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Abstract
Since the introduction of Bitcoin in 2009, the dramatic and unsteady evolution of the
cryptocurrency market has also been driven by large investments by traditional and
cryptocurrency-focused hedge funds. Notwithstanding their critical role, our
understanding of the relationship between institutional investments and the
evolution of the cryptocurrency market has remained limited, also due to the lack of
comprehensive data describing investments over time. In this study, we present a
quantitative study of cryptocurrency institutional investments based on a dataset
collected for 1324 currencies in the period between 2014 and 2022 from Crunchbase,
one of the largest platforms gathering business information. We show that the
evolution of the cryptocurrency market capitalization is highly correlated with the
size of institutional investments, thus confirming their important role. Further, we find
that the market is dominated by the presence of a group of prominent investors who
tend to specialise by focusing on particular technologies. Finally, studying the
co-investment network of currencies that share common investors, we show that
assets with shared investors tend to be characterized by similar market behaviour. Our
work sheds light on the role played by institutional investors and provides a basis for
further research on their influence in the cryptocurrency ecosystem.

1 Introduction
Since the introduction of Bitcoin in 2009 [1], the cryptocurrency market has experi-
enced bewildering growth, surpassing an overall value of one trillion dollars in early
2021. Beyond private investors, the development of the market was fostered by cryp-
tocurrency hedge funds and Venture Capital (VC) funds, with institutional investments
in cryptocurrency-related projects reaching an estimated amount of 17 billion US dollars
in 2021 [2, 3].

A growing number of traditional financial firms and investment funds in Europe and
the U.S. are also exploring avenues for investments in cryptocurrency via different chan-
nels, including, but not limited to, including cryptocurrency into their portfolios, invest-
ing through tokenization in equity of blockchain companies, and exploiting more regu-
lated tools such as crypto futures, options, and ETFs [3, 4]. Unfriendly regulations, high
volatility, and lack of reliable valuation tools, amongst other issues, have so far hindered
widespread adoption and institutionalisation of these assets [3, 5, 6]. Most cryptocurrency
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platforms, for instance, lack regulatory and supervisory oversight concerning trading, dis-
closure, anti-money laundering, and consumer protection measures, forming what has
also been described as a “shadow financial system” [7]. Nonetheless, recent challenging
events affecting the economy and markets, i.e., the U.S. elections, Brexit in Europe, and
the global pandemic, have gradually accelerated the uptake [3]. Despite these develop-
ments, the effects of institutional investments on the cryptocurrency market are still little
understood, also due to the lack of comprehensive quantitative data.

Moreover, it has recently been flagged that the participation of institutional investors
in both crypto and traditional markets might lead to potential spillovers and increased
contagion risks between traditional finance and decentralised finance (DeFi)1 [4]. Under-
standing the behaviour of institutional investors and its effect on the structure and evolu-
tion of the cryptocurrency markets is therefore of paramount importance to quantify the
mutual impact between DeFi and traditional entrepreneurial finance [4, 8].

This paper aims to study the link between institutional investments and cryptocurren-
cies’ market trends systematically and quantitatively, exploiting a novel combination of
data sources on a larger sample of cryptocurrencies. Our analysis exploits network sci-
ence tools to study the structure and evolution of the co-investment network, i.e., con-
structed as an undirected network of cryptocurrencies (nodes) connected if they share a
common investor. In particular, we aim to tackle the following two main research ques-
tions: (i) Do connections in the co-investment network reflect intrinsic similarities (e.g., in
terms of technology or use cases) between cryptocurrencies? (ii) Is the co-investment net-
work related to cryptocurrencies’ market dynamics? First, we investigate the connection
between the co-investment network structure and various features of cryptocurrencies,
such as their supported blockchain protocols and use cases. Then, we examine the rela-
tion between the co-investment network structure and the correlation between the mar-
ket behaviour of pairs of tokens measured in terms of correlations of their returns (i.e., the
percentage changes in their prices over time).

The article is organised as follows: in Sect. 2, we provide an overview of the relevant lit-
erature; in Sect. 3, we describe how the data was collected and integrated and the method-
ologies and algorithms employed for this study; in Sect. 4.1, we describe the co-investment
network and study how the cryptocurrency features (e.g., type of blockchain protocol, use
case) are related to the network structure; in Sect. 4.2 we study the connection between
the structure of the co-investment network and market properties of different assets. In
Sect. 5, we conclude.

2 Related work
Our work contributes to the literature on (i) characterising cryptocurrency market dy-
namics, (ii) constructing optimal portfolios of currencies, and (iii) quantifying and char-
acterising institutional investments in cryptocurrency-related projects.

A growing body of literature has so far focused on the properties of the rapidly evolv-
ing crypto market ecosystem, shedding light on critical aspects such as assessing market
efficiency and maturity [9, 10], detecting and characterising asset pricing bubbles due to
endogenous and exogenous events [11, 12]. The dynamics of competition between curren-
cies [13, 14], and the impact of collective attention [15] have also been closely analysed.

1The term “decentralised finance” refers to financial services, such as lending or asset trading, provided through decentral-
ized platforms, as opposed to traditional centralized financial institutions.
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Given the digital and decentralised nature of crypto assets, a major focus has been to un-
derstand the drivers of price fluctuations and how to properly value these assets. Studies
using empirical data have focused on understanding and predicting the price dynamics of
cryptocurrencies using machine learning techniques with different input features [15–20].
Socio-economic signals, such as sentiment index gathered from social media platforms
[21, 22], also appear to be strongly intertwined with the price dynamics [23, 24]. Research
has also shown that movements in the market can be tied to macroeconomic indicators,
media exposure, and public interest [25, 26], policies and regulations [27], and indeed the
behaviour of other financial assets [28].

In the context of institutional investments, the recent growing interest in mixed portfo-
lios of crypto and traditional assets [4] has paved the way to research looking at optimal
portfolio allocation strategies. Studies have focused on the composition of mixed portfo-
lios, i.e., including traditional (bonds, commodities, etc.) and crypto assets [29, 30], and
crypto-only portfolios [31, 32] testing the performances of different allocation and re-
balancing strategies. Specific strategies, e.g., introducing so-called stop-loss rules, have
been tested specifically as they would make crypto portfolios more appealing to institu-
tional investors due to lower risks associated with volatility [33].

Concerning characterising and quantifying institutional interest and investments in
cryptocurrency projects, most of the research available is based on qualitative surveys
by private companies of investors in Europe and the U.S., which aim to identify market
trends and issues, e.g., barriers to adoption and current channels to exposure in cryp-
tocurrencies [3, 4]. In Sun, 2021 [34], for instance, the authors surveyed 33 Asian firms to
investigate whether price volatility lowers institutional investors’ confidence and to quan-
tify the role played by the familiarity of investors with the technology in the selection of
crypto assets. In [35] the authors analysed the connection between investors’ ESG pref-
erences and crypto investments exposure using household-level portfolio data gathered
from the Austrian Survey of Financial Literacy (ASFL). The analysis suggests that crypto
investments are more strongly driven by social and ethical preferences compared to tradi-
tional investments (e.g., bonds). In [7], the authors analyse the drivers of crypto adoption,
and assess institutional investors’ crypto exposure via different channels (e.g., banks, ex-
changes, etc.). In [36], a comprehensive review of typical crypto investors’ behaviour and
their effect, including understanding drivers of investors’ sentiment and attention and de-
tecting herding behaviour. In [37] the authors provide a first quantitative exploration of
the investor’s network focusing on data for investments on ∼ 300 ERC-20 tokens.2 Their
analysis shows that less central tokens in the investment network have also low market
capitalization (i.e., the overall dollar value of all the tokens) and trading volume, poor liq-
uidity, and high volatility. Our analysis builds directly on their approach, by considering an
extended set of cryptoassets, as well as a novel combination of data, which also includes
information on the technological features of the assets considered.

2An ERC-20 token is a type of digital asset that runs on the Ethereum blockchain, following a standardized set of rules so
it can easily interact with other apps and tokens. Essentially, it is a special type of currency that can be used in a variety of
online applications and services.
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3 Data and methods
3.1 Data description
In this paper, we use three main data types, (i) cryptocurrency price time series data, (ii)
cryptocurrency metadata describing projects’ technological features and/or their use case
and functionalities, and (iii) data capturing information on investment rounds in cryp-
tocurrency projects.

Market data (i) and cryptocurrency metadata (ii) were extracted from the website Coin-
marketcap [38]. The data covers 1324 cryptocurrency projects over eight years, spanning
from 2014 to 2022. It is important to note that the term ‘cryptocurrency’ here encompasses
various types of blockchain-based digital assets. This includes traditional cryptocurren-
cies like Bitcoin and Litecoin, which are standalone digital currencies operating on their
own blockchains, and blockchain-based tokens, such as the previously mentioned ERC-
20 tokens on the Ethereum blockchain and analogous tokens on other platforms. These
tokens have a range of applications, and they can represent various assets or functionali-
ties within decentralized applications. A notable example within this group is stablecoins,
which are typically designed to minimize price volatility by being pegged to more stable
assets such as fiat currencies.

Market data consists of each cryptocurrency’s opening price, closing price, and traded
volume, sampled weekly.

Coinmarketcap also assigns tags describing the main features of the different cryptocur-
rencies. Metadata can be broadly classified into three categories. The first is technology-
related specifications, which refer to the underlying blockchain technology that the cryp-
tocurrency employs (e.g., Proof-of-Work vs. Proof-of-Stake algorithms–these are different
methods used to validate transactions and create new blocks in the blockchain). The sec-
ond is ecosystem-related information, indicating whether the cryptocurrency operates on
an independent blockchain or as part of an existing one, as well as whether it is part of
decentralized finance (DeFi) projects. The third category relates to the use case, or the
specific purpose and utility of the cryptocurrency (e.g., it could be used for facilitating
distributed storage, as a fan token for a particular brand or celebrity, or simply as a dig-
ital store of value, like digital gold). See Appendix A.5 for a list of available tags used to
categorize these aspects and their respective frequency. The dataset contains 226 unique
tags. Cryptocurrencies’ tags might change over time as, for instance, the project pivots its
scope or new categories are invented. Thus, the data we collected and used in the analysis
should be understood as a snapshot of the cryptocurrency environment at the time they
were gathered (August 2021).

Coinmarketcap also provides cryptocurrencies’ webpage URLs, which are used to merge
market-related data with investment data.

Finally, the investments’ data (iii) is gathered from Crunchbase [39], a commercial
database covering worldwide innovative companies and accessed by 75M users each year.
The data is sourced through two main channels: an extensive investor network and com-
munity contributors. Investors commit to keeping their portfolios updated to get free ac-
cess to the dataset. More than 600k executives, entrepreneurs, and investors update over
100k company, people, and investor profiles per month. Crunchbase processes the data
with machine learning algorithms to ensure accuracy and scan for anomalies, ultimately
verified by a team of data experts at Crunchbase. Due to its broad coverage, the data has
been used in thousands of scholarly articles and technical reports [39, 40]. Information on



Mungo et al. EPJ Data Science           (2024) 13:11 Page 5 of 22

Figure 1 Cryptocurrencies co-investment network. (A) The Crunchbase dataset can be mapped into a
bipartite network where investors are connected to cryptocurrency projects they have invested in at least
once. We use an approach similar to Lucchini et al., 2020 [24] (B) Projection of the bipartite
investors-cryptocurrencies network, where two cryptocurrencies are linked if they have at least a common
investor. (C) Real co-investment network of 624 cryptocurrency projects with at least one connection. Node
size is proportional to the number of connections, and link width is proportional to the number of common
investors between two cryptocurrencies (note that link weights have been discarded in our analysis, where
the co-investment network is unweighted). Colours represent different groups of cryptocurrencies clustered
according to their tags’ similarity on Coinmarketcap (see Sect. 3.2). We also report the name of the top nodes
by degree in five representative clusters (DODO, LUNA, NEAR, ZRX, DOT)

Crunchbase includes an overview of the company’s activities, number of employees, and
detailed information on funding rounds, including investors and—more rarely—amounts
raised. We provide detailed information on the features contained in this dataset in Ap-
pendix A.4.

We merged the Crunchbase data on investment rounds with Coinmarketcap data via the
companies’ webpage URLs. After merging, the dataset includes 4395 investments made in
1458 rounds by 1767 investors to 1324 cryptocurrency projects appearing on Crunchbase.
The total investments amount to $13B US dollars in the period considered (2008–2022).
When merging with the time series data, we can still track 624 cryptocurrency projects.

3.2 Methods
In this section, we review the methods used for our analyses. We first describe the co-
investment network and the approach we used to cluster its nodes. Later, we explain our
analysis of the interplay between the network structure and the market dynamics.

Co-investment network The main object considered in our study is the cryptocurrencies’
co-investment network. Figure 1, A shows how the co-investment network is constructed
as a monopartite projection of the bipartite network where investors are connected to
cryptocurrency projects they have funded at least once. In the resulting co-investment
network (Fig. 1, B)—which is unweighted and undirected—nodes represent different cryp-
tocurrencies, and the presence of a link means that the two nodes share at least one com-
mon investor. Figure 1C, shows the real co-investment network composed of 624 cryp-
tocurrency projects. The node sizes are proportional to their degree, and the link widths
are proportional to the number of common investors between two cryptocurrencies. In
the rest of this paper, the co-investment network will be characterised by a binary and
symmetric adjacency matrix A, with entries aij ∈ {0, 1}, recording only the information on
whether at least one shared investor exists between two cryptocurrencies.
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Clustering algorithm We assign a vector xi to each cryptocurrency, where, for every tag j,
xi,j = 1 if the j-th tag (see Table 6) is assigned to the i-th cryptocurrency, and xi,j = 0 other-
wise. We used the Ward Aggregative Clustering [41] algorithm to divide the cryptocurren-
cies into different clusters based on the observations (x1, x2, . . . , xn). The algorithm uses a
“bottom-up” approach: each observation is initially placed in its own clusters, and clusters
are merged sequentially according to some criterion until the desired number of clusters
is reached. Wards’ algorithm specifically prescribes to merge, at each iteration, the pair of
clusters Si, Sj that minimizes the distance �(Si, Sj), defined as

�(Si, Sj) =
∑

l∈Si∪Sj

‖xl –μi+j‖2 –
∑

l∈Si

‖xl –μi‖2 –
∑

l∈Sj

‖xl –μj‖2 =
|Si||Sj|

|Si| + |Sj| ‖μi –μj‖2, (1)

where |Si| is the number of observations in cluster Si, μi is the mean of points in Si, μj is
the mean of points in Sj, and μi+j is the mean of points in Si ∪ Sj. The number of clusters k
is an input of the clustering algorithm. Using the elbow method (see Appendix A.1) we set
k = 12. We opted for Ward’s Agglomerative Clustering Algorithm over alternatives such
as k-means and k-modes due to its propensity for generating more equal cluster sizes [42,
43]. Minimizing the total within-cluster variance, which often results in clusters that are
similarly sized in terms of variance, Ward’s method provides a more regular partitioning
of the data. Since our data is sparse (i.e., each cryptocurrency only has a handful of tags),
other alternatives would put most of the cryptocurrencies in a single cluster. However,
we show in Appendix A.1 that our conclusions are robust with respect to the clustering
algorithm choice.

Clustering evaluation and benchmarks We investigate whether the clusters obtained
via the previous procedure reflect the underlying network structure by studying the in-
density and out-density of links according to the partitioning defined by the clusters.
Given the N × N adjacency matrix A of our co-investment network and the clustering
S∗ = {S1, . . . , Sk}, we define the in-density of a cluster Si as

ρ i
i =

1
|Si|(|Si| – 1)

∑

j,k∈Si ,j �=k

Ajk , (2)

and its out-density as

ρo
i =

1
|Si|(N – |Si|)

∑

j∈Si ,k /∈Si

Ajk . (3)

These metrics are used to study whether cryptocurrencies with similar characteristics—
clustered according to the Coinmarket cap tags—are more strongly interconnected
(higher in-cluster density) in the co-investment network among themselves rather than
with groups of dissimilar cryptocurrencies. We, then, compare the in-densities and out-
densities of the clusters identified by the clustering algorithm with those of random clus-
ters. To generate the random clusters, we simply assign each cryptocurrency to one of the
twelve possible clusters with equal probability. In Sect. A.3 of the Appendix, we repeat
the analysis with several different node similarity metrics including the Jaccard index, the
cosine similarity (also known as Salton index), the Adamic–Adar index, and the resource
allocation index, showing that our findings are robust with respect to different metrics.
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Time series processing The investigation of the co-investment network’s relationship
with the cryptocurrency market is conducted by computing cryptocurrencies’ returns cor-
relation. The primary objects of this analysis are cryptocurrencies’ weekly closing price
(i.e., the final price at which the cryptocurrency is traded during a specific trading week)
time series pi(t), i = 1, . . . , N . We compute their log returns as

ri(t) = log

(
pi(t + 1)

pi(t)

)
, (4)

and use the leave-one-out rescaling described in [44] to define the rescaled returns,

r̃i(t) =
ri(t) – Et′ [ri(t′)]√

Vt′ �=t[ri(t′)]
, (5)

where the average of the returns Et′ [ri(t′)] is computed over all times t′, but the variance
Vt′ �=t[ri(t′)] is computed from the time series where the observation corresponding to t′ = t
has been removed. The correlation matrix of the time series r̃i is defined as

Cij = Et
[
r̃i(t)r̃j(t)

]
. (6)

Cryptocurrencies’ prices usually move coherently, increasing or decreasing simultane-
ously [45–47]. This collective behaviour of the market makes returns strongly correlated
and hides the more subtle effects we want to highlight. Therefore, we adopt the following
strategy to remove the so-called market component from the correlation matrix character-
ising common price co-movements [48]. We first compute the set of eigenvalues λ1, . . . ,λN

of the correlation matrix, the corresponding eigenvectors v1, . . . , vN , and the modes mi(t),
defined as

mi(t) =
N∑

j=1

vijr̃j(t). (7)

We call market mode the mode m1(t) associated with the largest eigenvalue λ1. The time
series r̃i(t) can now be written as linear combinations of the modes mi(t),

r̃i(t) =
N∑

j=1

cijmj(t). (8)

We can now define the adjusted time series r′
i(t),

r′(t) =
N∑

j>1

cijmj(t), (9)

and the corresponding adjusted correlation matrix C′,

C′
ij = Et

[
r′

i(t)r′
j(t)

]
. (10)
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Network correlation and random benchmarks We compute the average value of the raw
and adjusted correlations C and C′ (defined in Eq. (6), (10) respectively) restricted to the
pairs of cryptocurrencies (i, j) that are linked (i.e., share an investor) in the co-investment
network. For any (binary) adjacency matrix M characterising the co-investment network,
we define

CM = Eij[CijMij|Mij > 0], (11)

and

C′
M = Eij

[
C′

ijMij|Mij > 0
]
, (12)

where the average runs over all pairs (i, j) of connected nodes. The values of CM and C′
M

range from –1 to 1, where –1 indicates a perfect inverse correlation, 0 indicates no cor-
relation, and 1 indicates a perfect positive correlation between pairs of cryptocurrencies.
High values (close to 1) suggest that the cryptocurrencies move in tandem, while a value
around 0 would indicate a lack of any significant relationship in their returns.

We compute CA and C′
A over the adjacency matrix A of the real co-investment net-

work and compare them with the values obtained on three random network models: the
Erdős-Rényi model [49], the Stochastic Block Model [50], and the Configuration Model [51].
Here—to mimic the properties of the real co-investment network—we have constructed
undirected and unweighted random networks as benchmarks.

For every model, we sample n = 1000 network instances R1, . . . , Rn at random, and com-
pute the mean and standard deviation of the sets {CR1 , . . . , CRn} and {C′

R1
, . . . , C′

Rn}. All
models are parametrized to match the empirical properties of the co-investment network.
The probability of a link p in the Erdős-Rényi model is set to match the co-investment net-
work’s empirical density,

p =
1

N(N – 1)

N∑

i=1

N∑

j>i

Aij.

Blocks in the Stochastic block model match the clusters found with the clustering algo-
rithm and the densities within- and across- clusters are equal to the empirical values. Fi-
nally, the degree sequence in the configuration model matches the empirical degree se-
quence.

4 Results
4.1 Structure of the cryptocurrency co-investment network
In this section, we analyze the relationship between institutional investments and the
properties of the cryptocurrency market.

We start by quantifying the joint evolution of the number and volume of investments
together with the growth of the cryptocurrency market. In Fig. 2, we show the evolution of
the total raised amount, number of investments, and market capitalization3 of the cryp-
tocurrency ecosystem. Overall, we find that the number of investments, as well as the

3The market capitalization of a token is the total value of all its units in circulation, calculated by multiplying the current
price per token by the total number of tokens available.
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Figure 2 Temporal evolution of institutional investments in cryptocurrency projects. Yearly total amount
raised in USD (blue line) and the number of investments (red line) in cryptocurrency projects retrieved from
the Crunchbase dataset for the period 2009–2012. The total capitalization of the cryptocurrency market in
USD is shown in yellow

amount raised, has been steadily growing since 2012. Moreover, we find a positive corre-
lation between the cryptocurrency market capitalization (MC) and both the total volume
of investments/raised amount in dollars (VI) and the number of investments (NI). The
Spearman correlation amounts respectively to ρMC–VI = 0.79 and ρMC–NI = 0.81, suggest-
ing that the crypto market and the volume of investments have evolved hand in hand.

Next, we turn to studying the evolution of the co-investment network in time (see Fig. 3).
We find that, since 2014, the network has grown steadily in terms of the cumulative num-
ber of nodes (panel A), i.e., cryptocurrency projects funded by institutional investors, and
the cumulative number of edges (panel B), i.e., common investors between cryptocurren-
cies. Interestingly, the growth displays a steeper increase around 2017–2019, consistently
with the rapid increase in demand for cryptocurrencies and the rise of Bitcoin’s valuation
over those years [52]. Turning our attention to the number of connections per node, we
observe that the degree distribution of the co-investment network is heavy-tailed, with
most nodes having a single connection and only a few having hundreds of neighbours (see
Fig. 1C). Interestingly, the shape of the distribution has been relatively stable over time
(see Fig. 1C), in line with the findings discussed in Ref. [37], where the authors studied the
co-investment network restricted to ERC-20 tokens only.

Which factors may explain the observed structure of the cryptocurrency co-investment
network? In the following, we test the hypothesis that the structure of the co-investment
network is partly determined by the properties characterising different cryptocurrency
projects (e.g., their underlying technology or their purpose) because investors tend to spe-
cialize and invest in specific types of cryptocurrencies. More formally, we assess whether
two cryptocurrencies with similar properties are also more likely to be connected in the
co-investment network compared to any random pair of currencies.

To this end, we assign each cryptocurrency to a cluster, based on its properties (see
Sect. 3.2 for more details). Then—for each cluster i—we calculate the in-cluster density
ρ i

i and the out-cluster density ρo
i , as defined in Eq. (2) and Eq. (3) respectively. We then
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Figure 3 Time evolution of network metrics. In Panel A we report the cumulative number of nodes in the
co-investment network. Panel B represents the cumulative number of edges, i.e., new investors supporting
cryptocurrency projects. In Panel C we plot the degree distribution for five representative years

Figure 4 Comparison of in- and out- cluster densities. In- and out-densities measured on 12 clusters
generated by running the clustering algorithm on the cryptocurrencies’ tags. Blue circles represent the
different clusters (the size of the circle is related to the cluster’s size) and the text indicates the most relevant
tags per cluster. The dashed red line is the diagonal, the red-shaded area represents the in- and out-cluster
density distribution for the randomised clusters. The clusters identified by the algorithm fall outside this area;
thus their in- and out-densities are not compatible with the random benchmark we tested

compare the in- and out-cluster densities: if ρ i
i is significantly higher than ρo

i , then there
is a higher density of links among cryptocurrencies with similar properties.

Indeed, we observe that the densities inside clusters of similar cryptocurrencies tend to
be larger than those across clusters (see Fig. 4), which confirms our hypothesis. In practice,
this implies that similar cryptocurrency projects (i.e., those that share a common set of
tags), tend to share a larger number of investors compared to any two randomly chosen
projects.

Importantly, we find that–when cryptocurrencies are assigned to random clusters–the
relation between the in- and out-density is significantly different (see red shaded area in
Fig. 4). Thus, our results reveal that there is a non-trivial connection between the topol-
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ogy of the network and the intrinsic features of cryptocurrency projects. In particular,
they hint at the presence of specialised investors who do not simply invest in the whole
cryptocurrency ecosystem but rather focus on specific technologies and/or use cases.

4.2 Interplay between the co-investment network structure and returns
correlations

In this section, we investigate the interplay between the structure of the co-investment
network and the cryptocurrency market properties. More specifically, we test if the price
returns of cryptocurrencies that share common investors are more correlated than one
would expect by random chance.

To this end, we compute the average returns correlation CA defined in Eq. (11) across
pairs of cryptocurrencies sharing a link in the real co-investment network (described by
its adjacency matrix A). We also compute average returns correlation of cryptocurrency
pairs sharing a link on random network benchmarks including (i) an Erdős-Rényi network,
(ii) a configuration model and (iii) a stochastic block model parametrized to reproduce
some of the features of the real network (e.g., number of nodes, number of clusters, degree
distribution—as detailed in Sect. 3).

Figure 5 compares the values of the correlation for the real co-investment network and
the benchmarks respectively. The correlation values displayed can be found in Table 1
and Table 2 of the Appendix. In Panel A of Fig. 5, the returns correlation between cryp-
tocurrency pairs is plotted against their network distance, defined as the shortest path
between the two nodes in the network. Our findings indicate that the average correlation
decreases as the distance in the network increases. Cryptocurrencies that are “close” in the
co-investment network are, on average, more correlated than the random benchmarks;
conversely, pairs of cryptocurrencies that are distant in the network are less correlated
than the benchmarks.

Figure 5, Panel B summarizes the average returns correlation for the real network (blue)
and random networks (green, red, and orange). The lighter shades of colour display the
values of the correlation C′

Ã for the adjusted time series, where the market component has
been removed (see Sect. 3.2). Once again, the figure shows that the average correlation
on the real network is significantly larger than on all the benchmarks tested, suggesting
that the network’s structure may directly impact the cryptocurrencies’ market behaviour.
Furthermore, the gap between real and random correlation widens significantly after re-
moving the time series as discussed in Sect. 3.2.

Overall, our results reveal that the returns of cryptocurrencies that share a common
investor have a stronger correlation than one would expect by random chance, revealing
that assets with shared investors tend to be characterized by similar market dynamics.

5 Discussion
In this paper, we have analyzed an ecosystem of 1324 cryptocurrency projects that re-
ceived 4395 investments from 1767 investors for a total amount of $13B appearing on
Crunchbase. We have built and analysed the co-investment network, where two cryp-
tocurrencies are linked if they share an investor. We have also clustered cryptocurrency
projects based on metadata and tags from the Coinmarketcap website and studied the
community structure.
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Figure 5 Returns correlation of connected cryptocurrency pairs. A: Average correlation between the return
time series of a pair of cryptocurrencies, against their network distance. The results are shown for the real
network (“True network”, blue circles) and three random network models: the “Configuration Model” (red
circles), the “Block Model” (green circles), and the “Erdős-Rényi” model (yellow circles). To help interpretation,
all correlations for a given Network Distance d were rescaled dividing them by the average correlation
obtained for the “True Network” at that distance d. B: Average correlation ( CA) for cryptocurrencies
connected in the co-investment network (blue bars) and in random benchmarks (red - configuration model,
green - stochastic block model, orange - Erdős-Rényi). For each network, the bottom bar shows the adjusted
correlation obtained after removing the market component (C′

A , see Methods). Correlation values were
rescaled between [0, 1] for visual clarity (independently for the values of C and C′)

As hinted by previous research and surveys concerning institutional and individual
crypto investors’ preferences [3, 4, 37, 53], our results show that investors tend to spe-
cialise and focus on particular technologies, use cases, and features of the cryptocurrency
projects they decide to include in their portfolio.

We have also analyzed the relationship between the co-investment network and the
cryptocurrencies’ market properties. We showed that the presence of a link in the co-
investment network translates into a higher correlation in cryptocurrencies’ returns. The
marginal increase in the correlation of cryptocurrency returns decreases as the distance
between the considered pairs of cryptocurrencies in the co-investment network increases.

Our work has limitations that, hopefully, can be turned into future avenues of research.
As stated above, we also provide access to the co-investment network reconstructed from
Crunchbase to ease further explorations and extensions of our work. Firstly, our data col-
lection process stopped over the summer of 2021, before the second major cryptocurrency
crash and the default of established players such as Terra, Celsius, and FTX. It is legit to
wonder to what extent our results would hold in the new regime, where the general sen-
timent towards cryptocurrencies has pivoted.

Secondly, some prominent players in the cryptocurrencies’ ecosystem are not associated
with a company, but rather with different types of organizations including Decentralized
Autonomous Organizations (DAOs), foundations, or even no legal entity at all. The nature
of the investment may also vary substantially. For instance, instead of buying a share of
the company, investors may, e.g., lend money to DeFi protocols in exchange for tokens as
rewards (a practice known as liquidity mining [54]). These new organization types and
forms of investment are scarcely represented in our dataset, therefore we can only offer a
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partial view of the cryptocurrencies’ investment ecosystem. Finally, most of our analysis
was performed on a static network. However, how the network grows, what the different
investment strategies adopted by an investor are, and how they depend on the market are
also clearly worth analyzing.

In light of the recent crypto market crash events—from the stablecoin pair Terra—Luna
to large exchanges [55–57]—understanding the crypto market connectedness at the in-
vestors level helps shed light on possible contagion channels posing threat to the ecosys-
tem overall stability.
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Appendix
A.1 Methods
We have tested four algorithms to cluster our set of cryptocurrencies based on the associ-
ated Coinmarketcap tags, namely Ward’s iterative clustering, k-means [58], k-modes [59],
and an agglomerative clustering algorithm based on cosine distance between data points.
We eventually settled for Ward’s algorithm due to its propensity to generate more equally-
sized clusters [42, 43]. However, other algorithms resulted in similar, non-random parti-
tions of cryptocurrencies into clusters as shown in Fig. 6.

However, the algorithm choice might be not optimal, and more sophisticated cluster-
ing algorithms could lead to more insightful partitions of our data. Specifically, it should
be mentioned that Ward’s algorithm, as well as k-means, computes Euclidean distances
to divide data points into clusters, which is, arguably, not the optimal way of computing
distances when dealing with binary data.

To select the total number of cryptocurrencies’ clusters we employ the elbow method.
For each possible partition S = S1, . . . , Sk of the dataset, we define a loss function L(S) as

L(S) =
k∑

i=1

∑

j∈Si

‖xj – μi‖2, (13)

where xj is the vector of tags observations for cryptocurrencies belonging to the par-
tition Si and μi is its mean. We ran the clustering algorithm for several different val-
ues of k, and computed the value of the loss function for the set of optimal partitions
{S∗

k=1, S∗
k=2, . . . , S∗

k=N }, where N is the total number of cryptocurrencies considered in our
study.

The elbow method prescribes choosing the maximum number of clusters before the
curve becomes flat. Intuitively, the method recommends picking a point where the
marginal decrease in the loss function is not worth the additional cost of creating another
cluster. Figure 7 shows that a value around k = 12 is compatible with the elbow method in
our case.

A.2 Further analysis
The tables below report the results used to build Fig. 5. In particular, we show the mean
correlation defined in Eq. (12) and its variance computed over 1000 realizations of the
random networks and on the real co-investment network (Eq. (11)). In Table 1 we report
the results as a function of the network distance, while in Table 2 computed over all pairs

Figure 6 In- and out-densities measured on 12
clusters generated by running the clustering
algorithm on the cryptocurrencies’ tags. Different
colours show clusters obtained with different
algorithms
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Figure 7 Values of the loss function for the different number of clusters. The curve becomes flat when the
number of clusters is around k = 12

Table 1 Correlation values as a function of the distance for Fig. 5 A comparing results for the real
co-investment network and the three random benchmarks (Configuration Model, Block Model and
Erdős-Rényi)

Distance True network Configuration model Block model Erdős–Rényi

1 0.38 0.354±0.002 0.355±0.001 0.316±0.002
2 0.331 0.329±0.001 0.330±0.000 0.316±0.000
3 0.281 0.294±0.001 0.291±0.000 0.316±0.001
4 0.268 0.274±0.003 0.309±0.001 0.316±0.003
5 0.17 0.215±0.010 0.323±0.002 0.317±0.012

Table 2 Correlation values for the real co-investment network and the three random benchmarks
(Configuration Model, Block Model and Erdős-Rényi) used in Fig. 5, B

Model Correlation Rescaled Correlation, cleaned data Rescaled, cleaned data

True Network 0.380 1.000 0.010 1.0
Block Model 0.355±0.001 0.935±0.002 6.64e-03±8.96e-04 0.645±0.087
Configuration Model 0.354±0.002 0.932±0.006 1.06e-03±2.90e-03 0.103±0.282
Erdős-Rényi 0.316±0.002 0.833±0.004 7.33e-04±1.94e-03 0.071±0.188

of cryptocurrencies, including the raw correlation values as well as correlations computed
on ‘cleaned data’ obtained by removing the market mode (see Eq. (10) and rescaling the
correlation to be in the range [0, 1] and included in the figure.

A.3 Clusters analysis
To better characterise the similarity between nodes belonging to the same clusters as de-
fined in Sect. A.1, we compute four well-known similarity measures [60], the Jaccard in-
dex, the cosine similarity (also known as Salton index), the Adamic–Adar index, and the
resource allocation index. The Jaccard index measures the similarity between two nodes’
sets of neighbours and is defined as the size of the intersection divided by the size of the
union of the sets. The cosine similarity counts the number of common neighbours but
penalizes nodes that have a higher degree. The Adamic–Adar index and the resource al-
location index count the number of common neighbours, but they assign a lower weight
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Table 3 Data entries in the organization Crunchbase bundle

Bundle Columns name Description

Organization uuid Organization unique Identifier
name Company’s name
permalink
cb_url Company url on Crunchbase
rank Crunchbase rank
created_at Record creation date
updated_at Last record update
legal_name Company legal name
roles Company, Investor, or both
domain Company’s website domain
homepage_url Company’s hompage URL
country_code
state_code
region
city
address
postal_code
status
short_description
category_list Company classification (e.g., Enterprise Software, Financial

Services, Social Media)
category_groups_list Company classification (e.g., Content and Publishing, Internet

Services)
num_funding_rounds Number of funding rounds
total_funding_usd Total Funding raised in USD
total_funding Total funding raised
total_funding_currency_code Funding currency
founded_on
last_funding_on
closed_on
employee_count
email
phone
facebook_url
linkedin_url
twitter_url
logo_url
alias1 Other company’s names
alias2
alias3
primary_role Either “company” or “investor”
num_exits

to neighbours that have a high degree. If we call �(i) the set of neighbors of a node i, we
can define these measures as

dJaccard
ij =

|�(i) ∩ �(j)|
|�(i) ∪ �(j)| ,

dcosine
ij =

|�(i) ∩ �(j)|√|�(i)| × |�(j)| ,

dAdamic–Adar
ij =

∑

k∈�(i)∩�(j)

1
log |�(k)| ,

dRA
ij =

∑

k∈�(i)∩�(j)

1
|�(k)| .



Mungo et al. EPJ Data Science           (2024) 13:11 Page 17 of 22

Table 4 Data entries in the Crunchbase funding rounds bundle

Bundle Columns name Description

Funding Rounds uuid Funding round unique identifier
name Funding round name (e.g., Angel Round—Facebook)
permalink
cb_url Crunchbase url
rank Crunchbase company rank
created_at Record creation date
updated_at Record last update
country_code
state_code
region
city
investment_type Investment type (e.g., angel, seed, series a)
announced_on
raised_amount_usd
raised_amount
raised_amount_currency_code
post_money_valuation_usd
post_money_valuation
post_money_valuation_currency_code
investor_count Number of investors
org_uuid Investee unique identifier
org_name Investee name
lead_investor_uuids Lead investor’s unique identifier.

Table 5 Data entries in the Crunchbase investment bundle

Bundle Columns name Description

Investments uuid Investment unique identifier
name Investment’s name (e.g., Accel investment in Series

A—Facebook)
permalink
cb_url Crunchbase’s investment url
created_at Record creation date
updated_at Record last update
funding_round_uuid
funding_round_name
investor_uuid
investor_name
investor_type Either “organization” or “person”
is_lead_investor

For each cluster Sk , we compute the average value of each metric within and outside the
cluster. The average similarity inside the cluster is

din
k =

1
|Sk| × (|Sk| – 1)

∑

i,j∈Sk ,i�=j

dij,

and the average similarity outside the cluster is

dout
k =

1
|Sk| × (N – |Sk|)

∑

i∈Sk ,j /∈Sk

dij,

where dij represents one of the four metrics defined above. Figure 8 shows the values of
the in- and out-average similarity metrics for the 12 cryptocurrency clusters described in
Sect. 4 and compares them with those obtained for 1000 random clustering assignments.
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Table 6 Coinmarketcap cryptocurrencies tags and their frequency characterising the
cryptocurrencies present in the co-investment network

0 mineable: 465 defi: 333 platform: 188
1 collectibles-nfts: 139 yield-farming: 129 payments: 127
2 pow: 98 marketplace: 97 binance-smart-chain: 86
3 masternodes: 84 decentralized-exchange: 83 smart-contracts: 82
4 exnetwork-capital-portfolio: 72 hybrid-pow-pos: 72 medium-of-exchange: 65
5 polkadot-ecosystem: 53 governance: 53 scrypt: 53
6 dao: 49 enterprise-solutions: 47 ethereum: 47
7 privacy: 42 gaming: 41 media: 40
8 pos: 38 asset-management: 37 kinetic-capital: 36
9 stablecoin: 32 centralized-exchange: 32 distributed-computing: 31
10 services: 28 ai-big-data: 28 content-creation: 27
11 cosmos-ecosystem: 26 staking: 26 iot: 26
12 pantera-capital-portfolio: 23 alameda-research-portfolio: 23 filesharing: 23
13 tokenized-stock: 22 sha-256: 22 substrate: 22
14 polkastarter: 20 amm: 20 memes: 19
15 sports: 18 gambling: 18 derivatives: 18
16 storage: 17 x11: 16 oracles: 16
17 rebase: 16 solana-ecosystem: 16 stablecoin-asset-backed: 16
18 entertainment: 15 store-of-value: 14 polkadot: 14
19 yield-aggregator: 14 wallet: 14 dao-maker: 14
20 coinbase-ventures-portfolio: 13 duckstarter: 13 binance-launchpad: 13
21 wrapped-tokens: 12 seigniorage: 12 interoperability: 12
22 lending-borowing: 10 binance-chain: 10 cms-holdings-portfolio: 10
23 dapp: 10 insurance: 10 dcg-portfolio: 9
24 multicoin-capital-portfolio: 9 launchpad: 9 polychain-capital-portfolio: 9
25 hashkey-capital-portfolio: 9 fan-token: 9 synthetics: 8
26 poolz-finance: 8 binance-labs-portfolio: 8 three-arrows-capital-portfolio: 8
27 placeholder-ventures-portfolio: 7 blockchain-capital-portfolio: 6 scaling: 6
28 social-money: 6 fabric-ventures-portfolio: 6 crowdfunding: 6
29 dpos: 5 boostvc-portfolio: 5 arrington-xrp-capital: 5
30 framework-ventures: 4 defi-index: 4 trustswap-launchpad: 4
31 discount-token: 4 state-channels: 3 coinfund-portfolio: 3
32 logistics: 3 dex: 3 a16z-portfolio: 3
33 marketing: 3 e-commerce: 3 tourism: 3
34 health: 2 research: 2 loyalty: 2
35 dragonfly-capital-portfolio: 2 identity: 2 energy: 2
36 parafi-capital: 1 huobi-capital: 1 metaverse: 1
37 yearn-partnerships: 1 defiance-capital: 1 ledgerprime-portfolio: 1
38 data-provenance: 1 sharing-economy: 1 zero-knowledge-proofs: 1
39 paradigm-xzy-screener: 1 electric-capital-portfolio: 1 1confirmation-portfolio: 1
40 binance-launchpool: 1 video: 1 analytics: 1
41 music: 1 cybersecurity: 1 prediction-markets: 1
42 fenbushi-capital-portfolio: 1 options: 1 education: 1
43 real-estate: 1 x13: 1 aave-tokens: 1
44 avalanche-ecosystem: 1 mobile: 1 galaxy-digital-portfolio: 1
45 crowdsourcing: 1 hardware: 0 reputation: 0
46 usv-portfolio: 0 jobs: 0 stablecoin-algorithmically-stabilized: 0
47 quark: 0 multiple-algorithms: 0 equihash: 0
48 events: 0 winklevoss-capital: 0 art: 0
49 atomic-swaps: 0 cryptonight: 0 communications-social-media: 0
50 neoscrypt: 0 social-token: 0 dag: 0
51 heco: 0 retail: 0 eth-2-0-staking: 0
52 philanthropy: 0 commodities: 0 ringct: 0
53 transport: 0 sharding: 0 quantum-resistant: 0
54 ethash: 0 vr-ar: 0 hospitality: 0
55 asset-backed-coin: 0 layer-2: 0 blake2b: 0
56 hybrid-dpow-pow: 0 hacken-foundation: 0 adult: 0
57 manufacturing: 0 sha-256d: 0 search-engine: 0
58 ontology: 0 dagger-hashimoto: 0 poc: 0
59 pos-30: 0 blake256: 0 blake: 0
60 hybrid-pos-lpos: 0 geospatial-services: 0 m7-pow: 0
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Table 6 (Continued)

61 fashion: 0 cryptonight-lite: 0 tron: 0
62 mimble-wimble: 0 lp-tokens: 0 poi: 0
63 lyra2rev2: 0 agriculture: 0 posign: 0
64 timestamping: 0 pop: 0 lpos: 0
65 sidechain: 0 platform-token: 0 eos: 0
66 hybrid-pow-npos: 0 lelantusmw: 0 groestl: 0
67 cosmos: 0 x11gost: 0 scrypt-n: 0
68 food-beverage: 0 tpos: 0 qubit: 0
69 x15: 0 sha-512: 0 data-availability-proof: 0
70 cuckoo-cycle: 0 escrow: 0 rollups: 0
71 hybrid-pos-pop: 0 yescript: 0 rpos: 0
72 x14: 0 post: 0 blake2s: 0
73 nist5: 0 bulletproofs: 0 sigma: 0
74 argon2: 0 lyra2re: 0 xevan: 0
75 waves: 0

Figure 8 Inside and outside average similarities measured on 12 clusters generated by running the
clustering algorithm on the cryptocurrencies’ tags. Blue circles represent the different clusters (the size of the
circle is related to the cluster’s size). The dashed red line is the diagonal, the red-shaded area represents the
inside and outside average distance density distribution for the randomised clusters

Nodes belonging to the same cluster tend to be more similar, in a way that is not compatible
with a random benchmark.

A.4 Crunchbase dataset
Crunchbase provides information on worldwide innovative companies. The dataset cov-
ers several aspects of the companies, spanning from a basic description of the business
description to their financial status, board composition, and even media exposition. The
dataset is organized in different bundles that reflect this different information. The bun-
dles are:

• Company-related: organizations (including information on parent companies,
organization descriptions, and their division in categories) and investment funds.

• Investment-related: funding rounds (group of investments in a single company),
investments (specific investor-to-company transaction), investors, acquisitions, IPOs.
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• People-related: people covered in the dataset, the jobs they have, and the degrees they
hold, with a focus on investment partners.

• Event-related: events description and event appearances of specific companies.
For the sake of this paper, the relevant bundles concern organization, funding rounds,

and investments. We detail their content in Tables 3, 4, 5.

A.5 Coinmarketcap cryptocurrency tags
Table 6 contains together with their respective frequency gathered from Coinmarketcap
for all the cryptocurrency projects analysed in this paper. Given the heterogeneity of the
cryptocurrency market in terms of use case and/or supporting technology, the tags created
by Coinmarketcap help label and distinguish the different types of cryptocurrencies based
on ‘intrinsic’ features related to the nature of the project.
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