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A B S T R A C T

This paper introduces a novel methodology for analyzing three-way array data with a multi-group structure.
Three-way arrays are commonly observed in various domains, including image analysis, chemometrics,
and real-world applications. In this paper, we use a practical case study of process modeling in additive
manufacturing, where batches are structured according to multiple groups. Vast volumes of data for multiple
variables and process stages are recorded by sensors installed on the production line for each batch. For these
three-way arrays, the link between the final product and the observations creates a grouping structure in the
observations. This grouping may hamper gaining insight into the process if only some of the groups dominate
the controlled variability of the products. In this study, we develop an extension of the PARAFAC model that
takes into account the grouping structure of three-way data sets. With this extension, it is possible to estimate a
model that is representative of all the groups simultaneously by finding their common structure. The proposed
model has been applied to three simulation data sets and a real manufacturing case study. The capability to
find the common structure of the groups is compared to PARAFAC and the insights into the importance of
variables delivered by the models are discussed.
Introduction

Manufacturing organizations strive to adopt innovative production
methods to enhance their efficiency and design flexibility. However,
modern production techniques can be complex and not yet fully un-
derstood. Achieving a complete comprehension and optimization of
these processes requires identifying the variables and components of
the process, as well as the conditions under which production levels
can be optimized. To achieve such an understanding, it is essential to
develop descriptive and interpretable data-driven models that provide
clear insights into the data.

Modern manufacturing industrial systems are often equipped with
technology that can collect data from a large number of sources, result-
ing in a voluminous amount of information. This can produce datasets
that are structured in three-way arrays, organized in observations
collected for multiple variables and several conditions. For example, in
a batch fermentation process, data collected in time for multiple vari-
ables and multiple batches will be in the form of a three-dimensional
array [1,2]. A second example is processes based on sensory data,
which may come from different channels and multiple devices simul-
taneously [3–5].

Several approaches have been proposed to model three-way data
using supervised or unsupervised methods, ranging from linear mod-
els [6–10] to black-box models for tensors [11,12]. However, to find
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the optimal settings of the system, it is required to fully understand
the conditions and the interactions among the variables involved in
the production processes. Linear models remain a predominant tool for
three-way data as they can identify key factors that impact the process
and guide decision-making. Although black-box models may offer high
prediction accuracy, they lack the interpretability and transparency
necessary to understand the system.

The most predominant methodologies within the class of linear
models for unsupervised three-way data have been factor analysis
methods such as PARAFAC [8,13] and Tucker3 model [9,14]. These
models are used by analyzing the covariance structure among the
variables and among different experimental conditions providing the
so-called loadings matrices whose values are indicative of the im-
portance of each variable and each condition in the total variability
of the three-way data [2,15]. The scores that are delivered for the
observations of the data allow for the identification of the dispersion
among the samples and the differences in the variance explained by
each component of the model.

In high-dimensional data analysis, it is not uncommon to encounter
datasets that exhibit a clear and distinguishable organizational struc-
ture, which is categorized into blocks or groups. In the context of
multi-block data, each block consists of a collection of variables that
vailable online 21 February 2024
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exhibit certain characteristics or thematic significance, assessed on the
same individuals. This situation may also be represented as a composite
of datasets, often acquired from the same group of individuals but
including distinct variables across the many datasets. This may be the
case with batch production where different kinds of measurements are
acquired along the steps of the manufacturing process. The literature
extensively covers various methods of data analysis for multi-block
data. Examples of unsupervised methods include multi-block principal
components analysis (MB-PCA) [16] and multiple co-inertia analysis
(MCOA) [17], on the other hand, multi-block partial least squares
(MB-PLS) is an example of supervised method [18].

In many industrial processes, the existence of sub-groups within
the observations is a common occurrence that can greatly impact the
analysis and interpretation of the results. The multi-group structure
in the data refers to the presence of distinct groups that may exhibit
unique characteristics and behaviors. Groups of observations are likely
to happen when the observations or samples share a specific char-
acteristic that identifies the group [19–21]. Various factors, such as
demographic variables, geographic location, or other relevant criteria,
may define these groups. In the manufacturing processes, the observa-
tions collected during production are linked to the final products, which
individuate a multi-group structure of the observations. Understanding
the multi-group structure in the data is crucial for accurate analysis, as
failing to consider these groups can lead to biased results and erroneous
conclusions. Thus, it is important to carefully identify and account for
the multi-group structure in the model in order to ensure that research
findings are valid and applicable to all relevant groups [21,22].

When grouping structures exist, the sources of variability explained
in the resulting model can be dominated by specific groups without
representing other groups’ variability. Traditional models for three-way
arrays that do not take into account the group structure can be affected
by the greater variance of a dominant group and fail to represent
the entire data set. Therefore, the importance of specific variables
or conditions that are extracted from the model parameters may not
hold for all the groups simultaneously, leading to potentially erroneous
conclusions. One practical solution to take into account the presence
of multiple groups is to analyze the groups separately. However, this
strategy would result in an abundance of parameters and the lack of a
single unifying model of the complete system.

Extensive research has been conducted on linear models for high-
dimensional data that take into account the grouping structure in the
case of two-way data. Some examples of unsupervised models are the
Common principal components analysis (CPCA) [23], that involves ex-
amining the variance–covariance matrices of the groups and identifying
shared orthogonal vectors of loadings; Multi-group principal compo-
nent analysis (MGPCA) [24], which involves deriving the common
loadings by performing an eigenanalysis on the variance–covariance
matrix within each group. Additional techniques for analyzing two-way
multi-group datasets are outlined in the works of Kallus et al. [25],
Tenenhaus et al. [21] and Eslami et al. propose a multi-group PLS
model [26]. It has been shown how the resulting model, when consid-
ering the group structure of the observations, can be informative in un-
derstanding the common cause of variability across all groups [19,27].
Through multi-group models, it is possible to interpret the functionality
of the production systems for several groups simultaneously.

The current study presents an extension of the PARAFAC method
that adjusts the model parameters according to the multi-group struc-
ture of the data. The model aims to identify a common structure by
calculating common loadings in the presence of multi-groups in the
three-way data. The article is organized as follows. First, the extended
PARAFAC method is presented with the proposed algorithm to fit the
model. Then, the case study with simulated and real data is presented,
highlighting the multi-group structure for three-way data. The results
of the PARAFAC and the extended PARAFAC models are presented and
compared. The models are used to analyze the most important variables
and conditions in the datasets delivered by each model. Finally, the
2

conclusions are presented. o
1. Methods

This section provides a brief description of the PARAFAC model
and an algorithm for its solution, Alternating Least Squares (ALS).
Following that, we present the proposed extension aimed to handle a
multi-group structure.

Three-way arrays are represented by the bold italic uppercase letter
𝑿 ∈ R𝐼×𝐽×𝐾 whose elements are 𝑥𝑖𝑗𝑘 where 𝑖 = 1,… , 𝐼 , 𝑗 = 1,… , 𝐽
and 𝑘 = 1,… , 𝐾. The three-way entries are denoted by modes 𝑎, 𝑏
and 𝑐 as shown in Fig. 1(a). In this structure, mode 𝑎 represents the
observations, mode 𝑏 represents the variables, and mode 𝑐 represents
different conditions, such as time, different levels of temperatures, etc.
The elements that belong to modes 𝑎 and 𝑏 with mode 𝑐 fixed will be
denoted by 𝑿 ∙∙𝑘 = (𝑥𝑖𝑗𝑘) where 𝑘 is fixed, 𝑖 = 1,… , 𝐼 and 𝑗 = 1,… , 𝐽 .
calars are denoted in nonbold italic characters, such as 𝑥𝑖𝑗𝑘 or 𝐼 .
olumn vectors are denoted by bold lowercase characters, such as 𝐚,
hereas two-way arrays or matrices are denoted by a capital bold

etter, such as 𝐀. The letters 𝐼, 𝐽 ,𝐾 are reserved for indicating the di-
ensions and 𝑁 for indicating the number of components. Superindex
represents the transpose operator.
Let us consider a three-way array 𝑿, its unfolded (matricized)

atrix in one of the modes is 𝐗. Specifically, the unfolded matrix in
ode 𝑎 is represented as 𝐗𝐚 with dimensions 𝐼 × 𝐽𝐾, the unfolded
atrix with respect to mode 𝑏 is 𝐗𝐛 with dimensions 𝐽 × 𝐼𝐾. Lastly,

he unfolding in mode 𝑐 is referred to as 𝐗𝐜 with dimensions 𝐾 × 𝐼𝐽 .

.1. The PARAFAC method

The PARAFAC method is a decomposition method of the three-way
rray into three matrices: the score matrix 𝐀 and two loadings matrices

and 𝐂. Matrix 𝐀 is referred to as scores as its entries represent
he numerical value of the observations [8,15]. Matrices 𝐁 and 𝐂 are
ommonly referred to as loadings as they represent the numerical value
f variables and conditions, respectively. The PARAFAC model can be
een as a particular case of the Tucker model, where the core array has
he same dimensions 𝑁 × 𝑁 × 𝑁 , has ones on the superdiagonal and
eros otherwise [14,28]. Considering a three-way array 𝑿, a PARAFAC
odel with 𝑁 components can be written as follows:

𝑖𝑗𝑘 =
𝑁
∑

𝑛=1
𝑎𝑖𝑛𝑏𝑗𝑛𝑐𝑘𝑛 + 𝑒𝑖𝑗𝑘 (1)

here 𝐀 = (𝑎𝑖𝑛) is the score matrix R𝐼×𝑁 , 𝐁 = (𝑏𝑗𝑛) ∈ R𝐽×𝑁 is the
oadings matrix of mode 𝑏, and 𝐂 = (𝑐𝑘𝑛) ∈ R𝐾×𝑁 is the loadings matrix
f mode 𝑐. A visual representation of the PARAFAC model is shown in
ig. 1(b). The PARAFAC model results from finding the model matrices
hat minimize the sum of squares of the residuals:

min
𝐀,𝐁,𝐂

∑

𝑖𝑗𝑘
(𝑥𝑖𝑗𝑘 −

𝑁
∑

𝑛=1
𝑎𝑖𝑛𝑏𝑗𝑛𝑐𝑘𝑛)2 = min

.

∑

𝑖𝑗𝑘
(𝑒𝑖𝑗𝑘)2 (2)

Several algorithms have been proposed to solve Eq. (2) for 𝐀, 𝐁,
nd 𝐂 such as Alternating Least Squares (ALS) [8,29,30], Derivative
omputations [31] and direct (non-iterative) procedures [32,33]. We
resent here the ALS algorithm as it is the original and most widely
sed method to estimate the PARAFAC model [8].

LS algorithm

The ALS algorithm aims at calculating the model matrices 𝐀, 𝐁 and
that minimize the sum of squared residuals in Eq. (2) using an iter-

tive procedure. At each step 𝑡, it calculates and updates the matrices
ntil convergence or until the maximum number of iterations is reached
endering a series of matrices {𝐀(𝑡)}, {𝐁(𝑡)} and {𝐂(𝑡)} [8,15,28]. Let us
onsider the unfolded matrices 𝐗𝐚 (𝐼×𝐽𝐾), 𝐗𝐛 (𝐽 ×𝐼𝐾) and 𝐗𝐜 (𝐾×𝐼𝐽 )

f the three-way array 𝑿. The first step consists in initializing the
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Fig. 1. (𝑎): Three-way array 𝑿 represented by the modes 𝑎, 𝑏 and 𝑐. (𝑏): PARAFAC model representation, 𝑿 three-way array, 𝐀, 𝐁 and 𝐂 model loadings matrices and 𝑬 three-way
residual array.
Fig. 2. (𝑎): Three-way array 𝑿 = 𝑥𝑖𝑗𝑘 ∈ R𝐼×𝐽×𝐾 which present a multi-group structure. Along the mode 𝑎 the observations are divided into 𝐺 groups, such that group 𝑔 = {1,… , 𝐺}
is represented by 1,… , 𝐼𝑔 rows and ∑𝐺

𝑔=1 𝐼𝑔 = 𝐼 . (𝑏): Representation of the new proposed model.
matrices 𝐁(1) and 𝐂(1) as random matrices. The matrix 𝐀(𝑡) is calculated
by solving the minimization problem

min
𝐀

‖𝐗𝐚 − 𝐀(𝑡)𝐙𝑇
‖ where 𝐙 = 𝐂(𝑡−1) ⊗ 𝐁(𝑡−1), 𝐗𝐚 ∈ R𝐼×𝐽𝐾 (3)

⊗ represent the Khatri–Rao product. Matrices 𝐁(𝑡) and 𝐂(𝑡) are calcu-
lated in an analogous way.

min
𝐁

‖𝐗𝐛 − 𝐁(𝑡)𝐙𝑇
‖ where 𝐙 = 𝐂(𝑡−1) ⊗ 𝐀(𝑡), 𝐗𝐛 ∈ R𝐽×𝐼𝐾

and
min
𝐂

‖𝐗𝐜 − 𝐂(𝑡)𝐙𝑇
‖ where 𝐙 = 𝐁(𝑡) ⊗ 𝐀(𝑡), 𝐗𝐜 ∈ R𝐾×𝐼𝐽

1.2. Proposed method for multi-group data

The multi-group three-way array 𝑿 is composed by the same three
modes 𝑎, 𝑏, and 𝑐, when the observations in mode 𝑎 are divided into 𝐺
groups. A visual representation of this structure is shown in Fig. 2(a).
Each group 𝑔 ∈ {1,… , 𝐺} is represented by 1,… , 𝐼𝑔 rows, such that
∑𝐺

𝑔=1 𝐼𝑔 = 𝐼 . The sub-three way array that contains the observations
belonging to group 𝑔 is represented by 𝑿𝑔 ∈ R𝐼𝑔×𝐽×𝐾 where 𝐼𝑔 is the
number of observations in such group. The two main characteristics of
the proposed method are:

• 𝐀, 𝐁, and 𝐂 loadings matrices are estimated from the decomposi-
tion of the three-way array 𝑿, constrained by its group structure.

• The resulting loadings matrices 𝐁 and 𝐂 focus on the common
variability among the groups.
3

Thus, the resulting model is not dominated by a specific group but
is representative of all the groups uniformly. The optimization function
of the proposed method is defined as in Eq. (2) with an adjustment for
the grouping structure

min
𝐀,𝐁,𝐂

∑

𝑖𝑗𝑘
(𝑥𝑖𝑗𝑘 −

𝑁
∑

𝑛=1
𝑎𝑖𝑛𝑏𝑗𝑛𝑐𝑘𝑛)2

such that 𝐁 =
𝐺
∑

𝑔=1
𝑤𝑔𝐁𝐠 and 𝐂 =

𝐺
∑

𝑔=1
𝑤𝑔𝐂𝐠, 𝑔 ∈ 1,… , 𝐺 (4)

and the score matrix 𝐀 is a multi-group matrix and 𝐀𝐠 = (𝑎𝑖𝑛) where 𝑖 =
1,… , 𝐼𝑔 and 𝑛 = 1,… , 𝑁 is the sub-matrix containing the observations
that belong to the group 𝑔. The matrices 𝐁𝑔 and 𝐂𝑔 are the loadings
matrices that correlate to the observations in the group 𝑔 and 𝑤𝑔 are the
weights associated with each group. The matrices 𝐁 and 𝐂 are common
loading matrices for all groups in 𝑿. They are determined using the
weighted scheme approach described in the next section. We present
here the extension of the ALS algorithm to solve the problem presented
in Eq. (4).

Extended ALS algorithm

Similar to the ALS algorithm for the PARAFAC model, the matrices
𝐀, 𝐁 and 𝐂 are updated at each step of the algorithm by minimizing the
sum of squares of residuals between the input matrix 𝑿 and the product
of the three model matrices. Thus, we shall generate a series of matrices

(𝑡) (𝑡) (𝑡)
{𝐀 }, {𝐁 } and {𝐂 } that reach convergence at each successive step.
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Fig. 3. Representation of the calculation of a matrix common to all groups in a generic step 𝑡 of the algorithm. This scheme applies also to the calculation of 𝐂.
The algorithm is initialized by calculating the PARAFAC model with
solution denoted by 𝐀(1),𝐁(1),𝐂(1). Therefore, in the absence of groups,
this extension returns to the conventional PARAFAC model. In the
presence of multiple groups, the algorithm first solves the PARAFAC
model for each group and then finds the common solution across all
groups. We describe here the process of calculating 𝐁 at step 𝑡.

We consider the unfolded two-way array 𝐗𝐛 along the mode 𝑏
of dimension 𝐽 × 𝐼𝐾 and reorganize the columns by grouping the
observations that belong to the same group. The matrix 𝐗𝐛 is a multi-
group structure matrix where each group is of dimensions 𝐽 × 𝐼𝑔𝐾. For
each group thus created, the group loadings matrix 𝐁(𝑡)

𝐠 is calculated by
solving the objective function:

min
𝐁𝐠

‖𝐗𝐛𝐠 − 𝐁(𝑡)
𝐠 𝐙𝑇

𝐠 ‖ where 𝐙𝐠 = 𝐂(𝑡−1) ⊗ 𝐀(𝑡−1)
𝐠 (5)

where 𝐀(𝑡−1)
𝐠 denotes the rows of the matrix 𝐀(𝑡−1) that correspond to

the group 𝑔. The procedure is repeated for 𝑔 = 1,… , 𝐺 obtaining the
group loadings matrices {𝐁(𝑡)

𝟏 ,… ,𝐁(𝑡)
𝐆 }. The matrix 𝐁(𝑡) corresponds to

the common loadings matrix as represented in Fig. 3. These common
loadings 𝐁(𝑡) are computed using a weighted mean of the group loading
𝐁𝐠.

The calculation of 𝐂𝐠 and 𝐂 at step 𝑡 follows the same procedure.
The three-way array 𝑿 is unfolded along the 𝑐 mode as the matrix 𝐗𝐜
of dimensions (𝐾 × 𝐼𝐽 ), and the observations are reorganized so that
𝐗𝐜 shows a multi-group structure matrix. For each group 𝑔 = 1,… , 𝐺
we calculate the corresponding group loadings matrix 𝐂(𝑡)

𝐠 by solving
the problem given by:

min
𝐂𝐠

‖𝐗𝐜𝐠 − 𝐂(𝑡)
𝐠 𝐙𝑇

𝐠 ‖ where 𝐙𝐠 = 𝐁(𝑡) ⊗ 𝐀(𝑡−1)
𝐠 (6)

Here, the algorithm uses the matrix 𝐀(𝑡−1) of the previous iteration
and the latest updated loadings 𝐁(𝑡). For each group 𝑔 = 1,… , 𝐺 we
calculate the group loadings matrices {𝐂𝟏,… ,𝐂𝐆} and the matrix 𝐂(𝑡)

becomes the common loadings matrix to all the groups obtained by
weighted mean.

Finally, to update the score matrix 𝐀, the unfolded matrix 𝐗𝐚 is
considered and solve the same PARAFAC step for each group 𝑔 to obtain
{𝐀(𝑡)

𝟏 ,… ,𝐀(𝑡)
𝐆 }. Finally we repeat the above steps until convergence or

the maximum number of iterations is reached. Algorithm 1 describes
the entire procedure of the proposed method.

The weighting scheme is determined based on the optimization
problem of Eq. (4). There are several options to obtain a solution for the
weights in order to determine a common 𝐁 and 𝐂. One option is that
the solution is given by a simple mean over the groups. In this scenario,
the weights 𝑤𝑔 will be uniform across all the groups. A second option
would consist of a weighted average, where the weights correspond to
the inverse of the variance of each group explained within the model.
Because the model needs to represent all groups uniformly, these
weights are determined based on the variance explained for each group.
4

If a group has a high variance explained, its weight will be lower.
Correspondingly, the groups with lower variance explained will have
a higher weight. This renders a common loadings matrix represented
by variance homogeneity. An alternative option is to determine the
exact weight values for each group. The usefulness of this solution is
case-specific dependent. Indeed, it may be appropriate to assign more
significance to the group that we know has more relevance or a higher
concentration of the chemical compound being studied, among other
possible factors.

Algorithm 1 Extended ALS algorithm for PARAFAC model with
multi-group data
Input: 𝑿 data, list 𝐺 group identification, 𝑁 number of components

𝐀,𝐁,𝐂 ← parafac(𝑿, 𝑁)
group-weights = (𝑤1,… , 𝑤𝐺)
while convergence or max_iterations do

for 𝑔 = 1,… , 𝐺 do
𝐙𝐠 = 𝐂⊗ 𝐀𝑔
min𝐁𝐠

||𝐗𝐛𝐠 − 𝐁𝐠𝐙𝐠
𝑇
||

end for
For each model component 𝑛 = 1,… , 𝑁
𝐁 =

∑𝐺
𝑔=1 𝑤𝑖𝐁𝑖

for 𝑔 = 1,… , 𝐺 do
𝐙𝐠 = 𝐁⊗ 𝐀𝑔
min𝐂𝐠

||𝐗𝐜𝐠 − 𝐂𝐠𝐙𝐠
𝑇
||

end for
For each model component 𝑓 = 1,… , 𝑁
𝐂 =

∑𝐺
𝑔=1 𝑤𝑖𝐂𝑖

for 𝑔 = 1,… , 𝐺 do
𝐙 = 𝐂⊗ 𝐁
min𝐀𝐠

||𝐗𝐚𝑔 − 𝐀𝐠𝐙𝑇
||

end for
𝐀 = [𝐀1,… ,𝐀𝐺]𝑇

end while
Output: 𝐀,𝐁 and 𝐂

2. Data overview

To evaluate the performance of the proposed model, three simulated
data sets and one real case study from additive manufacturing were
used. Each simulation reflects a different scenario for the grouping
structure of three-way arrays. The first simulation involves simulating
data in batches for 𝑘 = 1, 2, 3, where each batch is composed of three
groups. The second and third simulations use model loadings 𝐀, 𝐁, and
𝐂 to generate the three-way array. Various shifts in group variance,
observations and variables were introduced to test the algorithm’s
performance. In the real case study, we examined a three-way array 𝑿
that represents four batches from an additive manufacturing process.
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The PARAFAC model and the proposed extension were fitted to
each dataset. The two methods were compared based on their ability to
homogenize the variance across groups, create common loadings for all
the groups and provide informative insights through variable loadings.
Our goal was to demonstrate the efficacy of the proposed approach in
accurately analyzing complex multi-group array data and identifying a
common model. All the analyses were performed in R 4.0 with in-house
codes.

2.1. Data: Simulated data 1

The first simulation defines a three-way array 𝑿 ∈ R(90×40×3) con-
sisting of three groups of observations. In this simulation we define the
matrices 𝐗∙∙𝑘 (𝑘 = 1, 2, 3), each composed of three groups. Each group
of each matrix is simulated using a multivariate normal distribution
𝑁40(⋅, ⋅) with mean 𝜇 = 0 and standard deviations 𝜎 = 2, 5, 1 as shown
below:

𝑿 ∙∙𝑘𝑔=1 ∼ 𝑁40(0, 2𝐈)

𝑿 ∙∙𝑘𝑔=2 ∼ 𝑁40(0, 5𝐈)

𝑿 ∙∙𝑘𝑔=3 ∼ 𝑁40(0, 𝐈)

where 𝐈 represents the identity matrix of the corresponding order.
After concatenating the groups and the matrices 𝑿 ∙∙𝑘, an error with a
normal distribution of 𝜇 = 0 and standard deviation 𝜎 = 0.05 was added
to obtain the final array 𝑿.

It is worth noticing that the second group, 𝑿 ∙∙𝑘𝑔=2 , has been assigned
a larger standard deviation to challenge the ability of the proposed
model to homogenize the variances across the groups. This will test
the algorithm’s capability to overcome any potential biases towards
a particular group with larger variation and to generate informative
loadings that reflect the entire three-way array.

2.2. Data: Simulated data 2

The second simulation consists of a three-way array 𝑿 ∈ R(90×20×3)

with a multi-group structure consisting of three groups as well. In this
case, we simulated each sub-array 𝑿𝒈 ∈ R𝐼𝑔×20×3 for 𝐼𝑔 = 30, 30, 30
and concatenate them vertically to obtain the final three-way array.
Each sub-array 𝑿𝒈 is obtained as the product of matrices 𝐀, 𝐁 and 𝐂
generated using the Normal distribution for 𝐀 and Uniform distribution
for 𝐁 and 𝐂.

𝐀 ∼ 𝑁(0, 𝐈)
𝐁 ∼ 𝑈 (0, 𝐈)
5

𝐂 ∼ 𝑈 (0, 𝐈)
Within the established framework, a shift in the model matrix
was introduced to create separation between groups. The aim is to
examine the effect of the shifts on both models. In this case, a shift was
introduced in the score matrix 𝐀 corresponding to the first and third
groups. Specifically, 𝐀∙3𝑔=1 was multiplied by factor of 4 and 𝐀∙3𝑔=3 was
multiplied by −1. After the concatenation of the groups, an error with
a normal distribution of 𝜇 = 0 and standard deviation 𝜎 = 0.05 was
added to obtain the final array.

2.3. Data: Simulated data 3

A third simulation is obtained using a similar framework as in
simulated data 2 of Section 2.2. We generate a three-way array 𝑿 ∈
R(90×20×3), vertical concatenation of three sub-arrays 𝑿𝒈 ∈ R𝐼𝑔×20×3 for
𝐼𝑔 = 30, 30, 30. Each sub-way array 𝑿𝒈 is obtained as the product of
matrices 𝐀, 𝐁 and 𝐂, as in the previous example.

Here, a shift in the loadings matrix 𝐁 was introduced. Specifically,
the first column of the first group was multiplied by 5, (i.e. 5𝐁∙1𝑔=1 ). Af-
ter the concatenation of the groups, an error with a normal distribution
of 𝜇 = 0 and standard deviation 𝜎 = 0.05 was added to obtain the final
array.

The objective of this simulation study is to test the capability of
the proposed model in generating common loadings that mitigate the
variations unique to each group, thereby enabling the recovery of
common information shared across all groups. We aim to showcase that
the model captures the underlying common patterns while minimizing
the impact of group-specific variations.

2.4. Case study: Additive manufacturing

The real case study corresponds to an additive manufacturing pro-
cess for high-volume 3D printing. The so-called Selective Thermoplastic
Electrophotographic Process (STEP) [34] takes place by rendering a
three-dimensional object from a digital model. This process generates
a 3D bulk structure by fusing and pressing super-thin layers. Multiple
sensors are positioned throughout the production chain on the new
manufacturing line measuring several variables for each super-thin
layer.

Our study focuses on the analysis of a data set consisting of four
batches that form a three-way array denoted as 𝑿. In the 𝑿 three-way
array, mode 𝑏 contains 53 continuous variables collected through the
sensors located on the printing machine. The variables are labeled from
𝑉 1 to 𝑉 53 due to confidentiality. Mode 𝑎 represents the observations
of the variables collected for each super-thin layer. Finally, mode 𝑐
represents the different batches, as shown in Fig. 4(b). Each batch
consists of three final groups of products. The association between
the final products and the observations creates a multi-group structure
of three groups represented in the 𝑿 three-way array, Fig. 4(a). The
three-way array was previously scaled by group [35]. Group scaling
involves the scaling of each variable within the sub-array 𝑿𝑔 based on
the mean and standard deviation calculated within the respective group
denoted as 𝑿 ∙𝑗∙𝑔 for 𝑔 ∈ 1,… , 𝐺. This approach ensures that variables
within each group are standardized in relation to the group-specific
distribution characteristics.

This case study aims at gaining insights into the covariance structure
among the variables and the different batches. Specifically, we aim to
analyze the loadings matrix 𝐁, which reveals the relative importance
of each variable in explaining the total variability of the three-way
array. To accomplish this, we employ both the PARAFAC model and
the proposed extension.
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Fig. 4. (𝑎): The creation of a multi-group structure in the process data as a result of the relationship between the batch products and the observations in the process data. (𝑏)
Observations, variables and batches organization in the three-way array in the Additive manufacturing case study.
Table 1
Cumulative % of Variance Explained by Groups in Simulated dataset 1.
PARAFAC Algorithm

Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7 Comp 8 Comp 9 Comp 10
Group1 1.26 2.76 3.71 5.10 6.25 7.89 8.60 10.74 12.40 14.15
Group2 3.61 7.43 11.33 14.72 18.44 21.37 25.28 27.71 31.26 33.71
Group3 1.15 2.33 3.44 4.19 4.91 5.24 6.61 7.76 8.68 10.18

Proposed Algorithm

Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7 Comp 8 Comp 9 Comp 10
Group 1 2.27 4.45 6.39 9.05 9.42 12.93 15.71 16.65 17.98 20.94
Group2 2.40 4.79 7.00 8.50 10.41 13.17 15.67 18.00 18.67 21.60
Group3 2.63 4.82 6.71 9.50 11.30 13.82 14.90 16.83 17.78 22.04
3. Results and discussion

As a rule of thumb, we present all the results across all data sets
using models with only 10 components. We adopted this choice to
effectively showcase two key objectives. Firstly, through Simulated data
set 1, our aim was to demonstrate the consistency of the explained vari-
ance across all groups. Additionally, Simulated data sets 2 and 3 were
conducted to provide further evidence of the proposed model’s ability
to generate common loadings that are shared among all groups. It is
important to note, however, that the determination of the number of
components is context-dependent and should be tailored to the specific
characteristics of each individual case, and may vary accordingly. The
determination of the components can be done using a similar approach
as in the PARAFAC model, which involves residual analysis, loading
analysis, split-half analysis, cross-validation etc. [28].

Simulated data sets

The percentage of variance explained by both models for each group
in Simulation 1 is summarized in Table 1. The PARAFAC model reveals
that the second group has a higher representation than the other two
groups in all of the components. This result is in line with the ranking of
the standard deviations set for each group as presented in Section 2.1.

To compare the representation of the groups across all of the
components, the ratio of the explained variances for each group with
respect to group 3 was calculated (See Fig. 5). Throughout the different
components, the second group dominated the representativity with a
percentage of explained variance 3 times the variability group 3. This
result showed the dominance of the second group for the resulting
PARAFAC model with a lower representation of the other groups.
This is indicative of a model that represents only one group rather
than being representative of the entirety of the data. In contrast, the
proposed model demonstrates a uniform explained variance across all
3 groups, providing evidence of a model that uniformly represents the
entire dataset. This is supported by the ratios in Fig. 5, which depict
6

a more uniform explained variance across all groups throughout the
components.

Fig. 6 displays the scores of the 1st and 2nd components for Sim-
ulation 2, described in Section 2.2. In this case, a shift in the score
matrix 𝐀 was applied in the data simulation. The analysis of the results
of the two models, therefore, focuses on the visualization of the first
two scores.

In the case of the PARAFAC model, while the scores of the second
and third groups nearly overlap and vary along the same direction, the
scores of the third group are almost perpendicular to those of the first
two groups, with a much larger dispersion. In contrast, the proposed
model demonstrates nearly overlapping scores across all groups. Addi-
tionally, it can be noticed that the direction of variation for all groups is
closer to one another. This provides evidence that the proposed model
effectively mitigates the inherent shifts between groups and captures
shared directions.

In Fig. 7, the 𝐁 loadings matrices are presented for both the
PARAFAC and proposed models referred to Simulation 3, described
in Section 2.3. The black profile in the figures represents the original
loadings matrix and a significant shift is highlighted represented by the
first group. This extreme shift scenario was deliberately chosen to assess
the algorithm’s performance under challenging conditions. However, in
practical scenarios, the variations between groups are expected to be
comparatively smaller.

Upon comparing the results of the two models, noticeable differ-
ences can be observed. The PARAFAC model exhibits a greater bias
towards the shift, resulting in 𝐁 loadings profiles with higher levels of
noise. These loadings exhibit extremely high peaks, influenced by the
larger variability present in the first group. Conversely, the proposed
model displays less pronounced peaks and generally smoother trend
profiles. The loadings of the proposed model are closer to those of
groups 2 and 3, indicating reduced bias from group 1.

These findings suggest that the proposed model can identify the
common patterns present in all groups while mitigating any bias to-
wards a specific group. Overall, these results highlight the potential of
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Fig. 5. The ratios of the explained variances for each group with respect to group 3 in simulated data set 1.
Fig. 6. First two scores plot for the PARAFAC model and the Proposed model with a 99% confidence interval ellipse related to Simulation 2, described in Section 2.2.
Fig. 7. The PARAFAC and proposed model loadings matrices 𝐁 for the dataset 3, Section 2.3.
the proposed model to serve as a reliable tool for analyzing multi-group
datasets.

Case study: Additive manufacturing

The results of the PARAFAC and the proposed models in terms of the
explained variance per group for the three-way array 𝑿 are summarized
in Table 2. Consistent with the findings observed in the simulated
datasets, the PARAFAC model exhibited a relatively higher represen-
tation of the first group compared to the subsequent two groups. This
disparity in groups representation becomes more pronounced, particu-
larly in the higher-order components. In contrast, the proposed model,
resulted in a more uniform representation of all three groups.

These findings are further validated by the ratios between the
explained variances of each group with respect to group 3, in Fig. 8.
7

The initial components show that the PARAFAC model exhibits a two-
fold ratio in representing the first group when compared to the third
group. While the disparity diminishes with subsequent components, a
preference for the first group persists, albeit to a lesser degree. This
observation suggests that the PARAFAC model captures the variability
of the first group more effectively than it does for the entire dataset.
In contrast, the proposed model already explains similar degree of
variances explained by all groups in the first few components. As more
components are added, the model portrays an equal representation of
all three groups. This demonstrates that the proposed model is more
effective at capturing the common variability and fostering a broader
understanding of the data.

Fig. 9 displays the scores of the first two components for both mod-
els. In the PARAFAC case, it is evident that the scores corresponding to
group 1 exhibit greater separation than those of the remaining groups,
in agreement with the above findings. Moreover, the direction of the
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Table 2
Cumulative % of Variance Explained by Groups: Case study 𝑿 three-way matrix.
PARAFAC Algorithm

Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7 Comp 8 Comp 9 Comp 10
Group 1 39.00 39.25 39.18 53.57 53.76 65.48 66.00 66.22 67.93 71.53
Group2 26.85 26.90 27.49 33.15 35.74 39.58 42.55 43.15 48.79 52.57
Group3 20.66 21.42 21.70 27.17 44.48 46.98 47.69 48.47 52.79 55.54

Proposed Algorithm

Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7 Comp 8 Comp 9 Comp 10
Group 1 32.90 33.10 33.30 38.27 42.62 46.53 50.30 56.59 59.70 58.36
Group2 29.71 29.69 30.18 36.88 41.08 39.33 47.20 48.31 53.68 53.06
Group3 23.38 24.21 24.65 30.06 36.84 36.30 44.05 48.76 52.84 55.59
Fig. 8. Case study: Ratios of the explained variance for each group with respect to group 3.
Fig. 9. Case study: Three-way array 𝑿, first two dimensions scores representation with a 99% confidence interval ellipse.
scores of group 2 is different from the other two groups. Conversely,
in the proposed model scenario, the scores of all three groups exhibit
significant overlap within a common region. Notably, the groups also
demonstrate shared patterns direction of variability. This outcome is
consistent with the objective of the proposed model, which aims to
recover loadings that express the shared patterns and variability across
all groups.

The biplot of the loadings matrices 𝐁 for both models are illustrated
in Fig. 10. In the PARAFAC model, the variables 𝑉 2, 𝑉 4, 𝑉 8, 𝑉 11,
𝑉 44 and 𝑉 45 have the highest model coefficients. The proposed model
showcases similar high coefficients for the variables 𝑉 11, 𝑉 44 and 𝑉 45,
albeit with slightly reduced magnitudes. Moreover, other variables such
as 𝑉 1, 𝑉 2, 𝑉 8, 𝑉 9, and 𝑉 10 are shown to have high model coeffi-
cients in the proposed model. However, in the PARAFAC model, the
coefficients for these variables are lower in comparison. The disparity
in the estimates of the model coefficients can likely be attributed to
the unequal representation of the variability of the three-way array by
the two models. As shown in the above findings, the PARAFAC model
primarily captures the variability specific to the first group rather than
8

the entirety of the dataset. It implies that the emphasis placed on the
first group by the PARAFAC model may result in model coefficients
representing this group rather than the entire three-way array. This
difference between the two models may result in interpretations and
conclusions that are different.

Following the analysis of the outcomes and consultation with expert
engineers in the field, a consensus was reached regarding the results
obtained from the proposed model. The variables 𝑉 1 and 𝑉 2 are asso-
ciated with the pressure applied to each micro-layer, which determines
its fusion with the main component. This step is highly important
in the production process, as it significantly impacts the numerous
mechanical properties of the final product. The variables 𝑉 8 and 𝑉 9
are linked to the bulk temperature, representing the temperature of
the main component of all the fused layers. This temperature plays a
crucial role in material fusion and adhesion of the individual micro-
layers, so the fusion between all the micro-layers influences the printing
process overall success and contributes to several quality aspects of the
end products. Moreover, the variable 𝑉 10 is linked to the creation of
each individual micro-layer, underscoring its significance in the overall
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Fig. 10. Case study: Biplot of the first two components of the loadings matrix 𝐁 of the PARAFAC and the proposed model.
process. Lastly, both models highlighted the importance of the variables
𝑉 44 and 𝑉 45, which pertain to the sensors in the cooling step. Cooling
temperatures are of noteworthy influence on warpage, a factor directly
affecting various qualities of the final product. These findings reinforce
the understanding that careful management of cooling temperatures
is imperative for ensuring optimal product outcomes across multiple
quality dimensions.

Discussion

Across all four data sets, we demonstrated that the proposed ap-
proach was able to provide a model that is representative of all the
groups present in the data. This was supported by similar levels of
variance explained across all groups compared to the variance discrep-
ancies in the PARAFAC model. This is indicative of a model that is
representative of the variability of the entire data set and all groups.
Despite the fact that one or more groups may exhibit larger variability,
the suggested model was able to reduce this variability and produce
model coefficients that are common to all groups. The two simulation
strategies depicted two ways of inducing a multi-group structure in the
data and in both cases, the proposed model was able to regulate the
dominance of the group with the highest variance. In the case study, we
presented a real-world application in additive manufacturing, aiming
to gain valuable process insights and understanding. To achieve this
aim, it is necessary to consider a model that accurately represents all
groups in the data set. The proposed model showcases a percentage of
explained variance similar for all groups, indicating its ability to effec-
tively capture the common variability of the three-way array and its
multiple groups. This stands in contrast to the PARAFAC model, which
exhibits a greater representation of the first group and its variability.
The strength of the proposed model lies in its capability to mitigate the
higher variability observed in the first group and successfully recover a
common structure that encompasses all groups. An in-depth analysis of
the loadings matrix 𝐁 provides further insights for process understand-
ng. The results of the PARAFAC model indicate a lack of homogeneity
n variability among the groups, leading to different model coefficients.
his aspect holds crucial implications for a deeper understanding of
he underlying process, as in the PARAFAC case, the coefficients of
he variables are more representative of the first group rather than
he entire data set. In this context, the proposed model proves to
e more suitable and advantageous for three-way arrays that present
multi-group structure. Furthermore, we recommend extending the

nalysis to include a meticulous examination of residuals, the three-
ay matrix 𝑬, when conducting further studies on differences between
arious groups. As the model represents the common structure shared
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among all groups, analyzing the residuals can shed light on the different
variations a specific group represents. However, it is essential to note
that such an analysis lies beyond the scope of the proposed model in
this paper. Instead, it serves as a natural direction for future studies,
warranting careful consideration and examination on a case-by-case
basis.

4. Conclusions

The extension of the PARAFAC model proposed in this paper makes
it possible to analyze complex data that present a multi-grouping
structure. This transfer of methodology from the PARAFAC model to the
multi-group settings was defined by adding constraints to the objective
function to consider the group structure for the model parameters. We
provided the corresponding extension of the ALS algorithm to solve the
proposed model. This algorithm was set to be also used in the absence
of multi-group data as its initialization corresponds to the PARAFAC
model.

Three simulation studies and a real case were used to illustrate the
capability of the extended PARAFAC method to render a model that
explains the common variability of all the groups. In all applications,
using the model without a multi-group structure when the groups have
large differences resulted in a model being representative of the most
dominant group (i.e. the group with the largest variance). In the real
case study in additive manufacturing, we illustrated the impact of
considering the grouping structure to analyze the importance of process
variables in this type of data. By employing the extended PARAFAC
method, we achieved a more comprehensive understanding of the
entire manufacturing process, avoiding a biased focus on individual
groups. This perspective facilitated a more profound analysis of the
data and enabled us to extract valuable insights that would have been
overlooked in a model dominated by a single group.

Our results demonstrate that the proposed model performs well
in capturing the common and explanatory loadings of the data, even
when the variances of the groups are unequal, resulting in a more
robust and reliable model. The proposed model effectively represents
the entire dataset, and this is of utmost importance for gaining valuable
insights and understanding of the process. When a model is heavily
influenced by one dominant group, the loadings tend to explain more of
that particular group’s characteristics, neglecting the broader dynamics
of the entire process. The proposed method offers a solution to this
challenge, ensuring a more balanced representation of the data and
fostering deeper process understanding across all groups.
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