

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 09, 2024

Massively parallel nodal discontinous Galerkin finite element method simulator for
room acoustics

Melander, Anders; Strøm, Emil; Pind, Finnur; Engsig-Karup, Allan P.; Jeong, Cheol Ho; Warburton, Tim;
Chalmers, Noel; Hesthaven, Jan S.

Published in:
International Journal of High Performance Computing Applications

Link to article, DOI:
10.1177/10943420231208948

Publication date:
2024

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Melander, A., Strøm, E., Pind, F., Engsig-Karup, A. P., Jeong, C. H., Warburton, T., Chalmers, N., & Hesthaven,
J. S. (in press). Massively parallel nodal discontinous Galerkin finite element method simulator for room
acoustics. International Journal of High Performance Computing Applications.
https://doi.org/10.1177/10943420231208948

https://doi.org/10.1177/10943420231208948
https://orbit.dtu.dk/en/publications/65beb71e-6fca-47a9-857f-d4f5050003c2
https://doi.org/10.1177/10943420231208948

Research Paper

The International Journal of High
Performance Computing Applications
2023, Vol. 0(0) 1–21
© The Author(s) 2023
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/10943420231208948
journals.sagepub.com/home/hpc

Massively parallel nodal discontinous
Galerkin finite element method simulator
for room acoustics

Anders Melander1, Emil Strøm1, Finnur Pind2,3, Allan P Engsig-Karup1,
Cheol-Ho Jeong3, Tim Warburton4, Noel Chalmers4 and Jan S Hesthaven5

Abstract
We present a massively parallel and scalable nodal discontinuous Galerkin finite element method (DGFEM) solver for the
time-domain linearized acoustic wave equations. The solver is implemented using the libParanumal finite element
framework with extensions to handle curvilinear geometries and frequency dependent boundary conditions of relevance in
practical room acoustics. The implementation is benchmarked on heterogeneous multi-device many-core computing
architectures, and high performance and scalability are demonstrated for a problem that is considered expensive to solve in
practical applications. In a benchmark study, scaling tests show that multi-GPU support gives the ability to simulate large
rooms, over a broad frequency range, with realistic boundary conditions, both in terms of computing time and memory
requirements. Furthermore, numerical simulations on two non-trivial geometries are presented, a star-shaped roomwith a
dome and an auditorium. Overall, this shows the viability of using a multi-device accelerated DGFEM solver to enable
realistic large-scale wave-based room acoustics simulations.

Keywords
High-performance computing, multi-device acceleration, heterogeneous CPU-GPU computing, room acoustic simulation,
discontinuous Galerkin method

1. Introduction

Room acoustic simulations are widely used in, for example,
building design, virtual reality, and hearing research. The
task is challenging from a computational point of view as it
involves simulating large and complex domains, over a
broad frequency spectrum and long times. Room sizes range
from 30 m3 to 30,000 m3, our auditory system can hear
frequencies from 20 Hz to 20 kHz, and sound typically lasts
in rooms somewhere between 0.5 s (living room) and 3.0 s
(concert hall). Historically, the prevailing approach has been
to apply geometrical acoustics methods (Savioja and
Svensson, 2015), such as the image source method
(Allen and Berkley, 1979) or ray-tracing (Krokstad et al.,
1968), where the acoustic wave is approximated as a bundle
of rays that are propagated in the room using the laws of
ray optics. This reduces the computational task consider-
ably, but the approximation is only appropriate in the high-
frequency limit. At low-mid frequencies, wave phenomena
such as diffraction and interference dominate and other
simulation methods must be used. Recently, there also
been development in utilizing scientific machine learning

techniques such as physics-informed neural networks
(PINNs) (Karniadakis et al., 2021) to generate inex-
pensive surrogate models to enable fast evaluations
within room acoustics (Borrel-Jensen et al., 2021).

This motivates the use ofwave-based methods, where the
governing partial differential equations that describe wave
motion are solved numerically. Given the right input data,

1Scientific Computing Section, Department of Applied Mathematics and
Computer Science, Technical University of Denmark, Kgs. Lyngby,
Denmark
2Henning Larsen, Copenhagen, Denmark
3Acoustic Technology Group, Department of Electrical Engineering,
Technical University of Denmark, Kgs. Lyngby, Denmark
4Department of Mathematics, Virgina Tech, Blacksburg, VA, USA
5Chair of Computational Mathematics and Simulation Science, École
Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Corresponding author:
Anders Melander, Department of Applied Mathematics and Computer
Science, Technical University of Denmark, Anker Engelunds Vej 1, Kgs.
Lyngby 2800, Denmark.
Email: anders.d.melander@gmail.com

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/10943420231208948
https://journals.sagepub.com/home/hpc
https://orcid.org/0000-0003-3310-9638
https://orcid.org/0000-0002-9864-7317
https://orcid.org/0000-0002-1293-7525
mailto:anders.d.melander@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1177%2F10943420231208948&domain=pdf&date_stamp=2023-11-16

these methods are very accurate, since no approximation
to the wave propagation is made and all wave phenomena
are inherently accounted for. Several different numerical
techniques have been applied, such as the finite-
difference time-domain (FDTD) method (Botteldooren,
1995), the pseudospectral time-domain (PSTD) method
(Hornikx et al., 2016), the finite volume method (FVM)
(Bilbao, 2013), the boundary element method (BEM)
(Hargreaves et al., 2019), and the finite element method
(FEM) (Craggs, 1994). Recently, nodal high-order ac-
curate variants of the FEM, such as the spectral element
method (SEM) (Pind et al., 2019) and the discontinuous
Galerkin finite element method (DGFEM) (Wang et al.,
2019), have been applied to simulate room acoustics.
High-order methods result in better accuracy-per-
computational-cost and they have the potential to sig-
nificantly reduce the runtime of simulations and are a
must for having good accuracy in wave propagation
problems over long integration times (Kreiss and Oliger,
1972). Recent development has also looked at utilizing
higher-order methods along with reduced order modeling
to reduce computational cost (Sampedro Llopis et al.,
2022). The nodal DGFEM is particularly well suited for
room acoustic simulations, because it combines the at-
tractive features of geometric flexibility, high-order ac-
curacy, suitability for parallel computing, and lean
memory usage. In the DGFEM schemes, the solution is
computed locally for each element, with communication
between elements only at the element boundaries. This
data locality can be utilized for parallelization of the
solver.

The major drawback of wave-based methods is the as-
sociated high computational cost. Simulating large spaces
(larger than, say, 1000 m3) into the mid frequency range (up
to and beyond 1 kHz) typically requires tens or hundreds of
millions of degrees of freedom (DoF). Despite progress in
numerical methodology, wave-based methods are mostly
applied to small rooms at very low frequencies. However,
with the rapid advancements in many-core computing
hardware, massively parallel high-performance computing
(HPC)—in particular, the use of graphics processing units
(GPUs) for scientific computing—offers a way to greatly
extend the usability of wave-based methods to large spaces
and for a broad spectrum of frequencies. This is due to the
attractiveness of the on-chip performance of GPUs. The
volume of calculations to data transfer ratio with the
combination of higher-order methods such as DGFEM can
exploit this high on-chip performance. While GPUs do
bring their own challenges, such as more limited memory
compared to usual CPU setups, this is compensated by the
fact that strong performance can be achieved due to the
FLOPS for free philosophy. These advantages of using
GPUs mean that their use in wave-based room acoustics has
been explored by several other authors. Lopez et al. (2013)

and Spa et al. (2015) studied the GPU implementation of the
FDTD method and found that, when implemented effi-
ciently, the use of GPUs could drastically improve the
computational performance. The FDTD method, like the
DGFEM, lends itself naturally to parallelization but has a
low arithmetic complexity. Takahashi and Hamada (2009)
studied the GPU acceleration of the BEM when applied to
the frequency domain Helmholtz equation and reported a
considerable improvement in performance. Schoeder et al.
(2019) presented a parallel CPU implementation of the
acoustic wave function using DGFEM and also showed that
DGFEM could achieve great computational scaling. Lastly,
Morales et al. (2015) considered a distributed memory
multi-CPU implementation of an adaptive rectangular de-
composition (ARD) algorithm for room acoustic simula-
tions and found that they could simulate large domains over
broad frequency ranges using the HPC setup. While the
ARD implementation of Morales et al. is described as ef-
ficient, it cannot handle complex geometries or non-trivial
boundary conditions.

The goal of this work is to introduce the details of a HPC
approach to simulate three-dimensional room acoustics
using the DGFEM. To the best of our knowledge, this is the
first time a massively parallel GPU-accelerated wave-based
DGFEM room acoustic simulator is presented in the lit-
erature. The simulator is written in C/C++ with Message
Passing Interface (MPI) as its backbone, and the device-
interfacing is implemented using the single kernel language
for parallel programming Open Concurrent Compute Ab-
straction (OCCA) (Medina et al., 2014) for portable multi-
threading code development across different many-core
hardware architectures. Curvilinear meshes and locally
reacting frequency independent and frequency dependent
impedance boundary conditions are supported in the
implementation.

The paper is organized as follows. Section 2 presents the
governing equations and the boundary conditions. Section 3
presents the numerical discretization of the governing
equations. In Section 4, the HPC implementation is de-
scribed and Section 5 contains several numerical experi-
ments that offer insights into the performance of the
simulator. Finally, some concluding remarks are offered in
Section 6.

2. The mathematical model

Acoustic wave propagation in a lossless medium is gov-
erned by the coupled first order system of partial differential
equations

vt ¼ � 1

ρ
=p;

pt ¼ �ρc2=�v;
(1)

2 The International Journal of High Performance Computing Applications 0(0)

where v (x, t) [m/s] is the particle velocity at position x in the
domainV at time t, p (x, t) is the acoustic pressure [Pa], ρ is
the density of air and c is the speed of sound in air. In this
work, we use ρ = 1.2 kg/m3 and c = 343 m/s. We let u, v, and
w be the Cartesian coordinates x, y, and z parts of the ve-
locity field v = [u,v,w]T.

2.1. Boundary conditions

To solve realistic problems, boundary conditions are
needed, to accurately capture the absorption properties
of the boundary of the domain ∂V. Most real-world
surfaces exhibit frequency dependent absorption, which
can be enforced through locally reacting frequency de-
pendent boundary conditions. Mathematically, this can be
written as

bvn ¼ bpðωÞ
ZðωÞ ¼ bpðωÞY ðωÞ (2)

where Y(ω) is the normal boundary admittance, ω is the
angular frequency, and ðbvn;bpÞ denote the Fourier trans-
formed normal velocity and pressure, respectively. The
absorption is dictated by the normal incidence surface
impedance Z(ω), which is a complex function of the
angular frequency. For a particular surface, Z(ω) can be
measured, for example, in an impedance tube or using
pressure-velocity sensors. Alternatively, several material
models exist to estimate surface impedance of many
common materials and constructions. Two special cases
of these boundary conditions exists, the rigid case, where
the right hand side is assumed to be zero,

bn � v ¼ 0 on ∂V (3)

which defines a perfectly reflecting boundary, and the
frequency independent case, where Z and Y are assumed
constant

bn � v ¼ vn ¼ p

Z
¼ pY (4)

To incorporate the frequency dependent boundary
conditions accurately and efficiently into the time-domain
simulation, the method of auxiliary differential equations
(ADEs) can be used (Dragna et al., 2015; Pind et al., 2019).
In the ADE method, the surface admittance is approximated
as a rational function, defined as,

Y ðωÞ ¼ a0þ/þaN ð�jωÞN
1þ/þ bN ð�jωÞN (5)

which can be rewritten using a partial fraction
decomposition

Y ðωÞ ¼ Y∞ þ
XQ
k¼1

Ak

λk � jω
þ

XS

k¼1

�
Bk þ jCk

αk þ jβk � jω
þ Bk � jCk

αk � jβk � jω

�
:

(6)

Here Q is the number of real poles, S is the number of
complex conjugate pole pairs of Y(ω), λk are the real
poles, αk ± jβk are the complex conjugate pole pairs, and
Y∞, Ak, Bk, and Ck are numerical coefficients. For cau-
sality, λk and αk must be semi-positive. Furthermore, for
each set of numerical coefficients, the passivity of the
multipole model must be checked. If the model is non-
passive, it will add energy to the simulation, potentially
leading to a blowup of the solution. The total number of
poles Npoles = Q + 2S should be chosen large enough to
satisfy an error threshold of the multipole approximation
of the boundary admittance.

By applying the inverse Fourier transform to (2), we
get

vnðtÞ ¼
Z t

�∞
pðt0Þyðt � t0Þdt0 (7)

Then by applying the inverse Fourier transform to (6)
and inserting the result into (7), the expression for the
velocity vn at the boundary becomes

vnðtÞ ¼ Y∞pðtÞ þ
XQ
k¼1

AkfkðtÞþ

XS

k¼1

2
�
Bkψ

ð1Þ
k ðtÞ þ Ckψ

ð2Þ
k ðtÞ�; (8)

where fk is the accumulator for the k’th real poles, and ψð1Þ
k

and ψð2Þ
k are the accumulators for the k’th complex conjugate

poles pairs. These accumulators are defined by a set of
ordinary differential equations (ODEs).

dfk

dt
þ λkfk ¼ pðtÞ;

dψð1Þ
k

dt
þ αkψ

ð1Þ
k þ βkψ

ð2Þ
k ¼ pðtÞ;

dψð2Þ
k

dt
þ αkψ

ð2Þ
k � βkψ

ð1Þ
k ¼ 0:

(9)

Thus, when using the ADE method, an additional set of
ODEs must be solved at the boundary in each time step. The
added computational cost due to this additional set of ODEs
is relatively low, as the amount of extra ODEs needed to
solve is small compared to the system that must be solved
for the acoustic wave equations. In total, there will be Npoles

times the number of boundary nodes with frequency

Melander et al. 3

dependent boundary condition ODEs to solve. This extra
work generally grows significantly slower than the total
number of nodes in a domain when the mesh resolution
increases in the domain.

3. The numerical model

3.1. Spatial discretization

The spatial derivatives in (1) are discretized using
DGFEM. In this section, we will go through the dis-
cretization method. A more detailed description can be
found in Hesthaven and Warburton (2008). DGFEM is a
high-order method capable of solving the time-domain
acoustic partial differential equations within a domain V,
subject to an appropriate set of boundary and initial
conditions. The spatial domain is tessellated by K non-
overlapping elements as

VxVh ¼ [K
k¼1

Dk (10)

In this work, the elements are taken to be tetrahedral
elements in the three-dimensional space. On each of
these elements the solution variables v and p are ex-
pressed on the k’th element in terms of polynomial basis
functions and corresponding nodal coefficients. This is
expressed as

vkhðx; tÞ ¼
XNp

n¼1

bvkh�xkn; t�fk
nðxÞ¼

XNp

n¼1

vkh
�
xkn; t

�
lknðxÞ;

pkhðx; tÞ¼
XNp

n¼1

bpkh�xkn; t�fk
nðxÞ¼

XNp

n¼1

pkh
�
xkn; t

�
lknðxÞ: (11)

Here fk
i ðxÞ and lki ðxÞ are the modal Jacobi and nodal

Lagrange polynomial basis function on element Dk,

respectively, and bvkhðxkn; tÞ and bpkhðxkn; tÞ and vkhðxkn; tÞ and
pkhðxkn; tÞ are the modal and nodal coefficients, respec-
tively. The modal basis functions are assumed to be
orthonormal. On each element, xkn is a node distribution
of Np = ((N + 1) (N + 2) (N + 3))/6 distinct nodal in-
terpolation points, where N is the order of the basis
functions. An α-optimized nodal distribution is used
due to its low Lebesque constants (Warburton, 2006).
The solutions on the elements are used to approximate
the global solutions v and p in terms of direct sums

v ≈ vh ¼ ÅK
k¼1v

k
h; p ≈ ph ¼ ÅK

k¼1p
k
h (12)

The strong formulation of the governing equations, when
using the nodal basis series to represent the unknown
variables vkh and pkh, takes the following form

Z
Dk

∂vkh
∂t

lknðxÞdx¼ � 1

ρ

Z
Dk

=pkhl
k
nðxÞdx

þ 1

ρ

Z
∂Dk

bn�pkh � p*
�
lknðxÞdx;Z

Dk

∂pkh
∂t

lknðxÞdx¼ �ρc2
Z
Dk

=�vkhlknðxÞdx

þ ρc2
Z
∂Dk

bn � �vkh � v*
�
lknðxÞdx;

(13)

where * denotes numerical fluxes that propagate the
solution between elements and bn is the outward pointing
normal. This can be rewritten in a discrete formulation
using matrix-based operators for integration and
differentiation

dukh
dt

¼ � 1

ρ
Dk

xp
k
h þ

1

ρ
Lk

�
pkh � p*

�bnx; (14a)

dvkh
dt

¼ � 1

ρ
Dk

yp
k
h þ

1

ρ
Lk

�
pkh � p*

�bny; (14b)

dwk
h

dt
¼ � 1

ρ
Dk

z p
k
h þ

1

ρ
Lk

�
pkh � p*

�bnz; (14c)

dpkh
dt

¼ �ρc2
�
Dk

xu
k
h þDk

yv
k
h þDk

zw
k
h

�
þ ρc2Lkbn � �vkh � v*

� (14d)

The matrix operations on the right hand side can be
expressed in terms of the operators defined on a reference
elements with coordinates X = r, s, t. This means we can
avoid computing and storing each matrix for every element.
We define the matrix operators on the reference element

Dr ¼ VrV
�1;Ds ¼ VsV

�1;Dt ¼ VtV
�1: (15)

HereVij ≡fjðriÞ is the generalized Vandermonde matrix
and ðVX Þij≡ ∂fjðriÞ=∂X are defined on the reference

element.
These operators can, via the chain rule of the continuous

variables, for example,

∂f ðxÞ
∂x

¼ ∂r
∂x

∂f ðxÞ
∂r

þ ∂s
∂x

∂f ðxÞ
∂s

þ ∂t
∂x

∂f ðxÞ
∂t

(16)

Be related to the corresponding discrete differential
operations in the physical domain for each element as

Dk
i ¼ rki Dr þ skiDs þ tki Dt; for i ¼ fx; y; zg (17)

Furthermore, we introduce the lift operator Lk needed
for the incorporation of boundary conditions via numerical
fluxes at the element edges

4 The International Journal of High Performance Computing Applications 0(0)

Lk ¼ J kðMÞ�1
E;M ¼�

VVT
��1

; (18)

where M is the mass matrix defined on the reference el-
ement, Jk is the local transformation Jacobian, and E is the
column-wise concatenation of mass matrices defined in
terms of the nodal distributions on the faces.

The choice of the numerical flux stabilizes the dispersion and
dissipation properties of the DGFEM scheme. In this work, the
upwind flux is chosen. The upwind flux combines low dis-
persion errors over a wide range of frequencies with dissipation
for underresolved frequencies (Ainsworth, 2004; Hu andAtkins,
2002). To derive the upwinding flux, a Riemann problem at each
element edgemust be solved. The derivation follows thework of
Hesthaven and Warburton (2008) and can be seen in full in
Appendix A. The upwinding flux takes the form

ðbnFÞ* ¼

2666666664

1

2
bnx�c�umbnx þ vmbny þ wmbnz�þ 1

ρ
pm

�
1

2
bny�c�umbnx þ vmbny þ wmbnz�þ 1

ρ
pm

�
1

2
bnz�c�umbnx þ vmbny þ wmbnz�þ 1

ρ
pm

�
ρc2

2

�
upbnx þ vpbny þ wpbnz�þ c

2
pp

3777777775
(19)

With um = u� � u+ and up = u� + u+, and u� and u+

denoting the value on the current and neighboring element,
respectively. The same follows for the other variables.

Boundary conditions are weakly enforced through the
numerical flux terms. For element, faces that lie on the
domain boundary, qþh ¼ ½uþh ; vþh ;wþ

h ; p
þ
h � needs to be de-

fined according to the boundary conditions. For surface
impedance boundary conditions, an averaging approach is
used to impose the ”Neumann-type” boundary conditions
for the velocities, meaning the neighboring value is given as
pþh ¼ p�h and vþh ¼ �v�h þ2gv, where bn � gv ¼ vn, with vn
given by either (4) or (8). For the computation of vn, note
that p corresponds to p�h , that is, the value on the current
element. Thus, at the domain boundary nodes, the flux term

in (14d) becomes bn � ðvkh � v*Þ ¼ bn � v�h � vn.

3.2. Temporal discretization and stability

The semi-discrete system in (14a)–(14d) can be expressed
as a general form ODE

dqh

dt
¼ LðqhðtÞ; tÞ (20)

where L is the spatial operator. This ODE system is in-
tegrated in time using a low-storage 4th order explicit
Runge–Kutta (LSERK) time-stepping method,

qð0Þ
h ¼ qn

h;

i2 ½1;…; 5� :
(
kðiÞ ¼ aik

ði�1ÞþΔtL
�
qði�1Þ
h ; tn þ ciΔt

�
;

qðiÞ
h ¼ qði�1Þ

h þ bik
ðiÞ;

qnþ1
h ¼ qð5Þ

h ;

(21)

where Δt = tn+1 � tn is the time step size and the coefficients
ai, bi, ci are given in Ref. (Carpenter and Kennedy, 1994).

Explicit time-stepping methods impose a conditional
stability criterion, Δt ≤ C1/(max |λe|), where λe is the ei-
genvalue of the spatial discretization and C1 is a constant
related to the size of the stability region of the time-
stepping method (Pind et al., 2019). There are two
mechanisms at play that influence the maximum allowed
time step: (1) the eigenvalue spectra of the matrix op-
erators, and (2) the stiffness of the ADEs. In DGFEM, the
matrix operator eigenvalue spectrum scales as max |λe|∼
C2cN

2γ, where the C2 constant is dictated by the size of
the smallest mesh element and γ is the highest order of
differentiation in the governing equations (γ = 1, here)
(Engsig-Karup et al., 2016). Thus, in this work, the time
step size is given as

Δt ¼ CCFLminðΔxlÞ 1c
1

N 2
(22)

where Δxl is the smallest edge length of the mesh elements
and CCFL is a constant of Oð1Þ.

No measures have been taken to automatically address
the potential stiffness of the ADEs. Implicit-explicit time-
stepping (Kennedy and Carpenter, 2003) or stiffness
restriction, by means of a constrained multipole mapping
process (Wang et al., 2020), could be used to ensure the
ADEs do not cause a numerical instability. However, in
all numerical experiments, the spatial scheme is found to
determine the condition on the stable time step size.

3.3. Meshing and curvilinear geometry

Meshing of the computational domain Vh is done using the
open-source meshing tool gmsh (Geuzaine and Remacle,
2009). When affine (straight-sided) elements are used, the
mesh generator is used to generate a low-order finite ele-
ment mesh, and the acoustic simulator then adds the
α-optimized nodes to define the high-order mesh elements,
in accordance with the polynomial basis order used. To also
support handling complex meshes with curvilinear features,
curvilinear elements may be introduced. Using curvilinear
elements, the internal high-order mesh nodes are shifted to
better fit the geometry (Pind et al., 2019). For room acoustic
simulations, this is a particularly important feature, since
most real-world rooms contain curved or complex shaped
boundary surfaces. When using affine elements, the

Melander et al. 5

geometry is described solely by the four vertices of the
tetrahedra, but for curvilinear elements the full set of nodes
is necessary to describe the geometry. It is therefore of
interest to have the mesh generator generate all nodes, and
not only the vertices of the low-order finite element mesh as
seen for the affine elements.

Currently, gmsh has the ability to generate a high-order
curvilinear mesh, however, only with equidistant node
distributions. This is sub-optimal, because of the rapid
growth of the Lebesque constant associated with equidistant
node distributions (Hesthaven, 1998). Our solution here is
to apply an interpolation post-processing step on the high-
order mesh generated by gmsh, where the equidistant nodes
are moved to the α-optimized curvilinear node positions.
This is done by re-interpolating the node position by rep-
resenting the coordinates as polynomial series, cf. (11).
Then, let r and re be the r, s, and t coordinates in the
reference element for α-optimized and equidistant node
distributions, respectively. Using a hierarchical modal basis,
the coefficients br of this representation can be determined
from

r¼ Vbr; re ¼ Vrebr; (23)

where ðVreÞij ≡fjðrei Þ, using same basis used to defineV
but defined in terms of the different set of equidistant
nodes. This implies the relationship between the node
distributions

r¼ V
�
Vre

��1
re (24)

from which an interpolation matrix I : re1r is defined
as

I¼ V
�
Vre

��1
(25)

which interpolates the equidistant node distribution to the
α-optimized node distribution.

4. HPC implementation

The proposed HPC room acoustics simulator is based on
the open-source libParanumal framework (Karakus et al.,
2019; Świrydowicz et al., 2019), which is a set of highly
optimized finite element flow solvers for heterogeneous
(GPU/CPU) systems. A Message Passing Interface (MPI)
is used to handle communication between CPUs. Note,
that when we use the term “CPU,” it refers to one single
CPU core, while “GPU” refers to the entire GPU. MPI
works by treating each CPU core as its own entity, with its
own separate memory. Information can be shared be-
tween CPU cores through the messaging interface. Also
note, that when we use the term “heterogeneous,” we
refer to the fact that CPUs are utilized for communication
and setup; however, the GPUs do all the work during the

simulation itself. In practice, this means that libPar-
anumal splits the domain into different chunks. Each CPU
core only stores the simulation information needed for the
computations in elements belonging to its own part of the
domain; however, information has to be shared along
interfaces due to the flux.

When executing the code on GPUs, the code is
structured such that each CPU core is assumed to have
access to one GPU, for example, only CPU0 can com-
municate directly with GPU0. This implies that the in-
terface communications between CPU cores become
more costly, as compared to only using CPUs, because
CPU0 must copy all interface information from GPU0 into
RAM on CPU0, before it can communicate this infor-
mation to CPUx through MPI, where 0 < x ≤ M � 1 de-
notes an arbitrary CPU core out of the total of M CPUs.
CPUx has to copy the received interface information to its
connected GPU, GPUx. In other words, using GPUs in-
troduces an additional communication step, and therefore
additional communication overhead, between the CPU
and GPU in each time-stepping stage. This implies that
we expect a penalty in the scaling of computational
performance when adding additional CPU-GPU pairs to
run the simulation, as compared to only using CPUs.
However, using the GPUs is very attractive because of the
very large number of cores available and high on-chip
bandwidth, so much faster simulation is expected when
using GPUs compared to CPUs. The communication
structure can be seen in Figure 1, where the red arrows are
the CPU and GPU communications and the blue arrows
are the MPI communications.

The implementation of one stage of the time-stepping
method in (21), including all the interface communication,
is summarized in Algorithm 1. The GPU functions, called

Figure 1. Communication overview of N total heterogeneous
CPU-GPU pairs. All CPUs can communicate through MPI,
GPUs can only communicate through their attached CPU by
proxy.

6 The International Journal of High Performance Computing Applications 0(0)

kernels, must be launched in every iteration of the time-
stepping algorithm.

Algorithm 1. One stage of the LSERK time-stepping
method.

On most modern graphics cards the memory movement to/
from pinned host memory and device memory can be done
with an on-board direct memory access (DMA) engine
which can fully overlap with compute activity on the GPU
die. This means that the device-host communication, and
the volume integral computation and non-interface surface
integral computation of the right hand side of (14a)–(14d)
can start simultaneously, as shown in step 1. Ideally, the
communication work in steps 1, 2, and 3 is finished before
the kernels finishes. This way, communication costs are
completely hidden. This is possible because the volume
kernel and the non-interface surface kernel are completely
asynchronous with respect to the host. Step 4, however,
cannot start until all communication of steps 1–3 is finished,
and the volume kernel is finished.

As can be seen from algorithm 1, the CPU-GPU pairs are
currently synchronized in each stage, meaning that an
uneven workload distribution will cause a performance
penalty. For this reason, it is desirable to have the overall
communication work of each CPU equally balanced, as
other CPU-GPU pairs will be locked in step 3 until they
have sent/received all of the information needed. To ensure
load balancing, the mesh is treated as a graph and split
among the CPUs using a k-way Recursive Inertial
Partitioning.

5. Numerical experiments

All simulations are performed using double-precision
floating point numbers. If the numerical accuracy of the
double is not required, one can change the datatype to floats.
This change will result in a roughly 2× speed increase, and a
decrease in the memory footprint by about the same factor.
For information about used hardware and compilers, see
Appendix B.

5.1. Convergence

5.1.1. Cube domain. As an initial validation of the simulator,
a convergence test in a cube domain with (x, y, z) 2 [0, 1]

and rigid boundaries is carried out. The simulation is ini-
tiated using a Gaussian pulse pressure initial condition

pðx; 0Þ ¼ exp

�
�ðx� xsÞ2 þ ðy� ysÞ2 þ ðz� zsÞ2

sxyz

�
(26)

where (xs, ys, zs) is the source position and sxyz = 0.3 m2 is the
spatial variance, which governs the frequency content of the
pulse. For this case, an analytic solution exists (Sakamoto,
2007). The domain is meshed using structured meshes of
tetrahedral elements. We study both p-convergence, that is,
the error behavior as a function of the basis function order
for a fixed mesh, and h-convergence, that is, the error
behavior as a function of the mesh element size. The nu-
merical error is defined as e = kpDGFEM � pTSk∞, where
pDGFEM is the simulated pressure in the entire field at t =
0.01s and pTS is the true solution. The time step size is
computed using a large time step (close to the stability
threshold), by having CCFL = 1 in (22).

Figure 2 shows the resulting p-convergence, tested for
three different meshes, having varying resolution. The
figure reveals the expected spectral convergence, that is, an
exponentially fast decay of errors, is indeed observed.

Figure 3 shows the h-convergence for different orders of
the basis. Table 1 lists the resulting convergence rates from a
least-squares fitted line. The table also includes convergence
rates for a case where the time step size has been reduced
significantly (CCFL = 0.02). A convergence rate in the range
O (hN) and O (hN+1) is expected (Hesthaven and Warburton,
2008). The results are mostly in good agreement with the
expected rates, with the exception ofN = 1 andN = 2. This is
explained by the meshes not being fine enough for these low
orders to give an accurate representation of their conver-
gence. Furthermore, it is seen that reducing the time step
size has only marginal influence on the convergence rates,
indicating that in this test case, the spatial errors dominate.

5.1.2. Cylinder domain. Consider now a cylinder shaped
domain, of 1 m height and 1 m radius and rigid boundaries.
A convergence test is carried out, where the domain is

Figure 2. Semi-log plot showing the p-convergence for the rigid
cube test case.

Melander et al. 7

meshed either using affinemesh elements or curvilinear mesh
elements. The reference solution here is computed using an
extremely fine mesh of affine elements (410,308 elements,
h ≈ 0.06) and N = 8 basis function order. The numerical error
is then defined as¼

���pDGFEM � pDGFEMfine

��� , where pDGFEM is
the simulated solution in 10 randomly chosen receiver points
at time t = 0.01 s and pDGFEMfine is the simulated solution in the
same receiver points for the fine mesh reference simulation.
All simulations have been run withCCFL = 0.02 to ensure that
spatial errors dominate.

Figure 4 shows the resulting p-convergence, tested for three
different meshes of varying resolution, using either affine ele-
ments or curvilinear elements. When using affine elements, the
high-order convergence is destroyed, as the convergence rate
flattens out for orders higher than N ≈ 3. However, when using
the curvilinear elements, spectral convergence is observed.

Further insights are offered in Figure 5,where h-convergence
is shown for both the affine and the curvilinear case. It is seen
that for the affine elements, a convergence rate of aroundO (h2)
is achieved consistent with the geometric approximation,
whereas a much higher convergence rate is observed for the
curvilinear elements. However, the error plateaus at around
10�7, which is likely due to aliasing errors that stem from the
transformation Jacobians and normals no longer being constant,
which means the integrands are no longer purely polynomial.

This results in inexact integration of variable terms in the inner
products used to compute the matrix based operators. Anti-
aliasing techniques could be employed to reduce the error
further (Engsig-Karup et al., 2016; Kirby and Karniadakis,
2003) or the use of cubature formulas to evaluate the inner
products (Hesthaven and Warburton, 2008). However, in
practical room acoustics simulations, error levels below 10�7

are rarely needed, with the actual error requirements being
around 5 × 10�3 to 2 × 10�2 (Sampedro Llopis et al. (2022)),
and, furthermore, such techniques increase the computational
cost of the scheme.

5.2. Boundary condition validation

A validation study of the locally reacting frequency de-
pendent boundary conditions is carried out, using a normal
incidence single reflection case. For this case, an analytic
solution exists (Thomasson, 1976). A 6 m × 10 m × 10 m
rectangular domain is meshed with an unstructured mesh of
tetrahedral elements. The frequency dependent impedance
boundary is the YZ plane at x = 0. The resolution of the mesh
is roughly 8 points per wavelength (PPW) at 1 kHz, the
highest frequency of interest. The source is placed 2 m from
the impedance boundary (S: (2, 5, 5) m) and the receiver is
placed between the source and the boundary (R: (1, 5, 5) m).
The simulation duration is tfinal = 0.02 s, which ensures that
no parasitic reflections from the other room surfaces arrive
at the receiver position. A Gaussian pulse initial condition,
centered at the source position, with sxyz = 0.2 m2 is used.

Two boundary conditions are considered; a porous
material mounted on a rigid backing (BC1) and a thin
porous layer backed by an air cavity (BC2). The surface
admittance of the BCs is estimated usingMiki’s model and a
transfer matrix method (Allard and Atalla, 2009; Miki,
1990). Vector fitting is used for the multipole mapping
(Gustavsen and Semlyen, 1999). The material is mapped in
the frequency range of 50 to 1500 Hz. An estimate of the
relative mapping error is given by

ϵ ¼
		Y ðf Þ � Yfitðf Þ

		
Y ðf Þ (27)

where Y indicates the mean across frequency. Table 2
summarizes the properties of the considered boundary
conditions and the multipole mapping. Note that more
poles are needed in the mapping of BC1, because the
admittance response fluctuates more with frequency for
this absorber.

Figure 6 shows the resulting Fourier transformed pres-
sure responses of the single reflection study. An excellent
match between the analytic solution and the simulation is
found for both BCs considered, both in terms of magnitude
and phase. This confirms the high precision of the BC
implementation.

Table 1. Convergence rates for the h-convergence study.

N CCFL = 1 CCFL = 0.02

1 �0.778 �0.778
2 �3.239 �3.240
3 �3.919 �3.920
4 �4.618 �4.620
5 �5.752 �5.752
6 �6.188 �6.188
7 �7.754 �7.747
8 �8.161 �8.166

Figure 3. Log–log plot showing the h-convergence for the rigid
cube test case.

8 The International Journal of High Performance Computing Applications 0(0)

5.3. Heterogeneous multi-device CPU-GPU
performance

5.3.1. Strong scaling. Strong scaling is characterized by how
the runtime changes while keeping the problem size con-
stant and increasing the number of processing units. Thus
the overall workload is constant, while the workload of each
processing unit decreases, as the workload is split among an
increasing number of processing units.

Six meshes of varying resolutions are constructed,
described in Table 3. These meshes are used to analyze
the strong scaling of the simulator for two different
polynomial orders, N = 4 and N = 6. In all cases, rigid BCs
are used.

A measure of the overall strong scaling computational
efficiency of the simulator is defined as

ηS ¼
Tb
RM

b

TRM
(28)

where Tb
R denotes the runtime of a baseline case,Mb denotes

the number of GPUs used for the baseline case, and TR and
M denote the same for the comparison case. Thus, if ηS = 1,
perfect scaling occurs when going from Mb to M.

Before the strong scaling tests, we show the achieved
performance on mesh 4 for both N = 4 and N = 6. This is
done with a roofline analysis using the NVIDIA Nsight
Compute tool on a single Nvidia A100 GPU, and can be
seen in Figure 7. Both cases appear to be compute bound in
the volume kernel, with the surface kernel having a slightly
lower performance. Note that in general more time is spent
in the volume kernel than in the surface kernel, however,
how much more time is spent, is highly dependent on both
mesh geometry and polynomial order.

An array of simulations is carried out, using the meshes
defined in Table 3. To account for noise, the runtime is
defined as the average runtime of three simulations. The
resulting strong scaling computational efficiency is shown
in Table 4, with the corresponding runtimes per time step
available in Appendix C.1.

As expected, the scaling is dependent on whether the
problem size is large enough to hide communication. While
every mesh scales relatively well to two GPUs, we start to
see the scaling deteriorate for the smaller meshes once the
GPU count is increased. However for the larger meshes,
especially mesh 4 and 5, we see great scaling for all GPU
setups. To better visualize the scaling, Figure 8 shows the

Figure 4. Semi-log plots showing the p-convergence for the cylinder geometry using either affine or curvilinear meshes. (a) Affine
elements. (b) Curvilinear elements.

Melander et al. 9

speed-up factors. Here it is clear that smaller meshes
stagnate when the GPU count is increased. This is to be
expected as both of these meshes are relatively small,
leading the communication time to dominate the runtime in
these cases.

We now repeat the same tests, but using a polynomial
order N = 6 basis. This increases the number of DoFs in-
volved. Mesh 5 is not considered due to memory limitation
on a singly GPU. Table 5 shows the strong scaling efficiency

factor ηS, with the corresponding runtimes per time step
available in Appendix C.2. As expected, the scaling effi-
ciency has improved, as compared to the N = 4 case, due to
the increase in DoF.

To visualize this, we combine the information about
mesh 1 through 4 from Tables 4 and 5 in Figure 9. Here we
clearly see the efficiency increase when comparing N = 4 to
N = 6 for all shown meshes.

In general, strong scaling is hampered by a number of
challenges, which cause the loss in efficiency. Latency
accumulates for copying kernel arguments from host to
device, for launching a kernel, for copying halo data be-
tween and device, and MPI message passing latency in the
halo exchange. Launching each kernel incurs a time
overhead that is fixed relative to the problem size. On a
NVIDIAV100 the latency can be as low as 5 μs but as high
as 20 μs if kernels are not adequately pipelined. We apply an
Amdahl type scaling model adapted for a memory bound
kernel that streams data between the GPU cores and the
GPU device memory. To achieve 80% efficiency in
streaming data, the kernel must stream at least B = 4R∞T0
bytes of data, where R∞ is the maximum streaming rate of

Figure 5. Log–log plots showing the h convergence for the cylinder geometry using either affine or curvilinear meshes. (a) Affine
elements. (b) Curvilinear elements.

Table 2. Material properties and multipole mapping error for the
BCs used in the boundary validation study. dmat [m] is the porous
material thickness, d0 [m] is the air cavity depth, σmat [Ns/m4] is the
flow resistivity of the porous material,Npoles is the number of poles
used in the multipole mapping, and ϵRe [%] and ϵIm [%] are the
relative mapping errors of the real and imaginary parts of the
surface admittance, respectively.

ID dmat d0 σmat Npoles ϵRe ϵIm

BC1 0.02 0.2 50,000 8 0.0216 0.0177
BC2 0.05 0.0 10,000 4 0.0213 0.0071

10 The International Journal of High Performance Computing Applications 0(0)

the kernel and T0 is the time it takes to launch the kernel. If
the kernel is to achieve 80% of peak throughput it would
need to stream approximately B = 4 × 900 GB/s × 5μs ≈
18 MB. Assuming that the kernel only streams double
precision variables, then we see that at least twomillion field
values would have to be streamed to and/or from device
memory to achieve the target 80% efficiency of the GPU
memory bus. Through the lens of this simplified model, it is
apparent that the efficiency of a memory bound kernel
degrades for small problem sizes which is precisely the
regime we enter when performing a strong scaling study,
wherein the number of GPUs is increased but the amount of
problem data remains fixed. In practice the kernel launch
time can be significantly higher and the achieved throughput

Figure 6. Simulation of a single reflection from a locally reacting frequency dependent impedance boundary compared against the
analytic solution. (a) Magnitude. (b) Phase.

Table 3. Meshes and resulting DoF used for strong scaling
analysis, where k denotes kilo, that is, × 1000.

#Elements DoF N = 4 DoF N = 6

Mesh 1 50k 7000k 16,800k
Mesh 2 200k 28,000k 67,200k
Mesh 3 500k 70,000k 168,000k
Mesh 4 1000k 140,000k 336,000k
Mesh 5 3000k 420,000k 1,008,000k

Figure 7. Roofline test for mesh 4 for both N = 4 and N = 6.
Dashed lines represent 50% and 80% of roofline.

Table 4. Strong scaling computational efficiency ηS for the
meshes in Table 3 with N = 4.

#GPUs Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5

1 1 1 1 1 1
2 0.8929 0.977 0.9790 0.9874 0.9944
4 0.4425 0.8426 0.9709 0.9775 0.9923
8 0.2671 0.4851 0.9392 0.9600 0.9862
12 0.1809 0.3151 0.7880 0.9416 0.9799

Melander et al. 11

can be significantly lower, however the fundamental limit to
strong scaling remains.

5.3.2. Weak scaling. Weak scaling is characterized by how
the runtime changes when fixing the problem size for each
processing unit, that is, the overall workload is constant on

Figure 8. Speed-up factors, with 1 GPU configuration as a
baseline.

Table 5. Strong scaling computational efficiency ηS for meshes 1
through 4 in Table 3 with N = 6.

#GPUs Mesh 1 Mesh 2 Mesh 3 Mesh 4

1 1 1 1 1
2 0.9516 0.9897 0.9998 0.9885
4 0.6844 0.9723 0.9935 0.9942
8 0.4317 0.7510 0.9751 0.9915
12 0.3059 0.4863 0.9672 0.9802

Figure 9. Strong efficiency for mesh 1 through 4. Full lines are
N = 4, and dashed lines are N = 6.

Table 6. Meshes and resulting DoF used for weak scaling analysis,
where k denotes kilo, that is, × 1000.

#Elements DoF DoF DoF

per GPU N = 4 N = 6 N = 8

Series 1 50k 7000k 16,800k 33,000k
Series 2 200k 28,000k 67,200k 132,000k

Figure 10. Weak scaling computational efficiency for the meshes
in Table 6. Full lines areN = 4, dashed lines are N = 6, and dotted
lines are N = 8.

Table 8. Relative change in runtime compared to the rigid case.

Mesh 1 Mesh 2

#GPUs BC1, % BC2, % BC1, % BC2, %

1 +11.03 +3.34 +7.74 +1.54
2 +11.03 +4.66 +7.93 +1.47
4 +5.82 �0.017 +7.55 +2.61
8 +10.05 +4.22 +8.19 +3.08

Table 7. Strong scaling computational efficiency ηS for different
boundary conditions.

Mesh 1 Mesh 2

#GPUs Rigid BC1 BC2 Rigid BC1 BC2

1 1 1 1 1 1 1
2 0.9516 0.9516 0.949 0.9885 0.9967 0.989
4 0.6844 0.7181 0.720 0.9942 0.9959 0.984
8 0.3059 0.4355 0.413 0.9915 0.9874 0.977

12 The International Journal of High Performance Computing Applications 0(0)

each processing unit. The weak scaling computational ef-
ficiency is given by

ηW ¼ Tb
R

TR
(29)

As for strong scaling, runtime is taken as the average
runtime of three runs, to account for noise. To show the
weak scaling, we construct two series of meshes with 50 k
and 200 k elements per GPU, respectively. Additional mesh
information is shown in Table 6.

Figure 10 shows great weak scaling for all cases. We also
generally see an increase in scaling efficiency when in-
creasing the polynomial order, though for both series, N =
6 and N = 8 are relatively close in performance.

The results for both the strong and weak scaling show
that the number of GPUs one should use depends heavily on
the problem size. Adding more compute power for an
application can greatly decrease the overall runtime until
some threshold is reached, where the communication
overhead begins dominating the runtime. Importantly, this
implies that if the number of GPUs used for solving a
problem is selected in such a way that each GPU has a high
workload, an excellent scaling can be achieved to large
numbers of GPUs, thus allowing the efficient simulation of
very large problems.

5.3.3. Influence of BCs on performance. By having non-rigid
BCs, an additional computation must take place at the
domain boundary nodes, particularly for the case of fre-
quency dependent BCs, where the ODE system in (9) must
be solved at the boundary. An experiment is carried out,
where the influence of the non-rigid BCs on runtime and on
strong scaling is investigated. For this experiment, we
consider meshes 1 and 4 in Table 3 with N = 6. These are
cube shaped domains (all bounding surfaces are equally
large). We set the BCs such that all surfaces are frequency
dependent impedance boundaries, with the BCs defined in
Table 2.

The strong scaling results are shown in Table 7 and the
relative change in runtime when having non-rigid BCs, as
compared to the rigid case, is shown in Table 8. The runtime
increases by an average of 8.67% and 2.61% for BC1 and
BC2, respectively. A difference between the effect of
BC1 and BC2 is to be expected due to the difference in the
amount of poles each BC requires for computation. The
strong scaling results also show that scaling is not influ-
enced by the use of realistic boundary conditions, as in all
cases the scaling matches up with the original rigid
boundary condition test. These results show that having
realistic boundary conditions only has a marginal influence
on the performance. The runtime is more affected for the
smaller mesh – this is expected since the boundaries are a
larger proportion of this mesh. Mesh 1 has roughly 40%
more boundary faces per element in comparison to mesh 4.
This matches relatively well with the difference in runtimes,
when comparing the increase in runtime in comparison to
the rigid case. BC1 has a ∼ 23%, and BC2 a ∼ 40% larger
increase in runtime on mesh 1, compared to the increase in
runtime on mesh 2.

5.4. Dispersion and runtime as a function of
simulation frequency range

In practice, it is desirable to simulate a large portion of the
audible frequency spectrum with the wave-based simulator
and therefore of interest to analyze how this affects the
runtime. The valid frequency range of the simulation de-
pends on the spatio-temporal resolution—a high enough

Figure 11. 1D dispersion analysis results when using Δt = 0.0001, c = 1 m/s, and n = 2 time steps.

Table 9. Points-per-wavelength needed to ensure spatial
dispersion errors remain under 2%, based on the 1D dispersion
analysis of Figure 11.

N = 2 N = 4 N = 6

Points per wavelength 17.7 7.3 6.0

Melander et al. 13

resolution must be chosen such that numerical errors are
below a certain threshold, generally taken to be around 2%
(Saarelma et al., 2016).

Using high-order basis functions will result in im-
proved accuracy of the simulation for a given mesh
resolution, which in turn means that fewer PPW can be
used to achieve a certain level of accuracy (Kreiss and
Oliger, 1972; Pind et al., 2019). However, this will also
affect performance due to a reduction in time step size as
per equation (22). A 1D dispersion analysis of a single
wave mode propagation is carried out to roughly assess
the PPW needed for different basis function orders to
maintain numerical dispersion error below the audibility
threshold. The 1D advection equation is

ut þ cux¼ 0 (30)

which has solutions on the form u (x, t) = f (kx � ωt) = f
((ω/c)x � ωt), where f(s) is the initial condition. By as-
suming a solution ansatz f(s) = ejs, the exact solution after n
time steps will have a phase shift corresponding to e�ωnΔt.
Thus, the numerical solution at time step n, un, and the initial
condition u0, are related by

u0 ¼ une�bωnΔt (31)

where bω is the numerical frequency, which will differ
from the exact frequency ω due to the dispersion of the
numerical scheme. This non-linear equation can be
solved numerically for bω, and in this work, a Levenberg–
Marquardt algorithm is used. By comparing the

numerical frequency against the exact one, the dispersion
relationship can be established since cd=c ¼ bω=ω, where
cd is the numerical wave speed.

Figure 11 shows an example dispersion relationship for
the N = 2, 4, 6 basis function orders. Note that this is only
intended as a rough estimate of the PPW needed to
maintain the desirable error levels, as in practice the

Figure 12. Measured runtime as a function of simulation frequency range fmax when using Δt = 0.0001. The dashed lines are the fitted
runtime model on the form r ¼ af 4max. (a) Bedroom. (b) Classroom.

Table 10. Coefficients a for the runtime model r ¼ af 4max and
associated R2 values for evaluating the goodness of the fit.

Bedroom Classroom

N a R2 a R2

2 1.04 × 10�8 0.92 2.74 × 10�8 0.96
4 2.11 × 10�10 0.86 8.36 × 10�10 0.91
6 1.06 × 10�10 0.85 3.28 × 10�10 0.88

Table 11. Details regarding the rooms and the meshes used.

Room Auditorium Concert hall

Dimensions 10 m × 10 m × 50 m 10 m × 40 m × 50 m
Volume 5000 m3 20,000 m3

#Elements 1920k 7680k
DoF 268,800k 1,075,200k
Δt 2.94 × 10�5 2.94 × 10�5

Schröder freq. 28 Hz 20 Hz

14 The International Journal of High Performance Computing Applications 0(0)

dispersion will also be dependent on simulation duration
and direction.

Table 9 lists the PPW needed to ensure that spatial
dispersion errors remain under 2% for the example case.
Using these PPW values as reference, we can construct
meshes with the right resolution to ensure valid simu-
lation results up to a certain frequency fmax. This allows
us to analyze how the runtime changes as the frequency
range of the simulation is extended, when using different
basis function orders. Two rooms are considered, a 4 m ×
2.7 m × 3 m “bedroom” and a 9 m × 7 m × 3 m
“classroom.” In both cases, frequency independent BCs
are used and a simulation time (impulse response length)
of 1 s is simulated. The rooms are simulated using
4 GPUs.

Figure 12 shows the measured runtime. The runtime is
measured for fmax = 250, 500, 1000, 2000, 4000 Hz. The
runtime increases quickly with frequency in all cases,
after a certain frequency is reached. This is due to the
inherent nature of having to mesh the three dimensional
volume of the room. However, the runtime starts to in-
crease rapidly at a much higher frequency for the higher
order cases. For N = 2 we did not go beyond fmax =
1000 Hz due to computational cost. A function on the
form r ¼ af 4max is fitted to the measured runtimes, where r
is the estimated runtime. As can be seen in Table 10, a is
considerably lower when using the higher order basis
functions.

5.5. Large shoebox-shaped rooms

To give additional insights into the performance of the
simulator for challenging practical cases, we consider two
very large shoebox-shaped rooms. The first is 5000 m3,
which is meant to imitate a large auditorium, and the other
is 20,000 m3, which is meant to imitate a large concert
hall. These rooms are meshed using a structured mesh,
N = 4 basis function order and the spatial resolution is
6 PPW at 1000 Hz. In practice, a common rule of thumb
for second order schemes is to use 6 PPW at the highest
frequency of interest. Thus, it is reasonable to assume that
when using N = 4 basis order, the accuracy is likely
acceptable at frequencies beyond 1000 Hz. For reference,
the Schroeder frequency of these rooms is 28 Hz and

20 Hz, for the auditorium and the concert hall, respec-
tively, assuming the auditorium has a reverberation time
of 1 s and the concert hall a reverberation time of 2 s. The
room and mesh details are summarized in Table 11.

These rooms are simulated for a time of 2 s for a total
of 680 time steps. Boundary conditions are rigid. Table 12
lists the resulting total runtimes and runtimes per
time step.

For the concert hall, the simulation cannot be run on
1 or 2 GPUs due to memory limitations, but for both the
auditorium and the concert hall, the runtimes improves
significantly when increasing the amount of GPUs, which
aligns with our earlier scaling tests. While the auditorium
has slightly stagnated in scaling when going to 12 GPUs,
the trend of the concert hall indicates that the runtimes
would likely drop further if more than 12 GPUs were
used. We have thus shown that for very large rooms, we
can simulate up to 30 times the Schroeder frequency
within practical timeframes. However, one has to keep in
mind that this simulation was run on structured meshes in
a rectangular room with rigid BCs. A more complex
geometry, which has to be meshed as an unstructured
mesh, could lead to smaller time steps and therefore
longer runtime.

5.6. Complex geometry cases

5.6.1. Auditorum B341-A21 at DTU. As an example of using
the simulator on realistic 3D geometries, consider the

Table 12. Runtimes in seconds for the large shoebox-shaped rooms.

#GPUs Auditorium Per time step Concert hall Per time step

1 208.31 0.3063 — —

2 104.95 0.1543 — —

4 52.97 0.1543 209.79 0.3085
8 26.88 0.0395 105.65 0.1554
12 21.91 0.0322 71.31 0.1049

Figure 13. Geometric model of auditorium B341-A21 at DTU.

Melander et al. 15

room in Figure 13, which shows a simplified model of
auditorium B341-A21 at the Technical University of
Denmark (DTU). As can be seen, the model contains a
desk at the bottom and several benches on the slope.
Boundary conditions have been chosen to represent a
realistic scenario, where the floor, table, and benches are
set to be rigid, the walls have frequency independent
impedance boundary conditions with Z = 15,630 Ns/m4,
which corresponds to approximately 10% absorption at
normal incidence, and the ceiling uses frequency de-
pendent boundary conditions. The ceiling is modeled as
a suspended porous material, with thickness dmat =
0.02 m, and air cavity depth of d0 = 0.2 m and having
flow resistivity σmat = 50,000 Ns/m4. The initial con-
dition is a Gaussian pulse with width sxyz = 0.3 m2,
placed at S = (4.0, 5.0, 1.8) m, to mimic the position of a
lecturer.

Figure 14 presents a series of snapshots of the solution in
the XZ-plane at y = 5 m, showing the propagation of the
acoustic wave within the domain. Note that the diffraction
patterns from the benches and the desk are being accurately
captured.

5.6.2. Star-shaped room with a dome. As a last test case,
consider the geometry shown in Figure 15, which consists
of three overlapping rectangles and a dome shaped roof in
the center. This geometry is meshed with curvilinear
elements to accurately capture the curved shape of the

dome. The geometry is similar to what is used in a work
by Bilbao (Bilbao, 2013); however, in that work, the
geometry is meshed with affine elements and simulated
with a second-order accurate method. The floor is made to
be highly absorptive, having a normal incidence surface
impedance of Z = ρc = 411.6 Ns/m4, while other surfaces
are perfectly reflecting. Figure 16 shows snapshots of the
wave propagation in the room, both in a section view and
a plan view. Note the acoustic focusing effect due to
the dome.

The two complex geometry cases presented in this
section and the previous one show that the simulator is
capable of using the geometrical flexibility of the

Figure 14. Snapshots of the acoustic wave propagating inside the auditorium.

Figure 15. Geometric model of dome shaped room.

16 The International Journal of High Performance Computing Applications 0(0)

DGFEM method to simulate realistic large-scale
geometries.

6. Conclusions

A massively parallel nodal DGFEM-based room acoustic
simulator has been presented and its performance analyzed.
It has been shown that the simulator can handle large and
complex problems, including curvilinear geometries and
frequency dependent boundaries, under short runtimes. This
makes the simulator suited for use on problems of industrial
size and complexity. The work presented here extends the
usability of wave-based room acoustic simulations far be-
yond the restricted use-case of small rooms and frequencies
below the Schroeder frequency, which wave-based methods
are historically typically associated with.

The heterogeneous multi-device scalability benchmarks
show that the simulator can handle problems of nearly
arbitrary size, as long as the number of GPUs is selected to
ensure that the workload on each GPU is sufficient, to avoid
costs, related to communication between CPU cores starting
to dominate the runtime. While the new model has been

designed for massive parallelism and scalability utilizing
heterogeneous multi-device CPU-GPU many-core hard-
ware, there are still opportunities for further improvements
of the performance. It is also shown that using mesh-
adaptive high-order numerical methods is highly benefi-
cial for room acoustic simulations, due to the improved
physical description such wave-based room acoustic model
offer.

Acknowledgments

The authors wish to thank Mr Hermes Sampedro Llopis and Mr
Nikolas Borrel-Jensen for fruitful discussions.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with re-
spect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: This
work was supported by the This work is partly supported by HPC
innovation for European SMEs (FF4EuropHPC), Grant ID
951745, European High-Performance Computing Joint Under-
taking, European Community Horizon 2020 Programme. The
work was also supported by DTU Computing Center (DCC) with
access to state-of-the-art computing resources.

ORCID iDs

Anders Melander https://orcid.org/0000-0003-3310-9638
Cheol-Ho Jeong https://orcid.org/0000-0002-9864-7317
Noel Chalmers https://orcid.org/0000-0002-1293-7525

References

Ainsworth M (2004) Dispersive and dissipative behaviour of high
order discontinuous Galerkin finite element methods. Journal
of Computational Physics 198(1): 106–130.

Allard JF and Atalla N (2009) Propagation of Sound in Porous
Media: Modelling Sound Absorbing Materials. 3rd edition.
West Sussex, UK: Wiley, Ch. 3, 5.

Allen JB and Berkley DA (1979) Image method for efficiently
simulating small-room acoustics. Journal of the Acoustical
Society of America 65: 943–950.

Bilbao S (2013) Modeling of complex geometries and boundary
conditions in finite difference/finite volume time domain
room acoustics simulation. IEEE Transactions on Audio
Speech and Language Processing 21(7): 1524–1533.

Borrel-Jensen N, Engsig-Karup AP and Jeong C-H (2021)
Physics-informed neural networks for one-dimensional sound
field predictions with parameterized sources and impedance
boundaries. JASA Express Letters 1: 122402.

Figure 16. Snapshots of the acoustic wave propagating inside the
star-shaped room.

Melander et al. 17

https://orcid.org/0000-0003-3310-9638
https://orcid.org/0000-0003-3310-9638
https://orcid.org/0000-0002-9864-7317
https://orcid.org/0000-0002-9864-7317
https://orcid.org/0000-0002-1293-7525
https://orcid.org/0000-0002-1293-7525

Botteldooren D (1995) Finite-difference time-domain simulation
of low-frequency room acoustic problems. Journal of the
Acoustical Society of America 98(6): 3302–3308.

Carpenter MH and Kennedy C (1994) Fourth-order 2N-storage
Runge-Kutta schemes. NASA Report TM 109112. Hampton,
VA: NASA Langley Research Center.

Craggs A (1994) A finite element method for the free vibration of
air in ducts and rooms with absorbing walls. Journal of Sound
and Vibration 173(4): 568–576.

Dragna D, Pineau P and Blanc-Benon P (2015) A generalized
recursive convolution method for time-domain propagation in
porous media. Journal of the Acoustical Society of America
138(2): 1030–1042.

Eleuterio FT (1999) Riemann Solvers and Numerical Methods for
Fluid Dynamics: A Practical Introduction. 2rd edition.
Berlin, Germany: Springer-Verlag.

Engsig-Karup AP, Eskilsson C and Bigoni D (2016) A stabilised
nodal spectral element method for fully nonlinear water
waves. Journal of Computational Physics 318: 1–21.

Geuzaine C and Remacle J-F (2009) Gmsh: a three-dimensional
finite element mesh generator with built-in pre- and post-
processing facilities, International Journal for Numerical
Methods in Engineering 79(11): 1309–1331.

Gustavsen B and Semlyen A (1999) Rational approximation of
frequency domain responses by vector fitting, IEEE Trans-
actions on Power Delivery 14(3): 1052–1061.

Hargreaves JA, Rendell LR and Lam YW (2019) A framework for
auralization of boundary element method simulations in-
cluding source and receiver directivity, Journal of the
Acoustical Society of America 145(4): 2625–2637.

Hesthaven J (1998) From electrostatics to almost optimal nodal
sets for polynomial interpolation in a simplex. SIAM Journal
on Numerical Analysis 35(2): 655–676.

Hesthaven JS and Warburton T (2008) Nodal Discontinuous
Galerkin Methods – Algorithms, Analysis, and Applications.
New York, NY: Springer.

Hornikx M, Krijnen T and van Harten L (2016) openPSTD: the
open source pseudospectral time-domain method for acoustic
propagation. Computer Physics Communications 203:
298–308.

Hu F and Atkins H (2002) Two-dimensional wave analysis of the
discontinuous Galerkin method with non-uniform grids and
boundary conditions. In: 8th AIAA/CEAS aeroacoustics
conference and exhibit, Breckenridge, Colorado, 17–19 June
2002.

Karakus A, Chalmers N, Świrydowicz K, et al. (2019) A GPU
accelerated discontinuous Galerkin incompressible flow
solver. Journal of Computational Physics 390: 280–404.

Karniadakis GE, Kevrekidis IG, Lu L, et al. (2021) Physics-
informed machine learning. Nature Reviews Physics 3:
422–440.

Kennedy CA and Carpenter MH (2003) Additive Runge-Kutta
schemes for convection-diffusion-reaction equations. Applied
Numerical Mathematics 44(1): 139–181.

Kirby RM and Karniadakis GE (2003) De-aliasing on non-uniform
grids: algorithms and applications, Journal of Computational
Physics 191(1): 249–264.

Kreiss H-O and Oliger J (1972) Comparison of accurate methods
for the integration of hyperbolic equations. Tellus 24(3):
199–215.

Krokstad A, Strom S and Sørsdal S (1968) Calculating
the acoustical room response by the use of a ray trac-
ing technique. Journal of Sound and Vibration 8(1):
118–125.

Lopez JJ, Carnicero D, Ferrando N, et al. (2013) Parallelization of
the finite-difference time-domain method for room acoustics
modelling based on CUDA. Mathematical and Computer
Modelling 57(7): 1822–1831.

Medina DS, St-Cyr A and Warburton T (2014) OCCA: A Unified
Approach to Multi-Threading Languages. arXiv: 1403.0968
[cs.DC].

Miki Y (1990) Acoustical properties of porous materials—
modifications of Delany-Bazley models, Journal of the
Acoustical Society of Japan vol. 11(1): 19–24.

Morales N, Mehra R and Manocha D (2015) A parallel time-
domain wave simulator based on rectangular decomposition
for distributed memory architectures. Applied Acoustics
97(10): 104–114.

Pind F, Engsig-Karup AP, Jeong C-H, et al. (2019) Time domain
room acoustic simulations using the spectral element method.
Journal of the Acoustical Society of America 145(6):
3299–3310.

Saarelma J, Botts J, Hamilton B, et al. (2016) Audibility of
dispersion error in room acoustic finite-difference time-
domain simulation as a function of simulation distance,
Journal of the Acoustical Society of America 139(4):
pp. 1822–1832.

Sakamoto S (2007) Phase-error analysis of high-order finite
difference time domain scheme and its influence on cal-
culation results of impulse response in closed sound field.
Acoustical Science and Technology 28(5): 295–309.

Sampedro Llopis H, Engsig-Karup AP, Jeong C-H, et al. (2022)
Reduced basis methods for numerical room acoustic simu-
lations with parametrized boundaries. Journal of the
Acoustical Society of America 152: 851–865.

Savioja L and Svensson UP (2015) Overview of geometrical room
acoustic modeling techniques. Journal of the Acoustical
Society of America 138(2): 708–730.

Schoeder S, Wall WA and Kronbichler M (2019) ExWave: A high
performance discontinuous Galerkin solver for the acoustic
wave equation. SoftwareX 9: 49–54.

Spa C, Rey A and Hernandez E (2015) A GPU implementation of
an explicit compact FDTD algorithmwith a digital impedance
filter for room acoustics applications. IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing 23(8):
1368–1380.

Świrydowicz K, Chalmers N, Karakus A, et al. (2019) Acceler-
ation of tensor-product operations for high-order finite

18 The International Journal of High Performance Computing Applications 0(0)

element methods. The International Journal of High Per-
formance Computing Applications 33(4): 725–757.

Takahashi T and Hamada T (2009) GPU-accelerated boundary
element method for Helmholtz’ equation in three dimensions,
International Journal for Numerical Methods in Engineering
80(10): 1295–1321.

Thomasson S-I (1976) Reflection of waves from a point source by
an impedance boundary. Journal of the Acoustical Society of
America 59(4): 780–785.

Wang H, Sihar I, Pagan Munoz R, et al. (2019) Room acoustics
modelling in the time-domain with the nodal discontinuous
Galerkin method, Journal of the Acoustical Society of
America 145(4): 2650–2663.

Wang H, Yang J and Hornikx M (2020) Frequency-dependent
transmission boundary condition in the acoustic time-domain
nodal discontinuous Galerkin model. Applied Acoustics 164:
107280.

Warburton T (2006) An explicit construction of interpolation
nodes on the simplex. Journal of Engineering Mathematics
56(3): 247–262.

Author biographies

Anders Melanders is a PhD student at the Section of Sci-
entific Computing, Department of Applied Mathematics
and Computer Science, Technical University of Denmark.
His research interests include high-order spectral methods
applied to acoustics and hydrodynamics with a focus on free
surface flows and fluid dynamics, along with high-
performance computing.

Emil Strøm got his master degree in engineering from the
Technical University of Denmark. He currently works for
Dalux, a software company in the construction industry.
His work includes creating high-performing software for
processing large amounts of user captured 360-videos.

Finnur Pind is the founder/CEO of Treble Technologies.
Treble develops sound simulation technology that is
revolutionizing how several sectors design and work with
sound: architecture, consumer electronics, voice tech-
nology, metaverse and automotive. Finnur has a PhD in
acoustics engineering from the Technical University of
Denmark. Prior to founding Treble, he worked as a
software engineer in telecom and as an acoustics con-
sultant in the building industry, including spending four
years at the prestigious architecture firm Henning Larsen.

Allan Peter Engsig-Karup is a Professor (Associate) of
Computational Mathematics at the Section of Scientific
Computing, Department of Applied Mathematics and
Computer Science, Technical University of Denmark. He
is a faculty member of The Danish Center for Applied
Mathematics and Mechanics (DCAMM) and a faculty
member of Center For Energy Resources Engineering
(CERE). His research interests include high-performance

computing using multi-device GPU acceleration, nu-
merical analysis, efficient and scalable algorithms, de-
velopment of new efficient simulation tools based on high
order numerical methods and with application within
engineering areas related to computational acoustics,
computational hydrodynamics and in particular free
surface flows, fluid dynamics, and energy resource areas
(fx. renewables and reservoir simulation).

Cheol Ho Jeong is associate professor at the department of
electrical and photonics engineering, Technical University
of Denmark. He research area spans computational room
acoustics, Reduced order modeling, inverse characterization
of boundary conditions in acoustics, virtual prototyping and
data-driven methods.

Tim Warburton is a Professor of Mathematics, Professor of
Computational Modeling and Data Analytics, and holds the
John K. Costain Faculty Chair in the College of Science at
Virginia Tech. His research interests include high-
performance computing, GPU acceleration, performance
portability, and high-order finite element methods applied to
computational modeling of acoustics, electromagnetics,
fluid dynamics, and plasma physics.

Noel Chalmers received his PhD in Applied Mathematics
from the University of Waterloo. He currently works at
Advanced Micro Devices (AMD) Research, developing
high-performance computing scientific software for
exascale computing. His research centers on GPU-
acceleration of scientific computing applications, high-
order finite element methods, and scalable multilevel
preconditioning algorithms.

Jan S Hesthaven after receiving his PhD in 1995 from the
Technical University of Denmark, Professor Hesthaven
joined Brown University, USA where he became Professor
of Applied Mathematics in 2005. Since 2013 he has been
Professor of Mathematics at EPFL, CH and holds the Chair
of Computational Mathematics and Simulation Science.
Since 2021 he has served as Provost of EPFL. His research
interests are in the development, analysis, and application of
high-order accurate methods for the solution of complex
time-dependent problems. He has published more than
175 journal papers and 4 books and is a Fellow of SIAM,
AMS and the Royal Danish Academy of Sciences and
Letters.

Appendix

A Numerical flux derivation

To derive the upwinding flux, a Riemann problem at each
element edge must be solved.We start by rewriting (1) in the
quasi-linear form of a hyperbolic system

Melander et al. 19

∂q
∂t

þ=�FðqÞ ¼ ∂q
∂t

þ Aj
∂q
∂xj

¼ 0 (32)

where q (x, t) = [u, v, w, p]T is the acoustic variable vector,
j 2 [x, y, z] is the Cartesian coordinate index and Aj is a
constant flux Jacobian matrix, given as

Aj ¼

0 0 0
δxj
ρ

0 0 0
δyj
ρ

0 0 0
δzj
ρ

ρc2δxj ρc2δyj ρc2δzj 0

2666666666664

3777777777775
(33)

where δij denotes the Kronecker delta function. The flux of
the system is defined as

F ¼

Axq;Ayq;Azq

�
(34)

We are interested in the numerical flux along the outward
pointing element boundary normal bn, which leads to the
creation of the following operator

N ¼ bn � F ¼ bnxAx þ bnyAy þ bnzAz (35)

Applying an eigendecomposition on N yields

N ¼ RDR�1 (36)

where

R ¼

bnx
ρc

�bnx
ρc

�bnzbnx �bnybnxbny
ρc

�bny
ρc

0 1

bnz
ρc

�bnz
ρc

1 0

1 1 0 0

2666666666664

3777777777775
(36a)

D ¼ Dþ þ D�

¼

2666664
c 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3777775þ

2666664
0 0 0 0

0 �c 0 0

0 0 0 0

0 0 0 0

3777775;
(36b)

Since all eigenvalues are real, the system is hyperbolic,
and therefore the eigenvalues represent the speeds of
propagation of information of the characteristic variables b,
defined as R�1q = b (Eleuterio, 1999).

The properties of D+ and D� results in the numerical
upwind flux

ðbn � FÞ* ¼ RDþR�1q�
h þ RD�R�1qþ

h (37)

B Hardware and compilers

All numerical experiments are carried out using the HPC
system at the Technical University of Denmark (DTU)
Computing Center. Three computing nodes are used, where
each node consists of:

· CPU: 2 × Intel Xeon Gold 6142 @ 2.60 GHz,
· GPU: 4 × NVIDIA Tesla V100 SXM2 32 GB,

With the three nodes being connected by InfiniBand. The
compilers used for compilation are:

· GCC v7.4.0,
· OpenMPI v3.1.3,
· OCCA v1.0,
· CUDA compilation tools v10.0.130.

For the scalability tests, we will use the setups of 1, 2, 4,
8, and 12 GPUs. Note that when running tests with four or
less GPUs, they will all be on the same node. This means
that when going from 4 to 8 GPUs there will be an additional
cost of transfer, as internal communication is not as fast as a
memory copy within a node.

20 The International Journal of High Performance Computing Applications 0(0)

C Strong scaling measurements

C.1Strong scaling runtime for N = 4.

C.2Strong scaling runtime for N = 6.

Table 14. Runtime per time step in seconds for meshes 1 through 4 in Table 3 with N = 6.

#GPUs Mesh 1 Mesh 2 Mesh 3 Mesh 4

1 0.0227 0.0960 0.2894 0.4803
2 0.0119 0.0485 0.1447 0.2429
4 0.0083 0.0247 0.0728 0.1208
8 0.0066 0.0160 0.0371 0.0605
12 0.0062 0.0164 0.0249 0.0408

Table 13. Runtime per time step in seconds for meshes in Table 3 with N = 4. Note that mesh 6 is not included, as memory
requirements are too much for a single GPU.

#GPUs Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5

1 0.0076 0.0310 0.0920 0.1536 0.4618
2 0.0042 0.0158 0.0470 0.0778 0.2322
4 0.0043 0.0092 0.0237 0.0393 0.1163
8 0.0035 0.0080 0.0122 0.0200 0.0585
12 0.0035 0.0082 0.0097 0.0136 0.0393

Melander et al. 21

	Massively parallel nodal discontinous Galerkin finite element method simulator for room acoustics
	1. Introduction
	2. The mathematical model
	2.1. Boundary conditions

	3. The numerical model
	3.1. Spatial discretization
	3.2. Temporal discretization and stability
	3.3. Meshing and curvilinear geometry

	4. HPC implementation
	5. Numerical experiments
	5.1. Convergence
	5.1.1. Cube domain
	5.1.2. Cylinder domain

	5.2. Boundary condition validation
	5.3. Heterogeneous multi
	5.3.1. Strong scaling
	5.3.2. Weak scaling
	5.3.3. Influence of BCs on performance

	5.4. Dispersion and runtime as a function of simulation frequency range
	5.5. Large shoebox-shaped rooms
	5.6. Complex geometry cases
	5.6.1. Auditorum B341
	5.6.2. Star

	6. Conclusions
	Acknowledgments
	Declaration of conflicting interests
	Funding
	ORCID iDs
	References
	Author biographies
	Appendix
	A Numerical flux derivation
	B Hardware and compilers
	C Strong scaling measurements
	Outline placeholder
	C.1Strong scaling runtime for N = 4
	C.2Strong scaling runtime for N = 6

