

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 09, 2024

Differentially private approximate pattern matching

Steiner, Teresa Anna

Published in:
Proceedings of the 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)

Link to article, DOI:
10.4230/LIPIcs.ITCS.2024.94

Publication date:
2024

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Steiner, T. A. (2024). Differentially private approximate pattern matching. In Proceedings of the 15th Innovations
in Theoretical Computer Science Conference (ITCS 2024) (Vol. 287, pp. 18). Article 94 Schloss Dagstuhl-
Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.ITCS.2024.94

https://doi.org/10.4230/LIPIcs.ITCS.2024.94
https://orbit.dtu.dk/en/publications/2e84ab21-cbee-48ab-bd08-b313bbf3dc67
https://doi.org/10.4230/LIPIcs.ITCS.2024.94

Differentially Private Approximate Pattern
Matching
Teresa Anna Steiner #

DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark

Abstract
Differential privacy is the de facto privacy standard in data analysis and widely researched in various
application areas. On the other hand, analyzing sequences, or strings, is essential to many modern
data analysis tasks, and those data often include highly sensitive personal data. While the problem
of sanitizing sequential data to protect privacy has received growing attention, there is a surprising
lack of theoretical studies of algorithms analyzing sequential data that preserve differential privacy
while giving provable guarantees on the accuracy of such an algorithm. The goal of this paper is to
initiate such a study.

Specifically, in this paper, we consider the k-approximate pattern matching problem under
differential privacy, where the goal is to report or count all substrings of a given string S which have
a Hamming distance at most k to a pattern P , or decide whether such a substring exists. In our
definition of privacy, individual positions of the string S are protected. To be able to answer queries
under differential privacy, we allow some slack on k, i.e. we allow reporting or counting substrings of
S with a distance at most (1 + γ)k + α to P , for a multiplicative error γ and an additive error α.
We analyze which values of α and γ are necessary or sufficient to solve the k-approximate pattern
matching problem while satisfying ϵ-differential privacy. Let n denote the length of S. We give

an ϵ-differentially private algorithm with an additive error of O(ϵ−1 log n) and no multiplicative
error for the existence variant;
an ϵ-differentially private algorithm with an additive error O(ϵ−1 max(k, log n) · log n) for the
counting variant;
an ϵ-differentially private algorithm with an additive error of O(ϵ−1 log n) and multiplicative
error O(1) for the reporting variant for a special class of patterns.

The error bounds hold with high probability. All of these algorithms return a witness, that is, if
there exists a substring of S with distance at most k to P , then the algorithm returns a substring of
S with distance at most (1 + γ)k + α to P .

Further, we complement these results by a lower bound, showing that any algorithm for the
existence variant which also returns a witness must have an additive error of Ω(ϵ−1 log n) with
constant probability.

2012 ACM Subject Classification Security and privacy; Theory of computation → Pattern matching

Keywords and phrases Differential privacy, pattern matching

Digital Object Identifier 10.4230/LIPIcs.ITCS.2024.94

Related Version Full Version: https://arxiv.org/abs/2311.07415

Funding Teresa Anna Steiner : This work was supported by a research grant (VIL51463) from
VILLUM FONDEN.

1 Introduction

Analyzing sequential data is essential to many modern data analysis tasks, including signal
processing, route planning, and genetic matching. Since those data can include highly
sensitive personal data, the problem of sanitizing sequential data to protect privacy while
preserving patterns that occur within these sequences has received growing attention [11,
9, 34, 24, 6, 1, 2, 3, 20, 19, 7, 5, 10, 18, 37, 21, 33]. The applications considered in these
papers range from genetic matching [34] over natural language processing [19, 9] to travel

© Teresa Anna Steiner;
licensed under Creative Commons License CC-BY 4.0

15th Innovations in Theoretical Computer Science Conference (ITCS 2024).
Editor: Venkatesan Guruswami; Article No. 94; pp. 94:1–94:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:terst@dtu.dk
https://orcid.org/0000-0003-1078-4075
https://doi.org/10.4230/LIPIcs.ITCS.2024.94
https://arxiv.org/abs/2311.07415
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

94:2 Differentially Private Approximate Pattern Matching

pattern mining [24, 11, 20, 10, 18, 37]. These works partially use differential privacy
[34, 24, 6, 9, 19, 7, 5, 10, 18, 37, 21, 33] or other privacy measures [1, 2, 3, 11, 20]. The
utilities of the proposed algorithms are shown by extensive experiments. Despite this effort
led by practitioners, there is a lack of theoretical studies of algorithms analyzing sequential
data that preserve differential privacy while giving provable guarantees on the accuracy of
such an algorithm. The goal of this paper is to initiate such a study.

Differential privacy is the de facto privacy standard used in modern data analysis [36].
Its definition offers strong privacy guarantees and is due to Dwork et al. [12]. Informally, the
definition states that the output distributions of an algorithm should be close on close data
sets, i.e., the output should not depend much on any single data point. In more detail, we
call two data sets which differ in a single data point neighbouring. A randomized algorithm is
ϵ-differentially private, if for any two neighbouring input data sets, the output distributions
of the algorithm differ by at most a factor of eϵ.

A natural data type to model sequential data is a string, which is a sequence of symbols
drawn from some predefined alphabet. Strings are used to model any type of text data,
as well as genetic data and event series. One of the most fundamental problems in string
algorithms is the pattern matching problem: For a string S and a pattern string P , decide if
P occurs in S (existence), count the occurrences of P in S (counting), or report all positions
in S where P occurs (reporting). The pattern matching problem and its variants have been an
active research field for more than 50 years with applications ranching from signal processing
over computational biology to information retrieval.

In this work, we begin a theoretical study of differentially private pattern matching for
strings. Specifically, we study the approximate pattern matching problem and show that
combining well-known techniques from differential privacy [15] with modern techniques used
by the pattern matching community to solve the approximate pattern matching problem [8]
can be used to prove interesting new theoretical upper and lower bounds on the error needed
by any differentially private algorithm solving the approximate pattern matching problem.
We see this as a proof of concept that the field of differentially private string algorithms is a
promising direction for future research.

In the following, we describe the problem considered in this work in more detail.

Privacy Model and Motivation

In this paper we focus on protecting individual positions in the string S, that is, the pattern
matching algorithm should have similar output distributions when matching P in S and T , if S

and T differ in few positions. That is, we call two strings S and S′ neighbouring, if they differ
in one position. This privacy model has also been used for strings by Fichtenberger et al. [16]
for the problem of counting all occurrences of any pattern of a given length in a stream. It
corresponds to event-level privacy for continual observation, i.e., instead of protecting an
entire user’s data, single events are protected [13]. Since the output of the algorithm has a
similar distribution whether any single event happened or not, this can be seen as providing
plausible deniability of any given event. Thus, this model makes sense in settings where a user
cares about single events or outliers in their behaviour being concealed, while still allowing
the service to draw conclusions about their general behaviour. For example, the string could
be a sequence of locations a person visited, and hiding any single position in that sequence
corresponds to hiding whether a person visited any particular location at a given time or
not. For another example, the string can be a list of items bought by a customer through an
online service, and any single purchase is masked. This definition can still allow trends to
be detected, e.g. if a user buys chocolate every day, a differentially private algorithm may
reveal that the person buys lots of chocolate; however, if a user buys a single sensitive item,
e.g. a pregnancy test, this data is concealed.

T. A. Steiner 94:3

Approximate Pattern Matching

Note that we cannot hope to solve the pattern matching problem exactly while satisfying
this definition of differential privacy: For any pattern P , we can easily find strings S and S′

such that P occurs in S, P does not occur in S′, and S and S′ differ in only one position.
Thus, any reasonable solution to the exact pattern matching problem with pattern P should
be able to differentiate between S and S′, which contradicts the goal of differential privacy.

Therefore we study the k-approximate pattern matching problem: For a pattern P of
length m, a string S of length n ≥ m, and a parameter k ≤ m, we want to find all substrings of
length m of S, such that the distance between the substring and P is at most k. This problem
has been extensively studied in the non-private setting (recent work includes [29, 38, 17, 8, 4],
see also the survey by Navarro [26]) since it captures several applications more fully than exact
matching: In many applications, the string and the pattern might suffer some corruption,
e.g. mutation in DNA sequences, measurement or transmission errors, or typing errors [26].
In this work, we consider the Hamming distance as distance measure. In order to design
algorithms that fulfill differential privacy, we allow some slack on k: We want to find all
length-m substrings (given by their starting and ending position in S) of distance at most k to
P , but we allow the algorithm to return length-m substrings of distance at most (1 + γ)k + α,
for a multiplicative error γ and an additive error α. We also consider the natural counting
and existence variants of this problem (the formal definitions of these problems are given
in Section 2). The goal is to analyze which values of γ and α are possible and necessary to
solve the approximate pattern matching problem while preserving ϵ-differential privacy.

Results

First, we note that there is a trivial algorithm with additive error O(m), which is ϵ-
differentially private for all ϵ: We simply output all substrings of S, i.e. all pairs (i, i + m− 1)
for i ≤ n−m. Since this is independent of the string S, the algorithm is differentially private
by default, and since the true distance is always a value between 0 and m, the additive error
is at most m.

In this paper, we give new trade-offs for the existence, counting and reporting variants
of the problem. First, we give an algorithm for the existence variant achieving O(log n)
additive error and no multiplicative error. Then, for counting and reporting, we use results
on (non-private) approximate pattern matching [8] to differentiate between patterns fulfilling
different properties: If the pattern is close to a periodic string with a small enough period,
we can exploit that to give an algorithm for the reporting variant of the approximate pattern
matching problem with constant multiplicative error and O(log n) additive error. Otherwise,
we can use the results in [8] to bound the number of substrings in S which can be close to P ,
and use that fact to give an algorithm for the counting variant. Our upper bound results are
summarized in the following two theorems.

▶ Theorem 1 (Summary of Lemma 15, Theorem 18, Theorem 19, and Lemma 20). Let n

denote the length of input string S, m ≤ n the length of pattern P , and k ≤ m an integer.
1. There exists an algorithm for the existence variant of the k-approximate pattern matching

problem which with probability 1− β has an additive error of at most α = O(log(n/β)/ϵ)
and a multiplicative error γ = 0.

2. For k = Ω(log(n/β)/ϵ), there exists an algorithm for the counting variant of the k-
approximate pattern matching problem which with probability 1− β has a multiplicative
error of at most γ = O(log(n/β)/ϵ) and an additive error α = 0.

ITCS 2024

94:4 Differentially Private Approximate Pattern Matching

3. For k = O(log(n/β)/ϵ), there exists an algorithm for the counting variant of the k-
approximate pattern matching problem which with probability 1− β has an additive error
of at most α = O(log2(n/β)/ϵ2) and a multiplicative error γ = 0.

Further, all of these algorithms return a witness, i.e., a length-m substring of S with Hamming
distance at most (1 + γ)k + α to P .

▶ Theorem 2 (Informal version of Theorem 18). Let P be a string of length m. If P has
Hamming distance at most 2k from a periodic string of period at most qm/((log(n/β)/ϵ) + k),
for some suitable constant q, then there exists an algorithm for the reporting variant of
the k-approximate pattern matching problem for pattern P and any string S of length n

which with probability 1 − β has a multiplicative error of O(1) and an additive error of
O(log(n/β)/ϵ).

We complement these results with lower bounds on the necessary additive error for
the k-approximate pattern matching problem under ϵ-differential privacy. These lower
bounds specifically show that the additive error for the existence variant from Theorem 1 is
asymptotically optimal for m≪ n:

▶ Theorem 3 (Informal version of Theorem 21). Let P be any string of length m and let
k < m be an integer. Assume there is an ϵ-differentially private algorithm which solves the
existence variant of the k-approximate pattern matching problem for pattern P and any string
S and returns a witness, with an additive error at most α with constant probability. Then
either α = Ω(m− k), or both m = Ω(ϵ−1 log n) and α = Ω(ϵ−1 log(n/m)).

Note that Theorem 3 gives a lower bound that holds for any pattern P , no matter if it is
close to a periodic substring of small period, or not.

In this work, we mostly care about the privacy-to-accuracy trade-off of the problem.
However, for completeness, we show in Appendix A, that the algorithms achieving the upper
bounds stated above run in time O(nm + m3), assuming that any needed random noise can
be drawn in constant time. We did not try to optimize this run time.

Related Work

Fichtenberger et al. [16] show how to count all patterns of a bounded length over a stream
while preserving differential privacy. It is given as a direct application of their general
differentially private counting algorithm. Their privacy model is the same as ours, however,
their error definition is an error on the value of the count, instead of an error on the Hamming
distance, as in our paper.

There is a large body of work on mining frequent patterns or q-grams (substrings of
length q) from a set of strings while satisfying differential privacy [5, 9, 6, 24, 7, 19, 10, 37, 21].
In those works, the input data set consists of multiple strings, and two neighbouring data sets
differ in one string in the set. The utilities of these algorithm are evaluated by experiments.

There is a line of work on combinatorial string sanitization focusing on hiding a given set
of sensitive patterns [1, 2, 3]. Ajala et al. [1] consider sanitizing the string by replacing letters.
They show that the problem of finding the minimum number of letters to be replaced is
NP-hard and propose an algorithm. Bernardini et al. [2] propose an algorithm for finding the
minimal length string maintaining the order and frequency of all non-sensitive patterns, and
another algorithm for finding a string maintaining the order and frequency of all non-sensitive
patterns while minimizing the edit distance between the original string and the output string.
Bernardini et al. [3] study the connection between string sanitization and frequent pattern
mining. Compared to our work, they mask all occurrences of sensitive patterns, however,

T. A. Steiner 94:5

the specific patterns have to be given in advance. On the other hand, our definition hides
any single (or any set of few) occurrences of any potentially sensitive pattern. Note that in
those works, the goal is to mask exact occurrences of the sensitive patterns, i.e. it still allows
occurrences of substrings which are close to a sensitive pattern.

There is previous work on private pattern matching from a cryptographic perspective
with applications in genetic matching [22, 23, 31, 27, 28, 30, 35]: In the model considered in
these works, data is held by one party (or the cloud) and queries are sent by another (or
multiple other) parties; encryption is used to ensure privacy of the data and the query. In
these works, the query party can find out whether their query pattern occurs in the string or
collection of strings in the data, while nothing else about the data is revealed to the query
party and the query is not revealed to the data holder. In a similar model, two parties each
hold a string and want to compare how similar they are, without revealing anything else
to each other [32]. Note that the goal in differential privacy is orthogonal to these privacy
definitions: In our definition, the data holder knows everything; however, the query answer
should conceal any individual string positions of the data holder’s string.

Paper Organization

The rest of the paper is organized as follows. In Section 2, we formally define the problem
and recall some definitions and theorems for differential privacy and strings. In Section 3, we
prove Theorems 1 and 2. In Section 4, we prove Theorem 3. Finally, we conclude with some
directions for future research (Section 5). In Appendix A, we analyze the runtime of our
algorithms.

2 Preliminaries

We denote an interval of integers {a, a + 1, . . . , b} as [a, b].

2.1 String Preliminaries
A string S of length n is a sequence S[0]S[1] . . . S[n− 1] of symbols from an alphabet Σ. The
length of S is denoted |S|. We call S[a, b] := S[a]S[a + 1] . . . S[b] a substring of S. We denote
by Srev := S[n− 1]S[n− 2] . . . S[0] the reverse of string S. For k ∈ N ∪ {∞} we denote by
Sk the string obtained by concatenating S k times. A string S is called primitive if there
does not exist a string T such that S = T k for k ≥ 2.

A period of a string S is a number π ∈ [0, n − 1] such that S[i] = S[i + π] for all
i ∈ [0, n− 1− π]. A string S is periodic if it has a period π with π < n/2.

The Hamming distance between two strings S and T with n = |T | = |S| is defined as

distH(T, S) = |{i ∈ [0, n− 1] : T [i] ̸= S[i]}|.

For a string P of length m and a string S of length n with n ≥ m, i ∈ [0, n −m], we call
S[i, i + m− 1] a k-mismatch occurrence if distH(S[i, i + m− 1], P) ≤ k.

2.2 Privacy Definition and Problem Definitions
Two strings S and S′ of length n are defined as neighbouring, if their Hamming distance is
one, i.e., if they differ in one position.

We generally define a pattern matching algorithm to be an algorithm taking as input a
string S of length n and a pattern P , and outputting either a Boolean value (existence), a
natural number in [0, n− 1] (counting), or a subset of [0, n− 1] (reporting).

ITCS 2024

94:6 Differentially Private Approximate Pattern Matching

We say a pattern matching algorithm Alg : Σ∗ × Σm → range(Alg) is ϵ−differentially
private, if for all Out ⊆ range(Alg), all patterns P of length m and all pairs of neighbouring
strings S and S′,

Pr(Alg(S, P) ∈ Out) ≤ eϵ · Pr(Alg(S′, P) ∈ Out),

where the probabilities are taken over the internal randomness of Alg.

▶ Definition 4 (k-approximate pattern matching problem with one-sided error, reporting variant).
Given a string S of length n, a pattern P of length m and a parameter k, output a set of
indices I ∈ [0, n−m] such that
1. If distH(P, S[i, i + m− 1]) ≤ k for an i ∈ [0, n−m], then i ∈ I,
2. If i ∈ I then distH(P, S[i, i + m− 1]) ≤ (1 + γ)k + α.

We call γ the multiplicative error and α the additive error.

In the following, denote by cx(S, P) the number of positions i in S such that distH(P, S[i, i+
m− 1]) ≤ x. If P is clear from context, we will sometimes write cx(S) for cx(S, P).

▶ Definition 5 (k-approximate pattern matching problem with one-sided error, counting variant).
Given a string S of length n, a pattern P of length m and a parameter k, output a number c

such that
1. c ≥ ck(S, P),
2. c ≤ c(1+γ)k+α(S, P).
Further, if c > 0, additionally output a position i fulfilling distH(P, S[i, i + m − 1]) ≤
(1 + γ)k + α. We call i a witness. We call γ the multiplicative error and α the additive error.

▶ Definition 6 (k-approximate pattern matching problem with one-sided error, existence variant).
Given a string S of length n, a pattern P of length m and a parameter k, output
1. YES, if there exists i ∈ [0, n−m] such that distH(P, S[i, i + m− 1]) ≤ k,
2. NO, if there does not exist i ∈ [0, n−m] such that distH(P, S[i, i + m− 1]) ≤ (1 + γ)k + α.
Further, if the answer is YES, additionally output a position i fulfilling distH(P, S[i, i + m−
1]) ≤ (1 + γ)k + α. We call i a witness. We call γ the multiplicative error and α the additive
error.

2.3 Privacy Preliminaries
First, we collect some definitions to introduce the Laplace mechanism.

▶ Definition 7 (L1-sensitivity). Let f be a function f : χ→ Rk for some universe χ. The
L1-sensitivity of f is defined as

max
x,y neighboring

||f(x)− f(y)||1. (1)

▶ Definition 8. The Laplace distribution centered at 0 with scale b is the distribution with
probability density function

fLap(b)(x) = 1
2b

exp
(
−|x|

b

)
.

We use X ∼ Lap(b) or just Lap(b) to denote a random variable X distributed according to
fLap(b)(x).

T. A. Steiner 94:7

▶ Lemma 9 (Theorem 3.6 in [15]: Laplace Mechanism). Let f be any function f : χ→ Rk

with L1-sensitivity ∆1. Let Yi ∼ Lap(∆1/ϵ) for i ∈ [k]. The mechanism defined as:

A(x) = f(x) + (Y1, . . . , Yk)

satisfies ϵ-differential privacy.

The following fact follows directly from the definition of differential privacy, and extends
the privacy definition from neighbouring input strings to inputs which have small distance
from each other.

▶ Lemma 10 (Group Privacy for Pattern Matching). Let S and S′ have a Hamming distance
at most ℓ, i.e. distH(S, S′) ≤ ℓ. Let Alg be an ϵ-differentially private pattern matching
algorithm. Then for any pattern P ,

Pr(Alg(S, P) ∈ Out) ≤ eℓϵ · Pr(Alg(S′, P) ∈ Out).

The following is a well-known Fact which follows immediately from the definition of differential
privacy.

▶ Lemma 11 (Composition Theorem). Let Alg1 : χ → range(Alg1) be an ϵ1-differentially
private algorithm and Alg2 : χ× range(Alg1)→ range(Alg2) be an an ϵ2-differentially private
algorithm. Then (Alg1, Alg2◦Alg1) : χ→ range(Alg1)×range(Alg2) is (ϵ1 +ϵ2)-differentially
private.

The following Lemma is a variant of parallel composition [25] of differential privacy,
applied to strings. It says that if we run independent ϵ-differentially private algorithms on
disjoint substrings, then the resulting algorithm is still ϵ-differentially private:

▶ Lemma 12. Let Alg1 and Alg2 be independent ϵ-differentially private pattern matching
algorithms and let S be a string. Further, let [a, b] ⊆ [0, n − 1] and [c, d] ⊆ [0, n − 1] and
[a, b] ∩ [c, d] = ∅. Then algorithm Alg3(S) := (Alg1(S[a, b]), Alg2(S[c, d])) is ϵ-differentially
private.

Proof. Let S and S′ be neighbouring strings and let P be a pattern. Let i be the position
where S[i] ̸= S′[i]. Let Out = (Out1, Out2) ⊆ range(Alg1)× range(Alg2) = range(Alg3). If
i ∈ [a, b], then

Pr(Alg3(S, P) ∈ Out) = Pr((Alg1(S[a, b], P), Alg2(S[c, d], P)) ∈ (Out1, Out2))
= Pr(Alg1(S[a, b], P) ∈ Out1) · Pr(Alg2(S[c, d], P) ∈ Out2)
≤ eϵ · Pr(Alg1(S′[a, b], P) ∈ Out1) · Pr(Alg2(S′[c, d], P) ∈ Out2)
= eϵ · Pr(Alg3(S′, P) ∈ Out)

since Alg1 is ϵ-differentially private and S[c, d] = S′[c, d]. The argument for when i ∈ [c, d] is
symmetric. If i /∈ [a, b] ∪ [c, d], then the output distributions of S and S′ are equal. ◀

3 Upper Bounds

In this section we present our differentially private algorithms for the existence, counting
and reporting variants of the approximate pattern matching problem.

ITCS 2024

94:8 Differentially Private Approximate Pattern Matching

Algorithm 1 BelowThresh for Approximate Pattern Matching.

Input: string S, pattern P , threshold Thresh, privacy parameter ϵ

Output: a position in S or ∞
1 m← |P |
2 T̃hresh = Thresh + Lap(2/ϵ)
3 for i ∈ [0, |S| −m] do
4 di = distH(S[i, i + m− 1], P)
5 d̃i = di + Lap(4/ϵ)
6 if d̃i ≤ T̃hresh then
7 output i

8 terminate
9 end

10 end
11 output ∞

3.1 The Sparse Vector Technique for Approximate Pattern Matching

Let Lap(b) denote a random variable drawn from the Laplace distribution with mean 0 and
scale b as given in Definition 8. Note that Fact 9 gives a simple algorithm to compute the
Hamming distance between S[i, i + m− 1] and P , for any fixed i: Since the sensitivity of
distH(S[i, i + m− 1], P) is 1, we can add Laplace noise scaled with 1/ϵ, and this gives an
additive error of O(ln(1/β)/ϵ) with probability 1− β [15]. However, if we would apply the
Laplace mechanism to compute distH(S[i, i + m− 1], P) for all i ∈ [0, n−m], then, since
changing one position in S changes up to m of the values of distH(S[i, i + m− 1], P), the
sensitivity is m. This results in an additive error of O((m/ϵ) ln(1/β)) with probability 1− β.
Thus, the Laplace mechanism directly applied to this problem is no better than the trivial
algorithm of outputting all length-m substrings. Instead, we use a variant of the sparse
vector technique (based on an algorithm in [14] and formally described in [15]), which allows
to decide for many queries of sensitivity 1 whether the output is above (or in our case, below)
a certain threshold, with an error logarithmic in the number of queries. Our algorithm for
the existence version of the approximate pattern matching problem is given in Algorithm 1.
The following two facts follow immediately from [15], chapter 3.6:

▶ Lemma 13. Algorithm 1 is ϵ-differentially private.

▶ Lemma 14. The output of Algorithm 1 fulfills the following properties with probability
1− β and α = 8ϵ−1(ln(|S| − |P |+ 1) + ln(2/β)):
1. If Algorithm 1 outputs an index i, then distH(S[i, i + m− 1], P) ≤ Thresh + α,
2. If i satisfies distH(S[i, i + m− 1], P) ≤ Thresh− α and Algorithm 1 does not terminate

before round i, then it outputs i and terminates.

▶ Corollary 15. There exists an ϵ-dp algorithm solving the existence variant of k-approximate
pattern matching with one-sided additive error α = 16ϵ−1(ln(|S| − |P |+ 1) + ln(2/β)) with
probability 1− β.

Proof. Run Algorithm 1 with Thresh = k + 8ϵ−1(ln(|S| − |P |+ 1) + ln(2/β)). ◀

T. A. Steiner 94:9

3.2 Counting and Reporting

We will distinguish between different cases, depending on whether P is close to a periodic
string with a small period or not. We use the following Lemma by Charalampopoulos et al. [8]:

▶ Lemma 16 (Theorem III.1 in [8]). Given a pattern P of length m, a string S of length n,
and a threshold k ∈ [1, . . . , m], at least one of the following hold:
1. The number of k-mismatch occurrences is bounded by 576 · n/m · k.
2. There exists a (primitive) string Q of length |Q| ≤ m

128k that satisfies distH(Q∞[0, m−
1], P) ≤ 2k.

Note that in our privacy definition, only S needs to be private, so we can compute whether
case 2 holds for P without losing any privacy. An example of an algorithm computing this
is given in Lemma 27 in Appendix A. First, we will consider the case where the pattern
P is close to a periodic string with small period, and show that in that case, there is a
solution to the reporting problem achieving constant multiplicative error and asymptotically
optimal additive error. We will call the different cases the “periodic” and the “non-periodic”
case - note that this is not entirely accurate, since the condition says that P is close to a
periodic string with small period. Thus, P can be aperiodic in the periodic case, and P can
be periodic, but with a large period, in the non-periodic case.

3.2.1 The Periodic Case

First, we consider the case where a stronger version of condition 2 in Lemma 16 is true
for pattern P . In this case we show how to solve the reporting version of the approximate
pattern matching problem with constant multiplicative and asymptotically optimal additive
error, while satisfying ϵ-differential privacy. We need the following result by Charalampo-
poulos et al. [8]:

▶ Lemma 17 (Theorem I.7 in [8]). Let P denote a pattern of length m, let T denote a text
of length n ≤ 3m

2 , and let K ∈ [0, . . . , m] denote a threshold. Suppose that both T [0, m− 1]
and T [n−m, n− 1] are K-mismatch occurrences of P . If there is a positive integer d ≥ 2K

and a primitive string Q with |Q| ≤ m/(8d) and distH(P, Q∞[0, m− 1]) ≤ d, then each of
the following holds:
1. The string T satisfies distH(T, Q∞[0, n− 1]) ≤ 3d.
2. Every K-mismatch occurrence of P in T starts at a position that is a multiple of |Q|.
3. The set of all K-mismatch occurrences of P in T can be decomposed into O(d2) arithmetic

progressions with difference |Q|.

The main idea of our algorithm is now the following: first, we divide S into substrings of
length at most 3m

2 . Then for each such substring T , we run two instances of Algorithm 1,
one for T and P , and one for their reverse strings. If both instances output an occurrence,
then with good probability, a substring of T fulfills the conditions of Lemma 17 for a suitable
value of K ≥ k, and we can use the Lemma to report all occurrences of distance at most
K. Else, we know by the properties of Algorithm 1 that with good probability, there are no
occurrences of distance at most k in T . The details are given in the proof of the following
theorem:

ITCS 2024

94:10 Differentially Private Approximate Pattern Matching

Algorithm 2 Reporting Approximate Pattern Matching, periodic case.

Input: string T , pattern P , |Q|, k, n, m, ϵ

Output: a set I of positions in T

1 Thresh = k + ϵ−148(ln(m/2) + ln(12(n/m)/β))
2 ϵ′ = ϵ/6
3 i← output of Algorithm 1 on input (string T , pattern P , threshold Thresh, privacy

parameter ϵ′)
4 j′ ← output of Algorithm 1 on input (string T rev, pattern P rev, threshold Thresh,

privacy parameter ϵ′)
5 if j′ =∞ or i =∞ then
6 output ∅
7 terminate
8 end
9 j = (|T | − 1)− j′ − (m− 1) // translate starting position in T rev to

starting position in T

10 output I = {i + ℓ|Q|, 0 ≤ ℓ ≤ ⌊ j−i
|Q| ⌋}

▶ Theorem 18. Let P be a pattern of length m. Assume that there exists a primitive string Q

of length |Q| ≤ m
32C with C = max(k, 96(ln n+ln(6/β))

ϵ) that satisfies distH(P, Q∞[0, m− 1]) ≤
2k. Then there exists an ϵ−differentially private algorithm for the reporting version of the
k-approximate pattern matching problem, that given a string S of length n ≥ m outputs a set
I ⊆ [0, n−m] such that with probability 1− β the following two conditions are fulfilled:
1. If distH(P, S[i, i + m− 1]) ≤ k, then i ∈ I;
2. If i ∈ I, then distH(P, S[i, i + m− 1]) ≤ (1 + γ)k + α,

where γ = 7 and α = 6 · 96(ln n+ln(6/β))
ϵ .

Proof. First, we compute a Q satisfying the condition above. Note that we can do unlimited
computation on P without violating privacy. An algorithm for computing Q is given in
Lemma 27 in Appendix A. Then, we divide the string S into overlapping strings of length at
most ⌊ 3m

2 ⌋ − 1 = (m− 1) + ⌊m
2 ⌋. We define F = {S[j · ⌊m/2⌋, j · ⌊m/2⌋+ ⌊3m/2⌋ − 2], 0 ≤

j ≤ ⌊ n−m
⌊m/2⌋⌋− 1}∪ [⌊ n−m

⌊m/2⌋⌋⌊m/2⌋, n− 1]. Note that any two strings in F overlap by at most
m−1 and F covers [0, n−1]. Thus, any occurrence of P in S is included in exactly one string
T ∈ F . Further, any position in S is in at most 3 strings in F , and |F| ≤ n/⌊m/2⌋ ≤ 3n/m.
For every string T = S[a, b] ∈ F , we run Algorithm 2 and return all positions in a + I, where
I is the set returned by Algorithm 2 on inputs (T, P, |Q|, k, n, m, ϵ).
Privacy analysis. Note that in every instance of Algorithm 2, we run two instances of
Algorithm 1 with privacy parameter ϵ/6. By Lemma 13 and Fact 11, Algorithm 2 is ϵ/3-
differentially private. Further, let S and S′ differ in position i∗. Since i∗ can only be in at
most three strings in F , the full algorithm on S satisfies ϵ-differential privacy by Fact 11 and
Lemma 12.
Accuracy analysis. Fix a T in F . Let i and j be as in Algorithm 2 on input T . If j′ was
set to ∞, let j = −∞. Let β′ = β/(6(n/m)). Note that by Lemma 14, with probability at
least 1− β′, we have for all i′ < i,

distH(T [i′, i′ + m− 1], P)
> k + ϵ−148(ln(m/2) + ln(12(n/m)/β))− ϵ−148(ln(m/2) + ln(2/β′))
= k, (2)

T. A. Steiner 94:11

and, if i <∞,

distH(T [i, i + m− 1], P)
≤ k + ϵ−148(ln(m/2) + ln(12(n/m)/β)) + ϵ−148(ln(m/2) + ln(2/β′))
= k + ϵ−196(ln(6n/β)). (3)

Similarly, also with probability 1− β′, we have for all i′′ > j,

distH(T [i′′, i′′ + m− 1], P) > k. (4)

and, if j > −∞,

distH(T [j, j + m− 1], P) ≤ k + ϵ−196(ln(6n/β)). (5)

Thus, with probability 1− β/(3(n/m)), both conditions are true, and since |F| ≤ 3n/m,
these conditions are true with probability at least 1− β over all instances of Algorithm 2. In
the following, we condition on that.

If either j′ or i was set to ∞, then there is no occurrence of distance at most k in T , and
in this case we return the empty set. Next, if j < i, then there is also no occurrence of at
most k in T by (2) and (4). Note that also in this case, Algorithm 2 returns the empty set.

Now, consider the case j ≥ i for finite integers i and j. We want to argue that in this case,
the string T [i, j+m−1] fulfills the conditions of Lemma 17 for an appropriate choice of K > k.
Obviously, |T [i, j + m− 1]| ≤ |T | ≤ 3m

2 . We set K = k + ϵ−196(ln(6n/β)) ≤ 2C. By (3) and
(5) both i and j are the start of a K-mismatch occurrence. Let d = 2K ≤ 4C. By assumption,
there is a primitive string Q with |Q| ≤ m/(32C) ≤ m/8d with distH(P, Q∞[0, m − 1]) ≤
2k ≤ d. Thus, the conditions of Lemma 17 are fulfilled. This gives the following:
1. Since the string T [i, j + m− 1] satisfies distH(T [i, j + m− 1], Q∞[0, j + m− i− 1]) ≤ 3d,

we have that for any position q = i + ℓ|Q| for ℓ ∈ [0, ⌊ j−i
|Q| ⌋]:

distH(T [q, q + m− 1], P)
≤ distH(T [q, q + m− 1], Q∞[0, m− 1]) + distH(Q∞[0, m− 1], P)
≤ 3d + 2k = 8k + 6 · 96 · ϵ−1(ln(6n/β)).

Thus, every reported occurrence q fulfills distH(T [q, q + m− 1], P) ≤ (1 + γ)k + α with
γ = 7 and α = 6 · 96 · ϵ−1(ln(6n/β)).

2. Since every K-mismatch occurrence of P in T [i, j + m − 1] starts at a multiple of |Q|,
then in particular, any k-mismatch occurrence of P in T [i, j + m− 1] starts at a position
i + ℓ|Q| in T for ℓ ∈ [0, ⌊ j−i

|Q| ⌋]. Thus, any substring of T [i, j + m− 1] of length m that
does not start at i + ℓ|Q| for some ℓ ∈ [0, ⌊ j−i

|Q| ⌋] has a distance larger than k.
Further, by (2) and (4), distH(T [i′, i′ + m − 1], P) > k for all i′ < i or i′ > j. Thus, we
report all occurrences with distance at most k. ◀

3.2.2 The Non-Periodic Case
Next, we assume condition 2 in Lemma 16 is not true for P , that is, there does not exist a
string Q of length |Q| ≤ m

128k that satisfies distH(Q∞[0, m − 1], P) ≤ 2k. This means the
number of k-mismatch occurrences in any string T of length |T | is bounded by 576 · |T |/m · k
by Lemma 16. In particular, in any substring of length ≤ 2m of S, the number of occurrences
is at most 1152k = O(k). We will use this fact to solve the counting variant of the problem
in the non-periodic case. Note that Theorem 18 and Theorem 19 do not cover all the cases:
If k ≤ C/4, where C is as in Theorem 18, then it is possible that the conditions of neither
theorem are fulfilled. We deal with that case later.

ITCS 2024

94:12 Differentially Private Approximate Pattern Matching

Algorithm 3 Counting Approximate Pattern Matching, non-periodic case.

Input: string T , pattern P , k, n, m, ϵ

Output: a count c and a position j in T

1 j = −1
2 i = −1
3 c = 0
4 Thresh = k + ϵ−116 · 1152k(ln m + ln(2(n/m)1152k/β))
5 ϵ′ = ϵ/(2 · 1152k)
6 while i < |T | − |P | & c < 1152k do
7 j ← output of Algorithm 1 on input (string T [i + 1, n− 1], pattern P , threshold

Thresh, privacy parameter ϵ′)
8 if j =∞ then
9 output (c, i)

10 terminate
11 end
12 c = c + 1
13 i = j

14 end
15 output (c, j)

▶ Theorem 19. Let P be a pattern of length m. If there does not exist a string Q of length
|Q| ≤ m

128k that satisfies distH(Q∞[0, m− 1], P) ≤ 2k, then there exists an ϵ−differentially
private algorithm that given a string S of length n ≥ m computes a count c, such that with
probability 1 − β it holds that ck(S) ≤ c ≤ c(1+γ)k(S), where γ = O(ϵ−1 · (ln n + ln(1/β)).
Further, if c > 0, it returns a witness i satisfying distH(P, S[i, i + m− 1]) ≤ (1 + γ)k.

Proof. The first step is to divide the string S into substrings of length at most 2m−1, which
form overlapping blocks, such that any pattern occurrence appears in exactly one block. That
is, we define the set B = {S[jm, (j + 2)m−2], j = 0 . . . ⌊n+1

m ⌋−2}∪{S[(⌊n+1
m ⌋−1)m, n−1]}.

Since B covers [0, n− 1] and two strings overlap by at most m− 1, any pattern occurrence in
S is contained in exactly one string in B. Note that any position in S is included in at most
two strings in B.

For each T ∈ B, we run Algorithm 3. Then for the outputs (c1, j1), . . . , (c|B|, j|B|), we
output

∑|B|
ℓ=1 cℓ. If there exists a jℓ > −1, we choose an arbitrary such and output ℓm + jℓ.

Privacy analysis. For any instance of Algorithm 3, we run at most 1152k instances of
Algorithm 1 with privacy parameter ϵ′ = ϵ/(2 · 1152k). Thus any instance of Algorithm 3 is
ϵ/2-differentially private by Lemma 13 and Fact 11. Further, let S and S′ differ in position
i∗. Since i∗ can only be in at most two strings in B, the full algorithm satisfies ϵ-differential
privacy by Fact 11 and Lemma 12.
Accuracy analysis. Let c(T) be the output of Algorithm 3 for string T ∈ B and ck(T) the
true count of positions i such that distH(T [i, i + m − 1], P) ≤ k. For a fixed T , we will
show that ck(T) ≤ c(T) ≤ c(1+γ)k(T) with probability 1 − β/(n/m). Since |B| ≤ n/m, a
union bound then implies that the bound holds for all T ∈ B with probability 1− β. Note
that since any substring of length m of S is included in exactly one string in B, this implies
ck(S) =

∑
T ∈B ck(T) ≤

∑
T ∈B c(T) ≤

∑
T ∈B c(1+γ)k(T) = c(1+γ)k(S).

Now, fix T ∈ B and let α′ = 8(ϵ′)−1(ln(|T | − |P |+ 1) + ln(2/β′)). By Lemma 14, with
probability at least 1− β′, whenever an instance of Algorithm 1 in Algorithm 3 returns a
position i, the distance distH(T [i, i + m− 1], P) ≤ Thresh + α′; further, any position i′ ≤ i

T. A. Steiner 94:13

which was part of that instance satisfies distH(T [i′, i′ + m− 1], P) > Thresh− α′ (otherwise
it would have been output instead of i). Thus, for each such i and β′ = β/((n/m)1152k) we
have

distH(T [i, i + m− 1], P) ≤ k+ϵ−116 · 1152k(ln m + ln(2(n/m)1152k/β)) + α′

= k+ϵ−116 · 1152k(ln m + ln(2(n/m)1152k/β))
+8(ϵ′)−1(ln(|T | − |P |+ 1) + ln(2/β′))

= k+ϵ−116 · 1152k(ln m + ln(2(n/m)1152k/β))
+ϵ−116 · 1152k(ln m + ln(2/β′))

= k+2α′,

and for each i′ ≤ i in that instance of Algorithm 1

distH(T [i′, i′ + m− 1], P) > k + ϵ−116 · 1152k(ln m + ln(2(n/m)1152k/β))− α′

= k,

with probability 1 − β′. Thus, over the entire run of Algorithm 3, the inequalities hold
with probability at least 1 − β/(n/m), and we condition on that. It directly follows that
all counted positions i satisfy distH(T [i, i + m − 1], P) ≤ k + 2α′ = (1 + γ)k, for γ =
ϵ−132 · 1152(ln m + ln(2(n/m)1152k/β) = O(ϵ−1(ln n + ln(1/β))). Thus, c(T) ≤ c(1+γ)k(T).
For the lower bound, there are two cases to consider:
Case 1: If c < 1152k when Algorithm 3 ends, then every possible starting position i ≤
|T | − |P | was considered by some instance of Algorithm 1. Thus, all positions i satisfying
distH(T [i, i + m− 1], P) ≤ k were counted and ck(T) ≤ c(T) ≤ c(1+γ)k(T).

Case 2: If c = 1152k, then ck(T) ≤ 1152k holds by Lemma 16 and since |T | < 2m. ◀

3.2.3 Non-periodic and small k

Note that there can be a case where neither the conditions of Theorem 19 nor Theorem 18
are fulfilled: If k < C/4 = 24ϵ−1 ln(6n/β), and there exists a primitive string Q of length
|Q| ≤ m/(128k) such that distH(P, Q∞[0, m− 1]) ≤ 2k, but there does not exist a primitive
string Q′ of length |Q′| ≤ m/(32C) such that distH(P, Q′∞[0, m − 1]) ≤ 2k. Note that
the second condition implies that there does not exist a primitive string Q′ of length
|Q′| ≤ m/(128K) such that distH(P, Q′∞[0, m− 1]) ≤ 2k < 2K, for K = C/4.

▶ Lemma 20. Let P be a pattern of length m. If k < K = 24ϵ−1 ln(6n/β) and there does
not exist a string Q of length |Q| ≤ m/(128K) such that distH(P, Q∞[0, m − 1]) ≤ 2K,
then there exists an ϵ-differentially private algorithm that given a string S of length n ≥ m

computes a count c, such that with probability 1− β it holds that ck(S) ≤ c ≤ ck+α(S), where
α = O(ϵ−2(ln2(n/β))).

Proof. Note that the conditions of Theorem 19 are fulfilled with K taking the role of k. Thus
there exists an algorithm that outputs a count c such that with probability 1−β it holds that
cK(S) ≤ c ≤ c(1+γ)K(S) where γ = O(ϵ−1(ln(n/β))). The lemma now follows since ck(S) ≤
cK(S) and c(1+γ)K(S) ≤ cη2(S) ≤ ck+η2(S) for η = max(1 + γ, K) = O(ϵ−1(ln(n/β))). ◀

Theorem 1 now follows by noticing that any pattern P fulfills the conditions of either
Theorem 18, Theorem 19 or Lemma 20, and that the reporting solution from Theorem 18
implies a counting solution with the same error bounds.

ITCS 2024

94:14 Differentially Private Approximate Pattern Matching

4 Lower Bound

For any k ≤ m, there is a trivial algorithm solving the reporting version of the approximate
pattern matching problem with additive one-sided error O(m− k) with probability 1 while
preserving ϵ-differential privacy: We just output every position i ∈ [0, n−m + 1]. The next
Theorem shows that in order to have error o(m− k), we need m = Ω(ln n), and in that case
the additive error is Ω(ln(n/m)). Note that the lower bound holds for any pattern P and
for the existence or counting variant, as long as at least one witness is returned. Our lower
bound is based on a packing argument.

▶ Theorem 21. Let P be any string of length m and let k < m be a parameter. Assume there
is an ϵ-differentially private algorithm Alg with the following guarantee: If S is a string of
length n ≥ m such that there exists j ∈ [0, n−m] with distH(S[j, j +m−1], P) ≤ k, then with
probability at least 2/3, Alg returns a position i ∈ [0, n−m] such that distH(S[i, i+m−1], P) ≤
k + α. Then either α = Ω(m− k), or m = Ω(ϵ−1 ln n) and α = Ω(ϵ−1 ln(n/m)).

Proof. First, we assume there is an algorithm Alg as in the statement of the theorem
satisfying α < m − k. We show m = Ω(ln n). We start by dividing [0, n − 1] into disjoint
intervals of length m (we assume wlog that n is a multiple of m). That is, we define the set
I = {[jm, (j + 1)m− 1], j = 0, . . . , n/m− 1}. For every even j ∈ {0, . . . , n/m− 1}, we define
a string Sj as follows: Sj [jm, (j + 1)m− 1] = P , and for all q ∈ [0, n− 1]\[jm, (j + 1)m− 1],
we set Sj [q] = $ for some $ which does not appear in P .

Note that Sj and Si have a Hamming distance of 2m for all even i ≠ j, i, j ∈ [0, n/m− 1].
Further, we have distH(Sj [jm, (j + 1)m− 1], P) = 0 ≤ k, and for every q ∈ [0, n−m]\[(j −
1)m + 1, (j + 1)m− 1], we have distH(Sj [q, q + m− 1], P) = m > k + α. Thus, by assumption
on Alg, we have

Pr(Alg(Sj) ∈ [(j − 1)m + 1, (j + 1)m− 1]) ≥ 2/3,

and, by group privacy (Fact 10),

Pr(Alg(Sj) ∈ [(i− 1)m + 1, (i + 1)m− 1]) ≥ e−2mϵ2/3,

for every even i ∈ [0, n/m− 1]. Since these events are disjoint, we have

1 ≥
∑

even i∈[0,n/m−1]

e−2mϵ2/3

and therefore

m ≥ (2ϵ)−1(ln(n/(2m)) + ln(2/3)),

and therefore m = Ω(ϵ−1 ln n).
Next, we want to show α = Ω(ln(n/m)). For this, we consider the same partition I into

intervals, and for every even j in [0, n/m− 1] we define Sj as follows: Sj [jm, (j + 1)m− 1] =
$kP [k, m− 1], and for every even i ̸= j, i ∈ [0, n/m− 1], we define Sj [im, (i + 1)m− 1] =
$k+α+1P [k + α + 1, m − 1]. For all other positions q ∈ [0, n − 1], we define Sj [q] = $. We
have distH(Sj [jm, (j + 1)m − 1], P) ≤ k and distH(Sj [q, q + m − 1], P) > k + α for all
q ∈ [0, n−m]\[(j − 1)m + 1, (j + 1)m− 1]. Further, all Sj , Si with i, j even and i ̸= j have
a Hamming distance of 2α + 2. By assumption on Alg we have

Pr(Alg(Sj) ∈ [(j − 1)m + 1, (j + 1)m− 1]) ≥ 2/3,

T. A. Steiner 94:15

and, by group privacy (Fact 10),

Pr(Alg(Sj) ∈ [(i− 1)m + 1, (i + 1)m− 1]) ≥ e−(2α+2)ϵ2/3.

for every even i ∈ [0, n/m− 1]. Since these events are disjoint, we have

1 ≥
∑

even i∈[0,n/m−1]

e−(2α+2)ϵ2/3

and therefore

α ≥ (2ϵ)−1(ln(n/2m) + ln(2/3))− 1,

and therefore α = Ω(ϵ−1 ln(n/m)). ◀

5 Conclusion

We have initiated a study of differentially private pattern matching algorithms, and have
shown that combining techniques from the areas of differential privacy and pattern matching
can be used to obtain interesting new results. Specifically, for the approximate pattern
matching problem with Hamming distance under ϵ-differential privacy, we have both shown
a strong lower bound and new upper bounds. The upper bounds asymptotically match the
lower bound for the existence variant, and for the reporting variant for a special class of
patterns. There are many potential directions for future research, including:

closing the gap between the upper and the lower bound for all patterns;
studying (ϵ, δ)-differential privacy for this problem;
considering other distance measures, e.g. edit distance, both for the definition of k-
approximate pattern matching, and for the privacy definition;
considering other error measures, e.g. for the counting variant of pattern matching.

Further, it would be exciting to see if it is possible to obtain differentially private indexing
data structures with useful error guarantees.

References
1 Oluwole I. Ajala, Hayam Alamro, Costas S. Iliopoulos, and Grigorios Loukides. Towards

string sanitization. In Proc. 14th AIAI (Workshops), pages 200–210, 2018. doi:10.1007/
978-3-319-92016-0_19.

2 Giulia Bernardini, Huiping Chen, Alessio Conte, Roberto Grossi, Grigorios Loukides, Nadia
Pisanti, Solon P. Pissis, Giovanna Rosone, and Michelle Sweering. Combinatorial algorithms
for string sanitization. ACM Trans. Knowl. Discov. Data, 15(1):8:1–8:34, 2021. doi:10.1145/
3418683.

3 Giulia Bernardini, Alessio Conte, Garance Gourdel, Roberto Grossi, Grigorios Loukides,
Nadia Pisanti, Solon P. Pissis, Giulia Punzi, Leen Stougie, and Michelle Sweering. Hide and
mine in strings: Hardness, algorithms, and experiments. IEEE Trans. Knowl. Data Eng.,
35(6):5948–5963, 2023. doi:10.1109/TKDE.2022.3158063.

4 Giulia Bernardini, Nadia Pisanti, Solon P. Pissis, and Giovanna Rosone. Approximate
pattern matching on elastic-degenerate text. Theor. Comput. Sci., 812:109–122, 2020. doi:
10.1016/j.tcs.2019.08.012.

5 Raghav Bhaskar, Srivatsan Laxman, Adam D. Smith, and Abhradeep Thakurta. Discovering
frequent patterns in sensitive data. In Proc. 16th SIGKDD, pages 503–512, 2010. doi:
10.1145/1835804.1835869.

ITCS 2024

https://doi.org/10.1007/978-3-319-92016-0_19
https://doi.org/10.1007/978-3-319-92016-0_19
https://doi.org/10.1145/3418683
https://doi.org/10.1145/3418683
https://doi.org/10.1109/TKDE.2022.3158063
https://doi.org/10.1016/j.tcs.2019.08.012
https://doi.org/10.1016/j.tcs.2019.08.012
https://doi.org/10.1145/1835804.1835869
https://doi.org/10.1145/1835804.1835869

94:16 Differentially Private Approximate Pattern Matching

6 Luca Bonomi and Li Xiong. A two-phase algorithm for mining sequential patterns with
differential privacy. In Proc. 22nd CIKM, pages 269–278, 2013. doi:10.1145/2505515.
2505553.

7 Luca Bonomi, Li Xiong, Rui Chen, and Benjamin C. M. Fung. Frequent grams based
embedding for privacy preserving record linkage. In Proc. 21st CIKM, pages 1597–1601, 2012.
doi:10.1145/2396761.2398480.

8 Panagiotis Charalampopoulos, Tomasz Kociumaka, and Philip Wellnitz. Faster approximate
pattern matching: A unified approach. In Proc. 61st FOCS, pages 978–989, 2020.

9 Rui Chen, Gergely Ács, and Claude Castelluccia. Differentially private sequential data
publication via variable-length n-grams. In Proc. 19th CCS, pages 638–649, 2012. doi:
10.1145/2382196.2382263.

10 Rui Chen, Benjamin C. M. Fung, Bipin C. Desai, and Nériah M. Sossou. Differentially private
transit data publication: a case study on the montreal transportation system. In Proc. 18th
KDD, pages 213–221, 2012. doi:10.1145/2339530.2339564.

11 Rui Chen, Benjamin C. M. Fung, Noman Mohammed, Bipin C. Desai, and Ke Wang. Privacy-
preserving trajectory data publishing by local suppression. Inf. Sci., 231:83–97, 2013. doi:
10.1016/j.ins.2011.07.035.

12 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating noise to
sensitivity in private data analysis. In Proc. 3rd TCC, volume 3876, pages 265–284, 2006.
doi:10.1007/11681878_14.

13 Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N. Rothblum. Differential privacy under
continual observation. In Leonard J. Schulman, editor, Proc. 42nd STOC, pages 715–724,
2010.

14 Cynthia Dwork, Moni Naor, Omer Reingold, Guy N. Rothblum, and Salil P. Vadhan. On the
complexity of differentially private data release: efficient algorithms and hardness results. In
Proc. 41st STOC, pages 381–390, 2009. doi:10.1145/1536414.1536467.

15 Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci., 9(3-4):211–407, 2014.

16 Hendrik Fichtenberger, Monika Henzinger, and Jalaj Upadhyay. Constant matters: Fine-
grained error bound on differentially private continual observation. In Proc. 40th ICML,
2023.

17 Pawel Gawrychowski and Przemyslaw Uznanski. Towards unified approximate pattern matching
for hamming and l_1 distance. In Proc. 45th ICALP, pages 62:1–62:13, 2018. doi:10.4230/
LIPIcs.ICALP.2018.62.

18 Xi He, Graham Cormode, Ashwin Machanavajjhala, Cecilia M. Procopiuc, and Divesh Srivast-
ava. DPT: differentially private trajectory synthesis using hierarchical reference systems. Proc.
VLDB Endow., 8(11):1154–1165, 2015. URL: http://www.vldb.org/pvldb/vol8/p1154-he.
pdf.

19 Kunho Kim, Sivakanth Gopi, Janardhan Kulkarni, and Sergey Yekhanin. Differentially private
n-gram extraction. In Proc. 34th NeurIPS, pages 5102–5111, 2021. URL: https://proceedings.
neurips.cc/paper/2021/hash/28ce9bc954876829eeb56ff46da8e1ab-Abstract.html.

20 Elahe Ghasemi Komishani, Mahdi Abadi, and Fatemeh Deldar. PPTD: preserving personalized
privacy in trajectory data publishing by sensitive attribute generalization and trajectory local
suppression. Knowl. Based Syst., 94:43–59, 2016. doi:10.1016/j.knosys.2015.11.007.

21 Yanhui Li, Guoren Wang, Ye Yuan, Xin Cao, Long Yuan, and Xuemin Lin. Privts: Differentially
private frequent time-constrained sequential pattern mining. In Proc. 23rd DASFAA, pages
92–111, 2018. doi:10.1007/978-3-319-91458-9_6.

22 Md Safiur Rahman Mahdi, Md Momin Al Aziz, Noman Mohammed, and Xiaoqian Jiang.
Privacy-preserving string search on encrypted genomic data using a generalized suffix tree.
Informatics in Medicine Unlocked, 23:100525, 2021.

https://doi.org/10.1145/2505515.2505553
https://doi.org/10.1145/2505515.2505553
https://doi.org/10.1145/2396761.2398480
https://doi.org/10.1145/2382196.2382263
https://doi.org/10.1145/2382196.2382263
https://doi.org/10.1145/2339530.2339564
https://doi.org/10.1016/j.ins.2011.07.035
https://doi.org/10.1016/j.ins.2011.07.035
https://doi.org/10.1007/11681878_14
https://doi.org/10.1145/1536414.1536467
https://doi.org/10.4230/LIPIcs.ICALP.2018.62
https://doi.org/10.4230/LIPIcs.ICALP.2018.62
http://www.vldb.org/pvldb/vol8/p1154-he.pdf
http://www.vldb.org/pvldb/vol8/p1154-he.pdf
https://proceedings.neurips.cc/paper/2021/hash/28ce9bc954876829eeb56ff46da8e1ab-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/28ce9bc954876829eeb56ff46da8e1ab-Abstract.html
https://doi.org/10.1016/j.knosys.2015.11.007
https://doi.org/10.1007/978-3-319-91458-9_6

T. A. Steiner 94:17

23 Nicholas Mainardi, Alessandro Barenghi, and Gerardo Pelosi. Privacy preserving substring
search protocol with polylogarithmic communication cost. In Proc. 35th ACSAC, pages
297–312, 2019. doi:10.1145/3359789.3359842.

24 Mihai Maruseac and Gabriel Ghinita. Differentially-private mining of representative travel
patterns. In Proc. 17th MDM, pages 272–281, 2016. doi:10.1109/MDM.2016.48.

25 Frank McSherry. Privacy integrated queries: an extensible platform for privacy-preserving
data analysis. Commun. ACM, 53(9):89–97, 2010. doi:10.1145/1810891.1810916.

26 Gonzalo Navarro. A guided tour to approximate string matching. ACM Comput. Surv.,
33(1):31–88, 2001. doi:10.1145/375360.375365.

27 Shiyue Qin, Fucai Zhou, Zongye Zhang, and Zifeng Xu. Privacy-preserving substring search on
multi-source encrypted gene data. IEEE Access, 8:50472–50484, 2020. doi:10.1109/ACCESS.
2020.2980375.

28 Kana Shimizu, Koji Nuida, and Gunnar Rätsch. Efficient privacy-preserving string search
and an application in genomics. Bioinform., 32(11):1652–1661, 2016. doi:10.1093/
bioinformatics/btw050.

29 Tatiana Starikovskaya. Communication and streaming complexity of approximate pattern
matching. In Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter, editors, Proc. 28th
CPM, pages 13:1–13:11, 2017. doi:10.4230/LIPIcs.CPM.2017.13.

30 Hiroki Sudo, Masanobu Jimbo, Koji Nuida, and Kana Shimizu. Secure wavelet matrix:
Alphabet-friendly privacy-preserving string search for bioinformatics. IEEE ACM Trans.
Comput. Biol. Bioinform., 16(5):1675–1684, 2019. doi:10.1109/TCBB.2018.2814039.

31 Juan Ramón Troncoso-Pastoriza, Stefan Katzenbeisser, and Mehmet Utku Celik. Privacy
preserving error resilient dna searching through oblivious automata. In Proc. 14th CCS, pages
519–528, 2007. doi:10.1145/1315245.1315309.

32 Sirintra Vaiwsri, Thilina Ranbaduge, and Peter Christen. Accurate and efficient privacy-
preserving string matching. Int. J. Data Sci. Anal., 14(2):191–215, 2022. doi:10.1007/
s41060-022-00320-5.

33 Zhibo Wang, Wenxin Liu, Xiaoyi Pang, Ju Ren, Zhe Liu, and Yongle Chen. Towards pattern-
aware privacy-preserving real-time data collection. In Proc. 39th INFOCOM, pages 109–118,
2020. doi:10.1109/INFOCOM41043.2020.9155290.

34 Jianhao Wei, Yaping Lin, Xin Yao, Jin Zhang, and Xinbo Liu. Differential privacy-based
genetic matching in personalized medicine. IEEE Trans. Emerg. Top. Comput., 9(3):1109–1125,
2021. doi:10.1109/TETC.2020.2970094.

35 Xiaochao Wei, Minghao Zhao, and Qiuliang Xu. Efficient and secure outsourced approx-
imate pattern matching protocol. Soft Comput., 22(4):1175–1187, 2018. doi:10.1007/
s00500-017-2560-4.

36 Xinyu Yang, Teng Wang, Xuebin Ren, and Wei Yu. Survey on improving data utility in
differentially private sequential data publishing. IEEE Trans. Big Data, 7(4):729–749, 2021.
doi:10.1109/TBDATA.2017.2715334.

37 Jun Zhang, Xiaokui Xiao, and Xing Xie. Privtree: A differentially private algorithm for
hierarchical decompositions. In Proc. ACM SIGMOD, pages 155–170, 2016. doi:10.1145/
2882903.2882928.

38 Peng Zhang and Mikhail J. Atallah. On approximate pattern matching with thresholds. Inf.
Process. Lett., 123:21–26, 2017. doi:10.1016/j.ipl.2017.03.001.

A Runtime Analysis

In the following, we analyze the runtime of our algorithms and show that it is O(nm + m3),
assuming that noises from the Laplace distribution can be drawn in constant time. We note
that in this work we did not optimize for runtime.

First, note that computing the Hamming distance between S[i, i + m− 1] and P for any
i can be done in m time. We collect some immediate observations about the runtimes of the
given algorithms, if we already know whether P fulfills the conditions of the theorems (and
for which |Q|).

ITCS 2024

https://doi.org/10.1145/3359789.3359842
https://doi.org/10.1109/MDM.2016.48
https://doi.org/10.1145/1810891.1810916
https://doi.org/10.1145/375360.375365
https://doi.org/10.1109/ACCESS.2020.2980375
https://doi.org/10.1109/ACCESS.2020.2980375
https://doi.org/10.1093/bioinformatics/btw050
https://doi.org/10.1093/bioinformatics/btw050
https://doi.org/10.4230/LIPIcs.CPM.2017.13
https://doi.org/10.1109/TCBB.2018.2814039
https://doi.org/10.1145/1315245.1315309
https://doi.org/10.1007/s41060-022-00320-5
https://doi.org/10.1007/s41060-022-00320-5
https://doi.org/10.1109/INFOCOM41043.2020.9155290
https://doi.org/10.1109/TETC.2020.2970094
https://doi.org/10.1007/s00500-017-2560-4
https://doi.org/10.1007/s00500-017-2560-4
https://doi.org/10.1109/TBDATA.2017.2715334
https://doi.org/10.1145/2882903.2882928
https://doi.org/10.1145/2882903.2882928
https://doi.org/10.1016/j.ipl.2017.03.001

94:18 Differentially Private Approximate Pattern Matching

▶ Lemma 22. Let i be the output of Algorithm 1 on an input string T and pattern P . The
runtime of Algorithm 1 is O(min(i ·m, |T | ·m)).

▶ Corollary 23. The runtime of Algorithm 2 on input string T and pattern P is O(|T | ·m).

▶ Corollary 24. The runtime of Algorithm 3 on input string T and pattern P is O(|T | ·m).

▶ Corollary 25. Given P and |Q| satisfying the conditions of Theorem 18, the algorithm
given by Theorem 18 has a runtime of O(nm).

▶ Corollary 26. The algorithms of Theorem 19 and Lemma 20 have a runtime of O(nm).

Next, we analyze the “preprocessing” part for P , i.e. we show how to decide if P is close
to a periodic string Q∞ with small |Q|.

▶ Lemma 27. Let P be a pattern of length m and let k be a parameter. In O(m3) time, we can
decide if there exists a Q such that |Q| ≤ max(m

32C , m
128k) fulfilling distH(P, Q∞[0, m−1]) ≤ 2k,

where C is defined as in Theorem 18, and compute the shortest such.

Proof. For any potential q ≤ max(m
32C , m

128k), we do the following: First, we conceptually
partition the pattern P into blocks of length q. Note that there are at least m/q ≥
min(128k, 32C) ≥ 32k such blocks. Now assume there exists Q of length |Q| = q satisfying
distH(P, Q∞[0, m− 1]) ≤ 2k. Then, since distH(P, Q∞[0, m− 1]) ≤ 2k, all but at most 2k

blocks of P have to be equal to Q. Note that there can be at most one potential string of
length q fulfilling that condition. To find it, we traverse P and count how often a block in
P is equal to any given substring of length q. We can do this by e.g. building a trie of all
blocks as we traverse P . This takes O(m) time. Now, if we found a candidate string Q such
that all but at most 2k blocks are equal to Q, we spend at most m time to check if indeed
distH(P, Q∞[0, m− 1]) ≤ 2k. Since there are at most max(m

32C , m
128k) ≤ m possible values of

q, the total runtime is O(m3). ◀

Note that the condition of Lemma 20 can be checked by applying Lemma 27 with C/4 taking
the role of k.

	1 Introduction
	2 Preliminaries
	2.1 String Preliminaries
	2.2 Privacy Definition and Problem Definitions
	2.3 Privacy Preliminaries

	3 Upper Bounds
	3.1 The Sparse Vector Technique for Approximate Pattern Matching
	3.2 Counting and Reporting
	3.2.1 The Periodic Case
	3.2.2 The Non-Periodic Case
	3.2.3 Non-periodic and small k

	4 Lower Bound
	5 Conclusion
	A Runtime Analysis

