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When it comes to in-vehicle networks (IVNs), the controller area network (CAN) bus dominates the market; 
automobiles manufactured and sold worldwide depend on the CAN bus for safety-critical communications 
between various components of the vehicle (e.g., the engine, the transmission, the steering column). 
Unfortunately, the CAN bus is inherently insecure; in fact, it completely lacks controls such as authentication, 
authorization, and confidentiality (i.e., encryption). Therefore, researchers have travailed to develop automotive 
security enhancements. The automotive intrusion detection system (IDS) is especially popular in the literature—
due to its relatively low cost in terms of money, resource utilization, and implementation effort. That said, 
developing and evaluating an automotive IDS is often challenging; if researchers do not have access to a test 
vehicle, then they are forced to depend on publicly available CAN data—which is not without limitations. Lack 
of access to adequate CAN data, then, becomes a barrier to entry into automotive security research.
We seek to lower that barrier to entry by introducing a new CAN dataset to facilitate the development and 
evaluation of automotive IDSs. Our datasets—dubbed can-dataset, can-log, can-csv, can-ml, and can-

train-and-test—provide CAN data from four different vehicles produced by two different manufacturers. 
The attack captures for each vehicle model are equivalent, enabling researchers to assess the ability of a given 
IDS to generalize to different vehicle models and even different vehicle manufacturers. Our datasets contain 
replayable .log files as well as labeled and unlabeled .csv files, thereby meeting a variety of development 
and evaluation needs. In particular, the can-train-and-test dataset offers nine unique attacks, ranging from 
denial of service (DoS) to gear spoofing to standstill; as such, researchers can select a subset of the attacks for 
training and save the remainder for testing in order to assess a given IDS against unseen attacks. Many of our 
attacks, particularly the spoofing-related attacks, were conducted during live, on-the-road experiments with real 
vehicles. These attacks have known physical impacts. As a benchmark, we pit a number of machine learning IDSs 
against our dataset and analyze the results. We present our datasets—especially can-train-and-test—as a 
contribution to the existing catalogue of open-access datasets in hopes of filling in the gaps left by those datasets.
1. Introduction

The modern automobile has shifted from essentially mechanical to 
markedly electronic. Electronic control units (ECUs) now manage auto-
motive components from the engine to the transmission to the steering 
column to the airbags. Modern passenger vehicles routinely contain 
over 80 ECUs (Novotná, 2023); when it comes to luxury vehicles, which 
often incorporate a number of autonomous and semi-autonomous fea-
tures, the number of ECUs can be much higher (Zalman, 2017; Novotná, 
2023).

* Corresponding author.

ECUs communicate via in-vehicle networks (IVNs); the controller 
area network (CAN) is by far the most popular. The CAN bus, depicted 
in Fig. 1, facilitates reliable multiplex communication across twisted-
pair electrical wiring. It leverages differential signaling to minimize 
electrical interference (i.e., noise). In the absence of an attack, it is a 
highly robust protocol; however, it is fundamentally insecure. Modern-
day security practices—authentication, authorization, confidentiality 
(i.e., encryption)—have never been incorporated into the CAN bus. 
While the CAN bus does have integrity controls when it comes to error-
handling, it offers no integrity in an attack scenario (Bozdal et al., 2020; 
Lampe and Meng, 2023c).
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Fig. 1. Schematic diagram of the CAN bus.
Researchers have identified a number of attacks against the CAN 
bus, which can be organized into six families (Lampe and Meng, 2023b). 
These six attack families are enumerated in Table 1. Many of the attacks 
are simple—even trivial—to implement, and the impacts range from 
irritating to potentially lethal. Multiple CAN-related exploits have been 
published (see Table 2); fortunately, to our knowledge, no automotive 
attacks have been conducted in the wild.

The automotive intrusion detection system (IDS) has emerged as a 
favorite when it comes to CAN bus security. The automotive IDS is a rel-
atively inexpensive solution—in terms of monetary cost, resource cost, 
and implementation cost. Re-engineering effort is a major roadblock 
to cryptographic CAN bus security solutions (e.g., authentication, en-
cryption). Generally speaking, automotive intrusion detection systems 
do not engender a redesign of existing controller area networks (Lampe 
and Meng, 2023c). In fact, automotive IDSs do not need to be inte-
grated into the vehicle during manufacturing; they can be deployed at 
any time during the vehicle’s service life. Some automotive IDSs can 
even be deployed by ordinary consumers with no mechanical or techni-
cal expertise whatsoever (Lampe and Meng, 2022).

1.1. Motivation

In this section, we justify our motivation; specifically, we highlight 
the limitations of existing open-access CAN bus datasets. As mentioned 
earlier, intrusion detection systems are exceedingly valuable to automo-
tive security and to automotive security research. However, automotive 
IDSs depend on automotive data—i.e., CAN data—for development, ex-
perimentation, and evaluation. If researchers do not have access to a 
test vehicle, then the lack of sufficient CAN data becomes a barrier to 
entry into automotive security research. Therefore, we curated a new 
CAN dataset, can-train-and-test, to address the limitations of ex-
isting open-access datasets.

We noted the following limitations of existing publicly available 
datasets:

1. Lack of sufficient attack-free data
2. Lack of sufficient attack variation
3. Lack of sufficient vehicle variation
4. Lack of fidelity
5. Lack of severity
6. Lack of modernity
7. Lack of labels

Lack of sufficient attack-free data. When training a machine learn-
ing IDS, especially a deep learning IDS, attack-free (“normal”) data is 
crucial. Attack-free data provides a machine learning-based IDS with a 
much-needed baseline; once the IDS has established a baseline, it can 
flag deviations from the baseline as potential attacks. Many publicly 
available datasets provide insufficient attack-free data to train an effec-
tive machine learning classifier.

Rajapaksha et al. (2023) determined that the attack-free traffic cap-
2

tures relevant to each vehicle in the HCRL Survival Analysis dataset 
(Han et al., 2018) are not large enough to properly train a machine 
learning model—let alone a deep learning model.

Lack of sufficient attack variation. Generally speaking, automo-
tive IDSs are envisaged as anomaly-based IDSs, meaning that they clas-
sify traffic as either (1) “normal” or (2) “anomalous.” Typically, they 
build a profile of “normal” traffic during training. During testing, if 
they detect a deviation from the “normal” baseline, then they flag it 
as “anomalous.” Anomaly-based IDSs are expected to detect previously 
unseen attacks. If an automotive dataset contains exactly one type of at-
tack, then an anomaly-based IDS cannot be trained on one attack and 
tested on a second attack. If an automotive dataset contains no attacks 
at all, then it cannot be used to even train—let alone test—a supervised 
anomaly-based IDS.

The more attacks a dataset contains, the more options researchers 
have for training and testing with different combinations of known and 
unknown attacks. Therefore, when constructing our dataset, we crafted 
a variety of unique, realistic automotive attacks.

Several datasets (Kang and Kang, 2016; Sami et al., 2020; Sami, 
2019) contain only one or two attacks; several others (CrySyS Lab, 
2017; Kaiser et al., 2019; Song and Kim, 2020; Zago et al., 2020b,a; 
University of Turku, 2021) lack attack data altogether.

Lack of sufficient vehicle variation. The CAN protocol is ubiqui-
tous, but the implementation is not. Different automotive manufacturers 
use different CAN messages to communicate different information. As 
such, an automotive IDS trained and tested against one type of vehicle 
might not generalize to vehicles produced by a different manufacturer. 
Such an IDS might not even generalize to different vehicle models pro-
duced by the same manufacturer. Thus, an automotive dataset should 
include the same types of attacks against different vehicles, allowing re-
searchers to assess the detection capabilities of a proposed IDS against 
multiple vehicles.

Many automotive intrusion detection systems are built upon deep 
learning. When properly trained and optimized, such IDSs can be ex-
tremely powerful, accurate, and robust. However, training a deep learn-
ing model can be incredibly time consuming—and generally requires 
ample computing resources and training data. Researchers might want 
to train an IDS on one type of vehicle and then use it to monitor 
many different types of vehicles. If the IDS does not generalize well, 
then its performance metrics will drop—perhaps significantly—when 
faced with an unknown vehicle type. Section 7 demonstrates this phe-
nomenon: when pitted against a known vehicle and a known attack, 
the multi-layer perceptron (MLP) model earns an F1-score of 0.9811. 
When pitted against a known vehicle and an unknown attack, it attains 
an F1-score of 0.9964. But, when the MLP model is pitted against a 
known attack and an unknown vehicle, its F1-score drops to 0.9594. 
The MLP model performed better when facing an unknown attack than 
when facing an unknown vehicle. Similarly, traditional machine learn-
ing models tended to perform better against unknown attacks than 
against unknown vehicles. The Local Outlier Factor (LOF) model earned 
an F1-score of 0.9465 in the known vehicle, known attack scenario, and 
an F1-score of 0.9665 in the known vehicle, unknown attack scenario. 

When faced with a known attack and an unknown vehicle, the F1-score 
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fell to 0.2640. It is clear that vehicle variation can have a significant 
impact on the performance of an IDS. A potential solution would be to 
incorporate deep transfer learning into the IDS, which would drastically 
reduce the training burden while preparing the IDS to confront a new 
vehicle (Sun et al., 2022; Lampe and Meng, 2023c,b).

Two of the existing datasets (Kang and Kang, 2016; Hanselmann 
et al., 2020) were collected from a testbed; several more (CrySyS Lab, 
2017; Kaiser et al., 2019; Song and Kim, 2020; Verma et al., 2020, 
2022) do not disclose the model—or even the manufacturer—of the test 
vehicle. Still more datasets (Lee et al., 2017; Seo et al., 2018; Song et al., 
2020; Stabili and Marchetti, 2019; Sami et al., 2020; Sami, 2019; Kang 
et al., 2021; University of Turku, 2021; Stabili et al., 2022; Pollicino et 
al., 2023) are representative of only one vehicle.

Lack of fidelity. A number of the existing publicly available datasets 
were collected during simulations, from testbed environments, or while 
the vehicle was stationary. When experimenting with automotive at-
tacks, safety is a major concern, prompting researchers to focus on 
lower-fidelity options (e.g., simulations and testbeds). However, the 
goal of automotive security research is to develop solutions that will be 
deployed on real vehicles—not simulations and testbeds. Therefore, it is 
prudent to evaluate automotive security solutions with higher-fidelity 
datasets. If the evaluation dataset is highly realistic, then we can be 
more confident that a high-performing IDS will perform effectively in 
a real-world deployment. If, however, the evaluation dataset is highly 
unrealistic, then we cannot extrapolate that a high-performing IDS will 
still perform effectively when faced with a much-different real-world 
deployment.

Two of the existing datasets (Kang and Kang, 2016; Hanselmann 
et al., 2020) were collected from a testbed, which raises fidelity con-
cerns. Looking at the HCRL Car-Hacking dataset (Seo et al., 2018), 
Verma et al. (2020, 2022); Rajapaksha et al. (2023) discovered that 
the vehicle was never driven during the attacks. The Bus-Off dataset, 
the DAGA dataset, and the Ventus dataset all contain attack-free traf-
fic collected from a real vehicle—a 2016 Volvo V40. In fact, all three 
datasets contain the same attack-free CAN traffic traces. Each dataset’s 
attack traffic is constructed by selecting an attack-free trace and ei-
ther injecting or removing CAN frames. Because all of the attacks are 
generated from the same attack-free traces—for all three datasets—the 
datasets lack fidelity. In particular, they lack variation. When train-
ing a machine learning IDS, lack of natural variability in the data can 
be particularly problematic, leading to overfitting. The researchers be-
hind the Real ORNL Automotive Dynamometer CAN intrusion (ROAD) 
dataset (Verma et al., 2020, 2022) acknowledge that dynamometer data 
is known to be subtly different from CAN bus data collected during nor-
mal vehicle operation—which they cite as a limitation of their dataset.

Lack of severity. When pondering the possibility of a malicious, 
in-the-wild automotive attack, few people would expect the adversary 
to turn on the check engine light and stop there. Instead, we would 
expect a real-world attack to be a high-severity attack. Perhaps the ad-
versary would turn the steering wheel 180 degrees while the vehicle 
was cruising down the interstate (Miller and Valasek, 2016b,a). Per-
haps the adversary would deploy the airbag (Dürrwang et al., 2018). 
Perhaps the adversary would spoof ignition messages in order to start 
the vehicle and drive off with it (Tindell, 2023). In a CAN dataset, low-
severity automotive attacks can be very useful; however, it is important 
to include high-severity attacks as well.

Lack of modernity. Some automotive manufacturers have pro-
grammed enhanced security features into the CAN bus and/or the ECUs. 
For example, when we experimented with a 2016 Chevrolet Silverado, 
we would be ejected from the CAN bus if we sent too many spoofed CAN 
frames at too high a frequency. In contrast, the 2011 Chevrolet Impala 
rarely excluded us from CAN communications. To our knowledge, few 
of the existing datasets include attacks which have been adapted to sub-
vert the enhanced security features of some modern automobiles. With 
3

each publicized automotive exploit, security gains traction with auto-
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motive manufacturers; therefore, it is important to build datasets that 
contain attacks capable of eluding enhanced security features.

We were unable to determine the year of manufacture for the vehi-
cles used in the datasets analyzed in this paper. However, we know that 
one dataset was published in 2016 (Kang and Kang, 2016), two in 2017 
(CrySyS Lab, 2017; Lee et al., 2017), and two more in 2018 (Seo et al., 
2018; Song et al., 2020; Han et al., 2018). It is probable that some of 
the vehicles involved in these datasets are older vehicles that lack en-
hanced security features. Upon reading the documentation related to 
these datasets (e.g., related publications, README files, etc.), we did 
not see any indication that the attacks were modified to counteract en-
hanced security features.

Lack of labels. Many IDSs rely on supervised machine learning, 
which, in turn, relies on labeled datasets. We use the term “labeled” 
to refer to a dataset in which the individual samples (e.g., individual 
CAN frames) are pre-labeled to indicate whether they are attack-free 
samples or attack samples. The label might be a “0” or a “1” to denote 
“attack-free” and “attack,” respectively, or it might be a more specific 
label that identifies a particular type of attack. We simply check that the 
dataset is pre-labeled, meaning that practitioners do not need to label it 
themselves. Few of the existing datasets are adequately labeled; as such, 
they are ill-suited to training and testing supervised machine learning 
IDSs. Moreover, while unsupervised machine learning does not depend 
on labeled training data, an unsupervised machine learning IDS would 
typically be evaluated against labeled testing data, so that researchers 
could quantify its performance.

Excluding datasets which contain no attacks (and, thus, have no 
need of labels), we find that five of the existing datasets (Kang and 
Kang, 2016; Lee et al., 2017; Dupont et al., 2019; Verma et al., 2020, 
2022; Hanselmann et al., 2020) are unlabeled. The ROAD dataset 
(Verma et al., 2020, 2022) is not pre-labeled, but it does contain meta-
data (e.g., injection_id, injection_interval) that would help a 
practitioner to label the dataset. However, if an attack does not target a 
particular arbitration ID, then the injection_id is null; as such, it 
is harder for practitioners to pinpoint the attack CAN frames and label 
the dataset themselves. Verma et al., who developed the ROAD dataset, 
cite the lack of message labels as a limitation of their dataset.

In summary, motivated by the limitations of existing datasets, we 
seek to supply a new CAN dataset that provides (1) ample attack-free 
data, (2) a variety of different attack types, (3) a variety of different 
vehicle types—e.g., manufacturer, model, year, (4) high-fidelity data, 
(5) high-severity attacks, (6) attacks capable of evading modern security 
enhancements, and (7) labeled data.

While we focus on the domain of automotive intrusion detection, 
we note that our dataset could be used to design and assess automo-
tive security solutions beyond IDSs (e.g., firewall- and filtering-based 
techniques).

1.2. Contributions

Our contributions can be summarized as follows:

1. We present a new open-access CAN dataset for use in automotive 
intrusion detection. Our dataset includes
• A high volume of attack-free data
• Nine unique attacks
• Data from four different vehicles
• Attack-free data and attack data that was collected during live, 

on-the-road experiments
• High-severity attacks
• Attacks adapted to evade modern security enhancements
• Labeled attack-free and attack samples

2. We compile the can-train-and-test dataset to help re-
searchers develop and evaluate machine learning IDSs. The dataset 

is subdivided into four train/test sub-datasets: set_01, set_02, 
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Fig. 2. CAN frame specification.
set_03, set_04. Within each train/test sub-dataset, we provide 
one training subset and four testing subsets.

3. We curate the can-train-and-test dataset to optimize its as-
sessment capabilities. The dataset provides testing subsets, which 
challenge an automotive IDS’s ability to generalize to different at-
tacks and vehicles:
• train_01: Train the model
• test_01_known_vehicle_known_attack: Test the model against 

a known vehicle (seen in training) and known attacks (seen in 
training)

• test_02_unknown_vehicle_known_attack: Test the model
against an unknown vehicle (not seen in training) and known 
attacks (seen in training)

• test_03_known_vehicle_unknown_attack: Test the model
against a known vehicle (seen in training) and unknown attacks 
(not seen in training)

• test_04_unknown_vehicle_unknown_attack: Test the model 
against an unknown vehicle (not seen in training) and unknown 
attacks (not seen in training)

4. Lastly, we evaluate several machine learning IDSs on our can-
train-and-test dataset. In our benchmark, we include both 
supervised and unsupervised paradigms, as well as traditional ma-
chine learning and deep learning models. Our benchmark encom-
passes seven model families, which contain a total of eighteen 
models.

1.3. Paper organization

The remainder of this paper is organized as follows: Section 2 en-
capsulates essential background on automotive security and controller 
area networks. Section 3 explores a number of related works, in par-
ticular, existing publicly available CAN datasets. Section 4 discusses 
our methodology (e.g., data collection, data pre-processing, etc.), while 
Section 5 specifies the qualitative and quantitative particulars of our 
datasets. Section 6 provides practitioner guidance (i.e., which dataset 
to use) as well as usage notes and examples. Our benchmark is detailed 
in depth in Section 7. Section 8 investigates the limitations of our work, 
while Section 9 highlights open challenges and opportunities for future 
work. Section 10 concludes our work.

2. Background

2.1. The protocol

The controller area network (CAN) bus is the de facto standard 
when it comes to in-vehicle networks (IVNs). The CAN protocol was 
developed by Robert Bosch GmbH (i.e., BOSCH), a German automo-
tive control systems manufacturer, in 1983. In 1993, the protocol was 
adopted as an ISO standard—no. 11898 (Foster and Koscher, 2015).

The CAN protocol’s design objectives were (1) low latency, (2) high 
throughput, and (3) reliability. Controller area networks became popu-
lar with automotive manufacturers because they drastically reduced the 
amount of wiring needed. The CAN bus is a dual-wire serial bus. Two 
wires—a twisted pair—run from the powertrain control module (PCM) 
to the battery management system (BMS) to the telematic control unit 
(TCU) and more. Every electronic control unit (ECU) in the vehicle is 
physically connected to the CAN bus via these two wires. Wiring is dra-
4

matically reduced; instead of directly connecting every ECU to every 
other ECU (and to the CAN bus) using separate wires, every ECU is con-
nected to the two wires that comprise the CAN bus. The ECUs share the 
CAN bus and take turns communicating. An arbitration scheme allows 
the ECUs to take turns without conflict or data loss (Foster and Koscher, 
2015; Bozdal et al., 2020).

Fig. 1 illustrates the CAN bus: two wires—CAN HIGH and CAN LOW
interconnect various ECUs. As the names suggest, CAN HIGH is the 
high voltage wire; CAN LOW is the low voltage wire. The difference 
in voltage—not the voltages themselves—determine the signal that is 
communicated. If CAN HIGH is less than or equal to CAN LOW, then 
the recessive logic—1—is transmitted. The recessive logic is the default 
logic. If, instead, CAN HIGH is greater than CAN LOW, then the domi-
nant logic—0—is transmitted. To communicate, an ECU will drive the 
CAN bus to the dominant state. When communication ceases, 120 Ω
terminating resistors pull the CAN bus back to the recessive state. Gen-
erally, both CAN HIGH and CAN LOW are approximately 2.5 V when the 
bus is in the recessive state; in the dominant state, CAN HIGH is driven 
to 5 V, while CAN LOW is pulled to ground (Foster and Koscher, 2015; 
Lampe and Meng, 2023c; Lakhal et al., 2021).

As mentioned above, the difference in voltage between CAN HIGH
and CAN LOW determines the signal; this property is a form of differen-

tial signaling. Differential signaling insulates the CAN bus from electrical 
interference (i.e., noise). Generally, noise will impact both CAN HIGH
and CAN LOW; as such, the voltage difference will not change.

ECUs communicate via packets known as CAN frames. The structure 
of a valid CAN data frame is tightly specified, as shown in Fig. 2. The 
start of frame—SOF–advertises the start of transmission. The arbitration 
identifier—arbitration ID—determines the priority of the frame. Typi-
cally, the arbitration ID can be used to identify the transmitting ECU. 
The control field is comprised of several fixed control bits. The data 
length code—DLC—provides the size of the data field (in bytes). The 
data field contains the data to be communicated. One or more pieces 
of information will be encoded in the data field, which can range from 
zero to eight bytes. The cyclic redundancy checksum—CRC—is a check-
sum intended to confirm the data’s integrity. As the name suggests, the 
acknowledge—ACK—field is intended for message acknowledgment; 
any receiving node can use the ACK field to certify that the message 
was received successfully. Lastly, the end of frame—EOF—demarcates 
the end of the transmission (Lampe and Meng, 2023c).

The CAN protocol itself is standardized across all the automotive 
manufacturers who have implemented it; however, the implementa-
tions are proprietary. Different manufacturers assign different arbitra-
tion IDs to different ECUs. Different manufacturers also encode different 
data into different CAN frames. As such, research work conducted on a 
particular vehicle often does not generalize to all vehicles fabricated by 
all manufacturers.

2.2. The threat model

A number of vulnerabilities afflict the CAN bus, many of which are 
correlated with four major shortcomings: (1) no authentication, (2) no 
authorization, (3) no encryption, and (4) no integrity. These vulnerabil-
ities are outlined in Fig. 3.

No authentication. The CAN bus, as currently implemented, com-
pletely lacks authentication. In attack-free conditions, a given arbitra-
tion ID will generally map to a particular ECU (or node). However, a 
malicious node can use a legitimate ECU’s arbitration ID to masquerade 
as the legitimate ECU. If all ECUs were required to authenticate them-

selves prior to transmitting, then a masquerade attack would not be as 
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Fig. 3. Vulnerabilities of the CAN bus.
simple as using a real ECU’s arbitration ID. As it stands, when a CAN 
frame is received, we cannot confirm that it came from the ECU we ex-
pect. We do not know if the CAN frame was sent by a legitimate ECU or 
a malicious node. Even if we knew that a legitimate ECU sent the CAN 
frame, we would not be able to determine which ECU was the sender.

No authorization. Authorization, as with authentication, is wholly 
absent from the CAN bus. In an attack-free situation, a given ECU will 
send CAN frames related to the information it possesses. For example, 
the door control unit (DCU), as the name suggests, is concerned with 
the functionalities provided by the doors of modern automobiles (e.g., 
locking and unlocking doors, rolling windows up and down, child safety 
locks, etc.). In attack-free conditions, we would expect the DCU to send 
CAN frames regarding the status of the doors—open or closed, locked 
or unlocked, etc. In the Chevrolet Silverado, for example, the DCU is 
associated with the arbitration identifier 12A. The DCU might convey 
“the right front door is open” or “the left rear door is unlocked” by en-
coding that information in the data field of the CAN frame. The CAN 
frame would be sent with the arbitration ID 12A. The DCU should never

send CAN frames asserting the vehicle’s speed, the temperature of the 
engine coolant, or the current gear (drive, neutral, reverse, park). If the 
DCU sends a CAN frame with the arbitration ID 3E9 (which communi-
cates the vehicle’s speed), then something has gone wrong. If the DCU 
is transmitting CAN frames that begin with the arbitration ID 3E9 and 
proclaim “the vehicle is traveling 15 mph,” then something has gone 
wrong. Perhaps an attacker has compromised the DCU and is trans-
mitting spoofed CAN frames. Without authorization, however, there is 
nothing to stop an ECU from transmitting information beyond its scope 
and function. If the concept of authorization were applied to the CAN 
bus, then if attackers compromised the DCU, they could only commu-
nicate DCU-related information (door and window statuses, etc.). They 
would not be able to spoof the vehicle’s current speed, gear, or en-
gine RPMs. Miller and Valasek demonstrated this type of attack—quite 
spectacularly—when they compromised a Jeep Cherokee’s infotainment 
ECU and used it to conduct cyber-physical attacks (Miller and Valasek, 
2015a,b).

Simply put, the DCU is a door control unit, and it should only com-
municate door- and window-related information. Because the CAN bus 
lacks authorization, attackers could compromise the DCU and spoof 
any message related to any vehicle function (e.g., engine RPMs, cur-
rent gear). If the CAN bus enforced authorization, then the attackers 
would only be able to spoof DCU-related information, drastically reduc-
ing the scope of a potential attack.

No encryption. CAN traffic is transparent, unencrypted. While the 
information contained in the data field of a CAN frame is encoded (e.g., 
wheel speeds might be converted to hexadecimal and compressed), 
it is often trivial to decode. Data is encoded in order to maximize 
throughput, not ensure confidentiality. Moreover, the CAN protocol is a 
broadcast protocol, meaning that every message is sent to every node. 
If attackers attach themselves to the CAN bus or compromise even one 
5

ECU, they can read every message from every node. With a bit of recon-
naissance, attackers can decode the information contained in captured 
CAN frames. From there, they can craft spoofed CAN frames or simply 
replay the captured CAN frames. If CAN traffic were encrypted, recon-
naissance would be much, much harder, and the compromise of one 
ECU would not be nearly as catastrophic.

No integrity. As mentioned earlier, the CAN bus does have a cyclic 
redundancy checksum (CRC) intended to ensure data integrity. How-
ever, the CRC is effective only under attack-free conditions. If attackers 
wished to spoof or modify a CAN frame, they would merely need to re-
compute the checksum for the modified message. This computation is 
trivial and is part of the standard—and publicly available—CAN pro-
tocol. Therefore, under attack conditions, the CAN bus utterly lacks 
integrity protections. If integrity controls were incorporated into the 
CAN bus, we would know if the CAN frame had been subject to tamper-
ing, and the origin of the CAN frame would be verifiable.

When developing a threat model, the CIA Triad is a popular cri-
terion. The “C,” “I,” and “A,” refer to confidentiality, integrity, and 
availability, respectively. Confidentiality involves protecting sensitive in-
formation from unauthorized access. Integrity is concerned with tamper-
resistance and verification of origin—we should know if the data has 
been altered, and, if the data has not been altered, then we should know 
who authored the data. Availability ensures that authorized entities can 
access the data (or service) (Daily and Van, 2021). The CAN bus falls 
short in terms of confidentiality, integrity, and availability. The lack 
of encryption results in a lack of confidentiality. The lack of integrity 
controls—as well as the lack of authentication—leads to a lack of in-
tegrity. Because the CAN bus lacks authentication, a malicious node 
can overwhelm the network with spoofed CAN frames, preventing le-
gitimate nodes from communicating. As such, the CAN bus also lacks 
availability (Lampe and Meng, 2023a).

As we have seen, the CAN bus has a wide array of vulnerabilities; 
naturally, a wide array of CAN bus attacks have been identified and 
described. CAN-related attacks can be subdivided into six major attack 
families:

1. Denial of Service (DoS)
2. Fuzzing
3. Masquerade
4. Replay
5. Spoofing
6. Suppress

Table 1 summarizes these known CAN bus attack families.
Fig. 4 depicts the CAN bus under attack-free conditions. This dia-

gram provides a “normal” baseline for CAN communications. We can 
refer back to this diagram in order to better understand the schematic 
diagrams of the CAN bus under various attack conditions (Figs. 5, 6, 7, 

8, 9, and 10).
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Fig. 4. Schematic diagram of attack-free CAN communications.

Table 1

Known CAN bus attack families.
Attack Description Impacts Figure
Denial of Service 

(DoS)

Disable the network—i.e., inhibit legitimate ECUs 
from communicating over the network—by, e.g., 
overwhelming it with CAN frames, introducing 
noise, or manipulating the differential voltage. 
The lack of network availability constitutes a 
denial of service to legitimate ECUs.

Legitimate ECUs will revert to fail-safe parameters.
5

Fuzzing Construct and transmit random or pseudo-random 
(fuzzed) CAN frames. An attacker might 
randomize both the arbitration ID and the data 
field, or the attacker might use known, valid 
arbitration IDs paired with random data fields.

Legitimate communication might be disrupted—perhaps by bus 
errors. Legitimate ECUs generally do not respond to invalid 
arbitration IDs; however, if valid arbitration IDs are paired with 
random data fields, then the recipient ECUs might behave 
erratically. Fuzzing attacks might be used as reconnaissance to 
prepare for subsequent masquerade or spoofing attacks.

6

Masquerade Masquerade as an authentic ECU in order to, e.g., 
issue commands to legitimate ECUs. Often, 
masquerade attacks involve stifling the real ECU 
in order to eliminate confliction.

If deceived, legitimate ECUs could initiate dangerous—even 
destructive—actions. 7

Replay Capture and replay authentic CAN frames, 
possibly as the basis for masquerade and spoofing 
attacks.

If deceived, legitimate ECUs could initiate dangerous—even 
destructive—actions. 8

Spoofing Transmit false—i.e., spoofed—CAN frames to 
induce a reaction from legitimate ECUs.

If deceived, legitimate ECUs could initiate dangerous—even 
destructive—actions. 9

Suppress Prevent a legitimate ECU from communicating 
over the network—i.e., suppress CAN frames 
originating from a particular ECU.

Suppressing safety-critical communications (e.g., brake-related 
communications) could endanger the vehicle, its occupants, and 
anyone nearby. Suppress attacks are often used to facilitate 
masquerade attacks.

10

There is considerable overlap between masquerade, replay, and spoofing attacks. In a replay attack, previously captured CAN frames are simply 
replayed. However, if an attacker replays CAN frames in order to communicate a vehicle status that is no longer true—i.e., spoofing—and masquer-

ade as a legitimate ECU, then the attack constitutes replay, masquerade, and spoofing. Replay is a relatively simple attack; as such, it is used as a 
building block for the more complex attacks, e.g., masquerade and spoofing.
2.2.1. Denial of service

Fig. 5 illustrates the CAN bus during a denial of service (DoS) attack. 
As shown in the figure, the adversary transmits an overwhelming vol-
ume of high-priority CAN frames (arbitration ID 000). CAN frames from 
the legitimate ECU are forced to wait on the high-priority traffic. Since 
the adversary transmits high-priority CAN frames so frequently, the le-
gitimate ECU never has a chance to communicate. Thus, the legitimate 
ECU experiences a denial of service.

Our datasets (can-dataset, can-ml, and can-train-and-
test) include DoS attacks. There are four DoS attack traces per 
vehicle. Generally, the 1st and 2nd DoS attack trace contain more 
obvious DoS attacks—e.g., an arbitration identifier 000, a data field
0000000000000000, and an extremely high message injection rate. 
We designed the 3rd and 4th traces to be more subtle—e.g., a high 
(but not extremely high) message injection rate, a non-zero data field, 
and/or a high-priority legitimate arbitration identifier. We discuss our 
attacks in detail in Section 4.3.

2.2.2. Fuzzing

Fig. 6 showcases the CAN bus under fuzzing conditions. The ad-
versary is transmitting randomized CAN frames. In this example, both 
6

the arbitration ID and the data field are randomized; as such, most of 
the fuzzed CAN frames have meaningless arbitration IDs that will be 
ignored by legitimate ECUs. Legitimate ECUs listen for relevant CAN 
frames—relevant arbitration IDs—while ignoring CAN frames that are 
irrelevant.

For example, the door control unit (DCU) will listen for CAN 
frames bearing the transmission control module (TCM)’s arbitration 
ID—because the DCU wants to keep the doors locked while driving but 
unlock them once the vehicle parked. However, the DCU will ignore 
CAN frames related to fuel injection in the engine, as they are irrele-
vant to its function.

Therefore, while a randomized fuzzing attack can be disruptive, we 
would expect it to be less disruptive than a more sophisticated fuzzing 
attack that uses valid arbitration IDs combined with randomized data 
fields. This type of sophisticated fuzzing attack might randomly gener-
ate (i.e., fuzz) data fields that—paired with valid arbitration IDs—cause 
dangerous and even destructive behavior.

Similar to DoS, we include four fuzzing attack traces per vehicle. 
The fuzzing attacks vary in terms of message injection frequency and 
attack duration. Generally, the 1st and 2nd attack traffic traces are more 
overt (higher injection frequency, longer attack), while the 3rd and 4th
are more subtle (lower injection frequency, shorter).
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Fig. 5. Schematic diagram of a denial of service (DoS) attack.

Fig. 6. Schematic diagram of a fuzzing attack.
2.2.3. Masquerade

Fig. 7 demonstrates a particularly sophisticated type of masquer-
ade attack. A sophisticated masquerade attack combines the capabilities 
of replay, spoofing, and suppress attacks. A malicious node targets a 
particular ECU (e.g., the engine control unit). To masquerade as the le-
gitimate ECU, the malicious node can either (1) capture and replay the 
legitimate ECU’s CAN frames or (2) spoof CAN frames using the legiti-
mate ECU’s arbitration ID.

Of course, the replayed or spoofed CAN frames will clash with the 
7

legitimate ECU’s CAN frames—this phenomenon is known as “conflic-
tion.” To alleviate confliction, the malicious node must prevent the 
legitimate ECU from communicating, perhaps by intercepting its CAN 
frames. Miller and Valasek eliminated confliction by putting the legiti-
mate ECU into Bootrom mode (by starting the reprogramming process) 
(Miller and Valasek, 2016b,a).

Once the legitimate ECU is silenced and the malicious node is trans-
mitting CAN frames using the legitimate ECU’s arbitration ID, the ma-
licious node is essentially masquerading as the legitimate ECU. In our 
example, the engine control unit has been silenced; as such, the trans-

mission control unit, the telematic control unit, and the door control 
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Fig. 7. Schematic diagram of a masquerade attack.

Fig. 8. Schematic diagram of a replay attack.
unit all believe that they are receiving CAN frames from the engine 
control unit, but, in fact, they are receiving CAN frames from the adver-
sary.

Our datasets include unsophisticated masquerade attacks, but they 
do not include sophisticated masquerade attacks. Masquerading as the 
speed control unit (SCU), we deceived a real vehicle, traveling at speed, 
into believing our spoofed CAN frames. As a result, the speedome-
ter showed our spoofed speed rather than the true speed—in spite 
of the fact that the legitimate SCU was still transmitting messages. 
Basically, rather than conduct a sophisticated masquerade attack (by 
silencing the legitimate SCU), we simply overwhelmed the legitimate 
speed-related messages with our spoofed messages. We spoofed several 
different speeds, and, for each vehicle, we customized our speed spoof-
ing messages to match the expected format. Generally, the 1st and 2nd
8

attack traffic traces involve higher injection rates, longer attack dura-
tions, and/or multiple attacks per trace. Meanwhile, the 3rd and 4th

attack traffic traces involve lower injection rates, shorter attack dura-
tions, and fewer attacks per trace—sometimes just one. This is true of 
all masquerade/spoofing attacks—e.g., speed spoofing, RPM spoofing, 
gear spoofing, etc.

2.2.4. Replay

Fig. 8 depicts a replay attack against the CAN bus. This type of at-
tack is relatively simple; the adversary simply captures and retransmits 
(i.e., replays) CAN frames originally transmitted by legitimate ECUs. If 
the adversary collects a sufficient number of legitimate CAN frames, 
this type of attack can become incredibly powerful. In our example, the 
engine is generating “high RPMs” (presumably because the vehicle is 
in motion), but the adversary has tricked the telematic control unit and 

the door control unit into believing that the vehicle is stopped by trans-
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Fig. 9. Schematic diagram of a spoofing attack.

Fig. 10. Schematic diagram of a suppress attack.
mitting “zero RPMs.” Of course, due to confliction, the needle in the 
RPM gauge will waffle between “zero RPMs”—the spoofed value—and 
“high RPMs”—the true value. Similarly, the doors will sporadically lock 
and unlock.

This type of attack is often a building block for more sophisticated 
attacks (e.g., masquerade attacks). In a sophisticated masquerade at-
tack, the aforementioned confliction issues—RPM gauge fluctuation, 
sporadic door locking/unlocking—would be eliminated.

Many of our masquerade/spoofing attacks are replay attacks. During 
our reconnaissance, we observed CAN frames associated with particular 
arbitration identifiers and ECUs. We collected CAN messages while the 
vehicle was in one condition (e.g., the vehicle was traveling at a high 
speed, the vehicle was in “neutral”), and when the vehicle condition 
changed (e.g., the vehicle was traveling at low speed, the vehicle was 
in “reverse”), we replayed the collected messages. As such, we were able 
to deceive the vehicle into behaving as though it was in “neutral” when 
it was actually in “reverse.” Similarly, when the vehicle was traveling at 
low speed, our replay attack manipulated the speedometer into showing 
9

a high rate of speed—e.g., 75 mph.
2.2.5. Spoofing

Fig. 9 outlines a CAN bus spoofing attack. A spoofing attack is sim-
ilar to a replay attack, but it goes a step further. The adversary will 
still need to eavesdrop on CAN communications. To mount a more ef-
fectual attack, the adversary will need to determine which CAN frames 
should be abused in order to achieve the desired outcome (e.g., disrup-
tion, damage, death). The adversary will use his or her reconnaissance 
to craft tailored (i.e., spoofed) CAN frames that achieve the desired out-
come (Lampe and Meng, 2023a).

As mentioned above, many of our spoofing attacks were also mas-
querade attacks and replay attacks. See Sections 2.2.3 and 2.2.4 for 
details.

2.2.6. Suppress

Fig. 10 depicts the CAN bus during a suppress attack. This attack 
stifles (i.e., suppresses) communication from a target ECU. In our exam-
ple, the target ECU is the engine control unit. Oftentimes, a suppress 
attack will be combined with replay or spoofing in order to conduct 
a sophisticated masquerade attack; however, a suppress attack can be 

effective on its own. In Fig. 10, the engine control unit begins by an-
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Table 2

Published CAN bus exploits.

Year Highlights Description Source
2010 Manipulating ECUs, 

embedding malicious 
code

An analysis of the vulnerabilities of internal vehicle networks that 
uncovered various types of attacks—e.g., bridging between a vehicle’s 
internal subnetworks, manipulating ECUs (selectively engaging and 
disabling the brakes), and embedding malicious code in the telematics 
unit, to name a few.

Koscher et al. (2010)

2014 Diagnostic commands, 
ECU reprogramming

An analysis of the vulnerabilities of internal vehicle networks that 
uncovered various types of attacks—e.g., disabling power steering via 
denial of service attack, sending diagnostic commands (to shut down the 
engine, to selectively engage and disable the brakes, etc.), and 
reprogramming ECUs.

Miller and Valasek (2014)

2015 Telematics, remote 
control

Exploitation of a popular telematic control unit—plugged into the OBD-II 
port—to achieve remote control of a vehicle.

Foster et al. (2015)

2015 Remote control of an 
unaltered private 
automobile

Exploitation of a cellular network vulnerability to achieve arbitrary remote 
control of an unaltered private automobile—e.g., exfiltrating global 
positioning system (GPS) coordinates to track the vehicle, locking and 
unlocking the vehicle, shutting down the engine, etc.

Miller and Valasek (2015a,b)

2016 Advanced CAN injection 
attacks, steering wheel 
manipulating at speed

Eliminate confliction in order to conduct advanced CAN injection attacks, 
such as manipulating the steering wheel at speed.

Miller and Valasek (2016b,a)

2017 Remote control of an 
unaltered private 
automobile

A chain of exploits—including browser exploits, local privilege escalation, 
and ECU reprogramming—was used to compromise and remotely control 
an unaltered Tesla automobile.

Nie et al. (2017)

2018 Airbag deployment Penetration testing identified vulnerabilities in a vehicle’s pyrotechnic 
control unit (PCU), which is responsible for airbag deployment. The 
vulnerabilities were successfully exploited on an automotive testbed, 
generating the firing impulse that—in a real vehicle—would result in 
airbag deployment.

Dürrwang et al. (2018)

2019 Remote control of an 
unaltered private 
automobile, SMS

Vulnerabilities in a BMW’s infotainment and telematics components were 
used to remotely compromise the vehicle. Remote services were triggered 
via short message service (SMS) communications, and cross-domain 
diagnostic commands were used to access additional ECUs.

Cai et al. (2019)

2023 Grand theft auto Many vehicles provide relatively easy access to the CAN bus from the 
outside—e.g., via wiring behind a headlight. Thieves can access the CAN 
bus, inject spoofed CAN frames, suppress conflicting CAN frames, and, 
ultimately, steal the vehicle.

Tindell (2023)
nouncing non-zero RPMs (presumably, the vehicle is in motion). Later, 
the engine control unit wishes to communicate that the RPMs have 
dropped to zero. The door control unit (DCU) knows that the doors 
should remain locked while the vehicle is in motion—non-zero RPMs—
and unlock only when the RPMs are down to zero (this is a simplified 
example). As such, even though the vehicle is down to zero RPMs at 
time t3, the doors will remain locked. In some vehicles, passengers will 
not be able to manually override the door locks when the vehicle is in 
motion—or when the DCU believes the vehicle is in motion.

Our datasets do not contain suppress attacks; we plan to focus on 
suppress attacks in our future work (See Section 9).

2.3. The exploits

Table 2 highlights a number of published CAN bus exploits, rang-
ing from nuisance attacks to theft to life-threatening remote-controlled 
attacks.

One of the earliest experimental CAN bus exploits was conducted in 
2010 by Koscher et al. (2010). They were able to continuously activate 
the vehicle’s door locks, run the windshield wipers, blare the horn, turn 
various lights on and off, kill the engine, grind the starter, engage the 
brakes, disable the brakes, and more.

Miller and Valasek have conducted a number of proof-of-concept 
CAN bus exploits (Miller and Valasek, 2014, 2015a,b, 2016b,a). Many 
of the exploits would be life-threatening—even catastrophic—if con-
ducted by malicious adversaries rather than researchers. For example, 
the attack against a 2014 Jeep Cherokee (Miller and Valasek, 2015a,b) 
could be generalized to a number of Fiat Chrysler Automotive (FCA) 
automobiles—including various models from the Chrysler, Dodge, Jeep, 
and Ram brands. FCA recalled 1.4 million vehicles. If malicious ad-
10

versaries (e.g., nation-state actors) were to simultaneously compromise 
those 1.4 million vehicles and disable their brakes, the results could 
easily be catastrophic.

Miller and Valasek disabled the 2014 Jeep Cherokee’s brakes via 
diagnostic messages, which most of its ECUs would ignore when the 
vehicle was traveling at speed. Cai et al. (2019), on the other hand, 
found that most BMW ECUs will respond to diagnostic messages even 
when the vehicle is driving at normal speeds.

When we zoom out to a “big picture” view, we can see that there 
are even bigger problems. Innovations such as advanced driver as-
sistance systems (ADAS), automotive platooning, and smart cities are 
vulnerable to both intra-vehicle and inter-vehicle attacks. The “smarter” 
the vehicle, the more devastating the potential attack. If a vehicle 
lacks electronic steering, then an adversary cannot control the steer-
ing. A “smarter” vehicle, equipped with electronic steering (e.g., park-
ing assist, lane-keeping assist), faces the uncomfortable possibility of 
adversary-controlled steering. Lakhal et al. (2021) identified a number 
of reliability and security issues related to the modern CAN bus that 
specifically threaten intelligent transportation systems (ITSs). All in all, 
we can see that the CAN bus is critical to the future of automotive trans-
portation and innovation.

3. Related work

Constructing a high-fidelity CAN dataset often involves logging—
i.e., recording CAN traffic from a real vehicle. Daily and Van (2021)
describe a cryptographically-secured CAN logging scheme, which uses 
encryption and hashing to achieve confidentiality and integrity, respec-
tively.

Marx et al. (2016) analyzed and compared different CAN logging 
techniques in terms of accuracy and file size. They experimented with 
both frame- and waveform-based logging strategies. Across all strate-

gies, the mean difference between measurements was less than 0.08%. 
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Table 3

CAN bus datasets: A Summary.

Year Name Acronym Vehicle(s) #
Attacks

Labeled?a Real? Source

2016 Simulated CAN Bus dataset Sim CAN Testbed 1 No No Kang and Kang (2016)
2017 CrySyS Lab CAN dataset CrySyS CAN Unknown 0 N/A Yes CrySyS Lab (2017)
2017 HCRL CAN dataset HCRL CAN Kia Soul 3 No Yes Lee et al. (2017)
2018 HCRL Car-Hacking dataset HCRL CH Hyundai YF Sonata 4 Yes Yes Seo et al. (2018); Song 

et al. (2020)
2018 HCRL Survival Analysis 

dataset
HCRL SA Chevrolet Spark, 

Hyundai YF Sonata, Kia 
Soul

3 Yes Yes Han et al. (2018)

2019 AEGIS Big Data Project 
Automotive CAN Bus dataset

AEGIS CAN Unknown 0 N/A Yes Kaiser et al. (2019)

2019 Bus-Off dataset Bus-Off Volvo V40 2 Yes Yesb Stabili and Marchetti 
(2019)

2019 TU Eindhoven CAN bus 
intrusion dataset v2

TU CAN v2 Opel Astra, Renault Clio, 
Testbed

5 No Yesc Dupont et al. (2019)

2020 HCRL CAN Signal Extraction 
and Translation dataset

HCRL SET Unknown 0 N/A Yes Song and Kim (2020)

The details in the table were aggregated with help from Rajapaksha et al. (2023); Verma et al. (2020, 2022); Karopoulos et al. (2022); Wu et al. (2019); 
Vahidi et al. (2022), and Lampe and Meng (2023d).

a We define a “labeled” dataset as a dataset in which individual samples (e.g., individual CAN frames) are pre-labeled to indicate whether a particular sample is “normal” 
or “injected.” Therefore, datasets in which metadata is provided to help identify attacks are not counted as labeled because would-be practitioners would still need to label 
the datasets themselves.

b The attack-free data was collected from a real vehicle; the attack data was simulated using the attack-free data.
c This dataset contains both real and simulated CAN traffic.
As such, the authors concluded that, accuracy-wise, both frame- and 
waveform-based logging techniques would be acceptable, though they 
noted that waveform-based logging consumes less memory and would 
be desirable for long-term logging.

Reverse engineering is essential to understanding CAN traffic, partic-
ularly when devising CAN bus attacks. The quality of a CAN intrusion 
detection dataset is heavily dependent on the quality of the attacks. 
Buscemi et al. (2023) surveyed CAN bus reverse engineering method-
ologies. They reviewed data collection—i.e., CAN logging—as well as 
the popular .dbc file type, which can convert a raw CAN signal into 
a human-readable, semantic value. Moreover, Buscemi et al. conducted 
benchmarks of both (1) CAN tokenization algorithms and (2) CAN trans-
lation algorithms.

3.1. Existing datasets

There are a number of existing CAN datasets, each with its own 
advantages and disadvantages. Tables 3 and 4 summarize the existing 
datasets, providing information such as vehicle type(s), number of at-
tacks, etc. Meanwhile, Tables 5 and 6 furnish details and highlights of 
the existing datasets, such as attack types, advantages, and limitations.

A common limitation of existing datasets is the lack of attack data; 
when developing an intrusion detection system (IDS), attack data is of 
paramount importance. Insufficient data quantity is a second major is-
sue, especially when it comes to machine learning IDSs, as they require 
a substantial quantity of data for training (and testing). Quality—that 
is, fidelity—can also be problematic. Researchers are understandably 
cautious about conducting CAN bus attacks while driving, but some 
simulations and testbeds are not the best approximations of a real vehi-
cle’s CAN bus.

Several works have conducted in-depth reviews of existing datasets. 
Wu et al. (2019) surveyed intrusion detection for in-vehicle networks 
and included a discussion of datasets and tools used in previous works.

Karopoulos et al. (2022) developed a meta-taxonomy for IVN-based 
intrusion detection, in which they included a table of publicly available 
vehicular intrusion detection—VIDS—datasets. They catalogued VIDS 
datasets for controller area network as well as Ethernet, Wi-Fi, Blue-
tooth, and others. Karopoulos et al. enumerated the following features:

1. Presence of train/test sub-datasets
11

2. Number of features
3. Total number of rows
4. Number of attacks
5. Presence of labels
6. Fidelity (real or simulated)
7. Number of nodes

Rajapaksha et al. (2023) reviewed AI-based intrusion detection sys-
tems and included a section on benchmark datasets. They assessed 
several datasets released by the Hacking and Countermeasure Research 
Lab (HCRL) (Lee et al., 2017; Seo et al., 2018; Song et al., 2020; Han 
et al., 2018; Song and Kim, 2020; Kang et al., 2021) as well as a num-
ber of others. For each dataset, they sought to identify both advantages 
and limitations. They concluded that the Real ORNL Automotive Dy-
namometer CAN intrusion dataset (Verma et al., 2020, 2022) is the 
most comprehensive CAN intrusion detection dataset available.

Verma et al. (2022) focused specifically on open-access CAN in-
trusion detection datasets. They exhaustively discuss each dataset, in-
cluding its (1) quality, (2) benefits, (3) drawbacks, and (4) use case. 
The authors note that their work is the first comprehensive guide to 
open-access CAN intrusion detection datasets. In addition, they intro-
duced the ROAD dataset (Verma et al., 2020, 2022), which offers a 
wide variety of attack captures as well as a high volume of attack-free 
data. Attack-free data was collected both on a dynamometer—a “rolling 
road” in which the vehicle remains stationary, but the vehicle operates 
as though driving normally (de Menezes Lourenço et al., 2022)—and 
on the open road. All attacks were conducted while the vehicle was on 
a dynamometer and actively being driven.

4. Methodology

In this section, we discuss our methodology, including our setup, 
our attack-free data collection, our attack data collection, and our data 
pre-processing.

We seek to develop a dataset that is suitable for machine learning—
both traditional machine learning and deep learning. As such, during 
data collection, we emphasize (1) quality and (2) quantity. A machine 
learning IDS depends on a high volume of data for adequate training 
and testing. The machine learning model will fit to the training data 
and will be evaluated on the testing data, so if the data is low quality—

i.e., low fidelity—then the model will be ill-fitted to the real problem, 
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Table 4

CAN bus datasets: A Summary (continued).

Year Name Acronym Vehicle(s) #
Attacks

Labeled?a Real? Source

2020 ML350 CAN Bus dataset ML350 CAN Mercedes ML350 2 Yes Yes Sami et al. (2020); 
Sami (2019)

2020 Real ORNL Automotive 
Dynamometer CAN intrusion 
dataset

ROAD Unknown (mid-2010s) 10b No Yes Verma et al. (2020); 
Verma et al. (2022)

2020 Reverse Engineering CAN Bus 
dataset

ReCAN Alfa Romeo Giulia 
Veloce, Opel Corsa, 
Mitsubishi Fuso Canter, 
Isuzu M55, Piaggio 
Porter Maxi

0 N/A Yes Zago et al. (2020b,a)

2020 Synthetic CAN Bus dataset SynCAN Testbed 5 No No Hanselmann et al. 
(2020)

2021 HCRL Attack & Defense 
Challenge dataset

HCRL A&D Hyundai Avante CN7 4 Yes Yes Kang et al. (2021)

2021 Heavy-Duty Truck CAN Bus 
dataset

Truck CAN Renault T520 6X2 0 N/A Yes University of Turku 
(2021)

2022 Detecting Attacks to in-vehicle 
networks via n-Gram Analysis 
dataset

DAGA Volvo V40 6 Yes Yesc Stabili et al. (2022)

2023 Ventus dataset Ventus Volvo V40 2 Yes Yesc Pollicino et al. (2023)
2023 can-train-and-test

datasetd
CT&T Chevrolet Impala, 

Chevrolet Silverado, 
Chevrolet Traverse, 
Subaru Forester

9 Yes Yese Our contribution

The details in the table were aggregated with help from Rajapaksha et al. (2023); Verma et al. (2020, 2022); Karopoulos et al. (2022); Wu et al. (2019); 
Vahidi et al. (2022), and Lampe and Meng (2023d).

a We define a “labeled” dataset as a dataset in which individual samples (e.g., individual CAN frames) are pre-labeled to indicate whether a particular sample is “normal” 
or “injected.” Therefore, datasets in which metadata is provided to help identify attacks are not counted as labeled because would-be practitioners would still need to label 
the datasets themselves.

b This dataset contains 33 attack traffic captures; however, the attack types are not unique. There are fuzzing attacks, spoofing & masquerade attacks, and accelerator 
attacks. Four different signals are spoofed—wheel speed, engine coolant temperature, speedometer value, and reverse light (on/off). For each spoofing attack, Verma et al. 
provide a masquerade version (legitimate signals are suppressed). We count the fuzzing attack, the four spoofing attacks, the four masquerade attacks, and the accelerator 
attack as unique attacks, resulting in a total of ten attacks.

c The attack-free data was collected from a real vehicle; the attack data was simulated using the attack-free data.
d can-train-and-test is the name of the repository which contains the final curated dataset (labeled and partitioned). The can-train-and-test repository is 

linked to the can-dataset and can-ml repositories, which contain raw .log files, additional attack-free traffic, and additional attack traffic. As such, we use the term
can-train-and-test to refer to the can-train-and-test repository as well as the linked repositories.

e This dataset contains both real and simulated CAN traffic.
and the model’s performance during the evaluation will not match its 
performance when faced with the real problem.

During the data pre-processing phase, we label our dataset so 
as to facilitate both supervised and unsupervised learning. We pro-
vide .log files that can be replayed using SocketCAN (Commu-
nity, 2023) and can-utils (can-utils Contributors, 2023)—no pre-
processing needed—as well as .csv files that can be loaded into a 
program—e.g., the pandas (pandas Contributors, 2023) Python library.

4.1. Setup

We collected live, on-the-road data from four different vehicles and 
six different drivers. Our objective was to capture both vehicle and 
driver idiosyncrasies in order to construct an authoritative, diversified 
CAN dataset for machine learning.

Vehicles. For our test vehicles, we varied the manufacturer (Chevro-
let, Subaru), the model (Impala, Traverse, Silverado, Forester), and the 
vehicle type (sedan, sport utility vehicle, pickup truck). Our objective 
was to collect diverse data, so that a proposed intrusion detection sys-
tem could be evaluated in terms of its ability to generalize to different 
vehicles. Our vehicles are enumerated below:

1. 2011 Chevrolet Impala: A four-door sedan
2. 2011 Chevrolet Traverse: A full-size sport utility vehicle (SUV)
3. 2016 Chevrolet Silverado: A four-door pickup truck
4. 2017 Subaru Forester: A compact SUV

Drivers. For our test drivers, we varied both age and gender, such 
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that our CAN traffic captures would reflect the different driving habits 
of different people. Our test drivers—in terms of demographics—are 
enumerated below:

1. Male, under 30 years of age
2. Female, under 30 years of age
3. Male, 30-60 years of age
4. Female, 30-60 years of age
5. Male, over 60 years of age
6. Female, over 60 years of age

Our test drivers are acknowledged at the end of the paper.
Logging. To log CAN traffic data, we accessed each vehicle’s on-

board diagnostic port (i.e., OBD-II port) (Falch, 2022) (see Fig. 11. U.S. 
law requires that the OBD-II port be within arm’s reach of the driver’s 
seat and accessible without tools (Agency, 1999). Similar legislation 
exists in the European Union. To interface with the OBD-II port, we se-
lected Korlan USB2CAN, an “8devices” product (8devices, 2023). The 
cable converts raw OBD-II data into USB data—one end of the cable 
is plugged directly into the OBD-II port; the opposite end is plugged 
directly into our laptop. As such, we were able to communicate with 
the OBD-II port via Linux’s SocketCAN subsystem (Community, 2023) 
and can-utils utilities (can-utils Contributors, 2023). Our wired con-
nection allowed us to simultaneously inject data and collect data, fa-
cilitating real-world injection attacks at speed. We leveraged the Linux 
command line to send spoofed packets at regular intervals—typically 
ranging from every 0.1 seconds to every 0.0001 seconds. A few attacks 
were conducted at even higher or lower intervals. For more complex at-
tacks, we developed a Python program to monitor CAN traffic and send 

spoofed messages when one or more conditions were met. For exam-
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Table 5

CAN bus datasets: Details.

Year Name Acronym Detailsa Source
2016 Simulated CAN Bus 

dataset
Sim CAN A 3-ECU testbed was constructed to simulate both benign traffic and generalized 

injection-type attacks. During the simulation, 200,000 packets were generated using the 
Open Car Testbed and Network Experiments (OCTANE) (Everett and McCoy, 2013) packet 
generator.

Kang and Kang 
(2016)

2017 CrySyS Lab CAN 
dataset

CrySyS CAN This dataset consists of purely benign data associated with specific driving scenarios (e.g., 
“Driving with a speed of 40 km/h, then lane change, then stop”). A “CAN log infector” is 
provided to tack on attacks in the post-processing stage.

CrySyS Lab 
(2017)

2017 HCRL CAN dataset HCRL CAN This dataset is one of many datasets developed and published by the Hacking and 
Countermeasure Research Lab (HCRL). It contains benign traffic as well as several types of 
attacks—DoS, fuzzing, and impersonation (i.e., masquerade). The timestamp, arbitration ID, 
data length code (DLC), and data field are provided as features. The DoS attack is labeled, 
but none of the others are.

Lee et al. (2017)

2018 HCRL Car-Hacking 
dataset

HCRL CH This dataset contains benign traffic as well as several types of attacks—DoS, fuzzing, RPM 
spoofing, and gear spoofing. The timestamp, arbitration ID, DLC, data field, and label (“T” 
for injected, “R” for normal) are provided as features. During data collection, the vehicle 
was parked with the engine running. According to Rajapaksha et al. (2023), this is the most 
widely used dataset in the literature (to evaluate CAN IDSs).

Seo et al. 
(2018); Song et 
al. (2020)

2018 HCRL Survival 
Analysis dataset

HCRL SA Similar to the HCRL Car-Hacking dataset, this dataset contains both benign traffic and 
attacks—flooding (i.e., DoS), fuzzing, and malfunction. The timestamp, arbitration ID, DLC, 
data field, and label (“T” for injected, “R” for normal) are provided as features. An 
attack-free traffic capture is available for each vehicle; however, the traffic captures are not 
large enough to train a good classifier (Rajapaksha et al., 2023).

Han et al. (2018)

2019 AEGIS Big Data Project 
Automotive CAN Bus 
dataset

AEGIS CAN This dataset consists of purely benign data—specifically, signal data. It is similar to the 
dataset curated by Hanselmann et al. (2020), though it also contains global positioning 
system (GPS) data.

Kaiser et al. 
(2019)

2019 Bus-Off dataset Bus-Off This dataset contains two types of simulated bus-off attacks—namely, shutdown and 
inhibition. In the shutdown attack, messages associated with a particular arbitration ID are 
removed from the CAN trace for a variable period of time, simulating an attacker who drives 
an ECU to the “bus-off” state. In the inhibition attack, messages associated with a particular 
arbitration ID are removed from the entire CAN trace, simulating an attacker who disables 
an ECU. As such, the two bus-off attacks are suppress attacks. There are 189,083,068 total 
samples in the dataset (8,743,772 attack-free samples and 180,339,296 attack samples).

Stabili and 
Marchetti (2019)

2019 TU Eindhoven CAN 
bus intrusion dataset 
v2

TU CAN v2 This dataset contains benign traffic as well as several types of attacks—DoS, fuzzing, replay, 
suspension (i.e., suppress), and diagnostic. This dataset contains both real data—from two 
vehicles—and synthetic data from a testbed. This dataset furnishes the only diagnostic 
attack publicly available. However, some of the simulated attacks have fidelity 
shortcomings; for example, the DoS attack was constructed by overwriting ten seconds’ 
worth of traffic—real DoS attacks are much noisier (Verma et al., 2022).

Dupont et al. 
(2019)

2020 HCRL CAN Signal 
Extraction and 
Translation dataset

HCRL SET This dataset consists of purely benign data; it was designed for signal extraction, not 
intrusion detection. The timestamp, arbitration ID, DLC, and data field are provided as 
features.

Song and Kim 
(2020)

a The descriptions in the table were aggregated with help from Rajapaksha et al. (2023); Verma et al. (2020, 2022); Karopoulos et al. (2022); Wu et al. (2019); Vahidi et al. 
(2022), and Lampe and Meng (2023d).
Fig. 11. The OBD-II port (Falch, 2022) of a 2016 Chevrolet Silverado. We ac-
cessed this port—via Korlan USB2CAN (8devices, 2023)—in order to capture 
CAN traffic and conduct attacks.

ple, our “interval” attack (see Section 4.3) injects one or more messages 
whenever a particular arbitration ID crosses the CAN bus.

Our test driver sat in the driver’s seat, while our experimenter sat 
in the front passenger seat, holding the laptop and managing the data 
collection process.

Data. For each CAN frame, we captured the timestamp, arbitra-
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tion identifier, and data field. The remaining fields—SOF,
DLC, CRC, etc.—can be reconstructed using the captured fields and the 
CAN frame specifications. For example, the DLC is simply the length 
of the data field. Moreover, to replay the captured CAN frames us-
ing the canplayer command from can-utils (see Section 6.1), we 
only need the timestamp, arbitration identifier, and data 
field.

4.2. Attack-free data

We captured attack-free CAN traffic under two conditions:

1. Driving mode
2. Accessory mode

While serious (i.e., life-threatening) automotive attacks are gener-
ally associated with driving conditions, a number of disconcerting au-
tomotive attacks are better suited to stationary settings. For example, 
an automobile could be tracked while parked. If the automobile con-
nects to home Wi-Fi when parked in the garage, then an attacker could 
exfiltrate data while the automobile is parked and connected. In addi-
tion, Tindell discussed in detail how thieves can access the CAN bus of 
a parked vehicle in order to steal it (Tindell, 2023) (see Table 2).

Therefore, we collected attack-free traffic in both driving and non-
driving settings. With our two types of attack-free data, an IDS can 
be trained to develop “normal” baselines for both driving and ac-

cessory modes. Since automotive IDSs are typically anomaly-based, 
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Table 6

CAN bus datasets: Details (continued).

Year Name Acronym Detailsa Source
2020 ML350 CAN Bus 

dataset
ML350 CAN This dataset was collected from a real vehicle using a CL2000 CAN bus logger. It contains 

both benign traffic and attacks—DoS and fuzzing. The label “R” refers to attack-free 
messages, while the label “T” identifies attack messages.

Sami et al. 
(2020); Sami 
(2019)

2020 Real ORNL 
Automotive 
Dynamometer CAN 
intrusion dataset

ROAD This dataset contains benign traffic as well as several types of attacks—fuzzing, targeted ID 
attacks (i.e., spoofing, masquerade), and accelerator attacks. The attacks (except the 
masquerade attacks) were conducted while the test vehicle was on a dynamometer (a 
“rolling road”—the vehicle remains stationary, but the wheels turn as though driving 
normally (de Menezes Lourenço et al., 2022)); as such, the attacks are high fidelity. The 
timestamp, arbitration ID, and data field are provided as features; the dataset is unlabeled.

Verma et al. 
(2020); Verma 
et al. (2022)

2020 Reverse Engineering 
CAN Bus dataset

ReCAN This dataset contains purely benign data from both passenger vehicles and commercial 
trucks, and it includes both raw data and decoded signal data. The dataset was developed to 
support reverse engineering of controller area networks.

Zago et al. 
(2020b,a)

2020 Synthetic CAN Bus 
dataset

SynCAN This dataset contains benign traffic as well as several types of attacks—flooding (i.e., DoS), 
playback (i.e., replay), suppress, plateau, and continuous. However, it contains only signal 
values—no raw CAN data. In this regard, it is similar to the dataset curated by Kaiser et al. 
(2019). All attacks are simulated; as such, the real impacts—if any—on real vehicles are not 
known. According to Rajapaksha et al. (2023), this is the most widely used dataset to 
evaluate unsupervised payload-based CAN IDSs.

Hanselmann et 
al. (2020)

2021 HCRL Attack & 
Defense Challenge 
dataset

HCRL A&D This dataset contains benign traffic as well as several types of attacks—flooding (i.e., DoS), 
fuzzing, replay, and spoofing. The timestamp, arbitration ID, DLC, data field, class label 
(normal or attack), and subclass label (attack type) are provided as features. Generally, the 
attacks were conducted when the vehicle was stationary—due to safety concerns.

Kang et al. 
(2021)

2021 Heavy-Duty Truck 
CAN Bus dataset

Truck CAN This dataset furnishes benign data which conforms to the SAE J1939 standard. The data was 
collected from a heavy-duty truck and is contained in comma-separated values (CSV) files. 
Each file is composed of 50,000 CAN frames—approximately one minute’s worth of CAN 
traffic.

University of 
Turku (2021)

2022 Detecting Attacks to 
in-vehicle networks 
via n-Gram Analysis 
dataset

DAGA This dataset contains six attacks, each of which was simulated using data originally 
collected from an unaltered, licensed passenger vehicle. The six attacks include replay 
attacks (single arbitration ID replay, arbitrary sequence replay, ordered sequence replay), 
fuzzing attacks (message arbitration ID fuzzing, payload fuzzing), and a denial of service 
(DoS) attack. There are 256,301,010 total samples in the dataset (8,743,772 attack-free 
samples and 247,557,238 attack samples).

Stabili et al. 
(2022)

2023 Ventus dataset Ventus This dataset consists of injection and removal (i.e., suppress) attacks. There are 539,657,925 
total samples in the dataset (8,743,772 attack-free samples and 531,003,538 attack 
samples).

Pollicino et al. 
(2023)

2023 can-train

-and-test dataset2
CT&T This dataset contains several simulated attacks as well as live attacks on real vehicles (the 

attacks were conducted when the vehicle was being driven down rural roads). Both labeled 
and unlabeled data is provided; for the labeled data, “0” denotes an attack-free CAN frame, 
while “1” identifies an attack frame. The attack type is specified by the file name. The 
curated dataset—can-train-and-test—enables researchers to assess the capability of a 
proposed intrusion detection system under several conditions (e.g., known vehicle, known 
attack; unknown vehicle, known attack; etc.).

Our contribution

a The descriptions in the table were aggregated with help from Rajapaksha et al. (2023); Verma et al. (2020, 2022); Karopoulos et al. (2022); Wu et al. (2019); Vahidi et al. 
(2022), and Lampe and Meng (2023d).
high-quality baselines are paramount. Without high-quality baselines, 
anomaly-based IDSs would be hard-pressed to distinguish between “nor-
mal” traffic and anomalous traffic.

If an automotive IDS struggles to differentiate attack-free traffic and 
attack traffic, then it will report a high volume of false positives. False 
positives are problematic because they dilute the power of a real warn-
ing in the event of an actual attack. If drivers are accustomed to false 
alarms, they may not heed the real warning. If the false alarms are es-
pecially frequent and especially irritating, then they may disable the 
intrusion detection system, leaving the drivers, their passengers, and 
their vehicles unprotected.

Since driving mode and accessory mode involve markedly differ-
ent CAN traffic patterns, we found it prudent to include both types of 
traffic captures. In accessory mode, many ECUs are either asleep—not 
running—or silent—not communicating—because they are extraneous 
when the engine is off and the vehicle is stationary. There are fewer ar-
bitration identifiers and far fewer CAN frames per unit of time. If an 
IDS were trained exclusively in driving mode and implemented in a ve-
hicle that is occasionally operated in accessory mode, then the loss of 
many arbitration IDs (and many CAN frames) would probably result in 
a barrage of false positives. As such, we find it prudent to include both 
driving and non-driving traffic captures, so that an IDS can be trained 
for both scenarios.

Listings 1 and 2 showcase attack-free traffic in driving mode and 
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accessory mode, respectively. The traffic was collected from the 2011 
Chevrolet Traverse. Extended attack-free traces can be found in the ap-
pendix (see Appendix A.1).

Listing 1 Attack-free traffic (driving mode).

(1672163108.460031) can0 1E1#0000100000

(1672163108.460701) can0 0C7#00D4A352

(1672163108.460932) can0 0F9#031A4002A23FDEFA

(1672163108.461181) can0 189#4FFF0FFF3000DEFA

(1672163108.461405) can0 199#4FFF0E70F18F00FF

(1672163108.461548) can0 1EB#0141

(1672163108.462257) can0 1F1#AE0E00000800007A

(1672163108.462765) can0 0C1#236F7087236A5491

(1672163108.462912) can0 1CB#10E600

(1672163108.463124) can0 0C5#234188A42341E475

(1672163108.463359) can0 184#0001000001FF

(1672163108.463584) can0 1C7#0FFF700003FF3F

(1672163108.463758) can0 1CD#C7FF07FE7F

(1672163108.464028) can0 1E5#4600D8EED4FF2500

(1672163108.464229) can0 1E9#0FFF000C00260000

(1672163108.464477) can0 0C9#801D551911000000

(1672163108.464634) can0 0F1#1C040040

(1672163108.464846) can0 191#075E075E0761115D
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Listing 2 Attack free traffic (accessory mode).

(1672176421.034132) can0 3C1#0765040000000000

(1672176421.034383) can0 3D1#1046000000000000

(1672176421.034632) can0 3E9#0000000000000000

(1672176421.035391) can0 0F1#1C050040

(1672176421.035959) can0 0C7#03FE0000

(1672176421.036231) can0 0F9#00004000000000FF

(1672176421.036505) can0 189#CFFF0FFF2FFE00FF

(1672176421.036735) can0 199#CFFF0E70F18D00FF

(1672176421.037429) can0 1EB#008A

(1672176421.038562) can0 1F3#C0E0

(1672176421.040835) can0 0C1#1000000010000000

(1672176421.041107) can0 0C5#1000000010000000

(1672176421.041350) can0 0C9#0000000D00000000

(1672176421.041577) can0 191#063D091E091E0000

(1672176421.041812) can0 1E5#46FFC2C000003C00

(1672176421.042055) can0 1ED#0000000000000800

(1672176421.042300) can0 1A1#0010010000000000

(1672176421.042552) can0 1C3#063D063D00000000

4.3. Attack data

We conducted and recorded the following types of attacks:

1. Denial of Service (DoS)
2. Combined spoofing

(a) Double spoofing
(b) Triple spoofing

3. Fuzzing
4. Gear spoofing
5. Interval
6. RPM spoofing

(a) Driving mode
(b) Accessory mode

7. Speed spoofing
(a) Driving mode
(b) Accessory mode

8. Standstill
9. Systematic

4.3.1. Denial of service

In controller area networks, the highest-priority identifier is 000. 
As such, when two ECUs begin transmitting at the same time, 000
will win the arbitration—in principle. Often, a new or high-end vehi-
cle will be equipped with a protected CAN bus. A node transmitting 
invalid arbitration IDs will be kicked off the bus. In the Chevrolet 
Impala and Traverse, the highest-priority valid arbitration identifier 
(that we observed) is 0C1. In the Chevrolet Silverado, it is 0AA, and 
in the Subaru Forester, it is 002. In the Chevrolet Silverado, we pro-
vide a trace of a painfully obvious DoS attack—arbitration ID 000 and 
data field 0000000000000000. Then, we include a trace in which the 
highest-priority valid arbitration ID is used—arbitration ID 0AA—but 
the data field is still all zeroes. Lastly, we conduct a DoS attack with 
the highest-priority valid arbitration ID, 0AA, and a non-zero data field,
2F042D9002526F00. We conduct similar attacks against the Impala, 
Traverse, and Subaru.

Listings 3 and 4 both showcase Denial of Service (DoS) attacks. In 
Listing 3, the DoS attack is extremely overt (the invalid arbitration ID
000 is used), whereas in Listing 4, the DoS attack is more subtle (the 
valid arbitration ID 0C1 is used). The traffic was collected from the 
2011 Chevrolet Traverse. Extended DoS traces can be found in the ap-
pendix (see Appendix A.2).

4.3.2. Fuzzing

Traditional fuzzing attacks inject unexpected, invalid, or random 
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data to conduct reconnaissance and pinpoint vulnerabilities. In our 
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Listing 3 An overt Denial of Service (DoS) attack. The red lines indicate 
attack CAN frames. (For interpretation of the colors in the listings, the 
reader is referred to the web version of this article.)

(1672451549.638534) can0 1E9#0006000C00000000

(1672451549.638538) can0 334#0000

(1672451549.638667) can0 000#0000000000000000

(1672451549.639445) can0 000#0000000000000000

(1672451549.639596) can0 1EB#0141

(1672451549.640116) can0 000#0000000000000000

(1672451549.641030) can0 000#0000000000000000

(1672451549.641747) can0 0C9#840BD30700000000

(1672451549.641756) can0 191#06CD06DC06CE0000

(1672451549.641758) can0 1ED#413E018F01820800

(1672451549.641760) can0 1EF#00000215

(1672451549.642163) can0 000#0000000000000000

(1672451549.642824) can0 1A1#0000414000000000

(1672451549.642833) can0 1C3#06CD06CE00000000

(1672451549.643005) can0 000#0000000000000000

(1672451549.644113) can0 000#0000000000000000

(1672451549.644962) can0 19D#40003FFF0002C58F

(1672451549.644971) can0 1AF#000000

Listing 4 A subtle Denial of Service (DoS) attack. The red lines indicate 
attack CAN frames.

(1672452653.717352) can0 2C3#084306D006D04600

(1672452653.717356) can0 0F1#3E5100C0

(1672452653.718133) can0 0C1#23F612A62309F450

(1672452653.718908) can0 0C1#23F612A62309F450

(1672452653.719477) can0 0C7#020AC94F

(1672452653.719481) can0 0F9#07CD4000001D60FF

(1672452653.719483) can0 189#CFFF0FFF2FFE60FF

(1672452653.719485) can0 199#CFFF0E70F18D00FF

(1672452653.719723) can0 0C1#23F612A62309F450

(1672452653.720350) can0 0C1#23F612A62309F450

(1672452653.721356) can0 0C1#23F612A62309F450

(1672452653.722361) can0 0C1#23F612A62309F450

(1672452653.722675) can0 1EB#011C

(1672452653.722980) can0 0C1#23F612A62309F450

(1672452653.723500) can0 0C1#23F612A62309F450

(1672452653.724011) can0 0C1#23F612A62309F450

(1672452653.724863) can0 0C9#840B010A00010000

(1672452653.724869) can0 191#06B506C306B50000

fuzzing attacks, we randomize the arbitration identifier, the data field, 
and the length of the data. We include both valid and invalid arbitra-
tion identifiers. With our fuzzing attacks, we do not violate CAN frame 
specifications, as messages that do not conform to specifications can be 
trivially rejected by the CAN bus (and, in general, they are). For the 
Subaru Forester, one fuzzed CAN frame is 58A#9F2F306EBAE7D66A, 
one is 0D1#3C050080 and one is 26C#3E.

Given that fuzzing attacks involve a high volume of invalid arbi-
tration identifiers, one might assume that they are trivial to detect. A 
review of the current literature indicates that the opposite is true: be-
cause fuzzing attacks are random, many intrusion detection systems—
especially machine learning IDSs—struggle to recognize them. Even a 
high-performing IDS will generally demonstrate a slight drop in detec-
tion accuracy when pitted against fuzzing attack (Lampe and Meng, 
2023b).

Listing 5 demonstrates a fuzzing attack. The traffic was collected 
from the 2011 Chevrolet Traverse. Extended fuzzing traces can be found 
in the appendix (see Appendix A.3).

4.3.3. Spoofing

For our RPM spoofing and speed spoofing attacks, we spoofed low, 
high, and zero values—e.g., 10 miles per hour (mph), 60 mph, and 

0 mph for speed spoofing. In addition, we conducted both overt and 
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Listing 5 A fuzzing attack. The red lines indicate attack CAN frames.

(1672452917.316296) can0 348#00000000

(1672452917.316301) can0 34A#00000000

(1672452917.317073) can0 036#F237

(1672452917.318151) can0 0EE#750F037DB0973413

(1672452917.318595) can0 0F1#34050040

(1672452917.319220) can0 63C#BB98131FFB6BB64D

(1672452917.319747) can0 19D#C0003FFD000000FF

(1672452917.319763) can0 1AF#000000

(1672452917.320301) can0 758#B4E4B84DB744242D

(1672452917.320835) can0 1F5#0F0F002100000300

(1672452917.320848) can0 1EB#0000

(1672452917.321445) can0 1B9#619E732063822815

(1672452917.322642) can0 107#A60ED87316918238

(1672452917.323068) can0 0C1#0000000000000000

(1672452917.323789) can0 3AA#9442CD7C6E7A727F

(1672452917.324170) can0 0C5#000000000002A384

(1672452917.324188) can0 184#0002000001FE

(1672452917.324193) can0 0C9#0000000A00000000

subtle spoofing attacks. An overt attack, for example, might spoof 60 
mph while the vehicle is actually traveling at a sedate 10 mph. In our 
more subtle attacks, we would spoof something along the lines of 61 
or 62 mph while the vehicle was actually traveling at 60 mph. For our 
gear spoofing attacks, we spoofed “neutral” (“N”) to avoid damaging 
the vehicle—in particular, the transmission. We conducted successful 
“neutral” gear spoofing attacks both when the vehicle was actually in 
“drive” (“D”) and when the vehicle was actually in “reverse” (“R”). We 
believe similar attacks are possible with different combinations of gears; 
however, if we were to successfully spoof “reverse” while the vehicle 
was in “drive,” we would almost certainly damage the transmission (i.e., 
strip the gears). Such an attack would also be dangerous, especially at 
speed.

In the Chevrolet Silverado, the arbitration ID 135 announces the 
vehicle’s current gear (and a lot more signals, which are not well un-
derstood). The first byte—the most significant byte—signifies the Sil-
verado’s current gear. In the CAN frame 135#0008124ACC161601, 
the most significant byte—00—says that the vehicle is in “park.” In the 
CAN frame 135#0100175ECC161619, byte 01 gives the instruction for 
“neutral,” and in 135#0200175ECC16160E, byte 02 gives the instruc-
tion for “drive.” If the most significant byte were 03, the instruction 
would be “reverse.” The arbitration ID responsible for the transmission 
varies by manufacturer—and sometimes even by model. For the Chevro-
let Impala and Chevrolet Traverse, the arbitration ID 1F5 is used. For 
the Subaru Forester, it is 148.

During our double- and triple-spoofing attacks, we spoofed multi-
ple signals (e.g., gear, RPMs, speed) simultaneously. When we con-
ducted our combined spoofing attacks against real automobiles, we 
found that the same vehicle would tolerate different frequencies for 
different signals. E.g., the Traverse and Silverado would tolerate higher 
frequencies for speed-spoofing attacks than for RPM spoofing attacks. 
We believe that the speed value is used exclusively for the dashboard 
speedometer—relatively unimportant—while the RPM value influences 
automatic shifting, locking and unlocking the doors, etc. Since the RPM 
value more greatly impacts the vehicle, it is not surprising that the tol-
erance for suspicious RPM communications is lower.

Listings 6 and 7 showcase spoofing attacks—a gear spoofing attack 
and a triple spoofing attack, respectively. In the gear spoofing attack, 
the “neutral” gear is spoofed; the true value is “drive.” In the triple 
spoofing attack, the gear, the RPMs, and the speed are all spoofed (arbi-
tration IDs 1F5, 0C9, 3E9, respectively). The vehicle is driving at speed, 
but the spoofed messages indicate that it is in “neutral” with no accel-
eration and negligible speed. The traffic was collected from the 2011 
Chevrolet Traverse. Extended spoofing traces can be found in the ap-
16
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Listing 6 A gear spoofing attack. The red lines indicate attack CAN 
frames.

(1674135810.232272) can0 34A#08D108CA

(1674135810.234101) can0 1F5#0D0D000300000300

(1674135810.235464) can0 1EB#0144

(1674135810.236563) can0 0C9#8025E6193B000000

(1674135810.236578) can0 191#07C407C407C43BAF

(1674135810.236583) can0 1ED#412F0B970C140800

(1674135810.237649) can0 1EF#00001119

(1674135810.237659) can0 2C3#0949066406648100

(1674135810.237666) can0 0C7#01B4671C

(1674135810.237676) can0 0F9#016E4007A457BB12

(1674135810.238748) can0 189#8FFF0FFF2FFFBB12

(1674135810.238758) can0 0F1#00060040

(1674135810.238767) can0 199#8FFF0E70F18E00FF

(1674135810.239824) can0 0C1#11DBBB58123AAF44

(1674135810.239829) can0 0C5#11805719120CB19E

(1674135810.239834) can0 1E5#46FFE0C000001E00

(1674135810.245141) can0 1CB#10E800

(1674135810.245806) can0 1F5#0D0D000300000300

Listing 7 A triple spoofing attack. The red lines indicate attack CAN 
frames.

(1674122022.805533) can0 1ED#412E019C01EB0733

(1674122022.805541) can0 1EF#0000023C

(1674122022.805548) can0 1A1#0000414000000000

(1674122022.805575) can0 1F5#0D0D000300000800

(1674122022.806616) can0 1C3#06C606C700000000

(1674122022.807686) can0 0C1#1295096812C24242

(1674122022.807696) can0 0C5#12524E0412911683

(1674122022.807703) can0 1E5#46078EC514F87000

(1674122022.807710) can0 0F1#28070040

(1674122022.808097) can0 3E9#0000000100000000

(1674122022.808774) can0 1E1#0000100000

(1674122022.808852) can0 0C9#00000000000018

(1674122022.809965) can0 1F5#0D0D000300000800

(1674122022.812655) can0 3E9#0000000100000000

(1674122022.813617) can0 0C9#00000000000018

(1674122022.814539) can0 1F5#0D0D000300000800

(1674122022.815117) can0 0C9#840B560A00000000

(1674122022.815122) can0 0C7#004791A8

4.3.4. Interval

Our interval attack leverages a Python script that interfaces with
SocketCAN (Community, 2023) via the python-can package (python-
can Contributors, 2023b,a). The script watches the CAN bus for a 
pre-determined target arbitration ID. When the script recognizes the 
target arbitration ID, it sends one or more spoofed CAN frames with 
the same arbitration ID. We varied the number of spoofed CAN frames 
transmitted by the Python script—for some attacks, we sent just one 
spoofed CAN frame; for others, we sent several spoofed CAN frames. 
If timed correctly, this type of attack can spoof a vehicle’s gear, RPMs, 
speed, etc. with a minimal number of injected CAN frames. For ex-
ample, if we send just one spoofed speed message upon receipt of a 
legitimate speed message, we can keep the speedometer needle hover-
ing near the spoofed value. If, instead, we send spoofed speed messages 
according to a preset frequency, then we need to send many, many 
more messages to achieve the same effect. Here is an example from the 
Chevrolet Impala: the arbitration ID 3E9 is associated with the vehi-
cle’s speed. Several arbitration IDs are associated with speed (e.g., the 
speeds of individual wheels), but 3E9 contains the speed signal that is 
displayed on the speedometer. Our Python script sees the CAN frame
3E9#05CB087005BA0849, a non-zero speed. Immediately, our script 
communicates 3E9#0000000000000000 (zero speed). The needle in-
side the speedometer will rise slightly upon receipt of the true speed 

reading, but before it can reach the vehicle’s actual speed, it will drop 
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back to zero. With just one injected message per true message, we can 
ensure that the displayed speed is hovering around zero, even though 
the vehicle is actually traveling much faster. Since the frequency change 
for the arbitration ID 3E9 is minimal (exactly double the normal fre-
quency), it is much harder to detect than a spoofing attack that relies 
on a high volume of spoofed messages to overwhelm the true messages.

Listing 8 demonstrates an interval attack, in which the target ar-
bitration ID appears on the CAN bus, and, immediately, the adversary 
transmits a spoofed message to countermand the true message. Depend-
ing on bus traffic and arbitration, the spoofed message may directly 
follow the true message, or there may be a few messages in between. 
The traffic was collected from the 2011 Chevrolet Traverse. Extended 
interval attack traces can be found in the appendix (see Appendix A.5).

Listing 8 An interval attack. The red lines indicate attack CAN frames.

(1674033486.438066) can0 1CD#C7FF07FE7F

(1674033486.438074) can0 1E5#460081E000FF7C00

(1674033486.438079) can0 1E9#4FFB000C00000000

(1674033486.438933) can0 1E9#000A000C00060000

(1674033486.440201) can0 1CB#100000

(1674033486.440212) can0 2D1#030000000000

(1674033486.441283) can0 3FD#003A3A

(1674033486.441294) can0 0F1#7E7F00C0

(1674033486.442361) can0 0C9#840AE80A00010000

...

(1674033486.457486) can0 1C7#0FFFAFFF03FF3F

(1674033486.457491) can0 1CD#07FF08017F

(1674033486.458560) can0 1E5#460081A000FF7E00

(1674033486.458575) can0 1E9#4FFA000C00000000

(1674033486.458596) can0 1EB#019B

(1674033486.459399) can0 1E9#000A000C00060000

(1674033486.460715) can0 1CB#100000

(1674033486.460729) can0 0C7#03FE0000

4.3.5. Standstill

Our standstill attack is a spoofing attack, albeit a peculiar one. The 
effects of our standstill attack are dependent upon the vehicle as well 
as the current driving conditions. If the attack is conducted in the 2011 
Chevrolet Traverse or the 2016 Chevrolet Silverado under the correct 
conditions, then it will put the vehicle in “standstill” mode. Essentially, 
the vehicle behaves as though in neutral: pressing on the accelerator 
will rev the engine, but the vehicle will not accelerate. The arbitration 
ID associated with “standstill” mode is also the arbitration ID associated 
with RPMs. To trigger “standstill” mode, an attacker must also spoof 
zero (or near-zero) RPMs. If there is significant confliction, the attack 
will fail. This spoofing attack is noteworthy because, normally, in the 
2016 Chevrolet Silverado, our “malicious” node will be ejected from the 
CAN bus within a few seconds if it sends spoofed CAN frames at even 
a moderate frequency. However, when spoofing “standstill” mode, we 
were able to inject messages at an extremely high frequency without 
getting kicked off the CAN bus. In the Chevrolet Traverse, we injected 
the CAN frame 0C9#0000000000004008 to trigger “standstill” mode. 
In the Chevrolet Silverado, we injected 0C9#0000000700010000 to 
achieve an equivalent effect.

Listing 9 outlines a standstill attack, in which the vehicle is tricked 
into behaving as though in “neutral.” The traffic was collected from the 
2011 Chevrolet Traverse. Extended standstill attack traces can be found 
in the appendix (see Appendix A.6).

4.3.6. Systematic

Our systematic attack is similar to our fuzzing attack; however, 
we do not generate the arbitration identifiers at random. Instead, we 
generate them systematically. As such, we can iterate over all possi-
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ble 11-bit arbitration IDs. Logically, an attacker might conduct such 
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Listing 9 A standstill attack. The red lines indicate attack CAN frames.

(1674135909.661269) can0 1EF#00000252

(1674135909.661280) can0 3C9#0766000000000000

(1674135909.661382) can0 0C9#0000000000004008

(1674135909.662355) can0 1EB#0151

(1674135909.662365) can0 0C7#02A02F6D

(1674135909.663433) can0 0F9#01004006A7ACCF1C

(1674135909.663444) can0 0F1#3E4300C0

...

(1674135909.671051) can0 1ED#4144000001AC0860

(1674135909.671061) can0 1EF#00000255

(1674135909.671069) can0 1A1#0000414000000000

(1674135909.671079) can0 1C3#0634063500000000

(1674135909.672144) can0 2C3#0897063506353600

(1674135909.673221) can0 0F1#0A4300C0

(1674135909.673231) can0 0C1#334C4B0F33079579

(1674135909.673256) can0 0C9#0000000000004008

(1674135909.674302) can0 0C5#32C6FDDC32BCA5B3

(1674135909.674314) can0 1E5#46FFF88000000800

an attack to determine which arbitration IDs are valid. Similarly, 
an attacker might use a systematic approach to assess the impact 
of each arbitration ID. From an IDS’s perspective, a systematic at-
tack will look markedly different from a fuzzing attack. Therefore, 
we feel it is important to include such an attack in order to ade-
quately train and test a machine learning IDS. The following are a 
sequence of CAN frames transmitted during a systematic attack against 
the Subaru Forester: 000#06B01E39C90F4A15, 001#B1E7C157D72E,
002#39B460112D4687, and 003#E8200020EE. The arbitration ID in-
creases incrementally with each new message, and the data field is 
randomized to obfuscate the attack.

Listing 10 spotlights a systematic attack, which might be used for 
reconnaissance. The traffic was collected from the 2011 Chevrolet Tra-
verse. Extended systematic attack traces can be found in the appendix 
(see Appendix A.7).

Listing 10 A systematic attack. The red lines indicate attack CAN 
frames.

(1672454739.897283) can0 1E5#46FFEFE000000E00

(1672454739.898351) can0 1E9#001D000C00030000

(1672454739.899311) can0 000#98BF3D7C9A5CC42F

(1672454739.899415) can0 0C7#018CBBB7

(1672454739.900398) can0 001#207215535845D22C

(1672454739.900485) can0 0F9#022340041C15FC0D

(1672454739.900495) can0 189#0FFF0FFF3001FC0D

(1672454739.900505) can0 199#0FFF0E70F19000FF

(1672454739.901544) can0 002#9C8B734717464C1F

(1672454739.901571) can0 0C9#8020C91337000000

(1672454739.901579) can0 191#07E807E807E837BC

(1672454739.901588) can0 1ED#412F0CB50B9D0800

(1672454739.901592) can0 1EF#000010C3

(1672454739.902660) can0 3F9#0012573257695414

(1672454739.902670) can0 1EB#011D

(1672454739.902680) can0 3FB#8100

(1672454739.902688) can0 003#3473696411F5

(1672454739.903746) can0 1CB#101E00

4.4. Novelty & fidelity

Novelty. For two of our attacks—RPM spoofing and speed spoof-
ing—we included both a driving mode and an accessory mode variant. 
As mentioned earlier, there are stark differences between driving and 
non-driving CAN traffic captures, and it is important to properly train 

an IDS for both scenarios.
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The denial of service (DoS), fuzzing, and spoofing attack families 
are common in the literature. However, few existent CAN datasets 
provide multiple spoofing attacks. Moreover, to our knowledge, none 
of the existing open-access CAN datasets contain combined spoofing 
attacks—i.e., spoofing attacks that involve spoofing multiple signals si-
multaneously. In a double-spoofing attack, for example, an adversary 
might spoof both the vehicle’s gear and RPMs. In some automobiles, 
the ECU(s) associated with gear shifting will ignore shifting commands 
when the vehicle’s RPMs are non-zero. To conduct a gear shifting attack, 
an adversary might need to spoof both the vehicle’s gear and RPMs si-
multaneously.

Many CAN datasets do not—to our knowledge—account for the de-
fenses that automotive manufacturers have begun to incorporate into 
CAN buses and ECUs. In our spoofing attacks, we encountered such 
defenses and crafted attacks capable of eluding them. For example, in 
newer vehicles, our “malicious” node would be kicked off the bus if we 
sent too many spoofed messages at too high a frequency. For our at-
tack to succeed, we needed to send enough CAN frames to drown out 
the legitimate messages coming from the legitimate ECU, but, at the 
same time, we needed to remain under the threshold that would eject 
our “malicious” node from the CAN bus. We experimented with various 
CAN packet frequencies to optimize our attacks. With the RPM spoof-
ing attacks, for instance, we selected a frequency that would point the 
tachometer needle to the spoofed value, minimizing fluctuation toward 
the true value without precipitating our ejection from the CAN bus. The 
optimal frequency differed by vehicle—the 2011 Chevrolet Impala tol-
erated extremely high frequencies without kicking us off the CAN bus; 
the 2016 Chevrolet Silverado would exclude our “malicious” node from 
CAN communications within a couple of seconds unless we were very 
conservative with our frequencies.

Fidelity. Generally, the spoofing attacks—gear, RPM, and speed—
as well as the standstill attack were injected into a real automobile 
under driving conditions. To alleviate safety concerns, the attacks were 
first conducted while the vehicle was parked in accessory mode. We 
selected attacks with visible—but harmless—impacts. Then, the attacks 
were conducted again, this time at speed in a rural area. The speed 
spoofing attack impacts only the speedometer. In some vehicles, the 
RPM spoofing attack impacts only the tachometer; in others, it alters the 
vehicle’s automatic shifting (i.e., it confuses the computer that controls 
automatic shifting). The gear spoofing and standstill attacks can cause 
the vehicle to go into neutral or behave as though in neutral. The test 
drivers were prepared for the attacks, and the attacker was prepared to 
stop the attack if an unexpected issue occurred.

Out of concern about safety issues or possible damage to the vehicle, 
the DoS, fuzzing, systematic, and interval attacks were simulated—the 
attack-free traffic was replayed using Linux’s SocketCAN subsystem 
(Community, 2023) and can-utils utilities (can-utils Contributors, 
2023), the attack traffic was injected using Python, and the resulting 
traffic was captured.

We conducted real-world attacks against the Chevrolet Impala, Tra-
verse, and Silverado. Due to the owners’ concerns, we did not attack the 
Subaru Forester. All attacks involving the Subaru Forester were simu-
lated.

For a few of our spoofing and standstill attacks, we determined that 
it would not be feasible to label our captured attack traffic—that is, the 
attack traffic captured during real attacks on real automobiles. As such, 
we preserved the real-world traffic captures in our unlabeled datasets, 
but, for our labeled datasets, we instead conducted simulated attacks 
that matched the real attacks as closely as possible.

4.5. Pre-processing

We provide our raw dataset, can-dataset; a pre-processed and 
labeled dataset, can-ml; and a curated training and testing dataset,
can-train-and-test. Developing can-ml and can-train-and-
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test necessitated a number of pre-processing steps (can-train-and-
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test was curated from can-ml). In addition, for all our datasets, we 
conducted several validation checks to ensure the quality of our data. 
In this section, we outline six of our pre-processing steps, namely:

1. .log file validation
2. .log file standardization
3. .log file conversion (to .csv)
4. .csv file standardization
5. .csv file labeling
6. Sub-dataset curation

We leveraged the Python programming language to effectuate 
the bulk of our pre-processing efforts. In particular, we utilized the
python-can package (python-can Contributors, 2023b,a), which fa-
cilitates controller area networking in Python, as well as the pandas
package (pandas Contributors, 2023), which facilitates data analysis 
and manipulation.

Validating the .log files. We should be able to replay a valid .log
file using canplayer (one of the Linux can-utils utilities (can-utils 
Contributors, 2023)). Playback should be error-free. To validate our 
.log files, we replayed each one and confirmed that it ran without 
error.

Standardizing the .log files. We set up multiple CAN interfaces—
both physical and virtual—for our CAN traffic captures. A physical CAN 
interface, for example, might have been named can0, can1, etc.; sim-
ilarly, a virtual CAN interface might have been named vcan0, vcan1, 
etc. During data collection and attack generation, we used multiple in-
terfaces in order to conduct multiple experiments simultaneously. For 
ease of use, we adopt can0 as our standard CAN interface; that is, we 
replace all CAN interfaces in all .log files with can0. It is much easier 
to use canplayer to replay CAN .log files when the CAN interface 
is uniform. In addition, because the CAN interface does not constitute 
a meaningful feature, it could prove problematic for a machine learn-
ing IDS—i.e., the CAN interface could pollute the IDS with noise. By 
standardizing the CAN interface, we mitigate this issue.

Converting the .log files to .csv files. Next, we convert the 
.log files to .csv files. We preserve only meaningful features—i.e., 
the timestamp, arbitration identifier, and data field (the CAN inter-
face is discarded). During the conversion process, the CAN frame (e.g.,
191#0670069E067E0000) is split into two separate features: arbitra-
tion ID (e.g., 191) and data field (e.g., 0670069E067E0000).

Standardizing the .csv files. A machine learning IDS can fit to 
arbitrary, ineffectual patterns in a particular dataset’s timestamps. For 
example, if attack-free data was collected on September 12th, and at-
tack data was collected on September 13th, then a machine learning 
IDS might distinguish attack data from attack-free data by checking 
the timestamp. This behavior is counterproductive; the IDS is fitting 
to noise in the data. Therefore, we standardized all of our .csv files 
to January 1st, 2022. For a given .csv file, the timestamp of the first 
CAN frame is set to January 1st, and the difference between the origi-
nal timestamp and the January 1st timestamp is calculated. We use that 
difference as an offset to update all the remaining timestamps. As such, 
while the timestamps are changed, the intervals between CAN frames 
are preserved; thus, we preserve the fidelity of the dataset.

Labeling the .csv files. We adopted two labeling techniques for 
our dataset. When labeling a given attack file, we selected the label-
ing technique best suited to the attack type (i.e., the labeling technique 
best suited to the characteristics of the injected attack CAN frames). 
When we simulate an attack, we begin with an attack-free traffic cap-
ture. We replay the attack-free traffic capture, inject attacks, and record 
the attack-laden traffic. Ultimately, we have an attack-free traffic cap-
ture and a corresponding attack-laden traffic capture. By comparing 
the attack-free capture to the attack-laden capture, we can identify 
the attack CAN frames. We use this labeling technique for DoS and 
fuzzing attacks, as the attack CAN frames do not resemble legitimate 

traffic. For spoofing attacks, however, the attack CAN frames closely 
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Table 7

Our datasets.

Namea # of Linesb Size Format
can-dataset 332,022,322 13.3 GB .log and .csv
can-log (can-dataset) 166,011,012 7.2 GB .log

can-csv (can-dataset) 166,011,310 6.1 GB .csv

can-ml (.log files) 315,295,222 13.8 GB .log

can-ml (.csv files) 630,587,197 23.7 GB .csv

can-train-and-testc 193,241,081 7.5 GB .csv
a A dataset’s “name” is also the name of its repository.
b The number of lines corresponds to the number of samples—or timesteps—in the dataset.
c can-train-and-test is the name of the repository which contains the final curated dataset (labeled and partitioned). 

The can-train-and-test repository is linked to the can-dataset and can-ml repositories, which contain raw .log files, 
additional attack-free traffic, and additional attack traffic. As such, we use the term can-train-and-test to refer to the
can-train-and-test repository as well as the linked repositories.
resemble—or even match—legitimate traffic. When we replay and re-
capture CAN traffic, we inadvertently change the timestamps (both the 
actual dates/times and the intervals), so we cannot distinguish between 
attack-free and attack CAN frames using the aforementioned compar-
ison technique. Instead, when injecting attack CAN frames, we use a 
different CAN interface (e.g., can1, vcan1). During the labeling pro-
cess, we leverage the CAN interface to differentiate attack-free and 
attack traffic. Once the file is labeled, we standardize the CAN inter-
face to eliminate noise. Ultimately, our labeled .csv files contain the 
following fields:

1. timestamp
2. arbitration_id
3. data_field
4. attack (“0” for attack-free, “1” for attack)

Curating the sub-datasets. We subdivided our dataset into four 
sub-datasets, each of which contains one “training” folder and four 
“testing” folders. The sub-datasets are intended to be similar in terms 
of size (e.g., number of samples) and attacks (e.g., attack-free/attack 
ratio). We planned out our sub-datasets by selecting different vehicle 
types, attack types, etc. for the various “training” and “testing” fold-
ers, then we constructed the sub-datasets accordingly. We discuss our 
sub-datasets in detail in Section 5.

4.5.1. Attack-free

Listing 11 contains an example of attack-free traffic—in particular, 
traffic collected in driving mode—in a labeled .csv file. This is the end 
result when all pre-processing steps have been completed. The traffic 
was collected from the 2011 Chevrolet Traverse. An extended listing is 
available in the appendix (see Section Appendix B.1).

Listing 11 Labeled attack-free traffic (driving mode).

1672531371.842441,1E1,0000100000,0

1672531371.843111,0C7,00D4A352,0

1672531371.843342,0F9,031A4002A23FDEFA,0

1672531371.843591,189,4FFF0FFF3000DEFA,0

1672531371.843815,199,4FFF0E70F18F00FF,0

1672531371.8439581,1EB,0141,0

1672531371.844667,1F1,AE0E00000800007A,0

1672531371.845175,0C1,236F7087236A5491,0

1672531371.8453221,1CB,10E600,0

1672531371.845534,0C5,234188A42341E475,0

1672531371.8457692,184,0001000001FF,0

1672531371.845994,1C7,0FFF700003FF3F,0

1672531371.846168,1CD,C7FF07FE7F,0

1672531371.846438,1E5,4600D8EED4FF2500,0

1672531371.8466392,1E9,0FFF000C00260000,0

1672531371.846887,0C9,801D551911000000,0

1672531371.847044,0F1,1C040040,0

1672531371.847256,191,075E075E0761115D,0
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4.5.2. Attack

Listing 12 contains an example of attack traffic—specifically, fuzzing 
attack traffic—in a labeled .csv file. This is the end result when all pre-
processing steps have been completed. The traffic was collected from 
the 2011 Chevrolet Traverse. An extended listing is available in the 
appendix (see Section Appendix B.2).

Listing 12 A labeled fuzzing attack. The red lines indicate attack CAN 
frames.

1672531209.2064872,348,00000000,0

1672531209.2064922,34A,00000000,0

1672531209.2072642,036,F237,1

1672531209.208342,0EE,750F037DB0973413,1

1672531209.208786,0F1,34050040,0

1672531209.2094111,63C,BB98131FFB6BB64D,1

1672531209.209938,19D,C0003FFD000000FF,0

1672531209.209954,1AF,000000,0

1672531209.210492,758,B4E4B84DB744242D,1

1672531209.2110262,1F5,0F0F002100000300,0

1672531209.211039,1EB,0000,0

1672531209.211636,1B9,619E732063822815,1

1672531209.2128332,107,A60ED87316918238,1

1672531209.213259,0C1,0000000000000000,0

1672531209.21398,3AA,9442CD7C6E7A727F,1

1672531209.2143612,0C5,000000000002A384,0

1672531209.214379,184,0002000001FE,0

1672531209.214384,0C9,0000000A00000000,0

5. Datasets

In this section, we introduce our datasets as shown in Table 7: can-
dataset, can-log, can-csv, can-ml, and can-train-and-test. 
We will begin with the can-dataset, which contains raw CAN traffic 
data, and we will conclude with can-train-and-test, which is pre-
processed, labeled, organized, and curated. Each of the five datasets 
will be presented in its own section.

5.1. can-dataset

can-dataset is the name of our raw CAN dataset, available
at https://bitbucket .org /brooke -lampe /can -dataset /src /master/ or
https://data .dtu .dk /articles /dataset /can -dataset /24805248. This data-
set contains 596 files (298 .log files and 298 .csv files), which 
consume 13.3 gigabytes (GB) of space.

The total number of lines in this dataset is 332,022,322. Note that 
this dataset provides raw CAN data in two different formats—.log and 
.csv. As such, the number of unique samples is approximately half the 

total number of lines (Lampe, 2023b,g).

https://bitbucket.org/brooke-lampe/can-dataset/src/master/
https://bitbucket.org/brooke-lampe/can-dataset/src/master/
https://data.dtu.dk/articles/dataset/can-dataset/24805248
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5.2. can-log

can-log is a subset of the can-dataset, available at https://
bitbucket .org /brooke -lampe /can -log /src /master/ or https://data .dtu .
dk /articles /dataset /can -log /24805506. It contains only the .log files 
and is available for researchers who do not want to download the full
can-dataset, which includes both the .log and .csv files.

can-log contains 298 .log files, which consume 7.2 GB of space. 
The total number of lines (i.e., samples) in this dataset is 166,011,012.

Each sample corresponds to a particular CAN frame at a particular time 
(Lampe, 2023c,h).

There are 91,827,504 attack-free samples. Breaking that number 
down, we have...

1. Chevrolet Impala 14,693,040 attack-free samples
2. Chevrolet Traverse 53,086,095 attack-free samples
3. Chevrolet Silverado 12,867,782 attack-free samples
4. Subaru Forester 11,180,587 attack-free samples

5.3. can-csv

can-csv is a subset of the can-dataset, available at https://
bitbucket .org /brooke -lampe /can -csv /src /master/ or https://data .dtu .
dk /articles /dataset /can -csv /24805509. It contains only the .csv files. 
Similar to can-log, can-csv is available for researchers who do not 
want to download the full can-dataset, which includes both the 
.log and .csv files.

can-csv contains 298 .csv files, which consume 6.1 GB of space. 
The total number of lines (i.e., samples) in this dataset is 166,011,310.

As with can-log, each sample corresponds to a particular CAN frame 
at a particular time (Lampe, 2023a,f).

5.4. can-ml

We gave the name can-ml to our pre-processed, labeled dataset, 
as it is intended to support machine learning (i.e., ML)—specifically 
for intrusion detection. This dataset is available at https://bitbucket .
org /brooke -lampe /can -ml /src /master/ or https://data .dtu .dk /articles /
dataset /can -ml /24805530.

can-ml has been subdivided into four directories, as follows:

1. Pre-attack unlabeled
2. Pre-attack labeled
3. Post-attack unlabeled
4. Post-attack labeled

Essentially, for each traffic capture, we provide both labeled and 
unlabeled (raw) variants as well as pre-attack (attack-free) and attack 
variants. The bulk of the files are .csv files, since the comma-separated 
values (CSV) format is well suited to data labeling—and data loading. 
Our .csv files can be easily loaded with, e.g., the pandas (pandas 
Contributors, 2023) Python library. In the unlabeled pre-attack and 
post-attack directories, we also include the corresponding raw .log
files (Lampe, 2023d,i).

Discounting the helper files, our dataset contains 1,248 files—.csv

and .log—and occupies 37.5 GB of space. There are 312 files per vehi-
cle (Chevrolet Impala, Chevrolet Traverse, etc.). Breaking it down, we 
have...

1. .log files. There are 416 .log files, totaling 13.8 GB. 104 .log
files are associated with each vehicle. Summing up all the samples 
in all the .log files gives us a total of 315,295,222 samples.

2. .csv files. There are 832 .csv files, totaling 23.7 GB. 208 .csv
files are associated with each vehicle. Summing up all the samples 
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in all the .csv files gives us a total of 630,587,197 samples.
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The can-ml dataset contains nine distinct attacks (see Section 4.3). 
Table 8 records the number of attack-free instances and the number 
of attack instances (i.e., CAN frames) for each attack. Some types of 
attacks, such as DoS, typically contain a very high number of attack 
instances—exactly what we would expect for that type of attack. Oth-
ers, such as speed spoofing, can be more subtle, producing real-world 
consequences with a few thousand CAN frames.

5.5. can-train-and-test

can-train-and-test is our curated CAN intrusion detection 
dataset for machine learning IDSs. This dataset is (1) pre-processed, 
(2) labeled, and (3) organized. can-train-and-test is available at 
https://bitbucket .org /brooke -lampe /can -train -and -test /src /master/ or 
https://data .dtu .dk /articles /dataset /can -train -and -test /24805533.

can-train-and-test contains 236 .csv files and comprises a to-
tal of 193,241,081 lines, which corresponds to 7.5 GB of space (Lampe, 
2023e,j). It is subdivided into four train/test sub-datasets, as follows:

1. set_01
• 52 .csv files
• 1.7 GB of space
• 10,653,152 training samples
• 44,659,609 total samples

2. set_02
• 56 .csv files
• 2.2 GB of space
• 17,340,826 training samples
• 55,946,808 total samples

3. set_03
• 62 .csv files
• 1.7 GB of space
• 12,025,781 training samples
• 43,799,824 total samples

4. set_03
• 66 .csv files
• 1.9 GB of space
• 9,492,819 training samples
• 48,834,840 total samples

Within each train/test sub-dataset—set_01, set_02, set_03, and
set_04—we provide one training subset and four testing subsets, as 
follows:

1. train_01: Train the model
2. test_01_known_vehicle_known_attack: Test the model against a 

known vehicle (seen in training) and known attacks (seen in train-
ing)

3. test_02_unknown_vehicle_known_attack: Test the model against 
an unknown vehicle (not seen in training) and known attacks (seen 
in training)

4. test_03_known_vehicle_unknown_attack: Test the model against 
a known vehicle (seen in training) and unknown attacks (not seen 
in training)

5. test_04_unknown_vehicle_unknown_attack: Test the model
against an unknown vehicle (not seen in training) and unknown 
attacks (not seen in training)

5.5.1. Class imbalance

Now, we will discuss class balance—or rather, class imbalance—in 
the can-train-and-test dataset, which is the dataset we will use 
for our benchmark in Section 7. Our problem is a binary classification

problem—we assign samples to one of two categories. A sample can 
either be an attack-free sample or an attack sample (i.e., a positive sam-
ple or a negative sample). In a balanced classification problem, the class 

distribution is roughly equal; that is, there are about as many positive 

https://bitbucket.org/brooke-lampe/can-log/src/master/
https://bitbucket.org/brooke-lampe/can-log/src/master/
https://bitbucket.org/brooke-lampe/can-log/src/master/
https://data.dtu.dk/articles/dataset/can-log/24805506
https://data.dtu.dk/articles/dataset/can-log/24805506
https://bitbucket.org/brooke-lampe/can-csv/src/master/
https://bitbucket.org/brooke-lampe/can-csv/src/master/
https://bitbucket.org/brooke-lampe/can-csv/src/master/
https://data.dtu.dk/articles/dataset/can-csv/24805509
https://data.dtu.dk/articles/dataset/can-csv/24805509
https://bitbucket.org/brooke-lampe/can-ml/src/master/
https://bitbucket.org/brooke-lampe/can-ml/src/master/
https://bitbucket.org/brooke-lampe/can-ml/src/master/
https://data.dtu.dk/articles/dataset/can-ml/24805530
https://data.dtu.dk/articles/dataset/can-ml/24805530
https://bitbucket.org/brooke-lampe/can-train-and-test/src/master/
https://bitbucket.org/brooke-lampe/can-train-and-test/src/master/
https://data.dtu.dk/articles/dataset/can-train-and-test/24805533
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Table 8

Attack-free and attack instances.

Vehicle Attack Type # of Attack-Free
Instances

# of Attack
Instances

2011 Chevrolet Impala Denial of Service (DoS) 1,385,357 90,462
— Combined Spoofing 6,737,943 27,042
— Fuzzing 1,221,636 53,140
— Gear Spoofing 3,448,455 9,483
— Interval 1,955,381 7,126
— RPM Spoofing 4,633,645 10,776
— Speed Spoofing 4,736,665 14,147
— Standstill 4,467,371 5,259
— Systematic 1,734,400 31,085
2011 Chevrolet Traverse Denial of Service (DoS) 2,231,741 79,900
— Combined Spoofing 8,940,577 52,580
— Fuzzing 3,392,420 125,942
— Gear Spoofing 7,829,122 1,216
— Interval 4,020,305 16,437
— RPM Spoofing 9,830,326 931
— Speed Spoofing 12,127,282 3,347
— Standstill 3,306,519 609
— Systematic 1,795,032 40,365
2016 Chevrolet Silverado Denial of Service (DoS) 2,226,833 261,604
— Combined Spoofing 7,214,913 11,713
— Fuzzing 2,889,336 55,095
— Gear Spoofing 4,268,509 3,772
— Interval 3,313,734 9,977
— RPM Spoofing 3,925,254 1,979
— Speed Spoofing 5,247,359 5,655
— Standstill 2,946,404 2,454
— Systematic 3,249,507 20,915
2017 Subaru Forester Denial of Service (DoS) 2,246,099 51,798
— Combined Spoofing 5,722,160 84,665
— Fuzzing 2,413,372 37,391
— Gear Spoofing 2,348,436 4,677
— Interval 2,517,118 106,314
— RPM Spoofing 2,974,813 16,829
— Speed Spoofing 3,654,235 18,262
— Standstill 2,350,664 10,808
— Systematic 3,374,832 23,814
samples as negative samples. Our problem is an imbalanced classification

problem (Brownlee, 2020; Kubat and Matwin, 1997).
In automotive networks, upwards of 1 million messages cross the 

CAN bus every ten minutes. Automobiles travel for miles and miles, for 
hours upon hours, without falling victim to an attack. Therefore, au-
tomotive intrusion detection is a problem of rare event prediction; the 
rare event in question is automotive attack. Our problem is inherently 
imbalanced; therefore, our dataset is similarly imbalanced. A practica-
ble IDS would have to be able to cope with this imbalance—whether it 
is pitted against our dataset or placed in a real automobile.

For each sub-dataset and training/testing subset, the ratio of attack-
free traffic to attack traffic (attack-free:attack) is presented be-
low:

1. Sub-dataset #1

• Training subset - 213:1

• Testing subset #1 - 89:1

• Testing subset #2 - 38:1

• Testing subset #3 - 413:1

• Testing subset #4 - 927:1

2. Sub-dataset #2

• Training subset - 76:1

• Testing subset #1 - 927:1

• Testing subset #2 - 420:1

• Testing subset #3 - 421:1

• Testing subset #4 - 264:1

3. Sub-dataset #3

• Training subset - 69:1
21

• Testing subset #1 - 51:1
• Testing subset #2 - 42:1

• Testing subset #3 - 519:1

• Testing subset #4 - 44:1

4. Sub-dataset #4

• Training subset - 363:1

• Testing subset #1 - 44:1

• Testing subset #2 - 303:1

• Testing subset #3 - 42:1

• Testing subset #4 - 36:1

Reviewing the above ratios, we can see that class imbalances range 
from a ratio of 36:1 at the lowest to ratio of 927:1 at the highest. When 
we present our benchmark (Section 7), we will revisit class imbalance 
and the complications it introduces.

The can-train-and-test dataset is a curated subset of the can-
ml dataset, which, in turn, is the pre-processed counterpart of the 
raw can-dataset. As such, class imbalance in the can-train-and-test 
dataset is representative of class imbalance in the can-dataset and
can-ml datasets.

6. Practitioner guidance

As emphasized in Section 5, we provide multiple datasets—in mul-
tiple repositories—for different use cases. In this section, we highlight 
the features and use cases of our datasets to help practitioners decide 
which dataset will best suit their purposes. We also provide several us-
age examples that should help practitioners to get started working with 
our datasets (see Section 6.1).

Table 9 illustrates our datasets and their expected use cases.

The links to all of our repositories are as follows:
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Table 9

Our datasets: Practitioner Guidance.

Namea Use Case(s) Notes
can-dataset This dataset is a superset of the can-log and can-csv datasets. Practitioners who plan 

to use both the can-log and can-csv datasets might find it easier to download this 
dataset, as all of the .log and .csv are stored side by side in the appropriate directories.

can-dataset is a repository that 
contains all of the contents of both 
the can-log and can-csv

repositories.
can-log (can-dataset) This data contains raw CAN traffic in .log files. Practitioners can use it to replay CAN 

traffic (see Section 6.1). During replay, practitioners can also inject CAN frames to 
develop new attacks.

can-log is the .log-file only 
version of the can-dataset
repository.

can-csv (can-dataset) This dataset contains raw CAN traffic that has been converted from .log files to .csv
files. It is intended to support unsupervised learning, as it is unlabeled, but it is in a 
format that can be quickly and efficiently loaded into a Python program (e.g., using the
pandas pandas Contributors (2023) library).

can-csv is the .csv-file only 
version of the can-dataset
repository.

can-ml (.log and .csv files) This dataset contains labeled .csv files for attack-free traffic as well as nine types of 
attack traffic. It is intended to support supervised machine learning. Artifacts used to 
generate the labeled .csv files (e.g., the original .log files) are also included.

If an attack was conducted offline 
rather than in-vehicle, then the 
original .log files will be available 
under the directory 
“pre-attack-unlabeled.”

can-train-and-test This dataset contains four curated sub-datasets. The sub-datasets have been subdivided 
into one training subset and four testing subsets. The testing subsets correspond to 
different attack scenarios (e.g., known vehicle, unknown attack). Practitioners interested 
in machine learning can use this pre-split dataset in order to avoid partitioning the
can-ml dataset themselves. Practitioners interested in seeing how well an IDS generalizes 
to unseen attacks or unseen vehicles might also wish to use this dataset.

This dataset is a subset of the can-ml
dataset; it does not contain all the 
CAN traffic data we collected.

a A dataset’s “name” is also the name of its repository.
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• can-dataset: https://bitbucket .org /brooke -lampe /can -dataset /
src /master/, https://data .dtu .dk /articles /dataset /can -dataset/
24805248, or https://doi .org /10 .11583 /DTU .24805248.

• can-log: https://bitbucket .org /brooke -lampe /can -log /src/
master/, https://data .dtu .dk /articles /dataset /can -log /24805506, 
or https://doi .org /10 .11583 /DTU .24805506.

• can-csv: https://bitbucket .org /brooke -lampe /can -csv /src/
master/, https://data .dtu .dk /articles /dataset /can -csv /24805509, 
or https://doi .org /10 .11583 /DTU .24805509.

• can-ml: https://bitbucket .org /brooke -lampe /can -ml /src /master/, 
https://data .dtu .dk /articles /dataset /can -ml /24805530, or https://
doi .org /10 .11583 /DTU .24805530.

• can-train-and-test: https://bitbucket .org /brooke -lampe /can -
train -and -test /src /master/, https://data .dtu .dk /articles /dataset /
can -train -and -test /24805533, or https://doi .org /10 .11583 /DTU .
24805533.

6.1. Usage

We provide a number of usage examples for the raw CAN traffic 
logs—i.e., the .log files. Our usage examples require Linux’s Socket-
CAN subsystem (Community, 2023) and can-utils utilities (can-utils 
Contributors, 2023). We include the commands to (1) set up a virtual 
CAN interface and (2) replay the raw CAN traffic logs (using can-
player).

# Set up virtual CAN interface
sudo modprobe vcan
sudo ip link add dev vcan0 type vcan
sudo ip link set vcan0 up

# Show the details of the vcan0 link
ip -details -statistics link show vcan0

# Replay a candump log file
canplayer -I your-log-file.log vcan0=can0

# To replay an attack-free log from the 
can-dataset↪

canplayer -I can-dataset/2017-subaru-
forester/attack-free/attack-free-1.log 
vcan0=can0

↪

↪
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# To replay a DoS log from the can-dataset
canplayer -I can-dataset/2011-chevrolet-

impala/DoS-attacks/DoS-1.log 
vcan0=can0

↪

↪

# Examine packets with the specified arbitration 
identifier↪

candump vcan0 | grep " 3E9 "

# Use candump to create a log file that can be 
replayed using canplayer↪

candump -l any

# Use candump to create a log file that can be 
replayed using canplayer,↪

# specifying the log file name
candump -L any > your-log-file.log

# Use candump to create a log file that can be 
replayed using canplayer,↪

# specifying the virtual CAN interface
candump -L vcan0 > DoS-1.log

# Send spoofed packets at set intervals
while true; do cansend vcan0 

3E9#1B4C05111B511C69; sleep 0.01; done↪

# Monitor the bus; send spoofed packets when 
real packets are detected↪

candump can0 | grep " 3E9 " | while read line; 
do cansend can0 3E9#1B4C05111B511C69; done↪

7. Benchmark

7.1. Setup

We implemented our benchmark in Python, leveraging the pandas
(pandas Contributors, 2023) Python library to load our dataset and the
scikit-learn (Pedregosa et al., 2011) Python library to implement 
our machine learning intrusion detection systems. We selected several 
machine learning algorithms—both supervised and unsupervised—as 

well as two deep learning algorithms from scikit-learn’s offerings.

https://bitbucket.org/brooke-lampe/can-dataset/src/master/
https://bitbucket.org/brooke-lampe/can-log/src/master/
https://bitbucket.org/brooke-lampe/can-csv/src/master/
https://bitbucket.org/brooke-lampe/can-ml/src/master/
https://bitbucket.org/brooke-lampe/can-train-and-test/src/master/
https://bitbucket.org/brooke-lampe/can-dataset/src/master/
https://bitbucket.org/brooke-lampe/can-dataset/src/master/
https://bitbucket.org/brooke-lampe/can-dataset/src/master/
https://data.dtu.dk/articles/dataset/can-dataset/24805248
https://data.dtu.dk/articles/dataset/can-dataset/24805248
https://doi.org/10.11583/DTU.24805248
https://bitbucket.org/brooke-lampe/can-log/src/master/
https://bitbucket.org/brooke-lampe/can-log/src/master/
https://bitbucket.org/brooke-lampe/can-log/src/master/
https://data.dtu.dk/articles/dataset/can-log/24805506
https://doi.org/10.11583/DTU.24805506
https://bitbucket.org/brooke-lampe/can-csv/src/master/
https://bitbucket.org/brooke-lampe/can-csv/src/master/
https://bitbucket.org/brooke-lampe/can-csv/src/master/
https://data.dtu.dk/articles/dataset/can-csv/24805509
https://doi.org/10.11583/DTU.24805509
https://bitbucket.org/brooke-lampe/can-ml/src/master/
https://bitbucket.org/brooke-lampe/can-ml/src/master/
https://data.dtu.dk/articles/dataset/can-ml/24805530
https://doi.org/10.11583/DTU.24805530
https://doi.org/10.11583/DTU.24805530
https://bitbucket.org/brooke-lampe/can-train-and-test/src/master/
https://bitbucket.org/brooke-lampe/can-train-and-test/src/master/
https://bitbucket.org/brooke-lampe/can-train-and-test/src/master/
https://data.dtu.dk/articles/dataset/can-train-and-test/24805533
https://data.dtu.dk/articles/dataset/can-train-and-test/24805533
https://doi.org/10.11583/DTU.24805533
https://doi.org/10.11583/DTU.24805533
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Table 10

Sub-dataset #1, Testing subset #1 (known vehicle, known attack).

Model Accuracy Precision Recall (TPR) F1-score Training Time (ns) Testing Time (ns)
Gaussian Naive Bayes 0.8820 0.9814 0.8820 0.9273 2071507728 617191930
K-Nearest Neighbors 0.9855 0.3376 0.3141 0.3254 106205148337753 2698926122173
Linear Regression 0.3540 0.9680 0.3540 0.5042 3544294407 141826800
Logistic Regression 0.9890 0.9871 0.9890 0.9878 112252658417 380374780
Linear Support Vector 

Machine
0.9841 0.3018 0.3275 0.3141 35314797566 344383409

One-Class Support Vector 
Machinea

- - - - - -

Support Vector Machine 0.9720 0.1505 0.3275 0.2062 116557173711567 20169585048115
Decision Tree 0.9742 0.0724 0.1123 0.0880 8271963209 401618047
Extra Trees 0.9915 0.8199 0.3046 0.4442 209531429363 20667658310
Gradient Boosting 0.6254 0.9892 0.6254 0.7585 2451403662347 8489738261
Isolation Forest 0.9846 0.9779 0.9846 0.9812 197244480367 88099567128
Random Forest 0.9879 0.0088 0.0008 0.0015 763511969876 38249637250
K-Means Clustering 0.8564 0.9763 0.8564 0.9124 97416359356 638434302
Mini-Batch K-Means 

Clustering
0.4681 0.9669 0.4681 0.6304 7678285764 3796294688

BIRCH 0.9889 0.9779 0.9889 0.9834 214197454658 605665184
Local Outlier Factor 0.9254 0.9728 0.9254 0.9465 53788202512612 2439824879120
Multi-Layer Perceptron 0.9788 0.9837 0.9788 0.9811 3088090156514 11708139937
Restricted Boltzmann 

Machine
0.0111 0.0001 0.0111 0.0002 916661700320 9736619899

a The one-class support vector machine exceeded our 6-day (518400000000000 ns) time limit.
For supervised traditional machine learning, we experimented with 
five families of models—Gaussian naive Bayes (1 model), k-nearest 
neighbors (1 model), regression (2 models), support vector machine (3 
models), and tree (5 models). In total, there are twelve supervised ma-
chine learning models. For unsupervised machine learning, we explored 
two families of models—clustering (3 models) and local outlier factor 
(1 model). We evaluated one supervised machine learning model—a 
multi-layer perceptron—and one unsupervised deep learning model—a 
restricted Boltzmann machine.

• SUPERVISED TRADITIONAL MACHINE LEARNING

– Gaussian Naive Bayes (NB)
– K-Nearest Neighbors (KNN)
– Regression

* Linear Regression

* Logistic Regression

– Support Vector Machine (SVM)

* SVM

* Linear SVM

* One-Class SVM

– Tree

* Decision Tree (DT)

* Extra Trees (ET)

* Gradient Boosting

* Isolation Forest (IF)

* Random Forest (RF)

• UNSUPERVISED TRADITIONAL MACHINE LEARNING

– Clustering

* K-Means Clustering

* Mini-Batch K-Means Clustering

* Balanced Iterative Reducing and Clustering using Hierarchies 
(BIRCH)

– Local Outlier Factor (LOF)
• SUPERVISED DEEP LEARNING

– Multi-Layer Perceptron (MLP)
• UNSUPERVISED DEEP LEARNING

– Restricted Boltzmann Machine (RBM)

We leveraged a compute cluster to conduct our experiments. Each 
experiment was allocated one CPU and 16 GB of RAM. The time limit 
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was set to 6 days (518400000000000 ns).
7.2. Discussion of results

In this section, we discuss the results of our evaluation. We se-
lected sub-dataset #1 to examine in detail; additional results have been 
made available in the appendix (see Appendix C) as well as the can-
benchmark repository.

7.2.1. Testing subsets

Tables 10, 11, 12, 13 showcase our experimental results for sub-
dataset #1, testing subsets #1, #2, #3, and #4, respectively. For each 
model, the experiment with the optimal parameter set—in terms of 
maximum F1-score—is shown.

Recall that test_01 is designed to evaluate a given model against a 
known vehicle and known attacks. Next, test_02 evaluates the model 
against an unknown vehicle and known attacks. Inversely, test_03
evaluates the model against a known vehicle and unknown attacks. 
Lastly, test_04 evaluates the model against an unknown vehicle and 
unknown attacks.

Looking at testing subset #1 (Table 10), we can see that the logis-
tic regression model achieved the highest F1-score: 0.9878. The logistic 
regression model performed very well across the board; its accuracy, 
precision, and recall metrics were 0.9890, 0.9871, and 0.9890, respec-
tively. Training time was approximately 112.3 seconds; testing time was 
approximately 0.38 seconds.

For testing subset #2 (Table 11), the BIRCH model earned the high-
est F1-score: 0.9620—somewhat lower than the highest F1-score for the 
previous testing subset. The BIRCH model also attained an accuracy of 
0.9745, a precision of 0.9497, and a recall of 0.9745. The BIRCH model 
spent approximately 214.2 seconds on training and 0.66 seconds on 
testing.

Next, we examine testing subset #3 (Table 12). We can see that 
the gradient boosting model attained the highest F1-score: 0.9966. The 
gradient boosting model attained an accuracy of 0.9977, a precision 
of 0.9977, and a recall of 0.9977. Training time was approximately 
2451.4 seconds (≈41 minutes); testing time was approximately 11.8 

seconds.

https://bitbucket.org/brooke-lampe/can-benchmark/src/master/
https://bitbucket.org/brooke-lampe/can-benchmark/src/master/
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Table 11

Sub-dataset #1, Testing subset #2 (unknown vehicle, known attack).

Model Accuracy Precision Recall (TPR) F1-score Training Time (ns) Testing Time (ns)
Gaussian Naive Bayes 0.8652 0.9479 0.8652 0.9044 2071507728 674632590
K-Nearest Neighbors 0.9714 0.0009 0.0001 0.0002 106205148337753 6628601627607
Linear Regression 0.3112 0.9668 0.3112 0.4499 3544294407 127655570
Logistic Regression 0.9565 0.9514 0.9565 0.9539 112252658417 199207470
Linear Support Vector 

Machine
0.9593 0.0538 0.0361 0.0432 35314797566 354491014

One-Class Support Vector 
Machinea

- - - - - -

Support Vector Machine 0.9720 0.1505 0.3275 0.2062 116557173711567 20169585048115
Decision Tree 0.9738 0.0000 0.0000 0.0000 8271963209 471393563
Extra Trees 0.9740 0.0000 0.0000 0.0000 209531429363 24155191698
Gradient Boosting 0.6626 0.9763 0.6626 0.7739 2451403662347 8834463042
Isolation Forest 0.9550 0.9492 0.9550 0.9521 197244480367 100337823607
Random Forest 0.9720 0.0000 0.0000 0.0000 763511969876 42700298556
K-Means Clustering 0.8654 0.9467 0.8654 0.9042 97416359356 709549141
Mini-Batch K-Means 

Clustering
0.4969 0.9271 0.4969 0.6470 7678285764 4126732218

BIRCH 0.9745 0.9497 0.9745 0.9620 214197454658 662717530
Local Outlier Factor 0.1714 0.9557 0.1714 0.2640 53788202512612 7698684672802
Multi-Layer Perceptron 0.9666 0.9529 0.9666 0.9594 3088090156514 13276672102
Restricted Boltzmann 

Machine
0.0255 0.0006 0.0255 0.0013 916661700320 10970949396

a The one-class support vector machine exceeded our 6-day (518400000000000 ns) time limit.

Table 12

Sub-dataset #1, Testing subset #3 (known vehicle, unknown attack).
Model Accuracy Precision Recall (TPR) F1-score Training Time (ns) Testing Time (ns)
Gaussian Naive Bayes 0.8839 0.9957 0.8839 0.9361 2071507728 1069338929
K-Nearest Neighbors 0.9976 0.4762 0.0005 0.0010 106205148337753 3326301454816
Linear Regression 0.3467 0.9939 0.3467 0.5136 3544294407 159399960
Logistic Regression 0.9976 0.9954 0.9976 0.9964 112252658417 696710769
Linear Support Vector 

Machine
0.9975 0.0131 0.0009 0.0017 35314797566 673546732

One-Class Support Vector 
Machinea

- - - - - -

Support Vector Machine 0.9976 0.0260 0.0009 0.0018 116557173711567 30536179241509
Decision Tree 0.9821 0.0022 0.0148 0.0039 8271963209 602445631
Extra Trees 0.9976 1.0000 0.0001 0.0003 209531429363 31514357019
Gradient Boosting 0.9977 0.9977 0.9977 0.9966 2451403662347 11825961968
Isolation Forest 0.9969 0.9957 0.9969 0.9963 197244480367 134518109020
Random Forest 0.9976 1.0000 0.0004 0.0009 763511969876 56868215083
K-Means Clustering 0.8658 0.9970 0.8658 0.9258 97416359356 963140938
Mini-Batch K-Means 

Clustering
0.4741 0.9969 0.4741 0.6408 7678285764 5800975603

BIRCH 0.9976 0.9953 0.9976 0.9965 214197454658 1004912418
Local Outlier Factor 0.9386 0.9965 0.9386 0.9665 53788202512612 2504114371275
Multi-Layer Perceptron 0.9974 0.9953 0.9974 0.9964 3088090156514 17550210412
Restricted Boltzmann 

Machine
0.0024 0.0000 0.0024 0.0000 916661700320 14603996262

a The one-class support vector machine exceeded our 6-day (518400000000000 ns) time limit.
Lastly, looking at testing subset #4 (Table 13), we can see that, once 
again, the BIRCH model earned the highest F1-score: 0.9984. For accu-
racy, precision, and recall, the BIRCH model attained values of 0.9990, 
0.9979, and 0.9990, respectively. As before, the training time was ap-
proximately 214.2 seconds, though the testing time was marginally 
longer—approximately 1.2 seconds.

If we zoom out to the full dataset—which includes all experiments 
with all parameters—we can see a trend in terms of the highest-
performing models. Generally, the following models achieve the top 
F1-scores:

1. Multi-Layer Perceptron
2. Gradient Boosting
3. Isolation Forest
4. BIRCH
24

5. Logistic Regression
On the flip side, the following models earned F1-scores of zero for 
one or more experiments:

• Restricted Boltzmann Machine
• Decision Tree
• Extra Trees
• K-Nearest Neighbors
• Linear Support Vector Machine
• Support Vector Machine
• Random Forest

We do not have an F1-score for the one-class support vector 
machine—as it ran out of time—but, given the performance of the lin-
ear support vector machine and the traditional support vector machine, 
we do not believe that it would have performed well.

When evaluating the performance of a machine learning model; 

training time is also a very important metric. From a training time per-
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Table 13

Sub-dataset #1, Testing subset #4 (unknown vehicle, unknown attack).

Model Accuracy Precision Recall (TPR) F1-score Training Time (ns) Testing Time (ns)
Gaussian Naive Bayes 0.8906 0.9979 0.8906 0.9411 2071507728 1671649398
K-Nearest Neighbors 0.9982 0.0190 0.0148 0.0166 106205148337753 11972712642811
Linear Regression 0.3341 0.9758 0.3341 0.4757 3544294407 137564940
Logistic Regression 0.9976 0.9979 0.9976 0.9977 112252658417 984385909
Linear Support Vector 

Machine
0.9942 0.0002 0.0009 0.0003 35314797566 661366602

One-Class Support Vector 
Machinea

- - - - - -

Support Vector Machine 0.9981 0.0007 0.0006 0.0007 116557173711567 46633303631277
Decision Tree 0.9827 0.0018 0.0276 0.0033 8271963209 997735598
Extra Trees 0.9988 0.0000 0.0000 0.0000 209531429363 49439825750
Gradient Boosting 0.9984 0.9980 0.9984 0.9982 2451403662347 18095133741
Isolation Forest 0.9881 0.9980 0.9881 0.9930 197244480367 202233230770
Random Forest 0.9988 0.0011 0.0001 0.0003 763511969876 88901090110
K-Means Clustering 0.8872 0.9985 0.8872 0.9392 97416359356 1463804724
Mini-Batch K-Means 

Clustering
0.4748 0.9984 0.4748 0.6429 7678285764 9274790788

BIRCH 0.9990 0.9979 0.9990 0.9984 214197454658 1171693676
Local Outlier Factor 0.1661 0.8882 0.1661 0.2726 53788202512612 7995192332965
Multi-Layer Perceptron 0.9973 0.9979 0.9973 0.9976 3088090156514 27715472855
Restricted Boltzmann 

Machine
0.0010 0.0000 0.0010 0.0000 916661700320 22041127093

a The one-class support vector machine exceeded our 6-day (518400000000000 ns) time limit.
spective, the Gaussian naive Bayes model is the clear victor. Looking 
at sub-dataset #4, testing subset #2, not only did the Gaussian naive 
Bayes model achieve the shortest training time—1711150808 nanosec-
onds (≈1.7 seconds)—but it also earned an impressive 0.9955 F1-score. 
Moreover, the model achieved an accuracy of 0.9961, a precision of 
0.9951, and a recall of 0.9961. The worst performer, time-wise, would 
be the one-class support vector machine, as it failed to terminate within 
the 6-day time limit.

As mentioned above, the testing subsets were developed to evalu-
ate different facets of a machine learning model. Some subsets evaluate 
the given model against knowns (i.e., known vehicles, known attacks), 
while others evaluate the given model against unknowns (i.e., unknown 
vehicles, unknown attacks). The average F1-scores for our testing sub-
sets are given below:

1. Testing subset #1 F1-score: 0.49833623
2. Testing subset #2 F1-score: 0.42135362
3. Testing subset #3 F1-score: 0.45809565
4. Testing subset #4 F1-score: 0.44716087
5. All testing subsets F1-score: 0.45623659

The average F1-score varied across testing subsets #1 through #4. 
The average F1-score for testing subset #1 was ≈0.4983. For testing 
subset #2, the average F1-score dropped to ≈0.4214. For testing subsets 
#3 and #4, the average F1-scores were ≈0.4581 and ≈0.4472, respec-
tively. The average F1-score across all testing subsets was ≈0.4562.

Unsurprisingly, the average F1-score was highest for testing subset 
#1, which contains only known vehicles and known attacks. We ex-
pected testing subset #4, which contains both unknown vehicles and 
unknown attacks, to attain the lowest average F1-score. However, test-
ing subset #2 (unknown vehicles, known attacks) saw the lowest av-
erage F1-score. It would seem that unknown vehicles might be more 
disruptive to machine learning IDSs than unknown attacks. If that is 
indeed the case, then it is all the more important to train a machine 
learning IDS against as many different vehicles (type, manufacturer, 
model) as possible.

7.2.2. Sub-datasets

With our four testing subsets, our objective was to evaluate differ-
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ent aspects of a machine learning model. Thus, the testing subsets were
carefully designed to be different. With our four sub-datasets, our ob-
jective was similarity—we sought to construct sub-datasets that were 
consistent in terms of size, complexity, difficulty, attack types, etc. Sub-
datasets provide supplementary training and testing data; for example, 
if sub-dataset #1 is too small, it can be augmented with data from sub-
dataset #2. In addition, sub-datasets could be used to ensure that a 
machine learning model does not suffer from overfitting; if the model 
performs well on sub-dataset #1 but performs terribly on sub-datasets 
#2, #3, and #4, then perhaps the model might have overfit to sub-
dataset #1.

Therefore, when we compare sub-datasets, we hope to see similar 
metrics for the same model when evaluated against the same testing 
subset. Let us look at the BIRCH model when evaluated against testing 
subset #1 for both sub-dataset #1 and sub-dataset #4. For sub-dataset 
#1, accuracy, precision, recall, and F1-score were 0.9889, 0.9779, 
0.9889, and 0.9834, respectively. Meanwhile, for sub-dataset #4, ac-
curacy, precision, recall, and F1-score were 0.9784, 0.9572, 0.9784, 
and 0.9677, respectively. Across the board, the values are somewhat 
lower for sub-dataset #4 than for sub-dataset #1. That said, the BIRCH 
model performed exceptionally well on both sub-datasets. The training 
times were 214197454658 ns (≈214.2 seconds) and 161254066683 ns 
(≈161.3 seconds) for sub-dataset #1 and sub-dataset #4, respectively. 
Overall, the two sub-datasets are sufficiently similar.

On the opposite end of the spectrum, the k-nearest neighbors 
model performed poorly when pitted against sub-dataset #1, testing 
subset #1, achieving an F1-score of only 0.3254. Similarly, the k-
nearest neighbors model underperformed against sub-dataset #4, test-
ing subset #1, earning an F1-score of only 0.3279. Time-wise, the 
model spent 106205148337753 ns (≈29.5 hours) training against sub-
dataset #1 and 68650714770712 ns (≈19.1 hours) training against 
sub-dataset #4.

Table 14 highlights the performance of our 18 models against sub-
dataset #4, testing subset #1. For comparison, refer to Table 10, which 
showcases the performance of our 18 models against sub-dataset #1, 
testing subset #1.

Calculating the average F1-score for each sub-dataset yields the fol-
lowing values:

1. Sub-dataset #1 F1-score: 0.45623659
2. Sub-dataset #2 F1-score: 0.49727649

3. Sub-dataset #3 F1-score: 0.52929375
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Table 14

Sub-dataset #4, Testing subset #1 (known vehicle, known attack).

Model Accuracy Precision Recall (TPR) F1-score Training Time (ns) Testing Time (ns)
Gaussian Naive Bayes 0.9755 0.9596 0.9755 0.9668 1711150808 716855819
K-Nearest Neighbors 0.9825 0.9638 0.1975 0.3279 68650714770712 1751927202489
Linear Regression 0.3243 0.9985 0.3243 0.4886 4962548165 255239910
Logistic Regression 0.9784 0.9788 0.9784 0.9677 35900328378 199674490
Linear Support Vector 

Machine
0.9784 0.0000 0.0000 0.0000 21097322961 415427420

One-Class Support Vector 
Machinea

- - - - - -

Support Vector Machine 0.9810 0.9913 0.1254 0.2226 89048060616553 7497330386451
Decision Tree 0.9880 0.9705 0.4586 0.6229 23308577039 687957287
Extra Trees 0.9837 0.9972 0.2467 0.3956 486225104765 36751033345
Gradient Boosting 0.9800 0.9771 0.9800 0.9722 2246450290838 7599878712
Isolation Forest 0.9774 0.9578 0.9774 0.9672 171923906654 103616521318
Random Forest 0.9848 0.9977 0.2961 0.4566 1658659682691 59969033775
K-Means Clustering 0.7698 0.9530 0.7698 0.8511 49276596864 757799028
Mini-Batch K-Means 

Clustering
0.7597 0.9526 0.7597 0.8448 7006960680 4772947871

BIRCH 0.9784 0.9572 0.9784 0.9677 161254066683 678632660
Local Outlier Factor 0.9552 0.9981 0.9552 0.9760 100295280221578 4241296731211
Multi-Layer Perceptron 0.9799 0.9787 0.9799 0.9715 2655845001046 13873431844
Restricted Boltzmann 

Machine
0.1171 0.9575 0.1171 0.1781 761974625735 12918669375

a The one-class support vector machine exceeded our 6-day (518400000000000 ns) time limit.
4. Sub-dataset #4 F1-score: 0.53296775
5. All sub-datasets F1-score: 0.50389963

Sub-dataset #1 appears to be somewhat more difficult than the 
others—the average F1-score of sub-dataset #1 is ≈0.4562, somewhat 
lower than the overall average F1-score of ≈0.5039. Judging by F1-
score, sub-datasets #3 and #4 are remarkably similar, while sub-dataset 
#2 appears to be marginally more difficult than the overall dataset.

7.2.3. Different vehicles

To determine which machine learning model performed best across 
different vehicles, we need to know which vehicles constituted the 
known and unknown vehicles in each sub-dataset:

1. Sub-dataset #1

• Known vehicle: Chevrolet Impala

• Unknown vehicle: Chevrolet Silverado

2. Sub-dataset #2

• Known vehicle: Chevrolet Traverse

• Unknown vehicle: Subaru Forester

3. Sub-dataset #3

• Known vehicle: Chevrolet Silverado

• Unknown vehicle: Subaru Forester

4. Sub-dataset #4

• Known vehicle: Subaru Forester

• Unknown vehicle: Chevrolet Traverse

For each sub-dataset, we are interested in how well the machine 
learning model performs in the known vehicle scenarios, namely, test-
ing subset #1 (known vehicle, known attack) and testing subset #3 
(known vehicle, unknown attack). These testing subsets will demon-
strate a machine learning model’s capabilities across CAN traffic cap-
tures from different vehicles, whereas testing subsets #2 (unknown 
vehicle, known attack) and #4 (unknown vehicle, unknown attack) 
would instead demonstrate the ability of an IDS to generalize to dif-
ferent vehicles (vehicles that did not appear in training).

When determining the top machine learning models for each sub-
dataset, testing subset pair, we include only models that consistently

achieved a high F1-score; that is, models that achieved top scores two 
or more times. For testing subset #1 (known vehicle, known attack), the 
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top two machine learning models—in terms of F1-score—are as follows:
1. Sub-dataset #1: MLP, BIRCH
2. Sub-dataset #2: Gradient Boosting, MLP (tie)
3. Sub-dataset #3: Gradient Boosting, MLP
4. Sub-dataset #4: MLP, Gradient Boosting

Then, for testing subset #3 (known vehicle, unknown attack), the 
top two machine learning models—in terms of F1-score—are as follows:

1. Sub-dataset #1: Gradient Boosting, Isolation Forest (tie)
2. Sub-dataset #2: Isolation Forest, BIRCH (tie)
3. Sub-dataset #3: Gradient Boosting, MLP
4. Sub-dataset #4: Gradient Boosting, MLP

We can see that the gradient boosting model and the multi-layer 
perceptron model perform very well regardless of vehicle model and, 
importantly, regardless of vehicle manufacturer. In sub-datasets #1, 
#2, and #3, the manufacturer is the same (Chevrolet), and both the 
gradient boosting model and the multi-layer perceptron model per-
form superbly—even when confronted with unknown attacks. Looking 
at sub-dataset #4, in which the manufacturer is different (Subaru), we 
can see that the gradient boosting model and the multi-layer percep-
tron model perform very well against both known and unknown attacks. 
Clearly, the gradient boosting and multi-layer perceptron models per-
form very well across different vehicles. However, in many cases, the 
difference in F1-score between 1st place and 2nd, 3rd, or even 4th place 
is quite small. For example, the BIRCH model tended to be in 3rd or 4th

place—and the gap was often very small. Indications are that the gradi-
ent boosting and multi-layer perceptron models outperform the others 
across different vehicles, but with additional optimization and tuning—
of both the models and the features—the rankings might change.

7.2.4. Traditional machine learning vs. deep learning, supervised learning 
vs. unsupervised learning

Our evaluation pitted (1) traditional machine learning models 
against deep learning models and (2) supervised learning models 
against unsupervised learning models. Our results suggest that the type 
of model (logistic regression, isolation forest, BIRCH, multi-layer per-
ceptron, etc.) is more important than traditional machine learning vs. 
deep learning or supervised learning vs. unsupervised learning. Among 
our supervised traditional machine learning models, several performed 

very well (e.g., logistic regression, isolation forest); others performed 
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Table 15

G-mean. (Geometric mean of sensitivity & specificity.)

Model #1, #1 #1, #2 #1, #3 #1, #4 #4, #1
Gaussian Naive Bayes 0.8848 0.8759 0.8846 0.8910 0.9861
K-Nearest Neighbors 0.5585 0.0100 0.0224 0.1216 0.4444
Linear Regression 0.3503 0.3050 0.3468 0.3272 0.3240
Logistic Regression 0.9927 0.9684 0.9987 0.9981 0.9891
Linear Support Vector Machine 0.5698 0.1884 0.0300 0.0299 0.0000
One-Class Support Vector Machinea - - - - -
Support Vector Machine 0.5663 0.1887 0.0300 0.0245 0.3541
Decision Tree 0.3324 0.0000 0.1207 0.1648 0.6771
Extra Trees 0.5517 0.0000 0.0100 0.0000 0.4967
Gradient Boosting 0.6233 0.6582 0.9988 0.9989 0.9898
Isolation Forest 0.9901 0.9674 0.9980 0.9885 0.9881
Random Forest 0.0283 0.0000 0.0200 0.0100 0.5442
K-Means Clustering 0.8612 0.8766 0.8659 0.8873 0.7777
Mini-Batch K-Means Clustering 0.4705 0.5034 0.4736 0.4746 0.7675
BIRCH 0.9944 0.9872 0.9988 0.9995 0.9891
Local Outlier Factor 0.9298 0.1635 0.9393 0.1652 0.9556
Multi-Layer Perceptron 0.9824 0.9786 0.9986 0.9978 0.9898
Restricted Boltzmann Machine 0.0000 0.0000 0.0000 0.0000 0.1081
a The one-class support vector machine exceeded our 6-day (518400000000000 ns) time limit.
very poorly (e.g., support vector machine, extra trees). With unsuper-
vised traditional machine learning, we saw exceptional performance 
from the BIRCH model, mediocre performance from mini-batch k-means 
clustering model, and inconsistent performance from the local outlier 
factor model. When it comes to deep learning, we have only two models 
to consider: (1) the supervised multi-layer perceptron and (2) the un-
supervised restricted Boltzmann machine. The multi-layer perceptron 
performed exceptionally well, while the restricted Boltzmann machine 
performed exceptionally poorly. Therefore, we find both traditional 
machine learning and deep learning approaches to be well suited to 
the problem of automotive intrusion detection. Likewise, we find that 
both supervised and unsupervised models—if properly constructed and 
optimized—can function as automotive IDSs.

7.2.5. Class imbalance

An inherent challenge in intrusion detection is class imbalance, due 
to the fact that the vast majority of the network traffic is “normal,” and 
the actual intrusions (i.e., attacks) represent an extremely rare minority. 
Intrusion detection falls under the umbrella of rare event classification

problems, in which a machine learning model is expected to classify 
rare events (Brownlee, 2020). Such problems are, by nature, subject to 
class imbalance. As mentioned in Section 5.5.1, our can-train-and-
test dataset is similarly imbalanced.

The accuracy metric is often ill-suited to imbalanced datasets 
(Brownlee, 2020; Kubat and Matwin, 1997); as such, in addition to 
accuracy, we have included the precision, recall, and F1-scores in Ta-
bles 10, 11, 12, 13, and 14. The recall metric is also known as the 
sensitivity metric or true positive rate (TPR). Sensitivity is a popular 
choice when the positive class (in our case, the attack class) is extremely 
rare. When positive class is rare, a sub-standard classifier can assign all 
samples to the negative class and still achieve a high accuracy value. 
However, the sensitivity metric assesses how well the classifier iden-
tified the positive class. If the classifier assigned all samples to the 
negative class, its recall would be zero. Therefore, the sensitivity metric 
can be extremely useful to us as we examine the results of our imbal-
anced classification problem. In addition, we have the F1-score (also 
called the F-measure), which balances the concerns of precision and 
recall (i.e., sensitivity). A very high F1-score reassures us that our ma-
chine learning model is not too biased toward false negatives nor false 
positives (Brownlee, 2020; Guo et al., 2016).

In Tables 10, 11, 12, 13, and 14, we can see that four of our five 
top models—multi-layer perceptron, isolation forest, BIRCH, and logis-
tic regression—achieved scores above 0.9 for accuracy, precision, recall, 
and F1-score. As such, we are assured of the capabilities of the models 
27

even when pitted against imbalanced datasets. The gradient boosting 
model, also in our top five, occasionally sees lower accuracy and re-
call score (between 0.6 and 0.7). The lower scores appeared when the 
gradient boosting model was pitted against sub-dataset #1, testing sub-
sets #1 and #2. In sub-dataset #1, testing subset #1 has a class ratio 
(attack-free:attack) of 89:1. Testing subset #2 has a class ratio of 
38:1. In contrast, testing subsets #3 and #4 have class ratios of 413:1 
and 927:1, and we can see that the gradient boosting model performed 
much better against these two subsets. However, the gradient boosting 
model also performed well against sub-dataset #4, testing subset #1, 
where the class ratio was 44:1—closer to the ratios of testing subsets #1 
and #2 in sub-dataset #1. As such, we can attribute some of the perfor-
mance difference to additional factors (e.g., different vehicles, different 
scenarios). On the opposite side of the performance spectrum, we have 
the extra trees model. In sub-dataset #1, testing subset #1, if we just 
looked at accuracy (0.9915), or if we just looked at accuracy (0.9915) 
and precision (0.8199), we might believe the model is quite promis-
ing. But, when we look at recall (0.3046), we realize that the model is 
biased to underpredict the positive class, and the class imbalance is al-
lowing the model to achieve reasonable accuracy and precision values. 
If we use the F1-score as our performance metric, then we can see that 
the extra trees model has some issues—the F1-score is 0.4442.

In Table 15, we provide the g-mean, that is, the geometric mean of 
sensitivity and specificity (Kubat and Matwin, 1997). The g-mean bal-
ances the concerns of sensitivity (i.e., recall or true positive rate) and 
specificity (true negative rate). Similar to the F1-score, the g-mean is a 
popular metric when dealing with class imbalance (Kubat and Matwin, 
1997; Guo et al., 2016; Brownlee, 2020). As in our sensitivity analysis, 
we can see that four of our five top models—multi-layer perceptron, iso-
lation forest, BIRCH, and logistic regression—achieved g-means above 
0.9 for all five experiments. As before, the gradient boosting model 
struggled with sub-dataset #1, testing subsets #1 and #2. Having ex-
amined metrics that are well-suited to imbalanced datasets, we are 
reassured that the results of our benchmark are reliable and useful.

We have included detailed metrics—per model—in the appendix 
(see Appendix C). In our detailed metrics, we include raw numbers for 
true positives (TPs), true negatives (TNs), false positives (FPs), and false 
negatives (FNs). The raw numbers provide additional insights into the 
capabilities of each machine learning model as well as the impacts of 
class imbalance.

In addition, the can-benchmark repository contains the artifacts 
generated over the course of our benchmark evaluation. We also 
provide a Microsoft Excel spreadsheet, benchmark.xlsx, in which 
we meticulously organize the results of our experiments. bench-
mark.xlsx includes the F1-scores and g-means of all the machine 

learning models across all experiments, providing an excellent picture 

https://bitbucket.org/brooke-lampe/can-benchmark/src/master/
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of the models’ capabilities—in spite of the class imbalance. The can-
benchmark repository is available here: https://bitbucket .org /brooke -
lampe /can -benchmark /src /master/.

8. Limitations

In this section, we assess the limitations of our dataset. In particular, 
we revisit the limitations identified in Section 1.1:

1. Lack of sufficient attack-free data
2. Lack of sufficient attack variation
3. Lack of sufficient vehicle variation
4. Lack of fidelity
5. Lack of severity
6. Lack of modernity
7. Lack of labels

In addition, we compare our dataset to pre-existing open-access CAN 
bus datasets. Depending on the use case, some datasets are better suited 
to automotive research than ours.

Lack of sufficient attack-free data. We have addressed this limita-
tion of existing datasets. Our dataset contains ample attack-free data. 
There are 91,827,504 total attack-free samples (i.e., captured CAN 
frames). There are at least 10,000,000 attack-free samples per vehi-
cle.

Lack of sufficient attack variation. Nine unique attacks are repre-
sented in our dataset. Nonetheless, our attacks are not comprehensive. 
Our dataset lacks confliction-free masquerade attacks (all of our mas-
querade attacks involve confliction). If practitioners are looking for 
confliction-free masquerade attacks, then the Real ORNL Automotive 
Dynamometer CAN intrusion dataset (Verma et al., 2020, 2022) would 
be more suitable. In addition, our dataset lacks suppress attacks; as 
such, we refer practitioners to the TU Eindhoven CAN bus intrusion 
dataset v2 (Dupont et al., 2019) and the Synthetic CAN Bus dataset 
(Hanselmann et al., 2020), as they both provide suppress attacks. Lastly, 
our dataset lacks diagnostic attacks; to our knowledge, the TU CAN 
v2 (Dupont et al., 2019) contains the only publicly-available diagnos-
tic attack. We plan to expand our dataset to include confliction-free 
masquerade attacks and suppress attacks in our future work (see Sec-
tion 9).

Lack of sufficient vehicle variation. Four vehicle models and two 
vehicle manufacturers are represented in our dataset. To our knowl-
edge, the greatest number of test vehicles in an existing open-access 
CAN bus dataset is three (HCRL Survival Analysis dataset (Han et al., 
2018)). That said, the HCRL SA contains data from three different man-
ufacturers (Chevrolet, Hyundai, Kia), whereas our dataset contains data 
from only two distinct manufacturers (Chevrolet, Subaru). In our fu-
ture work, we plan to augment our dataset to represent more vehicle 
manufacturers and more vehicle models.

Lack of fidelity. We sought to curate a high-fidelity CAN bus intru-
sion dataset whenever possible, but, for safety reasons, some of our at-
tacks were conducted offline. We replayed our captured CAN bus traffic 
and injected attacks using a combination of Linux’s SocketCAN drivers 
(Community, 2023) and can-utils utilities (can-utils Contributors, 
2023) and Python’s python-can package (python-can Contributors, 
2023b,a). The ROAD dataset (Verma et al., 2020, 2022) contains attacks 
that were conducted while the vehicle was in a dynamometer—i.e., a 
“rolling road” (de Menezes Lourenço et al., 2022). Such attacks would 
be more realistic than our offline attacks. That said, the CAN traffic data 
in the ROAD dataset has been obfuscated to protect the identity of the 
vehicle used for data collection; as such, there may be fidelity impacts. 
In particular, when the authors anonymized the arbitration IDs, they 
did not preserve the priority-ordering of the arbitration IDs.

Lack of severity. As we did not wish to damage the vehicle nor 
endanger the drivers and data collectors, we could not attempt the 
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vehicle in “neutral,” and we conducted this attack—with a success-
ful, observable result—both when the vehicle was actually in “drive” 
and when the vehicle was actually in “reverse.” We theorize that spoof-
ing “reverse” while in “drive” (or vice versa) using the same technique 
would also result in a successful, observable attack. However, if the at-
tack were successful, it would strip the gears, damaging the vehicle and 
possibly endangering the occupants. As such, while we were able to 
conduct attacks that are more severe than changing the radio station, 
we were not able to conduct high-severity attacks that would jeopar-
dize the vehicle or the occupants. This is a limitation of our dataset. 
The accelerator attacks in the ROAD dataset (Verma et al., 2020, 2022) 
are perhaps the most severe attacks actually conducted on a vehicle in 
motion.

Lack of modernity. Our dataset contains attacks that were cus-
tomized to thwart the enhanced security of the newer vehicles we 
tested. We managed to conduct successful, observable attacks by trans-
mitting a minimum number of spoofed messages in order to avoid being 
ejected from the CAN bus. That said, our newest vehicles were from 
2016 and 2017. We cannot point practitioners to a specific dataset for 
more recent data, as we were unable to determine the model years for 
the vehicles in existing open-access datasets.

Lack of labels. We have addressed this limitation of existing 
datasets. Our can-train-and-test dataset, intended to support su-
pervised learning, is completely labeled—“0” indicates an attack-free 
CAN frame, while “1” indicates an attack CAN frame.

Additional limitations. Compared to existing open-access CAN bus 
datasets, we have identified two additional limitations: (1) lack of signal 
data and (2) lack of scenario and positioning (i.e., location) information. 
We have not translated our raw CAN bus traffic data into discrete sig-
nals (i.e., discrete pieces of information). For signal data, practitioners 
should explore the AEGIS Big Data Project Automotive CAN Bus dataset 
(Kaiser et al., 2019), the Synthetic CAN Bus (SynCAN) dataset (Hansel-
mann et al., 2020), the HCRL CAN Signal Extraction and Translation 
dataset (Song and Kim, 2020), the Real ORNL Automotive Dynamome-
ter CAN intrusion (ROAD) dataset (Verma et al., 2020, 2022), and the 
Reverse Engineering CAN Bus (ReCAN) dataset (Zago et al., 2020b,a). 
We do not provide information about specific driving scenarios (e.g., 
“driving at 40 mph, then lane change, then accelerate to 75 mph”), and 
we do not provide global positioning system (GPS) data. Practitioners 
seeking detailed driving information should refer to CrySyS Lab CAN 
dataset (CrySyS Lab, 2017), while practitioners interested in GPS data 
should explore AEGIS CAN (Kaiser et al., 2019).

9. Future work

We have identified a number of opportunities for future work, which 
are highlighted in Fig. 12. More specifically, we enumerate the follow-
ing:

1. Craft advanced masquerade attacks (i.e., no confliction)
2. Dedicate experiments to optimization (i.e., finding the best param-

eters)
3. Construct additional models (e.g., non-learning, traditional ma-

chine learning, deep learning)
4. Collect diversified data (e.g., different vehicles, drivers, environ-

ments)
5. Evaluate our machine learning models against related works (e.g., 

other intrusion detection datasets, other machine learning models)
6. Conduct a fine-grained benchmark (e.g., which attacks are easiest 

for the decision tree model to detect?)

Advanced masquerade attacks. Our datasets contain unsophisti-
cated masquerade attacks in which our malicious node “masquerades” 
as a legitimate ECU by using the legitimate ECU’s arbitration identi-
fier and transmitting spoofed CAN frames that resemble the legitimate 

ECU’s messages. In this manner, we fooled the vehicle into responding 

https://bitbucket.org/brooke-lampe/can-benchmark/src/master/
https://bitbucket.org/brooke-lampe/can-benchmark/src/master/
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Fig. 12. Future work, prioritized.

to our malicious CAN frames as though they came from the legiti-
mate ECU we were pretending to be. However, in our unsophisticated

masquerade attack, there was still confliction. As mentioned in Sec-
tion 2, a sophisticated masquerade attack incorporates both spoofing and 
suppress attacks. Essentially, CAN frames from the legitimate ECU are 
“suppressed,” so that there is no confliction when the attacker “spoofs” 
CAN frames with the legitimate ECU’s arbitration identifier. As such, the 
attacker “masquerades” as the legitimate ECU. To construct advanced 
masquerade attacks, we plan to explore two options: (1) scrubbing legit-
imate CAN frames from a traffic capture during post-processing or (2) 
conducting actual suppress attacks. It would be easier to simply remove 
legitimate CAN frames from a traffic capture during post-processing in 
order to simulate an advanced masquerade attack, but we are concerned 
about loss of fidelity. If we were to conduct an actual suppress attack 
in a live vehicle, fidelity would be preserved, but the test vehicle might 
be adversely impacted. Successful suppress attacks on live vehicles gen-
erally involve ECU reprogramming (Miller and Valasek, 2016b,a; Nie 
et al., 2017; Cai et al., 2019). If the ECU reprogramming process goes 
awry, we might not be able to restore the ECU to a functional state. 
Therefore, we will explore and evaluate our two options. Once we have 
suppressed the legitimate ECU’s CAN frames—either live or during post-
processing—we will conduct a spoofing attack. Because the legitimate 
ECU’s CAN frames have been suppressed, there will be no confliction 
during the spoofing attack.

Optimization experiments. For our 18 machine learning models, 
we explored different parameter settings and conducted experiments 
with the goal of optimization. However, the focus of this work is our 
dataset and benchmark; as such, we did not rigorously optimize our 
models. In our future work, we plan to dedicate a number of exper-
iments to optimization. We will meticulously record our parameters 
and results with the objective of finding optimal parameters for each 
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Additional models. In our future work, we plan to explore addi-
tional machine learning models—beyond scikit-learn’s offerings 
(Pedregosa et al., 2011). We will investigate both traditional machine 
learning and deep learning models, and we will experiment with both 
supervised and unsupervised learning paradigms. In particular, we are 
considering convolutional neural networks (CNNs) and transformers 
for our supervised deep learning models. For our unsupervised deep 
learning models, we are looking into autoencoders and generative ad-
versarial networks (GANs) (Lampe and Meng, 2023c,b). We are also 
investigating the possibilities of long short-term memory (LSTM) net-
works, both for supervised and unsupervised learning (Lampe and 
Meng, 2023b). In addition, we intend to implement non-learning in-
trusion detection algorithms—e.g., interval-, frequency-, sequence-, and 
entropy-based techniques—to enrich our benchmark.

Diversified data. Automotive controller area network data varies 
widely by vehicle type, by manufacturer, and even by model. Though 
the 2011 Chevrolet Impala and the 2016 Chevrolet Silverado were both 
produced by General Motors and share the Chevrolet mark, they differ 
significantly when it comes to CAN frames. They share some arbitration 
identifiers but not others. If we look closely at the arbitration IDs they 
actually share, we can see that the data field is often longer for the Sil-
verado’s CAN frames than the Impala’s. As such, it is essential to collect 
diversified data from different vehicle types, manufacturers, and mod-
els. A larger, more diversified dataset would provide a greater quantity 
of data—which is especially important for machine learning IDSs. In 
addition, we plan to recruit more test drivers. In particular, we will 
be looking at the experience level of our test drivers—inexperienced 
vs. experienced. We will also consider different test environments. 
Inter-city driving, for example, is drastically different from highway 
driving. Similarly, vehicles handle differently—and, thus, people drive 
differently—on minimum-maintenance gravel roads compared to paved 
asphalt roads. Lastly, we will look at additional driving conditions (e.g., 
weather) when enriching our dataset.

Evaluation against related works. The main contribution of this 
paper is our dataset. Our machine learning models (traditional ma-
chine learning, deep learning, supervised learning, unsupervised learn-
ing) were developed and evaluated to provide a “benchmark” for our 
dataset. Essentially, the benchmark demonstrates how different ma-
chine learning models might perform against our dataset. Moreover, the 
benchmark establishes a baseline for practitioners (i.e., researchers who 
use our dataset). They can evaluate the efficacy of their own techniques 
by comparing their techniques to our baseline. As such, as mentioned 
above, we did not rigorously optimize our machine learning models. 
Once we have optimized our models, we plan to pit them against the 
intrusion detection datasets made available in related works. We will 
compare our dataset to the datasets supplied by related works, and we 
will evaluate the efficacy of our machine learning models across differ-
ent datasets. In addition, we will compare our machine learning models 
to the techniques described in related works. We plan to implement 
some of the techniques described in related works ourselves and evalu-
ate them against our datasets.

Fine-grained benchmark. Once we have cultivated additional at-
tacks, additional—optimized—models, and additional data, we plan to 
conduct a fine-grained benchmark. In this work, we have evaluated the 
performance of our models against our four train/test sub-datasets and 
our four testing subsets. In a more fine-grained benchmark, we will also 
consider the performance of a given model against an attack of a given 
type. We will answer questions such as...

1. Which attacks are easiest for the decision tree model to detect?
2. Which model is best at detecting speed spoofing attacks?

3. Across all models, which attacks are easiest to detect? Hardest?
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10. Conclusion

The controller area network (CAN) bus has emerged as the de facto 
standard for in-vehicle networks (IVNs) around the globe. Safety-critical 
components (e.g., the brakes, the engine, the transmission) depend 
on the CAN bus for expedient, reliable communication. Unfortunately, 
while the CAN bus was designed to be resilient under harsh operating 
conditions, it was not designed to be resilient under adversarial condi-
tions. Standard security practices such as authentication, authorization, 
and encryption are completely lacking when it comes to the CAN bus. 
Researchers have since developed authentication, authorization, and 
encryption specifications for the CAN bus, but retroactive implementa-
tion of said security controls would be exorbitantly expensive—in terms 
of hardware, labor, engineering effort, and monetary cost. Therefore, 
the automotive intrusion detection system (IDS) has emerged in the 
literature as a low-cost, low-effort solution to the automotive [in]secu-
rity problem. However, developing and evaluating an automotive IDS 
can be quite challenging—especially if researchers lack access to a test 
vehicle. Without a test vehicle, researchers are limited to publicly avail-
able CAN data, and existing CAN intrusion detection datasets come with 
various limitations. This lack of CAN data has become a barrier to en-
try into automotive intrusion detection research—and even automotive 
security research in general.

We seek to lower this barrier to entry by introducing a new CAN 
intrusion detection dataset, which facilitates the development and eval-
uation of automotive IDSs. Our dataset, can-train-and-test, offers 
real-world CAN traffic data from four different vehicles—a sedan, a 
compact SUV, a full-size SUV, and a pickup truck—produced by two 
different manufacturers. For each vehicle, we provided comparable at-
tack captures, which enable researchers to assess a given IDS’s ability 
to generalize to different vehicle types and models. Our dataset con-
tains .log files for playback as well as labeled and unlabeled .csv
files for supervised and unsupervised machine learning. As such, our 
dataset is well suited to a variety of different automotive intrusion de-
tection and automotive security enterprises. In addition, can-train-
and-test supplies nine unique attacks, ranging from denial of service 
(DoS) fuzzing to triple spoofing attacks. As such, researchers can select 
from a wide variety of attacks when partitioning the data into train-
ing and testing datasets. Alternatively, researchers can leverage our 
curated can-train-and-test repository, which is subdivided into 
four train/test sub-datasets and four testing subsets. As a benchmark, 
we pitted 18 machine learning models against the can-train-and-

test repository. During our evaluation and analysis, we found that 
the multi-layer perceptron, gradient boosting, isolation forest, BIRCH, 
and logistic regression models consistently scored above 0.95 when it 
came to accuracy, precision, recall, and F1-score—regardless of the sub-
dataset and testing subset. Across all experiments on all sub-datasets, 
we saw an average F1-score of ≈0.5039, indicating that our can-

train-and-test dataset is indeed capable of distinguishing capable, 
well-trained IDSs from their less-than-capable counterparts. We present
can-train-and-test as a contribution to the existing collection of 
open-access CAN intrusion detection datasets in hopes of filling in the 
gaps left by the existing collection.
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Appendix A. CAN traffic samples

A.1. Attack-free

Listings 13 and 14 showcase attack-free traffic in driving mode and 
accessory mode, respectively. The traffic was collected from the 2011 
Chevrolet Traverse.

Listing 13 is the raw, unlabeled equivalent of 23 in Section Ap-
pendix B.1.

A.2. Denial of Service (DoS)

Listings 15 and 16 both showcase Denial of Service (DoS) attacks. 
In Listing 15, the DoS attack is extremely overt (the invalid arbitration 
ID 000 is used), whereas in Listing 16, the DoS attack is more subtle 
(the valid arbitration ID 0C1 is used). The traffic was collected from the 
2011 Chevrolet Traverse.

A.3. Fuzzing

Listing 17 demonstrates a fuzzing attack. The traffic was collected 
from the 2011 Chevrolet Traverse.

This is the raw, unlabeled equivalent of 24 in Section Appendix B.2.

A.4. Spoofing

Listings 18 and 19 showcase spoofing attacks—a gear spoofing at-
tack and a triple spoofing attack, respectively. In the gear spoofing 
attack, the “neutral” gear is spoofed; the true value is “drive.” In the 
triple spoofing attack, the gear, the RPMs, and the speed are all spoofed 
(arbitration IDs 1F5, 0C9, 3E9, respectively). The vehicle is driving at 
speed, but the spoofed messages indicate that it is in “neutral” with no 
acceleration and negligible speed. The traffic was collected from the 
2011 Chevrolet Traverse.

A.5. Interval

Listing 20 demonstrates an interval attack, in which the target ar-
bitration ID appears on the CAN bus, and, immediately, the adversary 
transmits a spoofed message to countermand the true message. Depend-
ing on bus traffic and arbitration, the spoofed message may directly 
follow the true message, or there may be a few messages in between. 
The traffic was collected from the 2011 Chevrolet Traverse.

A.6. Standstill

Listing 21 outlines a standstill attack, in which the vehicle is tricked 
into behaving as though in “neutral.” The traffic was collected from the 
2011 Chevrolet Traverse.

A.7. Systematic

Listing 22 spotlights a systematic attack, which might be used for 
reconnaissance. The traffic was collected from the 2011 Chevrolet Tra-

verse.
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Listing 13 Attack-free traffic (driving mode).

(1672163108.460031) can0 1E1#0000100000

(1672163108.460701) can0 0C7#00D4A352

(1672163108.460932) can0 0F9#031A4002A23FDEFA

(1672163108.461181) can0 189#4FFF0FFF3000DEFA

(1672163108.461405) can0 199#4FFF0E70F18F00FF

(1672163108.461548) can0 1EB#0141

(1672163108.462257) can0 1F1#AE0E00000800007A

(1672163108.462765) can0 0C1#236F7087236A5491

(1672163108.462912) can0 1CB#10E600

(1672163108.463124) can0 0C5#234188A42341E475

(1672163108.463359) can0 184#0001000001FF

(1672163108.463584) can0 1C7#0FFF700003FF3F

(1672163108.463758) can0 1CD#C7FF07FE7F

(1672163108.464028) can0 1E5#4600D8EED4FF2500

(1672163108.464229) can0 1E9#0FFF000C00260000

(1672163108.464477) can0 0C9#801D551911000000

(1672163108.464634) can0 0F1#1C040040

(1672163108.464846) can0 191#075E075E0761115D

(1672163108.465105) can0 1ED#41300809067B0800

(1672163108.465277) can0 1EF#00000920

(1672163108.465558) can0 2C3#0905066906697200

(1672163108.465669) can0 2F9#80010F002C

(1672163108.465829) can0 334#0000

(1672163108.466006) can0 348#030B0306

(1672163108.466251) can0 17D#04E000007D000100

(1672163108.466551) can0 17F#0000000000000000

(1672163108.466708) can0 34A#03110306

(1672163108.467128) can0 1F3#0020

(1672163108.469324) can0 3C9#0766000000000000

(1672163108.472589) can0 0C1#33717FE0336B5C56

(1672163108.472812) can0 0C5#334398013342EC32

(1672163108.473036) can0 1E5#4600D48E70FF2C00

(1672163108.473210) can0 0C7#00DCAFFE

(1672163108.473445) can0 0F9#031A4002A23FDEFA

(1672163108.473690) can0 189#8FFF0FFF2FFFDEFA

(1672163108.473812) can0 1EB#0124

(1672163108.474059) can0 199#8FFF0E70F18E00FF

(1672163108.474398) can0 0C9#801D4E1C10000000

(1672163108.474590) can0 0F1#28040040

(1672163108.474812) can0 191#075A075A075E105A

(1672163108.475034) can0 1ED#413007ED06730800

(1672163108.475195) can0 1EF#000008BE

(1672163108.475455) can0 1A1#0000414000001000

(1672163108.475689) can0 1C3#075A076A00000000

(1672163108.481761) can0 19D#40003FFF0018105C

(1672163108.481922) can0 1AF#000000

(1672163108.482180) can0 1F5#0202000400000900

(1672163108.482760) can0 0C1#03728785036D6BE1

(1672163108.482907) can0 1CB#10D900

(1672163108.483118) can0 0C5#03449FB80344FBAA

Listing 14 Attack free traffic (accessory mode).

(1672176421.032178) can0 19D#C0003FFD000000FF

(1672176421.032397) can0 1C7#0FFF300103FF3F

(1672176421.032548) can0 1AF#000000

(1672176421.032732) can0 1CD#87FF07FF7F

(1672176421.032981) can0 1E5#46FFC2A000003D00

(1672176421.033226) can0 1E9#0000000C00000000

(1672176421.033477) can0 1ED#0000000000000800

(1672176421.033625) can0 1EF#0000002F

(1672176421.033887) can0 1F5#0F0F000100000300

(1672176421.034132) can0 3C1#0765040000000000

(1672176421.034383) can0 3D1#1046000000000000

(1672176421.034632) can0 3E9#0000000000000000

(1672176421.035391) can0 0F1#1C050040

(1672176421.035959) can0 0C7#03FE0000

(1672176421.036231) can0 0F9#00004000000000FF

(1672176421.036505) can0 189#CFFF0FFF2FFE00FF

(1672176421.036735) can0 199#CFFF0E70F18D00FF

(1672176421.037429) can0 1EB#008A

(1672176421.038562) can0 1F3#C0E0

(1672176421.040835) can0 0C1#1000000010000000

(1672176421.041107) can0 0C5#1000000010000000

(1672176421.041350) can0 0C9#0000000D00000000

(1672176421.041577) can0 191#063D091E091E0000

(1672176421.041812) can0 1E5#46FFC2C000003C00

(1672176421.042055) can0 1ED#0000000000000800

(1672176421.042300) can0 1A1#0010010000000000

(1672176421.042552) can0 1C3#063D063D00000000

(1672176421.042732) can0 1EF#0000002F

(1672176421.042826) can0 334#0000

(1672176421.045354) can0 0F1#28050040

(1672176421.045657) can0 1CB#100000

(1672176421.047933) can0 12A#47000000C2563FFF

(1672176421.048535) can0 0C7#03FE0000

(1672176421.048805) can0 0F9#00004000000000FF

(1672176421.049056) can0 189#0FFF0FFF300100FF

(1672176421.049407) can0 199#0FFF0E70F19000FF

(1672176421.049817) can0 1EB#008A

(1672176421.050556) can0 1E1#00FE120040

(1672176421.051037) can0 0C1#2000000020000000

(1672176421.051281) can0 0C9#0000000000000000

(1672176421.051570) can0 0C5#2000000020000000

(1672176421.051728) can0 184#0001000001FF

(1672176421.051958) can0 191#063D091E091E0000

(1672176421.052177) can0 1C7#0FFF700003FF3F

(1672176421.052418) can0 1CD#C7FF07FE7F

(1672176421.052625) can0 1E5#46FFC2E000003B00

(1672176421.052863) can0 1E9#0000000C00000000

(1672176421.053111) can0 1ED#0000000000000800

(1672176421.053283) can0 1EF#0000002F

(1672176421.053528) can0 1F1#AE0FBB140800007A
31
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Listing 15 An overt Denial of Service (DoS) attack. The red lines indi-
cate attack CAN frames.

(1672451549.617791) can0 17D#04E000007D000100

(1672451549.618710) can0 000#0000000000000000

(1672451549.618856) can0 17F#0000000000000000

(1672451549.618865) can0 34A#00370037

(1672451549.618872) can0 3ED#8000000000FF0000

(1672451549.619939) can0 19D#000000000002BB8F

(1672451549.619948) can0 1AF#000000

(1672451549.619955) can0 1F5#0101000400000900

(1672451549.620107) can0 000#0000000000000000

(1672451549.621021) can0 0C9#840BD00D00000000

(1672451549.621031) can0 191#06CD06DC06CE0000

(1672451549.621309) can0 000#0000000000000000

(1672451549.622181) can0 1ED#413E018E01830800

(1672451549.622199) can0 1EF#00000212

(1672451549.622205) can0 1A1#0000414000000000

(1672451549.622221) can0 1C3#06CD06CE00000000

(1672451549.622856) can0 000#0000000000000000

(1672451549.623303) can0 0C7#03F2CB83

(1672451549.624270) can0 000#0000000000000000

(1672451549.624394) can0 0F9#070F400031E5CAFF

(1672451549.624410) can0 189#4FFF0FFF3000CAFF

(1672451549.624417) can0 199#4FFF0E70F18F00FF

(1672451549.625397) can0 000#0000000000000000

(1672451549.625597) can0 0F1#28050040

(1672451549.625622) can0 1E1#00FE120040

(1672451549.625629) can0 0C1#30050E3F3318FD90

(1672451549.626313) can0 000#0000000000000000

(1672451549.626704) can0 0C5#32BC782532768E91

(1672451549.626714) can0 1E5#46FFF58000000B00

(1672451549.626720) can0 1EB#0144

(1672451549.626938) can0 000#0000000000000000

(1672451549.627810) can0 000#0000000000000000

(1672451549.628514) can0 000#0000000000000000

(1672451549.629338) can0 000#0000000000000000

(1672451549.630615) can0 000#0000000000000000

(1672451549.630962) can0 0C9#840BD30000000000

(1672451549.631843) can0 000#0000000000000000

(1672451549.632021) can0 191#06CD06DC06CE0000

(1672451549.632025) can0 1CB#100000

(1672451549.632028) can0 1ED#413E018E01830800

(1672451549.632030) can0 1EF#00000215

(1672451549.632032) can0 2D1#030000000000

(1672451549.632034) can0 3FD#003C3D

(1672451549.633086) can0 000#0000000000000000

(1672451549.634342) can0 000#0000000000000000

(1672451549.635207) can0 0F1#34050040

(1672451549.635233) can0 000#0000000000000000

(1672451549.636044) can0 000#0000000000000000

(1672451549.636271) can0 0C1#00050E3F0318FD90

(1672451549.636276) can0 0C7#03F3E107

Listing 16 A subtle Denial of Service (DoS) attack. The red lines indicate 
attack CAN frames.

(1672452653.697771) can0 3C9#0766000000000000

(1672452653.698848) can0 1EB#012C

(1672452653.698907) can0 0C1#23F612A62309F450

(1672452653.700027) can0 0C1#23F612A62309F450

(1672452653.700934) can0 0C1#23F612A62309F450

(1672452653.701712) can0 0C1#23F612A62309F450

(1672452653.702278) can0 0C1#23F612A62309F450

(1672452653.703328) can0 0C1#23F612A62309F450

(1672452653.704221) can0 0C9#840AFE0000010000

(1672452653.704226) can0 191#06B606C306B50000

(1672452653.704226) can0 0C1#23F612A62309F450

(1672452653.704229) can0 1ED#413B018301710800

(1672452653.705285) can0 1EF#000001EE

(1672452653.705288) can0 0C1#22F94EA9228F2EA9

(1672452653.705471) can0 0C1#23F612A62309F450

(1672452653.706344) can0 0C5#22CB6027225F289B

(1672452653.706348) can0 184#0003002C01D1

(1672452653.706350) can0 0C7#020AC94F

(1672452653.706353) can0 1C7#0FFFEFFE03FF3F

(1672452653.706355) can0 0F9#07CD4000001D60FF

(1672452653.706614) can0 0C1#23F612A62309F450

(1672452653.707365) can0 0C1#23F612A62309F450

(1672452653.707437) can0 189#8FFF0FFF2FFF60FF

(1672452653.707454) can0 1CD#47FF08007F

(1672452653.707474) can0 199#8FFF0E70F18E00FF

(1672452653.707479) can0 1E5#46FFDCE000002100

(1672452653.707481) can0 0F1#225100C0

(1672452653.708523) can0 0C1#23F612A62309F450

(1672452653.708548) can0 1E9#4001000C00000000

(1672452653.708557) can0 2F9#E0010F0000

(1672452653.708564) can0 348#00000000

(1672452653.708566) can0 17D#04E000007D000100

(1672452653.708568) can0 17F#0000000000000000

(1672452653.709631) can0 34A#00000000

(1672452653.709665) can0 0C1#23F612A62309F450

(1672452653.710452) can0 0C1#23F612A62309F450

(1672452653.710695) can0 1E1#00FE120040

(1672452653.710700) can0 1EB#0130

(1672452653.711231) can0 0C1#23F612A62309F450

(1672452653.712007) can0 0C1#23F612A62309F450

(1672452653.712832) can0 0C1#23F612A62309F450

(1672452653.713775) can0 0C1#23F612A62309F450

(1672452653.713875) can0 0C9#840AFE0700010000

(1672452653.714407) can0 0C1#23F612A62309F450

(1672452653.714961) can0 191#06B606C306B50000

(1672452653.714986) can0 19D#40003FFF000000FF

(1672452653.714996) can0 1ED#413B018301710800

(1672452653.715005) can0 1AF#000000

(1672452653.715013) can0 1A1#0010414000000000

(1672452653.715441) can0 0C1#23F612A62309F450
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Listing 17 A fuzzing attack. The red lines indicate attack CAN frames.

(1672452917.316296) can0 348#00000000

(1672452917.316301) can0 34A#00000000

(1672452917.317073) can0 036#F237

(1672452917.318151) can0 0EE#750F037DB0973413

(1672452917.318595) can0 0F1#34050040

(1672452917.319220) can0 63C#BB98131FFB6BB64D

(1672452917.319747) can0 19D#C0003FFD000000FF

(1672452917.319763) can0 1AF#000000

(1672452917.320301) can0 758#B4E4B84DB744242D

(1672452917.320835) can0 1F5#0F0F002100000300

(1672452917.320848) can0 1EB#0000

(1672452917.321445) can0 1B9#619E732063822815

(1672452917.322642) can0 107#A60ED87316918238

(1672452917.323068) can0 0C1#0000000000000000

(1672452917.323789) can0 3AA#9442CD7C6E7A727F

(1672452917.324170) can0 0C5#000000000002A384

(1672452917.324188) can0 184#0002000001FE

(1672452917.324193) can0 0C9#0000000A00000000

(1672452917.324197) can0 191#061408F508F50000

(1672452917.324202) can0 1C7#0FFFAFFF03FF3F

(1672452917.324865) can0 255#BA661E

(1672452917.325345) can0 1CD#07FF08017F

(1672452917.325361) can0 1E5#46FFF5A000000A00

(1672452917.325366) can0 1E9#0000000C00000000

(1672452917.325370) can0 0C7#03FE0000

(1672452917.325374) can0 1ED#0000000000000800

(1672452917.326023) can0 665#E9ECB608535FB713

(1672452917.326522) can0 0F9#00004000000000FF

(1672452917.326540) can0 1EF#00000000

(1672452917.326547) can0 189#CFFF0FFF2FFE00FF

(1672452917.326552) can0 334#0000

(1672452917.326558) can0 199#CFFF0E70F18D00FF

(1672452917.327177) can0 218#03F7EB2654A8732F

(1672452917.327708) can0 0F1#00050040

(1672452917.327718) can0 1F3#8080

(1672452917.328247) can0 5A8#4F142A7D00B5B738

(1672452917.329390) can0 5DA#B8F9DB65

(1672452917.330561) can0 291#F6F9003C98C3F40E

(1672452917.331705) can0 6E7#AE54774792E2CD68

(1672452917.332127) can0 1CB#100000

(1672452917.332776) can0 335#005D

(1672452917.333326) can0 0C1#1000000010000000

(1672452917.333361) can0 0C5#100000001002A384

(1672452917.333376) can0 1E5#46FFF5C000000900

(1672452917.333944) can0 3A5#17E83D560AA2C903

(1672452917.334517) can0 1EB#0000

(1672452917.334528) can0 0C9#0000000D00000000

(1672452917.334531) can0 191#061408F508F50000

(1672452917.334533) can0 1ED#0000000000000800

(1672452917.334535) can0 1EF#00000000

Listing 18 A gear spoofing attack. The red lines indicate attack CAN 
frames.

(1674135810.232265) can0 17F#0000000000000000

(1674135810.232272) can0 34A#08D108CA

(1674135810.234101) can0 1F5#0D0D000300000300

(1674135810.235464) can0 1EB#0144

(1674135810.236563) can0 0C9#8025E6193B000000

(1674135810.236578) can0 191#07C407C407C43BAF

(1674135810.236583) can0 1ED#412F0B970C140800

(1674135810.237649) can0 1EF#00001119

(1674135810.237659) can0 2C3#0949066406648100

(1674135810.237666) can0 0C7#01B4671C

(1674135810.237676) can0 0F9#016E4007A457BB12

(1674135810.238748) can0 189#8FFF0FFF2FFFBB12

(1674135810.238758) can0 0F1#00060040

(1674135810.238767) can0 199#8FFF0E70F18E00FF

(1674135810.239824) can0 0C1#11DBBB58123AAF44

(1674135810.239829) can0 0C5#11805719120CB19E

(1674135810.239834) can0 1E5#46FFE0C000001E00

(1674135810.245141) can0 1CB#10E800

(1674135810.245806) can0 1F5#0D0D000300000300

(1674135810.246224) can0 19D#40003FFF0022272D

(1674135810.246235) can0 1AF#000010

(1674135810.247305) can0 0C9#8025F91C3B000000

(1674135810.247323) can0 191#07C407C407C43BAF

(1674135810.247331) can0 1ED#412F0BAB0C1C0800

(1674135810.247340) can0 1EF#00001100

(1674135810.247352) can0 1A1#0000414000003B00

(1674135810.247361) can0 1C3#07C407C000000000

(1674135810.248427) can0 1F5#2404000400000900

(1674135810.248436) can0 0F1#1C060040

(1674135810.248447) can0 1E1#00FD130060

(1674135810.248460) can0 1EB#010C

(1674135810.249532) can0 0C1#21DFC610223EBA00

(1674135810.249543) can0 0C5#218461D72210BC5B

(1674135810.250613) can0 0C7#01CA7333

(1674135810.250623) can0 0F9#016E4007A457D512

(1674135810.250635) can0 184#0003000001FD

(1674135810.250641) can0 189#CFFF0FFF2FFED512

(1674135810.250643) can0 1C7#0FFFEFFE03FF3F

(1674135810.251700) can0 199#CFFF0E70F18D00FF

(1674135810.251704) can0 1CD#47FF08007F

(1674135810.251707) can0 1E5#46FFE0E000001D00

(1674135810.251711) can0 1E9#0020000C00030000

(1674135810.257020) can0 0C9#8025FE133B000000

(1674135810.257036) can0 191#07C407C407C43BAE

(1674135810.257045) can0 1ED#412F0BAB0C1C0800

(1674135810.257049) can0 1EF#00001119

(1674135810.257648) can0 1F5#0D0D000300000300

(1674135810.258110) can0 0F1#28060040

(1674135810.258116) can0 1F3#80A0

(1674135810.259165) can0 0C1#31E3D0C83241C20A
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Listing 19 A triple spoofing attack. The red lines indicate attack CAN 
frames.

(1674122022.785040) can0 1ED#412E019E01EC0733

(1674122022.785263) can0 3E9#0000000100000000

(1674122022.786106) can0 1EF#0000023C

(1674122022.786117) can0 1A1#0000414000000000

(1674122022.786120) can0 1C3#06C406C700000000

(1674122022.786193) can0 0C9#00000000000018

(1674122022.787200) can0 2C3#084F06C706C74A00

(1674122022.787216) can0 0C1#3293ED4A32C132FF

(1674122022.787221) can0 0C5#32513FBB328FF7ED

(1674122022.787226) can0 1E5#4607768514F88A00

(1674122022.787338) can0 1F5#0D0D000300000800

(1674122022.788295) can0 2F9#0B0111001D

(1674122022.788308) can0 348#01AB0187

(1674122022.788312) can0 34A#01A40187

(1674122022.788316) can0 0F1#00070040

(1674122022.790044) can0 3E9#0000000100000000

(1674122022.790451) can0 0C7#003F7994

(1674122022.790468) can0 0F9#00004001647A2EFA

(1674122022.790478) can0 189#8FFF0FFF2FFF2EFA

(1674122022.790482) can0 199#8FFF0E70F18E00FF

(1674122022.790896) can0 0C9#00000000000018

(1674122022.791559) can0 1EB#0135

(1674122022.791897) can0 1F5#0D0D000300000800

(1674122022.794745) can0 0C9#840B790000000000

(1674122022.794752) can0 191#06C606E506C70000

(1674122022.795123) can0 3E9#0000000100000000

(1674122022.795812) can0 1ED#412E019C01EB0733

(1674122022.795818) can0 1EF#0000023C

(1674122022.795821) can0 3C1#0765E70000000000

(1674122022.795826) can0 3D1#0122000000570000

(1674122022.795833) can0 1CB#101700

(1674122022.795841) can0 0C9#00000000000018

(1674122022.796598) can0 1F5#0D0D000300000800

(1674122022.796898) can0 3E9#035118F0034F18F9

(1674122022.796904) can0 0C1#0294FB5702C24242

(1674122022.797977) can0 0C5#02524E0402900732

(1674122022.797986) can0 184#000000000000

(1674122022.797989) can0 0F1#1C070040

(1674122022.797992) can0 1C7#0FFF300103FF3F

(1674122022.797995) can0 1CD#87FF07FF7F

(1674122022.799062) can0 19D#C0003FFD000CAC5C

(1674122022.799074) can0 1E5#460781A44CF87E00

(1674122022.799082) can0 1AF#000000

(1674122022.799085) can0 1E9#0FD9000C00800000

(1674122022.799093) can0 1F5#0202000400000900

(1674122022.799549) can0 3E9#0000000100000000

(1674122022.800162) can0 334#0000

(1674122022.800303) can0 0C9#00000000000018

(1674122022.801232) can0 1F3#4060

(1674122022.801282) can0 1F5#0D0D000300000800

Listing 20 An interval attack. The red lines indicate attack CAN frames.

(1674033486.438066) can0 1CD#C7FF07FE7F

(1674033486.438074) can0 1E5#460081E000FF7C00

(1674033486.438079) can0 1E9#4FFB000C00000000

(1674033486.438933) can0 1E9#000A000C00060000

(1674033486.440201) can0 1CB#100000

(1674033486.440212) can0 2D1#030000000000

(1674033486.441283) can0 3FD#003A3A

(1674033486.441294) can0 0F1#7E7F00C0

(1674033486.442361) can0 0C9#840AE80A00010000

(1674033486.442372) can0 191#06AB06AB06AB0000

(1674033486.442379) can0 1ED#418A019601B70800

(1674033486.442383) can0 1EF#0000026E

(1674033486.443457) can0 19D#80003FFE000A8AFF

(1674033486.443471) can0 1AF#000000

(1674033486.443480) can0 1F5#0F0F000100000800

(1674033486.444540) can0 1F3#4060

(1674033486.444547) can0 1EB#0199

(1674033486.445630) can0 4D9#000000

(1674033486.446699) can0 0C1#3000000030000000

(1674033486.447770) can0 0C5#3000000030000000

(1674033486.447786) can0 1E5#4600818000FF7F00

(1674033486.447790) can0 334#0000

(1674033486.447794) can0 0C7#03FE0000

(1674033486.447798) can0 0F9#00004000000000FF

(1674033486.448877) can0 189#4FFF0FFF300000FF

(1674033486.448886) can0 199#4FFF0E70F18F00FF

(1674033486.452073) can0 0C9#840ACE0D00010000

(1674033486.452088) can0 0F1#4A8000C0

(1674033486.452099) can0 191#06AD06AD06AB0000

(1674033486.452103) can0 1ED#4189019E01B40800

(1674033486.453170) can0 1EF#00000284

(1674033486.453186) can0 1A1#0020014000000000

(1674033486.453199) can0 1C3#06AD06B100000000

(1674033486.454265) can0 2C3#0800069806984C00

(1674033486.454280) can0 1E1#0000100000

(1674033486.457455) can0 0C1#0000000000000000

(1674033486.457481) can0 0C5#0000000000000000

(1674033486.457483) can0 184#00020080017E

(1674033486.457486) can0 1C7#0FFFAFFF03FF3F

(1674033486.457491) can0 1CD#07FF08017F

(1674033486.458560) can0 1E5#460081A000FF7E00

(1674033486.458575) can0 1E9#4FFA000C00000000

(1674033486.458596) can0 1EB#019B

(1674033486.459399) can0 1E9#000A000C00060000

(1674033486.460715) can0 1CB#100000

(1674033486.460729) can0 0C7#03FE0000

(1674033486.460732) can0 0F9#00004000000000FF

(1674033486.460736) can0 189#8FFF0FFF2FFF00FF

(1674033486.461803) can0 199#8FFF0E70F18E00FF

(1674033486.461817) can0 0F1#568201C0
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Listing 21 A standstill attack. The red lines indicate attack CAN frames.

(1674135909.661269) can0 1EF#00000252

(1674135909.661280) can0 3C9#0766000000000000

(1674135909.661382) can0 0C9#0000000000004008

(1674135909.662355) can0 1EB#0151

(1674135909.662365) can0 0C7#02A02F6D

(1674135909.663433) can0 0F9#01004006A7ACCF1C

(1674135909.663444) can0 0F1#3E4300C0

(1674135909.663451) can0 189#CFFF0FFF2FFECF1C

(1674135909.663465) can0 19D#C0003FFD0013F31E

(1674135909.663474) can0 0C1#234941D123048C3C

(1674135909.664563) can0 0C5#22C2F18822B99C76

(1674135909.664575) can0 184#0003001801E5

(1674135909.664587) can0 199#CFFF0E70F18D00FF

(1674135909.664599) can0 1AF#000034

(1674135909.664604) can0 1C7#0FFFEFFE03FF3F

(1674135909.664607) can0 1CD#47FF08007F

(1674135909.665677) can0 1E5#46FFF8E000000500

(1674135909.665693) can0 1E9#0FFD000C00000000

(1674135909.665705) can0 1F5#6625000400000900

(1674135909.669959) can0 1CB#100000

(1674135909.669970) can0 0C9#8413F80700010000

(1674135909.669985) can0 191#063406A306340000

(1674135909.671051) can0 1ED#4144000001AC0860

(1674135909.671061) can0 1EF#00000255

(1674135909.671069) can0 1A1#0000414000000000

(1674135909.671079) can0 1C3#0634063500000000

(1674135909.672144) can0 2C3#0897063506353600

(1674135909.673221) can0 0F1#0A4300C0

(1674135909.673231) can0 0C1#334C4B0F33079579

(1674135909.673256) can0 0C9#0000000000004008

(1674135909.674302) can0 0C5#32C6FDDC32BCA5B3

(1674135909.674314) can0 1E5#46FFF88000000800

(1674135909.674319) can0 334#0000

(1674135909.674322) can0 1EB#0150

(1674135909.675389) can0 0C7#02B33B76

(1674135909.675399) can0 0F9#01004006A7ACCF1C

(1674135909.675407) can0 189#0FFF0FFF3001CF1C

(1674135909.676476) can0 199#0FFF0E70F19000FF

(1674135909.676486) can0 1E1#00FD130060

(1674135909.679669) can0 2D1#030000000000

(1674135909.680728) can0 0C9#8414180A00010000

(1674135909.680733) can0 191#063406A306340000

(1674135909.680735) can0 1ED#4144000001AE0860

(1674135909.680738) can0 1EF#00000258

(1674135909.680741) can0 3C1#0765E70000000000

(1674135909.681802) can0 3D1#0120400000000000

(1674135909.681806) can0 3E9#0F9A071B0F9D0724

(1674135909.682992) can0 0F1#1641FFC0

(1674135909.684085) can0 0C1#03505777030A9EC1

(1674135909.684095) can0 0C5#02C9071902C0B200

Listing 22 A systematic attack. The red lines indicate attack CAN 
frames.

(1672454739.897283) can0 1E5#46FFEFE000000E00

(1672454739.898351) can0 1E9#001D000C00030000

(1672454739.899311) can0 000#98BF3D7C9A5CC42F

(1672454739.899415) can0 0C7#018CBBB7

(1672454739.900398) can0 001#207215535845D22C

(1672454739.900485) can0 0F9#022340041C15FC0D

(1672454739.900495) can0 189#0FFF0FFF3001FC0D

(1672454739.900505) can0 199#0FFF0E70F19000FF

(1672454739.901544) can0 002#9C8B734717464C1F

(1672454739.901571) can0 0C9#8020C91337000000

(1672454739.901579) can0 191#07E807E807E837BC

(1672454739.901588) can0 1ED#412F0CB50B9D0800

(1672454739.901592) can0 1EF#000010C3

(1672454739.902660) can0 3F9#0012573257695414

(1672454739.902670) can0 1EB#011D

(1672454739.902680) can0 3FB#8100

(1672454739.902688) can0 003#3473696411F5

(1672454739.903746) can0 1CB#101E00

(1672454739.903869) can0 004#CB0ACB3A50163B23

(1672454739.905008) can0 005#BEA73D6DAAB703

(1672454739.905879) can0 0C1#300B5A29300496ED

(1672454739.906159) can0 006#72F8D77A3FF7DF72

(1672454739.906950) can0 0C5#33EE9A1B33E572B8

(1672454739.906960) can0 0F1#00050040

(1672454739.906969) can0 1E5#46FFEF8000001100

(1672454739.906975) can0 334#0000

(1672454739.907291) can0 007#0173523948F1693B

(1672454739.908041) can0 19D#000000000017FE3B

(1672454739.908085) can0 1AF#000000

(1672454739.908359) can0 008#82BB4A

(1672454739.909151) can0 1F5#0303000400000900

(1672454739.909164) can0 12A#47000000B2753FFF

(1672454739.909526) can0 009#7E66BA4837E38747

(1672454739.910613) can0 00A#BA8D9758CFA2C543

(1672454739.911303) can0 0C9#8020CE1637000000

(1672454739.911314) can0 191#07E707E707E737BC

(1672454739.911708) can0 00B#82D94D6AEF14DB16

(1672454739.912381) can0 1E1#0000100000

(1672454739.912392) can0 1ED#412F0CB50B9D0800

(1672454739.912396) can0 1EF#000010CE

(1672454739.912400) can0 0C7#0198C7F2

(1672454739.912404) can0 1A1#0000414000003700

(1672454739.912408) can0 0F9#022140041D160B0D

(1672454739.912784) can0 00C#ED

(1672454739.913474) can0 1C3#07E707D300000000

(1672454739.913484) can0 189#4FFF0FFF30000B0D

(1672454739.913488) can0 199#4FFF0E70F18F00FF

(1672454739.913492) can0 2D1#030000000000

(1672454739.913852) can0 00D#04E3CF65BF13B842

(1672454739.914567) can0 1F1#AE0E00000800007A
35
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Appendix B. Labeled comma-separated values (CSV) samples

B.1. Attack-free

In Listing 23, we provide an example of attack-free traffic—in par-
ticular, traffic collected in driving mode—in a labeled .csv file. The 
traffic was collected from the 2011 Chevrolet Traverse.

This is the labeled CSV equivalent of Listing 13 in Section Ap-
pendix A.1.

Listing 23 Labeled attack-free traffic (driving mode).

1672531371.842441,1E1,0000100000,0

1672531371.843111,0C7,00D4A352,0

1672531371.843342,0F9,031A4002A23FDEFA,0

1672531371.843591,189,4FFF0FFF3000DEFA,0

1672531371.843815,199,4FFF0E70F18F00FF,0

1672531371.8439581,1EB,0141,0

1672531371.844667,1F1,AE0E00000800007A,0

1672531371.845175,0C1,236F7087236A5491,0

1672531371.8453221,1CB,10E600,0

1672531371.845534,0C5,234188A42341E475,0

1672531371.8457692,184,0001000001FF,0

1672531371.845994,1C7,0FFF700003FF3F,0

1672531371.846168,1CD,C7FF07FE7F,0

1672531371.846438,1E5,4600D8EED4FF2500,0

1672531371.8466392,1E9,0FFF000C00260000,0

1672531371.846887,0C9,801D551911000000,0

1672531371.847044,0F1,1C040040,0

1672531371.847256,191,075E075E0761115D,0

1672531371.847515,1ED,41300809067B0800,0

1672531371.847687,1EF,00000920,0

1672531371.847968,2C3,0905066906697200,0

1672531371.848079,2F9,80010F002C,0

1672531371.848239,334,0000,0

1672531371.848416,348,030B0306,0

1672531371.848661,17D,04E000007D000100,0

1672531371.848961,17F,0000000000000000,0

1672531371.849118,34A,03110306,0

1672531371.849538,1F3,0020,0

1672531371.8517342,3C9,0766000000000000,0

1672531371.854999,0C1,33717FE0336B5C56,0

1672531371.855222,0C5,334398013342EC32,0

1672531371.855446,1E5,4600D48E70FF2C00,0

1672531371.8556201,0C7,00DCAFFE,0

1672531371.855855,0F9,031A4002A23FDEFA,0

1672531371.8561,189,8FFF0FFF2FFFDEFA,0

1672531371.8562222,1EB,0124,0

1672531371.8564692,199,8FFF0E70F18E00FF,0

1672531371.856808,0C9,801D4E1C10000000,0

1672531371.857,0F1,28040040,0

1672531371.857222,191,075A075A075E105A,0

1672531371.857444,1ED,413007ED06730800,0

1672531371.857605,1EF,000008BE,0

1672531371.857865,1A1,0000414000001000,0

1672531371.858099,1C3,075A076A00000000,0

1672531371.864171,19D,40003FFF0018105C,0

1672531371.864332,1AF,000000,0

1672531371.8645902,1F5,0202000400000900,0

1672531371.86517,0C1,03728785036D6BE1,0

1672531371.865317,1CB,10D900,0

1672531371.865528,0C5,03449FB80344FBAA,0

B.2. Attack

In Listing 24, we provide an example of attack traffic—specifically, 
fuzzing attack traffic—in a labeled .csv file. The traffic was collected 
from the 2011 Chevrolet Traverse.

This is the labeled CSV equivalent of Listing 17 in Section Ap-
36
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Listing 24 A labeled fuzzing attack. The red lines indicate attack CAN 
frames.

1672531209.2064872,348,00000000,0

1672531209.2064922,34A,00000000,0

1672531209.2072642,036,F237,1

1672531209.208342,0EE,750F037DB0973413,1

1672531209.208786,0F1,34050040,0

1672531209.2094111,63C,BB98131FFB6BB64D,1

1672531209.209938,19D,C0003FFD000000FF,0

1672531209.209954,1AF,000000,0

1672531209.210492,758,B4E4B84DB744242D,1

1672531209.2110262,1F5,0F0F002100000300,0

1672531209.211039,1EB,0000,0

1672531209.211636,1B9,619E732063822815,1

1672531209.2128332,107,A60ED87316918238,1

1672531209.213259,0C1,0000000000000000,0

1672531209.21398,3AA,9442CD7C6E7A727F,1

1672531209.2143612,0C5,000000000002A384,0

1672531209.214379,184,0002000001FE,0

1672531209.214384,0C9,0000000A00000000,0

1672531209.214388,191,061408F508F50000,0

1672531209.2143931,1C7,0FFFAFFF03FF3F,0

1672531209.2150562,255,BA661E,1

1672531209.215536,1CD,07FF08017F,0

1672531209.215552,1E5,46FFF5A000000A00,0

1672531209.215557,1E9,0000000C00000000,0

1672531209.2155612,0C7,03FE0000,0

1672531209.215565,1ED,0000000000000800,0

1672531209.2162142,665,E9ECB608535FB713,1

1672531209.2167132,0F9,00004000000000FF,0

1672531209.216731,1EF,00000000,0

1672531209.216738,189,CFFF0FFF2FFE00FF,0

1672531209.216743,334,0000,0

1672531209.2167492,199,CFFF0E70F18D00FF,0

1672531209.217368,218,03F7EB2654A8732F,1

1672531209.217899,0F1,00050040,0

1672531209.217909,1F3,8080,0

1672531209.218438,5A8,4F142A7D00B5B738,1

1672531209.2195811,5DA,B8F9DB65,1

1672531209.220752,291,F6F9003C98C3F40E,1

1672531209.2218962,6E7,AE54774792E2CD68,1

1672531209.2223182,1CB,100000,0

1672531209.2229671,335,005D,1

1672531209.2235172,0C1,1000000010000000,0

1672531209.223552,0C5,100000001002A384,0

1672531209.223567,1E5,46FFF5C000000900,0

1672531209.2241352,3A5,17E83D560AA2C903,1

1672531209.224708,1EB,0000,0

1672531209.224719,0C9,0000000D00000000,0

1672531209.224722,191,061408F508F50000,0

1672531209.224724,1ED,0000000000000800,0

1672531209.224726,1EF,00000000,0

Appendix C. Detailed results

Here, we provide the detailed results of our 18 traditional machine 
learning models. We conducted multiple experiments with different 
sets of parameters; we include only the parameters that resulted in 
the best performance (in terms of maximum F1-score). The results are 
tabulated by model and organized by learning style (i.e., traditional ma-
chine learning, deep learning, supervised learning, unsupervised learn-
ing).

Additionally, the can-benchmark repository contains the arti-
facts generated over the course of our benchmark evaluation. We also 
provide a Microsoft Excel spreadsheet, benchmark.xlsx, in which 
we meticulously organize the results of our experiments. The can-

benchmark repository is available here: https://bitbucket .org /brooke -

lampe /can -benchmark /src /master/.

https://bitbucket.org/brooke-lampe/can-benchmark/src/master/
https://bitbucket.org/brooke-lampe/can-benchmark/src/master/
https://bitbucket.org/brooke-lampe/can-benchmark/src/master/
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Table C.16

Gaussian naive bayes.

Data-
set

Sub-
set

Acc. Pre. Rec. 
(TPR)

F1-
score

TNR FPR FNR TP TN FP FN Training 
Time (ns)

Testing 
Time (ns)

#1 #1 0.8820 0.9814 0.8820 0.9273 0.8877 0.1123 0.1180 23214 5006275 633115 40066 2071507728 617191930
#1 #2 0.8652 0.9479 0.8652 0.9044 0.8868 0.1132 0.1348 6227 5572327 711423 157940 2071507728 674632590
#1 #3 0.8839 0.9957 0.8839 0.9361 0.8854 0.1146 0.1161 5428 7626878 987572 14927 2071507728 1069338929
#1 #4 0.8906 0.9979 0.8906 0.9411 0.8914 0.1086 0.1094 919 11772352 1433959 12880 2071507728 1671649398
#2 #1 0.9901 0.9982 0.9901 0.9940 0.9908 0.0092 0.0099 3916 13085042 121269 9883 2995791737 1402378958
#2 #2 0.9312 0.9958 0.9312 0.9622 0.9328 0.0672 0.0688 3891 7859552 565826 15295 2995791737 917054299
#2 #3 0.9878 0.9952 0.9878 0.9915 0.9902 0.0098 0.0122 0 12002138 119127 28791 2995791737 1278145039
#2 #4 0.9080 0.9921 0.9080 0.9482 0.9114 0.0886 0.0920 0 4349290 422606 18008 2995791737 565499280
#3 #1 0.9805 0.9632 0.9805 0.9718 0.9991 0.0009 0.0195 2 8405583 7703 159333 2053250668 1018277459
#3 #2 0.9775 0.9559 0.9775 0.9664 1.0000 0.0000 0.0225 2 6697885 160 153916 2053250668 708593149
#3 #3 0.9969 0.9962 0.9969 0.9965 0.9988 0.0012 0.0031 0 9418914 10885 18110 2053250668 977993309
#3 #4 0.9784 0.9583 0.9784 0.9677 1.0000 0.0000 0.0216 1 6746053 18 149221 2053250668 712603019
#4 #1 0.9755 0.9596 0.9755 0.9668 0.9968 0.0032 0.0245 2379 6724253 21818 146843 1711150808 716855819
#4 #2 0.9961 0.9951 0.9961 0.9955 0.9987 0.0013 0.0039 8586 17329134 21721 46195 1711150808 1935236078
#4 #3 0.9730 0.9596 0.9730 0.9656 0.9944 0.0056 0.0270 6311 6660505 37540 147607 1711150808 712036359
#4 #4 0.9758 0.9701 0.9758 0.9674 0.9987 0.0013 0.0242 26438 7951944 10711 187009 1711150808 849491579

Parameters: N/A.

Table C.17

K-nearest neighbors.

Data-
set

Sub-
set

Acc. Pre. Rec. 
(TPR)

F1-
score

TNR FPR FNR TP TN FP FN Training Time (ns) Testing Time (ns)

#1 #1 0.9855 0.3376 0.3141 0.3254 0.9931 0.0069 0.6859 19877 5600381 39009 43403 106205148337753 2698926122173
#1 #2 0.9714 0.0009 0.0001 0.0002 0.9967 0.0033 0.9999 19 6263171 20579 164148 106205148337753 6628601627607
#1 #3 0.9976 0.4762 0.0005 0.0010 1.0000 0.0000 0.9995 10 8614439 11 20345 106205148337753 3326301454816
#1 #4 0.9982 0.0190 0.0148 0.0166 0.9992 0.0008 0.9852 204 13195779 10532 13595 106205148337753 11972712642811
#2 #1 0.9988 0.4198 0.4774 0.4467 0.9993 0.0007 0.5226 6587 13197207 9104 7212 218093481844902 4188777687199
#2 #2 0.7930 0.0065 0.5915 0.0128 0.7935 0.2065 0.4085 11349 6685546 1739832 7837 218093481844902 6600135951392
#2 #3 0.9261 0.0000 0.0007 0.0000 0.9283 0.0717 0.9993 19 11252625 868640 28772 218093481844902 4650007219676
#2 #4 0.7658 0.0135 0.8485 0.0265 0.7655 0.2345 0.1515 15279 3652811 1119085 2729 218093481844902 3205390298382
#3 #1 0.9912 0.9983 0.5274 0.6902 1.0000 0.0000 0.4726 84040 8413145 141 75295 201836070397187 2657123832531
#3 #2 0.9461 0.1444 0.2838 0.1914 0.9613 0.0387 0.7162 43680 6439144 258901 110238 201836070397187 6138068209393
#3 #3 0.9980 0.0675 0.0015 0.0030 1.0000 0.0000 0.9985 28 9429412 387 18082 201836070397187 3579896219792
#3 #4 0.9489 0.0284 0.0409 0.0335 0.9690 0.0310 0.9591 6100 6537051 209020 143122 201836070397187 5583217024190
#4 #1 0.9825 0.9638 0.1975 0.3279 0.9998 0.0002 0.8025 29476 6744965 1106 119746 68650714770712 1751927202489
#4 #2 0.7357 0.0059 0.4927 0.0116 0.7365 0.2635 0.5073 26992 12778983 4571872 27789 68650714770712 22966479875097
#4 #3 0.9820 0.9280 0.2177 0.3527 0.9996 0.0004 0.7823 33515 6695444 2601 120403 68650714770712 2006599456078
#4 #4 0.7117 0.0385 0.4191 0.0705 0.7195 0.2805 0.5809 89462 5729122 2233533 123985 68650714770712 11478407659207

Parameters: n_neighbors = 3.

Table C.18

Linear regression.

Data-
set

Sub-
set

Acc. Pre. Rec. 
(TPR)

F1-
score

TNR FPR FNR TP TN FP FN Training 
Time (ns)

Testing Time 
(ns)

#1 #1 0.3540 0.9680 0.3540 0.5042 0.3467 0.6533 0.6460 117735 2916636 5496650 41600 3544294407 141826800
#1 #2 0.3112 0.9668 0.3112 0.4499 0.2989 0.7011 0.6888 130470 2002190 4695855 23448 3544294407 127655570
#1 #3 0.3467 0.9939 0.3467 0.5136 0.3469 0.6531 0.6533 4432 3271141 6158658 13678 3544294407 159399960
#1 #4 0.3341 0.9758 0.3341 0.4757 0.3204 0.6796 0.6659 142195 2161436 4584635 7027 3544294407 137564940
#2 #1 0.3009 0.9447 0.3009 0.4440 0.2961 0.7039 0.6991 77230 1997231 4748840 71992 2848875729 113877510
#2 #2 0.2208 0.9963 0.2208 0.3575 0.2185 0.7815 0.7792 52599 3790832 13560023 2182 2848875729 304505760
#2 #3 0.2656 0.9423 0.2656 0.3993 0.2585 0.7415 0.7344 88413 1731553 4966492 65505 2848875729 96606370
#2 #4 0.2560 0.9558 0.2560 0.3780 0.2408 0.7592 0.7440 175565 1917644 6045011 37882 2848875729 132705520
#3 #1 0.2096 0.9891 0.2096 0.3309 0.2007 0.7993 0.7904 63280 1131729 4507661 0 2870171858 196197980
#3 #2 0.1668 0.9753 0.1668 0.2483 0.1450 0.8550 0.8332 164167 911368 5372382 0 2870171858 231412030
#3 #3 0.3392 0.9938 0.3392 0.5046 0.3390 0.6610 0.6608 9152 2919967 5694483 11203 2870171858 143956480
#3 #4 0.2466 0.9962 0.2466 0.3949 0.2465 0.7535 0.7534 4717 3255868 9950443 9082 2870171858 222731878
#4 #1 0.3243 0.9985 0.3243 0.4886 0.3238 0.6762 0.6757 11924 4275841 8930470 1875 4962548165 255239910
#4 #2 0.4802 0.9966 0.4802 0.6465 0.4795 0.5205 0.5198 14688 4040135 4385243 4498 4962548165 132193889
#4 #3 0.6591 0.9941 0.6591 0.7926 0.6606 0.3394 0.3409 0 8007795 4113470 28791 4962548165 184774520
#4 #4 0.4382 0.9882 0.4382 0.607 0.4397 0.5603 0.5618 952 2098157 2673739 17056 4962548165 89234350
Parameters: threshold = 0.0.

C.1. Traditional machine learning, supervised

We provide the results of our supervised traditional machine learn-
ing models in Tables C.16, C.17, C.18, C.19, C.20, C.21, C.22, C.23, 
C.24, C.25, C.26, and C.27.

Recall that the structure of each sub-dataset—set_01, set_02,
37

set_03, and set_04—is as follows:
1. train_01: Train the model
2. test_01_known_vehicle_known_attack: Test the model against a 

known vehicle (seen in training) and known attacks (seen in train-
ing)

3. test_02_unknown_vehicle_known_attack: Test the model against 
an unknown vehicle (not seen in training) and known attacks (seen 

in training)
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Table C.19

Logistic regression.

Data-
set

Sub-
set

Acc. Pre. Rec. 
(TPR)

F1-
score

TNR FPR FNR TP TN FP FN Training Time 
(ns)

Testing Time 
(ns)

#1 #1 0.9890 0.9871 0.9890 0.9878 0.9964 0.0036 0.0110 20723 5619213 20177 42557 112252658417 380374780
#1 #2 0.9565 0.9514 0.9565 0.9539 0.9805 0.0195 0.0435 6195 6161349 122401 157972 112252658417 199207470
#1 #3 0.9976 0.9954 0.9976 0.9964 0.9999 0.0001 0.0024 15 8613985 465 20340 112252658417 696710769
#1 #4 0.9976 0.9979 0.9976 0.9977 0.9986 0.0014 0.0024 5 13187768 18543 13794 112252658417 984385909
#2 #1 0.9983 0.9982 0.9983 0.9983 0.9993 0.0007 0.0017 1598 13196556 9755 12201 54372904797 342538899
#2 #2 0.9953 0.9957 0.9953 0.9955 0.9974 0.0026 0.0047 964 8403867 21511 18222 54372904797 293114960
#2 #3 0.9966 0.9953 0.9966 0.9959 0.9990 0.0010 0.0034 0 12108588 12677 28791 54372904797 369723330
#2 #4 0.9922 0.9925 0.9922 0.9924 0.9960 0.0040 0.0078 0 4752757 19139 18008 54372904797 161513620
#3 #1 0.9860 0.9851 0.9860 0.9823 0.9995 0.0005 0.0140 43834 8409073 4213 115501 90624628759 270630190
#3 #2 0.9676 0.9636 0.9676 0.9655 0.9861 0.0139 0.0324 25041 6605205 92840 128877 90624628759 209136650
#3 #3 0.9977 0.9962 0.9977 0.9970 0.9997 0.0003 0.0023 4 9426611 3188 18106 90624628759 318505190
#3 #4 0.9679 0.9570 0.9679 0.9624 0.9893 0.0107 0.0321 29 6673937 72134 149193 90624628759 201148210
#4 #1 0.9784 0.9788 0.9784 0.9677 1.0000 0.0000 0.0216 44 6746071 0 149178 35900328378 199674490
#4 #2 0.9968 0.9947 0.9968 0.9953 1.0000 0.0000 0.0032 232 17350305 550 54549 35900328378 495121370
#4 #3 0.9775 0.9780 0.9775 0.9664 1.0000 0.0000 0.0225 36 6698045 0 153882 35900328378 202264510
#4 #4 0.9739 0.9605 0.9739 0.9611 0.9999 0.0001 0.0261 562 7961996 659 212885 35900328378 248040920

Parameters: N/A.

Table C.20

Linear support vector machine.

Data-
set

Sub-
set

Acc. Pre. Rec. 
(TPR)

F1-
score

TNR FPR FNR TP TN FP FN Training Time 
(ns)

Testing Time 
(ns)

#1 #1 0.9841 0.3018 0.3275 0.3141 0.9915 0.0085 0.6725 20723 5591450 47940 42557 35314797566 344383409
#1 #2 0.9593 0.0538 0.0361 0.0432 0.9834 0.0166 0.9639 5923 6179525 104225 158244 35314797566 354491014
#1 #3 0.9975 0.0131 0.0009 0.0017 0.9998 0.0002 0.9991 19 8613017 1433 20336 35314797566 673546732
#1 #4 0.9942 0.0002 0.0009 0.0003 0.9952 0.0048 0.9991 12 13143123 63188 13787 35314797566 661366602
#2 #1 0.9990 0.0000 0.0000 0.0000 1.0000 0.0000 1.0000 0 13206311 0 13799 57758151570 664285259
#2 #2 0.9977 0.0000 0.0000 0.0000 1.0000 0.0000 1.0000 0 8425378 0 19186 57758151570 486901480
#2 #3 0.9976 0.0000 0.0000 0.0000 1.0000 0.0000 1.0000 0 12121265 0 28791 57758151570 621317192
#2 #4 0.9962 0.0000 0.0000 0.0000 1.0000 0.0000 1.0000 0 4771896 0 18008 57758151570 291455207
#3 #1 0.9858 0.8829 0.2752 0.4196 0.9993 0.0007 0.7248 43845 8407471 5815 115490 43113677937 492298758
#3 #2 0.9498 0.1412 0.2433 0.1787 0.9660 0.0340 0.7567 37447 6470267 227778 116471 43113677937 413217868
#3 #3 0.9975 0.0009 0.0003 0.0004 0.9994 0.0006 0.9997 5 9424016 5783 18105 43113677937 523456157
#3 #4 0.9436 0.0001 0.0002 0.0002 0.9645 0.0355 0.9998 34 6506490 239581 149188 43113677937 422478071
#4 #1 0.9784 0.0000 0.0000 0.0000 1.0000 0.0000 1.0000 0 6746071 0 149222 21097322961 415427420
#4 #2 0.9969 0.0000 0.0000 0.0000 1.0000 0.0000 1.0000 0 17350855 0 54781 21097322961 820916351
#4 #3 0.9775 0.0000 0.0000 0.0000 1.0000 0.0000 1.0000 0 6698045 0 153918 21097322961 417188365
#4 #4 0.9739 0.0000 0.0000 0.0000 1.0000 0.0000 1.0000 0 7962655 0 213447 21097322961 480077009

Parameters: loss = hinge.

Table C.21

One-class support vector machine.

Data-
set

Sub-
set

Acc. Pre. Rec. 
(TPR)

F1-
score

TNR FPR FNR TP TN FP FN Training Time 
(ns)

Testing Time 
(ns)

#1 #1 - - - - - - - - - - - - -
#1 #2 - - - - - - - - - - - - -
#1 #3 - - - - - - - - - - - - -
#1 #4 - - - - - - - - - - - - -
#2 #1 - - - - - - - - - - - - -
#2 #2 - - - - - - - - - - - - -
#2 #3 - - - - - - - - - - - - -
#2 #4 - - - - - - - - - - - - -
#3 #1 - - - - - - - - - - - - -
#3 #2 - - - - - - - - - - - - -
#3 #3 - - - - - - - - - - - - -
#3 #4 - - - - - - - - - - - - -
#4 #1 - - - - - - - - - - - - -
#4 #2 - - - - - - - - - - - - -
#4 #3 - - - - - - - - - - - - -
#4 #4 - - - - - - - - - - - - -

Parameters: kernel = rbf.
The one-class support vector machine exceeded our 6-day (518400000000000 ns) time limit.
4. test_03_known_vehicle_unknown_attack: Test the model against 
a known vehicle (seen in training) and unknown attacks (not seen 
38

in training)
5. test_04_unknown_vehicle_unknown_attack: Test the model

against an unknown vehicle (not seen in training) and unknown 

attacks (not seen in training)
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Table C.22

Support vector machine.

Data-
set

Sub-
set

Acc. Pre. Rec. 
(TPR)

F1-
score

TNR FPR FNR TP TN FP FN Training Time (ns) Testing Time (ns)

#1 #1 0.9720 0.1505 0.3275 0.2062 0.9793 0.0207 0.6725 20723 5522435 116955 42557 116557173711567 20169585048115
#1 #2 0.9618 0.0630 0.0361 0.0459 0.9860 0.0140 0.9639 5923 6195589 88161 158244 116557173711567 22794629836354
#1 #3 0.9976 0.0260 0.0009 0.0018 0.9999 0.0001 0.9991 19 8613737 713 20336 116557173711567 30536179241509
#1 #4 0.9981 0.0007 0.0006 0.0007 0.9992 0.0008 0.9994 8 13195569 10742 13791 116557173711567 46633303631277
#2a #1 - - - - - - - - - - - - -
#2 #2 - - - - - - - - - - - - -
#2 #3 - - - - - - - - - - - - -
#2 #4 - - - - - - - - - - - - -
#3 #1 0.9896 0.9994 0.4429 0.6138 1.0000 0.0000 0.5571 70565 8413244 42 88770 91958405013243 11563361239836
#3 #2 0.9420 0.1549 0.3547 0.2156 0.9555 0.0445 0.6453 54597 6400075 297970 99321 91958405013243 9241437143758
#3 #3 0.9981 0.4848 0.0018 0.0035 1.0000 0.0000 0.9982 32 9429765 34 18078 91958405013243 12744773269736
#3 #4 0.9412 0.0228 0.0410 0.0293 0.9611 0.0389 0.9590 6112 6483827 262244 143110 91958405013243 9293928850140
#4 #1 0.9810 0.9913 0.1254 0.2226 1.0000 0.0000 0.8746 18707 6745907 164 130515 89048060616553 7497330386451
#4 #2 0.8493 0.0103 0.4950 0.0203 0.8504 0.1496 0.5050 27115 14754944 2595911 27666 89048060616553 18922964283852
#4 #3 0.9814 0.9149 0.1872 0.3109 0.9996 0.0004 0.8128 28819 6695365 2680 125099 89048060616553 7447968438532
#4 #4 0.8281 0.0639 0.4089 0.1105 0.8393 0.1607 0.5911 87280 6683287 1279368 126167 89048060616553 8891452202913

Parameters: kernel = rbf.
a This experiment exceeded our 6-day (518400000000000 ns) time limit.

Table C.23

Decision tree.

Data-
set

Sub-
set

Acc. Pre. Rec. 
(TPR)

F1-
score

TNR FPR FNR TP TN FP FN Training Time 
(ns)

Testing Time 
(ns)

#1 #1 0.9742 0.0724 0.1123 0.0880 0.9838 0.0162 0.8877 7109 5548288 91102 56171 8271963209 401618047
#1 #2 0.9738 0.0000 0.0000 0.0000 0.9993 0.0007 1.0000 0 6279265 4485 164167 8271963209 471393563
#1 #3 0.9821 0.0022 0.0148 0.0039 0.9844 0.0156 0.9852 301 8479721 134729 20054 8271963209 602445631
#1 #4 0.9827 0.0018 0.0276 0.0033 0.9837 0.0163 0.9724 381 12990683 215628 13418 8271963209 997735598
#2 #1 0.9982 0.3166 0.6010 0.4148 0.9986 0.0014 0.3990 8293 13188413 17898 5506 43693779718 1547987161
#2 #2 0.6617 0.0023 0.3430 0.0046 0.6624 0.3376 0.6570 6580 5580937 2844441 12606 43693779718 751740232
#2 #3 0.6618 0.0069 0.9972 0.0138 0.6610 0.3390 0.0028 28711 8012677 4108588 80 43693779718 1217496104
#2 #4 0.5791 0.0034 0.3757 0.0067 0.5799 0.4201 0.6243 6765 2767142 2004754 11243 43693779718 451008467
#3 #1 0.9963 0.9779 0.8213 0.8928 0.9996 0.0004 0.1787 130857 8410335 2951 28478 29338298907 1040280485
#3 #2 0.7406 0.0424 0.4890 0.0781 0.7464 0.2536 0.5110 75264 4999611 1698434 78654 29338298907 737568595
#3 #3 0.9317 0.0007 0.0257 0.0014 0.9334 0.0666 0.9743 466 8801680 628119 17644 29338298907 1131791308
#3 #4 0.7310 0.0050 0.0582 0.0093 0.7459 0.2541 0.9418 8692 5031918 1714153 140530 29338298907 810102792
#4 #1 0.9880 0.9705 0.4586 0.6229 0.9997 0.0003 0.5414 68433 6743991 2080 80789 23308577039 687957287
#4 #2 0.6006 0.0034 0.4347 0.0068 0.6012 0.3988 0.5653 23813 10430578 6920277 30968 23308577039 1844496718
#4 #3 0.9822 0.8470 0.2510 0.3873 0.9990 0.0010 0.7490 38635 6691065 6980 115283 23308577039 694299037
#4 #4 0.5737 0.0296 0.4828 0.0558 0.5761 0.4239 0.5172 103051 4587474 3375181 110396 23308577039 907885222

Parameters: criterion = entropy, splitter = random, min_samples_split = 2.

Table C.24

Extra trees.

Data-
set

Sub-
set

Acc. Pre. Rec. 
(TPR)

F1-
score

TNR FPR FNR TP TN FP FN Training Time 
(ns)

Testing Time 
(ns)

#1 #1 0.9915 0.8199 0.3046 0.4442 0.9992 0.0008 0.6954 19275 5635157 4233 44005 209531429363 20667658310
#1 #2 0.9740 0.0000 0.0000 0.0000 0.9994 0.0006 1.0000 0 6280034 3716 164167 209531429363 24155191698
#1 #3 0.9976 1.0000 0.0001 0.0003 1.0000 0.0000 0.9999 3 8614450 0 20352 209531429363 31514357019
#1 #4 0.9988 0.0000 0.0000 0.0000 0.9998 0.0002 1.0000 0 13203625 2686 13799 209531429363 49439825750
#2 #1 0.9990 0.5307 0.5210 0.5258 0.9995 0.0005 0.4790 7189 13199954 6357 6610 1048485087501 94353095263
#2 #2 0.5689 0.0039 0.7458 0.0078 0.5685 0.4315 0.2542 14308 4789796 3635582 4878 1048485087501 44998186725
#2 #3 0.7372 0.0089 0.9983 0.0177 0.7366 0.2634 0.0017 28741 8928388 3192877 50 1048485087501 71005505737
#2 #4 0.5222 0.0072 0.9175 0.0142 0.5207 0.4793 0.0825 16523 2484747 2287149 1485 1048485087501 25379076934
#3 #1 0.9952 0.9986 0.7432 0.8522 1.0000 0.0000 0.2568 118425 8413123 163 40910 579481153121 52518736208
#3 #2 0.8910 0.0815 0.3753 0.1339 0.9028 0.0972 0.6247 57763 6047253 650792 96155 579481153121 36366904399
#3 #3 0.9979 0.0596 0.0073 0.0130 0.9998 0.0002 0.9927 132 9427716 2083 17978 579481153121 57253911330
#3 #4 0.8995 0.0167 0.0630 0.0264 0.9180 0.0820 0.9370 9404 6192831 553240 139818 579481153121 35714877783
#4 #1 0.9837 0.9972 0.2467 0.3956 1.0000 0.0000 0.7533 36817 6745968 103 112405 486225104765 36751033345
#4 #2 0.5957 0.0042 0.5433 0.0084 0.5959 0.4041 0.4567 29765 10339035 7011820 25016 486225104765 96779859363
#4 #3 0.9828 0.9911 0.2347 0.3796 1.0000 0.0000 0.7653 36132 6697720 325 117786 486225104765 37676383305
#4 #4 0.5606 0.0277 0.4640 0.0523 0.5632 0.4368 0.5360 99037 4484403 3478252 114410 486225104765 46708815695

Parameters: n_estimators = 50, criterion = gini, min_samples_split = 2.
C.2. Traditional machine learning, unsupervised

We provide the results of our unsupervised traditional machine 
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learning models in Tables C.28, C.29, C.30, and C.31.
C.3. Deep learning, supervised

We provide the results of our supervised deep model—the multi-

layer perceptron—in Table C.32.
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Table C.25

Gradient boosting.

Data-
set

Sub-
set

Acc. Pre. Rec. 
(TPR)

F1-
score

TNR FPR FNR TP TN FP FN Training Time 
(ns)

Testing Time 
(ns)

#1 #1 0.6254 0.9892 0.6254 0.7585 0.6212 0.3788 0.3746 63280 3503305 2136085 0 2451403662347 8489738261
#1 #2 0.6626 0.9763 0.6626 0.7739 0.6538 0.3462 0.3374 164079 4108265 2175485 88 2451403662347 8834463042
#1 #3 0.9977 0.9977 0.9977 0.9966 1.0000 0.0000 0.0023 469 8614449 1 19886 2451403662347 11825961968
#1 #4 0.9984 0.9980 0.9984 0.9982 0.9994 0.0006 0.0016 644 13198117 8194 13155 2451403662347 18095133741
#2 #1 0.9992 0.9991 0.9992 0.9991 0.9998 0.0002 0.0008 5942 13203502 2809 7857 4148960101197 18509739315
#2 #2 0.6896 0.9960 0.6896 0.8142 0.6900 0.3100 0.3104 9133 5813919 2611459 10053 4148960101197 10610766902
#2 #3 0.7431 0.9976 0.7431 0.8503 0.7425 0.2575 0.2569 28741 9000552 3120713 50 4148960101197 17166843827
#2 #4 0.6893 0.9952 0.6893 0.8125 0.6889 0.3111 0.3107 14399 3287480 1484416 3609 4148960101197 6031742978
#3 #1 0.9959 0.9959 0.9959 0.9956 1.0000 0.0000 0.0041 124061 8413256 30 35274 2904415225735 9633979740
#3 #2 0.6875 0.9578 0.6875 0.7958 0.6951 0.3049 0.3125 54831 4655559 2042486 99087 2904415225735 7521772601
#3 #3 0.8441 0.9959 0.8441 0.9137 0.8457 0.1543 0.1559 414 7974752 1455047 17696 2904415225735 10332523024
#3 #4 0.6789 0.9514 0.6789 0.7910 0.6915 0.3085 0.3211 16328 4664596 2081475 132894 2904415225735 7476481741
#4 #1 0.9800 0.9771 0.9800 0.9722 0.9996 0.0004 0.0200 14247 6743146 2925 134975 2246450290838 7599878712
#4 #2 0.8378 0.9945 0.8378 0.9088 0.8393 0.1607 0.1622 20346 14562744 2788111 34435 2246450290838 22651220622
#4 #3 0.9804 0.9760 0.9804 0.9756 0.9975 0.0025 0.0196 36158 6681301 16744 117760 2246450290838 7745712710
#4 #4 0.8217 0.9534 0.8217 0.8798 0.8359 0.1641 0.1783 61914 6655982 1306673 151533 2246450290838 10831451554

Parameters: loss = deviance, learning_rate = 0.1, n_estimators = 100, criterion = friedman_mse, min_samples_split = 2.

Table C.26

Isolation forest.
Data-
set

Sub-
set

Acc. Pre. Rec. 
(TPR)

F1-
score

TNR FPR FNR TP TN FP FN Training Time 
(ns)

Testing Time 
(ns)

#1 #1 0.9846 0.9779 0.9846 0.9812 0.9956 0.0044 0.0154 0 5614590 24800 63280 197244480367 88099567128
#1 #2 0.9550 0.9492 0.9550 0.9521 0.9799 0.0201 0.0450 0 6157449 126301 164167 197244480367 100337823607
#1 #3 0.9969 0.9957 0.9969 0.9963 0.9992 0.0008 0.0031 928 8607461 6989 19427 197244480367 134518109020
#1 #4 0.9881 0.9980 0.9881 0.9930 0.9890 0.0110 0.0119 1131 13061670 144641 12668 197244480367 202233230770
#2 #1 0.9990 0.9990 0.9990 0.9986 1.0000 0.0000 0.0010 695 13206294 17 13104 324118674127 206854622230
#2 #2 0.9900 0.9956 0.9900 0.9928 0.9921 0.0079 0.0100 1156 8358875 66503 18030 324118674127 119965866722
#2 #3 0.9976 0.9953 0.9976 0.9964 1.0000 0.0000 0.0024 0 12121229 36 28791 324118674127 185499306577
#2 #4 0.9874 0.9925 0.9874 0.9899 0.9911 0.0089 0.0126 0 4729471 42425 18008 324118674127 68289354860
#3 #1 0.9809 0.9672 0.9809 0.9723 0.9993 0.0007 0.0191 1597 8407181 6105 157738 226093669303 134993492743
#3 #2 0.9756 0.9574 0.9756 0.9658 0.9979 0.0021 0.0244 1139 6683950 14095 152779 226093669303 100789302007
#3 #3 0.9973 0.9962 0.9973 0.9967 0.9992 0.0008 0.0027 0 9422289 7510 18110 226093669303 146008065708
#3 #4 0.9761 0.9576 0.9761 0.9666 0.9977 0.0023 0.0239 338 6730333 15738 148884 226093669303 99429036200
#4 #1 0.9774 0.9578 0.9774 0.9672 0.9990 0.0010 0.0226 177 6739416 6655 149045 171923906654 103616521318
#4 #2 0.9840 0.9937 0.9840 0.9888 0.9870 0.0130 0.0160 941 17125712 225143 53840 171923906654 260236126394
#4 #3 0.9764 0.9568 0.9764 0.9660 0.9988 0.0012 0.0236 445 6689938 8107 153473 171923906654 102870051455
#4 #4 0.9628 0.9490 0.9628 0.9558 0.9884 0.0116 0.0372 2074 7870193 92462 211373 171923906654 120766222169

Parameters: n_estimators = 50, contamination = 0.001.

Table C.27

Random forest.

Data-
set

Sub-
set

Acc. Pre. Rec. 
(TPR)

F1-
score

TNR FPR FNR TP TN FP FN Training Time 
(ns)

Testing Time 
(ns)

#1 #1 0.9879 0.0088 0.0008 0.0015 0.9990 0.0010 0.9992 52 5633511 5879 63228 763511969876 38249637250
#1 #2 0.9720 0.0000 0.0000 0.0000 0.9974 0.0026 1.0000 0 6267567 16183 164167 763511969876 42700298556
#1 #3 0.9976 1.0000 0.0004 0.0009 1.0000 0.0000 0.9996 9 8614450 0 20346 763511969876 56868215083
#1 #4 0.9988 0.0011 0.0001 0.0003 0.9999 0.0001 0.9999 2 13204519 1792 13797 763511969876 88901090110
#2 #1 0.9991 0.6009 0.5464 0.5724 0.9996 0.0004 0.4536 7540 13201303 5008 6259 3114043843818 136611348151
#2 #2 0.7176 0.0032 0.3972 0.0064 0.7183 0.2817 0.6028 7620 6052223 2373155 11566 3114043843818 72486334580
#2 #3 0.7984 0.0116 0.9983 0.0229 0.7979 0.2021 0.0017 28741 9671773 2449492 50 3114043843818 112412945759
#2 #4 0.6682 0.0094 0.8329 0.0185 0.6675 0.3325 0.1671 14998 3185400 1586496 3010 3114043843818 42092086883
#3 #1 0.9963 0.9998 0.8020 0.8900 1.0000 0.0000 0.1980 127785 8413257 29 31550 2020852818255 82556777120
#3 #2 0.8186 0.0449 0.3489 0.0795 0.8294 0.1706 0.6511 53705 5555351 1142694 100213 2020852818255 58518832066
#3 #3 0.9945 0.0109 0.0210 0.0143 0.9963 0.0037 0.9790 380 9395302 34497 17730 2020852818255 90810701195
#3 #4 0.8150 0.0063 0.0484 0.0112 0.8319 0.1681 0.9516 7226 5612130 1133941 141996 2020852818255 58375075253
#4 #1 0.9848 0.9977 0.2961 0.4566 1.0000 0.0000 0.7039 44181 6745969 102 105041 1658659682691 59969033775
#4 #2 0.8023 0.0024 0.1502 0.0048 0.8044 0.1956 0.8498 8227 13956460 3394395 46554 1658659682691 159904765108
#4 #3 0.9839 0.9973 0.2822 0.4399 1.0000 0.0000 0.7178 43437 6697929 116 110481 1658659682691 60600924460
#4 #4 0.7762 0.0366 0.2991 0.0652 0.7890 0.2110 0.7009 63838 6282483 1680172 149609 1658659682691 75674656782
40

Parameters: n_estimators = 100, criterion = gini, min_samples_split = 2.
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Table C.28

K-means clustering.

Data-
set

Sub-
set

Acc. Pre. Rec. 
(TPR)

F1-
score

TNR FPR FNR TP TN FP FN Training Time 
(ns)

Testing Time 
(ns)

#1 #1 0.8564 0.9763 0.8564 0.9124 0.8660 0.1340 0.1436 0 4883881 755509 63280 97416359356 638434302
#1 #2 0.8654 0.9467 0.8654 0.9042 0.8880 0.1120 0.1346 0 5580250 703500 164167 97416359356 709549141
#1 #3 0.8658 0.9970 0.8658 0.9258 0.8660 0.1340 0.1342 15172 7460471 1153979 5183 97416359356 963140938
#1 #4 0.8872 0.9985 0.8872 0.9392 0.8875 0.1125 0.1128 8883 11720655 1485656 4916 97416359356 1463804724
#2 #1 0.8872 0.9985 0.8872 0.9392 0.8875 0.1125 0.1128 8811 11720655 1485656 4988 130622830521 1447033632
#2 #2 0.7979 0.9961 0.7979 0.8855 0.7987 0.2013 0.2021 8061 6729582 1695796 11125 130622830521 931602718
#2 #3 0.8854 0.9950 0.8854 0.9370 0.8875 0.1125 0.1146 0 10757395 1363870 28791 130622830521 1351110187
#2 #4 0.7955 0.9916 0.7955 0.8828 0.7985 0.2015 0.2045 0 3810356 961540 18008 130622830521 536446070
#3 #1 0.1243 0.9459 0.1243 0.1975 0.1120 0.8880 0.8757 123697 942015 7471271 35638 108539371536 942543350
#3 #2 0.2282 0.9630 0.2282 0.3445 0.2138 0.7862 0.7718 131445 1432045 5266000 22473 108539371536 748779763
#3 #3 0.1123 0.9855 0.1123 0.2008 0.1120 0.8880 0.8877 4614 1055914 8373885 13496 108539371536 1039551987
#3 #4 0.2297 0.9741 0.2297 0.3453 0.2137 0.7863 0.7703 142038 1441653 5304418 7184 108539371536 764330221
#4 #1 0.7698 0.9530 0.7698 0.8511 0.7857 0.2143 0.2302 7344 5300665 1445406 141878 49276596864 757799028
#4 #2 0.8861 0.9950 0.8861 0.9367 0.8875 0.1125 0.1139 25670 15398301 1952554 29111 49276596864 1914475119
#4 #3 0.7708 0.9541 0.7708 0.8512 0.7851 0.2149 0.2292 22922 5258890 1439155 130996 49276596864 757572379
#4 #4 0.8762 0.9606 0.8762 0.9130 0.8875 0.1125 0.1238 96903 7066664 895991 116544 49276596864 901783586

Parameters: n_clusters = 2, algorithm = full.

Table C.29

Mini-batch K-means clustering.

Data-
set

Sub-
set

Acc. Pre. Rec. 
(TPR)

F1-
score

TNR FPR FNR TP TN FP FN Training Time 
(ns)

Testing Time 
(ns)

#1 #1 0.4681 0.9669 0.4681 0.6304 0.4729 0.5271 0.5319 2491 2666944 2972446 60789 7678285764 3796294688
#1 #2 0.4969 0.9271 0.4969 0.6470 0.5099 0.4901 0.5031 88 3204152 3079598 164079 7678285764 4126732218
#1 #3 0.4741 0.9969 0.4741 0.6408 0.4732 0.5268 0.5259 17101 4076409 4538041 3254 7678285764 5800975603
#1 #4 0.4748 0.9984 0.4748 0.6429 0.4745 0.5255 0.5252 10415 6267005 6939306 3384 7678285764 9274790788
#2 #1 0.8872 0.9985 0.8872 0.9392 0.8875 0.1125 0.1128 8808 11720655 1485656 4991 13176242457 8605857753
#2 #2 0.8103 0.9961 0.8103 0.8931 0.8112 0.1888 0.1897 8049 6834386 1590992 11137 13176242457 5676364082
#2 #3 0.8854 0.9950 0.8854 0.9370 0.8875 0.1125 0.1146 0 10757395 1363870 28791 13176242457 8517801026
#2 #4 0.8085 0.9916 0.8085 0.8907 0.8115 0.1885 0.1915 0 3872458 899438 18008 13176242457 3216584183
#3 #1 0.8757 0.9661 0.8757 0.9172 0.8880 0.1120 0.1243 35659 7471271 942015 123676 8493144777 5750632132
#3 #2 0.7712 0.9541 0.7712 0.8514 0.7856 0.2144 0.2288 22492 5261861 1436184 131426 8493144777 4609698464
#3 #3 0.8877 0.9976 0.8877 0.9387 0.8880 0.1120 0.1123 13496 8373885 1055914 4614 8493144777 6304545321
#3 #4 0.7698 0.9529 0.7698 0.8511 0.7857 0.2143 0.2302 7190 5300665 1445406 142032 8493144777 4543563638
#4 #1 0.7597 0.9526 0.7597 0.8448 0.7754 0.2246 0.2403 7399 5230985 1515086 141823 7006960680 4772947871
#4 #2 0.8862 0.9950 0.8862 0.9367 0.8875 0.1125 0.1138 25836 15398301 1952554 28945 7006960680 13150643666
#4 #3 0.7608 0.9538 0.7608 0.8449 0.7748 0.2252 0.2392 23086 5189956 1508089 130832 7006960680 4683530105
#4 #4 0.8762 0.9607 0.8762 0.9130 0.8875 0.1125 0.1238 97496 7066664 895991 115951 7006960680 5598694588

Parameters: n_clusters = 2, batch_size = 512.

Table C.30

BIRCH.

Data-
set

Sub-
set

Acc. Pre. Rec. 
(TPR)

F1-
score

TNR FPR FNR TP TN FP FN Training Time 
(ns)

Testing Time 
(ns)

#1 #1 0.9889 0.9779 0.9889 0.9834 1.0000 0.0000 0.0111 0 5639390 0 63280 214197454658 605665184
#1 #2 0.9745 0.9497 0.9745 0.9620 1.0000 0.0000 0.0255 0 6283750 0 164167 214197454658 662717530
#1 #3 0.9976 0.9953 0.9976 0.9965 1.0000 0.0000 0.0024 0 8614450 0 20355 214197454658 1004912418
#1 #4 0.9990 0.9979 0.9990 0.9984 1.0000 0.0000 0.0010 0 13206311 0 13799 214197454658 1171693676
#2 #1 0.9990 0.9979 0.9990 0.9984 1.0000 0.0000 0.0010 0 13206311 0 13799 297512429069 1163219087
#2 #2 0.9977 0.9955 0.9977 0.9966 1.0000 0.0000 0.0023 0 8425378 0 19186 297512429069 814946104
#2 #3 0.9976 0.9953 0.9976 0.9964 1.0000 0.0000 0.0024 0 12121265 0 28791 297512429069 1120011064
#2 #4 0.9962 0.9925 0.9962 0.9944 1.0000 0.0000 0.0038 0 4771896 0 18008 297512429069 544038241
#3 #1 0.9814 0.9632 0.9814 0.9722 1.0000 0.0000 0.0186 0 8413286 0 159335 283565479448 834557803
#3 #2 0.9775 0.9556 0.9775 0.9664 1.0000 0.0000 0.0225 0 6698045 0 153918 283565479448 681784890
#3 #3 0.9981 0.9962 0.9981 0.9971 1.0000 0.0000 0.0019 0 9429799 0 18110 283565479448 862777662
#3 #4 0.9784 0.9572 0.9784 0.9677 1.0000 0.0000 0.0216 0 6746071 0 149222 283565479448 729009648
#4 #1 0.9784 0.9572 0.9784 0.9677 1.0000 0.0000 0.0216 0 6746071 0 149222 161254066683 678632660
#4 #2 0.9969 0.9937 0.9969 0.9953 1.0000 0.0000 0.0031 0 17350855 0 54781 161254066683 1466783064
#4 #3 0.9775 0.9556 0.9775 0.9664 1.0000 0.0000 0.0225 0 6698045 0 153918 161254066683 664297692
#4 #4 0.9739 0.9485 0.9739 0.9610 1.0000 0.0000 0.0261 0 7962655 0 213447 161254066683 812460288
41

Parameters: threshold = 0.5, branching_factor = 25, n_clusters = 2.
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Table C.31

Local outlier factor.

Data-
set

Sub-
set

Acc. Pre. Rec. 
(TPR)

F1-
score

TNR FPR FNR TP TN FP FN Training Time (ns) Testing Time (ns)

#1 #1 0.9254 0.9728 0.9254 0.9465 0.9343 0.0657 0.0746 72077 7860912 552374 87258 53788202512612 2439824879120
#1 #2 0.1714 0.9557 0.1714 0.2640 0.1560 0.8440 0.8286 129536 1044762 5653283 24382 53788202512612 7698684672802
#1 #3 0.9386 0.9965 0.9386 0.9665 0.9400 0.0600 0.0614 4080 8863608 566191 14030 53788202512612 2504114371275
#1 #4 0.1661 0.8882 0.1661 0.2726 0.1644 0.8356 0.8339 36488 1108865 5637206 112734 53788202512612 7995192332965
#2 #1 0.9081 0.9559 0.9081 0.9314 0.9280 0.0720 0.0919 1753 6260040 486031 147469 59034611309148 1175546111752
#2 #2 0.4353 0.9927 0.4353 0.6039 0.4353 0.5647 0.5647 23302 7552983 9797872 31479 59034611309148 18412260067057
#2 #3 0.8891 0.9569 0.8891 0.9210 0.9067 0.0933 0.1109 18532 6073430 624615 135386 59034611309148 1427622552072
#2 #4 0.4468 0.9404 0.4468 0.5970 0.4481 0.5519 0.5532 84533 3568176 4394479 128914 59034611309148 7705037949598
#3 #1 0.9086 0.9781 0.9086 0.9417 0.9178 0.0822 0.0914 5627 5175888 463502 57653 29212871323360 1114523090819
#3 #2 0.1548 0.8408 0.1548 0.2602 0.1579 0.8421 0.8452 6347 992043 5291707 157820 29212871323360 4107012193646
#3 #3 0.9194 0.9965 0.9194 0.9557 0.9202 0.0798 0.0806 11101 7927346 687104 9254 29212871323360 1758614710997
#3 #4 0.3703 0.9978 0.3703 0.5395 0.3701 0.6299 0.6297 8057 4887587 8318724 5742 29212871323360 7697970340249
#4 #1 0.9552 0.9981 0.9552 0.9760 0.9560 0.0440 0.0448 2490 12624813 581498 11309 100295280221578 4241296731211
#4 #2 0.5491 0.9942 0.5491 0.7072 0.5500 0.4500 0.4509 2692 4633997 3791381 16494 100295280221578 9670662153028
#4 #3 0.9501 0.9952 0.9501 0.9721 0.9524 0.0476 0.0499 63 11543811 577454 28728 100295280221578 3849191938482
#4 #4 0.5451 0.9896 0.5451 0.7029 0.5471 0.4529 0.4549 585 2610520 2161376 17423 100295280221578 5465604178764

Parameters: n_neighbors = 20, algorithm = kd_tree, contamination = auto.

Table C.32

Multi-layer perceptron.

Data-
set

Sub-
set

Acc. Pre. Rec. 
(TPR)

F1-
score

TNR FPR FNR TP TN FP FN Training Time 
(ns)

Testing Time 
(ns)

#1 #1 0.9788 0.9837 0.9788 0.9811 0.9861 0.0139 0.0212 20723 5560852 78538 42557 3088090156514 11708139937
#1 #2 0.9666 0.9529 0.9666 0.9594 0.9908 0.0092 0.0334 6227 6226232 57518 157940 3088090156514 13276672102
#1 #3 0.9974 0.9953 0.9974 0.9964 0.9998 0.0002 0.0026 11 8612758 1692 20344 3088090156514 17550210412
#1 #4 0.9973 0.9979 0.9973 0.9976 0.9983 0.0017 0.0027 204 13184381 21930 13595 3088090156514 27715472855
#2 #1 0.9992 0.9990 0.9992 0.9991 0.9997 0.0003 0.0008 6272 13202688 3623 7527 6061045048456 27148087661
#2 #2 0.8957 0.9963 0.8957 0.9428 0.8968 0.1032 0.1043 8519 7555528 869850 10667 6061045048456 17240834965
#2 #3 0.9642 0.9952 0.9642 0.9795 0.9665 0.0335 0.0358 19 11715522 405743 28772 6061045048456 25427346349
#2 #4 0.8623 0.9921 0.8623 0.9226 0.8654 0.1346 0.1377 880 4129448 642448 17128 6061045048456 9809416007
#3 #1 0.9930 0.9930 0.9930 0.9922 1.0000 0.0000 0.0070 99207 8413055 231 60128 2675529467831 17538778400
#3 #2 0.9779 0.9734 0.9779 0.9750 0.9935 0.0065 0.0221 45840 6654547 43498 108078 2675529467831 14086705828
#3 #3 0.9981 0.9963 0.9981 0.9971 1.0000 0.0000 0.0019 14 9429578 221 18096 2675529467831 19263949489
#3 #4 0.9742 0.9601 0.9742 0.9665 0.9951 0.0049 0.0258 4232 6712976 33095 144990 2675529467831 14168803955
#4 #1 0.9799 0.9787 0.9799 0.9715 0.9999 0.0001 0.0201 11713 6745070 1001 137509 2655845001046 13873431844
#4 #2 0.9284 0.9944 0.9284 0.9599 0.9306 0.0694 0.0716 13826 16145941 1204914 40955 2655845001046 36039415208
#4 #3 0.9808 0.9788 0.9808 0.9745 0.9994 0.0006 0.0192 26513 6693989 4056 127405 2655845001046 13922701709
#4 #4 0.9071 0.9553 0.9071 0.9293 0.9247 0.0753 0.0929 53603 7362785 599870 159844 2655845001046 16551117389

Parameters: activation = logistic, solver = adam, alpha = 0.0001, learning_rate = constant.

Table C.33

Restricted Boltzmann machine.

Data-
set

Sub-
set

Acc. Pre. Rec. 
(TPR)

F1-
score

TNR FPR FNR TP TN FP FN Training Time 
(ns)

Testing Time 
(ns)

#1 #1 0.0111 0.0001 0.0111 0.0002 0.0000 1.0000 0.9889 63280 0 5639390 0 916661700320 9736619899
#1 #2 0.0255 0.0006 0.0255 0.0013 0.0000 1.0000 0.9745 164167 0 6283750 0 916661700320 10970949396
#1 #3 0.0024 0.0000 0.0024 0.0000 0.0000 1.0000 0.9976 20355 0 8614450 0 916661700320 14603996262
#1 #4 0.0010 0.0000 0.0010 0.0000 0.0000 1.0000 0.9990 13799 0 13206311 0 916661700320 22041127093
#2 #1 0.0010 0.0000 0.0010 0.0000 0.0000 1.0000 0.9990 13799 0 13206311 0 1354503991934 24294537797
#2 #2 0.0023 0.0000 0.0023 0.0000 0.0000 1.0000 0.9977 19186 0 8425378 0 1354503991934 15421833893
#2 #3 0.0024 0.0000 0.0024 0.0000 0.0000 1.0000 0.9976 28791 0 12121265 0 1354503991934 22534199837
#2 #4 0.0038 0.0000 0.0038 0.0000 0.0000 1.0000 0.9962 18008 0 4771896 0 1354503991934 8979004213
#3 #1 0.0186 0.0003 0.0186 0.0007 0.0000 1.0000 0.9814 159335 0 8413286 0 930702274084 14362685904
#3 #2 0.0225 0.0005 0.0225 0.0010 0.0000 1.0000 0.9775 153918 0 6698045 0 930702274084 11491870551
#3 #3 0.0019 0.0000 0.0019 0.0000 0.0000 1.0000 0.9981 18110 0 9429799 0 930702274084 15990152359
#3 #4 0.0216 0.0005 0.0216 0.0009 0.0000 1.0000 0.9784 149222 0 6746071 0 930702274084 11655323670
#4 #1 0.1171 0.9575 0.1171 0.1781 0.0998 0.9002 0.8829 134239 673389 6072682 14983 761974625735 12918669375
#4 #2 0.1024 0.9937 0.1024 0.1811 0.0999 0.9001 0.8976 49267 1733885 15616970 5514 761974625735 31999954558
#4 #3 0.1181 0.9559 0.1181 0.1786 0.1002 0.8998 0.8819 138369 670951 6027094 15549 761974625735 12839847161
#4 #4 0.1209 0.9492 0.1209 0.1780 0.1000 0.9000 0.8791 192161 796258 7166397 21286 761974625735 15244361051

Parameters: n_components = 16, learning_rate = 0.1, batch_size = 20, threshold = -0.0001.
C.4. Deep learning, unsupervised

We provide the results of our unsupervised deep model—the re-
42

stricted Boltzmann machine—in Table C.33.
Appendix D. Supplementary material

Supplementary material related to this article can be found online 

at https://doi .org /10 .1016 /j .cose .2024 .103777.
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