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Summary
Additive manufacturing, also known as 3D printing, has emerged as a promising solu-
tion in the context of technological advancements and innovative production processes.
This thesis focuses on two additive manufacturing processes, namely Selective Laser
Sintering (SLS) and Selective Thermoplastic Electrophotographic Process (STEP),
which have the potential to revolutionize industrial production. However, their cur-
rent status requires extensive research and development efforts to upscale them for
widespread application.

Several key challenges need to be addressed to achieve the industrial-scale imple-
mentation of 3D printing. Firstly, the understanding of the 3D printing process is
limited, necessitating the expansion of the engineering knowledge base, its function-
ing and underlying mechanisms. Secondly, optimizing the entire 3D printing process
is crucial for ensuring reproducibility and consistently high-quality output. Lastly,
the inherent instability of the 3D printing process poses a significant challenge to its
integration into large-scale production. Three main sources of data can be identified:
input data (machine parameters), process data (data acquired during the production
process) and output data (the quality of the final products). During the PhD journey,
some methodologies have been developed to address the challenges faced by the new
3D printers.

The Ph.D. thesis begins with an introductory chapter that discusses the context
of the Ph.D. project as well as its contributions. A brief introduction to additive
manufacturing, its limitations, and the different types of data related to the machines
is described in the next chapter.

The following chapters summarise the contributions produced during the project.
The first contribution of the thesis focuses on building a link between the various
types of data. In particular, it takes into consideration the process and output data,
and it focuses on the identification of relevant process variables that mostly affect the
quality. It proposes a variable selection algorithm based on the Random Forest model
to address the case of input variables highly correlated. The second contribution in-
troduces a hybrid approach that combines correlation analysis using observational
data and machine learning techniques with designed experiments to establish causal-
ity. This approach is particularly useful when investigating unknown phenomena
with a large input space, enabling insights and correlations to be gathered from ob-
servational data before conducting experimental designs. Next, a novel methodology
for analyzing the printer’s process data that are organized in a three-way array of
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data with a multi-group structure is presented. This methodology is applied to the
problem of process modelling, where batches are structured according to multiple
groups. By extending the PARAFAC model, the proposed approach accounts for the
grouping structure of three-way data sets, enabling the estimation of a model repre-
sentative of all the groups simultaneously. Following that, a model for the supervised
analysis of multi-group three-way data and multi-group output data is described. Fi-
nally, some of the collaborative projects conducted with the research group during
the Ph.D. project are presented.

Overall, this thesis addresses the challenges and limitations of additive manufac-
turing processes, contributes to the understanding and optimization of 3D printing,
and provides innovative methodologies for data analysis in manufacturing applica-
tions.



Preface
The present thesis has been prepared at the Department of Applied Mathematics
and Computer Science, Section for Statistics and Data Analysis at the Technical
University of Denmark (DTU). It represents one of the requirements for acquiring a
Doctor of Philosophy (Ph.D.) degree in Applied Statistics.

The Ph.D. project was funded by the Manufacturing Academy of Denmark (MADE)
and has been completed under the guidance of Professor Murat Kulahci (main super-
visor), Professor Jesper Henri Hattel and Senior Researcher David Bue Pedersen
(co-supervisors). The external research stay has been conducted at KU Leuven, De-
partment of Biosystems, MeBioS division in Belgium, under the supervision of the
research manager Bart De Ketelaere. The external research stay has also been funded
by the Otto Mønsteds Foundation.

The Ph.D. thesis deals with data analysis methods intended for the new emerging
additive manufacturing technologies. All the included work has been carried out
during the Ph.D. study period September 2020 - September 2023.

Kongens Lyngby, 31st August 2023

Marta Rotari



iv



Acknowledgements
This thesis concludes the three-year Ph.D. program. First and foremost, I am glad
and lucky to have been given the chance to study, learn, and communicate science. I
always believed that science gives you a distinct delight and joy.

I want to express my gratitude to Professor Murat Kulahci for giving me this
amazing opportunity to collaborate on a very interesting project that has always
intrigued me and stimulated my curiosity. I would like to thank him for being a
good supervisor who advised and taught me with instructive and valuable comments
that helped me grow as a person and as a researcher. I would also like to thank my
co-supervisors and the whole industrial partner team for the comments, feedback and
recommendations they gave me throughout the project. Also, a special thank you
to the entire research team, Hao-Ping, Shuo and Kenneth, with whom I spent a lot
of time working on various projects and attending several workshops and industrial
trips. I shared and learned a lot from and with them. Thank you for all the laughter,
conversations, lunches and dinners over the last three years.

Many thanks also go to the entire Section of Statistics and Data Analysis. It is a
really nice team to be part of! I am grateful for all the lunches, coffees and activities
we shared these years.

During the spring of 2022, I spent the period of my external stay at the University
of KU Leuven under the supervision of Bart De Ketelaere. I would like to thank him
very much for giving me this fantastic opportunity to visit his Department and meet
many fantastic people who made me feel at home from the first moment. Thank you
for the fantastic time I spent there, of which I have wonderful memories. A special
thank you goes to Valeria, with whom I worked at KU, an excellent researcher and a
friend.

A very special thank you to my entire family, especially my mom, for supporting
me during these years and helping me through the ups and downs; this thesis is also
thanks to you. I would not be who I am, and I would not be where I am without
Idriss’s love and affection. Thanks for the courage and determination you give me
every day. Thank you for celebrating with me all the small and big successes and for
being so supportive even during difficult times.



vi



List of publications
The following papers are included in the thesis:

• Paper A: ”Variable selection wrapper in presence of correlated input variables
for random forest models”, M. Rotari and M. Kulahci, Quality and Reliability
Engineering International (2023).

• Paper B: ”From correlation to causality”, M. Rotari and M. Kulahci, to be
submitted at Quality Engineering.

• Paper C: ”An extension of PARAFAC to analyze multi-group three-way data”,
M. Rotari, V. Fonseca Diaz, B. De Ketelaere and M. Kulahci, submitted to
Chemometrics and Intelligent Laboratory Systems.

• Draft Paper D: ”Multi-way PLS for the analysis of multi-group three-way data”,
M. Rotari and M. Kulahci.

• Paper E: “In-process monitoring of selective thermoplastic electrophotographic
process by laser profiling system and digital fingerprint”, S. Shan, H.-P. Yeh,
M. Rotari, K. Ælkær Meinert, J. H. Hattel, D. B. Pedersen, M. Kulahci, H.
N. Hansen, Y. Zhang, and M. Calaon, 23rd international conference of the
european society for precision engineering and nanotechnology.

• Paper F: “Thermo-mechanical model for a selective thermoplastic electropho-
tographic process for dimensional defects”, H.-P. Yeh, M. Rotari, S. Shan, K.
Ælkær Meinert, J. H. Hattel, M. Kulahci, D. B. Pedersen, and M. Calaon, 23rd
international conference of the european society for precision engineering and
nanotechnology.

The work carried out in connection with the Ph.D. study has been presented at
different conferences (ordered chronologically):

• M. Rotari and M. Kulahci, ”Deciphering Random Forest models through condi-
tional variable importance”, The 21th Annual Conference of the European Net-
work for Business and Industrial Statistics (ENBIS), Online Conference 2021.
(Abstract and presentation)



viii List of publications

• M. Rotari and M. Kulahci, ”Analysis of multi-group data in a three-way struc-
ture”, The 22th Annual Conference of the European Network for Business and
Industrial Statistics (ENBIS), Trondheim, Norway, June 2022. (Abstract and
presentation)

• M. Rotari, H.Yeh, S.Shan, K. Meinert ”Four Ph.D. students – one goal: To
understand and improve 3D-print”, MADE Innovation Conference: Join forces
with others and come up with ideas and solutions, Copenhagen, Denmark, Au-
gust 2022. (Presentation)

• M. Rotari and M. Kulahci, ”Analysis of a three-way array that presents a
Multi-group structure”, Danish Society of Chemometrics (DSK), Middelfart,
Denmark, November 2022. (Presentation)

• M. Rotari and M. Kulahci, ”Production Analytics for a novel additive manufac-
turing system”, Young Researchers Workshop, Roskilde, Denmark, November
2022. (Presentation)

• M. Rotari and J. Hattel, ”Tomorrow’s 3D printing and AM solutions”, The
annual MADE event 2023, Copenhagen, Denmark, May 2023. (Presentation)

• H.Yeh, M. Rotari, S.Shan, K. Meinert and M. Kulahci, ”Multiphysics Modelling
for Polymer-based Additive Manufacturing Technologies”, The Spring Meeting
Conference of the European Network for Business and Industrial Statistics (EN-
BIS), Copenaghen, Denmark, May 2023. (Abstract and presentation)

• M. Rotari, H.Yeh, S.Shan, 23rd International Conference & Exhibition, Cope-
naghen, Denmark, June 2023. (Posters)

• M. Rotari, M. Kulahci, H.Yeh, S.Shan, 23rd International Conference & Exhi-
bition, Copenaghen, Denmark, June 2023. (Posters)



Contents
Summary i

Preface iii

Acknowledgements v

List of publications vii

Contents ix

1 Introduction 1
1.1 Project environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Project objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Industrial environment 11
2.1 Manufacturing processes . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Why additive manufacturing? . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Two additive manufacturing processes: SLS and STEP . . . . . . . . . 14

2.3.1 The Selective Laser Sintering . . . . . . . . . . . . . . . . . . . 14
2.3.2 The Selective Thermoplastic Electrophotographic Process . . . 16

2.4 Limitations and defects and what to improve . . . . . . . . . . . . . . 18
2.5 Data Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Variable selection 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Variable selection techniques . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Embedded methodologies . . . . . . . . . . . . . . . . . . . . . 26
3.2.1.1 Lasso . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1.2 Elastic net . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.2 Wrapper based methodologies . . . . . . . . . . . . . . . . . . . 28
3.2.2.1 VSURF . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2.2 Knockoffs variable selection . . . . . . . . . . . . . . . 29



x Contents

3.3 Paper: Variable selection wrapper in presence of correlated input vari-
ables for random forest models . . . . . . . . . . . . . . . . . . . . . . 30

4 Causality and Correlation 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Paper: From correlation to causality . . . . . . . . . . . . . . . . . . . 49

5 Multi-group Analysis 61
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Multi-way array decomposition models . . . . . . . . . . . . . . . . . . 65

5.2.1 Tucker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.2 PARAFAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Paper: An extension of PARAFAC to analyze multi-group three-way
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Multi-group N-PLS 87
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 Manuscript: Multi-way PLS for the analysis of multi-group three-way

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7 Collaborative research 97
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.2 Laser profiling system . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.2.2 Paper: In-process monitoring of selective thermoplastic electropho-

tographic process by laser profiling system and digital fingerprint 99
7.3 Dimensional defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.3.2 Paper: Thermo-mechanical model for a selective thermoplastic

electrophotographic process for dimensional defects . . . . . . . 102
7.4 Further analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8 Conclusions and future work 111
8.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Bibliography 115



CHAPTER1
Introduction

Throughout its history, the manufacturing industry has experienced several significant
technological advancements, resulting in a fundamental restructuring of its operations.
In the 19th century, the industry emerged by employing the power of water and
steam. Subsequently, it transformed with the advent of electricity and then again
with the introduction of computers, which marked yet another significant milestone.
The manufacturing sector is now enduring a rapid transition towards digitalization,
also known as the fourth industrial revolution or Industry 4.0. Industry 4.0 seeks
to transform conventional factories into smart factories equipped with sensors and
autonomous systems, which will enable automation and data-driven operations. The
Internet of Things (IoT) for data manipulation and communication, augmented reality
(AR) and cloud computation are driving this revolution. Innovations such as 3D
printing and advanced data analytics are transforming the manufacturing landscape,
setting the way for greater industry-wide efficiency, productivity and connectivity.

The manufacturing industries of plastic objects currently revolve around the pre-
dominant production through injection moulding. The combination of mass pro-
duction capabilities and high precision offered by injection moulding has made it a
cornerstone of the manufacturing industry. Its versatility allows for the production
of a wide range of plastic objects in various sectors, such as automotive, electronics,
consumer goods and medical devices. The production process for injection moulding
starts with the creation of the mould insert. Next, the plastic material is heated
and the molten plastic is injected into the mould cavity through a specially designed
nozzle. Once the plastic has cooled and solidified, the mould is opened, and the newly
formed plastic object is ejected. Despite this process apparent simplicity and speed,
which enables the rapid production of large quantities, it is essential to recognize
certain limitations associated with injection moulding. Notably, mould production
necessitates a significant investment of time and numerous iterations to achieve op-
timal quality results of the final products. Moreover, the requirement to fabricate
individual simple parts and subsequently assemble them to obtain a more intricate
final product represents another constraint. These limitations can pose challenges
to manufacturing companies requiring intricate and highly detailed components or
fast prototyping, demanding alternative production methods to achieve the desired
results.

Companies are driven towards continuous innovation in today’s rapidly and dy-
namic evolving landscape. Innovation is often fueled by the demands of the 21st
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century and the needs of contemporary consumers, encompassing diverse factors such
as the need for material differentiation, customized products, ever-changing and pro-
gressively intricate colour schemes and complex shapes. Companies are driven to
constantly explore new colours, textures and materials combinations that captivate
consumer interest and align with the prevailing trends. Sustainability has simul-
taneously become an urgent concern for both enterprises and society. Companies
actively seek ways to minimize waste, explore novel materials and new and more ef-
ficient production processes to ensure a greener future. Numerous investments are
made in research and development to discover innovative ways of optimizing resource
utilization, designing recyclable and biodegradable materials, and adopting circular
economy principles.

The convergence of factors such as material differentiation, customized products
and diverse colour schemes, alongside the increasing importance of sustainability,
drives industries to allocate resources towards research and innovation. In response,
companies actively seek new production processes that can address these challenges
and offer greater flexibility and efficiency. One notable response to this demand is
Additive Manufacturing (AM), also known as 3D printing. The industries explore the
potential of additive manufacturing as a transformative force in the industry. This
technology enables the creation of complex shapes and customized products with
reduced material waste, aligning with sustainability principles. Furthermore, the
digitization of manufacturing processes facilitates automation, data-driven decision-
making and seamless integration of systems, providing companies with the tools to
drive innovation and remain competitive in a rapidly evolving landscape. By com-
bining research, innovation and adopting advanced production processes like additive
manufacturing, companies can enhance synergies that lead to sustainable growth,
efficiency, productivity and flexibility.

The manufacturing industry in Denmark is witnessing a remarkable shift towards
digitization and the adoption of new production methodologies. The collaborative
efforts of Danish companies through the consortium Manufacturing Academy of Den-
mark (MADE) for Industry 4.0 exemplify the proactive approach taken by the in-
dustry to leverage digital technologies, drive innovation and secure their position as
global leaders. Through collective knowledge sharing, research collaborations and
talent development, MADE aims to drive the Danish manufacturing sector into the
digital era, fostering sustainable growth, competitiveness, and prosperity.

1.1 Project environment

The pursuit of innovation necessitates continuous adaptation and improvement. Com-
panies are driven to explore cutting-edge technologies, processes and materials that
enable them to differentiate their offerings. In Denmark, numerous companies have
taken a proactive approach by forming a collaborative consortium known as MADE
(Manufacturing Academy of Denmark) for Industry 4.0, with a primary focus on driv-



1.1 Project environment 3

ing digitization and fostering innovation within the manufacturing sector. The advent
of Industry 4.0 represents a paradigm shift in the manufacturing landscape, charac-
terized by integration of digital technologies, automation and data-driven decision-
making.

The consortium’s primary objective is leveraging digitization and innovation to
maintain the country’s global industry competitiveness. MADE focuses on accelerat-
ing the adoption of Industry 4.0 principles in Danish manufacturing. The consortium
members collaborate on research and development, sharing best practices and collabo-
rating on cutting-edge research and development initiatives. The strategic initiatives
of MADE encompass a wide range of activities to facilitate the digital transformation
of the industry. This includes implementing smart manufacturing technologies like
IoT, AI, big data analytics and cloud computing. These technologies optimize pro-
duction processes, enable real-time data-driven decision-making, and enhance opera-
tional efficiency. The consortium also promotes collaboration between industry and
academia, fostering knowledge exchange, talent development and a skilled workforce
capable of driving digital transformation. MADE serves as a platform for disseminat-
ing knowledge and showcasing successful digital transformation case studies, inspiring
other companies to embark on their digitization journeys.

Figure 1.1. MADE Fast structure, https://www.made.dk/en/made-fast/.

The MADE consortium was founded in 2014 in conjunction with the Spir Project,
which ran from 2014 to 2019. Building upon the success of the Spir Project, the
consortium embarked on another significant initiative called MADE Digital, which
lasted between 2017 and 2020. MADE has started its most recent initiative by in-
troducing MADE FAST (Flexible, Agile, and Sustainable Production enabled by
Talented Employees). This new initiative represents an industrial-led research, inno-
vation and education partnership to promote the development of the next generation
of advanced manufacturing capabilities in Denmark. MADE FAST encompasses five
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distinct workstreams, each dedicated to specific aspects of research and development,
as illustrated in Figure 1.1. These workstreams serve as focused areas of exploration
and collaboration, fostering advancements in manufacturing technologies, processes
and human talent.

This PhD project specifically falls under Workstream 4, which is focused on achiev-
ing sustainable upscaling through the digitalization of manufacturing processes. The
main objective of Workstream 4 is to optimize production processes and enhance
product quality by leveraging digital tools and data-driven models. These techno-
logical advancements aim to reduce the time required to ramp up new production
and ensure a ”first-time-right” approach to manufacturing new products. Under the
Workstream 4 umbrella, a large initiative comprising four interconnected PhD pro-
grammes has been initiated. The initiative’s primary objective is to investigate two
novel additive manufacturing techniques: the Selective Laser Sintering (SLS) and the
Selective Thermoplastic Electrophotographic Process (STEP). The project’s overall
goal is to better understand these two novel production processes and promote their
digitization and optimization so that they can be scaled up to a production line. Fig-
ure 1.2 illustrates the collaborative nature of these projects, in which the numerous
PhD projects work together to accomplish common goals.

Figure 1.2. MADE Workstream 4 project on Additive Manufacturing.

Project 4.03 mainly focuses on sensoring the machines. The sensors, strategically
located, collect and analyze experimental data fed into the data-driven and physical-
driven models. A second project is Project 4.02, which focuses on digital fingerprint
analysis aimed at enriching the understanding of product qualities. The data col-
lected by the sensors, the input parameters and the quality of the final products are
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analyzed in the current Ph.D. Project 4.04 develops data-driven models aimed at
process understanding and optimizations. Material and quality aspects, with process
information, are used in the Multi-physics model built in Project 4.05, aimed at pro-
cess digitalization and optimization from the physics point of view. The final aim of
the combination of all projects is to use the data and physically-driven model results
to be fed back into the process for optimization.

1.2 Project objectives

In the context of technological advancements and innovative production processes, ad-
ditive manufacturing has emerged as a noteworthy solution. Additive manufacturing,
also known as 3D printing, is a process of making a three-dimensional object from a
digital model. Two additive manufacturing processes were taken into consideration:
the Selective Laser Sintering (SLS) and the Selective Thermoplastic Electrophoto-
graphic Process (STEP). Both technologies are described more thoroughly in Chapter
2. Both technologies are described more thoroughly in Chapter 2.3. SLS and STEP
printers have huge potential to revolutionize production processes, however, their cur-
rent status requires extensive research and development efforts to upscale them for
industrial applications.

These technologies are relatively nascent in the global market and limited knowl-
edge exists regarding their full potential. To achieve the industrial-scale implemen-
tation of 3D printing, it is imperative to address several key challenges. Firstly, the
current understanding of the 3D printing process is limited, with scarce literature
available. Therefore, a primary focus is placed on expanding the knowledge base of
the process itself and comprehending its underlying mechanisms. Secondly, the op-
timization of the entire 3D printing process is crucial to ensure reproducibility and
achieve consistently high-quality output. Lastly, one of the significant challenges
hindering the integration of 3D printing into large-scale production is its inherent
instability. The process often exhibits fluctuations and inconsistencies, resulting in
unpredictable outcomes.

Multiple sources of data can be identified within the additive manufacturing (AM)
process. The input data includes machine settings; the process data represents the
data acquired during the printing process through multiple sensors allocated through
the production chain. Finally, the output data includes the quality of the final
products. These data categories are described more thoroughly in Chapter 2.5.

The primary objective of this project is to enhance the understanding and com-
prehension of various technologies using data-driven models. To achieve this goal, the
project employs descriptive machine learning, statistical analysis, and chemometrics
models. By utilizing these methodologies, the project seeks to increase knowledge
and awareness of the technologies. This entails establishing potential connections
and meaningful linkages among the diverse data sets involved in the processes (see
Figure 1.3). The analysis aims to identify key variables that significantly influence
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Figure 1.3. Data overview.

the production process and their impact on the quality of the final products. Fur-
thermore, the project aims to develop new methodologies to analyze and explore the
various structures of the data collected during the printing process.

Another crucial objective of the project is process optimization, which involves
determining the optimal settings of machine variables to ensure to achieve the desired
outcomes. In essence, the goal is to identify the input parameters that exert the most
significant influence on product quality. By establishing causal relationships between
the input and output spaces, the project aims to pinpoint the variables and their
optimal levels necessary to ensure the desired quality consistently.

Through a comprehensive data-driven approach, this project strives to enhance
the knowledge and comprehension of the targeted technologies. By employing vari-
ous analytical models, it seeks to gain valuable insights into the processes, optimize
them for improved outcomes, and ultimately contribute to advancing the efficiency
and effectiveness of these technologies in real-world applications. Furthermore, the
project entails interacting with other members of the group project, often engaging
in joint initiatives and identifying areas for collaboration based on shared interests
and the need for specialized knowledge. The team integrates the discoveries of one
another into their models, such as inserting additional sensors in need of more data
or comparing and improving mutual models and findings by validating results and
work.

1.3 Contributions

At the beginning of the project, the first focus was placed on establishing a connec-
tion between various types of data. In this instance, a machine learning model was
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developed with a twofold objective. The primary aim was to analyze the relationship
between process variables and the resulting output data, specifically identifying the
few process variables that exert the most significant influence on product quality. In
this regard, instead of merely utilizing a ”black-box” model for response prediction,
our approach emphasized the identification of relevant input variables throughout de-
scribing the contributions of these input variables in the form of variable importance.
An additional challenge encountered was the presence of highly correlated process
variables, which could introduce bias in calculating their importance scores, as high-
lighted in the preliminary literature review. To address these objectives, a tree-based
machine learning model, Random Forest, was employed along with a special variable
importance measure that takes into consideration the correlation among data. The
second objective was to identify and retain only the most meaningful variables, omit-
ting those with minimal or negligible impact on the product quality. In other words,
based on the variable importance scores ranking, the goal was to find a cutoff or a
threshold level of variables to retain. To achieve these objectives, an extension of the
wrapper algorithm, Boruta, was developed to handle the case of highly correlated
variables. This extended model efficiently selected the most relevant variables while
discarding those with negligible impact. The findings and outcomes of this study are
presented in Paper A.

The initial model served as a first step to investigate the causal relationship be-
tween input and output data. With the emergence of advanced technologies, pro-
duction processes have undergone significant customization, resulting in increased
complexity within production systems. This complexity arises from the integration
of numerous process parameters, thereby substantially expanding the input space.
Consequently, identifying the specific input variables in such a vast space that has
a causal relationship with the output variable becomes a challenging task. In this
domain, an approach that addresses the problem of transitioning from correlation
analysis to assessing causality within a vast input space is presented. Analyzing
causal relationships becomes increasingly complex as the number of variables grows.
Merely identifying correlations between variables is insufficient to establish cause-and-
effect relationships definitively. The proposed approach offers a systematic method
to move beyond correlation and delve into the realm of causality. Combining the use
of machine learning techniques and subsequent controlled experiments, this approach
aims to identify the specific input variables that truly drive the changes in the output
variable, thus establishing the causal links. It provides insights into the key factors
that significantly impact product quality, leading to more targeted interventions and
process optimizations. The results related to this approach are presented in paper B.

The primary objective of new technologies is to facilitate large-scale production by
enabling the creation of numerous items in a single production cycle. The production
process itself unfolds in a structured manner, with products being manufactured in
successive rows. During the production phase, the process data are collected from
an array of sensors strategically positioned throughout the entire production process.
These sensors capture valuable information at each stage of the production cycle. The
association between the observations in the process data and the rows of products
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creates a multi-group structure in the data. An objective of the project was the de-
velopment of new methods for analysing the data collected by these technologies. We
developed a new methodology that addresses this multi-group structured three-way
array effectively. This model follows within the Factor analysis, extending the exist-
ing Parallel Factor Analysis (PARAFAC) model. By applying this model, we enriched
our understanding and analysis of the process data. The results corresponding to this
new methodology are presented in paper C.

A successive methodology development involved the extension of the multi-group
three-way method to accommodate the output data, thereby enabling a transition
from unsupervised to supervised analysis. This extension takes into consideration
the multi-group structures of the process data, which allowed us to consider different
groups within the dataset and their respective relationships with the quality matrix.
The basis for this methodology relates to the multivariate Partial Least Squares (PLS)
model. The primary objective of this algorithm was to investigate the relationship
between the multi-group three-way array representing process data and the quality
matrix. This development aims to improve our comprehension of the complex rela-
tionship between process data and the associated quality matrix, thus establishing the
way for more informed and insightful analyses. This new methodology is presented
in the draft Paper D.

The PhD project entails a collaborative effort with PhD students involved in the
same MADE research project. As a team, we have collectively dedicated our efforts
to investigate two distinct projects centred around various aspects within the do-
main of 3D machines. The first project within this collaborative framework focuses
on the monitoring of layer-by-layer production utilizing laser-based techniques. The
laser serves the purpose of tracking the precise deposition of layers onto the main
component. Subsequently, an in-depth analysis of the images obtained through the
laser enables us to analyze the production process over time. This project also opens
up the possibility of monitoring production in real-time. The findings and outcomes
derived from this project are presented in Paper E. The second project in joining
collaboration focuses on investigating and addressing the dimensional defects of the
final products produced by the 3D machine. Through this collaboration, we have suc-
cessfully developed models, conducted research activities and accumulated valuable
insights concerning the identification and characterization of the dimensional defects.
The analysis and results derived from this project have been presented in paper F.

1.4 Outline of the thesis

This thesis project aimed to improve the understanding and quality of 3D printing
processes through advanced data analysis and the development of new methodologies.
The research was conducted in the context of the MADE research project, focusing on
various aspects within the domain of 3D machines. The main objectives and outcomes
of the thesis are organized as follows:
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• A brief introduction to additive manufacturing is given in chapter 2. The chap-
ter includes a brief description of the new 3D printing technologies, their bene-
fits, limitations and data organization.

• In chapter 3 the methodology developed for variable selection in case of high
correlation among data is presented and includes Paper A.

• An approach to address the challenging task of transitioning from correlation
analysis to assessing causality within a vast input space is presented in chapter
4. The chapter also includes Paper B.

• A new methodology to analyze three-way arrays with a multi-group structure
is presented along with Paper C in chapter 5.

• Multi-way N-PLS model for three-way data with a multi-group structure is
presented in chapter 6.

• Chapter 7 contains the two papers developed together with the research group,
specifically Paper E and F, and other data analyses regarding the new technolo-
gies.

• Finally, the conclusion on the main findings and contributions of the thesis,
along with future works and final remarks on the research are presented in
chapter 8.
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CHAPTER2
Industrial environment

2.1 Manufacturing processes
In the modern age, we are surrounded by objects, many of which are made of plas-
tic. This raises the question: how are these objects manufactured? The process
of injection moulding primarily dominates the production of plastic objects. This
manufacturing technique has emerged as the dominant method for creating plastic
products, enabling mass production with remarkable efficiency and versatility. The
origins of injection moulding can be traced back to the late 19th century when early
attempts were made to mould celluloid, an early form of plastic. However, it was
not until the mid−20th century that significant materials science and machinery ad-
vancements propelled injection moulding into mainstream manufacturing. With the
introduction of thermoplastics such as polypropylene and polyethene, the technique
became more refined, resulting in its widespread adoption across industries.

In injection moulding, a meticulously coordinated sequence of steps is employed to
fabricate plastic objects. Figure 2.1 is a visual representation of the injection moulding
procedure. Central to this technique is the utilization of mould inserts, which play a
crucial role in the overall process. It involves the meticulous design and fabrication of
a custom-made mould component that defines the shape and details of the final plastic
object, ensuring precision and accuracy in its reproduction during production. The
process commences with carefully selecting and preparing raw materials, typically in
the form of granules or pellets. These materials are then melted within a specialized
injection moulding machine, where they are subjected to high pressure and injected
into a precisely designed mould cavity. Following this injection, the molten plastic
rapidly cools and solidifies within the mould, forming the desired object. Finally, the
mould is opened, and the newly produced item is ejected, ready for further finishing
or assembly processes.

The dominance of injection moulding products can be attributed to its numer-
ous advantages and benefits. The mould’s versatility allows for the production of
items ranging from small components to large-scale products. Injection moulding
enables high production rates, ensuring the rapid and cost-effective manufacture of
plastic items [1]. Moreover, this process offers remarkable precision and repeatability,
ensuring consistency in the quality and dimensions of the final products [2]. The
use of automated machinery further enhances efficiency, reducing labour-intensive
tasks and human error. Lastly, injection moulding permits the utilization of a wide
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Figure 2.1. Representation of the injection moulding process.

range of thermoplastic materials, each possessing unique properties, such as strength,
flexibility and resistance to heat, chemicals or UV radiation [3].

Although injection moulding is renowned for its apparent simplicity and rapid pro-
duction capabilities, it is crucial to acknowledge the inherent limitations associated
with this process. One such limitation is the considerable investment of time and iter-
ative refinement required for mould production to attain optimal results. Designing
and fabricating a mould necessitates careful consideration of various factors, including
geometry, material selection and cooling system design. Iterative adjustments and
testing are often required to fine-tune the mould design, which can prolong the pro-
duction timeline. The production of the mould insert requires significant investments
in terms of time, costs and iterations. This fact determines the use of the mould
insert for mass production, limiting the possibility of producing a mould for small
productions or prototypes. Additionally, the resulting parts from injection moulding
tend to be simple in nature, lacking intricate details or complex shapes. Intricate
components may require additional assembly steps or post-processing to achieve the
desired level of detail. This assembly process adds complexity, cost and time to the
overall manufacturing process. These limitations can pose challenges for manufac-
turing companies that require highly detailed and intricately designed components
or seek fast prototyping. In such cases, alternative production methods, such as 3D
printing, may be considered to achieve the desired results more efficiently.

Additive Manufacturing (AM) has emerged as a noteworthy solution in the realm
of technological advancements and innovative production processes. Also referred to
as 3D printing, this cutting-edge technology presents novel production prospects and
broadens the scope of possibilities within the manufacturing domain. This new man-
ufacturing process represents a departure from traditional manufacturing methods,
such as machining or moulding. The versatility and potential of 3D printing are of
interest to numerous industries, ranging from aerospace and automotive to healthcare
and consumer goods.

The AM process begins with a digital representation of the three-dimensional
object. The digital model is then divided into distinct layers, a process known as
slicing, which forms the foundation for the subsequent stages of production. This
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innovative technique allows for gradually adding material layer by layer, resulting in
the fabrication of three-dimensional objects. AM complements traditional methods
by offering unparalleled flexibility, customization, and on-demand production. While
not replacing conventional methods like injection moulding, additive manufacturing
offers a complementary approach that enriches the manufacturing landscape. As this
technology advances, it can revolutionize numerous industries, foster innovation and
redefine production in the modern world.

2.2 Why additive manufacturing?
The advent of AM can transform and redefine how we conceive, create, and produce
objects in the modern world. In this section are described in more detail some of the
benefits AM offers and the novel capabilities and frontiers it enables.

Numerous materials One of the most remarkable aspects of additive manufac-
turing is the wide range of materials that can be utilized for printing. Traditional
manufacturing processes often require specific materials and elaborate tooling setups,
constraining the flexibility and adaptability of production. Conversely, 3D printing
enables the use of various materials, including plastics, metals, ceramics, and even
composites, enabling the creation of multi-material products. This capability to work
with diverse materials broadens the design possibilities and offers opportunities for
functional optimization, lightweight and enhanced performance.

Intricate geometries Additive manufacturing is a breakthrough for intricate ge-
ometries. The layer-by-layer approach allows for intricate internal structures previ-
ously unattainable through traditional methods. Complex geometries, organic shapes
and interlocking parts can be realized, enabling new design paradigms and innova-
tive product concepts. This newfound freedom enables engineers to explore novel solu-
tions, pushing the boundaries of what is conceivable and achievable in manufacturing.
Moreover, additive manufacturing offers the capability to create tools, enabling rapid
exploration of various tool designs. This agility empowers manufacturers to swiftly
prototype and test new tooling concepts, significantly reducing the time required
for tool development and facilitating expedited evaluation of their performance and
functionality.

Reduced time from prototype to production Beyond the design possibilities,
additive manufacturing brings significant advantages to the production process it-
self. One of the notable benefits is the reduced lead time from design to final product.
Traditional manufacturing often involves lengthy and costly tooling processes, necessi-
tating substantial investments of time and resources before production can commence.
In contrast, 3D printing eliminates or significantly minimizes the need for tooling, en-
abling rapid prototyping and shortening the time to market for new products. This
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accelerated development cycle fosters innovation and agility within industries, allow-
ing quicker responses to market demands and customer requirements. It provides an
avenue for cost-effective small-batch manufacturing and customized production that
were previously unviable.

Multiple colours Multiple colours can be incorporated into a single printed com-
ponent through additive manufacturing. The resulting objects can exhibit a wide
range of palettes by integrating colour transitions, gradients, and shades. These
advances in AM technology have revolutionized colour customization. With conven-
tional manufacturing techniques, attaining such elaborate colour effects frequently
requires complicated post-processing techniques or distinct assembly steps. However,
additive manufacturing offers a more streamlined approach, integrating the colouring
procedure directly into the object’s fabrication.

It is worth emphasizing that AM should not be perceived as a substitute for
conventional manufacturing techniques, such as injection moulding, but rather as a
supplementary approach that expands the realm of possibilities. Injection moulding,
with its efficiency and high-volume capabilities, continues to play a crucial role in
mass production. Nonetheless, additive manufacturing can complement this tradi-
tional method by offering flexibility, customization, multi-material and on-demand
production. It presents a cost-effective avenue for small-batch manufacturing, tai-
lored and personalized production, and the realization of intricate designs previously
deemed unfeasible. AM can represent a step in the evolution of production.

2.3 Two additive manufacturing processes: SLS and
STEP

In AM, two prominent technologies have emerged as valuable candidates for scal-
ing up to industrial production lines: Selective Laser Sintering (SLS) and Selective
Thermoplastic Electrophotographic Process (STEP). This section contains a concise
explanation of these technologies.

2.3.1 The Selective Laser Sintering
SLS is an additive manufacturing process that uses a high-powered laser to selectively
melt and fuse together particles of powdered material, Figure 2.2. The SLS process
can be described through the following several key steps:

1. Pre-processing

• Design: The first step in the SLS process is to create a 3D CAD model of
the object to be manufactured. This model is then sliced into thin layers,
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Figure 2.2. Selective Laser Sintering.

typically between 0.013 and 0.016 mm thick. This prepares the design for
the additive manufacturing process.

• Material selection: A powdered material is selected based on the desired
properties of the final product. SLS is compatible with a wide range of
materials, including plastics, metals and ceramics.

2. Printing process

• Powder bed: A thin layer of the powdered material is spread evenly over
a build platform. This layer is typically between 0.1 and 0.3 mm thick.

• Laser scanning: A high-powered laser scans the surface of the powdered
material, selectively melting and fusing together particles in the shape of
the first layer of the CAD design. The laser is controlled by a computer,
which uses the CAD data to precisely position the laser and control the
intensity and duration of the laser pulses.

• Layer-by-layer: Once the first layer has been sintered, the build platform
is lowered by the thickness of one layer and the process is repeated to add
successive layers until the final object is complete. Each layer is scanned
and sintered in the same way as the first layer, with the laser selectively
melting and fusing together particles in the shape of the next layer of the
CAD design.

• Cooling and removal: Once the object is complete, it is allowed to cool
and harden.

3. Post-processing The excess powdered material is removed, usually using air
jets or special washing, leaving behind the final product. Any remaining powder



16 2 Industrial environment

can be reused in the next SLS build, making the process more efficient and cost-
effective.

SLS can be used to create complex geometries and intricate details that are diffi-
cult or impossible to produce using traditional manufacturing methods, allowing for
flexible production. It can produce parts quickly and efficiently, with minimal setup
time. It is cost-effective as it eliminates the need for expensive moulds or tooling,
making it a more cost-effective manufacturing option for small production runs or
custom parts. Furthermore, SLS is compatible with a wide range of materials, includ-
ing plastics, metals, and ceramics, making it a versatile manufacturing process for
various applications.

2.3.2 The Selective Thermoplastic Electrophotographic Process
The Selective Thermoplastic Electrophotographic Process (STEP) is a type of addi-
tive manufacturing technology that uses electrostatic forces to deposit and fuse layers
of thermoplastic powder, producing completely dense multi-material. It is a brand-
new polymer-based additive manufacturing method introduced by Evolve Additive
Solutions, Inc, Figure 2.3. The STEP technology is mainly composed of two fun-
damental modules, electrophotographic engine and transfusion module as shown in
Figure 2.4. The printing process can be summarized in the following key steps:

Figure 2.3. STEP introduced by EVOLVE.

1. Pre-processing

• Design: The STEP process starts with the creation of a 3D CAD model
of the object to be manufactured. The model is then sliced into several
nearly 2D layers. The thickness of the layer is around 0.013 mm to 0.02
mm.
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• Material selection: A thermoplastic powder is selected based on the
desired properties of the final product. STEP is compatible with a range
of thermoplastic materials, including nylon, polycarbonate and polypropy-
lene.

2. Printing process

• Electrostatic printing: The belt, responsible for transporting the layers,
receives distinct charges from the electrophotographic module based on the
CAD data, ensuring precise positioning of the individual charges. Depend-
ing on the specific charges received, the material is selectively deposited
on the belt, serving as either support or part material.

• Heating: The belt, with the layer on top, travels beneath a heat-emitting
lamp, which increases the material’s temperature in preparation for fu-
sion. Once the layer has been appropriately heated, it is deposited on the
building plate.

• Fusion and cooling: The building plate moves horizontally in three posi-
tions: heating, depositing and cooling. In the heating position, the building
plate and the previously printed layers undergo heating up toglass transi-
tion temperature. As the building plate shifts to the transferring position,
the subsequent layer on the belt is melted and fused, transferring onto the
building plate. Following the transfer, the building plate proceeds to the
cooling position, gradually cooling down. Throughout the printing pro-
cess, the building plate moves back and forth to facilitate stacking each
successive layer upon it.

• Layer-by-layer: Once the first layer has been fused, the process is re-
peated to add successive layers until the final object is complete. Each
layer is deposited and fused in the same way as the first layer, with the
electrophotographic module depositing materials on the image of the cross-
section and the transfusion module melting the powder particles together.

3. Post-processing

• Cooling: Once the object is complete and all the layers are fused and
pressed together, the building plate, together with the newly formed 3D
bulk allowed to cool and harden.

• Removal: The support material is then dissolved in the chemical wash,
while the part material remains unaffected and intact, leaving behind the
final product.

Figure 2.4 provides a visual representation of the STEP process. This technology
offers several benefits over traditional manufacturing methods. STEP is capable of
producing parts with high accuracy and resolution, making it suitable for creating
parts with intricate details and complex geometries. It can produce parts quickly
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Figure 2.4. Selective Thermoplastic Electrophotographic Process.

and efficiently, with minimal setup time. It also offers several material options and is
compatible with a range of thermoplastic materials, allowing for the creation of parts
with a variety of properties. Finally, STEP produces minimal waste, as any excess
powder can be reused in the next build.

2.4 Limitations and defects and what to improve
SLS and STEP additive manufacturing technologies have emerged as notable solu-
tions in the sphere of technological advancements and innovative production pro-
cesses. These two prominent printers have the potential to revolutionize production
methods. However, substantial research and development efforts are required to scale
them up for industrial applications. These technologies are still in their early stages
on the global market, and little is known about their maximum potential. To achieve
widespread adoption of 3D printing on an industrial scale, it is necessary to address
several key challenges.

Firstly, the current understanding of the 3D printing process remains limited, with
scarce literature available. Therefore, it is necessary to expand the knowledge base of
the process itself, deepen our understanding of its underlying mechanisms and unveil
its full range of capabilities.

Additionally, the optimization of the entire 3D printing process is crucial to ensure
reproducibility and achieve consistently high-quality output. This involves fine-tuning
various machine parameters, analyzing the process data and closely studying the
quality of the ultimate products. Developing increased knowledge and models for
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machine analysis will aid in minimizing errors, enhancing efficiency and maximizing
the overall quality of the printed objects.

Lastly, a significant challenge hindering the integration of 3D printing into large-
scale production is its inherent instability. The process often exhibits fluctuations
and inconsistencies, resulting in unpredictable outcomes. To address this challenge,
further advancements are required in terms of process stability, control systems and
real-time monitoring.

The current printing process involves the utilization of building plates capable of
fitting multiple products simultaneously, arranged in several rows, as illustrated in
Figure 2.5. This example showcases ISO 527 tensile bar specimens, highlighting the
general nature of the application. In this specific case, three rows of 17 bar specimens
have been produced, although the production capacity can be extended to encompass
additional rows.

Figure 2.5. STEP final products.

Ensuring a high level of quality across the various products is crucial in such sce-
narios. Numerous quality aspects are considered, including mechanical characteristics
like tensile strength and Young’s Modulus. Several defects are analyzed as dimensions
conforming to the specifications outlined in the digital design. Other qualities, such
as warpage and surface roughness, are also thoroughly examined. It is imperative
to achieve and maintain stringent quality standards across all the produced items.
These qualities must be consistently guaranteed, exhibiting homogeneity and unifor-
mity within each product within the same row and between all rows. The attainment
of these high-quality standards is vital to instil confidence in the reliability and per-
formance of printed products.
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2.5 Data Overview

Data organization follows a similar pattern in the STEP and SLS printing machines.
While this thesis primarily focuses on the STEP machine, it is important to acknowl-
edge the broader applicability of these data categories to the SLS technology as well.
In the context of the STEP process, the data can be categorized into three main
classes: input data, process data, and quality data. Each of these data categories
is described individually below. Figure 2.6 provides a visual representation of the
different categories.

Figure 2.6. Representation of the data of the STEP process.

Input variables. The input data encompasses machine settings or process parame-
ters that are established at the beginning of an order. This data can be represented by
a set of multiple parameters, denoted as β1, · · · , βn, wherein each parameter includes
a series of sub-parameters ∀i ∈ 1, · · · , n can be defined βi1, · · · , βim with m ∈ N.

As an example, we can consider the temperature of the building plate can serve
as an initial parameter, βi, and its sub-parameters can include the lower and upper
temperature limits, βi1, βi2. Additionally, subsequent sub-parameters can account
for temperature changes as the layer number progresses, βi3, · · · , βim. For instance,
with the accumulation of layers, it may be necessary to decrease the temperature to
mitigate any potential issues.

Process variables. Diverse sensors are strategically positioned throughout the pro-
duction chain to collect data throughout the manufacturing process, comprising a
comprehensive set of process data encompassing various production-related informa-
tion. Specifically, a total of 53 continuous variables are acquired during the produc-
tion process. The variables are denoted as V 1 to V 53 for confidentiality purposes.
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For every produced layer, the system records an observation for each variable, thus
associating a row within the table depicted in Figure 2.6.

Output or Quality variables. The output data reflects the quality of the manufac-
tured products, which can be of different natures. The products’ mechanical qualities
include tensile strength and Young’s modulus. Other qualities, such as warpage and
dimensional defects, were also considered. This includes dimensional measurements
to verify if the printed object conforms to the design specifications. Quality data
plays a vital role in validating the success of the printing process, ensuring that the
printed objects meet the required standards and functional requirements. In general,
all the products of the production are tested for their effectiveness and to study how
the quality propagates within each row and between rows.
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CHAPTER3
Variable selection

3.1 Introduction
In the initial stages of the PhD journey, significant emphasis was placed on the STEP
machine. Our primary objective was to address the challenges associated with the
process understanding and establish a means to connect the diverse data set gener-
ated by the machine. Specifically, we focused on identifying the process stage that
significantly influences the quality. By strategically deploying sensors throughout the
machine, we are able to thoroughly investigate the process variables, with a particu-
lar emphasis on understanding which variables affect the overall product quality. In
this study’s context, we considered the process variables as the input variables, while
the quality variables were designated as the output variables. In order to address
these challenges, descriptive models that can be comprehended are required, rather
than solely focusing on predicting responses through ”black-box” models. Identifying
relevant input variables has emerged as a subject of interest across various domains.
Therefore, the growing focus is placed on models that can describe the contributions
of the input variables to the model in the form of ”variable importance”. Certain
machine learning techniques, such as random forest (RF), readily provide variable
importance measures.

The Random Forest (RF) model is a tree-based ensemble learning algorithm that
combines multiple decision trees to make predictions [4]. It is a widely used modelling
algorithm for several purposes, including high-dimensional problems with multi-class
responses, categorical variables, and imbalanced data and multiple adapted versions
have been proposed [5–7]. RF excels in handling complex data sets, as it can effec-
tively capture nonlinear relationships and interactions between variables [8]. Addi-
tionally, RF mitigates the risk of overfitting by randomly selecting subsets of features
and training each decision tree on different subsets of the data. This diversification
leads to robust and reliable predictions [9].

RF provides two variable importance measures, Mean Decrease Impurity (MDI)
or Mean Decrease Accuracy (MDA), obtained based on the variable’s contribution to
the model’s performance [4]. Utilizing the variable’s importance scores, a rank of the
variables can be obtained. This ranking provides an initial indication of the input
variables exerting the greatest influence on the output, or, in other words, the most
significant variables. While RF provides variable importance measures and a variable
ranking, it does not offer guidance on the optimal number of variables to retain as the
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most influencing variables. The RF model does not inherently incorporate a threshold
or criterion for determining the number of variables to retain, Figure 3.1.

Figure 3.1. Random Forest ranking of the variables based on the MDA variables impor-
tance measure.

The absence of a predefined threshold represents a significant challenge in deter-
mining the number and specific variables that truly influence the response variable.
Finding an appropriate threshold in the ranking of variables obtained from the RF
model can be viewed as a variable selection problem. Variable selection is a chal-
lenging issue in high-dimensional regression and classification problems. Most of the
input variables are irrelevant to predict the output, but their relevance is usually
unknown. Typically, there are three goals in variable selection and methodologies
might change depending on the aim we pursue. The first aim is to address technical
limitations caused by large sets of variables, which slow down algorithms, consume
excessive resources and are inefficient. The second aim is to identify a small number
of variables that maximize model accuracy, as many machine learning algorithms
show reduced accuracy with an excessive number of variables. The third aim is to
enhance understanding of the underlying data generation process by identifying and
prioritizing all influential variables, particularly when the goal is to gain insight into
mechanisms related to the subject of interest rather than solely building predictive
models.

One of the challenges encountered when applying the Random Forest (RF) model
and subsequently its variable’s importance measures is the presence of high corre-
lation among the input variables. Figure 3.2 shows the process data of the STEP
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machine, where we can observe numerous groups of variables which show a high cor-
relation among them. This high correlation can impact the conventional RF variable
importance measures, leading to an overestimation of the importance scores assigned
to the variables [10,11]. As a result, the ranking of variables based on these measures
may not accurately reflect their true significance in influencing the output variable.
This phenomenon results in an incorrect ranking, which leads to an incorrect selection
of the most relevant variables.
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Figure 3.2. Highly correlated process data.

In the literature, there is a noticeable gap in variable selection techniques that
adequately address the presence of highly correlated data. This gap has prompted
the need for the development of novel methodologies that can effectively handle this
challenge. A methodology is presented in the journal article included in the Section
3.3 to address this gap. In situations where there is a high correlation between input
variables, the model provides a valuable variable selection technique.
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3.2 Variable selection techniques
Variable selection methods play a crucial role in statistical modelling and machine
learning, as they facilitate the identification of relevant variables from the input set.
These methods are crucial for several reasons and purposes [12]. Variable selection
techniques encompass a wide range of approaches, including filter methods, wrapper
methods, embedded methods and regularization methods [13]. Each method has its
strengths and limitations, depending on the specific characteristics of the data set
and the objective of the research.

Embedded methods are characterized by directly integrating the variable selec-
tion process into the model fitting procedure. These methods employ regularization
techniques to simultaneously estimate the model parameters and select the most in-
fluential variables. By imposing penalties on the coefficients, embedded methods
encourage sparsity and automatically identify the most important variables. Exam-
ples of such models are Lasso and Elastic Net [14, 15], described in the following
section.

Filter and Wrapper algorithms use an external evaluation criterion to assess the
quality of different subsets of variables. These algorithms typically involve a search
procedure that evaluates the performance of various variable combinations using a
selected model. Wrapper algorithms can be computationally intensive, as they re-
peatedly fit models on different subsets of variables. Examples of wrapper algorithms
include forward selection, backward elimination and stepwise regression. These meth-
ods provide flexibility in terms of the evaluation criterion and allow for more cus-
tomized variable selection based on specific objectives or domain knowledge [16].

While embedded methods gained popularity due to their simplicity and efficiency,
wrapper algorithms provide more flexibility in the selection criteria and allow for fine-
tuning the selection process based on specific requirements. Both criteria have their
advantages and limitations and the choice between them depends on the nature of
the data, the research objectives and computational considerations.

Let us consider a set of input variables denoted as X, with dimensions n×p where
n, p ∈ N. Here, n represents the number of observations and p represents the number
of variables. We also consider the output variable, denoted as Y , with dimensions
n × 1.

3.2.1 Embedded methodologies
This section provides a brief overview of the two most popular embedded variables
selection models, Lasso and Elastic Net.

3.2.1.1 Lasso

The Least Absolute Shrinkage and Selection Operator, also known as the Lasso model,
is a linear regression model with regularization [14]. It incorporates a penalty term
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that encourages sparsity by shrinking the coefficients of less important variables to-
wards zero. It can be used as an effective approach for variable selection and reg-
ularization, allowing the identification of the most relevant variables from a set of
input variables. This characteristic makes it particularly advantageous when dealing
with high-dimensional data sets or in cases where the number of variables exceeds
the number of observations.

The Lasso method aims to minimize the following objective function:

min
β

 1
2n

n∑
i=1

(yi − Xi · β)2 + λ

p∑
j=1

|βj |

 (3.1)

where β denotes the coefficient vector and λ is the parameter that controls the de-
gree of regularization. The first term in the objective function represents the residual
sum of squares between the observed and predicted values. The second term is the
penalty term that shrinks the absolute values of the coefficients towards zero en-
couraging sparsity. It aims to minimize the residual sum of squares, subject to the
constraint that the sum of the absolute values of the coefficients is less than a speci-
fied tuning parameter λ. The tuning parameter λ plays a crucial role in controlling
the degree of regularization applied. A large lambda value leads to more aggressive
shrinkage, resulting in more coefficients being driven towards zero and, consequently,
more variables being excluded from the model. Conversely, a small lambda value
allows for less shrinkage and retains more variables in the model. The λ parameter
is often tunned by cross-validation.

3.2.1.2 Elastic net

The Elastic Net model is a statistical technique that combines the advantages of
both ridge regression and the Lasso method [15]. It is designed to address the limi-
tations of each approach and provide a more robust framework for variable selection
and regularization in linear regression models. The Elastic Net model introduces
two penalty terms: the L1 penalty, which encourages sparsity by promoting some
coefficients to exactly zero and the L2 penalty, which encourages shrinkage towards
zero without enforcing strict sparsity. This combination allows for the selection of
important predictors while handling multicollinearity among the variables.

The Elastic Net model aims to minimize the following objective function:

min
β

 1
2n

n∑
i=1

(yi − Xi · β)2 + λ1

p∑
j=1

|βj | + λ2

2

p∑
j=1

β2
j

 (3.2)

where β denotes the coefficient vector, λ1 controls the degree of L1 penalty (Lasso
term), and λ2 controls the degree of L2 penalty (Ridge term). A higher λ1 value
encourages more coefficients to be exactly zero, resulting in a restricted model. A
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higher λ2 value increases the shrinkage effect, allowing for better handling of multi-
collinearity among the predictors. By adjusting the values of λ1 and λ2, sparsity and
shrinkage in the model can be controlled.

3.2.2 Wrapper based methodologies
In the following section will be presented briefly the Knockoffs variable selection
[17,18] and the Variable Selection Using Random Forest (VSURF) [19,20].

3.2.2.1 VSURF

The VSURF (Variable Selection Using Random Forests) model is a wrapper built
around the Random Forest (RF) algorithm [21]. It is specifically designed for variable
selection to pursue two main objectives: interpretation or prediction. It aims to
identify the most important variables from a set of input variables by iteratively
fitting Random Forest models and evaluating each variable’s importance score.

The VSURF algorithm is an iterative algorithm and is composed of essentially
two steps. First, the algorithm starts by fitting the RF model using all available
variables, running 50 runs of RF. Then, it evaluates the variable importance measures
provided by RF, such as the mean decrease in accuracy (MDA) or mean decrease in
impurity(MDI). Based on these measures, the least important variable is removed
from the set. The elimination is based on an initial threshold set to the minimum
standard deviation of the prediction value of the variable importance using a CART
model estimation.

The second step depends on the objective of the variable selection. For interpre-
tation purposes, the algorithm construct a nested collection of RF models involving
the remaining variables from the previous step. It selects the variables involved in
the model leading to the smallest OOB error. For prediction purposes, the algorithm
build more parsimonious models. It starts from the ordered variables retained for
interpretation and step-wise add a variable to the model only if the OOB error de-
creases significantly. The oob error is compared to the average oob error from the
first step.

By iteratively eliminating the least important variables, VSURF gradually iden-
tifies the subset of variables that contribute most to the model’s predictive accu-
racy. This allows for reducing model complexity and improving interpretability. The
model presents other advantages. It can deal with cases when the number of vari-
ables is much higher than the observations, p >> n. It can pursue two objectives,
so this makes it open to broad cases. This flexibility enables researchers to adapt
the model to their specific needs and objectives. It uses RF as its base model, so
VSURF inherits the RF properties as robustness to various data characteristics, such
as high-dimensional data sets, multicollinearity and noisy data. On the downside,
the VSURF model is computationally intensive as it iteratively fits multiple Random
Forest models. It is not very suitable for cases that present high correlation among
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the input data as it makes use of the MDA and MDI variable importance measure,
which was demonstrated to be biased for highly correlated data [10]. It is important
to consider these pros and cons while applying the VSURF model, as they can help
researchers make informed decisions regarding variable selection approaches and their
implications for the resulting model.

3.2.2.2 Knockoffs variable selection

The Knockoffs variable selection method is a statistical technique that aims to iden-
tify relevant predictors while controlling the false discovery rate (FDR) [22–24]. It
provides a formal framework for variable selection by constructing a set of ”knockoff”
variables that mimic the structure of the original predictors.

Consider a subset of the input variables called S that affects the output variable
Y . The subset of variables that do not influence the Y is called H0. Finally, let
us suppose that the algorithm selects the variables included in the set Ŝ. The False
Discovery Rate can be defined as:

FDR = E

[
|Ŝ ∩ H0|

max{1, |Ŝ|}

]

The False Discovery Rate (FDR) is a crucial index within the context of the Knockoffs
variable selection method. It serves as an initial estimate of the algorithm’s efficacy in
identifying relevant variables. The FDR represents the proportion of falsely selected
variables among the ones claimed to be significant. When the FDR is low, it indicates
that the algorithm has made fewer incorrect selections, implying a higher degree of
accuracy in identifying relevant variables. Conversely, a substantially high FDR sug-
gests that a large number of variables have been incorrectly identified as significant,
indicating potential weaknesses or limitations in the algorithm’s performance. There-
fore, the FDR plays a crucial role in assessing the reliability and effectiveness of the
Knockoffs method for variable selection tasks.

The algorithm proceeds as follows. The first step in the Knockoffs method is to
generate a set of knockoff variables, denoted as X̃, which mimic the distributional
properties and pairwise associations of the original variables X. The knockoff vari-
ables serve as a reference for evaluating the importance of the original variables while
accounting for their correlation structure. Next, a statistical test is performed to com-
pare the importance of each original variable to its corresponding knockoff variable.
This test measures the difference in importance scores between the original and knock-
off variables and provides a p-value associated with each variable. The p-values are
then adjusted for multiple testing using a method such as the Benjamini-Hochberg
procedure to control the FDR. Based on the adjusted p-values, variables with low
p-values are deemed significant, indicating that they have higher importance than
their knockoff counterparts. These variables are selected as the relevant variables.

The Knockoffs method offers several advantages. It provides a formal framework
for variable selection and controls the FDR. It considers the correlation structure
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among the variables and constructs knockoff variables that mimic the relationships
among the original variable and it also accounts for potential confounding effects.
Additionally, it allows for flexible choices in constructing the knockoff variables, such
as using different variable transformations or incorporating prior knowledge.

However, it is important to note that the Knockoffs method has certain limitations.
It assumes that the conditional distribution of each knockoff variable can be accurately
estimated, which may be challenging in certain scenarios and bias variable importance
measures. Additionally, the method may be computationally intensive, especially
for high-dimensional data sets with a large number of variables. The target FDR
rate must be defined at the beginning of the algorithm. In certain situations, an
exceedingly low index can result in either no variable selection or the selection of only a
minimal number of variables. When no variables are selected, two potential scenarios
may arise: either no input variables are truly relevant, implying that only noise
variables exist, or the index value is excessively low and requires adjustment. However,
determining the appropriate extent by which the index should be increased remains
an open question. Finding the optimal balance between avoiding false selections and
accurately identifying relevant variables poses a challenge in this context. Considering
these pros and cons is essential when applying the Knockoffs variable selection method.
Understanding its strengths and limitations can help make informed decisions and
interpret the results accurately in a specific research context.

3.3 Paper: Variable selection wrapper in presence of
correlated input variables for random forest
models

Marta Rotari and Murat Kulahci, ”Variable selection wrapper in presence of corre-
lated input variables for random forest models”, Quality and Reliability Engineering
International (2023).
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Abstract
In most data analytic applications in manufacturing, understanding the data-
drivenmodels plays a crucial role in complementing the engineering knowledge
about the production process. Identifying relevant input variables, rather than
only predicting the response through some “black-box” model, is of great inter-
est in many applications. There is, therefore, a growing focus on describing the
contributions of the input variables to the model in the form of “variable impor-
tance”, which is readily available in certain machine learning methods such as
random forest (RF). Once a ranking based on the importance measure of the
variables is established, the question of how many variables are truly relevant in
predicting the output variable rises. In this study, we focus on the Boruta algo-
rithm, which is a wrapper around the RF model. It is a variable selection tool
that assesses the variable importance measure for the RFmodel. It has been pre-
viously shown in the literature that the correlation among the input variables,
which is often a common occurrence in high dimensional data, distorts and
overestimates the importance of variables. The Boruta algorithm is also affected
by this resulting in a larger set of input variables deemed important. To over-
come this issue, in this study, we propose an extension of the Boruta algorithm
for the correlated data by exploiting the conditional importance measure. This
extension greatly improves the Boruta algorithm in the case of high correlation
among variables and provides a more precise ranking of the variables that sig-
nificantly contribute to the response. We believe this approach can be used in
many industrial applications by providingmore transparency and understanding
of the process.
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1 INTRODUCTION

Inmany industrial applications, the productionmachines are equippedwith several sensors in each stage of the production
process, resulting in large amounts of data being collected. It is crucial to determine which variables from the process
data actually influence the response variable, which is typically related quality of the final product. In this context, the
interest is focused on the development and use of Machine Learning methods aimed at identifying the contribution of
each process variable to the model, also known as variable importance, and in identifying the all-relevant variables, also
known as variable selection, which play a crucial role in themechanism of learning algorithms for predicting the response
variable.
Variable selection is a challenging issue in high-dimensional regression and classification problems. Most of the input

variables are usually irrelevant, and their relevance is unknown in advance. Typically, there are three goals in variable
selection. The first is purely technical; dealing with large sets of variables slows down algorithms, consumes excessive
resources and is inefficient.1,2 A second aim is to find a small number of variables that maximize the model accuracy.3
Numerousmachine learning algorithms showa reduction in accuracywhen the number of variables is significantly higher
than optimal.4 Therefore it is preferable to select the smallest set of variables that yields the best model. This problem,
known as the minimal-optimal problem, has been explored extensively.5
The third aim is to improve understanding of the underlying process that generated the data.6 The identification of all

variables, which are in some circumstances relevant for classification or regression purposes, is the so-called all-relevant
problem. The goal is to identify and prioritize all influential variables for further investigation with domain expertise. This
is especially important when the goal is to understand mechanisms related to the subject of interest rather than simply
building a black box predictive model. In the biomedical research, for example, when dealing with the results of gene
expression measurements in the context of particular diseases, identifying an influential set of genes as genetic markers
might be useful. In manufacturing, detecting all relevant variables of the production process could be very pertinent
to understand and have a better overview of the process. It could complement the engineering knowledge about the
production process and facilitate process improvement effects. Further details on the relevance of variable selection are
described in Nilsson et al.5
Variable selection gets considerably more challenging in the presence of strongly correlated input variables, as it is

common in real-world data. Consider two relevant variables which are strongly correlated. The second and third aims
may seem similar but lead to different outcomes depending on which of these two objectives is of interest. The variables
convey the same statistical information, so only one should be chosen if the goal is to maximize predictive accuracy with
a small number of variables, second aim. On the other hand, these two variables may be collected in different ways and
represent distinct physical quantities. Consequently, domain experts may interpret them differently, hence both should
be preserved.
In machine learning for variable selection in the presence of high-dimensional data, Random Forest (RF)7 model has

been commonly used as a modeling method. The RF model consists of a collection of trees created using bagging or
bootstrap aggregation. It is a nonparametric model for classification and regression issues. It has been applied to a wide
range of problems, including high-dimensional problems with multi-class responses, categorical variables, imbalanced
data and multiple adapted versions have been proposed.8–12 The model is widely used due to its capacity to internally
consider the interaction between input variables while providing variable importance measures. For variable importance
in RF models, two types of measures have been proposed: the Mean Decrease Accuracy (MDA) and the Mean Decrease
Impurity (MDI). Both measures are non-parametric and there have been several studies considering the theoretical for-
malization of these methods.13–17 Nonetheless, further studies have been conducted on the influence of correlation on
both variable importance measures,18–21 which conclude that correlation among the input variables leads to a significant
overestimation of the importance scores. According to simulation studies carried in literature,18,22,23 highly correlated
variables can erroneously show high MDA scores even when there is no dependence between the response variable
and these variables. The MDA may fail to detect some relevant variables in the presence of correlation among the
variables.20,21,23–26
While RF provides variable importance values, there is no built-in solution for variable selection based on a variable

importance threshold. In the industrial context, the final decision on the subset of selected variables is manifest for the
complete understanding of the processes. Moreover, a precise threshold is crucial to identify the most important variables
without discarding any relevant information. Many techniques have been suggested on how to discard non-significant
variables.4,17,25,27 The most successful algorithms for this purpose are the wrapper methods,24,28–33 which return a final
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ROTARI and KULAHCI 3

subset of all-relevant variables. To efficiently use a wrapper method, the model to be used should be both computationally
efficient and simple, with no user-defined parameters if possible, which is the case for the RF models.
Boruta algorithm34 is a wrapper method that aims to identify a clear threshold in the variable importance ranking

provided by the RF model. It uses the MDA and MDI importance measures. Recently, a novel Python implementation
of Boruta has been proposed, allowing the selection of any Tree-based learner.35 Such importance measures quantify the
relevance of an input variable towards a response variable by perturbing the values of the former. However, these do
not consider the correlation among the inputs, therefore, the performance of the Boruta algorithm is compromised when
correlated input variables are present. In particular, the problem of correlation leads to overestimated variable importance
values. This overestimation can result in an incorrect ranking of the variables, producing a larger set of input variables
deemed important.
In order to adjust the variable selection result in the presence of correlated input variables, we present an extension of

the Boruta algorithm to effectively exploit the advantages of RF models with wrapper variable selection methods. This
extension uses a conditional variable importance measure. The proposed algorithm significantly improves the variable
importance ranking that results in a more precise final variable selection in comparison to the existing Boruta algorithm.
In the following, we present the proposed extension of the Boruta algorithm and application on simulated dataset and on
a real-world case in additive manufacturing to highlight the advantage of the current proposal.

2 METHODS

2.1 Model-based variable importance and variable selection

The first category of variable selection methods are modeling techniques that have the selection already built-in. The
two most predominant in linear regression are Lasso and Elastic Net.36,37 These methods make use of regularization to
provide a measure of variable importance. The Lasso method includes a penalty term in its optimization criterion, which
constrains the size of the estimated coefficients. As the penalty increases, the coefficients with the lowest values are set to
zero. Similar to Lasso, Elastic Net can build reduced models by producing zero-value coefficients. Both methods produce
reduced models with only the relevant variables.
Some Machine Learning methods, such as RF,7 have embedded variable importance measures. Specifically, there are

two commonly employed variable importance measures: mean decrease in impurity (MDI) also called the Gini impor-
tance and mean decrease in accuracy (MDA).7 The former relies on the concept of impurity reduction followed in most
traditional classification tree algorithms. First, the weighted impurity decrease over all nodes that split on a given variable
are summed. The value is then averaged over all trees in the forest to obtain the MDI value. Furthermore, other analyses
as in literature26,38 have highlighted that MDI is consistent only under a strong and restrictive assumption of an additive
regression function and independence of the input variables. Strobl et al.26 claim that the MDI variable importance mea-
sure is biased when input variables vary in their number of categories or scale of measurement. On the other hand, MDA,
also called permutation importance, is widely considered a more efficient variable importance measure for RFs.13,26 This
method can be more computationally intensive than MDI, but it may provide a more accurate estimate of variable impor-
tance when there are interactions among variables or when correlation among variables is present.39 This paper focuses
on regression settings and correlated data; therefore, the MDAmeasure will be considered.
Consider the input variables 𝑋 = (𝑋1, .., 𝑋𝑗, .., 𝑋𝑝) and the response variable 𝑌. In the RF algorithm, each tree 𝑡 ∈

1, … , 𝑛𝑡𝑟𝑒𝑒 is built with a bootstrap sample of the original data, {(𝑋1, 𝑌1), … , (𝑋𝑛, 𝑌𝑛)} where 𝑋𝑖 = (𝑋𝑖1, … , 𝑋𝑖𝑝). The left-
over data from the bootstrap sample represents the out-of-bag (OOB) data, that we denote by 𝔹(𝑡). The OOB sample is
used to evaluate the model prediction performance, also referred to as OOB error:

̂𝑒𝑟𝑟(𝑓(𝑡), 𝔹(𝑡)) =
1

|𝔹(𝑡)|
∑

𝑖∶(𝑋𝑖,𝑌𝑖)∈𝔹(𝑡)

(𝑌𝑖 − 𝑓(𝑡)(𝑋𝑖))
2 (1)

where 𝑓(𝑡)(𝑋𝑖) is the prediction for observation 𝑖 and | ⋅ | is the cardinality function. To compute the MDA for variable
𝑋𝑗 for a single tree, the values of variable 𝑋𝑗 are permuted, yielding 𝔹(𝑡,𝜋𝑗), following permutation 𝜋. The OOB error is
computed again. The difference between the OOB error for the new data and the original OOB error is defined as the
importance of the 𝑗-th variable for the tree 𝑡. The average of this difference over all trees in the forest constitutes the MDA
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4 ROTARI and KULAHCI

importance value for variable 𝑋𝑗 and can be written as:

𝐼(𝑋𝑗) =
1

𝑛𝑡𝑟𝑒𝑒

𝑛𝑡𝑟𝑒𝑒∑
𝑡=1

(
̂𝑒𝑟𝑟(𝑓(𝑡), 𝔹(𝑡,𝜋𝑗)) − ̂𝑒𝑟𝑟(𝑓(𝑡), 𝔹(𝑡))

)
(2)

It is worth noticing that various MDA implementation exists. In standard RF implementations, an additional version of
the permutation importance (often referred to as the z-score) is obtained by dividing the importance by its standard error.
Bénard et al.14 provide an exhaustive analysis of the various MDA implementations. Besides providing a more rigorous
formalization, the authors propose a new, augmented version called Sobol-MDA that offers improved reliability and
accuracy in measuring the variable’s importance scores.
The random permutation of the 𝑋𝑗 values breaks the initial relationship between the independent variable 𝑌 and the

dependent variable 𝑋𝑗 . It should simulate the lack of the variable in the model. If the original variable 𝑋𝑗 is associated
with the response variable, the OOB error increase when the permuted variable 𝑋𝑗 and the other non-permuted input
variables are used to predict the response for the OOB observations. The difference between the accuracy of prediction
before and after permuting the values of𝑋𝑗 can be viewed as a measure of the importance of𝑋𝑗 in predicting the response
variable 𝑌. When there is almost no difference in the accuracy of the forecast before and after permuting𝑋𝑗, 𝑋𝑗 is said to
be unimportant.18,25,26

2.2 Variable selection based on the Boruta algorithm

The Boruta algorithm34,35,40 is a wrapper algorithm developed for the RF model. In a wrapper method, an algorithm is
used as a black box that returns a variable ranking. The RF regression and classification algorithm is relatively quick, can
usually be run without tuning any parameters, it is sensitive to the interaction between variables without explicit settings
and gives a numerical estimate of the variables’ importance. The Boruta algorithm is a sequential selection algorithm, and
each step consists in running RF and obtaining the variables’ importance values. It offers a precise threshold in the RF
variables ranking in order to decide a final set of relevant variables to predict the output variable.
The algorithm is an extension of the original proposal in literature,17 that determines the relevance of a variable by

comparing the importance of the original variables to that of the random noise variables. Based on the values obtained
from the RF model, Boruta evaluates which variables are relevant. The reference for deciding which variables are
truly relevant is given by the set of the noise variables. The main goal is to find all variables for which their associ-
ation with the response variable is higher than that of the noise variables. Numerous RF realizations in the Boruta
algorithm produce a more stable output than a single RF run. The original algorithm description can be found in
literature.34,40

2.3 The influence of the correlation on the permutation importance measure

Strobl et al.18 formalize the MDA interpretation under the assumption of no correlation among input variables and the
response variable 𝑌. They argue that if there is independence between the variable 𝑋𝑗 and the response 𝑌 and marginal
independence between 𝑋𝑗 and the other variables 𝑋 ⧵ 𝑋𝑗 , then the permutation of 𝑋𝑗 would not affect the prediction
accuracy. An MDA importance value close to zero validates the hypothesis of marginal independence. Consequently, a
large value can be indicative of dependence between 𝑋𝑗 and 𝑌 or between 𝑋𝑗 and other variables, or both.
The effect of the correlation among input variables on the MDA measure and its bias has been studied in the

literature.18–21 However, there is no agreement on how to interpret the importance measures when the input variables are
correlated and even less agreement on how this correlation affects the importance measures.41,42 Nicodemus et al.22 show
through simulated studies that highly correlated variables acquire high MDA values even when there is no dependence
on the response variable. Strobl et al.18 highlighted two issues in the high MDA values of correlated variables. The first
reason is identified in the tree-building process that prefers the selection of correlated variables. The second is identified
in the computation of the MDA value and the advantage of the correlated data induced by the unconditional permutation
scheme. Toloşi and Lengauer23 identify this effect as “correlation bias”, which does not correspond to a statistical bias.
They observe a critical effect of the correlation on the permutation importance measure that depends on the size of the
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ROTARI and KULAHCI 5

correlated group. Similarly, other empirical studies show that MDA fails to identify some of the relevant variables when
highly correlated variables are present.20,21,23–26
Following that, Gregorutti et al.25 provides a more formal description and proof of this effect, limited to a regression

setting. In the case of an additive regression model, it is possible to express the permutation importance measure as a
function of the correlation between input variables. Consider (𝑋, 𝑌) random vectors which satisfy the following additive
regression model

𝑌 =

𝑝∑
𝑗=1

𝑓𝑗(𝑋𝑗) + 𝜖 (3)

where 𝜖 is such that𝔼[𝜖|𝑋] = 0 and𝑓𝑗s aremeasurable functions. In thismodel setting, for any 𝑗 ∈ 1, … , 𝑝 the permutation
importance measure satisfies

𝐼(𝑋𝑗) = 2𝕍[𝑓𝑗(𝑋𝑗)]. (4)

That is, the variable importance score of the𝑋𝑗 variable is equivalent to two times the variance of𝑓𝑗(𝑋𝑗). Assumemoreover
that for some 𝑗 ∈ 1, … , 𝑝 the variable 𝑓𝑗(𝑋𝑗) is centered. Then

𝐼(𝑋𝑗) = 2ℂ[𝑌, 𝑓𝑗(𝑋𝑗)] − 2
∑
𝑖≠𝑗

ℂ[𝑓𝑗(𝑋𝑗), 𝑓𝑖(𝑋𝑖)]. (5)

where ℂ denotes the covariance. Note that Equation (5) reveals the strong dependence on the additive structure of the
regression function 𝑓.
Even if restricted to special model settings, the above equations describe how the correlation among the variables

impacts theMDA. Therefore the correlation among the variables is to be consideredwhen interpreting the variable impor-
tance values in RF models. Furthermore, high correlation among input variables leads to a considerable overestimation
of the variable importance values of the correlated variables. Consequently, all correlated but non-influencing variables
will be highly ranked in importance. The Boruta algorithm is also highly affected by this effect as RF and in particular its
measures are the fundamental of Borutas’ algorithm. The algorithm deem a large number of variables to be relevant. The
majority of the selected variables are variables with a high empirical correlation. As a consequence, some irrelevant vari-
ables might be deemed relevant and some variables with low relevance might be missed. We next present the extension
of the Boruta algorithm involving the correlation among the input variables.

2.4 Extension of Boruta algorithm to the case of high correlated input variables

2.4.1 The use of conditional variable importance

Strobl et al.18 propose a new importance measure for RF models that is based on a conditional permutation scheme that
better reflects the impact of input variables on the response variable when a high correlation among the input variables
is present. The aim is to evaluate the deviation from the null hypothesis, that 𝑋𝑗 and 𝑌 are independent based on the
correlation structure between 𝑋𝑗 and the other variables.
The strategy of this new measure is to build a conditional permutation scheme in the dataset based on the correlation

among variables, with the aim to preserve the data correlation structure. To calculate the variable importance of a variable
𝑋𝑗 , the values of 𝑋𝑗 are permuted based on the so-called conditional permutation scheme. The nature of conditional per-
mutation comes from the fact that 𝑋𝑗 is permuted only within groups of observations with 𝑍(𝑗) = 𝑧, where 𝑍(𝑗) represent
the set of variables that are correlated with 𝑋𝑗 . The exact variables that should be included in the subset 𝑍(𝑗) are those
whose correlation with 𝑋𝑗 exceeds a certain threshold. Another option is to allow the user to specify which variables to
condition on, for example, if a hypothesis of interest contains certain independencies.
We present here the derivation of the conditional mean decrease in accuracy (CMDA). Consider the input variables

𝑋 = (𝑋1, … , 𝑋𝑗, … , 𝑋𝑝) and the output variable 𝑌. First, the calculation of CMDA is done for every tree of the RF model.
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6 ROTARI and KULAHCI

In every tree in the model 𝑡 ∈ 1, … , 𝑛𝑡𝑟𝑒𝑒 the predictions for the OOB data 𝐵(𝑡) are calculated. Next we proceed with the
following construction of the conditional permutation scheme:

1. Select a subset of variables𝑍 to base the conditional permutation on. The subset is composed of variables that showhigh
correlation with variable 𝑋𝑗 greater than a predefined threshold. 𝑍(𝑗) = {𝑋𝑖 | 𝑐𝑜𝑟(𝑋𝑖, 𝑋𝑗) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑋𝑖 ∈ 𝑋 ⧵ 𝑋𝑗}

2. Collect the split points from the tree 𝑡 of the RF model for 𝑍(𝑗).
3. Use the split points to create a grid that bisects the input variable space.
4. Within the obtained grid permute the values of 𝑋𝑗 and compute the OOB-prediction error again.

The value of CMDA for variable 𝑋𝑗 for one tree corresponds to the difference in prediction accuracy before and after
this conditional permutation. We then repeat the procedure for every tree in the forest (𝑡 ∈ 1, … , 𝑛𝑡𝑟𝑒𝑒). The final CMDA
value of variable 𝑋𝑗 is given by the average over all CMDA values calculated from every tree as:

𝐼(𝑋𝑗) =
1

𝑛𝑡𝑟𝑒𝑒

𝑛𝑡𝑟𝑒𝑒∑
𝑡=1

(
̂𝑒𝑟𝑟(𝑓(𝑡), 𝔹(𝑡,𝜋𝑗|𝑍)) − ̂𝑒𝑟𝑟(𝑓(𝑡), 𝔹(𝑡))

)
(6)

where ̂𝑒𝑟𝑟(⋅, ⋅) is defined in (1).
In the presence of strongly correlated variables, this new technique is able to determine the variable importance values

more accurately. In fact, CMDA limits the variable importance values of correlated data; thus, variables with a stronger
impact on the response variable have a greater chance of being identified. Even if this approach fails to totally eliminate
the influence of correlated variables, by employing this new variable importancemeasure technique, we can obtain amore
accurate representation of the variables’ relevance in relation to the response variable. Compared to MDA, this method
has shown substantial improvement in circumstances of highly correlated data.18

2.4.2 Extended Boruta algorithm

Using the CMDA importance measure, we present here the complete definition of the extended Boruta algorithm. Con-
sider the input space 𝑋1, … , 𝑋𝑝 and the response variable 𝑌. In this algorithm the variables are classified as relevant,
irrelevant and tentative. A variable that is classified as relevant is considered a selected variable. A variable that is classi-
fied as tentative is a variable neither selected nor rejected. Finally, a variable classified as irrelevant is a rejected variable.
Just as in the case of the Boruta algorithm the noise variables are used as a benchmark for the importance of the input
variables. The algorithm starts by marking all input variables as “Tentative” variables. The algorithm runs for a number
of iterations until all the variables are classified or the maximum number of iterations is reached. At each iteration, the
algorithm proceeds as follows:

1. The dataset is expanded by including noise variables. The noise variables are obtained by shuffling the values of at least
five initial variables selected from variables marked as tentative.

2. With the expanded dataset an RF model is built.
3. The obtained RF model is used to calculate the CMDA value for each variable of the extended dataset, as explained in

section 2.4.1.
4. The testing threshold is set. This threshold corresponds to the maximum of the CMDA values of the noise variables.
5. The CMDA values of each 𝑋𝑗 variable is compared with the testing threshold. If the CMDA𝑗 value exceeds the testing

threshold, the variable 𝑋𝑗 is given a score point of 1 or 0 otherwise.
6. The obtained scores for all input variables are added to the scores from the previous iterations. This produces a vector

called hints 𝐻 = (ℎ1, … , ℎ𝑗, … , ℎ𝑝), 𝐻 ∈ ℕ𝑝.
7. A classification of the input variables is made based on the hints vector 𝐻. The classification follows the Binomial

decision scheme, discussed below.
8. If not all the variables are classified as relevant or irrelevant, a new iteration starts. Otherwise the algorithm ends.

The Binomial decision scheme is based on the definition of the hints vector. Each iteration of the algorithm is assumed
to be an independent experiment that gives a binary outcome. The 𝐻 random vector represents the number of success
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ROTARI and KULAHCI 7

in a binomial distribution, with 𝑛 the number of iterations and 𝑝 = 0.5. We assess the probability that an input variable
scores better than themaximumnoise variable importance value. The binomial decision scheme is taken from the original
Boruta algorithm. Consider a binomially distributed random variable 𝐵 ∼ 𝐵𝑖(𝑛, 0.5) where 𝑛 is the number of iterations
and 𝑝 is equal to 0.5. Using a significance level 𝛼, the decision proceeds as follows:

1. To classify variable 𝑋𝑗 as relevant we evaluate if the obtained scores ℎ𝑗:

𝑃(𝐵 > ℎ𝑗 − 1) < 𝛼 (7)

where 𝑃(𝐵 > ℎ𝑗 − 1) = 1 − 𝑃(𝐵 ≤ ℎ𝑗 − 1). The obtained p-value is adjusted with the Bonferroni correction and then
compared to the significance level 𝛼.

2. To classify variable 𝑋𝑗 as irrelevant, we evaluate if:

𝑃(𝐵 ≤ ℎ𝑗) < 𝛼 (8)

Once again, the p-value is adjusted by Bonferroni correction before comparing with 𝛼.
3. If a variable does not satisfy either of the above cases, the variable remains marked as tentative variable.

We recall that the Bonferroni correction is an adjustment formultiple comparison tests used in statistical analysis.When
performing a hypothesis test with multiple comparisons, wrongly claiming statistical significance in at least one of these
comparisons is higher than the 𝛼−level set for each comparison. Considering a family of 𝑚 hypotheses for significance
testing and their corresponding p-values 𝑝𝑖 with 𝑖 = 1, … , 𝑚, the Bonferroni correction rejects the null hypothesis for each
𝑝𝑖 ≤ 𝛼∕𝑚.
When themaximumnumber of iterations is reached or all of the original variables are classified as relevant or irrelevant,

the algorithm terminates. It may happen that a variable has not been classified at the end of the algorithm, that is, it
remains as a tentative variable. The tentative variable has an importance score that is very close to the best noise variable
importance value, and the Boruta algorithm is unable to make the desired decision in the default number of iterations.
In this case, there are two options: increase the number of iterations or compare the median importance variable value
with the maximum importance value for the noise variables. This is based on the historical variable importance stored in
memory by Boruta for each iteration. For further details of these rules see.40
The newly introduced extension requires a longer computation time than the original version. The CDMA, as described

in Strobl et al.,18,43 offers a significant advantage when dealing with highly correlated data, but requires more com-
putational time than other variable importance measures. Despite the computational cost, the benefits of using this
measure are substantial, as discussed in the following section. The decision to employ this method should be based on the
correlation among the variables and the research objectives.
The proposed method’s R code is available online,44 providing researchers with an accessible tool to implement the

method. The R function allows for control over fundamental parameters: the significance level 𝛼, the maximum number
of iterations, mtry the number of variables randomly selected at each split, and ntree the number of trees in RF. A brief
discussion on how to choose these parameters can be found in the next section.

3 RESULTS AND DISCUSSION

This section is devoted to evaluating the proposed model’s effectiveness, which we demonstrate through two simulated
datasets and an industrial case study.We also include a comparisonwith existingmodels such as the original Boruta, Lasso,
Elastic net, Knockoffs variable selection and Variable Selection Using Random Forest (VSURF). The first two models,
Lasso and Elastic Net, are two commonly used regression models with regularization. Knockoffs variable selection45,46
is a variables selection model that uses a set of “knockoff” variables and it is designed to control for false discovery rate.
VSURF24,47 is also a variable selection method employing a RF-based approach.
The first simulation aims at assessing the model’s performance in detecting the most significant variables among all

variables in the presence of multiple groups of correlated variables. Additionally, this simulation includes a brief discus-
sion of the model’s parameters. The second simulation evaluates the model’s performance when the interactions among
variables are present. The utilization of simulated data in our evaluation process serves two purposes. Firstly, it allows
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8 ROTARI and KULAHCI
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F IGURE 1 Correlation structure of the input variables.

for greater control over the correlation among the variables, enabling a more systematic investigation of the model’s per-
formance under varying conditions. Secondly, using simulated data provides a comparison of various model selection
approaches. In section 3.2, we present a real-world case in additive manufacturing. The obtained results were evaluated
by process engineers and compared with the existing knowledge about the process. All the analyses were performed in R
language, version 4.2.3, using functions available at44 and publicly available R packages.

3.1 Simulated dataset

In the first simulation study, two groups of correlated variables are introduced in the dataset, and the simulations were
run at increasing correlation levels from 0 to 0.9. The 20 input variables given in 𝑋 are drawn from a joint normal
distribution with mean 0 and variance 1. Two groups of correlated variables are introduced: [𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5] and
[𝑋10, 𝑋11, 𝑋12, 𝑋13, 𝑋14], as shown in Figure 1. The response variable is generated as a linear combination of 𝑋′ where
𝑋′ = [𝑋2, 𝑋11, 𝑋19, 𝑋20] and the coefficients 𝛽𝑖 for 𝑖 ∈ {2, 11, 19, 20} are such that 𝛽𝑖∕𝑠𝑑(𝛽𝑖) = 𝑘, where 𝑠𝑑(⋅) is the standard
deviation and 𝑘 = [4, 3, 3, 5]. The model for 𝑌 is given as

𝑌 = 𝛽2𝑋2 + 𝛽11𝑋11 + 𝛽19𝑋19 + 𝛽20𝑋20 + 𝜖 (9)

where 𝜖 represents the added noise with 𝜖 ∼ 𝑁(0, 0.1).
We performed an analysis to assess the model sensitivity to the choice of significance level 𝛼, the number of variables

randomly selected at each split (mtry) and the number of trees in the RF (ntree). In each casewe performed 50 simulation
runs. The first parameter being investigated is the significance level 𝛼, for which the default value is 0.01. Figure 2 depicts
a comparison between the default value of 0.01 against 0.05, a level that is also commonly used in regression.
Figure 2 demonstrates that the total number of selected variables is expectantly higher for 𝛼 = 0.05 compared to

𝛼 = 0.01. This implies that on average a greater number of significant variables are being correctly selected. However,
an increase in the number of selected variables also results in the selection of noise variables that are not relevant to the
response variable, 𝑌. Careful consideration of the positive and negative effects associated with different 𝛼-levels is nec-
essary to make an informed decision. Determining the appropriate significance level depends on the specific case and
objectives of the analysis.
The sensitivity of the model to the changes in mtry is depicted in Figure 3. As discussed in literature,18,43 the CMDA

method is moderately sensitive to the choice of mtry, albeit less so than the MDA method. This phenomenon is because
correlated variables are favoured in the split selection process. Consequently, for low values of mtry, correlated variables
are more likely to be chosen, resulting in a higher variable importance score than the uncorrelated and noise variables.
As can be seen in Figure 3A, a higher number of variables are selected for low mtry values. This increase is partly due to
the selection of noise variables that are highly correlated with the relevant variables. As shown in Figure 3B, in the case
of correlation level 0.8 and low mtry values, the entire correlation group associated with 𝑋2 is selected, in addition to
𝑋2 itself. This effect is less pronounced for the second correlation group, as 𝑋11 has a lower regression coefficient. The
sensitivity of the CMDA method to the choice of mtry suggests that careful consideration of this parameter is necessary
to ensure an appropriate model.
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ROTARI and KULAHCI 9
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F IGURE 2 In the solid blue line, the default value 𝛼 = 0.01 and the dotted red line 𝛼 = 0.05. (A) Number of all selected variables versus
correlation. (B) Mean number of correctly selected variables over 50 runs versus correlation. (C) Number of wrongly selected variables as the
correlation increases.
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F IGURE 3 In the solid green line mtry = 20, the dotted blue line mtry = 10 and dashed red line mtry = 5. (A) Number of all selected
variables versus correlation. (B) Number of times each variable has been selected in 50 runs.
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10 ROTARI and KULAHCI

We also assessed the impact of ntree parameter by evaluating the model’s performance for ntree = 500, 1000
and 2000 trees. We observed no substantial changes in the model’s performance as the number of trees increased.
Given that the proposed method is computationally more demanding compared to the original method, we recom-
mend using the default value of ntree = 500. This choice strikes a reasonable balance between model accuracy and
computational efficiency.
In the second simulation study, the data set is similar, except for the addition of an interaction term in themodel. That is,

the response variable is generated as a linear combination of𝑋′ where𝑋′ = [𝑋2, 𝑋7𝑋11, 𝑋11, 𝑋19, 𝑋20] and the coefficients
𝛽𝑖 is such that 𝛽𝑖∕𝑠𝑑(𝛽𝑖) = 𝑘, where 𝑠𝑑(⋅) is the standard deviation and 𝑘 = [4, 5, 3, 3, 5]. The model for 𝑌 is

𝑌 = 𝛽2𝑋2 + 𝛽7,11𝑋7𝑋11 + 𝛽11𝑋11 + 𝛽19𝑋19 + 𝛽20𝑋20 + 𝜖 (10)

with 𝜖 represents the added noise with 𝑁(0, 0.1). At each correlation level, the proposed model as well the original
Boruta, Lasso, Elastic Net, Knockoffs and VSURF models were run 200 times each. The Lasso and Elastic Net model
parameters were estimated through five-fold cross-validation. We show the model comparison results from the first
simulation dateset for illustration purposes in Figure 4. The other simulation runs show similar results and hence
omitted.
In both simulation studies, the Elastic Net and Lasso models gave similar performances. Both methods, on average,

select one more correct variable than the other models, as can be seen in Figure 4A. However, Figure 4B shows that
both models on average select a larger number of variables even for low correlation among variables. The number of
selected variables is more than double the number of truly significant ones. Yet so, the number of the selected vari-
ables is nearly constant for increasing levels of correlation. This is further supported by Figure 4C, which shows that
the ratio between variables correctly selected and the total number of selected variables related to the correlation level
generally remains the same. The number of wrongly selected variables shown in Figure 4D, is stable for increasing cor-
relation levels and this trend is also reflected in the ratio between wrongly selected and all selected variables as shown in
Figure 4E.
The Knockoffs variable selection method results are also presented in Figure 4. One of the key parameters of the model

is the target false discovery rate (FDR), with a default value of 0.1. However, with this setting, only 0.5% of the models
selected any variables, meaning that 99.5% of the models were empty and had selected 0 variables. Therefore, we had to
increase the value of the FDR to 0.5 to ensure that at least one variable was selected in at least 90% of the models. We
observed that the number of models with no terms increases proportionally with the correlation levels. In other words,
only a fewmodels contained no terms for low correlation levels, however for high correlation levels, an increasing number
ofmodels ended upwith no terms. Therefore we conclude that, as the correlation between variables increases, themethod
may become less effective in identifying relevant variables and may result in an increasing number of cases with no terms
being selected. Figure 4B shows that the Knockoffs model selects a constant number of variables. This is also reflected in
the ratio between correctly selected and all selected variables shown in Figure 4C, as well as the ratio between wrongly
selected and all selected shown in Figure 4E. These ratios remain relatively constant but at a lower level than for the
proposed model.
In Figure 4 we also present the results for the VSURF model. We notice that as the correlation increases, the number

of selected variables rises drastically, negatively impacting the ratio in Figure 4C. As correlation increases, the number of
incorrectly selected variables also increases, indicating a growing number of noise variables being selected. In Figure 4E,
we can notice that more than half of the variables selected are noise variables.
We also observe a difference between the original Boruta algorithm and the proposed extension. On average, the

extended Boruta algorithm correctly selects a greater number of significant variables. We can also see that as the cor-
relation increases, the total number of variables selected by the original Boruta grows quickly. Instead, even in the case
of high correlation, the proposed extension maintains a constant number of selected variables as shown in Figure 4B.
This is reflected, also, in the ratio between correctly selected variables and all selected variables. The conditional Boruta
selects a large number of significant variables while keeping the total number of variables selected at a low level. This is
also supported by the ratio of correctly chosen variables to the total number of variables selected, shown in Figure 4C.
Moreover, the proposed model exhibits a very low number of wrongly selected variables in Figure 4D, in fact the low-
est among all the models studied in this work. The ratio between wrongly selected and all selected variables is also the
lowest among all models. These findings suggest that the selected variables accurately reflect the variables used to con-
struct 𝑌, even in challenging scenarios with high correlation among variables for which other models tend to over select
variables.
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(B) All selected variables.
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(C) Ratio between the correct selected and all selected variables.
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(D) Falsely selected variables.
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(E) Ratio between falsely and all selected variables.

F IGURE 4 (We present the results from only one of the simulated data sets for illustration.) (A) Number of correctly selected variables
by six different methods versus the correlation among the variables. (B) Number of all selected variables versus the correlation among the
variables. (C) The ratio between the correctly selected and all selected variables versus the correlation among the variables. (D) Number of
falsely selected variables versus the correlation among the variables. (E) The ratio between falsely selected and all selected variables versus the
correlation among the variables.

In Figure 5, we present the frequency of each variable being selected by different models. The input variables are dis-
played on the 𝑥-axis of each figure, and the 𝑦-axis represents the frequency with which each variable was selected by the
algorithms across 200 iterations. We can see that all models, on average, pick the relevant variables correctly. However,
even at low levels of correlation among variables, Lasso, Elastic Net and VSURF also select noise variables as significant.
As the correlation increases, the original Boruta algorithm selects the entire group of correlated variables. In general,
we also notice a difference in the frequency of selection of the two correlated variables 𝑋2 and 𝑋11. The variable 𝑋11
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F IGURE 5 (We present the results from only one of the simulated data sets for illustration.) The frequency of the variables being
selected in 200 runs for correlation levels: 𝑐𝑜𝑟 = 0.1, 0.5, 0.7, 0.9.

is selected less frequently than the variable 𝑋2, this is due to a lower coefficient used in (9). The same happens for the
uncorrelated variables 𝑋19 and 𝑋20, for which the former is not selected in all models having a lower coefficient.
The Boruta algorithm, at each iteration, stores the variable importance value for the original variables and averages

them at the end of the algorithm in a final table. The extension we propose in this paper gives us a more accurate selection
of variables and a more representative final table. Further analysis could be carried out by exploiting the ranking of the
variable’s importance values in the final table, particularly the variables close to the Boruta threshold. This possibility can
be pursued if Boruta’s outcome is not entirely satisfactory. We can increase the number of variables or, on the contrary, be
more restrictive in our decision by utilizing subject matter knowledge.

3.2 Application to additive manufacturing case

In this section, we demonstrate the use of the proposed method for variable selection in an actual production data. The
data is acquired from a brand new additive manufacturing equipment for high volume 3-D printing. The Selective Ther-
moplastic Electrophotographic Process (STEP)48 is a breakthrough approach in additive manufacturing, that offers a very
flexible option for complex geometries and various aspects of colouring. This new technologyworks by fusing and pressing
super-thin, nearly two-dimensional layers produced by electrophotography into a single 3D bulk structure. With its two
fundamental modules, electrophotographic and transfusion, Figure 6, this technology is able to produce a completely
dense, multi-material, and multi-coloured components.49 Multiple sensors are positioned throughout the production
chain on the new manufacturing line. Examples of measured quantities include the amount of material used for each
layer, the temperature before and after the melting process.
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ROTARI and KULAHCI 13

(A) Electrophotographic module.
(B) Transfusion module.

F IGURE 6 Additive manufacturing process: STEP. Adaptation from48 of the Electrophotographic and Transfusion modules. STEP,
Selective Thermoplastic Electrophotographic Process.

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

V
1

V
2

V
3

V
4

V
5

V
6

V
7

V
8

V
9

V
10

V
11

V
12

V
13

V
14

V
15

V
16

V
17

V
18

V
19

V
20

V
21

V
22

V
23

V
24

V
25

V
26

V
27

V
28

V
29

V
30

V
31

V
32

V
33

V
34

V
35

V
36

V
37

V
38

V
39

V
40

V
41

V
42

V
43

V
44

V
45

V
46

V
47

V
48

V
49

V
50

V
51

V
52

V
53

V1
V2
V3
V4
V5
V6
V7
V8
V9

V10
V11
V12
V13
V14
V15
V16
V17
V18
V19
V20
V21
V22
V23
V24
V25
V26
V27
V28
V29
V30
V31
V32
V33
V34
V35
V36
V37
V38
V39
V40
V41
V42
V43
V44
V45
V46
V47
V48
V49
V50
V51
V52
V53

F IGURE 7 Additive manufacturing real-world application. Correlation among the input variables.

The main challenge is that the printing process is not very well understood and the goal is to identify key process
variables that are related to product quality through data-driven approaches. The case study involves 18 different batches
of production. As the input data, we considered 53 continuous variables collected through the sensors located throughout
the printing machine. As the response variable, we consider Young’s modulus as the physical quality aspect of the final
products. Young’s modulus is a fundamental concept in materials science that measures the stiffness of the material, and
it is defined as the ratio of stress to strain in a material subjected to tensile or compressing forces. The input variables are
labelled from 𝑉1 to 𝑉53 due to confidentiality.
Figure 7 displays the correlation among the production process variables, revealing differing degrees of correlation

between the variables. Nonetheless we expect that particularly the high correlation, will likely cause certain variables’
importance scores to be overestimated. This, in turn, could lead to the inaccurate ranking of variables and, therefore, to
the selection of irrelevant variables for further studies.
All the models previously discussed in this paper were applied to the manufacturing data, showing similar predic-

tion performances. Figure 8 shows the resulting variable importance rankings. The parameter estimates in Lasso and
Elastic Net models are determined using five-fold cross-validation. We can see that these twomodels result in very similar
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14 ROTARI and KULAHCI

F IGURE 8 Lasso model, Elastic Net, Boruta, VSURF and the proposed model applied to the additive manufacturing real-world
application. VSURF, Variable Selection Using Random Forest.

rankings of the variables. Bothmodels selectmost of the variables, 50 out of 53 variables, to be relevant. The original Boruta
algorithm selects most of the process variables, 51 out of 53, as relevant. The VSURF model selected 19 out of 53 variables,
indicating amore conservative approachwhen compared to the first threemodels. Nonetheless, the selection of a relatively
high number of variables is still noteworthy. The Knockoffs variable selection model provides only the selected variables.
The outcome of this selectionmethod shows𝑉3, 𝑉7, 𝑉10, 𝑉39, 𝑉40, 𝑉41, 𝑉45, 𝑉49, 𝑉50, and𝑉51 as the selected variables.
This model presented a more restrictive selection compared to the aforementioned methods, and the selected variables
align with the ones highly ranked and selected from the previous methods. The proposed model, on the other hand, is the
only one that selects a significantly smaller number of variables, that is, three variables (𝑉16, 𝑉43 and 𝑉50) out of 53 are
selected as relevant. These variables correspond to distinct stages of the process. 𝑉16 is associated with the way the layers
overlap. In fact, if the layers do not overlap properly, the final product’s quality and, in particular, the physical character-
istics may be compromised.𝑉43 and𝑉50 are connected to the layer positioning belt, which is subject to high degradation.
The first,𝑉43 is connected to the electrophotographymodule Figure 6A and it is related to the transfer of the image to the
belt. Variable𝑉50 tracks the number of hours the belt has been in operation. The engineers have observed that it becomes
defiled after a specific number of production hours. Thus, additional investigation will determine the optimal number of
hours to replace this component. With the engineers’ approval, these variables are selected to be investigated further.

4 CONCLUSION

In this study, we present an extension of the original Boruta algorithm for the case of high correlation among input vari-
ables. This extension makes use of the conditional variable importance measure, which is a more sensitive measure in
the case of highly correlated variables. To evaluate the performance of the proposed extension, two simulation studies
and a real-world case are presented. The results of the proposed extension are compared against other variable selection
approaches, including the original Boruta algorithm, Lasso and Elastic Net regression, VSURF, and the Knockoffs vari-
able selection method. Our findings indicate that the proposed extension outperforms these other methods in terms of
identifying the most relevant variables while minimizing the number of wrongly selected variables, particularly when the
correlation among variables is high and in the case of variable interaction. Moreover, the extended method also exhibits
superior performance in terms of the ratio of correctly selected variables to the total number of selected variables. In the
industrial case study, the proposedmodel selects fewer variables than other models that select most of the input variables.
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ROTARI and KULAHCI 15

We believe that this approach can be used in many applications, as it provides greater transparency and understanding of
the process.
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CHAPTER4
Causality and

Correlation
4.1 Introduction

In the previous chapter, the focus was predominantly on process understanding, which,
together with process improvement and optimization, constitutes the most significant
aims discussed in Section 2.4. Machine Learning models facilitate the identification
of correlations, or more broadly, relationships between the input and output data,
often using observational data. For optimization, it is necessary to determine the
input variables or machine parameters and their respective optimal levels to ensure
the attainment of high-quality standards for the final products. Conducting effective
optimization studies necessitates establishing a causality path that links the input
data to the output data; see Figure 4.1. This causality path enables a comprehensive
understanding of how changes in the input variables influence the output variables.

Figure 4.1. Correlation and Causality paths.



48 4 Causality and Correlation

Establishing a causal relationship between input and output variables has signifi-
cant relevance in many applications. Causality pertains to the association between a
cause and its effect, where a modification in the input variable results in a correspond-
ing alteration in the output variable. Specifically, suppose the variable X exhibits a
causal effect on the variable Y . This implies that manipulating X while maintaining
all other variables constant induces a change in the probability distribution of the
Y variable. Causal inference enables us to anticipate the system’s response to hypo-
thetical scenarios or interventions by predicting outcomes for scenarios that were not
directly observed. Causality grants us valuable insights into the underlying mecha-
nisms and interdependencies within the system. Identifying causal relationships and
optimal input levels that lead to the best outcomes leads to maximizing efficiency
and performance.

Experimental design is commonly employed to establish causation. Randomised
controlled experiments are frequently considered the most reliable method for estab-
lishing causal relationships. In experimental design, one or more independent vari-
ables (inputs) are manipulated while controlling all other variables. The dependent
variable (output) is then measured to observe the effect of the independent variables.

The new 3D printing technologies are more complex production processes. This
complexity lead to a significant increase in the number of initial parameters involved in
the production process. As shown in Figure 4.2, a multitude of input parameters and
sub-parameters are present, each with integer or real values. In this case, conducting
extensive experiments on all the input variables is unfeasible due to the necessity of
a substantial number of experiments, which would require a significant allocation of
time and resources.

Figure 4.2. Input data include parameters and sub-parameters. No experimental design
is possible in this context.

In situations when experimental procedures are not feasible, it becomes essential to
incorporate a preliminary stage that enables the reduction of input variables or offers
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direction for selecting suitable inputs to begin the exploration process. The selection
of these variables is frequently reliant upon technical knowledge and an understanding
of physical principles. Unfortunately, in this scenario, where these technologies are
still largely unknown, there is the need to carry out data-driven exploratory analysis.

To tackle this challenge, we have adopted a novel approach which introduces a pre-
ventive phase. The main objective of this initial step is to establish boundaries inside
the input space through the use of observational data. In our particular situation,
we will be employing process data to analyse its correlation with the output. This
analysis aims to identify probable causal variables that may influence the output.
Through the analysis of the correlation between input variables and the resultant
output, significant insights may be obtained into the underlying linkages that govern
the behaviour of the system. While it is important to note that correlation does
not necessarily imply causation, it plays a crucial role in initiating the exploration
of the relationship between variables and can assist in identifying potential areas for
further investigation. Based on the insights acquired from this preliminary step, the
resources can be allocated and concentrated adequately. This will greatly improve
the efficiency and efficacy of the entire causal research. The method, along with an
applied example, is presented in the following paper titled ”Correlation to Causality”.

4.2 Paper: From correlation to causality
Marta Rotari and Murat Kulahci, ”From correlation to causality”, to be submitted
at Quality Engineering Journal.
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Abstract

Causal models and experimental design are commonly used methodologies for establishing causal relationships.
However, the use of such methods might pose challenges in several scenarios, particularly when examining novel
and unknown systems, rendering the task almost unattainable. In scenarios where conducting experimental design
is infeasible due to a large number of input parameters, observational data may be utilized as an initial basis for
uncovering connections and acquiring insights to delineate the input space. In this study, we propose a hybrid approach
that combines the analysis of correlation using observational data and machine learning techniques, followed by the
utilization of designed experiments to establish causality. We demonstrate a practical application of our approach
through a case study in the field of additive manufacturing.

1. Introduction

Causality plays a crucial role in numerous areas, such as science, medicine, production and many others. Un-
derstanding the cause-effect relationship between variables is essential for comprehending phenomena, predicting
outcomes, optimizing the processes and making informed decisions. Causation refers to a relationship in which one
event (the cause) immediately causes or influences the occurrence of another event (the effect). It suggests that changes
in the cause result in predictable changes in the effect, indicating a cause-and-effect relationship. Controlled experi-
ments, rigorous observational studies and causal models are usually used to establish causality. However, determining
causality remains a very complex task that has often been plagued by the confusion between causality and correlation.

In statistical analysis, correlation is a statistical measure that quantifies the degree of association or relationship
between two or more variables based on observational data. Observational data refers to information collected from
one or multiple variables of interest, records without intervention or manipulation by the researcher. These variables
may represent characteristics, attributes, or behaviours being studied. The correlation provides an estimate of the
strength and direction of the relationship between the variables. Although a strong correlation between two variables
suggests a relationship, correlation does not necessarily imply a causal relationship [1, 2, 3]. Additional analysis and
evidence are required to establish a causal link between variables [4, 5]. Other variables, referred to as confounding
variables, may affect the observed relationship.

While correlation serves as a valuable measure for understanding the relationship between variables, it is impor-
tant to recognize that inferring causality requires a more rigorous approach, typically involving experimental design.
Experimental design entails deliberately manipulating variables and observing the resulting effects to establish a
cause-and-effect relationship. However, conducting experiments to determine causality in numerous situations may
not be feasible or practical. Causal models, such as Directed Acyclic Graphs (DAGs) or Structural Equation Mod-
elling (SEM), are employed as a means to deduce causation. These models are methodologically robust and have
widespread adoption across several disciplines. Nevertheless, their use may be limited by significant complexity, time
constraints, or other practical limitations.

While experimental data and causal models are often considered to be expensive and time-consuming, using ex-
isting data, often observational data, and utilising correlation analysis as a first step might provide a useful indication



in the pursuit of causation. When experimental designs are unavailable, correlation analysis can be used as a prelim-
inary approach, providing clues and insights into potential causal relationships. While correlation does not establish
causality definitively, it can highlight associations and guide researchers towards further investigation. This study
addresses the issue of causality when direct experiments are not feasible. Our proposed approach involves utilizing a
preliminary phase on the observational data to be used as an indicator for initiating the search for causality.

To illustrate the application of our approach, we considered a case study in the field of Additive Manufacturing
(AM). Additive manufacturing, often referred to as 3D printing, has garnered significant attention in recent years due
to its potential to revolutionize manufacturing processes. By examining the process variables and variables selection
technique, it is possible to identify a subset of initial parameters to drive experimental designs related to causality
determination.

The following section is devoted to the concepts of correlation and causality, exploring how causality has been
historically perceived and how modern models approach the notion of causality. Section 3 describe the limitation
of causal model and experimental designs. Inferring causation from observational and historical data is described in
Section 4. Subsequently, in Section 5, we describe the steps of a possible hybrid approach to determine causality.
This approach is then applied to a real case of additive manufacturing in Section 6. Finally, some considerations and
conclusions.

2. Causality

Before the early 20th century, the distinction between correlation and causality was not as well understood and
defined as it is nowadays. Although scientists have acknowledged the notion of two variables being related or varying
together, the idea of one variable causing changes in another was not always clear. During this period, the discipline
of statistics was in its early developmental phase, and researchers frequently relied on basic correlations to infer
associations between variables. Observational data was frequently utilised to establish conclusions and researchers
frequently failed to include confounding variables. These variables are not the main focus of a study but can affect the
relationship between the dependent and independent variables. They are often associated with both the dependent and
independent variables, and their presence can lead to misleading or incorrect conclusions about the true relationship
between those variables.

For example, consider a scenario where there is a positive correlation between ice cream sales and drowning
deaths. In the absence of a comprehensive knowledge of causation, it might be concluded that buying more ice
cream increases the likelihood of drowning. In reality, both variables are subject to the impact of a third component,
namely, the temperature. Elevated temperatures are associated with augmented ice cream purchases, as well as a rise
in individuals engaging in swimming activities, hence amplifying the potential hazards of drowning. In this particular
scenario, the temperature serves as a confounding variable that elucidates the observed association between ice cream
sales and drowning fatalities.

As research advanced and the discipline of statistics faced further development, scientists and statisticians began
to realize the importance of distinguishing correlation from causation. They recognized that establishing causality
requires more rigorous methods, including experimentation and the development of causal models. In the early and
mid-20th century, the distinction between causality and correlation was established, and this signed the big transfor-
mation in social science, statistics, medicine and medical trials. Sir Ronald A. Fisher, a prominent statistician and
geneticist, significantly contributed to this field.

Sir Ronald A. Fisher’s work can be traced back to his involvement in agricultural research during the 1920s and
1930s, where he developed experimental designs to assess the causal relationships between various agricultural fac-
tors and crop yields. He made significant contributions to the fields of statistics and experimental design, including
concepts related to correlation and causation. Correlation, as described by Fisher, represents a statistical measure that
quantifies the degree of association between two or more variables. Causation, on the other hand, involves demon-
strating a cause-and-effect relationship between variables. Fisher emphasized the importance of experimental design
in establishing causation. He advocated for randomized controlled experiments, where participants are randomly
assigned to treatment and control groups, allowing for the isolation of the effect of the independent variable on the
dependent variable. Fisher’s work laid the foundation for experimental design and statistical inference. He explored
concepts like confounding, randomization, and the importance of controlling for variables to establish causal relation-
ships in observational studies [2, 6, 7].
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During the same period, the early and mid-20th century, there was a notable emergence of core concepts in the
field of causal modelling [8]. The domain of causal inference and causality modelling was a significant expansion,
leading to the development of a new class of causal models. The origins of these models may be traced back to the
disciplines of statistics, econometrics, and social sciences.

In 1921, the researcher Sewall Wright introduced a method called ”path analysis”. This work later evolved into the
Directed Acyclic Graphs (DAGs). Judea Pearl made substantial contributions to the progress and comprehension of
DAGs in the field of causal inference [9, 1]. The Directed Acyclic Graphs are a valuable instrument for comprehending
and visualizing the complex causal pathways between variables [10]. DAGs can be used to help establish causality
by identifying potential causal pathways and excluding alternative explanations. It can be used to identify potential
sources of bias or confounding and determine which variable may be necessary to control for in order to establish a
causal relationship between two variables. DAG is also a visualization tool. The variables are represented as nodes
and the causal relationships between variables are represented as directed edges or arrows. The direction of causality
is indicated by the arrows, with the arrow’s tail representing the cause and the arrow’s head representing the effect.
DAGs permit the representation of confounding variables.

DAGs offer a transparent and interpretable means to visualize complex causal relationships among variables, and
it is a valuable tool that helps to avoid causal inference pitfalls. However, DAGs alone do not establish causality and
require complementary methods as experimental designs. Constructing DAGs could be challenging, demanding a
clear understanding of underlying causal relationships. They are models sensitive to the strong assumptions and the
quality of the data. DAGs facilitate comprehension of causal relationships but lack standalone causal establishment
capability.

Around the 1970 was introduced the concepts of latent variables and covariance structure models. This framework
forms the basis for the Structural Equation Modeling (SEM) [11, 12]. Structural Equation Modeling is a statistical
technique employed to test and validate complex relationships between variables and estimate the magnitude and di-
rection of these relationships while also identifying the causal mechanisms that underpin them. In SEM, the variables
are represented as either latent variables or observed variables, and their relationships are represented through a set of
equations that identify direct or indirect effects. In SEM, causality is used to establish the direction of the relationships
between variables and is represented in the model by directional arrows. Causality is a crucial concept in SEM, but
establishing causal relationships requires additional techniques beyond SEM analysis, such as experimental designs.
The model can only provide evidence for or against causal relationships using the available data. Although SEM is a
powerful tool for examining complex relationships between variables, it is crucial to recognise its inherent limits. The
model requires a large sample size in order to accurately estimate the parameters of the model and assess its sensitiv-
ity. It is also computationally complex and time-consuming. In addition, interpreting SEM results can be difficult due
to the numerous test statistics and parameters. Even though SEM can test for causal relationships, it cannot establish
causality on its own.

In the second half of the 20th century, it has been introduced the Instrumental variables (IV), which is a statistical
technique widely utilized to determine causal effects in causal inference and machine learning [13]. It is primarily
used when dealing with confounding variables. To control for unmeasured confounding, a third variable is introduced,
named instrumental variable (IV), which is a cause of input variables and has no direct effect on the outcome. The
instrumental variable is used to identify the true correlation between the explanatory variable and the outcome. Two
well-known models for estimating treatment effects using an instrumental variable are the two-stage least squares
estimator (2SLS) and the control function estimator (CFN). In the context of machine learning, instrumental variables
are used to address confounding bias in observational studies or experiments with non-randomized treatments for data
mining and explanatory analysis purposes. However, there are limitations to the use of instrumental variables, such as
the requirement of the strong assumption that there is no direct relationship between the instrumental variable and the
outcome. In addition, the instrumental variable must be independent of any unmeasured confounding variables that
may influence the outcome. This requirement is hardly and rarely satisfied in practice.

3. Limitations of causal models and Experimental Designs

Causal models, such as Directed Acyclic Graphs and Structural Equation Modelling, are widely recognised as
robust methodologies for comprehending and examining causal relationships. Nevertheless, applying these models
might be challenging or less feasible in some circumstances and domains, such as additive manufacturing.
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The construction of causal models as DAGs or SEM requires a clear understanding of the process or the system,
including potential confounding factors and intermediate variables. In situations where the systems are extremely
complicated, constructing accurate DAGs or SEM models becomes a challenging problem. Building reliable causal
models becomes extremely problematic if the underlying processes are not well-defined or fully understood. High-
dimensional problems prevent the construction of causal models. Indeed, constructing a comprehensive DAG or
SEM model that considers many variables and their interactions can be computationally intensive and prone to model
complexity issues.

For example, additive manufacturing processes involve multiple intricate and complicated steps, leading to com-
plex causal relationships and can involve many confounding variables. These novel production systems lack widespread
recognition and are still under investigation processes. The processes often involve complex sub-processes and inter-
actions that may lead to many confounding variables that have not yet been identified. The manufacturing processes
are still undergoing development and optimisation, and as a consequence, they could exhibit variability due to vari-
ables such as machine calibration and environmental conditions. This variability can make it difficult to establish clear
cause-and-effect relationships, as different runs might yield different results. Moreover, additive manufacturing often
involves many variables, such as material properties, different temperatures, pressure, printing parameters, environ-
mental conditions and post-processing steps. Building a model considering all these variables and their interactions
poses challenges in establishing a causal model.

A further factor that limits the use of causal models is the existence of emergent phenomena within many sys-
tems, where unexpected interactions or properties emerge from the complex interplay of variables. Traditional causal
models designed for more linear systems might not easily capture these phenomena. Systems that exhibit nonlinear
behaviours, where small changes in input variables can lead to significant and non-proportional changes in output.
Traditional causal models might struggle to capture these nonlinear relationships accurately. Validating causal models
is crucial to ensure their accuracy and reliability. Ultimately, the construction of such models frequently necessitates
a substantial investment of both time and resources. In certain instances, particularly in rapidly evolving industries
like additive manufacturing, time constraints might limit the thorough construction and validation of complex causal
models.

Various constraints frequently hinder the use of causal models in certain circumstances and fields. Frequently,
the same circumstances provide significant challenges for conducting experiments. In the context of additive man-
ufacturing technologies, the manufacturing processes are extremely innovative and provide extensive customization
capabilities. The process in question is intricate and has several sequential stages. This phenomenon involves having
a wide variety of input parameters that must be established at the beginning of an order. The optimization of these
processes involves establishing and determining the level of each parameter to ensure the high quality of the manufac-
tured products. Due to the extensive number of input variables and their potential combinations, conducting extensive
experimentation becomes unfeasible.

Designing and executing experiments can be resource-intensive, requiring substantial financial investment. The
costs can escalate when multiple experiments are necessary to investigate the causal relationship between variables
thoroughly. Experiments often require a significant amount of time to collect data, especially when studying long-
term effects or phenomena that evolve over time. Due to these factors, it frequently becomes impracticable to carry
out extensive experiments, necessitating the utilisation of alternative approaches.

4. Causation using observational and historical data

While randomized controlled experiments are considered the gold standard for establishing causation, they are
not always feasible. Assessing causation from observational data can be challenging but is possible under certain
circumstances. In the absence of experimental control, various strategies could be employed to gather evidence for
causation from observational data.

One such strategy is the utilization of multiple sources of evidence. It is possible to triangulate information from
different sources to strengthen causal claims. Drawing upon diverse archival records and other primary sources allows
for a more comprehensive understanding of the historical context and potential causal mechanisms.

Another strategy involves examining temporal precedence. Demonstrating that the cause precedes the effect in
historical data can provide support for causal arguments. Analyzing the timing and sequencing of events can offer
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valuable insights into potential causal relationships. Consistency of patterns across multiple historical cases or con-
texts is another crucial aspect in establishing causation. Identifying consistent patterns across multiple historical cases
or contexts can provide further evidence for causation. If similar causal relationships are consistently observed, it
strengthens the plausibility of a causal connection. Identifying and highlighting these consistent patterns can further
strengthen the evidence for causation.

It is important to acknowledge the limitations of assessing causation from historical data. Historical observational
data often involve incomplete or biased records, challenges establishing causality due to limited data availability,
and the potential influence of unobserved or unmeasured variables. These limitations highlight the need for rigorous
analysis, careful interpretation, and critical consideration of alternative explanations in historical causation research.

In situations where the input space is extensive, the use of observational data is necessary to narrow the input
space. In such situations, Partial Least Squares (PLS) regression-based techniques provide an appealing solution
by analyzing the observational data in conjunction with corresponding output data. These methods facilitate the
inference of causality within a reduced space, and several approaches based on Latent Variable Regression Model
Inversion (LVRMI) have been proposed in the literature [14, 15, 16]. These methods aim to define the Null Space
(NS), which represents the projection onto the latent space of all possible combinations of inputs that theoretically
result in the desired outputs. However, the existing methods lack a unified approach to define the Null Space and are
confined to the domain of historical products that have already been developed. The analytical expression of the NS
exists under the assumption that at least one combination of the input space exists. Consequently, there is currently
no standardized procedure to define the NS.

5. Proposed approach

In order to establish a causal relationship between the input and output domains, it is imperative to comprehend the
causal mechanisms through which certain input variables influence the result. This comprehension may be achieved
by employing a causal model and conducting experiments that establish the relationships between input and output
variables. However, in situations when the system is novel, limited knowledge is available and there is a lack of prior
information, the implementation of a causal model becomes very challenging. Additionally, running experiments may
be prohibitively expensive or need enormous resources. Indeed, in several instances where the relationship between
variables is under investigation, we are faced with many input variables to examine without any clear guidance on
where to start the exploration.

Figure 1: Narrowing the input space through the observational data and data-driven models.

In the case of a large size of the input space, conducting exhaustive experimental designs covering all input pa-
rameters and all possible combinations becomes impractical and infeasible. To overcome this limitation, a possible
solution is to identify a subset of input variables to start exploratory experiments. To pursue this objective, a viable
solution is the utilization of data-driven models built based on observational data. For example, in the additive manu-
facturing case, the observational data are the process data, information collected during the production process. When
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conducting numerous experiments would be prohibitively expensive or time-consuming, an initial investigation using
observational data can help narrow the focus on a subset of the input space and guide subsequent experimental efforts,
Figure 1.

The analysis of observational data serves as a valuable initial step in exploring the relationship between variables
and response. To this end, employing supervised machine learning models, such as regression models or tree-based
models, offers significant advantages by providing estimations of individual variable contributions towards quality
prediction. Additionally, when dealing with a large number of variables, utilizing models with variable selection ca-
pabilities becomes advantageous. This problem, commonly known as the variable selection problem, aims to identify
the most influential variables that strongly affect quality.

The variables selection models yield a subset of relevant process variables that are deemed meaningful from a
predictive standpoint, see Figure 2a. These variables provide valuable insights and serve as preliminary indicators,
directing a further investigation into the specific aspects of the production process parameters that should be explored
in greater depth at a later stage.

The analysis of variable selection results offers the opportunity to identify and highlight process variables that
exhibit promising relationships with quality, thereby justifying the need for further investigation. Drawing upon the
expertise of domain specialists, it becomes feasible to pinpoint relevant process parameters within the input space that
are associated with the selected process variables, as depicted in Figure 2b. These identified input variables constitute
a subset of the overall input space and become the primary focus of subsequent experimental investigations. Through
controlled experiments, the causal relationship between these variables and output quality can be further explored.
The deliberate selection of a subset of variables for experimentation effectively reduces the complexity and magnitude
of the input space, enabling targeted experiments to be conducted within a manageable scope.

Consequently, by focusing on the selected variables derived from this connection with the process data, researchers
can strategically design and execute experiments aimed at directly investigating causal relationships. This targeted
approach enables the efficient allocation of resources and reduces the overall experimental space by narrowing down
the factors that require investigation. Moreover, these selected variables serve as prime candidates for experimental
studies, as they are more likely to exhibit causal relationships, Figure 2c.

(a) Variable selection on the process data. (b) Connection with the input space. (c) Design of Experiments on the Reduced Input Space.

The combination of data-driven analysis using process data and subsequent experimental studies provides a prag-
matic and efficient way to navigate the correlation versus causation challenge. While the initial correlation analysis
helps guide the selection of variables for experimentation, the subsequent experimental studies enable the estab-
lishment of causal relationships with more confidence and rigour. This approach optimizes resources and allows
researchers to gain valuable insights into causation while maximizing available data and minimizing costs.

6. Application

This section provides a real-world application of the proposed approach in Additive Manufacturing Production.
Additive manufacturing (AM), also known as 3D printing, is an innovative manufacturing process that enables the
production of products with complex geometries and high levels of precision and efficiency. It is a revolutionary
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approach to manufacturing in which objects are constructed layer by layer using digital designs. While additive man-
ufacturing has demonstrated great promise, it is still largely unexplored and faces numerous challenges that require
optimization. Many studies are conducted aimed at process understanding and process optimization [17, 18]. One
of the key problems is analyzing process parameters and identifying the input parameters and their optimal level that
ensure high and uniform quality standards.

In additive manufacturing and, in general, all production processes, a comprehensive understanding of the causal
relationship between input parameters and output quality plays a crucial role in achieving process optimization and
control. Multiple data sources can be identified within the AM process, which can be categorized as follows. The
input space encompasses machine settings or process parameters that are established at the beginning of an order.
Throughout the production chain, diverse sensors are strategically placed to gather data during production, constituting
the process data that encompasses a wide range of production-related information. The output data reflects the quality
of the manufactured products, such as mechanical properties (Tensile strength and Young’s Modulus) or other defects
such as dimensional defects, roughness Etc. The primary objective is to identify the input parameters that most impact
the quality, thereby establishing a causal relationship between the input and output spaces.

Figure 3: Ranking of the variables.

Emerging technologies are characterised by a greater complexity to their control systems, resulting in a large
number of input parameters that must be configured at the outset of the process. The large number of input parameters,
render it impractical to conduct an experimental design that covers the entire parameter range and their combinations.
To address this challenge, an alternative approach is adopted, as elaborated in Section 5.

As for the process data, in this analysis, we considered the data of 18 different batches. During the production
process, 53 continuous variables were assessed, labelled as V1 to V53, for the sake of confidentiality. Our main
objective was to investigate the mechanical properties of the final products, specifically the tensile strength, which
represents the maximum tensile stress a material can endure before breaking or deforming. Upon analyzing the data,
we observed that the variables under study exhibited significant correlations. Initially, we employed the Random
Forest model to establish the relationship between input and output variables. Subsequently, we utilized the mean
decrease in accuracy measure to rank the variables based on their importance in the prediction process (see Figure 1).
However, relying solely on the ranking made it challenging to determine the precise number and identity of variables
that genuinely influence the output. Furthermore, due to the presence of high correlation among the input variables, the
ranking’s reliability was compromised, as the strong correlations led to an overestimation of variable importance. To
address this issue and select the most relevant variables, we employed the Conditional Boruta model [19], specifically
designed to handle correlated variables.

The outcome of the variable selection models is depicted in Figure 4. Notably, three variables have emerged as
relevant: V36, V49, and V39. Each of these variables contributes to specific aspects of the manufacturing process.
Firstly, variable V36 is associated with the creation of each micro-layer. This variable holds relevance in under-
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Figure 4: Variable selection results.

standing the fundamental building blocks of the manufacturing process. Secondly, variable V49 represents the fusion
temperature of each layer. Temperature plays a pivotal role in determining the cohesion between molecules, making
it a crucial factor influencing the physical characteristics of the final product. Lastly, variable V39 pertains to light
exposure, which gradually deteriorates over time.

The selected variables by the Conditional Boruta model were subsequently linked to the input variables by the
expert engineers. The input variables thus identified are denoted as Factors 1, 2 and 3. By establishing this connection,
a focused subset of the input data was identified in order to initiate the exploratory investigation. Subsequently, the
third step of our approach, as depicted in Figure 2c, involves designed experiments. This experiment phase aimed to
investigate the relationship between the aforementioned three factors and the desired outcome, the tensile strength. To
accomplish this, we conducted a 23 design consisting of eight experimental runs without replications.

A full model with main factors and their combinations was fitted. The Normal plot related to the outcome is
displayed in Figure 5. The analysis of the Normal plot revealed evidence regarding the importance of two main
factors, 2 and 3. A model with only these main effects was fitted and the resulting coefficients with the related p-
values are summarized in Table 1. The response surface plot, in Figure 5, illustrates the relationship between the
identified factors and the resulting tensile strength. It demonstrates how variations in the levels of the factors influence
the response variable. By examining this plot and considering the calculated coefficients, subsequent steps can be
generated to further investigate and improve the quality.

Term Estimate Std Error t Ratio Prob > |t|
Intercept 37.800893 0.105485 358.35 ¡0.0001
Factor2 0.5026786 0.105485 4.77 0.0050
Factor3 0.3151786 0.105485 2.99 0.0305

Table 1: Results

In summary, our study involved 18 batches of products, with tensile strength as the outcome variable. The pres-
ence of high correlation among the variables necessitated the use of a model specifically designed to handle such
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Figure 5: Normal plot and response surface.

correlation. The Conditional Boruta model selected three variables as relevant, which were then connected to the in-
put variables. Three input variables were chosen for an experimental design, leading to eight runs. The experiment’s
outcome revealed that two of these factors significantly influenced tensile strength, highlighting their importance in
determining the quality of the final products.

7. Conclusion

In numerous scenarios, establishing a comprehensive understanding of the causal relationship between input pa-
rameters and output quality is essential for multiple purposes, such as optimization or understanding. However,
conducting an experimental design to assess causality becomes impracticable when faced with an extensive input
space. To overcome this limitation, an alternative approach emerges, whereby observational data is involved in gain-
ing insights into a specific region of the input space suitable for initiating exploratory experiments. By employing
data-driven models, it becomes feasible to establish connections between the observational data and output data,
facilitating the identification of the most relevant variables. The link between the relevant variables and the input
parameters identifies a starting point for subsequent experimentation. It enables the identification of a representative
subset of the input space that can be subjected to further experimental investigations, delving deeper into the causal
relationship between the input parameters and output data. This approach is illustrated in the case study in Additive
Manufacturing. Our findings led to the identification of two significant factors that exerted a substantial influence on
the considered quality outcome. These results underscore the proposed methodology’s value and ability to guide the
discovery of influential factors in complex manufacturing processes.
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CHAPTER5
Multi-group Analysis

5.1 Introduction

Process data is a significant component of the data pertaining to 3D printers. This
Chapter explores the process data, its analysis and potential applications, emphasiz-
ing its crucial role in fully comprehending the manufacturing process.

Process data refers to the data acquired during manufacturing operations through
strategically placed sensors integrated into the machinery. This data includes various
aspects of the process such as machine performance, temperature levels at various
stages, energy consumption, material utilization and other critical parameters. The
process data offers a valuable resource for gaining insights into the process. First, it
allows for a deeper understanding of the dynamics that govern the production process.
Patterns, correlations, and cause-and-effect relationships could be identified that con-
tribute to the overall process behaviour. It can be identified areas for improvement
and devise strategies to optimize efficiency, reduce waste and enhance product quality.
Hence, this data plays a crucial role in enhancing our knowledge of the production
processes and supporting decision-making for process improvement and optimization.

Figure 5.1. Data process acquisition.
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In each individual production executed by the machine, a broad array of data is
collected. Data is gathered pertaining to a total of 53 variables. An observation of
each variable is saved for every micro-layer produced and melted as depicted in Figure
5.1. In order to effectively organize and structure the given data, a matrix or two-way
array structure is utilized. In this structure, the variables are represented by columns,
while rows represent the observations. This configuration enables a methodical de-
piction of the gathered data, hence allowing later analysis and interpretation. This
data allows for systematic analysis and exploration of the relationship between vari-
ables and layers. It can be used for online monitoring and facilitates a comprehensive
understanding of the production process and machine performance.

The development of these novel AM technologies has been specifically aimed at
facilitating large-scale production. Consequently, the machines are capable of pro-
ducing many goods in a single batch, arranged in ordered rows. Production can be
conducted in small batches, either as a single row or as a large batch consisting of
two or more rows. In Figure 5.2, three rows of products are illustrated. Nevertheless,
it is important to acknowledge that the machine’s complete production capability
enables the possibility of manufacturing a far greater quantity of product rows. This
can vary based on factors such as machine capabilities, production requirements and
operational considerations.

Figure 5.2. Process data and products.

The manufacture of more than two rows of products follows the same production
principle, with only a few changes. The production takes place according to many
micro-layers, which are pressed and fused together to create the final products, as
described in Section 2.3.2. Additional support layers are placed between each row
of products to provide structural integrity and facilitate the division between the
individual products. These support layers serve as temporary structures and are later
dissolved through a chemical wash after the completion of the production process.
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Since each micro-layer corresponds to a row of observations in the process data, it
is possible to establish a precise connection between each row of products and its
corresponding observations. Based on this characteristic, the observations acquired
during the printing process can be categorized into distinct groups, see Figure 5.2.

The role and placement of the layers within the production process determine the
grouping of the observations. This division allows for a more systematic analysis and
understanding of the different stages of production. The following is an expanded
description of the various groups of observations:

1. First Group of observations: Support Layers for Base
The first group of observations corresponds to the few support layers that create
a small support base and division between the building plate and the first row of
products. These layers are specifically designed to provide a stable foundation
for the subsequent layers and to separate the products from the building plate.

2. Second Group of observations: Layers Forming the First Row of Products
The second observation group consists of layers forming the first row of products.
These layers contribute directly to the structure and composition of the initial
row of products in the 3D bulk.

3. Third Group of observations: Support Layers Dividing Product Rows
Following the first row of products, the third group of observations corresponds
to the support layers that divide the first and second rows of products. These
support layers are strategically placed to separate the different rows and main-
tain their individual integrity during the production process. After production,
these layers are dissolved in a chemical wash in order to facilitate the separation
of all constituent products.

This grouping pattern continues for subsequent rows of products and support layers
until the completion of the production process.

The process of categorizing the observations into separate groups promotes the
analysis and interpretation of the data. This organization facilitates the examination
of the effects of support layers, the production of individual product rows and high-
lights the evolution of the variables as the rows of products progress. Moreover, it
fosters the opportunity to conduct focused analysis and enhance the performance of
certain elements inside the manufacturing procedure.

In order to get an accurate understanding of the production process, it is necessary
to take into account several iterations of batches. Even within the same production
setup, small variations can occur. By analyzing multiple batches, a more accurate
representation of the production mechanism can be obtained, taking into account the
inherent variability that can arise. The different batches introduce a third dimension
to the data array, transforming it into a three-way array, refer to Figure 5.3. Each
batch corresponds to a distinct set of observations, capturing the same variables.

The three-way arrays thus obtained can be denoted as X ∈ RN×M×K whose
elements are xnmk where n = 1, . . . , N , m = 1, . . . , M and k = 1, . . . , K. In
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a multi-group structure, the observations are divided into G groups. Each group
g ∈ {1, . . . , G} is represented by 1, . . . , ng rows, such that

∑G
g=1 ng = N . A visual

representation of this structure is shown in Figure 5.3.

Figure 5.3. Three-way array with a multi-group structure.

The resulting three-way array encapsulates a multi-group structure. This multi-
group structure enables a more comprehensive analysis and understanding of the
production process, taking into account both within batch and groups and between
batch and group variations. It allows for the identification of patterns, trends, and
relationships within and across batches and groups, facilitating improved process
control, quality assurance and optimization efforts.

In general, the data that present a multi-group structure are data sets where a
set of variables is observed in different groups, each representing a specific aspect
or characteristic. These groups could be formed based on various factors, such as
demographic features, geographic locations, experimental conditions, or any other
relevant categorical variables. An example of a multi-group two-way array is the Iris
data set. It is a classic and well-known data commonly used in statistical analysis
and machine learning. The Iris data set consists of measurements of iris flowers from
three different species: setosa, versicolor, and virginica. Each species forms a group.
The columns represent different variables measured for each flower, while the rows
correspond to individual observations or samples of iris flowers. The four features
recorded for each flower are the sepal length, sepal width, petal length, and petal
width, all measured in centimetres.

In the context of research or analysis, the presence of a multi-group structure in
the data is crucial, as it allows for the examination of how different variables behave
in different groups. In Section 5.3, a new unsupervised methodology is presented,
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which extends the PARAFAC algorithm to the case of multi-groups. The PARAFAC
algorithm is a widely used decomposition technique for multi-way arrays; a brief
overview is given in the next section. This extended methodology builds upon the
traditional PARAFAC algorithm and adapts it to handle the complexities introduced
by the multi-group structure in the data. This new proposed methodology allows
us to effectively extract latent factors common to all the groups providing valuable
insights and facilitating further analysis. The model aims to capture the inherent
structure and relationships present within the multi-group three-way array, allowing
for improved understanding and interpretation of the data.

5.2 Multi-way array decomposition models

Multi-way array or tensor decomposition has emerged as a highly used technique in
the analysis of complex, multi-way data structures. These methods are tri-linear or
multi-linear extensions of classical Principal Component Analysis PCA on two-way
data. In a diverse range of fields, from image processing and signal analysis to neu-
roscience and chemometrics, the need to uncover hidden patterns and underlying
structures has driven the development of these methods. The Tucker [25, 26] and
PARAFAC [27] models stand as prominent approaches within the realm of tensor de-
composition, each offering a distinct perspective on how to disentangle the complexity
of multi-way data arrays.

Both models have been extensively applied in many fields when the data are
presented as multi-way arrays. These models can provide the capability to extract
significant insights, decrease dimensionality and investigate complex relationships.
The PARAFAC and Tucker models provide useful frameworks for analysing multi-
dimensional data and uncovering hidden factors in multi-modal data. These models
give significant perspectives that facilitate a deeper understanding and interpretation
of the complexities present in such data sets. In the following section, a brief overview
of the Tucker and PARAFAC model is given. A three-way array X ∈ RN×M×K is
considered.

5.2.1 Tucker

The Tucker model, also known as Tucker decomposition or Tucker factorization, is
a multivariate statistical technique used for multi-way array decomposition [25, 26].
The Tucker model is designed to capture the underlying structure of multi-way data
by representing it as a core array multiplied by factor matrices along each mode. A
representation of the Tucker model can be seen in Figure 5.4.

Given a three-way array X , the Tucker model decomposes this array into a core
array G ∈ RF1×F2×F3 and factor matrices A ∈ RF1×N , B ∈ RF2×M and C ∈ RF3×K .
The model can be written as follow:
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X = G ×1 A ×2 B ×3 C + E

where E is the residual three-way array and ×i represents the mode-i product between
an array and a factor matrix.

The goal of the Tucker model is to find the core array G, along with the factor
matrices A, B and C, that minimizes the difference between the original array X
and the reconstructed array G ×1 A ×2 B ×3 C. This can be formulated as an
optimization problem, often estimated using Alternating Least Squares (ALS) [28] or
through Higher-Order Singular Value Decomposition (HOSVD) [28].

The Tucker model is a frequently used model in multi-way array decomposition,
providing a formal and statistical framework for the identification of underlying pat-
terns within multi-dimensional data sets. By decomposing the array into a core array
and factor matrices, the model unveils the latent factors responsible for the observed
data patterns, enabling their interpretation and analysis. The model allows for a
flexible representation of the original array. The flexibility of the Tucker model lies
in its ability to the specification of the core array dimensions and the rank of the
factor matrices. This flexibility makes the model a versatile tool for handling high-
dimensional data, dimensional reduction and extraction of underlying structures of
the data. The Tucker model finds applications in various fields, such as image analysis,
natural language processing, neuroscience, social network analysis, and more.

Figure 5.4. Representation of the Tucker and PARAFAC models.
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5.2.2 PARAFAC
The PARAFAC (Parallel Factor Analysis) model is a multivariate statistical tech-
nique used for multi-way array decomposition and factor analysis [27]. It extends
the concept of matrix factorization to higher-order data arrays. This model is de-
signed to unravel the latent structure and underlying factors embedded within multi-
dimensional data arrays. A representation of the PARAFAC model can be seen in
Figure 5.4.

The PARAFAC model has numerous applications in various fields, such as chemo-
metrics, neuroscience, psychometrics, image analysis, etc. It can be used for analyzing
multi-sensor data, spectroscopic data, EEG data, and other forms of multi-way data
where the relationships between dimensions are of interest.

The fundamental objective of the PARAFAC model is to decompose of multi-way
data array in order to extract the underlying model loadings. The PARAFAC model
seeks to estimate the original multi-way array by decomposing it into a summation of
rank-one arrays. Each rank-one array represents a unique combination of factors from
the corresponding mode. This decomposition encapsulates the latent structure of the
data, allowing for a more parsimonious representation while retaining the essential
features. The PARAFAC model is a powerful tool usually used for data compression,
variable extraction and pattern recognition.

The PARAFAC model aims to approximate a given three-way array X by three
loadings matrices A ∈ RN×F , B ∈ RM×F and C ∈ RK×F . A PARAFAC model with
F components can be written as follows:

X =
F∑

f=1

Ar ⊗ Br ⊗ Cr + E (5.1)

where Ar represents the r-th column vector of the loadings matrix, E is the residual
three-way array and ⊗ denotes the outer product operation.

The PARAFAC model aims to determine the loadings matrices that best approx-
imate the original three-way array X . The model aims to minimize the following
criterion:

min
∑
ijk

xijk −
F∑

f=1

aif bjf ckf

2

The complexity of the decomposition is controlled by the rank F of the model. The
most suitable number of components F is based on the available data and the specific
objectives in question. If the Tucker3 core array is structured as a super-diagonal
array, where the diagonal elements are all equal to 1, then the Tucker3 model may
be simplified to a PARAFAC model.

The loadings matrices are estimated through solving algorithms. Some examples
of these algorithms are Alternating least squares (ALS) [29], Alternating Slice-Wise
Diagonalization (ASD) [30], Positive Matrix Factorization for 3-way arrays (PMF3)
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[31], and finally direct and non-iterative algorithm as Generalized Rank Annihilation
Method (GRAM) [32].
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Abstract

This paper introduces a novel methodology for analyzing three-way array data with a multi-group structure. Three-
way arrays are commonly observed in various domains, including image analysis, chemometrics, and real-world
applications. In this paper, we use a practical case study of process modelling in additive manufacturing, where
batches are structured according to multiple groups. Vast volumes of data for multiple variables and process stages
are recorded by sensors installed on the production line for each batch. For these three-way arrays, the link between
the final product and the observations creates a grouping structure in the observations. This grouping may hamper
gaining insight into the process if only some of the groups dominate the controlled variability of the products. In this
study, we develop an extension of the PARAFAC model that takes into account the grouping structure of three-way
data sets. With this extension, it is possible to estimate a model that is representative of all the groups simultaneously
by finding their common structure. The proposed model has been applied to three simulation data sets and a real
manufacturing case study. The capability to find the common structure of the groups is compared to PARAFAC and
the insights into the importance of variables delivered by the two models are discussed.

Keywords: PARAFAC; Factor analysis; Additive manufacturing

Introduction

Manufacturing organizations strive to adopt innovative production methods to enhance their efficiency and design
flexibility. However, modern production techniques can be complex and not yet fully understood. Achieving a com-
plete comprehension and optimization of these processes requires identifying the variables and components of the
process, as well as the conditions under which production levels can be optimized. To achieve such an understanding,
it is essential to develop descriptive and interpretable data-driven models that provide clear insights into the data.

Modern manufacturing industrial systems are often equipped with technology that can collect data from a large
number of sources, resulting in a voluminous amount of information. This can produce datasets that are structured in
three-way arrays, organized in observations collected for multiple variables and several conditions. For example, in a
batch fermentation process, data collected in time for multiple variables and multiple batches will be in the form of a
three-dimensional array [1, 2]. A second example is processes based on sensory data, which may come from different
channels and multiple devices simultaneously [3, 4, 5].

Several approaches have been proposed to model three-way data using supervised or unsupervised methods, rang-
ing from linear models [6, 7, 8, 9, 10] to black-box models for tensors [11, 12]. However, to find the optimal settings
of the system, it is required to fully understand the conditions and the interactions among the variables involved in the
production processes. Linear models remain a predominant tool for three-way data as they can identify key factors
that impact the process and guide decision-making. Although black-box models may offer high prediction accuracy,
they lack the interpretability and transparency necessary to understand the system.

The most predominant methodologies within the class of linear models for unsupervised three-way data have been
factor analysis methods such as PARAFAC [8, 13] and Tucker3 model [9, 14]. These models are used by analyzing
the covariance structure among the variables and among different experimental conditions providing the so-called
loadings matrices whose values are indicative of the importance of each variable and each condition in the total
variability of the three-way data [15, 2]. The scores that are delivered for the observations of the data allow for the
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identification of the dispersion among the samples and the differences in the variance explained by each component
of the model.

In many industrial processes, the existence of sub-groups within the observations is a common occurrence that
can greatly impact the analysis and interpretation of the results. The multi-group structure in the data refers to the
presence of distinct groups that may exhibit unique characteristics and behaviours. Groups of observations are likely to
happen when the observations or samples share a specific characteristic that identifies the group [16, 17, 18]. Various
factors, such as demographic variables, geographic location, or other relevant criteria, may define these groups. In
the manufacturing processes, the observations collected during production are linked to the final products, which
individuate a multi-group structure of the observations. Understanding the multi-group structure in the data is crucial
for accurate analysis, as failing to consider these groups can lead to biased results and erroneous conclusions. Thus, it
is important to carefully identify and account for the multi-group structure in the model in order to ensure that research
findings are valid and applicable to all relevant groups [19, 18].

When grouping structures exist, the sources of variability explained in the resulting model can be dominated
by specific groups without representing other groups’ variability. Traditional models for three-way arrays that do
not take into account the group structure can be affected by the greater variance of a dominant group and fail to
represent the entire data set. Therefore, the importance of specific variables or conditions that are extracted from the
model parameters may not hold for all the groups simultaneously, leading to potentially erroneous conclusions. One
practical solution to take into account the presence of multiple groups is to analyze the groups separately. However,
this strategy would result in an abundance of parameters and the lack of a single unifying model of the complete
system.

Linear models for high-dimensional data considering the grouping structure have been widely studied for the
case of two-way data [20, 21, 18, 22, 23]. It has been shown how the resulting model, when considering the group
structure of the observations, can be informative in understanding the common cause of variability across all groups
[16, 24, 25]. Through multi-group models, it is possible to interpret the functionality of the production systems for
several groups simultaneously.

The current study presents the development of an extension of the PARAFAC method that adjusts the model
parameters according to the multi-group structure of the data. The model aims to identify a common structure by
calculating common loadings in the presence of multi-groups in the three-way data. By identifying common loadings,
the proposed model provides a more accurate and comprehensive description of the underlying process. The article is
organized as follows. First, the extended PARAFAC method is presented with the proposed algorithm to fit the model.
Then, the case studies with simulated and real data are presented, highlighting the multi-group structure for three-way
data. The results of the PARAFAC and the extended PARAFAC models are presented and compared. The models
are used to analyze the most important variables and conditions in the datasets delivered by each model. Finally, the
conclusions are presented.

1. Methods

This section provides a brief description of the PARAFAC model and an algorithm for its solution, Alternating
Least Squares (ALS). Following that, we present the proposed extension aimed to handle a multi-group structure.
Three-way arrays are denoted by X ∈ RN×M×K whose elements are xi jk where i = 1, · · · ,N, j = 1, · · · ,M and
k = 1, · · · ,K. The three-way entries are denoted by modes a, b and c as shown in Figure 1a. In this structure, mode a
represents the observations, mode b represents the variables, and mode c represents different conditions, such as time,
different levels of temperatures, etc. The elements that belong to modes a and b with mode c fixed will be denoted
by X••k = (xi jk) where k is fixed, i = 1, · · · ,N and j = 1, · · · ,M. To define matrices, [ , ] is used for horizontal
concatenation and [ ; ] for vertical concatenation. A matrix or two-way array is denoted by a capital bold letter
X = [X•1 , . . . , X• j , . . . , X•M] = [XT

1• ; . . . ; XT
i• ; . . . ; XT

N•] with X• j representing its j−the column and XT
i• its i-th

row. The letters N,M,K are reserved for indicating the dimensions and F for indicating the number of components.
Superindex T represents the transpose operator.

1.1. The PARAFAC method
The PARAFAC method is a decomposition method of the three-way array into three matrices: the score matrix A

and two loadings matrices B and C. Matrix A is referred to as scores as its entries represent the numerical value of the
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(a) Three-way array X. (b) PARAFAC model representation.

Figure 1: (a): Three-way array X represented by the modes a, b and c. (b): PARAFAC model representation, X three-way array, A,B and C model
loadingss matrices and E three-way residual array.

observations [8, 15]. Matrices B and C are commonly referred to as loadings as they represent the numerical value of
variables and conditions, respectively. Considering a three-way array X, a PARAFAC model with F components can
be written as follows:

xi jk =

F∑
f=1

ai f b j f ck f + ei jk (1)

where A = (ai f ) is the score matrix RN×F , B = (b j f ) ∈ RM×F is the loadings matrix of mode b, and C = (ck f ) ∈ RK×F

is the loadings matrix of mode c. A visual representation of the PARAFAC model is shown in Figure 1b. In particular,
the reconstructed three-way array is obtained as the outer product ⊗ of the three matrices

∑F
f=1 A f ⊗B f ⊗C f plus the

residuals array E = (ei jk) ∈ RN×M×K . The PARAFAC model results from finding the model matrices that minimize
the sum of squares of the residuals:

min
A,B,C

∑
i jk

(xi jk −

F∑
f=1

ai f b j f ck f )2 = min
.

∑
i jk

(ei jk)2 (2)

Several algorithms have been proposed to solve Eq. (2) for A, B, and C such as Alternating Least Squares (ALS)
[8, 26, 27], Derivative Computations [28] and direct (non-iterative) procedures [29, 30]. We present here the ALS
algorithm as it is the original and most widely used method to estimate the PARAFAC model [8].

ALS algorithm

The ALS algorithm aims at calculating the model matrices A, B and C that minimize the sum of squared residuals
in Eq. (2) using an iterative process. At each step t, it calculates and updates the matrices until convergence or until
the maximum number of iterations is reached rendering a series of matrices {A(t)}, {B(t)} and {C(t)} [8, 26, 27]. The
first step consists in initializing the matrices B(1) and C(1) as random matrices. To calculate the score matrix A(t), it is
required to first unfold the three-way array X in a two-way array as Xa = [X••1 , . . . , X••K] of dimensions N ×MK.
The matrix A(t) is calculated by solving the minimization problem

min
A
||Xa − A(t)ZT || where Z = B(t−1) ⊗ C(t−1) (3)

Matrices B(t) and C(t) are calculated in an analogous way. To calculate B(t), X is unfolded as the matrix Xb =

[X1•• , . . . , XN••] of dimensions M × KN. For C(t), X is unfolded as the matrix Xc = [X•1• , . . . , X•M•] of
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dimensions K × NM. The new updated matrices B(t) and C(t) solve the following problems:

min
B
||Xb − B(t)ZT || where Z = A(t) ⊗ C(t−1), Xb ∈ RM×KN

and

min
C
||Xc − C(t)ZT || where Z = A(t) ⊗ B(t), Xc ∈ RK×NM

1.2. Proposed method for multi-group data

(a) Three-way array X with multi-group struc-
ture. (b) Proposed model representation.

Figure 2: (a): Multi-group representation of the three-way array X = xi jk ∈ RN×M×K which present a multi-group structure. Along the mode a the
observations are divided into G groups, such that group g = {1, · · · ,G} is represented by 1, · · · , ng rows and

∑G
g=1 ng = N. (b): Representation of

the new proposed model.

In a multi-group structure, the three-way array X is composed by the same three modes a, b, and c, when the
observations in mode a are are divided into G groups. A visual representation of this structure is shown in Figure 2a.
Each group g ∈ {1, · · · ,G} is represented by 1, · · · , ng rows, such that

∑G
g=1 ng = N. The sub-array that contains the

observations belonging to group g is represented by Xg ∈ Rng×M×K where ng is the number of observations in such
group. The two main characteristics of the proposed method are:

• A, B, and C are estimated from the decomposition of the three-way array X, constrained by its group structure.

• The resulting loadings matrices B and C focus on the common variability among the groups.

In this way, the resulting model is not dominated by a specific group but is representative of all the groups uni-
formly. The optimization function of the proposed method is defined as

min
Ag,B,C

∑
i jk

(xi jk −

F∑
f=1

agi f b j f ck f )2

such that
G∑

g=1

||Bg − B||2 < γb and
G∑

g=1

||Cg − C||2 < γc (4)

where Ag = (aig f ) is the score matrix containing the observations of matrix A that belong to the group g where
ig = 1, · · · , ng, Bg and Cg are the loadings matrices corresponding to the observations in group g, and B and C are the
common loadings matrices across all groups in X. We present here the extension of the ALS algorithm to solve the
problem presented in Eq. (4).
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Extended ALS algorithm
Similar to the ALS algorithm for the PARAFAC model, the matrices A, B and C are updated at each step of the

algorithm by minimizing the sum of squares of residuals between the input matrixX and the outer product of the three
model matrices. Thus, we shall generate a series of matrices {A(t)}, {B(t)} and {C(t)} that reach convergence at each
successive step. However, the calculation of B and C will be influenced by the loading matrices of each group.

The algorithm is initialized by calculating the PARAFAC model with solution denoted by A(1),B(1),C(1). There-
fore, in the absence of groups, this extension returns to the conventional PARAFAC model. In the presence of multiple
groups, the algorithm first solves the PARAFAC model for each group and then finds the common solution across all
groups. We describe here the process of calculating B at step t. For this, the three-way array X is converted into an
unfolded two-way array Xb, defined as [X••1 ; . . . ; X••K] ∈ RNK×M (See Figure 3a).

(a) The unfolding of the three-way array X. (b) Representation of the matrix Xb.

Figure 3: (a): The unfolding of the three-way array X into the two-way array [X••1 ; . . . ; X••K ]. (b): Representation of the rearranged unfolded
matrix Xb with the multi-group structure Xb = [Xb1 ; . . . ; XbG].

We reorganize the rows of Xb by grouping the observations that belong to the same group. This generates Xb with
a multi-group structure as Xb = [Xb1 ; . . . ; XbG] where each group is of dimensions ngK × M, as represented in
Figure 3b. For each group thus created, we calculate the group loadings matrix B(t)

g by solving the objective function:

min
Bg
||Xbg − ZgB(t)T

g || where Zg = C(t−1) ⊗ A(t−1)
g (5)

where A(t−1)
g denotes the rows of the matrix A(t−1) that correspond to the group g. The procedure is repeated

for g = 1, · · · ,G obtaining the group loadings matrices {B(t)
1 , · · · ,B

(t)
G }. The matrix B(t) corresponds to the common

loadings matrix as represented in Figure 4. These common loadings B(t) are computed using a weighted mean.
Because the model needs to represent all groups uniformly, these weights are determined based on the variance
explained for each group. If a group has a high variance explained, its weight will be lower. Correspondingly, the
groups with lower variance explained will have a higher weight. This renders a common loadings matrix represented
by variance homogeneity [22, 23].

The calculation of Cg and C at step t follows the same process as before. The three-way array X is unfolded as
Xc = [X•1• ; . . . ; X•M•] ∈ RNM×K . The observations are reorganized so that Xc shows a multi-group structure
matrix. For each group g = 1, · · · ,G we calculate the corresponding group loadings matrix C(t)

g by solving the problem
given by:

min
Cg

||Xcg − ZgC(t)T
g || where Zg = A(t−1)

g ⊗ B(t) (6)

Here, the algorithm uses the matrix A(t−1) of the previous iteration and the latest updated loadings B(t). For each
group g = 1, · · · ,G we calculate the group loadings matrices {C1, · · · ,CG} and the matrix C(t) becomes the common
loadings matrix to all the groups obtained by weighted mean.
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Figure 4: Representation of the calculation of a matrix common to all groups in a generic step i of the algorithm. This scheme applies also to the
calculation of C.

Finally, to update the score matrix A we unfold the three-way array X into the N ×MK matrix Xa as in the case of
PARAFAC and solve the same PARAFAC step for each group g to obtain {A(t)

1 , . . . ,A
(t)
G }. Finally we repeat the above

steps until convergence or the maximum number of iterations is reached. Algorithm 1 describes the entire procedure
of the proposed method.

The weighting scheme was determined based on the optimization problem of Eq. (4). The solution to the con-
straints to determine a common B and C can be obtained in several ways. One option is to minimize each constraint,
in which case the solution is given by a simple mean over the groups. A second option would consist in including
the constraint within each unfold optimization. In this case, the algorithm would need regularization parameters (i.e.
Lagrange multipliers) which would add extra tuning parameters to estimate the model. For the sake of limiting the
complexity of building the model while complying with the objective of finding the common loadings across groups,
a weighted average was embedded in the algorithm where the weights correspond to the inverse of the variance of
each group explained within the model.
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Algorithm 1 Extended ALS algorithm for PARAFAC model with multi-group data

Input: X data, list G group identification, F number of components
A,B,C← parafac(X, F)
group-weights = 1 − var explained(1, · · · ,G)
group-weights = group−weights

||group−weights||
while convergence or max iterations do

for g = 1, · · · ,G do
Zg = C ⊗ Ag

Bg = minB ||Xbg − ZgBT
g ||

end for
For each model component f = 1, · · · , F
B = weighted mean(B1, · · · ,BG)
for g = 1, · · · ,G do

Zg = B ⊗ Ag

Cg = minC ||Xcg − ZgCT
g ||

end for
For each model component f = 1, · · · , F
C = weighted mean(C1, · · · ,CG)
for i = 1, · · · ,G do

Z = B ⊗ C
Ai = minAg ||Xag − AgZT ||

end for
A = [A1, · · · ,AG]T

end while
Output: A,B and C

2. Data Overview

To evaluate the performance of the proposed model, three simulated data sets and one real case study from additive
manufacturing were used. Each simulation reflects a different scenario for the grouping structure of three-way arrays.
The first simulation involves simulating data in batches for k = 1, 2, 3, where each batch is composed of three groups.
The second and third simulations use model loadings A, B, and C to generate the three-way array. Various shifts in
group variance, observations and variables were introduced to test the algorithm’s performance. In the real case study,
we examined a three-way array X that represents three batches from an additive manufacturing process.

The PARAFAC model and the proposed extension were fitted to each dataset. The two methods were compared
based on their ability to homogenise the variance across groups, create common loadings for all the groups and provide
informative insights through variable loadings. Our goal was to demonstrate the efficacy of the proposed approach
in accurately analysing complex multi-group array data and identifying a common model. All the analyses were
performed in R 4.0 with in-house codes.

2.1. Data: Simulated data 1

The first simulation defines a three-way array X ∈ R(90×40×3) consisting of three groups of observations. In this
simulation we define the matrices X••k (k = 1, 2, 3), each composed of three groups. Each group of each matrix is
simulated using a multivariate normal distribution N40(·, ·) with mean µ = 0 and standard deviations σ = 2, 5, 1 as
shown below:
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X••kg=1 ∼ N40(0, 2I)
X••kg=2 ∼ N40(0, 5I)
X••kg=3 ∼ N40(0, I)

where I represents the identity matrix of the corresponding order. After concatenating the groups and the matrices
X••k, an error with a normal distribution of µ = 0 and standard deviation σ = 0.05 was added to obtain the final array
X.

It is worth noticing that the second group, X••kg=2 , has been assigned a larger standard deviation to challenge the
ability of the proposed model to homogenise the variances across the groups. This will test the algorithm’s capability
to overcome any potential biases towards a particular group with larger variation and to generate informative loadings
that reflect the entire three-way array.

2.2. Data: Simulated data 2

The second simulation consists of a three-way array X ∈ R(90×20×3) with a multi-group structure consisting of
three groups as well. In this case, we simulated each sub-array Xg ∈ Rng×20×3 for ng = 30, 30, 30 and concatenate
them vertically to obtain the final three-way array. Each sub-array Xg is obtained as the outer product of matrices A,
B and C generated using the Normal distribution for A and Uniform distribution for B and C.

A ∼ N(0, I)
B ∼ U(0, I)
C ∼ U(0, I)

Within the established framework, a shift in the model matrix was introduced to create separation between groups.
The aim is to examine the effect of the shifts on both models. In this case, a shift was introduced in the score matrix A
corresponding to the first and third groups. Specifically, A•3g=1 was multiplied by factor of 4 and A•3g=3 was multiplied
by −1. After the concatenation of the groups, an error with a normal distribution of µ = 0 and standard deviation
σ = 0.05 was added to obtain the final array.

2.3. Data: Simulated data 3

A third simulation is obtained using a similar framework as in simulated data 2 of Section 2.2. We generate a
three-way array X ∈ R(90×20×3), vertical concatenation of three sub-arrays Xg ∈ Rng×20×3 for ng = 30, 30, 30. Each
sub-way array Xg is obtained as the outer product of matrices A, B and C, as in the previous example.

Here, a shift in the loadings matrix B was introduced. Specifically, the first column of the first group was multiplied
by 5, (i.e. 5B•1g=1 ). After the concatenation of the groups, an error with a normal distribution of µ = 0 and standard
deviation σ = 0.05 was added to obtain the final array.

The objective of this simulation study is to test the capability of the proposed model in generating common load-
ings that mitigate the variations unique to each group, thereby enabling the recovery of common information shared
across all groups. We aim to showcase that the model captures the underlying common patterns while minimizing the
impact of group-specific variations.

2.4. Case study: Additive manufacturing

The real case study corresponds to an additive manufacturing process for high-volume 3D printing. The so-called
Selective Thermoplastic Electrophotographic Process (STEP) [31] takes place by rendering a three-dimensional object
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from a digital model. This process generates a 3D bulk structure by fusing and pressing super-thin layers. Multiple
sensors are positioned throughout the production chain on the new manufacturing line measuring several variables for
each super-thin layer.

(a) Representations of the multi-group structure. (b) Three-way array representation in the Additive manufacturing studying case.

Figure 5: (a): The creation of a multi-group structure in the process data as a result of the relationship between the batch products and the
observations in the process data. (b) Observations, variables and batches organisation in the three-way array in the Additive manufacturing case
study.

Our study focuses on the analysis of a data set consisting of four batches that form a three-way array denoted asX.
In theX three-way array, mode b contains 53 continuous variables collected through the sensors located on the printing
machine. The variables are labelled from V1 to V53 due to confidentiality. Mode a represents the observations of the
variables collected for each super-thin layer. Finally, mode c represents the different batches, as shown in Figure 5b.
Each batch consists of three final groups of products. The association between the final products and the observations
creates a multi-group structure of three groups represented in the X three-way array, Figure 5a. The three-way array
was previously scaled by group [32]. Group scaling involves the scaling of each variable within the sub-array Xg

based on the mean and standard deviation calculated within the respective group denoted as X• j•g for g ∈ 1, · · · ,G.
This approach ensures that variables within each group are standardized in relation to the group-specific distribution
characteristics.

This case study aims at gaining insights into the covariance structure among the variables and the different batches.
Specifically, we aim to analyze the loadings matrix B, which reveals the relative importance of each variable in
explaining the total variability of the three-way array. To accomplish this, we employ both the PARAFAC model and
the proposed extension.

3. Results and Discussion

As a rule of thumb, we present all the results across all data sets using models with only 10 components. We
adopted this choice to effectively showcase two key objectives. Firstly, through Simulated data set 1, our aim was to
demonstrate the consistency of the explained variance across all groups. Additionally, Simulated data sets 2 and 3 were
conducted to provide further evidence of the proposed model’s ability to generate common loadings that are shared
among all groups. It is important to note, however, that the determination of the number of components is context-
dependent and should be tailored to the specific characteristics of each individual case, and may vary accordingly.

Simulated data sets

The percentage of variance explained by both models for each group in Simulation 1 is summarized in Table 1.
The PARAFAC model reveals that the second group has a higher representation than the other two groups in all of
the components. This result is in line with the ranking of the standard deviations set for each group as presented in
Section 2.1.
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Table 1: Cumulative % of Variance Explained by Groups in Simulated dataset 1.

PARAFAC Algorithm

Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7 Comp 8 Comp 9 Comp 10
Group1 1.26 2.76 3.71 5.10 6.25 7.89 8.60 10.74 12.40 14.15
Group2 3.61 7.43 11.33 14.72 18.44 21.37 25.28 27.71 31.26 33.71
Group3 1.15 2.33 3.44 4.19 4.91 5.24 6.61 7.76 8.68 10.18

Proposed Algorithm

Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7 Comp 8 Comp 9 Comp 10
Group 1 2.27 4.45 6.39 9.05 9.42 12.93 15.71 16.65 17.98 20.94
Group2 2.40 4.79 7.00 8.50 10.41 13.17 15.67 18.00 18.67 21.60
Group3 2.63 4.82 6.71 9.50 11.30 13.82 14.90 16.83 17.78 22.04

To compare the representation of the groups across all of the components, the ratio of the explained variances for
each group with respect to group 3 was calculated (See Figure 6). Throughout the different components, the second
group dominated the representativity with a percentage of explained variance 3 times the variability group 3. This
result showed the dominance of the second group for the resulting PARAFAC model with a lower representation of
the other groups. This is indicative of a model that represents only one group rather than being representative of the
entirety of the data. In contrast, the proposed model demonstrates a uniform explained variance across all 3 groups,
providing evidence of a model that uniformly represents the entire dataset. This is supported by the ratios in Figure 6,
which depict a more uniform explained variance across all groups throughout the components.
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Figure 6: The ratios of the explained variances for each group with respect to group 3 in simulated data set 1.

Figure 7 displays the scores of the 1st and 2nd components for Simulation 2, described in Section 2.2. In this
case, a shift in the score matrix A was applied in the data simulation. The analysis of the results of the two models,
therefore, focuses on the visualization of the first two scores.

In the case of the PARAFAC model, while the scores of the second and third groups nearly overlap and vary
along the same direction, the scores of the third group are almost perpendicular to those of the first two groups,
with a much larger dispersion. In contrast, the proposed model demonstrates nearly overlapping scores across all
groups. Additionally, it can be noticed that the direction of variation for all groups is closer to one another. This
provides evidence that the proposed model effectively mitigates the inherent shifts between groups and captures shared
directions.
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In Figure 8, the B loadings matrices are presented for both the PARAFAC and proposed models referred to Sim-
ulation 3, described in Section 2.3. The black profile in the figures represents the original loadings matrix, and a
significant shift is highlighted represented by the first group. This extreme shift scenario was deliberately chosen
to assess the algorithm’s performance under challenging conditions. However, in practical scenarios, the variations
between groups are expected to be comparatively smaller.
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Figure 8: The PARAFAC and proposed model loadings matrices B for the dataset 3, Section 2.3.

Upon comparing the results of the two models, noticeable differences can be observed. The PARAFAC model
exhibits a greater bias towards the shift, resulting in B loadings profiles with higher levels of noise. These loadings
exhibit extremely high peaks, influenced by the larger variability present in the first group. Conversely, the proposed
model displays less pronounced peaks and generally smoother trend profiles. The loadings of the proposed model are
closer to those of groups 2 and 3, indicating reduced bias from group 1.

These findings suggest that the proposed model can identify the common patterns present in all groups while
mitigating any bias towards a specific group. Overall, these results highlight the potential of the proposed model to
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serve as a reliable tool for analyzing multi-group datasets.

Case study: Additive manufacturing
The results of the PARAFAC and the proposed models in terms of the explained variance per group for the three-

way arrayX are summarized in Table 2. Consistent with the findings observed in the simulated datasets, the PARAFAC
model exhibited a relatively higher representation of the first group compared to the subsequent two groups. This
disparity in groups representation becomes more pronounced, particularly in the higher-order components. In contrast,
the proposed model, resulted in a more uniform representation of all three groups.

Table 2: Cumulative % of Variance Explained by Groups: Low-quality products X three-way matrix

PARAFAC Algorithm

Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7 Comp 8 Comp 9 Comp 10
Group 1 39.00 39.25 39.18 53.57 53.76 65.48 66.00 66.22 67.93 71.53
Group2 26.85 26.90 27.49 33.15 35.74 39.58 42.55 43.15 48.79 52.57
Group3 20.66 21.42 21.70 27.17 44.48 46.98 47.69 48.47 52.79 55.54

Proposed Algorithm

Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7 Comp 8 Comp 9 Comp 10
Group 1 32.90 33.10 33.30 38.27 42.62 46.53 50.30 56.59 59.70 58.36
Group2 29.71 29.69 30.18 36.88 41.08 39.33 47.20 48.31 53.68 53.06
Group3 23.38 24.21 24.65 30.06 36.84 36.30 44.05 48.76 52.84 55.59

These findings are further validated by the ratios between the explained variances of each group with respect to
group 3, in Figure 9. The initial components show that the PARAFAC model exhibits a two-fold ratio in representing
the first group when compared to the third group. While the disparity diminishes with subsequent components, a
preference for the first group persists, albeit to a lesser degree. This observation suggests that the PARAFAC model
captures the variability of the first group more effectively than it does for the entire dataset. In contrast, the proposed
model already explains similar degree of variances explained by all groups in the first few components. As more
components are added, the model portrays an equal representation of all three groups. This demonstrates that the
proposed model is more effective at capturing the common variability and fostering a broader understanding of the
data.
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Figure 9: Case study: Ratios of the explained variance for each group with respect to group 3.

Figure 10 displays the scores of the first two components for both models. In the PARAFAC case, it is evident
that the scores corresponding to group 1 exhibit greater separation than those of the remaining groups, in agreement
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with the above findings. Moreover, the direction of the scores of group 2 is different from the other two groups.
Conversely, in the proposed model scenario, the scores of all three groups exhibit significant overlap within a common
region. Notably, the groups also demonstrate shared patterns direction of variability. This outcome is consistent with
the objective of the proposed model, which aims to recover loadings that express the shared patterns and variability
across all groups.

Figure 10: Case study: Low-quality products three-way arrayY. First two dimensions scores representation with a 99% confidence interval ellipse.

The biplot of the loadings matrices B for both models are illustrated in Figure 11. In the PARAFAC model,
the variables V2, V4, V8, V11, V44 and V45 have the highest model coefficients. The proposed model showcases
similar high coefficients for the variables V11, V44 and V45, albeit with slightly reduced magnitudes. Moreover, other
variables such as V1, V2, V8, V9, and V10 are shown to have high model coefficients in the proposed model. However,
in the PARAFAC model, the coefficients for these variables are lower in comparison. The disparity in the estimates
of the model coefficients can likely be attributed to the unequal representation of the variability of the three-way array
by the two models. As shown in the above findings, the PARAFAC model primarily captures the variability specific
to the first group rather than the entirety of the dataset. It implies that the emphasis placed on the first group by the
PARAFAC model may result in model coefficients representing this group rather than the entire three-way array. This
difference between the two models may result in interpretations and conclusions that are different.
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Figure 11: Case study: Biplot of the first two components of the loadings matrix B of the PARAFAC and the proposed model.
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Following the analysis of the outcomes and consultation with expert engineers in the field, a consensus was reached
regarding the results obtained from the proposed model. The variables V1 and V2 are associated with the pressure
applied to each micro-layer, which determines its fusion with the main component. This step is highly important in the
production process, as it significantly impacts the numerous mechanical properties of the final product. The variables
V8 and V9 are linked to the bulk temperature, representing the temperature of the main component of all the fused
layers. This temperature plays a crucial role in material fusion and adhesion of the individual micro-layers, so the
fusion between all the micro-layers influences the printing process overall success and contributes to several quality
aspects of the end products. Moreover, the variable V10 is linked to the creation of each individual micro-layer,
underscoring its significance in the overall process. Lastly, both models highlighted the importance of the variables
V44 and V45, which pertain to the sensors in the cooling step. Cooling temperatures are of noteworthy influence on
warpage, a factor directly affecting various qualities of the final product. These findings reinforce the understanding
that careful management of cooling temperatures is imperative for ensuring optimal product outcomes across multiple
quality dimensions.

Discussion

Across all four data sets, we demonstrated that the proposed approach was able to provide a model that is represen-
tative of all the groups present in the data. This was supported by similar levels of variance explained across all groups
compared to the variance discrepancies in the PARAFAC model. This is indicative of a model that is representative
of the variability of the entire data set and all groups. Despite the fact that one or more groups may exhibit larger
variability, the suggested model was able to reduce this variability and produce model coefficients that are common
to all groups. The two simulation strategies depicted two ways of inducing a multi-group structure in the data and
in both cases, the proposed model was able to regulate the dominance of the group with the highest variance. In the
case study, we presented a real-world application in additive manufacturing, aiming to gain valuable process insights
and understanding. To achieve this aim, it is necessary to consider a model that accurately represents all groups in
the data set. The proposed model showcases a percentage of explained variance similar for all groups, indicating its
ability to effectively capture the common variability of the three-way array and its multiple groups. This stands in
contrast to the PARAFAC model, which exhibits a greater representation of the first group and its variability. The
strength of the proposed model lies in its capability to mitigate the higher variability observed in the first group and
successfully recover a common structure that encompasses all groups. An in-depth analysis of the loadings matrix B
provides further insights for process understanding. The results of the PARAFAC model indicate a lack of homogene-
ity in variability among the groups, leading to different model coefficients. This aspect holds crucial implications for
a deeper understanding of the underlying process, as in the PARAFAC case, the coefficients of the variables are more
representative of the first group rather than the entire data set. In this context, the proposed model proves to be more
suitable and advantageous for three-way arrays that present a multi-group structure. Furthermore, we recommend
extending the analysis to include a meticulous examination of residuals, the three-way matrix E, when conducting
further studies on differences between various groups. As the model represents the common structure shared among
all groups, analyzing the residuals can shed light on the different variations a specific group represents. However, it is
essential to note that such an analysis lies beyond the scope of the proposed model in this paper. Instead, it serves as
a natural direction for future studies, warranting careful consideration and examination on a case-by-case basis.

4. Conclusions

The extension of the PARAFAC model proposed in this paper makes it possible to analyze complex data that
present a multi-grouping structure. This transfer of methodology from the PARAFAC model to the multi-group
settings was defined by constraining the objective function to consider the group structure for the model parameters.
We provided the corresponding extension of the ALS algorithm to solve the proposed model. This algorithm was set
to be also used in the absence of multi-group data as its initialization corresponds to the PARAFAC model.

Three simulation studies and a real case were used to illustrate the capability of the extended PARAFAC method
to render a model that explains the common variability of all the groups. In all applications, using the model without
a multi-group structure when the groups have large differences resulted in a model being representative of the most
dominant group (i.e. the group with the largest variance). In the real case study in additive manufacturing, we

14



illustrated the impact of considering the grouping structure to analyze the importance of process variables in this type
of data. By employing the extended PARAFAC method, we achieved a comprehensive understanding of the entire
manufacturing process, avoiding a biased focus on individual groups. This perspective facilitated a more profound
analysis of the data and enabled us to extract valuable insights that would have been overlooked in a model dominated
by a single group.

Our results demonstrate that the proposed model performs well in capturing the common and explanatory loadings
of the data, even when the variances of the groups are unequal, resulting in a more robust and reliable model. The
proposed model effectively represents the entire dataset, and this is of utmost importance for gaining valuable insights
and understanding of the process. When a model is heavily influenced by one dominant group, the loadings tend to
explain more of that particular group’s characteristics, neglecting the broader dynamics of the entire process. The
proposed method offers a solution to this challenge, ensuring a more balanced representation of the data and fostering
deeper process understanding across all groups.
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CHAPTER6
Multi-group N-PLS

6.1 Introduction

In this section, we present a novel model aimed at the analysis of process data and
associated quality data. This method represents a significant extension of the method-
ology, the multi-group PARAFAC model, as delineated in Chapter 5, in order to
consider the integration of quality-related data. The motivation for this model is to
provide a more thorough understanding of processes, create opportunities for process
improvement and create the opportunity for outcome prediction.

The previous Chapter introduced the multi-group PARAFAC model, an analytical
technique designed to unravel intricate patterns inside complex three-way data sets.
The model is part of the so-called unsupervised models, meaning that it discerns latent
structures and relationships within the data without considering any quality variables.
The unsupervised nature of the multi-group PARAFAC model has several advantages
in uncovering latent relationships, providing a comprehensive understanding of the
multi-way data structure, and finding patterns among groups and various batches.
However, there are some limitations associated with the model, especially when the
objective is to exploit data insights for the purpose of process optimization.

In order to overcome these limitations and to fully utilize the capabilities of our
analytical framework, a progressive transition from an unsupervised to a supervised
model was conducted. The introduction of additional data, referred to as the response
variable Y, becomes essential in light of this extension. Using this variable enhances
our model’s capability to identify inherent latent patterns and analyze the impact of
Y on the resulting model.

Therefore, the shift from an unsupervised model to a supervised model represents
a fundamental change in the model perspective. This model enables us to build a
model and model loadings that are exemplary of the input data but also take into
account their interaction with the output variable, thus making the model much more
useful for a targeted investigation into optimization and process understanding. By
taking into account the response variable Y, we are able to not only understand the
interactions between observations, variables, batches and responses but also anticipate
their potential predictions.

In this case study, we considered the process data as input data and the quality of
the final products as the output data. The input data are organized into three-way
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arrays that are represented by three distinct modes, namely modes a, b and c. Each
of these modes incorporates distinct information aspects that provide a thorough
description of the data acquired from the process being examined. Mode a represents
the observations acquired during the course of the production, mode b represents the
variables collected throughout the multiple sensors placed in different stages of the
production and mode c represents the batches that constitute the iterative instances
of the process, refer to Figure 6.1. The link between the different rows of products
and the observations collected during their production creates a grouping structure.

Figure 6.1. Representation of the input and output multi-group data.

The variable Y can be represented into two-way arrays form with a grouping
structure. In the particular case of additive manufacturing, the output variable Y
represents a distinctive characteristic or quality related to each specific batch. The
output Y is represented as a two-way array where columns represent the batches and
rows represent the observed quality measurements. 6.1.

The inclusion of variable Y as a quality column for each batch highlights the com-
plexity of the study, as it encompasses the performance and quality metrics linked
to the produced products. Quality data is a fundamental piece of information that
augments the comprehensive understanding of the process dynamics. The correlation
between the input variables X and the quality characteristics Y highlights the rele-
vance of our analytical methodology, especially in the field of additive manufacturing,
where maintaining product quality is of utmost importance.

The presentation of the multi-group multi-way Partial Least Squares (multi-group
N-PLS) methodology is included in the draft of the paper in the following section.
The initial version of the article presents a thorough examination of the multi-group
NPLS technique, including a detailed explanation of its theoretical framework and
technical aspects. The methodology presented in this study is considered as prelimi-
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nary findings. As such, these preliminary results are not intended to be an endpoint
but rather represent a foundation for research laying the groundwork for future work,
promoting deeper explorations and more comprehensive validations of the multi-group
N-PLS methodologies.

6.2 Manuscript: Multi-way PLS for the analysis of
multi-group three-way data

Draft Paper: Marta Rotari and Murat Kulahci, ”Multi-way PLS for the analysis of
multi-group three-way data”.
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Abstract

This paper introduces a novel approach to analyze multi-group three-way arrays. The introduced method is an ex-
tension of the multi-way Partial Least Square method, designed to incorporate the multi-group structure observed in
the data. The concept of a multi-group structure arises from the classification of data into multiple groups based on
common identifying factors. This type of data is often observed in industrial manufacturing cases where the data
are characterized by observations, variables and batches organized in three-way arrays. The association between the
final products and observations acquired during their production create the grouping structure. This paper addresses
the existing gap in the exploration of supervised three-way array models within multi-group configurations. Conven-
tional methods often overlook intrinsic groupings, leading to a mixture of between-group and within-group variances.
Conversely, this study introduces a model that integrates input and response variables while considering the group
structure.

Keywords: multi-way N-PLS; multi-group data; three-way data; supervised method

1. Introduction

Modern industrial production systems incorporate sophisticated technologies capable of gathering data from many
sources, resulting in an abundance of data. This often leads to data sets organized in multi-group three-dimensional
arrays. Three-way arrays are data formats containing observations, variables and conditions that could represent
different factors such as time, batches, and other contextual conditions.

As an example, in the context of a batch fermentation process, a collection of time-dependent data that encom-
passes numerous variables and batches can be represented as a three-dimensional array [1]. Another example is in
systems that depend on sensory data, which may originate from several channels and many devices simultaneously
[2, 3].

The notion of a multi-group structure refers to the classification of observations into distinct groups. The creation
of these groups occurs when observations or samples exhibit specific distinctive characteristics [4, 5, 6]. These
features may include demographic factors, qualitative features, geographical location, or other relevant criteria, thus
delineating distinct groups.

Numerous approaches have been developed to address three-way arrays, including both unsupervised and super-
vised models. Among the unsupervised techniques, prominent approaches such as Parafac and Tucker [7, 8] have been
developed to unravel the latent structures within the data. Supervised methods like multi-way Partial Least Squares
(PLS) [9, 10, 11, 12] have been developed to effectively integrate regression analysis with tensor factorization for
the purpose of mapping data into latent spaces with reduced dimensions. The combination of regression and tensor
factorization in this combination provides these approaches with the capability of uncovering complex patterns and
relationships, hence improving predicted accuracy and interpretability.

N-PLS regression entails a simultaneous decomposition of X and Y through latent variables, capturing maximal
covariance between the two. The model is utilized in scenarios where the number of variables is higher than the
number of observations. The model is also widely used in problems of dimensionality reduction. By extracting a
reduced set of latent variables that incorporate essential information from both X and Y, the model enables effective
modelling, prediction and interpretation framework for N-way data.

To examine multi-group structured data sets, many models for two-way arrays have been developed [4, 5, 6]. Yet,
no analogous extension for supervised three-way array models has been identified thus far. Assuming X and Y are



partitioned into G groups, a straightforward approach involves performing an N-PLS regression without acknowledg-
ing the group structure. However, this disregards individual groupings and mixes between-group and within-group
variances. An alternative approach involves applying N-PLS regression separately to each group. However, this ap-
proach leads to analysing too many parameters and, therefore, can hinder the compression of the model or lead to
inconsistent and misleading conclusions.

In this paper, we present an extension of the N-PLS model to the case of multi-group three-way data sets. The
proposed model aims to construct a model and model parameters adjusted according to the multi-group structure
of the input data X and the response Y. The model aims to identify a common structure by calculating common
loadings in the presence of multiple groups in the data sets. This model aims to examine the connections between
variables and different experimental situations in relation to the response variable Y through the exploration of the
covariance structure. As a result, the loadings matrices produced by the proposed model capture the importance of
individual variables and experimental circumstances in the overall variability seen in the three-way data, representing
all constituent groups included in the array. By identifying common loadings, the proposed model provides a more
accurate and comprehensive description of the underlying system.

2. Notations

Three-way arrays are denoted by X ∈ RN×M×K whose elements are xnmk where n = 1, . . . ,N, m = 1, . . . ,M and
k = 1, . . . ,K. The three-way entries are represented by three different modes a, b and c as shown in Figure 1. Mode
a represents the data Xn•• and usually collects the observations. Mode b represents the data X•m• and is the mode
related to the variables. Finally, mode c represents different batches or conditions, such as time, different levels of
temperatures and represents the data X••k, k ∈ 1, . . . ,K.

(a) Mode-a: Observations. (b) Mode-b: Variables. (c) Mode-c: Batches, conditions.

Figure 1: Modes representation and data organization.

Matrices, or two-way arrays in general, are indicated as W capital bold letters. One-way arrays, commonly called
vectors, are indicated by lower case bold letters w. Horizontal vector concatenation to generate a matrix is indicated
by [ : ], W = [w1 : . . . : wF]. The letters N,M,K are reserved for specifying dimensions, while the letter F is
reserved for denoting the number of components. The transposition operator is represented by the super-index T .

In a multi-group structure, the three-way array X consists of observations in mode a that are partitioned into G
groups. A visual representation of this structure is shown in Figure 2. Each group g ∈ {1, . . . ,G} is represented by
1, . . . , ng rows, such that

∑G
g=1 ng = N. The sub-array that contains the observations belonging to group g is represented

by Xg ∈ Rng×M×K where ng is the number of observations in such group. The response multi-group matrix Y ∈ RN×K

contains the response values for N observations and K batches.

2.1. Unfolding
The notion of unfolding or matricising a three-way array has significant importance in the multi-way data analysis

domain. Unfolding techniques regard rearranging the data of a three-way array into a matrix, with the specific con-
figuration dependent on the mode under consideration. Mode-a unfolding involves rearranging the three-way array

2



Figure 2: Multi-group representation of the three-way array X = xi jk ∈ RN×M×K and Y ∈ RN×K . The observations are divided into G groups, such
that group g = {1, · · · ,G} is represented by 1, · · · , ng rows and

∑G
g=1 ng = N.

X along the first mode, resulting in a matrix of dimensions N × MK. The mode-a unfolded matrix preserves the
multi-group structure, as represented in Figure 3. Mode-b unfolding involves rearranging the three-way array X along
the second mode b (the columns), resulting in a matrix of dimensions M × NK. Finally, mode-c unfolding involves
rearranging the three-way array X along the third mode c, resulting in a matrix of dimensions K × NM.

Figure 3: Unfolding of a multi-group three-way array into a multi-group two-way array.

2.2. Pre-processing

Scaling is a fundamental data pre-processing technique and represents a fundamental step in data analysis. Stan-
dardization and centring are the most often employed scaling strategies in the analysis of three-way data. Standardiza-
tion is a scaling technique that aims to standardize or transform the data to enhance interpretability and comparability.
It is also known as Z-score scaling, which is a specific scaling technique that transforms the data to have a mean of
0 and a standard deviation of 1. Centring involves shifting the three-way or two-way elements to have a zero mean.
Usually, these types of pre-precessing are done by columns or by rows, depending on the specific situation.

There are several methods available for scaling a multi-group three-way array[13]. The selection of an appropriate
scaling technique depends on several factors, including the inherent characteristics of the data, the specific dimensions
to emphasis and the overarching research objectives. Figure 4 illustrates the diverse scaling strategies.

• Batch Scaling: this strategy entails the scaling of data concerning individual batches, denoted as X••k for k ∈
1, . . . ,K.

3



(a) Batch scaling. (b) Group scaling. (c) Instance scaling. (d) Layer scaling.

Figure 4: Scaling techniques for multi-group three-way arrays.

• Group Scaling: this approach involves scaling data with respect to distinct groups within the three-way array
Xg ∈ Rng×M×K for g ∈ 1, . . . ,G. In this instance, greater emphasis is placed on highlighting the differences
among the different groupings.

• Instance Scaling: the intersection of batch and group considerations results in instance-based scaling denoted
as X•mk for m ∈ 1, . . . ,M, k ∈ 1, . . . ,K.

• Layer Scaling: this approach is variable scaling X•m• for m ∈ 1, . . . ,M.

It is essential to notice that the choice of scaling method may vary depending on the data distribution, the specific
algorithm being used, and the aim of the analysis. Proper scaling is a crucial step in the data pre-processing pipeline
and can significantly impact the success of subsequent analyses or machine learning models.

3. Methods

This section provides a brief overview of the N-PLS method. Subsequently, the proposed model is presented; it is
an extended model considering the multi-group structure of the three-way array X and the response data Y.

3.1. N-PLS

The Multi-way Partial Least Squares (N-PLS) method is an extension of multiple linear regression and principal
component analysis. It addresses the high-dimensional data sets by identifying latent structures that capture the
maximum covariance between the three-way data set X and the response variable Y.

Consider the three-way array X ∈ RN×M×K and the matrix Y ∈ RN×K . The N-PLS regression model can be written
as follows:

X = T(WK ⊙WJ) + Rx

Y = UQT + Ry (1)

where the decomposition matrices for the three-way array X are: T = (tn f ) ∈ RN×F is the score matrix, WJ =

(wJ
m f ) ∈ RM×F and WK = (wK

k f ) ∈ RK×F are the loadings matrices associated with mode b and c, respectively. The
matrix U = (un f ) ∈ RN×F is the score matrix and Q = (qk f ) ∈ RK×F is the loading matrix for the matrix Y. Rx

denotes the three-way residuals in the decomposition of the three-way array X and Ry denotes the residuals in the Y
decomposition. The regression model between X and Y can be written as the regression model between the respective
scores matrices:

U = TB + Ru (2)

4



The matrix B denotes the regression coefficients obtained as B = (TT T)−1TU. Finally, the ⊙ denotes the Kha-
tri–Rao product defined as the column-wise Kronecker product. The PLS model results from finding the model
matrices that maximize the covariance between X and Y. Further details on the model or the resolution procedure
may be found in the following [11, 12].

3.2. Proposed Method

Let us consider the three-way array X ∈ RN×M×K and the matrix Y ∈ RN×K . X and Y are partitioned into G
groups, as shown in Figure 2. For both X and Y, each group g ∈ {1, · · · ,G} is represented by 1, · · · , ng rows, such
that
∑G

g=1 ng = N. The sub-array that contains the observations belonging to group g is represented by Xg ∈ Rng×M×K

and Yg ∈ Rng×K where ng is the number of observations in such group. The N-PLS regression model considering F
components can be written in equation (1) and the regression model in equation (2).

The proposed model aims to construct a model and model parameters adjusted according to the multi-group
structure of the data. The model aims to identify a common structure by calculating loadings that are representative
of all groups in the data. The solving algorithm to find the model matrices computes subsequent components. This
implies that during the initial stage, one-order loadings vectors and corresponding scores are computed. Prior to the
calculation of subsequent components, the data sets X and Y are deflated with respect to the previously computed
parameters (model scores and loadings).

The solving algorithm outlines constructing a multi-group N-PLS model consisting of F components. This model
is designed to extract latent relationships within three-way data sets, where the three-way array is represented as X,
and the corresponding response data is denoted as Y of dimensions N ×K. First, the three-way array X is unfolded by
the a-mode unfolding in the matrix X of dimensions N ×MK. The obtained matrix is a multi-group matrix, as shown
in Figure 3.

The algorithm starts by calculating the first component. First, the algorithm calculates the vector u through the
Singular Value Decomposition (SVD) of the response data matrix Y. This selects the response column with the
greatest variation. The matrix Zg is then computed using the sub-matrix Xg and the sub-vector ug for g ∈ 1, . . . ,G.
For each group, the SVD is performed on the matrix Zg. The dominant left and right singular vectors (associated
with the largest singular value) are extracted, yielding the vectors wJ

g and wK
g . These matrices capture latent structures

within the data for each group. After calculating group-specific vectors, a weighted mean is computed to calculate the
global loadings wJ

f and wK
f to capture the overarching latent patterns representing all the groups simultaneously.

The next steps involve calculating the scores matrix t f , the Y loading vector q f , and the ultimate scores vector
u f for the first component, f = 1. All the computed vectors are then added to the respective model matrices. To
calculate subsequent components, a deflation step is performed on both X and Y to remove the contribution of the
already-extracted latent component. The outer loop then proceeds to the next component iteration until all desired
components have been extracted.

For each component, the algorithm computes the regression coefficient b using the scores matrix T and the vector
u f . The algorithm presents a systematic procedure for developing a multi-group N-PLS model involving the iterative
extraction of latent components, group-specific analyses, and regression coefficient computation, all designed to take
into account the grouping structure of the three-way array X and the corresponding response data Y. Algorithm 1
describes the entire procedure of the proposed method.
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Algorithm 1 Algorithm for multi-group N-PLS model

Input: X, Y, G list of group identification, F number of components
Unfold the three-way array X in the matrix X
Set u as a column of a Y
for f = 1, . . . , F do

while conv or max iter. do
for g ∈ 1, . . . ,G do

Zg = uT
g Xg

wJ
g ,wK

g = S VD(Zg)
end for
wJ

f = wmean(wJ
1 , . . . ,w

J
G)

wK
f = wmean(wK

1 , . . . ,w
K
G)

Calculate t f

q f = YT t f

u f = Yq f

Check convergence
end while
Concatenate the matrices: T, WJ, WK, Q, U
B = (TT T)−1Tu f

Deflate X
Deflate Y

end for

Comments. In a simple case where the response Y is represented by a one-way array or vector of dimensions N × 1,
the algorithm is exemplified. The matrix U becomes the Y matrix and the matrix Q is a matrix of ones.

The number of components F to choose is usually evaluated using cross-validation (CV) techniques [14, 15]. In
general, the number of components depends upon the data and the specific objective of the instance.

To compute the global loadings wJ
• f and wK

• f matrices, the algorithm suggests using a weighted mean of the
loadings vectors computed for each group. Nevertheless, the determination of the weights may vary depending on
the unique circumstances of each instance and the intended purpose of the study. Indeed, the context may encompass
divergent scenarios. One such scenario is the desire to obtain a model that simultaneously represents all the groups in
the data set. In this scenario, a simple mean of the loadings could be computed or a weighted mean. In the case of
the weighted mean, the weights are computed taking into account the explained variance per group calculated at the
preceding iteration. This entails that a higher weight is assigned to the group with a lesser explained variance in order
to ensure that the loading matrices provide an equal level of explanation for all groups. A second scenario is when a
thorough understanding of the collected data is possessed. In this particular circumstance, the distribution of weights
may not exhibit a uniform trend but instead conforms to specific indications relevant to the problem.
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CHAPTER7
Collaborative research
7.1 Introduction

This Chapter provides an overview of the collaborative research conducted within
the broader initiative of which this PhD is a part project. As discussed in Chapter
1.1, this doctoral project is an integral component of a larger initiative within the
MADE organization and entails collaboration with three doctoral students. Part of
the project involves mutual collaboration between all PhD students, fostering syner-
gistic cooperation to tackle intricate challenges that extend beyond the boundaries of
individual study scopes.

The collaboration relies on the common contribution to tackle difficult problems
that are not possible to solve in a single PhD project but require multidisciplinary
collaboration. In this case, each PhD student contributes to the development of the
problem using their own area of expertise. An example can be in instances where a
student, during the course of their investigation, encounters a challenging problem
that cannot be solved within the context of their specialized domain. In such cases,
such a problem can be presented within the collaborative meetings. These meetings
are held involving PhD students and supervisors to discuss the progress of the var-
ious projects, receive feedback and comments and decide the next steps. Through
this collective engagement, the group endeavours to unravel the problem employing
insights from varied fields, such as physics or data analysis and the analysis of the
application of novel sensor technology. This multidisciplinary analysis facilitates a
new perspective that generates novel strategies and innovative pathways to solve the
problem at hand.

Two such collaborations are presented in this chapter, highlighting the collabora-
tive multidisciplinary approach. First is presented the integration of a laser system
for layer-by-layer monitoring. The second project aims to study the dimensional de-
fects encountered in the final products. Finally, some of the latest analysis following
the dimensional defects problem is presented.
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7.2 Laser profiling system

7.2.1 Introduction

This first collaborative project regards a laser profile system integrated within the
framework of STEP technology. This project centres around the deployment of a laser
profiler consisting of a configuration of four lasers. Its core function is to meticulously
assess the stability of the manufacturing process with respect to each incrementally
added micro-layer, thus contributing to the production of a three-dimensional bulk
object. This assessment is achieved through the acquisition of image data depicting
the height of the 3D bulk subsequent to each layer deposition.

The main objective of this project is to ensure the uniformity of each individual
micro-layer, necessitating an even distribution of material throughout the process.
Achieving uniform products depend on the uniformity of these micro-layers. To this
end, the acquired images are scrutinized for potential irregularities, such as holes and
bumps, which might compromise the integrity of the final products. Consequently,
this technology monitors the production process and assesses the sufficiency or insuf-
ficiency of material utilization.

Interconnected with this aim is the introduction of ”fingerprint” test structures
within the manufacturing process. These test structures serve as evaluative bench-
marks for process performance. Subsequent to the build job, an image detection
post-processing methodology is employed to objectively assess the dynamic dimen-
sional conformity of each layer of the manufactured component layer by layer. This
analysis provides valuable perspectives on the complexities of the additive manufac-
turing process and its capacity for achieving precise dimensional accuracy.

Through the application of the real-time data obtained from this quality control
procedure, it is possible to achieve a greater level of control over the production
process. A consequential feedback loop could be established, facilitating the dynamic
adjustment of manufacturing parameters in real-time. This adaptability is crucial in
order to optimize the production process and enhance product quality.

Moreover, the outcomes of this collective effort extend the local domain of produc-
tion. The utilization of these innovative sensors and algorithms in this quality control
process could be effectively integrated into the digital twin architecture. This strate-
gic integration enhances the efficacy of the digital twin and augments the technology’s
applicability across a diverse spectrum of applications.

This project is still ongoing. The initial outcome obtained from the utilization of
this innovative technology is collected in the peer-reviewed conference paper presented
in the next section.
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Abstract 

In the past decade, the demand for high-volume production of high-precision products with complex shapes has led to the 
development of new manufacturing processes. Among these processes, the Selective Thermoplastic Electrophotographic Process 
(STEP) shows potential for meeting these production demands. STEP involves layer-wise construction of a 3D object from a CAD 
model. However, during process characterization and optimization, defects such as dimensional flaws have been detected in the final 
products. To address this quality control issue, a laser profiling system has been installed on the STEP machine to detect process 
stability for every layer added to the 3D bulk. Additionally, finger print test structures have been introduced in the build job to 
evaluate process performance. Image detection post-processing of the test geometries is carried out to quantify the dynamic 
dimensional conformance layer by layer of the manufactured component. By using the online data collected through this quality 
control process, greater control over the manufacturing process can be achieved, and a feedback loop can be established. This 
feedback loop will allow for the online adjustment of manufacturing parameters, which will be applicable and provide great help for 
product optimization. The new sensors and algorithms used for this quality control process will also be incorporated into the digital 
twin, making this technology even more valuable for a wide range of applications. 

 
Process sensing technologies, 3D scanning, Additive manufacturing, Object detection 

 

1. Introduction  

Selective Thermoplastic Electrophotographic Process (STEP) is 
a new technology in the additive manufacturing field. 
Electrophotographic imaging [1] enables high-volume 
production by fusing 2D layers into a single 3D bulk structure. It 
is composed of two essential modules: an electrophotographic 
engine and a transfusion module. Unlike other conventional 
additive manufacturing techniques, STEP has been validated as 
a potential alternative for the massive production of polymer 
components thanks to its high speed, good precession and fast 
starting time [2]. 

 

 
Figure 1. STEP process. a. Electrophotographic Process; b Heating; c. 
Transfer; d. Cooling; e. Laser scanning 
 

During the STEP printing process, the building plate moves 
back and forth during the coming layer stacking on it, which 
makes it difficult to realize precise alignment between 
successive layers. To address this issue, this investigation 
proposed a method using digital fingerprint and in-process 
monitoring to obtain the quality of the printing layer, which will 
be sent to the printer as feedback. Fingerprints are designed, 

including the dimensional and positional accuracy of 36 squares 
as indicators of printing quality. A laser profiling system scans 
the printed surface and generates the heightmaps. Afterwards, 
the images are post-processed by transformation and alignment. 
Object detection and measurement are then applied to the 
heightmaps to obtain the positions and dimensions of the 
reference fingerprint. 

2. Methodology    

2.1. STEP printing and laser profilers alignment 
The STEP process is illustrated in Figure 1. The building 

platform (BP) moves back and forth in 3 positions: heating, 
transferring and cooling. The BP and the previously printed 
layers are heated up to 120 degrees in the heating position. 

When the BP moves to the transferring position, the toner on 
the drum is then transferred to the BP by melting and fusing.  
The BP is then cooled down to the cooling position.  
 

 
Figure 2. Laser alignment (a) and the generated heightmap of current 
layer (b).   
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Figure 2 shows the alignment of four laser profilers that scan 
the entire building platform. The relative height of the current 
layer is measured by sampling points on lines. As the BP moves, 
the sampled lines are stitched and generate a heightmap.  
 

2.2. Finger print object detection and measurment  
On the heightmap, 36 finger print structures like squares are 

designed as references distinguished by the Z direction 
difference. For each layer, the squares are to be detected with 
bounding boxes, which are listed as: [𝑋 𝑌 𝑊 𝐻 𝑃]. 𝑋 and 𝑌 are 
the absolute coordinates on the heightmap, representing the 
position of the detected squares; 𝑊  and 𝐻  are the width and 
length of the bounding boxes, as depicted in Figure 3. Finally, 𝑃 
is the confidence of the detection, which is derived based on the 
mean average precision at the intersection over union, 
representing the probability of correctly detecting the bounding 
box. 
 

 
Figure 3. Position and dimension information of the finger print 
reference squares. 

 
For object detection, a neural network is trained. Data 

augmentation techniques on images like flipping, rotation, 
scaling and colour manipulations are performed during the 
training process. Layered heightmaps derived from the STEP 
process are submitted to the trained neural network, where 
positions and dimensions of reference squares are inferenced. 
The results are then compared to the input mask and the 
feedback is sent back to the STEP machine to make adjustments. 
The overall in-process monitoring framework is illustrated in 
Figure 4.  

 

 
Figure 4. In-process monitoring loop. a. labelled dataset; b. trained 
neural network; c. STEP process; d. heightmap during the printing 
process; e. results of reference squares detection; f. input mask; g. 
feedback to STEP. 

3. Results and analysis 

   The neural network training is conducted on Tesla V100. The 
training set consists of 30 heightmaps, including 1080 labelled 
squares, whereas the test set comprises 24 heightmaps. On 21 

heightmaps, the model correctly identified all the squares, 
whereas in the rest 3 heightmaps, there are 34, 22, and 17 
detected, respectively.  
 

 
Figure 5. Infereced bounding boxes.  
 

Figure 5 shows the inference bounding boxes of the reference 
squares. It can be noticed that the reference finger print squares 
are well detected with dimensions bordered by bounding boxes. 
The inferencing process takes less than 0.6 seconds on the CPU 
(Intel(R) Core(TM) i7-1185G7 @ 3.00GHz). Considering the 
printing time for each layer, the proposed approach is sufficient 
for in-process monitoring, online printing quality inspection and 
corrective feedback loop for the STEP process. The confidences 
of inference squares on corners are shown in Figure 6. The 
average confidence ranges from 85.2% to 93.3%, with up to 5.6% 
deviation. 

 

 
Figure 6. Confidences of inferences of corner reference squares.  

4. Conclusion and future works 

This investigation proposed an in-process quality inspection and 
monitoring approach for the STEP process. A laser profiler 
system is employed to characterize the current printed layer as 
a heightmap, which is then sent to a neural network to obtain 
the positions and dimensions of finger print reference squares 
manufactured as an integral part of the produced component. 
The results of the experiments show good performance speed. 
The approach proved a good fit for building a close sensoring 
loop in the STEP process. Future works include using input masks 
to crop the heightmap so that the inference areas can be greatly 
decreased, thus the inference speed can be boosted and other 
geometries other than reference squares can be applied in the 
approach. 
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7.3 Dimensional defects

7.3.1 Introduction
The second joint project focuses on the analysis of dimensional faults observed in the
final products. The optimisation of manufacturing processes is mainly focused on
enhancing the quality of the end products and the dimensions of the final products
are among the features that are taken into consideration. Following the completion
of the production process, the items undergo a thorough examination and several
measurements are recorded for all the end products. The acquired measurements are
then thoroughly examined to determine their conformity with the precise parameters
stated in the initial 3D (CAD) digital model.

At the basis of this project lies the development of a model based on physical
principles to describe the process of heat transfer. The presented model represents
a notable development in understanding the complexities that regulate heat transfer
phenomena, specifically within the framework of the STEP technology. The effective-
ness of this model becomes evident through its comparison with the empirical results
obtained from the end products produced by the STEP technology. This comparative
analysis validates the model’s ability to accurately anticipate real-world manufactur-
ing process outcomes. The alignment or deviation between the model predictions
and the actual product measurements provides valuable insights into the interaction
between heat transport processes and dimensional results.

Furthermore, it is important to note that this project is still undergoing active
investigation of dimensional defects. By consistently prioritising product quality, the
collaborative effort shows a firm commitment to systematically investigating and com-
prehending the various factors that contribute to dimensional deviations. The initial
outcomes are collected in the peer-reviewed conference paper presented in the next
section.

7.3.2 Paper: Thermo-mechanical model for a selective
thermoplastic electrophotographic process for dimensional
defects

H.-P. Yeh, M. Rotari, S. Shan, K. Ælkær Meinert, J. H. Hattel, M. Kulahci, D.
B. Pedersen, and M. Calaon, “Thermo-mechanical model for a selective thermoplas-
tic electrophotographic process for dimensional defects”, in Proceedings of the 23rd
international conference of the european society for precision engineering and nan-
otechnology, pp. 187–188, euspen Press, May 2023.
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Abstract 
Additive manufacturing is a revolutionary method that relieves industries from the geometrical restrictions of their products. In this 
area, the Selective thermoplastic electrophotographic process (STEP) is a breakthrough approach that can obtain fast and high-
volume production. Despite the STEP's excellent characteristics and achievements, the final products present dimensional defects 
which significantly impact their mechanical qualities. This study presents a prediction model of deformation behaviour by a finite 
element-based thermo-mechanical model. Additionally, a dimensional study was conducted on various STEP manufactures products. 
The work presents an analysis of the results of the dimensional measurements, highlighting the position of the products on the 
building plate. The dimensional evaluation of the STEP’s products supports the thermo-mechanical model results.  
 
Additive manufacturing, thermo-mechanical model, dimensional defects, selective thermoplastic electrophotographic process   

 

1. Introduction  

Selective thermoplastic electrophotographic process (STEP) is 
a novel additive manufacturing process. It is a brand-new 
polymer-based additive manufacturing method introduced by 
Evolve Additive Solutions, Inc. This new technology might be 
invaluable addition to injection moulding production by 
producing completely dense, multi-material. The STEP 
technology is mainly composed of two fundamental modules, 
electrophotographic and transfusion modules. The manufacture 
occurs by fusing 2D layers created by the electrophotographic 
module into a 3D structure. STEP's 2D-to-3D deposition method 
involves heating both the incoming 2D layer and the 
component's structure. Next, the incoming 2D layer is fused to 
the final component using pressure. Finally, the transfusion 
module is used for deposition.  

Some research in the STEP machine for process digitalization, 
such as multiphysics modelling, data analysis, sensorics 
collecting and fingerprints, supports its exploration, 
comprehension and optimization. Based on the knowledge, the 
finished product was determined to have dimensional faults that 
may be connected to the transfusion module of the system and 
negatively affect its mechanical properties.  

This paper proposes a thermomechanical model using finite 
elements that predicts the behaviour of deformation [1], [2], [3]. 
The model incorporates multi-material samples consisting of 
component and support material, bringing the model closer to 
the actual printing process. Moreover, the model simulations 
are calibrated using measurement data in order to provide an 
accurate depiction of defects. Using a 3D scanner, the three 
dimensions of the printed products obtained from the STEP 
process are measured and recorded. A brief statistical analysis 
of these results will be provided, highlighting various defects 
along the three dimensions. 

2. Methodology 

2.1. Simulation 
    In this work, the finite element method (FEM) is used to 
simulate the deformation of printing samples shown in Figure 1. 
Based on the knowledge of the STEP machine, the defect is 
induced by the pressure and heat in the transfusion module 
could be concluded. The simulation follows the actual 
manufacturing sequence, i.e., idle, pre-heating, transfusion, and 
cooling. Afterward, the printed build is detached from the 
machine and cooled to room temperature.   

 
 
Figure 1. Dimensions of ISO 527 type 1BA sample 

     
The model consists of heat transfer and mechanics theories. 

Regarding the thermal part, heat conduction, convection, and 
radiation shown in Equation (1) and Equation (2) are taken into 
account. 
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Equation (3) of the mechanical model uses Hooke's general rule 
to calculate stress, strain, and deformation.  

𝜎𝑖𝑗 =
𝐸
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1

2
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𝑣

1−2𝑣
𝛿𝑖𝑗𝛿𝑘𝑙] 𝑒𝑘𝑙
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Figure 2. Simulated strain in three directions 
 

For the thermal model, the simulation was validated with the 
thermal cameras mounted on the machine and the predictive 
thermal profile was consistent with the sensorics. The printed 
tensile test samples were used for the validation of the 
mechanical part of the model, see Section 3.  
 
2.2. Sample measurement data 

To investigate the dimensional flaw, the study considered 
eight batches of seven products each for a total of 56 products. 
Subsequently, the products were cleaned by removing the 
support material and measured using a 3D scanner, ATOS 
ScanBox. 

 
Figure 3. Standard sample vs. printed sample by simulation 

 

 
 
Figure 4. Measurement result for all the dimensions of the STEP’s 
produced products. Figure A: boxplot related to the measurements 
along the 𝑥 axis. Figure B: boxplot of the measurements along the 
𝑛𝑒𝑐𝑘 𝑥 axis. Figure C: boxplot of the measurements along the 𝑦 axis. 
Figure D: boxplot of the measurements along the 𝑧 axis.  
 

Multiple measurements were collected along the 𝑥, 𝑦 and 𝑧 
axes, as depicted in Figure 3. One measurement was taken along 

the 𝑦-axis, 18 measurements were taken at various positions 
along the 𝑧-axis, and 15 measurements were taken along the 𝑥-
axis, including 5 for the neck area. In Figure 4 are collected the 
measurement of the dimensions along the three axes of the 
printed products. Consequently, these measurements are 
compared to the one of the thermo-mechanical models.  

3. Result and discussion 

Based on the process thermo-mechanical model, we get the 
dimensions of the printed sample and compare them with the 
original CAD file. The 3-dimensional defects could be calculated 
as shown in Figure 2. In Table 1 are collected the original 
measurements, model results and STEP’s products analysis 
results. In order to make the dimensions defects more visible, 
we apply scale factor 50 to the deformation. Furthermore, 
Figure 2 shows the nonuniform strain distribution. It indicates 
that two ends of the sample have higher contraction ratios in the 
𝑥 and 𝑦 directions. On the other hand, the middle part of sample 
contracts more in the 𝑧 direction than the others. 
 
Table 1. Dimensions of sample for ISO standard, simulation, and 
measurement  
 

Dimensions  Nominal 
(mm) 

Simulation 
(mm) 

Measurement 
mean (mm) 

Measurement 
std dev (mm) 

x  10 9.96 9.95 0.0387 
neck x 5 4.97 4.998 0.0388 

y  100 99.82 99.87 0.0578 
z  2 1.97 2.01 0.0441 

 
According to Table 1, the simulated printed dimensions closely 

match the average STEP’s measurement result. Based on the 
simulation, the dimensions defects are because of the thermal-
induced residual stress. Besides, the residual stress may cause 
other defects as well, e.g., warpage. The connection between 
manufacturing parameters and the quality of products could be 
obtained and the study also provides an opportunity for product 
optimization to fit the desired tolerance 10 to 20 microns. 
Therefore, the optimal temperature of the process will be our 
next goal.  

4. Conclusion      

The paper suggests a thermo-mechanical numerical model for 
the STEP transfusion module that is preliminary verified using 
part quality measurement to better examine the procedure and 
enhance the quality of the final result. In this research, a 
thorough manufacturing parametric investigation is also 
offered. With the help of this modelling strategy, a reliable 
digital twin of the STEP process could be created and afterwards 
incorporated into the STEP process itself, acting as a source of 
feedback for real-time adjustment of the input process 
parameters to produce a defect-free final product. 
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7.4 Further analysis
In continuation of the research described in Section 7.3, concerning the dimensional
defects, subsequent investigation and analysis have been done. Central to this study
is examining the dimensions of the final products along the three axes in relation
to their position on the building plate. This involves the careful measurement and
documentation of the dimensions for each completed product. This phase centred on
exploring how the position of products on the building plate influences the final prod-
uct dimensions. Various batches of seven ISO 527 tensile bars were obtained, each
batch obtained with a distinct layout or arrangement of the bars. Some examples can
be seen in Figure 7.1.

Figure 7.1. Different layout.

Following the completion of the manufacturing process and the realization of the
final tensor bars, the meteorological evaluation was conducted along the x, y and z
axes, covering the whole three-dimensional space. Refer to Figure 7.2 for visualization.
The study considered 18 batches of seven tensile bars each for a total of 126 bars.
Subsequently, the bars were cleaned by removing the support material and measured
using a 3D scanner, ATOS ScanBox. Multiple measurements were collected along the
three axes.

The primary objective of this investigative phase is to identify and define any
observable patterns, trends, or inconsistencies that might be attributed to the lay-
out of bars inside the building plate. The study aims to examine the relationship
between product positioning and dimensional measurements. The aim is to provide
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Figure 7.2. Product measurement axes.

substantive insights that contribute to the advancement of theoretical and practical
implantation of models and algorithms. The findings of this study aim to enhance
our understanding of how the precise placement of the products, together with any
interactions between products, can lead to differences in their dimensional qualities.

The measurements obtained were analyzed utilizing several statistical models, re-
sulting in the subsequent findings. No specific patterns or trends were identified along
the y−axis in connection with the layout or the position of the bars, refer to Figure
7.3. Hence, we concluded that factors such as product location and layout are not
factors that influence dimensional faults in the y dimension. However, a different
scenario was observed in the x and z dimensions. In these dimensions, the analysis
highlighted the presence of defects and discernible patterns. The observations made
in this analysis provide valuable insights into the nature of defects and variations in
product dimensions, specifically emphasizing the areas where improvements or cor-
rective measures might be needed.
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Figure 7.3. Dimensions assessed along the y-axis.

Dimensional defects z-axis The analysis of the z-axis has revealed the presence
of discernible irregularities and patterns, refer to Figure 7.4. These findings show that
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the thickness of the bars is dependent upon their respective positions on the building
plate.

As seen in Figure 7.4, there is a correlation between the thickness of the differ-
ent bars and their positions within the three-dimensional bulk. This highlights the
importance of spatial allocation in determining the geometric features of the prod-
ucts. Evident from Figure 7.4, bars situated at initial positions exhibit a thickness
that falls below the established criterion of 2 mm. On the other hand, the bars that
are positioned towards the end exhibit a thickness that exceeds the specified value
outlined in the 3D CAD file. This phenomenon transcends the diverse batch layouts
and demonstrates a systematic correlation with the numerical ordering of product
placements.
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Figure 7.4. Dimensions assessed along the z-axis.

A thorough investigation was conducted by the research team, aiming to explore
the potential causal factors underlying the identified defects. A comprehensive range
of variables was considered, taking into account aspects such as the thickness of the
belt used to transport the micro-layers for deposition onto the three-dimensional bulk.
Furthermore, the examination of the equilibrium of pressure applied by the roller
during the pressure process of each subsequent micro-layer onto the existing three-
dimensional bulk has emerged as a potential factor that deserves further investigation.

After various analyzes, particularly indications pointed towards the possibility
of an unbalance in the pressure distribution exerted by the roller during the micro-
layer compaction process. This hypothesis was substantiated through the empirical
evidence delineated in Figure 7.5. The Figure illustrates the settled pressure point for
the pressure in black, the pressure readings obtained from the two sensors positioned
at the opposite edges of the roller are represented by red and blue. The lack of
alignment between the two readings indicates a disparity in the pressure levels.

The observed disparity not only provides support for the hypothesized imbalance
in pressure but also suggests that the forces exerted by the roller are asymmetrical,
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Figure 7.5. Imbalance in the pressure

which might potentially contribute to the occurrence of the reported flaws. Neverthe-
less, the inferred correlation between the detected disparity and the resultant defects
of the bars recorded along the z-axis necessitates further validation. Additional in-
depth examinations are indispensable to authenticate this hypothesis. Rigorous and
methodical tests and assessments are thus mandated to ascertain the causal linkage
between the detected roller pressure imbalance and the discerned dimensional irregu-
larities.

Dimensional defects along the x-axis The investigation has revealed the pres-
ence of discernible defects along the x−axis, as can be seen in Figure 7.6. Similar to
the trends observed along the z-axis, the dimensions of the bars within the x−axis
are also dependent upon their respective positions within the configuration. This phe-
nomenon unveils a distinct pattern characterized by an ”up-and-down” trend. This
trend signifies that products occupying odd positions manifest dimensions larger than
those occupying even positions.

A series of meetings and discussions have taken place in response to the identi-
fied patterns and their likely underlying causes. These sessions aimed to provide a
platform for the collaborative sharing of multidisciplinary views and opinions with
the goal of understanding the underlying causal processes that explain the observed
patterns. The discussion involved the examination of many potential causes that
might potentially contribute to these defects. Some plausible hypotheses included
imbalances in the distribution of heat across the layers during the manufacturing
process, latent material irregularities, and other potentially influential variables that
might contribute to dimensionality fluctuations have been suggested. Nevertheless,
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despite these hypotheses, the exact underlying factor remains unclear, necessitating
the pursuit of more investigation paths.
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Figure 7.6. Dimensions assessed along the x-axis.

Figure 7.7. Experiments of odd and even positions.

Given the complexity and the elusive nature of the underlying cause, a decisive
course of action was established. In the absence of a definitive hypothesis regard-
ing the origins of the observed phenomenon, the research direction was delineated to
encompass the execution of two distinct experiments. Still in the stages of ongoing
development, these experiments aim to provide significant insights into the complex
mechanisms involved. The experimental methodology involves the deliberate cate-
gorization and printing of two distinct sets of items: the first involving exclusively
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products located in even positions, and the second exclusively featuring products sit-
uated in odd positions, refer to Figure 7.7. This approach’s conceptual foundation
is to isolate and elucidate the differential behaviour between these two subgroups,
therefore providing a method to analyse potential causal variables.



CHAPTER8
Conclusions and

future work
This PhD project is part of a large initiative embedded within the MADE organi-
zational framework. The primary objective of this project was to investigate data-
driven methodologies for understanding and optimizing additive manufacturing pro-
cesses, specifically focusing on two prominent technologies: Selective Thermoplastic
Electrophotographic Process (STEP) and Selective Laser Sintering (SLS). These pro-
cesses are advanced and cutting-edge technologies, however, their effectiveness has
been limited by an incomplete comprehension of the underlying mechanisms and a
substantial requirement for further improvement and optimization. In order to effec-
tively address these limitations, extensive research has been carried out, resulting in
the development of a comprehensive range of models. These models have been specif-
ically calibrated to tackle various aspects of the complex issues inherent in these
technologies.

At the beginning of the research project, particular attention was given to the
process variables and the quality of the final products. In this initial study, we
examined the relationship between process variables and quality, specifically focusing
on the identification of key variables that significantly influence the quality outcomes.
In this particular scenario, our focus was on employing a variable selection model
that could effectively take into consideration the high correlation present in the data.
To address this challenge, a method has been developed to identify relevant variables
for quality assessment while accounting for their strong correlation. The method
has been compared with numerous variable selection algorithms, showing excellent
results and outperforming all of its competitors. By employing this methodology in
the manufacturing case, we successfully investigated the relationship between process
data and quality of the products.

In the context of process optimisation and the pursuit of obtaining a high-quality
level of the final products, it is necessary to establish a causal relationship between the
input parameters and output data. Controlled experiments are commonly employed
in order to establish causal relationships. In the context of additive manufacturing,
emerging technologies exhibit increased complexity that introduces an abundance of
input parameters, rendering experimentation an unfeasible opportunity. In this con-
text, we have thus implemented an approach that aims to provide valuable insights
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into the initial experimentation stage. Specifically, this strategy involves the lim-
itation of the input space and a selection of a small number of parameters. This
approach applied in the practical case has allowed us to establish two input variables
that influence the mechanical quality of the final products.

A significant amount of the available data regarding 3D printers pertains to
process-related information. Process data refers to the data that is obtained through-
out the production process for every individual micro-layer that is deposited on the
building bulk. The relationship between final products and the observations obtained
during their manufacture creates a grouping structure within the mode related to the
observations. An approach for unsupervised decomposition of multi-group three-way
arrays has been developed. This methodology aims to build a model and extract the
model loadings that are explanatory of the common structure shared by the groups.
The loadings in this context serve as explanatory factors, revealing the underlying
common structure among the different groups in the data set. This method has
been applied in the context of additive manufacturing, providing valuable insights
for enhancing understanding of the process.

A natural extension of the previous model is transitioning from an unsupervised
model to a supervised model by taking into account the quality variables. The model
is an extension of the Partial Least Squares (PLS) model to the case of multi-group
three-way arrays. This model provides various benefits due to its ability to effectively
exploit the intricate information included in the multi-group three-way arrays and
the correlation with the response variable. The model is also a predictive model,
capable of not only understanding the complex interconnections between input and
output data but also forecasting the outcomes of these linkages. In the context of new
technologies, characterised by complex variables and diverse dynamics, this particular
model represents considerable potential. The proposed model is in its early stages but
has significant potential to make a valuable contribution to technological progress.

A key component of the project is working in collaboration with the other compo-
nents of the broader initiative, namely, three doctoral candidates engaged in diverse
activities related to the 3D printers. Together we engaged in several collaborative
projects that required the collective contribution of each team member’s diverse ex-
pertise, different domain knowledge and prior experience within the realm of research.
In Chapter 7, some of these collaborative projects were presented. The first collabo-
ration project regards a laser profiling system which opens the possibility for online
quality monitoring. The second collaborative project regards the investigation of di-
mensional faults encountered in the final products. These initiatives are currently
ongoing projects and make valuable contributions to the overall enhancement and
improvement of the processes.

The new 3D printing technologies have inspired and driven the development of
new statistical and machine learning models for data analysis. The successful imple-
mentation of the new methodologies developed in the course of this doctoral research
enabled us to effectively address a multitude of challenges and objectives. The estab-
lished methodologies are expected to enhance the spectrum of data analysis models
and provide support to academics and practitioners in addressing their analytical
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challenges. The developed models have been utilised in the context of the additive
manufacturing field. The findings have been examined in collaboration with process
engineers, contributing to the advancement of the knowledge and understanding of
the production processes. Nevertheless, it is important to acknowledge that the jour-
ney of process optimization is ongoing since there is a significant demand for more
advancements and improvements in enhancing the reproducibility of the machinery
and overall optimisation and stability.

8.1 Future work

The close collaboration with other PhD students of the group fostered the opportu-
nity to engage in many projects utilising diverse methodologies and interfacing with
models from many disciplines. Throughout the course of these projects, a significant
emphasis has been placed on comparative analysis. Numerous discussions centred
around the insights gained from each model, shedding light on their respective un-
derlying principles and conceptual foundations. The results obtained from different
models, each representing a unique perspective, have been systematically evaluated
and contrasted. This comparative assessment has led to a deeper understanding of
each model type’s strengths, limitations, and potential applications. These inter-
actions have contributed to the improvement of individual comprehension and also
stimulated the amalgamation of novel concepts and methodologies by fostering the
interchange of varied perspectives.

The dynamic of the collaborative group has facilitated the use of several techniques
and methodologies, and numerous models, both data-driven and physics-based, have
been developed. The close collaboration between the data and physically driven find-
ings has enabled the potential integration of not only the final outcomes but also
the underlying models. This paves the way for the development of new models that
can be a combination or hybrid models between both worlds. The essence of collab-
oration between these distinct projects gives the opportunity for the development of
a remarkable synergy. This collaborative platform provides an interesting environ-
ment for the development and implementation of innovative models that effectively
integrate components from both areas.

Data-driven models include many models ranging from statistical, machine learn-
ing to artificial intelligence models. Statistical models aim to characterize and capture
the underlying patterns and distributions within the collected data. Statistical mod-
elling allows for hypothesis testing, parameter estimation, and prediction, facilitating
a quantitative understanding of the process dynamics. Machine learning techniques
have emerged as powerful tools due to their ability to handle complex and non-linear
relationships. Machine learning and AI models such as artificial neural networks, de-
cision trees, support vector machines and ensemble methods aim to uncover hidden
patterns and make accurate predictions based on the available data. These mod-
els excel at capturing intricate dependencies and non-linear dynamics, making them
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suitable for diverse applications within process data analysis.
On the other hand, physics-based models or as often referred to as first-principles

models or mechanistic models, incorporate domain knowledge and fundamental princi-
ples of the underlying physical processes into the modelling framework. These models
are often derived from first principles, mathematical equations, or physical laws that
govern the system being studied. By combining process knowledge with experimental
data, physics-based models can simulate and predict the behaviour of the production
process accurately. They provide valuable insights into the physical phenomena and
mechanisms that drive the process, enabling deeper understanding and facilitating
process optimization.

The integration of physics-driven models with data-driven models establishes a
foundation for the development of hybrid models that incorporate the advantageous
qualities and collaborative effects inherent in each individual technique. Integrating
physics-based models, which are based on fundamental principles and supported by
theoretical frameworks, with statistical models, which extract patterns and correla-
tions from real-world data, leads to a comprehensive explanation of complex events.
This type of model has the potential to exploit the precision of theoretical frame-
work while using the predictive power obtained from empirical data. These hybrid
models could, by design, synthesize insights and principles from data-driven and
physics-based approaches, resulting in an approach that incorporates the strengths
and overcomes the limits of both methodologies.

This journey towards hybrid models, although ongoing, holds immense promise.
The resultant models have the potential to provide a complete and all-encompassing
representation of the complex systems under investigation. By integrating empirical
data with established physical laws, these models are expected to provide valuable
insights that would be difficult to get using either technique independently.
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