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Abstract
This paper considers a Bayesian approach for inclusion detection in nonlinear
inverse problems using two known and popular push-forward prior distribu-
tions: the star-shaped and level set prior distributions. We analyze the con-
vergence of the corresponding posterior distributions in a small measurement
noise limit. The methodology is general; it works for priors arising from any
Hölder continuous transformation of Gaussian random fields and is applicable
to a range of inverse problems. The level set and star-shaped prior distributions
are examples of push-forward priors under Hölder continuous transforma-
tions that take advantage of the structure of inclusion detection problems. We
show that the corresponding posterior mean converges to the ground truth in a
proper probabilistic sense. Numerical tests on a two-dimensional quantitative
photoacoustic tomography problem showcase the approach. The results high-
light the convergence properties of the posterior distributions and the ability of
the methodology to detect inclusions with sufficiently regular boundaries.
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1. Introduction

The Bayesian approach to inverse problems has in recent decades generated considerable
interest due to its ability to incorporate prior knowledge and quantify uncertainty in solutions
to inverse problems, see [1, 2]. A commonly recurring objective in inverse problems for ima-
ging science is to recover inhomogeneities or inclusions, i.e. piecewise constant features, in a
medium; applications range from cancer detection in medical imaging [3, 4] to defect detec-
tion in material science [5, 6]. In a Bayesian framework, this can be tackled by designing a
prior distribution that favors images with these features.

An optimization-based approach can address this by parametrizing the relevant subset of
the image space and minimizing a functional over the preimage of this parametrization, see for
example [7]. This is visualized in figure 1, where we consider the parametrization Φ defined
on a linear space Θ and giving rise to the subset Φ(Θ) of the image space

L2Λ(D) = {γ ∈ L2(D) : Λ−1 ⩽ γ ⩽ Λ a.e.},

where D is a bounded and smooth domain in Rd, d= 2,3 and Λ> 0 is a constant. Such
approaches benefit computationally from the fact that the set of images with inclusions, i.e.
Φ(Θ), form a low-dimensional subset of the image space L2Λ(D). In the Bayesian framework,
a related approach makes use of a push-forward distribution as the prior distribution, i.e. the
distribution of a transformed random element ofΘ. This often leads to strong a priori assump-
tions, as the prior only gives mass to the range of the parametrization. More classical prior
distributions including Laplace-type priors, see for example [8], and other heavy-tailed distri-
butions often fail to take advantage of the low dimensionality of the image subset.

In this paper, we consider a Bayesian approach that captures this idea for two paramet-
rizations used in detection of inclusions for nonlinear inverse problems: the star-shaped set
and level set parametrizations. These parametrizations are studied rigorously in [9–11] and
remain popular to Bayesian practitioners: we mention [1, 12–16] in the case of the star-shaped
inclusions and [12, 17–21] for the level set inclusions, see also references therein.

The solution to the inverse problem in the Bayesian setting is the conditional distribution
of the unknown given data, referred to as the posterior distribution. The posterior distribution
has proven to be well-posed in the sense of [2] for such parametrizations. This means that
the posterior distribution continuously depends on the data in some metric for distributions.
This property implies, for example, that the posterior mean and variance are continuous with
respect to the data, see [22]. However, such results give no guarantee as to where the posterior
distribution puts its mass.

Amore recent framework provided in [23] using ideas from [24], see also [25], gives tools to
analyze the convergence of the posterior distribution for nonlinear inverse problems. Such res-
ults, known as ‘posterior consistency’, address whether the sequence of posterior distributions
arising from improving data (in a small noise or large sample size limit) gives mass approxim-
ating 1 to balls centered in the ground true parameter γ0 generating the data. Nonlinearity in
the forward map and parametrization makes consistency results for Gaussian posterior distri-
butions, as in [26], inapplicable. Currently, the setting of [23] and similar approaches require
smoothness of the parameter of interest. A crucial condition is that the parameter set that is
given most of the mass by the prior, has small ‘complexity’ in the sense of covering num-
bers, see [24, theorem 2.1] or [25, theorem 1.3.2]. Using Gaussian priors, this parameter set
is typically a closed Sobolev or Hölder norm ball, see [25, theorem 2.2.2] or [23]. However,
such priors do not give sufficient mass to discontinuous parameters to conclude consistency. In
this paper, we aim to address this, at least partially, by parametrizing the set of discontinuous
parameters from a linear space Θ of sufficiently smooth functions.
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Figure 1. A visiualization of the parametrization Φ : Θ→ L2Λ(D) and forward map G :

L2Λ(D)→Y .

We aim to recover an element γ, which we call the image or the physical parameter, in
a subset Φ(Θ) of L2Λ(D) for some continuous map Φ : Θ→ L2Λ(D). We consider a nonlinear
forward map G : L2Λ(D)→Y mapping into a real separable Hilbert space Y with inner product
〈·, ·〉 and norm ‖ · ‖. We refer again to figure 1 for an overview of this setup. This setting allows
us to make use of the framework provided in [23], but transfer the complexity condition from
subsets of L2Λ(D) to subsets of Θ, see section 3.2. In the context of inclusion detection, this
means we can detect inclusions with sufficiently smooth boundaries.

In this paper, we consider forward maps G that are continuously invertible when restric-
ted to subsets of Φ(Θ), see condition 2. We call this property conditional continuity of G−1.
Numerous inverse problems satisfies such a condition. In the context of inclusion detection,
G can, for example, arise as the forward map in conductivity imaging or in quantitative ther-
moacoustic tomography, see section 7 for references and a discussion. Our contributions can
be summarized as follows:

• We present a posterior consistency result for the general setting mentioned above, when the
parametrization Φ satisfies mild conditions in regularity. We use the framework provided by
[23] extending to Hölder continuous G and push-forward priors. In particular, this gives an
estimator, the posterior mean, which converges in probability to the true physical parameter
in the small noise limit. Formally, this means there is an estimator γ̂(Y) defined for noisy
measurements Y depending on the noise level ε> 0 such that

‖γ̂(Y)− γ0‖L2(D) → 0

in probability as ε→ 0. This statement will be made precise in section 2. Furthermore, the
rate of convergence is determined in part by the smoothness of elements in Θ and the regu-
larity of the parametrization.

• We show that two parametrizations for inclusion detection, a star-shaped set parametrization
and a smoothened level set parametrization, satisfy the conditions for this setup. This verifies
and quantifies the use of such parametrizations.

• We numerically verify the approach based on the two parametrizations in a small noise limit
for a nonlinear PDE-based inverse problem using Markov chain Monte Carlo (MCMC)
methods. We consider a two-dimensional quantitative photoacoustic (QPAT) problem of
detecting an absorption coefficient. We derive a new stability estimate following [27, 28].

We note that the framework of [23] in e.g. [29, 30] shows consistency for ‘regular link func-
tions’Φ (defined in [31]), which are smooth and bijective. The archetypal example isΦ = exp
or a smoothened version to ensure positivity of the physical parameter γ. As we shall see,
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injectivity and inverse continuity are not necessary for the proofs when we want to show
consistency in L2Λ(D). One novelty of our work is to show that this observation has relev-
ance: we seek to recover the physical parameter γ instead of a non-physical parameter in Θ
that generated it. As we shall see, a natural parametrization for star-shaped inclusions is Hölder
continuous from a suitable space Θ to L2Λ(D). The same holds true for a smoothened level set
parametrization, which we will encounter in section 4.2.

The structure of the paper can be summarized as follows. In section 2, we recall a few
key elements of the Bayesian framework in a ‘white noise’ model as outlined in [2] and [32,
section 7.4], including the notion of posterior consistency with a rate. In section 3, we show
that Hölder continuity of Φ, some smoothness of elements in Φ(Θ) and conditional continuity
of G−1, suffice to show that the posterior mean converges to the ground truth γ0 in L2(D) as
the noise goes to zero. Section 4 considers these conditions for the level set and star-shaped set
parametrizations, which are well-known in the literature. In section 5, we consider the two-
dimensional QPAT tomography problem suited for piecewise constant parameter inference.
Then, section 6 gives background to our numerical tests and results that emulate the theoretical
setting of section 3. We present conclusive remarks in section 7.

In the following, we let random variables be defined on a probability space (Ω,F ,Pr). For
a metric space Z1 the Borel σ-algebra is denoted by B(Z1). If F : Z1 →Z2 is a measurable
map between the measure space (Z1,B(Z1),m) and the measurable space (Z2,B(Z2)), then
Fm denotes the push-forward measure defined by Fm(B) = m(F−1(B)) for all B ∈ B(Z1).
We denote by L2(Ω,Pr) the space of real-valued square integrable measurable functions from
(Ω,F ,Pr) to (R,B(R)). When Pr is the Lesbegue measure on R, we simply write L2(Ω). We
call probability measures defined on B(Z1) Borel distributions.

2. The Bayesian approach to inverse problems

Bayesian inference in inverse problems centers around a posterior distribution. This is formu-
lated by Bayes’ rule once a prior distribution in L2Λ(D) has been specified and the likelihood
function has been determined by the measurement process. In this paper, we consider a ‘con-
tinuous’ model of indirect observations

Y= G(γ)+ εnξ, (1)

for a continuous forward map G : L2Λ(D)→Y , where the separable Hilbert space Y has an
orthonormal basis {ek}∞k=1. Here ξ is ‘white noise’ in Y defined below in (4). We denote the
noise level by εn := σ√

n for some σ> 0 and n ∈ N, which has this convenient form to study
a countable sequence of posterior distributions in decreasing noise, i.e. for growing n. When
we write Y, it is understood that this depends on n and γ. The rate n−1/2 is natural: if Y is
a subspace of Hölder continuous functions on a bounded domain, this observation model is
equivalent to observing n discrete point evaluations of G(γ) with added standard normal noise
as n→∞, see [32] and [33, section 1.2.3].

Given a Borel prior distribution Π on L2Λ(D), the posterior distribution Π(·|Y) is propor-
tional to the product of the likelihood and prior. Indeed, according to Bayes’ rule, if Y is
finite-dimensional, the posterior distribution has a density (Radon–Nikodym derivative) of the
form

dΠ(·|y)
dΠ

(γ) =
1
Z
exp

(
− 1
2ε2n

‖G(γ)− y‖2
)
, ∀y ∈ Y

4
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where Z> 0 is a constant, see for example [22, 34]. This is well-defined for almost all y under
the marginal distribution of Y. The relevance of this object emerges, when evaluating it in a
realization Y(ω) = y. Using inner product rules we can rewrite this as

Π(B|Y) = 1
Z

ˆ
B
exp

(
1
ε2n
〈Y,G(γ)〉− 1

2ε2n
‖G(γ)‖2

)
Π(dγ), B ∈ B(L2Λ(D)), (2)

where the contribution of Y is absorbed in the constant Z> 0. The purpose of the following
paragraphs is to argue that this formula remains valid, when Y is infinite-dimensional with the
interpretation that 〈Y,G(γ)〉 is a Gaussian random variable defined by

〈Y,y〉 := 〈G(γ),y〉+ εnW(y), (3)

where W is a white noise process on Y satisfying E[W(y)] = 0 and E[W(y)W(y ′)] = 〈y,y ′〉,
see [33, example 2.1.11]. To this end, let

ξ :=
∞∑
k=1

ξkek, ξk
i.i.d.∼ N(0,1), (4)

which is convergent in Y− in the mean square sense, see [22, section 2.4], where Y− is the
Hilbert space Y−, see also [32, section 7.4], defined by

Y− :=

{
f =

∞∑
k=1

fkek : ‖f‖2− :=
∞∑
k=1

λ2k f
2
k <∞

}
for λk > 0 and {λk}∞k=1 ∈ ℓ2. Note ξ is a Gaussian random element of Y−, since it is the
Karhunen–Loeve expansion of a mean zero Gaussian random element with covariance oper-
ator K : Y− →Y− defined by Kek = λ2kek, see [22]. Then Y is also a Y−-valued Gaussian
random element, since it is a translation of εnξ by an element in Y . We denote the distributions
of εnξ and Y in Y− by Pn and Pγ

n , respectively. We can think of Pγ
n as the data-generating

distribution indexed by γ, the physical parameter generating the data, and n, which controls
the noise regime.

The likelihood function arises as the density (Radon–Nikodym derivative) of Pγ
n with

respect to Pn. This is a consequence of the Cameron–Martin theorem in the Hilbert space
Y . The theorem gives the likelihood function as

pγn (Y) :=
dPγ

n

dPn
(Y) = exp

(
1
ε2n
〈Y,G(γ)〉− 1

2ε2n
‖G(γ)‖2

)
,

here evaluated in Y, see [33, proposition 6.1.5]. See also a derivation in [32, section 7.4], for
which it suffices that γ 7→ G(γ) is continuous from (the standard Borel space) L2Λ(D) with the
L2(D)-topology into Y .

Then Bayes’ rule [34, p 7] formulates a posterior distribution as a measure in L2Λ(D) as in
the right-hand side of (2), well-defined for almost all Y. According to [34], this equals almost
surely a Markov kernel, which we will call the posterior distribution and also denote it by
Π(·|Y). That is to say that B 7→Π(B|Y(ω)) is a measure for every ω ∈ Ω and ω 7→Π(B|Y(ω))
is measurable for every B ∈ B(L2Λ(D)). In particular, ω 7→Π(B|Y(ω)) is a [0,1]-valued random
variable.

2.1. Convergence in probability

In preparation for the subsequent section, we recall the notion of convergence in probability.
Let tn > 0 be a decreasing sequence going to zero. For a fixed γ0 ∈ L2Λ(D) and a sequence of
measurable functions fn : Y− → R we say that the sequence of random variables {fn(Y)}∞n=1

5
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converges to υ ∈ R in Pγ0
n -probability with rate tn as n→∞ if there exists a constant C> 0

such that

Pγ0
n (y ∈ Y− : |fn(y)− υ|⩽ Ctn)→ 1, (5)

as n→∞. We consider the following two cases, where we recall that both the posterior dis-
tribution and Y depend tacitly on n.

(i) For a sequence of sets {Bn}∞n=1 in B(L2Λ(D)), we could claim that

Π(Bn|Y)→ 1 in Pγ0
n − probability,

with rate tn as n→∞. That is, fn(Y) = Π(Bn|Y) and υ= 1. If this is the case for Bn := {γ :
‖γ− γ0‖L2(D) ⩽ C0rn} for some decreasing sequence rn > 0 going to zero and constant
C0 > 0, we say that the posterior distribution contracts around or is consistent in γ0 at rate
rn.

(ii) Denote by E[γ|Y] the mean (‘posterior mean’) with respect to Π(·|Y). This is defined in
the sense of a Bochner integral,

E[γ|Y] :=
ˆ
L2Λ(D)

γΠ(dγ|Y),

which is well-defined by [35, theorem 2], since for all ω ∈ Ω

ˆ
L2Λ(D)

‖γ‖L2(D) dΠ(dγ|Y(ω))⩽ Λ
√
vol(D)<∞.

Then ω 7→ E[γ|Y(ω)] is an L2(D)-valued random element by the definition of the Bochner
integral and by the measurability of pointwise limits of measurable functions, see [36,
theorem 4.2.2]. We could claim that

‖E[γ|Y]− γ0‖L2(D) → 0 in Pγ0
n − probability,

with rate tn as n→∞. That is, fn(Y) = ‖E[γ|Y]− γ0‖L2(D) and υ= 0.

2.2. Posterior consistency

In this section we recall sufficient conditions posed in [23], see also [25], such that the posterior
distribution in our specific setup is consistent. More specifically, we recall for which ground
truths γ0 ∈ L2Λ(D), forward models G and prior distributions Π

Π(γ : ‖γ− γ0‖L2(D) ⩽ Cr̃n|Y)→ 1 in Pγ0
n − probability, (6)

as n→∞ for some positive decreasing sequence r̃n going to zero. A consequence of this
result, under additional assumptions on the prior, is that the posterior mean converges to γ0 in
Pγ0
n -probability, see [25, theorem 2.3.2] or [34, theorem 8.8],

‖E[γ|Y]− γ0‖L2(D) → 0 in Pγ0
n − probability, (7)

with rate rn as n→∞. This is the case of (ii) above. In the nonlinear inverse problem setting,
posterior consistency in the sense of (6) follows from a two-step procedure with the use of
conditional stability estimates.

6
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Step 1 The first step reduces convergence of {Π(B̃n|Y)}∞n=1 from sets of the form

B̃n = {γ ∈ L2Λ(D) : ‖γ− γ0‖L2(D) ⩽ Cr̃n}

to sets of the form

Bn = {γ ∈ L2Λ(D) : ‖G(γ)−G(γ0)‖⩽ Crn,γ ∈ An}.

Indeed, for specially chosen subsets An ⊂ L2Λ(D) which may depend on n, assume we
have the estimate

‖γ1 − γ2‖L2(D) ⩽ ‖G(γ1)−G(γ2)‖ν , (8)

for all γ1,γ2 ∈ An and some ν > 0. Then Bn ⊂ B̃n and hence

Π(Bn|Y)⩽Π(B̃n|Y), (9)

where r̃n = rνn .
Step 2 The second step involves showing that Π(Bn|Y) converges to 1 in Pγ0

n -probability as
n→∞. This is posterior consistency on the ‘forward level’.

Combining Step 1 and Step 2, we find that Π(B̃n|Y) converges to 1 in Pγ0
n -probability as

n→∞. The ‘conditional’ stability estimate of the first step is of independent interest for many
inverse problems in literature and usually requires an in-depth analysis of the inverse problem
at hand. In this paper we treat first (8) as an assumption, see condition 2. Although anymodulus
of continuity will do for the first step in this two-step procedure, for our concrete example
in photoacoustic tomography we will show a Lipschitz stability estimate that holds for all
γ ∈ L2Λ(D), see section 5. Our main motivation for including An in the analysis is to keep the
exposition generally applicable.

One of the contributions of [23, 25] is to address Step 2 for a random design regression
observation model using theorem 2.1 in [24] and the equivalence between the distance (semi-
metric)

dG(γ1,γ2) := ‖G(γ1)−G(γ2)‖

and the Hellinger distance, see [25], of the data-generating distributions (corresponding to our
pγn ). Theorem 28 in [32], see also [33, theorem 7.3.5], adapts the proof to the observation
model (1), which is what we will use. One can see this second step as showing posterior con-
sistency in G(γ0) at rate rn for the push-forward GΠ(·|Y) as in [37]. Below, we use the covering
number N(A,d,ρ) for a semimetric d, which denotes the minimum number of closed d-balls
of radius ρ> 0 needed to cover A, see appendix A for a precise definition. Then the condition
to complete Step 2 is as follows.

Condition A. LetΠ =Πn be a sequence of prior distributions in L2Λ(D). Let G be the forward
model G : L2Λ(D)→Y and γ0 ∈ L2Λ(D) the ground truth. Let rn satisfy rn = n−a for some 0<
a< 1/2. Suppose that,

A.1 the prior gives enough mass to contracting balls BG(γ0,rn) := {γ : dG(γ,γ0)⩽ rn}.
Π(BG(γ0,rn))⩾ e−C1nr

2
n , C1 > 0, (10)

7
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A.2 there exist sets An that are almost the support of Π in the sense that

Π(L2Λ(D) \An)⩽ e−C2nr
2
n , C2 > C1 + 4, (11)

A.3 and that there exists a constant m0 > 0 such that

logN(An,dG ,m0rn)⩽ C3nr
2
n, C3 > 0, (12)

all for n large enough.

Condition A.1 is a sufficient condition such that the denominator of the posterior distri-
bution cannot decay too fast as n→∞. This is helpful when showing Π(Bcn|Y)→ 0 in Pγ0

n -
probability as n→∞. On the other hand conditions A.2 and A.3 are conditions that give
control over the numerator in a sense that is made precise in the proof of theorem 2.1 in [24]
(or for example theorem 28 in [32]). It is also a trade-off; the sets An should be large enough
such that they are almost the support of the prior, but small enough such that the covering
number increases sufficiently slowly when n→∞. In the general case, Step 2 is completed
by the following result proved in appendix B.

Theorem 2.1. Let Π(·|Y) be the sequence of posterior distributions arising for the model (1)
with γ0 ∈ L2Λ(D), G and prior distributions Π =Πn satisfying condition A for some rate rn.
Then, there exists C0 = C0(C2,C3,m0,σ) such that

Π(BG(γ0,C0rn)∩An|Y)→ 1 in Pγ0
n − probability, (13)

with rate e−bnr2n for all 0< b< C2 −C1 − 4 as n→∞.

Given the preceding result, we can conclude posterior consistency in γ0 at rate r̃n as in Step
1, if we have a conditional stability estimate as (8).

2.3. Markov chain Monte Carlo

While section 2.1 concludes in an abstract way the usefulness of the posterior distribution, in
this section we briefly recall methods to approximate it. We consider MCMC methods that
approximate E[γ|Y] (or other statistics) from averages of samples from a Markov chain that
has the posterior distribution as its stationary distribution. Since the composition G ◦ΦmapsΘ
into Y continuously by assumption, given a prior distribution Πθ inΘ, there exists a posterior
distribution Πθ(·|Y) in Θ of the form

Πθ(B|Y) :=
1
Z

ˆ
B
exp

(
1
ε2n
〈Y,G(Φ(θ))〉− 1

2ε2n
‖G(Φ(θ))‖2

)
Πθ(dθ), B ∈ B(Θ). (14)

Naturally, if Π =ΦΠθ, then by a change of variables

Π(·|Y) = ΦΠθ(·|Y),

see for example [37, theorem B.1], i.e. θ ∼Πθ(·|Y) implies Φ(θ)∼Π(·|Y). This gives rise to
the following ‘high-level’ algorithm: given a realization y ∈ Y− of Y,

1. choose θ(0) ∈Θ and K> 0,
2. generate {θ(k)}Kk=1 in Θ using θ(0) as initial condition with an MCMC method targeting

Πθ(·|y), and
3. return {Φ(θ(k))}Kk=1.

8
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For our numerical examples, we use the preconditioned Crank–Nicolson (pCN) MCMC
method, see [38]. This method uses only single evaluation of the log-likelihood function every
iteration and is hence attractive for expensive PDE-based forwardmaps. It is well-definedwhen
Θ is a Hilbert space and possesses favorable theoretical properties, see [38, 39]. The idea to
generate samples from Π(·|y) by pushing forward samples also appears in certain reparamet-
rizations of posterior distributions for the use of hyperparameters, see [40].

3. Posterior consistency using parametrizations

In this section, we follow [23, 25] in their approach to satisfy condition A. In the case where
Π =ΦΠθ forΠθ Gaussian andG ◦ΦLipschitz continuous, the approach is the same.We give a
brief recap for the case where G ◦Φ is Hölder continuous for the convenience of the reader. We
tackle this by introducing three new conditions convenient for an inverse problem setting. We
oppose this to condition A, which is general and applicable in many statistical inference prob-
lems. As our base case, we assumeΘ= Hβ(X ), where X is either the d′-dimensional torus or
a bounded Lipschitz domain X ⊂ Rd ′

, d ′ ⩾ 1 and β > d ′/2. We include here the torus in our
considerations, since it is a numerically convenient setting. For more general parametrizations
for inclusion detection, we shall need small deviations from this setting. However, these cases
will take the same starting point of Hβ(X ) in section 4. We begin by stating conditions on Φ,
G and Π so that condition A is satisfied. To do this, we introduce the following subset of Θ.

Sβ(M) = {θ ∈Θ : ‖θ‖Hβ(X ) <M}.
We then require the following conditions of Φ.

Condition 1 (On the parametrization Φ). For any θ1,θ2 ∈ Sβ(M) for some M> 0, let

‖Φ(θ1)−Φ(θ2)‖L2(D) ⩽ CΦ‖θ1 − θ2‖ζL∞(X ) (15)

for some constant CΦ(M)> 0 and 0< ζ <∞.

That is, we require at least conditional Hölder continuity of the parametrization mapΦ. The
L∞(X ) topology is not necessary for what follows and can be generalized to any Lp, p⩾ 1
or Hs-norm, s< β. Similarly, we require conditional forward and inverse Hölder continuity of
the forward map G.

Condition 2 (On the forward map G). For any γ1,γ2 ∈ Φ(Sβ(M)), let

‖G(γ1)−G(γ2)‖⩽ CG‖γ1 − γ2‖ηL2(D)
for some constants CG(M)> 0 and 0< η <∞. In addition, let

‖γ1 − γ2‖L2(D) ⩽ f(‖G(γ1)−G(γ2)‖),
for some increasing function f : R→ R, which is continuous at zero with f(0) = 0.

We have the following condition on the prior distributions Π we consider. They should be
push-forward distributions of a scaled Gaussian prior distribution in Θ.

Condition 3 (Prior Π). Let Π ′
θ be a centred Gaussian probability measure on Hβ(X ),

β > d ′/2, with Π ′
θ(H

β(X )) = 1. Let the reproducing kernel Hilbert space (RKHS), see [34],
(H,‖ · ‖H) of Π ′

θ be continuously embedded into Hδ(X ) for some δ > β. Then Πθ is the
distribution of

θ = na−
1
2 θ ′, θ ′ ∼Π ′

θ (16)

for a as in condition A. Then let Π =ΦΠθ.

9
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This gives the following structure

H⊂ Hδ(X )⊂ Hβ(X ) = Θ. (17)

If one chooses for example a Matérn covariance, see [41], such that Π ′
θ(H

β(X )) = 1, then
H= Hδ(X ) with δ = β+ d ′/2, see example 11.8 and lemma 11.35 in [34] or [25, theorem
6.2.3]. The scaling in (16) essentially updates the weight of the prior term to go slower to zero.
Indeed, dividing through by the factor ε−2

n appearing in the data-misfit term, the prior term
scales as ε2nn

1−2a ∼ r2n. This term play the role of the ‘regularization parameter’ in [42]. Note
that limn→∞ rn = 0 and limn→∞ ε2n/r

2
n = 0, as is needed for the convergence of Tikhonov regu-

larizers for example, see [42, theorem 5.2]. The scaling (16) is also common in the consistency
literature, see for example [23]. In our setting, it ensures that samples are with high probability
in a totally bounded set An, as was called for in conditions A.2 and A.3. We note for β > d ′/2
that Π ′

θ is also a Gaussian measure on the separable Banach space C(X ) endowed with the
usual supremum norm ‖f‖∞ := supx∈X |f(x)|. This is a consequence of a continuous Sobolev
embedding and [43, exercise 3.39].

Under conditions 1–3, the lemmas in the subsequent sections ensure that condition A is
satisfied. Then we have the following theorem for posterior consistency at γ0 ∈ Φ(H) using
the push-forward prior Π =ΦΠθ for Πθ a Gaussian distribution satisfying condition 3.

Theorem 3.1. Suppose conditions 1–3 are satisfied for β > d ′/2, and γ0 ∈ Φ(H). Let Π(·|Y)
be the corresponding sequence of posterior distributions arising for the model (1). Then there
exists C0 > 0 such that

Π(‖γ− γ0‖L2(D) ⩽ f(C0rn)|Y)→ 1 in Pγ0
n − probability,

where rn = n−a with

a=
ηζδ

2ηζδ+ d ′ . (18)

The rate of convergence in probability is e−bnr2n for any b> 0 choosing C0 > 0 large enough.

Proof. Note first that lemma 3.4 shows that condition A.1 is satisfied for some C1 =
C1(CΦ,CG , ζ,η,d ′, δ,θ0,Π

′
θ). Given b> 0, lemma 3.2 states that we can choose M>

C(C2,Π
′
θ, δ,d

′) such that condition A.2 is satisfied and 0< b< C2 −C1 − 4. For this choice
ofM, lemma 3.3 gives m0 = m0(CΦ,CG , ζ,η,M) and C3 = C3(δ,M,d ′,X ) such that condition
A.3 is satisfied. Then, by theorem 2.1, there exists C0(C2,C3,m0)

Π(BG(γ0,C0rn)∩An|Y)→ 1 in Pγ0
n − probability,

with rate e−bnr2n as n→∞. Then the wanted result is a consequence of (9).

Posterior consistency with a rate as in the preceding theorem often leads to the convergence
of related estimators with the same rate, see [34]. Here, we repeat an argument found in [25]
to conclude that the posterior mean converges in Pγ0

n -probability to γ0 as n→∞.

Corollary 1. Under the assumptions of theorem 3.1, the posterior mean E[γ|Y] in L2(D) sat-
isfies for some constant C> 0 large enough

‖E[γ|Y]− γ0‖L2(D) → 0 in Pγ0
n − probability

with rate f(Crn) as n→∞.

10
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Proof. The proof of theorem 2.3.2 in [25] applies here, since Φ maps into L2Λ(D) by assump-
tion and henceˆ

L2Λ(D)
‖γ− γ0‖2L2(D)Π(dγ) =

ˆ
Θ

‖Φ(θ)−Φ(θ0)‖2L2(D)Πθ(dθ)⩽ 4Λ2|D|.

3.1. Excess mass condition A.2

To motivate more precisely the scaling of the prior and the form of An, we recall [23, lemma
5.17]:

Π ′
θ(‖θ ′‖Hβ(X ) >M)⩽ e−CM2

,

for all M large enough and some fixed C> 0 depending on Π ′
θ. Then

Πθ(‖θ‖Hβ(X ) >M) = Π ′
θ(‖θ ′‖Hβ(X ) >Mn1/2−a)⩽ e−CM2n1−2a

= e−CM2nr2n . (19)

Hence, Πθ charges Sβ(M) with sufficient mass in relation to Condition A.2. However, we can
consider a smaller set with the same property. Define

An := Φ(Θn), Θn := {θ = θ1 + θ2 : ‖θ1‖∞ ⩽Mr̄n,‖θ2‖H ⩽M}∩Sβ(M), (20)

for r̄n := r
1
ηζ
n .

Lemma 3.2. If condition 3 is satisfied and rn = n−a for

a=
ηζδ

2ηζδ+ d ′ , (21)

then condition A.2 is satisfied for An defined by (20).

Proof. [25, theorem 2.2.2 and exercise 2.4.4] shows that for M> C(C2,Π
′
θ, δ,d

′)

Πθ(Θ \Θn)⩽ e−C2nr
2
n ,

for any given C2 > 0, since (r̄nn1/2−a)−b = nr2n for b= 2d ′/(2δ− d ′). Then,

Π(L2Λ(D) \An) = Πθ(Φ
−1(L2Λ(D) \An)), =Πθ(Θ \Θn)⩽ e−C2nr

2
n , (22)

as follows from (19).

3.2. Metric entropy condition A.3

Nowwe show that the sets on the formAn defined by (20) satisfy conditionA.3. This is straight-
forward, when Φ is Hölder continuous by lemma A.1. We also recall that an upper bound on
the covering number of Sobolev norm balls is well-known, see lemma A.2.

Lemma 3.3. Suppose conditions 1 and 2 are satisfied. Then condition A.3 is satisfied for An
as in (20) and a as in (21).

Proof. Define for θ ′ ∈ C(X ) and ρ> 0 the norm ball B∞(θ ′,ρ) := {θ ∈ C(X ) : ‖θ− θ ′‖∞ ⩽
ρ} and denote by B∞(ρ) the ball centered in θ ′ = 0. Recall (20), for which we note Θn ⊂
(B∞(Mr̄n)+Sδ(CM))∩Sβ(M) for some constant C> 0 by condition 3. Then applying
lemma A.3 for ρ= rn

N(Θn,‖ · ‖∞,2Mrn)⩽ N(Sδ(CM),‖ · ‖∞,Mrn),

11
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Now using lemma A.1 (i) and the Hölder continuity of G ◦Φ on Sδ(M), there exists a constant
m0 = m0(η,ζ,CΦ,CG ,M) such that for any n> 0 large enough,

logN(An,dG ,m0rn)⩽ logN(Θn,‖ · ‖∞,2Mr̄n),
⩽ logN(Sδ(CM),‖ · ‖∞,Mr̄n),

⩽ C3r̄
− d ′

δ
n = C3nr

2
n, (23)

where C3 = C3(δ,M,d ′,C,X ) and where we used lemma A.2 and (21).

3.3. Small ball condition A.1

In this section, we consider the strong assumption that γ0 ∈ Φ(H). We refer the reader to [44]
for a more general case where θ0 is only in the closure of H in Θ. However, this extension is
not immediately compatible with the scaling (16). What follows in this section is based on the
work [25]. We extend this to the case of Hölder continuous maps G ◦Φ in a straight-forward
manner. Below we need the scaled RKHSHn := na−1/2H= {na−1/2h : h ∈H}, see condition
3, with norm

‖h‖Hn = n1/2−a‖h‖H.

This is the RKHS associated with Πθ, see [43] or [33, exercise 2.6.5].

Lemma 3.4. Let Π satisfy condition 3 and let γ0 =Φ(θ0) for some θ0 ∈H. If condition 1 and
2 are satisfied, then Condition A.1 is satisfied for a as in (21).

Proof. For R> 0 large enough depending on θ0 and Π ′
θ, we have by condition 1 and 2,

{θ ∈Θ : dG(Φ(θ),Φ(θ0))⩽ rn}
⊃ {θ ∈Θ : dG(Φ(θ),Φ(θ0))⩽ rn}∩Sβ(R),

⊃ {θ ∈Θ : ‖Φ(θ)−Φ(θ0)‖L2(D) ⩽ Cr1/ηn ,‖θ‖Hβ(X ) ⩽ R}
⊃ {θ ∈Θ : ‖θ− θ0‖∞ ⩽ Cr̄n,‖θ− θ0‖Hβ(X ) ⩽ R̃}, (24)

whereC= C(η,ζ,CG ,CΦ,R) and R̃= R−‖θ0‖Hβ(X ), and where we used the triangle inequal-

ity. Note also Π̃θ(·) = Πθ(·+ θ0) is a Gaussian measure in the separable Hilbert spaceHβ(X ).
In addition, a closed norm ball in Hβ(X ) is a closed subset of Hβ(X ) and so is {θ ∈ Hβ(X ) :
‖θ‖∞ ⩽ Crn} by a Sobolev embedding. Then we can apply the Gaussian correlation inequality
[25, theorem 6.2.2] to (24) so that

Πθ(dG(Φ(θ),Φ(θ0))⩽ rn)⩾Πθ(‖θ− θ0‖∞ ⩽ Crn,‖θ− θ0‖Hβ(X ) ⩽ R̃),

= Π̃θ(‖θ‖∞ ⩽ Crn,‖θ‖Hβ(X ) ⩽ R̃),

⩾ Π̃θ(‖θ‖∞ ⩽ Cr̄n)Π̃θ(‖θ‖Hβ(X ) ⩽ R̃). (25)

To each of the factors in the right-hand side of (25) we apply [33, corrollary 2.6.18] to the
effect that for large n

Πθ(dG(Φ(θ),Φ(θ0))⩽ rn)⩾ e−∥θ0∥2
HnΠθ(‖θ‖∞ ⩽ Cr̄n)Πθ(‖θ‖Hβ(X ) ⩽ R̃),

⩾ e−C ′n1−2a

Π ′
θ(‖θ ′‖∞ ⩽ Cr̄nn

1/2−a),

12
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for C ′ = C ′(θ0,Π
′
θ) using also that Πθ(‖θ‖Hβ(X ) ⩽ R̃)⩽ 1/2 for R large enough as follows

from (19). The rest of the argument follows [29, lemma 11] and uses [45, theorem 1.2], see
also lemma A.2, and the continuous embedding H⊂ Hδ(X ) to conclude

Π ′
θ(‖θ ′‖∞ ⩽ Cr̄nn

1/2−a)⩾ e−C
′ ′ (̄rnn

1/2−a)−b

,

= e−C
′ ′nr2n

with C ′ ′ = C ′ ′(C,C ′) and b= 2d ′

2δ−d ′ , which fits the choice (21) of a.

4. Parametrizations for inclusions

In this section, we make use of theorem 3.1 for two specific parametrizations suited for inclu-
sion detection: a star-shaped set parametrization and a level set parametrization. These are
parametrizations on the form

Φ(θ) =
N∑
i=1

κi1Ai(θ) (26)

for some Lebesgue measurable subsets Ai(θ) of Rd and constants κi > 0 for i = 1, . . . ,N ,
whichwe denote collectively as κ= {κi}Ni=1. Sincewe consider parametrizations that map into
L2Λ(D), we will implicitly consider Φ(θ) as the restriction of the right-hand side of (26) to D.
Note that recovering parameters on this form requires that we know a priori the parameter val-
ues κi. However, this could further bemodelled into the prior by definingΦ : (θ,κ1, . . . ,κN ) 7→
γ and a product prior on Θ×R× . . .×R, which is the approach in [46]. In the following, we
construct Ai(θ) as star-shaped sets and level sets.

4.1. Star-shaped set parametrization

We start by considering the parametrization for a single inclusion, i.e. N = 1. For simplicity
of exposition, we consider the star-shaped sets in the plane, although it is straight-forward to
generalize to higher dimensions. Let φ be a continuously differentiable 2π-periodic function.
We can think of θ : T→ R as a function defined on the 1-dimensional torus T := R/2πZ.
The boundary of the star-shaped set is a deformed unit circle: for a point x in D it takes for
v(ϑ) := (cosϑ,sinϑ) the form

∂A(θ) = x+ {exp(θ(ϑ))v(ϑ), 0⩽ ϑ⩽ 2π}.

Then we write

A(θ) = x+ {sexp(θ(ϑ))v(ϑ),0⩽ s⩽ 1,0⩽ ϑ⩽ 2π}. (27)

Let κ1,κ2 > 0 and define

Φ(θ) := κ11A(θ) +κ2. (28)

We have the following conditional continuity result, where we for simplicity fix x ∈ D.

Lemma 4.1. Let θ1,θ2 ∈ Hβ(T) and ‖θi‖Hβ(T) ⩽M with β > 3/2 for i = 1,2. Then

‖Φ(θ1)−Φ(θ2)‖L2(D) ⩽ C‖θ1 − θ2‖1/2L∞(T),

where C only depends on M and κ1.

13
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Proof. By the translation invariance of the Lebesgue measure, it is sufficient to bound the area
of the symmetric difference A(θ1)∆A(θ2) := (A(θ1) \A(θ2))∪ (A(θ2) \A(θ1)) for x= 0. We
parameterize this planar set using K : [0,1]× [0,2π]→ R2, defined by

K(s,ϑ) = [sexp(θ1(ϑ))+ (1− s)exp(θ2(ϑ))]v(ϑ).

Note that ‖θi‖Hβ(T) ⩽M implies ‖θi‖C1(T) ⩽ CM by a continuous Sobolev embedding. We
have

∂K
∂s

(s,ϑ) = [exp(θ1(ϑ))− exp(θ2(ϑ))]v(ϑ),∣∣∣∣∂K∂ϑ (s,ϑ)
∣∣∣∣⩽ C(M),

and the well-known change of variables formula,

vol(A(θ1)∆A(θ2)) =
ˆ 1

0

ˆ 2π

0
|JK(s,ϑ)|dϑds,

⩽ C(|(∂sK(s,ϑ))1||(∂ϑK(s,ϑ))2|+ |(∂sK(s,ϑ))2||(∂ϑK(s,ϑ))1|),
⩽ C(M)|eθ1(ϑ) − eθ2(ϑ)|,
⩽ C(M)‖θ1 − θ2‖L∞(T),

where |JK(s,ϑ)| is the determinant of the Jacobian of the map K. In the last line, we used that
z 7→ exp(z) is locally Lipschitz as follows from the mean value theorem.

Using the triangle inequality for the symmetric difference and the main result of [47], we
would also have an estimate on the continuity of Φ as defined on D×Hβ(T), i.e. on elements
(x,θ). We could then endow D×Hβ(T) with a product prior which straight-forwardly sat-
isfies condition A.1. For simplicity we skip this extension. Instead, we gather the following
conclusion that follows directly from theorem 3.1 and corollary 1.

Theorem 4.2. Suppose condition 2 is satisfied for β > 3/2. Let γ0 =Φ(θ0) for θ0 ∈H. Let
Π(·|Y) be the corresponding sequence of posterior distributions arising for the model (1) and
prior Π =ΦΠθ satisfying condition 3. Then there exists C> 0 such that

‖E[γ|Y]− γ0‖L2(D) → 0 in Pγ0
n − probability (29)

with rate f(Cn−a) as n→∞, where

a=
ηδ

2ηδ+ 2
.

Note that this is the rate of (18) with ζ = 1/2 and d ′ = 1. Clearly this convergence rate
takes into account that a smooth star-shaped inclusion belongs to a low-dimensional subset of
L2Λ(D). One can think of this fast convergence rate (compared to Gaussian priors directly in
L2(D)) as an expression of uncertainty reduction. Parameters γ ∈ L2Λ(D) on the form (28)
carry some regularity. Indeed, using results in [48, 49] showing α-Sobolev regularity for
0< α < 1/2 reduces to giving an upper bound of the area of the ε-tubular neighborhood of
∂A(θ) with respect to ε. This is provided by Steiner’s inequality, see [50], for d= 2, or more
generally by Weyl’s tube formula, see [51], when d⩾ 2. Then ‖Φ(θ)‖Hα(D) ⩽ C(M,D,α) for
‖θ‖Hβ(T) ⩽M.

14



Inverse Problems 40 (2024) 045004 B M Afkham et al

4.1.1. Multiple inclusions. The case of multiple star-shaped inclusions is a straight-forward
generalization using the triangle inequality. We consider for N ⩾ 1, the map

Φ : (Hβ(T))N → L2Λ(D)

as in (26) with Ai(θ) = A(θi)+ xi from A in (27) with x= 0, xi ∈ D, and where we set θ =
(θ1, . . . ,θN ). We denote ‖ · ‖N the direct product norm associated with the norm on L∞(T),
i.e.

‖θ‖N =max(‖θ1‖L∞(T), . . . ,‖θN ‖L∞(T)).

We have the following continuity result.

Lemma 4.3. Let θi, θ̃i ∈ Hβ(T) with ‖θi‖Hβ(T) ⩽M, ‖θ̃i‖Hβ(T) ⩽M for i = 1, . . . ,N . For

θ = (θ1, . . . ,θN ) and θ̃ = (θ̃1, . . . , θ̃N ) we have

‖Φ(θ)−Φ(θ̃)‖L2(D) ⩽ C‖θ− θ̃‖1/2N ,

where C only depends on M, κ and N .

Proof. Using the triangle inequality and lemma 4.1,

‖Φ(θ)−Φ(θ̃)‖2L2(D) =

∥∥∥∥∥
N∑
i=1

κi(1Ai(θ) −1Ai(θ̃))

∥∥∥∥∥
2

L2(D)

,

⩽ C

( N∑
i=1

‖1Ai(θ) −1Ai(θ̃)‖L2(D)

)2

,

⩽ C

( N∑
i=1

‖θi− θ̃i‖1/2L∞(T)

)2

,

⩽ C‖θ− θ̃‖N ,

by the equivalence of the p-norms p> 0 on RN .

Parallel to the remark before lemma 4.1, we mention that a statement similar to lemma 4.3
holds true for a mapΦ defined on (D×Hβ(T))N , if we in addition wish to infer x1, . . . ,xN . In
preparation for the main result of this section let us change notation to suit the current setting.
Let

Θ= Hβ(T)N and Sβ(M) = {θ ∈Θ : ‖θi‖Hβ(T) <M, i = 1, . . . ,N}. (30)

We then endow Θ with a (product) prior distribution of Πθ satisfying condition 3:

Π̃θ =⊗N
i=1Πθ satisfying Π̃θ(B) = Πθ(B1) . . .Πθ(BN ), (31)

for B= B1 × . . .×BN ∈ B(Hβ(T))N = B(Hβ(T)N ). The last equality is found in for
example [52, lemma 1.2]. For this prior, we have the following result, which is accounted
for in appendix C.

Theorem 4.4. Suppose condition 2 is satisfied for Sβ(M) as in (30) for β > 3/2. Let
γ0 =Φ(θ0) = Φ(θ0,1, . . . ,θ0,N ) for θ0,i ∈H, i = 1, . . . ,N . Let Π(·|Y) be the corresponding
sequence of posterior distributions arising for the model (1) and prior Π =ΦΠ̃θ for (31).
Then there exists C> 0 such that

‖E[γ|Y]− γ0‖L2(D) → 0 in Pγ0
n − probability (32)
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with rate f(Cn−a) as n→∞, where

a=
ηδ

2ηδ+ 2
.

Note that this is the rate as of theorem 4.2, i.e. the rate does not depend on the number of
inclusions; this dependence appears in the constant C.

4.2. Level set parametrization

In this section, we consider the level set parametrization of piecewise constant functions. The
simplest case is to compose a given continuous function θ : X → R, for X ⊃ D, i.e. d= d ′ =
2,3, with the Heaviside function H(z) = 1z⩾0(z) as

γ(x) = Φ(θ)(x) = κ1H(θ(x))+κ2,

for κ1,κ2 > 0. However, Φ : Hβ(X )→ L2Λ(D) is not uniformly Hölder continuous on Sβ(M)
for any β,M> 0 and hence does not satisfy condition 1. Indeed, if |∇θ| is small near the set
{x : θ(x) = 0}, small changes in θ can lead to big changes in γ. A lower bound on |∇θ| near
this set suffices, as can be seen from the implicit function theorem, see lemma C.1. This type
of condition also appears in level set estimation of probability densities, see [53]. We illustrate
this phenomenon by the following two-dimensional example.

Example 1. Let X = D= B(0,1/2) the two-dimensional disc of radius 1/2. Take as θ(n) the
radially symmetric functions θ(n)(r,ϑ) =

1
n + r2n and θ̃(n) =−θ(n) for 0⩽ r⩽ 1 and 0⩽ ϑ⩽

2π. It is clear that θ(n), θ̃(n) ∈ S1(M) for all n ∈ N, and that

‖θ(n) − θ̃(n)‖L∞(X ) ⩽ 2‖n−1‖L∞(X ) + 2‖r2n‖L∞((0,1/2)),

⩽ 2n−1 + 21−2n → 0

as n→∞. However Φ(θ(n)) = κ1 and Φ(θ̃(n)) = κ2 so ‖Φ(θ(n))−Φ(θ̃(n))‖L2(D) = |κ2 −κ1|.

The example is easy to extend to the more general case where the L∞-norm is replaced
with the Ck-norm. Note also that for fixed θ(n) = θ, we have continuity of Φ in this particular
example. This fact generalizes to continuity of Φ in functions θ that do not have critical points
on {x : θ(x) = 0}. However, for the stronger condition 1, it is not obvious how much mass
Gaussian distributions give to functions whose gradient is lower bounded away from zero
near {x : θ(x) = 0}. For this reason, we take a different approach. We define an approximation
Φϵ of Φ for which condition 1 is satisfied. This gives an approximate posterior distribution
that contracts around γϵ0 =Φϵ(θ0). We shall see that if we take ϵ= n−k for some k ∈ (0,1),
then the approximation properties of Φϵ to Φ and a triangle inequality argument ensure we
have consistency at γ0 =Φ(θ0). To this end, consider the continuous approximation Hϵ of the
Heaviside function

Hϵ(z) :=


0 ifz<−ϵ,
1
2ϵ z+

1
2 if − ϵ⩽ z< ϵ,

1 ifϵ⩽ z.

(33)

We want to note two straight-forward properties of Hϵ:

|Hϵ(z)−Hϵ(z̃)|⩽
1
2ϵ

|z− z̃|, for all z, z̃ ∈ R, (34)
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and

|Hϵ(z)−H(z)|⩽ 1
2
1(−ϵ,ϵ)(z), for all z ∈ R. (35)

We could even consider a smooth approximation for Hϵ, as in [21], but this is not necessary
for our case. To construct the continuous level set parametrization, take constants c= {ci}Ni=1
satisfying

−∞= c0 < c1 < .. . < cN =∞

for some N ∈ N. Given a continuous function θ : D→ R define

Ai(θ) := {x ∈ D : ci−1 ⩽ θ(x)< ci }, i = 1, . . . ,N ,

and let Φ be of the form (26). The corresponding approximate level set parametrization
is then

Φϵ(θ) :=
N∑
i=1

κi [Hϵ(θ− ci−1)−Hϵ(θ− ci)], (36)

where we define Hϵ(z− c0) = 1 and Hϵ(z− cN ) = 0 for any z ∈ R. One can check that Φϵ

coincides with Φ, when ϵ= 0. Motivated by example 1 and the property that stationary
Gaussian random fields have almost surely no critical points on their level sets, we define
the admissible level set functions as

Hβ
⋄ (X ) := Hβ(X )∩

N−1⋂
i=1

Tci , β > 2+
d ′

2
,

where

Tc := {θ ∈ C2(X ) : ∃x ∈ X ,θ(x) = c, |(∇θ)(x)|= 0}∁.

Indeed, according to [54, proposition 6.12], for each fixed c ∈ R we have

Π ′
θ(Tc) = 1 and hence Π ′

θ(H
β
⋄ (X )) = 1 (37)

if Π ′
θ(C

2(X )) = 1 and the covariance function associated with (θ(x) : x ∈ X ) for θ ∼Π ′
θ is

stationary. This is permitted since ((θ(x),∂1θ(x), . . . ,∂d ′θ(x)) : x ∈ X ) is a Gaussian process,
see for example [55, section 9.4]. Note also that it is known that Tc ∈ B(C2(D)) since {θ ∈
C2(D) : |θ(x)− c|+ |(∇θ)(x)|⩾ 1/n,∀x ∈ D} is a Borel set.

Lemma 4.5. We have the following:

(i) If θ0 ∈ Hβ
⋄ (X ), then for β > 1+ d ′/2 and ϵ> 0 sufficiently small

‖Φϵ(θ0)−Φ(θ0)‖L2(D) ⩽ C(θ0,X ,D,c)ϵ1/2.

(ii) For any θ, θ̃ ∈ H2(X ),

‖Φϵ(θ)−Φϵ(θ̃)‖L2(D) ⩽ C(κ,N ,D)ϵ−1‖θ− θ̃‖L∞(D).
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Proof. (i) Note first

Φϵ(θ0)−Φ(θ0) =
N∑
i=1

κi [(Hϵ(θ0 − ci−1)−H(θ0 − ci−1))− (Hϵ(θ0 − ci)−H(θ0 − ci))].

By the triangle inequality and (35)

‖Φϵ(θ0)−Φ(θ0)‖L2(D) ⩽
N∑
i=1

κi(‖1(−ϵ,ϵ)(θ0 − ci−1)‖L2(D) + ‖1(−ϵ,ϵ)(θ0 − ci)‖L2(D)).

It is clear that 1(−ϵ,ϵ)(θ0(x)− ci−1) = 1Vϵ
(x) with

Vϵ := {x ∈ X : |θ0(x)− ci−1|< ϵ}. (38)

By lemma C.1 |Vϵ|⩽ C(θ0,ci−1,X )ϵ, and hence the wanted result follows by repeated
application.

(ii) Again by the triangle inequality and now (34) we have

‖Φϵ(θ)−Φϵ(θ̃)‖L2(D) =
N∑
i=1

κi ‖Hϵ(θ− ci−1)−Hϵ(θ̃− ci−1)‖L2(D)

+
N∑
i=1

κi ‖Hϵ(θ− ci)−Hϵ(θ̃− ci)‖L2(D),

⩽ ϵ−1
N∑
i=1

κi ‖θ− θ̃‖L2(D),

⩽ C(κ,N ,D)ϵ−1‖θ− θ̃‖L∞(D).

For the following consistency result we let

Θ= Hβ
⋄ (X ), Sβ(M) := {θ ∈ Hβ

⋄ (X ) : ‖θ‖Hβ(X ) ⩽M}. (39)

We endow Θ with a prior distribution Πθ that satisfies condition 3 for β > 2+ d ′/2 such that
the covariance kernel associated with the random field is stationary. For simplicity we assume
f(x) = xν for some 0< ν < 1 in condition 2. Then we have the following result proved in
appendix C.

Theorem 4.6. Suppose condition 2 is satisfied for Sβ(M) as in (39) for f(x) = Cxν ,Φ replaced
by Φn−k for a well-chosen k, and where C and CG are independent of n. Let γ0 =Φ(θ0) for
θ0 ∈H∩Θ. Let Π(·|Y) be the corresponding sequence of posterior distributions arising for
the model (1) and prior Π =Φn−kΠθ as above. Then,

‖E[γ|Y]− γ0‖L2(D) → 0 in Pγ0
n − probability (40)

with rate n−aν as n→∞ for

a=
ηδ

2dνη+ 2ηδ+ d
. (41)

Note that for weak inverse stability estimates, i.e. ν small, the obtained contraction rate
approaches the usual rate (18).

18



Inverse Problems 40 (2024) 045004 B M Afkham et al

5. QPAT tomography problem

To test the convergence of the inclusion detection methods, we consider the following test
problem in QPAT tomography, see [28, 56, 57]. The diffusion approximation in QPAT models
light transport in a scattering medium according to an elliptic equation

−∇ ·µ∇u+ γu= 0, in D,

u= g,on ∂D, (42)

where µ ∈ L2Λµ
(D), Λµ > 0, and γ ∈ L2Λ(D) are the optical diffusion and absorption para-

meters, respectively. The prescribed Dirichlet boundary condition u= g defines the source
of incoming radiation. It is well-known that (42) has a unique solution u ∈ H1(D) for each
g ∈ H1/2(∂D) and for any nonzero source function h ∈ H−1(D) of (42). Furthermore, we have
the estimate

‖u‖H1(D) ⩽ C(Λµ,D)(‖g‖H1/2(∂D) + ‖h‖H−1(D)), (43)

see for example [58, chapter 6]. QPAT aims to reconstruct the optical parameters given the
absorbed optical energy density map H, which equals the product γu up to some proportional-
ity constant that models the photoacoustic effect. In our simplified approach, we aim to invert
the forward map

G : γ 7→ H := γu, G : L2Λ(D)→ L2(D),

for a fixed µ ∈ L2Λ(D). For smoothness and physical accuracy we assume

g ∈ H3/2(∂Ω) and 0< gmin ⩽ g⩽ gmax. (44)

This setting allows a simple inverse stability estimate. First we have the following continuity
result of G.

Lemma 5.1. Let H1 := γ1u1 and H2 := γ2u2 for solutions u1 and u2 of (42) corresponding to
γ = γ1, γ = γ2 in L2Λ(D) and g satisfying (44). Then there exists a constant C such that

‖H1 −H2‖L2(D) ⩽ C‖γ1 − γ2‖L2(D),

where C depends on Λµ, D and gmax.

Proof. We note that u1 − u2 solves

−∇ ·µ∇(u1 − u2)+ γ1(u1 − u2) = u2(γ2 − γ1) in D,

u1 − u2 = 0 on ∂D.

Then by (43) and the maximum principle [59, theorem 8.1]

‖u1 − u2‖H1(D) ⩽ ‖u2(γ2 − γ1)‖H−1(D) ⩽ gmax‖γ1 − γ2‖L2(D).

Since H1 −H2 = γ1(u1 − u2)+ (γ1 − γ2)u2 we have

‖H1 −H2‖L2(D) ⩽ ‖γ1(u1 − u2)‖L2(D) + ‖(γ1 − γ2)u2‖L2(D),
⩽ gmax(1+M)‖γ1 − γ2‖L2(D).

Lemma 5.2. Under the same assumptions of lemma 5.1, there exists a constant C> 0 such
that

‖γ1 − γ2‖L2(D) ⩽ C‖H1 −H2‖L2(D). (45)

19



Inverse Problems 40 (2024) 045004 B M Afkham et al

Proof. See also [28, theorem 3.1] and [27, theorem 1.2]. Note u1 − u2 ∈ H1
0(D) solves

−∇ ·µ∇(u1 − u2) = H2 −H1 in D,

u1 − u2 = 0 on ∂D,

hence by elliptic regularity

‖u1 − u2‖L2(D) ⩽ C(Λµ,D)‖H1 −H2‖L2(D). (46)

Note by the trace theorem, see [60], for g as in (44) there exists v ∈ H2(Ω) such that
u2 − v ∈ H1

0(Ω). By a Sobolev embedding v ∈ C0,α0(D) for some α0 > 0 depending on d=
2,3. Theorem 8.29 and the remark hereafter in [59] states that u2 ∈ Cα(D) for some α=
α(d,Λµ,Λ,D,α0)> 0 and that

‖u2‖Cα(D) ⩽ U1(sup
x∈D

|u(x)|+U2) =: U,

where U1 =M1(d,Λµ,Λ,D,α0)> 0 and U2 = U2(D,g). By the maximum principle [59, the-
orem 8.1] we can collect the right-hand side to one constant U= U(U1,U2,gmax)> 0. Now
using the argument in [27, lemma 12], which in return uses the Harnack inequality [59, corol-
lary 8.21] we conclude

u2 ⩾ m, (47)

where m= m(d,Λµ,Λ,D,U,α,gmin) is a constant. Note

γ1 − γ2 = γ1

(
1− u1

u2

)
+

1
u2

(γ1u1 − γ2u2),

=
γ1
u2

(u2 − u1)+
1
u2

(H1 −H2).

Combining this with (46) and (47) we have

‖γ1 − γ2‖L2(D) ⩽ C(m,Λ,Λµ,D)‖H1 −H2‖L2(D).

We note that G satisfies condition 2 for η= 1 and f(x) = x. We also note that Y = L2(D)
is a separable Hilbert space with an orthonormal basis consisting of the eigenfunctions of the
Dirichlet Laplacian on D. We conclude that this problem is suitable as a test problem, and that
theorems 4.4 and 4.6 apply. In section 7 we discuss other suitable inverse problems.

6. Numerical results

We discuss our numerical tests in detecting inclusions for the QPAT tomography problem
using the pCN algorithm of section 2.2 and the parametrizations of section 4. For simplicity
we assume D= B(0,1), the two-dimensional unit disk.
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6.1. Observation model

As an approximation to the continuous observation model (1) for the numerical experiments
we consider observing

Yk = 〈G(γ),ek〉L2(D) + εξk, k= 1, . . . ,Nd (48)

where {ek}∞k=1 is an orthonormal basis of L2(D) consisting of the eigenfunctions of the
Dirichlet Laplacian on D and Nd ∈ N is a suitable number. This observation Y= {Yk}Ndk=1 is
the sequence of coefficients of the projection of Y from (1) to the span of {ek}Ndk=1. As Nd →∞
observing Y is equivalent to observing Y, see for example [29, theorem 26]. Besides being a
convenient approximation, this model has numerical relevance: there exists closed-form recon-
struction formulas for 〈G(γ),ek〉L2(D) in the first part of the photoacoustic problem, see [61,
62]. The likelihood function then takes the form

pγε (Y) := exp

(
− 1
ε2

Nd∑
k=1

(Yk−〈G(γ),ek〉L2(D))2
)
.

6.2. Approximation of the forward map

We approximate the forward map using the Galerkin finite element method (FEM) with piece-
wise linear basis functions {ψk}Nmk=1 over a triangular mesh of Nm vertices and Ne elements, see
[56, 63]. When γ ∈ L2Λ(D) is discontinuous and continuous, we approximate it by

γ̃Ne =

Ne∑
k=1

γ̃k1Ek , and γ̄Nm =

Nm∑
k=1

γ̄kψk,

respectively. Here Ek denotes the kth element of the triangular mesh. That gives us two approx-
imations of the forward map:

G̃Ne(γ) := γ̃Ne ũ and ḠNm(γ) := γ̄Nm ū,

where ũ is the FEM solution corresponding to γ̃Ne and ūNm is the FEM solution corresponding
to γ̄. For the smooth level set parametrization we use ḠNm with Nm = 12708 nodes, while for
the star-shaped set parametrization we use G̃Ne with Ne = 25054 elements.

We compute {ek}Ndk=1 by solving the generalized eigenvalue problem arising from the FEM
formulation of the Dirichlet eigenvalue problem with the Matlab function sptarn. Then
〈G(γ),ek〉L2(D) is approximated using themassmatrix for k= 1, . . . ,Nd withNd = Nfreq(Nfreq +
1) and Nfreq = 13.

6.3. Phantom, noise and data

The phantom we seek to recover consists of two inclusions:

γ0 = κ1 +κ21A1 +κ31A2 ,

where (κ1,κ2,κ3) = (0.1,0.4,0.2) and A1,A2 are two star-shaped sets described by their
boundaries:

∂A1 = (−0.4,0.4)+ {0.18(cos(ϑ)+ 0.65cos(2ϑ),1.5sin(ϑ)),0⩽ ϑ⩽ 2π},

∂A2 = (0.4,−0.4)+ {φ(ϑ)(cos(ϑ),sin(ϑ))},
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Figure 2. Simulated absorption γ0 (left image) and diffusion µ (right image)
distributions.

Figure 3. Projection of absorbed optical energy densityH corresponding to phantom of
section 6.3 (left image) and of the white noise expansion (right image) projected onto
the span of {ek}Ndk=1.

where φ(ϑ) = 0.12
√
0.8+ 0.8(cos(4ϑ)− 1)2, see figure 2. We compute and fix the optical

diffusion parameter to µ= 1
2

1
γ0+µs(1−0.8) following [63]. Here the scattering parameter µs

equals 100γ0 smoothed with a Gaussian smoothing kernel of standard deviation 15 using the
Matlab function imgaussfilt.

We choose an illumination g that is smooth and positive on ∂D defined by

g(x) = wm1,s1(x)+wm2,s3(x)+wm2,s3(x),

where

wm,s(x) = sexp(−2‖x−m‖2)

and m1 = 0.5(
√
2,
√
2), m2 = 0.5(−

√
2,
√
2), m3 =−m1, s1 = 10, s2 = 2 and s3 = 5. This is a

superposition of three Gaussians, which illuminates the target well.
We simulate data Y as in (48) by computing G̃Ne0 (γ0) on a fine mesh of Ne0 = 75624 ele-

ments and Nm0 = 38127 nodes. The corresponding projection can be seen in figure 3. We
choose ε> 0 such that the relative error

relative error=
ε
√∑Nd

k=1 ξ
2
k√∑Nd

k=1〈G(γ0),ek〉2L2(D)

is in the range (1,2,4,8,16) · 10−2. See figure 3 for a realization of the white noise expan-
sion (3) projected to the Nd first orthonormal vectors {ek}Ndk=1 and scaled so that it accounts for
4% relative noise.
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To estimate the approximation error, we compute the vector

Vj = [〈G̃N0(γj),ek〉L2(D) −〈G̃Ne(γj),ek〉L2(D)]
Nd
k=1

for γj, j = 1, . . . ,200, samples of the prior for the level set parametrization introduced in

section 6.4.2 below. We then compute εlevel =
√

tr(C)
Nd

, where tr(C) is the trace of the sample

covariance matrix C of the vectors Vj. For this choice N(0,ε2levelI) minimizes the Kullback–
Leibler distance to N(0,C), see [38]. We compute εstar in the same way using ḠNm0 , ḠNm and
samples of the prior for the star-shaped set parametrization in section 6.4.2.

6.4. Choice of prior

6.4.1. Star-shaped sets. To mirror the theoretical results of theorem 4.4 for the phantom
above, we consider a product distribution in Hβ(T)×Hβ(T). To this end, consider the usual
L2([0,2π]) real orthonormal basis of trigonometric functions {ϕℓ}ℓ∈Z, i.e. ϕ1(x) = cos(2π x)
and ϕ−1(x) = sin(2π x). Consider the Karhunen–Loeve expansion

θi = θ̄+
∑
ℓ∈Z

gℓ,iwℓϕℓ, gℓ,1,gℓ,2
i.i.d.∼ N(0,1), (49)

for i = 1,2 with wℓ = q(τ 2 + |ℓ|2)−δ/2 for δ > 1/2, τ ∈ R, q> 0 and some constant θ̄ ∈ R.
Note θi has a Laplace-type covariance operator, and (49) can be interpreted as the solution
of a stochastic PDE [64]. Then θ1,θ2 ∈ Hβ(T) almost surely, see [22]. According to theorem
I.23 in [34] and the definition of Sobolev spaces [65, section 4.3],H= Hδ(T) with equivalent
norms, i.e. the prior distribution of (49) satisfies condition 3. We take as Π the distribution of

γ =Φ(θ1,θ2) = κ1 +κ21A(x1,θ1) +κ31A(x2,θ2), (50)

for (κ1,κ2,κ3) = (0.1,0.2,0.4), x1 = (0.37,−0.43) and x2 = (−0.44,0.36). In practice, we
compute (49) truncated at |ℓ|⩽ N= 12.We do not rescale as the theoretical estimates demand.
Instead, we handpick a suitable q for each noise level.We use inpoly [66] to efficiently project
γ to {1Ek}

Ne
k=1. We refer to figure 4 for an example of a sample from this prior.

6.4.2. Level sets. For the level set parametrization, we consider a prior distribution in
Hβ(T̃2). Here T̃2 is the torus corresponding to the square [−m,m]2, where we choose m= 1.1,
since it is recommended in for example [67] to embed D in a larger domain to avoid bound-
ary effects. Here, we consider the usual L2([−m,m]2) real orthonormal basis of trigonometric
functions {ϕℓ}ℓ∈Z2 . We let

θ =
∑
ℓ∈Z2

gℓwℓϕℓ, gℓ
i.i.d.∼ N(0,1), (51)

with wℓ = q(τ 2 + |ℓ|2)−δ/2 for δ > 1, τ ∈ R and q> 0. Similar to above, the series exists
almost surely as an element in Hβ(T̃2), see [22]. The corresponding RKHS is H= Hδ(T̃2),
see [34]. We choose X = D and consider the linear, bounded and surjective restriction r :
Hβ(T̃2)→ Hβ(D), see [65, section 4.4]. Then r(θ) is a Gaussian random element in Hβ(D),
and its RKHS is r(H) = Hδ(D), see [33, exercise 2.6.5]. We take as Π the distribution of

γ =Φϵ(θ) =
3∑

i=1

κi[Hϵ(θ− ci−1)−Hϵ(θ− ci)] (52)
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Figure 4. Samples from the star-shaped and level set priors. From left to right: sample
of θ1 and θ2 in (49) for |ℓ|⩽ 12, δ= 2.5, τ = 4, q= 103/2/5 and θ̄ =−2 (first image).
Sample ofΠ corresponding to Φ(θ1,θ2) in (50) (second image). Sample of θ in (51) for
max(|ℓ1|, |ℓ2|)⩽ 4, δ= 1.2, τ = 10, q= 5 (third image). Sample of Π corresponding to
Φϵ(θ) in (52) for ϵ= 0.1 (fourth image).

for (κ1,κ2,κ3) = (0.3,0.1,0.5) and (c1,c2) = (−1,1). In practice, we truncate (51) at
max(|ℓ1|, |ℓ2|)⩽ 4. Also, we hand-pick ϵ> 0 and q> 0 for each noise level. See figure 4 for a
sample of this prior.

6.5. Results

In this section we present the numerical results using the star-shaped and level set para-
metrizations in different noise regimes. We use the algorithm described in section 2.2
with the pCN method implemented with an adaptive stepsize targeting a 30% acceptance
rate. The initial stepsize is denoted by b. For an example of an implementation of this
sampling method, we refer to the Python package CUQIpy, see [68]. For the star-shaped
set parametrization, we choose the following prior and algorithm parameters in the order
(16,8,4,2,1) · 10−2 of the relative noise levels: b= (0.1,0.045,0.035,0.025,0.015), q=
103/2 · (7/20,6/20,5/20,4/20,3/20), δ= 2.5, θ̄ =−2, τ = 4 and θ(0) = (1,1) correspond-
ing to inclusions of constant radius. In the same order, we choose for the level set paramet-
rization the following prior and sampling parameters: b= (0.05,0.01,0.006,0.003,0.002),
q= 5 · (5/2,2,3/2,1,3/4), δ= 1.2, τ = 10 and θ(0) = 2ϕ(0,−1) ∝ sin(2π/2.2y).

For the star-shaped set parametrization, we obtainK= 106 samples after a burn-in of 5 · 105,
whereas for the level set parametrization, we take K= 106 after 1.2 · 106 samples as burn-in.
We find this choice suitable, since the truncation in section 6.4.1 leaves us with a higher dimen-
sional sampling problem in the level set case. We base our posterior mean approximations on
Monte Carlo estimates using 102 equally spaced samples of the chain. Computations were
performed on an Intel Xeon E5-2660v3 processor and took approximately 39.4 h for each
experiment with the star-shaped set parametrization and 45.9 hours for each experiment with
the level set parametrization.

In figure 5, we see the posterior mean of arising from the star-shaped set parametrization
and observations with different noise levels. The posterior mean approximates the ground truth
well for all noise levels. Note that the posterior mean varies only slightly for each noise level
and is approximately piecewise constant. This indicates little posterior variance. This is due
to a small noise level and the fast contraction rate that this inverse problem provides by virtue
of (45). The estimates are not exact, but note that the exact data is not available due to projection
and discretization. Taking Nd large improves the data but also causes the likelihood function
to attain larger values. This, in return, requires a smaller step size b. This means there is a
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Figure 5. Posterior mean estimates of the absorption parameter using the star-shaped
set parametrization in different noise regimes. The dotted red line indicates the location
of γ0.

computational trade-off between Nd and b. Even for 16% relative noise, the reconstruction is
fairly good, and the variance of the posterior samples is visibly larger. It is a strength of this
method that it is robust for large noise levels. In figure 7, we see the restriction to the line
y=−x of the posterior mean and a 95% credible interval corresponding to 8% relative noise.
For the star-shaped set parametrization, the uncertainty is concentrated around the jumps as
expected.

The mixing of the sample chains in the trace plots in figure 8 indicates that the sampling
algorithm is performing well. The convergence of the posterior mean is also evident in L2-
distance as computed numerically, see figure 9. This rate does not match the theoretical; but
this is too much to expect for the observation (48), as this does not match the continuous
observation (1) for which the rate is proved. Note we do not numerically scale the priors as the
theoretical results require.

Figure 6 suggests that the posterior mean for the level set parametrization converges as the
noise level goes to zero, as is also evident from its L2-loss in figure 9. Note that the recon-
structions are continuous, not only because we take an average, but also because we use a
continuous level set parametrization. Here, the sampling is initialized at θ(0) = 2ϕ(0,−1), since
this guess captures some of the low frequency information of possible θ0 that can give rise
to γ0. We report that chains with small step-size and the natural starting guess θ(0) = 0 often
get stuck in local minima due to the number of levels in (52) and due to the fact that the pCN
method does not require the gradient of either the parametrization or the forward map. Figure 7
showcases an estimate of the uncertainty along y=−x for the level set parametrization. Note
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Figure 6. Posterior mean estimates of the absorption parameter using the level set para-
metrization in different noise regimes. The dotted red line indicates the location of γ0.

Figure 7. Restrictions to y=−x of the posterior mean, ground truth γ0 and a 95% equal-
tailed credible interval for the star-shaped set parametrization (left) and level set para-
metrization (right) in 8% relative noise.

the ground truth is not contained in the credible interval everywhere. This suggests we need
more independent samples of the posterior to make reliable credible intervals. The sample
diagnostics of figure 8 indicate that sampling is harder for the level set parametrization com-
pared to the star-shaped set parametrization. This is hard for at least two likely reasons: the
first is due to the large number of coefficients θℓ, max(|ℓ1|, |ℓ2|)⩽ 4. This was also noted in
[10]. The second likely reason is that θ 7→ Φϵ(θ) is not injective for any ϵ⩾ 0. Therefore, the
prior could be multi-modal, and this can lead to correlated samples in the Markov chain. Other
work suggests that the pCN method shows an underwhelming performance when applied to a
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Figure 8. Plot (a) shows trace plots of the first 6 Fourier coefficients of samples θ1 (left)
and θ2 (right) from the posterior for the star-shaped set parametrization with observa-
tions subject to 4% relative noise. Plot (b) shows trace plots of the first 12 Fourier coeffi-
cients of samples θ from the posterior for the level set parametrization with observations
subject to 4% relative noise.

Figure 9. L2-error of 5 realized posterior means for each noise level εapp and both para-
metrizations. The solid markers represent the mean of the 5 error estimates.

correlated and multi-modal posterior, see [69] which also provides a gradient-based remedy.
The level set method has found success in optimization-based approaches, in for example [70],
where a descent step is taken in each iteration of an iterative algorithm. A Bayesian maximum
a posteriori approach [21] has also been shown to find success for a smoothened level set. We
expect that using gradient information in gradient-based MCMC methods would improve the
performance significantly. A benefit of the level set parametrization is that we do not need to
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know a priori the number of inclusions as in the case of the star-shaped set parametrization.
One could also combine the two methods as in [12]. Note in figure 9 that, for both parametriza-
tions, the posterior mean is stable to different noise realizations. This mirrors the convergence
in probability we expect from theorems 4.4 and 4.6.

7. Conclusions

In this paper, we provide and investigate a Bayesian approach to consistent inclusion detection
in nonlinear inverse problems. The posterior consistency analysis is performed under general
conditions of Hölder continuity of the parametrization and conditional well-posedness of the
inverse problem. Furthermore, it gives an explicit rate. We showcase the convergence of the
posterior mean in a small noise limit for a photoacoustic problem, where we note that the
star-shaped set parametrization outperforms the level set parametrization. We highlight that
theorems 4.2 and 4.6 hold for any forward map satisfying condition 2 and can be applied
to other parametrizations. A different parametrization could for example arise in the related
problem of crack detection. Interesting future work includes applying the inclusion detection
method to other inverse problems. Similar stability estimates to that of lemma 5.2 exist for the
mathematically closely related problems of determining the absorption coefficient in acousto-
optic imaging and the permittivity in microwave imaging, see [27]. This is also the case for
conductivity imaging in quantitative thermoacoustic tomography, where [71] employed com-
plex geometrical optics solutions. For the Calderön problem in two dimensions, [72] provides
a stability estimate that is permitted for the star-shaped set parametrization, see also the com-
ments after theorem 4.2 on the regularity of γ. There is a natural Hilbert space observation
setting for the Calderón problem, see [29]. Also in three dimensions and higher, conditional
stability for inclusion detection in the context of the Calderón problem has been considered
and shown to be logarithmic at best [73]. The generalization to three dimensions and more
complex phantoms is left for future work. We also leave the extension of the numerical exper-
iments to include prior modelling of κ to future work. Finally, an important direction in the
numerical optimization of this approach is to consider gradient-based sampling methods.
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Appendix A. Covering numbers

Consider a compact subset A of a space X endowed with a semimetric d. The covering number
N(A,d,ρ) denotes the minimum number of closed d-balls {x ∈ X : d(x0,x)⩽ ρ} with center
x0 ∈ A and radius ρ> 0 needed to cover A, see for example [34, appendix C] or [33, section
4.3.7]. Then the metric entropy is logN(A,d,ρ). When d is replaced by a norm, we mean the
metric induced by the norm.

Lemma A.1. Let (X,dX) and (Y,dY) be two linear spaces endowed with semimetric dX and dY.

(i) If f : X→ Y satisfies

dY( f(x), f(x
′))⩽ CdX(x,x

′)η, ∀x,x ′ ∈ A

for some A⊂⊂ X and some η > 0, then for any ρ> 0 we have

N( f(A),dY,Cρ
η)⩽ N(A,dX,ρ). (53)

(ii) For A⊂⊂ X and B⊂⊂ Y,

N(A×B,d∞,ρ)⩽ N(A,dX,ρ)N(B,dY,ρ),

where d∞((x,y),(x ′,y ′)) =max(dX(x,x ′),dY(y,y ′)) is the product metric.

Proof. (i) We denote by BX(x ′,ρ) and BY(y ′,ρ) the ball in X with center x ′ ∈ X and radius
ρ> 0 and the ball in Y with center y ′ ∈ Y and radius ρ> 0, respectively. For any ρ> 0,

f(BX(x
′,ρ))⊂ BY( f(x

′),Cρη).

Then it follows that

N( f(A),dY,Cρ
η)⩽ N(A,dX,ρ). (54)

(ii) Let CA be a finite set in A and CB be a finite set in B such that

A⊂
⋃
x∈CA

BX(x,ρ) and B⊂
⋃
y∈CB

BY(x,ρ).

Take z= (x,y) ∈ A×B, then there exists x0 ∈ CA such that x ∈ BX(x0,ρ) and y0 ∈ CB such
that y ∈ BY(y0,ρ). Hence z ∈ BX×Y((x0,y0),ρ) := {z ∈ X×Y : d∞(z,(x0,y0))⩽ ρ}. It fol-
lows that

A×B⊂
⋃

z∈CA×CB

BX×Y(z,ρ),

and hence the wanted property follows.

Lemma A.2. Let X be a bounded Lipschitz domain in Rd ′
or the d′-dimensional torus and

β > d ′/2, then

logN(Sβ(M),‖ · ‖∞,ρ)⩽ Cρ−d ′/β ,

where C= C(β,M,d ′,X ) and ‖f‖∞ := supx∈X |f(x)|.
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Proof. Corollary 4.3.38 and the remark hereafter in [33] states that the norm ball Bβ(M) of
the Sobolev space Hβ([0,1]d

′
) of radius M satisfies for β > d ′/2,

logN(Bβ(M),‖ · ‖L∞([0,1]d ′ ),ρ)⩽ C(β,M,d ′)ρ−d ′/β . (55)

If X is the d′-dimensional torus, we identify Hβ(X ) with the corresponding periodic Sobolev
space, which is a subset of Hβ([0,1]d

′
), hence the wanted result follows. Now, if X is a

bounded Lipschitz domain in Rd ′
, we assume without loss of generality that X ⊂ [0,1]d

′
.

Indeed, if X is not a subset of [0,1]d
′
, we identify f ∈ Hδ(X ) with f̃ ∈ Hδ(X̃ ) for some

X̃ ⊂ [0,1]d
′
by a scaling and updateM accordingly. SinceX is Lipschitz, we let E : Hβ(X )→

Hβ([0,1]d
′
) be a continuous extension operator satisfying

‖Ef‖Hβ([0,1]d ′ ) ⩽ C(d ′,β,X )‖f‖Hβ(X ),

see for example [74]. We denote the restriction R : Hβ([0,1]d
′
))→ Hβ(X ), which is a con-

traction in supremum norm and the left-inverse of E. Then Sβ(M) = R(E(Sβ(M))) and
E(Sβ(M))⊂ Bβ(CM), and hence

N(Sβ(M),‖ · ‖∞,ρ) = N(R(E(Sβ(M))),‖ · ‖∞,ρ)
⩽ N(E(Sβ(M)),‖ · ‖L∞([0,1]d ′ ),ρ),

⩽ N(Bβ(CM),‖ · ‖L∞([0,1]d ′ ),ρ),

⩽ C(β,M,d ′,X )ρ−d ′/β , (56)

using also lemma A.1 (i) and (55).

Lemma A.3. With the notation defined in section 3, we have for all ρ> 0

N(B∞(Mρ)+Sδ(CM),‖ · ‖∞,2Mρ)⩽ N(Sδ(CM),‖ · ‖∞,Mρ).

Proof. By lemma A.2 there exists N> 0 for which there is a sequence {θi}Ni=1 in Sδ(CM)
such that

Sδ(CM)⊂ ∪N
i=1B∞(θi,Mρ).

By the triangle inequality,

B∞(Mρ)+Sδ(CM)⊂ ∪N
i=1B∞(θi,2Mρ), (57)

since if θ = θ(1) + θ(2) for θ(1) ∈ B∞(Mρ) and θ(2) ∈ Sδ(CM), then there exists a θi such that
‖θ(2) − θi‖∞ ⩽Mρ, and hence

‖θ− θi‖∞ ⩽ ‖θ(1)‖∞ + ‖θ(2) − θi‖∞ ⩽ 2Mρ.

Then the property follows from (57).
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Appendix B. On maximum likelihood composite testing

We denote by En and Eγ
n the expectation with respect to Pn and Pγ

n respectively.

Lemma B.1. Suppose for a non-increasing function N(ρ), some ρ0 > 0 and all ρ > ρ0, we
have

N({γ ∈ An : ρ < dG(γ,γ0)< 2ρ},dG ,ρ/4)⩽ N(ρ).

Then for every ρ > ρ0, there exist measurable functions Ψn : Y− →{0,1} such that

Eγ0
n (Ψn)⩽ N(ρ)

e−
1

8σ2 nρ
2

1− e−
1

8σ2 nρ
2
,

sup
γ∈An:dG(γ,γ0)>ρ

Eγ
n (1−Ψn)⩽ e−

1
32σ2 nρ

2

.

Proof. To construct the measurable functionsΨn we use the maximum likelihood test, see [34,
lemma D.16] and the covering argument of [24, theorem 7.1], see also [33, theorem 7.1.4].
Choose a finite set Sj of points in each shell

Sj = {γ ∈ An : ρj < dG(γ,γ0)⩽ ρ(1+ j)}, j ∈ N,

so that every γ ∈ Sj is within distance jρ
4 of a point in S ′

j . For ρ > ρ0, there are at most N( jρ)
such points. For each γjl ∈ S ′

j , define the measurable function, Ψn,j,l : Y− →{0,1}, known as
the maximum likelihood test,

Ψn,j,l(y) := 1An,j,l(y),

where

An,j,l := {y ∈ Y− :
p
γjl
n

pγ0
n
(y)> 1}.

By [34, lemma D.16] we have

Eγ0
n (Ψn,j,l)⩽ e−

1
8σ2 n(ρj)

2

and

sup
{γ∈An:dG(γ,γjl)⩽ ρj

4 }
Eγ
n (1−Ψn,j,l)⩽ e−

1
32σ2 n(ρj)

2

.

Now, set Ψn(y) := 1∪j,lAn,j,l(y). This is also a measurable function, since a countable union of
measurable sets is measurable. Then by the union bound

Eγ0
n (Ψn)⩽

∑
j∈N

N( jρ)∑
l=1

Eγ0
n (Ψn,j,l)⩽

∑
j∈N

N( jρ)e−
1

8σ2 n(ρj)
2

⩽ N(ρ)
e−

1
8σ2 nρ

2

1− e−
1

8σ2 nρ
2
.
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On the other hand, for any j⩾ 1,

sup
γ∈∪i⩾jSi

Eγ0
n (1−Ψn) = sup

i⩾j,l
sup

γ:dG(γ,γi,l)⩽ ρi
4

Pγ0
n (∩j ′,l ′A

c
n,j ′,l ′),

⩽ sup
i⩾j,l

sup
γ:dG(γ,γi,l)⩽ ρi

4

Eγ0
n (1−Ψn,i,l),

⩽ sup
i⩾j

e−
1

32σ2 n(ρi)
2

.

For j= 1 we get the wanted result.

There are other ways to prove the existence of suitable measurable functions Ψn used in
the proof of theorem 2.1. We mention here the approximation argument of [29, lemma 8] that
requires smoothness properties of G.

Proof of 2.1. For the convenience of the reader, we provide what is a standard testing argu-
ment for our setting in lemma B.1, see also [24, theorem 7.1], implied by condition A.3.
Indeed, since the covering number decreases, when increasing the ‘radius’, we have for all
ρ > ρ0 := 4m0rn,

N(An,dG ,
ρ

4
)⩽ N(ρ) := eC3nr

2
n .

Given any C2 > C1 + 4, we set ρ := 4mrn for m> m0 large enough (depending also on C2, C3

and σ2 by the following) and apply lemma B.1: there exists measurable functions Ψn : Y− →
{0,1} such that

Eγ0
n (Ψn)⩽ eC3nr

2
n

e−2σ−2mnr2n

1− e−2σ−2mnr2n
⩽ e−C2nr

2
n .

In addition, choosing m such that (4m)2/(32σ2)⩾ C2 we note

sup
γ∈An:dG(γ,γ0)>4mr2n

Eγ
n (1−Ψn)⩽ e−C2nr

2
n .

Then theorem 28 in [32] and modifications as in the proof of theorem 1.3.2 in [25] give the
claim.

Appendix C. Proofs of section 4

Proof of theorem 4.4. The proof relies on satisfying conditions A.1–A.3 for the choice
An =Φ(Θn) for

Θn := {θ = ϕ1 +ϕ2 : ‖ϕ1‖∞ ⩽Mr̄n,‖ϕ2‖H ⩽M}N ∩Sβ(M), (58)

where Sβ(M) is defined in (30). To satisfy condition A.1 we follow lemma 3.4 and note for
θ = (θ1, . . . ,θN ) and θ0 = (θ0,1, . . . ,θ0,N ) that

{θ ∈Θ : dG(Φ(θ),Φ(θ0))⩽ rn}
⊃ {θ ∈Θ : ‖θ− θ0‖N ⩽ Cr̄n,‖θi− θ0,i‖Hβ(T) ⩽ R̃, i = 1, . . . ,N},
⊃ {θ ∈Θ : ‖θi− θ0,i‖N ⩽ Cr̄n,‖θi− θ0,i‖Hβ(T) ⩽ R̃, i = 1, . . . ,N},
⊃⊗N

i=1({θi : ‖θi− θ0,i‖L∞(T)}∩ {θi : ‖θi− θ0,i‖Hβ(T) ⩽ R̃}),
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for some R̃> 0 chosen sufficiently large. Then (31) together with the argument in lemma 3.4
implies that condition A.1 is satisfied. Note Θn in (58) is the N -product set of (20). Then
repeated use of the standard set relation A2 \B2 = [A× (A \B)]∪ [(A \B)×A] and the argu-
ment of lemma 3.2 implies there existsM> C(C2,Π

′
θ, δ,N ) such that

Πθ(Θ \Θn)⩽ e−C2nr
2
n ,

for any given C2 > 0, hence condition A.2 is satisfied. Condition A.3 is satisfied as in lemma
3.3 using lemma A.1 (ii). Then the result follows as in the proof of theorem 3.1 and corollary
1.

Lemma C.1. Let Vϵ be defined as in (38) for θ0 ∈ Hβ
⋄ (X ), β > 1+ d ′/2 and some c= ci−1 ∈

R. Then for ϵ> 0 sufficiently small

|Vϵ|⩽ C(θ0,c,X )ϵ.

Proof. Note for c= c0 =−∞ and c= cN =∞ this is trivially satisfied. Next, the inverse
function theorem implies that any point x0 ∈ θ−1(c) has a neighborhood Nx0 that is a diffeo-
morphic image φx0(Qϵx0

) of a box

Qϵx0
:= {(s, t) : |s|⩽ ϵx0 , |t|⩽ ϵx0}, 0< ϵx0 < 1,

such that

θ0(φx0(s, t)) = s|(∇θ0)(x0)|+ c,

(one should find the inverse of g(x1,x2) = ( θ0(x1,x2)−c
|∇θ0(x0)| ,x2) in a neighborhood of x0). Note we

have a C1 parametrization of an intersection of Vϵ with a small neighborhood of x0,

Vϵ ∩Nx0 = {φx0(s, t) : |s|⩽
ϵ

|∇θ0(x0)|
, |t|⩽ ϵx0},

for all ϵ⩽ |∇θ0(x0)|ϵx0 . By the classical area formula, we have

|Vϵ ∩Nx0 |=
ˆ
|s|⩽C(x0,θ0)ϵ

ˆ
|t|⩽ϵx0

|Jφx0(s, t)|dsdt⩽ C(x0,θ0)ϵ,

since the continuous function Jφx0 (it is a polynomial of zero’th and first order derivatives of
φx0), is integrated on a compact domain. Note ∪x0∈INx0 is an open cover of θ−1

0 (c) for some
finite set I ⊂ θ−1

0 (c) depending on X and θ0. Take ϵ such that Vϵ ⊂ ∪x0∈INx0 . This ϵ exists
since θ0 as defined on X is a closed function, and hence there exists in R a neighborhood U
of c such that θ−1

0 (U)⊂ ∪x0∈INx0 , see [75, theorem 1.4.13]. Then,

|Vϵ|⩽
∑
x0∈I

|Vϵ ∩Nx0 |⩽ C(θ0,c,X )ϵ.

This is true for any i = 1, . . . ,N − 1 for which the estimate is only updated by a new constant.

Proof of theorem 4.6. Let γn0 =Φn−k(θ0) and γn =Φn−k(θ) for some 0< k< 1, which we
will choose later. For any r̂n > 0, the triangle inequality gives

{γ : ‖γ− γ0‖L2(D) ⩽ C0r̂n}

⊃ {γ : ‖γ− γn0‖L2(D) ⩽
1
2
C0r̂n,‖γn0 − γ0‖L2(D) ⩽

1
2
C0r̂n},
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hence

Π(γ : ‖γ− γ0‖L2(D) ⩽ C0r̂n|Y)⩾Π(γ : ‖γ− γn0‖L2(D) ⩽
1
2
C0r̂n|Y)

×1∥γn0−γ0∥L2(D)⩽ 1
2C0 r̂n . (59)

We shall consider the two factors of the right-hand side in separate parts below:

1) We check that Condition A.2, A.3, and A.1 are satisfied for the choice An =Φ(Θn) with

Θn := {θ = θ1 + θ2 : ‖θ1‖∞ ⩽Mr
1
η
n n−k,‖θ2‖H ⩽M}∩Sβ(M), (60)

and k to be chosen below. For A.2 it is clear from (37) that for each n,

Πθ(Θ) = 1.

As in the proof of lemma 3.2 there exists M> C(C2,Π
′
θ, δ) such that Condition A.2 is

satisfied, if a= a(k) is such that

(r
1
η
n n−kn1/2−a)−b = nr2n, (61)

for b= 2d
2δ−d . This is satisfied when

a= a(k) =
η(δ− dk)
2δη+ d

, and 0< k<
δ

d
, (62)

so that 0< a< 1/2. Condition A.3 follows as in the proof of lemma A.1 with r̄n replaced

with r
1
η
n n−k. Again it reduces to the covering number of the norm-ball in Hδ(X ) for which

we need a such that

(r
1
η
n n−k)−d/δ = nr2n

as in (23). This is indeed satisfied by (62). For Condition A.1 we proceed as in the proof
of lemma 3.4 and use lemma 4.5 to obtain

{θ ∈Θ : dG(γ
n,γn0)⩽ rn} ⊃ {θ ∈Θ : ‖θ− θ0‖∞ ⩽ Cn−kr

1
η
n }∩Sβ(R),

where C= C(η,CG ,CΦ,R). Continuing the argument and using (37), Condition A.1 is
satisfied for some C1 > 0 if again a satisfies (61). By theorem 2.1

Π(BG(γ
n
0 ,Crn)∩An|Y)→ 1 in Pγ0

n − probability,

as n→∞ for some constant C> 0. It follows that

Π(γ : ‖γ− γn0‖L2(D) ⩽ Crνn |Y)→ 1 in Pγ0
n − probability,

with rate e−bnr2n , 0< b< C2 −C1 − 4 as n→∞ as in theorem 3.1.
2) For the second factor, note that θ0 ∈ Hβ

⋄ (X ) and lemma 4.5 (i) implies

‖γn0 − γ0‖L2(D) ⩽ C ′(θ0,X ,D,c)n−k/2.
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Since rνn = n−a(k)ν is a strictly increasing function of k (the rate becomes worse for larger
k) and n−k/2 is strictly decreasing in k, the optimal choice of k satisfies rνn = n−k/2, which
is solved by

k=
2δην

2dην+ 2δη+ d
, (63)

which also satisfies the condition on k in (62), since δ > d. Inserting this back into (62)
yields (41). Finally, take C0 = 2max(C,C ′) and r̂n = rνn and note by (59) that

Π
(
γ : ‖γ− γ0‖L2(D) ⩽ C0r

ν
n |Y
)
⩾Π

(
γ : ‖γ− γn0‖L2(D) ⩽

1
2
C0r

ν
n |Y
)
→ 1,

in Pγ0
n -probability as n→∞. Then the wanted result follows as in corollary 1.
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