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Abstract. A model of an information system describes its processes and how resources are in-
volved in these processes to manipulate data objects. This paper presents an extension to the
Petri nets formalism suitable for describing information systems in which states refer to object
instances of predefined types and resources are identified as instances of special object types. Sev-
eral correctness criteria for resource- and object-aware information systems models are proposed,
supplemented with discussions on their decidability for interesting classes of systems. These new
correctness criteria can be seen as generalizations of the classical soundness property of workflow
models concerned with process control flow correctness.

Keywords: Information System, Verification, Data Correctness, Resource Correctness

1. Introduction

Petri nets are widely used to describe distributed systems capable of expanding their resources indef-
initely [1]. A Petri net describes passive and active components of a system, modeled as places and
transitions, respectively. The active components of a Petri net communicate asynchronously with each

*Address for correspondence: Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.
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other via local interfaces. Thus, state changes in a Petri net system have local causes and effects and
are modeled as tokens consumed, produced, or transferred by the transitions of the system. A token
is often used to denote an object in the physical world the system manipulates or a condition that can
cause a state change in the system.

Petri nets with identifiers [2] extend classical Petri nets to provide formal means to relate tokens to
objects. Every token in such a Petri net is associated with a vector of identifiers, where each identifier
uniquely identifies a data object. Consequently, active components of a Petri net with identifiers model
how groups of objects, either envisioned or those existing in the physical world, can be consumed,
produced, or transferred by the system.

It is often desirable that modeled systems are correct. Many criteria have been devised for as-
sessing the correctness of systems captured as Petri nets. Those criteria target models of systems that
use tokens to represent conditions that control their state changes. In other words, they can be used
to verify the correctness of processes the systems can support and not of the object manipulations
carried out within those processes. Such widely-used criteria include boundedness [3], liveness [4],
and soundness [5]. The latter one, for instance, ensures that a system modeled as a workflow net,
a special type of Petri nets used to encode workflows at organizations, has a terminal state that can
be distinguished from other states of the system, the system can always reach the terminal state, and
every transition of the system can in principle be enabled and, thus, used by the system.

Real-world systems, such as information systems [6], are characterized by processes that manip-
ulate objects. For instance, an online retailer system manipulates products, invoices, and customer
records. However, although tools allow designing such models [7], initial use showed that correctness
criteria addressing both aspects, that is, the processes and data, are understood less well [8]. The paper
at hand closes this gap.

In this paper, we propose a correctness criterion for Petri nets with identifiers that combines the
checks of the soundness of the system’s processes with the soundness of object manipulations within
those processes. Intuitively, objects of a specific type are correctly manipulated by the system if every
object instance of that type, characterized by a unique identifier, can “leave” the system, that is, a
dedicated transition of the system can consume it, and once that happens, no references to that object
instance remain in the system. When a system achieves this harmony for its processes and all data
object types, we say that the system is identifier sound, or, alternatively, that the data and processes of
the system are in resonance. Specifically, this paper makes these contributions:

• It motivates and defines the notion of identifier soundness for checking correctness of data object
manipulations in processes of a system;

• It proposes a resource-aware extension for systems and defines a suitable correctness criterion
building on top of the one of identifier soundness and requiring that system resources are man-
aged conservatively;

• It discusses aspects related to decidability of identifier soundness in the general case and for
certain restricted, but still useful, classes of systems;

• It establishes connections with existing results on verification of data-aware processes and shows
which verification tasks are decidable for object-aware systems.
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The paper proceeds as follows. The next section introduces concepts and notions required to sup-
port subsequent discussions. Section 3 introduces typed Petri nets with identifiers, a model for mod-
eling distributed systems whose state is defined by objects the system manipulates. Section 4 presents
various correctness notions for typed Petri nets with identifiers, including identifier soundness, and
demonstrates a proof that the notion is in general undecidable. Moreover, the section discusses the
connection to existing verification results and shows which verification tasks are decidable for typed
Petri nets with identifiers. Section 5 discusses several classes of systems for which identifier soundness
is guaranteed by construction. Section 6 presents the formalism extension with resource management
capabilities and discusses a series of results, including resource-aware soundness, that is deemed to be
undecidable. Finally, the paper concludes with a discussion of related work and future work.

2. Preliminaries

Let S and T be sets. The powerset of S is denoted by ℘(S) = {S′ | S′ ⊆ S} and |S| denotes the
cardinality of S. Given a relation R ⊆ S × T , its range is defined by RNG(R) = {y ∈ T | ∃x ∈ S :
(x, y) ∈ R}. 1 A multiset m over S is a mapping of the form m : S → N, where N = {0, 1, 2, . . .}
denotes the set of natural numbers. For s ∈ S, m(s) ∈ N denotes the number of times s appears in
the multiset. For x ̸∈ S, m(x) = 0. We write sn if m(s) = n. We use S⊕ to denote the set of all finite
multisets over S and ∅ to denote the empty multiset. The support of m ∈ S⊕ is the set of elements that
appear in m at least once: supp(m) = {s ∈ S | m(s) > 0}. Given two multisets m1 and m2 over S,
we consider the following standard multiset operations:

• m1 ≤ m2 iff m1(s) ≤ m2(s) for each s ∈ S;
• m1 +m2 = {sn | s ∈ S, n = m1(s) +m2(s)};
• if m1 ≤ m2, m2 −m1 = {sn | s ∈ S, n = m2(s)−m1(s)}.

We also write |m| =
∑

s∈Sm(s) to denote the cardinality of m. A sequence over S of length n ∈ N
is a function σ : {1, . . . , n} → S. If n > 0 and σ(i) = ai, for 1 ≤ i ≤ n, we write σ = ⟨a1, . . . , an⟩.
The length of σ is denoted by |σ| and is equal to n. The sequence of length 0 is called the empty
sequence, and is denoted by ϵ. The set of all finite sequences over S is denoted by S∗. We write a ∈ σ
if there is 1 ≤ i ≤ |σ| such that σ(i) = a. Concatenation of two sequences ν, γ ∈ S∗, denoted by
σ = ν · γ, is a sequence defined by σ : {1, . . . , |ν|+ |γ|} → S, such that σ(i) = ν(i) for 1 ≤ i ≤ |ν|,
and σ(i) = γ(i − |ν|) for |ν| + 1 ≤ i ≤ |ν| + |γ|. We define the projection of sequences on a set
T by induction as follows: (i) ϵ|T = ϵ; (ii) (⟨a⟩ · σ)|T = ⟨a⟩ · σ|T , if a ∈ T ; (iii) (⟨a⟩ · σ)|T = σ|T ,
if a ̸∈ T . Renaming sequence σ with an injective function r : S → T is defined inductively by
ρr(ϵ) = ϵ, and ρr(⟨a⟩ · σ) = ⟨r(a)⟩ · ρr(σ). Renaming is extended to multisets of sequences as
follows: given a multiset m ∈ (S∗)⊕, we define ρr(m) =

∑
σ∈supp(m) σ(m) · ρr(σ). For example,

ρ{x 7→a,y 7→b}(⟨x, y⟩3) = ⟨a, b⟩3.

Labeled Transition Systems. To model the behavior of a system, we use labeled transition sys-
tems. Given a finite set A of (action) labels, a (labeled) transition system (LTS) over A is a tuple
Γ = (S,A, s0,→), where S is the (possibly infinite) set of states, s0 is the initial state and

1Notice that R can be also seen as a function R : X → T .
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→ ⊆ (S × (A ∪ {τ}) × S) is the transition relation, where τ ̸∈ A denotes the silent action [9].
In what follows, we write s a−→ s′ for (s, a, s′) ∈→. Let r : A → (A′ ∪ {τ}) be a total function. Re-
naming Γ with r is defined as ρr(Γ) = (S,A′ ∪ {τ}, s0,→′) with (s, r(a), s′) ∈→′ iff (s, a, s′) ∈→.
Given a set T , hiding is defined as ĤT (Γ) = ρh(Γ) with h : A → A ∪ {τ} such that h(t) = τ if
t ∈ T and h(t) = t otherwise. Given a ∈ A, p a q denotes a weak transition relation that is defined
as follows: (i) p a q iff p( τ−→)∗q1

a−→ q2(
τ−→)∗q; (ii) p τ q iff p( τ−→)∗q. Here, ( τ−→)∗ denotes the

reflexive and transitive closure of τ−→.

Definition 2.1. (Strong and weak bisimulation)
Let Γ1 = (S1, A, s01,→1) and Γ2 = (S2, A, s02,→2) be two LTSs. A relation R ⊆ (S1 × S2) is
called a strong simulation, denoted as Γ1 ≺R Γ2, if for every pair (p, q) ∈ R and a ∈ A ∪ {τ}, it
holds that if p a−→1 p

′, then there exists q′ ∈ S2 such that q a−→2 q
′ and (p′, q′) ∈ R. Relation R is a

weak simulation, denoted by Γ1 ≼R Γ2, iff for every pair (p, q) ∈ R and a ∈ A ∪ {τ} it holds that if
p

a−→1 p
′, then either a = τ and (p′, q) ∈ R, or there exists q′ ∈ S2 such that q a

2 q
′ and (p′, q′) ∈ R.

R is called a strong (weak) bisimulation, denoted by Γ1 ∼R Γ2 (Γ1 ≈R Γ2) if both Γ1 ≺ Γ2

(Γ1 ≼R Γ2) and Γ2 ≺R−1 Γ1 (Γ2 ≼R−1 Γ1). The relation is called rooted iff (s01, s02) ∈ R. A rooted
relation is indicated with a superscript r.

Petri nets. A weighted Petri net is a 4-tuple (P, T, F,W ) where P and T are two disjoint sets
of places and transitions, respectively, F ⊆ ((P × T ) ∪ (T × P )) is the flow relation, and W :
((P × T ) ∪ (T × P )) → N is a weight function such that W (f) > 0 iff f ∈ F . For x ∈ P ∪ T ,
we write •x = {y | (y, x) ∈ F} to denote the preset of x and x• = {y | (x, y) ∈ F} to denote the
postset of x. We lift the notation of preset and postset to sets element-wise. If for a Petri net no weight
function is explicitly defined, we assume W (f) = 1 for all f ∈ F . A marking of N is a multiset
m ∈ P⊕, where m(p) denotes the number of tokens in place p ∈ P . If m(p) > 0, place p is called
marked in markingm. A marked Petri net is a tuple (N,m) withN a weighted Petri net with marking
m. A transition t ∈ T is enabled in (N,m), denoted by (N,m)[t⟩ iffW ((p, t)) ≤ m(p) for all p ∈ •t.
An enabled transition can fire, resulting in marking m′ iff m′(p) +W ((p, t)) = m(p) +W ((t, p)),
for all p ∈ P , and is denoted by (N,m)[t⟩(N,m′). We lift the notation of firings to sequences. A
sequence σ ∈ T ∗ is a firing sequence of (N,m0) iff σ = ϵ, or markings m0, . . . ,mn exist such that
(N,mi−1)[σ(i)⟩(N,mi) for 1 ≤ i ≤ |σ| = n, and is denoted by (N,m0)[σ⟩(N,mn). If the context
is clear, we omit N , and just write m0[σ⟩mn. The set of reachable markings of (N,m) is defined
by R(N,m) = {m′ | ∃σ ∈ T ∗ : m[σ⟩m′}. The semantics of a marked Petri net (N,m0) with
N = (P, T, F,W ) is defined by the LTS ΓN,m0 = (P⊕, T,m0,→) with (m, t,m′) ∈→ iff m[t⟩m′.

Workflow Nets. A workflow net (WF-net for short) is a tuple N = (P, T, F,W, in, out) such that:
(i) (P, T, F,W ) is a weighted Petri net; (ii) in, out ∈ P are the source and sink place, respectively,
with •in = out• = ∅; (iii) every node in P ∪ T is on a directed path from in to out . N is called k-
sound for some k ∈ N iff (i) it is proper completing, i.e., for all reachable markings m ∈ R(N, [ink]),
if [outk] ≤ m, then m = [outk]; (ii) it is weakly terminating, i.e., for any reachable marking m ∈
R(N, [ink]), the final marking is reachable, i.e., [outk] ∈ R(N,m); and (iii) it is quasi-live, i.e., for
all transitions t ∈ T , there is a marking m ∈ R(N, [in]) such that m[t⟩. The net is called sound if it
is 1-sound. If it is k-sound for all k ∈ N, it is called generalized sound [10].
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3. Typed Petri nets with identifiers

Processes and data are highly intertwined: processes manipulate data objects while objects govern
processes. For example, consider a retail shop with three types of objects: products sold through the
shop, customers that can order these products, and orders that track products bought by customers.
This example already involves many-to-many relations between objects, e.g., a product can be ordered
by many customers, while a customer can order many products. Relations between objects can also
be one-to-many, e.g., an order is always for a single customer, but a customer can have many orders.
In addition, objects may have life cycles, which themselves can be considered as processes. Fig-
ure 1 shows three life cycles of objects in the retail shop. A product may be temporarily unavailable,
while customers may be blocked by the shop, disallowing them to order products. These life cycles
are inherently intertwined. For instance, customers should not be allowed to order products that are
unavailable. Similarly, blocked customers should not be able to create new orders.

create
product

activate
product

suspend
product

delete
product

product

unavailable 
product

activate customer

create
customer

delete 
customer

blocked 
customer

customer

block customer

create 
order

accept order deliver order finish order

block customer

send invoice

send 
reminder

add
product

pay invoice

Figure 1: The life cycles of products, customers and orders in the retail shop.

Several approaches have been studied to model and analyze models that combine objects and
processes. For example, data-aware Proclets [11] allow describing the behavior of individual artifacts
and their interactions. Another approach is followed in ν-PN [12], in which a token can carry a single
identifier [13]. In this formalism, markings map each place to a bag of identifiers, indicating how
many tokens in each place carry the same identifier. These identifiers can be used to reference entities
in an information model. However, referencing a fact composed of multiple entities is not possible
in ν-PNs. In this paper, we study typed Petri nets with identifiers (t-PNIDs), which build upon ν-
PNs [12] by extending tokens to carry vectors of identifiers [6, 7]. Vectors, represented by sequences,
have the advantage that a single token can refer to multiple objects or entities that compose (a part of)
a fact, such as an order is for a specific customer. Identifiers are typed, i.e., the countable, infinite set
of identifiers is partitioned into a set of types, such that each type contains a countable, infinite set of
identifiers. Identifier types should not overlap, i.e., each identifier has a unique type. Variables can
take values of identifiers, and, thus, are typed as well and can only refer to identifiers of the associated
type. For example, the product, customer and order objects from the retail shop example make three
object types.

Definition 3.1. (Identifier Types)
Let I, Λ, and V denote countable, infinite sets of identifiers, type labels, and variables, respectively.
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We define:

• the domain assignment function I : Λ → ℘(I), such that I(λ1) is an infinite set, and I(λ1) ∩
I(λ2) ̸= ∅ implies λ1 = λ2 for all λ1, λ2 ∈ Λ;

• the id typing function typeI : I → Λ s.t. if typeI(id) = λ, then id ∈ I(λ);

• a variable typing function typeV : V → Λ, prescribing that x ∈ V can be substituted only by
values from I(typeV(x)).

When clear from the context, we omit the subscripts of type.

For ease of presentation, we assume the natural extension of the above typing functions to the cases
of sets and vectors, for example, typeV(x1 · · ·xn) = typeV(x1) · · · typeV(xn).

In a t-PNID, each place is annotated with a place type, which is a vector of types, indicating
types of identifier tokens the place can carry. A place with the empty place type, represented by the
empty vector, is a classical Petri net place carrying indistinguishable (black) tokens. Each arc of a
t-PNID is inscribed with a multiset of vectors of variables, such that the types of the variables in the
vector coincide with the place types. This approach allows modeling situations where a transition may
require multiple tokens with different identifiers from the same place.

Definition 3.2. (Typed Petri nets with identifiers)
A Typed Petri net with identifiers (t-PNID) N is a tuple (P, T, F, α, β), where:

• (P, T, F ) is a Petri net;

• α : P → Λ∗ is the place typing function;
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Figure 2: t-PNID Nrs for a retail shop that manipulates products, customers and orders. Each place is
colored according to its type. Place p carries pairs of identifiers: an order and a customer.
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• β : F → (V∗)⊕ defines for each flow a multiset of variable vectors such that α(p) = type(x⃗)
for any x⃗ ∈ supp(β((p, t))) and type(y⃗) = α(p′) for any y⃗ ∈ supp(β((t, p′))) where t ∈ T ,
p ∈ •t, p′ ∈ t•;

Figure 2 shows a t-PNID, Nrs , of a retail shop. Each place is colored according to its type. The
net intertwines the life cycles of Fig. 1 and weakly simulates each of these life cycles. In Nrs , places
product and unavailable product are annotated with a vector ⟨product⟩, i.e., these places contain
tokens that carry only a single identifier of type product . Places customer and blocked customer
have type ⟨customer⟩. All other places, except for place p, are labeled with type ⟨order⟩. Place p
maintains the relation between orders and customers, and is typed ⟨order , customer⟩, i.e., tokens in
this place are identifier vectors of size 2. Nrs uses three variables: x for product , y for order and z
for customer .

A marking of a t-PNID N is a configuration of tokens over its places. The set of all possible
markings of N is denoted by M(N). Each token in a place should be of the correct type, i.e., the
vector of identifiers carried by a token in a place should match the corresponding place type. All
possible vectors of identifiers a place q may carry is defined by the set C(q).

Definition 3.3. (Marking)
Given a t-PNID N = (P, T, F, α, β), and place p ∈ P , its id set is C(p) =

∏
1≤i≤|α(p)| I(α(p)(i)).

A marking is a function M ∈ M(N), with M(N) = P → (I∗)⊕, such that M(p) ∈ C(p)⊕, for
each place p ∈ P . The set of identifiers used in m is denoted by Id(M) = {id | ∃i⃗d ∈ C(p),
p ∈ P : id ∈ i⃗d ∧M(p)(i⃗d) > 0}. The pair (N,M) is called a marked t-PNID.

To define the semantics of a t-PNID, the variables need to be valuated with identifiers. Variables
may be used differently by transitions. In Fig. 2, transition G uses variable y to create an identifier
of type order . Transition K uses the same variable y to remove identifiers of type order from the
marking, as it has no outgoing arcs, and thus only consumes tokens. We, therefore, first introduce
some notation to work with variables and types in a t-PNID. Variables used on the input arcs, i.e.,
variables on arcs from a place to a transition t are called the input variables of t. Similarly, variables
on arcs from transition t to a place are called the output variables of t. A variable that only occurs in
the set of output variables of a transition, is an emitting variable. Similarly, if a variable only appears
as an input variable of a transition, it is called a collecting variable. As variables are typed, an emitting
variable creates a new identifier of a corresponding type upon transition firing, whereas a collecting
variable removes the identifier.

Definition 3.4. (Variable sets, emitter and collector transitions, object types)
Given a t-PNID N = (P, T, F, α, β), t ∈ T and λ ∈ Λ, we define the following sets of variables:

• input variables as In(t) =
⋃
x⃗∈supp(β((p,t))),p∈•t

⋃
x∈x⃗ x;

• output variables as Out(t) =
⋃
x⃗∈supp(β((t,p))),p∈t•

⋃
x∈x⃗ x;

• variables as Var(t) = In(t) ∪Out(t);

• emitting variables as Emit(t) = Out(t) \ In(t);
• collecting variables as Collect(t) = In(t) \Out(t).
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Using the above notions, we introduce the sets of:

• emitting transitions (or simply referred to as emitters) as EN (λ) = {t | ∃x ∈ Emit(t) ∧
type(x) = λ};

• collecting transitions (or simply referred to as collectors) as CN (λ) = {t | ∃x ∈ Collect(t) ∧
type(x) = λ}.

To properly account for place types used in N , we introduce typeP (N) = {λ⃗ | ∃p ∈ P : λ⃗ ∈ α(p)}.
Similarly, for objects, we introduce the set of object types in N typeΛ(N) = {λ | λ ∈ λ⃗, λ⃗ ∈
typeP (N)}.

A firing of a transition requires a binding that valuates variables to identifiers. The binding is
used to inject new fresh data into the net via variables that emit identifiers. We require bindings to
be an injection, i.e., no two variables within a binding may refer to the same identifier. Note that in
this definition, the freshness of identifiers is local to the marking, i.e., disappeared identifiers may be
reused, as it does not hamper the semantics of the t-PNID. Our semantics allow the use of well-ordered
sets of identifiers, such as the natural numbers, as used in [6, 13] to ensure that identifiers are globally
new. Here we assume local freshness over global freshness.

Definition 3.5. (Firing rule)
Given a marked t-PNID (N,M) withN = (P, T, F, α, β), a binding for transition t ∈ T is an injective
function ψ : V → I such that type(v) = type(ψ(v)) and ψ(v) ̸∈ Id(M) iff v ∈ Emit(t). Transition t
is enabled in (N,M) under binding ψ, denoted by (N,M)[t, ψ⟩ iff ρψ(β(p, t)) ≤M(p) for all p ∈ •t.
Its firing results in marking M ′, denoted by (N,M)[t, ψ⟩(N,M ′), such that M ′(p) + ρψ(β(p, t)) =
M(p) + ρψ(β(t, p)).

Again, the firing rule is inductively extended to sequences η ∈ (T × (V → I))∗. A marking M ′

is reachable from M if there exists η ∈ (T × (V → I))∗ s.t. (N,M)[η⟩(N,M ′). We denote with
R(N,M) the set of all markings reachable from (N,M).

The execution semantics of a t-PNID is defined as an LTS that accounts for all possible executions
starting from a given initial marking.

Definition 3.6. (Induced transition system)
Given a marked t-PNID (N,M0) with N = (P, T, F, α, β), its induced transition system is ΓN,M0 =

(M(N), (T × (V → I)),M0,→) with M
(t,ψ)−−−→M ′ iff (N,M)[t, ψ⟩(N,M ′).

t-PNIDs are a vector-based extension of ν-PNs [12]. In other words, a ν-PN can be translated into
a strongly bisimilar t-PNID with a single type, and all place types are of length of at most 1, which
follows directly from the definition of the firing rule [12].

Corollary 3.7. For any ν-PN there exists a single-typed t-PNID such that the two nets are strongly
rooted bisimilar.

As a result, the decidability of reachability for ν-PNs transfers to t-PNIDs [12].

Proposition 3.8. Reachability is undecidable for t-PNIDs.
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4. Correctness criteria for t-PNIDs

Many criteria have been devised for assessing the correctness of systems captured as Petri nets. Tradi-
tionally, Petri net-based criteria focus on the correctness of processes the systems can support. Enrich-
ing the formalism with ability to capture object manipulation while keeping analyzability is a delicate
balancing act.

For t-PNIDs, correctness criteria can be categorized as system-level and object-level. Criteria at
the system-level (Section 4.1) focus on traditional Petri net-based criteria to assess the system as a
whole, whereas criteria at the object-level (Section 4.2) address the correctness of individual objects
represented by identifiers.

4.1. System-level correctness criteria

Liveness is an example of a system-level correctness property. It expresses that any transition is always
eventually enabled again. As such, a live system guarantees that its activities cannot eventually become
unavailable.

Definition 4.1. (Liveness)
A marked t-PNID (N,M0) with N = (P, T, F, α, β) is live iff for every marking M ∈ R(N,M0)
and every transition t ∈ T , there exists a marking M ′ ∈ R(N,M) and a binding ψ : V → I such that
M ′[t, ψ⟩.

Boundedness expresses that the reachability graph of a system is finite, i.e., that the system has
finitely many possible states and state transitions. Hence, boundedness is another example of a system-
level correctness property. Many systems can support an arbitrary number of simultaneously active
objects; they are unbounded by design. Similar to ν-PN, we differentiate between various types of
boundedness [14]. Specifically, boundedness expresses that the number of tokens in any reachable
place does not exceed a given bound. Width-boundedness expresses that the modeled system has a
bound on the number of simultaneously active objects.

Definition 4.2. (Bounded, width-bounded)
Let (N,M0) be a marked t-PNID with N = (P, T, F, α, β). A place p ∈ P is called:

• bounded if there is k ∈ N such that |M(p)| ≤ k for all M ∈ R(N,M0);

• width-bounded if there is k ∈ N such that |supp(M(p))|≤k for all M ∈ R(N,M0);

If all places in (N,M0) are (width-) bounded, then (N,M0) is called (width-) bounded.

As transitions A and T in Fig. 2 have no input places, these transitions are always enabled. Con-
sequently, places product and customer are not bounded, and thus no place in Nrs is bounded. Upon
each firing of transition A or T , a new identifier is created. Hence, these places are also not width-
bounded. In other words, the number of objects in the system represented by Nrs is dynamic, without
an upper bound.
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4.2. Object-level correctness criteria

An object-level property assesses the correctness of individual objects. In t-PNIDs, identifiers can be
seen as references to objects: if two tokens carry the same identifier, they refer to the same object. The
projection of an identifier on the reachability graph of a marked t-PNID represents the life-cycle of the
referenced object. Boundedness of a system implies that the number of states of the reachability graph
is finite. Depth-boundedness captures this idea for identifiers: in any marking, the number of tokens
that refer to a single identifier is bounded. In other words, if a marked t-PNID is depth-bounded, the
complete system may still be unbounded, but the life-cycle of each object is finite.

Definition 4.3. (Depth-boundedness)
Let (N,m0) be a marked t-PNID with N = (P, T, F, α, β). A place p ∈ P is called depth-bounded
if for each identifier id ∈ I there is k ∈ N such that m(p)(i⃗d) ≤ k for all m ∈ R(N,m0) and
i⃗d ∈ C(p) with id ∈ i⃗d. If all places in P are depth-bounded, (N,m0) is called depth-bounded.

Depth-boundedness is undecidable for ν-PNs [12] and, thus, also for t-PNIDs.

Proposition 4.4. Depth-boundedness is undecidable for t-PNIDs.

The idea of depth-boundedness is to consider a single identifier in isolation, and study its reach-
ability graph. Intuitively, an object of a given type “enters” the system via an emitter that creates a
unique identifier that refers to the object. The identifier remains in the system until the object “leaves”
the system by firing a collecting transition (that binds to the identifier and consumes the last token in
the net that refers to it). In other words, if a type has emitters and collectors, it has a life-cycle, which
can be represented as a process. The process of a type is the model describing all possible paths for
the type. It can be derived by taking the projection of the t-PNID on all transitions and places that are
“involved” in the type. Notably, the net obtained after the projection is just a regular Petri net.

Definition 4.5. (Type projection)
Let λ ∈ Λ be a type. Given a t-PNID N = (PN , TN , FN , αN , βN ), its λ-projection πλ(N) =
(P, T, F,W ) is a Petri net defined by:

• P = {p ∈ PN | λ ∈ αN (p)};

• T = {t ∈ TN | ∃p ∈ PN : λ ∈ typeV
(
supp(βN ((p, t)))

)
∨ λ ∈ typeV

(
supp(βN ((t, p)))

)
}

• F = FN ∩ ((P × T ) ∪ (T × P ));

• W (f) = |βN (f)| for all f ∈ F .

Give a marking M ∈ M(N), its λ-projection πλ(M) is defined by πλ(M)(p) = |M(p)|.

Figure 3 shows the three type projections of Nrs from Figure 2. As an emitter of a type creates
a new identifier, and a collector removes the created identifier, each type with emitters and collectors
can be represented as a transition-bordered WF-net [15]. Instead of a source and a sink place, a
transition-bordered WF-net has dedicated transitions that represent the start and finish of a process.
A transition-bordered WF-net is sound if its closure is sound [15]. As shown in Fig. 4, the closure
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Figure 4: A transition-bordered WF-Net (a) and its closure (b) [15].

is constructed by creating a new source place so that each emitting transition consumes from it, and
a new sink place so that each collecting transition produces in it. In the remainder of this section,
we develop this intuition of soundness of type projections into the concept of identifier soundness of
t-PNIDs.

Many soundness definitions comprise two properties: proper completion and weak termination.
Proper completion states that once a marking that has a token in the final marking is reached, it is
actually the final marking. For example, for the proper completion to hold in a WF-net, as soon as a
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token is produced in the final place, all other places should be empty. Following the idea of transition-
bordered WF-nets, identifiers should have a similar property: once a collector consumes one or more
identifiers, then no further tokens carrying those identifiers should persist in the marking obtained after
the consumption.

Definition 4.6. (Proper type completion)
Given a type λ ∈ Λ, a marked t-PNID (N,m0) is called properly λ-completing iff for all t ∈ CN (λ),
bindings ψ : V → I and markings m,m′ ∈ R(N,m0), if m[t, ψ⟩m′, then for all identifiers id ∈
RNG(ψ|Collect(t)) ∩ Id(m) with type(id) = λ, it holds that id ̸∈ Id(m′).2

Intuitively, from the perspective of a single identifier of type λ, if a t-PNID N that generated it is
properly λ-completing, then the points of consumption for this identifier are mutually exclusive (that
is, it can be consumed from the net only by one of the collectors from CN (λ)).

As an example, consider t-PNID Nrs in Fig. 2. For type customer , we have CNrs (customer) =
{K,V }. In the current – empty – marking, transition T is enabled with binding ψ = {z 7→ c},
which results in marking m with m(customer) = [c]. We can then create an offer by firing G with
binding ψ = {y 7→ o, z 7→ c}. Next, transitions H , J , L and N can fire, all using the same
binding, producing marking m′ with m′(p) = [o, c], m′(customer) = [c] and m′(q) = m′(r) = [c].
Hence, transition K is enabled with binding ψ. However, firing K with ψ results in marking m′′

with m′′(customer) = [c]. Since for the proper type completion on type customer we would like to
achieve that all tokens containing c are removed, Nrs is not properly customer -completing.

Weak termination signifies that the final marking can be reached from any reachable marking.
Translated to identifiers, removing an identifier from a marking should always eventually be possible.

Definition 4.7. (Weak type termination)
Given a type λ ∈ Λ, a marked t-PNID (N,m0) is called weakly λ-terminating iff for every m ∈
R(N,m0) and identifier id ∈ I(λ) such that id ∈ Id(m), there exists a marking m′ ∈ R(N,m)
with id ̸∈ Id(m′).

Identifier soundness combines the properties of proper type completion and weak type termination:
the former ensures that as soon a collector fires for an identifier, the identifier is removed, whereas the
latter ensures that it is always eventually possible to remove that identifier.

Definition 4.8. (Identifier soundness)
A marked t-PNID (N,m0) is λ-sound iff it is properly λ-completing and weakly λ-terminating. It is
identifier sound iff it is λ-sound for every λ ∈ typeΛ(N).

Two interesting observations can be made about the identifier soundness property. First, identifier
soundness does not imply soundness in the classical sense: any classical net N without types, i.e.,
typeΛ(N) = ∅, is identifier sound, independently of the properties of N . Second, identifier sound-
ness implies depth-boundedness. In other words, if a marked t-PNID is identifier sound, it cannot
accumulate infinitely many tokens carrying the same identifier.

2Here, we constrain ψ to objects of type λ that are consumed.



Van der Werf et al. / Correctness Notions for Petri Nets with Identifiers 171

Lemma 4.9. If a t-PNID (N,m0) is identifier sound, then it is depth-bounded.

Proof:
Suppose that (N,m0) is identifier sound, but not depth-bounded. Then, at least for one place p ∈ P
and identifier i⃗d ∈ C(p) of type λ⃗ there exists an infinite sequence of increasing markings mi, all
reachable in (N,m0), such that mi(p)(i⃗d) < mi+1(p)(i⃗d). Let λ ∈ λ⃗ and let id ∈ i⃗d be such
that type(id) = λ. From the above assumption it follows that there are no such markings mi and
mi+1 in the infinite sequence of increasing markings for which it holds that mi+1 ∈ R(N,mi),
id ∈ mi(p) and id ̸∈ mi+1(p). Since N is properly type completing, it must be possible to reach
from mi a marking m′

i (via some firing sequence σ) such that m′
i[t, ψ⟩m′′

i , for a binding ψ : V → I,
m′′
i ∈ R(N,m0), id ̸∈ Id(m′′

i ) and t ∈ CN (λ). Since marking mi+1 contains at least one more id,
then for the same t ∈ CN (λ) we cannot apply the same reasoning from above. Specifically, we can
reach a marking m′

i+1 from mi+1 using the same firing sequence η and, although it still holds that
m′
i+1[t, ψ⟩m′′

i+1 (and m′′
i+1 differs from m′′

i by having one extra id in p), we have that id ∈ Id(m′′
i ).

This contradicts the proper type completion. Hence, (N,m0) is depth-bounded. ⊓⊔

As identifier soundness relies on reachability, it is undecidable. This also naturally follows from
the fact that all non-trivial decision problems are undecidable for Petri nets in which tokens carry pairs
of data values (taken from unordered domains) and in which element-wise equality comparisons are
allowed over such pairs in transition guards [16].

Theorem 4.10. Identifier soundness is undecidable for t-PNIDs.

Proof:
We prove this result by reduction from the reachability problem for a 2-counter Minsky machine by
following ideas of the proof of Theorem 4 in [17].

A 2-counter Minsky machine with two non-negative counters c1 and c2 is a finite sequence of
numbered instructions 1 : ins1, . . . , n : insn, where insn = HALT and for every 1 ≤ i < n we have
that insi has one of the following forms:

• inc cj ; goto k
• if cj = 0 then goto k else (dec cj ; goto l)

Here, j ∈ {1, 2} and 1 ≤ k, l ≤ n, and inc (resp., dec) is an operation used to increment (resp.,
decrement) the content of counter cj . It is well-known that, for a Minksy 2-counter machine that
starts with both counters set to 0, checking whether it eventually reaches the instruction HALT is
undecidable.

We then largely rely on the encoding of Minksy 2-counter machines presented in [17]. In a nut-
shell, that encoding shows how so called OA-nets (we rely on them in the proof of Proposition 4.16)
can simulate an arbitrary n-counter Minsky machine. Borrowing an idea from [18], each counter is
encoded using a “ring gadget”, where counter value m is represented via sets of m+1 linked pairs of
identifiers S = {(a1, a2), (a2, a3), . . . , (am+1, a1)} such that an identifier appears exactly twice in S.
At the level of the net marking, there always must be only one ring. For more detail on this approach
we refer to [17].
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Without loss of generality, we assume that the machine halts only when both c1 and c2 are zero.
Notice that an arbitrary 2-counter machine can be transformed into a corresponding machine that only
halts with counter zero by appending, at the end of the original machine, a final set of instructions that
decrements both counters, finally halting when they both test to zero.

Using the t-PNID components from Figure 5, we can construct a t-PNID faithfully simulating a
2-counter Minsky machine. Counter operations are defined as in [17]. The t-PNID has one special
object type λ, which works as follows:

• a new instance for λ can be only created when a black token is contained in the distinguished
init place;

• the emission of an object for λ consumes the black token from the init place, and inserts it in
the place pq0 that corresponds to the first instruction of the 2-counter machine;

• when such a 2-counter machine halts, such a black token is finally transferred into the place pqn ,
which in turn enables the last collector transition for λ.3

This implies that the t-PNID is λ-sound if and only if the 2-counter machine halts. ⊓⊔

cj := 0 for j ∈ {1, 2}
init pq0

c1⟨λ, λ⟩ c2 ⟨λ, λ⟩
(ν
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1
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Figure 5: Simulation of a Minksy 2-counter machine via t-PNIDs. Here, qi, qk and ql correspond to
control states of the machine.

3Notice that transitions of net components simulating instructions with dec, according to Definition 3.4, are also col-
lectors for λ.
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The above theorem shows that the identifier soundness is already undecidable for nets carrying
identifier tuples of size 2. One may wonder whether the same result holds for t-PNIDs with singleton
identifiers only. To obtain this result one could, for example, study how the identifier soundness in this
particular case relates to the notion of dynamic soundness – an undecidable property of ν-Petri nets
studied in [19].
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Figure 6: Two t-PNIDs. Net N1 is identifier sound, whereas net N2 is not identifier sound.

The underlying idea of identifier soundness is that each type projection should behave well, i.e.,
each type projection should be sound. Consider in t-PNID Nrs of Fig. 2 and its customer -typed
projection from Fig. 3b. The life cycle starts with transition T . TransitionsK and V are two transitions
that may remove the last reference to a customer . Soundness of a transition-bordered WF-net would
require that firing transition K or transition V would result in the final marking. However, this is not
necessarily the case. Consider the firing of transitions T , G and K. Then, the token in place customer
remains, while the final transition K already fired. Hence, the customer life cycle is not sound. This
raises the question whether we may conclude from this observation that Nrs is not identifier sound.
Unfortunately, identifier soundness is not compositional, i.e., identifier soundness does not imply
soundness of the type projections, and vice versa. Consider the example t-PNIDs in Fig. 6. The
first net, N1, is identifier sound. However, taking the typeV(y) projection of N1 results in a bordered
transition WF-net that is unsound: if transition D fires fewer times than transition B, tokens will
remain in place w. The reverse is false as well. Consider net N2 in Fig. 6. Each of the two projections
are sound. However, the resulting net reaches a deadlock after firing transitions A and C as a token
generated by A remains in place p. Hence, N2 is not weakly typeV(x)-completing.

Theorem 4.11. Let λ ∈ Λ be a type, and let (N,m0) be a marked t-PNID. Then:

1. identifier soundness of (N,m0) does not imply soundness of (πλ(N), πNλ (m)), and

2. soundness of (πλ(N), πNλ (m)) does not imply that (N,m0) is identifier sound.

Proof:
We prove both statements by contradiction. For the first statement, consider t-PNID N1 depicted in
Fig. 6a. Though N1 is identifier sound, its typeV(y)-projection is not sound. Similarly, the typeV(x)-
projection and typeV(y)-projection of N2, depicted in Fig. 6b, are sound, but N2 is not identifier
sound, as N2 is not weakly typeV(x)-completing. ⊓⊔
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Consequently, compositional verification of soundness of each of the projections is not sufficient
to conclude anything about identifier soundness of the complete net, and vice versa.

In general, weak bisimulation does not guarantee identifier soundness, as it does not impose any
relation on the identifiers in the nets. However, if the bisimulation relation takes into account and
preserves identifiers, then identifier soundness is preserved. We formally demonstrate this property
below.

Lemma 4.12. (Weak bisimulation preserves proper type completion)
Let (N1,m

1
0) and (N2,m

2
0) be two marked t-PNIDs. Let λ ∈ Λ be some type such that CN1(λ) =

CN2(λ), and let Q ⊆ M(N1) × M(N2) be a relation such that I(λ) ∩ Id(m1) = I(λ) ∩ Id(m2)
for all (m1,m2) ∈ Q and ΓN1,m1

0
≈Q ΓN2,m2

0
. Then N1 is properly λ-completing iff N2 is properly

λ-completing.

Proof:
(⇒) Suppose N1 is properly λ-completing. We need to show that N2 is properly λ-completing. Let
t ∈ CN2(λ) be a transition, let ψ : V → I be a binding and let m2,m

′
2 ∈ R(N2,m

2
0), such that

(N2,m2)[t, ψ⟩(N2,m
′
2). Let id ∈ RNG(ψ|Collect(t)) ∩ Id(m2) with type(id) = λ. As Q is a

weak bisimulation relation, some markings m1,m
′
1 ∈ M(N1) exist such that (m1,m2) ∈ Q and

(N1,m1)[t, ψ⟩(N1,m
′
1). Then, by the definition of Q, it must be that id ∈ RNG(ψ|Collect(t)) ∩

Id(m1). As CN1(λ) = CN2(λ) and N1 is properly λ-completing, id ̸∈ Id(m′
1). Since Q is a weak

bisimulation relation, (m′
1,m

′
2) ∈ Q. Thus, id ̸∈ Id(m′

2). Hence, N2 is properly λ-completing.
(⇐) Follows from the commutativity of weak bisimulation. ⊓⊔

Lemma 4.13. (Weak bisimulation preserves weak type termination)
Let (N1,m

1
0) and (N2,m

2
0) be two marked t-PNIDs. Let λ ∈ Λ be some type, and let Q ⊆ M(N1)×

M(N2) be a relation such that I(λ)∩ Id(m1) = I(λ)∩ Id(m2) for all (m1,m2) ∈ Q and ΓN1,m1
0
≈Q

ΓN2,m2
0
. Then N1 is weakly λ-terminating iff N2 is weakly λ-terminating.

Proof:
(⇒) Suppose N1 is weakly λ-terminating. We need to show that N2 is weakly λ-terminating. Let
m2 ∈ R(N2,m

2
0) be some reachable marking and id ∈ I(λ) such that id ∈ Id(m2). As Q is a

weak bisimulation relation, some marking m1 ∈ M(N1) exists with (m1,m2) ∈ Q. Then, by the
definition ofQ, id ∈ Id(m1). AsN1 is weakly λ-terminating, a markingm′

1 ∈ R(N1,m1) and firing
sequence η exist such that (N1,m1)[η⟩(N1,m

′
1) and id ̸∈ Id(m′

1). As Q is a weak bisimulation
relation, a marking m′

2 ∈ M(N2) exists such that (m′
1,m

′
2) ∈ Q and (N2,m2)[η⟩(N2,m

′
2). As

I(λ) ∩ Id(m′
1) = I(λ) ∩ Id(m′

2), we have that id ̸∈ Id(m′
2), which proves the statement.

(⇐) Follows from the commutativity of weak bisimulation. ⊓⊔

The two above lemmas are combined together to prove the following result.

Theorem 4.14. (Weak bisimulation preserves λ-soundness)
Let (N1,m

1
0) and (N2,m

2
0) be two marked t-PNIDs. Let λ ∈ Λ be some type such that CN1(λ) =

CN2(λ), and let Q ⊆ M(N1) ×M(N2) be a relation such that I(λ) ∩ Id(m1) = I(λ) ∩ Id(m2) for
all (m1,m2) ∈ Q and ΓN1,m1

0
≈Q ΓN2,m2

0
. Then N1 is λ sound iff N2 is λ sound.
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Proof:
Follows directly from Lm 4.12 and Lm 4.13. ⊓⊔

4.3. Towards verification of logical criteria

We now describe how existing results on the verification of safety and temporal properties over variants
of Petri nets [20, 17] and transition systems operating over relational structures [21, 22] can be lifted
to the case of bounded t-PNIDs. Boundedness is a sufficient requirement to make the verification of
such properties decidable.

We start by considering safety checking of t-PNIDs, considering the recent results presented
in [17]. A safety property is a property that must hold globally, that is, in every marking of the net.
Such a property is usually checked by formulating its unsafety dual and verifying whether a marking
satisfying that unsafety property is reachable.

Definition 4.15. (Unsafety property)
An unsafety property over a t-PNID N is a formula ∃y1, . . . , yk.ψ(y1, . . . , yk), where ψ is defined by
the following grammar:

ψ ::= p(x1 · · ·xn) ≥ c |x = y |x ̸= y | p ≥ c |ψ ∧ ψ,

Here: (i) p is a place name from N , (ii) xi ∈ V (for every 1 ≤ i ≤ n), (iii) x, y ∈ V ∪ I, (iv) p ≥ c
and p(x1 · · ·xn) ≥ c are atomic predicates defined over place markings with c ∈ N.

Given a marked t-PNID (N,m0), each atomic predicate is interpreted on all possible markings cover-
ing those from R(N,m0). Like that, p ≥ c specifies that in place p there are at least c tokens, whereas
p(x1 · · ·xn) ≥ c indicates that in place p there are at least c tokens carrying an identifier vector that
can valuate x1 · · ·xn. We use elements from x1, . . . , xn as a filter selecting matching tokens in p, and
use the variables from the same sequence to inspect different places by creating implicit joins between
tokens stored therein. As it has been established in [17], such unsafety properties can be used for
expressing object-aware coverability properties of t-PNIDs.

For example, as a property we may write that ∃z, y.created offer(z, y) ≥ 1 ∧ customer(y) ≥ 1
captures the (undesired) situation in which an offer has been made to customer z, but that customer is
still available for receiving other offers.

The verification problem for checking unsafety properties is specified as follows: given an unsafety
property ψ, a marked t-PNID (N,m0) is unsafe w.r.t. ψ if (N,m0) can reach a marking in which ψ
holds. If this is not the case, then we say that (N,m0) is safe w.r.t. ψ. We show below that such
verification problem is actually decidable.

Proposition 4.16. Verification of unsafety properties over bounded, marked t-PNIDs is decidable.

Proof:
To prove this statement, we introduce the class of OA-nets [17] and establish their relation to t-PNIDs.
To do so, we provide a modified version of Definition 1 from [17]. Essentially, an OA-net is a tuple
(P, T, Fin, Fout, color, guard), where:
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• P and T are finite sets of places and transitions, s.t. P ∩ T = ∅;

• color : P → Λ∗ is a place typing function;

• Fin : P×T → Ω⊕
V is an input flow s.t. typeV(Fin(p, t)) = color(p) for every (p, t) ∈ P×T ;45

• Fout : T × P → Ω⊕
X is an output flow s.t. typeV(Fout(t, p)) = color(p) for every (t, p) ∈

T × P and X = V ⊎ V̂ , where V̂ is the countably infinite set of fresh variables (i.e., variables
used to provide fresh inputs only);6

• guard : T ̸→ Φ is a partial guard assignment function, s.t. Φ is a set of conditions ϕ ::= y1 =
y2 | y1 ̸= y2 |ϕ ∧ ϕ, where yi ∈ V ∪ I, and for each ϕ = guard(t) and t ∈ T it holds that
Var(ϕ) ⊆ In(t).7

It is easy to see that a t-PNID is an OA-net without guards. Moreover, using the notions from Defini-
tion 3.4, we get that Emit(t) ⊂ V̂ , for each t ∈ T .

Given the relation between t-PNIDs and OA-nets, the proof of the decidability follows immedi-
ately from Theorem 3 in [17]. ⊓⊔

One may wonder whether it is possible to go beyond safety and check other properties expressible on
top of t-PNIDs using more sophisticated temporal logics. We answer to this question affirmatively,
by proving that bounded t-PNIDs induce transition systems that enjoy the so-called genericity prop-
erty [21]. Such property, combined with t-PNID boundedness (which corresponds to the notion of
state-boundedness used in [21]) guarantees decidability of model checking for sophisticated variants
of first-order temporal logics [23, 21, 22].

In generic transition systems, the behaviour does not depend on the actual data present in the
states, but only on how they relate to each other. This essentially reconstructs the well-known notion
of genericity in databases, which expresses that isomorphic databases return the same answers to the
same query, modulo renaming of individuals [24].

We lift the notion of genericity to the case of transition systems induced by t-PNIDs. To proceed,
we first need to define a suitable notion of isomorphism between two markings of a net.

Definition 4.17. (Marking isomorphism)
Given a t-PNID N and two markings m1,m2 ∈ M(N), we say that m1 and m2 are isomorphic,
written m1 ∼h m2, if there exits a bijection (called isomorphism) h : Id(m1) → Id(m2) such that
for every p ∈ P , it holds that (id1 · · · idn)k ∈ m1 iff (h(id1) · · ·h(idn))k ∈ m2, for every k ∈ N.

Intuitively, two markings are called isomorphic if they have the same amount of tokens and tokens
correspond to each other modulo consistent renaming of identifiers.

4We denote by ΩA the set of all possible tuples of variables and identifiers over a set A.
5Without loss of generality, we assume that typeV naturally extends to cartesian products.
6The original definition from [17] also allows for constants from I to appear in the output flow vectors. However, for

simplicity’s sake, we removed it here form the definition of Fout.
7Here, Var(ϕ) provides the set of all variables in ϕ.
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Definition 4.18. (Generic transition system)
Let Γ = (S,A, s0,→) be the transition system induced by some t-PNID. Then Γ is generic if for
every markings m1,m

′
1,m2 ∈ S and every bijection h : I → I, if m1 ∼h m2 and m1[t, ψ⟩m′

1 (for
some t ∈ T and binding ψ : V → I), then there existsm′

2 ∈ S and ψ′ : V → I such thatm2[t, ψ
′⟩m′

2,
m′

1 ∼h m
′
2 and ψ(v) = h(ψ′(v)), for every v ∈ V .

As one can see from the definition, genericity requires that if two marking are isomorphic, then they
induce the same transitions modulo isomorphism (i.e., the transition names are the same, and the
variable assignments are equivalent modulo renaming). This implies that they induce isomorphic
successors.

Remark 4.19. Let (N,m0) be a marked t-PNID. Then its induced transition system ΓN,m0 is generic.

The above result can be easily shown by considering the transition system construction described in
Definition 3.6, by considering isomorphism between its markings given by a simple renaming function
and checking the conditions of Definition 4.18.

As it has been demonstrated in [21, 22], model checking of sophisticated first-order variants of
µ-calculus and LTL becomes decidable for so-called state-bounded generic transition systems. Since
the transition systems induced by t-PNIDs are also generic, and boundedness of a t-PNID correspond
to state-boundedness of its induced transition system, we directly obtain decidability of model check-
ing for the same logics considered there, extended in our case over atomic predicates of the form
p ⊙ c and p(x1 · · ·xn) ⊙ c, where ⊙ ∈ {<,>,=,≤,≥}, in the style of similar logics introduced
in [20]. We shall refer to such logics as µL-FOPNID and LTL-FOPNID

p , but in this work we omit their
definition.

Theorem 4.20. Model checking of µL-FOPNID andLTL-FOPNID
p formulae is decidable for bounded,

marked t-PNIDs.

Whereas the boundedness condition may appear restrictive at the first sight, we recall that accord-
ing to Definition 4.2, a t-PNID is k-bounded if every marking reachable from the initial one does not
assign more than k tokens to every place of the net. This however does not impede the net at hand
from reaching infinitely many states as tokens may, along its run, carry infinitely many distinct objects.
Notice also that this condition is less restrictive than identifier boundedness (which essentially forces
the identifier domain to be finite) made use of in [6]. In Section 6 we discuss a class of t-PNIDs for
which boundedness still allows to explore lifecycles of potentially infinitely many objects.

5. Correctness by construction

As shown in the previous section, identifier soundness is undecidable. However, we are still interested
in ensuring correctness criteria over the modeled system. In this section, we propose a structural
approach to taming the undecidability and study sub-classes of t-PNIDs that are identifier sound by
construction.
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Figure 7: EC-closure of a WF-net N .

5.1. EC-closed workflow nets

WF-nets are widely used to model business processes. The initial place of the WF-net signifies the
start of a case, the final place represents the goal state, i.e., the process case completion. A firing
sequence from initial state to final state represents the activities that are performed for a single case.
Thus, a WF-net describes all possible sequences of a single case. Process engines, like Yasper [25]
simulate the execution of multiple cases in parallel by coloring the tokens with the case identifier (a
similar idea is used for resource-constrained WF-net variants of ν-PNs in [26]). In other words, they
label each place with a case type, and inscribe each arc with a variable. To execute it, the WF-net
is closed with an emitter and a collector, as shown in Figure 7. We generalize this idea to any place
label, i.e., any finite sequence of types may be used to represent a case. We use the technical results
obtained in this section further on in Section 5.3.

Definition 5.1. (EC-Closure)
Given a WF-net N , place type λ⃗ ∈ Λ∗ and a variable vector v⃗ ∈ V∗ such that typeV(v⃗) = λ⃗, its
EC-closure is a t-PNID W(N, λ⃗, v⃗) = (PN , TN ∪ {tE , tC}, FN ∪ {(tE , in), (out , tC)}, α, β), with:

• α(p) = λ⃗ for all places p ∈ PN ;

• β(f) = v⃗W (f) for all flows f ∈ FN , and β((te, in)) = β((out , tc)) = [ v⃗ ].

The EC-closure of a WF-net describes all cases that run simultaneously at any given time. In other
words, any reachable marking of the EC-closure is the “sum” of all simultaneous cases. Lemma 5.2
formalizes this idea by establishing weak bisimulation between the projection on a single case and the
original net.

Lemma 5.2. (Weak bisimulation for each identifier)
Let N be a WF-net, λ⃗ ∈ Λ∗ be a place type and v⃗ ∈ V∗ be a variable vector s.t. typeV(v⃗) = λ⃗.

Then, for any i⃗d ∈ I |λ⃗|, ρr(ΓW(N,λ⃗,v⃗),∅) ≈ ΓN,[in], where r in renaming ρr is such that r(t, ψ) = t,

if ψ(v⃗) = i⃗d, and r((t, ψ)) = τ , otherwise.

Proof:
Let N ′ = W(N, λ⃗, v⃗). Define R = {(M,m) | ∀p ∈ P : M(p)(i⃗d) = m(p)}. We need to show that
R is a weak bisimulation.
(⇒) Let M,M ′ and m be such markings that (M,m) ∈ R and (N ′,M)[t, ψ⟩(N ′,M ′), with t ∈ T

and ψ : V → I. By Definition 5.1, ψ(v⃗) = u⃗, for some u⃗ ∈ I |λ⃗|. From the firing rule, we obtain
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M ′(p) + [⃗uW ((p,t))] = M(p) + [⃗uW ((t,p))], for any p ∈ P . If u⃗ ̸= i⃗d, then r(t, ψ) = τ , and
(M ′,m) ∈ R. If u⃗ = i⃗d, there exists such marking m′ that m[t⟩m′ (since m(p) = M(p)(i⃗d) and
thus m(p) ≥ W ((p, t))) and m′(p) +W ((p, t)) = M(p)(i⃗d) +W ((t, p)). Then, by construction,
m′(p) =M ′(p)(i⃗d) and (M ′,m′) ∈ R.

(⇐) Let M , m, and m′ be markings that (M,m) ∈ R and (N,m)[t⟩(N,m′) with t ∈ T . We choose
binding ψ such that ψ(v⃗) = i⃗d. Then ρψ(β(p, t)) = [i⃗d

W ((p,t))
] ≤M(p), sinceW ((p, t)) ≤ m(p) =

M(p)(i⃗d). Thus, a markingM ′ exists such that (N ′,M)[t, ψ⟩(N ′,M ′). ThenM ′(p)+[i⃗d
W ((p,t))

] =

M(p) + [i⃗d
W ((t,p))

]. Hence, M ′(p)(id) = m′(p) and thus (M ′,m′) ∈ R. ⊓⊔

A natural consequence of this weak bisimulation result is that any EC-closure of a WF-net is
identifier sound if the underlying WF-net is sound.

Theorem 5.3. Given a WF-Net N , if N is sound, then W(N, λ⃗, v⃗) is identifier sound and live, for
any place type λ⃗ ∈ Λ∗ and variable vector v⃗ ∈ V∗ with type(v⃗) = λ⃗.

Proof:
Let N ′ = W(N, λ⃗, v⃗) = (P, T, F, α, β). By definition of W , Collect(t) = ∅ for any transition
t ∈ T \ {tC}. Hence, only transition tC can remove identifiers, and thus, by construction, W is
properly type completing on all λ ∈ λ⃗.

Next, we need to show that N ′ is weakly type terminating for all types λ ∈ λ⃗. Let M ∈ R(N ′, ∅),
with firing sequence η ∈ (T × (V → I))∗, i.e., (N ′, ∅)[η⟩(N ′,m). Let i⃗d ∈ C(p) such that
M(p)(i⃗d) > 0 for some p ∈ P . We then construct a sequence ω by stripping the bindings from
η s.t. it contains only transitions of T . Using Lemma 5.2, we obtain a marking m ∈ R(N, [in])
such that [in][ψ⟩m and m(p) = M(p)(i⃗d). Since N is sound, there exists a firing sequence ω′

such that m[ω′⟩[out ]. Again by Lemma 5.2, a firing sequence η′ exists such that M [η′⟩M ′ and
(M ′, [out ]) ∈ R(W, ∅)|i⃗d, where R(W, ∅)|i⃗d is the set of all reachable markings containing i⃗d.
Hence, if M ′(p)(i⃗d) > 0, then p = out . Thus, transition tC is enabled with some binding ψ such
that ψ(v⃗) = i⃗d, and a marking M ′′ exists such that M ′[tc, ψ⟩M ′′, which removes all identifiers in i⃗d

from M ′. Hence, N ′ is identifier sound.

As transition te is always enabled and N is quasi live, W(N, λ⃗, v⃗) is live. ⊓⊔

5.2. Typed Jackson nets

A well-studied class of processes that guarantee soundness are block-structured nets. Examples in-
clude Process Trees [27], Refined Process Structure Trees [28] and Jackson Nets [29]. Each of the
techniques have a set of rules in common from which a class of nets can be constructed that guaran-
tees properties like soundness. In this section, we introduce Typed Jackson Nets (t-JNs), extending
the ideas of Jackson Nets [29, 15] to t-PNIDs, that guarantee both identifier soundness and liveness.
The six reduction rules presented by Murata in [30] form the basis of this class of nets. The rules for
t-JNs are depicted in Figure 8.



180 Van der Werf et al. / Correctness Notions for Petri Nets with Identifiers

t

a b

g d

p

a b

g d

m

m

pi

pf

(a) Place Expansion

te

tc

t

a b

g d

m

m

p

a b

g d

(b) Transition Expansion

t

u

a b

g d

m

p

t

u

p

s

u

q

m

a b

g d

s

u

(c) Place Duplication

t ut

a b

g d

u

pp

s

u

q

ss

u

q

g d

a b

(d) Transition Duplication

a b

m

p

m

tp

g d

a b

g d

(e) Self-loop Addition

t

te

tc

t

a b

m

m

p

g d

a b

g d

m

m

(f) Identifier Creation

Figure 8: Construction rules of the typed Jackson Nets.

5.2.1. Place Expansion

The first rule is based on fusion of a series of places. As shown in Figure 8a, a single place p is replaced
by two places pi and pf that are connected via transition t. All transitions that originally produced
in p, produce in pi in the place expansion, and similarly, the transitions that consumed from place p,
now consume from place pf . In fact, transition t can be seen as a transfer transition: it needs to move
tokens from place pi to place pf , before the original process can continue. This is also reflected in the
labeling of the places: both places have the same place type, and the input and output arc of transition
t are inscribed with the same variable vector [ µ⃗ ] that matches the type of place p.

Definition 5.4. (Place expansion)
Let (N,m) be a marked t-PNID with N = (P, T, F, α, β), p ∈ P be a place and µ⃗ ∈ V∗ be a variable
vector s.t. typeV(µ⃗) = α(p). The place expanded t-PNID is defined by the relation Rp,µ⃗(N,m) =
((P ′, T ′, F ′, α′, β′),m′), where:

• P ′ = (P \ {p}) ∪ {pi, pf} with pi, pf ̸∈ P ; and T ′ = T ∪ {t} with t ̸∈ T ;

• F ′ = (F \ (({p} × p•) ∪ (•p× {p})) ∪ (•p× {pi}) ∪ {(pi, t), (t, pf )} ∪ ({pf} × p•);

• α′(q) = α(p), if q ∈ {pi, pf}, and α′(q) = α(q), otherwise.
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• β′(f)= [µ⃗], if f ∈ {(pi, t), (t, pf )}, β′((u, pi))=β((u, p)), if u ∈ •p, β′((pf , u))=β((p, u)),
if u ∈ p•, and β′(f) = β(f), otherwise.

• m′(q) = m(q) for all q ∈ P \ {p}, m′(pf ) = 0, and m′(pi) = m(p).

Inscription µ⃗ cannot alter the vector identifier on the tokens, as the type of µ⃗ should correspond to
both place types α(p) and α(q). Hence, the transition is enabled with the same bindings as any other
transition that consumes a token from place p, modulo variable renaming. As such, transition t only
“transfers” tokens from place pi to place pf . Hence, as the next lemmas shows, place expansion yields
a weakly bisimilar t-PNID and preserves identifier soundness.

Lemma 5.5. Let (N,m0) be a marked t-PNID with N = (P, T, F, α, β), p ∈ P be a place to expand
and µ⃗ ∈ V∗ be a variable vector s.t. typeV(µ⃗) = α(p). Then ΓN,m0≈rĤ{t}(ΓRp,µ⃗(N,m0)), with
transition t added by Rp,µ⃗.

Proof:
Let (N ′,m′

0) = Rp,µ(N,m0). We define Q ⊆ M(N) × M(N ′) such that (m,m′) ∈ Q iff m(q) =
m′(q) for all places q ∈ P \ {p} and m′(pi) + m′(pf ) = m(p). Then (m0,m

′
0) ∈ Q, hence the

relation is rooted.

(⇒) Let (m,m′) ∈ Q and (N,m)[u, ψ⟩(N, m̄). We need to show that there exists marking m̄′ such
that m′ (u, ψ)

m̄′ and (m̄, m̄′) ∈ Q.

Suppose p ̸∈ •u. Then m′(q) = m(q) and m(q) ≥ ρψ(β((p, u))) (note that ρψ(β((p, u))) =
ρψ(β

′((p, u)))). By the firing rule, a marking m̄′ exists with (N,m′)[u, ψ⟩(N ′, m̄′), m̄(q) = m̄′(q)
for all q ∈ P ′. Thus, (m̄, m̄′) ∈ Q. Suppose p ∈ •u. Then ρψ(β((pf , u))) ≤ m(p) = m′(pi) +
m′(pf ). If ρψ(β(pf , u))) ≤ m′(pf ), then transition u is enabled, and a marking m̄′ exists with
(N,m′)[u, ψ⟩(N, m̄′) and (m̄, m̄′) ∈ Q.

Otherwise, ρψ(β(pf , u))) ≤ m′(pi). Construct a binding ψ′ by letting ψ′(µ(i)) = ψ(β(p, u)(i)),
for all 1 ≤ i ≤ |µ|. Then, ρψ′(µ) = ρψ(β(p, u)), and transition t is enabled with binding ψ′. Hence, a
markingm′′ exists with (N,m′)[t, ψ′⟩(N,m′′) and ρψ(β((p′, u))) ≤ m′′(p′). Then (m,m′′) ∈ Q and
t is labeled τ in Ĥ{t}(R(p,µ⃗)(N)). Now, either transition u is enabled, or transition t is again enabled
with binding ψ′. In all cases, m′ (t, ψ)

m̄′ and (m′, m̄′) ∈ Q.

(⇐) Let (m,m′) ∈ Q and (N ′,m′)[u, ψ⟩(N ′, m̄′). We need to show that either a m̄ exists such that
(N,m)[u, ψ⟩(N, m̄) and (m̄, m̄′) ∈ Q or u = τ and (m, m̄′) ∈ Q.

Suppose u = t, i.e., u is labeled τ in Ĥ{t}(R(p,µ⃗)(N)). Then, •u = pi and u• = pf . By the firing
rule, m̄′(pi) + m̄′(pf ) = m(pi) +m(pf ) = m(p). Hence (m, m̄′) ∈ Q.

If u ̸= t, we need to show that there exists marking m̄ such that m (u, ψ)
m̄ and (m̄, m̄′) ∈

Q. Let q ∈ •u. If q ̸= p, then m(q) ≤ ρψ(β(p, u)). If q = p, then m(q) ≥ m(pf ) and
thus, m(q) ≤ ρψ(β(p, u)). Hence, transition u is enabled in m and a marking m̄ exists such that
(N,m)[t, ψ′⟩(N, m̄). By the firing rule, we have m̄(p) = m(p) − ρψ(β(p, u)) + ρψ(β(u, p)) =
m′(pi) +m′(pf )− ρψ(β(pi, u))− ρψ(β(pf , u)) + ρψ(β(u, pi)) + ρψ(β(u, pf )) = m̄′(pi) + m̄′(pf ),
since ρψ(β(pi, u)) = ρψ(β(u, pf ) = ∅. Hence, (m̄, m̄′) ∈ Q, which proves the statement. ⊓⊔
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Lemma 5.6. Let (N,m0) be a marked t-PNID with N = (P, T, F, α, β), p ∈ P be a place to expand
and µ⃗ ∈ V∗ be a variable vector s.t. typeV(µ⃗) = α(p). Then, Rp,µ⃗(N,m0) is identifier sound iff
(N,m0) is identifier sound.

Proof:
Let (N ′,m′

0) = Rp,µ⃗(N,m0). Define Q ⊆ M(N)×M(N ′) such that (m,m′) ∈ Q iff m(q) = m′(q)
for all places q ∈ P \ {p} and m′(pi) + m′(pf ) = m(p), i.e., Q is the bisimulation relation as
defined in the previous lemma. Then, the statement is a direct consequence of Id(m) = Id(m′) for
all (m,m′) ∈ Q and the bisimulation. ⊓⊔

Lemma 5.7. Let (N,m0) be a marked t-PNID with N = (P, T, F, α, β), p ∈ P be a place to expand
and µ⃗ ∈ V∗ be a variable vector. Then (N,m0) is identifier sound iff Rp,µ⃗(N,m0) is identifier sound.

Proof:
Let (N ′,m′

0) = Rp,µ⃗(N,m0), and let Q ⊆ M(N) ×M(N ′) be the bisimulation relation of Lm. 5.5.
Let t be the transition added by the place extension rule. Then t ̸∈ CN (λ) for any type λ ∈ typeΛ(N).
As Id(m1) = Id(m2) for all (m1,m2) ∈ Q, the statement directly follows from Thm. 4.14. ⊓⊔

5.2.2. Transition Expansion

The second rule is transition expansion, which corresponds to Murata’s fusion of series transitions. As
shown in Fig. 8b, transition t is divided into two transitions, te that consumes the tokens, and a second
transition tc that produces the tokens. The two transitions are connected with a single, fresh place p.
Place p should ensure that all variables consumed by the original transition t, are passed to transition
tc, to ensure that tc can produce the same tokens as transition t in the original net. In other words, the
type of each input place of t is included in the type of the newly added place p. Moreover, transition
te is also allowed to emit new, fresh identifiers that, however, will be eventually consumed by tc.

Definition 5.8. (Transition expansion)
Let (N,m) be a marked t-PNID with N = (P, T, F, α, β), let t ∈ T , and let λ⃗ ∈ Λ∗ and µ⃗ ∈
(V \ Emit(t))∗ such that typeV(x) ∈ λ⃗ and x ∈ µ⃗, for all x ∈ In(t), and typeV(µ⃗) = λ⃗. The
transition expanded t-PNID is defined by R

t,λ⃗,µ⃗
(N,m) = ((P ′, T ′, F ′, α′, β′),m), where:

• P ′ = P ∪ {p} with p ̸∈ P ; and T ′ = (T \ {t}) ∪ {te, tc} with te, tc ̸∈ T ;

• F ′ = (F \ ((•t× {t}) ∪ ({t} × t•))) ∪ (•t× {te}) ∪ {(te, p), (p, tc)} ∪ ({tc} × t•);

• α′(p) = λ⃗ and α′(q) = α(q) for all q ∈ P ;

• β′(f) = [ µ⃗ ] if f ∈ {(te, p), (p, tc)}, β′((q, te)) = β((q, t)) for q ∈ •t, β′((tc, q)) = β((t, q))
for q ∈ t•, and β′(f) = β(f) otherwise.

Transition te is allowed to introduce new variables, but key is that inscription µ⃗ contains all input
variables of transition t. Consequently, µ⃗ encodes the binding of transition t. We use this to prove
weak bisimulation between a t-PNID and it transition expanded net. The idea behind the simulation
relation Q is that the firing of te is postponed until tc fires. In other words, Q encodes that tokens
remain in place q until transition tc fires.
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Lemma 5.9. Given marked t-PNID (N,m0) with N = (P, T, F, α, β), transition t ∈ T , λ⃗ ∈ Λ∗ and
µ ∈ V∗. Let te, tc be the transitions added by the expansion.
Then ΓN,m0 ≈r ρr(ΓR

t,λ⃗,µ
(N,m0)) with r = {(te, τ), (tc, t)}.

Proof:
Let (N ′,m′

0) = Rt,λ,µ(N,m0). Then m′
0 = m0. Define relation Q ⊆ M(N) × M(N ′) such that

(m,m′) ∈ Q iffm(q) = m′(q) for all places q ∈ P\•t andm(q) = m′(q)+
∑

b∈supp(M ′(p))M
′(p)(b)·

ρµ(b)β((q, t)), where µ(b) is a shorthand for the binding ψ : V → I with ψ(x) = b(i) iff µ(i) = x for
all 1 ≤ i ≤ |µ|. Then (m0,m

′
0) ∈ Q.

(⇒) Follows directly from the firing rule, and the construction of µ.

(⇐) Let (m,m′) ∈ Q and (N ′,m′)[u, ψ⟩(N ′, m̄′). We need to show a marking m̄ exists such that

m
(t, ψ)

m̄ and (m̄, m̄′) ∈ Q. If te ̸= u ̸= tc, the statement holds by definition of the firing
rule. Suppose u = te, i.e., r(u) = τ . Hence, we need to show that (m, m̄′) ∈ Q. Let q ∈ •t. Since
(m,m′) ∈ Q, we havem(q) = m′(q)+

∑
b∈supp(m′(p))m

′(p)(b)·ρµ(b)β((q, t)). By the firing rule, we
have m̄′(p) = m′(p)+[ρψ(µ)] andm′(q) = m̄′(q)+ρψ(β((q, t))). By construction, ρψ and ρµ([ρψ(µ)])
are identical functions. Rewriting givesm(q) = m̄′(q)+

∑
b∈supp(m̄′(p))m

′(p)(b) ·ρµ(b)β((q, t)), and
thus (m, m̄′) ∈ Q.

Suppose u = tc, i.e., r(u) = t and [ρψ(µ)] ≤ m′(p). Let q ∈ •t. Then m(q) = m′(q) +∑
b∈supp(m′(p))m

′(p)(b) · ρµ(b)β((q, t)). Since m̄′(p) + [ρψ(µ)] = m′(p) and ρψ(β((q, u))) =

ρµ([ρψ(µ)])(β((q, u))), we obtain m(q) = m′(q) +
(∑

b∈supp(m̄′(p)) m̄
′(p)(b) · ρµ(b)β((q, t))

)
+

ρψβ((q, t)). Hence, a marking m̄ exists such that (N,m)[t, ψ⟩(N, m̄) and (m̄, m̄′) ∈ Q. ⊓⊔

Lemma 5.10. Given marked t-PNID (N,m0) with N = (P, T, F, α, β), transition t ∈ T , λ⃗ ∈ Λ∗

and µ ∈ V∗. Then (N,m0) is identifier sound iff R
t,λ⃗,µ

(N,m0) is identifier sound.

Proof:
Define (N ′,m′

0) = R
t,λ⃗,µ

(N,m0) with N ′ = (P ′, T ′, F ′, α′, β′), let te, tc ∈ T ′ \ T be the two added
transitions and let q ∈ P ′ \P be the added place. Let Q ⊆ M(N)×M(N ′) be the weak bisimulation
relation as defined in Lm. 5.9.

Suppose λ ∈ Λ. If λ ∈ typeΛ(N), then CN (λ) = CN ′(λ) by definition of the transition expan-
sion. As I(λ) ∩ Id(m1) = I(λ) ∩ Id(m2) for all (m1,m2) ∈ Q, the statement directly follows from
Thm. 4.14.

Otherwise, if λ ∈ typeΛ(N
′) \ typeΛ(N), then, for all places p ∈ P ′, having λ ∈ α(p) implies

that p = q, i.e., q is the only place that contains tokens carrying identifiers of type λ, and tc ∈ CN ′(λ).
Suppose that there exist a markingm′ ∈ R(N ′,m′

0), firing sequence η, vector i⃗d ∈ I∗ and id ∈ I(λ)
such that (N ′,m′

0)[η⟩(N ′,m′), m(q)(i⃗d) > 0 and id ∈ i⃗d. Thus, id ∈ Id(m′). Then a binding
ψ : V → I exists such that id ∈ RNG(ψ) and (te, ψ) ∈ η. As te is an emitting transition for λ, we
have that |β′((te, ψ))| = 1, and thus m′(q)(i⃗d) = 1. By the firing rule and the construction of N ′, we
have that m′(q)(ψ(β′((q, tc)))) > 0, i.e., (N ′,m′)[tc, ψ⟩. Hence, a marking m′′ ∈ M(N ′) exists with
(N ′,m′)[tc, ψ⟩(N ′,m′′) such that id ̸∈ Id(m′′). Hence, N ′ is weakly λ-terminating. As q• = {tc},
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transition tc is the only transition which can remove identifiers of type λ, and thus N ′ is also proper λ
completing. ⊓⊔

5.2.3. Place Duplication

Whereas the previous two rules introduced ways to extend sequences, the third rule introduces paral-
lelism by duplicating a place, as shown in Figure 8c. It is based on the fusion of parallel transitions
reduction rule of Murata. For t-PNIDs, duplicating a place has an additional advantage: as all infor-
mation required for passing the identifiers is already guaranteed, the duplicated place can have any
place type. Transition t can emit new identifiers, provided that transition u does not already emit
these.

Definition 5.11. (Duplicate place)
Let (N,m) be a marked t-PNID with N = (P, T, F, α, β), let p ∈ P , such that m(p) = ∅, and
some transitions t, u ∈ T exist with •p = {t}, t• = {p}, p• = {u} and •u = {p}. Let λ⃗ ∈
Λ∗ and µ⃗ ∈ (V \ Emit(u))∗ such that typeV(µ) = λ. Its duplicated place t-PNID is defined by
Dp,λ,µ(N,m) = ((P ′, T, F ′, α′, β′),m), where:

• P ′ = P ∪ {q}, with q ̸∈ P , and F ′ = F ∪ {(t, q), (q, u)};

• α′ = α ∪ {q 7→ λ⃗} and β′ = β ∪ {(t, q) 7→ [µ], (q, u) 7→ [µ]}.

As the duplicated place cannot hamper the firing of any transition, all behavior is preserved by a
strong bisimulation on the identity mapping.

Lemma 5.12. Given a marked t-PNID (N,m0) with N = (P, T, F, α, β), place p ∈ P , λ⃗ ∈ Λ∗ and
µ ∈ V∗. Then ΓN,m0 ∼r ΓD

p,λ⃗,µ
(N,m0).

Proof:
Let (N ′,m′

0) = D
p,λ⃗,µ

(N,m0). Define relation Q ⊆ M(N) × M(N ′) such that (m,m′) ∈ Q iff
m(q)=m′(q) for all places q ∈ P . The bisimulation relation trivially follows from the firing rule. ⊓⊔

Lemma 5.13. Let (N,m0) be a marked t-PNID with N = (P, T, F, α, β), place p ∈ P , λ ∈ Λ∗ and
µ ∈ V∗. Then (N,m0) is identifier sound iff D

p,λ⃗,µ
(N,m0) is identifier sound.

Proof:
Let (N ′,m′

0) = D
p,λ⃗,µ

(N,m0) with N ′ = (P ′, T ′, F ′, α′, β′), let q ∈ P ′ \ P be the place added by
the place duplication rule, and let Q ⊆ M(N)×M(N ′) be the bisimulation relation of Lm. 5.15.

(⇒) Let λ ∈ typeΛ(N) be a type. Then, λ ∈ typeΛ(N
′) and CN (λ) = CN ′(λ) by definition of the

place duplication rule. As I(λ) ∩ Id(m1) = I(λ) ∩ Id(m2) for all (m1,m2) ∈ Q, the statement
directly follows from Thm. 4.14.

(⇐) Let λ ∈ typeΛ(N
′) be a type. If λ ∈ typeΛ(N), then the statement directly follows from

Thm. 4.14 as CN (λ) = CN ′(λ) and I(λ) ∩ Id(m1) = I(λ) ∩ Id(m2) for all (m1,m2) ∈ Q.
Otherwise λ ̸∈ typeΛ(N). Then, by definition of the place duplication, it must be that λ ∈ α(q).
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Then EN ′(λ) = u and CN ′(λ) = u, where (t, q), (q, u) ⊆ F ′. Suppose there there exist a marking
m′ ∈ R(N ′,m′

0), firing sequence η, an identifier vector i⃗d ∈ I∗ and identifier id ∈ I(λ) such that
(N ′,m′

0)[η⟩(N ′,m′), id ∈ i⃗d and m′(q)(i⃗d) > 0. Then a binding ψ : V → I exists such that id ∈
RNG(ψ) and (t, ψ) ∈ η. As t is an emitting transition for λ, then |β′((t, ψ))| = 1, i.e., m′(q)(i⃗d) = 1.
By the firing rule and the construction of N ′, it holds that m′(q)(ψ(β′((q, u)))) > 0, and thus
(N ′,m′)[u, ψ⟩. Hence, there exists a marking m′′ ∈ M(N ′) such that (N ′,m′)[u, ψ⟩(N ′,m′′). Then
id ̸∈ Id(m′′). Hence, N ′ is weakly λ-terminating. As q• = {u}, transition u is the only transition
which can remove identifiers of type λ, and hence N ′ is also proper λ-completing. ⊓⊔

5.2.4. Transition Duplication

As already recognized by Berthelot [31], if two transitions have an identical preset and postset, one
of these transitions can be removed while preserving liveness and boundedness. Murata’s fusion
of parallel places is a special case of this rule, requiring that the preset and postset are singletons.
For t-JNs, this results in the duplicate transition rule: any transition may be duplicated, as shown in
Figure 8d. As duplication should not hamper the behavior of the original net, we require that the
inscriptions of the duplicated transition are identical to the original transition.

Definition 5.14. (Duplicate transition)
Let (N,m) be a marked t-PNID with N = (P, T, F, α, β), and let t ∈ T such that some places p, q ∈
P exist with •t = {p} and t• = {q}. Its duplicated transition t-PNID is defined by Dt(N,m) =
((P, T ′, F ′, α, β′),M), where:

• T ′ = T ∪ {u}, with u ̸∈ T , and F ′ = F ∪ {(p, u), (u, q)};

• β′((p, u)) = β((p, t)), β((u, q)) = β((t, q)) and β′(f) = β(f) for all f ∈ F .

As the above rule only duplicates t ∈ T , the identity relation on markings is a strong rooted
bisimulation. The proof is straightforward from the definition.

Lemma 5.15. Given a marked t-PNID (N,m0) with N = (P, T, F, α, β), and transition t ∈ T . Then
ΓN,m0 ∼r ρ{(u,t)}(ΓDt(N,m0)).

Proof:
Let (N ′,m′

0) = Dt(N,m0). Define relation Q ⊆ M(N) × M(N ′) such that (m,m′) ∈ Q iff
m(p)=m′(p) for all places p ∈ P . The bisimulation relation trivially follows from the firing rule. ⊓⊔

Lemma 5.16. Let (N,m0) be a marked t-PNID with N = (P, T, F, α, β) and transition t ∈ T . Then
(N,m0) is identifier sound iff Dt(N,m0) is identifier sound.

Proof:
Let (N ′,m′

0) = Dt(N,m0), and let Q ⊆ M(N) ×M(N ′) be the bisimulation relation of Lm. 5.15.
Then Id(m1) = Id(m2) for all (m1,m2) ∈ Q. If t ̸∈ CN (λ) then the statement directly follows
from Thm. 4.14. Otherwise, i.e., t ∈ CN (λ), then CN (λ) = CN (λ) ∪ {u}. By Lm 4.13, N is
weakly λ terminating. As βN ′((t, p)) = βN ′((u, p)) and βN ′((p, t)) = βN ′((p, u)) for all places
p ∈ PN ′ , proper type completion cannot distinct firing transition t from transition u. Hence, proper λ
completion follows from the proof of Lm 4.12, and thus, N is identifier sound. ⊓⊔
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5.2.5. Adding Identity Transitions

In [31], Berthelot classified a transition twith an identical preset and postset, i.e., •t = t• as irrelevant,
as its firing does not change the marking. The reduction rule elimination of self-loop transitions is a
special case, as Murata required these sets to be singletons. We now introduce the fifth rule allowing
the addition of a self-loop transition, as depicted in Figure 8e.

Definition 5.17. (Self-loop addition)
Let (N,m) be a marked t-PNID with N = (P, T, F, α, β), and let p ∈ P . Its self-loop added t-PNID
is defined by Ap(N,m) = ((P, T ′, F ′, α, β′),m), where:

• T ′ = T ∪ {t}, with t ̸∈ T , and F ′ = F ∪ {(p, t), (t, p)};

• β′((p, t)) = β′((t, p)) = [ µ⃗ ] with µ⃗ ∈ V∗ such that typeV(µ) = α(p), and β′(f) = β(f)
otherwise.

Similar to the duplicate transition rule, the self-loop addition rule does not introduce new behavior,
except for silent self-loops. Hence, the identity relation on markings is a weak rooted bisimulation.

Lemma 5.18. Given a marked t-PNID (N,m0) with N = (P, T, F, α, β), and place p ∈ P . Then
ΓN,m0 ≈r Ĥ{t}(ΓAp(N,m0)) with t the added self-loop transition.

Proof:
Let (N ′,m′

0) = Ap(N,m0). Define relation Q ⊆ M(N) × M(N ′) such that (m,m′) ∈ Q iff
m(p)=m′(p) for all places p ∈ P . The bisimulation relation trivially follows from the firing rule. ⊓⊔

Lemma 5.19. Let (N,m0) be a marked t-PNID with N = (P, T, F, α, β) and place p ∈ P . Then
(N,m0) is identifier sound iff Ap(N,m0) is identifier sound.

Proof:
Let (N ′,m′

0) = Ap(N,m0) and let Q ⊆ M(N) × M(N ′) be the bisimulation relation of Lm. 5.15.
Note that CN (λ) = CN ′(λ) for all λ ∈ typeΛ(N), since the added self-loop transition does not
remove any identifier. As Id(m1) = Id(m2) for all (m1,m2) ∈ Q, the statement directly follows
from Thm. 4.14. ⊓⊔

5.2.6. Identifier Introduction

The first five rules preserve the criteria of block-structured WF-nets. Murata’s elimination of self-
loop places states that adding or removing a marked place with identical preset and postset does
preserve liveness and boundedness. This rule is often used to introduce a fixed resource to a net,
i.e., the number of resources is determined in the initial marking. Instead, identifier introduction adds
dynamic resources, as shown in Figure 8f: transition te emits new identifiers as its inscription uses
only “new” variables (i.e., those that have not been used in the net), and place p works like a storage
of the available resources, which can be removed by firing transition tc.
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Definition 5.20. (Identifier Introduction)
Let (N,m) be a marked t-PNID with N = (P, T, F, α, β), let t ∈ T , let λ⃗ ∈ (Λ \ typeP (N))∗ and
µ⃗ ∈ V∗ such that typeV(µ⃗) = λ⃗. The Identifier introducing t-PNID is defined by A

t,λ⃗,µ⃗
(N,m) =

((P ′, T ′, F ′, α′, β′),m), where:

• P ′ = P ′ ∪ {p} and T ′ = T ∪ {te, tc}, for p ̸∈ P and te, tc ̸∈ T , and
F ′ = F ∪ {(p, t), (t, p), (te, p), (p, tc)};

• α′ = α ∪ {p 7→ λ⃗} and β′ = β ∪ {(p, t) 7→ [µ⃗], (t, p) 7→ [µ⃗], (te, p) 7→ [µ⃗], (p, tc) 7→ [µ⃗]};

Lemma 5.21. Given a marked t-PNID (N,m0) with N = (P, T, F, α, β), transition t ∈ T , λ⃗ ∈ Λ∗

and µ⃗ ∈ (V \Var(t))∗. Then ΓN,m0 ≈r Ĥ{te,tc}(ΓAt,λ⃗,µ⃗(N,m0)) with te, tc being the added transitions.

Proof:
Let N ′ = (P ′, T ′, F ′, α′, β′). Define Q ⊆ M(N)×M(N ′) such that (m,m′) ∈ Q iff m(q) = m′(q)
for all q ∈ P .
(⇒) Suppose (N,m)[u, ψ⟩(N, m̄′) and (m,m′) ∈ Q. If u ̸= t, the statement directly follows
from the firing rule. Same holds for the case when u = t and t is enabled in m′. If u = t and
t is not enabled in m′, then a marking m′′ and binding ψ′ exist such that (N ′,m′)[te, ψ

′⟩(N,m′′).
Then m′′(p) > ∅, (m,m′′) ∈ Q, and (N ′,m′′)[u, ψ⟩. Hence, markings m̄′′ and m̄′ exist such that
(N ′,m′′)[t, ψ⟩(N ′, m̄′′)[tc, ψ

′⟩(N, m̄′), and (m, m̄′′), (m′, m̄′) ∈ Q.
(⇐) Follows directly from the firing rule. ⊓⊔

As shown in [12], unbounded places are width-bounded, i.e., they can carry only boundedly many
distinct identifiers, or depth-bounded, i.e., for each identifier, the number of tokens carrying that iden-
tifier is bounded, or both. The place added by the identifier creation rule is by definition width-
unbounded, as it has an empty preset. However, it is identifier sound, and thus depth-bounded, as
shown in the next lemma.

Lemma 5.22. Given a marked t-PNID (N,m) with N = (P, T, F, α, β). Then A
t,λ⃗,µ⃗

(N,m) is iden-
tifier sound iff (N,m) is identifier sound.

Proof:
Let (N ′,m′) = A

t,λ⃗,µ⃗
(N,m), let p ∈ P ′ \ P , and let λ ∈ typeΛ(N

′).

(⇒) Suppose (N,m) is identifier sound. Let m̄ ∈ M(N ′) and η ∈ (T ′ × (V → I))∗ such that
(N ′,m′)[η⟩(N ′, m̄). Let id ∈ Id(m̄) ∩ I(λ). If λ ∈ typeΛ(N), weak λ-termination and proper
λ-completion follow from Lm. 5.21. Suppose λ ̸∈ typeΛ(N), i.e., λ ∈ λ⃗. By construction of N ′,
we have λ ∈ α(q) implies p = q for all places q ∈ P ′, EN ′(λ) = {te} and CN ′(λ) = {tc}. By the
firing rule, we have id ∈ a⃗ and id ∈ b⃗ imply a⃗ = b⃗ for all a⃗, b⃗ ∈ supp(m(p)). Again by the firing
rule, m(p)(⃗a) ≤ 1 for all a⃗ ∈ supp(m(p)). In other words, there is only one token carrying identifier
id. Let i⃗d ∈ C(p) such that id ∈ i⃗d and m(p)(i⃗d) > 0. Then m(p)(i⃗d) = 1. Thus, a binding ψ
exists such that (te, ψ) ∈ η and ρµ⃗(ψ) = i⃗d. By construction of N ′, a marking m̄′ exists such that
(N ′, m̄)[tc, ψ⟩(N ′, m̄′). Then id /∈ Id(m̄′). Hence, (N ′,m′) is weakly λ-terminating. It is proper
λ-completing since there is only one token carrying identifier id.
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(⇐) Suppose (N ′,m′) is identifier sound. If λ ∈ typeΛ(N), weak λ-termination and proper λ-
completion follow from Thm. 4.14. In case λ ̸∈ typeΛ(N), it is weakly λ-terminating, sinceEN (λ) =
∅, and properly λ-completing since CN (λ) = ∅. ⊓⊔

5.2.7. Soundness for Typed Jackson Nets

Any net that can be reduced to a net with a single transition using these rules is called a typed Jackson
Net (t-JN).

Definition 5.23. The class of typed Jackson Nets T is inductively defined by:

• ((∅, {t}, ∅, ∅, ∅), ∅) ∈ T ;

• if (N,M) ∈ T , then Rp,µ⃗(N,M) ∈ T ;

• if (N,M) ∈ T , then R
t,λ⃗,µ⃗

(N,M) ∈ T ;

• if (N,M) ∈ T , then D
p,λ⃗,µ⃗

(N,M0) ∈ T ;

• if (N,M) ∈ T , then Dt(N,M) ∈ T ;

• if (N,M) ∈ T , then Ap(N,M) ∈ T ;

• if (N,M) ∈ T , then A
t,λ⃗,µ⃗

(N,M) ∈ T .

As any t-JN reduces to a single transition, and each construction rule goes hand in hand with a
bisimulation relation, any liveness property is preserved. Consequently, any t-JN is identifier sound
and live.

Theorem 5.24. Any typed Jackson Net is identifier sound and live.

Proof:
We prove the statement by induction on the structure of t-JNs. The statement holds trivially for the
initial net, ((∅, {t}, ∅, ∅, ∅), ∅). Suppose (N ′,M ′) ∈ T is identifier sound. We show that applying any
of the construction rules on (N ′,M ′) preserves identifier soundness:

• Suppose (N,M) = Rp,µ⃗(N
′,M ′). The statement follows directly from Lm. 5.7.

• Suppose (N,M) = R
t,λ⃗,µ⃗

(N ′,M ′). The statement follows directly from Lm. 5.10.

• Suppose (N,M) = D
p,λ⃗,µ⃗

(N ′,M ′). The statement follows directly from Lm. 5.13.

• Suppose (N,M) = Dt(N
′,M ′). The statement follows directly from Lm. 5.16.

• Suppose (N,M) = Ap(N
′,M ′). The statement follows directly from Lm. 5.19.

• Suppose (N,M) = A
t,λ⃗,µ⃗

(N ′,M ′). The statement follows directly from Lm. 5.22. ⊓⊔
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Figure 9: The example of the retailer shop as a typed Jackson Net.
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Figure 10: Several intermediate steps while creating the typed Jackson Net of Fig. 9.

To solve the problem of the running example, several solutions exist. One solution is shown in
Figure 9, which is a t-JN. Several intermediate construction steps are shown in Fig. 10. The modeler
starts with transition T , “create customer”. The net has no identifiers yet. Next, transition T is ex-
panded using place type ⟨customer⟩, i.e., a place and transition V are added. A self loop is added to
the newly created place (transitionG), which results in the net depicted in Fig. 9a. The next step intro-
duces place p, and is shown in Fig. 9b: transition G is expanded using place type ⟨order , customer⟩.
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Duplicating place p allows to create a place with place type ⟨customer⟩. The net depicted in Fig. 9c
shows the net after adding another self-loop (transition E). The identifier introduction rule allows the
modeler to add a product life cycle, so that transition E can add actual products, resulting in the net
depicted in Fig. 9d. Now, all required identifiers are present, and transitions H , K, J , L, O and N are
added using the place type ⟨customer⟩, which results in the net depicted in Fig. 9. As only the types
Jackson rules are used, the net is guaranteed to be identifier sound and live.

5.3. Workflow refinement

A well-known refinement rule is workflow refinement [10]. In a WF-net, any place may be refined
with a generalized sound WF-net. If the original net is sound, then the refined net is sound as well.
In this section, we present a similar refinement rule. Given a t-PNID, any place may be refined by a
generalized sound WF-net. In the refinement, each place is labeled with the place type of the refined
place, and all arcs in the WF-net are inscribed with the same variable vector.

Definition 5.25. (Workflow refinement)
Let L = (PL, TL, FL, αL, βL), be a t-PNID, p ∈ PL a place, and N = (PN , TN , FN ,WN , in, out)
be a WF-net. Workflow refinement is defined by L⊕p N = (P, T, F, α, β), where:

• P = (PL \ {p}) ∪ PN and T = TL ∪ TN ;
• F = (FL ∩ ((P × T ) ∪ (T × P ))) ∪ FN ∪ {(t, in) | t ∈ •p} ∪ {(out , t) | t ∈ p•};
• α(q) = αL(q) for q ∈ PL \ {p}, and α(q) = αL(p) for q ∈ PN ;
• β(f) = βL(f) for f ∈ FL, β(f) = [µ⃗](W (f)) for f ∈ FN and typeV(µ⃗) = α(p), β((t, in)) =
β((t, p)) for t ∈ •p and β((out , t)) = β((p, t)) for t ∈ p•.

Generalized soundness of a WF-Net ensures that any number of tokens in the initial place are
“transferred” to the final place. As shown in Section 5.1, the EC-closure of a sound WF-net is identifier
sound and live. A similar approach is taken to show that the refinement is weakly bisimilar to the
original net. Analogously to [10], the bisimulation relation is the identity relation, except for place p.
The relation maps all possible token configurations of place p to any reachable marking in the WF-net,
given p’s token configuration.

Lemma 5.26. Let L = (PL, TL, FL, αL, βL) be a t-PNID with initial marking m0, let p ∈ PL be a
place s.t. m0(p) = ∅, and let N = (PN , TN , FN ,WN , inN , outN ) be a WF-net. If N is generalized
sound, then ΓL,m0 ≈r ĤTN (ΓL⊕pN,m0).

Proof:
For simplicity, we start by defining a type extension of N as a t-PNID N ′ = (PN ′ , TN ′ , FN ′ , α, β),
where type(v⃗) = λ⃗, α(p) = λ⃗ for all places p ∈ PN , and β(f) = v⃗W (f) for all f ∈ FN , and
β((te, in)) = β((out , tc)) = [v⃗].

To prove bisimilarity, we define R = {(M,M ′ + m) | M ∈ R(L,M0),M
′ ∈ A(M),m ∈

B(M)} where

• A(M) := {M ′ |M ′ ∈ R(L,M0),M
′(p) = ∅ and ∀q ∈ PL \ {p} :M ′(q) =M(q)}, and
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• B(M) := {m | m ∈ R(N ′,m′′
0),m

′′
0(in) =M(p) and ∀q ∈ PN ′ \ {p} : m′′

0(q) = ∅}.

Intuitively, B(M) is essentially the λ⃗-typed set of reachable markings of N for a fixed k-tokens in in ,
where such tokens in N ′ are provided by M (more specifically, by M(p)).

(⇒) Let (M,M ′ +m) ∈ R and M [t, ψ⟩M̄ . We need to show that there exists M̄ ′ and m̄ s.t. (M ′ +

m)
(t, ψ)

(M̄ ′ + m̄) and (M̄, M̄ ′ + m̄) ∈ R. To this end, we consider the following cases.

(i) If t ̸∈ •p (or p ̸∈ •t), then M ′(q) = M(q) for all q ∈ PL \ p (follows from the definition
of A(M)), and thus t is also enabled in M ′(q) and M(q) ≥ β((q, t)). Then by the firing rule
there exists M̄ ′ s.t. (M ′ + m)[t, ψ⟩(M̄ ′ + m) and M̄ ′(q) = M̄(q) for all q ∈ PL. Thus,
(M ′, M̄ ′ +m) ∈ R.

(ii) If t ∈ •p, then, since M ′(q) = M(q) for all q ∈ PL \ p, t must be enabled in M ′. by the
refinement construction from Definition 5.25, t is enabled regardless the marking of in . By the
firing rule, there exists M̄ ′ and m̄ such that (M ′ +m)[t, ψ⟩(M̄ ′ + m̄), M̄ ′(q) = M̄(q) for all
q ∈ PL \ p, and m̄(in) = M̄(p) +m(in). Moreover, by the definition of R, in can be marked
with arbitrarily many tokens from M(p). Thus, (M ′, M̄ ′ + m̄) ∈ R.

(iii) If p ∈ •t and ρψ(β((p, t))) = i⃗d, then, given that N is generalized sound and by applying
Lemma 5.2, there exists a firing sequence η for N ′ that carries identifier i⃗d to out . This means
that, by construction, M ′(q) = M(q), for all q ∈ PL, and m(out)(i⃗d) = M(p)(i⃗d). Hence, t
is enabled in (M ′ +m) under binding ψ′ that differs from ψ everywhere but on place out . By
the firing rule, there exists (M̄ ′ + m̄) s.t. (M ′ +m)[t, ψ′⟩(M̄ ′ + m̄) and (M, M̄ ′ + m̄) ∈ R.

(iv) If t ∈ •p ∩ p•, then M(p) ̸= ∅ (since M [t, ψ⟩M̄ ). Assume that ρψ(β((t, p))) = i⃗d1 and
ρψ(β((p, t))) = i⃗d2. By construction, we know that M ′(q) = M(q) for all q ∈ PL and m
marks some of the places in PN . SinceN is generalized sound and by Lemma 5.2, we can safely
assume that i⃗d2 ∈ m(p) (otherwise, we can apply the reasoning from the previous case). Then
it easy to see that, by construction, t is enabled in (M ′ +m) under the same binding ψ. Thus,
by the firing rule there exists M̄ ′ s.t. (M ′ +m)[t, ψ⟩(M̄ ′ + m̄), where M̄ ′(q) = M̄(q) for all
q ∈ PL, m̄(in) = m(in)+[i⃗d1

β((t,in))
], m̄(out) = m(out)− [i⃗d2

β((out ,t))
] andm(w) = m̄(w)

for all w ∈ PN . It is easy to see that (M ′, M̄ ′ +m) ∈ R.

(⇐) Let (M ′ + m)[t, ψ⟩(M̄ ′ + m̄) and (M,M ′ + m) ∈ R. If t ∈ TL, then this can be proven by
analogy with the previous cases (that is, we need to consider all possible relations of t and p). If
t ∈ TN , then (M ′+m)[t, ψ⟩(M ′+m̄) and (M̄,M ′+m̄) ∈ R, where M̄(q) =M ′(q), for all q ∈ PL,
and M̄(p) =M(p). ⊓⊔

As a consequence of the bisimulation relation, the refinement is identifier sound and live if the
original net is identifier sound.

Theorem 5.27. Let (L,M) be a marked t-PNID and N be a generalized sound WF net. Then (L,M)
is identifier sound and live iff (L⊕N,M) is identifier sound and live.
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The refinement rule allows to combine the approaches discussed in this section. For example, a
designer can first design a net using the construction rules of Section 5.2, and then design generalized
WF-nets for specific places. In this way, the construction rules and refinement rules ensure that the
designer can model systems where data and processes are in resonance.

6. Enriching PNIDs with resources

In the previous section we discussed pattern-based correctness criteria, which allow to construct PNID
models that are sound by design. We now consider arbitrary PNIDs, and study how they can be
enriched with resources, introducing a dedicated property, called conservative resource management,
which captures that the net suitably employs resources. Following a similar approach, in spirit, to that
of Section 5, we define a modelling guideline, called resource closure, which takes as input a PNID
and indicates how to enrich it with resources through a well-principled approach. We then show that,
by construction, if the input PNID is sound, then all its possible resource closures do not only maintain
soundness, but they also guarantee that resources are conservatively managed. In addition, we prove
that such resource closures are also bounded, and discuss the implications on the analysis of this class
of PNIDs.

6.1. Resource-aware PNIDs

As customary for Petri nets, we model resource types as (special) places. However, differently from
typical approaches like [32, 33, 20], where resources are represented as indistinguishable (black) to-
kens populating such places, we assign identifiers to resources. This allows one to explicitly track
how resources participate to the execution, and in particular how they relate to the different objects.
At the same time, this poses a conceptual question: are different copies of the same identifier in dis-
tinct tokens representing different actual resources, or distinct references to the same resource? We
opt for the latter approach, as it is the one that fully complies with this named approach to resource
management. As a consequence of this choice, we blur in the section the distinction between resource
and resource identifier, using the two terms interchangeably.

Technically, from now on we assume that Λ is partitioned into two sets: Λo for object types, and
Λr for resource types. Given a resource type η ∈ Λr, we call its identifiers (η-)resources. We then
simply define a resource-aware t-PNID as a t-PNID with some distinguished places, each being of a
certain resource type.

Definition 6.1. (Resource-aware t-PNID)
A t-PNID N = (P, T, F, α, β) is resource-aware if there exists at least one place p ∈ P such that
α(p) ∈ Λr. We refer to the non-empty subset P r = {p ∈ P | α(p) ∈ Λr} of P as the set of resource
places of N .

The initial marking of a resource-aware t-PNID hence identifies which resources are available per
resource type. Consistently with the named approach to resources, every resource should be present
at most once in the initial marking.
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Places typed by the combination of one or more object types and one resource type are used to
establish relations between (tuples of) objects and corresponding resources, which we can interpret as
resource assignments. For example, given an object type Order and a resource type Clerk , a token
carrying pair ⟨o, c⟩ with o ∈ Order and c ∈ Clerk represents that order o is assigned to clerk c.

In an unrestricted t-PNID, resources and resource assignments can be freely manipulated, generat-
ing new resources along the execution, assigning the same resource to multiple objects, and establish-
ing arbitrary relations between resources and objects/other resources. To determine whether a t-PNID
employs resources properly, we hence introduce a dedicated property that, intuitively, combines two
requirements:

• Resource preservation - only resources present in the initial marking can be used throughout the
execution;

• Resource exclusive assignment - in a given marking, each resource can be assigned to at most
one object, indicating that the resource is currently responsible for that tuple only.8

The first requirement dictates that no resource can be newly generated during the execution; the second
one stipulates that at every step, a resource can be responsible for at most one object, possibly carried
by multiple tokens.

We formalize these two requirements as follows.

Definition 6.2. (Conservative resource management)
A resource-aware marked t-PNID (N,m0) with N = (P, T, F, α, β) is managing resources conser-
vatively if the following two conditions hold.

• Resource preservation: for every marking m ∈ R(N,m0), resource type η ∈ Λr, and resource
r ∈ I(η) ∩ Id(m), we have that r ∈ Id(m0).

• Resource exclusive assignment: for every marking m ∈ R(N,m0), resource type η ∈ Λr, and
resource r ∈ I(η) ∩ Id(m), there is exactly one tuple r⃗ ∈ supp(m) s.t. either r⃗ = (r) or
r⃗ = ⟨o, r⟩ for some object o.

Consider a resource for r present in the initial marking M0, and a reachable marking M . Two ob-
servations are in place regarding Definition 6.2. First, resource exclusive assignment requires that at
most one tuple of the form (o, r) exists in the support of M , to express that multiple tokens carrying
the same pair (o, r) may indeed exist, while it is not possible to have in the same marking a different
tuple of the form (o2, r) for some o2 ̸= o (which would indicate the simultaneous assignment of r to
o and o2). Second, an active resource r in M can then appear in one and only one of the following
forms: either

• (o, r) for some object o – indicating that r is currently assigned to o), or
• (r) - indicating that r is active and not assigned to any object.

Example 6.3. Figure 11 shows three examples of resource-aware t-PNIDs, where place order con-
tains objects, and place clerk resources.

8An analogous treatment of resources can be defined over tuples of objects, instead of single objects.
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Figure 11: Three examples of resource-aware t-PNIDs. Nets (a) and (b) are not managing resources
conservatively, as they respective violate the property of resource preservation and that of resource
exclusive assignment. Net (c) is instead a positive example that satisfies both properties.

The t-PNID in Figure (11a) attempts to model a setting where every order is managed by a clerk.
The main issue here is that there is no information stored in the net about which clerk handles which
order. In fact, starting from a marking that indicates which clerks are available, the net violates the
property of resource preservation, as when send order fires, it brings into the clerk place a freshly
generated resource (not matching the one previously consumed in create order - recall, in fact, that
the scope of variables is that of a single transition).

The t-PNID in Figure (11b) explicitly keeps track of the assignments of clerks to orders in a
dedicated “synchronization” place. Starting from a marking that indicates which clerks are available,
it satisfies resource preservation, as no new clerk identifier is generated, but it violates the property of
resource exclusive assignment, since two different order creations may lead to select the same resource
twice, assigning it to two different orders.

The t-PNID in Figure (11c) properly handles the assignment of clerks to orders. Starting from a
marking that indicates which clerks are available, every time a new order is created, an existing clerk
is exclusively assigned to that order. The fact that the same clerk is not reassigned is guaranteed by the
fact that the clerk is consumed upon creating the order, and recalled in the assignment place. When
the order is sent, its exclusively assigned clerk is released back into the place of (available) clerks, and
can be later exclusively assigned to a different order.

By recalling that t-PNIDs evolving tokens that carry pairs of identifiers are Turing-powerful (see
[17], and also the proof of Theorem 4.10), and hence every non-trivial property defined over them is
undecidable to check, we obtain the following.

Remark 6.4. Verifying whether a marked t-PNID manages resources conservatively is in general
undecidable.

To mitigate this negative result, we introduce an approach that drives the modeller in enriching an
input t-PNID via resources following a well-principled approach. The approach generalizes the idea
introduced in [20] to the more sophisticated case of t-PNIDs, and does so by following the modelling
strategy used in Figure 11c. In particular, it aims at capturing the following modelling principles:

1. every object type λ is associated to a dedicated resource type ηλ;
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2. each such resource type is used in two places - one just typed with ηλ, to indicate which re-
sources of that type are currently available, the other typed by λ · restypeλ, to keep track of
which resources are currently assigned to which objects;

3. every object of type λ gets assigned a resource of type ηλ upon creation, and until the consump-
tion of the object, its resource cannot be assigned to any other object;

4. transitions applied to an object may (or may not) require its resource in isolation from the others
(if so, implicitly introducing serialization);

5. upon consumption of an object, its resource may either be permanently consumed as well, or
freed and become again available to further assignments.

Technically, we substantiate these intuitive principles through the notion of resource closure.

Definition 6.5. (Resource closure)
Let N = (P, T, F, α, β) and N ′ = (P ′, T ′, F ′, α′, β′) be two t-PNIDs, and λ ∈ typeΛ(N) be an
object type. We say that N ′ is a λ-resource closure of N if the following conditions hold:

1. P ′ = P ∪ {pr, ps}, where and pr and ps are respectively called the resource and assignment
places, and pr, ps ̸∈ P .

2. α′ = α ∪ {pr 7→ η | η ∈ Λr \ type(N)} ∪ {ps 7→ λ · α′(pr)} extends α by typing pr with a
resource type η not already used in N , and ps with the combination of the object type λ and the
resource type η of pr.

3. F ′ = F ∪ F outr ∪ F inr ∪ F ins ∪ F syns ∪ F outs , where:

(a) F outr = {(pr, t) | t ∈ EN (λ)}, the output resource flow relation, indicates that every
emitter transition for λ consumes a resource from pr;

(b) F inr ⊆ {(t, pr) | t ∈ CN (λ)}, the input resource flow relation, indicates that every collec-
tor transition for λ may return a resource to pr;

(c) F ins = {(t, ps) | t ∈ EN (λ)}, the input assignment flow relation, indicates that every
emitter transition generates an assignment in ps;

(d) F outs = {(ps, t) | t ∈ CN (λ)}, the output assignment flow relation, indicates that every
collector transition consumes an assignment from ps;

(e) F syns ⊆ {(ps, t), (t, ps) | t ∈ T \(EN (λ)∪CN (λ))}, the synchronization assignment flow
relation, indicates that every “internal” (i.e., non-emitting and non-consuming) transition
for λ may check for the presence of an assignment in ps.

4. β′ is the extension of β satisfying the following conditions:

(a) β′(a, b) = β(a, b), if (a, b) ∈ F .
(b) For every λ-emitter t ∈ EN (λ), we define β′(pr, t) and β′(t, ps) as described next. Let

X = {x1, . . . , xn} be the set of distinct variables of type λ mentioned in the inscriptions
of outgoing arcs of t, that is, X = {x|x ∈ β(t, p) for some p ∈ P}. These variables
denote the n distinct objects of type λ created upon firing t. We then need to consume
n distinct resources of type η and establish the corresponding assignments: β(pr, t) =
(r1) + . . .+ (rn) and β(t, ps) = (x1, r1) + . . .+ (xn, rn), where r1, . . . , rn are n distinct
(resource) variables of type η.
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(c) A symmetric approach is used to define β′(ps, t) and (in case (t, pr) ∈ F inr is defined)
β′(t, pr) for every λ-collector t ∈ CN (λ) (based on the incoming arcs of t).

(d) For every (internal) transition t ∈ T \(EN (λ)∪CN (λ)) such that {(ps, t), (t, ps)} ⊆ F syns ,
we define β′(ps, t) and β′(t, ps) as described next. Let X = {x1, . . . , xn} be the set
distinct variables of type λmentioned in the inscriptions of incoming arcs of t, that is,X =
{x|x ∈ β(p, t) for some p ∈ P}. These variables denote the n distinct objects of type λ
accessed upon firing t. We then need to check for the presence of the n distinct assigned
resources to this objects, by defining β′(ps, t) = β′(t, ps) = (x1, r1) + . . . + (xn, rn),
where r1, . . . , rn are n distinct (resource) variables of type η.

A t-PNID is called a (full) resource closure of N if it is obtained by recursively constructing,
starting from N , λi-resource closures for every λi ∈ typeΛ(N).

The closure(s) of a marked t-PNID is defined by closing the t-PNID as per Definition 6.5, and
enriching the initial marking by populating the resource places with some resources.

Definition 6.6. Let (N,m0) and (N ′,m′
0) be two marked t-PNIDs, and λ ∈ typeΛ(N) be an object

type. We say that (N ′,m′
0) is a λ-marked resource closure of N if the following conditions hold:

1. N ′ is a λ-resource closure of N ;

2. m′
0 extends m0 by assigning to the resource place pr introduced in N ′ a finite subset of identi-

fiers of type type(pr).

A marked t-PNID is called a (full) marked resource closure of (N,m0) if it is obtained by recur-
sively constructing, starting from (N,m0), λi-marked resource closures for every λi ∈ typeΛ(N).

Notice that, in Definition 6.6, we obey to the named approach described in the opening of this
section by assigning to the resource place a set (and not a multi-set) of resources.

It is easy to see that, for a t-PNID N and a type λ, there are only finitely many distinct λ-closures
of N , obtained by choosing which λ-consumers actually return resources in the resource place of the
closure, and which internal λ-transitions access the assignment place of the closure. Marked t-PNIDs
defined on these finitely many distinct closures only differ by the set of identifiers they initially assign
to each resource place.

Example 6.7. Figure (11c) shows an (order-)resource closure for the t-PNID manipulating orders via
the create order and send order transitions, and the orange place in between. In particular, the resource
type of clerk is chosen for the closure. The green place (in fact, typed clerk) at the bottom of the
picture is the resource place of the closure, while the mixed-colored place (in fact, typed order·clerk)
is the assignment place of the closure. The inscriptions attached to the input/output arcs connecting
these two places to the emitter and consumer transitions for orders indicate how identifiers are being
matched when consuming/returning resources, while recalling the objects they get assigned to.
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Figure 12: An identifier-sound t-PNID and two alternative resource closures

Example 6.8. Figure (12a) illustrates a t-PNID with a single object type O, manipulated using se-
quential and concurrent transitions, and finally consumed through one of two (mutually exclusive)
consumers. Two resource closures of this net are shown in Figures (12b) and (12c), using R as re-
source type.

The closure in Figure (12b) shows that for an object o that is consumed by transition f , its assigned
resource is returned to the resource place, becoming again available for a further assignment. If o is
instead consumed by transition g, the resource is also consumed (fetching it from the assignment
place without returning it to the resource place). In addition, the two transitions c and d, which are
concurrent in the original t-PNID of Figure (12a), are now declared to require the resource in isolation,
therefore implicitly requiring serialization (in whatever order).

The closure in Figure (12c) depicts a slightly different scenario. On the one hand, both consumers
now return the assigned resource upon consuming an object. On the other hand, no internal transition
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of the original t-PNID are linked to the assignment place, hence transitions c and d continue to be truly
concurrent even after the application of the resource closure.

Examples 6.7 and 6.8 show different examples of well-behaved resource closures, which indeed
technically substantiate the informal modelling principles listed above and, even more, actually satisfy
the property of conservative resource management, as per Definition 6.2. A natural question is whether
this holds when resource closure is applied to an arbitrary input t-PNID. It is easy to show on even
very minimalistic examples that provide a negative answer to this question.
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(a) An unsound t-PNID with an object type O ∈ Λo
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Figure 13: An identifier-unsound t-PNID and one of its resource closures

Example 6.9. Figure 13 illustrates a t-PNID and one of its resource closures. One can immediately
see that the resource closure does not behave as expected. Upon creation of a new object of type O,
say, o1, a resource, say, r5 of type R is taken from the resource place and assigned to o1, keeping track
of the assignment (o1, r5) in the assignment place. Object o1 then flows through the t-PNID, leading
to the generation of two tokens carrying o1, concurrently enabling the consumer transitions c and d.
Upon the consumption of the first of such two tokens, the assignment token (o1, r5) is removed from
the assignment place and used to return r5 to the resource place. This means that the second token
carrying o1 stays forever stuck, and cannot be consumed, as there is no assignment token matching o1
that can be used to fire the consumer transition.

By more closely inspecting the negative example of resource closures discussed in Example 6.9,
one can notice that the modelling glitch is not natively caused by the resource closure itself, but
actually originates from the fact that the input t-PNID of Figure (13a) is not identifier-sound. In
particular, considering this t-PNID, initially marked by the empty marking (or, equivalently, the t-
PNID of Figure (13b), initially marked by a marking that inserts some resources in the resource place),
the violated property is the one of proper completion: once one of the two concurrent consumer
transitions c and d is fired to consume a previously created object, the identifier of the object still
persists in the token enabling the other consumer transition. The resource closure actually inherits the
lack of proper completion, but also suffers of lack of weak termination.
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This leads to the following, natural follow-up question: how does identifier-soundness of an arbi-
trary input t-PNID impact on the properties of the t-PNIDs resulting from the application of resource
closure? We answer by showing three key properties:

1. Resource closure guarantees conservative resource management - the application of resource
closure to a t-PNID leads to a t-PNID that indeed satisfies the property of conservative resource
management.

2. Resource closure preserves soundness - Every resource closure of an identifier-sound t-PNID is
an identifier-sound t-PNID.

3. Resource closure of a sound net induces boundedness - Every resource closure of an identifier-
sound t-PNID is a bounded t-PNID.

We start with conservative resource management.

Theorem 6.10. Every marked resource closure of a marked t-PNID manages resources conserva-
tively, in the sense of Definition 6.2.

Proof:
Consider a marked t-PNID (N,m0), and a marked resource closure (N ′,m′

0) of it. Fix an object type
λ. First, notice that the resource type associated to λ does not have any emitter transition. This proves
resource preservation.

We then consider resource exclusive assignment. By definition, in m′
0, every active λ-resource r

is referenced by a single token carrying the unary tuple (r) in the resource place for λ. The content
of this place is left unaltered until a λ-emitter transition fires. Consider now the firing a λ-emitter
generating a new λ object, say o. As stated in Definition 6.5 (items 3a, 3c, and 4b), this can only occur
if there is a resource, say, r, in the resource place, and firing leads to consume the only token carrying
r therein, while producing a single token carrying (o, r) in the assignment place for λ. Internal λ-
transitions executed for o may only access such a token in a read-only mode, thus leaving the content
of the assignment place unaltered, as stated in Definition 6.5 (items 3e, and 4d). The only way of
removing such a token (o, r) is by firing a λ-collector transition, which, according to Definition 6.5
(items 3b, 3d, and 4c), consumes (o, r) and can possibly produce a token carrying r, inserted in the
resource place for λ. All in all, for every resource r associated to the resource place for λ in M ′

0, and
for every reachable marking M ∈ R(N ′,M ′

0), we have that there exists at most one token in M either
carrying (r) (and contained in the resource place for λ) or (o, r) for some object o of type λ (and
contained in the assignment place for λ). This proves that (N ′,m′

0) satisfies the property of resource
exclusive assignment. ⊓⊔

We continue with soundness preservation. The crux here is that the enrichment with a t-PNID with
resources through resource closure does not alter the evolution of emitted objects, but only constrains
when new objects can be created.

Theorem 6.11. Let (N,m0) be a marked t-PNID, and (N ′,m′
0) one of its marked resource closures.

If (N,m0) is identifier-sound, then (N ′,m′
0) is identifier-sound as well.
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Proof:
By definition of resource closure, the reachability graph R(N ′,m′

0), projected on the original places
of N , is a subset of R(N,m0). In fact, the only effect of resource closure on the original marked net
is to prevent the possibility of creating new objects if the resource place attached to the corresponding
emitter is empty. Since proper termination is a universal property over markings, it is preserved by
subsets of R(N,m0) and, noticing that resource and assignment places do not affect the status of
proper completion, hence also by R(N ′,m′

0). This proves that (N ′,m′
0) properly completes.

As for weak termination of R(N ′,m′
0), assume by absurdum that one object o of type λ cannot

progress to consumption. Since the original t-PNID is weakly terminating, this can only happen due
to the absence of (the only) assignment token referencing o and being present in the assignment place
associated to λ. Such a token was by construction generated upon the creation of o, and consequently
its absence can be only due to a previous firing of some collector transition that consumed a token ref-
erencing o. This would however mean that R(N ′,m′

0) is not properly completing, which contradicts
what was proven before. ⊓⊔

Finally, we turn to boundedness of resource closures of sound t-PNIDs. Intuitively, this is due to
the good interaction between resources and objects:

• there are boundedly many resources available;
• new objects can be created as long as there are still available resources;
• when no resource is available, a new object can be created only upon destruction of a currently

existing one.

This reconstructs, in the more sophisticated case of t-PNIDs, the boundedness result for resource and
instance-aware workflow nets, at the core of [20].

Theorem 6.12. Let (N,m0) be a marked t-PNID, and (N ′,m′
0) one of its marked resource closures.

If (N,m0) is identifier-sound, then (N ′,m′
0) is bounded.

Proof:
Boundedness immediately holds for resource identifiers in R(N ′,m′

0), thanks to Theorem 6.10 and
the fact that (N ′,m′

0) manages resources conservatively, and to the fact that, by construction of re-
source closure, every resource originally present in m′

0 is either carried by one token present in its
corresponding resource place, or by one token present in its corresponding assignment place.

We then prove the theorem by showing that (N ′,m′
0) is width- and depth-bounded when consid-

ering object identifiers.
Depth boundedness is immediately obtained by recalling that, by Theorem 6.11, identifier-soundness

of (N,m0) implies identifier-soundness of (N ′,m′
0), which is consequently depth-bounded by Lem-

ma 4.9.

Width-boundedness instead follows from the observation, already used in the proof of Theo-
rem 6.10, that for every marking m ∈ R(N ′,m′

0), if o ∈ Id(m), then there is exactly one token
referencing o in the assignment place associated to the type of o. Hence the maximum number of
object identifiers is bounded by the number of resources present in m′

0. ⊓⊔
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By combining Theorems 6.10 and 4.20, we thus obtain the following conclusive result, that relates
to the verification results discussed in Section 4.3.

Corollary 6.13. Model checking of µL-FOPNID and LTL-FOPNID
p is decidable for marked resource

closures of identifier-sound t-PNIDs.

6.2. Discussion

We now briefly comment on the interestingness and generality of our approach to resource manage-
ment. First and foremost, the conservative management of resources is a quite general notion, which
is for example naturally guaranteed in processes operating over material objects (called material han-
dling systems in [34]). In every snapshot of such system, each object can either be under the responsi-
bility of one and only one resource (e.g., a baggage being inspected by an operator), or moving from
one resource to another (e.g., a baggage waiting for inspection in a queue). In this light, resource
closure captures the prototypical case where an object is associated to a single resource alongside its
entire lifecycle. While taking verbatim this notion is hence unnecessarily restrictive, it allowed us to
highlight the essential features needed to suitably control the way a t-PNID interacts with resources:

1. resources should be managed conservatively;
2. at every point in time, resources should control the number of simultaneously active objects of

each type (so that a new object can be created only if there is an available resource to assign to
it).

The latter requirement can be achieved by more fine-grained notions of resource closures, applied
to sub-nets operating over the same object type. For example, if an object type is manipulated via
two subnets that are composed sequentially, concurrently, or in mutual exclusion, one may apply
resource closure over each subnet (possibly using distinct resource types), while retaining all the
good properties introduced here. This calls for a follow-up investigation: infusing resource closure
within the constitutive blocks of typed Jackson nets, ensuring that each block operates over a dedicated
resource type satisfying the two features 1. and 2. recalled above.

Last but not least, such two features yield the key property that the resulting net is bounded, as
stated in Theorem 6.12. This should by no means be interpreted as the fact that the t-PNID overall
operates over boundedly many objects: in fact, unboundedly many objects can be created and han-
dled, provided that they are not all simultaneously active within the system, but distribute over time
depending on the amount of available resources.

7. Related work

This work belongs to the line of research that aims at augmenting pure control-flow description of
processes with data, and study formal properties of the resulting, integrated models. When doing so,
it becomes natural to move from case-centric process models whose analysis focuses on the evolution
of a single instance in isolation, to so-called object-centric process models where multiple related
instances of the same or different processes co-evolve. This is relevant for process modeling, analysis,
and mining [35].
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Different approaches to capture the control-flow backbone of object-oriented processes have been
studied in literature, including declarative [36] and database-centric models [37]. In this work, we
follow the Petri net tradition, which comes with three different strategies to tackle object-centric pro-
cesses.

A first strategy is to represent objects implicitly. The most prominent example in this vein is
constituted by proclets [11]. Here, each object type comes with a Petri net specifying its life cycle.
Special ports, annotated with multiplicity constraints, are used to express generation and synchro-
nization points in the process, operating over tokens that are implicitly related to co-referring objects.
Correctness analysis of proclets is an open research topic.

A second strategy is to represent objects explicitly. Models adopting this strategy are typically
extensions of ν-PNs [12], building on their ability to generate (fresh) object identifiers and express
guarded transitions relating multiple objects at once. While ν-PNs attach a single object to each
token, Petri nets with identifiers (PNIDs) [2] use vectors of identifiers on tokens, representing database
transactions. Representing and evolving relationships between objects call for extending this to tuples
of objects, in the style of [2]. For such Petri nets with identifiers (PNIDs), [2] provides patterns
capturing different types of database transactions. The ISML approach [6] equips Petri nets with
identifiers (PNIDs) [2] with the ability of manipulating populations of objects defining the extensional
level of an ORM data model. Transitions can be executed if they do not lead to violating the constraints
captured in the data model. For such models, correctness properties are assessed by imposing that the
overall set of object identifiers is finite, and fixed a-priori. This ensures that the overall state space
is indeed finite, and can be analyzed using conventional methods. Catalog-nets [38] extend PNIDs
with the ability of querying a read-only database containing background information. Correctness
properties are checked parametrically to the content of read-only database. Decidability and other
meta-properties, as well as actual algorithms for verification based on SMT model-checking, are given
for safety properties, whereas (data-aware) soundness can only be assessed for state-bounded systems
[39, 37].

The third, final strategy for modeling object-centric processes with Petri nets is to rely on models
that highlight how multiple objects of different types may flow through shared transitions, without
considering object identifier values. This approach is followed in [40], where object-centric nets are
extracted from event logs, where logged events might come with sets of object identifiers. Soundness
for this model is studied in [41], where the authors propose to check related correctness criteria for
object types, without considering concrete object identifiers, or for single objects in isolation that are
still allowed to interact with the system environment along their life-cycles. Similarly to the approach
studied in this paper, the authors in [41] assume that the system model can have any number of objects
being simultaneously active.

The approach studied in this paper focuses on the essence of Petri net-based object-centric pro-
cesses adopting the explicit approach, that is, grounded on PNIDs. We provide, for the first time, a
notion of identifier soundness that conceptually captures the intended evolution of objects within a net,
show that such a property is undecidable to check in general, and provide a pattern-based construction
technique that guarantees to produce identifier-sound models. Other works that propose more high-
level extensions of classical WF-nets as well as the related notion(s) of soundness. In [42, 43, 44], the
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authors investigated data-aware soundness for data Petri nets, in which a net is extended with guards
manipulating a finite set of variables associated with the net. That type of soundness was shown to be
decidable. In [20], the authors proposed both a workflow variant of ν-Petri nets and its resource-aware
extension. The authors also defined a suitable notion of soundness for such nets and demonstrated that
it is decidable by reducing the soundness checking problem to a verification task over another first
order logic-based formalism. [45, 46] considered the soundness property for BPMN process models
with data objects that can be related to multiple cases. The approach consists of several transformation
steps: from BPMN to a colored Petri net and then to a resource-constrained workflow net. The authors
then check k-soundness against the latter.

Resource-constrained workflow nets pose different requirements on soundness. In [47] the au-
thors studied a specific class of WFR-nets for which soundness was shown to be decidable. In [48, 49]
a more general class of Resource-Constrained Workflow Nets (RCWF-nets) was defined. The con-
straints are imposed on resources and require that all resources that are initially available are present
again after all cases terminate, and that for any reachable marking, the number of available resources
does not override the number of initially available resources. In [48] it was proven that for RCWF-nets
with a single resource type generalized soundness can be effectively checked in polynomial time. De-
cidability of generalized soundness for RCWF-nets with an arbitrary number of resource places was
shown in [49].

8. Conclusions

Achieving harmony in models that describe how processes data objects manipulate is challenging. In
this paper, we use typed Petri nets with Identifiers (t-PNIDs) to model these complex interactions of
multiple objects, referred through their identifiers. We propose identifier soundness as a correctness
criterion that conceptually captures the expected evolution of each object. Identifier soundness consists
of two conditions: weak termination, i.e., that any identifier that is created is eventually removed, and
proper type completion, i.e., when a collecting transition fires for an identifier of a type, the type
should be removed from the resulting marking. Identifier soundness is in general undecidable for
t-PNIDs. For two subclasses we show that identifier soundness is guaranteed, and that the overall
model remains live. On top of that, we propose a resource-aware extension of t-PNIDs, in which
all object manipulations are systematically guarded by a finite number of typed resources. For this
class of t-PNIDs we propose a correctness criterion similar to identifier soundness, which also takes
into account conditions for correct resource management. The resource soundness is deemed to be
undecidable as well.

Many systems allow for a dynamic number of simultaneously active objects. In theory, this num-
ber can be infinite, and thus such models become width-unbounded. However, for many systems
there is a natural upper bound, which can be either assumed or guaranteed with different modeling
techniques (such as multiplicity upper bounds on objects [37] or resources [26, 49]. This gives po-
tential for different directions on new analysis techniques. As an example, some models may have a
minimum bound such that its correct behavior is guaranteed above this bound, in a similar way as 1-
soundness of WF-nets guarantees correctness of its EC-closure. One can extend t-PNIDs by enriching
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objects with attributes over different datatypes, and transitions with the ability to query such attributes
and express conditions and updates over them, using their datatype-specific predicates. Of particular
interest are comparisons and arithmetic operations for numerical datatypes. This calls for combin-
ing the techniques studied in this paper with data abstraction techniques used to deal with numerical
datatypes, possibly equipped with arithmetics [43, 50].

We plan to provide tool support for the designer of such systems. Although many correctness
criteria are undecidable, designers should be left in the dark. Since the ISM-suite [7] already allows to
model t-PNIDs, we intend to work on extending it with verification techniques to support the modeler
in designing systems where processes and data are in resonance.
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