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ABSTRACT
In spatially resolved transcriptomics, Stereo-seq facilitates the analysis of large tissues at
the single-cell level, offering subcellular resolution and centimeter-level field-of-view. Our
previous work on StereoCell introduced a one-stop software using cell nuclei staining images
and statistical methods to generate high-confidence single-cell spatial gene expression profiles for
Stereo-seq data. With advancements allowing the acquisition of cell boundary information, such
as cell membrane/wall staining images, we updated our software to a new version, STCellbin.
Using cell nuclei staining images, STCellbin aligns cell membrane/wall staining images with
spatial gene expression maps. Advanced cell segmentation ensures the detection of accurate
cell boundaries, leading to more reliable single-cell spatial gene expression profiles. We verified
that STCellbin can be applied to mouse liver (cell membranes) and Arabidopsis seed (cell
walls) datasets, outperforming other methods. The improved capability of capturing single-cell
gene expression profiles results in a deeper understanding of the contribution of single-cell
phenotypes to tissue biology.
Availability & Implementation: The source code of STCellbin is available at https://github.com/
STOmics/STCellbin.

Subjects Genetics and Genomics, Bioinformatics, Developmental Biology

STATEMENT OF NEED
Spatially resolved single-cell transcriptomics enables the generation of comprehensive
molecular maps that provide insights into the spatial distribution of molecules within
individual cells constituting tissues. This groundbreaking technology offers insights into the
location and function of cells across diverse tissues, advancing our understanding of organ
development [1], tumor heterogeneity [2], cancer evolution [3], and other biological
mechanisms. Resolution and field-of-view are critical parameters in spatial transcriptomics.
Specifically, a high resolution provides detailed molecular information at the single-cell
level, and a large field-of-view facilitates the creation of complete 3D maps, capturing
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biological functions at the organ level. Stereo-seq simultaneously achieves subcellular
resolution and a centimeter-level field-of-view, providing the technical foundation for
obtaining comprehensive spatial gene expression profiles of whole tissues at the single-cell
level [4]. Our previous work introduced StereoCell, a one-stop software for obtaining
single-cell spatial gene expression profiles with a high signal-to-noise ratio from Stereo-seq
data [5]. StereoCell takes the cell nuclei staining image tiles and its corresponding spatial
gene expression data as input, and it performs tasks such as image stitching, image
registration, tissue segmentation, cell nuclei segmentation, and molecule labeling steps.
Notably, Stereo-seq uses cell nuclei staining images; however, there exists a significant
difference between cell nuclei and cell boundary staining images, based on cell
membrane/wall staining, in terms of the ability to capture robust and precise cell-specific
gene expression profiles. Despite the widespread use of spatial techniques, such as
MERFISH [6], CosMx [7], and Xenium [8], several of these techniques struggle to provide
accurate cell boundary information, as they rely on cell nuclei staining images generated
using stains such as 4,6-diamidino-2-phenylindole (or DAPI). Hematoxylin-eosin and
single-strand DNA fluorescence nuclei staining images are also commonly used and readily
obtainable. The updated Stereo-seq technology incorporates a procedure leveraging
simultaneous cell membrane/wall and cell nuclei staining by adding multiplex
immunofluorescence (mIF) and calcofluor white (CFW) staining [9, 10], enabling to acquire
more accurate cell boundary information automatically and, consequently, more reliable
single-cell spatial gene expression profiles.

Here, we updated StereoCell to a new version: STCellbin. The new version retains key
steps from StereoCell, such as image stitching, tissue segmentation, and molecule labeling.
Additionally, it incorporates improved image registration and cell segmentation steps.
Notably, the “track line”, a crossed linear marker embedded on the Stereo-seq chip, is key to
the image registration step of StereoCell [5]. As the cell membrane/wall staining images
miss the “track line” information, the cell nuclei staining images are used to align the cell
membrane/wall staining images with the spatial gene expression maps, thereby obtaining
registered cell boundary information in the cell segmentation step. Based on the cell
boundary information, STCellbin directly assigns the molecules to their corresponding cells,
obtaining single-cell spatial gene expression profiles. We applied STCellbin to mouse liver
(cell membrane) and Arabidopsis seed (cell wall) datasets and confirmed the accuracy of the
cell segmentation provided by the software. This update offers a comprehensive workflow
to obtain reliable single-cell spatial gene expression profiles based on cell membrane/wall
information. Hence, STCellbin provides support and guidance, particularly for scientific
investigations based on Stereo-seq data.

IMPLEMENTATION
Overview of STCellbin
The process of STCellbin includes image stitching, image registration, cell segmentation,
and molecule labeling (Figure 1). Input into STCellbin includes Stereo-seq spatial gene
expression data, alongside cell nuclei and cell membrane/wall staining image tiles. The
stitched cell nuclei and cell membrane/wall staining images are obtained using the MFWS
algorithm [5]. These two stitched staining images are registered using a Fast Fourier
Transform (FFT) algorithm [11]. The spatial gene expression data is transformed into a map,
which is then registered with a stitched cell nuclei staining image based on “track line”
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Figure 1. Overview of STCellbin. The cell nuclei and cell membrane/wall staining image tiles are stitched into
individual large images. The spatial gene expression map and stitched cell membrane/wall staining image are
registered using the stitched cell nuclei staining image as a bridge. The cell mask is directly obtained from the
registered cell membrane/wall staining image by cell segmentation. The single-cell spatial gene expression profile
is obtained by overlaying the generated cell mask and the gene expression map.

information. Thus, the registration of the gene expression map and cell membrane/wall
staining image is implemented. Cell segmentation is performed on the registered cell
membrane/wall staining image using the adjusted Cellpose 2.0 tool [12] to obtain the cell
mask. Molecules are then assigned to their corresponding cells based on the cell mask, thus
generating the single-cell spatial gene expression profile. The tissue segmentation step
based on Bi-Directional ConvLSTM U-Net [13] is set as optional, and it can be used to
generate a tissue mask to assist in filtering out impurities outside the tissue.

Image stitching
The image stitching step in STCellbin is consistent with the one in StereoCell. The MFWS
algorithm [5] leverages FFT [11] to compute offsets between adjacent tiles featuring
overlapping areas. This enables the stitching of these tiles, and the process is extended
iteratively to encompass all tiles in the dataset. The relative error, absolute error, and
computational efficiency of MFWS were assessed in our previous work [5].
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Image registration
The registration of STCellbin includes three stages. The first stage is the registration of the
stitched cell nuclei and stitched cell membrane/wall staining images. These two staining
images have similar sizes and no significant difference in rotation because the chip does
not move when they are photographed. The key to this registration is to calculate their
offset. The size of the cell membrane/wall staining image is adjusted to match that of the cell
nuclei staining image through cutting and zero-padding (Figure 2A). The two staining
images are mean-based subsampled [14] (Figure 2B). The offset of the subsampled images is
calculated through FFT [11], similarly to MFWS [5] (Figure 2C). Then, the calculated offset is
restored to the scale of the original images (Figure 2D). Thus, these two staining images can
be registered.

The second stage is the registration of the stitched nuclei staining image and spatial gene
expression map. This registration is the same as in StereoCell [5]. The spatial gene
expression data is transformed into a map. The stitched cell nuclei staining image is
registered with the map based on “track line” information, involving scaling, rotating,
flipping, and translating on the stitched cell nuclei staining image.

The third stage is the registration of the stitched cell membrane/wall staining image and
the spatial gene expression map. Since the cell nuclei and cell membrane/wall staining
images have been registered in the first stage, the same operations of the second stage,
including scaling, rotating, flipping, and translating, are applied to the cell membrane/wall
staining image (Figure 2E). Then, the cell membrane/wall staining image and spatial gene
expression map can be registered. Moreover, when utilizing staining images produced with
a multi-channel microscope, STCellbin can omit the registration among these images.
STCellbin can also process the case of multiple mIF staining images captured from identical
tissues using the same microscope when there is only a difference in offsets among these
images.

Cell segmentation
The cell segmentation step of STCellbin uses Cellpose 2.0 [12] with some adjustments. The
model architecture of Cellpose 2.0 and its weight files “cyto2” are downloaded. However,
due to the large size of the staining images derived from Stereo-seq data, Cellpose 2.0
cannot be executed smoothly using normal hardware configurations. To address this issue,
the staining images are cropped into multiple tiles with overlapping areas to perform cell
segmentation and record the coordinates of these tiles. The overlapping areas prevent cells
at the border of the tiles from being cropped. For optimal results, segmentations with
different values of the cell diameter are performed independently, and the segmentation
yielding the highest total cell area is retained. Next, all the segmented tiles are assembled
into the final segmented result according to the recorded coordinates. Moreover, when
selecting the tissue segmentation option, an additional step involves applying a filter to the
cell mask using the tissue mask, resulting in a refined segmented output.

Molecule labeling
The molecule labeling of STCellbin is the same as in StereoCell, in principle. StereoCell
assigns molecules from the cell nuclei to the cell by using the cell nuclei mask, and then
assigns molecules outside the cell nuclei to the cells with the highest probability density
using a Gaussian Mixture Model [15]. Conversely, STCellbin directly assigns molecules to the
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Figure 2. Registration of the cell membrane/wall staining image and spatial gene expression map using the cell
nuclei staining image as a bridge. (A) The size of the cell membrane/wall staining image is adjusted to be consistent
with the cell nuclei staining image. (B) The cell nuclei and cell membrane/wall staining images are subsampled.
(C) Calculation of the offsets of the subsampled images. (D) Restoring the offsets to the scale of the original images
for registration. (E) Registration of the spatial gene expression map and cell nuclei staining image by performing
scaling, rotating, flipping, and translating, followed by the registration of the spatial gene expression map and cell
membrane/wall staining image by performing the same operations.
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Table 1. Details of two datasets used for evaluation of cell boundary information.

Detail Mouse liver dataset Arabidopsis seed dataset
Data source A slice of liver Slices of multiple seeds

Cell nuclei dye DAPI ssDNA
Cell membrane/wall dye mIF CFW

Number of molecules 16,177,288 62,884,637

cells based on the cell mask, while assigning molecules outside the cell is optional. This
decision was driven by the observation that cell membranes/walls are usually tightly
packed, with a few molecules appearing outside the cells, and the assignment of these
molecules may take a lot of time. Thus, we generally do not recommend this option, and
users can choose to employ it based on particular requirements.

RESULTS
Datasets and computing resource
We selected two datasets acquired via Stereo-seq technology [4]. One was a mouse liver
dataset, a tissue that offers cell boundary information via cell membranes, as in all
mammalian tissues. The other dataset was derived from seeds of the plant Arabidopsis, a
tissue that provides cell boundary information based on rigid cell walls. More details of the
two datasets are shown in Table 1.

The experiment for image segmentation was implemented on the STOmics cloud
platform [16] with these settings: 32 CPUs, 32 GB memory, and “ALL” resource type. An
exception was the watershed method [17], which was implemented using ImageJ on a
computer with a 16-core CPU and 16 GB of RAM. Also, the experiment for downstream
analysis was implemented on a server with a 40-core CPU, 128 GB of RAM, and 24 GB
of GPU.

Evaluation criteria for cell segmentation performance
In a cell mask image, the gray value of a pixel is set to 255 in the cell area and 0 in the
background. True positive (TP, the number of pixels with gray value of 255 in both ground
truth and segmented result), true negative (TN, the number of pixels with gray value of 0 in
both ground truth and segmented result), false positive (FP, the number of pixels with gray
value of 0 in ground truth and 255 in segmented result) and false negative (FN, the number
of pixels with gray value of 255 in ground truth and 0 in segmented result) are calculated.
The number of cells segmented by a method is ns. For each segmented cell (celli), there
should be a corresponding area in the ground truth (areai), where i is the cell index (i = 1,  2,
…, ns). The intersection over union metric (IoU) [18] is set as:

IoUi = aoi/aui (1)

where aoi is the overlap area between celli and areai, and aui is the union area of celli and
areai. Then the precision (Pre), recall (Rec), F1 score (F1_s), Dice coefficient (Dc), and
average Jaccard index (Avg_J) are calculated as:
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Pre = TP/(TP + FP) (2)

Rec = TP/(TP + FN) (3)

F1_s = 2× (Pre × Rec)/(Pre + Rec) (4)

Dc = 2× TP/(2× TP + FP + FN) (5)

Avg_J =

ns∑
i=1

IoUi/ns. (6)

Process and evaluation of downstream analysis
The generated single-cell spatial gene expression profiles were input into Stereopy
(v0.6.0) [19]. The cells with fewer than ten expressed genes, fewer than three expression
counts, and more than 3% mitochondrial genes were removed; genes present in less than
three cells were also removed. After normalization, the differentially expressed genes were
summarized using Principal Component Analysis to reduce the data dimensionality.
Specifically, the number of features was reduced to 10. The Leiden algorithm [20] was used
for clustering, and the Uniform Manifold Approximation and Projection (UMAP) algorithm
(RRID:SCR_018217) [21] was used to obtain 2D data projections. The Silhouette coefficient
(Sc) and Moran’s I (MI) were used to evaluate the effect of clustering and the spatial
self-correlation of each cluster, respectively. Sc is calculated as:

Sc = (bj – aj )/max{aj , bj } (7)

where aj is the average distance between the j-th sample and other samples in its cluster,
and bj is the average distance between the j-th sample and the samples in other clusters. MI
is calculated as:

MI = (n/W0)

(
n∑

k=1

n∑
l=1

ωk ,l (yk – y)(yl – y)/

n∑
k=1

(yk – y)2
)

(8)

where n is the number of clusters, yk and yl are the attribute values of the k-th and l-th
clusters, respectively, y is the mean of all cluster attributes, 𝜔k, l is the spatial weight
between the k-th and l-th clusters, and W0 is the aggregation of all spatial weights as:

W0 =

n∑
k=1

n∑
l=1

ωk ,l . (9)

STCellbin more accurately segments cells based on cell
membrane/wall staining images
We cropped two areas with higher image quality from the two datasets and designed their
ground truths based on the manual markup of the cells according to the cell
membranes/walls in the staining images. The cell segmentation method of STCellbin was
compared with the original Cellpose [18], the state-of-the-art method DeepCell [22], and a
traditional watershed method [17].

Using the mouse liver dataset, STCellbin effectively identified cell membranes for
segmentation, yielding cell masks that demonstrated acceptable agreement with the stating
image and ground truth (Figure 3A, upper). Among all cell mask images, STCellbin provided
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the best description of the cell boundaries, outperforming other methods, which missed
quite a few cells (Figure 3A, lower). We observed a similar trend using the Arabidopsis seed
dataset, showing that STCellbin can also effectively identify cell walls for segmentation
(Figure 3B). Compared with other methods, STCellbin obtained higher values across most
indicators on these two datasets (Figure 3C). The comparison with the original Cellpose
validated the effectiveness of STCellbin in adjusting segmentation. While DeepCell is a
powerful method, it is primarily designed for segmenting cell nuclei, which involves
identifying highlighted areas in the nuclei staining images. This strategy is unsuitable for
cell membrane/wall staining images, resulting in less desirable results. Similarly, the
traditional watershed method performs poorly on cell membrane/wall staining images. In
summary, STCellbin’s cell segmentation emerged as the most practical and effective method.

STCellbin generates more reliable single-cell spatial gene expression
profiles for downstream analysis
Currently, there is a lack of image-based one-stop software like STCellbin for Stereo-seq
data. Therefore, we compared STCellbin with Baysor (v0.6.2) [23], a tool that generates the
spatial gene expression profile without relying on images. However, Baysor could not
output results on the complete mouse liver and Arabidopsis seed datasets in an acceptable
time or a given computational resource. We ran Baysor on a smaller Arabidopsis seed
dataset, which was the cropped area in the cell segmentation experiment and contained
two complete seed data.

The cell area, number of unique genes per cell, and number of gene counts per cell were
statistically calculated from the results of STCellbin (Figure 4A). The clustering results of
STCellbin were obtained utilizing the generated single-cell spatial gene expression profiles.
The clusters of cells were spatially mapped within the tissue (Figure 4B, left-hand side for
each tissue), allowing for the observation of their specific positions. From the UMAPs, it was
apparent that the different cell types were effectively distinguished (Figure 4B, right-hand
side for each tissue). The spatial location of the different cell types positively influenced a
series of downstream analyses, such as cellular annotation in less well-studied tissues.

The cells were clustered into seven clusters on the profile of STCellbin, and 14 clusters on
the profile of Baysor (Figure 4C, the first subfigure from the left). We observed that the
number of cells segmented by Baysor was significantly higher than that segmented by
STCellbin, and it did not align with the cell count observed in the ground truth image. This
fact could account for the higher number of clusters produced by Baysor. The Sc and MI
obtained by both STCellbin and Baysor were not satisfactory (Figure 4C, the second and
third subfigures from the left), possibly due to the limited information from a small dataset.
Nevertheless, the values from STCellbin were higher than those from Baysor. Moreover,
STCellbin demonstrated significant advantages in terms of computing resource usage and
running time (Figure 4C, the fourth and fifth subfigures from the left), which also explains
why Baysor was unable to process the complete mouse liver and Arabidopsis seed datasets.

It should be noted that the stitching and registration steps of STCellbin could not be
performed on the cropped dataset. Hence, the corresponding computational resource usage
and running time could not be recorded. Thus, the resource usage and time of STCellbin for
comparison were obtained on the complete Arabidopsis seed dataset. Specifically, STCellbin
was able to process a larger dataset with fewer computational resources and less time
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Figure 3. Comparison of cell segmentation performance. (A) Cell segmentation results on the cropped area from
the mouse liver dataset. In the merged images, cell masks are in yellow, staining images are in cyan, and ground
truths are in red. (B) Cell segmentation results on the cropped area from the Arabidopsis seed dataset. In the
merged images, cell masks are in yellow, staining images are in cyan, and ground truths are in red. (C) Indicator
comparison of cell segmentation results on the cropped areas from the mouse liver and Arabidopsis seed datasets.
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Figure 4. Downstream analysis results and comparison. (A) Statistical results of cell area, gene number per cell,
and gene expression per cell of STCellbin on the mouse liver dataset and cropped area from the Arabidopsis seed
dataset. (B) Clustering results and UMAPs of STCellbin on the mouse liver dataset and cropped area from the
Arabidopsis seed dataset. (C) Indicator comparison of downstream analysis results on the cropped area from the
Arabidopsis seed dataset, where Sc and MI are averaged across all clusters.
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compared to Baysor. Overall, STCellbin is a more reliable method, particularly for analyzing
high-resolution and large-field-of-view spatial transcriptomic data.

DISCUSSION
Accurate identification of cell boundaries is crucial in generating single-cell resolution in
spatial omics applications. Building upon previous work in StereoCell, which uses cell
nuclei staining images to generate single-cell spatial gene expression profiles, this STCellbin
update extends the capability to automatically process Stereo-seq cell membrane/wall
staining images for identifying cell boundaries, thereby facilitating downstream analyses.
We also showcased a few examples of the performance of cell membrane/wall
segmentation in STCellbin. Currently, the tools for cell nuclei and cell membrane/wall
segmentation can be independently executed, allowing users to choose the most suitable
solution for their specific applications. In future work, these two techniques could be
combined by training a deep learning model compatible with any staining image type,
thereby achieving more accurate results.

AVAILABILITY OF SOURCE CODE AND REQUIREMENTS
• Project name: STCellbin
• Project home page: https://github.com/STOmics/STCellbin
• Operating system(s): Platform independent
• Programming language: Python
• Other requirements: Python 3.8
• License: MIT License
• RRID: SCR_024438

DATA AVAILABILITY
The data that support the findings of this study have been deposited into the Spatial
Transcript Omics DataBase (STOmics DB) of the China National GeneBank DataBase
(CNGBdb), with accession number STT0000048. A backup for the data is also provided at the
Github link of STCellbin [24]. Archival snapshots of the code are also available from
software heritage (Figure 5) [25].

ABBREVIATIONS
FFT, Fast Fourier Transform; MI, Moran’s I; mIF, multiplex immunofluorescence; Sc,
Silhouette coefficient; UMAP, Uniform Manifold Approximation and Projection.

DECLARATIONS
Ethics approval and consent to participate
The authors declare that ethical approval was not required for this type of research.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Conceptualization: BZ and ML. Project administration and supervision: SB and XX. Software
implementation: ZD, HQ, KS, and HL. Data collection and processing: QK, XF, and LC.

Gigabyte, 2024, DOI: 10.46471/gigabyte.110 11/13

https://github.com/STOmics/STCellbin
https://scicrunch.org/browse/resources/SCR_024438
https://db.cngb.org/stomics/project/STT0000048
https://doi.org/10.46471/gigabyte.110


B. Zhang et al.

Figure 5. The Software Heritage archive of the software [25].
https://archive.softwareheritage.org/browse/embed/swh:1:dir:f7963c6d274ef64e392923ce7405f39fb23dea5a;
origin=https://github.com/STOmics/STCellbin;visit=swh:1:snp:dd0bfc7b4fb0791789cf43b2c50742d25c8bc00e;
anchor=swh:1:rev:09e89551499f980c4ffb4df9fb73712d93830fd0/

Validation: QK and ZD. Project coordination: BZ and ML. Manuscript writing and figure
generation: BZ, ML, and QK. Manuscript review: ML, SF, YZ, YL and SB.

Funding
This work was supported by the National Key R&D Program of China (2022YFC3400400).

Acknowledgements
We thank China National GeneBank for providing technical support.

REFERENCES
1 Fang S, Chen B, Zhang Y et al. Computational approaches and challenges in spatial transcriptomics.

Genom. Proteom. Bioinform., 2023; 21: 24–47. doi:10.1016/j.gpb.2022.10.001.

2 Lu T, Ang CE, Zhuang X. Spatially resolved epigenomic profiling of single cells in complex tissues. Cell,
2022; 185: 4448–4464. doi:10.1016/j.cell.2023.04.006.

3 Erickson A, He M, Berglund E et al. Spatially resolved clonal copy number alterations in benign and
malignant tissue. Nature, 2022; 608: 360–367. doi:10.1038/s41586-022-05023-2.

4 Chen A, Liao S, Cheng M et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA
nanoball-patterned arrays. Cell, 2022; 185: 1777–1792. doi:10.1016/j.cell.2022.04.003.

5 Li M, Liu H, Li M et al. StereoCell enables highly accurate single-cell segmentation for spatial
transcriptomics. bioRxiv. 2023; https://doi.org/10.1101/2023.02.28.530414.

6 Chen KH, Boettiger AN, Moffitt JR et al. Spatially resolved, highly multiplexed RNA profiling in single
cells. Science, 2015; 348: aaa6090. doi:10.1126/science.aaa6090.

Gigabyte, 2024, DOI: 10.46471/gigabyte.110 12/13

https://archive.softwareheritage.org/browse/embed/swh:1:dir:f7963c6d274ef64e392923ce7405f39fb23dea5a;origin=https://github.com/STOmics/STCellbin;visit=swh:1:snp:dd0bfc7b4fb0791789cf43b2c50742d25c8bc00e;anchor=swh:1:rev:09e89551499f980c4ffb4df9fb73712d93830fd0/
https://archive.softwareheritage.org/browse/embed/swh:1:dir:f7963c6d274ef64e392923ce7405f39fb23dea5a;origin=https://github.com/STOmics/STCellbin;visit=swh:1:snp:dd0bfc7b4fb0791789cf43b2c50742d25c8bc00e;anchor=swh:1:rev:09e89551499f980c4ffb4df9fb73712d93830fd0/
https://archive.softwareheritage.org/browse/embed/swh:1:dir:f7963c6d274ef64e392923ce7405f39fb23dea5a;origin=https://github.com/STOmics/STCellbin;visit=swh:1:snp:dd0bfc7b4fb0791789cf43b2c50742d25c8bc00e;anchor=swh:1:rev:09e89551499f980c4ffb4df9fb73712d93830fd0/
https://doi.org/10.1016/j.gpb.2022.10.001
https://doi.org/10.1016/j.cell.2023.04.006
https://doi.org/10.1038/s41586-022-05023-2
https://doi.org/10.1016/j.cell.2022.04.003
https://doi.org/10.1101/2023.02.28.530414
https://doi.org/10.1126/science.aaa6090
https://doi.org/10.46471/gigabyte.110


B. Zhang et al.

7 He S, Bhatt R, Brown C et al. High-plex imaging of RNA and proteins at subcellular resolution in fixed
tissue by spatial molecular imaging. Nat. Biotechnol., 2022; 40: 1794–1806.
doi:10.1038/s41587-022-01483-z.

8 Janesick A, Shelansky R, Gottscho AD et al. High resolution mapping of the tumor microenvironment
using integrated single-cell, spatial and in situ analysis. Nat. Commun., 2023; 14(1): 8353.
doi:10.1038/s41467-023-43458-x.

9 Liao S, Heng Y, Liu W et al. Integrated spatial transcriptomic and proteomic analysis of fresh frozen
tissue based on stereo-seq. bioRxiv. 2023; https://doi.org/10.1101/2023.04.28.538364.

10 STOmics Documentation. https://en.stomics.tech/.

11 Duhamel P, Vetterli M. Fast fourier transforms: A tutorial review and a state of the art. Signal
Process., 1990; 19(4): 259–299.

12 Pachitariu M, Stringer C. Cellpose 2.0: how to train your own model. Nat. Methods, 2022; 19:
1634–1641. doi:10.1038/s41592-022-01663-4.

13 Azad R, Asadi-Aghbolaghi M, Fathy M et al. Bi-Directional ConvLSTM U-Net with densley connected
convolutions. In: IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). 2019. pp.
406–415, doi:10.1109/ICCVW.2019.00052.

14 Levina A, Priesemann V. Subsampling scaling. Nat. Commun., 2017; 8: 15140.
doi:10.1038/ncomms15140.

15 Reynolds D. Gaussian mixture models. In: Li SZ, Jain A (eds), Encyclopaedia of Biometrics. vol. 741,
Boston, MA: Springer, 2009; pp. 659–663.

16 STOMICs Cloud. https://cloud.stomics.tech/.

17 Wen T, Tong B, Liu Y et al. Review of research on the instance segmentation of cell images. Comput.
Meth. Prog. Bio., 2022; 227: 107211. doi:10.1016/j.cmpb.2022.107211.

18 Stringer C, Wang T, Michaelos M et al. Cellpose: a generalist algorithm for cellular Segmentation. Nat.
Methods, 2021; 18: 100–106. doi:10.1038/s41592-020-01018-x.

19 Fang S, Xu M, Cao L et al. Stereopy: modeling comparative and spatiotemporal cellular heterogeneity
via multi-sample spatial transcriptomics. bioRxiv. 2023; https://doi.org/10.1101/2023.12.04.569485.

20 Traag VA, Waltman L, Van Eck NJ. From Louvain to Leiden: guaranteeing well-connected
communities. Sci. Rep., 2019; 9: 5233. doi:10.1038/s41598-019-41695-z.

21 Becht E, McInnes L, Healy J et al. Dimensionality reduction for visualizing single-cell data using UMAP.
Nat. Biotechnol., 2019; 37: 38–44. doi:10.1038/nbt.4314.

22 Greenwald NF, Miller G, Moen E et al. Whole-cell segmentation of tissue images with human-level
performance using large-scale data annotation and deep learning. Nat. Biotechnol., 2022; 40: 555–565.

23 Petukhov V, Xu RJ, Soldatov RA et al. Cell segmentation in imaging-based spatial transcriptomics. Nat.
Biotechnol., 2022; 10: 345–354. doi:10.1038/s41587-021-01044-w.

24 STCellbin GitHub. 2023; https://github.com/STOmics/STCellbin.

25 Zhang B, Li M, Kang Q et al. STCellbin (Version 1) [Computer software]. Software Heritage. 2024;
https://archive.softwareheritage.org/swh:1:dir:
f7963c6d274ef64e392923ce7405f39fb23dea5a;origin=https://github.com/STOmics/STCellbin;visit=swh:1:
snp:dd0bfc7b4fb0791789cf43b2c50742d25c8bc00e;anchor=swh:1:rev:
09e89551499f980c4ffb4df9fb73712d93830fd0.

Gigabyte, 2024, DOI: 10.46471/gigabyte.110 13/13

https://doi.org/10.1038/s41587-022-01483-z
https://doi.org/10.1038/s41467-023-43458-x
https://doi.org/10.1101/2023.04.28.538364
https://en.stomics.tech/
https://doi.org/10.1038/s41592-022-01663-4
https://doi.org/10.1109/ICCVW.2019.00052
https://doi.org/10.1038/ncomms15140
https://cloud.stomics.tech/
https://doi.org/10.1016/j.cmpb.2022.107211
https://doi.org/10.1038/s41592-020-01018-x
https://doi.org/10.1101/2023.12.04.569485
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1038/nbt.4314
https://doi.org/10.1038/s41587-021-01044-w
https://github.com/STOmics/STCellbin
https://archive.softwareheritage.org/swh:1:dir:f7963c6d274ef64e392923ce7405f39fb23dea5a;origin=https://github.com/STOmics/STCellbin;visit=swh:1:snp:dd0bfc7b4fb0791789cf43b2c50742d25c8bc00e;anchor=swh:1:rev:09e89551499f980c4ffb4df9fb73712d93830fd0
https://archive.softwareheritage.org/swh:1:dir:f7963c6d274ef64e392923ce7405f39fb23dea5a;origin=https://github.com/STOmics/STCellbin;visit=swh:1:snp:dd0bfc7b4fb0791789cf43b2c50742d25c8bc00e;anchor=swh:1:rev:09e89551499f980c4ffb4df9fb73712d93830fd0
https://archive.softwareheritage.org/swh:1:dir:f7963c6d274ef64e392923ce7405f39fb23dea5a;origin=https://github.com/STOmics/STCellbin;visit=swh:1:snp:dd0bfc7b4fb0791789cf43b2c50742d25c8bc00e;anchor=swh:1:rev:09e89551499f980c4ffb4df9fb73712d93830fd0
https://archive.softwareheritage.org/swh:1:dir:f7963c6d274ef64e392923ce7405f39fb23dea5a;origin=https://github.com/STOmics/STCellbin;visit=swh:1:snp:dd0bfc7b4fb0791789cf43b2c50742d25c8bc00e;anchor=swh:1:rev:09e89551499f980c4ffb4df9fb73712d93830fd0
https://doi.org/10.46471/gigabyte.110

	Statement of need
	Implementation
	Overview of STCellbin
	Image stitching
	Image registration
	Cell segmentation
	Molecule labeling

	Results
	Datasets and computing resource
	Evaluation criteria for cell segmentation performance
	Process and evaluation of downstream analysis
	STCellbin more accurately segments cells based on cell membrane/wall staining images
	STCellbin generates more reliable single-cell spatial gene expression profiles for downstream analysis

	Discussion
	Availability of source code and requirements
	Data availability
	Abbreviations
	Declarations
	Ethics approval and consent to participate
	Competing interests
	Authors’ contributions
	Funding
	Acknowledgements


