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Abstract
Using aversion ofHironaka’s resolution of singularities for real-analytic functions, any
elliptic multiplier Op(p) of order d > 0, real-analytic near p−1(0), has a fundamental
solution μ0. We give an integral representation of μ0 in terms of the resolutions
supplied by Hironaka’s theorem. This μ0 is weakly approximated in Ht

loc(R
n) for

t < d − n
2 by a sequence from a Paley-Wiener space. In special cases of global

symmetry, the obtained integral representation can be made fully explicit, and we use
this to compute fundamental solutions for two non-polynomial symbols.

Keywords Fundamental solutions · Pseudo-differential equations · PDE

Mathematics Subject Classification 35A08 · 35E05 · 35C05 · 35A17

1 Introduction

Let S ′(Rn) denote the space of tempered distributions on Rn . A fundamental solution
of Op(p) = F−1 pF is a μ0 ∈ S ′(Rn) such that

Op(p)μ0 = δ0 in S ′(Rn),

where δ0 is the unit measure at 0,F is the Fourier transform, and p is the symbol. The
study of these is classical, and most results are recorded in standard texts [7, 8]. The
Hörmander–Lojasiewicz theorem [6, 9] ensures existence when p is a polynomial,
and provides a way to construct a μ0, at least in principle, explicitly from the symbol.
But the situation becomes nebulous when p is not a polynomial or globally smooth.
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We address this problem when p−1(0) is compact and p is real-analytic near p−1(0),
and obtain an integral representation that clearly shows the structure of μ0.

In order to do so, we use a variant of Hironaka’s resolution of singularities [1].
Generally, the local charts that are supplied by Hironaka’s theorem are unknowable,
but they allow us to build an integral representation out of the geometry of p−1(0).
Occasionally, a diffeomorphism that brings p into a resolved form can replace them,
and such a diffeomorphism can often be constructed when there is global symmetry.
Important examples with this property include any sum of powers of the Laplacian, or
any sum of powers of certain elliptic self-adjoint second-order differential operators.
However, the novel andmost interesting case for us here is when p is not a polynomial,
and p is not necessarily globally smooth, but with dimension n > 1 and order d > 0.
We give examples showing the utility of this approach.

A lot of research has been devoted to the construction of explicit representations.
See e.g. Ortner and Wagner [10] and Camus [3, 4] for a broad class of operators.
Usually, it is very difficult to find explicit representations of fundamental solutions,
and the study is often focused on a particular operator of fixed order and dimension.
In the case of general homogeneous elliptic and some types of non-elliptic operators,
Camus [3, 4] obtained explicit representations valid for any number of dimensions.
Apart from the base practical value of constructing general solutions via convolution,
an explicit form may find application in proofs of mapping properties of its operator.
See e.g. Rabier [11], where the solution obtained in [3], implicit in [7], is used.

2 Notation

Let p ∈ C(Rn) be real-analytic in a neighbourhood of p−1(0) �= ∅. It must be
smooth outside an open ball B(0, R) centered at 0 of some radius R > 0. Putting

〈ξ 〉 = (1 + |ξ |2) 1
2 for ξ ∈ R

n , it must satisfy

sup
ξ∈Rn\B(0,R)

〈ξ 〉−d |∂α
ξ p(ξ)| < ∞ for all α ∈ N

n
0,

and the ellipticity constraint

inf
ξ∈Rn\B(0,R)

〈ξ 〉−d |p(ξ)| > 0.

Definition 2.1 (The Paley-Wiener spaces) Let K ⊂ R
n be compact and convex. Define

PWd
K (Rn) to be the space of entire functions u satisfying

sup
x∈Cn

exp
(

− sup
ξ∈K

Im(x) · ξ
)
〈x〉−d |u(x)| < ∞.

If {K j }∞j=1 is an exhaustion of Rn by compact convex sets, we put

PWd(Rn) = ∪∞
j=1PW

d
K j

(Rn).
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Moreover,we put PW−∞(Rn) = ∩d∈Z PWd(Rn) andPW+∞(Rn) = ∪d∈Z PWd(Rn).

These spaces are related to E ′(Rn), the compactly supported distributions on R
n .

We write Ht
loc(R

n) for the Frechet space of distributions locally belonging to Ht (Rn),
and H−t

comp(R
n) for its dual space of compactly supported distributions in H−t (Rn).

Finally, S(Rn) is the Schwartz space, u ∈ S(Rn) decays faster than any polynomial,
and we putFu(ξ) = ∫

Rn e−i x ·ξu(x) dx andF−1u(x) = 1
(2π)n

Fu(−x) for x, ξ ∈ R
n .

3 Solution Operator

Our main tool is Hironaka’s resolution of singularities. Often it is stated abstractly [2],
but we need a local embedded version.

Theorem 3.1 (Local embedded version of Hironaka’s theorem. From Atiyah [1]) Let
U ⊂ R

n be an open neighbourhood of 0, and let f be a function 0 �≡ f ∈ Cω(U ).
Then there is an open 0 ∈ V ⊂ U, a real-analytic manifold M, and a map

� : M → V .

It has the following properties:

1. � : M → V is proper and real-analytic.
2. � : M\( f ◦ 	)−1(0) → V \ f −1(0) is a real-analytic diffeomorphism.
3. ( f ◦ �)−1(0) is a hypersurface in M with normal crossings.

As p is real-analytic near its zero-set, it is compact with Lebesgue measure zero.
The resolution theorem implies that p can be written locally in normal crossing form.
Fix an open cover {Vj }Nj=1 of p

−1(0) and open {Uj }Nj=1 such that

1. � j : Uj\(p ◦ � j )
−1(0) → Vj\p−1(0) is a real-analytic diffeomorphism,

2. (p ◦ � j )(x) = c j (x)xα j for all x ∈ Uj for some α j ∈ N
n
0,

where each c j is a complex-valued, but nowhere zero, real-analytic function on Uj .
Also, we put m = max{α j }Nj=1.

Theorem 3.2 Let {χ j }Nj=1 be any partition of unity subordinate to {Vj }Nj=1. There is a
fundamental solution μ0, smooth away from x = 0, of the form

μ0(x) = F−1
(χ

p

)
(x) +

N∑
j=1

∫

Rn
I j (z)∂

α j
z

[
eix ·� j (z)

(χ j ◦ � j )(z)

c j (z)
| det d� j (z)|

]
dz,

where χ = 1 − ∑N
j=1 χ j , and the I j are given a.e. by

I j (z) = 1

(2π)n

∏
α j,k �=0

− ln |zk |
(α j,k − 1)! .
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It is weakly approximated in Ht
loc(R

n) for t < d − n
2 by a sequence in PWm(Rn).

Finally, if p−1(0) is embedded, any v ∈ ker Op(p) ⊂ PW∞(Rn) is of the form

v(x) =
N∑
j=1

∑
k≤k j−1

〈
(�∗

j )
−1(u j,k ⊗ ∂kznδ0)(ξ), eix ·ξ

〉
,

where u j,k ∈ E ′(U 0
j ) are supported in the zn = 0 sliceU 0

j = {z ∈ R
n−1 | (z, 0) ∈ Uj },

and each � j is arranged so that

(p ◦ � j )(x) = c j (x)x
k j
n .

In this case, all other fundamental solutions differ from μ0 by such a v.

The first step is to prove a lemma about principal value integrals with log kernel. It
is used here in a way similar to Björk [2, Chapter 6, Theorem 1.5].

Lemma 3.3 Letψ ∈ C∞(R) be either rapidly decaying or compactly supported. Then,
for any k ∈ N, we have

∫ ∞

−∞
ψ(r) dr = −1

(k − 1)!
∫ ∞

−∞
ln(|r |) dk

drk

(
rkψ(r)

)
dr .

Proof The proof of this is a routine exercise in repeated integration by parts. Observe
that we can write ψ(r) = r−krkψ(r), and

∫ ∞

−∞
ψ(r) dr = −1

k − 1
r1ψ(r)

∣∣∣
∞
−∞ + 1

k − 1

∫ ∞

−∞
r−k+1 d

dr

(
rkψ(r)

)
dr

· · ·

= −1

(k − 1)!r
k−1ψ(r)

∣∣∣
∞
−∞ + 1

(k − 1)!
∫ ∞

−∞
r−1 dk−1

drk−1

(
rkψ(r)

)
dr

= −1

(k − 1)!
∫ ∞

−∞
ln(|r |) dk

drk

(
rkψ(r)

)
dr ,

where all boundary terms at 0 in the final integration vanish, because

lim
r→0± ln(|r |) dk−1

drk−1

(
rkψ(r)

)
= 0,

and boundary terms at ±∞ vanish by the hypothesis on ψ . ��
Lemma 3.4 Define Q : S(Rn) → C∞(Rn) by

Qv(x) =
N∑
j=1

∫

Rn
I j (z)∂

α j
z

[
eix ·� j (z)

(χ jFv) ◦ � j (z)

c j (z)
| det d� j (z)|

]
dz.
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Then P = Op(χ
p ) + Q satisfies both

Op(p)Pv = v and POp(p)v = v for all v ∈ S(Rn).

Proof The proof is an application of Lemma 3.3 and the Fubini–Tonelli theorem. Let
ψ ∈ S(Rn). Using Lemma 3.3 coordinate-wise, we compute

〈Op(p)Qv,ψ〉 =
∫

Rn
I j (z)∂

α j
z

[
〈Op(p)ei(·)·� j (z), ψ〉 (χ jFv) ◦ � j (z)

c j (z)
| det d� j (z)|

]
dz

=
∫

Rn
I j (z)∂

α j
z

[
zα j 〈ei(·)·� j (z), ψ〉(χ jFv) ◦ � j (z)| det d� j (z)|

]
dz

= 1

(2π)n

∫

Rn\(p◦� j )
−1(0)

〈ei(·)·� j (z), ψ〉(χ jFv) ◦ � j (z)| det d� j (z)| dz

= 1

(2π)n

∫

Rn\p−1(0)
〈ei(·)·ξ , ψ〉(χ jFv)(ξ) dξ

= 〈Op(χ j )v, ψ〉,

and we then get

〈Op(p)Qv,ψ〉 =
N∑
j=1

〈Op(χ j )v, ψ〉 = 〈v − Op(χ)v, ψ〉.

Point-wise in x ∈ R
n , we compute

QOp(p)v(x) =
∫

Rn
I j (z)∂

α j
z

[
eix ·� j (z)

(χ jFOp(p)v) ◦ � j (z)

c j (z)
| det d� j (z)|

]
dz

=
∫

Rn
I j (z)∂

α j
z

[
zα j ei x ·� j (z)(χ jFv) ◦ � j (z)| det d� j (z)|

]
dz

= 1

(2π)n

∫

Rn\(p◦� j )
−1(0)

eix ·� j (z)(χ jFv) ◦ � j (z)| det d� j (z)| dz

= 1

(2π)n

∫

Rn\p−1(0)
eix ·ξ (χ jFv)(ξ) dξ

= Op(χ j )v(x),

which shows that

QOp(p)v =
N∑
j=1

Op(χ j )v = v − Op(χ)v.

Note that the properties of � j ensure that all the above integrals are well-defined. The
determinant of d� j on each component of Uj\(p ◦ � j )

−1(0) never becomes zero.
This completes the proof. ��
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Lemma 3.5 P : S(Rn) → C∞(Rn) is continuous.

Proof The proof is just estimating C∞(Rn) semi-norms of Q in those of S(Rn). By
the chain rule, if v ∈ S(Rn), we have

∂zk (Fv ◦ � j ) = −i(F(x1v) ◦ � j , . . . ,F(xnv) ◦ � j ) · ∂zk� j .

Using the Leibniz rule, we get for any α ∈ N
n
0 some C ′

α,Cα > 0 such that

|∂α
x Qv(x)| ≤ C ′

α

N∑
j=1

∫

supp(χ j )

|I j (z)|
∑
β≤α j

〈x〉α j−β |∂β
z (Fv ◦ � j )(z)| dz

≤ Cα

N∑
j=1

( ∫

supp(χ j )

|I j (z)| dz
)
〈x〉m max|β|≤m

sup
z∈Rn

|F(xβv)(z)|,

which by the continuity of F : S(Rn) → S(Rn) implies the lemma. ��
Lemma 3.6 P : PW−∞(Rn) → PWm(Rn) is well-defined.

Proof Because each map � j is proper, each (χ jFv) ◦� j is compactly supported. By
the well-known [7, Paley–Wiener–Schwartz Theorem 7.3.1], Op(χ

p )v ∈ PW−∞(Rn).
A simple estimate gives C ′,C > 0 such that

|Qv(x)| ≤ C ′
N∑
j=1

∫

supp(χ j )

|I j (z)|
∑
β≤α j

|∂β
z [eix ·� j (z)]| dz

≤ C
N∑
j=1

( ∫

supp(χ j )

|I j (z)| dz
)
〈x〉m exp

(
sup
ξ∈K

Im(x) · ξ
)
,

where K is a compact and convex set so large that

− ∪N
j=1 supp(χ j ) ⊂ K ,

and so Qv is entire with Qv ∈ PWm(Rn). ��
Define the reflection map A by Aψ(x) = ψ(−x) for all x ∈ R

n on ψ ∈ C∞(Rn).
It takes S(Rn) and C∞

0 (Rn) continuously to themselves. The transpose of Q is AQA.
Using this fact and Lemma 3.5, we extend Q, hence P , by duality:

Definition 3.7 Define Q : u �→ Qu : E ′(Rn) → S ′(Rn) by

〈Qu, ψ〉 = 〈u, AQAψ〉 for all ψ ∈ S(Rn).

Lemma 3.8 Op(p)Ps = s holds for any s ∈ E ′(Rn).



A structure theorem for fundamental solutions of analytic… Page 7 of 11    17 

Proof By Lemma 3.4, if ψ ∈ S(Rn), we have

〈Op(p)Ps, ψ〉 = 〈s, APAOp(p)∗ψ〉
= 〈s, APAF(pF−1ψ)〉
= 〈s, APOp(p)Aψ〉
= 〈s, A2ψ〉
= 〈s, ψ〉.

��
Applying Lemma 3.8, we get the fundamental solution μ0 = Pδ0 for the operator.

Using e.g. [12, Theorems 5.2 and 7.1], or similar in [5], it is smooth in x �= 0, and

μ0 ∈ Ht
loc(R

n) if t < d − n

2
.

Lemma 3.9 μ0 is weakly approximated in Ht
loc(R

n) by a PWm(Rn) sequence.

Proof Take a bump function η ∈ C∞
0 (Rn) such that η(x) = 1 holds for all |x | < 1.

Put ηk(x) = η( xk ) for all x ∈ R
n and k ∈ N. By Lemma 3.6, PF−1ηk ∈ PWm(Rn).

Given any u ∈ H−t
comp(R

n), then for k large enough, we get

|〈μ0 − PF−1ηk, u〉|2 =
∣∣∣
〈
F−1

(χ

p
(1 − ηk)

)
, u

〉∣∣∣
2

=
∣∣∣
〈χ
p

(1 − ηk),F−1u
〉∣∣∣
2

≤
( ∫

Rn
〈ξ 〉2t

∣∣∣χ
p

(1 − ηk)

∣∣∣
2
dξ

)( ∫

Rn
〈ξ 〉−2t |F−1u(ξ)|2 dξ

)

and so PF−1ηk → μ0 weakly in Ht
loc(R

n) as k → ∞. ��
Lemma 3.10 Suppose that p−1(0) is embedded as a real-analytic submanifold. Then
ker Op(p) consists of functions v ∈ PW∞(Rn) of the form

v(x) =
N∑
j=1

∑
k≤k j−1

〈
(�∗

j )
−1(u j,k ⊗ ∂kznδ0)(ξ), eix ·ξ

〉
,

where u j,k ∈ E ′(U 0
j ) and � j are precisely as stated in Theorem 3.2.

Proof Observe that pFv = 0 implies suppFv ⊂ p−1(0) so that Fv is compact.
Again by [7, Theorem 7.3.1], v ∈ PW∞(Rn). Observe then that

0 = �∗
j (χ j pFv) = c j z

k j
n �∗

j (χ jFv),
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and since c j is never zero, by [7, Theorem 2.3.5], we must have

�∗
j (χ jFv) =

∑
k≤k j−1

(2π)nu j,k ⊗ ∂kznδ0,

where u j,k ∈ E ′(Rn−1) are some distributions supported inside the zn = 0 slice of
Uj . It follows that

v(x) = F−1
( N∑

j=1

χ jFv
)
(x)

=
N∑
j=1

∑
k≤k j−1

F−1(�−1
j )∗

(
(2π)nu j,k ⊗ ∂kznδ0

)
(x)

=
N∑
j=1

∑
k≤k j−1

〈
(�∗

j )
−1(u j,k ⊗ ∂kznδ0)(ξ), eix ·ξ

〉
.

��

The main Theorem 3.2 is finally obtained by combining the above partial results.
Unfortunately, it is impossible to obtain� j explicitly for any given multiplier symbol.
But if, for example, p−1(0) is the real-analytic boundary of some star-convex domain,
we can replace the charts by a single deformation � of the boundary onto a sphere.
Given p, we look for � so that �∗ p factorizes. Our main theorem gives

μ0(x) = F−1
(χ

p

)
(x) + Qδ0(x),

where χ appropriately suppresses a region surrounding p−1(0) on which � is defined
(Fig. 1).

p−1 ()0( p ◦ Ψ)−1(0)

Ψ

Fig. 1 Deformation of a star-convex zero-set onto a circle
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3.1 Sums of powers of1g

Let g be a positive-definite symmetric matrix. Consider for d ∈ N and {c j }dj=0 ⊂ C

with cd = 1 and c0 �= 0 the multiplier

Op(p) =
d∑
j=0

c j�
j
2
g .

The symbol p is taken into a polynomial form by the map

� : (0,∞) × S
n−1 → R

n \ 0 : (r , ω) �→ rg− 1
2 ω.

Pulling back, we find that

(p ◦ �)(r , ω) = c(r)
m∏
j=1

(r − r j )
m j ,

where c is a polynomial with no root in [0,∞), and r j > 0 are the positive real roots.
LetC j,k be the unique coefficients in

∏m
j=1(r−r j )−m j = ∑m

j=1
∑m j

k=1 C j,k(r−r j )−k .

Pickχ ∈ C∞(Rn) so that 1−χ◦� ∈ C∞
0 ((0,∞)×S

n−1) is independent ofω ∈ S
n−1,

and equal to 1 in a neighbourhood of ∪m
j=1{r j } × S

n−1, all of the spheres of radius r j .
If the multiplicities satisfy m j < n, we have

Qδ0(x) =
m∑
j=1

m j∑
k=1

Bj,k

∫ ∞

0
ln |r − r j | ∂kr

[
(1 − χ ◦ �)(r)

r
n
2

c(r)

Jn
2−1(r |g− 1

2 x |)
|g− 1

2 x | n2−1

]
dr ,

where Jn
2−1 is the cylindrical Bessel function of order n

2 − 1, and

Bj,k = − det g− 1
2

(2π)
n
2 (k − 1)!C j,k .

3.2 A perturbation of1g

Let arg ξ be the multi-valued argument of ξ ∈ R
2. Consider instead the multiplier

symbol

p : R2 → R : ξ �→ |ξ |2g −
(
1 + a cos(n arg ξ)

)
,
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where n ∈ N and a < 1
2 . It is certainly real-analytic near its star-shaped zero-set. This

p is taken into normal crossing form by the map

� : (− 1
2 ,

1
2 ) × (0, 2π) → R

2 : (r , θ) �→
(
r + 1 + a cos(nθ)

) 1
2
g− 1

2 (cos θ, sin θ).

It is clear that � is a diffeomorphism onto its image, not covering the whole zero-set,
as depicted in Fig. 2. But a representation using only � is still possible, because it
misses just a single point. Pulling back, we find that

(p ◦ �)(r , θ) = r ,

and we compute

det d�(r , θ) = 1

2
det g− 1

2 .

Pick χ such that 1−χ ◦� ∈ C∞((− 1
2 ,

1
2 )×(0, 2π)) does not depend on θ ∈ (0, 2π),

and is compactly supported in (− 1
4 ,

1
4 ) and equal to 1 in a neighbourhood of r = 0.

We tacitly extend χ by one to all of R2. In that case, we have

Qδ0(x) = −det g− 1
2

8π2

∫ 1
2

− 1
2

ln |r | ∂r
[
(1 − χ ◦ �)(r)

∫ 2π

0
eix ·�(r ,θ) dθ

]
dr ,

and ker Op(p) consists of v of the form

v(x) =
〈
u(θ), eix ·�(0,θ)

〉
,

where u ∈ D′(R/2πZ) is a distribution on the space of 2π -periodic smooth functions.
We could replace |ξ |2g in p by any integer power of |ξ |2g and still get a similar result,

p−1(0) (p ◦ Ψ)−1(0)

Ψ

Fig. 2 Covering the zero-set of p except for a point. Here a = 1
4 and n = 12
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provided that we adjust the fractional power 1
2 in � in accordance with this change.

A similar technique can be applied to sums of powers of such multipliers too.

Acknowledgements The author wishes to thank the anonymous reviewer. Their useful comments and
suggestions helped to improve this paper.

Funding Open access funding provided by Technical University of Denmark.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Atiyah,M.:Resolution of singularities and division of distributions. Commun. PureAppl.Math.XXIII,
145–150 (1970)

2. Björk, J.E.: Rings of Differential Operators. North Holland, Amsterdam (1979)
3. Camus, B.: Fundamental solutions of homogeneous elliptic differential operators. Bull. Sci. Math. 130,

264–268 (2006)
4. Camus, B.: Fundamental solutions for a class of non-elliptic homogeneous differential operators. Bull.

Sci. Math. 132, 486–499 (2008)
5. Grubb, G.: Distributions and Operators, vol. 252. Springer, Berlin (2009)
6. Hormander, L.: On the division of distributions by polynomials. Ark. Mat. 3, 555–568 (1958)
7. Hörmander, L.: TheAnalysis of Linear Partial Differential Operators I: Distribution Theory and Fourier

Analysis, Classics in Mathematics. Springer, Berlin (2003)
8. Hörmander, L.: The Analysis of Linear Partial Differential Operators II: Differential Operators with

Constant Coefficients, Classics in Mathematics. Springer, Berlin (2005)
9. Lojasiewiez, S.: Sur le probleme de division. Stud. Math. 18, 87–136 (1959)

10. Ortner, N.,Wagner, P.: A survey on explicit representation formulae for fundamental solutions of linear
partial differential operators. Acta Appl. Math. 47, 101–124 (1997)

11. Rabier, P.: l p regularity of homogeneous elliptic differential operators with constant coefficients on
R
n . Rev. Mat. Iberoam. 34, 423–454 (2015)

12. Shubin, M.A.: Pseudodifferential Operators and Spectral Theory. Springer, Berlin (2001)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/

	A structure theorem for fundamental solutions of analytic multipliers in mathbbRn
	Abstract
	1 Introduction
	2 Notation
	3 Solution Operator
	3.1 Sums of powers of Δg
	3.2 A perturbation of Δg

	Acknowledgements
	References


