact on the blade
aerodynamics. Due to the expected large blade area covered
by the flaps, this monitoring approach will require several
sensors distributed along the outer third of the blade length.
This system will likely be complex, expensive to deploy and
maintain, sensitive to lighting, and affected by the reliability
of the sensor operating in the harsh environment of a wind
turbine rotating blade.

The second approach is the model-based method that
mainly relies on the analyses of the residual signals, signals
defined as the difference between the real system outputs and
the output from a model of the system created by using, for
example, Kalman filter, observers, or model-based machine
learning techniques. On WTs, the model-based methods have
been applied, for example, in the condition monitoring of
main bearings (de Azevedo et al., 2016), sensors and ac-
tuators (Cho et al., 2018), and generators (Gálvez-Carrillo
and Kinnaert, 2011). As a drawback, the model-based meth-
ods require a reasonably good model to guarantee the detec-
tion of faults. The model generation could be challenging for
AFlap fault detection mainly due to the high nonlinearity of
the WT blade dynamic, the high uncertainty on the wind field
interacting with the WT rotor, and the limited number of sen-
sor measurements available on a commercial WT. Improved
wind field estimations (e.g., from nacelle Lidar) or additional
load or pressure sensors on the blade can facilitate the model
generations and improve their accuracy at the price of an in-
creased system complexity and cost.

Finally, data-driven methods allow fault detection with-
out needing a detailed system model but by several types
of data and signal analyses. These analyses range from the
simple detection of changes in mean values, variances, or
trends to the more advanced machine learning (ML) method-
ologies (Badihi et al., 2022). In particular, the study and ap-
plication of ML methodologies to fault diagnosis and condi-
tion monitoring has increased exponentially in recent years
thanks to the technological and computational advances that
have allowed us to quickly and efficiently analyze the large
amount of data needed for the training of the ML models
(García Márquez and Peinado Gonzalo, 2022). Overviews
of the machine learning methods for wind turbine condition

monitoring are provided by Stetco et al. (2019) and Malek-
loo et al. (2022). ML techniques can be applied for the AFlap
fault detection if a sufficient amount of relevant data can be
provided for the model training. Currently, the amount of
AFlap field data is limited – even more for AFlap faults. Nev-
ertheless, aeroelastic simulations have been commonly used
for WT design. Therefore, it is reasonable to assume that
a sufficiently accurate aeroelastic model of a WT equipped
with AFlap can be used to train an ML model for the AFlap
fault detection. To test this assumption, in this paper we study
if data-driven methods based on ML trained with aeroelastic
simulation can adequately classify the AFlap fault states.

1.1 Detecting AFlap health state

The detection of the health state of the AFlap is a challeng-
ing task. Figure 1a shows the mean blade root moment when
the flap is deactivated (AF_Off) or is active without perfor-
mance degradation (AF_On) as a function of the wind speed.
As expected, AFlaps have a relevant impact on the WT blade
aerodynamic, visible in the two distinct lines of the mean
moment binned as a function of the wind speed. However,
the broad range of environmental conditions where the WT
operates causes the moment to vary within a wide range of
values, a range shown in the plot by the colored areas. These
areas overlap significantly, making it difficult for a detection
system to identify the actual AFlap health state. Figure 1b
shows the time series of the blade root bending moment for
the AFlap active and AFlap not active with the same 10 m s−1

turbulent wind. The two lines have a similar highly oscillat-
ing behavior with just a small shift due to the increased lift
generated by the flap activation.

Furthermore, several faults of the AFlap system can oc-
cur in the WT lifetime, which behavior and severity depend
on the layout and scope of the AFlap system itself. Wear
and tear can slowly degrade the performance of part of the
AFlap system; ice or lightning can instead compromise the
whole system’s functionality. As it is impossible to evaluate
all the different combinations of faults, we selected a set of
representative conditions we believe can cover a wide range
of flap faults. The selected cases cover partial and complete
performance degradation happening only on one blade or on
all three blades simultaneously. We focus on identifying the
AFlap health state in static flap actuation to keep the ap-
proach as general as possible. This approach keeps the detec-
tion system independent from any specific AFlap controller
strategy, AFlap system design, or fault dynamics. The idea
is to integrate this kind of detection system in an AFlap sta-
tus check routine running for several minutes in which the
performance of the stationary flap is verified.
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Figure 1. (a) Mean value of the normalized blade root bending moment when the AFlap is deactivated (AF_Off) and activated without
degradation (AF_On), binned as a function of the wind speed. (b) Example of time series of the normalized blade root bending moment
when the AFlap is deactivated (AF_Off) and activated without degradation (AF_On) for a 10 m s−1 turbulent wind.

1.2 Research contribution

This paper investigates whether a simple ML algorithm can
assess the health of an active trailing edge flap system from
the data provided by the sensors commonly available on a
commercial WT. The aim is to develop a system that does
not require any additional sensor to be installed on the WTs,
making it easy to implement without relevant additional costs
for installation or maintenance. This task can be seen as a
multivariate time-series classification problem where the ML
algorithm aims to estimate if the AFlap is properly operating
or is affected by performance degradation. We follow two
different approaches for computing the features from the sen-
sors’ time-series data. In the first approach, we select the fea-
tures based on our knowledge of the impact of AFlaps on the
different WTs signals. In the second approach, we use a brute
force approach to explore possible unknown correlations be-
tween AFlaps’ states and variations in the WTs signals. This
approach relies on thousands of randomly generated con-
volutional kernels that automatically compute features from
all the available signals without requiring pre-knowledge of
AFlaps. We select the simple but robust random forest classi-
fier for both feature calculation approaches. Aeroelastic sim-
ulations are used to train and test the ML models. We use the
aeroelastic model developed by Gamberini et al. (2022) of
the 4.3 MW WT prototype owned by SGRE, where a 20 m
AFlap was installed and tested on one blade of the 120 m
diameter rotor.

Section 2 describes the aeroelastic model, the environmen-
tal conditions, and the flap health states used in the aeroelas-
tic simulations. In Sect. 3, we describe the ML methodolo-

gies used in the study and the two approaches used for AFlap
health detection. In Sects. 4 and 5, we show the obtained re-
sults that we discuss in Sect. 6.

2 Simulated experiments

The training of the ML models is based on a pool of aeroe-
lastic simulations reproducing the WT aeroelastic response
for the combination of wind turbine operative conditions and
flap health states of interest.

2.1 Aeroelastic simulations

A set of aeroelastic simulations is computed for every com-
bination of wind turbine operative conditions and flap health
state of interest. We computed all sets with the same WT
aeroelastic model.

We accounted for the influence of the variability in the
environmental conditions on the wind turbine’s aeroelastic
response by defining the main environmental conditions as
random variables of pre-imposed statistical properties.

2.1.1 Environmental conditions

Table 1 shows the environmental conditions modeled as ran-
dom variables and their parameters, which are the following.

– Mean wind speed. This follows a Weibull distribution
with the annual average wind speed set to 10 m s−1 and
the shape parameter to 2. It is equivalent to IEC wind
class 1.
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– Wind turbulence intensity. This follows the normal tur-
bulence model described in the IEC 61400-1:2019 (IEC,
2019) for turbulence class A where Iref is set to 0.16
with a lognormal distribution. It is defined as

E [σU |U ]= Iref(0.75U + 3.8), (1)

Var[σU |U ]= (1.4Iref)2. (2)

– Wind shear exponent. The vertical wind profile is mod-
eled with a power law with exponent α. As proposed
by Dimitrov et al. (2015), the wind shear exponent is
normally distributed and conditionally dependent on the
mean wind speed U as follows:

E[α|U ] = 0.088(ln(U )− 1), (3)

Var[α|U ] =
(

1
U

)2

, (4)

where α values are constrained within realistic limits.

– Horizontal inflow angle. 9 follows a normal distribu-
tion, is truncated within realistic limits, and is condi-
tionally dependent on the mean wind speed U as pro-
posed by Duthé et al. (2021):

E[9|U ] = ln(U )− 3, (5)

Var[9|U ] =
(

15
U

)2

. (6)

– Vertical inflow angle and air density. Normally dis-
tributed, they are truncated within reasonable limits,
with prescribed values of mean and standard deviation.

One example set of environmental conditions is sampled for
the pre-startup cases, shown in Fig. 2, and the normal power
production cases, shown in Fig. 3.

2.1.2 Aeroelastic model and simulation setup

BHawC is the aeroelastic engineering tool developed inter-
nally by SGRE. It is based on the blade element momentum
(Fisker Skjoldan, 2011) and models the AFlap’s aerodynamic
and actuator system with a dedicated flap module.

SGRE provided the BHawC model of the prototype wind
turbine (pWT) used for the aeroelastic simulations. It in-
cludes the pWT’s structural and aerodynamic models and its
controller. The AFlap model is also tuned to match the lift
increase in the blade region covered by the flap when acti-
vated. In Gamberini et al. (2022), one of the authors showed
that this model estimates the pWT operational parameters
and blade loads with reasonable accuracy, and the AFlap
activation increases up to +8 % the mean flapwise bending
moment at the blade root. All simulations have the same
pWT BHawC model, with only changes in the environmen-
tal conditions and the AFlap health state. The simulations are

performed with turbulence wind and are 10 min long with a
0.01 s time step length.

Two operative conditions are simulated: normal power
production (NPP) and pre-startup (PS). In the latter cases,
the wind turbine is in idling condition with the controller op-
timizing the blade pitch angle to bring the rotor speed and
generator torque to the startup conditions.

For every operative condition, asymmetrical and symmet-
rical AFlap fault cases are simulated. In the symmetrical flap
fault case (3B), the flaps on the three blades have all the same
state and performance. This means the three flaps are mod-
eled with the same aerodynamic polars and control signal. In
the asymmetrical case (1B), the AFlap is active only on one
blade. Even if this is not an expected configuration for future
wind turbines, this setup mirrors the pWT setup facilitating
a future testing with the pWT measurements data. Further-
more, the rotor imbalance due to the flap activated on only
one blade is still a good approximation of the imbalance due
to a flap on one blade being at a different state or performance
than the flaps on the other two blades.

For every case, we simulated seven different AFlap health
states.

– Flap off (AF_Off). AFlap is not active and is simulated
with baseline aerodynamic polar and flap control off.

– Flap on (AF_On). AFlap is active and is simulated with
active flap aerodynamic polar and flap control on.

– Flap off with fault (AF_Off_Fault). AFlap is active even
if the control commands it to be not active. This state
can simulate the case when ice formed on the blades
prevents the flap from closing. It is simulated with active
flap aerodynamic polar and flap control off.

– Flap on with fault (AF_On_Fault). AFlap is not active
even if the control commands it to be active. This state
can be caused by ice preventing the flap from opening or
the flap actuator not working. It is simulated with base-
line aerodynamic polar and flap control on.

– Flap on with degradation. AFlap is active but with de-
graded performance. Reduced flap deflections due to
reduced flap actuator operation, material aging, or ex-
tremely low temperature can be associated with these
cases. We simulated AFlap performance reduced to
25 % (AF_On_25pc), 50 % (AF_On_50pc), and 75 %
(AF_On_75pc) by using a corresponding aerodynamic
polar linearly interpolated between the baseline polar
and the active flap one while the flap control is on.

In the simulations, the AFlap’s health state is kept constant as
this study aims to identify the stationary AFlap health state
and not the exact time of the change in state that a fault can
trigger. Figure 4 shows an example of the normalized lift
coefficient of the flap baseline (AF_Off, line with triangle);
flap active (AF_On, line with squares); and flap active with
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Table 1. Parameters of the environmental conditions modeled as random variables.

Value Unit Distribution Mean Variance Min Max

Turbulence intensity % lognormal Eq. (1) Eq. (2) – –
Wind shear exponent – normal Eq. (3) Eq. (4) −0.2 0.4
Air density kg m−3 normal 1.225 0.05 1.103 1.348
Horizontal inflow angle ◦ normal Eq. (5) Eq. (6) −6 6
Vertical inflow angle ◦ normal 3 3 −2 8

Figure 2. Example of environmental conditions for pre-startup simulations: mean wind speed U , wind turbulence intensity TI, wind shear
exponent α, horizontal inflow angle 9, vertical inflow angle 6, and air density ρ.

performance reduced to 25 % (AF_On_25pc, dashed line),
50 % (AF_On_50pc, circles), and 75 % (AF_On_75pc, dot-
ted line).

For every AFlap health state computed in the NPP case,
we make two simulation sets: a training and test (TaT) set

of 1000 simulations and a validation (Val) set of 500 simula-
tions. The TaT sets cover a wind speed range from 3.5 to
25 m s−1 and share the same sample set of environmental
conditions. The Val sets cover the same wind speeds as the
TaT sets but share a set of environmental conditions uncor-

https://doi.org/10.5194/wes-9-181-2024 Wind Energ. Sci., 9, 181–201, 2024
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Figure 3. Example of environmental conditions for normal power production simulations: mean wind speed U , wind turbulence intensity TI,
wind shear exponent α, horizontal inflow angle 9, vertical inflow angle 6, and air density ρ.

related to the TaT set. The PS cases have a similar setup, but
they cover wind speeds between 1 and 3.5 m s−1; TaT sets
have 300 simulations and the Val sets 150. Environmental
condition sets used for the PS simulations are also uncorre-
lated to the NPP ones.

As the input of the ML model, we selected only sig-
nals commonly available in the modern commercial wind
turbines. These signals are the pitch angle [◦], the rotor
speed [rpm], the generator power [kW], flapwise and edge-
wise bending moments at the root of each of the three
blades [kNm], and linear tower top accelerations [m s−2], to-
gether with the flap actuator control signal [logic].

3 AFlap health state estimation with ML

3.1 Introduction

This paper investigates whether a simple ML algorithm can
estimate the health state of an active trailing edge flap from
the data provided by the sensors commonly available on a
commercial WT. We approached this task as a multivariate
time-series classification problem where the ML algorithm
aims to estimate the AFlap health state. We followed two
different approaches for computing the features from the sen-
sors’ time-series data. The first approach relies on the man-
ual selection of the channels and their relevant statistics that,
from the authors’ knowledge, are known to be impacted by
the trailing edge flap system. In contrast, the second approach

Wind Energ. Sci., 9, 181–201, 2024 https://doi.org/10.5194/wes-9-181-2024
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Figure 4. Example of flap normalized lift coefficient of the
baseline (AF_Off, line with triangle); flap active (AF_On, line
with squares); and flap active with performance reduced to 25 %
(AF_On_25pc, dashed line), 50 % (AF_On_50pc, circles), and
75 % (AF_On_75pc, dotted line).

relies on thousands of randomly generated convolutional ker-
nels to generate the features from all the available signals.
Based on the MiniRocket (MINImally RandOm Convolu-
tional KErnel Transform) algorithm, this approach does not
require pre-knowledge of the AFlap system’s impact on the
WT signals. It explores possible unknown correlations be-
tween the AFlaps states and the WT channels. As a classi-
fier method, we selected the simple but robust random forest
classifier for both feature calculation approaches. For the ap-
proach based on the MiniRocket algorithm, we also used the
ridge classifier with cross-validation.

3.1.1 Random forest

A random forest classifier (RF) is a supervised discriminative
machine learning technique whose objective is to estimate
P (Y |X,θ ), in which Y is the target,X is the observable, and
θ are the parameters. We assume a multi-class classification
problem where each observational sample is assigned to one
and only one label, as opposed to the multi-label approach.

The random forest classifier is based on a collection of
decision trees (also called classification or prediction trees),
a non-parametric supervised learning method designed for
the classification or regression of a discrete category from
the data. In the machine learning sense, the goal is to create
a classification model (classification tree) that predicts the
value of a target variable (also known as label or class) by
learning simple decision rules inferred from the data features
(also known as attributes or predictors). From Fig. 5a, an in-
ternal node N denotes a test on an attribute, an edge B repre-
sents an outcome of the test, and the leaf nodes L represent
class labels or class distribution.

A decision tree is a tree-structured classifier built by start-
ing with a single node that encompasses the entire data and
recursively splits the data within a node, generally into two
branches (some algorithms can perform “multiway” splits).

The splitting is obtained by selecting the variable (dimen-
sion) that best classifies the samples according to a split crite-
rion, i.e., the one that maximizes the information gain among
the random subsample of dimensions obtained at every point.
The splitting continues until a terminal leaf is created by
meeting a stopping criterion, such as a minimum leaf size
or a variance threshold. Each terminal leaf contains data that
belongs to one or more classes. Within this leaf, a model is
applied that provides a reasonably comprehensible predic-
tion, especially in situations where many variables may exist
that interact in a nonlinear manner, as is often the case with
wind turbines (Carrasco Kind and Brunner, 2013). Several
algorithms exist for training decision trees with variations
on impurity, pruning, stopping criteria, how to treat missing
variables, etc. A top-to-bottom construction of a decision tree
begins with a set of objects. Each object has an assigned la-
bel and a set of measured features. The dataset is split at each
tree node into two subsets, left and right, so the two resulting
subsets are more homogeneous than the set in their parent
node. To do so, one must define a cost function that the al-
gorithm will minimize. One can use the information entropy,
the Gini impurity, or a classification error for the cost func-
tion. Formally, the splitting is done by choosing the attribute
that maximizes the information gain, defined in terms of the
impurity degree index Id as shown in Fig. 5b.

By definition, a random forest classifier is a non-
parametric classification algorithm consisting of a collection
of decision-tree-structured classifiers {h(x,2k), k = 1 . . . },
where 2k are independent identically distributed random
vectors, and each tree casts a unit vote for the most popu-
lar class at input x. The RF prediction consists of the ag-
gregation of the decision tree results obtained by a majority
vote. Furthermore, the fraction of the trees that vote for the
predicted class serves as a measure of certainty of the result-
ing prediction. Random forest improves prediction accuracy
over single decision tree classifiers by injecting randomness
that minimizes the correlation ρ amongst the grown individ-
ual decision trees h(x,2k) that operate as an ensemble. This
is achieved by using bootstrap aggregating (a.k.a. bagging,
sample with replacement of the training dataset) in tandem
with random feature selection in the process of growing each
decision tree in the ensemble (Breiman, 1996). This forces
even more variation amongst the trees in the model (different
conditions in their nodes and different overall structures) and
ultimately results in lower correlation across trees and more
diversification.

Some of the arguments in favor of using a random forest
in this research include the following:

– Random forests work well with both categorical and nu-
merical data. No scaling or transformation of variables
is usually necessary.

– Random forests implicitly perform feature selection and
generate uncorrelated decision trees. It does this by
choosing a random set of features to build each deci-
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Figure 5. (a) Graphical representation of a forest of decision tree classifiers. (b) Impurity index Id for a two-class example as a function of
the probability of one of the classes f1 using the information entropy, Gini impurity, and classification error. In all cases, the impurity is at
its maximum when the fraction of data within a node with class 1 is 0.5 and is zero when all data are in the same category.

sion tree. This also makes it a great model when you
have to work with a high number of features in the data.

– Random forests are not influenced by outliers to a fair
degree. It does this by binning the variables.

– Random forests can handle linear and nonlinear rela-
tionships well.

– Random forests generally provide high accuracy and
balance the bias-variance trade-off well. Since the
model’s principle is to average the results across the
multiple decision trees it builds, it averages the variance
as well.

– Random forests are fairly interpretable. They provide
both feature importance and in certain instances the
ability to trace branches to follow the decision-making
process.

3.1.2 MiniRocket

Current methods for time-series classification often concen-
trate on singular aspects like shape, frequency, or variance.
Convolutional kernels offer a unified approach capable of
capturing multiple features that previously necessitated spe-
cialized techniques. These kernels have proven effective in
convolutional neural networks for time-series classification
like ResNet (Wang et al., 2017) and InceptionTime (Is-
mail Fawaz et al., 2020).

ROCKET (RandOm Convolutional KErnel Transform;
Dempster et al., 2020) has demonstrated that achieving state-
of-the-art classification accuracy is possible by transform-
ing time series using random convolutional kernels. Unlike
the learned convolutional kernels in conventional neural net-
works, Dempster et al. (2020) have shown that a combi-
nation of numerous random convolutional kernels can ef-

fectively capture relevant features for time-series classifi-
cation. Even though a single random convolutional kernel
might only approximate a relevant feature in a given time
series, convolutional kernels significantly enhance the clas-
sification accuracy when combined. ROCKET is an algo-
rithm that generates a large number of convolution kernels
(10 000 by default) with random length, weights, bias, di-
lation, and padding of the time series provided as input.
ROCKET extracts two features for each kernel: the maxi-
mum value (an equivalent to the maximum global pooling)
and the proportion of positive values (PPVs), indicating the
proportion of the input matching a given pattern. The PPV
is the most critical element of ROCKET for achieving the
state-of-the-art accuracy.

MiniRocket (MINImally RandOm Convolutional KErnel
Transform) is a reformulated version of ROCKET (Demp-
ster et al., 2021), 75 times faster while maintaining the same
accuracy. MiniRocket minimizes the number of options for
hyperparameters and computes only the PPV, generating half
the number of features as ROCKET. In addition, it does not
require normalization. The v0.3.4 version of the MiniRocket
implementation in Oguiza (2022) has been used in this paper.

3.1.3 Ridge classifier with cross-validation

This ridge classifier uses the ridge regression to predict the
class of a multiclass problem by solving the problem as
a multi-output regression where the predicted class corre-
sponds to the output with the highest value. Ridge regression,
also known as Tikhonov regularization, solves a regression
model by minimizing the following objective function:

minw||Xw− y||22+α||w||
2
2, (7)

where X is the training data, y the target values, w the
ridge coefficients to be minimized, and α the regularization
strength; α controls the amount of shrinkage: the higher the
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value, the greater the amount of shrinkage, increasing the ro-
bustness of the ridge coefficients to collinearity. The addition
of the cross-validation helps to identify the best set of ridge
coefficients, reducing the risk of overfitting.

3.2 Manual feature selection (MFS) with random forest
classifier

The main effect of the activation or deactivation of a trailing
edge flap on a WT is the change in local blade lift that con-
sequently affects the blade’s aerodynamic loading. The im-
pact on the blade loading depends significantly on the WT
operative conditions, as shown in Gomez Gonzalez et al.
(2022). Furthermore, asymmetric activation of the flaps on
the three blades leads to a rotor bending moment imbalance
that is often associated with tower top vibration. Based on
this, we manually select a set of signals to generate the fea-
tures to train an RF model. In addition, we consider only
signals commonly available in all modern commercial wind
turbines. The aim is the development of a method that can
be implemented on commercial wind turbines without the
need of installing additional hardware. Initially, we use sim-
ple statistical properties of the signal time series as features.
Afterward, we include the catch22 (CAnonical Time-series
CHaracteristics) collection (Lubba et al., 2019) to expand the
features pool.

3.2.1 Signal and feature selection

The selected WT signals are as follows:

– flap actuator control signal [logic] – control signal of
the flap activation state (on or off);

– flapwise and edgewise bending moments at the three
blade roots [kN m−1] – main signals to detect the im-
pact of the flaps on the blade aerodynamic loading (load
sensors placed at the blade root are commonly available
in modern WTs);

– pitch angle [◦], rotor speed [rpm], and generator power
[kW] – main signals to estimate the WT’s operative con-
dition to which the flaps’ load impact is related (these
signals are available in every WT controller);

– fore–aft and side–side tower top accelerations [m s−2]
– useful signals in detecting possible rotor imbalances
(the WT safety systems commonly monitor these sig-
nals to detect WT anomalies);

– out-of-plane rotor bending moments [kN m−1] – signals
computed from the blade root moments, pitch angle, and
azimuth position through the Coleman transformation
Bir (2008) equation (these moments help detect possible
rotor imbalances).

The initially selected features are the standard deviation,
mean, maximum, minimum, range, and maximum absolute

value of every signal. Afterward, we add the catch22 col-
lection (Lubba et al., 2019) to expand the features pool to
explore possible unknown correlations between the input
signals. We choose the catch22 collection as it is a high-
performing subset of 22 features selected over a pool of over
7000 based on their classification performance across a col-
lection of 93 real-world time-series classification problems.
The catch22 v0.4 MATLAB tool is used for this paper. Fi-
nally, we include the blade-to-blade difference between the
mean and absolute maximum blade root bending moments
to help detect possible flap activation imbalances.

The feature generation process computes circa 400 fea-
tures for each aeroelastic simulation. To reduce complexity,
we add two feature filtering processes to the algorithm:

– Manual selection of the desired feature subset in the al-
gorithm pre-processing is the first.

– Automatic feature reduction based on out-of-bag per-
muted predictor importance (oobPPI) value is the sec-
ond. The oobPPI measures how influential a feature is
in the model prediction by permuting the value of the
feature and measuring the model error. The permutation
of an influential feature should have a relevant effect on
the model error; little to no effect should come from a
permutation of a non-influential feature. If this filter is
active, the oobPPI of each feature is evaluated after the
RF model is trained. Features with an oobPPI value be-
low the threshold specified by the user are removed, and
the RF model is trained again with the remaining feature
subset. The process is repeated until all the remaining
features consistently have an oobPPI value above the
threshold, simplifying the final model by removing the
features not influential on the classification process.

We decided to not include the wind speed sensor signal in the
ML training. This sensor is generally located on the nacelle,
behind the rotor, where the complexity of the 3D wind flow
can only be correctly estimated by high-fidelity codes, like
CFD. In this paper we use a mid-fidelity aeroelastic model
that is unable to estimate the wind speed on the nacelle with
sufficient accuracy. Therefore, training the ML model with
a low-fidelity nacelle wind speed would reduce the model
accuracy and performance on a real WT. Furthermore, the
ML model can still derive the wind speed data from the ro-
tor speed, pitch angle, and generator power, which strongly
correlate to the wind speed. Therefore, omitting the wind
speed signal reduces model uncertainties without losing rele-
vant data for the ML training. Instead, we use the mean wind
speed for splitting the NPP into different wind speed regions
for which a dedicated RF model is trained. Generally, a mod-
ern WT operates differently below rated wind speed, where it
is power or torque controlled, compared to above rated wind
speed, where it is pitch controlled. Therefore, we expect RF
models trained for each specific wind region to perform bet-
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Figure 6. Schematic structure of MFS algorithm.

ter than a single RF model covering the whole wind speed
range.

3.2.2 Algorithm structure and setup

The algorithm structure, shown in Fig. 6, has the following
steps:

1. calculation of the features for every simulation (usually
it is done only once, after the aeroelastic simulation is
computed);

2. selection of the AFlap fault symmetry (1B or 3B) and
WT operative condition (NPP or PS);

3. selection of the AFlap health states to be used in the
classification;

4. for every specified wind speed range,

(a) manual selection of the desired feature subset

(b) training of the RF model with the TaT set

(c) if the “automatic feature reduction” is enabled, the
following steps are repeat until all features have
oobPPI above threshold:

i. evaluation of the oobPPI of every features
ii. removal of the features with oobPPI below

threshold
iii. training of a new RF model with the remaining

features

(d) validation of the trained RF model with the Val sets.

In the algorithms, three MATLAB functions are used: tem-
plateTree to create the decision tree template, fitcensemble to
train the RF model, and oobPermutedPredictorImportance to
compute the oobPPI value for each feature.

We use the setup proposed by Abdallah (2019) as the de-
fault RF setup: number of trees of 100, learning rate of 0.25,
maximum number of splits of 12, test rate of 30 %, and
oobPPI threshold of 0.01.

3.3 Automatic feature generation with random forest or
ridge classifier

The automatic feature selection (AFS) approach relies on
the same signals used for the manual feature selection ap-
proach: pitch position, rotor speed, generator power, flap-
wise and edgewise bending moments at the root of each of
the three blades, linear tower top accelerations, and the flap
actuator control signal. As described in Sect. 3.2, these sig-
nals are relevant to detect the flap impact on the WT and are
provided with the standard sensors available on commercial
WTs. Instead of generating a set of features for each sig-
nal based on statistical properties, the AFS approach utilizes
ML techniques developed for image processing to create fea-
tures of the whole simulation. We implement two different
algorithms for the classification: a RF classifier, similar to
what we used for the MFS, and a ridge classifier with cross-
validation (ridge) suggested by Dempster et al. (2020) for
application with MiniRocket.

3.3.1 Feature generation with MiniRocket

MiniRocket works by first combining the time series of
the relevant signals of a single simulation in a single ma-
trix, aligning them as a function of time. Then it processes
the resulting matrix like an image utilizing a kernel from
which the proportion of positive values is computed. A set of
10 000 kernels of random lengths, weights, bias, dilation, and
padding are used, generating 10 000 features per simulation.
This process is repeated for all the simulations. For consis-
tency, the same kernel set must be used for all the simulations
used in the RF models’ training, testing, and validation.

3.3.2 Algorithm structure and setup

The algorithm structure, shown in Fig. 7, has the following
steps:

1. calculation of the features with MiniRocket

2. selection of the AFlap fault symmetry (1B or 3B) and
WT operative condition (NPP or PS)

3. selection of the AFlap health states to be used in the
classification

4. selection of the classifier: RF or ridge

5. for every specified wind speed range,

(a) training of the classification model:

i. training of one (or more) classification model
ii. if more than one classification model is trained,

select the model with higher F1 score

(b) validation of the trained classification model with
the Val sets.
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Figure 7. Schematic structure of AFS algorithm.

In the AFS method, we used the following sklearn Python
codes (Pedregosa et al., 2011): StratifiedShuffleSplit to create
multiple test and training subsets from the TaT sets; Random-
ForestClassifier to train, test, and validate the RF models;
RidgeClassifierCV to train, test, and validate the ridge clas-
sifier models; f1_score to compute the F1 score; and Stan-
dardScaler to standardize features by removing the mean and
scaling to unit variance.

Starting from the setup proposed by Abdallah (2019), we
investigate the optimal RF setup for the different scenarios,
obtaining as optimal values a test rate of 30 %, number of
trees of 100, Shannon entropy as the criterion to measure the
quality of a split, maximum depth of the tree of 5, minimum
number of samples required to split an internal node of 5, and
all features included.

For the ridge setup, the regularization strength parameter
was set to an evenly spaced vector in log space of 1000 values
between 1 and 106 and the cross-validation set to leave-one-
out cross-validation that handles efficiently the case of the
number of features higher than the number of samples.

4 Manual feature selection results

The potential of the MFS approach in detecting a flap sys-
tem’s fault is investigated for several AFlap fault scenarios.
These scenarios cover different combinations of AFlap fault
symmetries (1B or 3B), WT operative conditions (NPP or
PS), the possible split in different wind speed ranges, and
different initial feature selection (all or reduced). The initial
feature option allows the reduction in the features used in
training. We set the feature subset without the catch22 col-
lection as the default reduced setup. Instead, the wind speed
range option enables the training of a dedicated ML model
for every specified wind speed range. The default ranges
used in this paper are below rated (BR: wind speed between
3.5 and 9.5 m s−1), around rated (Rt: wind speed between
9.5 and 16.5 m s−1), and above rated (AR: wind speed be-
tween 16.5 to 25 m s−1).

Furthermore, we investigate three different fault detection
levels.

– Primary. The model is trained to detect only the four
primary health states: flap not active (AF_Off), active
(AF_On), not active with fault (AF_Off_Fault), and ac-
tive with fault (AF_On_Fault).

– Degraded. The model is trained to detect if the flap has
degraded performance but without identifying the per-
formance degradation level. The three health states of
flap with degraded performance are merged in a sin-
gle state, called active with degradation (AF_On_Degr),
that is included in the training with the four primary
health states.

– Detailed. The model is trained to identify the flap
performance reduced to 25 % (AF_On_25pc), 50 %
(AF_On_50pc), and 75 % (AF_On_75pc) in addition to
the primary health states.

Table 2 collects the list of the MFS scenarios and shows their
setup. Scenarios stated within parenthesis have a customized
setup detailed described in the following chapters.

The selection of the models’ performance metrics is
strictly related to the requirements of the detection system. If
one (or more) flap fault is critical for the WT integrity, the de-
tection of this fault would be prioritized over the other AFlap
health states. In this case, a good metric would be the recall
of the critical fault. For an opposite scenario, where it would
be more critical to avoid false fault detections and keep the
WT operating, the precision of the different faults should be
considered. In this paper, we are not considering any particu-
lar requirement for the fault detection system, and we aim to
correctly detect all the different classes equally without prior-
itizing any one specifically. Therefore, we select the F1 score,
a trade-off between recall and precision that rewards the re-
duction in both false positives and false negatives. In detail,
we use the weighted F1 score: the average of the F1 score of
each class weighted by the ratio of the number of samples of
each class over the total sample number. This metric is con-
sistent between balanced and unbalanced classification tasks,
allowing us to evaluate the few scenarios where the classes
are not balanced.

4.1 Detection of asymmetric fault

Table 3 collects the performance of the RF models trained
for the asymmetric fault scenarios described in Table 2. In
addition to the weighted F1 score, the number of features
obtained after the automatic feature reduction in the model
training is shown. We use this number as an estimate of
the model complexity: where more features are needed, it is
more complex to implement and execute the model. In addi-
tion, precision and recall values of the AFlap health states for
some specific asymmetric fault scenario models are collected
in Table 4.

As the first step, scenario 1BN_A1 trains a single RF
model for all the wind speeds to detect the primary flap health
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Table 2. Compact description of the setup of the AFlap fault scenarios.

Fault scenario names for detection level Fault scenario setup

Primary Degraded Detailed Features Wind WT Fault
speed operation symmetry
ranges

1BN_A1 1BN_B1 1BN_C1 All
No

NPP

Asymmetric (1B)

(1BN_A1c)

– 1BN_B1r – Reduced

1BN_A2 1BN_B2 1BN_C2 All
Yes(1BN_A2c)

– 1BN_B2r 1BN_C2r Reduced

– 1BP_B1 1BP_C1 All
No PS

1BP_A1r 1BP_B1r 1BP_C1r Reduced
(1BP_A1rc)

3BN_A01 – – All No

NPP
Symmetric (3B)

3BN_A02 3BN_B2 3BN_C2 All Yes
(3BN_A02c) (3BN_B2b) (3BN_C2b)

– 3BN_B3 3BN_C3 All Yes

3BP_A1 3BP_B1 3BP_C1 All No PS
(3BN_A01c) (3BP_B1b) (3BP_C1b)

states in normal power production, starting the training with
all the available features. The trained model needs only three
features (out of 400) to achieve an F1 score of 1, meaning
it can perfectly classify the primary health states. To un-
derstand how this trained model would perform with AFlap
degradation (which will occur during the normal lifetime of
the flap, also as a partial fault), we evaluate it with all the de-
graded AFlap health states classified as AF_On_Fault (sce-
nario 1BN_A1c). Under this condition, the model F1 score
decreases to 0.79 due to the misclassification of the flap
fault (AF_On_Fault) as normal flap operation (AF_On). This
misclassification is expressed numerically by a low value of
AF_On recall (0.33) and AF_On_Fault precision (0.48). We
obtain comparable results in scenario 1BN_A2, where the
wind speeds are split into three different wind speed ranges,
and an independent RF model is trained for each range. The
models trained in this scenario detect well the primary health
states (F1 score of 1) but cannot distinguish the degraded
AFlap states (scenario 1BN_A2c).

As the second step, we unify the degraded AFlap health
states under a single category (AF_On_Degr). Scenario
1BN_B1 trains a single RF model for all the wind speeds
to detect the degraded fault health states in NPP. The trained
model requires 17 features for an F1 score of 0.90 mainly due
to the low recall (0.56) of the AF_On class. Removing the
catch22 features to simplify the model (scenario 1BN_B1r)
leads to a lower F1 score (0.82), poor AF_Off_Fault class
recall (0.41), and poor AF_On class precision (0.37). Split-

ting the training for the tree wind speed ranges (scenario
1BN_B2) generates three high-performing models (F1 score
higher than 0.95) even in the scenario where the catch22 fea-
tures are removed (1BN_B2r).

As the last step for the NPP case, we evaluate if a model
could individually identify the degraded AFlap health states.
Scenario 1BN_c1 trains a single RF model for all the wind
speeds for a detailed detection level in NPP. The trained
model requires 16 features for an F1 score of 0.70 and
can almost not distinguish the AF_Off_Fault from the other
classes. Splitting the training for the tree wind speed ranges
(scenario 1BN_c2) dramatically improves the performance
of the models with an F1 score of 0.91 BR, 0.95 Rt, and
0.98 AR obtained with 14 features or less. In detail, the BR
model is imprecise in classifying the AF_Off_Fault and has
a low recall for AF_On. Removing the catch22 features leads
to models with similar performance but fewer features (10 or
less).

After the NPP scenarios, we investigated if the AFlap
health states can be correctly classified in pre-startup condi-
tions where the WT is idling due to low wind speed. For the
scenarios aiming at the primary flap health states (1BP_A1r
and 1BP_A1rc) in the PS condition, the performance follows
the same pattern as the previous similar scenarios in NPP.
When the AF_On_Degr class is included (scenario 1BP_B1),
the trained model shows a high F1 score (0.94) with 20 fea-
tures. A high F1 score of 0.95 is also achieved with only
nine features starting from a reduced set of features (sce-
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nario 1BP_B1r). Finally, when we analyze the detailed de-
tection level (scenario 1BP_C1), the trained model achieves
an F1 score of 0.92 with 27 features. Omitting the catch22
features in training (scenario 1BP_C1r) brings an equivalent
F1 score with only 14 features.

4.2 Detection of symmetric fault

Table 5 collects the performance of the RF models trained for
the symmetric fault scenarios described in Table 2. Precision
and recall values of the AFlap health states for some specific
symmetric fault scenario models are collected in Table 6.

Similar to the asymmetric faults’ cases, we start with a
scenario (3BN_A1) that trains a single RF model for all the
wind speeds to detect the primary health cases in NPP, using
all the available features initially. The trained model achieves
an F1 score of 0.75 with 32 features. When tested with the
degraded flap health states bundled together as AF_On_Fault
(scenario 3BN_A1c), the F1 score decreased to 0.71 due to
the misclassification of the fault (AF_On_Fault) as normal
flap operation (AF_On). This misclassification is expressed
numerically by a low value of AF_On recall (0.33) and low
precision (0.61) of both AF_Off_Fault and AF_On_Fault.
We obtained comparable results in scenario 3BN_A2, where
we trained an independent RF model for each of the three
different wind speed ranges. The models trained in this sce-
nario detect better than the previous scenario the primary flap
health states, especially for AR (F1 score of 0.92), but can-
not correctly distinguish the degraded AFlap states (scenario
1BN_A2c).

As the second step, we include the degraded AFlap
health states under a single category (AF_On_Degr). Sce-
nario 3BN_B2 trains an independent RF model to detect the
degraded flap cases in NPP for each of the three different
wind speed ranges. The trained model shows a low F1 score
of 0.41 for BR, 0.51 at rated, and 0.64 for AR. To improve
the performance of the models, we explore the RF model
hyperparameter setup. One of the most successful results is
scenario 3BN_B2b, where we increase the number of trees
from 100 to 300 and the maximum number of slits from 12
to 30. These changes lead to an increase in the F1 score by
around 0.08, with the highest value achieved in the AR wind
speed range with an F1 score of 0.72. This model still shows
low recall for AF_On and AF_On_Fault flap states and a
low precision for AF_On_Degr. As a final try to increase
the models’ performance, we reduce the width of the wind
speed ranges, obtaining BRa (3.5 to 6.5 m s−1), BRb (6.5 to
9.5 m s−1), RTa (9.5 to 12.5 m s−1), RTb (12.5 to 15.5 m s−1),
ARa (15.5 to 20.5 m s−1), and ARb (20.5 to 25.5 m s−1). This
scenario (3BN_B3) leads to RF models with higher perfor-
mance, but only ARa and ARb models have the F1 scores
higher than 0.7 (0.75 and 0.83, respectively). Both RF mod-
els have good precision except for the AF_On_Degr class but
a low recall for AF_On, AF_On_Fault, and AF_On_Degr.
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Finally, we investigate if an RF model could individually
identify the detailed flap health states, obtaining models with
poor performance in the symmetric fault case during NPP.
Scenario 3BN_C2 trains an independent RF model to detect
the degraded fault cases in NPP for each of the three differ-
ent wind speed ranges. The trained model has an F1 score
below 0.50. Increasing the number of trees to 300 and the
maximum number of slits to 30 (scenario 3BN_C2b) im-
proves the F1 score of around 0.1. The precision and re-
call values show that the models cannot correctly detect most
AFlap health states. Adding the reduction in the size of the
wind ranges (scenario 3BN_C3) does slightly improve the
F1 score but with the best-performing model (ARb) reaching
only an F1 score of 0.77. For the PS wind turbine operation,
the scenario aiming at the degraded flap health states (sce-
nario 3BP_B1) trains a model with a low F1 score (0.55) but
is unable to classify all the different AFlap health states cor-
rectly. Increasing the number of trees and split (3BP_B1b)
does not lead to better performance. Also, for the detailed de-
tection level (scenario 3BP_C1), the trained model achieves a
poor F1 score of 0.30 that is only marginally improved (0.38)
by increasing the number of trees and split (3BP_C1b).

5 Automatic feature selection results

The AFS approach is investigated with most of the scenar-
ios used for the MFS approach and collected in Table 2. An
initial preliminary investigation shows that a model trained
only to detect the primary flap health states will most likely
perform poorly when the AFlap starts to have degraded per-
formance, similar to what we obtain in the MFS analysis.
Since this performance degradation is likely to happen, there
is a low interest in a model that cannot account for it properly,
and the primary fault detection level is therefore omitted in
the AFS analyses. Furthermore, the initial feature reduction
does not apply to the AFS approach, and the scenarios with
the reduced feature setup are not included. Regarding the RF
hyperparameter setup, we ran an initial study using several
randomly generated subsets of features to identify the values
of the hyperparameters optimizing the F1 score. This study
shows an optimal hyperparameter setup with the number of
trees being 100 (an increase up to 300 does not improve the
performance), the maximum depth of the tree being 5 (lower
values tend to cause overfitting), the minimum number of
samples required to split an internal node being 5, and Shan-
non entropy as a criterion to measure the quality of a split.
The final model training is instead performed including all
the features. This configuration showed better performance
compared to the random pick of a subset of features of the
size of square root or log2 of the total number of features.

Having a number of features considerably higher than
the number of samples, a condition not ideal for the RF
method, we investigate if another classifier can perform bet-
ter than RF. We selected the ridge regression classifier with
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cross-validation, a linear classifier tested in the development
of both ROCKET (Dempster et al., 2020) and MiniRocket
(Dempster et al., 2021).

5.1 Detection of asymmetric fault

The performances of models trained with the RF classifier
for the asymmetric fault scenarios described in Table 2 are
shown in Table 3, together with the results from the MFS
approach. Table 4 collects precision and recall values of the
AFlap health states for some specific asymmetric fault sce-
narios of the RF models.

In NPP, AFS RF shows low performance when trained
to detect the degraded health states for all the wind speeds
(scenario 1BN_B1) with an F1 score of 0.67. The model
can correctly classify the AF_Off and AF_Off_Fault states
but cannot classify the other AFlap health states, as indi-
cated by the recall and precision values. When we train the
classifiers for the detailed health states (scenario 1BN_C1),
performance decreases with an F1 score of 0.55. Also, for
this scenario, the models can adequately classify AF_Off
and AF_Off_Fault states but fail with the other states. Per-
formances slightly increase when we split the training into
different wind speed ranges. AFS RF achieves the highest
performance in evaluating the degraded health states (sce-
nario 1BN_B2) around rated wind speed with an F1 score
of 0.78. For the other wind speed ranges, the F1 score stays
around 0.6. Comparable results are achieved for the detailed
health states (scenario 1BN_C2), where AFS RF achieves a
max F1 score of 0.73 at RT but not higher than 0.56 in the
other wind speed ranges. Looking at the results in PS, the
RF classifier performs poorly in identifying degraded and de-
tailed health states (scenario 1BP_B1 and 1BP_C1, respec-
tively) with a max F1 score of 0.45.

Figure 8 compares the F1 scores from AFS RF with the
scores from AFS ridge. The ridge classifier achieves results
comparable to RF for degraded and detailed flap health states
in the 1B case. Also, the precision and recall values of the
ridge models are close to the values of the RF models of the
corresponding scenarios. For brevity, we have not included
them in this paper.

5.2 Detection of symmetric fault

The performances of models trained with the RF classifier
for the symmetric fault scenarios described in Table 2 are
shown in Table 5, together with the results from the MFS ap-
proach. Precision and recall values of the AFlap health states
for some specific asymmetric fault scenario models are col-
lected in Table 6.

In NPP, AFS RF shows low performance when trained to
detect the degraded health states (scenario 3BN_B2) for dif-
ferent wind speed ranges. The F1 score is between 0.53 at BR
and 0.63 at AR. Similar to what was observed in the asym-
metric fault, the models can detect most of the AF_Off and

AF_Off_Fault states properly but cannot classify the other
AFlap health states. Reducing the width of the wind speed
ranges (scenario 3BN_B3) mainly reduces the performance,
especially for low and high wind speeds, except at ARa,
where the F1 score increases up to 0.67. Looking at the de-
tailed health states for the three wind seed ranges (scenario
3BN_C2), the F1 score rises from 0.49 at BR to 0.58 at AR.
Similar to the degraded flap health states, reducing the width
of the wind speed ranges (scenario 3BN_C3) does reduce the
performance, especially for low or high wind speeds. Like
the previous scenarios, the models have high recall and pre-
cision values for AF_Off and AF_Off_Fault states and low
values for the other health states.

Looking at the results in PS, AFS RF classifiers perform
poorly in identifying degraded and detailed health states
(scenario 1BP_B1 and 1BP_C1, respectively) with a max
F1 score of 0.5. Also, the ability to correctly classify AF_Off
and AF_Off_Fault states is consistently reduced with both
recall and precision below 0.8.

Similar to the asymmetrical case, the ridge classifier
achieves comparable results to RF for both degraded and de-
tailed flap health states in the 3B case. Figure 8 shows that
AFS RF performs slightly better than the ridge classifier for
the detailed flap health states.

6 Discussion

6.1 Manual feature selection with random forest

The results described in Sect. 4.1 show that the manual fea-
ture selection approach with a random forest classifier can
correctly classify the AFlap health states in the case of asym-
metric flap fault 1B. In normal power production, degraded
and detailed health states are correctly classified, and the
performance increases when splitting the training into three
wind speed ranges. This result supports our initial hypothe-
sis that as a WT operates differently at different wind speed
ranges, models trained for specific wind ranges perform bet-
ter than a single model trained for all wind speeds. Notably,
less than 20 features are needed for the models, a small frac-
tion of the around 400 provided at the beginning of the train-
ing. This number can be further reduced to 10 or fewer by
removing the catch22 features without significantly reduc-
ing the models’ performance. Even if few features are spe-
cific to some scenarios, all scenarios share the blade-to-blade
differences between the mean blade root bending moment
(mainly of flapwise bending moment), followed by the mean
value of WT performance indicators like pitch angle, genera-
tor power, rotor speed, or blade root bending moments. This
sounds logical since an asymmetrical flap fault among the
different blades should result in a relevant difference in the
blades’ loading. The blade-to-blade load difference channels
should collect this load imbalance. Furthermore, the blade
imbalance is a function of the WT operational working state
that the models most probably identify with the WT perfor-
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Figure 8. (a) Comparison between the MFS RF F1 scores and the MFS RF F1 scores of the different degraded and detailed flap health
scenarios. (b) Comparison between the AFS RF F1 scores and the AFS ridge F1 scores of the different degraded and detailed flap health
scenarios.

mance indicator features. Also, the models need fewer fea-
tures at above rated wind speed, where generator power and
rotor speed are almost constant, and the blade-to-blade load
difference is most likely less impacted by them. Looking at
the pre-startup operation, both degraded and detailed health
states are correctly classified and the catch22 features can
be omitted without reducing performance, as experienced in
NPP. The models need more features than the NPP scenar-
ios, still with blade-to-blade load difference as the key fea-
ture followed by mean values of the blade loads. Generator
power and rotor speed are no longer relevant, being almost
null in the idling state.

Regarding the primary health states detection, the models
obtained with MFS show, on one side, high performance in
identifying the four primary health states in both NPP and
PS, but on the other side, they cannot account properly for
the degradation of the AFlap performance. Since this degra-
dation is likely to happen in the WT lifetime, we think these
models can lead to some significant misclassification, and we
do not recommend them for field application.

In the case of a symmetric flap fault 3B, the MFS approach
fails to correctly classify all the tested AFlap health states
in both NPP and PS operation states. Increasing the model
complexity or reducing the wind range width improves the
performance negligibly, and the only case with an accept-
able F1 score is the degraded health states at high wind
speeds (ARb). Looking at the selected features helps to un-
derstand the reasons for the misclassification. The blade-to-
blade features are no longer present, replaced by several fea-
tures related to single-blade loading, tower top accelerations,
and rotor speed. This result confirms that the blade-to-blade
loads no longer contain any flap fault information in the sym-
metric fault scenario, where the flap fails symmetrically in
all three blades. Therefore, the RF models try to estimate the

AFlap health states from the features of other channels, like
blade loads. The failure to obtain satisfactory performance
means the channels used in training do not have sufficient in-
formation to identify the AFlap health states, and more sig-
nals are needed to achieve it. A possible solution to properly
detect and classify AFlap health states in the 3B condition is
to transform it into an asymmetrical case. This transforma-
tion can be achieved with a flap check routine that activates
the flap one blade at a time, which is like a 1B condition
where the RF models can accurately estimate the flap health
states.

The reduced feature set of the MFS approach relies on sta-
tistical data commonly available in the commercial wind tur-
bine SCADA data. This approach greatly facilitates the ap-
plication of this methodology to commercial wind turbines.
To do so, the MFS model must be trained with simulations
based on the target wind turbine aeroelastic model and even-
tually fine-tuned with transfer learning techniques using the
wind turbine SCADA data. Instead, the MFS method with
full feature requires calculating additional features generally
not included in the standard SCADA data. For this method,
a cost–benefit evaluation should identify which features are
relevant to be computed in addition to the standard SCADA
data.

6.2 Automatic feature selection with random forest and
ridge classifier

The results described in Sect. 5 show that the automatic fea-
ture selection approach with a random forest classifier cannot
correctly classify the AFlap health states for both asymmet-
ric and symmetric flap fault cases. The trained models do not
reach an F1 score higher than 0.8 in 1B scenarios and higher
than 0.7 in 3B scenarios. Figure 8 compares the F1 scores
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between MFS and AFS RF models, with the MFS models
outperforming the AFS models in the 1B scenarios. In the
3B scenarios, AFS RF models perform slightly better, espe-
cially for the detailed flap health states. As shown in Fig. 8,
for the 1B scenarios, AFS ridge models perform similarly to
the AFS RF models in 1B cases and slightly worse in the
3B cases. The overall performances of the AFS models need
to be further improved before the AFS models can be imple-
mented in detecting all the AFlap health states. However, the
AFS models performed better than the MFS models for two
flap health states. For the NPP operation state, the AFS mod-
els can correctly identify the AF_Off and AF_OFF_Fault flap
health states from the other states with precision and recall
above 0.9. This result suggests that the selected input chan-
nels also carry the flap state information for the NPP state.
The AFS method has the potential to detect this informa-
tion, even if partially, for the flap state estimation. Further
studies are needed to achieve acceptable precision and re-
call for all the flap health states. These studies should cover
a comprehensive study on the impact of the different setup
parameters on the model performance or explore other ML
techniques like, for example, MultiRocket (MiniRocket evo-
lution) or HYDRA.

Regarding the implementation in the wind turbine con-
troller, the AFS approach processes the whole 10 min signal
data to generate the features. Therefore, it requires a dedi-
cated feature generation algorithm that computes the features
constantly. As a result, implementing the AFS requires more
resources (both hardware and software) than the MFS.

7 Conclusions

The integration of active flaps in the wind turbine design has
the potential to reduce loads and enhance wind turbine per-
formances. However, this integration requires implementing
systems to detect, monitor, and quantify any potential fault or
performance degradation of the flap system to avoid jeopar-
dizing the wind turbine’s safety and performance. This paper
investigated two approaches to identify the health state of a
WT’s active trailing edge flaps. These approaches do not rely
on specific sensors designated for AFlap’s health monitoring
but only on sensors commonly available on all commercial
wind turbines. Both approaches are based on multivariate
time-series classification methods. The first method (MFS)
uses manual feature engineering in combination with a ran-
dom forest classifier. The second method (AFS) creates the
feature vectors from multivariate time-series data by pass-
ing the inputs through multiple random convolutional kernels
in combination with a random forest classifier. We trained
both methods to classify combinations of seven AFlap health
states for a WT operating in normal power production and
pre-startup. We analyzed asymmetrical flap faults, with the
flap health states applied to only one blade, and symmetri-
cal flap faults, where the flap health states were applied to

all three blades. The study is based on a pool of aeroelas-
tic simulations of a WT equipped with an active flap. These
simulations were performed with a broad set of environmen-
tal conditions to account for the variability due to external
weather conditions in the model’s training. To keep the ap-
proach as general as possible, we focused on identifying the
AFlap health state when the flap is in stationary actuation
positions. This approach keeps the detection system inde-
pendent from any specific AFlap controller strategy, AFlap
system design, or fault dynamics. The underlying idea is to
integrate the monitoring system in an AFlap status check rou-
tine running for several minutes where the performance of
the stationary flap is verified.

In this paper, we showed that the MFS method could clas-
sify the different combinations of AFlap health states in the
case of asymmetrical flap faults. The MFS method is reliable
when the WT operates in normal power production and pre-
startup, achieving an F1 score higher than 0.9. Essential fea-
tures to achieve this result are the blade-to-blade differences
in the mean blade root loads.

Instead, the MFS method failed to classify the AFlap
health states in the case of symmetrical flap fault. This fail-
ure is likely due to the channels used for the training not pro-
viding sufficient information about the flap fault. To avoid
adding other sensor signals to the model, we suggest trans-
forming the symmetrical flap fault detection into an asym-
metrical one. For example, a flap check routine can activate
the flap one blade at a time, generating a temporary asymmet-
rical flap activation that the MFS methodology can monitor.

As the MFS approach with a reduced feature set relies only
on 10 min statistical properties, we believe it can be directly
implemented in an actual wind turbine. The model must be
trained with simulations based on the target wind turbine
aeroelastic model and eventually tuned with transfer learn-
ing techniques using the wind turbine SCADA data. Instead,
the MFS method with full feature requires calculating addi-
tional features generally not included in the standard SCADA
data. For this method, a cost–benefit evaluation should be
performed to identify which features are relevant to be com-
puted in addition to the SCADA data.

Furthermore, we showed that, in general, the AFS method
fails to classify most AFlap health states in asymmetrical
and symmetrical flap faults. However, AFS can identify some
specific flap health states better than the MFS method for the
symmetrical case. This result suggests that the selected input
channels carry the flap state information for the NPP state,
but only the AFS method has the potential to detect them.
We also evaluated a ridge classifier in the AFS method, ob-
taining a similar performance to the random forest classifier
with a consistently lower training time.

Compared to the MFS approach, implementing the AFS
method will require more resources as it needs additional
preprocessing to generate the features. The methodologies
described in this study contribute to developing the systems
for detecting and monitoring active flap faults, which are
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paramount for the safe and reliable integration of active flap
technology in future wind turbine design.

As future developments, we suggest further exploring the
AFS method by applying different and better performing
convolutional techniques. Also, the AFS and MFS method-
ology can be combined into a hybrid system to investigate
if the combined system presents improved performances by
leveraging the strengths of each method. It is also of extreme
interest to validate the capability of the MFS method with
data from an actual wind turbine, to which the models can be
adapted via transfer learning techniques.

Appendix A: List of symbols

Flap states
AF_On AFlap active without performance

degradation
AF_Off AFlap not activated
AF_On_Fault AFlap not active due to fault
AF_Off_Fault AFlap active due to fault
AF_On_25pc AFlap active with performance reduced

to 25 %
AF_On_50pc AFlap active with performance reduced

to 50 %
AF_On_75pc AFlap active with performance reduced

to 75 %
AF_On_Degr Combination of all AFlap active with

reduced performance
Fault scenarios
3B Symmetrical AFlap fault
1B Asymmetrical AFlap fault
NPP Normal power production
PS Pre-startup
BR Below rated: wind speed ranges

between 3.5 and 9.5 m s−1

Rt Around rated: wind speed ranges
between 9.5 and 16.5 m s−1

AR Above rated: wind speed ranges
between 16.5 and 25 m s−1

Other symbols
AFlap Active trailing edge flap
WT Wind turbine
pWT Prototype wind turbine
ML Machine learning
RF Random forest classifier
TaT Training and test set
Val Validation set
oobPPI Out-of-bag permuted predictor

importance
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