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PREFACE 

The work presented in this PhD thesis was carried out at the section for Quan-

titative Sustainability Assessment (QSA) at the Department of Environmental 

and Resource Engineering (DTU Sustain) of the Technical University of Den-

mark (DTU) from November 2020 to October 2023. The PhD was conducted 

under the supervision of Professor Peter Fantke (QSA) and the co-supervision 

of Professor Michael Hauschild (QSA) and Professor Leo Posthuma from the 

National Institute for Public Health and the Environment (the RIVM) and Rad-

boud University Nijmegen, Department of Environmental Science, The Neth-

erlands. The PhD project was funded by the Prorisk "Best chemical risk assess-

ment professionals for maximum Ecosystem Services benefit" project financed 

by the European Union's Horizon 2020 research and innovation programme 

under the Marie Skłodowska-Curie, grant no. 859891. 

This thesis presents the findings of the PhD project based on the four scientific 

articles listed below. These scientific articles are included as appendices, and 

throughout the text, they are referred to using roman numerals: 

The thesis is organized in two parts: the first part puts into context the findings 

of the PhD in an introductive review; the second part consists of the papers 

listed below. These will be referred to in the text by their paper number written 

with the Roman numerals I-IV. 

I Oginah, Susan A, Posthuma, L., Maltby, L., Hauschild, M., & Fantke, P. 

(2023). Linking freshwater ecotoxicity to damage on ecosystem services in 

life cycle assessment. Environment International, 171, 107705. 

https://doi.org/10.1016/j.envint.2022.107705 

 

II A curated aquatic ecotoxicity dataset for environmental protection, 

assessment, and management (Manuscript in preparation). 

 

III Oginah, Susan Anyango, Posthuma, L., Hauschild, M., Slootweg, J., 

Kosnik, M., & Fantke, P. (2023). To Split or Not to Split: Characterizing 

Chemical Pollution Impacts in Aquatic Ecosystems with Species 

Sensitivity Distributions for Specific Taxonomic Groups. Environmental 

Science & Technology, 1–13. https://doi.org/10.1021/acs.est.3c04968 

 

IV Characterizing the link between the mixture toxic pressure and biodiversity 

loss in aquatic ecosystems (Manuscript in preparation) 

https://doi.org/10.1016/j.envint.2022.107705
https://doi.org/10.1021/acs.est.3c04968
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In addition, the following scientific article, not included in this thesis, was also 

connected to this PhD project: 

Douziech, M., Oginah, S. A., Owsianiak, M., Golsteijn, L., Zelm, R. V., Jolliet, 

O., Hauschild, M. Z., Posthuma, L. & Fantke. Ecotoxicity Impact Evaluation 

for Data Poor Chemicals under the Global Life Cycle Impact Assessment 

Method Framework (Manuscript in preparation). 
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SUMMARY 

Chemical pollution exerts significant and far-reaching effects on biodiversity 

and the health of ecosystems. Over time, global product and technology 

consumption has increased the presence of human-made chemicals in the 

natural environment. Many of these chemicals persist in the environment and 

become pervasive over time, negatively affecting aquatic ecosystems globally. 

Aquatic ecosystems provide essential ecosystem services that benefit human 

society, such as the provision of food. Thus, to understand the link between 

chemical emissions from product and technology life cycles and their damage 

on ecosystem health, it is crucial to characterize damage on aquatic ecosystems 

associated with chemical emissions in life cycle assessment (relevant for 

product life cycle performance) and ecological risk assessment (relevant for 

water and ecosystem protection). This is pivotal in facilitating a worldwide 

shift towards a more sustainable application of chemicals across products and 

technologies and safeguarding the diversity of aquatic life. 

The work presented in this PhD thesis addresses the link of the life cycle of 

chemical emissions to damage on aquatic ecosystem health by focusing on four 

research objectives: (i) to develop a consistent framework to link 

ecotoxicological effects on aquatic organisms to damage on species diversity, 

functional diversity, and ecosystem services that are fully in line with the 

boundary conditions of LCIA, (ii) to develop a systematic ecotoxicity test data 

curation approach to derive a transparent and high-quality dataset of effect test 

data for more than 10,000 chemicals, (iii) to improve ecotoxicity effects 

modeling by considering differences in sensitivity of species from different 

taxonomic groups toward chemical exposure, and (iv) to quantitatively 

characterize the relationship between mixture-toxicity pressure from chemicals 

and observed differences in aquatic intra- and inter-species occurrence. 

After an introductory chapter, Chapter 2 summarizes possible methods to 

translate predicted ecotoxicity effects to species and functional diversity loss, 

culminating damage on ecosystem services damage in life cycle assessment 

(LCA). Section 1 of this chapter introduces a framework for linking freshwater 

ecotoxicity impacts to ecosystem services within LCA boundaries. Section 2 

discusses approaches for linking ecotoxicity impacts to species loss, functional 

diversity loss, and ecosystem services damage from an LCA perspective. 

Section 3 explains the necessary biomonitoring methods for ES assessment, 

and Section 4 outlines how to link ecotoxicity effects to ecosystem service 

damage. 
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Chapter 3 outlines ecotoxicity datasets for different uses, including 

environmental standards, life cycle assessments, and water quality evaluation. 

Article II highlights data curation's importance for Articles III and IV. Sections 

1 and 2 discuss current data and merging challenges to improve data quality, 

while Section 3 outlines a curation protocol, and Section 4 presents curated 

data for Article III and IV analysis. 

Chapter 4 introduces splitting Species Sensitivity Distributions (SSDs) based 

on taxonomic grouping for better model fit and relevance in risk assessment 

unless data constraints exist. The chapter discusses the current use (Section 1) 

shortcomings of current SSD usage (Section 2) and introduces a conceptual 

framework for split SSDs (Section 3). It also covers the role of chemical use 

and mode of action in SSD derivation (Section 4) and highlights the importance 

of split SSDs in decision support (Section 5). Additionally, a case study for 

Life Cycle Assessment input is presented in Section 6. 

Chapter 5 provides a stepwise approach to link ecotoxicity impacts with 

species loss, making it helpful in translating model-predicted species-level 

effects to damage on biodiversity and ecosystem services in decision-making, 

like Life Cycle Impact Assessment. The chapter consists of eight sections: 

Section 1 outlines the fundamental steps to derive the PAF to PDF relationship 

from monitoring datasets, Section 2 presents chemical concentration data and 

msPAF(EC10) calculation, Section 3 introduces other abiotic factors that can 

influence aquatic biodiversity, Section 4 presents species biomonitoring data, 

Section 5 explores covariation between abiotic pressures including the 

calculated msPAF, Section 6 discusses trends in species abundance and species 

richness against msPAF, Section 7 present sensitivity analysis, i.e., a 

robustness check using a subset of data from one region (water authority) in 

Netherland, and Section 8 presents the derived PAF to PDF relationship. 

The PhD research suggests that the developed damage modeling approach fits 

well into the LCA framework, offering initial steps to translating ecotoxicity 

effects to ecosystem services damage. Furthermore, splitting species 

sensitivity distributions enhances the interpretation of assessment outputs, 

enabling a quantitative understanding of the link between a mixture toxic  

pressure and biodiversity loss. 

In conclusion, the work conducted in this PhD project contributes to research 

within the field of life cycle impact assessment and ecological risk assessment 

by advancing the understanding of the impact of chemical pollution on 
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biodiversity and ecosystem health. It supports environmental protection, LCA, 

and global freshwater ecosystem management decisions. 
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RESUMÉ (DANISH) 

Kemisk forurening har betydelige og vidtrækkende virkninger på biodiversite-

ten og økosystemernes sundhed. Over tid har det globale produkt- og teknolo-

giforbrug øget tilstedeværelsen af menneskeskabte kemikalier i det naturlige 

miljø. Mange af disse kemikalier forbliver i miljøet og bliver gennemtræn-

gende over tid, hvilket påvirker akvatiske økosystemer negativt globalt. Akva-

tiske økosystemer leverer væsentlige økosystemtjenester, der gavner det men-

neskelige samfund, såsom levering af mad. For at forstå sammenhængen mel-

lem kemiske emissioner fra produkt- og teknologilivscyklusser og deres skader 

på økosystemernes sundhed, er det således afgørende at karakterisere skader 

på akvatiske økosystemer forbundet med kemiske emissioner i livscyklusvur-

dering (relevant for produktets livscykluspræstation) og økologiske risici. vur-

dering (relevant for vand- og økosystembeskyttelse). Dette er afgørende for at 

lette et verdensomspændende skift i retning af en mere bæredygtig anvendelse 

af kemikalier på tværs af produkter og teknologier og for at sikre mangfoldig-

heden af akvatisk liv. 

Det arbejde, der præsenteres i denne ph.d.-afhandling, adresserer sammenhæn-

gen mellem kemiske emissioners livscyklus og skader på akvatiske økosyste-

mers sundhed ved at fokusere på fire forskningsmål: (i) at udvikle en konse-

kvent ramme til at forbinde økotoksikologiske effekter på akvatiske organis-

mer med skader på artsdiversiteten , funktionel mangfoldighed og økosystem-

tjenester, der er fuldt ud i overensstemmelse med grænsebetingelserne for 

LCIA, (ii) at udvikle en systematisk metode til kurering af økotoksicitetstest-

data til at udlede et gennemsigtigt og højkvalitetsdatasæt af effekttestdata for 

mere end 10.000 kemikalier, (iii) at forbedre modellering af økotoksicitetsef-

fekter ved at overveje forskelle i følsomhed af arter fra forskellige taksonomi-

ske grupper over for kemisk eksponering, og (iv) at kvantitativt karakterisere 

forholdet mellem blandingstoksicitetstryk fra kemikalier og observerede for-

skelle i akvatiske intra- og inter-arter Hændelse. 

Efter et indledende kapitel opsummerer kapitel 2 mulige metoder til at over-

sætte forudsagte økotoksicitetseffekter til arter og tab af funktionel diversitet, 

hvilket kulminerer skade på økosystemtjenesters skader i livscyklusvurdering 

(LCA). Afsnit 1 i dette kapitel introducerer en ramme for at forbinde fersk-

vands økotoksicitetspåvirkninger til økosystemtjenester inden for LCA-græn-

ser. Afsnit 2 diskuterer tilgange til at forbinde økotoksicitetspåvirkninger med 

artstab, tab af funktionel diversitet og skade på økosystemtjenester fra et LCA-

perspektiv. Afsnit 3 forklarer de nødvendige biomonitoreringsmetoder til ES-
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vurdering, og afsnit 4 beskriver, hvordan økotoksicitetseffekter kan kobles til 

skader på økosystemtjenester. 

Kapitel 3 skitserer økotoksicitetsdatasæt til forskellige anvendelser, herunder 

miljøstandarder, livscyklusvurderinger og vandkvalitetsevaluering. Artikel II 

fremhæver datakurations betydning for artikel III og IV. Afsnit 1 og 2 disku-

terer aktuelle data og sammenlægningsudfordringer for at forbedre datakvali-

teten, mens afsnit 3 skitserer en kurationsprotokol, og sektion 4 præsenterer 

kurerede data til artikel III og IV-analyse. 

Kapitel 4 introducerer opdeling af artsfølsomhedsfordelinger (SSD'er) baseret 

på taksonomisk gruppering for bedre modeltilpasning og relevans i risikovur-

dering, medmindre der findes databegrænsninger. Kapitlet diskuterer den nu-

værende brug (afsnit 1) mangler ved den nuværende brug af SSD (afsnit 2) og 

introducerer en konceptuel ramme for opdelte SSD'er (afsnit 3). Den dækker 

også rollen af kemisk brug og virkemåde i SSD-afledning (afsnit 4) og frem-

hæver vigtigheden af opdelte SSD'er i beslutningsstøtte (afsnit 5). Derudover 

præsenteres et casestudie for input til livscyklusvurdering i afsnit 6. 

Kapitel 5 giver en trinvis tilgang til at forbinde økotoksicitetspåvirkninger med 

artstab, hvilket gør det nyttigt at oversætte modelforudsagte effekter på artsni-

veau til skader på biodiversitet og økosystemtjenester i beslutningstagning, så-

som livscykluspåvirkningsvurdering. Kapitlet består af otte sektioner: Afsnit 1 

skitserer de grundlæggende trin til at udlede PAF til PDF-forholdet fra over-

vågningsdatasæt, Afsnit 2 præsenterer kemiske koncentrationsdata og 

msPAF(EC10)-beregning, Afsnit 3 introducerer andre abiotiske faktorer, der 

kan påvirke akvatisk biodiversitet, Afsnit 4 præsenterer arters biomonitore-

ringsdata, sektion 5 udforsker samvariation mellem abiotiske tryk inklusive 

den beregnede msPAF, sektion 6 diskuterer tendenser i artsoverflod og artsrig-

dom mod msPAF, sektion 7 præsenterer følsomhedsanalyse, dvs. en ro-

busthedskontrol ved hjælp af en delmængde af data fra én region (vandmyn-

digheden) i Nederlandene, og afsnit 8 præsenterer det afledte PAF til PDF-

forhold. 

Ph.d.-forskningen tyder på, at den udviklede tilgang til skadesmodellering pas-

ser godt ind i LCA-rammen og tilbyder indledende trin til at oversætte økoto-

ksicitetseffekter til skader på økosystemtjenester. Desuden forbedrer opsplit-

ning af artsfølsomhedsfordelinger fortolkningen af vurderingsresultater, hvil-

ket muliggør en kvantitativ forståelse af sammenhængen mellem en blandings 

toksiske tryk og tab af biodiversitet. 
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Afslutningsvis bidrager arbejdet i dette ph.d.-projekt til forskning inden for 

livscykluskonsekvensvurdering og økologisk risikovurdering ved at fremme 

forståelsen af kemisk forurenings indvirkning på biodiversitet og økosystemers 

sundhed. Det understøtter miljøbeskyttelse, LCA og globale beslutninger om 

forvaltning af ferskvandsøkosystemer. 
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1 INTRODUCTION  

1.1 BACKGROUND  

The extensive use of chemicals in modern life, driven by global population 

growth and increasing per-capita consumption, has led to alarming chemical 

emissions throughout product life cycles (Kosnik et al., 2022; Syberg et al., 

2017; Persson et al., 2022), posing a severe threat to aquatic ecosystems world-

wide (Millennium Ecosystem Assessment, 2005). The adverse consequences 

of chemical pollution on freshwater ecosystems are manifold, ranging from the 

depletion of species diversity to the disruption of ecosystem functioning and 

the flow of crucial ecosystem services (ES)—affecting ES from water purifi-

cation to recreational opportunities (Maltby et al., 2017). Such consequences 

ultimately, directly and indirectly, affect human society, making it imperative 

to comprehensively understand and assess the damage inflicted by chemical 

emissions on freshwater ecosystems—which is also the goal of decision-sup-

port tools like life cycle assessment (LCA) and ecological risk assessment 

(ERA). 

However, evaluating the impact of chemical pollution and damage caused on 

ecosystem functioning and ES remains complex due to various factors, includ-

ing the diversity of chemical compounds, the need to extrapolate from labora-

tory data to real-world conditions, the lack of methods or frameworks to sys-

tematically link the damage on ES, lack of high-quality data and the uncertainty 

associated with aggregating LCA indicator scores across different ES 

(Othoniel et al., 2015; Maia de Souza et al., 2018). 

Challenge also arises from using ecotoxicity assessment methods like species 

sensitivity distributions (SSDs) to establish environmental protective standards 

or expected chemical impact levels where species assemblages are lumped 

together without accounting for differences in species sensitivity (Posthuma et 

al., 2002; Fox et al., 2021). This approach diverges from applied ecology prin-

ciples, which treat species taxonomic groups differently (Schäfer et al., 2023). 

Thus, to enhance the accuracy and reliability of SSDs, it is crucial to address 

limitations related to data quality, statistical robustness, and variations in spe-

cies sensitivity (Aldenberg et al., 2001; Fox et al., 2021). 

Furthermore, the use of SSDs has extended in characterizing the role of mixture 

toxic pressure on biodiversity loss (Sigmund et al., 2023; Lemm et al., 2021; 

Schneeweiss et al., 2023). This is important as aquatic species are exposed to 

measurable levels of more than one chemical (i.e., unintended mixtures) and 
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non-chemical stressors (Schäfer et al., 2023), which is often not captured in 

various decision contexts. When species are exposed to increased toxic pres-

sure in the field, they respond with varying changes in abundance due to their 

differences in sensitivities. Previous research reported a 1:1 relationship1 be-

tween predicted ecological impacts of mixture toxicants and observed impacts, 

where increased predicted mixture toxic pressure (measured as msPAF; multi -

substance Potentially Affected Fraction of species) corresponds to field im-

pacts like species loss (Posthuma & de Zwart, 2012). The relationship between 

predicted impacts (msPAF) and observed impacts can take various forms in-

fluenced by species sensitivities and indirect effects; for example, opportunis-

tic species may thrive under moderate PAF conditions. 

Thus, considering the varying trends in species abundance influenced by direct 

and indirect effects in addition to aggregate metrics like species richness, 

which may mask important insights, is crucial for establishing a Potentially 

Affected Fraction-to-Potentially Disappeared Fraction (PAF-to-PDF) relation-

ship, which is significant in various decision contexts, such as protection 

measures, Life Cycle Impact Assessment (LCIA), water quality restoration, 

protection standards (e.g., HC5), ecological risk assessment, and Chemical 

Safety Assessments (e.g., REACH). These assessments are essential for proac-

tively ensuring 'safe use,' as seen with metrics like msPAF-EC10eq in LCIA 

and msPAF values for prioritizing remediation actions in polluted ecosystems. 

While the pathway from chemical emissions to ecotoxicity effects expressed 

as Potentially Affected Fraction of exposed species (PAF) is well established 

in LCA (Fantke et al., 2021; Jolliet et al., 2003; Rosenbaum et al., 2008), the 

generic proxy link between the often-used Potentially Disappeared Fraction of 

species (PDF) based on associations with PAF requires further research to re-

late to species loss in the field. The current LCA assessments of ecosystem 

services have primarily concentrated on land use and land change with com-

monly no consideration of ecotoxicity impacts, even though approximately 

25% of biodiversity impacts in aquatic ecosystems are currently attributed to 

chemical pollution (Lemm et al., 2021). Furthermore, translating predicted 

                                              

 

 

1 PAF to PDF 1:1 is based on acute EC50 test  
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ecotoxicity impacts into damage on freshwater species diversity, functional di-

versity, and ecosystem services is not yet considered at all in LCA (Maia de 

Souza et al., 2018; Liu et al., 2020; Othoniel et al., 2015; Rugani et al., 2019). 

Methodological challenges and data gaps hence currently impede progress in 

addressing damage from chemical emissions on ecosystem structure, function-

ing, and ecosystem services in LCA, constituting an important research gap. 

This PhD project titled "Integrated risk assessment: from exposure through 

AOPs to ecosystem services" was defined to address this research gap, i.e., 

addressing the lack of suitable methods or frameworks to link ecotoxicity im-

pacts to damage on freshwater ecosystems comprehensively, absence of high-

quality data with essential information such as chemical mode of action, the 

necessity to account for species sensitivity variations in constructing SSDs, 

and the importance of assessing the impact of mixture toxic pressure on biodi-

versity loss to characterize the relationship between predicted impacts 

(msPAF) and observed impacts (species loss). 

In this PhD project, the identified challenges were addressed by creating a 

comprehensive framework to link chemical effects on aquatic organisms to 

species diversity, functional diversity, and ecosystem services within the con-

text of LCA, curating and harmonizing a high-quality dataset (255K data 

points), enhancing the assessment of chemical impacts using splitting SSDs 

accounting for sensitivity differences across taxonomic groups, and developing 

a tiered approach to quantify the impact of chemical mixture toxicity on aquatic 

species occurrence and its contribution to species loss. 

Overall, this PhD project bridges the gap between predictive models regarding 

the damage caused by chemical pollution in freshwater ecosystems and real-

world ecological consequences. It offers a valuable contribution to protecting 

and managing freshwater ecosystems and their critical ecosystem services in 

the face of growing chemical pollution threats originating from product and 

technology life cycles worldwide. 

1.2 RESEARCH OBJECTIVES & THESIS OUTLINE 

The PhD project's overarching goal was to improve the assessment of ecotox-

icity-related damage on biodiversity in freshwater ecosystems within the LCA 

framework. In particular, the work conducted focused on the following four 

research objectives: 
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1. To develop a consistent framework to link ecotoxicological effects on 

aquatic organisms to damage on species diversity, functional diversity, 

and ecosystem services that are fully in line with the boundary 

conditions of LCIA 

2. To develop a systematic ecotoxicity test data curation approach to derive 

a transparent and high-quality dataset of effect test data for more than 

10,000 chemicals  

3. To improve ecotoxicity effects modeling by considering differences in 

sensitivity of species from different taxonomic groups toward chemical 

exposure 

4. To quantitatively characterize the relationship between mixture-toxicity 

pressure from chemicals and observed differences in aquatic intra- and 

inter-species occurrence.   
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2 IDENTIFYING METHODS TO LINK PREDICTED 

ECOTOXICITY EFFECT TO DAMAGE ON 

ECOSYSTEM SERVICES IN LCA 

Chapter 2 summarizes the approaches for linking predicted ecotoxicity effects 

to species and functional diversity loss and ultimately to ecosystem services 

damage in life cycle assessment. The chapter is structured in four main sec-

tions. Section 1 outlines an overall framework for linking predicted freshwater 

ecotoxicity impacts up to damage on related ES within the boundary conditions 

of LCA. Section 2 presents possible approaches for linking predicted ecotoxi-

city impacts to species loss, functional diversity loss, and finally to damage on 

ES in LCA. Section 3 presents the biomonitoring method needed to assess and 

manage ES. Finally, Section 4 outlines how to link the ecotoxicity effect to 

damage on ES. All contents of this chapter are based on Article I. The parts 

taken directly from the Article are marked with "…". 

 

2.1 FRAMEWORK FOR LINKING PREDICTED 

ECOTOXICITY EFFECTS TO DAMAGE ON ES  

 

Article I illustrates the broader complexity of evaluating damage on ES, which 

is not straightforward. The primary step often involves translating predicted 

effects at the species level to structural biodiversity damage (species diversity 

or species loss in the context of LCA). This is followed by extending the dam-

age to encompass losses in functional diversity and, ultimately, damage to rel-

evant ES (Maltby et al., 2021; Truchy et al., 2015). Alternatively, it is possible 

to establish a direct link between species loss and damage to ES, bypassing the 

intermediary step of assessing impacts on ecological functions (Maltby et al., 

2021). However, changes in ecosystem functioning can transpire without spe-

cies loss (for example, due to behavioral shifts), leading to damage to ES di-

rectly resulting from such changes. See Figure 1 below. 
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Figure 1. The proposed conceptual approach for translating the damage caused to various 

aspects of biodiversity (like the diversity of species and their functions) and the services 

provided by freshwater ecosystems due to the release of chemicals into the environment. 

The figure is taken from Article I.  

Article I adapted the Adverse Ecosystem Service Pathway (AESP) conceptual 

framework (Awuah et al., 2020), drawing on information about ecotoxicity ef-

fects from species interactions and ES  to build the impact pathway to damage 

on ES (Maltby et al., 2021). This approach builds on principles shared with 

other frameworks like life cycle assessment (LCA) and the Adverse Outcome 

Pathway (AOP) concept, which utilize causal effect chain approaches.  

Figure 1 starts with chemical emissions in different environmental compart-

ments, leading to freshwater ES damage. The initial step in the pathway in-

volves predicting ecotoxicity effects at the species level, often quantified as 

the potentially affected fraction of species (PAF) exposed to a specific stressor,  

such as a chemical or mixture, typically derived from laboratory test data on 

sensitivity differences among species. Functional diversity level further links 

damage on structural biodiversity to damage in freshwater ecosystem func-

tions, resulting in reduced performance and characteristics of affected species 

traits. Finally, the ES diversity level translates losses in species and functional 

diversity into damage on ES flow, affecting humans' benefits from a well-func-

tioning freshwater ecosystem. 

In practical terms, the protection of ecosystem biodiversity still heavily relies 

on extrapolating the effects of ecotoxicity at the individual organism level to 

damage at a higher level of biological organization from ecotoxicity laboratory 
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test data, which comes with uncertainties (Forbes et al., 2017). However, the 

field is progressing due to advancements in mechanistic models and quantita-

tive adverse outcome pathways (AOPs). AOPs describe molecular initiating 

events, followed by subsequent events impairing an organism's functions. Re-

lationships within the AESP concept offer valuable insights into predicting and 

quantifying impacts up to the community level (Schmid et al., 2021). 

The AESP  outlined in Figure 1 by Article I aligns with the overall structure 

of the life cycle assessment (LCA) impact pathway, allowing for the accurate 

assessment of multiple exposure pathways that lead to net exposures and even-

tual damage (Escher et al., 2017; Clewell et al., 2020). To enhance the use of 

AOPs in ecological assessments at a higher biological level, Murphy et al. 

(2018) proposed a conceptual model that links population models (such as the 

dynamic energy budget model) with quantitative AOPs, using AOP key events 

to measure damage to DEB variables and process rates. However, it remains 

uncertain which elements of the AOP concept can be adapted as inputs for 

quantifying the link between ecotoxicity effects and ES damage. 

In the LCA framework, "ecosystem quality" is one protection area, assessing 

damage through reduced biomass and species richness (Woods et al., 2018; 

Verones et al., 2017). Ecosystem services (ES) are evaluated alongside ecosys-

tem quality and other protection areas  (Verones et al., 2017). Initial ES damage 

assessments in LCA have mainly focused on land use and land change, with 

limited consideration of ecotoxicity impacts, despite the significant role of 

chemical pollution in aquatic ecosystem impacts (Lemm et al., 2021). 

The pathway from emissions to ecotoxicity impacts is well-established in LCA, 

with predicted impacts often represented as the Potentially Disappeared Frac-

tion of species (PDF) based on associations with the Potentially Affected Frac-

tion of species (PAF) (Fantke et al., 2021; Jolliet et al., 2003; Rosenbaum et 

al., 2008). However, this proxy link needs further refinement to address varia-

tions in effects on species loss. Currently, translating predicted ecotoxicity im-

pacts into damage on freshwater species diversity, functional diversity, and 

ecosystem services is not operational in LCA (Maia de Souza et al., 2018; Liu 

et al., 2020; Othoniel et al., 2015; Rugani et al., 2019). 
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2.2 SOURCE TO DAMAGE MODELLING APPROACH 

As highlighted in Article I, the pathway from chemical emissions to ecotoxi-

city impacts is well addressed in LCA, with models like USEtox integrating 

factors for environmental fate, ecological exposure, and ecotoxicological ef-

fects (Owsianiak et al., 2023; Fantke et al., 2018). Environmental fate factors 

describe how emissions alter toxicant concentrations in various compartments 

like freshwater, while ecological exposure factors convert these concentrations 

into the bioavailable fraction for organisms. Effect factors link the bioavailable 

fraction to effects on species physiology, behavior, and populations, quantify-

ing the Potentially Disappeared Fraction of species (PDF). Refinement is 

needed to reflect species disappearance under field conditions better.  

Article I outlines possible approaches that can serve as a starting point for 

translating ecotoxicity impacts into damage on species diversity, functional di-

versity, and ecosystem services of freshwater ecosystems in the context of 

LCA, as detailed below. 

2.2.1 APPROACHES TO LINK FRESHWATER ECOTOXICITY 

TO DAMAGE ON STRUCTURAL SPECIES DIVERSITY 

As mentioned in Article I, linking freshwater ecotoxicity to damage on eco-

system services flow is a stepwise process. The initial step involves establish-

ing a link between the ecotoxicity effects and their impact on species diversity 

(species loss) within an ecosystem. Article I provides an overview of ap-

proaches developed to consistently translate data on ecotoxicity effects from 

chemical exposure into eventual damage to species diversity within the product 

life cycle assessment (LCA) framework.  

Initial approaches such as mean extinction and media recovery were proposed 

to link the ecotoxicity effect to species diversity and are now rarely used due 

to their inherent complexity and limited data availability (Larsen & Hauschild, 

2007). An alternative method highlighted in Article I is environmental DNA 

(eDNA) analysis, where species DNA is extracted from sources like soil or 

water combined with gene sequencing, which offers a way to measure species 

diversity (Birrer et al., 2021). However, it is essential to note that this approach 

is limited in detecting only recently present species due to DNA degradation 

(Goldberg et al., 2016; Rees et al., 2014). 

In Article I, an alternative approach involves using mechanistic models like 

energy budget and food web models to extrapolate individual-level effects to 

the potential community or population-level damage. Dynamic Energy Budget 
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(DEB) models simulate energy allocation in species, but they are specific to 

certain compounds and species (Dong et al., 2022; Forbes et al., 2017). Food 

web models like AQUATOX consider chemical flow in ecosystems and their 

impact on food webs. However, they are not widely used due to modeling chal-

lenges, i.e., AQUATOX primarily applies to organic chemicals and the lack of 

standardized impact indicators limiting practical use in LCA (Faber et al., 

2019; Maltby et al., 2021). 

On the other hand, population models incorporate species-specific life history 

traits like growth and reproduction, providing biological realism when predict-

ing population damage based on different endpoints (Forbes et al., 2017; 

Maltby et al., 2021). However, they are limited to a few species, requiring 

broader coverage (EFSA et al., 2018; Maltby et al., 2021).  

The Threshold Indicator Taxa Analysis (TITAN) method, highlighted in Arti-

cle I, helps identify individual species or community breakpoints or thresholds 

in response to stressors. TITAN aids in recognizing differences in species sen-

sitivity, distinguishing between opportunistic and sensitive species. Unlike the 

Principal Response Curve (PRC) approach, which analyzes multiple species 

responses in controlled experiments, TITAN utilizes field monitoring data 

(possibly multiple stressors) to derive species-specific thresholds based on 

pressure gradients and the overall community response pattern (Baker & King, 

2010). This approach reflects the biological realism of species exposed to mul-

tiple stressors or mixtures in the field. Additionally, considering individual 

species response patterns plays a role in translating the effects of ecotoxicity 

into species loss, as discussed in Chapter 5 (Article IV). 

 

2.2.2 APPROACHES TO LINK SPECIES LOSS TO DAMAGE 

ON FUNCTIONAL DIVERSITY 

Functional diversity relates to variations in species traits that influence re-

sponses to environmental stressors like chemical emissions. Ecosystem func-

tioning, which sustains an ecosystem through biological activities, is greatly 

affected by stressors impacting species traits and interactions within the food 

web (Truchy et al., 2015; Faber et al., 2019; Maltby et al., 2017). When species 

diversity is low, ecosystem functioning declines rapidly, but other biodiversity 

measures like genotype composition and functional groups also matter. Also, 

functional group redundancy is crucial for maintaining ecosystem functioning, 

depending on these groups' presence, composition, and traits (Faber et al., 

2019; Haines-Young & Potschin, 2010; Rumschlag et al., 2020). 
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The function sensitivity distribution (FSD) proposed by Article I quantifies 

toxic chemicals' impact on ecosystem functioning by considering function-re-

lated endpoints (Posthuma et al., 2001). Developing and employing FSDs can 

facilitate a direct assessment of functional damage, analogous to establishing 

the PAF-PDF relationship through TITAN analysis, as described in section 

2.2.1, which remains underutilized due to limited data availability (Posthuma 

& de Zwart, 2014). 

Article I recommends the Trait Probability Density (TPD) framework for 

quantifying functional diversity components, integrating species abundance 

and intraspecific trait variability to estimate richness, evenness, and diver-

gence. Functional evenness measures the extent of trait distribution within a 

single dimension, functional richness assesses species' spatial occupation 

within an ecological unit, and functional divergence quantifies trait-based 

abundance distribution. TPD can predict the functional structure of species 

populations and communities along chemical gradients but requires substantial 

trait data (Carmona et al., 2016). 

Article I also recommends the phenotypic diversity method to translate 

changes in species diversity into damage to ecosystem functioning. This model 

directly links species diversity to phenotypic variance in ecosystem function-

ing, as represented by alterations in biomass production in response to toxic 

pressures. This approach emphasizes species functional groups as the funda-

mental units of the ecosystem, accounting for species sensitivity (Larsen & 

Hauschild, 2007). 

 

2.2.3 APPROACHES TO LINK FUNCTIONAL LOSS TO 

DAMAGE ON ECOSYSTEM SERVICES DAMAGE 

Based on the fact that damage on functional diversity loss can be linked to 

damage on related ES as an intermediate step of the main pathway in linking 

ecotoxicity effects to damage on ES or directly link species loss and damage 

on ecosystem services flow without necessarily considering the intermediate 

step of evaluating functional effects as pointed out in Article I. The role of 

biodiversity is thus crucial as it positively influences ecosystem functioning, 

and its loss reduces the efficiency of various ecological processes, including 

resource capture, biomass production, and nutrient cycling. Thus, high biodi-

versity is essential to maintain the flow of ecosystem services at different spa-

tial and temporal scales. 
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However, understanding the consequences of biodiversity on ecosystem ser-

vices requires considering functional traits (response traits) that influence the 

probability of extinction or establishment and how these traits drive ecosystem 

functioning (effect traits), as detailed in Article I. Emphasis is put on the need 

for mechanistic models to quantify the linkage between ecosystem functions 

and ecosystem services. However, challenges arise when incorporating ecosys-

tem services regulated by multiple functions, which may respond differently to 

changes in biodiversity (Article I). 

Researchers have proposed quantitative models like Ecological Production 

Functions (EPFs) to link ecosystem functional diversity loss to damage to eco-

system service flows (Faber et al., 2019). Some online models, like the US 

Environmental Protection Agency EcoService, are based on EPFs but face lim-

itations regarding standardized tests and exposure dose-response relationships 

(US EPA, 2018; Faber et al., 2021).  

The cascade model is also proposed by Article I to provide a way to link 

changes in ecosystem structure and functions to ES in LCA as the model com-

plements the LCA impact pathway framework. However, the cascade frame-

work does not address ecotoxicity-related aspects and their influence on fresh-

water ES and the dynamics of ecosystem services (Maia de Souza et al., 2018; 

Rugani et al., 2019). Considering the developed conceptual Frameworks like 

InVEST, NESCS, and FEGS-CS2 mentioned in Article I, the impacts of land 

use change or climate change on ecosystem services are assessed, but their 

applications in response to chemical stressors are less studied.  

Article I also introduces a method by Syberg et al. (2017) that directly links 

ecotoxicity impacts to damage on ES by summing the calculated hazard quo-

tients (HQ) across different chemicals, and it offers a practical way to set upper 

limits for chemical exposure in relation to human health, maintaining chemical 

exposure within safe limits and prompting remediation if those limits are sur-

passed. 

                                              

 

 

2 Valuation of Ecosystem Devices and Tradeoffs' (InVEST), 'Common International Classification of 

Ecosystem Services' (CICES) or the 'National Ecosystem Services Classification Sys tem' (NESCS) 

or the 'Final Ecosystem Goods and Services Classification System' (FEGS-CS) 
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2.3 MONITORING-BASED FRAMEWORK FOR 

ASSESSING AND MANAGING ECOSYSTEM 

SERVICES 

As mentioned in Article I, practical assessment and management of ecosystem 

services (ES) depend on data-driven insights obtained from (bio) monitoring 

data and statistical analyses, with monitoring covering numerous sites relative 

to pressure metrics to avoid the 'curse of dimensionality.' An integrated ap-

proach, such as mixture toxic pressure quantification, overcomes issues related 

to the study of chemical pollution, emphasizing the importance of diagnosing 

relationships between pressure variables and impact variables using compre-

hensive training data gradients.  

Global initiatives like the Group on Earth Observations Biodiversity Network 

(GEO BON ES) aim to monitor biodiversity and ecosystems (Vaz et al., 2021), 

but challenges persist, such as harmonizing ES metrics and incorporating so-

cial-cultural values into monitoring. Monitoring ES may focus on various as-

pects, including effect-based monitoring 3  and multiple stressor analysis 

(Chapman, 2012). Using biological quality elements instead of raw field mon-

itoring data has been explored for European ecological status assessment 

(Posthuma et al., 2020). 

Article I stressed that to understand how man-made pressures influence ES, 

there is a need to develop frameworks that combine ES monitoring with 

stressor status and trends, particularly when addressing chemical pollution 

alongside other pressures, which comes with challenges, requiring more com-

prehensive data and analytical tools to bridge the gap between applied ecology 

and ecotoxicology. This seems to be the challenge in ecotoxicity assessments 

as applied ecology relies on field data, while applied ecotoxicology often uses 

lab toxicity data. 

                                              

 

 

3 Focussing on the service providing unit (SPU): A collection of individual species necessary to de-

liver an ES. 

https://geobon.org/
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2.4 WAY FORWARD IN LINKING PREDICTED 

ECOTOXICITY EFFECT TO DAMAGE ON 

ECOSYSTEM SERVICES 

 

Article I emphasizes the importance of incorporating field-based monitoring 

data for biological realism when linking ecotoxicity impacts to ecosystem ser-

vices (ES) damage. While models that encompass multiple populations or en-

tire food webs can link ecotoxicity effects to species loss at the species diver-

sity level, they introduce uncertainty due to extrapolation. The TITAN ap-

proach, relying on field-based monitoring data, presents a promising alterna-

tive, albeit with substantial data requirements. 

A trait probability density framework can link species loss to ecosystem func-

tioning loss, but additional data with functional diversity endpoints are needed. 

Quantitative ecological production functions can translate species diversity 

damage into functional and ES damage while accounting for extrapolation un-

certainties, demanding robust models such as species sensitivity distributions 

(Article I). Although the EPF-based approach can link functional endpoints to 

ES changes, finding suitable endpoints for ecosystem assessment remains chal-

lenging. On a global scale, there is a need for frameworks or tools that integrate 

ES monitoring with the status and trends of chemical and other stressors at 

various spatial and temporal scales (Article I). 
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3 A CURATED AQUATIC ECOTOXICITY 

DATASET FOR ENVIRONMENTAL 

PROTECTION, ASSESSMENT, AND 

MANAGEMENT 

Chapter 3 provides an overview of various ecotoxicity datasets that have been 

combined to serve different purposes, such as establishing environmental qual-

ity standards, conducting life cycle impact assessments, and assessing the en-

vironmental quality of surface waters. Article II also emphasizes the im-

portance of data curation and harmonization to generate high-quality data for 

subsequent use in Articles III and IV. Section 1 discusses the current status of 

ecotoxicity data available for various applications. Section 2 addresses the 

challenges associated with merging databases, giving an example with 

DosReach1 and PubMass1 databases to enhance data quality for final usage. 

Section 3 outlines steps for the curation and harmonization process that will be 

applied in Article III. Section 4 presents the curated and harmonized high-qual-

ity data utilized in subsequent Article III and Article IV analyses. 

 

3.1 STATE OF THE ART 

Article II highlights that various programs and policy-driven initiatives, such 

as the European Green Deal and the Chemical Strategy for Sustainability in the 

EU, aim to reduce chemical pollution and its environmental consequences. 

However, effective responses are needed to achieve environmental goals, in-

cluding setting environmental quality standards, monitoring chemicals in the 

environment, identifying and removing high-risk chemicals, and screening new 

chemicals for potential hazards, which comes with the challenge of accessing 

comprehensive ecotoxicological data due to data fragmentation and limited ac-

cessibility. Databases like the NORMAN Ecotoxicology Database, US EPA 

Ecotoxicology Knowledgebase, and EnviroTox provide valuable information 

but are discreet and not fully utilized. Therefore, there is a strong need for a 

curated and integrated global resource of aquatic ecotoxicity data to enhance 

environmental protection, assessment, and chemical management. 
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3.2 COMBINING DIFFERENT DATA SOURCES 

Article II presents three datasets: PubMass1, DosReach1, and Readacross1 

(Figure 2). PubMass1 represents data collected from various peer- and non-

peer-reviewed, publicly-available sources, whereas DosReach1 comprises eco-

toxicity values supplied by industry to ECHA under EU REACH legislation 

not available to the public. Read-across1 is solely composed of predicted tox-

icity data from other measured data. These subsets vary in terms of data 

sources, curation steps, and qualitative aspects, such as taxonomical represen-

tation.  

 

 

Figure 2. A flowchart depicting the various data subsets in blue and the curation and har-

monization processes in pink, which ultimately lead to the curated and harmonized dataset 

described in Article II 

Article II stresses that combining data from these subsets may introduce sys-

tematic differences in toxicity values due to test conditions, species choices, 

and other experimental design variations. Therefore, the decision to merge the 

data should be carefully considered, especially when systematic differences 

can impact the dataset's usability.  
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Furthermore, Article II examines potential systematic differences between 

PubMass1 and DosReach1 to assess the possibility of merging the two datasets, 

looking at sample means and distributions of species group-chemical pairs and 

exploring the overlaps and unique occurrences in the datasets for various end-

points. The most notable dataset overlap was in acute LC50 values (907 pairs), 

followed by acute NOEC (109 pairs), with Chronic NOEC showing 274 pairs 

and Chronic LC50 values having minimal overlap (8 pairs). 

The density plot in Figure 3a by Article II indicates a substantial overlap be-

tween the density functions of DosReach1 and PubMass1 for acute logLC50 

values. An example (Figure 3 b) highlighting the ecotoxicity data for a specific 

'Species group - Chemical pair,' such as Fish x CAS 7758-98-7 (copper (II) 

sulfate), reveals variability in multiple toxicity values within the same pair, 

reflecting inter-test variability. To test for systematic differences in toxicity 

values between the two datasets, sample means for overlapping 'Species group 

- Chemical pairs' found in both datasets were compared.  

 

 

Figure 3. (a) Density plot of acute LC50 values (log10) in the comparable datasets, (b) 

density plot for the species group x chemical pair (Fish x CAS 7758-98-7 (copper (II) sul-

fate), with the most toxicity measurements and the sample mean of the repeated experiments 

where the residual variance is the inter-test variability. PubMass1 compiles publicly availa-

ble data from diverse sources, while DosReach1 contains ecotoxicity values provided by 

industry to ECHA under non-public EU REACH legislation. 

 

Findings by Article II suggest that differences in mean toxicity values between 

PubMass1 and DosReach1 exist, possibly due to random variations in experi-

mental design like test species or exposure duration in a limited number of 
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studies underlying the data. This means that potential differences in toxicity 

values between the two subsets should be considered in subsequent analyses 

for specific chemicals. 

3.3 DATA CURATION AND HARMONISATION 

Table 1 outlines the data curation and harmonization steps for a subset of Pub-

Mass1, a laboratory-measured dataset selected for further analysis consisting 

of 255109 data points (Figure 4).  

Table 1: Process flow for freshwater aquatic species HC20 development in LCIA. The table 

is modified from Article III 

# Step Description/Explanation 

1 Pre-processing 

1a A unique list of chemicals  Identified a unique list of chemicals from the database 
and updated  the Chemical Abstracts Service Registry 
Number (CAS RN) by searching in the CompTox Dash-
board  

1b Mapping of chemical classifi-
cation on the unique list of 
chemicals 

 Systematically classified chemicals using the ClassyFire 
taxonomy approach (Feunang et al., 2016) 

1c A unique list of toxic modes 
of action and mapping on the 
unique list of chemicals 

 Mapped the toxic modes of action on the unique chemi-
cals list using information from Pesticide Resistance Net-
works (FRAC, HRAC, IRAC) and the Verhaar scheme 

1d A unique list of species  Identified the unique list of species from the database and 
updated the species name based on Global Names Re-
solver, IUCN, and GBIF databases 

1e Mapping of taxonomic classi-
fication on the unique list of 
species 

 Assigned species' main taxonomic group (in line with 
"biological quality elements" defined under the EU Water 
Framework Directive), taxonomy levels, and habitat type 
based on IUCN, GBIF, and EnviroTox lists or manually 
searched. 

1f A unique list of effect types 
and exposure test duration 
and mapping on curated raw 
data 

 Aggregated effect types into NOEC, EC10, and EC50 
equivalents, remove ambiguous endpoints, and assign ex-
posure test duration types based on the taxonomic group 

2 Dataset preparation 

2a Extrapolation to chronic 
EC10 equivalents (EC10eq) 

 Derived regression statistics based on patterns recognized 
by Aurisano et al. (2019), e.g., 𝑐ℎ𝑟𝑜𝑛𝑖𝑐 𝐸𝐶10 =
 𝑎𝑙𝑝ℎ𝑎 𝑥 𝑎𝑐𝑢𝑡𝑒 𝑁𝑂𝐸𝐶 +  𝑏𝑒𝑡𝑎  see Table 2 

2b Aggregation of data points 
per species  

 Calculated average effect test values for each species-
chemical combination 

2c Criteria definition for a mini-
mum number of data points 

 Classified chemicals as “data-rich” (chemicals with 
≥3 distinct species from the ≥3 taxonomic groups) or as 
“data-poor” (<3 distinct species per taxonomic group 
and/or <3 taxonomic groups) 

https://www.frac.info/
https://www.hracglobal.com/
https://irac-online.org/
http://toxtree.sourceforge.net/verhaar.html
https://resolver.globalnames.org/
https://resolver.globalnames.org/
https://www.iucnredlist.org/search
https://www.gbif.org/species/search
http://data.europa.eu/eli/dir/2000/60/oj
http://data.europa.eu/eli/dir/2000/60/oj
https://www.iucnredlist.org/search
https://www.gbif.org/species/search
https://envirotoxdatabase.org/
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# Step Description/Explanation 

3 Effect calculation 

3a Deriving statistics for species 
sensitivity distribution (SSD): 
single-SSD and split-SSD per 
chemical 

 Converted all chronic EC10eq into logarithmic (log10) 
scale, i.e., derive a set of log10(EC10eq) and derive per 
chemical (single SSD) and per chemical-main taxonomic 
group combination (split-SSD per chemical) arithmetic 
mean and standard deviation  

3b Plotting EC10eq data points 
on SSD graphs 

 Calculated the response probability (PAF) for each 
log10(EC10eq) of a chemical on a scatter plot using the 
formula 'PAF = (log10(EC10eq) rank - 0.5) / 
log10(EC10eq) count.' 

3c Plotting fitted SSD graphs  Defined the range of log10(EC10eq) for each chemical 
and chemical-main taxonomic group combination and 
then derived a fitted cumulative normal distribution of 
log10(EC10eq) values over that range using the 
NORM.DIST function 

3d Deriving HC20 per SSD  Derived the HC20 as 'HC20 = 10^log(HC20)', the hazard 
concentration at which 20% of species show a probable 
effect above their log10(EC10eq) 

3e Comparison of HC20  Used the criteria of non-crossing SSD curves, non-over-
lapping confidence intervals, label split-SSDs as signifi-
cantly different or not, merge non-significant split-SSDs 
into a combined SSD, and label chemicals with at least 
one statistically significant split-SSD for specific target-
ing to identify SSD to split 

3f Statistical tests for evaluating 
the potential of splitting SSD  

• Evaluated whether to split or not based on statistical anal-
ysis, e.g., mean comparison tests, toxic mode of action in-
formation, category use, and visual inspection of the SSD 
95% confidence interval 

4 Uncertainty assessment 

5a Preliminary steps  Determined standard deviation for each combination 
(chemical-species-effect type) to analyze how standard 
deviation varies to set up a fixed standard deviation in 
case of taxonomic group combination with a low number 
of data points (fixed-shaped SSD) 

5b Total uncertainty around the 
derived HC20 

Quantified uncertainty around the derived HC20 values by 

combining two types of uncertainty: GSDinter 
2  reflecting in-

ter-species variability (i.e., variability across available effect 

values) and GSDintra
2  reflecting intra-species variability 

(i.e., variability around the effect values).  
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Table 2. An overview of regression equations derived from a comprehensive dataset of 9,868 

chemicals used to extrapolate laboratory-derived species sensitivity endpoints to chronic 

EC10 equivalents for the subsequent building of SSD-EC10eq in Article III 

Endpoints Extrapolation equation  

Acute NOEC log EC10chronic = 0.816 × log NOECacute +  0.021 

 

Chronic NOEC log EC10chronic = 0.965 × log NOECchronic −  0.144 

 

Acute EC50 log EC10chronic = 0.869 ×  log EC50acute − 0.508 

 

Chronic EC50 log EC10chronic = 0.872  ×  log EC50chronic + 0.733 

 

Acute EC10 log EC10chronic = 0.813 ×  log EC10acute +  0.967 

 

 

Figure 4 illustrates the distribution of the 255109 data points from the selected 

laboratory-measured dataset. Freshwater habitats constituted the majority at 

91%, and acute toxicity data is the most prevalent endpoint, accounting for 

48% across all habitats. This primarily includes acute EC50 values for fresh-

water, with 108,524 acute EC50s and 69,635 acute NOECs. In contrast, chronic 

EC50 data is less common, with only 8,376 records, and there are only 87 rec-

ords available for terrestrial habitats. The limited ecotoxicity data for terrestrial 

habitats, specifically just 1,099 records, indicates limited research on terrestrial 

species. 
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Figure 4. The distribution of 255109 effect concentrations (Y) for 10988 chemicals (X), 

categorized by taxonomic groups and endpoint types, with ranking based on mean chronic 

EC50 values per chemical for each column. Gaps on the x-axis represent missing data for 

specific Habitat*endpoint combinations. Figure taken from Article II. 

3.4 HARMONIZED FRESHWATER ECOTOXICITY TEST 

DATA FOR SPLIT SSDs 

Article III shows that after data curation and harmonization, the freshwater 

ecosystem dataset comprises 120,835 species-specific toxicity test data, 9,868 

chemicals, 1,123 species, and 234 test endpoints, as illustrated in Figure 5. 

However, the dataset exhibits uneven representation across taxonomic groups, 

test durations, and endpoint types due to inconsistent global testing practices. 

Invertebrates constitute the majority (78%) of the primary taxonomic group in 

the dataset, with acute toxicity data being the dominant data type (71% across 

all taxonomic groups), primarily acute EC50s for invertebrates, including 

44,077 acute EC50s and 20,000 acute NOECs. In contrast, chronic EC50 data 
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is less common (n=5,555), with a limited number (n=82) available for verte-

brates. 

"Species sensitivities span many orders of magnitude for short-term peak- and 

longer-term chronic exposures (Figure 5). For example, acute EC50s range 

between 7.3 × 10−8 and 3.3 × 109 µg/L for invertebrates and chronic EC50s 

range from 1.6 × 10−5  to 1.0 × 108 µg/L for invertebrates. Likewise, acute 

NOECs range between 8.0 × 10−7  and 1.0 × 109 µg/L and chronic NOECs 

range between 6.0 × 10−6 and  2.5 × 108 µg/L.” 

After curating the data, 180 chemicals were identified as data-rich, meeting the 

criterion of having data available for at least three distinct species from three 

or more taxonomic groups. This selection yielded 5,217 test endpoint data for 

developing and testing the SSD-splitting framework. The final data-rich sub-

set, from which chronic EC10 values were derived, was characterized by a pre-

dominant presence of specific taxa, with invertebrates making up 47%, verte-

brates 33%, and algae, cyanobacteria, and aquatic plants comprising 20% of 

the subset. Only 1.81% of the chemicals possessed sufficient data to potentially 

facilitate a complete split into three taxonomic group-specific SSDs, as pre-

sented in Article III. 

The available database (120,835 values) reveals a greater focus on testing and 

evaluating invertebrates (Berger et al., 2016, 2018; Khamis et al., 2014; 

Lagadic & Caquet, 1998) and a notable scarcity of data for bacteria and fungi, 

hindering the assessment of risks for these groups and their vital roles in the 

ecosystem, e.g., nutrient cycling, highlighting the necessity for conducting ad-

ditional tests on microorganisms within freshwater ecosystems. 
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Figure 5. The distribution of 120,835 species sensitivity endpoints (Y) for 9,868 chemicals 

(X), categorized by taxonomic groups and endpoint types, with ranking based on mean ex-

trapolated chronic EC10-equivalent values per chemical for each column. Gaps on the x-

axis represent missing data for specific taxonomic group*endpoint combinations. Figure 

taken from Article III. 
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4 CHARACTERIZING CHEMICAL POLLUTION 

IMPACTS IN AQUATIC ECOSYSTEMS WITH 

SPECIES SENSITIVITY DISTRIBUTIONS FOR 

SPECIFIC TAXONOMIC GROUPS 

Chapter 4 presents a scientific response to whether and how or not to split 

Species Sensitivity Distributions (SSDs). It is scientifically preferable (in 

terms of how well a model fits the data and its relevance to evaluating risks in 

exposed ecosystems) to separate SSDs based on taxonomic grouping unless 

there are constraints due to the quantity and quality of available test data. Ar-

ticle III discusses the splitting SSDs approach based on three taxonomic 

groups to overcome the challenge of not accounting for differences in sensitiv-

ity across species groups, which may be relevant when, for example, linking 

chemical effects to ecosystem functioning damage since different species 

groups may have very different roles in an ecosystem and its functioning. Alt-

hough methods and results represent pragmatic choices on input data, statisti-

cal models and outputs, and a decision context, the study results have generic 

implications regarding the issue of splitting or not splitting SSDs. Section 1 

outlines the current use of SSDs, which has shortcomings (Section 2). Section 

3 presents the proposed conceptual framework for split SSD. Section 4 outlines 

the role of chemical use and mode of action in SSDs derivation. Section 5 pre-

sents the role of splitting the SSDs framework in decision support. Finally, 

section 6 presents a case study for use in LCIA. All contents of this chapter are 

based on Article III. The parts taken directly from the Article are marked with 

"…". 

4.1  CURRENT USE OF SSDs  

SSD-based outputs vary from the most classical and regulatory-adopted use of 

setting protective standards to analyzing the potentially affected fraction of 

species (PAF) and predicted mixture toxic pressures (expressed as msPAF, 

multi-substance Potentially Affected Fraction of species) in globally applied 

environmental quality assessments and life cycle assessment of products and 

technologies (Posthuma & de Zwart, 2014; Posthuma & de Zwart, 2006). 

SSD approach employed by different jurisdictions worldwide has remained 

similar, e.g., the use of HC5 value for developing water quality benchmarks 

and environment protection standards, i.e., predicted no-effect concentration 

(PNEC). However, there is variation in the type of models fitted to SSDs. For 
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example, countries like Canada and North America have employed the use of 

a model‐averaging approach (where the HCx is estimated using a weighted 

average of several individual SSDs), while in Europe, the SSD approach per-

mits the use of any parametric distributions, e.g., log-normal, log-logistic, Burr 

type III (ECETOX, 2014). Article III illustrates the use of split SSDs using 

log-normal distribution methods, which has generic implications regarding the 

issue of splitting or not splitting regardless of pragmatic choices on input data, 

statistical models and outputs, and a decision context. 

 

4.2 SHORTCOMINGS OF THE CURRENT SSD 

APPROACH 

The SSD concept is not without shortcomings for all environmental problems 

with chemicals. The current approach to constructing SSDs assumes they de-

scribe the exposure-impact relationship for the entire species assemblages. 

This assumption may not always hold, particularly when considering specific 

modes of action of chemicals and differences in taxonomic groups' sensitivity 

toward chemical exposure. Non-split SSDs (current approach) may not fit well 

with data across taxonomic groups, potentially leading to inaccurate assess-

ments (Fox et al., 2021). Different taxonomic groups have different functions 

within an ecosystem—this is important for understanding differences in sensi-

tivities that may propagate differently when later linking effects to damage on 

ecosystem functioning as much as there is an interaction of species in the food 

web and functional redundancy ensuring the stability of the ecosystem (Haines-

Young & Potschin, 2010; Baumgärtner, 2007). 

In addition, limited test data leads to uncertainties in assessing ecological im-

pacts. The quality of the underlying toxicity test data used to construct SSDs 

is crucial. If the data used in the analysis are of poor quality or have limitations, 

it can negatively reduce the accuracy and reliability of the SSDs. Article IV 

addresses another challenge of considering a mixture toxic pressure in the 

SSDs approach. 

 

4.3 SYSTEMATIC DECISION TREE TO EVALUATE THE 

SPLITTING OF SSDs  

Article III illustrates the process flow for deriving split SSDs for 180 selected 

chemicals after curating a high-quality dataset in Figure 6. We selected three 
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biological quality elements (inspired by the EU-Water Framework Directive, 

representing approaches from applied ecology) and a minimum of three data 

points per group to start the research. After that, we evaluated the variation of 

chemical impacts on different taxonomic groups (i.e., vertebrates, inverte-

brates, and algae, cyanobacteria, and aquatic plants) using a series of statistical 

tests, as well as the calculated HC20 (Hazardous Concentration, consensus 

metric) for use in LCIA and its confidence interval which includes the level of 

uncertainty. Because of poor robustness, we explored the split and re-merged 

data for many chemicals. Setting a criteria, which included "only SSDs with a 

squared geometric standard deviation GSD2 ≤ 5 around the log-mean as a cut-

off point." 

After the final step of verifying the robustness of SSDs of the selected 180 

chemicals, Article III highlights that partial split SSDs (e.g., Algae, cyanobac-

teria, and aquatic plants versus Invertebrates and Vertebrates together) were 

found for many chemicals (n=75) than full split (n=3), and the rest of the chem-

icals (n=102) fall back in non-robust split SSDs (the classical no-split SSD). 

The results suggest that 'always-splitting' is warranted as a starting point, but 

the available data characteristics may limit splitting. For example, few data 

points for the microorganism (e.g., bacteria and fungi) made it impossible to 

derive a split SSD for this group, which calls for the inclusion of more micro-

organisms in the laboratory test to allow for the assessment of risks given their 

role in the freshwater ecosystem, e.g., nutrient cycling.  
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Figure 6. A decision tree for splitting SSDs based on three specific Water Framework Di-

rective-defined Biological Quality Elements: algae, cyanobacteria, and aquatic plants (A), 

invertebrates (I), and vertebrates (V). We start from input data, where we select 180 chemi-

cals to evaluate statistical motives to split using all available data per chemical (full y or 

partially). At the bottom, summarize results for the practical Life Cycle Impact Assessment 
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(20th percentile values), assessing if the statistical split aligns with the mode of action and 

the use of chemicals. Figure taken from Article III. 

4.4 THE ROLE OF CHEMICAL MODE OF ACTION & 

USE CATEGORY INFORMATION IN BUILDING 

SSDs 

Splitting is primarily justified in applied ecology, where bioassessment meth-

ods often focus on taxonomic groups. However, the rationale for splitting be-

comes even more compelling when considering chemicals with specific modes 

of action (MoA) or broadly defined chemical use categories. The relationship 

between taxon sensitivity and chemical mode of action (MoA is important as 

some chemicals show significant taxon-specific differences in toxicity, such as 

herbicide sensitivity of plants versus vertebrates and acetylcholinesterase in-

hibitor toxicity to invertebrates versus vertebrates. Thus, information about a 

chemical's MoA helps to identify taxa (or perhaps traits) that are likely to be 

sensitive—the idea of split-SSD was already discussed as future optimization 

in the Outlook Chapter of the SSD book of 2002 (Posthuma et al., 2002).  

Article III outlines the outcomes of considering mechanistic MoA and chem-

ical use categories, as shown in Figure 7 and Figure 8. For example, inverte-

brates exhibited lower sensitivity (lowest SSD mean) for chemicals designed 

as insecticides, which operate via AChE inhibition, while primary producers 

appeared at the lower end of the distributions for herbicides acting as photo-

synthesis inhibitors. These findings underscore the importance of incorporat-

ing MoA and using category information for chemicals when considering more 

appropriate models for individual taxonomic groups, as suggested by previous 

researchers (Maltby et al., 2005; Van Den Brink et al., 2006).  

Article III supports previous research and theoretical findings, which indicate 

that chemicals with a non-specific Mode of Action (MoA), such as narcosis (as 

depicted in Figure 7, the vertical spread), tend to exhibit the least variation in 

sensitivity across taxonomic groups. This supports the notion that even among 

species that are not closely related, toxicity resulting from nonpolar narcosis is 

associated with relatively minor differences in sensitivity between species.  
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Figure 7. Species sensitivity impact metric (Y, chronic EC10 equivalents) distributions for 

180 ranked chemicals (X). Chemicals within each panel are arranged by mean impact metric 

values computed from all available data for each chemical. When examining the split in 

SSDs, it broadly aligns visually with distinct dots and standard deviations for various taxo-

nomic groups (represented by different colors). Each panel represents the grouped MoA tar-

geting different taxonomic groups:  (a) and (b) for chemicals targeting invertebrates; (c) and 

(d) for chemicals targeting algae, cyanobacteria, and aquatic plants as primary producers; 

(e) for chemicals with baseline toxicity and (f) includes chemicals for which MoA was pro-

vided but no target specified. Figure taken from Article III. 
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While there might be both applied ecological and statistical reasons to contem-

plate splitting data-rich chemicals with a narcotic MoA, the enhanced fit sug-

gests improved outputs from SSDs for chemicals with specific MoAs. Hence, 

the emphasis is placed on splitting SSDs mainly for chemicals with specific 

MoAs in practical applications. However, certain outcomes cannot be pre-

dicted based on chemical MoA or the use category information. Many of the 

observed lower sensitivities in our SSDs indicate unintended side effects. De-

spite limited test data and scarcity of chemicals designed to target vertebrates, 

these side effects are evident. 

 

Figure 8. Illustrates the distributions of the species sensitivity impact metric (Y), repre-

sented by chronic EC10 equivalents. These distributions are organized into panels based on 

(a) different chemical use categories, e.g., insecticides, and (b) HC20-estimations, along 

with their standard deviations, are summarized for 134 chemicals with at least six data points 

(resulting in low uncertainty) which has matching patterns. Figure taken from Article III. 
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4.5 SPLIT SSDs FOR DECISION SUPPORT  

Using split SSDs has multiple consequences for decision support. Article III 

shows that the developed splitting SSD method improves the interpretation of 

assessment outputs (hazardous concentrations used as protective environmen-

tal quality standards, the potentially affected fraction of species at measured or 

predicted environmental concentrations), which may have a noted impact on 

ecological risk assessments and regulatory decision-making if adopted in prac-

tice. For example, when SSDs are split, the HC5 for the most sensitive taxo-

nomic group is lowered compared to the HC5 derived from a whole-assem-

blage SSD (Figure 9), and this is a highly relevant observation for this use of 

SSD outputs. Consequently, this has comparable consequences for the criteria 

adopted by regulators that rely on these calculated HC5 values, such as the 

Predicted No Effect Concentration (PNEC). 

Article III confirms that chemicals with more datasets (e.g., Simazine) and a 

specific Mode of Action (MoA) offer a strong foundation for responsible SSD 

splitting. Thus, more significant data availability leads to more robust SSDs 

even after a partial split, even when considering narcotic chemicals (e.g., So-

dium pentachlorophenate). However, species selection bias in laboratory test-

ing, particularly for chemicals with specific MoAs, currently constrained our 

ability to establish fully split SSDs. For instance, Trichlorfon, an insecticide 

operating through AChE inhibition, statistically supports using a full-split.  

Conversely, when only a limited number of data points are available for a non-

target taxonomic group (specifically Algae, cyanobacteria, and aquatic plants 

with n=3), the SSD robustness check suggests that only partial splitting is ad-

visable. In order to create a full split SSD, it is essential to accumulate suffi-

cient data across all taxonomic groups. On the other end of the spectrum, avoid-

ing compromising prediction accuracy with non-robust SSDs is crucial, which 

tends to occur for chemicals with limited data. For instance, while statistical 

tests on all available test data imply that it might be possible to separate pri-

mary producers from other groups in the case of Pyraflufen-ethyl, the broad 

and overlapping confidence intervals make the whole assemblage SSD statis-

tically more robust compared to the partial-split alternative. 

Thus, the decision to employ split SSDs should not be solely based on statisti-

cal assessments. It is equally important to evaluate whether splitting is more 

beneficial in practice, leading to improved decision support based on concep-

tual principles and trade-off effects. 
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Article III also demonstrates the practical applications of splitting SSD in var-

ious contexts, i.e., from the analyzed 15 chemicals designated as Water Frame-

work Directive (WFD) Priority Substances (black stars), reflecting their ongo-

ing concern in Europe and two chemicals from the 4th WFD Watch List (black 

crossed dots), highlighting their emerging concerns showing which taxonomic 

group a chemical affect most. Thus, splitting SSDs in decision-making be-

comes crucial when comparing insights from the traditional approach (without 

splitting) to our proposed (partial) split approach (Figure 9). 
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Figure 9. Illustrates the derived species sensitivity distributions (SSDs) following the SSD 

protocol; the columns represent three types of SSDs: no-split (the classical common ap-

proach, on the left), full split (in the middle), and responsible split (on the right).  The rows, 

from top to bottom, illustrate the outcomes of various SSD splitting scenarios related to 

different Modes of Action (MoA) and chemicals with varying data richness. When compar-

ing the black lines (HC5; protective standards) or red lines (HC20; used to derive impact 
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magnitudes in LCIA), differences of more than two orders of magnitude indicate conse-

quences for these decision support applications and vice versa.  

Figure modified from Article III. 

 

From a scientific perspective, a study aiming to calibrate the predicted mixture 

toxic pressures (quantified as msPAF, multi-substance Potentially Affected 

Fraction of species) with observed effects on a specific species group would 

yield more meaningful results when based on split SSDs. This is due to the 

improved accuracy in impact assessment achieved through splitting, as de-

picted in Figure 9, which can help characterize the link between the Predicted 

Affected Fraction of species and the Potentially Disappeared Fraction (PDF) 

of species resulting from multiple chemical exposures (as discussed in Article 

IV). 

 

4.6 RESULTING HC20s FOR LCIA USE 

Article III followed the recommendations derived in the Global Life Cycle 

Impact Assessment Method (GLAM) effort under the auspices of the United 

Nations Environment Program to derive metrics for assessing ecotoxicity im-

pacts (HC20-type criteria setting) in life cycle impact assessment (Owsianiak 

et al. 2023) as the concentration is closer to the environment concentration. 

The associated uncertainty surrounding the derived HC20s specific to different 

taxonomic groups was calculated to account for the inter- and intraspecies var-

iability (Emara et al., 2023), whose magnitude depended on the number of data 

points and test species.   

Similar to the estimated protective environmental quality standard (which sig-

nifies no impact), splitting SSDs resulted in varying impact estimations for the 

impact metric employed in Life Cycle Impact Assessment (LCIA) at the 20th 

percentile (the red lines in Figure 9). These improved principles and model fits 

have significant implications for the practical application of SSDs. They are 

valuable for establishing protective standards and their utilization in environ-

mental impact assessments and Life Cycle Impact Assessment (LCIA. 

Article III highlights that "splitting is a better approach to deriving SSDs and 

using the models for decision support, provided the resulting SSDs are suffi-

ciently robust. The relevance of decision support may be further increased 

when a split considers different service-providing units (SPU), a concept used 
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in the context of ecosystem services research. This is because it is key to pro-

tect and restore biodiversity in terms of structural characteristics of ecosystems 

(the present use) and functional characteristics and provided services. Assess-

ments that would consider ecological information, such as functional groups 

or trait characteristics, may help to identify the SPU and ecosystem services 

that are both valuable and potentially impacted." 
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5 THE LINK BETWEEN THE MIXTURE TOXIC 

PRESSURE AND DAMAGE ON BIODIVERSITY 

IN AQUATIC ECOSYSTEMS 

Chapter 5 presents a stepwise approach to characterize the link between eco-

toxicity impacts and biodiversity loss (i.e., species richness and species abun-

dance) in freshwater ecosystems, which is relevant for translating model-pre-

dicted organism level effects to damage on structural (bio)diversity and asso-

ciated damage to ecosystem services, as the predicted impact metric in decision 

contexts, such as Life Cycle Impact Assessment of products and technologies.  

Article IV utilizes monitoring data (abiotic variables and macrofauna) from 

the Netherlands regions to quantify the predicted impact of chemicals and their 

unintended mixtures as 'mixture toxic pressure' (unit: msPAF: multi-substance 

Potentially Affected Fraction of species, a measure of the proportion of species 

that are potentially affected by more than one chemicals) as species in the field 

are exposed to more than one chemicals in the field (Schäfer et al., 2023). 

Moreover, the actual disappearance of taxa under field conditions can now be 

determined by relating the chemical pollution msPAF metric and species abun-

dance or richness, providing ecologically meaningful estimates of how the en-

vironment limits or changes species distribution and alters biodiversity metrics 

(Posthuma et al., 2020b).  

Section 1 outlines the fundamental steps in characterizing the relationship be-

tween PAF and PDF. Section 2 presents data on monitored chemical concen-

trations and the computed msPAF for further analysis. Section 3 introduces six 

additional abiotic factors that play a role in biodiversity loss. Section 4 presents 

data on species monitoring across the Netherlands region. Section 5 details an 

analyzed covariation between msPAF and other pressures that could poten-

tially bias the associations between toxic pressure and biological response met-

rics. Section 6 illustrates trends in species abundance and richness distribution 

in relation to a mixture toxic pressure. Section 7 presents the conducted robust-

ness check of the biodiversity metrics patterns using a subset of data from one 

water authority region in the Netherlands. Finally, Section 8 presents the de-

rived PAF to PDAF relationship. This chapter's contents are derived from Ar-

ticle IV. The parts taken directly from the Article are marked with "…". 
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5.1 WORKFLOW TO CHARACTERISE A LINK 

BETWEEN MIXTURE TOXIC PRESSURE AND 

IMPACTS ON SPECIES IN AQUATIC 

ECOSYSTEMS 

Article IV illustrates the process flow to derive the relationship between the 

mixture toxic pressure and species loss in the field condition, as depicted in 

Figure 10. In order to describe the association between the mixture toxic pres-

sure (quantified as predicted fraction of species chronically affected, msPAF; 

x) and two types of response variables, species abundance4 and richness5. We 

started with the Netherlands' (NL) extensive (bio) monitoring data on inverte-

brates (collected from 1983 to 2014), chemical contaminants (collected from 

1983 to 2015), and data on six other pressure site characteristics.  

The first step involved selecting a monitoring dataset collected from 2000 to 

2014. In the second step, the mixture toxic pressure of the samples at different 

sites was quantified using the SSD information from Article III and Posthuma 

et al. (2019). 

In the third step, the chemical contaminant concentrations of separate chemi-

cals were replaced with chronic msPAF-EC10 as a metric for the local mixtures 

that caused the impact, and the correlation between all the predictor variables, 

including toxic pressure, was determined using the variance inflation factor 

method to explore possible biases that might influence the PAF to PDF rela-

tionship.  

The fourth step involved studying the variation in msPAF to the macrofauna 

abundance and richness distribution. Upon demonstrating that mixture expo-

sure is a limiting factor affecting different taxa and biodiversity metrics, we 

categorized the msPAF into five groups6 to compare the statistical significance 

difference in the species count, or per-species abundance values, between dif-

ferent groups and how many species (or abundance numbers) are lost when the 

                                              

 

 

4  Species abundance: taxon-specific; total of individuals from a given species within a given site 

5 Species richness: count of unique species per site 

6 Categorisation of msPAF into five groups with increasing toxic msPAF levels. Group 1 signifies a 

low-toxic sites with minimal effects, while Group 5 represents high toxicity sites with highest effect 
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protective standard criterion of 0.05 and 0.2 msPAF is exceeded. Lastly, we 

performed a robustness check by selecting data from one data-rich water au-

thority and repeating the above steps to verify whether PAF-to-PDF findings 

are consistent Figure 10. 

 

Figure 10. A step-by-step workflow of the data preparation and analysis procedures for de-

riving the msPAF to PDF relationship. The figure is taken from Article IV. 
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5.2 MONITORED DATA ON CHEMICALS AND A 

MIXTURE TOXIC PRESSURE IN THE NL 

REGION 

Chemical concentrations were collected from 1983 to 2015 from 21 Dutch wa-

ter authorities, out of which 18 water authorities were selected because of 

transparency in the reporting of the data collection results (Article IV). The 

dataset consisted of chemicals categorized as organic, inorganic, and heavy 

metals, which were included in the mixture toxic pressure calculation. All mon-

itored chemicals were used in the assessments, such that msPAF-EC10 levels 

were considered to predict the fraction of species affected as the fraction of 

tested (i.e., non-adapted) species. In the field, some species may be adapted to 

the natural background concentration of non-synthetic chemicals such as heavy 

metals. In such cases, the observed effect in the field is smaller than the re-

sponse of non-adapted species. In other words, the response (species loss or 

abundance change) would have been higher if none of the species could have 

adapted to the natural background concentrations. This phenomenon was not 

corrected because of a lack of site-specific information on natural background 

concentrations of non-synthetic chemicals. 

Figure 11 shows that 2049045 data points from 1145 chemicals were initially 

measured across the NL region. Most measured chemicals in the field (n=238) 

had data points from 1-20. At the same time, 13 chemicals had more than 8,000 

recorded data. After data curation, which included removing chemical concen-

tration with a low detection limit and selecting sampling from 2000 to 2014, 

647,315 data points remained for further analysis. To evaluate the combined 

toxic pressure of local unintended chemical mixtures, we calculated the com-

bined toxic pressure of chemicals for each sampling site, considering the pro-

portion available for uptake by species, utilizing transfer functions that esti-

mate dissolved concentrations from measured values and water quality param-

eters (modifying factors). For specific compounds (PAF), we utilized individ-

ual chemical concentrations, SSD-shape parameters (σ and mµ), and toxic 

mode of action (MoA). In cases where invertebrate SSDs were unavailable, an 

average sigma value of 0.7 was applied to account for species sensitivity vari-

ations. 

The approach De Zwart & Posthuma (2005) proposed was used in Article VI 

to calculate PAF values per chemical per site before combining them into 

msPAF using a two-step approach. This approach considers concentration ad-

dition for chemicals with the same MoA and response addition for chemicals 



39 

 

with different MoA. Instead of compound concentrations, msPAF-EC10 values 

were used for subsequent analyses, enhancing the statistical power of the sta-

tistical pressure-response relationships by reducing the number of predictors.  

 

Figure 11. A summary of the total number of data points per chemical collected between 

1983 and 2015 in the Netherlands' region (18 water authorities). Figure taken from Article 

IV. 

 

Article VI highlights that the calculated msPAF-EC10eq ranged from 0 to 0.75 

across 3632 sites, which has the predictive interpretation that the fraction of 

species that would be affected by ambient, unintended mixture exposures var-

ies between none and 75% of the species showing an effect of 10% on a vital 

characteristic (such as growth and reproduction). Based on this, Article IV 

hypothesizes that this range of predicted effect level differences would relate 

to actual field effects, i.e., making it feasible to derive a PAF-to-PDF relation-

ship. Note that the investigated relationship is, in fact, a msPAF-to-PDF rela-

tionship, as unintended mixture exposures characterize most sites. Note also 

that indirect effects may occur superimposed on the direct effects of chemical 

pollution, in the form of, e.g., altered predator-prey relationships or a limitation 

for sensitive species upon which opportunistic species may increase for part of 

the msPAF range.  
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Figure 12 suggests that the widest range of msPAF was recorded in the 

Delfland water authority, ranging between 0 to 75%, and lowest for the Schie-

land and Krimpenerwaard region <1%, indicating that the mixture toxic effect 

level also varies spatially. 

 

Figure 12. Shows the msPAF as a "dot" per XY-site (rank-ordered based on the msPAF 

values) and little to no variability of mixture toxic pressure in the data set (msPAF-EC10eq). 

The variation was based on the calculated msPAF values, averaging per chemical concen-

tration measured across all years. Sampling per site occurred once on some sites and multiple 

times on some sites. The coloration corresponds to archetypes or data from different regional 

water authorities within the Netherlands. Figure taken from Article IV. 

5.3 MONITORED DATA ON ABIOTIC PARAMETERS  

In aquatic ecosystems, the impact of chemicals can be influenced by the con-

centration and toxicity mechanisms and surrounding environmental conditions, 

leading to multiple stressor effects or mixture toxicity effects (Posthuma, van 

Gils, et al., 2019).  

Six abiotic predictors were analyzed to characterize the study sites (n= 231178) 

according to physical and chemical characteristics considered ecologically im-

portant in aquatic ecosystems (Table 3). The predictors were (1) Cl (chloride 

anions), a measure of water electrical conductivity, indicating the concentra-

tion of ions in the water; (2) DOC, a measure of the dissolved organic carbon; 

(3) NKj (Kjedahl nitrogen), refers to total nitrogen measured indicating the 

levels of the nutrient in the water, (4) TSS (total suspended solids); measures 
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the concentration of solid particles suspended in water influencing water clar-

ity (e.g., sediment, organic matter), (5) Tw (temperature of the water);  a meas-

ure of the temperature of the water and (6) pH; the level of acidity or alkalinity 

of the water. Mixture toxic pressure was added as the seventh predictor varia-

ble for further analysis. 

Table 3 summarizes the physical and chemical water properties, which are possible explan-

atory variables on monitored species abundance and richness trends. The table is modified 

from Article IV. 

# Type Predictor definition Code Units Min Max 

1 Chemical Conductivity index Cl µg/L 3.72 6.78 

2 Chemical 

 

Dissolved organic carbon DOC mg/L 0.43 1.74 

3 Chemical Total Nitrogen (N) NKj mg/L  0.13 5.15 

4 Physical Total suspended solids TSS mg/L 0.52 2.21 

5 Physical Temperature of the water Tw oC 7.51 13.28 

6 Chemical pH(KCl extraction) pH - 4.78 9.38 

7 Chemical  msPAFchronic-EC10 msPAF % (0-100) 0 75 

 

Studies have shown that abiotic factors, such as the water pH temperature, can 

synergistically interact with chemicals, increasing their toxicity, though the 

type of interaction varies depending on the specific chemical and species 

(Fischer et al., 2013; Posthuma et al., 2019). 

5.4 MONITORED DATA ON SPECIES 

Article IV highlights that 1,775 freshwater macroinvertebrates were initially 

collected in 1,754  unique monitoring locations in Netherlands surface water 

bodies (canals, rivers, brooks, ditches, ponds, lakes) from different regional 

water authorities (WA) in the Netherlands, known as water boards. Field ex-

perts collected samples from diverse local microhabitats to create a compre-

hensive sample, varying in vegetation, structure, soil properties, and water 

clarity. They employed a standard 20×30cm macrofauna net with a 0.5 mm 

mesh size to sample the water column and substrate. All captured macrofauna 

were systematically collected, sorted, preserved, and later identified at the fin-

est taxonomic level in the laboratory (Beers et al., 2014; Hallmann & 
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Jongejans, 2021). However, only taxa identified at the species level were in-

cluded in the analysis. 

Specifically, as shown in Figure 13, 294194 data points on species information 

(rows of data) were collected between 1983 and 2014 by field experts from 18 

water authorities in the NL region. Most species were from the Delfland water 

authority n= 45052; the lowest data was collected from the Rhine and IJssel 

water authority n= 1395. The total number of taxa collected in the entire region 

has generally decreased from 2010 onwards, with the most data collected in 

2010, n=23577, and the least in 1991 (n=993). After data curation, 156,276 

data points and 1198 species were included in the analysis.  

 

Figure 13. The monitored macrofauna in 18 different regional water authorities in the Neth-

erlands. Each subfigure illustrates a data pattern from a specific regional water authority 
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covering 1983 to 2014. The "n" values indicate the total number of available data records 

for each water authority throughout the years. Figure taken from Article IV. 

  

5.5 VARIATION AND COVARIATION OF ABIOTIC 

FACTORS 

The effects of abiotic factors on chemical mixture toxicity vary depending on 

the type of chemical, the specific organisms involved, and the environmental 

conditions (Sigmund et al., 2023). For example, pH changes can directly affect 

aquatic organisms' physiology and behavior, such that extreme pH levels make 

organisms more susceptible to the toxic effects of chemicals in their environ-

ment at the same time because chemicals exist in different ionized forms (e.g., 

as acids or bases) the ionized form may be more bioavailable or more toxic 

than the non-ionized form (Sigmund et al., 2023). 

Table 4 summarizes the multiple linear regression outcomes, revealing that 

pH, TSS, Cl, and msPAF(EC10) substantially impact species richness. More-

over, a positive correlation is observed between pH, dissolved organic carbon, 

and water temperature, while an inverse association is evident between TSS, 

Cl, NKj, and msPAF concerning species richness.  

Table 4. A summary of multiple linear regression analysis for abiotic factors (pH, Cl, DOC, 

TSS, NKj, Tw, and msPAF, representing water acidity/alkalinity, water electrical conduc-

tivity, dissolved organic carbon, total suspended solid particles, total nitrogen, water tem-

perature, and msPAFchronic-EC10, respectively), influencing the richness biodiversity met-

ric. The table is taken from Article IV. 

Abiotic factors Estimate Std. Error t value Pr(>|t|) 

(Intercept) 29.2942 6.5871 4.447 0.0000 

pH 7.7687 0.7768 10 0.0000 

TSS -20.7335 1.8044 -11.49 0.0000 

Cl -9.7388 0.7438 -13.092 0.0000 

DOC 7.3168 1.994 3.669 0.0002 

Tw 1.8949 0.5138 3.688 0.0002 

NKj -1.9299 0.5094 -3.789 0.0002 

msPAF(EC10) -31.0008 3.6988 -8.381 0.0000 

 

Article IV indicates that covariation between msPAF and other pressures, if 

present, may bias the interpretation of the potential associations between toxic 

pressure and biological response metrics. Therefore, we evaluated collinearity 
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to exclude such bias in our conclusions. Variance Inflation Factors were quan-

tified by correlating msPAF with the six abiotic factors to ascertain that the 

msPAF did not covary across the study area with other pressure factors because 

such covariation would imply a potential bias of the PAF to PDF relationship, 

i.e., PAF-to-PDF for other stressors. This was done by fitting a multiple re-

gression model using species richness as the response variable and pH, TSS, 

Cl, DOC, Tw, NKj, and msPAF(EC10) as the predictor variables before calcu-

lating the VIF values as discussed by (Posthuma & de Zwart, 2012).  

Article IV shows that the field data contained msPAF metrics sufficiently in-

dependent of other predictors, as all—the variation inflation factors were be-

low 5. The variables displayed varying degrees of multicollinearity, with pH 

exhibiting the highest VIF at 1.91, CI at 1.61, DOC at 1.43, TSS at 1.35, NKj 

at 1.34, Tw 1.30, and msPAF (EC10) having the lowest VIF at 1.06 (Figure 

14).  Thus, Article IV concludes that the Variance Inflation Factor, as in earlier 

studies, indicated that msPAF remained independent of other stressors when 

considering toxic pressure and chemical/physical water properties (Posthuma 

& de Zwart, 2006; Posthuma & de Zwart, 2012). Therefore, the conclusions 

drawn from PAF-to-PDF patterns are not affected by the presence of the other 

stressors that were part of the research. 

 

Figure 14. Shows the variation inflation values (VIF) between the msPAF and the six abiotic 

factors (pH, Cl, DOC, TSS, NKj, Tw, and msPAF, representing water acidity/alkalinity, wa-

ter electrical conductivity, dissolved organic carbon, total suspended solid particles, total 

nitrogen, water temperature, and msPAFchronic-EC10, respectively), demonstrating that the 

influence of msPAF on species richness is uncorrelated. A VIF of 1 suggests no correlation 
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between the msPAF variable and other predictor variables, whereas a VIF exceeding 5 sig-

nifies a significant correlation among the predictor variables. Figure taken from Article IV. 

 

5.6 TRENDS IN SPECIES DIVERSITY AGAINST msPAF 

GRADIENT  

Considering the range of predicted msPAF values illustrated in Figure 12, we 

anticipated that unintentional combinations of chemicals would influence spe-

cies abundance (varying by species) and overall species richness (as a com-

bined metric) in distinct ways. Article IV highlights that patterns of macroin-

vertebrate distribution against the mixture toxic pressure in aquatic ecosystems 

effectively characterize the presence of impacts, which can be used to charac-

terize the PAF-to-PDF relationship (Silva et al., 2022). 

5.6.1  Species abundance distribution patterns 

Article IV illustrates species-specific distribution patterns in Figure 15 for 16 

out of the 844 species selected with the most extensive data points. These sub-

figures reveal a general pattern in which the density of observed occurrences 

(represented by dots) decreases as msPAF values increase, indicating that toxic 

pressure is a limiting factor for species abundance. However, it is worth noting 

that some species exhibit a high abundance at moderate or higher values of X, 

suggesting that the working hypothesis does not consistently lead to a decline 

or neutral effect; there can be species where an increase in mixture toxic pres-

sure leads to a neutral effect followed by a decline. 

Species abundance distribution patterns summarize meaningful information on 

the impacts of pressures on ecosystems as they provide insights into alterations 

in the structure and dynamics of species communities. A more even distribu-

tion, where many species have similar abundances, may indicate a more stable 

community because it is less vulnerable to the loss of a single dominant spe-

cies, and the species may be more resilient to environmental stressors, thus 

providing more stable ecosystem services and vice versa. 
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Figure 15. Illustrates the patterns of species-specific abundance observations (Y-axis repre-

sents a biodiversity metric) in relation to the increasing levels of msPAF-EC10eq (X-axis) 

for 16 selected species with the most data; "n" indicates the total number of individual spe-

cies collected. Areas of the graph with high XY with less dense to no data points indicate 

toxic pressures as a limiting pressure to biodiversity. Each dot indicates a particular site 

where individual species were sampled. Figure taken from Article IV. 

 

5.6.2 Species richness distribution patterns 

Figure 16 compiles all the species abundance distribution data (as in Figure 

15, but for all species) into a representation of the count of unique species 

found at each specific site. Similar to Figure 15, Figure 16 lacks instances of 

high values for both High-X and High-Y, showing a reduced number of ob-

served occurrences of species at increased mixture toxic pressure. However, 

no other discernible patterns were identified, except for the decrease in taxa 

diversity. This contrasts the various trends observed in the separate panels of 

species-specific abundance changes of the kind illustrated in Figure 15, where 

for some species, neutral or opportunistic responses were found (not shown in 

Figure 16). These findings emphasize the importance of examining abundance 

on a per-species basis because assessing richness alone as an aggregate re-

sponse variable may obscure the three major abundance-change response types 

(decrease, neutral, opportunistic) to toxicity. 
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Figure 16. Illustration of the trend in species richness as msPAF levels increase. Similar to 

Figure 15, there is a notable absence of highX-highY values, highlighting that an increase 

in msPAF is a limiting factor for species richness. Each dot on the graph represents the 

number of unique species observed at a specific site (n=3632 sites). Figure taken from Ar-

ticle IV. 

5.6.3 Species abundance pattern analysis statistical output 

Species abundance data exhibited covariance with msPAF, resulting in some 

species increasing abundance, some remaining on average unaffected, and oth-

ers showing sensitivity to changes for the range of pollution levels in the pre-

sent study. In Article IV, species response patterns were categorized into three 

groups7. Table 5 shows that out of the total 1098 species, 14 % of species (n= 

151) did not occur beyond the protective criterion and were labeled "#1 most 

                                              

 

 

7 Three msPAF groups: Group 1 sites with msPAF 0 to 0.05, Group 2 sites with msPAF > 0.05 -0.20 

and Group 3 sites with msPAF > 0.2 
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sensitive"8, while 40 % of species (n=437)9 did not occur beyond 0.2 msPAF 

both potentially indicating sensitivity to the mixture toxic pressures and rarity. 

Conversely, 21 % of species (n=234)10 showed abundance increased species 

abundance beyond 0.20 msPAF, with some increasing by over 50% (n=52). 

Only five species displayed a neutral (with abundance variability but no net 

decline) to mixture pressure. These patterns illustrate the varying influence of 

mixture pressure on different species, which is not visible with species richness 

as an aggregate response metric. 

Table 5. Species abundance response pattern considering the protective criterion 0.05 and 

LCA working point of 0.2 in three groups, counting the number of species in each response 

category (related to the msPAF=0.05 protective criterion). The table is taken directly from 

Article IV. 

  #  Response cate-

gory 

Description Count  % 

  1  Very incidental 

(1 site), minimal 

msPAF only 

 

Species present in only Group 1 

<=0.05 msPAF with one sample 

45 4.1 

  2  Very incidental 

(2 sites), minimal 

msPAF only 

 

Species present in only Group 1 

<=0.05 msPAF with two samples 

86 7.8 

  3  Incidental (2-10 

sites), minimal 

msPAF only 

Species present in only Group 1 

<=0.05 msPAF with a maximum of 

10 samples 

17 1.5 

  4  Highly sensitive 

(>10 sites) 

species present in only Group 1 

<=0.05 msPAF with more than ten 

samples 

3 0.3 

  5  Sensitive species present in Group 1 and 

Group 2 >0.05 & <=0.2 msPAF 

286 26.0 

  6  Relatively sensi-

tive 

species present in all the three 

msPAF groups  and has more than 

70 % change between group 3 and 1 

41 3.7 

                                              

 

 

8 #1 most sensitive: Species categorised as very incidental (1 site), minimal msPAF only, Very inci-

dental (2 sites), minimal msPAF only, Incidental (2-10 sites), minimal msPAF only, and Highly sen-

sitive (>10 sites) 

9 Sum of species not present in Group 3: Response category from Very incidental (1 site), minimal 

msPAF only to sensitive 

10Sum of all opportunistic species category response  
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  #  Response cate-

gory 

Description Count  % 

  7  Moderately sen-

sitive 

species present in all the three 

msPAF groups  and has less than 70 

% change  between group 3 and 1 

381 34.7 

  8  Neutral or neu-

tral/variable 

Species present in either two or all 

the three groups with 0 % change 

5 0.5 

  9  Moderately op-

portunistic 

species are present in all three 

msPAF groups  and has  less than 50 

% change between group 3 and 1 

182 16.6 

  10  Highly opportun-

istic 

species present in all the three 

msPAF groups  and has more than 

50 % change  between group 3 and 1 

52 4.7 

    Grand Total 
 

1098   

 

5.6.4 Species richness pattern analysis statistical output 

Species richness pattern analysis for the entire NL region followed a three-

stage process for species richness patterns: the first stage utilized data for  all 

species. In the second stage, species not initially classified in Group 1 (consid-

ered opportunistic species) were excluded. The final stage concentrated on the 

level of the protection criterion 0.05 and the relevant LCA working point of 

0.20. 

An overall pattern analysis of species loss using boxplots, violin plots, and 

statistical output (Figure 17, Figure 18, and Figure 19)11 indicated decreased 

species richness as msPAF levels increased. In all figures, Group 1 represented 

areas with low toxic effects and high species richness, consistent with expec-

tations for ecosystems under minimal toxic pressure. In the statistical analyses, 

the group 1 data are used as reference points for interpretations of significance 

and direction of change. In contrast to Group 1, Groups 2, 3, 4, and 5 in Figure 

17 and Figure 18 represent sites with increasing mixture toxic pressure levels 

and whether impacts between msPAF data groups are significant. The figure 

                                              

 

 

11 In Figure 17: all the species are included in the analysis.  In Figure 18 opportunistic species are 

excluded; only species that are originally found in Group1 are included in the analysis and in Figure 

19 the level of protection criterion of 0.05 and LCA working point of 0.20  were considered for only 

species that are present from Group1 
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exhibits an evident decline in species richness, confirming the detrimental ef-

fects of toxic stress, from the Group with msPAF-values (msPAF groups) of 

0.020-0.046. This observation aligns with previous studies (Posthuma & de 

Zwart, 2006; Posthuma & de Zwart, 2012). The patterns observed, with a con-

tinuous decline of an average number of species per Group, strongly suggest 

that mixtures have discernible impacts on various attributes of aquatic ecosys-

tems, whether the abundance of taxa or overall species richness. Thus, as-

sessing the effects of the entire chemical mixture, rather than evaluating each 

chemical individually, helps mitigate the challenges associated with the in-

creasing complexity of data (often referred to as the "curse of dimensionality"); 

as the chemical variables are added, there is a corresponding reduction in sta-

tistical power (Posthuma, de Zwart et al., 2019). 

In addition, Article IV highlights significant field species declines beyond 

0.020 to 0.046 msPAF (Group 3) in Figure 17 and  Figure 18, suggesting that 

a significant decline (from on average 43.2 to 40.7 species between Group 1 

and 3, i.e., 2.5%) in species diversity is initiated just below exposure level that 

was set to represent a protective standard regarding biodiversity loss in current 

regulations (defined as msPAF-NOEC=0.05), indicating the relevance of not 

exceeding the effect threshold if an ecosystem has to be truly protected against 

biodiversity loss due to chemical pollution. 

 

Figure 17. Box and violin plots illustrate species richness patterns for 1,198 species, msPAF 

categorized based on increasing toxic msPAF levels. Group 1 represents the low-toxic "pris-

tine" region with minimal effects, while Groups 2, 3, 3, and 5 represent increasing and high 
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toxicity levels with significant species impacts, with p-values indicating the level of groups' 

significant differences in species numbers, "µ" represents the mean species count within 

each msPAF group, while "n" refers to the total number of sampled sites in each msPAF 

group. The legend shows the msPAF levels that are assigned to approx. equally-sized msPAF 

groups of data 

 

In addition, Article IV identified 322 species absent from Group 1 but appear-

ing at exposure conditions beyond “Group1” msPAF (sites with low toxic pres-

sure), indicating the possibility of being opportunistic species. Such opportun-

istic species in Groups 2, 3, 4, and/or 5 can mask the effects of ecological dis-

turbances or pollution (compared to Group 1) by thriving in altered environ-

ments. Thus, excluding opportunistic species provides a clearer picture of the 

true ecological changes when focusing on damage to the original (Group 1) 

fauna. A slight change in test outcomes was observed by Article IV in the 

average number of species for different groups when opportunistic species 

were removed (compare Figure 17 and Figure 18). A significant effect again 

occurred onwards from Group 3 (in comparison to Group 1), with again a spe-

cies loss from (on average) 43.3 to 40.4 species (i.e., 2.9%). On the other hand, 

changes observed for opportunistic species, regarding abundance or absence, 

provide additional and valuable insights into an ecosystem's health and quality; 

the appearance and abundance changes at higher levels of pollution pressure 

can serve as an early warning system for pollution (Olin et al., 2022). 

 

Figure 18. Box and violin plots depict species richness patterns for 876 selected species that 

were present initially from Group 1 (thus excluding opportunity species absent in Group 1), 

representing a low-toxicity region in the Netherlands, and Group 5, where high toxicity lev-

els lead to pronounced species impacts. The plots reveal interquartile ranges and data spread, 
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while p-values at the top indicate significant group differences in species numbers. "µ" rep-

resents the mean species count within each msPAF group, while "n" refers to the total num-

ber of sampled sites in each msPAF group. 

 

Findings from Article IV also resulted in data analyses whereby the raw data 

were interpreted in the context of two policy-relevant thresholds. These anal-

yses indicate that in sites where the msPAF falls within the range of >0.05 to 

0.20 (considering the regulatory protective criterion of 0.05 and the LCA work-

ing point to characterize damage of 0.20), the likelihood of finding approx. 41 

species at a randomly selected clean (‘protected’) site drops to approx. 35 spe-

cies at a site that is considered slightly polluted (0.05<msPAF<0.2), suggesting 

that even within this moderately affected range, approximately six species are 

lost, representing a 14% reduction in species richness in this exposure range 

(Figure 19). This finding is significant as it stresses the sensitivity of local 

ecosystems to variations in msPAF levels. Even at relatively low-to-moderate 

toxic stress levels, there is a measurable impact on species diversity. The rela-

tively low mean further loss in the third group (msPAF >0.2) seems modest, 

but that is attributable to the relatively low number of observations in this 

group and the large spread in msPAF-values (the median msPAF of the third 

group is relatively close to 0.2). 
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Figure 19. Box and violin plots for 876 species, based on a protective criterion 0.05 and an 

LCA working point of 0.20. Group 1 represents a pristine, low-toxicity NL region, while 

Group 3 represents areas with high toxicity, leading to noticeable species impacts. These 

plots show data distribution and significant group differences in species numbers indicated 

by p-values, "µ" represents the mean species count within each msPAF group, while "n" 

refers to the total number of sampled sites in each msPAF group. 

 

5.7 ROBUSTNESS CHECK USING SUBSET DATA  

5.7.1 Species abundance pattern analysis statistical output 

Article IV presents findings from one region of the Netherlands (Delfland Wa-

ter Authority) to check for consistency in the PAF-to-PDF relationship using 

data from 2002 to 2014. The species from the Delfland water authority dis-

played a range of species abundance response patterns, much like the broader 

NL region.  
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From the summary of the species response pattern (Table 6), 81 species clas-

sified as very incidental, incidental, or highly sensitive were not present be-

yond the protective threshold (0.05 msPAF). In comparison, 54 % of species12 

declined beyond 0.2 msPAF from the Delfland region, suggesting sensitivity 

and potential rarity. Species that increased beyond 0.20 msPAF were classified 

as opportunistic, with some showing an increase exceeding 50% (n=16). Only 

six species exhibited resistance to mixture pressure. These patterns highlight 

the diverse impact of mixture pressure on different species. 

Table 6. Species abundance response pattern considering the protective criterion 0.05 and 

LCA working point of 0.2 in three groups, counting the number of species in each response 

category (related to the msPAF=0.05 protective criterion). The table is taken directly from 

Article IV. 

# Response category Description Count % 

1 Very incidental (1 site), mini-

mal msPAF only 

 

Species present in only Group 1; 

<=0.05 msPAF  

27 6.7 

2 Very incidental (2 sites), min-

imal msPAF only 

 

Species present in only Group 1; 

<=0.05 msPAF  

43 10.6 

3 Incidental (2-10 sites), mini-

mal msPAF only 

 

Species present in only Group 1 

<=0.05 msPAF  

9 2.2 

4 Highly sensitive (>10 sites) 

 

Species present in only Group 1 

<=0.05 msPAF with more than ten 

samples 

2 0.5 

5 Sensitive species present in Group 1 and 

Group 2;  >0.05 & <=0.2 msPAF 

 

138 34.2 

6 Relatively sensitive Species present in all three 

msPAF groups  and has more than 

70 % change between group 3 and 

1 

 

32 7.9 

7 Moderately sensitive Species present in all three 

msPAF groups  and has less than 

70 % change  between group 3 

and 1 

 

94 23.3 

                                              

 

 

12 Species declined by 54%: This include species response categories not present beyond 0.2 msPAF 

(n=219) 
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# Response category Description Count % 

8 Neutral  Species present in either two or all 

the three groups with 0 % change 

6 1.5 

9 Moderately opportunistic Species present in all three 

msPAF groups  and has  less than 

50 % change between group 3 and 

1 

37 9.2 

10 Highly opportunistic Species present in all three 

msPAF groups  and has more 

than 50 % change  between 

group 3 and 1 

16 4.0 

 Grand Total 
 

404 
 

 

5.7.2 Species richness pattern analysis statistical output 

Similarly to the entire NL species richness pattern analysis, the Delfland Water 

Authority's study followed a three-stage process for species richness patterns: 

the first stage utilized data for all species. In the second stage, species not ini-

tially classified in Group 1 (considered opportunistic species) were excluded. 

The final stage concentrated on the level of protection criterion of 0.05 and the 

relevant LCA working point of 0.20. 

Box plots and violin plots depicted in Figure 20 show species richness patterns 

among 434 species, categorized based on increasing toxic msPAF levels. This 

categorization provides valuable insights into the ecological effects of toxic 

stressors on the local invertebrate community in the specific Netherlands re-

gion. Note that the number of study sites in each msPAF group is substantially 

smaller than for the whole-NL data set, which implies that similar patterns will 

have a lower tendency to be also statistically significant (due to the effects of 

data numbers on statistical power). 

Group 1, representing the areas with low toxic effects, exhibits relatively high 

species richness. This observation aligns with expectations that ecosystems 

with minimal toxic pressure tend to support a greater diversity of species. In 

contrast, Group 5, which signifies regions with high toxicity levels and sub-

stantial species impacts, shows a notable decline in species richness. This de-

cline indicates the adverse effects of toxic stress on local biodiversity. The 

difference in species numbers among these groups is only statistically signifi-

cant between Group 1 and Group 5, as shown by the p-values, and is on the 

border of significance for Group 4 (p=0.06), see Figure 20. The variation in 

species richness patterns across these five groups (again with a continuous de-
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crease in the average number of species in each Group) underlines the im-

portance of considering toxic msPAF levels when assessing ecological health 

and biodiversity in local ecosystems.  

 

Figure 20. Box and violin plots illustrate species richness patterns among 434 species, 

msPAF categorized based on increasing toxic msPAF levels. Group 1 signifies a low-toxic 

“pristine" NL region with minimal effects, while Group 5 represents high toxicity levels with 

significant species impacts, with p-values indicating group differences in species numbers, 

"µ" represents the mean species count within each msPAF group, while "n" refers to the total 

number of sampled sites in each msPAF group. 
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Figure 21. Box and violin plots depict species richness patterns for 404 selected species 

present initially from Group 1, representing a pristine, low-toxicity region in the Nether-

lands, and Group 5, where high toxicity levels lead to pronounced species impacts. The plots 

reveal interquartile ranges and data spread, while p-values at the top indicate significant 

group differences in species numbers, "µ" represents the mean species count within each 

msPAF group, while "n" refers to the total number of sampled sites in each msPAF group.  

 

The finding from the selected NL region (Delfland region) by Article IV for 

the analyses that focus on the two regulatory thresholds (msPAF = 0.05 and 

msPAF=0.2) (Figure 22) resembles the findings of the similar analyses that 

were made for the entire NL region (Figure 19). On average, the study indi-

cates that it is possible to randomly collect 37 out of the initial 43 species in 

the moderately polluted (0.05<msPAF,0.2) areas, implying that around six 

unique species are lost in this pollution msPAF group, constituting a 14% re-

duction in species richness when msPAF levels vary between 0.05 and 0. This 

13.4% reduction in species richness indicates the ecological consequences of 

relatively low increasing msPAF levels. It further emphasizes the importance 

of adhering to established regulatory limits and implementing effective con-

servation strategies to safeguard ecosystems. 
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Figure 22. Box and violin plots for 404 species for only the Delfland region, based on a 

protective criterion of 0.05 and an LCA working point of 0.20. Group 1 represents a pristine, 

low-toxicity site, while Group 3 experiences high toxicity, leading to noticeable species im-

pacts. These plots show data distribution and significant group differences in species num-

bers indicated by p-values, "µ" represents the mean species count within each msPAF group, 

while "n" refers to the total number of sampled sites in each msPAF group.  

 

 

5.8 DERIVED msPAF TO PDF RELATIONSHIP 

Article IV excluded species found in fewer than 10 locations from the analysis 

to establish a consistent relationship between PAF and PDF and to ensure that 

the analysis is based on a sufficiently representative sample of species , thus 

avoiding biases that might arise from very rare or localized species. 

The statistical findings revealed that among the 735 species sampled in 10 or 

more sites across the entire NL region, 12% of these species (n=91) exhibited 

a significant change (sensitive and opportunistic responses aggregated) in 

abundance when the protective threshold of 0.05 msPAF was exceeded while 

absent in Group 3, a further 9% of the species showed such changes between 

Group 1 and Group 3. In contrast, 7% of the species showed significant changes 

when 0.2 msPAF was surpassed (change between Groups 2 and 3, as shown in 

Table 7). It is important to note that the statistical results are somewhat con-

strained by the limited number of samples available for each species, as the 

mean comparisons were conducted only for species within the three defined 
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groups. Indicating that a more definitive conclusion about the relationships be-

tween PAF and PDF can only be drawn from robust statistical results. 

Table 7. Summarizes statistical results for species with significant abundance change in the 

NL region by comparing three groups that were categorized based on low msPAF (Group 

1), 0.05<msPAF<0.2 (Group 2), and msPAF>0.2 (Group 3). It considers a protection crite-

rion for msPAF of 0.05 and an LCA working point of 0.20 for species over 10 sites. 

Species response groups Group1 

vs 

Group2 

Group1 

vs 

Group3 

Group2 

vs 

Group3 

Very incidental (1 site), minimal msPAF only 0 0 0 

Very  incidental (2 sites), minimal msPAF only 0 0 0 

Incidental (>2-10 sites), minimal msPAF only 0 0 0 

Highly sensitive (>10 sites) 0 0 0 

Sensitive 0 0 0 

Relatively sensitive 3 8 3 

Moderately sensitive 54 29 28 

Neutral 0 0 0 

Moderately opportunistic 28 21 15 

Highly opportunistic 6 9 5 

Total 91 67 51 

Fraction significant from 735 12% 9% 7% 

 

On the other hand, again focusing on the robustness check on one data-rich 

region, Article IV similarly showed that from the Delfland region, 9 % of spe-

cies (n=19 Group 12). 5% (Group 1Group 3) and 5% (Group 23) 

showed significant change when 0.05 msPAF and 0.20 msPAF were exceeded, 

respectively (Table 8). 

Table 8. Summarizes statistical results for species responses with significant abundance 

change in the Delfland region, comparing three groups. It considers a protection criterion 

and an LCA working point of 0.20 for species over 10 sites. 

Species response pattern groups Group1 

vs 

Group2 

Group1 

vs 

Group3 

Group2 

vs 

Group3 

Very incidental (1 site), minimal msPAF only 0 0 0 

Very  incidental (2 sites), minimal msPAF only 0 0 0 

Incidental (>2-10 sites), minimal msPAF only 0 0 0 

Highly sensitive (>10 sites) 0 0 0 

Sensitive 0 0 0 

Relatively sensitive 6 4 0 

Moderately sensitive 9 3 2 

Neutral 0 0 0 

Moderately opportunistic 3 3 4 
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Highly opportunistic 1 2 4 

Total 19 12 10 

Fraction significant from 221  9% 5% 5% 

 

The species richness analysis for the entire NL region, focusing on species 

occurring in over 10 sites, demonstrated a statistically significant change. The 

results reveal that different msPAF thresholds notably impact species richness. 

When the threshold of 0.05 msPAF is exceeded, there is an average reduction 

of 15% in species. This means that, on average, 6 species are lost from the 

region under these conditions. When the threshold is more stringent at 0.2 

msPAF, the reduction in species richness increases to 20%, resulting in an av-

erage loss of approximately 8 species. It is important to note that these reduc-

tions are described as statistically significant. This indicates that the observed 

changes in species richness are not likely due to random chance but are asso-

ciated with the changes in mixture toxic pressure (Figure 23).  

 

Figure 23. Box and violin plots for 735 species occurring in 10 or more sites across the 

Netherlands, based on a protective criterion 0.05 and an LCA working point of 0.20. Group 

1 represents a pristine, low-toxicity NL region, while Group 3 experiences high toxicity, 

leading to noticeable species impacts. These plots show data distribution and significant 

group differences in species numbers indicated by p-values, "µ" represents the mean species 

count within each msPAF group, while "n" refers to the total number of sampled sites in 

each msPAF group. 

 

In the Delfland region, the results indicate a statistically significant change in 

species richness. When PAF ranges from >0.05 to 0.20 msPAF, there is an 
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average reduction of 11% in species richness, resulting in an average loss of 

about 5 species. Furthermore, when the threshold of 0.2 msPAF is exceeded, 

the reduction in species richness increases to 17%13, leading to an average loss 

of approximately 7 species (Figure 24). 

 

Figure 24. Box and violin plots for 221 species occurring in 10 or more sites for the Delfland 

region only, based on a protective criterion 0.05 and an LCA working point of 0.20. Group 

1 represents a pristine, low toxicity, while Group 3 experiences high toxicity, leading to 

noticeable species impacts. These plots show data distribution and significant group differ-

ences in species numbers indicated by p-values, "µ" represents the mean species count within 

each msPAF group, while "n" refers to the total number of sampled sites in each msPAF 

group. 

 

Article IV derived the final msPAF-to-PDF link using the count of unique 

species having a minimum of 10 data points (Figure 23), applying the equation 

below, which involved deriving the quantification of the observed fraction of 

species lost per magnitude of change in msPAF, which can be determined now 

for two violin-plot based observations and subsequently (by interpolation) to 

                                              

 

 

13 17 % reduction: Percentage differences between group 3 and 1 
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derive the Potentially Disappeared Fraction of species at a site as a conse-

quence of emissions of chemicals, if the latter is predicted in LCA at a working 

point of 0.2. 

 

The equation to derive the change in PDF (delta PDF) per change in msPAF 

(delta msPAF) is as follows: 

∆PDF = 1 − (PDFfinal PDFinitial⁄ )                                  (eq. 1) 

 

∆PDF

∆msPAF
=

PDFfinal−PDFinitial

msPAFfinal−msPAFinitial
                                            (eq. 2) 

 

Below, we illustrate how we derived PDF/msPAF for the entire Netherlands 

region using the average species count in each msPAF group (Figure 23), with 

the msPAF median of 0.013, 0.089, and 0.267 at Group 1 (<=0.05 msPAF), 

Group 2 (>0.05 to 0.20 msPAF) and Group 3 (>0.2 msPAF) respectively.  

 

Point #1 (group 1 to group 2): 

41.35

0.013
−

35.33

0.089
 =

0.145

0.076
= 1.92 PDF/msPAF  

Point #2 (group 1 to group 3): 

41.35

0.013
−

33.12

0.267
 =

0.199

0.254
= 0.783 PDF/msPAF  

 

Next, using the two PDF/msPAF points (1.92 and 0.783) as the y-axis with 

their respective delta msPAF (0.076 and 0.254) as the x-axis, an interpolation 

was done using linear regression to predict the PDF change at 0.2 msPAF. The 

change in PDF/msPAF at 0.2 was interpolated to 1.127 (Figure 25). Following 

the same procedure, we interpolate the change in PDF/msPAF at 0.2 using Fig-

ure 24, using data from the Delfland region as a robustness check; the interpo-

lated PAF-to-PDF value was found to be 1.298 (Figure 25).  
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Figure 25. (a) Illustration of the observed fraction of disappeared (ODF) spe-

cies in field-exposed species assemblages of aquatic invertebrates lost (Y) per 

unit change of mixture toxic pressure (X), based on two comparisons (as in 

Figure 23), namely between Group 1 and 3, and Group 1 and 2. The Potentially 

Disappeared Fraction per unit of PAF (and msPAF) is interpolated from the 

observations at the working point X=0.2. (a) data for the whole of NL: PAF-

to-PDF is 1.127, and (b) data for the DE region (Defland region) PAF-to-PDF 

is 1.298. Figure taken from Article IV.  

The comprehensive monitoring data in the Netherlands sheds light on the im-

pact of chemical mixture toxic pressure on invertebrates across various loca-

tions. Article IV emphasizes the pivotal role of a mixture toxic pressure in 

shaping invertebrate distribution independently of other environmental factors, 

ensuring unbiased msPAF-to-PDF patterns. Pattern analysis by Article IV also 

provides valuable insights into characterizing predicted impacts and species 

disappearances. Given the data of Figure 23 and Figure 24, the PAF-to-PDF 

association is characterized by interpolation as in Figure 25 and interpolated 

as 1.127 (one unit change of msPAF implies 1.127% species loss). 

In the past, scholars conducted studies on the PAF-to-PDF relationship, where 

they observed that the ratio of HC50-EC50 to PDF was approximately 1:1 

(Posthuma & de Zwart, 2012), similar to this study. At first glance, this may 

seem strange, but it is not surprising upon closer examination, even though we 

initially expected some variation. This similarity can be explained as follows:  

In the previous studies on HC50-EC50, the impact on the environment was 

assessed by counting net species loss without distinguishing "group 1 species." 

This means species present in group-clean were counted in all groups and 

scored when lost, regardless of the group in which the loss occurred. This 

method focused on assessing the loss of "typical species present in reference 

conditions and lost due to pressure toxicity." It did not consider the total change 
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in all species across different groups compared to the total number of species 

in group 1. For instance, if 10 species were lost and 8 new species appeared, 

the "old" way of counting species loss resulted in a count of 2 (in the HC50-

EC50 case). This approach led to an underestimate of the actual species loss. 

In the present case, we now count the species loss as "10" in this example. The 

nature of the effects being examined causes the current 1:1 relationship to re-

semble the old one. 
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6 CONCLUSIONS & RECOMMENDATIONS 

6.1 PHD PROJECT OUTCOMES 

This PhD project contributed to the field of life cycle impact assessment and 

ecological risk assessment. The proposed frameworks and results advance the 

understanding of the role of chemical pollution on biodiversity loss and en-

hance decision-support in environmental protection, LCA, and freshwater eco-

system management on a global scale. This thesis addressed the PhD's four 

defined research objectives and summarized the results obtained in the preced-

ing chapters. 

By addressing the first objective14, the present thesis develops an overall con-

sistent framework for linking chemical effects on aquatic organisms to damage 

on species diversity, functional diversity, and ecosystem services (ES) within 

the boundary conditions of LCA. Article I emphasizes the transition from 

early, complex methods to more practical and biologically realistic models, 

such as TITAN, to assess the effects of ecotoxicity on species diversity and 

combine various functional diversity components to translate species loss into 

damage to functional diversity. In addition, Article I suggests various models 

and frameworks, such as Ecological Production Functions and the cascade 

model, as tools to assess the consequences of alterations in the structure and 

functioning of ecosystems on ecosystem services. Article I stresses the signif-

icance of data-driven insights and integrated approaches in assessing and man-

aging ecosystem services.  

Article II developed an extensive ecotoxicity database (>250k entries) using 

semi-automated methods to harmonize the taxonomy and chemical information 

to support the need for comprehensive data by addressing the second research 

objective15 of this PhD project. A high-quality freshwater ecotoxicity test data 

                                              

 

 

14 First research objective: To develop a consistent framework to link ecotoxicological effects on 

aquatic organisms to damage on species diversity, functional diversity, and ecosystem services that 

are fully in line with the boundary conditions of LCIA 

15 The second objective of this study: To develop a systematic ecotoxicity test data curation approach 

to derive a transparent and high-quality dataset of effect test data for more than 10,000 chemicals  
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was further selected in a case study to improve ecotoxicological impact assess-

ment methods based on Species Sensitivity Distribution modeling, addressing 

the third objective16 of this PhD project. Article III provides insights into the 

creation of split SSDs for 180 selected chemicals through the developed deci-

sion tree, showing the importance of high-quality data, chemical modes of ac-

tion, and robust statistical analysis to assess chemical impacts on different tax-

onomic groups (i.e., vertebrates, invertebrates, and algae, cyanobacteria, and 

aquatic plants) except for microorganisms due to limited data. In addition, Ar-

ticle III demonstrates that employing split SSDs enhances the interpretability 

of assessment outputs, notably by lowering the Hazardous Concentrations, i.e. , 

HC5 of the most sensitive taxonomic group, a vital consideration for setting 

regulatory criteria like the Predicted No Effect Concentration (PNEC) and 

HC20 the impact metric employed in the Life Cycle Impact Assessment 

(LCIA).  

Using the gained data and insights in validating predicted impacts, Article IV 

addresses the fourth objective17 of this study by developing a tiered approach 

for quantitatively relating chemical mixture toxic pressure to monitoring-based 

aquatic species occurrence to derive insights into chemical pollution's contri-

bution to damage on species loss. Field observations by Article IV demonstrate 

that exceeding protective standards leads to abundance and biodiversity de-

cline, emphasizing the importance of staying below the effect threshold for 

ecosystem protection. This stresses the need to balance environmental protec-

tion and human activities to ensure the long-term sustainability of natural sys-

tems. The data assessed in Article IV offer valuable insights into the alignment 

between predicted impacts using the toxic pressure metric and actual taxa loss 

in field conditions at 0.2 msPAF (affecting 20% of species).  

The extensive analysis of Dutch monitoring data conducted by Article IV re-

vealed significant patterns in species assemblages exposed to pollutants. Many 

                                              

 

 

16 The third objective of this study: To improve ecotoxicity effects modelling by considering differ-

ences in sensitivity of species from different taxonomic groups toward chemical exposure 

17 The fourth objective of this study: To quantitatively characterize the relationship between mixture-

toxicity pressure from chemicals and observed differences in aquatic intra - and inter-species occur-

rence 
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species exhibit changes in their abundance, summarized using aggregated spe-

cies count metrics. These metrics consider both species occurring in Group 1 

and those responding negatively. The data analysis has led to observing a wide 

range of response patterns. These patterns can be transformed into a PAF-to-

PDF association through interpolation, which is essential for Life Cycle As-

sessment (LCA) ecotoxicity assessments. At the specific LCA working point 

selected, there is a practical relationship where the fraction of species lost per 

unit increase in msPAF can be approximately rounded to a 1:1 ratio. This 

means that for every unit change in msPAF, one species has an associated loss 

(both on a fractional scale). 
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7 LIMITATIONS & FUTURE PERSPECTIVES 

This PhD project highlighted several limitations: 

 Article I highlights limitations in the proposed conceptual framework for 

translating organism-level effects to ES damage, including data constraints, 

model uncertainty, and the need for robust models that consider sensitivity 

in species differences. For instance, TITAN requires extensive data availa-

ble for only specific areas, pressure sets, and taxonomic groups, limiting its 

broader applicability. Additionally, insufficient data for functional diver-

sity endpoints hinders the development of a comprehensive framework. 

Models considering multiple populations or food webs introduce uncer-

tainty due to extrapolation to higher biological organizations, potentially 

impacting result reliability. Developing reliable models to link chemical-

induced changes in key service-providing units to damage on ES remains 

challenging. 

 In order to build one global aquatic database merging all available data-

bases, Article II highlights the limitations arising from differences in tox-

icity values, test conditions, species choices, and other experimental design 

variations that can impact the database data usability.  

 Article III highlights that building full split sensitivity distributions for 

taxonomic groups to gain insights into differences in species sensitivity re-

quires comprehensive measured data for all relevant taxonomic groups, in-

cluding currently limited microorganisms test data. Most importantly, low-

quality or limited data can significantly reduce SSDs' accuracy and relia-

bility. 

 Ideally, to establish a msPAF-to-PDF relationship using biomonitoring 

data, comprehensive data that covers changes over time for all relevant spe-

cies and chemical concentrations in an aquatic ecosystem, measured at the 

same time and place, is required. However, such comprehensive data is cur-

rently lacking. Thus, many data points were excluded as they did not have 

matching geospatial coordinates and timestamps. This departure from uni-

form spatiotemporal attributes is not common in many monitoring datasets, 

as they were not originally designed to meet the specific requirements of 

this study. Another limitation highlighted by Article IV is the lack of dis-

tinction between natural and human-caused sources of contaminants, which 

is essential for a more precise evaluation of environmental risks from chem-

ical mixtures. 
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Based on the knowledge and experience gained during this PhD project, future 

research should focus on the following recommended aspects: 

 While the developed framework in Article I offers valuable insights and 

approaches for addressing ES in Life Cycle Assessment, the practical im-

plementation and standardization of the models, such as the cascade model, 

require further development. A notable constraint in the complete adoption 

of the ecosystem services (ES) framework within Life Cycle Assessment 

(LCA) lies in the insufficient availability of data to effectively translate 

ecotoxicity effects to damage on freshwater ecosystem services, encom-

passing both structural and functional diversity while also addressing the 

complexities of multiple causal chains and the impact of distinct taxonomic 

groups and functional endpoints. Additionally, there is a need to develop 

comprehensive frameworks and tools that combine knowledge of ecosys-

tem service monitoring and chemical stressor assessment at different spatial 

and temporal scales, which remains a challenge in Life Cycle Assessment. 

 Data completeness and accuracy are crucial for deriving meaningful con-

clusions about chemical impacts on various taxonomic groups. The devel-

oped decision tree to improve ecotoxicity assessment output by splitting 

SSDs by Article III needs to cover other taxonomic groups like microor-

ganisms for holistic assessment of chemical impacts. Thus, efforts should 

be made to include more data on microorganisms in laboratory tests. This 

expansion would provide a more comprehensive understanding of chemical 

effects on these critical components of freshwater ecosystems.  

 As much as Article III focused on species-level response, focusing on spe-

cies' traits that govern their susceptibility and resilience to stressors pro-

vides additional information in identifying impacts on biodiversity loss. 

 Article IV assumed that metal concentrations in the NL region had shown 

a consistent, unchanging pattern with negligible sources of variation and 

that the local species have adapted to the inherent background levels of 

metals. The primary objective of the research was to explore the potential 

consequences of chemical mixtures, which included metals, without delv-

ing into explicitly addressing contaminants sources. Thus, future studies 

need to differentiate between natural and anthropogenic sources of contam-

inants to obtain a more accurate assessment of potential environmental risks 

and impacts of chemical mixtures. 
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 The dynamics of biotic factors, such as predation, can also strongly influ-

ence the effects of anthropogenic chemical contaminants in natural systems 

and abiotic factors that Article IV did not consider.  

Despite the limitations in the developed approaches, such as data availability 

while translating ecotoxicity effects into ecosystem service damage, this thesis 

serves as a valuable starting point for linking ecotoxicity effects to ecosystem 

damage on a global scale. We curated and harmonized a large aquatic ecotox-

icity dataset with 255k data points to address the lack of comprehensive data. 

We also developed a splitting species sensitivity distribution approach with 

broad implications regardless of data, models, or decision context, which ad-

dresses the challenge of having robust models that recognize differences in 

species sensitivity while quantifying species-level ecotoxicity effects. Splitting 

species sensitivity distribution approach improved the interpretation of assess-

ment outputs, in which the outcome was used to quantitatively characterize the 

link between the mixture toxic pressure and biodiversity loss, revealing that 

for every unit change in msPAF, there is an associated more or less equal loss 

of species fraction. Thus, the PAF-to-PDF relationship from this PhD study 

can be summarised as a rounded 1:1 association. 

The next step to translate structural biodiversity loss (species richness) into 

ecosystem functioning and ecosystem service damage will entail using insights 

from this PhD study, which established that a unit increase in msPAF corre-

sponds to a 1.127% species loss. This requires identifying the functions of lost 

species in aquatic ecosystems, understanding their impact on ecosystem func-

tioning using proposed approaches such as trait probability density framework, 

and further linking this to the damage on the flow of ecosystem services using 

methods like Ecological Production Functions.  
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A B S T R A C T   

Freshwater ecosystems provide major benefits to human wellbeing—so-called ecosystem services (ES)—but are 
currently threatened among others by ecotoxicological pressure from chemicals reaching the environment. There 
is an increased motivation to incorporate ES in quantification tools that support decision-making, such as life 
cycle assessment (LCA). However, mechanistic models and frameworks that can systematically translate eco-
toxicity effect data from chemical tests into eventual damage on species diversity, functional diversity, and ES in 
the field are still missing. While current approaches focus on translating predicted ecotoxicity impacts to damage 
in terms of species loss, no approaches are available in LCA and other comparative assessment frameworks for 
linking ecotoxicity to damage on ecosystem functioning or ES. 

To overcome this challenge, we propose a way forward based on evaluating available approaches to char-
acterize damage of chemical pollution on freshwater ES. We first outline an overall framework for linking 
freshwater ecotoxicity effects to damage on related ES in compliance with the boundary conditions of quanti-
tative, comparative assessments. Second, within the proposed framework, we present possible approaches for 
stepwise linking ecotoxicity effects to species loss, functional diversity loss, and damage on ES. Finally, we 
discuss strengths, limitations, and data availability of possible approaches for each step. 

Although most approaches for directly deriving damage on ES from either species loss or damage to functional 
diversity have not been operationalized, there are some promising ways forward. The Threshold Indicator Taxa 
ANalysis (TITAN) seems suitable to translate predicted ecotoxicity effects to a metric of quantitative damage on 
species diversity. A Trait Probability Density Framework (TPD) approach that incorporates various functional 
diversity components and functional groups could be adapted to link species loss to functional diversity loss. An 
Ecological Production Function (EPF) approach seems most promising for further linking functional diversity loss 
to damage on ES flows for human wellbeing. However, in order to integrate the entire pathway from predicted 
freshwater ecotoxicity to damage on ES into LCA and other comparative frameworks, the approaches adopted for 
each step need to be harmonized in terms of assumptions, boundary conditions and consistent interfaces with 
each other.   

1. Introduction 

Aquatic ecosystems provide essential benefits to our global society 
and human wellbeing (UNEP, 2017). These benefits are collectively 
known as ecosystem services (ES) (Awuah et al., 2020; Faber et al., 
2019). Obvious ES that are provided by freshwater ecosystems mainly 
relate to the provisioning of food and drinking water, cultural services, 

recreational fishing, and ecotourism (Banerjee et al., 2013; Syberg et al., 
2017; UNEP, 2017). Other benefits, such as maintaining habitat quality, 
water quality regulation through organic matter degradation and toxi-
cant removal, and nutrient recycling, are less obvious yet essential for a 
sustainable development (UNEP, 2017). 

Despite these benefits, freshwater ecosystems face continuously 
increasing pressures from human activities, such as pollution from 
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chemicals emitted along product life cycles (Syberg et al., 2017; Carney 
Almroth et al. 2022; Kosnik et al., 2022; Persson et al., 2022), which 
interfere with species diversity and the ecosystem functions depending 
on those (Awuah et al., 2020), both of which are essential for providing 
ES. More specifically, chemical pollution from human activities and its 
pressure on aquatic ecosystems has been listed as a driving factor 
limiting maintenance of the desired ecological and chemical status of 
freshwater ecosystems worldwide (Posthuma et al., 2020; Millennium 
Ecosystem Assessment, 2005). Such pressure mainly occurs through 
interference with ecosystem structure (i.e. species abundances and 
species assemblage composition) and functions (e.g. dynamic food 
webs) (Maltby et al., 2017a, 2017b). Chemical pollution pressure on 
freshwater ecosystems does not only have a direct impact on aquatic 
species (referred to as services providing units (SPU) in the context of 
ES) but also reduces their capacity to generate ES in ways that negatively 
impact human wellbeing, thus constituting a threat to sustainable ES 
production (Awuah et al., 2020; Liu et al., 2020). 

Several authors have considered how to incorporate protecting or 
restoring ES in decision-making (Daily et al., 2009; Faber et al., 2019; 
Faber et al., 2021; Maltby et al., 2021), which requires knowledge of the 
characteristics and interlinkages of ES as well as tools that enable 
quantifying and evaluating ES (Maia de Souza et al., 2018). This requires 
an assessment along the source-to-damage pathway from evaluating the 
pressures, relating pressures to impacts on aquatic ecosystems (fate- 
exposure-effect chains), and translating these impacts into damage 
(referred to as damage on a defined environmental area of protection, 
such as ecosystem quality) caused to ecosystem structure (species 
abundance change/species loss/species diversity loss), damage on 
ecosystem functioning (functional diversity loss), and finally damage on 
relevant, interconnected ES. 

Quantitative decision support tools, such as life cycle assessment 
(LCA), chemical substitution or chemical footprinting, have been 
developed in support of assessing and increasing environmental sus-
tainability of products and technologies (Koellner and Geyer, 2013; 
Fantke & Illner, 2019; Liu et al., 2020; Othoniel et al., 2015). Such tools 
are generally designed to quantify the pathways from pressures to 
damages on ecosystems (Woods et al., 2018), which also includes the 
ecotoxicity impact pathway associated with chemical emissions along 
product life cycles (Fantke et al., 2018; Henderson et al., 2011; Westh 
et al., 2015). Ecotoxicity impact characterization is part of the life cycle 
impact assessment (LCIA) phase of LCA, and a recognized element of e.g. 
the European Product Environmental Footprint (PEF) approach for 
comparative evaluation of product-related footprints (Fantke et al., 
2018; Saouter et al. 2017a, b). 

The translation of predicted ecotoxicity impacts into aquatic species 
loss as LCA-metric for damage on ecosystem quality remains chal-
lenging, given the large diversity of chemical compounds, the required 
step to extrapolate from ecotoxicity test data to predicted toxic pressure, 
the largely unresolved association between the predicted toxic pressure 
and structural or functional damage in terms of, for example, species loss 
and altered food web function in the field, and the location-dependent 
variation in many parameters that influence the outcome of the 
impact pathway from emissions to change in ecosystem services. For the 
purpose of comparative LCA, the mechanistic or empirical association 
between insights from laboratory test data and eventual damage in the 
field is of interest, given the principle that other impact pathways also 
aim to characterize damage in the same units. Considering this pathway 
for chemical pollution highlights various challenges related to discon-
nects between current approaches and final damage aspects. There may 
be, for example, within-ecosystem species shifts as function of chemical 
pressure that would not lead to net species loss or significant functional 
damage (Liess et al., 2021). 

Damage on ecosystem functioning or even further on ES associated 
with ecotoxicity impacts are currently not addressed in LCA. This is 
despite the fact that inclusion of ES in LCA to assess the importance and 
magnitude of different stressors on ecosystems and their respective 

services is the focus of several ongoing research efforts (Liu et al., 2020; 
Maia de Souza et al., 2018; Othoniel et al., 2015; Rugani et al., 2019). 
Among these efforts, Othoniel et al. (2015) identified challenges in 
emerging approaches for addressing ES in LCA, which include insuffi-
cient knowledge on spatiotemporal aspects and uncertainty in aggre-
gating LCA indicator scores, and which does not reflect differences in 
damage levels across ES. They suggested that LCIA modelling of ES 
could benefit when harmonized with existing, integrated multiscale 
dynamic ES approaches (Othoniel et al., 2015; Maia de Souza et al., 
2018). 

In another study, Maia de Souza et al. (2018) discuss gaps and po-
tential solutions for integrating ES assessment more broadly into the 
LCA framework. They propose that tools relying on extrapolation of 
ecosystems’ functional production to their ES, such as the ’Integrated 
Valuation of Ecosystem Services and Tradeoffs’ (InVEST) or the ’Mul-
tiscale Integrated Model of Ecosystem Services’ (MIMES), might be 
useful to address the nonlinear nature of ES responses to pressures. 
Furthermore, they propose that applying ecosystem classification 
frameworks, such as the ’Common International Classification of 
Ecosystem Services’ (CICES) or the ’National Ecosystem Services Clas-
sification System’ (NESCS) or the ’Final Ecosystem Goods and Services 
Classification System’ (FEGS-CS), can be relevant starting points to 
evaluate impacts from an ecosystem functional level up to damage on 
human wellbeing via ES. While such tools and classification systems 
seem to be useful for generally addressing ES in LCA, their applicability 
to ecotoxicity-related damage on ES is currently unclear. Rugani et al. 
(2019) and Liu et al. (2020) propose a cascade framework that generally 
links changes in ecosystem structure and functions to changes in human 
wellbeing, and that aligns with the LCA cause effect chain model. This 
cascade framework is based on earlier work by Haines-Young and Pot-
schin (2013), which links the flow of different ES from the source to their 
value for human wellbeing (Maia de Souza et al., 2018). In this cascade 
framework, again, ecotoxicity-related aspects and their influence on 
aquatic ES are not currently considered. 

An approach that was discussed for overcoming the complexity of 
assessing ES, which could also be potentially useful in the context of 
LCA, is the use of ecological production functions (EPFs) to quantify and 
predict changes between specific ecosystem functions and ES (Bruins 
et al., 2017; Faber et al., 2021; Othoniel et al., 2015), by linking to 
changes in the characteristics and performance of service providing 
units (SPU), such as biomass, species richness or functional traits. 
However, various links from ecotoxicity impacts to damage on ES 
remain unaddressed or face significant data gaps. 

In all, despite some emerging concepts to generally evaluate ES in 
LCA, challenges for including freshwater ES associated with ecotoxicity 
impacts from chemical life cycle emissions would be valuable for deci-
sion support, though remain largely unresolved. In order to quantify 
ecotoxicity-related damage on services provided by freshwater ecosys-
tems, the main human-valued ES need to be first defined, including their 
underlying pathways from pressures to species and functional diversity 
loss in freshwater ecosystems, and finally to damage on ES. The present 
study aims at addressing this knowledge gap and proposes a way for-
ward to characterize damage of chemical pollution on ES of freshwater 
ecosystems in LCA. This is done by focusing on three specific objectives: 
(a) to outline an overall framework for linking predicted freshwater 
ecotoxicity impacts to damage on related ES in compliance with the 
boundary conditions of LCA; (b) to present possible approaches for 
linking predicted ecotoxicity impacts to species loss and functional di-
versity loss, and finally to damage on ES in LCA; and (c) to discuss 
strengths, limitations and data availability of possible approaches for 
each step from ecotoxicity impacts to damage on ES. 

2. Conceptual framework to link chemical emissions to damage 
on ecosystem services 

Linking chemical emissions via predicted ecotoxicity impacts to 
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damage on ES is not straightforward. When developing the pathway 
from ecotoxicity impacts to damage on ES, the main link is often from 
predicted species-level effects to damage on structural biodiversity (in 
the context of LCA typically referred to as species diversity or species 
loss), further to damage on functional (bio-)diversity loss, and finally to 
damage on related ES (Truchy et al., 2015; Maltby et al., 2021). Alter-
natively, there is the option to derive a direct link from species loss to 
damage on ES, without considering the intermediate step of evaluating 
impacts on any ecological function (Maltby et al., 2021). Further, 
ecosystem functioning can change without species loss (i.e., due to 
behavioural change), so that damage to ES may follow directly from 
such ecotoxicity effects (Truchy et al., 2015). 

In the present study, we illustrate the broader complexity of the 
impact pathway for freshwater ecosystems and its connections between 
ecotoxicity, species loss, functional damage, and ES damage. As starting 
point, we adapted the Adverse Ecosystem Service Pathway (AESP) 
conceptual framework (Awuah et al., 2020) based on information on the 
ecotoxicity effects of species food web interactions and ES from Maltby 
et al.(2021). The principles of that links to other frameworks, especially 
LCA, but also the Adverse Outcome Pathway (AOP) concept, as all are 
variants of a causal chain approach, developed and utilized from 
different perspectives for different practical purposes. Fig. 1 illustrates 
the overall pathway starting from chemical emissions in different 
environmental compartments to damage on freshwater ES, whilst 
relating the various frameworks. The initial step of the pathway, from 
emission to predicted species-level ecotoxicity effects, commonly yields 
the Potentially Affected Fraction of species (PAF) exposed by a partic-
ular stressor (e.g., a chemical or mixture), as metric of expected impacts 
resulting from a particular pressure level; for chemical pollutants, this 
metric is commonly derived from data on across-species differences in 
sensitivity obtained from laboratory test data for separately tested 
chemicals. As the thus-predicted impacts empirically relate to effect 
magnitudes in the field (Posthuma et al., 2020), this metric can empir-
ically be translated into species loss. The functional diversity level 

further relates ecotoxicity impacts and species loss to damage on 
freshwater ecosystem functions due to reduction in the performance and 
characteristics of affected species traits. Finally, species and functional 
diversity loss is then translated into damage on ES, impacting benefits 
that humans receive from a well-functioning freshwater ecosystem. 

In practice, protection of biodiversity at the ecosystem level still 
relies primarily on extrapolating ecotoxicity effects at the level of the 
individual organism. This is based on data from ecotoxicity tests, 
extrapolated to structural ecosystem properties (i.e., populations and 
communities) and some ES of importance for human wellbeing, 
whereby current uncertainties in this assessment process are reflected in 
the magnitude of uncertainty factors utilized in the derivation of envi-
ronmental quality standards that aim to ascertain sufficient protection 
even under data uncertainties (Forbes et al., 2017). However, with the 
current advancement in mechanistic models and quantitative adverse 
outcome pathways (AOPs), predictive ecotoxicology is continuously 
advancing (Forbes et al., 2017; Schmid et al., 2021), such that impacts 
that may occur when those standards are exceeded are increasingly 
quantified (e.g., Posthuma et al., 2019). 

As shown in Fig. 1, AOPs complement the AESP framework and can 
be useful for linking ecotoxicity effects to damage on species and func-
tional diversity loss. AOP describes initiating key effects, followed by 
series of subsequent events, eventually leading to impaired functions in 
an organism, thereby defining relationships within the AESP concept 
and providing helpful information in predicting and quantifying impacts 
up to the community level (Schmid et al., 2021). Although emphasis in 
the present review is on expanding towards eventual ES damage, the 
framework in Fig. 1 can be further combined with the Aggregated 
Exposure Pathway (AEP) concept, which aligns with the overall LCA 
impact-pathway structure, by allowing to correctly address multiple 
pathways of exposure that lead to eventual net exposures and eventual 
damage (Clewell et al., 2020; Escher et al., 2017). To improve the use of 
AOPs in ecological assessments at a higher level of biological organi-
zation, Murphy et al. (2018) proposed a conceptual model linking 

Fig. 1. Conceptual framework for translating ecotoxicity impacts into damage on structural biodiversity (e.g. species diversity), functional biodiversity, and 
freshwater ecosystem services from chemical emissions into the environment. Shown are the steps of a cause-effect chain (left), the current mechanistic reflection of 
those in Adverse Outcome Pathway approaches (right), and the operational steps utilized in applied ecotoxicology (in the forms of chemical safety assessment and 
environmental quality assessment). The framework illustrates that various parts are well-developed, whereas other parts are still lacking (dotted box). 
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population models, i.e., the dynamic energy budget (DEB) model and 
quantitative AOPs, utilizing AOP key events as a measure inducing 
damage in the DEB variables and processes rates. However, it is still 
unclear which elements of the AOP concept can be used or adapted as 
input for quantifying any link from ecotoxicity impacts to damage on ES. 
More broadly, whilst conceptual approaches and frameworks may be 
linked as in Fig. 1, their current or future use for decision support also 
depends on available data. 

In the LCA framework, “ecosystem quality” is one of the main 
defined areas of protection (Verones et al., 2017), with reduced biomass 
and loss of species richness used to currently indicate damage on 
ecosystem structure and functioning (Woods et al., 2018). ES are 
currently addressed at the same level as ecosystem quality and other 
areas of protection in LCA (Verones et al., 2017). Initial approaches for 
evaluating damage on ES in the LCA context so far only address land use 
and land change impact drivers (Liu et al., 2020; Rugani et al., 2019), 
while linking ecotoxicity impacts to ES damage is currently missing. 

The impact pathway from emissions to ecotoxicity impacts expressed 
at the level of affected species fractions is already covered well in LCA, 
whereby predicted impacts – expressed as Potentially Affected Fraction 
of species (PAF) – are extrapolated to damage – expressed as Potentially 
Disappeared Fraction of species (PDF) on the basis of empirical PAF-PDF 
associations (Jolliet et al., 2003; Rosenbaum et al., 2008; Fantke et al., 
2021). This proxy link, however, requires further refinement to consider 
relevant differences in impacts when translating those into species loss 
among species, environments and locations. With that, despite initial 
attempts, translating predicted ecotoxicity impacts into damage on 
freshwater species diversity and further to damage on functional di-
versity and ES is currently not operational in LCA (Liu et al., 2020; Maia 
de Souza et al., 2018; Othoniel et al., 2015; Rugani et al., 2019; Verones 
et al., 2017). LCA aims at quantifying the pressure on ecosystems and 
other aspects attributable exclusively to one or more studied products or 
system life cycles. With the fact that ecosystems are in reality affected to 
a multitude of different stressors from all sorts of sources and products, 
one of the challenges in linking ecotoxicity impacts to damages on ES is 
to identify which fraction of the damages can be allocated to chemical 
emissions of a given life cycle. There are, however, motives to develop 
ES-damage frameworks in LCA, given that currently approx. one-fourth 
of biodiversity impacts in aquatic ecosystems is attributed to chemical 
pollution effects (Lemm et al., 2021). In the following, we hence outline 
a proposal for translating ecotoxicity impacts to species loss, functional 
diversity loss and finally to damage on ES for consistent inclusion into 
the LCA framework. 

3. Source-to-damage modelling approach 

Assessing ecotoxicity impacts on freshwater ecosystems requires 
looking at the source of damage and the overall framework from emis-
sion to ecotoxicity damage on species diversity, functional diversity, and 
ES. The pathway from emissions to ecotoxicity effects is already 
covered, for instance, in the global scientific consensus model USEtox, 
where ecotoxicity effects of a chemical emitted into the environment are 
assessed by combining factors characterizing environmental fate, 
ecological exposure, and ecotoxicological effects (Fantke et al., 2018; 
Henderson et al., 2011; Owsianiak et al., 2023; Rosenbaum et al., 2008). 
Environmental fate factors relate emissions to changes in concentration 
of a toxicant in the different environmental compartments, including 
freshwater. Ecological exposure factors then translate the resulting 
chemical concentrations into the bioavailable fraction of chemicals in 
the relevant exposure compartments. Effect factors finally link the 
bioavailable fraction of a chemical in the exposed freshwater environ-
ment to impacts on the physiology, behaviour, life history, and ulti-
mately the population of an exposed species (Spurgeon et al., 2020) via 
different effect mechanisms. This impact pathway commonly ends 
currently with the quantification of the PDF. Although the potentially 
disappeared species likely all have their functions in an exposed 

ecosystem (Faber et al., 2021), the step to damage to functional diversity 
and ultimately damage on ES delivery still needs to be made. 

The scientific literature provides some opportunities that could serve 
as a starting point for translating ecotoxicity impacts into damage on 
species diversity, functional diversity, and ecosystem services of fresh-
water ecosystems in the context of LCA and similar frameworks (see 
Fig. 1). The opportunities and their features are provided in Table 1. All 
elements are further elaborated in the subsequent sections. 

3.1. From freshwater ecotoxicity to damage on structural species diversity 

Effects of chemicals on freshwater ecosystem species range from 
direct acute and chronic toxicity in organisms to many sub-lethal or 
indirect impacts on behaviour, functional roles, predator–prey re-
lationships, and food web dynamics (Chagnon et al., 2015). If consid-
ered mechanistically, assessments would require quantification and 
understanding of the full set of linkages between direct ecotoxicity ef-
fects and their consequential damage if they should be translated into 
species loss and associated changes in food webs, functions and services. 
Various elements of this ‘full approach’ have received attention, to be 
potentially developed into practicable approaches. 

Three approaches were initially developed to be potentially used as a 
starting point to translate ecotoxicity impacts into damage on species 
diversity expressed as species loss. These approaches include the media 
recovery approach that is based on species richness (the number of in-
dividuals or biomass) recovery after exposure to a toxicant, the mean 
extinction approach that quantifies the expected survival rate of 
different species when exposed to a stressor, and the genetic diversity 
approach that is based on changes in species genetic diversity (Larsen & 
Hauschild, 2007). The genetic diversity approach could help solve 
problems with addressing diversity within species versus diversity be-
tween species (the latter is what we refer to as ’species diversity’), 
focusing on within species and between population variations. 

Genetic and species diversity are fundamental components of 
assessing impacts on biodiversity (Hoban et al. 2022). Both are influ-
enced by the same ecological processes: species selection, migration, 
drift, and speciation/mutation (Vellend, 2010). Genetic diversity, that is 
variation in the genetic make-up of species, enables populations to adapt 
to changing environments and offers ‘insurance’ against stressor impacts 
(Vellend & Geber, 2005), such that individuals with desirable traits (i.e., 
alleles) in a population can survive to produce offspring and allow for 
the continuation of generations. In contrast, species diversity focuses on 
variation between species, i.e., the number of species within a com-
munity (Vellend & Geber, 2005). 

The possibility that genetic and species diversity influence each other 
has been acknowledged for decades (Bolin & Lau, 2022). A positive 
relationship between species diversity and genetic diversity has been 
observed in communities exposed to certain stressors (Vellend & Geber, 
2005; Blum et al., 2012). This positive relationship can be linked to the 
genotypes of a focal species having a competitive advantage against 
different species within the community, and other species having a 
competitive advantage against the genotype of common focal species 
(Bolin & Lau, 2022; Vellend, 2006; Vellend, 2008). However, high ge-
netic diversity can also negatively influence species diversity if it re-
duces available niche spaces for heterospecific species (Bolin & Lau, 
2022; Vellend & Geber, 2005). In some cases, genetic diversity may 
change without a change in species abundance (Hoban et al., 2022), 
while changes in species diversity may alter the positive species in-
teractions resulting in changes in the ecosystem processes (Cardinale 
et al., 2002). However, these approaches are currently rarely used, 
mainly due to their intrinsic complexity and low availability of data, 
especially for the mean extinction and genetic diversity approaches 
(Larsen & Hauschild, 2007). Environmental DNA (eDNA) describes the 
use of species DNA extracted from soil, water, or ice. Combined with 
gene sequencing, eDNA provides a way of measuring species diversity, 
assigning functionality, and consequently gaining an insight into food 

S.A. Oginah et al.                                                                                                                                                                                                                               



Environment International 171 (2023) 107705

5

webs without species observation or trapping (Birrer et al., 2021). 
However, it is difficult to accurately quantify species diversity from 
eDNA, since different species shed DNA at different rates, which is also 
influenced by environmental factors such as UV light and microbial 
activity (Goldberg et al., 2016). Thus, due to DNA degradation, only the 
recent presence of species can be accurately detected (Goldberg et al., 

2016; Rees et al., 2014). 
Another type of approaches in linking ecotoxicity effect to species 

loss (i.e. loss in species diversity) consists of the idea to develop and use 
mechanistic models such as dynamic energy budget models (DEB), 
population models, and food web models to extrapolate effects at indi-
vidual species levels to damage at the population level or community 

Table 1 
Overview of approaches, and their features, that are potentially useful for translating ecotoxicity impacts into damage on species diversity, further relating to damage 
on functional diversity, and finally linking to damage on ecosystem services of freshwater ecosystems in the context of LCA.  

Step Approach Description Data needs/ 
availability 

Spatial scope Assumptions 

Ecotoxicity 
impacts to 
species 
diversity 
damage 

The Dynamic Energy 
Budget (DEB) model 
models [1] 

DEB models explore and predict the effect 
of a toxicant on both plants and animals 
growth and reproduction over time and 
over the entire species lifecycle 

Limited data 
availability 

Landscape 
and regional 

Species size is a proxy for species maturity. 
Processes influencing internal exposure are 
different from those causing damage  

Food web models e.g., 
AQUATOX [2] 

It represents a full effect on the aquatic 
food web 

Limited data 
availability 

Local and 
regional 

Toxic effect is additive when many organic 
chemicals are simulated simultaneously 

Population models 
[3,4,5] 

Provide insight into how a toxicant causes 
stress on individual species population 
fitness characteristics 

Limited data 
availability 

Local and 
regional 

The population is closed demographically 
and females drive population dynamics 

Mean extinction time [6] Quantifies the expected survival rate of 
different species when exposed to a 
stressor 

Limited data 
availability 

Local No interactions between subpopulations  

Media recovery model 
[6] 

Based on recovering of species richness 
after exposure to a toxicant 

High data 
availability 

Local The species are assumed to disappear when 
the toxicant reaches threshold and reappear 
when the toxicant disappears. The 
assumption doesn’t not hold for a large scale 
where population reduction would lead to 
genetic drift and therefore reduction in 
genetic diversity 

Genetic diversity [6] Indicates the number of genetically 
different individuals within the same 
species 

Limited data 
availability 

Local More genetic variation suggests capacity of 
the population of organisms to survive stress 

The Principal Response 
Curve (PRC) approach 
[7,8] 

PRC display effects of a stressor in the 
course of time 

Limited data 
availability  

Local and 
regional 

Follows linearity assumptions but is capable 
of showing nonlinear treatment effects  

Threshold Indicator Taxa 
Analysis (TITAN) [9,10] 

TITAN approach links field data, to 
measured environmental concentrations in 
predicting effects 

Limited data 
availability 

Local and 
regional 

Quantitative indices and individual taxon 
output represent the general nature of 
community response to a chemical 

Environmental DNA 
(eDNA) combined with 
RNA sequencing [11] 

Gives an insight into the community 
composition using the RNA gene 
expression patterns and the quantity of the 
DNA 

High data 
availability 

Local A shift in species community composition 
suggests altered community function 

Species diversity 
damage to 
functional 
diversity 
damage 

Trait probability density 
framework (TPD) [12] 

TPD describes the nature of trait 
distribution within a multidimensional 
hyper volumes 

Limited data 
availability 

Regional Interspecific variability is considered more 
significant than intraspecific trait variability 

Functional sensitivity 
distribution (FSD) [13] 

FSD describes the sensitivity of multiple 
species exposed to a hazardous compound 
affecting their ecological function 

Functional 
endpoints. 
Limited data 
availability 

Local FSD of tested species resembles the FSD of 
species assemblage in the field 

Phenotypic diversity 
model [6] 

Links directly phenotypic variation to 
ecosystem functioning 

Limited data 
availability 

Local Reduction in phenotypic variance from toxic 
pressure affects ecosystem functioning 

Functional 
diversity 
damage to 
ecosystem 
services 
damage 

Common International 
Classification of 
Ecosystem Services 
(CICES) [14,15] 

Hierarchical classification system which is 
tailored to accounting i.e., the value of 
ecosystems and the cost of their depletion 
taking into account abiotic resources 

High data needs Local and 
regional 

Focuses on identification of the final ES 
directly linked to values valued by human 
beings 

National Ecosystem 
Services Classification 
System (NESCS) [14,15] 

Hierarchical classification system which 
identifies pathway through which changes 
in the ecosystems impact ES flow to 
humans 

High data needs National There is a clear division between natural 
systems and human systems 

Final Ecosystem Goods 
and Services 
Classification System 
(FEGS-CS) [14,16] 

Hierarchical ES classification framework 
that provides distinction between 
intermediate and final ES and linkage 
between ES flow and human well being 

High data needs Local and 
regional 

There is a fine separation of the intermediate 
and final ES 

Cascade model [17] Represents the flow of ES in a logical 
scheme of chains from their generation to 
their value to humans well-being 

High data needs National ES flow in a linear, logical scheme of chains 

Ecological Production 
Functions (EPFs) [18] 

Quantifies connection between ecosystem 
structure and processes to ecosystem 
function and ES importance for human 
wellbeing based on function –related 
descriptors 

High data needs Local EPFs represent outcomes of ecological 
processes 

[1: EFSA et al., 2018], [2: Park et al., 2008], [3: Earl, 2019, 4: Forbes et al., 2017, 5: Maltby et al., 2021], [6: Larsen & Hauschild, 2007], [7: Van Den Brink et al., 2000, 
8: Moser et al., 2007], [9: Berger et al., 2016, 10: Baker & King, 2010], [11: Birrer et al., 2021], [12: Carmona et al., 2016], [13: Posthuma & de Zwart, 2014], [14: Maia 
de Souza et al., 2018, 15: US-EPA, 2018], [16: Landers & Nahlik, 2013], [17: Rugani et al., 2019], [18: Faber et al., 2021]. 
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level (Faber et al., 2019; Forbes & Galic, 2016; Forbes et al., 2017). DEB 
models simulate how species assimilate and allocate energy for physi-
ological processes (e.g., growth, development, and reproduction) while 
also reflecting how changes in the environmental conditions (e.g., 
exposure to chemicals, resource availability, and temperature) change 
those energy flows (Dong et al., 2022; Forbes et al., 2017). DEB models 
facilitate extrapolation of chemical effects across species and service 
providing units (Forbes et al., 2017). DEB models are also flexible, 
allowing for incorporation of chemical modes of action depending on 
the processes affected by the toxicant. Thus, they provide a potential to 
mechanistically explore toxicity beyond mere dose effect descriptions 
for separate ecotoxicity endpoints (EFSA et al., 2018). However, DEB 
models are compound- and species-specific, with currently only a very 
limited array of species and chemicals covered (EFSA et al., 2018). 

Population models are another opportunity, which utilizes infor-
mation on individual species’ life history characteristics (such as juve-
nile period, growth rate, reproductive output), thus bringing additional 
biological realism when predicting damage to populations from data on 
various endpoints (Forbes et al., 2017; Maltby et al., 2021). However, 
population models extrapolate changes in specific individual species 
performance to impacts on population dynamics and structure, with a 
need to cover a broader range of species (i.e. limited number of possible 
species for which models are readily available) and flexibility in pre-
dicting ecotoxicity effect under different conditions and habitats (EFSA 
et al., 2018; Maltby et al., 2021). 

Food web models, such as AQUATOX (Park et al., 2008), consider the 
flow of toxic substances through the food web (i.e., species interactions) 
and ecotoxicity impacts on the food web structure (Faber et al., 2019; 
Maltby et al., 2021). Thus, food web models would provide the damage 
information aimed at, when it is known which species are threatened by 
the presence of a toxic substance and how that affects the food web 
structure and/or function (Jørgensen, 2016). Food web models can 
provide information on the biomass of species, individuals, and pop-
ulations with a possibility to further predict damage on ES (Galic et al., 
2019). However, food web models have not yet been widely used 
because of the difficulty of modelling the flow and fate of toxic sub-
stances in complex and highly spatiotemporally varying food webs 
(Jørgensen, 2016). Food web models like AQUATOX can currently 
model effects associated only with organic chemicals (Park et al., 2008). 
Furthermore, the lack of standardized impact indicators currently limits 
the applicability of food web models for use in practical LCA (Maltby 
et al., 2021). 

Translating ecotoxicity impacts into species loss can also be achieved 
using the principal response curve (PRC) approach. This approach uses 
data on multiple species responses from controlled experiments, e.g., 
mesocosms. However, PRC statistics are only feasible for data with 
repeated measures over time (Van Den Brink et al., 2000; Van Den Brink 
& Braak, 1999). Unlike mechanistic models that allow for extrapolation 
of ecotoxicity effects to novel conditions, the PRC approach can usually 
not be extrapolated beyond experimental test conditions (Jager, 2016; 
Forbes et al., 2017). Furthermore, it is not possible to recognize sensitive 
species with a different response pattern with the PRC method (Moser 
et al., 2007). 

In contrast to PRC derived from mesocosm-type test data series, the 
Threshold Indicator Taxa Analysis (TITAN) approach uses field moni-
toring data on multiple stressed system to derive species-specific dif-
ferences in abundance response thresholds given pressure level 
gradients (Baker & King, 2010). TITAN’s capacity to identify abrupt 
changes (so-called “breaking points”) in occurrence and abundance of 
taxa along a chemical gradient makes it appropriate to identify sensitive 
taxa showing a clear response to a chemical gradient under field con-
ditions (Berger et al., 2016). Given that TITAN analyses can be used to 
track changes in species abundance under chemical pollution pressure, 
in terms of fractions of species affected at given field exposures (Berger 
et al., 2016; Baker & King, 2010), there is latitude to use TITAN to 
characterize field effects across species, and relate that to the predicted 

impacts as generated with SSD models. With that, the TITAN approach is 
a promising empirical starting point for relating predicted ecotoxicity 
impacts (PAF) into damage in the field in terms of species loss (PDF). 
However, the approach is constrained by limited data availability, i.e., 
to be operationally applied in the LCA framework, it requires large-scale 
monitoring data with species occurrences and abundance patterns at 
different sites along with measured chemicals or mixture concentra-
tions. That is, the use of the TITAN approach provides insights in 
empirical PAF-PDF associations for particular study areas, particular 
chemical pollution pressures and particular species groups, so that LCA 
damage assessment would be best served by analysis of diverse, multiple 
field response data sets. As yet, available work consist of (Berger et al., 
2016) analyses, and ongoing work focuses on establishing PAF-PDF re-
lationships for Dutch surface water monitoring data. 

The challenges of most mechanistic models and the empirical ap-
proaches are partly conceptual but mostly also related to available data, 
as highlighted above, including the need to cover a wider variety of 
species, currently limited coverage of chemicals and different organ-
isms’ specific endpoints, which still require attention. Using the SSD 
approach to cover a broader range of species can bridge part of the data- 
related gap and with that can help refining some of the models (EFSA 
et al., 2018). Furthermore, comparing the magnitude of different effect 
endpoints (e.g. reproduction vs growth) from SSDs would provide an 
option of deriving consistent metrics for translating ecotoxicity effects 
into damage at species diversity level while utilizing available data. 

3.2. From species loss to damage on functional diversity 

Functional diversity is the variation of traits between organisms 
(Carmona et al., 2016). Species’ functional traits determine how they 
respond to environmental conditions and disturbances, such as emis-
sions of chemical stressors. Characterization of functional diversity 
through various components such as functional richness, functional 
evenness, and functional divergence has great potential to answer 
different ecological questions, including impacts of any disturbance on 
the assembly of biological communities. Functional evenness is the 
amount of functional volume occupied by a trait density distribution 
indicating a range in a single trait case. Functional richness is the 
amount of space occupied by species in an ecological unit. In contrast, 
functional divergence is an indicator of the degree of the distribution of 
abundance within the functional trait volume (Carmona et al., 2016). 

At the community level, estimating functional diversity within a 
community of species is often determined as a function of differences in 
individual species traits (Carmona et al., 2016). That is, any stressor that 
has a strong influence on the composition and diversity of species traits 
and interaction in the food web is having an influence on an ecosystem 
function based on those traits (Truchy et al., 2015; Faber et al., 2019; 
Maltby et al., 2017a, 2017b). 

Ecosystem functioning relates to the sum of all processes that sustain 
an ecosystem through biological activities (Reiss et al., 2009; Truchy 
et al., 2015). Processes at the ecosystem level emerge from species’ 
interaction with each other in their food web and with the environment, 
which often involves transformation of nutrients and energy, generation 
of the species habitat structures, and maintenance of the species pop-
ulations (Truchy et al., 2015; Faber et al., 2019; Maltby et al., 2017a, 
2017b). Dominant processes associated with freshwater ecosystem 
functioning are nutrient cycling, organic matter transformation, primary 
productivity, secondary productivity, and ecosystem metabolism (Har-
rison et al., 2022). A specific process consists of the option of seques-
tration or detoxification of pollutants influencing water quality in the 
ecosystem (Maltby et al., 2021). As discussed in Haines-Young & Pot-
schin (2010), ecosystem functioning is highly associated with species 
biodiversity, such that a decrease in ecosystem functioning occurs more 
rapidly when there is low species diversity. Apart from the number of 
different species (i.e., species diversity), other measures of biodiversity 
essential for ecosystem functioning include species abundance, the 
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composition of the genotypes in the ecosystem population, and func-
tional groups (Haines-Young & Potschin, 2010). As much as an 
ecosystem can reduce species diversity without impacting its func-
tioning due to redundancy in species’ functional traits, the redundancy 
of functional groups ensures a continuous functioning of an ecosystem 
(Baumgärtner, 2007). Such redundancy largely depends on the presence 
and composition of species functional groups and traits (Faber et al., 
2019; Haines-Young & Potschin, 2010; Rumschlag et al., 2020). 

Chemical pollution may have a specific impact in ecosystems and 
their functional characteristics. That is, differences in the match, or 
mismatch, of chemical modes of action and species traits (e.g., in-
secticides and insect traits presence or absent) determine how chemical 
exposures affect species and which consequences on ecosystem func-
tioning or to be expected (Chagnon et al., 2015). Chemical modes of 
action can also help identify the most sensitive species. That is, such a 
species or set of species traits may form the food web, so that the entire 
functioning of the ecosystem would be compromised if the sensitive 
species are affected, much more than when the sensitive species are at 
the end of the food web. For example, exposure of phytoplankton to 
herbicides decreases community composition before a decline in 
ecosystem functioning, i.e., reduced community respiration and primary 
productivity (Rumschlag et al., 2020). In contrast, insecticides reduce 
zooplankton composition before impacting community respiration and 
the primary productivity of phytoplankton (Rumschlag et al., 2020). 

According to Sodré & Bozelli (2019), chemical stressors can decrease 
organisms’ body size, thus affecting many physiological functions. The 
magnitude of a biotic ecosystem function is a consequence of the rate of 
ecosystem processes and related change in producing biomass (e.g. 
photosynthetic rate and primary producers’ biomass). Considering 
ecosystem functions takes into account the number of species (richness), 
identity (composition), and abundance of species in a community that 
contribute to a specific function. 

The function sensitivity distribution (FSD) approach has been pro-
posed to quantify the impact of a toxic chemical on the functioning of an 
ecosystem by considering function-related endpoints (Posthuma et al., 
2001). Its application would be based on the empirical observation that 
– similar to differences across species in sensitivity to chemical expo-
sures – the functional endpoints follow a bell-shaped distribution. 
Development and application of FSDs would enable direct evaluation of 
a functional damage assessment, similar to the establishment of the PAF- 
PDF relationship which can be determined utilizing TITAN analysis, as 
described above. However, this approach is currently rarely used due to 
its limited data availability (Posthuma & de Zwart, 2014). 

Given various concepts and components in estimating functional 
diversity, Carmona et al. (2016) proposed a trait probability density 
(TPD) framework that unifies existing quantification approaches for 
functional diversity components. TPD considers species abundance and 
intraspecific trait variability to derive estimates for different functional 
diversity components, i.e., functional richness, functional evenness, and 
functional divergence. With available data, using TPD would, allow 
predictions of functional impacts across various spatial scales, given that 
it is assumed that values of the TPD framework of an ecological unit are 
directly proportional to the relative abundance of their trait values 
(Carmona et al., 2016). TPD functions may be directly applied to predict 
the functional structure of species populations and communities along 
chemical gradients. The method requires substantial trait data (Carmona 
et al., 2016). 

The phenotypic diversity model (i.e., genetic relationship between 
different groups of species) could also provide a way to translate changes 
in species diversity into damage on ecosystem functioning. Species di-
versity directly links phenotypic variance to ecosystem functioning, 
represented as a change in biomass production in an ecosystem from a 
toxic pressure. With a focus on species functional groups as the basic unit 
of the ecosystem, species sensitivity is taken into consideration in this 
approach (Larsen & Hauschild, 2007). 

Functional indicators that measure functional effect traits or rates or 

attributes of processes have been proposed. Such indicators have been 
proposed, since it is considered difficult to measure ecosystem functions 
or predict them from underlying structural impacts. On this relationship, 
it can be reasoned that highly aggregated functional metrics (such as 
primary productivity) are relatively insensitive as compared to under-
lying structural impacts. Exploiting the relationship between potential 
functional indicators that are more directly connected to mechanistic 
processes can help link species loss to ecosystem function loss by 
assessing how a change in the state related to processes impact rates of 
processes within the food web. However, changes in multiple interacting 
functions at the food web level and across different trophic levels are 
indicated by processes measured at the food web level, such as the flow 
of energy through the food web (Harrison et al., 2022). 

Combining different functional diversity components, FSD, and 
functional indicators (Posthuma & de Zwart, 2014; Carmona et al., 
2016; Harrison et al., 2022) can hence provide a possible starting point 
in translating species loss to damage on functional diversity. Further-
more, eDNA and sRNA measurements may provide a direct way of 
measuring species diversity, in addition to getting an insight into the 
community function dynamics from direct observation of species (bio-
monitoring data). 

An overview of the features of different approaches that could 
potentially serve as a starting point for translating damage on species 
diversity into damage on functional diversity of freshwater ecosystems 
in the context of LCA is provided in Table 1. Different functional in-
dicators with related taxa and processes are provided in Table 2, for 
metrics representing rather high levels of aggregation. 

3.3. From functional loss to damage on ecosystem services 

Damage on functional diversity loss can be linked to damage on 
related ES as an intermediate step of the main pathway in linking eco-
toxicity effects to damage on ES (Truchy et al., 2015; Maltby et al., 
2021). However, there is also a direct link from species loss to damage 
on ES, without explicitly considering the intermediate step of evaluating 
affecting any function (Maltby et al., 2021). 

Freshwater ES are dependent on freshwater organism interactions 
and processes (Chagnon et al., 2015). For example, microbial de-
composers and invertebrate detritivores degrade leaf litter, which in 
turn aids in nutrient cycling. However, when microbial decomposers 
and invertebrate detritivores are exposed to toxic chemicals, it may 
cause feeding inhibition and mortality. This, in turn, might damage 
ecosystem services such as leaf litter breakdown, decomposition, and 
primary productivity rate and flow of ES, e.g., nutrient cycling and 
support for other freshwater organisms (Peters et al., 2013; Chagnon 
et al., 2015). 

Biodiversity is the variety of life forms, including the variation of 
genes, species, and functional traits. Biodiversity and ecosystem func-
tioning relationships (BEF) have been studied for several decades 
(Cardinale et al., 2012; van der Plas, 2019), with researchers often 
reporting the BEF relationship as nonlinear. Diversity of the community 
positively influences ecosystem functioning (van der Plas, 2019). While 
biodiversity loss reduces the number of genes, species, and functional 
groups, it consequently decreases the efficiency by which species com-
munities capture essential resources, produce biomass, decompose and 
recycle nutrients (Cardinale et al., 2012). 

Some studies have shown that environmental change may damage 
ecosystem functioning without affecting species richness by affecting 
population density and community composition as the community 
competes for limited resources at one trophic level (Spaak et al., 2017). 
However, biodiversity loss across trophic levels can influence ecosystem 
functioning more strongly than diversity loss within a trophic level, 
since food web interactions are key mediators of ecosystem functioning 
(Cardinale et al., 2012). Hence, high biodiversity is required to maintain 
the multifunctionality of ecosystems across spatial and temporal scales 
(Cardinale et al., 2012). 
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BEF has often been measured without extending to known ES. 
Likewise, biodiversity and ecosystem services relationships (BES) have 
often been described without understanding the underlying ecosystem 
functions (Cardinale et al., 2012). Predicting biodiversity-related con-
sequences on ES also requires understanding of which functional traits 
place biodiversity at a higher probability of extinction or establishment, 
i.e., response traits, and how response traits drive ecosystem func-
tioning, i.e., effect traits (Cardinale et al., 2012; Suding et al., 2008). 

For example, diverse communities are more productive because they 
contain key species that greatly influence productivity, and differences 
in functional traits increase the total resource capture (Cardinale et al., 
2012). Furthermore, functional traits influence the extent to which 
ecosystem functioning changes after the extinction of biological traits 
(Cardinale et al., 2012). 

Many ES ultimately depend on the variety of life forms (Scherer- 
Lorenzen et al., 2022). Therefore, successfully understanding the link-
ages between biodiversity, ecosystem functioning and ES requires 
quantifying the networks of mechanistic links between ecosystem 
functions and ES using e.g. mechanistic models (Cardinale et al., 2012). 
However, challenges still exist when incorporating ES regulated by 
multiple functions in the BEF relationship, which does not necessarily 
respond to changes in biodiversity in the same way. Mismatch in how 
organisms interact at different spatial and temporal scales also compli-
cates integrating food webs into BEF and BES (Cardinale et al., 2012). 

According to van der Plas (2019), functional diversity is a stronger 
predictor of ecosystem functioning than biodiversity, partly because of 
the presence of a particular functional group (i.e., keystone species) that 
drives ecosystem processes or abiotic conditions that outweigh the 
biodiversity effect, such that environment variation and biodiversity 
jointly drive ecosystem functioning. 

Studies directly assessing ecotoxicity impacts on freshwater 
ecosystem functioning, which could facilitate further translation of 
functional loss to damage on ES, are rare due to little understanding of 
biodiversity-ecosystem-function/services relationships and the avail-
ability of mechanistic models (e.g., ecological production functions, 
EPFs) to link chemical-induced effects on individual species to ES de-
livery (Faber et al., 2019). 

The quantitative ecological production functions (EPFs) approach 
provides quantifiable links from ecosystem functional diversity loss to 
damage on ES flows (Faber et al., 2019) or a direct link of ecosystem 
characteristics (i.e., SPU) to final ES (Bruins et al., 2017; Forbes et al., 
2017), which can be used as a starting point for translating species loss 
into damage on ES. Online models, such as U.S. Environmental Protec-
tion Agency EcoService, have been developed based on the EPFs 
approach to quantify damage on ES (US EPA, 2018). However, no 

standardized test exists for most taxa in EPFs (Faber et al., 2021). Also, 
existing quantitative models incorporating ecological production func-
tions have limited chemical exposure dose–response relationships 
(Faber et al., 2019), which are essential as they can be further extrap-
olated to damage on related ES. 

Syberg et al. (2017) proposed to create a ’direct’ link from ecotox-
icity impacts (using PAF as predicted impact metric) to damage on ES 
until the full pathway from ecotoxicity impacts via damage on genetic 
and function diversity to damage on ES is better understood. In the 
approach proposed by Syberg et al. (2017), damage on ES from eco-
toxicity impacts is derived from the sum of hazard quotients (HQ) across 
chemicals i that is derived as ratio of measured chemical concentrations 
in freshwater environments (Ci, mg/l) and the related threshold (Cref,i, 
mg/l) set to indicate an upper-limit safe chemical level for human 
consumption for each chemical as HQ =

∑
i
(
Ci/Cref,i

)
. This approach 

can be considered a pragmatic approach which sets a human health 
related upper boundary on chemical exposure, such that exposure of 
man through ecosystems is not affected by separate chemicals or unin-
tended mixtures, whilst exceedance of that boundary would warrant 
remediation to safeguard human health. 

ES conceptual frameworks also offer ways of linking ecosystem 
functioning loss to damage on the ES. From earlier reviews conducted on 
ES methods and applications to freshwater ecosystems (Bagstad et al., 
2013; Maia de Souza et al., 2018), most established methods, such as the 
InVEST approach, help assess risk from land use change or climate 
change, but applications in response to chemical stressors have not been 
studied. Maia de Souza et al. (2018) suggest applying NESCS and FEGS- 
CS, ES classification frameworks to understand the impacts between 
ecosystem functions and final ES provided for humans, which could also 
serve as a starting point for application in the LCA framework. FEGS-CS 
and NESCS frameworks can translate damage on the functional level of 
an ecosystem to damage on ES and offer a distinction between inter-
mediate and final ES (Maia de Souza et al., 2018). Intermediate ES are 
not directly used or consumed by humans but are considered necessary 
for producing final ES delivery. 

The cascade model proposed by Rugani et al. (2019) and Liu et al. 
(2020) links changes in ecosystem structure and functions to human 
wellbeing changes in a cause-effect chain model in soil ecosystems. With 
that, this model complements the LCIA impact-pathway framework by 
providing information about trade-offs (i.e., costs and benefits) of a 
particular stressor on ES flows (Rugani et al., 2019). However, 
ecotoxicity-related aspects and their influence on freshwater ES are not 
currently addressed in the cascade framework. In addition, this model is 
currently not able to address the dynamics and nonlinear nature of ES 
(Maia de Souza et al., 2018). 

Table 2 
Functional indicators possible for translating species loss to damage on ecosystem functioning with related taxa and processes dominant for freshwater ecosystem 
(Harrison et al., 2022).  

Ecosystem 
function 

Processes State related to processes Freshwater taxa Food web metrics 

Ecosystem 
metabolism 

Respiration, extracellular enzyme activity, amino 
acid uptake in biofilm, microbial electron 
transport system activity 

Dissolved oxygen concentration Microbes Substrate use metabolic 
profile 

Organic matter 
transformation 

Leaf litter decomposition, detritivores feeding 
rate 

Biomass of fungi Fungi, invertebrates 
detritivores, heterotrophic 
microbes 

Detritivores feeding 
preference 

Nutrient cycling Denitrification, Nitrogen dioxide flux Total P or C or N; 
Organic C or N; 
Nitrites or Nitrates 

Microbes Functional composition and 
traits of taxa 

Primary 
productivity 

Rates of biomass production, oxygen production 
or carbon dioxide consumption 

Biomass or abundance or density of 
algae, biofilm, phytoplankton, or 
macrophytes 
Chlorophyll-a concentration, amount 
of glutamine sythetase 

Macrophytes, algae, 
phytoplankton, autotrophic 
microbes 

Fish functional composition, 
invertebrates feeding groups 

Secondary 
productivity 

Growth rates or rates of biomass production Biomass or abundance or density of 
heterotrophic microbes, 
invertebrates, or fish 

Vertebrates, invertebrates Phytoplankton 
functional composition  
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Overall, numerous knowledge gaps remain for successfully trans-
lating ecotoxicity impacts into damage on freshwater ES, either directly 
from species loss or through functional diversity loss. This includes (a) 
the lack of comprehensive and integrated approaches to assess impacts 
of chemicals and other stressors while taking into account different 
routes of chemical exposures, (b) the overestimation or underestimation 
of potential chemical risk on SPUs, which reduces the accuracy of ES 
assessment, (c) the complexity in analysing ES trade-offs, i.e. protecting 
one ES resulting in downstream effects on other ES (Syberg et al., 2017). 

The challenge of overestimation or underestimation of the risk on 
SPUs may be addressed in part by generating separate SSDs for different 
species groups, which uses ecological information on species commu-
nities such as functional groups or trait characteristics (Van den Brink 
et al., 2021). This may help identify SPUs, i.e. ES that are potentially at 
risk (Faber et al., 2021; Oginah et al., 2021). 

Current methods that link individual elements along the pathway 
from ecotoxicity impacts to damage on ES delivery (Fig. 1) are still in 
their infancy, and possible adaptations are in the early stages. Current 
methods or frameworks do not systematically link ecosystem functions 
loss to damage on ES from chemical impacts. However, applying the ES 
frameworks and cascade model, which incorporates EPFs, provides a 
possible way forward to translate functional loss to damage on ES and 
with that to include damage on ES associated with ecotoxicity impacts 
on freshwater ecosystems into LCA. The aggregated ES consequences 
resemble the aggregated life cycle impacts in terms of species losses 
modeled at damage level in current state of the art LCIA methods. It is 
not the intention, however, to predict concrete ES consequences in any 
specific ecosystem but rather to estimate an overall consequence of a 
given product or system life cycle. 

4. Monitoring-based framework for ES assessment and 
management 

One of the key problems of ecotoxicity assessments and assessing 
damage is the need for laboratory-to-field extrapolation, given that 
stressors studied in applied ecology (such as nutrient enrichment) are 
addressed based on ecological concepts and field data, whilst stressors 
studied in applied ecotoxicology are most often relaying on laboratory 
toxicity data. Whilst there are mechanism-based approaches which 
could be applied in PAF-PDF characterization of damage, it is key to 
highlight the final issue that the predicted damage should relate to true 
damage, that is: that the lab-field extrapolation for chemical pollution 
impacts is correct. The latter can be judged by analyses of landscape- 
level ecosystem data. Assessment and management of ES eventually 
require data-driven insights to recognize ES deterioration upon adding 
more man-made pressures and improvement upon less man-made 
pressures. Data-driven insights can be obtained from (bio-)monitoring 
data, combined with appropriate statistical analyses. The latter should 
be able to characterize the relative roles of different pressures on 
ecological metrics, be it species abundance data, aggregated structural 
biodiversity metrics, or aggregated ES metrics. In an ideal case, the 
damage predicted by any of the mechanistic models should relate to 
damage in the field. 

Generally, the (bio-)monitoring data should cover a number of sites 
that vastly exceed the number of pressure metrics to avoid the so-called 
’curse of dimensionality’. Few sites mean that each added pressure 
parameter reduces the power of statistical analyses unless sufficient 
increases in the number of study sites are substantiated. One of the key 
problems in this respect is the study of chemical pollution through 
separate exposure or risk metrics for each chemical. The problem was 
solved by summarizing all chemicals, or mode-of-action subgroups, via 
mixture toxic pressure quantification (Posthuma et al., 2019). 

The statistical diagnostic assessments also need to take into account 
that there are different types of ecosystems (e.g., a lake, a river, a brook), 
such that the natural conditions are represented in a multitude of non– 
or minimally disturbed ecosystem types, whereby damage should be 

considered relative to those different reference states. 
Regarding the statistical analyses aimed at diagnosing relationships 

between pressure variables and impact variables, the best ’training’ data 
need to consist of the longest possible data gradients for all pressures (e. 
g., very low to very high pH, ibidem toxic pressure), where the covari-
ance amongst the pressures is below a critical level. This can be checked 
by calculating, e.g., the Variance Inflation Factor, which should be 
below a threshold above which interpretation bias (in diagnosing 
probable causes of impacts) occurs (Lemm et al., 2021). 

Monitoring-based approaches involve repetitive data collection to 
determine trends in parameters or endpoints that comprise ES 
(Chapman, 2012). Characterization of spatial and temporal relation-
ships and trends in (bio-)monitoring data, aimed at relating multiple 
pressures to variation and changes in biotic parameters, can assist in 
predicting the future status of ES under alternative management stra-
tegies. At the global level, the Group on Earth Observations Biodiversity 
Network (GEO BON ES) was established to promote the monitoring of 
biodiversity and ecosystems for the scientific community and decision- 
making (Vaz et al., 2021). With satellite sensors, aspects of ecosystem 
functioning, such as the primary production, can be quantified (Vaz 
et al., 2021). 

Multiple stress analyses have been made for various pressure com-
binations, areas, species groups, and practical aims. Examples are 
Grizzetti et al. (2019) and Lemm et al. (2021), focusing on character-
izing water quality as a function of a suite of pressures, including un-
intended complex mixtures. The examples are suitable for exploring and 
prioritizing alternative management scenarios’ potential effects. Similar 
studies exploring such matters for ES are scarce. 

There are global monitoring platform for ES and biodiversity 
inspired initiatives, such as the Global Biodiversity Information Facility 
(GBIF) and the Ocean Biodiversity Information System (OBIS) (Vaz 
et al., 2021). These approaches still face challenges, such as the lack of 
methods to combine ES monitoring observations and data across 
different scales, harmonized ES metrics that link interactions between 
people and ecosystems, and difficulty in incorporating diverse social- 
cultural values and knowledge into monitoring activities (Vaz et al., 
2021). All those problems have been recognized in the diagnostic studies 
of non-ES impact metrics, confirming that successful studies require a 
combination of sufficient site numbers (given pressure numbers), good 
handling of natural variability of non– or minimally disturbed ecosystem 
types, and a sufficiently wide range of non– or limitedly co-varying 
pressure metrics, whilst recognizing the specific situation for chemical 
pollution (and the laboratory-field extrapolation issue) as pressure 
factor. 

In the ES field, monitoring can have a different focus. For instance, 
for recreation fishing ES, monitoring can either focus on the effect of a 
stressor on the fishery SPU values, on the ways of preserving fishery SPU 
values, and on the state of the ecosystem in terms of the SPU, i.e., effect- 
based monitoring (Chapman, 2012). Because the effects may be incor-
rectly attributed to the measured chemicals when focusing on those 
separately from the other pressures, multiple stressor analysis is rec-
ommended as a better way of monitoring damage on ES (Chapman, 
2012). An example is monitoring toxic pressure across the Netherlands 
on water quality (KIWK, 2022). This study calculates the key toxicity 
factor from previous water quality information, such as contaminant 
locations, causes and measures taken. Water quality managers use the 
key toxicity factor as a decision-support tool to identify locations and 
substance groups that most threaten the water quality (KIWK, 2022). 

An attempt was also made earlier to monitor the ecological status of 
the aquatic ecosystem in Europe as an indicator of water quality, which 
involved using ecological status metrics from biological quality elements 
information instead of raw field monitoring data (Posthuma et al., 
2020). Using the biological quality elements was a key step that solved 
the issue of natural differences in non– or minimally disturbed reference 
status across ecosystems. Because current knowledge on monitoring 
freshwater ES and stressors is usually stored on separate data platforms, 
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without spatial alignment, it is currently not straightforward to execute 
a diagnostic analysis of ES data at any geographical scale, apart from 
some early studies such as (Grizzetti et al., 2019). 

For a holistic understanding of how ES can be influenced by one or 
multiple man-made pressures, efforts are still needed to further develop 
the data, statistical analysis frameworks, and tools that combine 
knowledge of ES monitoring with the status and trends of stressors at 
different spatial and temporal scales. This is particularly challenging 
when there is interest in chemical pollution as a spatio-temporally 
variable pressure next to various other pressures, given that applied 
ecology and applied ecotoxicology need to be bridged by summary 
concepts such as ’mixture toxic pressure.’. 

5. Conclusions and outlook 

To address damage on freshwater ES in LCA associated with toxic 
chemical emissions along product and technology life cycles, related 
ecotoxicity impacts need to be linked to damage on species (i.e. struc-
tural) and functional diversity and finally to damage on ES. This needs to 
consider approaches that utilize field-based monitoring data with bio-
logical realism and align with LCA boundary conditions. 

For a holistic assessment of the entire ecosystem rather than indi-
vidual species population, models that consider multiple populations or 
entire food webs (Jørgensen, 2016) can help translating ecotoxicity ef-
fects into species loss, expressing damage on an ecosystem’s species 
diversity. However, because such models depend on extrapolation of 
effects to higher biological organizations, leading to higher uncertainty 
in the output, a novel approach such as TITAN is a promising way for-
ward, which instead builds on field-based monitoring data. TITAN 
approach, however, has high data needs that are currently available for 
a few study areas, specific pressure sets and specific taxonomic groups 
under study. 

A trait probability density framework incorporating various func-
tional diversity components can subsequently link species loss to func-
tional diversity loss. However, more data with functional diversity 
endpoints are still needed before this framework can be operationalized. 

Quantitative ecological production functions could finally translate 
damage on species diversity to functional loss and damage on ES, if 
uncertainty in extrapolating from the relevant SPUs and functions to ES 
is considered (Maltby et al., 2021). The challenge of multiple chains of 
effects can be potentially addressed by applying population or food web 
models to identify the structural changes in the food web due to the 
direct or indirect impact of a chemical or other stressor (Maltby et al., 
2021). However, there is a need to develop robust models that extrap-
olate chemical-induced changes in key SPU attributes to changes in ES 
delivery by incorporating knowledge on how SSDs can be reliably used 
to address effects on specific species groups associated with certain ES 
over other species groups that are less affected i.e. split-SSDs (Maltby 
et al., 2005; Van Den Brink et al., 2006; Maltby et al., 2009) and 
including EPF that integrate multiple ES and their potential interactions. 

The advantage of using EPF-based approaches is that they allow for 
measured functional endpoints to be further linked to changes in ES 
delivery. However, identifying endpoints suitable for ecosystem 
assessment remains a challenge (Syberg et al., 2017), where for example 
additional functional endpoints should be considered that are particu-
larly relevant for freshwater ecosystems (Maltby et al., 2017a, 2017b; 
Faber et al., 2021). At the global levels, frameworks or tools that may 
combine knowledge of ES monitoring and status and trends of chemical 
and other stressor at different spatial and temporal scales are still 
needed. The ideal-world expectation for decision support would provide 
the assessor with specific damage insights per region; however, LCA is 
an approach founded in the emitter-perspective, which delivers generic 
potentials to cause harm also useful for decision support purposes. The 
outputs of LCA are useful as they allow for generically selecting the least- 
harmful, functionally equivalent product systems. 

Overall, we highlighted key elements to develop a framework and 

associated potentially useful approaches for integration in LCA and 
similar assessment frameworks that link ecotoxicity impacts on aquatic 
freshwater species to damage on genetic and functional diversity at the 
ecosystem level, and further to damage on ES delivery. More attention 
needs to be paid to developing and refining mechanistic damage models 
with standardized functional endpoints and structures that align with 
cause-effect chain modelling, such as the cascade model. By providing 
an overall framework as well as an evaluation of potentially useful sci-
entific and practical approaches, our study constitutes a useful starting 
point for addressing current challenges in linking ecotoxicity impacts to 
damage on freshwater ES, either directly from species loss or through 
functional diversity loss. 
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ABSTRACT: Bridging applied ecology and ecotoxicology is key
to protect ecosystems. These disciplines show a mismatch,
especially when evaluating pressures. Contrasting to applied
ecology, ecotoxicological impacts are often characterized for
whole species assemblages based on Species Sensitivity Distribu-
tions (SSDs). SSDs are statistical models describing per chemical
across-species sensitivity variation based on laboratory toxicity
tests. To assist in the aligning of the disciplines and improve
decision-support uses of SSDs, we investigate taxonomic-group-
specific SSDs for algae/cyanobacteria/aquatic plants, invertebrates,
and vertebrates for 180 chemicals with sufficient test data. We
show that splitting improves pollution impact assessments for chemicals with a specific mode of action and, surprisingly, for narcotic
chemicals. We provide a framework for splitting SSDs that can be applied to serve in environmental protection, life cycle assessment,
and management of freshwater ecosystems. We illustrate that using split SSDs has potentially large implications for the decision-
support of SSD-based outputs around the globe.
KEYWORDS: freshwater ecosystems, mode of action, ecotoxicity, Water Framework Directive, water quality, life cycle impact assessment

■ INTRODUCTION
Characterizing ecotoxicity effects, whether as part of chemical
safety assessment, evaluating the environmental performance of
products and services in a life cycle perspective, or environ-
mental quality characterization, requires addressing different
chemicals’ potential to cause harm on different species,1 while
bridging the disciplines of applied ecology and ecotoxicology.2

This can be achieved using chemical-specific species sensitivity
distributions (SSDs). SSDs are classically used to describe
variations in sensitivity across multiple species and are
commonly derived from collections of laboratory toxicity test
endpoints, such as no-observed effect concentrations (NOECs)
or the effect concentration causing a response in 50% of the
exposed individuals (EC50s).3,4 Field-based Species Sensitivity
Distributions (fSSDs) have been proposed as they are
considered more ecologically relevant. However, they present
challenges, e.g., the isolation of the effect of a single chemical
from combined effects of multiple stressors. Recognizing the
regulatory and other practical uses of current laboratory-data-
based SSDs, we focus on the “classical”, laboratory-data-based
SSDs in the present paper.

Laboratory-toxicity data-based SSDs are practically used for
regulatory purposes and Life Cycle Impact Assessment (LCIA),
e.g., to derive protective standards (threshold concentrations) or

expected impact levels of ambient chemical pollution.5,6

Recently, their use has expanded to the comprehensive diagnosis
of the role of chemical pollution as a driver for biodiversity loss
in polluted ecosystems by using SSD-based mixture toxic
pressure information (expressed as msPAF, the multisubstance
Potentially Affected Fraction of species) as pressure metric, as
this resulted in reduced parameters numbers and thus improved
statistical power in diagnostic analyses.2,7,8 The choice of
required input data and the statistical distribution methods vary
among jurisdictions. Models commonly used to fit SSDs include
log-normal, log−logistic, or other models that fit the available
data well, and commonly, confidence intervals or other metrics
of variability and uncertainty are reported.3,9 Crucial to
acknowledge is that SSDs are commonly fitted to all available
test data per chemical�following the principles developed by
the earliest users�where it is assumed that the SSD describes
the exposure-impact relationship for whole field species
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assemblages. Today, two key motives support the derivation of
SSDs for distinct taxonomic groups, i.e., split SSDs.

• First, as common in applied ecology, environmental
assessment practices focus on separate taxonomic groups
(rather than whole assemblages).10

• Second, as recognized in applied ecotoxicology, different
compound groups can have different (specific) modes of
action (MoAs) (such as insecticides affecting insects
most), which implies that the currently used, nonsplit
SSDs may show poor statistical fits to data across
taxonomic groups.3,11

The latter argument was already given in an outlook on
developments in SSDs in 2002, arguing that a split in
taxonomically distinct SSDs and accounting for the mode of
action knowledge would be beneficial statistically and
conceptually, with improved interpretation for the decision-
support uses of SSD-outputs,12 with further discussions by Fox
et al. 2021.3 Commonly, the derived toxic thresholds, i.e.,
protective environmental concentrations (HC5) and Predicted
No Effect Concentration (PNEC) for aquatic communities and
regulatory applications, could be improved by splitting the SSDs
regardless of the SSD distributions used.3,13

The optional splitting of SSDs comes with a potential trade-
off. They become statistically less robust because split SSDs are
based on data per taxonomic group. Decision support
applications require robust SSDs, defined by their insensitivity
to changes in the available collections of input data. Robustness
can be characterized with a statistical approach, enabling
categorization of optional splitting as “responsible splits” (robust
resulting SSDs per taxonomic group) or not (nonrobust
outcomes, statistical trade-offs).

In the context of the use of SSDs in setting environmental
quality standards, for life cycle assessments, and for diagnostic
assessments of causes of global change, the present study’s main
goal was to investigate whether and how the splitting of SSDs�
here, according to taxonomic groups�can be systematically
undertaken, that is for chemicals with and without a specific
mode of action while accounting for statistical trade-offs and to
evaluate whether such splitting yields an improved impact
characterization of exposure to chemical contaminants. To
achieve this goal, we defined four specific objectives: (i) To
derive a harmonized ecotoxicity database from available, curated
freshwater ecotoxicity test data and to enrich this database with
taxonomic and mode of action information. (ii) To propose a
generically applicable framework for deriving split SSDs and
demonstrate the utility of the framework for a set of chemicals
with sufficient available freshwater test data. (iii) To evaluate
whether using the proposed framework would result in different
decision-support outcomes, i.e., improved characterization of
the expected ecological impacts of chemical pollution, given that
many chemicals have limited available test data. (iv) To, finally,
derive practical and broadly applicable rules describing when
and how chemical-specific ecotoxicity data can be split
responsibly. In order to illustrate the potential relevance of
splitting SSDs, we apply these rules to a set of chemicals and
illustrate the effects for the derivation of protective standards
and for the derivation of chemical-specific ecotoxicity effect
factors for use in LCIA.14,15

■ METHODS
Overview. The study on splitting SSDs was developed with a

selection of test data, the choice for the log-normal model to

create SSDs, and following a stepwise approach for broader
applications when splitting SSDs would be considered, where
example outputs focus on both protective criteria and LCIA.
These steps are elaborated below. We emphasize that the
findings on splitting SSDs are generic and can be applied to
other data selection criteria, statistical models, and SSD
decision-support outputs. We followed the recommendations
derived in the Global Life Cycle Impact Assessment Method
(GLAM) effort under the auspices of the United Nations
Environment Programme to derive metrics for assessing
ecotoxicity impacts in LCIA as discussed by Owsianiak et al.
2023.15 Main reasons are that the derived effect threshold of
20th percentile is close to the domain of environmentally
relevant concentrations and that this threshold requires only a
minimum of 5 species to have 1 tested species falling within the
range below the HC20.

Experimental Test Data Curation and Harmonization.
We started from a database of experimental ecotoxicity effect
test data for 9868 chemicals,4 from which we selected
experimental data (i.e., we removed read-across data) for
freshwater species for data harmonization and curation. This
process included harmonization of species names, classification
of species into taxonomic groups, and calculation of average
effect test values across data points per combination of species
and chemical (see Table A1). We then selected chemicals with
data for three or more distinct species and taxonomic groups.
The taxonomic groups used in developing the split-SSD
argument were pragmatically inspired by the European Union
(EU)-Water Framework Directive, which discerns various
Biological Quality Elements�from which we selected three
groups (here: Algae, cyanobacteria, and aquatic plants (A),
Invertebrates (I), and Vertebrates (V)). The resulting data set
for 180 chemicals is provided in the Supporting Information
(Excel file Table S1).

Chemicals were first classified according to a systematic
taxonomy based on the ClassyFire approach and assigned a
mode of action (MoA) based on classifications from different
pesticide resistance action committees, the Verhaar scheme,16,17

and reported MoA information,18 before mapping the chemical
MoA to taxonomic groups.19 If MoA information was lacking,
the MoA reported for the chemical class was used. Chemical use
categories were derived from prescribed use information
(pesticidecompendium.bcpc.org).

As a next step, recognizing that the available raw species
sensitivity data are of diverse kinds (acute NOEC, chronic
NOEC, acute EC50, etc.), we used a set of data-driven
extrapolation formulas to “translate” the diverse raw data types
into a set of harmonized endpoint data, to enable derivation of
SSDs from those. Since we illustrate the methodology for the
context of LCIA, we extrapolated the available test endpoint data
(e.g., acute and chronic NOEC, EC50, and EC10) to chronic
EC10 equiv (the recommended starting point for deriving
ecotoxicity impacts in LCIA). This was done by applying the
formulas of Table 1, based on data-driven patterns recognized
and described by Aurisano et al. 2019.20

Chemicals were then classified as “data-rich” (chemicals with
≥3 distinct species from the ≥3 taxonomic groups) for the
present study or as “data-poor” (<3 distinct species per
taxonomic group and/or <3 taxonomic groups) in line with,
e.g., Müller et al. 2017.21 The set of “data-rich” chemicals was
kept for further analysis.

Systematic Decision Tree to Evaluate the Splitting of
SSDs. All SSDs in the present study were derived as log-normal
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distribution of species sensitivity (here: chronic EC10 equiv)
data. Note that other SSD models may be fitted to the data, and
those can be split for taxonomic groups, and the reasoning below
can be specifically adapted if needed for those models.

A log-normal distribution is characterized by its mean and
standard deviation, which are also used as moments of the log-
normal SSDs (as μ and σ, respectively). A systematic evaluation
decision tree was designed to distinguish between alternative
outcomes (full split into three SSDs, if not: partial split, if not: no
split). Given the two main arguments for splitting the data in
taxonomic-group-specific SSDs, the first decision point is a
statistical test series to evaluate whether some taxonomic subsets
of data differ significantly from other subsets. The statistical tests
for inter-SSD comparisons can conveniently be based on
generally applied statistical test methods given the underlying
distribution model (log-normal). The systematic evaluation
decision tree for splitting SSDs thus considers among other
evaluations of (dis)similarities in slopes and means, as depicted
in Figure 1.

The following tests were executed, starting from the raw data
and the relevant descriptive statistics (μ and σ), as illustrated in
Figure 1. Levene’s test was run to check the homogeneity of
variances (considering thus σ = slope differences among SSDs).
If variances are not significantly different, a one-way analysis of
variance (ANOVA) (parametric) was run to evaluate the
(dis)similarity of means (μ, the position parameter of the SSDs)
among subsets of the three taxonomically grouped test data.
Nonhomogeneous variance is a signal of differences across
subsets of the data; in this case, the Kruskal−Wallis test
(nonparametric) was applied to evaluate differences in μ. A
posteriori multiple comparisons tests followed if there were
significant differences between compared taxonomic groups
(that is, Tukey’s HSD (parametric) and Dunn’s (non-
parametric) tests, with the p-value set at 0.05). If full split (A
≠ I ≠ V) is not supported, the independent t test (parametric)
and Mann−Whitney U test (nonparametric) were used to
compare the mean of one taxonomic group versus the other two
groups merged, e.g., A ≠ I + V. For further confirmation, the
conclusion drawn from these tests on splitting SSDs was
evaluated by deriving a linear regression model, whereby one
group is considered an “anchor” to test whether others differ
from the anchor (see Table 2).

The set of results (on differences in σ’s and/or μ’s) were
collated, together with the a posteriori test results, to draw a
conclusion on statistical motives to employ a full or partial split
based on the whole assemblage of test data for a chemical
(minimum: 3 × 3 = 9). The resulting SSDs may be three SSDs
based on (as a minimum) three data points each, which can thus

produce nonrobust outcomes based on the identified subsets of
the data. Therefore, the decision tree proceeds with an
evaluation of the robustness of the resulting SSDs, whereby
nonrobust outcomes are identified. Robust SSDs were defined
by quantifying the confidence interval around the derived LCIA
ecotoxicity impact metric (i.e., HC20). A robust SSD yields an
HC20 with a narrow confidence interval, whereby we pragmati-
cally applied 5 squared geometric standard deviation as the
boundary below which we identify the HC20 of a split-, partially
split, or no-split as robust. Where a split caused a thus-defined
nonrobust SSD, it was investigated whether partial remerging
(i.e., A+V, I+V, or A+I) or full-remerging (A+I+V) resulted in
robust SSDs (following the same robustness test).

All the statistical analyses and the building of split SSDs were
performed in R version 4.1.2,22 modifying and expanding
existing code to construct SSDs (edild.github.io/ssd). Figures
were generated using the ggplot R package, version 3.4.1.23

Evaluating Mode of Action and Use Category
Information. The results of the splitting procedure were
evaluated vis-a-vis information on MoA and use categories,
whereby it was expected that specific modes of action (e.g.,
insecticidal action) or use category (e.g., labeling as an
insecticide) would imply splitting off (at least) the target
taxonomic group as a separate SSD. Data were plotted in
different subgroups and combinations to verify associations
between these two aspects and the results of the splitting
approach.

Derivation of User-Oriented Impact Metrics (HC20)
Values for LCIA. The SSDs that resulted from the split-
assessments are (in the case study) SSDs based on chronic EC10
equiv (SSD-EC10eq) of a compound, which are in turn used to
define the ecotoxicological effect factor of that compound at the
HC20-level (the 20th percentile of that SSD).15,24 Thus, for
sufficiently robust SSDs, we derived those values for all of the
studied compounds. In addition to this, we also illustrate the
impacts of splitting on protective regulatory standards (related
to HC5, PNEC, and similar concepts) for some selected
compounds. Finally, the uncertainty assessment around
taxonomic group-specific HC20s was quantified by combining
intraspecies and interspecies variability (see Supporting
Information Uncertainty analysis section for details).

■ RESULTS
Harmonized Ecotoxicity Test Data for Freshwater

Species. We start with 120,835 species-specific toxicity test
data, totaling 9868 chemicals, 1123 species, and 234 test
endpoints, distributed as shown in Figure 2. Because of
nonsystematic global testing practices, the data set does not
equally cover the taxonomic groups, test durations, and
endpoint types. Invertebrates are the primary taxonomic group
(78%) in the data set. Likewise, acute toxicity data dominate the
data set (71% of the total data across taxonomic groups), mainly
acute EC50s for invertebrates (44,077 acute EC50s and 20,000
acute NOECs), with fewer chronic EC50s (n = 5555), of which
only very few (n = 82) data are for vertebrates.

Species sensitivities span many orders of magnitude for both
short-term peak and longer-term chronic exposures (Figure 2).
For example, acute EC50s range between 7.3 × 10−8 and 3.3 ×
10−9 μg/L for invertebrates, and chronic EC50s range from 1.6
× 10−5 to 1.0 × 10−8μg/L for invertebrates. Likewise, acute
NOECs range between 8.0 × 10−7 and 1.0 × 10−9μg/L, and
chronic NOECs range between 6.0 × 10−6 and 2.5 × 10−8 μg/L.

Table 1. Overview of Regression Equations Derived Based on
All Available Freshwater Test Data for 9868 Chemicals Used
to Extrapolate Laboratory-Test Derived Species Sensitivity
EndPoints (the Diverse Set of Reported Sensitivity Metrics:
Column 1) to Chronic EC10 equiv, Used in the Present Study
to Derive SSD-EC10eq Based on the Extrapolated EC10-
Equivalent Data for the 180 Chemicals

Endpoints Extrapolation equation

Acute NOEC log EC10chronic = 0.816 × log NOECacute + 0.021
Chronic NOEC log EC10chronic = 0.965 × log NOECchronic − 0.144
Acute EC50 log EC10chronic = 0.869 × log EC50acute − 0.508
Chronic EC50 log EC10chronic = 0.872 × log EC50chronic + 0.733
Acute EC10 log EC10chronic = 0.813 × log EC10acute + 0.967
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Figure 1. Schematic summary of a decision tree for evaluating whether the assemblage of available ecotoxicity data for a chemical can be subdivided
into (here) three taxonomic groups based on three specific Water Framework Directive defined Biological Quality Elements: Algae, cyanobacteria, and
aquatic plants (A), Invertebrates (I), and Vertebrates (V). Numbers of cases involved in each step (as result) are shown in red. (top) Description and
selection of input data for the start of the splitting approach. (middle) Analysis steps to evaluate statistical motives to split using all available data per
chemical (fully or partially). (bottom) Evaluating whether the split results in a trade-off of a nonrobust species sensitivity distribution (SSD) for one or
more subgroups. (bottom gray blocks) Summarizing results for practical Life Cycle Impact Assessment (20th percentile values) and evaluating
whether statistical split covaries with the mode of action and use category information. Note that the no-split approach is the historically best-known
form and most frequently applied format of constructing SSDs and using those for environmental decision support purposes, prescribed in various
policy guidance documents (details vary across jurisdictions).
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From the curated data, 180 chemicals were selected as data-
rich (chemicals with data for ≥3 distinct species from ≥3
taxonomic groups), yielding 5217 test end point data for
developing and testing the SSD-splitting framework. Upon
deriving the chronic-EC10-values from these data, some taxa
dominate the final data-rich subset for further study steps, with
47% invertebrates, 33% vertebrates, and 20% algae, cyanobac-
teria, and aquatic plants. Note that only 1.81% of the chemicals
have sufficient data for a potential full split into three taxonomic
group-specific SSDs.

Split SSDs for Different Taxonomic Groups and
Relation to Mode of Action. Statistically significant support
for full or partial splitting into SSDs representing Algae,
cyanobacteria, and aquatic plants (A), Invertebrates (I), and
Vertebrates (V), or the combinations of AI, AV, or IV, was found
for 3 (<2%) and 75 (42%) out of 180 data-rich chemicals,
respectively, based on statistical tests comparing the mean and
standard deviation of SSDs (procedure in Figure 1). Notably,
the available data support the use of a split-SSD modeling
approach for some narcotic chemicals (see Figure 3), which is
visually indicated by nonoverlapping means (dots) and standard
deviations for different taxonomic groups. This latter outcome
was highly unexpected, given three decades of accepted no-split
SSD practices and the expectation that split-SSDs would be
found for only chemicals with a specific mode of action.
However, a split can also be warranted for narcotic chemicals,
provided that the available data set is sufficiently rich. The

Supporting Information Excel file (Excel Table S2) presents all
statistical details and characteristics of the resulting SSDs.

We found a clear and consistent pattern of higher sensitivity of
the targeted taxonomic group for chemicals with a specific MoA
(63% of the 180 chemicals; see Supporting Information Figure
S1), with, as expected, the more sensitive taxonomic groups
predominantly represented at the lower end of the shown
sensitivity distribution patterns (See Figure 3). For example, I
and A are the most sensitive groups in the panels shown on
insecticides (especially AChE (Acetyl Choline Esterase)
inhibition) and photosynthesis inhibition, respectively. The
nontargeted groups are often not statistically different, resulting
in a partial split, likely partly attributable to the absence of an
MoA-related mechanism that would induce a split or possibly
also due to lower numbers of test data for the nontargeted
taxonomic groups.

We summarized the data further, using the “working point” on
impacts that are used to derive LCIA Effect Factors based on
global consensus recommendations (the Hazardous Concen-
tration for 20% of the species, HC20, derived from chronic
EC10 equiv). This yielded similar results, here illustrated for the
gross chemical use categories. Again, there was a match between
the expected and observed sensitive taxonomic groups, e.g.,
insecticides and I and herbicides and A; Figure 4a.
Unexpectedly, one herbicide (tributyltin-cation, CAS 36643-
28-4) with an endocrine-disrupting MoA affected invertebrates,
which appeared as the most sensitive taxonomic group.
Fungicides showed general toxicity, with the most sensitive

Table 2. List of Statistical Tests Used to Evaluate the Potential of Split SSDs for Different Taxonomic Groups: Algae,
Cyanobacteria, and Aquatic Plants (A), Invertebrates (I), and Vertebrates (V)

Step Statistical test Description Interpretation

1 Levene’s test -Tests the null hypothesis that the variances (related to the SSD σ-parameter) of different taxonomic groups (A, I, V) are
equal

p > 0.05 σ1 ≈
σ2 ≈ σ3

-If p > 0.05, the test does not (fails to) reject the null hypothesis that the variances of different taxonomic groups are equal. If
p < 0.05, then taxonomic groups have different slopes (SSDs are different)

1.1 One way
ANOVA test

-Tests the null hypothesis that the mean (related to the SSD μ-parameter) of different taxonomic groups is equal (A, I, V) p ≤ 0.05: μ1 ≠
μ2 ≠ μ3

-If p > 0.05, then taxonomic groups have the same mean. If p ≤ 0.05, then taxonomic groups have different means (SSDs
have different position parameters)

1.1.1 Tukey’s test -Test multiple pairwise comparisons between groups’ means (μ) to identify which groups have a different mean (e.g., A vs I) p≤ 0.05: μA ≠
μI

If p > 0.05, then taxonomic groups have the same mean
-If p ≤ 0.05, then taxonomic groups have different means (specific split of SSDs).

1.1.2 Independent t
test

-Tests the null hypothesis that the mean (μ) of different taxonomic groups is equal (e.g., V vs I+A) p≤ 0.05: μV ≠
μI+A

-If p > 0.05, then taxonomic groups have the same mean
-If p ≤ 0.05, then taxonomic groups have different means. (specific split of SSDs)

1.2 Kruskal−
Wallis test

-Nonparametric equivalent of ANOVA test, tests the null hypothesis that the mean (μ) of different taxonomic groups is
equal (A, I, V)

p ≤ 0.05: μ1 ≠
μ2 ≠ μ3

-If p > 0.05, then taxonomic groups have the same mean
-If p ≤ 0.05, then taxonomic groups have different means.

1.2.1 Dunn’s test -Nonparametric post hoc test similar to Tukey’s test. Test multiple pairwise comparisons between groups’ mean to identify
which taxonomic groups have different means (e.g., A vs I)

p≤ 0.05: μA ≠
μI

-If p > 0.05, then taxonomic groups have the same mean
-If p ≤ 0.05, then taxonomic groups have different means.

1.2.2 Mann−
Whitney U
test

-Nonparametric equivalent to independent t test, test the null hypothesis that the mean (μ) is equal across different
taxonomic groups (V vs I+A)

p≤ 0.05: μV ≠
μI+A

-If p > 0.05, then taxonomic groups have the same mean
-If p ≤ 0.05, then taxonomic groups have different means.

2.0 Linear
Regression

-Linear model with categorical predictors. p≤ 0.05: μA ≠
μI

-Test group-level differences between groups (e.g., A vs I). If p≤ 0.05: the test rejects the null hypothesis that the mean (μ)
is equal across different taxonomic groups; thus, the taxonomic groups are not related
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taxonomic groups differing across chemicals, with algae,
cyanobacteria, and aquatic plants tending to be less sensitive
than other taxonomic groups. Moreover, chemicals with no
specified use category (“Other uses”) showed no clear pattern of
any taxonomic group being affected most.

Specific Regulatory and Decision-Relevance Issues.
The relevance of our findings for the various contemporary

decision-support uses of SSDs is illustrated first by the fact that
our analyses cover 15 Water Framework Directive (WFD)
Priority Substances (marking chemicals of current Europe-wide
concern, black stars in Figure 4) and two chemicals listed under
the fourth WFD Watch List (black crossed dots in Figure 4,
marking chemicals of emerging concern for water quality
policies).25 Second, the relevance of splitting for the outcomes of

Figure 2.Distribution of 120,835 species sensitivity endpoints (Y) for 9868 rank-ordered chemicals (X), distinguishing taxonomic groups (colors) and
endpoint types (measured: rows 1 to 4; extrapolated split-research data: row 5). Rank order was based on mean extrapolated chronic EC10-equivalent
values per chemical for each column. On the x-axis, value gaps lack data for taxonomic group × endpoint combinations (e.g., vertebrates × NOEC) for
the gap intervals.
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using SSDs for decision making shows as substantial differences
between SSD-based insights on protective criteria and/or
impacts of chemicals generated without (classic approach) and
with applying our proposed (partial) split, elaborated in the next
section further.

Third, based on currently available data, the split concerns a
relatively large proportion of the chemicals. The use category
“herbicides” involved 56 chemicals, among which data for 29
chemicals (statistical output) supported a full or partial split,
with a suggested partial splitting of algae, cyanobacteria, and
aquatic plants from the other taxonomic groups for 25 chemicals
(A vs I+V). The use category “insecticides” involved 27
chemicals, among which data for 20 chemicals (statistical
output) supported a full or partial split, with a suggested splitting
of I from the other groups for 14 chemicals. The “fungicide”
category involved 32 chemicals. Data for 14 of these chemicals
supported a partial split; data for 14 of these chemicals
supported a partial split, whereby 12, 8, and 6 were separated
from the rest of the group for primary producers, invertebrates,
and vertebrates, respectively.

The “Other uses” category involved 65 chemicals; data for 27
(statistical output) chemicals supported partial splitting, with
data for 15, 14, and 17 chemicals showing a splitting of A, I, and
V from the rest, respectively. This indicates that there are certain
chemicals in industrial or other (nonagricultural) uses to which
particular taxonomic groups are more sensitive than others. For
instance, algae, cyanobacteria, and aquatic plants appeared
sensitive to 2,4-dinitrotoluene, and vertebrates appeared
sensitive to phenol, both relevant in polymer and plastic
production. Again, note that splitting SSDs is not limited to
chemicals with a specific known MoA or specified use category.

Quantitative Implications of Split SSDs for Decision
Support. The relevance of the proposed split-SSD approach in
decision support is shown quantitatively in Figure 5, illustrating
all potential outcomes (no split, full split, and partial split).
Vertical black and red lines show that critical concentrations (at
the fifth and 20th percentile levels) derived with the SSDs differ
substantially between the classical no-split approach and the full-
or partial-split approaches. That is shown for the derivation of
protective environmental standards (black vertical lines, where a

Figure 3. Distributions of the species sensitivity impact metric (Y, chronic EC10 equiv) for 180 rank-ordered chemicals (X). Taxonomic groups are
colored. Chemicals within each panel are rank-ordered based on the mean impact metric values calculated across all data per chemical. MoA = Mode of
Action, n = number of chemicals in each panel. SSD-splitting grossly coincides (visually) with nonoverlapping dots and standard deviations for
different taxonomic groups (colors). Letters in each panel: For chemicals targeting invertebrates: (a) AChE inhibition (insecticidal MoA; chemical
class with most data for this MoA); (b) other insecticidal MoA (lumped); for chemicals targeting algae, cyanobacteria, and aquatic plants as primary
producers; (c) photosynthesis inhibition (herbicidal MoA with most data); (d) other herbicidal MoA (lumped); for chemicals with baseline toxicity:
(e) Narcosis. (f) “Other known MoA” includes chemicals for which MoA was provided but for which a specific targeted taxonomic group is unknown.
(g) “Unclassified MoA” includes chemicals for which MoA information was lacking.
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regulatory-defined low-end, fifth percentile value of a chronic-
data SSD is used to express a critical protective concentration,
X) and for the estimation of the impact of pollution, by
quantifying the potentially affected fraction of species (Y) at an
ambient exposure level (X), here at the 20th percentile of the
SSD (red vertical lines). Figure 5 also illustrates the influence of
splitting for confidence intervals around the SSDs (gray bands),
which are wider for data-poor SSDs. In these examples, the HC5
or HC20 can shift by more than 1 order of magnitude as a
consequence of splitting, as compared to the whole-assemblage
(classical) SSD.

The first 4 rows of the plots (i.e., simazine, fenthion,
trichlorfon, and sodium pentachlorophenate) illustrate SSD
patterns for chemicals with nonoverlapping 95% confidence
interval (CI) ranges of their split SSDs, supporting a partial or
full split (supported by statistical tests, see Methods). In
comparison, pyraflufen-ethyl showed overlapping 95% CI

ranges, and statistical tests did not support splitting. In all
cases where a responsible split was supported by statistical
evaluation, the whole-species assemblage SSDs showed that the
observed test data for one or more particular taxonomic groups
were unevenly distributed over the SSD, with, e.g., the sensitive
taxonomic group clustering toward the lower tail (Figure 5).

Decision Tree and Resulting HC20s. Figures 3−5
summarize and illustrate results and decision-supporting
relevance of splitting to derive taxonomic group-specific SSDs.
These results reflect outcomes of a systematic decision tree
(Figure 1), in which test data, statistical testing to motivate a
split, and user-required SSD-robustness considerations are
combined. In our analysis, the assessment of all available data
reveals that a full or partial split would be supported for 90 of the
180 chemicals. However, judgment of the trade-off effect on
SSD robustness showed that three chemicals resulted in robust
full split SSDs, 75 in partial split SSDs as a fallback option, and

Figure 4. (a) Distributions of the species sensitivity impact metric (Y, chronic EC10 equiv) for chemical use categories (panels), rank ordered as in
panel (b). Use categories: Insecticides are chemicals used for targeting invertebrates; Herbicides are chemicals used for targeting algae, cyanobacteria
and aquatic plants as primary producers; Fungicides are chemicals targeting fungi. “Other uses” are chemicals for which the targeted taxonomic group is
not specified (e.g., industrial chemicals). (b). Similar results present the HC20-metric that is practically used in Life Cycle Impact Assessment global
consensus approaches (20th percentile of the distribution of the above impact metric across tested species) for only robust SSDs. Percentile values of
SSDs are expressed in LCIA as HC = Hazardous Concentration. HC20-estimates (with standard deviations) are summarized for 134 chemicals with
≥6 data points (low uncertainty) for 261 chemical-taxonomic group combinations.
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Figure 5. Illustration of deriving no-split, full-split, or partially split (taxonomic group-specific) species sensitivity distributions and its consequences
for deriving protective environmental quality standards and for use in Life Cycle Impact Assessment (LCIA). There is no consequence for these
decision support applications if vertical black or red lines, respectively, are similar for full- or partial-split SSDs compared to no-split SSDs. Black or red
lines for a chemical show differences of up to more than 2 orders of magnitude. Columns: no-split (historically the common SSD use, left), full split
(middle), and responsible split (right) SSDs. Rows are selected chemicals. Panels show sensitivity endpoints across species (dots: chronic EC10-
equivalents), sigmoid curves (log-normal fitted SSDs), and 95% confidence intervals (shaded). Protective standards (maximum concentrations) are
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102 in nonrobust split SSDs, of which the latter are therefore
represented by the classical no-split SSD (Excel Table S2). The
final result on SSDs robustness involved a pragmatic decision to
include only SSDs with a squared geometric standard deviation
(GSD2) ≤ 5 around the log-mean as a cutoff point. The
sequence of steps and analyses of the shown decision tree can be
used to judge whether available test data on a chemical can be
(partially) split SSDs into robust results for chemicals other than
the 180 study chemicals included in this study (shown for the
log-normal model, but applicable in a similar way to other data
and model choices).

■ DISCUSSION
Triggered by a need to set regulatory, protective environmental
quality benchmarks, the global regulatory use of SSDs started
with recognizing that log-transformed ecotoxicity test data
collected for various species appeared to follow a bell-shaped
distribution.4 Thereupon, the first broad use of SSDs was to
derive protective environmental quality standards from all
available data, based on the assumption that the distribution of
sensitivities of tested species resembles that of the nontested
field species assemblage.6 This subsequently provided the basis
for a wide array of uses of SSDs in environmental quality
protection, assessment, and management. However, almost all
of the (regulatory) applications still derive SSD from all data,
aiming to represent the whole species assemblage following
initial decisions. Various jurisdictions prescribe different
minimum requirements to the underlying effect data, recogniz-
ing (i) that different taxonomic groups should be represented to
fulfill the adopted assumption and (ii) that more test data
generally imply more robust SSD models. The present study
reconsidered all this and evaluated from “first-principles” (the
two ecological and statistical motives) whether the derivation of
a (partially) split SSD is warranted and, if so, how that would
operate and work out for decision support uses. Illustrated by
chemicals with a minimum of necessary test data, we
demonstrate that an improved fit of SSDs to the underlying
data can be found even for some chemicals with a narcotic
(nonspecific) MoA, in contrast to common expectations and our
own initial beliefs.

Although the results show how the splitting of data into
taxonomic group-specific SSDs improves the fit of the models to
the data and the final decision-support interpretations caused by
that, it should be recognized that the use of SSDs derived from
laboratory toxicity data is not a panacea for all environmental
problems with chemicals. The complexity and diversity of the
chemical pollution problem has, so far, resulted in additional
useful methods to characterize hazards, among which we include
the derivation and use of field SSDs and bioassays�which are
both methods that do not require laboratory-to-field extrap-
olation (as in classical SSDs). Environmental policies and
bridging applied ecology and ecotoxicology can be served by

investigating multiple lines of evidence to disentangle the effects
of multiple stressors and unintended ambient mixtures.

The present study provides the scientific answer on “to split or
not to split”; it is scientifically better to split SSDs according to
taxonomic grouping (better fit of the models to the data and
associated decision-support implications) unless the number
and quality of available test data limits that. Whether this is
implemented in practice and how far this would provide
improved environmental assessments and management depend
on the jurisdiction, the available data per chemical, and the
difference in SSDs between taxonomic groups. If implemented
in practice, there would be consequences for data collection
(seeking to add data that appear missing for specific taxonomic
groups) as well as for derivation of protective standards (such as
HC5, PNEC, and similar terms) for LCIA and environmental
quality assessment (potentially affected fraction of species). The
split-approach undoubtedly results in fewer data per (split-
)SSD, which may have various consequences in practice. Such
SSDs may be statistically robust (as in the present study results).
However, the splitting also relates to the debate on the
“minimum number of species (or taxonomic groups) per
SSD” and using an optional Safety Factor on an HC5 derived
from a split-SSD. The minimum-number debate would need to
ascertain that a (likely lower) minimum number of tests should
represent the sensitivity variation within a taxonomic group. The
Safety Factor debate�which was triggered by uncertainties�
would need to consider that the method likely lowers the HC5
because of accounting for the sensitive taxonomic group,
addressing part of the uncertainties of the “classical” approach.
Such debates can start upon adopting splitting based on the
methodology laid out in the present study.

Our results suggest that “always-splitting” is warranted as a
starting point for any assessment but that splitting may be
limited, and has trade-offs, given the characteristics of the
available data. Specifically, an exploration of the available base
data (120,835 toxicity endpoint values) shows that invertebrates
are frequently tested and evaluated,26−29 which results in a
higher likelihood of finding robust split SSDs for invertebrates.
The lowest number of data was available for bacteria and fungi,
which hampers assessment of risks for these groups as well as for
important functions of microorganisms in ecosystems, even
without the opportunity to derive a split SSD for this group,
where relevant. This points to the need for more tests of
microorganisms in freshwater ecosystems. Despite limitations
due to data scarcity, it is evident that a partial split may result
when assessing chemicals other than the 180 studied chemicals.

The Role of Mode of Action and Use Category
Information. Splitting is principally warranted from the
viewpoint of applied ecology, where distinctive bioassessment
approaches focusing on taxonomic groups are common.
However, the motives for splitting have always been expected
to be stronger for chemicals with a specific MoA or more grossly
defined chemical use categories. In general, the results of both

Figure 5. continued

derived from a uniform policy-chosen Y = 0.05, with protective threshold concentrations (Hazardous Concentration for 5% of the species, HC5)
derived on X (black lines). Impact magnitudes in LCIA are derived from a uniform Y = 0.2 with similar consequences derived on X (red lines). Rows
from top to bottom illustrate the results of different MoA-related splitting situations and results from data-richer to data-poorer chemicals. Row 1: data-
rich herbicide (simazine); rows 2 and 3 data-rich insecticides (fenthion and trichlorfon); row 4 data-rich chemical with baseline toxicity (sodium
pentachlorophenate); row 5: data-poor herbicide (pyraflufen-ethyl). The error lines of the data points show intraspecies variability in the test data set
for each chemical. Interspecies variability is represented by 95% confidence intervals (gray bands) based on bootstrapping (1000 iterations). With
sufficient data, SSD splitting is supported for chemicals with specific MoA (rows 1, 2, 3, and 5) but (surprisingly) also for baseline toxicity (rows 4).
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mechanistic MoA and chemical use category considerations
closely matched expectations on this, supported by patterns
shown in Figure 3 and Figure 4. For instance, invertebrates
appear at the lower level of the sensitivity distribution (lowest
SSD mean) for chemicals designed to operate via the AChE-
inhibition and labeled as insecticides, while primary producers
fall into the lower tails of the distributions for photosynthesis
inhibitors used as herbicides. Our results confirm that it is key to
consider MoA and/or the use category (where this applies, such
as for pesticides) information on chemicals to trigger,
considering the use of better-fitting models for separate
taxonomic groups.30−32 The better principles and the better fit
have implications for practical uses of SSDs, both for deriving
protective standards and for use in environmental impact
assessments and LCIA (Figure 5).

We made two additional notable observations. First,
confirming previous studies and theory, the lowest variation in
sensitivity across taxonomic groups was found in chemicals with
nonspecific MoA, i.e., narcosis (Figure 3, vertical spread). This
supports the hypothesis that even among not closely related
species, toxicity through nonpolar narcosis is associated with
relatively lower interspecies sensitivity differences.33 Although
there may be an applied ecology and a statistical reason to
consider splitting data-rich chemicals with a narcotic MoA, the
improved fit mainly implies improved SSD-based outputs for
chemicals with specific MoA, making the latter the primary focus
for aiming at splitting SSDs in practice.3 Second, some outcomes
are not predictable by MoA or use category information. For
example, the herbicide tributyltin-cation (CAS 36643-28-4) is
relevant in chemical formulations designed to control weeds, but
there are potential side effects on invertebrates, more than for
other herbicides. Most of the observed lower sensitivities in our
SSDs are evidence of unwanted side effects, which are visible
despite the diversity of the side effects, a low number of tests, and
a few chemicals designed to control vertebrates.

The application of splitting or not has various implications for
decision support. Scientifically, it is likely that a study on the
calibration between data on the predicted msPAF values for an
array of sampling sites and the observed effects on a particular
taxonomic group at those sites is more meaningful when based
on split SSDs, given the more accurate impact assessment upon
splitting (Figure 5). For example, observed impacts on
invertebrate species derived from ecological monitoring can be
better calibrated to the msPAF derived from the SSD-
Invertebrates than from the classical overall SSD, with a misfit
of the SSD to the test data. This calibration (higher PAF implies
higher risk, proven with calibration data or not) is often used as a
basis for the decision-supporting uses of SSDs. Specific
calibration work can now be undertaken to quantify the
Potentially Disappearing Fraction (PDF) of species due to
chemical exposure, given the possibility of quantifying impacts
in terms of PAF from the split SSDs. PDF is a biodiversity
damage metric used in LCIA for all impact categories related to
ecosystem quality.34,35

In general, the decision-support uses of SSDs will be
conceptually improved and numerically altered with split
SSDs, provided that those are robust. This holds for data sets,
model choices, or SSD-based output metrics that differ from the
data, model, and metrics used in the present paper. The finding
that splitting SSD is relevant in any case holds without prejudice
to either of these matters. Upon splitting, conceptual numeric
improvements may result in more accurate protective standards
and better quantitative impact assessment of predicted or

observed ambient pollution.36 The black lines in Figure 5
(subfigures a, b, c, and d) illustrate that a protective (no impact)
environmental quality standard, estimated as fifth percentile
from an SSD of chronic data, is lower when a split SSD is
employed. That is understandable, as HC5 for the most sensitive
group now represents a protection of 95% of the species in that
group. In turn, this has (similar) implications for regulatory-
adopted criteria based on these estimated HC 5s, such as the
PNEC. The red lines in Figure 5 (subfigures a, b, c, and d) show
similar results for the LCIA-employed impact metric at the 20th
percentile, leading to different impact estimates of the use of
chemicals in products based on splitting.

After evaluation of the decision tree (Figure 1), our
observation confirms that chemicals with more data (e.g.,
simazine and fenthion) and a specific MoA provide the strongest
basis for responsible splitting. Thus, the more data, the more
robust the SSDs after the (partial) split, even for narcotic
chemicals (e.g., sodium pentachlorophenate). However, species
selection bias during laboratory testing (i.e., for chemicals with
specific MoA) currently limits to often find full-split SSDs. For
example, trichlorfon, an insecticide operating via the AChE
inhibition, statistically supports a full-split SSD. In contrast, few
data points for a nontarget taxonomic group (i.e., Algae,
cyanobacteria, and aquatic plants; n = 3) result only in partial
splitting based on the SSD robustness check, indicating the need
to include more tests for nontarget species to derive taxonomic
group-specific split SSDs where appropriate. Thus, for one to
have a full split SSD, all the taxonomic groups require sufficient
data. At the other end of the spectrum, avoiding a negative trade-
off for prediction accuracy with nonrobust SSDs that occur for
data-poor chemicals is essential. For example, although the
statistical tests on all available test data suggest that the primary
producers could be split off from the rest of the groups for
pyraflufen-ethyl, the broad and overlapping confidence intervals
render the whole-assemblage SSD statistically more robust as
compared to the partial-split alternative. Statistical assessments
may be used to decide on split SSDs, or not, but not solely. It is
also important to evaluate whether splitting is better in practice,
yielding better decision support based on conceptual principles
and trade-off effects. Relatively data-poor chemicals may result
in split SSDs that are not robust for one or more taxonomic
groups because the process of splitting counters the statistical
rule that “more data result in more robust SSDs” (see Figure S2).

We selected 180 data-rich chemicals to develop a decision tree
for splitting SSDs (Figure 1), which can be employed (or
adapted) for all chemicals and taxonomic groups or other ways
to group chemicals, species, or statistical models. In the
exploration of data for a chemical, it is likely that a partial split
(e.g., Algae, cyanobacteria, and aquatic plants versus Inverte-
brates and Vertebrates together) is found for many chemicals or
other taxonomic groups than investigated in the present study.
Applications to split according to specific traits or trophic
positions would follow the same decision tree logic, resulting in
risk information on chemical effects on specific traits or trophic
positions.

Overall, our study highlights that splitting is a better approach
in deriving SSDs and using the models for decision support,
provided that the resulting SSDs are sufficiently robust. Robust
split results improve the fit of the models to the data and,
therefore, the interpretation of SSDs in the discussed uses. The
relevance for decision support may potentially be further
increased when a split would consider different service-
providing units (SPUs), a concept used in the context of
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ecosystem services research.34 This is because it is key not only
to protect and restore biodiversity in terms of structural
characteristics of ecosystems (the present use) but also in
terms of functional characteristics and provided services.37,38

Assessments that would consider ecological information, such as
functional groups or trait characteristics, may help to identify the
SPU and ecosystem services that are both valuable and
potentially impacted.
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# Step Description/Explanation
1 Pre-processing
1a A unique list 

of chemicals
 Identify the unique list of chemicals from the list published in 

Posthuma et al. 2019, and map the list of chemicals for which 
experimental data were available in the curated raw data underlying 
Posthuma et al. 2019
 Removal of double entries based on CAS RN search in CompTox 

Dashboard
Manual identification of validity of CAS RN not listed in CompTox 

Dashboard
 Search missing chemical descriptors from CompTox  in chemidplus 

and pubchem databases 
1b Mapping of 

chemical 
classification 
on the unique 
list of 
chemicals

 Extract from ClassyFire chemical taxonomy kingdom, superclass, 
class, and subclass (where available) for all unique chemicals based on 
CAS and SMILES matches
 Extract from Pesticide Compendium (earlier: Alan Wood) chemical 

class and target class (e.g., herbicides) for all unique chemicals based 
on CAS matches
Manual identification of chemical taxonomy for chemicals that were 

not identifiable in ClassyFire
1c A unique list 

of toxic 
modes of 
action and 
mapping on 
the unique list 
of chemicals

 Identify from Pesticide Resistance Networks (FRAC, HRAC, IRAC) a 
unique list of specific modes of action, and extract related chemical 
groups and example chemicals listed
 Extract from Verhaar scheme 4 generic modes of action classes for all 

unique chemicals based on CAS matches
Map the toxic modes of action on the unique chemicals list 

1d A unique list 
of species

 Identify the unique list of species from the list available in curated raw 
data underlying Posthuma et al. 2019, table 
"Selected_Tox_data_measured"
 Correction of misspelled species names based on searching species 

names in Global Names Resolver
 Remove double entries based on genus and species names
 Remove varieties and sub-species names and merge those into data for 

the same species
 Replace common species names with scientific species names based on 

IUCN species lists, and complement by manual searches for common 
names not listed in IUCN
 Replace old and synonym species names with current species names 

according to IUCN and GBIF taxonomy, and in case of mismatches 
between IUCN and GBIF, take IUCN as a priority
 Extract a list of habitats from the list in curated raw data underlying 

Posthuma et al. 2019, and assign either "freshwater," "marine," 
"terrestrial," or "other" as habitat type, and map habitat types on the list 
of species
 Filter out all species that are not associated with "freshwater" as habitat 

type
Define default species for different taxonomic levels (e.g., family) 

based on common species used in risk assessment or else based on 
dominant species within a given level (e.g., genus)

http://doi.org/10.1002/etc.4373
http://doi.org/10.1002/etc.4373
https://comptox.epa.gov/dashboard/
https://comptox.epa.gov/dashboard/
https://comptox.epa.gov/dashboard/
https://comptox.epa.gov/dashboard/
https://chem.nlm.nih.gov/chemidplus/
https://pubchem.ncbi.nlm.nih.gov/
http://classyfire.wishartlab.com
https://pesticidecompendium.bcpc.org
http://classyfire.wishartlab.com
https://www.frac.info
https://www.hracglobal.com
https://irac-online.org
http://toxtree.sourceforge.net/verhaar.html
http://doi.org/10.1002/etc.4373
https://resolver.globalnames.org
https://www.iucnredlist.org/search
https://www.iucnredlist.org/search
https://www.iucnredlist.org/search
https://www.gbif.org/species/search
https://www.iucnredlist.org/search
https://www.gbif.org/species/search
https://www.iucnredlist.org/search
http://doi.org/10.1002/etc.4373
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Assign scientific species name to all entries that are reported for higher 

level only (e.g., family or genus): for dominant species within a given 
level (e.g., genus), assign this species, else assign no species
Assign artificial species name for levels where no species name is 

reported, and no default species name can be assigned, based on test-ID 
in curated raw data underlying Posthuma et al. 2019 (to keep data 
points separate for supposedly distinct species)

1e Mapping of 
taxonomic 
classification 
on the unique 
list of species

 Extract as background list of unique species and their taxonomy (i.e., 
kingdom, phylum, family, order, class, genus, species) from IUCN 
(based on web-search function) and from GBIF (based on code-based 
downloads)
 Extract from IUCN, GBIF, or EnviroTox taxonomy databases habitat 

type (freshwater or saltwater) for all unique species names based on 
scientific species name matches
Define four main taxonomic groups (i.e., algae, cyanobacteria, and 

aquatic plants; vertebrates; invertebrates; other microorganisms) in line 
with "biological quality elements" defined under the EU Water 
Framework Directive, Annex V (phytoplankton, aquatic flora, benthic 
invertebrates, and fish fauna) as well as with the concept of trophic 
levels in aquatic ecosystems (primary producers/autotrophs, primary 
consumers/ herbivores, secondary consumers/carnivores, 
decomposers/detritivores):
1. Algae, cyanobacteria, and aquatic plants,
2. Invertebrates (crustaceans and non-crustaceans),
3. Vertebrates (including fish),
4. Other microorganisms (e.g., bacteria)
 Extract from IUCN, GBIF, and EnviroTox lists the taxonomy, habitat 

type, and main taxonomic group for all unique species names in our 
dataset based on scientific species name matches
Manually assign taxonomy, habitat type, and main taxonomic group for 

species names not included in IUCN, GBIF, or EnviroTox based on 
additional sources (e.g., WoRMS)

1f A unique list 
of effect types 
& exposure 
test duration 
and mapping 
on curated raw 
data

 Extract from column "TypeToxData" and column 
"HarmonizedExposureDuration.d." in curated raw data underlying 
Posthuma et al. 2019, table "Selected_Tox_data_measured," 
respectively a list of unique effect types and the exposure test durations 
(in days)
Aggregate effect types into equivalents of NOEC, EC10, and EC50, 

and remove ambiguous endpoints that cannot be aggregated into one of 
the given effect types
Assign aggregated effect type and exposure test duration type to all 

data points in curated raw data underlying Posthuma et al. 2019
 Extract from Table 1 of Aurisano et al. 2019 exposure test duration 

thresholds (separating test durations into exposure test duration types' 
acute' or 'chronic') per main taxonomic group 
Assign exposure test duration types to reported harmonized exposure 

test durations of all data points in curated raw data underlying 
Posthuma et al. 2019, based on the main taxonomic group and exposure 
test duration matching

2 Dataset preparation
2a Extrapolation 

to chronic 
EC10 
equivalents 
(EC10eq)

The approach used here for consistency
 Extract different endpoints test data (i.e., acute NOECs, chronic 

NOECs, acute EC10, acute EC50, and chronic EC50)
 Compare in a separate regression equation against the chronic EC10 for 

the same species-chemical combination

http://doi.org/10.1002/etc.4373
https://www.iucnredlist.org/search
https://www.gbif.org/species/search
https://www.iucnredlist.org/search
https://www.gbif.org/species/search
https://envirotoxdatabase.org
http://data.europa.eu/eli/dir/2000/60/oj
http://data.europa.eu/eli/dir/2000/60/oj
https://www.iucnredlist.org/search
https://www.gbif.org/species/search
https://envirotoxdatabase.org
https://www.iucnredlist.org/search
https://www.gbif.org/species/search
https://envirotoxdatabase.org
file:///C:/Users/sanog/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/K4TS62S7/marinespecies.org
http://doi.org/10.1002/etc.4373
http://doi.org/10.1002/etc.4373
http://doi.org/10.1002/etc.4564
http://doi.org/10.1002/etc.4373
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Use the full regression statistics (e.g., 

) if the slope is not 𝑐ℎ𝑟𝑜𝑛𝑖𝑐 𝐸𝐶10 =  𝑎𝑙𝑝ℎ𝑎 𝑥 𝑎𝑐𝑢𝑡𝑒 𝑁𝑂𝐸𝐶 +  𝑏𝑒𝑡𝑎
close to unity 
 Compare the resulting regression results with Aurisano et al. 2019 

Alternative approach

 Extract from Aurisano et al. 2019 extrapolation factors from effect 
types to EC10eq and from exposure test duration types to 'chronic,' 
separately for each main taxonomic group (Table 3) or, if not available, 
taxonomic group-generically (Table 4)
Apply the extrapolations factors from Aurisano et al. 2019 to all data 

points in curated raw data underlying Posthuma et al. 2019 to arrive at 
a full set of chronic EC10eq 

2b Aggregation 
of data points 
per species 

 Identify per chemical and exposure test duration type all data points in 
the full set of chronic EC10eq generated from curated raw data 
underlying Posthuma et al. 2019 that belong to the same harmonized 
species
 Calculate the arithmetic mean, min-max range, and data point count 

across all chronic EC10eq data points per chemical-species combination 
for each exposure test duration type (i.e., once for chronic EC10eq 
derived only from chronic data and once for chronic EC10eq derived 
from chronic and acute data)

2c Criteria 
definition for 
a minimum 
number of 
data points

 Count for each chemical the number of chronic EC10eq across species 
per main taxonomic group and the number of main taxonomic groups, 
separately for each exposure test duration type (i.e., once for chronic 
EC10eq derived only from chronic data, and once for chronic EC10eq 
derived from chronic and acute data)
Define as a threshold between data-poor and data-rich chemicals a 

minimum of 3 distinct species per main taxonomic group (or trophic 
level) and a minimum of 3 distinct main taxonomic groups (or trophic 
levels) based on recommendations by Rosenbaum et al. 2008
Assign the thresholds for data-poor vs. data-rich chemicals to each 

chemical separately for each exposure test duration type (i.e., once for 
chronic EC10eq derived only from chronic data and once for chronic 
EC10eq derived from chronic and acute data)
 Flag chemicals that are above the defined thresholds for data-poor vs. 

data-rich chemicals as 'data-rich,' separately for chemicals only based 
on chronic data vs. chemicals based on chronic and acute data

3 Effect calculation
3a Deriving 

statistics for 
single-SSD 
and split-SSD 
per chemical

 Convert all chronic EC10eq into logarithmic (log10) scale, i.e. derive a 
set of log10(EC10eq)
Derive the number of log10(EC10eq) per chemical (single SSD) and per 

chemical-main taxonomic group combination (split-SSD per chemical)
 Calculate per chemical (i.e., for single SSD) and per chemical-main 

taxonomic group combination (i.e., for split-SSD) the arithmetic mean 
and standard deviation of all log10(EC10eq), which yields the geometric 
mean and geometric standard deviation across respective EC10eq

3b Plotting 
EC10eq data 
points on 
SSD graphs

Derive the number of log10(EC10eq) per chemical
 Rank in ascending order each log10(EC10eq) per chemical against the 

count of all log10(EC10eq) for the same chemical, e.g. using in 
Microsoft Excel the RANK.EQ function as ‘RANK.EQ(log10(EC10eq) 
count, log10(EC10eq) value, 1)’
Derive per chemical for each log10(EC10eq) as x-value on a scatter plot 

the corresponding response probability (potentially-affected fraction 

http://doi.org/10.1002/etc.4564
http://doi.org/10.1002/etc.4564
http://doi.org/10.1002/etc.4373
http://doi.org/10.1002/etc.4373
http://doi.org/10.1007/s11367-008-0038-4
https://support.microsoft.com/en-us/office/rank-eq-function-284858ce-8ef6-450e-b662-26245be04a40
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PAF of species) as y-axis, as 'PAF = (log10(EC10eq) rank – H) / 
log10(EC10eq) count', with the Hazen constant H = 0.5 (see Barnett 
1975)

3c Plotting fitted 
SSD graphs

Define per chemical, and per chemical-main taxonomic group 
combination the range of log10(EC10eq) for the x-axis of a scatter plot 
with smooth lines
Derive a fitted cumulative normal distribution of log10(EC10eq) values 

(representing a log-normal distribution of EC10eq) over the specified x-
axis range, e.g., using in Microsoft Excel the NORM.DIST function as 
'NORM.DIST(log10(EC10eq) value, arithmetic mean, standard 
deviation, 1)', as detailed in, e.g., Chapter 5 of Posthuma et al. 2002

3d Deriving 
HC20 per 
SSD

Define on an SSD graph the value 0.2 as the percentile at which 20% of 
species per chemical or per chemical-main taxonomic group 
combination show a response (y-axis) at their respective log10(EC10eq) 
values (x-axis)
Define this percentile as HC20 on each SSD, denoting the hazard 

concentration at which 20% of species show a probable effect above 
their log10(EC10eq); see Owsianiak et al. 2019
 Calculate the log(HC20) from the fitted SSD as the inverse of the 

normal cumulative distribution, e.g., using Microsoft Excel the 
NORM.INV function as 'NORM.INV(0.2, arithmetic mean, standard 
deviation)’
Derive the final HC20 as 'HC20 = 10^log(HC20)', as detailed in, e.g., 

Chapter 5 of Posthuma et al. 2002
3e Comparison 

of HC20
Define for split-SSD a set of combined criteria for indicating 

significantly different SSDs across chemical-main taxonomic group 
combinations:
1. Fitted SSD curves are not crossing each other over the relevant 

log10(EC10eq) range,
2. 95% confidence intervals of SSD curves are not overlapping over the 

relevant log10(EC10eq) range, or SSD-related HC20 values show at 
least a factor of 10 difference 

3. The number of data points is high enough to build a robust SSD (i.e., 
a minimum of 10 data points representing distinct species within one 
main taxonomic group or a minimum of 10 data points and at least 3 
data points per main taxonomic group) 

 Label split-SSDs as either significantly different or not based on 
applying the set of combined criteria
Merge split-SSDs that are not significantly different into a combined 

SSD and redo the comparison with other split-SSDs, yielding 
ultimately a set of statistically significant split-SSDs per chemical, 
indicating main taxonomic groups that are specifically targeted (i.e., 
related species mainly showing effects at lower EC10eq) as compared to 
main taxonomic groups that are not targeted (i.e., related species 
mainly showing effects at higher EC10eq)
 Label those chemicals for which at least one main taxonomic group 

fulfills the criteria for a statistically significant split-SSD 
3f Statistical 

tests for 
evaluating the 
potential of 
splitting SSD 

• Follow the statistical tests steps in the systematic evaluation framework 
for spitting SSDs, as shown in Figure 1

• Evaluate whether to split SSD or not based on the statistical outcome 
with the MoA information, use category, visually check the SSD 95% 
confidence interval

• Responsible split has low uncertainty around the HC20, no overlapping 
or crossing CI, and has a different level of sensitivity (HC20) from the 
rest of the group

http://doi.org/10.2307/2346708
http://doi.org/10.2307/2346708
https://support.microsoft.com/en-us/office/norm-dist-function-edb1cc14-a21c-4e53-839d-8082074c9f8d
http://doi.org/10.1201/9781420032314
https://www.lifecycleinitiative.org/training-resources/global-guidance-for-life-cycle-impact-assessment-indicators-volume-2/
https://support.microsoft.com/en-us/office/norm-inv-function-54b30935-fee7-493c-bedb-2278a9db7e13
http://doi.org/10.1201/9781420032314
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4 Uncertainty assessment
5a Preliminary 

steps
Determine  for each combination (chemical-species-effect type) to 

analyse how sd varies to set up a fixed sd in case of taxonomic group 
combination with a low number of data points (fixed shaped SSD)

5b Total 
uncertainty 
around the 
derived HC20

Quantifying uncertainty around the derived HC20 values by combining 
two types of uncertainty:  reflecting inter-species variability (i.e., GSD2

inter
variability across available effect values), and  reflecting intra-GSD2

intra
species variability (i.e., variability around the effect values). More 
details are in Table A2

51

52 Uncertainty analysis
53
54 Table A2 presents the specific steps to quantify the total uncertainty around the calculated 
55 HC20 values;  (squared geometric standard deviation) combining both the  𝐆𝐒𝐃𝟐

𝐭𝐨𝐭𝐚𝐥  𝐆𝐒𝐃𝟐
𝐢𝐧𝐭𝐞𝐫

56 inter-species variability and  intra-species variability per taxonomic group-chemical  𝐆𝐒𝐃𝟐
𝐢𝐧𝐭𝐫𝐚

57 combination (for simplicity, from now on referred to as 'combination') is described in more 
58 detail in the following section.
59
60
61 Table A2 Overview of the approach for quantifying uncertainty around the derived HC20 
62 values by combining two types of uncertainty:  reflecting inter-species variability (i.e., GSD2

inter
63 variability across available effect values), and  reflecting intra-species variability (i.e., GSD2

intra
64 variability around the effect values).
65

Inter-species variability
We calculated , which reflects the variability across available effect values for GSD2

inter
each taxonomic group per chemical combination, hereafter referred to as combination 
HC20. To estimate  we started from the lognormal distribution fitted through the GSD2

inter
available effect values extrapolated chronic EC10 equivalent. When fitting the 
lognormal distribution, one of the two moments used is  (standard deviation of the 𝜎
available for a chemical). We thus estimated the  (confidence interval) of  via 95% 𝐶𝐼 𝜎
the function "fitdistr" in the R package MASS 1, and from this  we derived an 95% 𝐶𝐼
upper and lower bound for  (  and HC20chronic EC10 equivalent HC20inter,upper

chronic EC10 equivalent
) by fitting two new lognormal distributions using instead of  HC20inter,  lower

chronic EC10 equivalent 𝜎
its .  is then calculated as:2,3 95% 𝐶𝐼 GSD2

inter

GSD2
inter = HC20inter, upper

chronic EC10 equivalent HC20inter,  lower
chronic EC10 equivalent

We did not derive a chemical-specific group combination  in the case of the GSD2
inter

data-poor taxonomic group (< 6 records available) because  might be highly GSD2
inter

biased by the limited number of effect values available. For these chemicals, we applied 
a fixed  calculated as 97.5 %-ile of the estimated  across taxonomic GSD2

inter GSD2
inter

groups with six records available.
Intra-species variability
We calculated , which reflects variability specific to the effect values for each GSD2

intra
combination . To estimate  we started from the record-HC20chronic EC10 equivalent GSD2

intra
specific distribution around the extrapolated effect value. This record-specific 
distribution is based on the uncertainty distributions assigned when extrapolating the 
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measured data to chronic EC10 equivalent from different endpoints (NOEC, EC50, and 
EC10). The record-specific uncertainty is propagated from the extrapolated chronic 
EC10 equivalent to the derived  via a bootstrap method. Firstly, HC20chronic EC10 equivalent
1000 bootstrap samples were sampled from the estimated distributions around the 
extrapolated chronic EC10 equivalent for each combination. Secondly,  lognormal 1000
distributions were fitted to the bootstrap samples using μ as the median of the resampled 
effect values and  as the same  used to derive  , based on the 𝜎 𝜎 HC20chronic EC10 equivalent
originally available effect values (in practice, only  varies, and always the same shaped 𝜇
distribution is fitted to the resamples). Thirdly, from the  fits, we derived an upper 1000
and lower bound for  (  and HC20chronic EC10 equivalent HC20intra, upper

chronic EC10 equivalent
).  was then calculated as:2,3HC20intra,  lower

chronic EC10 equivalent GSD2
intra

 GSD2
intra = HC20intra, upper

chronic EC10 equivalent HC20intra,  lower
chronic EC10 equivalent

We could calculate the upper and lower bounds for all the combinations since we had at 
least 3 unique species per taxonomic group. 
Total Uncertainty 
To determine the total uncertainty in   we combined the 𝐻𝐶20chronic EC10 equivalent
resulting inter-species variability with that resulting from the intra-species variability:

    GSD2
total = 10 log10((GSD2

inter)) +  log10((GSD2
intra))

The calculated HC20 effect threshold per taxonomic group and its 95% CI account for 
the inter- and intra-species variability.
SSDs robustness check from total uncertainty
To assess robust SSDs to determine "responsible split" SSDs, preferred full split, partial 
split as the fallback option, and the overall non-robust SSDs. We pragmatically set the 

 of 5 (i.e., less than 5 orders of magnitude) as the criterion to define sufficiently GSD2
total

robust SSDs, where SSDs were considered robust when statistically shown to be 
significantly different from the rest and uncertainty is ≤ 5.

66
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67

68
69 Figure S1 Distributions of chronic EC10-equivalent endpoint data for 180 chemicals, 
70 summarized as taxonomic group means and standard deviations, and considering different 
71 mechanistic modes of action (MoA). Chemicals in each plot are rank ordered based on the mean 
72 values calculated across all data per chemical. SSD-splitting grossly coincides (visually) with 
73 non-overlapping dots and standard deviations for different taxonomic groups (colors). 
74
75
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76
77 Figure S2 A.  (inter-species variability), B.  (intra-species variability) and C. 𝐆𝐒𝐃𝟐

𝐢𝐧𝐭𝐞𝐫 𝐆𝐒𝐃𝟐
𝐢𝐧𝐭𝐫𝐚

78  (total uncertainty) as a function of the number of data points available for each 𝐆𝐒𝐃𝟐
𝐭𝐨𝐭𝐚𝐥

79 taxonomic group chemical combination.  combines both the  and . 𝐆𝐒𝐃𝟐
𝐭𝐨𝐭𝐚𝐥  𝐆𝐒𝐃𝟐

𝐢𝐧𝐭𝐞𝐫  𝐆𝐒𝐃𝟐
𝐢𝐧𝐭𝐫𝐚

80
81
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82 R code for split SSDs statistical analysis
83
84 ###Library
85 library(readxl)
86 library(tidyverse)
87 library(broom)
88 library(car)
89 library(FSA)
90
91 #Import Excel Table S1 
92 ecotox_data_CAS <- read_excel("... /Supplemental Excel File.xlsx", sheet = "Excel Table 
93 S1", skip = 2)
94
95 ## Split SSDs test
96 Step A: Check for Homogeneity of variance https://datatab.net/tutorial/levene-test 
97 Step B: ANOVA test if Levene output is p>0.05
98         B1. Do a post-hoc test -Tukey's HSD- post-hoc test for pairwise comparisons- to check 
99 which group is different only if anova p<=0.05 (significant)

100         B2. Compare two groups e.g A versus I using independent t test and A vs V+I --if Anova 
101 p<=0.05
102 Step C: Kruskal-Wallis test if Levene output is p<0.05 (Non parametric equivalent of 
103 ANOVA)
104       C1. Do a post-hoc test (Dunn test- post-hoc test for pairwise comparisons- to check which 
105 group is different only if Kruskal Wallis p<=0.05 (significant)
106       C2. Compare two groups e.g A versus I using Mann Whitney U t test and A versus V+I --
107 if Kruskal Wallis p<=0.05
108 Step f: Linear regression with species groups as independent variables e.g A vs I and A vs 
109 V+I --if Kruskal Wallis p<=0.05
110
111 ### shorthand species group names 
112 ecotox_data_CAS$renamed_speciesgroup <- case_when(
113   ecotox_data_CAS$SpeciesGroup_Harmonized=="Algae, cyanobacteria and aquatic plants" 
114 ~ "A",
115   ecotox_data_CAS$SpeciesGroup_Harmonized=="Invertebrates" ~ "I",
116   .default = "V"
117 )
118
119 ecotox_data_CAS$SpeciesGroup_Harmonized.fac <- 
120 factor(ecotox_data_CAS$renamed_speciesgroup)
121 #### merged groups
122 #For independent test-comparing means between 1 group vs two other groups
123
124 ecotox_data_CAS$merged_VI <-factor(ifelse(ecotox_data_CAS$renamed_speciesgroup 
125 %in% c("V", "I"), "VI", "A"))
126 ecotox_data_CAS$merged_VA <-factor(ifelse(ecotox_data_CAS$renamed_speciesgroup 
127 %in% c("V", "A"), "VA", "I"))
128 ecotox_data_CAS$merged_IA <-factor(ifelse(ecotox_data_CAS$renamed_speciesgroup 
129 %in% c("I", "A"), "IA", "V"))
130
131 ## Make a list to store the results
132
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133 CASSPLIT <- aggregate(SpeciesName_Harmonized~CAS_Harmonized, data = 
134 ecotox_data_CAS, FUN = length)
135
136 CASSPLIT$leveneTest <- NA
137 CASSPLIT$anovaTest <- NA
138 CASSPLIT$TukeyTest_I.A<-NA
139 CASSPLIT$TukeyTest_V.A<-NA
140 CASSPLIT$TukeyTest_V.I<-NA
141 CASSPLIT$Independent_V.IA <- NA
142 CASSPLIT$Independent_I.VA <- NA
143 CASSPLIT$Independent_A.VI <- NA
144 CASSPLIT$KruskalTest <-NA
145 CASSPLIT$dunnTest_I.A<-NA
146 CASSPLIT$dunnTest_V.A<-NA
147 CASSPLIT$dunnTest_V.I<-NA
148 CASSPLIT$ManW_V.IA <-NA
149 CASSPLIT$ManW_I.VA <-NA
150 CASSPLIT$ManW_A.VI <-NA
151 CASSPLIT$model_V.IA <-NA
152 CASSPLIT$model_I.VA <-NA
153 CASSPLIT$model_A.VI <-NA
154 CASSPLIT$model_V.IA_QC<-NA ##checking if the right p values are extracted
155 CASSPLIT$model_V.I <-NA
156 CASSPLIT$model_A.V <-NA
157 CASSPLIT$model_A.I <-NA
158
159
160           
161 ## for loop comparing means
162
163 for(irow in 1:nrow(CASSPLIT)) { #irow = 1
164   iCAS <- CASSPLIT$CAS_Harmonized[[irow]]
165   data <-ecotox_data_CAS %>% 
166                         filter(CAS_Harmonized == iCAS)
167   
168   varleveneTest <- leveneTest(log.EC10 ~ SpeciesGroup_Harmonized.fac, data=data)
169   CASSPLIT$leveneTest[[irow]] <- varleveneTest$`Pr(>F)`[[1]]
170    
171   if(varleveneTest$`Pr(>F)`[[1]] > 0.05){
172      
173      varanovaTest <- aov(log.EC10 ~ SpeciesGroup_Harmonized.fac, data = data)
174      sum_test<-unlist(summary(varanovaTest))
175      CASSPLIT$anovaTest[[irow]] <- sum_test[["Pr(>F)1"]]
176      
177      if(sum_test[["Pr(>F)1"]] <= 0.05){
178        varTurkeyTest<-TukeyHSD(varanovaTest, conf.level=.95)
179        TukeyHSD_result <- varTurkeyTest[["SpeciesGroup_Harmonized.fac"]]
180        CASSPLIT$TukeyTest_I.A[[irow]]<-TukeyHSD_result[["I-A","p adj"]]
181        CASSPLIT$TukeyTest_V.A[[irow]]<-TukeyHSD_result[["V-A","p adj"]]
182        CASSPLIT$TukeyTest_V.I[[irow]]<-TukeyHSD_result[["V-I","p adj"]]
183
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184      }
185      
186      if(sum_test[["Pr(>F)1"]] <= 0.05){
187        varIndependentTest_VI <- t.test(log.EC10 ~ merged_VI, data=data)
188        CASSPLIT$Independent_A.VI[[irow]]<-
189          varIndependentTest_VI[["p.value"]]
190        
191      }
192   
193      if(sum_test[["Pr(>F)1"]] <= 0.05){
194        varIndependentTest_VA <- t.test(log.EC10 ~ merged_VA, data=data)
195        CASSPLIT$Independent_I.VA[[irow]]<-
196          varIndependentTest_VA[["p.value"]]
197        
198      }
199      
200      if(sum_test[["Pr(>F)1"]] <= 0.05){
201        varIndependentTest_IA <- t.test(log.EC10 ~ merged_IA, data=data)
202        CASSPLIT$Independent_V.IA[[irow]]<-
203          varIndependentTest_IA[["p.value"]]
204        
205      }
206      
207     
208    }
209    
210    if(varleveneTest$`Pr(>F)`[[1]] < 0.05){
211       varKruskalTest <- kruskal.test(log.EC10 ~ SpeciesGroup_Harmonized.fac, 
212                                data = data)
213       CASSPLIT$KruskalTest[[irow]] <- varKruskalTest[["p.value"]]
214       
215       if(varKruskalTest[["p.value"]] <= 0.05){
216        dunnTest_result<-
217          dunnTest(log.EC10 ~ SpeciesGroup_Harmonized.fac,
218                   data=data,method="bonferroni")
219        #dunn_result <- dunnTest_result[["res"]]
220        CASSPLIT$dunnTest_I.A[[irow]]<-
221          dunnTest_result[["res"]][["P.adj"]][1]
222        
223        CASSPLIT$dunnTest_V.A[[irow]] <-
224          dunnTest_result[["res"]][["P.adj"]][2]
225       
226         CASSPLIT$dunnTest_V.I[[irow]] <-
227          dunnTest_result[["res"]][["P.adj"]][3]
228         
229          
230          
231       }
232       
233       if(varKruskalTest[["p.value"]] <= 0.05){
234         varManW_VA <- tryCatch(
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235           wilcox.test(log.EC10 ~ merged_VA, data=data), 
236           error = stop,
237           warning = function(cond){
238             return(list(p.value = 0)) #or use jitter to suppress?
239           })
240         CASSPLIT$ManW_I.VA[[irow]]<-
241             varManW_VA[["p.value"]]
242      }
243      
244      if(varKruskalTest[["p.value"]] <= 0.05){
245        varManW_IA <- 
246          wilcox.test(log.EC10 ~ merged_IA, data=data)
247        CASSPLIT$ManW_V.IA[[irow]]<-
248          varManW_IA[["p.value"]]
249        }
250       if(varKruskalTest[["p.value"]] <= 0.05){
251        varManW_VI <- 
252          wilcox.test(log.EC10 ~ merged_VI, data=data)
253        CASSPLIT$ManW_A.VI[[irow]]<-
254          varManW_VI[["p.value"]]
255        
256      }
257    }
258    
259 }
260
261 #NA's drop out -> test is not performed
262 cat("levene.test, equal variances p> 0.05")
263 table(CASSPLIT$leveneTest > 0.05)
264 cat("for levene.test p > 0.05  == FALSE")
265 cat("KruskalTest, differences in mean")
266 table(CASSPLIT$KruskalTest <= 0.05)
267 cat("dunnTest, differences in mean, 3way")
268 table(CASSPLIT$dunnTest_I.A <= 0.05 | CASSPLIT$dunnTest_V.A <= 0.05 | 
269 CASSPLIT$dunnTest_V.I <= 0.05 )
270 cat("Mann Whitney, differences in mean, 3way")
271 table(CASSPLIT$ManW_A.VI <= 0.05 | CASSPLIT$ManW_I.VA  <= 0.05 | 
272 CASSPLIT$ManW_A.VI <= 0.05 )
273 cat("full?")
274 table((CASSPLIT$ManW_A.VI <= 0.05) + (CASSPLIT$ManW_I.VA  <= 0.05) + 
275 (CASSPLIT$ManW_A.VI <= 0.05) == 3 )
276
277 cat("for levene.test p > 0.05  == TRUE")
278 cat("One way ANOVA, differences in mean")
279 table(CASSPLIT$anovaTest <= 0.05)
280 cat("TukeyTest, differences in mean, 3way")
281 table(CASSPLIT$TukeyTest_I.A <= 0.05 | CASSPLIT$TukeyTest_V.A <= 0.05 | 
282 CASSPLIT$TukeyTest_V.I <= 0.05 )
283 cat("Independent test, 3way")
284 table(CASSPLIT$Independent_V.IA <= 0.05 | CASSPLIT$Independent_I.VA <= 0.05 | 
285 CASSPLIT$Independent_A.VI <= 0.05 )
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286 cat("full?")
287 table((CASSPLIT$Independent_V.IA <= 0.05) + (CASSPLIT$Independent_I.VA <= 0.05) + 
288 (CASSPLIT$Independent_A.VI <= 0.05) == 3)
289
290 ###comparing models; 1 group vs 2 other groups
291
292 for(irow in 1:nrow(CASSPLIT)) {
293   iCAS <- CASSPLIT$CAS_Harmonized[[irow]]
294   data <- ecotox_data_CAS %>%
295     filter(CAS_Harmonized == iCAS)
296   model_IA <- lm(log.EC10 ~ merged_IA, data = data)
297   
298   tidy_model_IA <- tidy(model_IA)
299   CASSPLIT$model_V.IA_QC[[irow]] <-
300     unlist(tidy_model_IA[tidy_model_IA$term == "merged_IAV", "p.value"])
301   #yes, it's the same 
302   
303   CASSPLIT$model_V.IA[[irow]] <-
304     summary(model_IA)$coefficients[, "Pr(>|t|)"][[2]]
305   
306 }
307
308 for(irow in 1:nrow(CASSPLIT)) {
309   iCAS <- CASSPLIT$CAS_Harmonized[[irow]]
310   data <-ecotox_data_CAS %>%
311                         filter(CAS_Harmonized == iCAS)
312   model_VA <- lm(log.EC10 ~ merged_VA, data=data)
313   CASSPLIT$model_I.VA[[irow]]<-
314          summary(model_VA)$coefficients[,"Pr(>|t|)"][[2]]
315
316 }
317
318
319 for(irow in 1:nrow(CASSPLIT)) {
320   iCAS <- CASSPLIT$CAS_Harmonized[[irow]]
321   data <- ecotox_data_CAS %>%
322                         filter(CAS_Harmonized == iCAS)
323
324   model_VI <- lm(log.EC10 ~ merged_VI, data=data)
325
326   CASSPLIT$model_A.VI[[irow]]<-
327          summary(model_VI)$coefficients[,"Pr(>|t|)"][[2]]
328
329 }
330
331
332 ###comparing 1 group vs 1 other group regression
333 ##merged group model versus one used as an anchor
334 for(irow in 1:nrow(CASSPLIT)) {
335   iCAS <- CASSPLIT$CAS_Harmonized[[irow]]
336   data <-ecotox_data_CAS %>%
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337                         filter(CAS_Harmonized == iCAS &
338                                merged_VI == "VI" )
339   
340   if(nrow(data>1)){
341        merged_V.I <- lm(log.EC10 ~ SpeciesGroup_Harmonized.fac, data=data)
342        CASSPLIT$model_V.I[[irow]]<-
343          summary(merged_V.I)$coefficients[,"Pr(>|t|)"][[2]]
344   }
345
346 }
347
348 for(irow in 1:nrow(CASSPLIT)) {
349   iCAS <- CASSPLIT$CAS_Harmonized[[irow]]
350   data <-ecotox_data_CAS %>%
351                         filter(CAS_Harmonized == iCAS &
352                                  merged_VA == "VA" )
353   merged_A.V <- lm(log.EC10 ~ SpeciesGroup_Harmonized.fac, data=data)
354   CASSPLIT$model_A.V[[irow]] <-
355          summary(merged_A.V)$coefficients[,"Pr(>|t|)"][[2]]
356
357 }
358
359
360 for(irow in 1:nrow(CASSPLIT)) {
361     iCAS <- CASSPLIT$CAS_Harmonized[[irow]]
362     data <-ecotox_data_CAS %>%
363                         filter(CAS_Harmonized == iCAS&
364                                  merged_IA == "IA" )
365
366     merged_A.I <- lm(log.EC10 ~ SpeciesGroup_Harmonized.fac, data=data)
367
368     CASSPLIT$model_A.I[[irow]] <-
369          summary(merged_A.I)$coefficients[,"Pr(>|t|)"][[2]]
370 }
371
372 R code for deriving split SSDs based on the process flow Experimental test data curation 
373 and harmonization
374
375 Table A1
376
377 ###Library
378 library(ggplot2)
379 library(tidyverse)
380 library(readr)
381 library(scales)
382 library(tidyr)
383 library(readxl)
384 library(dplyr)
385 library(psych)
386 library(boot)
387 require(fitdistrplus)
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388 library(cowplot)
389
390 ## Input data
391 ##All step for species taxonomy harmonization was done in excel; step 1a to 1e
392 ecotox_datain <- read_excel("... /Supplemental Excel File.xlsx", sheet = "Excel Table S1", 
393 skip = 2)
394
395 ###subset required data columns
396 ecotox_datain <-
397 ecotox_datain[,c("ID","test_id","CAS_Harmonized","NameHarmonized","Name","SpeciesNa
398 me_Harmonized", "SpeciesGroup_Harmonized","SpeciesName_Harmonized (distinct 
399 species)","Genus_Harmonized", 
400 "SpeciesGroupExposure_Harmonized","Conc1Harmonized.ug.L.", 
401 "TypeToxData","Endpoint_Harmonized","EffCode", 
402 "endpoint","HarmonizedExposureDuration.d.","ChronicDuration", 
403 "Habitat_Aggregated_Harmonized")]
404
405 ### select a chemical/s: Simazine used as an example
406
407 selected_CAS<-c("122-34-9")# Simazine
408
409 ecotox_data<- ecotox_datain %>%
410   filter(Habitat_Aggregated_Harmonized == "Freshwater aquatic",CAS_Harmonized == 
411 selected_CAS)
412
413 ecotox_data %>% 
414   group_by(CAS_Harmonized) %>% 
415   slice_head()
416
417 # Function for saving and displaying a plot.
418
419 import::from(ggplot2, ggsave)
420
421
422 save_and_display <- function(fig, filename, width = 6, height = 4){
423   filepath <- paste("Figures/", filename, ".", "png", sep = "")
424   ggsave(filepath, fig, width = width, height = height)
425   return(fig)
426 }
427
428 ####create a path for figures
429 plot_directory <- "Figures"
430
431 unlink(paste(plot_directory, "/*", sep = ""))
432 dir.create(plot_directory, recursive = TRUE)
433
434 ##Step1f:Exposure duration
435 #Exposure duration type allocation- acute or chronic
436 #We used extrapolation factors from Aurisano et al. 2019 
437
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438 ecotox_data$HarmDur2 <- 
439 as.numeric(as.character(ecotox_data$HarmonizedExposureDuration.d.))
440
441 ecotox_data$duration_type.curated <- ifelse (
442   ecotox_data$HarmDur2 <= 1 & 
443     (ecotox_data$SpeciesGroupExposure_Harmonized == ("Algae and cyanobacteria") | 
444        ecotox_data$SpeciesGroupExposure_Harmonized == "Other microorganism") ,"Acute",
445   ifelse(
446     ecotox_data$HarmDur2> 1 & 
447       (ecotox_data$SpeciesGroupExposure_Harmonized == "Algae and cyanobacteria" | 
448          ecotox_data$SpeciesGroupExposure_Harmonized =="Other microorganism"), 
449 "Chronic",
450     ifelse(
451       ecotox_data$HarmDur2<= 4  &
452         ecotox_data$SpeciesGroupExposure_Harmonized == "Invertebrates", "Acute",
453       ifelse(
454         ecotox_data$HarmDur2 > 4 & 
455           ecotox_data$SpeciesGroupExposure_Harmonized == "Invertebrates",  "Chronic",
456         ifelse(
457           ecotox_data$HarmDur2 <= 7 & 
458             (ecotox_data$SpeciesGroupExposure_Harmonized == "Other plants" | 
459                ecotox_data$SpeciesGroupExposure_Harmonized =="Vertebrates"), "Acute",
460           ifelse(
461             ecotox_data$HarmDur2 > 7 & 
462               (ecotox_data$SpeciesGroupExposure_Harmonized == "Other plants" | 
463                  ecotox_data$SpeciesGroupExposure_Harmonized =="Vertebrates"), "Chronic", 
464             NA
465           ))))))
466
467
468 ##### Exposure durations with NAs
469
470
471 ecotox_data$duration_type.curated.2 <- ifelse(ecotox_data$ChronicDuration == "TRUE", 
472 "Chronic", "Acute")
473
474 ecotox_data$Harmonised_effect.type<- (ifelse(is.na(ecotox_data$duration_type.curated), 
475 paste(ecotox_data$duration_type.curated.2, ecotox_data$Endpoint_Harmonized, sep=" "), 
476                                              paste(ecotox_data$duration_type.curated, 
477 ecotox_data$Endpoint_Harmonized
478                                                    , sep=" ")))
479
480 ####Remove ambigous endpoints
481
482 ecotox_data<-ecotox_data [ecotox_data$Harmonised_effect.type %in% c("Acute EC10", 
483 "Chronic EC10","Acute NOEC","Chronic NOEC" ,"Acute EC50", "Chronic EC50"), ]
484
485 ##Step2a:Extrapolation to chronic EC10 equivalents: We applied full regression equation 
486 (slope not assumed to unity)
487 ecotox_data_extrapolated <- ecotox_data
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488 ecotox_data_extrapolated$EC10 = ifelse(ecotox_data_extrapolated$Harmonised_effect.type 
489 %in% "Acute NOEC",ecotox_data_extrapolated $Conc1Harmonized.ug.L.^0.816/ 0.953,
490                                        ifelse(ecotox_data_extrapolated$Harmonised_effect.type %in% 
491 "Chronic NOEC",ecotox_data_extrapolated $Conc1Harmonized.ug.L.^0.965/1.394,
492                                               ifelse(ecotox_data_extrapolated$Harmonised_effect.type %in% 
493 "Acute EC50",ecotox_data_extrapolated $Conc1Harmonized.ug.L.^0.869/3.219,
494                                                      ifelse(ecotox_data_extrapolated$Harmonised_effect.type 
495 %in% "Chronic EC50",ecotox_data_extrapolated $Conc1Harmonized.ug.L.^0.872/0.185,
496                                                             
497 ifelse(ecotox_data_extrapolated$Harmonised_effect.type %in% "Acute 
498 EC10",ecotox_data_extrapolated $Conc1Harmonized.ug.L.^0.813/0.108,
499                                                                    
500 ifelse(ecotox_data_extrapolated$Harmonised_effect.type %in% "Chronic 
501 EC10",ecotox_data_extrapolated $Conc1Harmonized.ug.L./1,
502                                                                           NA))))))
503
504 ## Aggregation of data points per species 
505 #Step 2: First average or geometric mean for the same effect level (NOEC vs. EC10 vs. 
506 EC50) and then conversion to EC10eq?
507
508 ecotox_data_extrapolated <- ecotox_data_extrapolated %>%
509   group_by(CAS_Harmonized, SpeciesName_Harmonized) %>%
510   mutate(n = n(),
511          EC10_C = mean(EC10,na.rm = TRUE ),
512          max_c = max(EC10),
513          min_c = min(EC10)) %>%
514   ungroup()
515 ####Keeping distict species values
516 #Using species-chemical chemical combination
517
518 ecotox_data_extrapolated <- ecotox_data_extrapolated %>%
519   group_by(CAS_Harmonized) %>%
520   distinct_at('SpeciesName_Harmonized',.keep_all = TRUE)
521
522
523 #### Convert EC10 to logEC10;log and log 10 of values is different in r but same in excel
524
525 ecotox_data_extrapolated_logged <- ecotox_data_extrapolated %>%
526   mutate(log.EC10=log10(EC10_C))
527
528 ##Step2b:Data poor and data rich chemicals 
529 #Set data poor and data rich chemicals, by first summing the total number of species  per 
530 chemical and species group
531
532 ecotox_data_extrapolated_logged  <-ecotox_data_extrapolated_logged %>% 
533   group_by(CAS_Harmonized) %>% 
534   mutate(n_total=n(),
535          tax.count = (n_distinct(SpeciesGroup_Harmonized)))
536
537 ecotox_data_extrapolated_logged  <-ecotox_data_extrapolated_logged %>% 
538   group_by(CAS_Harmonized,SpeciesGroup_Harmonized) %>% 
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539   mutate(species.count = n())
540
541 ###step2c:Identification of data poor chemicals
542 #Criteria definition for minimum number of data points
543
544 ecotox_data_extrapolated_logged  <-ecotox_data_extrapolated_logged  %>%
545   mutate(
546     newcol = case_when(
547       tax.count < 3  ~ 'poor',
548       species.count < 3  ~ 'poor',
549       tax.count >= 3 & species.count < 3 ~ 'poor',
550       tax.count >= 3 & species.count >= 3 ~ 'rich'
551       
552     )
553   )
554
555 d <- ecotox_data_extrapolated_logged %>% group_by(CAS_Harmonized) %>% 
556   summarise(Condition = sum(newcol == "poor")) %>% mutate(Adequate.data = 
557 ifelse(Condition > 0 , "poor","rich"))
558 d
559
560 ecotox_data_extrapolated_logged<- left_join(ecotox_data_extrapolated_logged, d, by= 
561 c("CAS_Harmonized"= "CAS_Harmonized"))
562
563 ### Overview of the number of data poor and data rich chemicals:select data rich chemicals
564
565 poor_richchem <-ecotox_data_extrapolated_logged %>%
566   group_by(CAS_Harmonized) %>%
567   count(Adequate.data)
568 poor_richchem
569
570 ecotox_data_rich <- filter(ecotox_data_extrapolated_logged,
571                            Adequate.data=="rich")
572
573 ## Step3:Effect calculation
574 ##one can use order, arrange or sort to get frac or cumulative concentrations==PAF
575
576 ecotox_data_rich_CAS <- ecotox_data_rich %>%
577   group_by(CAS_Harmonized) %>%
578   arrange((log.EC10), .by_group = TRUE) %>%
579   mutate(frac_C=ppoints(log.EC10,0.5)) %>%
580   ungroup()
581
582
583 ecotox_data_rich_taxa<-  ecotox_data_rich %>%
584   group_by(CAS_Harmonized, SpeciesGroup_Harmonized)%>%
585   arrange((log.EC10), .by_group = TRUE) %>%
586   mutate(frac_t=ppoints(log.EC10,0.5)) %>%
587   ungroup()
588
589
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590 ## Calculating deterministic HC20 
591 ### Calculating deterministic HC20 per chemical
592
593 ecotox_data_CAS <-  ecotox_data_rich_CAS %>%
594   group_by(CAS_Harmonized) %>%
595   mutate(n_C = n(),
596          mu_C = mean(log.EC10),
597          SDV_C = sd(log.EC10),
598          lwr=mu_C-SDV_C,
599          upr=mu_C+SDV_C) %>% 
600   ungroup()
601 ecotox_data_CAS <- ecotox_data_CAS %>%
602   mutate(HC20_C = qnorm(0.2, mean=mu_C, sd=SDV_C),
603          HC5_C=qnorm(0.05, mean=mu_C, sd=SDV_C))
604
605 ### Deterministic HC20 per chemical-Speciesgroups
606 #We want the mean and SD per chemical AND species group and HC20 per species group
607
608 ecotox_data_TAXA <-ecotox_data_rich_taxa %>%
609   group_by(CAS_Harmonized, SpeciesGroup_Harmonized) %>%
610   mutate(n_t = n(),
611          mu_t = mean(log.EC10),
612          SDV_t = sd(log.EC10),
613          lwr_t=mu_t-SDV_t,
614          upr_t=mu_t+SDV_t) %>% 
615   ungroup()
616
617 ecotox_data_TAXA <- ecotox_data_TAXA%>% 
618   mutate(HC20_t = qnorm(0.2, mean=mu_t, sd=SDV_t),
619          HC5_t = qnorm(0.05, mean=mu_t, sd=SDV_t))
620
621 ##Step3
622 ###Plotting species distribution per chemicals
623
624 cols <- c( "#00B612" , "#0F4392","#ff9900")
625 cols.2 <- c( "#0F4392","#575757")
626 cols.3<- c( "#00B612", "#575757")
627 cols.4<- c( "#575757","#ff9900")
628
629 newxs <- seq(-2.5, 5.0, length.out = 1000)
630 ecotox_data_CAS$labels <- paste0("n", " = ", ecotox_data_CAS$n_total) 
631
632 new_label_No_split <- as_labeller(c(`Simazine` = "No split")) 
633
634 fig0<- ggplot(data = ecotox_data_CAS)+
635   geom_point(aes(x=log.EC10, y=frac_C, color = SpeciesGroup_Harmonized, 
636 shape=SpeciesGroup_Harmonized),size=5)+
637   scale_color_manual(values = cols)+
638   labs(x=expression(paste('log10 [EC10 (µg/L)]')),
639        y='Potentially affected species fraction') +
640   annotation_logticks(sides='b')+
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641   facet_wrap(.~Name, ncol=1, labeller = new_label_No_split) +
642   theme(strip.text.x = element_text(size =20))+
643   
644   
645   geom_text(data=ecotox_data_CAS, aes(1, 0.95,label=labels), size=4)
646
647 ###Deterministic curve per chemical
648
649 d_fit_chemical <- c(unique(ecotox_data_CAS$CAS_Harmonized))
650 d_fit_chemical <- as.data.frame(d_fit_chemical)
651 colnames(d_fit_chemical) [1] <- "CAS_Harmonized"
652
653 distribution_prameters_C <- ecotox_data_CAS %>% 
654   group_by(CAS_Harmonized) %>% 
655   slice(1)
656
657
658 d_fit_chemical <- d_fit_chemical %>% 
659   left_join(distribution_prameters_C[,c("CAS_Harmonized", "mu_C", "SDV_C","Name")],
660             by=c("CAS_Harmonized")) %>% 
661   right_join(
662     tidyr::expand(d_fit_chemical, CAS_Harmonized, EC = newxs),
663     by = c("CAS_Harmonized")) 
664
665
666 d_fit_chemical <- d_fit_chemical %>% 
667   mutate(PAF_C=pnorm(EC, mean=mu_C, sd=SDV_C))
668 # mutate(PAF_C=pnorm(EC, mean=log.EC10$estimate[1], #sd=log.EC10$estimate[2]))
669
670 SSD_chemical <- ggplot()+
671   
672   scale_color_manual(values = cols)+
673   geom_line(data=d_fit_chemical,
674             aes(x=EC,
675                 y=PAF_C), color="DARK GRAY") +
676   geom_smooth() +
677   labs(x = expression(paste('log10 [EC10 (µg/L)]')), 
678        y = 'Potentially affected species fraction')+
679   geom_segment(aes(x =ecotox_data_CAS$HC20_C, y = 0.0, xend = 
680 ecotox_data_CAS$HC20_C,  yend = 0.2),color ="red", size=0.9)+
681   
682   geom_segment(aes(x =ecotox_data_CAS$HC5_C, y = 0.0, xend = 
683 ecotox_data_CAS$HC5_C,  yend = 0.05),color ="black",  size=0.9)+#1.2
684   
685   facet_wrap(.~Name, ncol=1, labeller=new_label_No_split) +
686   theme(strip.text.x = element_text(size = 20))
687
688
689 ### Species group determistic curves:Creating plots per chemicals and species group 
690 combination to create deterministic fit 
691
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692 new_label_full_split <- as_labeller(c(`Simazine` = "Full split")) 
693
694 d_fit_taxa <- unique(ecotox_data_TAXA[c("CAS_Harmonized")])
695 d_fit_taxa <- as.data.frame(d_fit_taxa)
696 colnames(d_fit_taxa) [1] <- c("CAS_Harmonized")
697
698 distribution_prameters_t <- ecotox_data_TAXA %>% 
699   group_by(CAS_Harmonized, SpeciesGroup_Harmonized) %>% 
700   slice(1)
701
702
703 d_fit_taxa <- d_fit_taxa %>% 
704   left_join(distribution_prameters_t[,c( "CAS_Harmonized","SpeciesGroup_Harmonized", 
705 "mu_t","SDV_t", "Name")],
706             by=c("CAS_Harmonized")) %>% 
707   right_join(
708     tidyr::expand(d_fit_taxa, CAS_Harmonized,EC = newxs),
709     by = c("CAS_Harmonized")) 
710
711
712 d_fit_taxa <- d_fit_taxa %>% 
713   mutate(PAF_t=pnorm(EC, mean=mu_t, sd=SDV_t))
714
715 SSD_taxa <- ggplot()+
716   #geom_point(data = ecotox_data_TAXA, aes(x = log.EC10, y = frac_t, colour 
717 =SpeciesGroup_Harmonized)) +
718   scale_color_manual(values = cols)+
719   geom_line(data=d_fit_taxa,
720             aes(x=EC,
721                 y=PAF_t,
722                 color= SpeciesGroup_Harmonized,
723                 Size=1)) +
724   labs(x = expression(paste('log10 [EC10 (µg/L)]')), 
725        y = 'Potentially affected species fraction')+
726   
727   facet_wrap(.~Name, ncol=1, labeller = new_label_full_split ) +
728   theme(strip.text.x = element_text(size = 20))
729
730 SSD_taxa
731
732 ###save output with points 
733
734 SSD_taxa_points <- ggplot()+
735   geom_point(data = ecotox_data_TAXA, aes(x = log.EC10, y = frac_t, colour 
736 =SpeciesGroup_Harmonized),size=5) +
737   scale_color_manual(values = cols)+
738   geom_line(data=d_fit_taxa,
739             aes(x=EC,
740                 y=PAF_t,
741                 color= SpeciesGroup_Harmonized,
742                 Size=2)) +
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743   
744   labs(x = expression(paste('log10 [EC10 (µg/L)]')), 
745        y = 'Potentially affected species fraction')+
746   
747   facet_wrap(.~Name, ncol=1,labeller = new_label_full_split ) +
748   theme(strip.text.x = element_text(size = 20))
749
750
751
752 save_and_display(
753   SSD_taxa_points,
754   "Herbicide_1-8.single SSD_no CI_no split",
755   width = 7,
756   height = 18)
757
758 SSD_taxa_points
759
760 ### Adding CI to chemicals deterministic curve
761 #for herbicides newxs <- seq(0.001, 100, length.out = 1000) 
762 #for insecticides newxs <- seq(-0.1, 10, length.out = 1000) 
763 #insectides requires much lower starting scales 0.001
764
765 d.in <-ecotox_data_CAS
766 myboot2 <- function(d.in, newxs){
767   xr <- sample(d.in$log.EC10, length(d.in$log.EC10), replace = TRUE)
768   
769   # fit distribution to new data
770   fitr <- fitdistr(xr, 'normal')
771   
772   ##predict PAF for new data
773   pyr <- pnorm(newxs, mean = fitr$estimate[1], sd = fitr$estimate[2])
774   return(pyr)
775 }
776
777 pdat.final <- NULL
778 bootdat.final <- NULL
779 set.of.CAS_Harmonized <- unique(d.in$CAS_Harmonized)
780 id <- set.of.CAS_Harmonized[1]
781
782 for(id in set.of.CAS_Harmonized){
783   data.sub <- d.in[which(d.in$CAS_Harmonized %in% id),]
784   
785   boots <- replicate(1000, myboot2(d.in=data.sub, newxs))
786   
787   # extract bootstrap values
788   bootdat <- data.frame(boots)
789   bootdat$newxs <- newxs
790   bootdat <- reshape2::melt(bootdat, id = 'newxs')
791   # extract CI
792   cis <- apply(boots, 1, quantile, c(0.025, 0.975))
793   rownames(cis) <- c('lwr', 'upr')
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794   # add fitted values
795   pdat <- data.frame(newxs, py = pnorm(newxs, mean = data.sub$mu_C, sd = 
796 data.sub$SDV_C)) 
797   # add CI
798   pdat <- cbind(pdat, t(cis))
799   pdat$CAS_Harmonized <- id
800   
801   bootdat$CAS_Harmonized <- id
802   
803   pdat.final <- rbind(pdat.final, pdat)
804   bootdat.final <- rbind(bootdat.final, bootdat)
805   
806 }
807
808 #### Chemical CI
809
810 SSD_CAS_CI <- SSD_chemical
811
812 for(id in set.of.CAS_Harmonized){
813   print(id)
814   
815   SSD_CAS_CI <- SSD_CAS_CI +
816     
817     geom_ribbon(data = pdat.final[which(pdat.final$CAS_Harmonized %in% id),], aes(x 
818 =newxs, ymin =lwr,ymax = upr), 
819                 fill="black",  alpha=0.2)
820   
821 }
822
823 SSD_CAS_CI
824
825 ##Add original data
826 SSD_chemical2 <- SSD_CAS_CI +
827   geom_segment(aes(x =ecotox_data_CAS$HC20_C, y = 0.0, xend = 
828 ecotox_data_CAS$HC20_C,  yend = 0.2),color ="red", size=0.9) +
829   
830   geom_segment(aes(x =ecotox_data_CAS$HC5_C, y = 0.0, xend = 
831 ecotox_data_CAS$HC5_C,  yend = 0.05),color ="black",  size=0.9) +
832   geom_point(data = ecotox_data_CAS, aes(x = log.EC10, y = frac_C, colour 
833 =SpeciesGroup_Harmonized, shape=SpeciesGroup_Harmonized),size=5) +
834   annotation_logticks(sides='b')+
835   theme(legend.key.size = unit(0.5, 'cm'),
836         legend.key.height = unit(0.5, 'cm'),
837         legend.key.width = unit(0.5, 'cm'),
838         legend.title = element_text(size=20),
839         legend.text = element_text(size=20))+
840   geom_errorbarh(data=ecotox_data_CAS, mapping=aes(y=frac_C, x=log.EC10, 
841 xmin=log10(min_c), xmax=log10(max_c), colour = SpeciesGroup_Harmonized), 
842 height=0.02, size=0.4)+
843   geom_text(data=ecotox_data_CAS, aes(-1, 0.9,label=labels), size=5.5)+
844   
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845   scale_x_continuous(limits = c(-2,6)) 
846
847
848 SSD_chemical2
849
850 #### CI around taxonomic groups fitted curves
851
852 d.in <-ecotox_data_TAXA
853 myboot2 <- function(d.in, newxs){
854   xr <- sample(d.in$log.EC10, length(d.in$log.EC10), replace = TRUE)
855   
856   # fit distribution to new data
857   fitr <- fitdistr(xr, 'normal')
858   
859   ##predict PAF for new data
860   pyr <- pnorm(newxs, mean = fitr$estimate[1], sd = fitr$estimate[2])
861   return(pyr)
862 }
863
864 pdat.final <- NULL
865 bootdat.final <- NULL
866 set.of.CAS_Harmonized <- unique(d.in$CAS_Harmonized)
867 id <- set.of.CAS_Harmonized[1]
868
869 set.of.groups <- (unique(d.in$SpeciesGroup_Harmonized))
870 input.group <-set.of.groups
871 input.group
872 input.group<-set.of.groups[2]
873
874 for(id in set.of.CAS_Harmonized){
875   data.sub <- d.in[which(d.in$CAS_Harmonized %in% id),]
876   
877   
878   for(input.group in set.of.groups){
879     data.sub.in <-  data.sub[which(data.sub$SpeciesGroup_Harmonized %in% input.group),]
880     
881     
882     boots <- replicate(1000, myboot2(d.in=data.sub.in, newxs))
883     
884     # extract bootstrap values
885     bootdat <- data.frame(boots)
886     bootdat$newxs <- newxs
887     bootdat <- reshape2::melt(bootdat, id = 'newxs')
888     # extract CI
889     cis <- apply(boots, 1, quantile, c(0.025, 0.975))
890     rownames(cis) <- c('lwr', 'upr')
891     # add fitted values
892     pdat <- data.frame(newxs, py = pnorm(newxs, mean = data.sub.in$mu_t, sd = 
893 data.sub.in$SDV_t)) 
894     # add CI
895     pdat <- cbind(pdat, t(cis))
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896     pdat$CAS_Harmonized <- id
897     pdat$SpeciesGroup_Harmonized <- input.group
898     
899     
900     bootdat$CAS_Harmonized <- id
901     bootdat$SpeciesGroup_Harmonized <- input.group
902     
903     
904     pdat.final <- rbind(pdat.final, pdat)
905     bootdat.final <- rbind(bootdat.final, bootdat)
906     
907   }
908 }
909
910
911 ####Species group CI
912
913 SSD_taxa_CI <- SSD_taxa
914 for(id in set.of.CAS_Harmonized){
915   print(id)
916   for(input.group in set.of.groups){
917     print(input.group)
918     
919     SSD_taxa_CI <- SSD_taxa_CI +
920       
921       geom_ribbon(data = pdat.final[which(pdat.final$CAS_Harmonized %in% id & 
922 pdat.final$SpeciesGroup_Harmonized %in% input.group),], aes(x =newxs, ymin =lwr,ymax 
923 = upr), 
924                   fill="black",  alpha=0.2)
925     
926   }
927 }
928 SSD_taxa_CI
929
930 ###Observation per species groups
931 ecotox_data_TAXA$reduced_species.group.name <-
932 ifelse(ecotox_data_TAXA$SpeciesGroup_Harmonized=="Invertebrates", "I",
933                                                      
934 ifelse(ecotox_data_TAXA$SpeciesGroup_Harmonized=="Vertebrates", "V",
935                                                             
936                                                             "A"))
937
938 ecotox_data_TAXA$labels.taxa <- paste0(ecotox_data_TAXA$reduced_species.group.name, 
939 " = ", ecotox_data_TAXA$n_t)
940
941 ##position of the text
942 ecotox_data_TAXA$y_position <- 
943 as.numeric(factor(ecotox_data_TAXA$reduced_species.group.name)) *0.05 + 0.80#0.65
944
945 ###Add original data
946 SSD_taxa2 <- SSD_taxa_CI +
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947   geom_segment(aes(x =ecotox_data_TAXA$HC20_t, y = 0.0, xend = 
948 ecotox_data_TAXA$HC20_t,  yend = 0.2),color ="red", size=0.9) +
949   
950   geom_segment(aes(x =ecotox_data_TAXA$HC5_t, y = 0.0, xend = 
951 ecotox_data_TAXA$HC5_t,  yend = 0.05),color ="black",  size=0.9) +
952   geom_point(data = ecotox_data_TAXA, aes(x = log.EC10, y = frac_t, colour 
953 =SpeciesGroup_Harmonized, shape=SpeciesGroup_Harmonized),size=5) +
954   scale_color_manual(values = cols) +
955   annotation_logticks(sides='b')+
956   theme(legend.key.size = unit(0.5, 'cm'),
957         legend.key.height = unit(0.5, 'cm'),
958         legend.key.width = unit(0.5, 'cm'),
959         legend.title = element_text(size=15),
960         legend.text = element_text(size=15))+
961   geom_errorbarh(data=ecotox_data_TAXA, mapping=aes(y=frac_t, x=log.EC10, 
962 xmin=log10(min_c), xmax=log10(max_c), colour = SpeciesGroup_Harmonized), 
963 height=0.02, size=0.4)+
964   geom_text(aes(-0.7, ecotox_data_TAXA$y_position,label=ecotox_data_TAXA$labels.taxa), 
965 size=5.5,family="Sans", fontface="plain")+
966   scale_x_continuous(limits = c(-2,6))
967
968
969 ### Grid arrange first split plots
970 #Here all species groups are plotted separately
971
972 p <- plot_grid (SSD_chemical2  + theme(legend.position="none", axis.text = 
973 element_text(size = 15),axis.title = element_text(size = 17)),
974                 SSD_taxa2 + theme(legend.position="right", axis.text = element_text(size = 
975 15),axis.title = element_text(size = 17)),
976                 
977                 labels = c('',''),
978                 label_x = 0.4,
979                 ncol = 2,
980                 rel_widths = c(1.4, 2.0),
981                 rel_heights = 10,     
982                 align = "h",
983                 label_size = 25)
984
985 ## Second splitting
986 #calculating PAF after combining vertebrates and other plants species groups
987 #This is where we combined data points for various groups based on the plot output
988 #Always check the species that need s to be split and change color sceme accordingly
989
990 ecotox_data_rich$Merged_group <-
991 ifelse(ecotox_data_rich$SpeciesGroup_Harmonized=="Algae, cyanobacteria and aquatic 
992 plants", "Algae, cyanobacteria and aquatic plants", "Others")
993
994 ecotox_data_rich %>%
995   group_by(CAS_Harmonized, Merged_group)%>%
996   arrange((log.EC10), .by_group = TRUE) %>%
997   mutate(frac_t=ppoints(log.EC10,0.5)) %>%
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998   ungroup()->ecotox_data_rich_taxa.2
999

1000 ###New effect factors
1001 ecotox_data_rich_taxa.2 <-ecotox_data_rich_taxa.2 %>%
1002   group_by(CAS_Harmonized, Merged_group) %>%
1003   mutate(n_t = n(),
1004          mu_t = mean(log.EC10),
1005          SDV_t = sd(log.EC10)) %>% 
1006   
1007   ungroup()
1008
1009 ###Observation per merged species groups
1010 ecotox_data_rich_taxa.2$reduced_species.group.name.2 <-
1011 ifelse(ecotox_data_rich_taxa.2$Merged_group=="Algae, cyanobacteria and aquatic plants", 
1012 "A",
1013                                                               
1014                                                               "Other")
1015
1016
1017 ecotox_data_rich_taxa.2$labels.taxa.2 <- 
1018 paste0(ecotox_data_rich_taxa.2$reduced_species.group.name.2, " = ", 
1019 ecotox_data_rich_taxa.2$n_t)
1020
1021 ecotox_data_rich_taxa.2
1022
1023
1024 ##position of the text
1025 ecotox_data_rich_taxa.2$y_position <- 
1026 as.numeric(factor(ecotox_data_rich_taxa.2$reduced_species.group.name.2))*0.05 + 0.85
1027
1028 ecotox_data_rich_taxa.2 <- ecotox_data_rich_taxa.2%>%
1029   mutate(HC20_t = qnorm(0.2, mean=mu_t, sd=SDV_t),
1030          HC5_t = qnorm(0.05, mean=mu_t, sd=SDV_t))
1031
1032
1033 ### Merged group deterministic curve
1034 #Change the color depending on the grouping selected
1035
1036 d_fit_taxa.2 <- unique(ecotox_data_rich_taxa.2[c("CAS_Harmonized")])
1037 d_fit_taxa.2 <- as.data.frame(d_fit_taxa.2)
1038 colnames(d_fit_taxa.2) [1] <- c("CAS_Harmonized")
1039
1040 distribution_prameters_t <- ecotox_data_rich_taxa.2 %>% 
1041   group_by(CAS_Harmonized, Merged_group) %>% 
1042   slice(1)
1043 ###facet_grid new labels (manually done)
1044 new_label <- as_labeller(c(`Simazine` = "Responsible split"))
1045
1046 d_fit_taxa.2 <- d_fit_taxa.2 %>% 
1047   left_join(distribution_prameters_t[,c( "CAS_Harmonized","Merged_group", 
1048 "mu_t","SDV_t", "Name")],
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1049             by=c("CAS_Harmonized")) %>% 
1050   right_join(
1051     tidyr::expand(d_fit_taxa.2, CAS_Harmonized,EC = newxs),
1052     by = c("CAS_Harmonized")) 
1053
1054
1055 d_fit_taxa.2 <- d_fit_taxa.2 %>% 
1056   mutate(PAF_t=pnorm(EC, mean=mu_t, sd=SDV_t))
1057
1058 SSD_taxa.2 <- ggplot()+
1059   #geom_point(data = ecotox_data_rich_taxa.2, aes(x = log.EC10, y = frac_t, colour 
1060 =Merged_group)) +
1061   scale_color_manual(values = cols.3)+
1062   geom_line(data=d_fit_taxa.2,
1063             aes(x=EC,
1064                 y=PAF_t,
1065                 color= Merged_group,
1066                 Size=2)) +
1067   # scale_x_continuous(limits = c(0.010, 10),
1068   #   trans = log10_trans()) +
1069   
1070   labs(x = expression(paste('log10 [EC10 (µg/L)]')), 
1071        y = 'Potentially affected species fraction')+
1072   #facet_grid(cols=vars(Name))+
1073   facet_wrap(.~Name, ncol=1, labeller=new_label) +
1074   theme(strip.text.x = element_text(size = 20))
1075
1076
1077 SSD_taxa.2
1078
1079 #### CI around taxonomic groups fitted curves
1080 ###combined groups after splitting
1081
1082 d.in <-ecotox_data_rich_taxa.2
1083 myboot2 <- function(d.in, newxs){
1084   xr <- sample(d.in$log.EC10, length(d.in$log.EC10), replace = TRUE)
1085   
1086   # fit distribution to new data
1087   fitr <- fitdistr(xr, 'normal')
1088   
1089   ##predict PAF for new data
1090   pyr <- pnorm(newxs, mean = fitr$estimate[1], sd = fitr$estimate[2])
1091   return(pyr)
1092 }
1093
1094 pdat.final <- NULL
1095 bootdat.final <- NULL
1096 set.of.CAS_Harmonized <- unique(d.in$CAS_Harmonized)
1097 id <- set.of.CAS_Harmonized[1]
1098
1099 set.of.groups <- (unique(d.in$Merged_group))
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1100 input.group <-set.of.groups
1101 input.group
1102 input.group<-set.of.groups[2]
1103
1104 for(id in set.of.CAS_Harmonized){
1105   data.sub <- d.in[which(d.in$CAS_Harmonized %in% id),]
1106   #set.of.groups <- as.character(unique(data.sub$SpeciesGroup_Harmonized))
1107   
1108   for(input.group in set.of.groups){
1109     data.sub.in <-  data.sub[which(data.sub$Merged_group %in% input.group),]
1110     
1111     # new data to predict
1112     #newxs <- seq(0.01, max(data.sub.in$log.EC10), length.out = 1000)
1113     boots <- replicate(1000, myboot2(d.in=data.sub.in, newxs))
1114     
1115     # extract bootstrap values
1116     bootdat <- data.frame(boots)
1117     bootdat$newxs <- newxs
1118     bootdat <- reshape2::melt(bootdat, id = 'newxs')
1119     # extract CI
1120     cis <- apply(boots, 1, quantile, c(0.025, 0.975))
1121     rownames(cis) <- c('lwr', 'upr')
1122     # add fitted values
1123     pdat <- data.frame(newxs, py = pnorm(newxs, mean = data.sub.in$mu_t, sd = 
1124 data.sub.in$SDV_t)) 
1125     # add CI
1126     pdat <- cbind(pdat, t(cis))
1127     pdat$CAS_Harmonized <- id
1128     pdat$Merged_group <- input.group
1129     
1130     bootdat$CAS_Harmonized <- id
1131     bootdat$Merged_group <- input.group
1132     
1133     
1134     pdat.final <- rbind(pdat.final, pdat)
1135     bootdat.final <- rbind(bootdat.final, bootdat)
1136     
1137   }
1138 }
1139 #### Add CI to the merged species groups
1140 SSD_taxa_CI.2 <- SSD_taxa.2
1141 for(id in set.of.CAS_Harmonized){
1142   print(id)
1143   for(input.group in set.of.groups){
1144     print(input.group)
1145     
1146     SSD_taxa_CI.2 <- SSD_taxa_CI.2 +
1147       
1148       
1149       geom_ribbon(data = pdat.final[which(pdat.final$CAS_Harmonized %in% id & 
1150 pdat.final$Merged_group %in% input.group),], aes(x =newxs, ymin =lwr,ymax = upr), 
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1151                   fill="black",  alpha=0.2)
1152     
1153     
1154   }
1155 }
1156
1157 SSD_taxa.2. <- SSD_taxa_CI.2 +
1158   geom_segment(aes(x =ecotox_data_rich_taxa.2$HC20_t, y = 0.0, xend = 
1159 ecotox_data_rich_taxa.2$HC20_t,  yend = 0.2),color ="red",  size=0.9) +
1160   geom_segment(aes(x =ecotox_data_rich_taxa.2$HC5_t, y = 0.0, xend = 
1161 ecotox_data_rich_taxa.2$HC5_t,  yend = 0.05),color ="black", size=0.9) +
1162   geom_point(data = ecotox_data_rich_taxa.2, aes(x = log.EC10, y = frac_t, colour 
1163 =Merged_group, shape=SpeciesGroup_Harmonized),size=5) +
1164   scale_color_manual(values = cols.3) +
1165   annotation_logticks(sides='b')+
1166   theme(legend.key.size = unit(0.5, 'cm'),
1167         legend.key.height = unit(0.5, 'cm'),
1168         legend.key.width = unit(0.5, 'cm'),
1169         legend.title = element_text(size=15),
1170         legend.text = element_text(size=15))+
1171   
1172   geom_text(aes(-0.7, 
1173 ecotox_data_rich_taxa.2$y_position,label=ecotox_data_rich_taxa.2$labels.taxa.2), size=5.5,
1174             family="Sans", fontface="plain", lineheight=.8)+
1175   geom_errorbarh(data=ecotox_data_rich_taxa.2, mapping=aes(y=frac_t, x=log.EC10, 
1176 xmin=log10(min_c), xmax=log10(max_c), colour = Merged_group), height=0.02, size=0.4)+
1177   
1178   scale_x_continuous(limits = c(-2,6))
1179
1180 ### Grid arrange all the three plots
1181 SSD_taxa2 <- SSD_taxa2 + theme(
1182   axis.text.y = element_blank(),
1183   axis.ticks.y = element_blank(),
1184   axis.title.y = element_blank())
1185
1186 SSD_taxa.2. <- SSD_taxa.2. + theme(
1187   axis.text.y = element_blank(),
1188   axis.ticks.y = element_blank(),
1189   axis.title.y = element_blank())
1190
1191 merged.figure <- plot_grid (SSD_chemical2 + theme(legend.position="none", axis.text = 
1192 element_text(size = 20),axis.title = element_text(size = 20)),
1193                             SSD_taxa2 + theme(legend.position="none", axis.text = element_text(size = 
1194 20),axis.title = element_text(size = 20)),
1195                             SSD_taxa.2.  + theme(legend.position="none", axis.text = element_text(size 
1196 = 20),axis.title = element_text(size = 20)),
1197                             labels = c('',''),
1198                             label_x = 0.4,
1199                             ncol = 3,
1200                             rel_widths = c(0.6, 0.6, 0.6), ##1.2
1201                             rel_heights = 10,     
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1202                             align = "h",
1203                             label_size = 29)
1204
1205 title <- ggdraw() + draw_label("a.Simazine, CAS:122-34-9 (Photosynthesis inhibition 
1206 MoA):split algae, cyanobacteria and aquatic plants from the rest", fontface='bold', size=20)
1207
1208 merged.figure <- plot_grid(title, merged.figure, ncol=1, rel_heights=c(0.1, 1)) # rel_heights 
1209 values control title margins
1210
1211 save_and_display(
1212   merged.figure,
1213   "Split_ssds_Simazine",
1214   width = 21,
1215   height = 7)
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