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Abstract
Biomanufacturing of chemical and natural products is set to improve environmental
sustainability and increase reliability of the production processes. Using microbial cell
factories for biomanufacturing opens up a large range of potential products, especially
considering the ability to produce non-native products through metabolic engineering.
While possible, metabolic engineering remains challenging due to the inherent complexity
of microbial metabolism. Metabolic engineering addresses this challenge by following
an iterative design-build-test-learn (DBTL) cycle, where the design and the build phase
have seen the most advancements in recent years. The full cycle would benefit from
high-throughput and automated strategies, which can be implemented both in the
laboratory and digitally. In this thesis, two computational tools and two analytical
methods were developed to improve the performance and throughput of the test and learn
phases. Regarding the test phase, a high-throughput workflow for absolute quantitative
proteomics was established and integrated into an automated data analysis tool. An
optimised sample preparation protocol for membrane proteomics was developed, which
results in a more representative membrane fraction for proteome-wide analysis. As a tool
for the learn phase, a kinetic model was constructed to investigate the inner workings
of metabolism through integration of proteomics, metabolomics and fluxomics data.
Altogether, the computational tools and analytical methods presented here could be
applied to improve future development of microbial cell factories.
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Sammenfatning
Bioteknologisk produktion af kemiske og naturlige produkter vil mindske aftrykket på
miljøet, samt gøre produktionen mere robust. Anvendelse af mikrobielle cellefabrikker har
et stort potentiale, da det muliggør produktionen af bred vifte af kendte molekyler, men
samtidigt giver det mulighed for at producere helt nye molekyler. Desværre er udvikling a
cellefabrikker fortsat udfordret af mikrobernes iboende kompleksitet. Cellefabrik ingeniører
håndterer denne udfordring ved at følge en iterativ design-byg-test-lær (DBTL)-cyklus,
hvor design- og byg faserne har set flest fremskridt de seneste år. For at få mest mulig
ud af den fulde DBTL-cyklus kan man med fordel anvende højt-kapacitetsmetoder
og automatisering. Disse kan implementeres både i laboratoriet og digitalt. I denne
Ph.d.-afhandling blev der udviklet to beregningsværktøjer og to analysemetoder som
øger kapaciteten og kvaliteten af test- og læringsfaserne. Med hensyn til testfasen blev
der etableret et høj-kapacitetsdatabehandlingsprogram til absolut kvantitativ proteom
data, som blev integreret i et automatiseret dataanalyseværktøj. Der blev udviklet en
optimeret prøveforberedelsesprotokol til membranproteiner, som resulterede i en mere
repræsentativ membranfraktion i proteomanalysen. Som et værktøj til indlæringsfasen
blev der konstrueret en kinetisk model til undersøgelse af det metaboliske netværk
gennem integration af proteom-, metabolom- og fluxom-data. Alt i alt kan de her viste
beregningsværktøjer og analysemetoder anvendes til at forbedre den fremtidige udvikling
af mikrobielle cellefabrikker.
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Chapter 1: General introduction

1.1. General introduction
Microbial cell factories constitute a potential solution for improving environmental
sustainability and increasing reliability of production processes otherwise based on fossil
fuels or plant production [1]. Biomanufacturing using microbial cell factories offers extreme
product diversity, ranging from biofuels [2] to natural products, such as pharmaceuticals,
flavourings and pigments [3]. Despite the clear potential, application of microbial
cell factories poses challenges due to the inherent complexity of microbial metabolism.
Metabolic engineering addresses this by following an iterative design-build-test-learn
(DBTL) cycle (Figure 1) [4]. Typically, several iterations are required in order to achieve
a significant improvement in product titres and overall performance. The majority of this
optimisation process is based on a trial-and-error approach and is often time consuming and
labour intensive. For example, achieving industrial-scale microbial production of artemisin
and 1,3-propanediol required 150 and 175 person-years, respectively [5]. Decreasing the
duration of DBTL cycle iterations is a worthwhile goal, as it would increase the efficiency
and cost-effectiveness of the construction and optimisation of microbial cell factories.

Figure 1.1: Overview of the Design-Build-Test-Learn cycle commonly applied to metabolic engineering
of microbial cell factories. Typically multiple iterations are performed for a specific development. Two
examples are given per phase here, however, more tools and approaches exist for each phase.

The overall DBTL cycle duration has been greatly reduced by implementation of more
high-throughput and partly automated methods [6, 7], while several improvements have
also been made in specific cycle phases. The design phase has seen advancement through
guidance from genome-scale metabolic models, however, the design of microbial cell
factories is often still a one-off, manual process based on the expertise of the researchers
involved [4]. A large step forward in the build phase came from the introduction
and availability of the CRISPR/Cas9 system for conventional host organisms, such
as Escherichia coli and Saccharomyces cerevisiae [8]. In recent years, the focus in
the test phase has shifted towards omics techniques due to increased prevalence of
accessible methods to acquire omics data sets [6]. The learn phase has consistently been
underrepresented during microbial cell factory development following the DBTL cycle,
yet this phase holds the most potential to accelerate the overall development [4].
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Chapter 1: General introduction

The emergence of biofoundries brings a high-throughput platform for the complete
DBTL cycle including multiple iterations (see Box 1.1 for the case study) [9, 10].
Laboratory automation is key to a successful biofoundry, where liquid-handling robots,
efficient cultivation devices and high-throughput analytical equipment are the building
blocks. Additionally, collection and processing of multi-omics data in an automated
and high-throughput manner is important. Genomics and transcriptomics analyses are
performed on large scale and cover most of the cellular genome and transcriptome, while
analysis of the proteome lags behind [6, 11]. The proteome provides a middle ground
between the genotype and phenotype, allowing for a more detailed, grey-box approach
to metabolic engineering. Proteins play a major role in many biological processes and
accurate, high-throughput protein quantification is therefore crucial for adequate metabolic
engineering of microbial cell factories [11].

Box 1.1: Biofoundry case study.
The biofoundry capacity at the Novo Nordisk Foundation Center for Biosustainability (NNF CfB) is
applied in an ongoing study to develop an L-tyrosine-overproducing Escherichia coli strain. L-tyrosine is
a major building block for a variety of natural products, notably products following from the L-DOPA
(L-3,4-dihydroxyphenylalanine) node. In the study, rational design is combined with computational
tools, including iModulon analysis [12] and kinetic modelling [13], with transcriptomics, proteomics and
metabolomics data as input. In total, two rounds of the DBTL cycle will be performed to obtain an E.
coli L-tyrosine overproducer strain, which will be used in further biofoundry projects as base strain in
order to produce a natural product, such as melanin.

In combination with biofoundries and high-throughput multi-omics data generation,
computational biology tools within the learn phase pave the way towards efficient
development of microbial cell factories [14, 15]. A strong and established learn phase serves
a dual purpose: integration of the larger amounts of multi-omics data and more effective
information extraction from this data. One approach to multi-omics data integration is
kinetic modelling, which combines proteomics, metabolomics and fluxomics data in order
to quantify cellular metabolism [13, 16]. Despite their extensive development, cost and
relatively small scale, kinetic models provide a targeted and detailed tool for investigating
the inner workings of metabolic pathways. Not many pathways have been covered besides
central carbon metabolism, hence the potential of kinetic modelling as a tool in the learn
phase for the improvement of specific product formation has yet to be realised.

In this thesis, the overall objective was to develop a range of computational tools and
analytical methods in order to support effective metabolic engineering of microbial cell
factories. The test phase and in particular proteomics analysis is lacking an automated,
high-throughput approach and a large part of the current thesis was dedicated to addressing
this need. Chapter 2 covers an extensive benchmarking study with the aim of identifying an
optimal workflow for proteome-wide absolute quantification. Data-independent acquisition
combined with library-free analysis, a standard-free quantification approach and recent
protein inference algorithms resulted in the highest number of absolutely quantified
proteins for E. coli. This complete workflow and all other evaluated workflows were made
available in autoprot, an automated pipeline tool for absolute quantitative proteomics.
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Chapter 1: General introduction

Since membrane proteins are historically underrepresented in proteomics analysis, the work
in Chapter 3 proposes an optimised sample preparation protocol for membrane protein
extraction from gram-negative bacteria. Additional detergents improved solubilisation
and increased representation of membrane proteins within a proteome-wide analysis of E.
coli and Pseudomonas putida. Regarding the learn phase, considerable progress is still
required to properly integrate and interpret the increasing amount of omics data generated
through metabolic engineering. An established approach to multi-omics data integration
is kinetic modelling, which was applied to L-tyrosine overproduction in E. coli covered in
Chapter 4. The aromatic amino acid biosynthesis pathway was implemented as kinetic
model and fitted to experimental data of metabolite concentrations and reaction fluxes.
Common metabolic engineering targets for L-tyrosine overproduction were assessed and
incorporated in an E. coli strain as part of the biofoundry project (see Box 1). Further
research will be necessary to evaluate the kinetic model performance and overall success of
the metabolic engineering approach. All in all, multiple computational tools and analytical
methods, specifically for proteomics analysis and multi-omics data integration through
kinetic modelling, were established and are ready to be applied to the development of
microbial cell factories.

All additional supplementary materials, which were too large to include in the written
thesis, were deposited in a private repository accessed on https://gitfront.io/r/us
er-8292993/xzqTPUFmaVbZ/PhDthesisSUP/. The following additional supplementary
materials were deposited: Chapter 2: Table S2.4 - Escherichia coli absolute quantitative
proteomics data set; Chapter 3: Table S3.1 - Escherichia coli membrane protein annotation,
Table S3.2 - Pseudomonas putida membrane protein annotation, Table S3.4 - Escherichia
coli semi-absolute quantitative proteomics, Table S3.5 - Pseudomonas putida semi-absolute
quantitative proteomics; Chapter 4: Kinetic model input files.
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Chapter 2.
Automated data analysis for absolute

quantitative proteomics - a benchmarking
study in Escherichia coli

Shannara Kayleigh Taylor Parkins, Nicolás Gurdo, Tune Wulff,
Pablo Iván Nikel and Lars Keld Nielsen

Absolute quantification of proteins in an accurate and precise manner is desirable for a
range of applications: from drug development to systems biology. However, this remains
challenging and many strategies exist for absolute quantitative proteomics, without
consensus on an optimal workflow. Here, we developed a versatile tool, autoprot, for
proteome-wide, automated data analysis of raw mass spectrometry files with intracellular
protein concentrations as result. The autoprot tool allowed for an extensive benchmarking
study performed on Escherichia coli proteomics data, where the optimal workflow
identified and absolutely quantified 2,802 unique proteins. Application of a standard-free
quantification approach using the TPA (total protein approach) method, library-free
DIA (data-independent acquisition) data analysis using DIA-NN and the LFAQ protein
inference algorithm, all increased the quantity, precision and accuracy of the final absolute
proteomics data set relative to more traditional strategies. These results highlight the
advantages of current state-of-the-art methods and, combined with the autoprot tool,
provide an improved workflow for absolute quantitative proteomics. Data are available
via ProteomeXchange with identifier PXD043377.



Chapter 2: Introduction

2.1. Introduction
Quantitative proteomics is an important part of modern analytical biochemistry that
connects genomic perturbations with phenotypic changes. Absolute rather than relative
quantitative proteomics is on the rise, since it is required for certain applications, such
as comparison of different proteins and different data sets, biomarker quantification for
drug development or appropriate input for computational models of cell metabolism
[1, 2]. Ultimately, accurate proteome-wide absolute quantification would be desirable;
however this remains difficult due to the limitations of current protein identification and
quantification methods. Although mass spectrometry (MS)-based methods have led to
high-throughput quantification of higher quality and of more proteins, challenges remain
with the conversion of MS signals into protein concentrations [1, 3].

A variable relationship exists between the measured intensity from MS analysis and the
absolute abundance of a peptide due to incomplete proteolysis, inefficient ionisation,
or suppression from co-eluting peptides [1]. A common approach to account for this
variability is the addition of internal standards to the biological samples. These internal
standards should mimic the proteins of interest as closely as possible to increase the
accuracy of the final quantification. Internal standards can be either labelled or unlabelled,
where labelling allows the use of endogenous proteins as the internal standard. While
stable isotope labelling (SIL) is most prevalent, all labelling substantially increases the
production cost of the internal standard [4]. Different variants of standards are available,
ranging from short peptides (AQUA [5]) to concatenated peptides (QconCATs [6]) as
well as partial proteins (QPrEST [7, 8]) and full-length proteins (PSAQ [9]). While
the addition of protein standards provides more sequence coverage and takes proteolysis
efficiency into account, peptide internal standards are more cost effective to produce than
proteins [9, 10].

Inference of protein intensities based on properties of the corresponding peptides also
provides a way to compensate for the variable signal response factor. Multiple algorithms
are available, each exhibiting distinct approaches to protein inference, such as TopN [11,
12, 13], iBAQ [14], NSAF [15], SCAMPI [16], APEX [17], emPAI [18], MaxLFQ [19], xTop
[20], and LFAQ [21]. Most of these algorithms calculate the intensity of a protein by a
normalised average, based on a selection of identified peptides of the corresponding protein.
Older algorithms are quite simple, e.g. TopN and iBAQ, whereas newer algorithms, such
as xTop and LFAQ, take more complex peptide properties into account. The performance
of these algorithms has been assessed in benchmarking studies previously [22, 23, 24, 25,
26], although mostly on artificial samples where two or more proteomes are mixed with
known ratios.

There is no consensus on the optimal approach for absolute quantification of proteins
[1, 27, 28]. This may be due to differences between organisms or growth conditions,
which limit any one-size-fits-all approach. Proteome-wide absolute quantification can be
performed with a labelled standard, a label-free standard, or a standard-free approach.
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Using labelled, e.g. SIL AQUA peptides, or label-free standards, e.g. UPS2 protein
mix (Proteomics Dynamic Range Standard Set, Merck), the proteome composition is
calculated by linear regression on the log-transformed intensity and known concentration
of the standards. The total protein approach (TPA) [29, 30] is a standard-free approach,
where the proteome composition is calculated based on the ratio of individual protein
intensity to the sum of all protein intensities. While implementation of internal standards
is expensive and time consuming in terms of production, sample preparation and data
analysis, it is perceived as a more accurate method over the standard-free approach.

The full workflow of absolute quantitative proteomics has been performed on multiple
microbes and under a variety of conditions (Table 2.1). Combinations of different protein
inference algorithms and absolute quantification approaches have been benchmarked [22,
23, 31], where the most common combination for high-throughput application is the
TopN or iBAQ algorithm combined with the UPS2 protein mix [31, 32, 33, 34]. While
data-dependent acquisition (DDA) and data-independent acquisition (DIA) can both be
used for proteome-wide absolute quantification [35, 36], DIA-based workflows dominate
the field, especially SWATH-MS DIA [37]. For data processing, a high-throughput,
standardised and automated workflow to retrieve protein concentrations from raw spectral
data has not yet been fully developed.

The aim of this study was to benchmark several methods for each step in the full absolute
quantitative proteomics workflow, in order to determine the optimal combination. We
deployed three approaches for absolute quantification of E. coli proteins during growth on a
range of substrates: a labelled standard approach with 19 Escherichia coli QconCATs [38],
a label-free standard approach with the UPS2 protein mix, and a standard-free approach
with the TPA method. Both DDA and DIA methods were operated for MS acquisition,
where the appropriate software tool, ProteomeDiscoverer (Thermo Fisher Scientific) for
DDA data and Spectronaut (commercial, Biognosys) or DIA-NN (open source, [39]) for
DIA data, was applied for identification and precursor quantification. Six algorithms were
assessed for the inference of peptide to protein intensities: TopN, iBAQ, APEX, NSAF,
xTop and LFAQ. To address the need for standardisation, we developed an automated
data analysis workflow called autoprot. This novel tool automates the complete workflow
for absolute quantitative proteomics, starting from raw MS files and producing estimated
protein concentrations using a configurable combination of quantification approaches,
analysis software and protein inference algorithms (Figure 2.1).
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Chapter 2: Material and methods

Figure 2.1: Overview of the autoprot pipeline. In the identification and relative quantification steps,
peptides are identified and quantified by DDA, library-based DIA or library-free DIA data analysis from
DDA or DIA raw MS files. The DIA data analysis is performed with either Spectronaut or DIA-NN.
Next, relative protein intensities are inferred from the relative peptide intensities using a protein inference
algorithm. The implemented protein inference algorithms are TopN, iBAQ, APEX, NSAF, xTop and
LFAQ. In the absolute quantification step, the protein concentrations, i.e. proteome composition, are
calculated with a labelled, label-free or standard-free quantification approach. Intracellular protein
concentrations are calculated from the proteome composition using cellular protein density values.

2.2. Material and methods
2.2.1. Bacterial strains and culture conditions

Escherichia coli MG1655 was cultivated in lysogeny broth (LB) medium, M9 minimal
medium with 4 g/L glucose or M9 minimal medium with 2 g/L glycerol, to increase
proteome diversity within the experiment. Each culture flask was inoculated from LB agar
plates with colonies of the corresponding organism and grown overnight into stationary
phase, where the optical density (OD) at 600 nm was noted as OD600

max. Culture flasks
with fresh media were inoculated from the corresponding stationary culture and grown
to 75% of OD600

max. This transfer and subsequent growth step was repeated twice in
order to minimise the lag phase in the final culture. The final culture flask was inoculated
from the corresponding transfer culture and grown to 25% of OD600

max before sampling
for proteomics. Either 1 or 2 mL was sampled from the cultures grown in LB and M9
minimal glycerol medium or M9 minimal glucose medium, respectively. Samples were
immediately centrifuged at 15,000 g at -5°C for 5 minutes, the supernatant was discarded
and the remaining cell pellets were kept at -80°C until further processing.
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Chapter 2: Material and methods

2.2.2. Proteomics sample preparation

Sample preparation for proteomics analysis was performed as described previously
by Kozaeva et al. [43] and any modifications are mentioned below. Cell pellets of
E. coli were lysed in 6 M guanidinium·HCl, 5 mM tris(2-carboxyethyl)phosphine, 10
mM chloroacetamide and 100 mM Tris·HCl (pH = 8.5), disrupted mechanically and
heated to 99°C. After centrifugation, the cell-free lysates were diluted with 50 mM
ammonium bicarbonate and subjected to bicinchoninic acid (BCA) assay to estimate
protein concentrations. Trypsin and LysC digestion mix (Promega) was added to 20 µg
protein of each sample and incubated for 8 hours. Trifluoroacetic acid was added to halt
digestion and the samples were desalted using C18 resin (Empore, 3M) before HPLC-MS
analysis.

The E. coli QconCAT proteins were designed by Batth et al. [38] and the corresponding
expression plasmids (Addgene) were used to produce 18 QconCAT proteins. An additional
QconCAT protein containing peptides from aromatic amino acid biosynthesis enzymes
was designed by Batth et al. (2014) [38]. Since the corresponding expression plasmid was
not available, the plasmid was designed following Gurdo et al. [44] and ordered separately
from IDT. All SIL QconCAT proteins were expressed, purified and quantified as described
by Gurdo et al. [44]. The QconCAT proteins were labelled with 13C(6)-L-arginine and
13C(6)-L-lysine to ensure solely SIL QconCAT peptides after tryptic digestion. During
sample preparation, QconCAT proteins in varying amounts were added to the samples
preceding digestion (see Table S2.1 for full details). Since the E. coli QconCAT proteins
were not developed in-house, a dilution series was performed to identify peptides with
a consistent response factor on the current HPLC-MS setup. Other QconCAT peptides
were considered non-representative. The dilution series was executed in duplicate with
the DDA method and spanned six different concentration levels for each of the QconCAT
proteins. Non-representative and duplicate QconCAT peptides were removed during data
analysis.

One tube of the UPS2 proteomics dynamic range standard set (Sigma Aldrich) was
dissolved in 40 µL of lysis buffer (6 M guanidinium·HCl, 5 mM tris(2-carboxyethyl)
phosphine, 10 mM chloroacetamide and 100 mM Tris·HCl (pH = 8.5)) and 20 µL of this
UPS2 protein mix was added to each sample preceding digestion (see Table S2.2).

2.2.3. HPLC-MS analysis

HPLC-MS analysis of the samples was performed on an Orbitrap Exploris 480 instrument
(Thermo Fisher Scientific) preceded by an EASY-nLC 1200 HPLC system (Thermo
Fisher Scientific). For each sample, 1 µg of peptides was captured on a 2-cm C18 trap
column (Thermo Fisher 164946). Subsequently separation was executed using a 70
minute gradient from 8% (v/v) to 48% (v/v) of acetonitrile in 0.1% (v/v) formic acid
on a 15-cm C18 reverse-phase analytical column (Thermo EasySpray ES904) at a flow
rate of 250 nL/min. The mass spectrometer was operated in either data-dependent or
data-independent acquisition mode with the specific settings listed below.
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Chapter 2: Material and methods

DDA
For data-dependent acquisition, the mass spectrometer was run with a DD-MS2 method
preceded by the FAIMS Pro Interface (Thermo Fisher Scientific) with alternating CV of
-50 V or -70 V. Full MS1 spectra were collected at a resolution of 60,000 and scan range
of 375-1,500 m/z, with the maximum injection time set to auto, an intensity threshold
of 5.0·103, and a dynamic exclusion at 45 s. MS2 spectra were obtained at a resolution
of 15,000, an isolation window of 1.6 m/z, the HCD collision energy set to 28%, the
maximum injection time set to auto.

DIA
For data-independent acquisition, the mass spectrometer was run with the HRMS1 method
as previously described [45] preceded by the FAIMS Pro Interface (Thermo Fisher Scientific)
with a compensation voltage (CV) of -45 V, and any modifications are mentioned below.
Full MS1 spectra were collected at a resolution of 120,000 and scan range of 400-1,000
m/z, with the maximum injection time set to auto. MS2 spectra were obtained at a
resolution of 60,000, with the maximum injection time set to auto and the collision energy
set to 32. Each cycle consisted of three DIA experiments each covering a range of 200
m/z with a window size of 6 m/z and a 1 m/z overlap, while a full MS scan was obtained
in between experiments.

2.2.4. Protein identification and relative quantification

For all analyses, sequence identification was performed using a protein database consisting
of the E. coli (UP000000625) reference proteome. The UPS2 protein sequences were
appended to the protein database for data analysis of samples including the UPS2
protein mix. The specific settings for DDA and DIA data analysis can be found in the
Supplementary materials section.

2.2.5. Protein intensity inference

The protein identification and relative quantification steps generated a precursor-based
results table, which served as input for the inference of protein intensities. For result
tables from samples including QconCAT proteins, the data corresponding to precursors
with 13C(6)-labelling was removed and stored in a separate table for further analysis, in
advance of protein inference. The precursor-based results table was converted into the
OpenSWATH format [46] to increase accessibility and comparability.

The TopN, iBAQ, APEX and NSAF protein inference algorithms were accessed through
the aLFQ R package [47]. The precursor-based input was imported as OpenSWATH MS
file type, with the FDR cut-off set to 1%, and "remove decoys" enabled. The protein
inference function was executed for each algorithm using the following settings: the
top 5 transitions were summed with strictness set to loose, both precursor types and
modification types were summed to retrieve peptide intensities. For the TopN algorithm,
both Top all and Top3 were used with the peptide summary set to mean and the peptide
strictness set to loose.
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The same protein database from the protein identification and relative quantification was
used for the iBAQ, APEX, and NSAF algorithms.

Before protein inference using the xTop [20] and LFAQ [21] algorithms, precursor intensities
were summed based on identical sequence to obtain peptide intensities and filtered with an
FDR cut-off of 1%, similar to the aLFQ R package import functionality. The Python-based
version of the xTop algorithm was used with the default settings. Since the xTop algorithm
only considers peptides identified in three or more samples, peptides identified in fewer
than three samples were filtered out in advance. A custom Python script was developed
to interact with the LFAQ algorithm from the command line. The LFAQ input was
split per sample and the LFAQ output per sample was combined afterwards, since the
LFAQ algorithm only performs protein inference for one sample at a time. Only the
protein intensities were used for further analyses; however the LFAQ algorithm only works
when protein concentrations were calculated as well. To circumvent this issue, a file with
random protein identifiers, drawn from the protein database, and random concentrations
was constructed and used as additional input without affecting the calculated protein
intensities.

2.2.6. Proteome-wide absolute quantification

Proteome-wide absolute quantification was carried out using three approaches: linear
regression with either labelled or label-free internal standards, or the standard-free TPA
method [29, 30]. A custom Python script was developed to carry out all three quantification
approaches. The calculated protein intensities from any of the inference algorithms were
used as input, together with a table recording total protein mass per sample. For analyses
using internal standards, a table with either peptide sequences or protein identifiers and
known concentrations was provided as additional input. The protein database was added
as input for analyses using the TPA method. A detailed description of the quantification
approaches can be found in the Supplementary materials section.

The estimated proteome composition values were converted into intracellular protein
concentrations using the cellular protein density, which was calculated for each sample
using total protein and biomass measurements and set value for the cell volume of 3.9 ·
10-15 L for E. coli MG1655 [48]. The cellular protein density can be taken from literature
or calculated from total protein concentrations, cell volume and biomass measurements,
thus autoprot allows for a specific cellular protein density value for each sample as input.

2.2.7. E. coli subunit stoichiometries

Expected subunit stoichiometries of E. coli protein complexes were taken from the Complex
Portal database [49]. For the purpose of developing the metric, only protein complexes
with two subunits in equimolar stoichiometries were kept (see Table S2.3 for the full
list of protein complexes). The goodness-of-fit between all experimental and theoretical,
i.e. equimolar, subunit concentrations found in a specific analysis was determined as the
inverse of the mean square error (MSE).

14



Chapter 2: Results

2.2.8. Construction of automated pipeline - autoprot

To increase efficiency and accessibility, the full data analysis for proteome-wide absolute
quantification was developed into an automated pipeline. The autoprot pipeline is based
on PowerShell and can be executed with a single command. The input to autoprot consists
of the raw MS files, the acquisition mode as string, the absolute quantification approach as
string, the experiment name as string and the protein database. Additionally, a spectral
library file is required as input for library-based analyses and a table with internal standard
concentrations is required as input for analyses including absolute quantification using
internal standards. The output is a single protein-based table for each inference algorithm
applied, recording the estimated protein composition values. The full documentation for
autoprot can be found in the Supplementary materials section.

2.2.9. Data availability

The mass spectrometry proteomics data of the optimal workflow have been deposited to
the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org)
via the PRIDE [50] partner repository with the data set identifier PXD043377. The
autoprot pipeline code including examples of input and output files have been made
available on GitHub (https://github.com/biosustain/autoprot). The proteome-wide
quantification results obtained with the optimal workflow can be found in Table S2.4.

2.3. Results
2.3.1. Experimental overview

Samples of the gram-negative bacterium E. coli were used in the current study, where three
biological replicates of each condition provided a data set of appropriate size for extensive
benchmarking (Figure 2.2A). To ensure sufficient differences of biological significance
in the proteome compositions, E. coli was grown under three different conditions: rich
medium and minimal medium with either glucose (glycolytic growth regime) or glycerol
(gluconeogenic growth regime). The total of 9 biological samples were each split into
three technical replicates, one for each quantification approach. Both a DDA and a DIA
method were performed during HPLC-MS analysis for all 27 samples, i.e., a total of 54
injections, to assess the impact of acquisition mode on the absolute protein quantification.
The influence of spectral library usage and protein inference algorithm implementation
was evaluated by altering steps in the data analysis of the raw MS files.

Overall, the experimental data were highly reproducible with a median Pearson correlation
coefficient of 0.96 for biological replicates (Figure 2.2B). As expected, the data of minimal
medium cultivations with either carbon source shared more similarities, compared to data
of rich medium cultivations. A maximum of 2,802 unique E. coli proteins (64% of the
4,403 annotated E. coli proteins) were identified and relatively quantified, where 74% of
identified proteins were detected with three or more peptides (Figure 2.2C).
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Protein-specific coefficient of variation (CV) values were calculated for the three biological
replicates per condition, as a measure of precision of the biological experiment (Figure
2.2D). Although these CV values were acceptable for further analysis, manual operation
of cultivation and sampling likely decreased the experimental precision, which could be
improved upon by laboratory automation [51]. An overall strong correlation between
estimated protein concentrations and expected equimolar stoichiometries of protein
complexes was established, which indicates high accuracy of the experimental data
(Figure 2.2E).

Figure 2.2: Experimental overview of the benchmarking study. All graphs are based on the dataset
generated with a workflow which combined standard-free, library-free DIA data analysis using DIA-NN
with either the xTop or the LFAQ protein inference algorithm. (A) Workflow deployed to generate a
total of 54 HPLC-MS injections. (B) Pearson correlation coefficients of protein concentrations in all 9
samples compared against each other. Black boxes indicate comparisons between biological replicates. (C)
Distribution of detectable peptides per protein compared to the total protein database. (D) Distribution
of coefficient of variation (CV) values for each condition with the median value displayed on top. (E)
Correlation between protein concentrations of equimolar protein complexes. Data points of the same
colour scheme represent the same protein complex under different experimental conditions.

2.3.2. Workflow development

We developed an automated tool for absolute quantitative proteomics, autoprot, in order
to benchmark various methods and identify the optimal workflow for a specific experiment
(Figure 2.1). The default settings were used for each tool and only adapted when necessary,
e.g. in order to accommodate 13C(6)-labelling or to increase comparability. To improve
compatibility between the software tools and protein inference algorithms applied, a
universal format for the precursor- and protein-based tables was used.
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The format was adapted from the OpenSWATH format [46] and all outputs were converted
into this format. Future workflows based on tools from different sources would benefit
greatly from a standardised format for proteomics data.

Both high precision and high accuracy are relevant for absolute quantitative proteomics,
while a high number of unique proteins is also desirable in order to increase the information
gained from a specific experiment. For this benchmarking study, two performance metrics
were developed: one reflecting precision and one reflecting accuracy. The precision metric
was based on the inverse of the 1000th CV value of a workflow data set in favour of the
median CV value to avoid penalisation of higher detection rates, following Equation 2.1.

τ = 1
CV1000

(2.1)

In Equation 2.1, τ is the precision of a given workflow data set and CV1000 is the 1000th

CV value of a given workflow data set. For the accuracy metric, the goodness-of-fit of
estimated protein concentrations from a workflow data set to the expected equimolar
stoichiometries of certain protein complexes was calculated as the inverse of the mean
square error (MSE), following Equation 2.2.

η = N

SSE
(2.2)

In Equation 2.2, η is the accuracy of a given workflow data set, N is the total number of
quantified protein complexes, and SSE is the sum of squares error.

2.3.3. Full comparison

For the benchmarking, all possible combinations of different quantification approaches,
acquisition modes, and protein inference algorithms were applied to establish the optimal
workflow for absolute quantitative proteomics of the current experimental data set. The
τ precision and η accuracy metrics were determined for each workflow and the relative
comparison of all workflows highlights the challenges of balancing both precision and
accuracy within one specific workflow (Figure 2.3).

The largest number of unique proteins was found using standard-free and library-free
DIA data analysis with DIA-NN and either the LFAQ or the xTop inference algorithm,
while the most precise data was found using standard-free DDA data analysis using xTop
(Figure 2.3A). The difference is either a 20% increase in quantity or a 146% increase in τ
precision and the choice of workflow would highly depend on the experimental objective.
For proteome-wide analysis, the former would be more desirable, since an increase in
quantity, i.e. a higher total number of proteins, provides more information. The workflows
resulting in the highest number of quantified proteins all incorporated the LFAQ protein
inference algorithm. The additional proteins quantified by a workflow applying LFAQ
compared to the other protein inference algorithms were mostly in the lower concentration
range, when quantified by otherwise identical workflows (Figure S2.1A).
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Figure 2.3: Full comparison of the data sets generated using all 105 different workflows available through
the autoprot pipeline. The optimal workflow, standard-free, library-free DIA data analysis using DIA-NN
and LFAQ, is highlighted with a circle. (A) Full comparison of the τ precision metric. The quantity
values were determined as the percentage of unique E. coli proteins absolutely quantified compared to the
total number of E. coli proteins in the protein database. The τ precision was determined as the inverse
of the 1000th coefficient of variation (CV) value of a workflow data set. (B) Full comparison of the η
accuracy metric. The quantity values were determined as the percentage of E. coli protein complexes for
which both subunits were absolutely quantified compared to the total number of protein complexes. The
η accuracy was determined as the inverse of the mean square error (MSE) of the subunit concentrations
fit to the theoretical, i.e. equimolar concentrations, normalised to the total number of protein complexes
quantified.

Proteins with low abundance are challenging to identify and subsequently quantify, however
they often perform a crucial biological function, e.g. transporter proteins [52].

For the accuracy metric, the optimal workflow combined standard-free and library-free
DIA data analysis with DIA-NN and LFAQ, which produced the highest η accuracy
and quantified the second highest number of protein complexes (Figure 2.3B). An
additional quantified protein complex was obtained by applying a workflow that combines
standard-free, library-free DIA data analysis with Spectronaut and LFAQ, however this
led to a 19% decrease in η accuracy. The data set produced by implementing the optimal
workflow consisted of 2,802 unique E. coli proteins with a median CV value of 25%.
Ultimately, the biological accuracy, here reflected by the η accuracy metric, and the
quantity are the most imperative for proteome-wide analysis and subsequent applications.

To assess the full capability of the autoprot pipeline, the raw MS files of 7 calibration
samples from Mori et al. [20] were used as input and the resulting data set was compared
to the processed data set of Mori et al. (Figure S2.2). The authors developed and deployed
an extensive spectral library for the proteome-wide analysis of E. coli samples. Their
workflow combined library-based DIA data analysis using OpenSWATH with the xTop
protein inference algorithm and a standard-free quantification approach [20].
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When the original data set was compared to the data set generated using the autoprot
pipeline with standard-free and library-free DIA data analysis using DIA-NN and xTop,
the reproduced data set achieved a 9% increase in the number of quantified proteins while
maintaining an equivalent precision and accuracy for shared proteins (Figure S2.2A and
S2.2B). The proteome composition of the reproduced data set was highly similar to the
original data set for shared proteins (Figure S2.2C) and the additional proteins quantified
resided in the lower concentration range (Figure S2.2D). When the xTop algorithm was
swapped for LFAQ for the reproduction, the number of quantified proteins increased by
11% and the precision dropped by 8% for shared proteins (Figure S2.2E and S2.2F). The
raw MS format was different than used in the current study, .raw from Thermo Fisher
Scientific Orbitrap Exploris 480 instrument compared to .wiff from Sciex TripleTOF5600
instrument, nonetheless data analysis with autoprot was easily performed due to the input
format flexibility of DIA-NN.

2.3.4. Quantification approach comparison

To facilitate absolute quantification, three different approaches were implemented in
the autoprot pipeline: application of 13C(6)-labelled QconCAT proteins, label-free UPS2
protein mix or standard-free TPA method. For both the τ precision and the η accuracy,
the workflows incorporating the standard-free TPA method achieved the highest quantity
(proteins or protein complexes quantified) overall (x-axis, Figure 2.4A and 2.4D). This
may be due to the substantial portion of the total injected protein mass occupied by the
internal standards for the other two approaches. Both the E. coli QconCAT proteins and
the UPS2 protein mix occupied approximately 20% of the total protein mass injected in
the mass spectrometer for the current study, similar to application of the UPS2 protein
mix in other studies [47, 40]. Since internal standards are usually added in high abundance,
the increased number of proteins with high concentrations may repress the MS signals of
endogenous proteins with low abundance. The additional proteins gained from switching
to a workflow applying the standard-free TPA method instead of applying the labelled or
label-free method were indeed residing in the lower concentration range (Figure S2.1B
and S2.1C).

The sections of high τ precision and high η accuracy were also dominated by workflows
incorporating the standard-free TPA method (Figure 2.4A and 2.4D). The linear regression
performed within the labelled and label-free approaches solely estimates the concentrations
of proteins for which an internal standard is not available, thus the estimates are as
reliable as the regression fit. The E. coli QconCAT proteins and UPS2 protein mix
carried considerable noise which decreased the regression fit (Figure S2.3). For the E. coli
QconCAT proteins, the noise was likely due to contaminant proteins from the background
strain used for production, i.e. E. coli BL21. A potential solution would incorporate a
smaller set of QconCAT proteins optimised for the specific HPLC-MS setup and produced
in a different organism, so that background contaminant proteins may be filtered out
during data analysis.
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Notably, the proteins for which an internal standard was available were more precisely
quantified, i.e. had lower median CV values compared to proteins for which not internal
standard was available (Figure S2.4). The noise of the UPS2 protein mix stemmed from
the limited number of concentration levels available within the mix, i.e. 6 levels. Multiple
proteins in the UPS2 protein mix have the same spike-in concentration, however their
signal response factor is quite different which poses challenges for a good regression fit
(Figure S2.3B). Remarkably, the application of library-free DIA data analysis and xTop
or LFAQ in combination with the label-free approach enabled protein quantification of
all 6 levels within the UPS2 protein mix, compared to the 4 levels quantified in previous
studies [23, 40] using identical total spike-in amounts.

As expected, the total protein mass equalled 1 µg for all workflows implementing a
standard-free quantification approach, since the TPA method normalises to unity (Figure
S2.5A, S2.5D and S2.5G). The additional protein mass of internal standards within the
labelled and label-free approaches was reflected in the total protein mass exceeding 1
µg for most samples (Figure S2.5). This effect was less pronounced for the DDA data
analysis workflows, due to fewer proteins and thus less protein mass quantified with DDA
methods. For the label-free approach using the UPS2 protein mix, the total protein mass
with and without the internal standards could be determined separately and showed an
average 20% increase when internal standards were accounted for as anticipated (Figure
S2.5C, S2.5F and S2.5I). Overall, the total protein mass per sample resided between 1
and 1.5 µg for workflows applying a quantification approach including internal standards.

2.3.5. Acquisition mode comparison

The autoprot pipeline covers DDA and DIA data analysis, with the latter supported
through library-based and library-free approaches. To broaden the application of the
autoprot pipeline, DIA-NN was added for DIA data analysis to enable the full pipeline to
be run using only open-source software. The five most precise workflows, i.e. producing
high τ precision values, were based on DDA analysis (Figure 2.4B). Relatively low median
CV values are expected for proteins quantified in DDA analysis, due to the highly confident
identification from the single-peptide MS2 fragmentation. The high τ precision values are
however offset by a decrease in the number of quantified proteins and a considerable loss
in η accuracy values. DDA methods would be more appropriate for experimental analyses
concerning a smaller number of higher abundance proteins, e.g. production of specific
proteins, compared to proteome-wide analyses.

The workflows applying DIA compared to DDA data analysis achieved higher numbers
of unique proteins as well as protein complexes (Figure 2.4B and 2.4E). The workflows
deploying library-free DIA data analysis attained the highest number of quantified proteins,
regardless of using Spectronaut or DIA-NN. Since neither DIA analysis nor library-free
data analysis select for specific peptides, more proteins are identified and subsequently
quantified compared to DDA analysis and library-based data analysis, respectively.
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It should be noted that library-based DIA data analyses are limited by the applied spectral
library, i.e. a specific protein could only be identified and quantified if it was present in
the spectral library. The spectral libraries of the current study were based on DDA data
of the corresponding samples, whereas spectral libraries are more commonly based on a
large number of samples including fractionated samples to increase the proteome coverage
[53]. Deployment of the spectral library developed by Mori et al. [20] did not produce
higher τ precision or η accuracy compared to the other library-based workflows applied to
samples of the current study (Figure S2.6), despite achieving higher quantities for both
the current samples and the calibration samples of Mori et al. (Figure S2.2A).

2.3.6. Protein inference algorithm comparison

The older TopN, iBAQ, APEX and NSAF protein inference algorithms have been applied
repeatedly [23, 40, 42] and these combined with the newer xTop and LFAQ protein
inference algorithms were incorporated in the autoprot pipeline for benchmarking purposes.
Workflows applying xTop or LFAQ quantified more proteins (Figure 2.4C) as well as
more protein complexes (Figure 2.4F). The aLFQ R package used to access the TopN,
iBAQ, APEX and NSAF algorithms has a build-in filter which reduces the total number
of quantified proteins. The iBAQ, APEX and NSAF also require additional information,
e.g. a protein database to calculate the theoretical number of tryptic peptides per protein,
which often further limits the total number of quantified proteins [14, 15, 17].

Whereas workflows incorporating the xTop algorithm were generally more precise (Figure
2.4C), the workflows incorporating the LFAQ algorithm were more accurate (Figure 2.4F).
This reflects deliberate design objectives in the two algorithms. The xTop algorithm
quantifies proteins based on the most consistent corresponding peptide through all samples
[20], thus achieving low median CV values, i.e. high τ precision. In contrast, the
LFAQ algorithm focuses on rectifying response factors, thus achieving more accurate
determination of abundances and higher η accuracy. With both a high number of quantified
proteins and high η accuracy, the LFAQ algorithm would be the most appropriate for
proteome-wide analyses, whereas the xTop algorithm may be used when higher precision
is required, depending on the experimental objective. One noteworthy disadvantage of
the xTop and LFAQ protein inference algorithms is the need for lengthy preprocessing of
the input data, which reduces the usability. While the aLFQ R package containing the
TopN, iBAQ, APEX and NSAF algorithms does include convenient import functionality,
the autoprot pipeline now enables easy and flexible usage of all six algorithms.
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2.4. Discussions
In this study we developed a versatile tool, autoprot, for automated analysis of data from
absolute quantitative proteomics experiments. The pipeline was deployed to benchmark
105 different workflows and the resulting proteomics data sets were assessed based on
quantity, precision and accuracy. This benchmarking study is the most extensive to
date in any organism, as most other studies apply different techniques in only one of the
workflow steps (Table 2.1, Figure 2.1). While other studies did provide a description of
the full workflow with some inherent flexibility [40, 42, 54], the autoprot pipeline provides
automated data analysis of raw MS files all the way through to proteome-wide absolute
quantification in a high-throughput manner. Additionally, autoprot is an adaptable tool
which allows for the determination of an optimal workflow for any given experimental
objective.

The optimal workflow in this study combined library-free DIA data analysis using DIA-NN
and LFAQ with a standard-free quantification approach and led to the identification and
absolute quantification of 2,802 unique E. coli proteins over three experimental conditions.
Despite the extensive range of experimental conditions in previous studies of E. coli,
the current number of absolutely quantified proteins is comparable or higher than the
number from the previous studies [20, 41]. We observed that two factors led to decreased
filtering and therefore a greater number of quantified proteins, especially low abundance
proteins: the use of DIA rather than DDA methods and the use of library-free rather than
library-based analyses. When autoprot was deployed for analysis of the raw MS files from
Mori et al. [20], it demonstrated the advantages of library-free methods combined with the
recent analysis software DIA-NN. By leveraging functionalities such as advanced neural
networks and match-between-runs strategies [39], the resulting precision and accuracy
were similar to the original analysis, while the number of quantified proteins was greater.
The ability to reprocess older data sets enables increased information gathering, and
widens the application range of the autoprot pipeline substantially.

The prevailing approach for absolute quantification of proteins is the addition of internal
standards, which provides reliability and accuracy for the corresponding endogenous
proteins [1, 2]. Within this study, the addition of labelled internal standards produced a
consistently higher precision for absolute quantification of the corresponding endogenous
proteins. For proteome-wide analysis however, the overall precision was lower when
a labelled rather than a standard-free quantification approach was deployed. The
proteome-wide quantification with labelled and label-free approaches assumes that the
correction factor derived from the internal standards is representative of the whole
proteome. This application of internal standards as the internal distributor of the
proteome composition was surpassed by the standard-free approach in both precision and
accuracy. Additionally, the standard-free approach led to a greater number of quantified
proteins, because the entire acquisition capacity could be dedicated to measuring the
endogenous proteins rather than a large fraction occupied by internal standards. The
high costs associated with internal standards are an added disadvantage and lower the
potential throughput, especially for proteome-wide analyses [1, 28].
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Apart from increased precision for a subset of proteins, internal standards can provide
a rescaling factor for the calculation of intracellular protein concentrations. While the
proteome composition derived with the standard-free approach always sums to 1 due to
underlying assumptions [29, 30], the labelled and label-free approaches result in differing
total protein mass values. Based on the exactly-known mass of the internal standards, the
total injected mass could be calculated and used for rescaling of the proteome composition
as a more reliable method compared to total protein measurements such as the BCA
assay. Still, studies reporting calculated total protein mass per sample applied a reversed
strategy of assuming the injected mass from total protein measurements as known, and
justified the applied data analysis workflow based on the comparison [31, 40, 42]. This
strategy relies on the assumption that the entirety of the injected protein mass cannot
be detected, which would in fact be the case when internal standards were added to the
samples. Afterwards, a constant value for the cellular protein density, i.e. total protein
mass per cell volume, was commonly applied directly to calculate intracellular protein
concentrations (Table 2.1). When applicable, the lengthy process of ribosome profiling
could offer an accurate and reliable method for determination of the rescaling factor
[20, 55]. If the addition of internal standards serves as no more than a poor internal
distributor, the application of standard-free approaches for proteome-wide analyses would
be preferable, especially for high-throughput experimental studies.

The current benchmark for protein identification is the application of spectral libraries
which provides reliable precision, even though spectral libraries are time consuming and
resource intensive to produce [53]. Since the development of spectral libraries typically relies
on DDA methods, a fraction of proteins, mostly low abundance proteins, goes undetected
even after careful fractionation of the samples. These proteins remain undetected during
the subsequent DIA analysis, because the deployed library-based methods can only identify
and thus quantify proteins which are present in the spectral library. In recent years,
software for library-free identification and relative quantification, e.g. DIA-NN, has
advanced to the point where the in silico generated spectral library can outperform
library-based analysis [39, 56, 57]. The 2,802 unique E. coli proteins quantified with
the optimal, library-free workflow exceeded the 2,770 unique E. coli proteins included in
the spectral library of Mori et al. [20], which was generated using samples of 34 diverse
growth conditions and 13 fractions of a pooled sample. Notably, the reproduction of the
calibration data set from Mori et al. [20] showed the increased performance which can
be achieved by deploying in silico spectral library generation with DIA-NN. When the
corresponding spectral library was deployed, it was enhanced by the algorithms within
DIA-NN to produce similar results to the library-free data set and thus increased quantities
compared to the original data set. While the application of spectral libraries often leads
to increased precision of quantified proteins [56, 57], it severely limits the throughput due
to the costs of development for each new experimental study. It should be investigated
extensively whether an experimental spectral library is crucial to achieve the experimental
objective or if library-free methods would be more appropriate, for example in case of
proteome-wide analysis.
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Most studies with absolute quantification workflows deployed one or multiple of the older
protein inference algorithm: TopN, iBAQ, APEX and NSAF (Table 2.1). When included
in the comparison, the newer algorithms, xTop and LFAQ, always outperformed the
older algorithms [20, 21, 26]. In this study, xTop and LFAQ also outperformed the older
algorithms and workflows incorporating xTop achieved higher precision, while workflows
incorporating LFAQ achieved both higher quantities and higher accuracy. Notably, the
LFAQ protein inference algorithm may overestimate the concentration of low-abundance
proteins (Figure S2.5F). Further investigation would be required in order to determine
the exact biases of certain protein inference algorithms. Currently the iBAQ algorithm is
still the most commonly used (Table 2.1), however due to their better performance and
ease-of-use, the xTop and LFAQ algorithms should be considered for future proteome-wide
analyses.

Although proteome composition values can be used as an absolute quantification, additional
calculations are required to determine intracellular protein concentrations. Multiple
strategies have been applied (Table 2.1), which converge towards obtaining the cellular
protein density as total protein mass per cell volume. The total protein mass per biomass
unit is commonly determined by measuring the biomass and total protein separately
with, for example, an optical density measurement and the BCA assay. Cell size and
volume are commonly measured and calculated using microscopy and image analysis.
These measurements are not without error, since not all protein mass is extracted, in
particular membrane proteins [52] and ribosomes [22], and cell volumes are highly variable
across experimental conditions [58, 59]. Several studies opted for estimated values from
literature instead (Table 2.1) to circumvent laborious measurements, e.g. values from Milo
[60]. Regardless of the deployed strategy, a constant error is introduced when proteome
composition values are converted into intracellular protein concentrations. This should
not be ignored and where possible accounted for as described extensively by Mori et al.
[20].

2.5. Conclusions
Through our benchmarking study and automated data analysis tool, we identified an
optimal workflow for absolute quantitative proteomics in E. coli. The optimal workflow
exploits advantages of the current state-of-the-art software and algorithms, which resulted
in an unprecedentedly high number of identified and quantified proteins. All workflows
applied in this study are available in the extensive autoprot tool, allowing for benchmarking
studies in other organisms. We expect autoprot to provide an excellent platform for
automated absolute quantitative proteomics, also for reprocessing older data sets.
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Supplementary materials
Extended experimental methods

Protein identification and relative quantification - DDA data analysis
The raw files from the DDA method were analysed using Proteome Discoverer v2.4
(Thermo Fisher Scientific) with the following settings: carbamidomethylation of cysteine
residues and oxidation of methionine residues as dynamic modifications, precursor mass
tolerance set to 10 ppm, fragment mass tolerance at 0.02 Da, trypsin (full) as digestion
enzyme, the maximum missed cleavage sites set to 2, peptide length set to a minimum
of 6 and maximum of 144, and the false discovery rate (FDR) set to 0.1%. For the data
analysis of samples including QconCAT proteins, 13C(6) labelling of arginine and lysine
was added as dynamic modification. Only peptides unique to one protein were used
in further analysis and the normalisation between samples was based on total peptide
amounts.

Protein identification and relative quantification - DIA data analysis
For the data analysis of raw files from the DIA method, either Spectronaut v17 (17.3.230224.
55965; Biognosys AG) or DIA-NN v1.8 [1] were used with either a library-based or
library-free approach. Only peptides unique to one protein were used in further analysis.
All spectral libraries were constructed from the corresponding DDA raw files and protein
database, using the Pulsar search engine available in Spectronaut with the following
settings: Trypsin/P as cleavage rule, peptide length set to a minimum of 7 and maximum
of 52, allowing 2 missed cleavages, carbamidomethylation of cysteine residues as a fixed
modification, acetylation of the protein N-term and oxidation of methionine residues as
variable modifications, and allowing for both b and y ions. When analysing samples
including QconCAT proteins, a channel with the labels "Arg6" and "Lys6" and a channel
without labels were added.

Spectronaut was applied for library-based analyses with the following settings: the MZ
extraction strategy set to maximum intensity, the precursor FDR cut-off set to 1%,
single hit definition by stripped sequence, quantification on MS2 level using the sum of
the precursor quantities, allowing for minimum 1 and maximum 5 precursors in TopN
strategy, and the workflow fallback option set to spike-in. For library-free analyses with
Spectronaut, the settings for library construction were identical to the Pulsar search engine
settings. Additionally, the workflow was set as "directDIA+ (Deep)", missing channels
were generated in silico, the peptide FDR set to 0.01%, and the fragment ion selection
strategy was intensity based.

Library-based analyses with DIA-NN were performed with the high precision and robust
LC quantification modes enabled, the smart profiling and the heuristic protein inference
activated and the FDR cut-off set at 1%. For the additional in silico digest feature,
acetylation of the protein N-term and oxidation of methionine residues were set as variable
modifications, and the cleavage specificity was set to "K*,R*" (Trypsin/P). When samples
including QconCAT proteins were analysed, two channels were added to the settings: one
without labels and one with 13C(6) labels for arginine and lysine.
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Fixed modifications for 13C(6) labelling of arginine and lysine were also added and peak
translation was activated. DIA-NN was used for library-free analyses with identical settings
as the library-based DIA-NN analyses, and the following additions: generate spectral
library, predictor, FASTA search and match-between-runs (MBR) enabled, minimum 200
and maximum 1,800 m/z for fragment exclusion, minimum 7 and maximum 30 for peptide
length, minimum 300 and maximum 1,800 m/z for precursor exclusion, minimum 1 and
maximum 4 for precursor charge, and the maximum missed cleavages set to 1. Specifically
for library-free DIA-NN analyses applied to samples including QconCAT proteins, the
library construction and subsequent analysis using this library had to be performed as two
distinct processes due to limitations of DIA-NN. The library construction was performed
using the same settings as the library-free analyses, however with re-analysis disabled.
For the subsequent identification and relative quantification, the settings were identical to
the library-based analysis of samples including QconCAT proteins.

Proteome-wide absolute quantification
For analysis of samples including QconCAT proteins, the ratio between the intensity of a
peptide from a QconCAT protein and the corresponding endogenous peptide was used
as a basis for absolute quantification. The concentrations of proteins for which both an
unlabelled (light) peptide and the corresponding 13C(6) labelled (heavy) peptide were
identified and relatively quantified were estimated according to Equation S2.1.

cprot,end =
∑
cpep,end

Npep,end

, cpep,end = Ipep,end

Ipep,QconCAT

· cpep,QconCAT (S2.1)

In Equation S2.1, cprot,end is the estimated concentration of the endogenous protein,
cpep,end is the estimated concentration of an endogenous peptide, Nend,pep is the number of
endogenous peptides for which a 13C(6)-labelled QconCAT peptide was identified, for a
particular endogenous protein, Ipep,end is the intensity of the endogenous peptide (light
peptide), Ipep,QconCAT is the intensity of the 13C(6)-labelled QconCAT peptide (heavy
peptide), and cpep,QconCAT is the concentration of the QconCAT peptide.

The proteins for which peptides were included in the QconCAT proteins were used to
achieve the proteome-wide absolute quantification. For analysis of samples including the
UPS2 protein mix, all UPS2 proteins which were identified and relatively quantified in
the samples, were used in the proteome-wide absolute quantification. Linear regression
was performed on log10-transformed protein intensities and log10-transformed protein
concentrations. The parameters of the linear regression were used to estimate concentration
for each protein using Equation S2.2, except for the proteins which were previously
absolutely quantified by internal standards.

cprot = 10 a · log10(Iprot) + b (S2.2)

In Equation S2.2, cprot is the estimated protein concentration, a is the slope of the linear
regression, Iprot is the protein intensity, and b is the intercept of the linear regression.
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For analyses using the standard-free approach, the protein concentrations are estimated
following equation S2.3, adapted from Wiśniewski et al. (2014) [2].

cprot,i = Iprot,i∑(Iprot · MWprot)
(S2.3)

In Equation S2.3, cprot,i is the estimated protein concentration, Iprot,i is the protein
intensity, and MWprot is the protein molecular weight. The sum of all protein intensities
multiplied by the corresponding protein molecular weight is determined before calculation
of individual protein concentrations. The protein molecular weights were calculated
using the protein sequences from the protein database and the ProtParam module of the
BioPython Python package [3].

autoprot documentation

The autoprot pipeline allows for absolute quantification of proteins from raw mass
spectrometry (MS) files in an automated manner. The pipeline covers data analysis
from both DIA and DDA methods, where a fully open-source option is available for DIA
methods. Raw data from labelled, label-free and standard-free approaches can be analysed
with the pipeline. The normalisation of peptide intensities into protein intensities is
performed with seven different algorithms to identify the optimal algorithm for the current
experiment. The incorporated algorithms are Top3 [4], Top all [4], iBAQ [5], APEX [6],
NSAF [7], LFAQ [8], and xTop [9].

Install
The required files can be downloaded from this GitHub repository with the following
command:

git clone git@github.com:biosustain/autoprot.git

Due to the many available options, the autoprot pipeline depends on a number of different
software and packages. A list of all dependencies and their corresponding, tested version
is provided below. The autoprot.ps1 script and multiple other scripts or executables
have to be added to the PATH variable for the autoprot pipeline to work properly. While
file paths can be added to the PATH variable through the command line, on Windows
one can also add to the PATH variable through the graphical user interface (GUI).

To test if the autoprot pipeline is set up properly, the files in Examples\Input can be
used in combination with raw MS files of the standard-free DIA analysis (place the 9 .raw
files in the Examples\Input folder first) for a test run with the following command:

autoprot.ps1 -osDIA -mode "directDIA" -approach "free" -InputDir
"$PSScriptRoot\..\Examples\Input" -ExpName "test_run" -fasta
"$PSScriptRoot\..\Examples\Input\URF_UP000000625_E_coli.fasta"
-totalProt "$PSScriptRoot\..\Examples\Input\CPD_example.csv"

The output files can be verified with the files in Examples\Output.
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Dependencies

Name Version Source
PowerShell 7 7.2.4 https://learn.microsoft.com/en-us/powershe

ll/scripting/install/installing-powershel
l-on-windows?view=powershell-7.2\#installi
ng-the-msi-package (Windows operating system
has PowerShell 5.1 as default, however PowerShell
7.2 (or higher) is required alongside the default, so
that additional functions can be accessed. The whole
pipeline runs on 7.2 or up.)

Python 3.8.8 (or higher) h t t p s : / / w w w . a n a c o n d a . c o m /
(Including numpy==1.20.1, pandas==1.2.4,
statsmodels==0.12.2, matplotlib==3.3.4,
Biopython==1.78. Add location of python.exe to
PATH variable.)

Spectronaut 17 (17.3.230224.55965) https://biognosys.com/software/spectro
naut/ (Commercially available. Add location of
spectronaut.exe to PATH variable.)

DIA-NN 1.8 https://github.com/vdemichev/DiaNN (Open
source.)

Proteome Discoverer 2.4.1.15 https://www.thermofisher.com/dk/en/home/in
dustrial/mass-spectrometry/liquid-chromat
ography-mass-spectrometry-lc-ms/lc-ms-sof
tware/multi-omics-data-analysis/proteome-d
iscoverer-software.html (Commercially available.
Not actually part of the pipeline, since no command
line tool is available.)

R (Rscript) 4.1.1 (or higher) https://cran.r-project.org/bin/windows/bas
e/ (Add location of rscript.exe to PATH variable.)

aLFQ 1.3.5 https://github.com/aLFQ/aLFQ (Add package to
R.)

xTop 1.2 https://gitlab.com/mm87/xtop (Add location of
xTop_pipeline.py to PATH variable.)

LFAQ 1.0.0 https://github.com/LFAQ/LFAQ (Add location of
LFAQ executables to PATH variable.)

Usage

The autoprot.ps1 script can be executed in PowerShell 7 (when added to the PATH
variable) as follows:

autoprot.ps1 [args]

To access the autoprot help from the command line in PowerShell 7:

Get-Help autoprot.ps1 -Full

When the autoprot.ps1 script is located on a drive with restricted access, e.g. a network
drive, and cannot be executed, the following command can provide access for execution:

Set-ExecutionPolicy -ExecutionPolicy Bypass -Scope Process
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The available arguments are:

-osDIA uses DIA-NN instead of Spectronaut.
[flag] enables the open-source option for DIA analysis, which

-mode "DIA" or "directDIA".
[string] mandatory specify the acquisition mode as "DDA",

-approach "label", "unlabel" or "free".
[string] mandatory specify the quantification approach as

-InputDir
directory will be located in the input directory after the run.
all input files with raw MS spectra. The output
[directory] mandatory specify the input directory containing

-ExpName [string] mandatory specify the name of the experiment.

-fasta sequences.
[file] mandatory specify the FASTA file with the proteome

-totalProt density values for each sample.
[file] mandatory specify the file with the cellular protein

-DDAresultsFile Proteome Discoverer Peptide Groups results.
[file] (mandatory for "DDA" mode) specify the file with the

-SpecLib spectral library for the "DIA" mode.
[file] (mandatory for "DIA" mode) specify the file with the

-BGSfasta
"directDIA" mode using Spectronaut (commercial).
the FASTA file in .BGSfasta format, which is required for the
[file] (mandatory for "directDIA" mode with Spectronaut) specify

-ISconc
("label" approach) or protein ("unlabel" approach).
the file with the absolute concentrations of each standard peptide
[file] (mandatory for "label" and "unlabel" approaches) specify

Specific input data

Ensure that the FASTA file with the proteome sequences follows the official UniProt
configuration for the headers. An example FASTA file can be found in Examples\Input\
URF_UP000000625_E_coli.fasta.

All workflows in DIA and directDIA mode can be initialised from .RAW files (Thermo
Fisher Scientific instrument specific - please open an issue if another type is required in
combination with Spectronaut) using either Spectronaut (commercial; Biognosys AG,
Schlieren, Switzerland) or DIA-NN (open source; [1]). Any workflow in DDA mode can
be initialised from the PeptideGroups.csv output file of Proteome Discoverer (Thermo
Fisher Scientific, Waltham, MA, USA). How to get the PeptideGroups.csv file with
Proteome Discoverer results: Open the .PDRESULTS file of the study in Proteome
Discoverer, click on "File" -> "Export" -> "To Microsoft Excel", select "Peptide Groups"
from the drop-down menu for level 1 and click on "Export". Open the resulting file in
Microsoft Excel and save as a .CSV file with the name PeptideGroups.
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For a workflow in directDIA mode using Spectronaut (commercial; Biognosys AG,
Schlieren, Switzerland), a BGSfasta version of the fasta file is required. This BGSfasta
version can be obtained by loading the fasta file with the proteome sequences in Spectronaut
(commercial; Biognosys AG, Schlieren, Switzerland) as a protein database. Then, the
BGSfasta version of the fasta file should be in the folder $HOME\Databases\Spectronaut\.

The autoprot pipeline has two custom input files which are described below.

Cellular protein density

The table with cellular protein density for each sample should have the following
headers: Sample [string] with the name of each sample which should be the same as
the names of the .RAW files and CPD [float] with the cellular protein density of each
sample in g/L. An example file for the cellular protein density table can be found in
Examples\Input\CPD_example.csv.

Sample CPD
sample1 <float>
sample2 <float>

... ...

Internal standard concentration

For the label approach, the table with the concentration for each internal standard
should be peptide-based (for example AQUA or QconCAT peptides) with the following
headers: FullPeptideName[string] with the peptide sequence, ProteinName [string] with
the UniProt identifier of the corresponding protein (should be identical to the identifiers
in the fasta file with the proteome sequences), Concentration [float] with the spiked-in
concentration of each internal standard peptide into the sample in fmol/µg whole cell
lysate (total protein extracted). An example file for the peptide-based internal standard
concentration table can be found in Examples\Input\ISconc_peptides_example.csv.

FullPeptideName ProteinName Concentration
sequence1 UniProt ID1 <float>
sequence2 UniProt ID2 <float>

... ... ...

For the unlabel approach, the table with the concentration for each internal standard
should be protein-based (for example UPS2 protein mix) with the following headers:
ProteinName [string] with the UniProt identifier of the corresponding protein (should be
identical to the identifiers in the fasta file with the proteome sequences), Concentration
[float] with the spiked-in concentration of each internal standard peptide into the sample in
fmol/µg whole cell lysate (total protein extracted). An example file for the peptide-based
internal standard concentration table can be found in Examples\Input\ISconc_proteins
_example.csv.
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ProteinName Concentration
UniProt ID1 <float>
UniProt ID2 <float>

... ...

Output data

The output directory will be located in the input directory after the run and will contain
seven files with a protein concentration table, one for each algorithm. The protein
concentration table has the following headers: ProteinName [string] with the UniProt
identifier of the corresponding protein (identical to the identifiers in the fasta file with the
proteome sequences), sample_conc(fmol/µg)_X [float] with the protein concentration
in sample X in fmol/µg whole cell lysate (total protein extracted) for each sample,
invivo_conc(mM)_X [float] with the intracellular protein concentration in sample X in
mM (millimol/liter) for each sample. Example files for the protein-based results table can
be found in the Examples\Output folder.

ProteinName sample_conc(fmol/µg)_X invivo_conc(mM)_X ...
UniProt ID1 <float> <float> ...
UniProt ID2 <float> <float> ...

... ... ... ...

Intermediate files

All intermediate output files of the autoprot pipeline will be located in intermediate
_results in the output directory. Of particular interest, the linear regression plots of the
proteome absolute quantification for the labelled or unlabel approach will be located
in intermediate_results\Absolute_quantification\LR_plots.

Analysis settings

Currently, only 13C(6) labelling of arginine (Arg6) and lysine (Lys6) residues is allowed
for the label approach, which are incorporated into the DIA analysis settings of the
directDIA mode. However, the label approach is peptide-based, thus both methods
using AQUA peptides or QconCAT proteins are supported. The unlabel approach is
protein-based and allows for any protein to be used as internal standard, e.g. UPS2
protein kit.

The DIA analysis settings for both Spectronaut and DIA-NN include quantification on
MS2 level. Specifically for the directDIA mode, the DIA analysis settings include
the Trypsin/P cleavage rule (digestion with Trypsin/Lys-C mix) and the following
modifications: Carbamidomehtyl (C), Acetyl (Protein N-term), and Oxidation (M).
The exact settings can be found in the corresponding DIA analysis settings file in
Scripts\DIA_analysis. DIA-NN uses config files which can be viewed using any text
editor, while Spectronaut uses property files which can be viewed by importing the file
into Spectronaut in the Settings tab.
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Copyright

• Copyright (c) 2023, Novo Nordisk Foundation Center for Biosustainability, Technical
University of Denmark.

• Free software distributed under the GNU General Public License 3.0.
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Supplementary figures

Figure S2.1: Comparison of the optimal workflow, which deployed standard-free, library-free DIA
data analysis using DIA-NN and LFAQ, to other workflows in terms of protein concentration range.
(A) Comparison to the workflow which deployed standard-free, library-free DIA data analysis using
DIA-NN and xTop. (B) Comparison to the workflow which combined absolute quantification using the
labelled approach (QconCAT proteins) with library-free DIA data analysis using DIA-NN and LFAQ. (C)
Comparison to the workflow which combined absolute quantification using the label-free approach (UPS2
protein mix) with library-free DIA data analysis using DIA-NN and LFAQ.

40



Chapter 2: Supplementary materials

F
ig

ur
e

S2
.2

:
C

om
pa

ris
on

of
th

e
pr

oc
es

se
d

ab
so

lu
te

qu
an

tit
at

iv
e

pr
ot

eo
m

ic
s

da
ta

of
th

e
se

ve
n

ca
lib

ra
tio

n
sa

m
pl

es
of

M
or

ie
t

al
.

(2
02

1)
to

th
e

ab
so

lu
te

qu
an

tit
at

iv
e

pr
ot

eo
m

ic
s

da
ta

ge
ne

ra
te

d
w

ith
au

to
pr

ot
an

d
th

e
ra

w
M

S
fil

es
of

th
e

se
ve

n
ca

lib
ra

tio
n

sa
m

pl
es

of
M

or
ie

t
al

.
(2

02
1)

[9
].

T
he

op
tim

al
w

or
kfl

ow
s

w
er

e
us

ed
fo

r
th

e
re

pr
od

uc
tio

n,
w

hi
ch

de
pl

oy
ed

st
an

da
rd

-fr
ee

,l
ib

ra
ry

-fr
ee

D
IA

da
ta

an
al

ys
is

us
in

g
D

IA
-N

N
an

d
xT

op
or

LF
A

Q
.(

A
)

To
ta

ln
um

be
r

of
pr

ot
ei

ns
ab

so
lu

te
ly

qu
an

tifi
ed

in
al

ls
ev

en
sa

m
pl

es
or

in
an

y
sa

m
pl

e.
(B

)
D

ist
rib

ut
io

n
of

co
effi

ci
en

t
of

va
ria

tio
n

(C
V

)
va

lu
es

of
sh

ar
ed

pr
ot

ei
ns

be
tw

ee
n

or
ig

in
al

an
d

xT
op

re
pr

od
uc

tio
n,

an
d

of
ad

di
tio

na
lp

ro
te

in
s.

T
he

m
ed

ia
n

C
V

va
lu

es
ar

e
di

sp
la

ye
d

as
do

tt
ed

lin
es

w
ith

th
e

sa
m

e
co

lo
ur

as
th

e
co

rr
es

po
nd

in
g

di
st

rib
ut

io
n.

(C
)

Sc
at

te
r

of
pr

ot
eo

m
e

co
m

po
sit

io
n

of
sh

ar
ed

pr
ot

ei
ns

be
tw

ee
n

th
e

or
ig

in
al

an
d

th
e

xT
op

re
pr

od
uc

tio
n.

(D
)

C
om

pa
ris

on
of

or
ig

in
al

an
d

xT
op

re
pr

od
uc

tio
n

in
te

rm
s

of
pr

ot
ei

n
co

nc
en

tr
at

io
n

ra
ng

e.
(E

)
D

ist
rib

ut
io

n
of

co
effi

ci
en

t
of

va
ria

tio
n

(C
V

)
va

lu
es

of
sh

ar
ed

pr
ot

ei
ns

be
tw

ee
n

or
ig

in
al

an
d

LF
A

Q
re

pr
od

uc
tio

n,
an

d
of

ad
di

tio
na

lp
ro

te
in

s.
T

he
m

ed
ia

n
C

V
va

lu
es

ar
e

di
sp

la
ye

d
as

do
tt

ed
lin

es
w

ith
th

e
sa

m
e

co
lo

ur
as

th
e

co
rr

es
po

nd
in

g
di

st
rib

ut
io

n.
(F

)
Sc

at
te

r
of

pr
ot

eo
m

e
co

m
po

sit
io

n
of

sh
ar

ed
pr

ot
ei

ns
be

tw
ee

n
th

e
or

ig
in

al
an

d
th

e
LF

A
Q

re
pr

od
uc

tio
n.

41



Chapter 2: Supplementary materials

Figure S2.3: Linear regression of log-normalised protein intensities to log-normalised known protein
concentrations used for absolute quantification approaches which rely on internal standards. All data
stemmed from the third biological replicate of the rich media (LB) condition and was produced with a
workflow deploying library-free DIA data analysis using DIA-NN and LFAQ. (A) Linear regression of
Escherichia coli QconCAT proteins. (B) Linear regression of UPS2 protein mix.

Figure S2.4: Distribution of coefficient of variation (CV) values from the data sets of workflows which
incorporated Escherichia coli QconCAT proteins (labelled approach) for absolute quantification. The
median CV value of the QconCAT proteins and the endogenous proteins is displayed as a blue and
grey dotted line, respectively. (A) CV distribution of a workflow which combined library-free DIA data
analysis using DIA-NN and LFAQ. (B) CV distribution of a workflow which combined library-free DIA
data analysis using Spectronaut and LFAQ. (C) CV distribution of a workflow which combined DDA data
analysis LFAQ. (D) CV distribution of a workflow which combined library-free DIA data analysis using
DIA-NN and xTop. (E) CV distribution of a workflow which combined library-free DIA data analysis
using Spectronaut and xTop. (F) CV distribution of a workflow which combined DDA data analysis
xTop.
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Figure S2.5: Total protein mass across all samples determined by summing all quantified proteins in a
sample. (A) Total protein mass of a workflow which combined the standard-free quantification approach
with library-free DIA data analysis using DIA-NN and LFAQ. (B) Total protein mass of a workflow which
combined the labelled quantification approach with library-free DIA data analysis using DIA-NN and
LFAQ. (C) Total protein mass of a workflow which combined the label-free quantification approach with
library-free DIA data analysis using DIA-NN and LFAQ. (D) Total protein mass of a workflow which
combined the standard-free quantification approach with library-free DIA data analysis using DIA-NN
and xTop. (E) Total protein mass of a workflow which combined the labelled quantification approach
with library-free DIA data analysis using DIA-NN and xTop. (F) Total protein mass of a workflow which
combined the label-free quantification approach with library-free DIA data analysis using DIA-NN and
xTop. (G) Total protein mass of a workflow which combined the standard-free quantification approach
with DDA data analysis using Proteome Discoverer and LFAQ. (H) Total protein mass of a workflow
which combined the labelled quantification approach with DDA data analysis using Proteome Discoverer
and LFAQ. (I) Total protein mass of a workflow which combined the label-free quantification approach
with DDA data analysis using Proteome Discoverer and LFAQ.
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Figure S2.6: Full comparison of acquisition modes of the data sets generated using all 105 different
workflows available through the autoprot pipeline with four additional workflows employing the spectral
library of Mori et al. [9]. The data sets of the four additional workflows are highlighted with black
circles. (A) τ precision comparison for the acquisition modes. The quantity values were determined as
the percentage of unique E. coli proteins absolutely quantified compared to the total number of E. coli
proteins in the protein database. The τ precision was determined as the inverse of the 1000th coefficient
of variation (CV) value of a workflow data set. (B) η accuracy comparison for the acquisition modes. The
quantity values were determined as the percentage of E. coli protein complexes for which both subunits
were absolutely quantified compared to the total number of protein complexes. The η accuracy was
determined as the inverse of the squared sum of errors (SSE) of the subunit concentrations fit to the
theoretical, i.e. equimolar concentrations, normalised to the total number of protein complexes quantified.

44



Chapter 2: Supplementary materials

Supplementary tables

Table S2.1: Overview of spiked-in QconCAT proteins including concentration in fmol/µg.

Peptide Protein Concentration QconCAT
VAADFLAK P00509 200 1
SVFDTLATAAK P00805 200 1
LSEALEQVR P00893 200 1
LDAFLASIR P00894 200 1
LGLIEVQAPILSR P00963 200 1
STVEAIWAGIK P00963 200 1
FNDLLATLK P04693 200 1
VATIQTLGGSGALK P04693 200 1
QVSFALR P05791 200 1
VVAGDVVVIR P05791 200 1
AAAPAFSEESIR P08142 200 1
DIVLAIIGK P0A6A6 200 1
SVDGIQVGEGR P0AB80 200 1
IAVYSSLIK P0AC38 200 1
ISDIPEFVR P0AC38 200 1
LSIVDVNAGAQPLYNQQK P22106 200 1
ANVLQSSILWR P30125 200 1
LSDAEVDELFALVK P30126 200 1
TGFGAHLFNDWR P30126 200 1
GLANPLTVTR P00903 225 2
TSPITHNGEGVFR P00903 225 2
APFSAFLR P05041 225 2
LEQGAILSLSPER P05041 225 2
FGEIEEVELGR P06959 225 2
DGIASAILPGR P08192 225 2
FQIVSESPR P08192 225 2
NIGIYPEIK P09394 225 2
LGVLGFEVDHER P0A6A3 225 2
GAIFGLTR P0A6F3 225 2
ASLILTK P0A6I3 225 2
IPYIISIAGSVAVGK P0A6I3 225 2
EWSFISSSLVK P0A6I6 225 2
IFANPEEK P0A6I9 225 2
LAVADDVIDNNGAPDAIASDVAR P0A6I9 225 2
AWQVSDAVK P0A9J4 225 2
QGHEVQGWLR P0A9J4 225 2
LNAPVDEQGR P0A9M8 225 2
TGGDAPDQTTTIVR P0A9M8 225 2
AAATQHNLEVLASR P0ABQ0 225 2
VIPVVEAIAQR P0AC13 225 2
YFIEQIAR P0AC13 225 2
FNSPWVR P0AC16 225 2
VAEEVAELLLAR P0AC16 225 2
WLDAPAAAALTK P0AFC0 225 2
VQLLGSGSILR P0AFG8 225 2
GLLLDEWR P10908 225 2
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Table S2.1: Overview of spiked-in QconCAT proteins including concentration in fmol/µg - continued.

Peptide Protein Concentration QconCAT
TSNGWGVAGELNWQDLLR P10908 225 2
GLVNATGPWVK P13035 225 2
VSQWLVEYTQQR P13035 225 2
IAEAAVVGIPHNIK P27550 225 2
LVITSDEGVR P27550 225 2
NFLAETGDIR P31057 225 2
ADDIQIR P31663 225 2
DLDEIITIAGQELNEK P31663 225 2
QILNWAEAHPR P07000 250 3
ALGVGEVK P0A6Q3 250 3
LIYTASDLK P0A6Q3 250 3
VLDFEEGR P0A6Q6 250 3
SQLDWLVPHQANLR P0A6R0 250 3
AFTDFFAR P0A722 250 3
GTVQGGGLTK P0A722 250 3
AVGPYVVTK P0A953 250 3
ALIGFAGPR P0A9Q5 250 3
ASTPLGVGGFGAAR P0AAI5 250 3
TIFGEAASR P0AAI5 250 3
ITFNAPTVPVVNNVDVK P0AAI9 250 3
QLYNPVQWTK P0AAI9 250 3
AIVGGIAR P0ABD5 250 3
LIDSIIPEPLGGAHR P0ABD5 250 3
AFIEVGQK P0ABD8 250 3
SFASLSLR P0ACU5 250 3
AGILAQVPAGR P0AEK2 250 3
AGLIGFSK P0AEK2 250 3
ASLEANVR P0AEK4 250 3
VNAISAGPIR P0AEK4 250 3
TLVLVIGESTQR P0CB39 250 3
ATDLVLAFLPFEK P10441 250 3
DSWYDLDAHYDALETR P21515 250 3
FWQFYPR P21515 250 3
TNVDLQIR P24182 250 3
EELAQHQEGVLDIIQR P30845 250 3
AEDFNGWLLNR P76472 250 3
SNAASLYGWDILLAGTAWPGK P76472 250 3
FVSGDEFANWLNQHR P76473 250 3
VVESSSYYGK P77398 250 3
APQAEVLTPGYK P77690 250 3
IYTDVR P77757 250 3
LWHEPVSPR Q47377 250 3
DVIAEPYR P00547 400 4
FFAALAR P00561 400 4
GELVVLGR P00561 400 4
ILDEAGLPGELR P00562 400 4
NNAGETVLLGR P00562 400 4

46



Chapter 2: Supplementary materials

Table S2.1: Overview of spiked-in QconCAT proteins including concentration in fmol/µg - continued.

Peptide Protein Concentration QconCAT
FLVAQSGVLITQVR P00861 400 4
LDFVTR P00934 400 4
VVILYPR P00934 400 4
AAAGISETLLR P00935 400 4
VPGTIGFATVR P04036 400 4
LGVTTSWFDPLIGADIVK P06721 400 4
VAEWLAEHPQVAR P06721 400 4
GFDDSFLAPHSR P07623 400 4
GFLAEVFGILAR P08660 400 4
LNEGLVITQGFIGSENK P08660 400 4
LDIAWK P0A6K1 400 4
ELGLVATDTLR P0A6L2 400 4
LFVEPNPIPVK P0A6L2 400 4
SPFVTSGIR P0A825 400 4
INDNQVIEGAESR P0A9D8 400 4
VGINELLR P0A9D8 400 4
ELTPAAVTGTLTTPVGR P0A9Q9 400 4
ESGWQGYWIDAASSLR P0A9Q9 400 4
GALDDEQLK P0A9T0 400 4
AQVLALLEK P0AED7 400 4
GELDFTASLR P0AGB0 400 4
SGWLLYGR P0AGB0 400 4
GVVGLFPANR P13009 400 4
YVAGVLGPTNR P13009 400 4
DNLTYIADK P23256 400 4
GVAGLINAIR P23256 400 4
DLLNVPSNYK P23721 400 4
NIGPAGLTIVIVR P23721 400 4
SWFAFALQK P25665 400 4
EAYELVAPILTK P00350 75 5
NLALNIESR P00350 75 5
AAIAAAQANPNAK P00363 75 5
LGSNSLAELVVFGR P00363 75 5
HVLLLSR P00864 75 5
LPVEFVPVR P00864 75 5
AAEQYVIDEYNK P07658 75 5
TDWQIISEIATR P07658 75 5
GAVASLTSVAK P09373 75 5
YPQLTIR P09373 75 5
IIASVAEK P0A7Z0 75 5
VSTEVDAR P0A867 75 5
ILDWYK P0A870 75 5
LASTWQGIR P0A870 75 5
TWFELAPK P0A8Q0 75 5
VLAFAQSFIGR P0A8Q3 75 5
AAALAAADAR P0A9Q7 75 5
LLAWLETLK P0A9Q7 75 5
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Table S2.1: Overview of spiked-in QconCAT proteins including concentration in fmol/µg - continued.

Peptide Protein Concentration QconCAT
ALHLVDNTDIAR P0AAK1 75 5
APPAPPAPAR P0AAK1 75 5
DNLAPDLSYR P0AC47 75 5
HVDPAAAIQQGK P0AC47 75 5
LQPDEGVDIQVLNK P0AC53 75 5
WAGVPFYLR P0AC53 75 5
DQLTVTVK P16431 75 5
VPAAVWGER P16431 75 5
HADILLFTGAVTR P16433 75 5
WLEAENDPR P16433 75 5
VFLNIGDK P21599 75 5
TEEQLANIAR P27302 75 5
TVIGFGSPNK P33570 75 5
VVGLELAK P37351 75 5
WLPLPGGLR P06282 150 6
LPIDLSQLK P0A6B7 150 6
NAGIEVVEALK P0A6H8 150 6
FQDLQR P0A6L9 150 6
NILVVVPSHVFGEVLR P0A6S7 150 6
GGIEYIEVR P0A6W9 150 6
SLADIQQR P0A6Z1 150 6
ADLLTLR P0A7A7 150 6
VYQLLAELITSDVR P0A7A7 150 6
VNLVEQLESLSVTK P0A8K1 150 6
VTDEDLVVEIPR P0A9R4 150 6
LLYNYLVK P0AA84 150 6
SLQFLDGTQLDFVK P0AAC8 150 6
VNTFLANR P0AAC8 150 6
EIIISALR P0ABF8 150 6
FGAFLDPVADK P0ABF8 150 6
IGSEYHELSGR P0ABN1 150 6
SLDEAQAIK P0ACD4 150 6
VNDEGIIEDAR P0ACD4 150 6
SIADQIDINK P18956 150 6
TWLVTGSPGGSR P18956 150 6
LQYYVNTDQLVVR P23830 150 6
VALELVK P27247 150 6
TSGSGNPGATNVLR P60782 150 6
IFTGDEILPALVSTLK P76407 150 6
IINEVNGISR P04079 125 7
WLAQGTIYPDVIESAASATGK P04079 125 7
EFPLPTYATSGSAGLDLR P06968 125 7
DAGVDIDAGNALVGR P08178 125 7
SEIIDGSK P08178 125 7
HPAFVNR P09029 125 7
WPETALTR P09029 125 7
SLVLDIK P0A720 125 7
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Table S2.1: Overview of spiked-in QconCAT proteins including concentration in fmol/µg - continued.

Peptide Protein Concentration QconCAT
YIVIEGLEGAGK P0A720 125 7
DLLGATNPANALAGTLR P0A763 125 7
NVIGNIFAR P0A763 125 7
YVDYVLGILK P0A7D4 125 7
GEVVLGDEFSPDGSR P0A7D7 125 7
LEFGLYK P0A7D7 125 7
FEDFEIEGYDPHPGIK P0A884 125 7
HIDQITTVLNQLK P0A884 125 7
GIFSEYGLLK P0AB89 125 7
ELQLVYNK P0ABA6 125 7
ILEVPVGR P0ABB0 125 7
VVNTLGAPIDGK P0ABB0 125 7
GVQSILQR P0ABB4 125 7
YTLAGTEVSALLGR P0ABB4 125 7
LVPEGIEGR P0ADG7 125 7
DVAPGEAIYITEEGQLFTR P0AG16 125 7
DVDQGYLDFLDTLR P0AG16 125 7
AGLVGFSVSNLR P15254 125 7
GSPALSAFR P15254 125 7
AGIVEFAQALSAR P15639 125 7
GVELLSTGGTAR P15639 125 7
IDLTIVGPEAPLVK P15640 125 7
IFGPTAGAAQLEGSK P15640 125 7
DIEAWLDEGR P28248 125 7
LIQESILR P28903 125 7
NNLGVISLNLPR P28903 125 7
AFLGLPVGGIR P33221 125 7
FADSESLFR P33221 125 7
DEAVHGYYIGYK P37146 125 7
DAFLEHAEVFGNYYGTSR P60546 125 7
SSLIQALLK P60546 125 7
FLEGAAR P68699 125 7
QPDLIPLLR P68699 125 7
IILLGAPGAGK P69441 125 7
NGFLLDGFPR P69441 125 7
DWADYLFR P69924 125 7
YQTLLDSIQGR P69924 125 7
FFTGQITAAGK P07001 100 8
VIGYTDLPGR P07001 100 8
QLLGASSDR P08395 100 8
FLSAPEAVEYGLVDSILTHR P0A6G7 100 8
SFDIYSR P0A6G7 100 8
IYLAETPWFNISATIIR P0A752 100 8
GYEVIVEQQIAHELQLK P0A7B3 100 8
VLVEGLQR P0A9M0 100 8
ASVDAILK P0AB67 100 8
EITAEETAELLK P0AB67 100 8
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Table S2.1: Overview of spiked-in QconCAT proteins including concentration in fmol/µg - continued.

Peptide Protein Concentration QconCAT
IGLNPTGR P0AEE3 100 8
EQFGLELPR P0AFV4 100 8
TGDLVLFR P0AFV4 100 8
VWVLDFK P0AG14 100 8
NFLLTEALR P10902 100 8
SNAVDLIVSDK P10902 100 8
HPASTLLVAGVR P11458 100 8
LGIDPQSK P18133 100 8
VQLSFGIGTR P18133 100 8
SYLQTYPFIK P18843 100 8
YGDGGTDINPLYR P18843 100 8
TSLDDWLR P21369 100 8
ALVVGEPTFGK P23865 100 8
LDDVVALIK P23865 100 8
QQASIGTQIDK P23898 100 8
QTEVPGFYAANYR P24555 100 8
ENHIIASGSVR P30011 100 8
ELLEANWYR P32664 100 8
GVQLAEFYR P32664 100 8
VPDLTPQQATDITAFANK P37056 100 8
AFNLDVQR P39099 100 8
VLPAVVSVR P39099 100 8
QGVIIPTANVR P75867 100 8
VILVGER P75867 100 8
LLADIDWQALVAR P76008 100 8
LTTPNTIVLAVR P76008 100 8
AISVTGFR P76176 100 8
YEIHDIEGR P76176 100 8
GTADHVGVYVGNGK P76190 100 8
GPLTTPVGGGIR P08200 475 9
TVTYDFER P08200 475 9
YYQGTPSPVK P08200 475 9
LGADGNALFR P0A836 475 9
IGAGPWVVK P0A836 475 9
GISYETATFPWAASGR P0A9P0 475 9
ATVLATGGAGR P0AC41 475 9
LPGILELSR P0AC41 475 9
VTGQALTVNEK P0AC41 475 9
GYEVGGTVR P0AFG3 475 9
LNVLVNVLGK P0AFG3 475 9
ELLEDPTR P0AFG6 475 9
GLVTPVLR P0AFG6 475 9
ESAPAAAAPAAQPALAAR P0AFG6 475 9
FAALEAAGVK P0AGE9 475 9
SLADIGEALK P0AGE9 475 9
SGTLTYEAVK P0AGE9 475 9
GTFANIR P25516 475 9
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Table S2.1: Overview of spiked-in QconCAT proteins including concentration in fmol/µg - continued.

Peptide Protein Concentration QconCAT
VVIAESFER P25516 475 9
FGDDEAFEENVR P25516 475 9
SPLLTPEK P36683 475 9
FGLSLVR P61889 475 9
LFGVTTLDIIR P61889 475 9
SDLFNVNAGIVK P61889 475 9
IYAYLSR P06999 450 10
LTQLISAAQK P06999 450 10
FGANAILAVSLANAK P0A6P9 450 10
GIANSILIK P0A6P9 450 10
IQLVGDDLFVTNTK P0A6P9 450 10
LLSNFFAQTEALAFGK P0A6T1 450 10
AVLHVALR P0A6T1 450 10
ATVLGHIQR P0A796 450 10
GGTFLGSAR P0A796 450 10
EDLVNEIK P0A796 450 10
LTVLDSLSK P0A799 450 10
VATEFSETAPATLK P0A799 450 10
ASLPTIELALK P0A799 450 10
ADAFAVIVK P0A858 450 10
SATPAQAQAVHK P0A858 450 10
LDLFANEK P0A993 450 10
TLGEFIVEK P0A993 450 10
AGIALNDNFVK P0A9B2 450 10
GASQNIIPSSTGAAK P0A9B2 450 10
VLDLIAHISK P0A9B2 450 10
VPTPNVSVVDLTVR P0A9B2 450 10
GTIDLNLPLADNLR P0A9C9 450 10
LIVGPGAK P0A9C9 450 10
ANEAYLQGQLGNPK P0AB71 450 10
DSVSYGVVK P0AB71 450 10
GVVPQLVK P0AD61 450 10
EITSTDDFYR P0AD61 450 10
TLNLTALYR P21599 450 10
GLPADVVPGDILLLDDGR P21599 450 10
ALLEFDDQEPQLQNEIR P23538 450 10
LEFIINR P23538 450 10
EAYAQLSADDENASFAVR P23538 450 10
AFFANPVLTGAVDK P37689 450 10
ILINSPK P37689 450 10
ELPLTESLALTIDR P62707 450 10
VIIAAHGNSLR P62707 450 10
HYGALQGLNK P62707 450 10
AAVLPANLIQAQR P00350 375 11
GYTVSIFNR P00350 375 11
LIEPLIR P04825 375 11
TVVTAVSQAVR P04825 375 11
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Table S2.1: Overview of spiked-in QconCAT proteins including concentration in fmol/µg - continued.

Peptide Protein Concentration QconCAT
APLYPDDILWNFEK P06610 375 11
AIAQVGTISANSDETVGK P0A6F5 375 11
LAGGVAVIK P0A6F5 375 11
SAGGIVLTGSAAAK P0A6F9 375 11
VGDIVIFNDGYGVK P0A6F9 375 11
ALQAIAGPFSQVR P0A955 375 11
VLEVTLR P0A955 375 11
LTSENPIDLVR P0A991 375 11
NGLLLAR P0A9Q1 375 11
SLIGPDGEQYK P0A9Q1 375 11
EAADIILLEK P0ABB8 375 11
ILTGDSELVAAK P0ABB8 375 11
ATFVVDPQGIIQAIEVTAEGIGR P0AE08 375 11
EGEATLAPSLDLVGK P0AE08 375 11
IEYVYQSAEQLR P19926 375 11
NADALTLQAPAQR P19926 375 11
LFWLSQTPFEQR P21179 375 11
LIPEELVPVQR P21179 375 11
NALQELIIDGIK P24182 375 11
SGFIFIGPK P24182 375 11
GVFNLVLGR P25553 375 11
IVDEIGLPR P25553 375 11
ASLSAFDYLIR P35340 375 11
SIIVATGAK P35340 375 11
ALVQESIYER P37685 375 11
ETSAADVPLAIDHFR P37685 375 11
SGSGTLTVSNTTLTQK P39180 375 11
LVLDGIEVVGSLVGTR P39451 375 11
VIAIDVNDEQLK P39451 375 11
TLWVPALK P52697 375 11
YLIAAGQK P52697 375 11
DLDVTATNR P61517 375 11
TAIVEGLAQR P63284 375 11
LGAAVATLK P77674 375 11
FGLIPEFIGR P0A6H1 500 12
ATGLDALFDATIK P0A6K6 500 12
FGASSLLASLLK P0A6L0 500 12
IATDPFVGNLTFFR P0A6M8 500 12
YLGGEELTEAEIK P0A6M8 500 12
FEVGEGIEK P0A6P1 500 12
IGVLVAAK P0A6P1 500 12
LESLVEDLVNR P0A6Y8 500 12
GISLLDAFGAANDVLK P0A9A6 500 12
LDEFETVGNTIR P0A9A6 500 12
LIDGTVFDSSVAR P0A9L3 500 12
VINQGEGAIPAR P0A9L3 500 12
TLAEGQNVEFEIQDGQK P0A9Y6 500 12
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Table S2.1: Overview of spiked-in QconCAT proteins including concentration in fmol/µg - continued.

Peptide Protein Concentration QconCAT
ALGANLVLTEGAK P0ABK5 500 12
IQGIGAGFIPANLDLK P0ABK5 500 12
IALESVLLGDK P0ABP8 500 12
AAQEEEFSLELR P0ABS1 500 12
AVQLGGVALGTTQVINSK P0ABT2 500 12
DDDTADILTAASR P0ABT2 500 12
EGDAVQLVGFGTFK P0ACF0 500 12
IAAANVPAFVSGK P0ACF0 500 12
AETLYYIVK P0ACJ8 500 12
AGENVGVLLR P0CE47 500 12
ADDFIEALFAR P10121 500 12
LVIPPELAYGK P45523 500 12
VTDAEIAEVLAR P63284 500 12
YWDVELR P69908 500 12
LEEDDVATPGEGQVLLR P76113 500 12
VVGVAGGAEK P76113 500 12
AEGALLINAVGVDDVK P76621 500 12
LLELTFTEQTTK P76621 500 12
TPAQIVIR Q46857 500 12
IIDDAVAR P04079 50 13
VSQAFTVFLPVR P04079 50 13
FNWETLIASR P06715 50 13
FINELLPVIDSLDR P09372 50 13
VANLEAQLAEAQTR P09372 50 13
LSNAQVIDVTK P0A6W5 50 13
QNLISVNSPIAR P0A6W5 50 13
GGYFPVPPVDSAQDIR P0A9C5 50 13
IPVVSSPK P0A9C5 50 13
AAFDDAIAAR P0ABC7 50 13
NISDDLR P0AC59 50 13
GGLDPLLK P0AC62 50 13
FAYVDILQNPDIR P0AC69 50 13
ADVAPSNLAIVGR P0AEP3 50 13
YVLSADIWPLLAK P0AEP3 50 13
AVGDSLEAQQYGIAFPK P0AEQ3 50 13
APVAGALLIWDK P0AES0 50 13
TWAWETAFDQIR P0AES0 50 13
VSEISIVGR P0AES4 50 13
VVSLIVPR P0AES4 50 13
LELVIQR P0AES6 50 13
HPDTLLAAR P17169 50 13
ILVPLTIEDAQIR P22256 50 13
SIAGGFPLAGVTGR P22256 50 13
AFTGVGGTPLFIEK P23893 50 13
EETFGPLAPLFR P25526 50 13
FFSIDGTK P31120 50 13
ILVIAADER P31658 50 13
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Table S2.1: Overview of spiked-in QconCAT proteins including concentration in fmol/µg - continued.

Peptide Protein Concentration QconCAT
AEAAEINLR P33195 50 13
LTDILAAGLQQK P33195 50 13
FGALEYR P37747 50 13
YQGIPVGGYTK P37747 50 13
AAVLLADSFK P63224 50 13
SGDWAYR P77454 50 13
LLGQTSVDR P03023 350 14
FGAIGIGSR P03817 350 14
VIASELGEER P08997 350 14
VIDGQINLR P08997 350 14
ILDVLIPPAK P0A6H5 350 14
LLIEEEAAK P0A6H5 350 14
TEELLTLPANEVLWR P0A6Y5 350 14
AQALWTR P0A6Z3 350 14
GPVATVLVR P0A705 350 14
TSLLDYIR P0A705 350 14
FLEEGDK P0A707 350 14
LTGLEGEQLGIVSLR P0A707 350 14
LGIPYVFK P0A715 350 14
TGAVINVK P0A715 350 14
LYTSLGDAAVGR P0A717 350 14
VVADFLSSVGVDR P0A717 350 14
AEIVASFER P0A7A9 350 14
ESGALFVDR P0A7A9 350 14
FFINPTGR P0A817 350 14
NIVAAGLADR P0A817 350 14
EQEVLVR P0A9M0 350 14
NPLFLLDEIDK P0A9M0 350 14
SLDDFLIK P0ACF8 350 14
YSYVDENGETK P0ACF8 350 14
YPDLQIIGGNVATAAGAR P0ADG7 350 14
TWEEIPALDK P0AEX9 350 14
LSGNTASGLPAR P12281 350 14
TILEELGEIAFWK P12281 350 14
LPGLYYIETDSTGER P37647 350 14
TFYYWR P37647 350 14
SAEILDR P37769 350 14
GALIDSQAAIEALK P52643 350 14
TAGVIGTGK P52643 350 14
EVIYVDSPSK P60785 350 14
FLFDEYVR P67910 350 14
TVSVGGEVGK Q46938 350 14
FNDGDFLR P00490 300 15
VFLFGAK P00490 300 15
GDISEFAPR P05055 300 15
AVITGDVTQIDLPR P0A9K3 300 15
VLEQSAESVPEYGK P0A9K3 300 15

54



Chapter 2: Supplementary materials

Table S2.1: Overview of spiked-in QconCAT proteins including concentration in fmol/µg - continued.

Peptide Protein Concentration QconCAT
GQGIVLNEPSVVAIR P0A9X4 300 15
NLAEGVPR P0A9X4 300 15
EITLEAAR P0AFF6 300 15
GAQLFVTR P0AFF6 300 15
VSVSIFGR P0AFG0 300 15
GYAGDTATTSEIK P0AFH8 300 15
LLADDIVPSR P0AFH8 300 15
TTGISVSTR P0AFK0 300 15
TVQAALDIAR P0AFK0 300 15
AEITLDYQLK P0C0L2 300 15
VDAGFAITK P0C0L2 300 15
IIAGNIINFSR P0C0S1 300 15
SLVNTYQEILK P15288 300 15
ADGIGSLLPAAR P21165 300 15
ALQLGIEASNINPK P21165 300 15
TFLDTR P23843 300 15
AAADEWDER P25738 300 15
ETGQSFLDNILSR P27298 300 15
YSDVGLVTPLR P31677 300 15
LAGITVPDR P33599 300 15
LLASAAQENEPFWR P37095 300 15
LYTSSWR P45577 300 15
QLLNEFPELK P63020 300 15
DFGSVDNFK P00448 425 16
EFWNVVNWDEAAAR P00448 425 16
AAADLISR P00452 425 16
DAPDYQYLAAR P00452 425 16
ELANVQDLTVR P02925 425 16
VIELQGIAGTSAAR P02925 425 16
ISGDYAYGWLR P07012 425 16
SYVLDDSR P07012 425 16
ASAQLETIK P08839 425 16
EENPFLGWR P08839 425 16
LIDSQDVETR P0A7E5 425 16
AGAWYSYK P0A7G6 425 16
GYVPASTR P0A7Z4 425 16
EIEEGLINNQILDVR P0A800 425 16
TTVIALR P0A800 425 16
INVFDR P0A805 425 16
QLASVTVEDSR P0A805 425 16
LGIQAFEPVLIEGK P0A8T7 425 16
SVITVGPYLR P0A8T7 425 16
LGDLPTSGQIR P0A8V2 425 16
YDLSAVGR P0A8V2 425 16
ELTLWESR P0ACA3 425 16
AIVEAAGLK P0AF93 425 16
VLDLASPIGR P0AG30 425 16
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Table S2.1: Overview of spiked-in QconCAT proteins including concentration in fmol/µg - continued.

Peptide Protein Concentration QconCAT
DWQPEVK P0AG86 425 16
LDLDTASSQLADDVYEVVLR P0AG86 425 16
GQFAAVPLNILGDK P23721 425 16
YGVIYAGAQK P23721 425 16
AIGINFIDTYIR P28304 425 16
QSGFLDPVNYR P37194 425 16
SVDDVIAQVK P60651 425 16
YDAVIALGTVIR P61714 425 16
TQVNNAVSVDEK P69797 425 16
ILEVSLDR P77243 425 16
FTAAEFR P00956 175 17
TGDIGLFR P00957 175 17
IDDIDLNLEDFVQR P00959 175 17
SDEVLSDR P00961 175 17
VIPATILGIQSDR P00961 175 17
SVEENLALFEK P00962 175 17
TALYSWLFAR P04805 175 17
APLVEELYR P06612 175 17
SDAYFVLR P06612 175 17
GFLQTLAR P07118 175 17
TAISDLEVENR P07118 175 17
VAVATIGAVLPGDFK P07395 175 17
NWVSPVDAIVER P07813 175 17
NYTIGDVIAR P07813 175 17
SQAIEGLVK P0A850 175 17
GNFDLEGLER P0A853 175 17
FNPLDR P0A855 175 17
LAYVTFESGR P0A855 175 17
AQTFTLVAK P0A862 175 17
IYTFGPTFR P0A8M0 175 17
TNLIGAVAR P0A8M0 175 17
VFEINR P0A8N3 175 17
GIPTLLLFK P0AA25 175 17
QYATTYINIVGK P0ADG4 175 17
LANAVGIGAVK P11875 175 17
LGLDTLGIETVER P11875 175 17
AVEGSSFPQVALLVR P16659 175 17
TGDIVEYLVK P16659 175 17
FGFLLDALK P21889 175 17
LIVVTGLSGSGK P0A698 325 18
NEETLEPVPYFQK P0A8F0 325 18
YQGEYVAGLAVK P0A8G7 325 18
AVVTPLPR P0A941 325 18
LLIDDLSFSIPK P0A9W3 325 18
NISLSFFPGAK P0A9W3 325 18
NADLPLAQAAIDR P0AC02 325 18
GAWVAVVNR P0AC03 325 18
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Table S2.1: Overview of spiked-in QconCAT proteins including concentration in fmol/µg - continued.

Peptide Protein Concentration QconCAT
SGDTLSAISK P0ADE6 325 18
VLLGVAGFQAR P0ADE8 325 18
AGLNEIR P0ADS6 325 18
SVSLGVAQPDAYK P0ADS6 325 18
DDTWVTLR P0ADU5 325 18
ISDDLYVFK P0ADU5 325 18
IVTGVTASQALLDEAVR P0AFP6 325 18
NAIDWLSR P0AGE6 325 18
NDIEGLATLFSNHIPDYR P21367 325 18
NNVLALGDLAK P21367 325 18
LEQELVLLAQR P23839 325 18
YLETYFR P23839 325 18
NLGLDVLDVVNLR P25906 325 18
LGYQVVAVSGR P26646 325 18
VVALGSAAQDK P27250 325 18
ELVHNVALR P32132 325 18
LDYVIPSR P32132 325 18
ADQINEAYER P75691 325 18
GADVLVLTSGQTDNK P75694 325 18
FNAIGEAVK P76177 325 18
VVADLYK P76177 325 18
AESWLPAWPHLGGK P76347 325 18
TVTASLANNGASDNK P76347 325 18
TIPLQDQDTR P77395 325 18
YQGLVAQIELLK P77395 325 18
LVFITDTVQPVINQGGTK P77717 325 18
AISLSGEAQSGR P77804 325 18
ALAFAQR P0A6D5 275 19
EADFDILEWR P05194 275 19
EEWAGFR P0A6E1 275 19
EIHQDLNGQLTAR P00888 275 19
EVAHIIIDATNEPSQVISEIR P0A6E1 275 19
EVLEALANER P0A6D7 275 19
FADVLEK P0A6D3 275 19
IAVDAIR P00887 275 19
ILLIGAGGASR P15770 275 19
LILPLAIGK P07639 275 19
SLLLVDSALR P00895 275 19
TIIGFGSPNK P27302 275 19
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Table S2.2: Overview of spiked-in UPS2 protein mix including concentration in fmol/µg.

Protein Concentration Protein Concentration
P00915ups 1250 P01008ups 1.25
P00918ups 1250 P61769ups 1.25
P01031ups 1250 P55957ups 1.25
P69905ups 1250 O76070ups 1.25
P68871ups 1250 P08263ups 1.25
P41159ups 1250 P01344ups 1.25
P02768ups 1250 P01127ups 1.25
P62988ups 1250 P10599ups 1.25
P04040ups 125 P99999ups 0.125
P00167ups 125 P06396ups 0.125
P01133ups 125 P09211ups 0.125
P02144ups 125 P01112ups 0.125
P15559ups 125 P01579ups 0.125
P62937ups 125 P02787ups 0.125
Q06830ups 125 O00762ups 0.125
P63165ups 125 P51965ups 0.125
P00709ups 12.5 P08758ups 0.0125
P06732ups 12.5 P02741ups 0.0125
P12081ups 12.5 P05413ups 0.0125
P61626ups 12.5 P10145ups 0.0125
Q15843ups 12.5 P02788ups 0.0125
P02753ups 12.5 P10636-8ups 0.0125
P16083ups 12.5 P00441ups 0.0125
P63279ups 12.5 P01375ups 0.0125

Table S2.3: Overview of Escherichia coli protein complexes.

Protein complex Subunit 1 Protein 1 Subunit 2 Protein 2
p-aminobenzoyl-glutamate hydrolase
complex

abgB P76052 abgA P77357

Ribonucleoside-diphosphate reductase 1
complex

nrdA P00452 nrdB P69924

Chemotaxis phosphorelay complex
CheY-CheZ

cheY P0AE67 cheZ P0A9H9

Succinyl-CoA synthetase sucD P0AGE9 sucC P0A836
Glutamate synthase [NADPH] complex gltD P09832 gltB P09831
HypAB Ni-hydrogenase maturation
complex

hypB P0AAN3 hypA P0A700

Ribonucleoside-diphosphate reductase 2
complex

nrdF P37146 nrdE P39452

Imidazole glycerol phosphate synthase
complex

hisH P60595 hisF P60664

3-isopropylmalate dehydratase complex leuD P30126 leuC P0A6A6
Glycyl-tRNA synthetase complex glyQ P00960 glyS P00961
Aminodeoxychorismate synthase complex pabA P00903 pabB P05041
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Table S2.3: Overview of Escherichia coli protein complexes - continued.

Protein complex Subunit 1 Protein 1 Subunit 2 Protein 2
tRNA uridine 5-carboxymethylamino-
methyl modification complex

mnmG P0A6U3 mnmE P25522

Sulfate adenylyltransferase complex cysD P21156 cysN P23845
Glutathione/cysteine ABC exporter
complex

cydC P23886 cydD P29018

Glucose-specific enzyme II complex crr P69783 ptsG P69786
TrpAB tryptophan synthase complex trpA P0A877 trpB P0A879
Anthranilate synthase complex trpE P00895 trpGD P00904
NapAB nitrate reductase complex napB P0ABL3 napA P33937
Acetolactate synthase II complex ilvG P0DP90 ilvM P0ADG1
Acetolactate synthase I complex ilvN P0ADF8 ilvB P08142
Acetolactate synthase III complex ilvI P00893 ilvH P00894
fadBA fatty acid oxidation complex,
aerobic conditions

fadA P21151 fadB P21177

fadJI fatty acid oxidation complex,
anaerobic conditions

fadJ P77399 fadI P76503

L-tartrate dehydratase complex ttdA P05847 ttdB P0AC35
NAD-dependent dihydropyrimidine
dehydrogenase complex

preT P76440 preA P25889

NAD(P) transhydrogenase complex pntB P0AB67 pntA P07001
Enoyl CoA hydratase/isomerase complex paaF P76082 paaG P77467
entAE 2,3-dihydroxybenzoate-AMP ligase
complex

entA P15047 entE P10378

entBE aryl carrier complex entB P0ADI4 entE P10378
GyrA-GyrB DNA Gyrase complex gyrB P0AES6 gyrA P0AES4
Ethanolamine ammonia-lyase complex eutC P19636 eutB P0AEJ6
Molybdopterin-synthase
adenylyltransferase complex

moaD P30748 moeB P12282

Molybdopterin synthase moaD P30748 moaE P30749
Aspartate carbamoyltransferase complex pyrB P0A786 pyrI P0A7F3
dnaB-dnaC complex dnaB P0ACB0 dnaC P0AEF0
Carbamoyl phosphate synthetase complex carA P0A6F1 carB P00968
dnaA-diaA complex diaA P66817 dnaA P03004
BtuCD complex btuD P06611 btuC P06609
ThiF-ThiS complex thiF P30138 thiS O32583
thiG-thiH thiazole phosphate synthase
complex

thiH P30140 thiG P30139

iscS-tusA cysteine desulfurase complex iscS P0A6B7 tusA P0A890
iscS-iscU iron-sulfur cluster assembly
complex

iscS P0A6B7 iscU P0ACD4

tRNA-specific 2-thiouridylase tusE-mnmA
complex

tusE P0AB18 mnmA P25745

UvrAB DNA damage sensor complex uvrA P0A698 uvrB P0A8F8
Holo-translocon
SecYEG-SecDF-YajC-YidC complex

secF P0AG93 secD P0AG90

FtsEX ABC cell division complex ftsX P0AC30 ftsE P0A9R7
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The quantification of membrane proteins is essential for several applications, such as
increased understanding of cellular processes, biomarker validation and product transport
optimisation. Recent years have seen considerable advancements in the quantification of
cytosolic proteins, yet similar advancements have not occurred in quantitative membrane
proteomics, especially for gram-negative bacteria. This is due to the multi-layered
and mostly hydrophobic cell envelope of gram-negative bacteria, which hinders efficient
solubilisation of the membrane proteins embedded within and results in many membrane
proteins evading adequate detection. Here, we developed a sample preparation protocol
combining multiple detergents for enhanced solubilisation with DIA analysis, which resulted
in 794 quantified E. coli membrane proteins (56% of theoretical membrane proteome)
and 485 quantified P.putida membrane proteins (61% of theoretical membrane proteome).
The detergent protocol outperformed both our standard reference protocol and a protocol
based on membrane protein enrichment through ultracentrifugation, while maintaining
satisfactory precision and throughput. The optimal method, i.e. the detergent protocol
with DIA analysis, produced a high number of both cytosolic and membrane proteins,
thereby allowing for proteome-wide quantitative analysis with a stronger representation
of the membrane proteome.



Chapter 3: Introduction

3.1. Introduction
Membrane proteins play a crucial role in many cellular processes, including energy
conversion, signal transduction and metabolite transport. Systems biology aims to
understand these cellular processes by means of computational and mathematical analyses
and thus heavily relies on quantitative data. Despite many advancements in quantitative
proteomics, quantitative membrane proteomics still lags behind, especially absolute
quantification of membrane proteins [1, 2]. Workflows from quantitative proteomics must
be adapted to accommodate membrane proteins during both sample preparation and
HPLC-MS analysis.

Membrane protein extraction remains challenging due to the subcellular location,
hydrophobic nature and presumed low abundance of membrane proteins. The cell
envelope of gram-negative bacteria consists of multiple layers: the outer membrane,
the periplasmic space and the inner membrane. Within these layers reside lipoproteins
and peripheral membrane proteins which are anchored in the membrane, as well as
integral membrane proteins which are embedded within the membrane [3]. Due to
the attachments, membrane proteins are often physical inaccessible and difficult to
release from the cell envelope during sample preparation. Since the membranes consist
of phospholipids, membrane proteins are mostly hydrophobic which also challenges
solubilisation during sample preparation. Membranes have a finite surface area which
presumably results in low abundances of membrane proteins relative to cytosolic proteins.
Even after enrichment, membrane proteins often seem to dwell around the lower limits of
detection of HPLC-MS analysis [1, 4].

Due to the more complex cell envelope structure of gram-negative bacteria, previous
membrane proteomics studies of these micro-organisms focus on a specific section or
protein family only. Since inner membrane vesicles are relatively easy to prepare, multiple
studies have only reported on the inner membrane proteome instead of the full membrane
proteome [4, 5]. Studies on the quantification rather than merely identification of membrane
proteins in gram-negative bacteria are even more limited due to inadequate methods [1, 6].
Common sample preparation protocols incorporate detergents for increased solubilisation,
enrichment by ultracentrifugation, or a combination of these methods [6, 7], which
introduces additional noise to the quantification. A disadvantage of deploying detergents
is the required clean-up after digestion in order to avoid interference during HPLC-MS
analysis. Ultracentrifugation enables strong enrichment of membrane proteins and thus
increased detection, yet it greatly reduces the throughput and reproducibility of the
method [1]. An ideal method would combine high throughput and reproducibility with
high coverage in the quantification of all types of membrane proteins.

In this study, we compared several sample preparation protocols for quantification of the
Escherichia coli and Pseudomonas putida membrane proteome. Each protocol incorporated
a different strategy to aid the solubilisation or enrichment of membrane proteins by adding
additional steps on top of a reference protocol.

62



Chapter 3: Material and methods

In one protocol, an enzyme mix was added to further degrade cell debris after cell lysis in
order to expose more proteins from the membranes. Additional detergents with differing
chemical properties to the reference protocol detergent were added to the cell lysis buffer
to investigate the extent of solubilisation for the second protocol. Lastly, a traditional
ultracentrifugation protocol was applied where all sample fractions were subjected to
HPLC-MS analysis to investigate the extent of membrane protein enrichment. Although
the ultracentrifugation protocol resulted in a large enrichment of membrane proteins,
the protocol deploying additional detergents provided the highest number of quantified
membrane proteins with comparable precision to the reference protocol. The optimal
method combined the detergent protocol with DIA analysis and resulted in 794 quantified
membrane proteins (56% of theoretical membrane proteome) and 485 quantified membrane
proteins (61% of theoretical membrane proteome) for E. coli and P. putida, respectively.

3.2. Material and methods
3.2.1. Bacterial strains and culture conditions

Both E. coli MG1655 and P. putida KT2440 were cultivated in M9 minimal medium
with 4 g/L glucose. Each culture flask was inoculated from lysogeny broth (LB) agar
plates with a colony from the corresponding organism and grown overnight into stationary
phase. Culture flasks with fresh media were inoculated with the corresponding overnight
culture and grown until mid-exponential phase prior to sampling. Either 1 mL or 5
mL was sampled depending on the intended sample preparation protocol, since the
ultracentrifugation protocol required more starting material. Samples were immediately
centrifuged at 15,000 g at -5°C for 5 minutes, the supernatant was discarded and the
remaining cell pellets were frozen at -80°C until further processing.

3.2.2. Proteomics sample preparation

The standard sample preparation protocol for proteomics analysis, here the reference
protocol, was performed as previously described in (REF Chapter1) and additional steps
from the protocols focused on membrane proteomics analysis are mentioned below. All
protocols were performed in triplicate and can be found in the Supplementary materials
section.

Enzymatic protocol
Three different enzymes were deployed to increase the degradation of the cell envelope:
lipase and phospholipase C to degrade phospholipids and lysozyme to degrade
peptidoglycan. Lipase from Candida rugosa (Sigma Aldrich) and phospholipase C
from Clostridium perfringens (Sigma Aldrich) were dissolved and diluted in HEPES
buffer to reach a concentration of 0.08 U/µL and 0.05 U/µL, respectively. Lysozyme
from chicken egg white (Sigma Aldrich) was dissolved and diluted in EDTA buffer to
reach a concentration of 0.08 U/µL. After cell lysis, samples were spun down rather
than centrifuged at high speed to keep cell debris in solution to subject it to further
degradation.
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For each sample, 10 µL of each enzyme solution was added to 20 µg of protein and
incubated for 1 hour at 37°C. The incubation conditions for the enzymatic degradation
were partly taken from Perczyk and Broniatowski [8]. Subsequent protein digestion and
desalting was performed as in the reference protocol.

Detergent protocol
To increase the solubilisation of membrane proteins during cell lysis, 1.2% (w/v) NP-40
or 1.2% (w/v) Triton X-100 was added as additional detergent to the lysis buffer of the
reference protocol, namely 6 M guanidinium·HCl, 5 mM tris(2-carboxyethyl)phosphine,
10 mM chloroacetamide and 100 mM Tris·HCl (pH = 8.5). The SP4 clean-up protocol [9],
which uses glass beads for protein immobilisation, was applied to remove these detergents
prior to HPLC-MS analysis, since NP-40 and Triton X-100 are known to cause interference
during HPLC-MS analysis. The SP4 clean-up was performed after cell lysis and protein
concentration determination and the subsequent protein digestion was executed with
shaking at 1,000 rpm, since the glass beads were not removed beforehand as recommended
by the authors [9]. The glass beads were pelleted by centrifugation and the supernatant
including the peptides was desalted as in the reference protocol.

Ultracentrifugation protocol
For sample fractionation and membrane protein enrichment, two rounds of
ultracentrifugation were performed based on the method described previously by
Roma-Rodrigues et al. [10] and any modifications are mentioned below. Cell lysis was
performed following the reference protocol with larger cell pellets, total OD of 5 instead
of 1, and all resulting protein mass was subjected to ultracentrifugation. The samples
were diluted in EDTA buffer up to a volume of 1.5 mL to allow for ultracentrifugation
in tubes with a 4 mL maximum capacity. After the first round of ultracentrifugation,
the pellet was resuspended in 200 µL lysis buffer and diluted in EDTA buffer up to a
volume of 1.5 mL. The supernatants of both ultracentrifugation rounds, i.e. supernatant
and wash samples, were kept and analysed alongside the pellet sample. The final pellet
after ultracentrifugation was resuspended in 200 µL lysis buffer. The protein in both the
supernatant and the wash samples was concentrated using trichloroacetic acid (TCA)
precipitation [11]. Briefly, the protein was precipitated using 100% TCA, incubated on
ice and subsequently washed with ice-cold acetone. After overnight incubation at -20°C,
the acetone was removed, the protein resuspended in 200 µL lysis buffer and incubated
at 60°C to aid solubilisation. All samples, supernatant, wash and pellet, were diluted
with 200 µL 50 mM ammonium bicarbonate and subjected to protein concentration
determination. Protein digestion and desalting were performed following the reference
protocol.

3.2.3. HPLC-MS analysis

HPLC-MS analysis of the samples was performed on an Orbitrap Exploris 480 instrument
(Thermo Fisher Scientific) preceded by an EASY-nLC 1200 HPLC system (Thermo Fisher
Scientific). For each sample, 1 µg of peptides was captured on a 2-cm C18 trap column
(Thermo Fisher 164946).
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Subsequently separation was executed using a 70 minute gradient from 8% (v/v) to 48%
(v/v) of acetonitrile in 0.1% (v/v) formic acid on a 15-cm C18 reverse-phase analytical
column (Thermo EasySpray ES904) at a flow rate of 250 nL/min. The mass spectrometer
was operated in either data-dependent or data-independent acquisition mode with the
specific settings listed below.

DDA
For data-dependent acquisition (DDA), the mass spectrometer was run with a DD-MS2
method preceded by the FAIMS Pro Interface (Thermo Fisher Scientific) with alternating
CV of -50 V or -70 V. Full MS1 spectra were collected at a resolution of 60,000 and
scan range of 375-1,500 m/z, with the maximum injection time set to auto, an intensity
threshold of 5.0·103, and a dynamic exclusion at 45 s. MS2 spectra were obtained at a
resolution of 15,000, an isolation window of 1.6 m/z, the HCD collision energy set to 28%,
the maximum injection time set to auto.

DIA
For data-independent acquisition (DIA), the mass spectrometer was run with the HRMS1
method as previously described [12] preceded by the FAIMS Pro Interface (Thermo
Fisher Scientific) with a compensation voltage (CV) of -45 V, and any modifications are
mentioned below. Full MS1 spectra were collected at a resolution of 120,000 and scan
range of 400-1,000 m/z, with the maximum injection time set to auto. MS2 spectra were
obtained at a resolution of 60,000, with the maximum injection time set to auto, and the
collision energy set to 32. Each cycle consisted of three DIA experiments each covering a
range of 200 m/z with a window size of 6 m/z and a 1 m/z overlap, while a full MS scan
was obtained in between experiments.

3.2.4. Protein identification and quantification

For all analyses, sequence identification was performed using a protein database consisting
of the E. coli (UP000000625) or the P. putida (UP000000556) reference proteome. The
annotation of membrane proteins for both organisms was based on the subcellular location
tags of each protein in the corresponding reference proteome (see Table S3.1 and S3.2
for full details). The full data analysis workflow was executed with the autoprot pipeline
(REF Chapter1) for both DDA and DIA analyses to obtain proteome composition values
for all samples. For DDA data analysis, the raw MS files were first processed with
Proteome Discoverer v2.4 (Thermo Fisher Scientific) and the peptide-based results table
was exported. Next, the autoprot pipeline was deployed with the following settings: the
approach set to "free" for standard-free quantification approach, the mode set to "DDA"
for DDA data analysis, the corresponding reference proteome as "fasta", the peptide-based
results table as "DDAresultsFile" and xTop [13] as protein inference algorithm. Since the
raw MS file of replicate 1 of the cytosolic fraction of the E. coli ultracentrifugation sample
contained substantially less total signal (Figure S3.1A), the sample was excluded from
further analysis.
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For DIA data analysis, the autoprot pipeline was deployed with the following settings: the
"osDIA" flag set for using DIA-NN v1.8 [14], the approach set to "free" for standard-free
quantification approach, the mode set to "directDIA" for library-free DIA data analysis, the
corresponding reference proteome as "fasta" and xTop [13] as protein inference algorithm.

3.2.5. Development of membrane peptide mix

The membrane peptide mix was constructed using in silico tryptic digestion and peptide
detection prediction based on strongly expressed membrane proteins. Transcriptomics
data from the reference condition of the PRECISE database [15], i.e. E. coli MG1655
grown on M9 minimal media with 2 g/L glucose, was used to identify the highest 25%
of expressed membrane proteins. Tryptic peptides of these membrane proteins were
obtained by in silico digestion with trypsin, while allowing for 0 missed cleavages and a
peptide length between 9 and 15 amino acids. Only unique peptides were subjected to the
peptide detectability prediction using DeepMSPeptide [16] and peptides with a detection
probability above 90% were selected subsequently. The resulting list of membrane peptides
contained 284 peptides from 110 membrane proteins (see Table S3.3 for full details). The
membrane peptide mix was ordered from JPT as an unlabelled SpikeMix peptide pool
and subjected to HPLC-MS analysis using the DDA method described above. Out of the
24 membrane peptides, 228 were detected and included in the final membrane peptide
mix used here as a metric in the sample preparation protocol comparison.

3.2.6. Data availability

The mass spectrometry proteomics data will be deposited to the ProteomeXchange
Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE [17]
partner repository upon journal submission. The proteome-wide quantification results
obtained with the detergent protocol for sample preparation and DIA analysis can be
found in Table S3.4 and S3.5 for E. coli and P. putida, respectively.

3.3. Results
3.3.1. Development of protocols

For fair comparison of the sample preparation protocols, all samples were taken from one
cultivation, i.e. from the same biological replicate of the respective organism, to limit
variance which did not stem from differences between the protocols. The three sample
preparation protocols which focused on membrane proteomics analysis were based on the
reference protocol and include additional steps targeting membrane protein solubilisation
or enrichment (Figure 3.1). The enzymatic protocol aimed to decompose the remaining
phospholipids and peptidoglycan in the cell debris after the cell lysis step, in order to
expose more membrane proteins to solubilisation. To this end, the samples were incubated
with a mix of lipase, phospholipase C and lysozyme before the digestion step. Based
on previous protocols [7], NP-40 and Triton X-100 are effective non-ionic detergents for
membrane protein extraction.
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These detergents form micelles which mimic the phospholipid environment of the cell
membrane, potentially increasing the solubilisation of membrane proteins during cell lysis.
The detergent protocol used an enhanced lysis buffer during cell lysis, with either NP-40
or Triton X-100 in addition to guanidinium·HCl found in the reference protocol. The
SP4 clean-up method [9] was required for this protocol to properly remove the detergents
which would otherwise contaminate and interfere during HPLC-MS analysis. For the
ultracentrifugation protocol, two rounds of ultracentrifugation were included to extract
the majority of cytosolic proteins in order to enrich the membrane protein fraction, based
on previous protocols [2, 10]. The enriched membrane proteins were expected in the pellet
sample, however the two supernatants of the ultracentrifugation workflow were precipitated
and processed further alongside the other samples to assess the enrichment efficiency. Due
to the limited capacity of the ultracentrifuge and the extent of the additional steps, the
ultracentrifugation protocol was low-throughput compared to the other protocols.

Figure 3.1: Overview of the sample preparation protocols. The reference protocol is a standard
quantitative proteomics protocol, with no additional steps to increase membrane protein quantification.
The enzymatic protocol contains an additional incubation step with an enzyme mix after the cell lysis.
The enzyme mix consisted of lipase, phospholipase C and lysozyme to further degrade cell debris in order
to expose more membrane proteins. The detergent protocol deployed NP-40 or Triton X-100 as additional
detergent during cell lysis to aid in solubilisation of membrane proteins. The additional detergents
require subsequent removal with the SP4 clean-up, which is applied in combination with protein digestion.
The ultracentrifugation protocol includes two rounds of ultracentrifugation after cell lysis for membrane
protein enrichment. Icons created with BioRender.com.
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Previous membrane proteomics studies have been performed with DDA methods for
HPLC-MS analysis, yet DIA methods have quickly taken over the proteomics field,
showing increased performance compared with DDA [18]. Hence, the current study
deployed both DDA and DIA analysis to investigate the difference between acquisition
modes for membrane proteomics analysis specifically. The experimental data of all sample
preparation protocols and for both organisms was highly consistent with a median Pearson
correlation of 0.96 between technical replicates (Figure S3.1). Notably, the pellet sample
of the ultracentrifugation protocol differed the most from other samples for the membrane
protein enrichment, as expected. Based on the substantially lower total MS signal of
replicate 1 of the DDA analysis after the ultracentrifugation protocol compared to the
other replicates, replicate 1 was excluded from further analyses.

3.3.2. Overall comparison

Both the number of quantified membrane proteins and the precision, here the inverse
of the median coefficient of variation (CV) value, are relevant for membrane proteomics
analysis and were thus used to determine the optimal sample preparation protocol and
acquisition mode (Figure 3.2). As expected, the data from DDA analyses resulted in higher
precision, while the data from DIA analyses resulted in substantially greater numbers of
quantified membrane and cytosolic proteins. Even for DIA analysis, the median CV value
was a modest 20-25% and we expect most groups will select DIA analysis for proteomics
analysis of the cell envelope.

The detergent protocol using either NP-40 or Triton X-100 produced the highest number
of quantified membrane proteins for both organisms, with NP-40 slightly outperforming
Triton X-100 for E. coli membrane proteins. For E. coli, 794 membrane proteins (56% of
theoretical membrane proteome) were quantified applying the NP-40 detergent protocol
in combination with DIA analysis, while 485 membrane proteins (61% of theoretical
membrane proteome) were quantified for P. putida. Since the whole theoretical membrane
proteome is not expected to be expressed under one experimental condition, transcriptomics
data from the reference condition of the PRECISE database [15] was used determine the
expressed membrane proteome of E. coli under comparable experimental conditions. Out
of 1,431 theoretical E. coli membrane proteins, 1,314 membrane proteins had non-zero
expression levels, thus 60% of the expressed membrane proteome of E. coli was quantified
using the optimal method. Out of 2,972 theoretical cytosolic proteins, 2,555 cytosolic
proteins had non-zero expression levels and 73% of the expressed cytosolic proteome of
E. coli was therefore quantified using the optimal method. The expression levels and
proteome composition values correlated well for both membrane and cytosolic proteins
(Figure S3.2), even though the carbon source differed from 2 g/L to 4 g/L of glucose
between experimental conditions of the transcriptomics and proteomics analysis.
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Figure 3.2: Comparison of sample preparation protocols and acquisition modes in terms of quantity
and precision. The quantity is defined as a percentage of the theoretical number of either membrane or
cytosolic proteins. The theoretical proteome of E. coli consists of 1,431 membrane proteins and 2,972
cytosolic proteins, while the theoretical P. putida proteome consists of 793 membrane proteins and 4,743
cytosolic proteins. The precision is defined as the inverse of the median coefficient of variation (CV)
value. (A) Comparison for E. coli membrane proteins. (B) Comparison for E. coli cytosolic proteins. (C)
Comparison for P. putida membrane proteins. (D) Comparison for P. putida cytosolic proteins.

To obtain a metric which could capture the membrane protein extraction efficiency, a mix
of E. coli membrane peptides with a high probability of detection within the biological
samples was developed. Using the transcriptomics data from the reference condition
of the PRECISE database [15], the highest 25% of expressed membrane proteins was
determined and subjected to in silico tryptic digestion and peptide detection prediction.
The detection of 228 membrane peptides of the resulting mix was verified by HPLC-MS
and used for the metric. The detergent protocol combined with DIA analysis yielded the
identification of 75% of the membrane peptides (Figure S3.3) and confirmed the optimal
method for membrane protein extraction.

Although the highest number of quantified cytosolic proteins was obtained with the
reference protocol, a comparable number was achieved with the detergent protocol with
either NP-40 or Triton X-100.
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The CV values and concentration ranges were comparable between membrane and cytosolic
proteins for the detergent protocol with DIA analysis applied to either organism (Figure
S3.4 and S3.5). The comparable concentration range for membrane and cytosolic proteins
was interesting in particular, since membrane proteins are assumed to be present in low
abundance relative to cytosolic proteins due to cell surface constraints [19]. For the
purpose of proteome-wide analysis with a focus on maximising the number of quantified
membrane proteins, the detergent protocol combined with DIA analysis would provide
optimal results without compromising the quantification of cytosolic proteins.

3.3.3. Composition analysis

To assess the extent of membrane protein solubilisation and detection, the proteome
composition values of all samples were estimated using the standard-free total protein
approach (TPA) method [20, 21] (Figure 3.3). An increased membrane protein fraction was
indeed found for all developed protocols compared to the reference protocol. Notably, the
substantially increased membrane fraction of the membrane protein enrichment through
the ultracentrifugation protocol did not result in a higher number of quantified membrane
proteins compared to the other protocols. The increase in membrane fraction for the
detergent protocol could result from either the greater solubilisation of membrane proteins
through the micelles of the additional detergent or a certain selectivity for membrane
proteins with the glass beads used during the SP4 clean-up. Compared with the reference
protocol, there was an overall minimal shift in proteome composition values for both
membrane and cytosolic proteins (Figure S3.6), which suggests that the glass beads are
not selective for specific proteins.

The proteome composition values of the membrane protein fraction grouped by subcellular
location confirmed the extent of sample fractionation from the ultracentrifugation protocol
(Figure 3.4). As expected, the pellet sample captured mostly membrane proteins associated
with the inner and outer membrane, while the supernatant captured mostly periplasmic
membrane proteins alongside the cytosolic proteins. The detergent protocol with either
NP-40 or Triton X-100 also quantified a large fraction of membrane proteins associated
with the inner and outer membrane, which supports the proposition that the detergents
improve the solubilisation of membrane proteins. It should be noted that the subcellular
location annotation of membrane proteins is less extensive for P. putida than for E.
coli, which resulted in a larger "other" fraction of membrane proteins. Although the
proteome composition values showed substantial differences between protocols, the number
of quantified membrane proteins annotated with subcellular location showed a similar
distribution for all protocols (Figure S3.7). Measurements of protein concentration were
performed before and after the ultracentrifugation rounds for the ultracentrifugation
protocol, which resulted in a comparable total protein amount of the unfractionated and
fractionated samples of both organisms (Figure S3.8A and S3.8D). When sample fractions
were compared for membrane and cytosolic proteins separately, the results confirmed
that ultracentrifugation enriches for membrane and cytosolic proteins in the pellet and
supernatant, respectively (Figure S3.8B, S3.8C, S3.8E and S3.8F).
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Figure 3.3: Proteome composition analysis for comparison of sample preparation protocols. (A)
Proteome composition of E. coli. The membrane fraction occupies 27% of the total proteome composition
for the detergent protocol. (B) Proteome composition of P. putida. The membrane fraction occupies 10%
of the total proteome composition for the detergent protocol.

Further investigation of the E. coli quantified membrane proteome using proteomaps [22,
23] showed that the membrane proteome is mostly allocated to transport across the cell
membrane, energy metabolism and cell structure compared with the overall proteome
(Figure 3.5). As expected, the outer membrane porins, ATP synthase subunits and
substrate importers represent the largest fraction of the quantified membrane proteome
(Figure S3.9).

3.4. Discussions
In this study we developed a high-throughput sample preparation protocol for quantitative
membrane proteomics of gram-negative bacteria, specifically E. coli and P. putida. Out of
the investigated protocols, the detergent protocol proved optimal for increasing both the
number of quantified membrane proteins and the size of the membrane fraction within the
proteome, while maintaining comparable precision to the reference protocol. The addition
of non-ionic detergents such as NP-40 and Triton X-100 is a proven method for enhanced
solubilisation of membrane proteins, particularly for integral membrane proteins residing
within the inner and outer membrane [6, 7].
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Figure 3.4: Membrane proteome composition analysis based on subcellular location for comparison of
sample preparation protocols. (A) Membrane proteome composition of E. coli DDA data. (B) Membrane
proteome composition of E. coli DIA data. (C) Membrane proteome composition of P. putida DDA data.
(D) Membrane proteome composition of P. putida DIA data.

The enzymatic protocol did result in a larger number of quantified membrane proteins
compared with the reference protocol, thus further degradation of cell debris seemingly
exposed more membrane proteins to solubilisation. A combination of the enzymatic and
detergent protocols could allow for increased solubilisation of a larger number of exposed
membrane proteins, however verifying this would require additional investigation. It is
unlikely that any one protocol would be able to capture the full membrane proteome
due to the considerable differences between membrane proteins, e.g. subcellular location,
number of transmembrane regions, and abundance levels [4, 24]. Nevertheless, the current
optimal method, the detergent protocol combined with DIA analysis, resulted in the
highest number of quantified membrane proteins for both E. coli (56% of theoretical
membrane proteome) [5, 24, 25] and P. putida (61% of theoretical membrane proteome)
[10]. The optimal method and the reference protocol quantified a similar number of
cytosolic proteins, thus the optimal method could be appropriate for proteome-wide
analysis with an increased representation of membrane proteins.
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Figure 3.5: Proteomaps of the total proteome and the membrane proteome of E. coli. (A) Proteomap
of the total proteome with level 2 annotation. Out of 2,646 proteins submitted, 1,800 were supported
by the E. coli treemap. (B) Proteomap of the membrane proteome with level 2 annotation. Out of 794
submitted proteins, 533 were supported by the E. coli treemap.

Many ultracentrifugation protocols for bacterial membrane protein enrichment exist [2,
7, 10], yet no study has analysed all sample sections in order to investigate the sample
fractionation efficiency and the extent of the enrichment. Membrane protein enrichment
was achieved within the pellet sample using the current ultracentrifugation protocol,
however the cytosolic fraction still occupied most of the proteome composition. The
ultracentrifugation heavily selected for integral membrane proteins associated with the
inner or outer membrane, thus the pellet sample was unrepresentative of the full membrane
proteome. The precision of the ultracentrifugation protocol was similar to the detergent
and reference protocol, despite expectations of introducing substantial variance [1, 2]. Most
importantly, in comparison with the detergent protocol, the membrane protein enrichment
of the ultracentrifugation protocol did not result in greater numbers of quantified membrane
proteins in the pellet sample, which is the only sample section analysed in other studies
[2, 10]. We concluded that, due to improved capacity and sensitivity of current HPLC-MS
analyses, membrane protein enrichment through ultracentrifugation is no longer essential
in order to identify and quantify a substantial fraction of the membrane proteome.

Membrane proteins encompass 20 to 30% of all encoded genes for various organisms [26],
where E. coli and P. putida membrane proteins cover 33% and 14% of the corresponding
proteomes, respectively. The lower theoretical fraction of membrane proteins in the P.
putida proteome could be due to lacking annotation or could reflect biological differences
between the two bacteria, since P. putida is known for its extensive repertoire of metabolic
activities [27]. In terms of proteome composition, membrane proteins occupied 27%
and 10% for E. coli and P. putida for the optimal method, respectively. Moreover,
the concentration range of membrane and cytosolic proteins were comparable for both
organisms, which contradicts the assumption of membrane proteins mostly having lower
abundances than cytosolic proteins [1, 28]. The substantial membrane fraction of the
total proteome composition has not been experimentally verified before, yet has been
hypothesised by simulations with resource allocation models [29, 30].
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Membrane proteins are assumed to crowd the membrane surface of prokaryotes [19] and
quantitative measurements of the membrane proteome within the total proteome can
provide new information on cell membrane occupation.

Absolute quantitative membrane proteomics data is sparse [1] and no absolute
quantification of either the E. coli or the P. putida membrane proteome exists to date.
Here we provided a semi-absolute quantification of both membrane proteomes through
proteome composition values resulting from the TPA quantification method [20, 21].
To reach an absolute quantification in terms of intracellular protein concentrations, or
cell surface densities for membrane proteins, additional calculations are necessary which
depend on multiple parameters and assumptions. For cytosolic proteins, the inference
of intracellular concentrations from proteome composition values requires the cellular
protein density, i.e. grams of protein per litres of cell volume [13]. For membrane
proteins, combining the cellular protein density in grams of protein per cell and the
cell surface in µm2 results in the cell surface densities [1]. The assumption of efficient
extraction is applied for these calculations and is deemed fair for cytosolic proteins
[13]. However, this assumption does not hold true for most membrane proteins and a
correction factor is crucial, albeit challenging to determine [1, 2]. An enrichment factor
should be calculated alongside whenever membrane protein enrichment is applied [2],
such as with the ultracentrifugation protocol. The application of the detergent protocol
provides a representative membrane proteome analysis without the need for enrichment
and eliminates the need for enrichment factor calculation. Further research is vital for
accurate absolute quantitative membrane proteomics in the future and we hope that the
optimal method presented here paves the way.

3.5. Conclusions
Comparative analysis based on number of quantified membrane proteins and precision
determined that the detergent protocol combined with DIA analysis is the optimal method
for quantitative membrane proteomics in gram-negative bacteria. Additional detergents
allowed for enhanced solubilisation of membrane proteins, resulting in higher numbers
of quantified membrane proteins and increased membrane fractions of the proteome
composition compared to the reference protocol, while maintaining similar precision.
With a high number of both cytosolic and membrane proteins quantified, the optimal
method allows for proteome-wide quantitative analysis with a stronger representation of
the membrane proteome.
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Supplementary materials
Extended experimental methods

Proteomics sample preparation - Reference protocol

Cell lysis
Preparation: Set Thermo mixer to 99°C. Make lysis buffer according to number of samples.
After making lysis buffer, transfer the buffer to Eppendorf tubes and place in Thermo
mixer at 99°C. Take samples from -80°C freezer and put on ice.

1. Add 2 (3-mm zirconium oxide) beads to the cell pellet (while on ice).

2. Add 50 µL of hot lysis buffer (99°C) to cell pellet.

3. 5 minutes in Tissuelyser at 25 Hz.

4. Boil in heat block (99°C) for 10 minutes while shaking/mixing at 1,800 rpm.

5. Centrifuge at 15,000 g for 10 minutes.

6. Transfer 50 µL of supernatant to a new Eppendorf tube and add same volume of 50
mM Ambic (ammonium bicarbonate).

7. Vortex mix the samples.

Perform total protein measurement using BCA assay with micro BCA Protein Assay Kit
(Thermo Scientific, product number 23235).

Protein digestion with trypsin and Lys-C mixture

1. Take 20 µg of protein per sample and dilute in 50 mM Ambic until a volume of 100
µL.

2. Add 20 µL of 0.1 µg/µL of trypsin and Lys-C mixture to the samples in Eppendorf
tubes.

3. Incubate in Thermomixer (8 hours at 37°C at 600 rpm, followed by xxx hours at
4°C at 600 rpm).

Stagetipping

1. Make 10% TFA from 100% TFA: Add 900 µL Milli Q water and 100 µL 100% TFA
to 1.5 mL Eppendorf tube.

2. Stop reaction by adding 10 µL 10% TFA.

3. Vortex mix the samples.

4. Centrifuge the samples at 14,000 g for 15 minutes.

To the following steps: Never let them dry longer than 2 minutes! (Max capacity around
20 µg, loading more you will elute more hydrophobic peptides).
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Activate the C18 filters with:

• 1x 20 µL MeOH (1 minute at 1,000g at 20°C).

• 1x 20 µL buffer B (80% CH3CN, 0.1% FA) (1 minute at 1,000 g at 20°C).

• 2x 20 µL buffer A´ (3% CH3CN, 1% TFA) (1 minute at 1,000 g at 20°C).

• Spin samples through C18 column (1,500 g, 1.5 minutes at 20°C, depending on volume).

• Wash 2x with 20 µL buffer A (0.1% FA) ( 1 minute at 1,000 g at 20°C). Do not let
C18 dry!!

Change plate to elution plate.

• Elute with 2x 20 µL buffer B (1 minute at 1,000g).

• Reduce ACN concentration to 5 µL by running on Eppendorf concentrator (Program
V-AQ at room temperature). If in 96 well plate for 1.5 hours.

• Add 40 µL 0.1% FA in water and keep at 4°C.
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Proteomics sample preparation - Enzymatic protocol

Cell lysis
Preparation: Set Thermo mixer to 99°C. Make lysis buffer according to number of samples.
After making lysis buffer, transfer the buffer to Eppendorf tubes and place in Thermo
mixer at 99°C. Take samples from -80°C freezer and put on ice.

1. Add 2 (3-mm zirconium oxide) beads to the cell pellet (while on ice).

2. Add 50 µL of hot lysis buffer (99°C) to cell pellet.

3. 5 minutes in Tissuelyser at 25 Hz.

4. Boil in heat block (99°C) for 10 minutes while shaking/mixing at 1,800 rpm.

5. Spin down the samples.

6. Transfer 50 µL of supernatant to a new Eppendorf tube and add same volume of 50
mM Ambic (ammonium bicarbonate).

7. Vortex mix the samples.

Perform total protein measurement using BCA assay with micro BCA Protein Assay Kit
(Thermo Scientific, product number 23235).

Enzymatic digest with lipase, phospholipase C, and lysozyme

1. Take 20 µg of protein per sample and dilute in 50 mM Ambic until a volume of 100
µL.

2. Add 10 µL of each enzyme solution to the samples.

3. Incubate for 1 hour at 37°C in the Thermomixer.

Protein digestion with trypsin and Lys-C mixture

1. Add 20 µL of 0.1 µg/µL of trypsin and Lys-C mixture to the samples in Eppendorf
tubes.

2. Incubate in Thermomixer (8 hours at 37°C at 600 rpm, followed by xxx hours at
4°C at 600 rpm).

Stagetipping

1. Make 10% TFA from 100% TFA: Add 900 µL Milli Q water and 100 µL 100% TFA
to 1.5 mL Eppendorf tube.

2. Stop reaction by adding 10 µL 10% TFA.

3. Vortex mix the samples.

4. Centrifuge the samples at 14,000 g for 15 minutes.
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To the following steps: Never let them dry longer than 2 minutes! (Max capacity around
20 µg, loading more you will elute more hydrophobic peptides).

Activate the C18 filters with:

• 1x 20 µL MeOH (1 minute at 1,000g at 20°C).

• 1x 20 µL buffer B (80% CH3CN, 0.1% FA) (1 minute at 1,000 g at 20°C).

• 2x 20 µL buffer A´ (3% CH3CN, 1% TFA) (1 minute at 1,000 g at 20°C).

• Spin samples through C18 column (1,500 g, 1.5 minutes at 20°C, depending on volume).

• Wash 2x with 20 µL buffer A (0.1% FA) ( 1 minute at 1,000 g at 20°C). Do not let
C18 dry!!

Change plate to elution plate.

• Elute with 2x 20 µL buffer B (1 minute at 1,000g).

• Reduce ACN concentration to 5 µL by running on Eppendorf concentrator (Program
V-AQ at room temperature). If in 96 well plate for 1.5 hours.

• Add 40 µL 0.1% FA in water and keep at 4°C.
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Proteomics sample preparation - Detergent protocol

Cell lysis
Preparation: Set Thermo mixer to 99°C. Make lysis buffer according to number of samples.
After making lysis buffer, transfer the buffer to Eppendorf tubes and place in Thermo
mixer at 99°C. Take samples from -80°C freezer and put on ice.

1. Add 2 (3-mm zirconium oxide) beads to the cell pellet (while on ice).

2. Add 50 µL of hot lysis buffer (99°C) to cell pellet.

3. 5 minutes in Tissuelyser at 25 Hz.

4. Boil in heat block (99°C) for 10 minutes while shaking/mixing at 1,800 rpm.

5. Centrifuge at 15,000 g for 10 minutes.

6. Transfer 50 µL of supernatant to a new Eppendorf tube and add same volume of 50
mM Ambic (ammonium bicarbonate).

7. Vortex mix the samples.

Perform total protein measurement using BCA assay with micro BCA Protein Assay Kit
(Thermo Scientific, product number 23235).

Glass beads solution preparation

• 9–13 µm glass spheres/beads. Glass beads broadly improved recovery, digestion
efficiency and reproducibility, but are not required.

• Suspend 100 mg in 1 mL of Ultrapure water, vortex until suspended fully, and pellet at
> 500g for 1 minute. Of note: approximately 50% of the beads are buoyant, and will
not pellet, and should be removed over the course of these wash steps. Additionally,
small amounts of metal in the beads can be removed by magnet or acid wash but had
no effect on the performance of the beads. Larger scale preps are possible but may
require additional washes due to buoyant beads.

• Resuspend, vortex and wash with > 1 mL of: 100% acetonitrile (ACN) (1×), 50 mM
AmBic (1×), and Ultrapure water (> 2×) ensuring no unpelleted beads remain.

• Resuspend beads in 900 µL acetonitrile to 50 mg/mL (recommended). Avoids protein
dilution from beads in water. Ensures uniform bead dispersion.

• Dilute beads to 2.5 µg/µL by adding 50 µL of the 50 mg/mL beads solution to 950
µL acetonitrile. Enough for 10 samples. Dilute beads to at least 2.5× [protein] (so
bead:protein is 10:1 from 4 volumes of bead–ACN suspension.

SP4 clean-up protocol
The recommendations are the following:

• Liquids should be kept low in the tube, with losses/contamination possible from tube
walls/lid.
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• Pipette ACN directly into the sample to ensure rapid mixing, but do not touch the
ACN–sample mix with the tip.

• Use the tube hinge to orientate the location of the pellet (fixed angle rotors). Initially
orientate the tube hinge inwards during the pellet precipitation and turn 180°after 2.5
min will give a denser pellet and less risk of loss from fragile wall adhesion.

• During wash removals, avoid touching the tube walls with the tip as precipitation may
occur on them, pipette slowly and avoid agitating the pellet.

• If adding beads, ensure they maintain a uniform suspension in water/ACN by pipetting
up and down at least once between additions.

1. Aliquot 20 µg of protein into an Eppendorf tube and dilute in 50 mM Ambic until a
volume of 20 µL.

2. Add 80 µL of 2.5 µg/µL ACN:bead suspension and ensure complete mixing. Without
pipette mixing, e.g., by consistent ACN addition.

3. Centrifuge for 5 minutes at 15,000 g.

4. Remove supernatant by pipetting slowly and remove a consistent volume of 90–95%.
Avoid disturbing beads/pellet.

5. Wash with 80% ethanol, with a volume of 180 µL. Pipette gently down the side
opposite the hinge/pellet to avoid disturbance, do not vortex/resuspend.

6. Centrifuge for 2 minutes at 15,000 g and remove 90–95% of wash.

7. Repeat wash steps 5 and 6 twice, for a total of 3 washes.

8. Remove >= 95% of final wash. For larger volumes a final 2 minute spin will help
with removal of excess wash.

9. Add 100 µL of 50 mM AmBic to bead pellets of SP4 clean-up protocol samples. No
mixing!

Protein digestion with trypsin and Lys-C mixture

1. Add 20 µL of 0.1 µg/µL of trypsin and Lys-C mixture to the samples in Eppendorf
tubes.

2. Incubate in Thermomixer (Use program 8 in Thermomixer; 8 hours at 37°C at 1,000
rpm, followed by xxx hours at 4°C at 1,000 rpm).

Stagetipping

1. Make 10% TFA from 100% TFA: Add 900 µL Milli Q water and 100 µL 100% TFA
to 1.5 mL Eppendorf tube.

2. Stop reaction by adding 10 µL 10% TFA.

3. Vortex mix the samples.
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4. Centrifuge the samples at 14,000 g for 15 minutes.

To the following steps: Never let them dry longer than 2 minutes! (Max capacity around
20 µg, loading more you will elute more hydrophobic peptides).

Activate the C18 filters with:

• 1x 20 µL MeOH (1 minute at 1,000g at 20°C).

• 1x 20 µL buffer B (80% CH3CN, 0.1% FA) (1 minute at 1,000 g at 20°C).

• 2x 20 µL buffer A´ (3% CH3CN, 1% TFA) (1 minute at 1,000 g at 20°C).

• Spin samples through C18 column (1,500 g, 1.5 minutes at 20°C, depending on volume).

• Wash 2x with 20 µL buffer A (0.1% FA) ( 1 minute at 1,000 g at 20°C). Do not let
C18 dry!!

Change plate to elution plate.

• Elute with 2x 20 µL buffer B (1 minute at 1,000g).

• Reduce ACN concentration to 5 µL by running on Eppendorf concentrator (Program
V-AQ at room temperature). If in 96 well plate for 1.5 hours.

• Add 40 µL 0.1% FA in water and keep at 4°C.
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Proteomics sample preparation - Ultracentrifugation protocol

Cell lysis
Preparation: Set Thermo mixer to 99°C. Make lysis buffer according to number of samples.
After making lysis buffer, transfer the buffer to Eppendorf tubes and place in Thermo
mixer at 99°C. Take samples from -80°C freezer and put on ice.

1. Add 2 (3-mm zirconium oxide) beads to the cell pellet (while on ice).

2. Add 100 µL of hot lysis buffer (99°C) to cell pellet.

3. 5 minutes in Tissuelyser at 25 Hz.

4. Boil in heat block (99°C) for 10 minutes while shaking/mixing at 1,800 rpm.

5. Spin down the samples.

6. Transfer 100 µL of supernatant to a new Eppendorf tube and add same volume of
50 mM Ambic (ammonium bicarbonate).

7. Vortex mix the samples.

Perform total protein measurement using BCA assay with micro BCA Protein Assay Kit
(Thermo Scientific, product number 23235).

Membrane protein extraction and fractionation

1. Set the ultracentrifuge to 4°C.

2. Transfer all of the whole cell extract as starting material to the ultracentrifuge tube.

3. Adjust the volume up to 1.5 mL with Tris EDTA buffer (10 mM EDTA, 20 mM
Tris-HCl, pH 7.5).

4. Ultracentrifuge at 100,000 g and 4°C for 90 minutes to fractionate the proteins.

5. Transfer the supernatant containing the soluble, cytosolic proteins to new Eppendorf
tubes.

6. Wash step: Resuspend the pellet in 200 µL of lysis buffer.

7. Adjust the volume up to 1.5 mL with Tris EDTA buffer (10 mM EDTA, 20 mM
Tris-HCl, pH 7.5).

8. Transfer to an Eppendorf tube.

9. Incubate the solution at 4°C for 30 minutes on a bench rotator to resuspend.

10. Transfer to the ultracentrifuge tube.

11. Ultracentrifuge at 100,000 g and 4°C for 60 minutes to wash the membrane proteins.

12. Transfer the supernatant containing the soluble proteins to new Eppendorf tubes.
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13. Resuspend the pellet in 200 µL lysis buffer, vortex and transfer to new Eppendorf
tubes.

14. Incubate the solution at 4°C for 30 minutes on a bench rotator to solubilise the
membrane proteins.

15. Add 200 µL of 50 mM Ambic only to the pellet fraction samples.

Precipitation of membrane proteins in both supernatants

1. Thaw samples and keep on ice.

2. Prepare 100% trichloroacetic acid (TCA).

3. Add 225 µL 100% TCA to each tube to reach a final TCA concentration of 15%.
The sample should turn milky white if proteins are present.

4. Turn on the centrifuge on 4°C.

5. Vortex well and incubate on ice for 1 hour.

6. Centrifuge the samples at 4°C at 14,000 g for 60 minutes.

7. Discard the supernatant properly. (First with 1000 µL pipette then with 10 µL
pipette).

8. Add 800 µL (use more if necessary) of -20°C acetone to the pellet.

9. Vortex and then sonicate (3x 10 seconds) the samples. The pellet will not completely
be resuspended. The proteins will not dissolve in the acetone, they will only be
suspended.

10. Incubate overnight at -20°C.

11. Turn the centrifuge on 4°C.

12. Turn the Thermomixer on 60°C.

13. Centrifuge at 14,000 g at 4°C for 30 minutes.

14. Discard the supernatant.

15. Leave to air dry for around 30 minutes.

16. Prepare Guanidinium HCl lysis buffer.

17. Add 100 µL Guanidinium HCl cell lysis buffer and resuspend by pipetting up and
down three times.

18. Place in Thermomixer 600 rpm at 60°C for 30 minutes (2x 15 minutes and vortex
in between).

19. (If pellet is still visible: add 50 µL Guanidinium HCl cell lysis buffer, vortex and
place in Thermomixer again for 30 minutes.)
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20. Add xxx µL (100 µL; same amount as total of Guanidinium HCl cell lysis buffer) of
50 mM Ambic added to each sample. Whirl thoroughly!

Perform total protein measurement using BCA assay with micro BCA Protein Assay Kit
(Thermo Scientific, product number 23235).

Protein digestion with trypsin and Lys-C mixture

1. Take 20 µg of protein per sample and dilute in 50 mM Ambic until a volume of 100
µL.

2. Add 20 µL of 0.1 µg/µL of trypsin and Lys-C mixture to the samples in Eppendorf
tubes.

3. Incubate in Thermomixer (8 hours at 37°C at 600 rpm, followed by xxx hours at
4°C at 600 rpm).

Stagetipping

1. Make 10% TFA from 100% TFA: Add 900 µL Milli Q water and 100 µL 100% TFA
to 1.5 mL Eppendorf tube.

2. Stop reaction by adding 10 µL 10% TFA.

3. Vortex mix the samples.

4. Centrifuge the samples at 14,000 g for 15 minutes.

To the following steps: Never let them dry longer than 2 minutes! (Max capacity around
20 µg, loading more you will elute more hydrophobic peptides).

Activate the C18 filters with:

• 1x 20 µL MeOH (1 minute at 1,000g at 20°C).

• 1x 20 µL buffer B (80% CH3CN, 0.1% FA) (1 minute at 1,000 g at 20°C).

• 2x 20 µL buffer A´ (3% CH3CN, 1% TFA) (1 minute at 1,000 g at 20°C).

• Spin samples through C18 column (1,500 g, 1.5 minutes at 20°C, depending on volume).

• Wash 2x with 20 µL buffer A (0.1% FA) ( 1 minute at 1,000 g at 20°C). Do not let
C18 dry!!

Change plate to elution plate.

• Elute with 2x 20 µL buffer B (1 minute at 1,000g).

• Reduce ACN concentration to 5 µL by running on Eppendorf concentrator (Program
V-AQ at room temperature). If in 96 well plate for 1.5 hours.

• Add 40 µL 0.1% FA in water and keep at 4°C.

87



Chapter 3: Supplementary materials

Supplementary figures

Figure S3.1: Pearson correlation coefficients of proteome composition values in all samples compared
against each other. (A) Pearson correlation coefficients of E. coli data obtained with DDA analysis. Based
on the substantially lower total MS signal of replicate 1 of the DDA analysis after the ultracentrifugation
protocol compared to the other replicates, replicate 1 was excluded from further analyses. (B) Pearson
correlation coefficients of E. coli data obtained with DIA analysis. (C) Pearson correlation coefficients
of P. putida data obtained with DDA analysis. (D) Pearson correlation coefficients of P. putida data
obtained with DIA analysis.
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Figure S3.2: Correlation between proteome composition values produced with the detergent protocol and
DIA analysis, and mRNA number fraction values (number of mRNA molecules per total number of mRNA
molecules) extracted from the E. coli reference condition of the PRECISE database [1]. The density is
indicated by the colour map, where light (yellow) is more dense than dark (blue). (A) Correlation of all
proteins. (B) Correlation of cytosolic proteins. (C) Correlation of membrane proteins. (D) Distribution of
mRNA number fraction values of expressed proteins which did not show up in the protein quantification.

Figure S3.3: Comparison of sample preparation protocols and acquisition modes in regards to the
E. coli membrane peptide mix consisting of 228 peptides. The highest number of peptides (170) was
identified by deploying the detergent protocol in combination with DIA analysis.
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Figure S3.4: Distribution of coefficient of variation (CV) values from the samples of the detergent
protocol (NP-40), with membrane proteins in comparison to cytosolic proteins. (A) CV distribution of E.
coli data obtained with DDA analysis. (B) CV distribution of E. coli data obtained with DIA analysis.
(C) CV distribution of P. putida data obtained with DDA analysis. (D) CV distribution of P. putida
data obtained with DIA analysis.

Figure S3.5: Concentration range from the samples of the detergent protocol (NP-40), with membrane
proteins in comparison to cytosolic proteins. (A) Concentration range of E. coli data obtained with DDA
analysis. (B) Concentration range of E. coli data obtained with DIA analysis. (C) Concentration range
of P. putida data obtained with DDA analysis. (D) Concentration range of P. putida data obtained with
DIA analysis.
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Figure S3.6: Concentration range from the samples of the detergent protocol (NP-40) in comparison to
the reference protocol. (A) Concentration range of E. coli cytosolic protein data obtained with DDA
analysis. (B) Concentration range of E. coli membrane protein data obtained with DDA analysis. (C)
Concentration range of E. coli cytosolic protein data obtained with DIA analysis. (D) Concentration
range of E. coli membrane protein data obtained with DIA analysis. (E) Concentration range of P. putida
cytosolic protein data obtained with DDA analysis. (F) Concentration range of P. putida membrane
protein data obtained with DDA analysis. (G) Concentration range of P. putida cytosolic protein data
obtained with DIA analysis. (H) Concentration range of P. putida membrane protein data obtained with
DIA analysis.

Figure S3.7: Membrane proteome fraction analysis based on subcellular location for comparison of
sample preparation protocols. (A) Membrane proteome fraction analysis of E. coli DDA data. (B)
Membrane proteome fraction analysis of E. coli DIA data. (C) Membrane proteome fraction analysis of
P. putida DDA data. (D) Membrane proteome fraction analysis of P. putida DIA data.
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Figure S3.9: Proteomaps of the total proteome and the membrane proteome of E. coli. (A) Proteomap
of the total proteome with level 5 annotation. Out of 2,646 proteins submitted, 1,800 were supported
by the E. coli treemap. (B) Proteomap of the membrane proteome with level 5 annotation. Out of 794
submitted proteins, 533 were supported by the E. coli treemap.

93



Chapter 3: Supplementary materials

Supplementary tables

Table S3.3: Overview of E. coli membrane peptide mix.

Peptide Protein Gene Description
DNIFGSIEEDAQR P0ABF1 pcnB Poly(A) polymerase I
LATLLNDIPPAR P0ABF1 pcnB Poly(A) polymerase I
FYDASSYAGK P19934 tolA Tol-Pal system protein TolA
IPKPPSQAVYEVFK P19934 tolA Tol-Pal system protein TolA
VIPLPDEYK P0AEH1 rseP Regulator of sigma-E protease RseP
QYGPFNAIVEATDK P0AEH1 rseP Regulator of sigma-E protease RseP
GFELPEDVGR P69931 hda DnaA regulatory inactivator Hda
TLFMTLDQLDR P69931 hda DnaA regulatory inactivator Hda
NVPFESGIDSVGSAR P0AFC3 nuoA NADH-quinone oxidoreductase subunit A
LVLLSDPVTMAR P62517 mdoH Glucans biosynthesis glucosyltransferase H
IGALDWTPAR P0AFC3 nuoA NADH-quinone oxidoreductase subunit A
MNPETNSIANR P0AFC3 nuoA NADH-quinone oxidoreductase subunit A
GHIEAATAFGFTR P52094 hisQ Histidine transport system permease protein HisQ
YALPGIGNNWQVILK P52094 hisQ Histidine transport system permease protein HisQ
VIQGIGGAMMMPVAR P31474 hsrA Probable transport protein HsrA
FMLQDLLGVVSPGLK P15078 cstA Peptide transporter CstA
LIFTGGVAK P0AB01 elyC Envelope biogenesis factor ElyC
FALVVVINDPQAGK P0AD68 ftsI Peptidoglycan D,D-transpeptidase FtsI
VAWLQVISPDMLVK P0AD68 ftsI Peptidoglycan D,D-transpeptidase FtsI
EVHDAGGISVGDR P0AD68 ftsI Peptidoglycan D,D-transpeptidase FtsI
VQNALQSVPGVTQAR Q59385 copA Copper-exporting P-type ATPase
TGTLTEGKPQVVAVK Q59385 copA Copper-exporting P-type ATPase
EYQVVIDPQR P38054 cusA Cation efflux system protein CusA
LIMSVPEVAR P38054 cusA Cation efflux system protein CusA
GSSLVTGIVDAR P23930 lnt Apolipoprotein N-acyltransferase
YDTYNTIITLGK P23930 lnt Apolipoprotein N-acyltransferase
SIGPWQHFQMAR P23930 lnt Apolipoprotein N-acyltransferase
DFAGAQNLLAK P45464 lpoA Penicillin-binding protein activator LpoA
ALIAQEPLLGAK P45464 lpoA Penicillin-binding protein activator LpoA
TIQQGFEAAK P45464 lpoA Penicillin-binding protein activator LpoA
QLAHGDFGPSFK P0AFH2 oppB Oligopeptide transport system permease protein

OppB
QVAILAVAGAEK P0ABA0 atpF ATP synthase subunit b
DQEVHAVVQDWK P46889 ftsK DNA translocase FtsK
MDDDEEITYTAR P46889 ftsK DNA translocase FtsK
EGIGPQLPRPK P46889 ftsK DNA translocase FtsK
LMVALDVGGAIK P0A935 mltA Membrane-bound lytic murein transglycosylase A
LTGEESDTLR P06282 cdh CDP-diacylglycerol pyrophosphatase
IAAEEIENLLLR P10378 entE Enterobactin synthase component E
MGDYIVAYALPDDVK P15877 gcd Quinoprotein glucose dehydrogenase
TGNIFVLDR P15877 gcd Quinoprotein glucose dehydrogenase
EVLQQFDDQSR P0AFA7 nhaB Na(+)/H(+) antiporter NhaB
AAMESGAITLK P0AFA7 nhaB Na(+)/H(+) antiporter NhaB
QMQMNAQAEK P0AC02 bamD Outer membrane protein assembly factor BamD
NIDWYAFSLPK P08369 creD Inner membrane protein CreD
ADNPFDLLLPAAMAK P0AC23 focA Probable formate transporter 1
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Table S3.3: Overview of E. coli membrane peptide mix - continued.

Peptide Protein Gene Description
IIAGNIINFSR P0C0S1 mscS Small-conductance mechanosensitive channel
QGQEIIAGNFR P0AEQ6 glnP Glutamine transport system permease protein GlnP
TTLTDLTHSLK P23837 phoQ Sensor protein PhoQ
TPLAVLQSTLR P23837 phoQ Sensor protein PhoQ
EQQLLAEAR P0ABU7 exbB Biopolymer transport protein ExbB
AAFDDAIAAR P0ABC7 hflK Modulator of FtsH protease HflK
AQTILEAQGEVAR P0ABC7 hflK Modulator of FtsH protease HflK
GGNLMVLPLDQMLK P0ABC7 hflK Modulator of FtsH protease HflK
VATISGSDAK P09127 hemX Protein HemX
LLVAAQAVPR P09127 hemX Protein HemX
QALENVSTWVR P09127 hemX Protein HemX
SVDTPVIGLK P0ABJ9 cydA Cytochrome bd-I ubiquinol oxidase subunit 1
AYSLLEQLR P0ABJ9 cydA Cytochrome bd-I ubiquinol oxidase subunit 1
YHFEQSSTTTQPAR P0ABJ9 cydA Cytochrome bd-I ubiquinol oxidase subunit 1
GIALYYGGR P0AFB1 nlpI Lipoprotein NlpI
LAVANNVHNFVEHR P0AFB1 nlpI Lipoprotein NlpI
AIVEAAHEFGR P07001 pntA NAD(P) transhydrogenase subunit alpha
AEMELFAAQAK P07001 pntA NAD(P) transhydrogenase subunit alpha
SLTNVNAQFQR P60752 msbA ATP-dependent lipid A-core flippase
AIQAALDELQK P60752 msbA ATP-dependent lipid A-core flippase
LPGGQLEQAR P0ABI4 corA Magnesium transport protein CorA
MIFIVFHGK P33607 nuoL NADH-quinone oxidoreductase subunit L
AQSVVDYLISK P0A910 ompA Outer membrane protein A
IGSDAYNQGLSER P0A910 ompA Outer membrane protein A
GVVGQVVAVAK P16926 mreC Cell shape-determining protein MreC
FPEGYPVAVVSSVK P16926 mreC Cell shape-determining protein MreC
GDTPEVLHFDISSR P0AFX7 rseA Anti-sigma-E factor RseA
INAMLQDYELQR P0AFX7 rseA Anti-sigma-E factor RseA
DQFVQPVVK P0ADB1 osmE Osmotically-inducible putative lipoprotein OsmE
EILVEHYDNIEQK P0C0L7 proP Proline/betaine transporter
IDDIDHEIADLQAK P0C0L7 proP Proline/betaine transporter
EYAVQQNINILR P0AG90 secD Protein translocase subunit SecD
NIAQWLQENGITR Q46833 yghE Putative type II secretion system L-type protein

YghE
GQFENAFNSER P0ADY1 ppiD Periplasmic chaperone PpiD
LIDEALLDQYAR P0ADY1 ppiD Periplasmic chaperone PpiD
ALDAYYALQQK P0ADY1 ppiD Periplasmic chaperone PpiD
MNIFEQTPPNR P0AAA1 yagU Inner membrane protein YagU
HQAIQALMR P76278 yebZ Inner membrane protein YebZ
YYGVAYGYSK P69805 manZ PTS system mannose-specific EIID component
VAINFFYYPDDK P77538 yfhR Uncharacterized protein YfhR
VLPLTGVVSPR P0ADE4 tamA Translocation and assembly module subunit TamA
WESPVGPIK P0ADE4 tamA Translocation and assembly module subunit TamA
FLENAMYASR P67244 yqhA UPF0114 protein YqhA
LIAETAPDANNLLR P0AG00 wzzE ECA polysaccharide chain length modulation protein
QYVAFASQR P0AG00 wzzE ECA polysaccharide chain length modulation protein
IAEQHNISR P0AG00 wzzE ECA polysaccharide chain length modulation protein
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Table S3.3: Overview of E. coli membrane peptide mix - continued.

Peptide Protein Gene Description
LPFDDGVMSQYK P76507 yfdI Uncharacterized protein YfdI
YHATYFGSYLYMK P76507 yfdI Uncharacterized protein YfdI
FNAFGDGVAQLGR P46130 ybhC Putative acyl-CoA thioester hydrolase YbhC
GAVVFDNTEFR P46130 ybhC Putative acyl-CoA thioester hydrolase YbhC
QLQQNATQAEVNR P64429 ypfJ Uncharacterized protein YpfJ
VAPITTGDVVLQSAR P0ADC3 lolC Lipoprotein-releasing system transmembrane protein

LolC
SVAVGVMLGIDPAQK P0ADC3 lolC Lipoprotein-releasing system transmembrane protein

LolC
AQYDTVLANEVTAR P02930 tolC Outer membrane protein TolC
TDKPQPVNALLK P02930 tolC Outer membrane protein TolC
QNLLDIESLK P76372 wzzB Chain length determinant protein
VDDLDIHAYR P76372 wzzB Chain length determinant protein
ELLTNDPFSSR P75818 ybjP Uncharacterized lipoprotein YbjP
YLGGSVHATAGTLR P75818 ybjP Uncharacterized lipoprotein YbjP
DLNNESTPMAFENIK P64451 ydcL Uncharacterized lipoprotein YdcL
SVAAFAAVDQQGIER P76221 ydjZ TVP38/TMEM64 family inner membrane protein

YdjZ
HGLLDAQEYQR P0AD27 yejM Inner membrane protein YejM
AAGNVDDQINR P0AD27 yejM Inner membrane protein YejM
LDNTVVIITAGR P0AD27 yejM Inner membrane protein YejM
VIEQGNVMVLGGDMR P37624 rbbA Ribosome-associated ATPase
FGSFVAVDHVNFR P37624 rbbA Ribosome-associated ATPase
IEISSALNSTDMR P39838 rcsD Phosphotransferase RcsD
GVFAMLNLVPGK P39838 rcsD Phosphotransferase RcsD
SPVEPVQSTAPQPK P69411 rcsF Outer membrane lipoprotein RcsF
IYLVDQNDR P77774 bamB Outer membrane protein assembly factor BamB
QAQQLAEQQR P29131 ftsN Cell division protein FtsN
QLLEQMQADMR P29131 ftsN Cell division protein FtsN
TSQAAPVQAQPR P29131 ftsN Cell division protein FtsN
QVVATATFR P06971 fhuA Ferrichrome outer membrane transporter/phage

receptor
IYDDAAVER P31554 lptD LPS-assembly protein LptD
FQLTPVDVITAIK P31224 acrB Multidrug efflux pump subunit AcrB
STGEAMELMEQLASK P31224 acrB Multidrug efflux pump subunit AcrB
LMLDSAGSVAFFR P0A6H8 clsA Cardiolipin synthase A
ALFATGNFEDVR P0A940 bamA Outer membrane protein assembly factor BamA
VQSMPEINDADK P0A940 bamA Outer membrane protein assembly factor BamA
LGFFETVDTDTQR P0A940 bamA Outer membrane protein assembly factor BamA
DPQLQVVTNK P0AEE1 dcrB Protein DcrB
MQQLDSIISAK P0AEE1 dcrB Protein DcrB
DTIGDIIILPR P0A7A7 plsB Glycerol-3-phosphate acyltransferase
EQAVLMTYYR P0A7A7 plsB Glycerol-3-phosphate acyltransferase
MTDLTAQEPAWQTR P33599 nuoC NADH-quinone oxidoreductase subunit C/D
IYDLVEAITGFR P33599 nuoC NADH-quinone oxidoreductase subunit C/D
FGPDAFTVQATR P33599 nuoC NADH-quinone oxidoreductase subunit C/D
SQGVAAYGAK P33599 nuoC NADH-quinone oxidoreductase subunit C/D
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Table S3.3: Overview of E. coli membrane peptide mix - continued.

Peptide Protein Gene Description
QSVDQPVQTGYK P0ABB0 atpA ATP synthase subunit alpha
IGSFEAALLAYVDR P0ABB0 atpA ATP synthase subunit alpha
LESLVEDLVNR P0A6Y8 dnaK Chaperone protein DnaK
ASSGLNEDEIQK P0A6Y8 dnaK Chaperone protein DnaK
GYASLDYNFK P60785 lepA Elongation factor 4
EVIYVDSPSK P60785 lepA Elongation factor 4
VLVVGGSQGAR P17443 murG UDP-N-acetylglucosamine–N-acetylmuramyl-(pentapeptide)

pyrophosphoryl-undecaprenol N-acetylglucosamine
transferase

ILNQTMPQVAAK P17443 murG UDP-N-acetylglucosamine–N-acetylmuramyl-(pentapeptide)
pyrophosphoryl-undecaprenol N-acetylglucosamine
transferase

AAIAAAQANPNAK P00363 frdA Fumarate reductase flavoprotein subunit
VINQLTGGLAGMAK P0A9P0 lpdA Dihydrolipoyl dehydrogenase
YDAVLVAIGR P0A9P0 lpdA Dihydrolipoyl dehydrogenase
GVHEGHVAAEVIAGK P0A9P0 lpdA Dihydrolipoyl dehydrogenase
GGVNDLESVVK P0ABH0 ftsA Cell division protein FtsA
ESHLNGEAEVEK P0ABH0 ftsA Cell division protein FtsA
IITNLTEGASR P10121 ftsY Signal recognition particle receptor FtsY
LFHEAVGLTGITLTK P10121 ftsY Signal recognition particle receptor FtsY
ADDFIEALFAR P10121 ftsY Signal recognition particle receptor FtsY
YSDHIALPVEIEK P0A6Z3 htpG Chaperone protein HtpG
EILQDSTVTR P0A6Z3 htpG Chaperone protein HtpG
YIFELNPDHVLVK P0A6Z3 htpG Chaperone protein HtpG
LDDIAAWTYR P33602 nuoG NADH-quinone oxidoreductase subunit G
GADVGITMIAR P33602 nuoG NADH-quinone oxidoreductase subunit G
VVDGAMQIIGR P0AFL6 ppx Exopolyphosphatase
LIFMGVEHTQPEK P0AFL6 ppx Exopolyphosphatase
IQGWNVAMGASGTIK P0AFL6 ppx Exopolyphosphatase
VLDTTMQMYEQWR P0AFL6 ppx Exopolyphosphatase
GILNALYEAK P23830 pssA CDP-diacylglycerol–serine

O-phosphatidyltransferase
LQYYVNTDQLVVR P23830 pssA CDP-diacylglycerol–serine

O-phosphatidyltransferase
DGYAIGTGR P07000 pldB Lysophospholipase L2
ALPFAINVLTHSR P07000 pldB Lysophospholipase L2
AVIDGEPITER P77611 rsxC Ion-translocating oxidoreductase complex subunit C
TAVEAAIAR P77611 rsxC Ion-translocating oxidoreductase complex subunit C
LVQQWLDILGIDK P31060 modF ABC transporter ATP-binding protein ModF
LVLEVQQQLGGGIVR P0ABB4 atpD ATP synthase subunit beta
IMQQLAEEGK P07109 hisP Histidine transport ATP-binding protein HisP
TMVVVTHEMGFAR P07109 hisP Histidine transport ATP-binding protein HisP
IAEDGNPQVLIK P10346 glnQ Glutamine transport ATP-binding protein GlnQ
QYSGVNVLK P77257 lsrA Autoinducer 2 import ATP-binding protein LsrA
VMLQAYDEGR P0ABA6 atpG ATP synthase gamma chain
LSVYDNLMAVLQIR P0A9V1 lptB Lipopolysaccharide export system ATP-binding

protein LptB
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Table S3.3: Overview of E. coli membrane peptide mix - continued.

Peptide Protein Gene Description
ANELMEEFHIEHLR P0A9V1 lptB Lipopolysaccharide export system ATP-binding

protein LptB
MEQSVANLVDMR P63386 mlaF Intermembrane phospholipid transport system

ATP-binding protein MlaF
NEAELNALWDSK P23865 prc Tail-specific protease
LDDVVALIK P23865 prc Tail-specific protease
GDMLSMEDVLEILR P0AEZ3 minD Septum site-determining protein MinD
LLGEERPFR P0AEZ3 minD Septum site-determining protein MinD
DMMLLDALIQLK P07014 sdhB Succinate dehydrogenase iron-sulfur subunit
MQDYTLEADEGR P07014 sdhB Succinate dehydrogenase iron-sulfur subunit
QGQDLMVQVVK P0A9J0 rng Ribonuclease G
FLVYASPAVAEALK P0A9J0 rng Ribonuclease G
ILAQSIEVYQR P10408 secA Protein translocase subunit SecA
GVHVVTVNDYLAQR P10408 secA Protein translocase subunit SecA
TFAHVDPVK P0AC41 sdhA Succinate dehydrogenase flavoprotein subunit
LGGNSLLDLVVFGR P0AC41 sdhA Succinate dehydrogenase flavoprotein subunit
VLEQIAAQMR P0AFI2 parC DNA topoisomerase 4 subunit A
EVAQAAIALIDQPK P0AFI2 parC DNA topoisomerase 4 subunit A
IVYAMSELGLNASAK P0AFI2 parC DNA topoisomerase 4 subunit A
YAHIGTGNFNEK P0A7B1 ppk Polyphosphate kinase
QLSVNQQNWLR P0A7B1 ppk Polyphosphate kinase
DMPNALVEVLR P0A7B1 ppk Polyphosphate kinase
IMLVGGGNIGAGLAR P0AGI8 trkA Trk system potassium uptake protein TrkA
IEQGDHVIMFLTDK P0AGI8 trkA Trk system potassium uptake protein TrkA
GIAIIHQELALVK P37388 xylG Xylose import ATP-binding protein XylG
AFFDSNNDDMLVK P37751 wbbK Putative glycosyltransferase WbbK
NTAVFVQQFWMK P37751 wbbK Putative glycosyltransferase WbbK
TFNEFFVRPLR P0A8K1 psd Phosphatidylserine decarboxylase proenzyme
VNLVEQLESLSVTK P0A8K1 psd Phosphatidylserine decarboxylase proenzyme
IVSGDDVDLNR P0AAB4 ubiD 3-octaprenyl-4-hydroxybenzoate carboxy-lyase
LNDMVNWGR P0AFC7 nuoB NADH-quinone oxidoreductase subunit B
LYDQMLEPK P0AFC7 nuoB NADH-quinone oxidoreductase subunit B
AISLSGEAQSGR P77804 ydgA Protein YdgA
QQVEGASAMGQMFR P77804 ydgA Protein YdgA
LIHGQVATR P69797 manX PTS system mannose-specific EIIAB component
ITSVNVGGMAFR P69797 manX PTS system mannose-specific EIIAB component
LVSVHINDEPWTAWK P04825 pepN Aminopeptidase N
EVALELYVDR P04825 pepN Aminopeptidase N
WDAAQSLLATYIK P04825 pepN Aminopeptidase N
DVVIISTLR P06149 dld Quinone-dependent D-lactate dehydrogenase
EQMLELLQQR P06149 dld Quinone-dependent D-lactate dehydrogenase
SDIALIQIQNPK P0C0V0 degP Periplasmic serine endoprotease DegP
DVPPGNMFR C1P605 azuC Uncharacterized protein AzuC
TFMSISGAQIR P27278 nadR Trifunctional NAD biosynthesis/regulator protein

NadR
IALGHAQYIDFAVK P27278 nadR Trifunctional NAD biosynthesis/regulator protein

NadR
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Table S3.3: Overview of E. coli membrane peptide mix - continued.

Peptide Protein Gene Description
EHPFVQALIDEYR P27278 nadR Trifunctional NAD biosynthesis/regulator protein

NadR
AGYNLVASATEGQMR P0AEB2 dacA D-alanyl-D-alanine carboxypeptidase DacA
LVESQGGEIIFNGQR P75796 gsiA Glutathione import ATP-binding protein GsiA
AAFDFAVEHQSVER P0ABA4 atpH ATP synthase subunit delta
WQDMLAFAAEVTK P0ABA4 atpH ATP synthase subunit delta
AGDMVIDGSVR P0ABA4 atpH ATP synthase subunit delta
LTDMVTVGK P08506 dacC D-alanyl-D-alanine carboxypeptidase DacC
ALIHDVPEEYAIHK P08506 dacC D-alanyl-D-alanine carboxypeptidase DacC
FVLEFMGEVNR P16676 cysA Sulfate/thiosulfate import ATP-binding protein

CysA
LFVGLQHAR P16676 cysA Sulfate/thiosulfate import ATP-binding protein

CysA
APVILAVNK P06616 era GTPase Era
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Chapter 4.
Investigation of the aromatic amino acid

biosynthesis in Escherichia coli -
applications of a kinetic model

Shannara Kayleigh Taylor Parkins, Nicholas Luke Cowie,
Jorge Carrasco Muriel, Teddy Groves and Lars Keld Nielsen

Aromatic amino acids are central precursors to a variety of natural products with important
applications such as food additives and pharmaceuticals. The Escherichia coli aromatic
amino acid biosynthesis pathway converts phosphoenolpyruvate and erythrose 4-phosphate
into the three aromatic amino acids, L-phenylalanine, L-tyrosine and L-tryptophan. We
are interested in developing an L-tyrosine chassis strain for use as a base strain in
natural product development. After numerous metabolic engineering efforts, challenges
remain for the development of an E. coli L-tyrosine overproducer due to the tightly
regulated pathway. Here, a kinetic model covering the reactions involved in E. coli
aromatic amino acid biosynthesis was constructed. The kinetic model takes into account
mass conservation, allosteric regulations, and thermodynamic constraints in order to
realistically simulate enzymatic fluxes and steady state metabolite concentrations. A
multi-omics data set of five E. coli strains producing varying titers of L-tyrosine, as well
as a specification of prior distributions based on detailed literature research, were used to
fit the kinetic model. This resulted in a feasible parameterisation of the kinetic model
whose statistical properties reflect the information contained in the omics dataset, as well
as prior information. Simulated and experimental values of metabolite concentrations and
reaction fluxes were in agreement. Additionally, proposed metabolic engineering targets
including overexpression of multiple enzymes and feedback-resistant versions of the DDPA
(3-deoxy-7-phosphoheptulonate synthase) aroG and the CHORM (chorismate mutase)
and PPND (prephenate dehydrogenase) tyrA enzymes, aligned with experimentally tested
metabolic engineering strategies for L-tyrosine overproduction. Furthermore, a ptsHIcrr
knockout strain was combined with constitutive expression of feedback-resistant versions
of aroG and tyrA, and a codon-optimised version of aroB. The engineered strain displayed
significantly higher protein levels of the three gene targets compared to the base strain.
These protein changes should lead to higher activity in the aromatic amino acid biosynthesis
pathway, which will be confirmed with further research. The kinetic model will be an
advantageous tool for further metabolic engineering and the construction of E. coli
L-tyrosine overproducers.



Chapter 4: Introduction

4.1. Introduction
The aromatic amino acids, L-phenylalanine, L-tyrosine and L-tryptophan, are precursors
for many natural products. These aromatic amino acid derivatives are in high demand, yet
chemical synthesis or extraction from natural sources is often costly and time consuming.
Microbial production has the potential for higher yields in shorter time frames [1]. Microbial
aromatic amino acid biosynthesis is however tightly regulated, which results in great
difficulties with metabolic engineering of this pathway towards industrially relevant titres of
the derivatives [2]. Specifically L-tyrosine overproduction in the gram-negative bacterium
Escherichia coli has been the target of numerous metabolic engineering efforts [3, 4].
Addition of feedback-resistant versions of two key enzymes increased L-tyrosine titres
substantially and demonstrated the extent of allosteric regulation within the pathway.
Nevertheless, multiple allosteric regulations remain and an appropriate strategy for
balancing L-phenylalanine production with L-tyrosine overproduction was not identified.
This highlights the need for alternative tools to aid the rational metabolic engineering for
L-tyrosine overproduction.

Kinetic modelling connects the proteome with the fluxome and metabolome in a
mechanistically detailed way, which has a strong advantage over constraint-based
modelling when dealing with highly regulated pathways [5]. The application of kinetic
models provides a tool to investigate the intricacies of metabolic pathways including
thermodynamic constraints, enzymatic mechanisms and allosteric regulations [6]. For E.
coli, multiple kinetic models of (parts of) the central carbon metabolism exist, where
each kinetic model implements a different approach in order to represent metabolism
[7]. The first E. coli kinetic model [8] was followed up by increasingly larger kinetic
models [9, 10, 11] and the latest kinetic models cover all of central carbon metabolism
[12, 13, 14]. A trade-off exists between the size and complexity of a kinetic model and
the choice of appropriate boundaries will depend on the objective of the kinetic model.
Recently, the first kinetic model of E. coli central carbon metabolism and aromatic amino
acid biosynthesis was developed and applied to the optimisation of aromatic amino acid
titres [15]. This kinetic model includes the required enzymatic reactions and associated
regulatory network, however it was not trained on any experimental data, therefore model
parameterisation is a potential area for further improvement.

Here, we constructed a kinetic model of the aromatic amino acid biosynthesis in E.
coli (Figure 4.1). The kinetic model takes into account mass conservation, allosteric
regulation and thermodynamic constraints, in order to infer reaction fluxes and metabolite
concentrations. A multi-omics data set of five E. coli strains, one wild type and four
mutant strains [16, 17, 18, 19, 20, 21], producing varying concentrations of intracellular
L-tyrosine was used to fit the kinetic model. This resulted in a feasible parameterisation
of the kinetic model whose statistical properties reflect the information contained in the
multi-omics data set, as well as prior information. The simulated and experimental values
of reaction fluxes and metabolite concentrations aligned, granting a platform for detailed
analysis of the pathway.
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For L-tyrosine production specifically, our results suggested overexpression of most enzymes
and implementing feedback-resistance of multiple enzymes as metabolic engineering
targets beneficial for overproduction. Feedback-resistant versions of two enzymes were
incorporated in an E. coli chassis strain to improve L-tyrosine production as ongoing study.
Overall, the kinetic model will be an advantageous tool for metabolic engineering and the
construction of E. coli aromatic amino acid overproducers, in particular L-tyrosine.

4.2. Material and methods
4.2.1. Kinetic model structure

The boundaries of the kinetic model were set to encompass the entire aromatic amino
acid biosynthesis pathway, starting at phosphoenolpyruvate and erythrose 4-phosphate
and ending in the three aromatic amino acids. While phosphoenolpyruvate and erythrose
4-phosphate were set as unbalanced boundary metabolites, the aromatic amino acids
were incorporated as balanced metabolites to allow dynamic evaluation of the metabolite
concentrations and regulations. Accordingly, a grouped reaction estimating all reactions
and transport consuming the metabolite was set for each aromatic amino acid. Multiple
allosteric regulations play a key role in the functionality of the pathway in E. coli
(Figure 4.1): allosteric inhibition of the three isozymes catalysing the first reaction
of the pathway, DDPA (3-deoxy-7-phosphoheptulonate synthase), each inhibited by
one of the aromatic amino acids, and allosteric inhibition of the first enzyme of the
corresponding branch by each aromatic amino acid, the CHORM (chorismate mutase),
PPNDH (prephenate dehydratase) and PPND (prephenate dehydrogenase) reactions
for L-phenylalanine and L-tyrosine, and the ANS (anthranilate synthase) and ANPRT
(anthranilate phosphoribosyltransferase) reactions for L-tryptophan. These allosteric
inhibitions were all included in the kinetic model. The pathway structure, reaction
stoichiometry and reaction reversibility were obtained from the EcoCyc database [22],
while the prior distributions for the kinetic parameters were obtained from the EcoCyc
[22], BRENDA [23] and Sabio-RK [24] databases. An overview of the literature research
on the reactions of the aromatic amino acid biosynthesis in E. coli can be found in the
Supplementary materials section.

The KALE multi-omics data set includes fluxomics, endo-metabolomics and proteomics
data of five E. coli strains, one wild type and four mutant strains [16, 17, 18, 19, 20, 21],
which were used as the experimental values to fit the kinetic model. The strains included
in the experimental data set for model fitting, hereafter referred to as experiments, were
the eWT01 strain (evolved wild type strain, replicate 1), ePgi04 (evolved ∆pgi strain,
replicate 4), ePtsHIcrr03 (evolved ∆ptsHIcrr strain, replicate 3), eSdhCB03 (evolved
∆sdhCB strain, replicate 3) and eTpiA02 (evolved ∆tpiA strain, replicate 2). These
strains were selected in order to maximise differences between intracellular concentrations
of the aromatic amino acids, specifically for L-tyrosine. All experimental values were
taken from samples of the mid-exponential phase, thus assumed to be pseudo steady-state
measurements.
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Figure 4.1: Metabolic map of the aromatic amino acid biosynthesis in Escherichia coli which is
incorporated in the current kinetic model. The aromatic amino acid biosynthesis consists of the
shikimate pathway towards chorismate after which the pathway splits into three branches, each producing
one of the aromatic amino acids. All reactions are in bold teal with the corresponding gene names
in italics and allosteric inhibitions are represented by grey dashed lines. For each aromatic amino
acid, a single reaction combining all metabolic reactions and transport consuming the metabolite
was included in the kinetic model. PEP: phosphoenolpyruvate; E4P: erythrose 4-phosphate; DDPA:
3-deoxy-7-phosphoheptulonate synthase; 2DDA7P: 2-dehydro-3-deoxyarabino-heptulosonate 7-phosphate;
DHQS: 3-dehydroquinate synthase; 3DHQ: 3-dehydroquinate; DHQTi: 3-dehydroquinate dehydratase;
3DHSK: 3-dehydroshikimate; SHK3Dr: shikimate dehydrogenase; SKM: shikimate; SHKK: shikimate
kinase; SKM5P: shikimate 5-phosphate; PSCVT: 3-phosphoshikimate 1-carboxyvinyltransferase; 3PSME:
5-O-(1-carboxyvinyl)-3-phosphoshikimate; CHORS: chorismate mutase; CHOR: chorismate; CHORM:
chorismate mutase; PPHN: prephenate; PPNDH: prephenate dehydratase; PHPYR: phenylpyruvate;
PHETA1: L-phenylalanine transaminase; PHE: L-phenylalanine; PPND: prephenate dehydrogenase;
34HPP: 3-(4-hydroxyphenyl)pyruvate; TYRTA: L-tyrosine aminotransferase; TYR: L-tyrosine;
ANS: anthranilate synthase; ANTH: anthranilate; ANPRT: anthranilate phosphoribosyltransferase;
PRAN: N-(5-phosphoribosyl)anthranilate; PRAIi: phosphoribosylanthranilate isomerase; 2CPR5P:
1-(2-carboxyphenylamino)-1-deoxyribulose 5-phosphate; IGPS: indole 3-glycerol-phosphate synthase;
3IG3P: (3-indolyl)-glycerol 3-phosphate; TRPS1: L-tryptophan synthase; TRP: L-tryptophan; H2O: water;
Pi: phosphate; NADP(H): nicotinamide adenine dinucleotide phosphate; ATP: adenosine triphosphate;
ADP: adenosine diphosphate; CO2: carbon dioxide; GLU: L-glutamate; AKG: 2-oxoglutarate; NAD(H):
nicotinamide adenine dinucleotide; GLN: L-glutamine; PYR: pyruvate; PRPP: 5-phosphoribose
1-diphosphate; PPi: diphosphate; SER: L-serine; G3P: glyceraldehyde 3-phosphate.
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To obtain more accurate values for the enzyme concentrations from the proteomics data,
the raw MS files of Heckmann et al. [21] were reprocessed using autoprot REF chapter
1. A workflow using Proteome Discoverer for DDA data analysis, xTop [25] for protein
inference and the TPA method [26, 27] as standard-free quantification approach was
employed for the reprocessing. The original data analysis relied on the UPS2 protein mix
as unlabelled internal standard for absolute quantification, however a maximum of four
UPS2 proteins was identified and quantified in the samples, with only two UPS2 proteins
in most samples. Even though the standard-free quantification approach is not ideal for
DDA data analysis (REF chapter 1), it was deemed more suitable than the unlabelled
quantification approach in this case, due to the scarcity of quantified UPS2 proteins. The
enzyme concentrations from the reprocessed data can be found in Table S4.1.

The Maud kinetic modelling framework (https://pypi.org/project/maud-metabolic
-models) was used to construct and fit the kinetic model to the experimental data set.
Maud combines a mechanistically and thermodynamically realistic kinetic model with a
plausible measurement model and prior model, resulting in a statistically sound basis for
kinetic parameter estimation and prediction of behaviour in new experimental conditions.
The prior model consists mostly of curated and marginally independent distributions,
which were set based on a detailed literature search. The full prior specification can be
found in Table S4.2. Independent log-normal prior distributions were used with location
parameters set based on literature search and scale parameters set to 0.2. Since the
log-normal distribution has constant coefficient of variation and we judged that the
proportional accuracy of the literature-based estimates were about the same, it was
appropriate to use the same value despite the wide range of location parameters. Transfer
constants between the active and inactive form of allosteric enzymes are generally unknown
and were therefore set to 1.0 with an uncertainty of 0.5 on natural logarithmic scale
to allow shifting of the equilibrium to either enzyme form. Reversible and irreversible
reactions were modelled using modular rate laws [28]. All pathway intermediates, including
the aromatic amino acids, were set as balanced metabolites, while phosphoenolpyruvate,
erythrose 4-phosphate and all co-factors were set as unbalanced metabolites. Prior
distributions are set for the intracellular concentrations of unbalanced metabolites based
on the experimental data, while the intracellular concentrations of unbalanced metabolites
are simulated during fitting of the kinetic model. In order to model prior information
about our system’s thermodynamic properties, a multivariate normal distribution was
used. The mean vector and covariance matrix for this distribution were derived from
eQuilibrator [29, 30] using the eQuilibrator API package.

The Maud kinetic modelling framework models enzyme-catalysed fluxes according to
Equation 4.1, making it possible to disambiguate the different factors contributing to flux
regulation.

flux = [E] ∗ kcat ∗ reversibility ∗ saturation ∗ allostery (4.1)
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In Equation 4.1, the flux is calculated in (mol/L)/s, [E] is the enzyme concentration in
mol/L, kcat is the catalytic rate constant in 1/s, saturation is the saturation factor
calculated following Equation 4.2, reversibility is the reversibility factor calculated
following Equation 4.3, allostery is the allostery factor calculated following Equation 4.4.

saturation =
∏

substrates

xs

KM,s

∗ free enzyme ratio (4.2)

In Equation 4.2, saturation is the saturation factor representing the fraction of the enzyme
bound to the complete set of substrates required for the reaction, xs is the substrate
concentration, KM,s is the Michaelis constant of the substrate and the free enzyme ratio
is the ratio of free enzyme to bound enzyme as defined in Liebermeister et al. [28].

reversibility = 1 − e
∆rG′ + RT ∗ ST ln(x)

RT ,

∆rG
′ = ST ∆fG

′ + nFψ
(4.3)

In Equation 4.3, reversibility is the reversibility factor, ∆rG
′ is the Gibbs free energy of

the reaction, R is the gas constant, T is the temperature in Kelvin, S is the stoichiometric
matrix, x is the vector of metabolite concentrations, ∆fG

′ is the vector of metabolite
Gibbs free energy of formation, n is the transported charge, F is the Faraday constant
and ψ is the membrane potential.

allostery = 1
1 + tcr ∗ (free enzyme ratior ∗ Qtense

Qrelaxed
)sb
,

Qtense = 1 +
∑

inhibitor

xi

dcr,i

,

Qrelaxed = 1 +
∑

activator

xa

dcr,a

(4.4)

In Equation 4.4 following Popova and Sel’kov [31], allostery is the allostery factor, tcr is the
transfer constant, free enzyme ratio is the ratio of free enzyme to bound enzyme, Qtense

is the fraction of enzyme bound to the inhibitor, Qrelaxed is the fraction of unbound (active)
enzyme, sb is the number of subunits of the enzyme, xi is the inhibitor concentration and
xa is the activator concentration.

4.2.2. Maximum a posteriori probability estimation

One of the functionalities of the Maud is to estimate the kinetic model parameters that
achieve the maximum a posteriori probability (MAP), specifically finding the parameter
configuration that maximises the log posterior density, taking into account both the
prior distribution and likelihood function. The following settings were applied for the
optimisation using the L-BFGS algorithm [32]: the number of iterations before termination
set to 3,000, the step size of the first iteration set to 1 · 10−4, the convergence tolerance set
to 1 · 10−12 and the number of update vectors used for Hessian approximation set to 10.
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It is possible to obtain an approximation to the posterior distribution by finding the
MAP and inspecting its gradients as described in Kass et al. [33] and MacKay [34].
While this approximation is less accurate compared with Markov chain Monte Carlo
(MCMC) methods, used for sampling of posterior distributions in Maud, it is much less
computationally expensive. In addition, when combined with well chosen priors, MAP
estimation can produce better predictions than maximum likelihood estimation due to
the regularising effect of the prior distribution [35].

In the current model specification it is possible to define a set of parameters that do
not result in a steady state. This can occur with successive irreversible reactions when
the rate of the first is higher than the Vmax of the second. To avoid these parameter
configurations, non-steady states were penalised using equation whereby the dC

dt
vector

decreases the log-probability of the optimiser the further the state of solutions are from
steady-state.

S ∗ fv(xt, θ) ∼ N(0, ϵC) (4.5)

In Equation 4.5, S is the stoichiometric matrix, xt is the vector of metabolite concentrations,
ϵ is the tolerance factor set to 1 · 10−10 and C is the vector of balanced metabolite
concentrations.

4.2.3. Metabolic control analysis

After optimisation of the kinetic model, the MAP estimate was used as the reference state
for metabolic control analysis [36, 37, 38]. Maud includes a metabolic control analysis, in
particular the calculation of flux response coefficients to changes in enzyme concentrations.
The metabolic control analysis were applied to the current kinetic model with the following
settings: the time point set to 1 · 108 seconds, the maximum number of steps set to 1 · 106

and both the relative and absolute tolerance set to 1 · 10−9. For a simplified investigation
of feedback-resistance of the DDPA aroG isozyme and the CHORM and PPND tyrA
enzyme, the corresponding allosteric regulations were removed from the kinetic model
and metabolic control analysis was repeated for the ePtsHIcrr03 experiment.

4.3. Results
Using the Maud kinetic modelling framework, a kinetic model of aromatic amino acid
biosynthesis in E. coli was constructed. The optimisation functionality was deployed to
estimate the MAP which best fit the experimental data set, while maintaining consistency
with our curated prior model. The parameterisation and the simulation results including
reaction fluxes and enzyme and metabolite concentrations can be found in Table S4.2 -
S4.5. After evaluation of the kinetic model fit to the experimental data set, the kinetic
model parameterisation was used to analyse the aromatic amino acid biosynthesis pathway
through regulatory decomposition and metabolic control analysis.
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4.3.1. Fit of the kinetic model parameterisation to experimental data

Overall, the simulated concentrations coincided with the experimentally measured
concentrations of balanced metabolites (Figure 4.2). Apart from the shikimate
concentration for the ePtsHIcrr03 experiment, all observed metabolite concentrations
were within the bounds of the corresponding posterior predictive distributions. For
both L-phenylalanine and L-tyrosine, the observed and simulated concentrations
completely aligned, while the L-tryptophan observed concentrations were underestimated
repeatedly by the simulated concentrations. The simulated reaction fluxes were in
agreement with the experimentally measured fluxes (Figure S4.1). Simulated fluxes of the
L-tryptophan-producing branch did display an underestimation of measured fluxes for all
experiments, which conforms to the underestimated L-tryptophan concentrations. Overall,
the fit to the data was satisfactory. In our judgement the issues mentioned above were due
to the lack of experimental measurements for intermediate metabolite concentrations. For
example, additional experimental measurements of 34HPP (3-(4-hydroxyphenyl)pyruvate)
and ANTH (anthranilate) concentrations could elucidate the reaction fluxes through the
corresponding branches more quickly during kinetic model fitting.

Figure 4.2: Comparison of experimental and simulated intracellular concentrations of experimentally
measured, balanced metabolites. Green circles represent the experimentally observed concentrations, while
blue crosses and lines represent the simulated concentration (mean) and the 95% quantile of the posterior
predictive distribution, respectively. (A) Comparison of shikimate. (B) Comparison of chorismate. (C)
Comparison of phenylpyruvate. (D) Comparison of L-phenylalanine. (E) Comparison of L-tyrosine. (F)
Comparison of L-tryptophan.
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4.3.2. Regulatory decomposition of the pathway

Maud allows for regulatory decomposition of the simulated reaction fluxes of the pathway.
The enzyme concentration, kcat value (rate constant of catalytic conversion), reversibility
of the enzymatic reaction, enzyme saturation and allosteric effects combined determine
the reaction flux (Equation 1).

Focusing on the production of L-tyrosine, the enzymes in the shikimate pathway leading
up to chorismate display lower estimated saturation levels compared to the enzymes
of the L-tyrosine-producing branch for the eWT01 experiment (Figure 4.3A). The
intermediate metabolites of the L-tyrosine-producing branch (chorismate, prephenate and
3-(4-hydroxyphenyl)pyruvate) were present in relatively higher concentrations than the
shikimate pathway intermediates (Table S4.4), likely causing this general shift in enzyme
saturation. Only four enzymes in the L-tyrosine production pathway catalyse reversible
reactions: DHQTi (3-dehydroquinate dehydratase), PSCVT (3-phosphoshikimate
1-carboxyvinyltransferase), TYRTA (L-tyrosine aminotransferase) tyrB and aspC
isozymes. PSCVT and the TYRTA isozymes has estimated reversibility factors close to 1,
thus were modelled as operating far from equilibrium. The L-phenylalanine-sensitive
isozyme of DDPA (3-deoxy-7-phosphoheptulonate synthase; aroG) is known to carry
approximately 80% of the DDPA reaction flux in wild type E. coli [39] and this was
reflected in the high enzyme concentration (Table S4.3) and low allostery factor, which
indicates high inhibition of the isozyme by L-phenylalanine. For the CHORM (chorismate
mutase) pheA and tyrA isozymes, the tyrA isozyme appears to carry most of the CHORM
reaction flux, where the higher catalytic efficiency and higher enzyme concentration
(Table S4.3) outweighed the stronger inhibition by L-tyrosine of the tyrA compared to the
pheA isozyme.

In contrast to the eWT01 experiment, the enzymes of the shikimate pathway produced
higher saturation factors for the ePtsHIcrr03 experiment (Figure 4.3B), which was
likely due to higher substrate and lower enzyme concentrations (Table S4.3 and S4.4).
The increased PEP concentration led to higher concentrations of shikimate pathway
intermediates, while redirection of protein resources led to lower enzyme concentrations
for the ePtsHIcrr03 compared with the eWT01 strain [18, 21]. The higher concentrations
of intermediate metabolites resulted in higher product concentrations for the reversible
enzymatic reactions which led to generally lower reversibility factors. For the ePtsHIcrr03
experiment, the enzyme concentrations of the DDPA isozymes evened out (Table S4.3)
and the L-tyrosine concentration was substantially higher than the L-phenylalanine
concentration, which resulted in a lower allostery factor and stronger inhibition of the
L-tyrosine-sensitive aroF isozyme. The allosteric inhibitory impact of the higher L-tyrosine
concentration on the CHORM tyrA isozyme and PPND (prephenate dehydrogenase)
enzyme was negated by the high enzyme saturation factors and thus low free enzyme
ratios. Lower free enzyme ratios limits the allosteric impact (Equation 4.4) and resulted
in the comparable allosteric factors of CHORM tyrA isozyme and PPND between the
eWT01 and ePtsHIcrr03 experiments.
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Figure 4.3: Regulatory decomposition of the enzymatic reactions leading towards L-tyrosine
production. While a saturation value could be calculated for all enzymes, only the DHQTi
(3-dehydroquinate dehydratase), PSCVT (3-phosphoshikimate 1-carboxyvinyltransferase) and TYRTA
(tyrosine aminotransferase) reactions are reversible and only the DDPA (3-deoxy-7-phosphoheptulonate
synthase) and CHORM (chorismate mutase) enzymes are regulated by allosteric inhibitions. (A)
Regulatory decomposition for the eWT01 experiment. (B) Regulatory decomposition for the ePtsHIcrr03
experiment.

4.3.3. Metabolic control analysis of the pathway

Investigating the best engineering targets could be achieved by performing a metabolic
control analysis on the allosteric parameters to determine the most sensitive enzymes.
Using the previous estimated MAP, metabolic control analysis was performed to
investigate the intricacies of the aromatic amino acid biosynthesis pathway. The
resulting flux response factors to changes in enzyme concentrations was focused on the
L-tyrosine-consuming reaction to explore beneficial alterations for L-tyrosine production
(Figure 4.4). Generally and as expected, an increase in concentration of the shikimate
pathway and L-tyrosine producing branch and a decrease in concentration of the other
enzymes would positively impact the L-tyrosine-consuming reaction flux. The increase in
enzyme concentrations would have the greatest impact for the ePtsHIcrr03 experiment,
since the higher concentrations of intermediate metabolites (Table S4.4) in combination
with the higher enzyme concentrations would lead to a substantial flux increase.
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The flux response factor of changes in CHORM pheA isozyme and PPNDH (prephenate
dehydrogenase; pheA) and in CHORM tyrA and PPND (tyrA) differed, since the
bifunctionality of the pheA and tyrA isozymes could not be modelled within the framework.
Nevertheless, the flux response factors agreed in absolute terms: a decrease in pheA and
an increase in tyrA enzyme concentration would be advantageous towards L-tyrosine
production.

Figure 4.4: Metabolic control analysis of the aromatic amino acid biosynthesis where the L-tyrosine
combined consumption reaction was set as target. The flux response coefficients of changes in enzyme
concentrations in mol/L enzyme per (mol/L)/s were plotted for all five experiments for each enzyme.

Our training dataset consisted of native enzymes whereas in production strains the
following metabolic engineering is usually performed: feedback-resistance of the
DDPA aroG isozyme and the CHORM and PPND tyrA enzyme. We simulated
these feedback-resistant enzymes in our model to investigate the impact on L-tyrosine
production, here the L-tyrosine-consuming reaction, for the ePtsHIcrr03 experiment
(Figure S4.2). Removing these allosteric inhibitions resulted in a substantial increase in
flux through the shikimate pathway and L-tyrosine branch, assuming constant enzyme
concentrations. Increased concentrations of the DDPA aroG isozyme were no longer
required for increased flux of the L-tyrosine-consuming reaction when the allosteric
inhibition acting on the enzyme was removed. This confirmed the strong impact of the
allosteric inhibition by L-phenylalanine on the DDPA aroG isozyme, which was identified
in the regulatory decomposition.
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By removal of the allosteric inhibition by L-tyrosine on both the CHORM and PPND
tyrA enzyme, an increase in enzyme concentration would result in a higher increase in
flux of the L-tyrosine-consuming reaction. Both feedback-resistance and overexpression
for higher enzyme concentrations of the tyrA enzyme would be required to maximise a
beneficial metabolic engineering strategy based on the current metabolic control analysis.
Additionally, the feedback-resistant versions of the DDPA aroG isozyme and the CHORM
and PPND tyrA bifunctional enzyme were incorporated in the ePtsHIcrr03 strain to
further optimise L-tyrosine production (see Epilogue).

4.4. Discussions
In this study, we developed a kinetic model of the E. coli aromatic amino acid biosynthesis
using the Maud kinetic modelling framework. The resulting parameterisation after
MAP estimation produced simulated metabolite concentrations and reaction fluxes which
aligned with the experimental values. Even though Bayesian inference inherently limits
overfitting to experimental data [35], validation using a comparison of simulated values to
experimental values which the kinetic model was fitted to is not entirely appropriate. It
would be more suitable for future kinetic model evaluations to fully leverage the benefits
of Bayesian inference by sampling from the posterior distribution using MCMC methods.
Afterwards, out-of-sample predictions could be used to properly evaluate the model
through cross-validation. This approach was not included in the current study due to time
limitations, since MCMC sampling is computationally expensive [40, 41, 42], especially in
cases like Bayesian kinetic models that require solutions to large systems of non-linear
differential equations.

Through regulatory decomposition and metabolic control analysis, the inner workings of the
aromatic amino acid biosynthesis were examined with a focus on L-tyrosine production.
This resulted in several insights on the allosteric regulations, where the DDPA aroG
isozyme and the CHORM and PPND tyrA enzyme were mostly affected by allosteric
inhibition through L-phenylalanine and L-tyrosine, respectively. However, L-phenylalanine
concentrations varied little between experiments and L-tyrosine concentrations only differed
substantially for the ePtsHIcrr03 experiment compared to the other experiments within
the current experimental data set. The kinetic model fit and quality of the resulting
parameterisation would benefit greatly from a more informative experimental data set,
which includes more direct changes within the pathway, e.g. overexpression of pathway
enzymes or incorporation of feedback-resistant versions of strongly inhibited enzymes.
Larger differences between experimental values would contain more information about
the pathway dynamics which could in turn be learned by the kinetic model and lead to
an improved parameterisation representative of the pathway.

The main suggestions for the metabolic engineering of E. coli L-tyrosine overproducers
resulting from the current analysis of the aromatic amino acid biosynthesis pathway
were the overexpression of the shikimate pathway enzymes and the CHORM and PPND
tyrA enzyme, and the integration of feedback-resistant versions of the DDPA aroG and
CHORM and PPND tyrA enzymes.
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The suggested approach aligns with the metabolic engineering strategy of Juminaga
et al. [43], who constructed an L-tyrosine overproducing strain with L-tyrosine titres
over 2 g/L, and with strategies of multiple other studies [44, 45] and of another kinetic
modelling study [15]. Interestingly, metabolic control analysis results suggested that
overexpression of the DDPA aroG isozyme, a common metabolic engineering approach,
would no longer be required after addition of a feedback-resistant version, alleviating
demand for protein resources which could be needed elsewhere in the pathway. With an
improved kinetic model parameterisation from fitting to a more representative experimental
data set, a metabolic engineering strategy balancing L-tyrosine overproduction with
moderate L-phenylalanine and L-tryptophan intracellular concentrations could be tested
and evaluated in silico. Such a strategy would be desirable, since moderate levels of
L-phenylalanine and L-tryptophan are required to sustain prototrophic growth, which
is occasionally eliminated by deletion of the CHORM and PPNDH pheA enzyme to
redirect pathway intermediates to L-tyrosine production [46, 47]. Although the focus of
the current study was on L-tyrosine overproduction, the overproduction of L-phenylalanine
and L-tryptophan could also be investigated using the current aromatic amino acid kinetic
model, since the specific pathways to all three aromatic amino acids were implemented in
full detail including allosteric regulations.

Within iterative metabolic engineering of microbial cell factories, kinetic modelling provides
a tool for multi-omics data integration to analyse a set of previous strain designs in order
to inform the next set of strain designs. While kinetic models provide a more detailed and
nuanced approach to in silico evaluation of strain designs compared with constraint-based
modelling [5], kinetic models require an extensive number of input parameters and are
more time consuming to develop [6]. The application of Bayesian inference to kinetic
modelling introduces an increased flexibility of the input [48, 49], yet the scope is still
limited to a set of relatively well-characterised microbes. Overall, kinetic modelling can
present a highly comprehensive insight in a specific metabolic pathway to guide metabolic
engineering efforts, which would be most appropriate for a targeted experimental objective
with a specific product in mind.

4.5. Conclusions
Kinetic model development of E. coli aromatic amino acid biosynthesis provided a detailed
insight into the intricacies of the pathway. Both the DDPA aroG isozyme and the
CHORM and PPND tyrA enzyme were impacted heavily through allosteric inhibition by
L-phenylalanine and L-tyrosine, respectively. Feedback-resistant versions of both enzymes,
together with overexpression of most enzymes in the pathway towards L-tyrosine, was
proposed as a potential metabolic engineering strategy for L-tyrosine overproduction.
The aromatic amino acid biosynthesis model will, especially with further benefit from
Bayesian inference methods, provide an advantageous tool for metabolic engineering of E.
coli aromatic amino acid overproducers.
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Supplementary materials
Kinetic model definition

The following supplement provides an overview of kinetic parameters and additional
information for all enzymatic reactions in the aromatic amino acid biosynthesis of
Escherichia coli. The kinetic information presented here is based on literature research
including the EcoCyc [1], BRENDA [2] and Sabio-RK [3] databases. All kinetic parameters
used as input for the kinetic model are indicated in green.

DDPA - 3-deoxy-7-phosphoheptulonate synthase
The DDPA (3-deoxy-7-phosphoheptulonate synthase) reaction consists of three isozymes:
L-phenylalanine-sensitive DDPA (P0AB91) encoded by the aroG gene L-tyrosine-sensitive
DDPA (P00888) encoded by the aroF gene, and L-tryptophan-sensitive DDPA (P00887)
encoded by the aroH gene. DDPA Phe is an homotetrameric enzyme, DDPA Tyr and Trp
are an homodimeric enzyme, and all isozymes are located in the cytosol. There is a high
degree of sequence identity (41%) between the three isozymes and the polypeptides are
nearly identical in size. DDPA Phe makes up about 80% of the total DDPA activity, DDPA
Tyr makes up about 20%, and DDPA Trp makes up about 1% [4]. All three isozymes
are metalloenzymes and require a divalent metal for catalysis and/or structural integrity:
DDPA Tyr can use several metal ions, DDPA Phe uses Fe2+ mostly, and DDPA Trp is
activated by Fe2+. Certain mutations in all three isozymes lead to insensitivity towards
the corresponding aromatic amino acid. The role of metal ion in DDPA is to position the
amino acids with the appropriate geometry required to coordinate and activate the water
molecule; the rate constant varies with the bound metal ion [5].

Reaction equation

1 PEP + 1 E4P + 1 H2O → 1 2DDA7P + 1 Pi

phosphoenolpyruvate + erythrose 4-phosphate + water →
2-dehydro-3-deoxyarabino-heptulosonate 7-phosphate + phosphate

Kinetic parameters - L-phenylalanine-sensitive DDPA
Allosteric inhibition of L-phenylalanine-sensitive DDPA by L-phenylalanine [6] and
inhibition of L-phenylalanine-sensitive DDPA by L-alanine and L-dihydrophenylalanine
[6]. Competitive inhibition of L-phenylalanine-sensitive DDPA by 2,3-bisphosphoglycerate,
2-phosphoglycerate (2PG; glycerate 2-phosphate), 3-methylphosphoenolpyruvate, and
3-propylphosphoenolpyruvate [7].
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Parameter Substrate Value Unit Reference
kcat - 32.0 s-1 [8]
kcat - 62.3 s-1 [9]
kcat - 71.0 s-1 [10]
KM PEP 0.08 mM [7]
KM PEP 0.009 mM [8]
KM PEP 0.035 mM [9]
KM E4P 0.9 mM [7]
KM E4P 0.086 mM [8]
KM E4P 0.25 mM [9]
KM E4P 0.021 mM [10]
KD PHE 0.013 mM [6]
KI 2PG 1.0 mM [7]

Kinetic parameters - L-tyrosine-sensitive DDPA
Allosteric (potential) inhibition of L-tyrosine-sensitive DDPA by L-tyrosine,
noncompetitive inhibition of L-tyrosine-sensitive DDPA by phosphate and competitive for
PEP (product) inhibition of L-tyrosine-sensitive DDPA by 2DDA7P (2-dehydro-3-deoxy-
arabino-heptulosonate 7-phosphate) [11].

Parameter Substrate Value Unit Reference
kcat - 60.3 s-1 [11]
kcat - 29.5 s-1 [12]
KM PEP 0.00585 mM [11]
KM PEP 0.013 mM [12]
KM E4P 0.0965 mM [11]
KM E4P 0.0814 mM [12]
KD TYR 0.009 mM [12]
KD TYR 0.082 mM [6]

Kinetic parameters - L-tryptophan-sensitive DDPA
(Noncompetitive, possibly allosteric) inhibition of L-tryptophan-sensitive DDPA by
L-tryptophan [13, 14] and L-tryptophan-sensitive DDPA likely follows non-Michaelis-Menten
kinetics [15].

120



Chapter 4: Supplementary materials

Parameter Substrate Value Unit Reference
kcat - 20.6 s-1 [15]
KM PEP 0.0053 mM [15]
KM E4P 0.076 mM [14]
KM E4P 0.035 mM [15]
KD TRP 0.0014 mM [15]

DHQS - 3-dehydroquinate synthase
DHQS (3-dehydroquinate synthase; P07639) is a monomeric enzyme encoded by the aroB
gene and is located in the cytosol. DHQS requires multiple cofactors: NAD+ and Zn2+ or
Co2+. Co2+ as cofactor results in higher specific activity, Zn2+ is more readily available in
nature.

Reaction equation

1 2DDA7P → 1 3DHQ+ 1 Pi

2-dehydro-3-deoxyarabino-heptulosonate 7-phosphate → 3-dehydroquinate + phosphate

Kinetic parameters
Competitive inhibition by 2DDA7P (2-dehydro-3-deoxyarabino-heptulosonate 7-phosphate;
substrate inhibition) and variants of 2DDA7P [16].

Parameter Substrate Value Unit Reference
kcat - 72.9 s-1 [17]
kcat - 16.0 s-1 [18]
KM 2DDA7P 0.018 mM [16]
KM 2DDA7P 0.033 mM [19]
KM 2DDA7P 0.0055 mM [17]
KM 2DDA7P 0.0057 mM [18]

DHQTi - 3-dehydroquinate dehydratase
DQDH (3-dehydroquinate dehydratase; P05194) is an homodimeric enzyme encoded by
the aroD gene and is located in the cytosol.

Reaction equation

1 3DHQ → 1 3DHSK + 1 H2O

3-dehydroquinate → 3-dehydroshikimate + water

Kinetic parameters
Competitive inhibition by acetate, succinate, tartrate, and chloride; inhibition by diethyl-
pyrocarbonate, and sodium borohydride [20].
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Parameter Substrate Value Unit Reference
kcat - 135.0 s-1 [21]
kcat - 142.0 s-1 [22]
kcat - 29.53 s-1 [23]
KM 3DHQ 0.018 mM [20]
KM 3DHQ 0.073 mM [20]
KM 3DHQ 0.44 mM [24]
KM 3DHQ 0.016 mM [21]
KM 3DHQ 0.017 mM [22]
KM 3DHQ 0.188 mM [23]
KI acetate 102 mM [20]
KI succinate 74 mM [20]
KI chloride 17 mM [20]
KI tartrate 21 mM [20]

SHK3Dr - shikimate dehydrogenase
SHK3Dr (shikimate dehydrogenase; P15770) is a monomeric enzyme encoded by the aroE
gene and is located in the cytosol. Another SHK3Dr homodimeric enzyme is encoded
by the ydiB. The SHK3Dr from aroE is NADP+-specific and has much higher catalytic
efficiency than the SHK3Dr from ydiB, which has broader substrate specificity and can
use either NADP+ or NAD+ as a co-substrate [25]. Mutant data and the results from
metabolic engineering experiments strongly suggest that the SHK3Dr from ydiB is unable
to replace the SHK3Dr from aroE under normal physiological conditions. An ∆aroE
mutant is viable, but accumulates 3-dehydroshikimate in minimal medium and is able
to grow on media supplemented with shikimate, L-phenylalanine, and L-tyrosine. In the
"reverse" direction, AroE appears to be able to further dehydrogenate 3-dehydroshikimate
to 3,5-dehydroshikimate, which can spontaneously convert to gallic acid [26]. The
physiological relevance is unclear.

Reaction equation

1 3DHSK + 1 NADPH → 1 SKM + 1 NADP+

3-dehydroshikimate + NADPH → shikimate + NADP+

Kinetic parameters
(Linear) mixed inhibition by shikimate [27].

122



Chapter 4: Supplementary materials

Parameter Substrate Value Unit Reference
kcat - 236.7 s-1 [25]
kcat - 8750.0 s-1 [26]
kcat - 190.0 s-1 [28]
kcat - 178.0 s-1 [29]
KM 3DHSK 0.11 mM [30]
KM 3DHSK 0.11 mM [29]
KM SKM 0.065 mM [25]
KM SKM 0.102 mM [26]
KM SKM 0.13 mM [28]
KM SKM 0.095 mM [29]
KM NADP+ 0.056 mM [25]
KM NADP+ 0.347 mM [26]
KM NADP+ 0.058 mM [28]
KM NADP+ 0.011 mM [29]
KM NADPH 0.0126 mM [29]
KI SKM 0.16 mM [27]

SHKK - shikimate kinase
The SHKK (shikimate kinase) reaction consists of two isozymes: SHKK I (P0A6D7)
encoded by aroK and SHKK II (P0A6E1) encoded by aroL. Both enzymes are present
in the cytosol, however SHKK I has approximately 100-fold lower affinity for shikimate
[31] and a three-fold lower specific activity than SHKK II [32], so SHKK II is the major
isozyme. SHKK I is relatively easy to isolate and is expressed constitutively compared
to aromatic amino acid biosynthesis, so possibly other, still unknown, function. SHKK I
and II are both monomeric enzymes which require Mg2+ as a cofactor. A double mutant
∆aroK∆aroL cannot grow on minimal medium, even when supplemented with shikimate,
L-phenylalanine and L-tyrosine.

Reaction equation

1 SKM + 1ATP → 1 SKM5P + 1 ADP

shikimate + ATP → shikimate 5-phosphate + ADP

Kinetic parameters - SHKK I

Parameter Substrate Value Unit Reference
kcat - 6.0 s-1 [32]
KM SKM 20 mM [31]
KM SKM 0.4 mM [33]

Kinetic parameters - SHKK II
Substrate inhibition of SHKK II by shikimate [31].
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Parameter Substrate Value Unit Reference
kcat - 21.8 s-1 [32]
kcat - 32.0 s-1 [31]
KM SKM 0.2 mM [31]
KM ATP 0.16 mM [31]

PSCVT - 3-phosphoshikimate 1-carboxyvinyltransferase
PSCVT (3-phosphoshikimate 1-carboxyvinyltransferase or EPSP synthase; P0A6D3) is a
monomeric enzyme encoded by the aroA gene and is located in the cytosol. A ∆aroA
mutants are auxotrophic for the aromatic amino acids and are unable to grow on minimal
media.

Reaction equation

1 SKM5P + 1 PEP ↔ 1 3PSME + 1 Pi

shikimate 5-phosphate + phosphoenolpyruvate ↔
5-O-(1-Carboxyvinyl)-3-phosphoshikimate + phosphate

Kinetic parameters
Activation by PEP (phosphoenolpyruvate) [34]. Competitive inhibition of PEP by
glyphosate [35], inhibition by pyruvate [36] and 3-bromopyruvate [37] and product
inhibition by 5-O-(1-Carboxyvinyl)-3-phosphoshikimate (3PSME or EPSP) [35].
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Parameter Substrate Value Unit Reference
kcat - 56.7 s-1 [34]
kcat - 17.2 s-1 [35]
kcat - 41.2 s-1 [38]
kcat - 50.6 s-1 [39]
kcat - 8.2 s-1 [40]
kcat - 26.4 s-1 [41]
kcat - 14.0 s-1 [42]
kcat - 40.8 s-1 [43]
kcat - 30.5 s-1 [44]
kcat - 46.6 s-1 [45]
kcat - 43.3 s-1 [46]
KM SKM5P 0.0032 mM [34]
KM SKM5P 0.0025 mM [35]
KM SKM5P 0.020 mM [38]
KM SKM5P 0.0025 mM [39]
KM SKM5P 0.135 mM [40]
KM SKM5P 0.14 mM [41]
KM SKM5P 0.060 mM [43]
KM SKM5P 0.008 mM [47]
KM SKM5P 0.12 mM [44]
KM SKM5P 0.048 mM [45]
KM SKM5P 0.09 mM [46]
KM PEP 0.021 mM [34]
KM PEP 0.016 mM [35]
KM PEP 0.025 mM [38]
KM PEP 0.022 mM [48]
KM PEP 22.5 mM [49]
KM PEP 0.016 mM [39]
KM PEP 0.1 mM [40]
KM PEP 0.1 mM [41]
KM PEP 0.16 mM [41]
KM PEP 0.060 mM [43]
KM PEP 0.013 mM [47]
KM PEP 0.088 mM [44]
KM PEP 0.045 mM [45]
KM PEP 0.10 mM [46]
KM 3PSME 0.003 mM [35]
KM 3PSME 0.003 mM [39]
KM 3PSME 0.011 mM [40]
KM 3PSME 0.010 mM [47]
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Parameter Substrate Value Unit Reference
KM Pi 2.5 mM [35]
KM Pi 2.5 mM [39]
KM Pi 4.6 mM [40]
KM Pi 5 mM [47]
KI glyphosate 0.009 mM [35]
KI glyphosate 0.0015 mM [48]
KI glyphosate 0.96 mM [49]
KI glyphosate 0.009 mM [39]
KI glyphosate 0.0012 mM [40]
KI glyphosate 0.0004 mM [43]
KI glyphosate 0.00013 mM [47]
KI glyphosate 80.0003 mM [45]

CHORS - chorismate synthase
CHORS (chorismate synthase; P12008) is a homotetrameric enzyme encoded by the aroC
gene and is located in the cytosol. The flavin FMNH2 is required as cofactor for CHORS;
FADH2 works as well but FMNH2 is favoured. The CHORS enzyme is inactive under
aerobic conditions, because it is oxygen sensitive. A ∆aroC mutant is unable to grow in
minimal medium.

Reaction equation

1 3PSME → 1 CHOR + 1 Pi

5-O-(1-Carboxyvinyl)-3-phosphoshikimate → chorismate + phosphate

Kinetic parameters
Structural (conformational) changes upon flavin and substrate binding [50]. "The line
through the data points assumes dissociation of the active tetramer to two inactive dimers
(KD = 0.25 nM) on dilution" [51]. Competitive inhibition of 3PSME by 6-fluoro-3PSME
variants [52].

Parameter Substrate Value Unit Reference
kcat - 16.5 s-1 [51]
kcat - 29.0 s-1 [53]
kappt

max - 60.6 s-1 Calculated from experimental data
KM 3PSME 0.0013 mM [51]
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CHORM - chorismate mutase
The CHORM (chorismate mutase) reaction consists of two (iso)enzymes: PheA (P0A9J8)
encoded by the pheA gene and TyrA (P07023) encoded by the tyrA gene. Both enzymes
are homodimeric and are located in the cytosol. PheA is a fused (bifunctional) chorismate
mutase/prephenate dehydratase and thus catalyses both reactions. The native enzyme is
a dimer of identical subunits each containing a dehydratase active site, a mutase active
site and an L-phenylalanine binding site. Prephenate, which is formed from chorismate,
dissociates from the mutase site and equilibrates with the bulk medium before combining
at the dehydratase site [54]. TyrA is a fused (bifunctional) chorismate mutase/prephenate
dehydrogenase and thus catalyses both reactions. The two catalytic activities of TyrA
occur in separate portions of the protein. Specifically, the chorismate mutase activity
requires the amino-terminal portion of the protein, and the prephenate dehydrogenase
activity is in the carboxy-terminal portion of the protein. Both PheA and TyrA are
common targets for metabolic engineering to increase titers of L-phenylalanine and
L-tyrosine, respectively.

Reaction equation

1 CHOR → 1 PPHN

chorismate → prephenate

Kinetic parameters - PheA
Allosteric inhibition of PheA by L-phenylalanine [55, 56] and competitive inhibition of
PheA by citrate (CIT) [57] and prephenate [58, 54].
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Parameter Substrate Value Unit Reference
kcat - 14.7 s-1 [54]
kcat - 34.7 s-1 [56]
kcat - 40.0 s-1 [59]
kcat - 72.0 s-1 [60]
kcat - 41.4 s-1 [61]
kcat - 39.0 s-1 [62]
kcat - 34.2 s-1 [63]
kcat - 38.9 s-1 [64]
KM CHOR 0.045 mM [55]
KM CHOR 0.044 mM [58]
KM CHOR 0.024 mM [54]
KM CHOR 0.031 mM [57]
KM CHOR 0.29 mM [59]
KM CHOR 0.296 mM [60]
KM CHOR 0.3 mM [61]
KM CHOR 0.226 mM [62]
KM CHOR 0.127 mM [63]
KM CHOR 0.304 mM [64]
KD PHE 0.02013 mM [62]
KI PPHN 0.047 mM [58]
KI PPHN 0.031 mM [54]
KI CIT 1.01 mM [57]

Kinetic parameters - TyrA
Allosteric inhibition of TyrA by L-tyrosine [65, 66], competitive inhibition by prephenate
to chorismate [67, 68] and noncompetitive inhibition by citrate [68].

Parameter Substrate Value Unit Reference
kcat - 71.0 s-1 [65]
kcat - 27.0 s-1 [69]
KM CHOR 0.39 mM [70]
KM CHOR 0.14 mM [68]
KM CHOR 0.092 mM [65]
KM CHOR 0.045 mM [69]
KD TYR 0.01 mM Chosen (weakly informative)
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PPNDH - prephenate dehydratase
PPNHD (prephenate dehydratase; P0A9J8) is a homodimeric enzyme encoded by the
pheA gene and is located in the cytosol. PheA is a fused (bifunctional) chorismate
mutase/prephenate dehydratase and thus catalyses both reactions. The native enzyme is
a dimer of identical subunits each containing a dehydratase active site, a mutase active
site and a L-phenylalanine binding site. Prephenate, which is formed from chorismate,
dissociates from the mutase site and equilibrates with the bulk medium before combining
at the dehydratase site [54].

Reaction equation

1 PPHN → 1 PHPY R + 1 CO2 + 1 H2O

prephenate → phenylpyruvate + carbon dioxide + water

Kinetic parameters
Allosteric inhibition by L-phenylalanine [55, 56], competitive inhibition by aconitate [57]
and inhibition by chorismate [54].

Parameter Substrate Value Unit Reference
kcat - 12.0 s-1 [54]
kcat - 21.3 s-1 [56]
kcat - 26.2 s-1 [62]
kcat - 32.2 s-1 [63]
KM PPHN 1.0 mM [55]
KM PPHN 0.47 mM [54]
KM PPHN 0.549 mM [62]
KM PPHN 0.559 mM [63]
KD PHE 0.02013 mM [62]
KI CHOR 26.0 mM [54]
KI PHPYR 4.6 mM [54]

PHETA1 - L-phenylalanine transaminase
The PHETA1 (L-phenylalanine transaminase) reaction consists of three isozymes: TyrB
(P04693) encoded by the tyrB gene, AspC (P00509) encoded by the aspC gene and IlvE
(P0AB80) encoded by the ilvE gene. All isozymes are located in the cytosol. TyrB and
AspC are homodimeric enzymes, while IlvE is a hexameric enzyme (a dimer of trimers).
TyrB, AspC and IlvE are involved in catalyzing the third step of L-phenylalanine and
L-tyrosine biosynthesis: all three can contribute to the synthesis of L-phenylalanine; only
TyrB and AspC contribute to the biosynthesis of L-tyrosine. Under normal physiological
conditions, TyrB is the primary enzyme contributing to the synthesis of L-tyrosine and
L-phenylalanine. AspC contributes to their synthesis when substrate pools are large.
The contribution of IlvE to L-phenylalanine biosynthesis was demonstrated in triple
mutants of Escherichia coli K-12 that lacked all three aminotransferases and required
both L-phenylalanine and L-tyrosine for growth.
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However, ∆tyrB and ∆aspC double mutants required only L-tyrosine for growth [71].
TyrB is 1000-fold more active toward aromatic substrates than AspC [72]. PLP (pyridoxal
5-phosphate) is a cofactor of TyrB, AspC (one per subunit) and IlvE. IlvE has very low
activity for L-tyrosine and L-phenylalanine [73].

Reaction equation

1 PHPY R + 1 GLU ↔ 1 PHE + 1 AKG

phenylpyruvate + L-glutamate ↔ L-phenylalanine + 2-oxoglutarate

Kinetic parameters - TyrB
Inhibition of TyrB by L-tyrosine [74], L-leucine [75], and 3MOB (3-methyl-2-oxobutanoate)
[76].

Parameter Substrate Value Unit Reference
kcat - 26.7 s-1 [77]
kcat - 29.3 s-1 [71]
kcat - 13.2 s-1 [75]
kcat - 250.0 s-1 [72]
kcat - 520.0 s-1 [78]
kcat - 180.0 s-1 [79]
KM PHPYR 0.012 mM [71]
KM PHPYR 0.056 mM [75]
KM GLU 0.28 mM [75]
KM PHE 0.333 mM [80]
KM PHE 0.06 mM [75]
KM PHE 0.26 mM [72]
KM PHE 0.56 mM [79]
KM AKG 0.23 mM [75]
KM AKG 1.7 mM [72]
KM AKG 5.0 mM [79]

Kinetic parameters - AspC
Allosteric inhibition of AspC by 2-methylaspartate [81] and competitive inhibition of
AspC by maleate [82].
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Parameter Substrate Value Unit Reference
kcat - 9.8 s-1 [77]
kcat - 52.1 s-1 [71]
kcat - 6.6 s-1 [75]
kcat - 13.8 s-1 [83]
KM PHPYR 3.9 mM [71]
KM PHPYR 0.65 mM [75]
KM GLU 0.9 mM [75]
KM GLU 15 mM [84]
KM GLU 0.6 mM [82]
KM PHE 2.17 mM [80]
KM PHE 0.55 mM [75]
KM PHE 8.0 mM [83]
KM AKG 0.15 mM [75]
KM AKG 0.24 mM [84]
KM AKG 0.47 mM [85]
KM AKG 0.59 mM [86]
KI maleate 5.6 mM [85]

Kinetic parameters - IlvE

Parameter Substrate Value Unit Reference
kcat - 0.8 s-1 [73]
KM AKG 1.28 mM [73]

PPND - prephenate dehydrogenase
PPND (prephenate dehydrogenase; P07023) is a homodimeric enzyme encoded by the
tyrA gene and is located in the cytosol. TyrA is a fused (bifunctional) chorismate
mutase/prephenate dehydrogenase and thus catalyses both reactions. The two catalytic
activities of TyrA occur in separate portions of the protein. Specifically, the chorismate
mutase activity requires the amino-terminal portion of the protein, and the prephenate
dehydrogenase activity is in the carboxy-terminal portion of the protein. Both PheA and
TyrA are common targets for metabolic engineering to increase titers of L-phenylalanine
and L-tyrosine, respectively.

Reaction equation

1 PPHN + 1 NAD+ → 1 34HPP + 1 CO2 + 1 NADH

prephenate + NAD+ → 3-(4-hydroxyphenyl)pyruvate + carbon dioxide + NADH

Kinetic parameters
Competitive/allosteric inhibition by L-tyrosine to prephenate [65, 66].
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Parameter Substrate Value Unit Reference
kcat - 71.0 s-1 [65]
kcat - 27.0 s-1 [69]
KM PPHN 0.37 mM [70]
KM PPHN 0.13 mM [68]
KM PPHN 0.044 mM [69]
KM NAD+ 0.33 mM [70]
KM NAD+ 0.05 mM [65]
KM NAD+ 0.103 mM [69]
KI TYR 0.1 mM [65]

TYRTA - L-tyrosine aminotransferase
The TYRTA (L-tyrosine aminotransferase) reaction consists of two isozymes: TyrB
(P04693) encoded by the tyrB gene and AspC (P00509) encoded by the aspC gene. Both
isozymes are homodimeric enzymes and located in the cytosol. TyrB, AspC and IlvE are
involved in catalyzing the third step of L-phenylalanine and L-tyrosine biosynthesis: all
three can contribute to the synthesis of L-phenylalanine; only TyrB and AspC contribute
to the biosynthesis of L-tyrosine. Under normal physiological conditions, TyrB is the
primary enzyme contributing to the synthesis of L-tyrosine and L-phenylalanine. AspC
contributes to their synthesis when substrate pools are large. The contribution of IlvE to
L-phenylalanine biosynthesis was demonstrated in triple mutants of Escherichia coli K-12
that lacked all three aminotransferases and required both L-phenylalanine and L-tyrosine
for growth. However, ∆tyrB and ∆aspC double mutants required only L-tyrosine for
growth [71]. TyrB is 1000-fold more active toward aromatic substrates than AspC [72].
PLP (pyridoxal 5-phosphate) is a cofactor of TyrB and AspC (one per subunit).

Reaction equation

1 34HPP + 1 GLU ↔ 1 TY R + 1 AKG

3-(4-hydroxyphenyl)pyruvate + L-glutamate ↔ L-tyrosine + 2-oxoglutarate

Kinetic parameters - TyrB
Inhibition of TyrB by L-tyrosine [74], L-leucine [75], and 3MOB (3-methyl-2-oxobutanoate)
[76].
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Parameter Substrate Value Unit Reference
kcat - 31.1 s-1 [77]
kcat - 31.5 s-1 [71]
kcat - 18.3 s-1 [75]
kcat - 210.0 s-1 [72]
kcat - 660.0 s-1 [78]
KM 34HPP 0.013 mM [71]
KM 34HPP 0.032 mM [75]
KM GLU 0.28 mM [75]
KM TYR 0.625 mM [80]
KM TYR 0.042 mM [75]
KM TYR 0.32 mM [72]
KM AKG 0.23 mM [75]
KM AKG 1.3 mM [72]

Kinetic parameters - AspC
Allosteric inhibition of AspC by 2-methylaspartate [81] and competitive inhibition of
AspC by maleate [82].

Parameter Substrate Value Unit Reference
kcat - 10.1 s-1 [77]
kcat - 88.0 s-1 [71]
kcat - 6.6 s-1 [75]
KM 34HPP 3.9 mM [71]
KM 34HPP 0.4 mM [75]
KM GLU 0.9 mM [75]
KM GLU 15 mM [84]
KM GLU 0.6 mM [82]
KM TYR 1.43 mM [80]
KM TYR 0.45 mM [75]
KM AKG 0.15 mM [75]
KM AKG 0.24 mM [84]
KM AKG 0.47 mM [85]
KI maleate 5.6 mM [85]

ANS - anthranilate synthase
The ANS (anthranilate synthase) reaction is catalysed by the TrpDE (TrpGDE) complex,
a heterotetrameric enzyme (two TrpD (P00895) and two TrpE (P00904) subunits) located
in the cytosol and encoded by the trpD and trpE genes. TrpE on its own can carry out an
alternate version of this reaction, using ammonium sulfate rather than glutamine as an
amino donor [87]. However, TrpD dramatically increases the affinity of TrpE for glutamine
over TrpE alone [88]. Mg2+ is preferred as cofactor, but Co2+ and Fe2+ work as well.
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Both mutants are not viable on minimal medium. The complex is more thermostable
for both the ANS and ANPRT reactions, than the corresponding individual components.
Drawing of subunits and conformational changes in Pabst et al. [89].

Reaction equation

1 CHOR + 1 GLN → 1 ANTH + 1 GLU + 1 PY R

chorismate + L-glutamine → anthranilate + L-glutamate + pyruvate

Kinetic parameters
Competitive/Allosteric inhibition of chorismate by L-tryptophan [90, 89] and 7-mehtyl-
L-tryptophan [91]. Noncompetitive inhibition with respect to ammonium sulfate or
L-glutamine by L-tryptophan [90], TrpE alone is inhibited by L-tryptophan (competitive
to chorismate) [87].

Parameter Substrate Value Unit Reference
kappt

max - 2.27 s-1 Calculated from experimental data
KM CHOR 0.0055 mM [88]
KM CHOR 0.005 mM [89]
KM CHOR 0.0012 mM [90]
KM GLN 0.36 mM [90]
KM NH4

+ 39 mM [88]
KM CHOR of TrpE 0.03 mM [88]
KM NH4

+ of TrpE 15 mM [87]
KM NH4

+ of TrpE 25 mM [88]
KD TRP 0.001 mM [89]

ANPRT - anthranilate phosphoribosyltransferase
ANPRT (anthranilate phosphoribosyltransferase; P00904) is likely a monomeric enzyme
encoded by the trpD gene or the TrpDE complex [92] and is located in the cytosol. The
phosphoribosyl transferase and anthranilate synthase contributing portions of TrpD are
present in different sections of the protein. The anthranilate synthase reaction requires
the amino-terminal portion of the protein, whereas the phosphoribosyltransferase reaction
requires the carboxy-terminal region [92]. A ∆trpD mutant is not viable in minimal
medium.

Reaction equation

1 ANTH + 1 PRPP → 1 PRAN + 1 PPi

anthranilate + 5-phosphoribose 1-diphosphate → N-(5-phosphoribosyl)anthranilate +
diphosphate

Kinetic parameters
Competitive inhibition of PRPP by L-tryptophan [93] or noncompetitive inhibition of
PRPP by L-tryptophan [88] and of anthranilate by L-tryptophan [93].
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Parameter Substrate Value Unit Reference
kcat - 6.6 s-1 [92]
kcat - 4.4 s-1 [93]
KM ANTH 0.00058 mM [93]
KM PRPP 0.1 mM [88]
KM PRPP 0.05 mM [93]
KM PRPP of TrpD 0.2 mM [88]
KI TRP 0.0005 mM [89]
KI TRP 0.0005 mM [93]

PRAIi - phosphoribosylanthranilate isomerase
PRAI (phosphoribosylanthranilate isomerase; P00909) is a monomeric enzyme encoded
by the trpC gene and is located in the cytosol. TrpC catalyses both the PRAI and
IGPS reaction and mutant complementation studies demonstrated that the two reactions
occur at two distinct, non-overlapping sites on the polypeptide and that 2CPR5P is a
free intermediate [94]. The amino-terminal domain carries out the synthase activity and
the carboxy-terminal domain carries out the isomerase activity [95], so channelling of
the intermediate substrate is not likely. TrpC is unique among the five enzymes in the
tryptophan biosynthesis pathway in that it is not part of a multisubunit enzyme complex
[96]. A ∆trpC mutant in not viable in minimal medium.

Reaction equation

1 PRAN → 1 2CPR5P

N-(5-phosphoribosyl)anthranilate → 1-(2-carboxyphenylamino)-1-deoxyribulose
5-phosphate

Kinetic parameters

Parameter Substrate Value Unit Reference
kcat - 38.9 s-1 [95]
kcat - 40.0 s-1 [97]
kcat - 40.0 s-1 [98]
KM PRAN 0.005 - 0.01 mM [94]
KM PRAN 0.0071 mM [95]
KM PRAN 0.0049 mM [97]
KM PRAN 0.0049 mM [98]

135



Chapter 4: Supplementary materials

IGPS - indole-3-glycerol-phosphate synthase
IGPS (indole-3-glycerol-phosphate synthase; P00909) is a monomeric enzyme encoded
by the trpC gene and is located in the cytosol. TrpC catalyses both the PRAI and
IGPS reaction and mutant complementation studies demonstrated that the two reactions
occur at two distinct, non-overlapping sites on the polypeptide and that 2CPR5P is a
free intermediate [94]. The amino-terminal domain carries out the synthase activity and
the carboxy-terminal domain carries out the isomerase activity [95], so channelling of
the intermediate substrate is not likely. TrpC is unique among the five enzymes in the
tryptophan biosynthesis pathway in that it is not part of a multisubunit enzyme complex
[96]. A ∆trpC mutant in not viable in minimal medium.

Reaction equation

12CPR5P → 1 3IG3P + 1 CO2 + 1 H2O

1-(2-carboxyphenylamino)-1-deoxyribulose 5-phosphate → (3-indolyl)-glycerol
3-phosphate + carbon dioxide + water

Kinetic parameters
Inhibition by anthranilate and derivatives [99] and by rCdRP [100].

Parameter Substrate Value Unit Reference
kcat - 7.2 s-1 [95]
kcat - 3.6 s-1 [98]
kcat - 2.7 s-1 [101]
KM 2CPR5P 0.005 mM [102]
KM 2CPR5P 0.0012 mM [95]
KM 2CPR5P 0.00042 mM [98]
KM 2CPR5P 0.0003 mM [101]

TRPS1 - L-tryptophan synthase
The TRPS (L-tryptophan synthase) reaction is catalysed by the TrpAB complex, a
heterotetrameric enzyme (two TrpA (P0A877) subunits and one dimer of TrpB (P0A879))
located in the cytosol and encoded by the trpA and trpB genes. The overall L-tryptophan
synthase reaction consists of a sequence of two partial reactions. The α subunit of the
complex carries out the aldol cleavage of 3IG3P to indole and G3P. The β subunit is
responsible for the synthesis of L-tryptophan from indole and L-serine. The intermediate
substrate (indole) is channelled through the enzyme complex and does not appear in
solution [103]. The TrpA monomer is able to catalyse the first part of the reaction, however
within the physiological complex with the B subunit, the reaction rate is increased by
1-2 orders of magnitude [104, 105]. The TrpB dimer is seems to be able to catalyse the
second part of the reaction [106]. PLP (pyridoxal 5-phosphate) is a cofactor of the enzyme
complex, because two PLP molecules bind to the B dimer. Both ∆trpA and ∆trpB
mutants are not viable on minimal medium.
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Reaction equation

1 3IG3P + 1 SER → 1 TRP + 1 G3P + 1 H2O

(3-indolyl)-glycerol 3-phosphate + L-serine → L-tryptophan + glyceraldehyde
3-phosphate + water

Kinetic parameters
The partial reaction of the TrpA subunit is competitively inhibited by indolepropanol
phosphate [107].

Parameter Substrate Value Unit Reference
kcat - 23.4 s-1 [92]
kcat - 1.5 s-1 [105]
kcat - 3.8 s-1 [108]
kcat - 1.4 s-1 [109]
kcat - 4.7 s-1 [110]
KM 3IG3P 0.03 mM [105]
KM 3IG3P 0.03 mM [108]
KM 3IG3P 0.069 mM [109]
KM SER 14.5 mM [111]
KM SER 0.34 mM [109]
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Supplementary figures

Figure S4.1: Comparison of experimental and simulated fluxes of several reactions. Green circles
represent the experimentally observed fluxes, while blue crosses represent the simulated fluxes. The
posterior predictive distributions of the simulated fluxes could not be displayed due to the small size
caused by the small reported measurement error on the fluxes, 1 · 10−5 (A) Comparison of DDPA
(3-deoxy-7-phosphoheptulonate synthase). (B) Comparison of SHKK (shikimate kinase). (C) Comparison
of CHORS (chorismate synthase). (D) Comparison of CHORM (chorismate mutase). (E) Comparison
of PPNDH (prephenate dehydratase). (F) Comparison of PPND (prephenate dehydrogenase). (G)
Comparison of ANS (anthranilate synthase). (H) Comparison of PHETA1 (L-phenylalanine transaminase).
(I) Comparison of TYRTA (L-tyrosine aminotransferase). (J) Comparison of TRPS1 (L-tryptophan
synthase).
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Figure S4.2: Metabolic control analysis of the aromatic amino acid biosynthesis for the
ePtsHIcrr03 experiment and three common metabolic engineering targets for L-tyrosine overproduction.
The targets include a feedback-resistant version of aroG, the L-phenylalanine-sensitive DDPA
(3-deoxy-7-phosphoheptulonate synthase), a feedback-resistant version of tyrA, the L-tyrosine-sensitive
CHORM (chorismate mutase), and the combination of the two previous targets. The L-tyrosine
combined consumption reaction was set as target and the flux response coefficients of changes in enzyme
concentrations in mol/L enzyme per (mol/L)/s were plotted for each enzyme.
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Supplementary tables

Table S4.1: Reprocessed enzyme concentrations in mol/L of the KALE data set.

name
Enzyme eWT01 ePgi04 ePtsHIcrr03 eSdhCB03 eTpiA02

aroG
DDPA 8.10e-6±1.42e-6 1.30e-5±2.51e-6 2.72e-6±3.07e-6 8.29e-7±2.07e-7 1.98e-6±3.06e-7

aroF
DDPA 4.91e-6±5.57e-7 1.02e-6±1.18e-7 1.02e-6±3.33e-7 1.19e-6±3.74e-7 1.30e-6±1.78e-7

aroH
DDPA 1.13e-6±1.03e-7 1.18e-6±4.69e-8 2.22e-6±4.15e-7 2.00e-6±3.20e-7 2.07e-6±1.89e-7

DHQS 5.55e-7±5.67e-8 6.99e-7±6.34e-8 7.00e-6±1.21e-6 5.48e-6±7.90e-7 5.80e-6±1.54e-6
DHQTi 3.91e-7±5.64e-8 4.61e-7±6.21e-8 6.20e-6±1.87e-6 7.59e-6±1.37e-6 5.98e-6±2.51e-6
SHK3Dr 1.46e-7±1.09e-8 2.33e-7±2.01e-8 4.19e-6±1.12e-6 4.44e-6±1.45e-6 4.03e-6±1.11e-6
SHKK 2.13e-7±3.33e-8 2.56e-7±7.63e-8 1.02e-7
PSCVT 2.57e-6±4.12e-7 2.55e-6±1.31e-7 1.48e-7 3.32e-7±2.90e-7 2.34e-7
CHORS 1.40e-6±1.36e-7 1.38e-6±4.16e-8 1.86e-6±8.10e-7 1.73e-6±4.31e-7 1.37e-6±6.56e-7

pheA
CHORM 9.23e-7±1.01e-7 6.60e-7±3.69e-8 1.60e-6±2.38e-7 1.75e-6±4.73e-7 1.82e-6±9.11e-7

tyrA
CHORM 1.77e-6±1.21e-7 5.73e-7±7.24e-8 6.72e-7±1.14e-6 3.87e-7±2.31e-7 1.75e-6±1.59e-6

PPNDH 9.23e-7±1.01e-7 6.60e-7±3.69e-8 1.60e-6±2.38e-7 1.75e-6±4.73e-7 1.82e-6±9.11e-7

tyrB
PHETA1 1.69e-6±1.01e-7 1.86e-6±4.87e-8 2.84e-6±7.17e-7 3.31e-6±9.50e-7 2.85e-6±5.17e-7

aspC
PHETA1 1.16e-5±9.87e-7 1.35e-5±9.76e-7 1.03e-6±9.75e-7 1.01e-6±5.54e-7 1.29e-6±1.48e-6

PPND 1.77e-6±1.21e-7 5.73e-7±7.24e-8 6.72e-7±1.14e-6 3.87e-7±2.31e-7 1.75e-6±1.59e-6

tyrB
TYRTA 1.69e-6±1.01e-7 1.86e-6±4.87e-8 2.84e-6±7.17e-7 3.31e-6±9.50e-7 2.85e-6±5.17e-7

aspC
TYRTA 1.16e-5±9.87e-7 1.35e-5±9.76e-7 1.03e-6±9.75e-7 1.01e-6±5.54e-7 1.29e-6±1.48e-6

ANS 2.28e-6±4.06e-8 9.01e-7±6.20e-8 1.04e-6±7.60e-7 4.45e-7±1.47e-7 6.79e-7±7.74e-7
ANPRT 2.67e-6±2.33e-7 1.06e-6±8.50e-8 2.08e-6±5.24e-7 1.19e-6±2.86e-7 1.22e-6±5.03e-7
PRAIi 2.63e-6±1.12e-7 1.07e-6±1.19e-7 2.47e-6±9.38e-7 1.69e-6±4.82e-7 1.89e-6±4.15e-7
IGPS 2.63e-6±1.12e-7 1.07e-6±1.19e-7 2.47e-6±9.38e-7 1.69e-6±4.82e-7 1.89e-6±4.15e-7
TRPS1 5.15e-6±3.94e-7 2.20e-6±1.45e-7 5.53e-7±3.43e-7 1.00e-6±3.42e-7 9.47e-7±8.55e-8
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Table S4.2: Prior and posterior values of kinetic parameters. The kcat values are in 1/s and the KM

and KD values are in mol/L.

Parameter mean
Prior Scale mean

Posterior Parameter mean
Prior Scale mean

Posterior

DDPA aroG
kcat 62.3 0.2 62.7 NAD

KM PPND, 1.03e-4 0.2 9.86e-5

DDPA aroF
kcat 29.5 0.2 29.1 tyrB, PHPYR

KM PHETA1 5.60e-5 0.2 5.62e-5

DDPA aroH
kcat 20.6 0.2 20.3 tyrB, PHE

KM PHETA1 6.00e-5 0.2 6.00e-5

kcat DHQS 72.9 0.2 84.0 tyrB, GLU
KM PHETA1 2.80e-4 0.2 2.80e-4

kcat DHQTi 142 0.2 286.5 tyrB, AKG
KM PHETA1 2.30e-4 0.2 2.30e-4

kcat SHK3Dr 178 0.2 242.2 aspC, PHPYR
KM PHETA1 6.50e-4 0.2 6.54e-4

kcat SHKK 32 0.2 241.5 aspC, PHE
KM PHETA1 5.50e-4 0.2 5.50e-4

kcat PSCVT 50.6 0.2 711.0 aspC, GLU
KM PHETA1 9.00e-4 0.2 9.00e-4

kcat CHORS 60.6 0.2 200.4 aspC, AKG
KM PHETA1 1.50e-4 0.2 1.50e-4

CHORM pheA
kcat 14.7 0.2 5.5 tyrB, 34HPP

KM TYRTA 3.20e-5 0.2 2.95e-5

CHORM tyrA
kcat 27 0.2 79.3 tyrB, TYR

KM TYRTA 4.20e-5 0.2 4.23e-5

kcat PPNDH 21.3 0.2 23.7 tyrB, GLU
KM TYRTA 2.80e-4 0.2 2.78e-4

kcat PPND 27 0.2 29.1 tyrB, AKG
KM TYRTA 2.30e-4 0.2 2.31e-4

PHETA1 tyrB
kcat 13.2 0.2 13.8 aspC, 34HPP

KM TYRTA 4.00e-4 0.2 3.93e-4

PHETA1 aspC
kcat 6.6 0.2 6.6 aspC, TYR

KM TYRTA 4.50e-4 0.2 4.50e-4

TYRTA tyrB
kcat 18.3 0.2 20.9 aspC, GLU

KM TYRTA 9.00e-4 0.2 8.99e-4

TYRTA aspC
kcat 6.6 0.2 6.7 aspC, AKG

KM TYRTA 1.50e-4 0.2 1.50e-4

kcat ANS 2.27 0.2 1.9 CHOR
KM ANS, 1.20e-6 0.2 1.21e-6

kcat ANPRT 4.4 0.2 280.0 GLN
KM ANS, 3.60e-4 0.2 3.63e-4

kcat PRAIi 38.9 0.2 886.7 ANTH
KM ANPRT, 5.80e-7 0.2 5.12e-7

kcat IGPS 7.2 0.2 186.6 PRPP
KM ANPRT, 5.00e-5 0.2 4.40e-5

kcat TRPS1 4.7 0.2 206.5 PRAN
KM PRAIi, 7.10e-6 0.2 6.27e-6
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Table S4.2: Prior and posterior values of kinetic parameters - continued. The kcat values are in 1/s and
the KM and KD values are in mol/L.

Parameter mean
Prior Scale mean

Posterior Parameter mean
Prior Scale mean

Posterior

PHE consump.
kcat 1.0 0.2 1.1 2CPR5P

KM IGPS, 1.20e-6 0.2 1.06e-6

TYR consump.
kcat 1.0 0.2 1.1 3IG3P

KM TRPS1, 6.90e-5 0.2 6.10e-5

TRP consump.
kcat 1.0 0.2 0.6 SER

KM TRPS1, 3.40e-4 0.2 3.25e-4

aroG, PEP
KM DDPA 3.50e-5 0.2 3.44e-5 consump., PHE

KM PHE 2.06e-4 0.5 9.42e-5

aroG, E4P
KM DDPA 2.50e-4 0.2 2.48e-4 consump., TYR

KM TYR 3.58e-4 0.5 1.68e-4

aroF, PEP
KM DDPA 1.30e-5 0.2 1.31e-5 consump., TRP

KM TRP 5.64e-5 0.5 8.74e-4

aroF, E4P
KM DDPA 8.14e-5 0.2 8.21e-5 aroG, PHE

KD DDPA 1.30e-5 0.5 1.42e-5

aroH, PEP
KM DDPA 5.30e-6 0.2 5.25e-6 aroF, TYR

KD DDPA 9.00e-6 0.2 8.90e-6

aroH, E4P
KM DDPA 3.50e-5 0.2 3.47e-5 aroH, TRP

KD DDPA 1.40e-6 0.2 1.41e-6

2DDA7P
KM DHQS, 5.50e-6 0.2 4.86e-6 pheA, PHE

KD CHORM 2.01e-5 0.2 1.98e-5

3DHQ
KM DHQTi, 1.70e-5 0.2 1.53e-5 tyrA, TYR

KD CHORM 1.00e-4 0.2 9.34e-8

3DHSK
KM DHQTi, 4.00e-6 0.2 4.30e-6 pheA, PHE

KD PPNDH 2.01e-5 0.2 2.13e-5

3DHSK
KM SHK3Dr, 1.10e-4 0.2 8.87e-5 tyrA, TYR

KD PPND 1.00e-4 0.2 1.04e-7

NADPH
KM SHK3Dr, 1.26e-5 0.2 1.15e-5 KD ANS, TRP 1.00e-6 0.2 1.00e-6

SKM
KM SHKK, 2.00e-4 0.2 1.02e-4 KD ANPRT, TRP 1.00e-6 0.2 1.11e-6

ATP
KM SHKK, 1.60e-4 0.2 1.50e-4 DDPA aroG

transfer constant 1 0.5 0.97

SKM5P
KM PSCVT, 2.50e-6 0.2 2.29e-6 DDPA aroF

transfer constant 1 0.5 1.03

PEP
KM PSCVT, 1.60e-5 0.2 1.57e-5 DDPA aroH

transfer constant 1 0.5 0.97

3PSME
KM PSCVT, 3.00e-6 0.2 3.00e-6 CHORM pheA

transfer constant 1 0.5 1.06

Pi
KM PSCVT, 2.50e-3 0.2 2.54e-3 CHORM tyrA

transfer constant 1 0.5 1.24

3PSME
KM CHORS, 1.30e-6 0.2 1.12e-6 PPNDH

transfer constant 1 0.5 0.65

pheA, CHOR
KM CHORM 3.10e-5 0.2 3.17e-5 PPND

transfer constant 1 0.5 0.77
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Table S4.2: Prior and posterior values of kinetic parameters - continued. The kcat values are in 1/s and
the KM and KD values are in mol/L.

Parameter mean
Prior Scale mean

Posterior Parameter mean
Prior Scale mean

Posterior

tyrA, CHOR
KM CHORM 4.50e-5 0.2 4.82e-5 ANS

transfer constant 1 0.5 1.00

PPHN
KM PPNDH, 4.70e-4 0.2 4.33e-4 ANPRT

transfer constant 1 0.5 0.51

PPHN
KM PPND, 4.40e-5 0.2 4.22e-5
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Table S4.3: Simulated enzyme concentrations in mol/L.

Enzymes eWT01 ePgi04 ePtsHIcrr03 eSdhCB03 eTpiA02
DDPA aroG 8.15e-6 1.30e-5 2.70e-6 8.32e-7 1.96e-6
DDPA aroF 4.33e-6 1.02e-6 1.01e-6 1.22e-6 1.30e-6
DDPA aroH 1.13e-6 1.21e-6 2.13e-6 2.01e-6 2.06e-6
DHQS 1.77e-2 1.83e-5 7.07e-6 8.60e-6 5.90e-6
DHQTi 1.51e-4 8.53e-6 6.32e-6 7.67e-6 6.20e-6
SHK3Dr 2.89e-6 2.84e-5 4.25e-6 4.56e-6 4.08e-6
SHKK 1.52e-6 1.51e-6 3.52e-7 2.47e-6 2.23e-6
PSCVT 2.87e-6 2.58e-6 2.53e-4 1.15e-3 9.80e-5
CHORS 2.53e-5 3.62e-6 3.34e-6 1.00e-4 2.28e-6
CHORM pheA 1.09e-7 1.30e-7 8.92e-7 1.33e-6 1.22e-6
CHORM tyrA 5.28e-6 3.15e-6 2.94e-6 2.77e-6 3.97e-6
PPNDH 4.13e-5 4.75e-4 3.73e-6 3.55e-5 1.21e-5
PPND 1.28e-5 2.04e-4 4.72e-6 1.36e-5 5.48e-6
PHETA1 tyrB 1.69e-6 1.81e-6 2.24e-6 4.25e-6 4.13e-6
PHETA1 aspC 1.43e-5 8.80e-6 1.00e-6 1.04e-6 1.30e-6
TYRTA tyrB 1.70e-6 2.15e-6 3.89e-6 6.48e-6 3.41e-6
TYRTA aspC 1.48e-5 1.69e-5 1.04e-6 1.01e-6 1.29e-6
ANS 1.49e-6 6.72e-7 5.32e-7 1.19e-6 3.30e-7
ANPRT 2.54e-6 1.16e-6 1.50e-6 4.60e-7 1.02e-6
PRAIi 2.65e-6 1.08e-6 4.27e-6 1.96e-6 2.10e-6
IGPS 2.65e-6 1.08e-6 4.30e-6 1.98e-6 2.11e-6
TRPS1 5.69e-6 2.23e-6 6.01e-7 1.14e-6 1.56e-6
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Table S4.4: Simulated metabolite concentrations in mol/L.

Metabolite eWT01 ePgi04 ePtsHIcrr03 eSdhCB03 eTpiA02
PEP 2.42e-4 1.96e-4 1.18e-3 3.70e-4 4.10e-4
E4P 7.36e-5 2.68e-4 4.71e-5 5.20e-4 5.89e-5
2DDA7P 3.25e-10 2.58e-7 5.11e-7 7.74e-7 5.95e-7
3DHQ 7.10e-7 7.02e-7 2.18e-6 3.11e-6 1.38e-6
3DHSK 2.09e-5 1.39e-6 1.20e-5 1.23e-5 6.54e-6
SKM 3.94e-5 2.87e-5 2.26e-4 2.11e-5 1.19e-5
SKM5P 1.55e-7 1.49e-7 1.50e-9 4.70e-10 5.06e-9
3PSME 2.24e-8 1.35e-7 1.03e-7 5.60e-9 1.51e-7
CHOR 3.98e-2 1.05e-1 2.88e-1 5.73e-2 4.99e-2
PPHN 1.83e-4 1.83e-5 1.93e-3 1.49e-4 3.43e-4
PHPYR 2.15e-3 3.65e-3 7.90e-3 2.44e-3 1.43e-3
34HPP 6.49e-5 4.49e-5 3.16e-5 1.32e-5 1.65e-5
ANTH 2.27e-8 1.46e-8 1.04e-8 8.79e-8 6.29e-9
PRAN 7.28e-9 8.17e-9 1.64e-9 8.08e-9 2.04e-9
2CPR5P 5.87e-9 6.59e-9 1.31e-9 6.45e-9 1.64e-9
3IG3P 1.95e-7 2.30e-7 6.64e-7 9.15e-7 1.52e-7
PHE 1.57e-4 3.23e-4 2.61e-4 1.01e-4 1.67e-4
TYR 1.27e-4 2.78e-4 9.53e-4 1.20e-4 2.08e-4
TRP 5.71e-5 3.35e-5 4.03e-5 5.04e-5 2.38e-5
Pi 9.66e-3 9.53e-3 9.59e-3 1.00e-2 9.16e-3
ATP 5.50e-3 4.69e-3 4.07e-3 5.43e-3 3.73e-3
ADP 6.11e-4 9.87e-4 8.87e-4 5.61e-4 8.83e-4
NADP 8.39e-4 1.50e-3 1.06e-3 1.21e-3 1.91e-3
NADPH 3.32e-5 3.16e-5 9.69e-6 3.24e-5 4.46e-5
NAD 2.38e-3 2.86e-3 3.84e-3 2.87e-3 3.29e-3
NADH 3.00e-6 3.46e-6 2.48e-6 2.67e-6 4.04e-6
CO2 1.00e-4 1.00e-4 1.00e-4 1.00e-4 1.00e-4
GLU 4.62e-2 8.08e-2 6.21e-2 5.02e-2 8.63e-2
AKG 3.54e-4 6.32e-4 7.03e-4 1.67e-4 5.90e-4
GLN 7.68e-3 1.06e-2 1.15e-2 1.43e-2 8.83e-3
PRPP 1.16e-4 1.15e-4 1.15e-4 1.24e-4 1.15e-4
PYR 1.00e-4 1.00e-4 1.00e-4 1.00e-4 1.00e-4
SER 8.67e-4 8.36e-4 9.22e-4 5.80e-4 1.02e-3
G3P 1.00e-4 1.00e-4 1.00e-4 1.00e-4 1.00e-4
PPi 1.00e-4 1.00e-4 1.00e-4 1.00e-4 1.00e-4
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Table S4.5: Simulated reaction fluxes in (mol/L)/s.

Reaction eWT01 ePgi04 ePtsHIcrr03 eSdhCB03 eTpiA02
DDPA 9.93e-5 7.78e-5 5.65e-5 9.93e-5 5.40e-5
DHQS 9.93e-5 7.78e-5 5.65e-5 9.93e-5 5.40e-5
DHQTi 9.93e-5 7.78e-5 5.65e-5 9.93e-5 5.40e-5
SHK3Dr 9.93e-5 7.78e-5 5.65e-5 9.93e-5 5.40e-5
SHKK 9.93e-5 7.78e-5 5.65e-5 9.93e-5 5.40e-5
PSCVT 9.93e-5 7.78e-5 5.65e-5 9.93e-5 5.40e-5
CHORS 9.93e-5 7.78e-5 5.65e-5 9.93e-5 5.40e-5
CHORM 9.66e-5 7.66e-5 5.55e-5 9.71e-5 5.34e-5
PPNDH 6.00e-5 4.10e-5 2.79e-5 5.69e-5 3.00e-5
PPND 3.66e-5 3.56e-5 2.75e-5 4.01e-5 2.34e-5
PHETA1 6.00e-5 4.10e-5 2.79e-5 5.69e-5 3.00e-5
TYRTA 3.66e-5 3.56e-5 2.75e-5 4.01e-5 2.34e-5
ANS 2.72e-6 1.24e-6 9.88e-7 2.23e-6 6.07e-7
ANPRT 2.72e-6 1.24e-6 9.88e-7 2.23e-6 6.07e-7
PRAIi 2.72e-6 1.24e-6 9.88e-7 2.23e-6 6.07e-7
IGPS 2.72e-6 1.24e-6 9.88e-7 2.23e-6 6.07e-7
TRPS1 2.72e-6 1.24e-6 9.88e-7 2.23e-6 6.07e-7
PHE consump. 6.00e-5 4.10e-5 2.79e-5 5.69e-5 3.00e-5
TYR consump. 3.66e-5 3.56e-5 2.75e-5 4.01e-5 2.34e-5
TRP consump. 2.72e-6 1.24e-6 9.88e-7 2.23e-6 6.07e-7
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5.1. General conclusions and recommendations
The overall objective of this thesis was to develop computational tools and analytical
methods for effective metabolic engineering of microbial cell factories. There is still room
for improvement within the DBTL cycle, particularly in the form of high-throughput,
automated methods. Here, an automated data analysis pipeline, autoprot, was developed
for high-throughput absolute quantification of proteins in order to obtain accurate
and extensive omics data for subsequent applications. The proteome-wide analysis
was improved further by implementation of an optimised sample preparation protocol,
which increased the representation of membrane proteins. For integration of proteomics,
metabolomics and fluxomics data, a kinetic model of the aromatic amino acid biosynthesis
in E. coli was constructed. The kinetic model can guide strain design for following
DBTL cycle iterations. Altogether, two computational tools, i.e. autoprot for automated
proteomics data analysis and the E. coli aromatic amino acid biosynthesis kinetic model,
and two analytical methods, i.e. the full workflow for absolute quantitative proteomics
and the optimised protocol for quantitative membrane proteomics, were developed as part
of the thesis. The main conclusions and recommendations of the thesis are summarised
below.

5.2. Conclusions
A workflow combining library-free DIA data analysis with a standard-free
quantification approach and recent protein inference algorithms is optimal for
proteome-wide absolute quantification.
Using autoprot to benchmark 105 different workflows for absolute quantitative proteomics,
an optimal workflow was identified for the current E. coli data set. This workflow
implemented library-free DIA data analysis with recent protein inference algorithms xTop
and LFAQ, which consistently resulted in high numbers of quantified proteins. By carefully
selecting the peptides used for quantification, xTop favoured slightly higher precision,
which is ideal for comparative studies. In contrast, LFAQ uses machine learning to improve
the estimated abundance and hence delivers superior accuracy. The TPA method was
deployed as standard-free quantification approach, which achieved comparable precision
and slightly higher accuracy with a much higher accessibility than other quantification
approaches. From the biofoundry perspective, standard-free quantification approaches are
especially beneficial due to the low costs and high throughput compared with quantification
approaches using internal standards.

Over 25% of the quantified E. coli proteome mass is occupied by membrane
proteins.
Membrane proteins account for 33% of the annotated proteome in E. coli in terms of
number of proteins, which has been known for over two decades. Through semi-absolute
protein quantification, 27% of the quantified E. coli proteome composition (in fmol/µg)
was found to be occupied by membrane proteins.
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This substantial membrane fraction was not experimentally demonstrated before and
highlights the limited general knowledge about the bacterial membrane. Increasing the
number of membrane proteins within a proteome-wide quantitative analysis is essential to
obtain a representative proteomics data set.

Automated data analysis enables high-throughput characterisation of microbial
cell factories.
Shown in this thesis through proteomics analysis, a computational tool for automated data
analysis allowed the benchmarking of a sizeable amount of workflows in a matter of days.
Similarly, the tool can be applied to proteomics data analysis of a large number of samples
through the execution of a single command line. The future of metabolic engineering for
microbial cell factory development lies with biofoundries and high-throughput, automated
methods including data analysis approaches for characterisation during the test phase.

Kinetic modelling allows for effective learning from integrated multi-omics
data.
The kinetic model covering E. coli aromatic amino acid biosynthesis combined proteomics,
metabolomics and fluxomics data to investigate the intricacies of the pathway. The
collective learning through fitting of the kinetic model to the experimental data allowed for
a detailed insight into allosteric regulations that strongly affect the production objectives.
The resulting information could be used in strain designs for further iteration of the DBTL
cycle within the development of an E. coli aromatic amino acid overproducer.

A combination of multiple detergents during cell lysis improves solubilisation
of membrane proteins.
A sample preparation protocol implementing multiple detergents for increased solubilisation
achieved higher numbers of quantified membrane proteins than a conventional protocol
incorporating ultracentrifugation for enrichment. Either NP-40 or Triton X-100 in
combination with a high concentration of guanidinium·HCl outperformed all other sample
preparation protocols, despite the required clean-up method before HPLC-MS analysis.
This optimal method resulted in quantification of 56% and 61% of the theoretical membrane
proteome of E. coli and P. putida, respectively.

Deregulation of key enzymes is essential for L-tyrosine overproduction in E.
coli.
Application of the E. coli aromatic amino acid biosynthesis kinetic model suggested the
deregulation of the DDPA aroG and CHORM and PPND tyrA enzymes as beneficial
metabolic engineering targets for the overproduction of L-tyrosine. This suggestion aligned
with previous experimental studies and was implemented in an E. coli strain which lacks
the phosphotransferase system for glucose uptake. Multi-omics data will be collected for
the engineered strain and used to refit the kinetic model in order to inform further strain
designs.
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5.3. Recommendations
Appropriate determination of intracellular protein concentrations should be
carefully considered.
The main result produced by the autoprot tool are proteome composition values, i.e.
fmol of a specific protein per µg of total protein mass. The conversion of proteome
composition values to intracellular concentrations relies on the cellular protein density in
grams of protein per litre of cell volume. The cellular protein density is usually calculated
from measured biomass and protein concentrations, which introduce uncertainty through
measurement errors. This uncertainty should be taken into account through, e.g. the use
of a scaling factor as discussed by Mori et al. [1].

A representative approach should be developed in order to estimate extraction
efficiency of membrane proteins.
Accurate membrane proteomics data is mostly limited by the extraction efficiency during
cell lysis. The hydrophobic nature of membrane proteins inhibits proper solubilisation,
which was partly alleviated by the addition of multiple detergents in the current study.
Although the extraction efficiency is challenging to estimate, it would nonetheless be
worthwhile to attempt to do so and thereby produce a correction factor for absolute
quantification. A representative approach would be required and could involve, for example,
tagging of specific membrane proteins where the abundance of the tags can be measured
independently as shown in Antelo-Varela et al. [2].

The full potential of Bayesian inference should be leveraged to obtain an
improved kinetic model fit.
Currently, a MAP estimate of the kinetic model was used for pathway investigation instead
of sampling from the posterior distributions due to time constraints. Since posterior
approximations derived from this approach are generally not fully accurate, sampling of
posterior distributions should be a priority for future applications of the kinetic model.
Afterwards, out-of-sample predictions could be used to properly evaluate the model
through cross-validation. Fully leveraging of the benefits of Bayesian inference should
improve the kinetic model performance substantially and yield additional insights [3, 4].
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